
Markus Postl, BSc

Securing

Lifecycle Tool Integrations

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Institute for Applied Information Processing and Communications

Head: Univ.-Prof. Dipl-Ing. Dr.techn. Reinhard Posch

Supervisor: Dipl.-Ing. Dr.techn. Andrea Leitner (AVL)

Dipl.-Ing. Bojan Suzic (IAIK)

Evaluator: Univ.-Prof. Dipl-Ing. Dr.techn. Reinhard Posch

Graz, January 2017

Affidavit

I declare that I have authored this thesis independently, that I have not used

other than the declared sources/resources, and that I have explicitly indicated

all material which has been quoted either literally or by content from the

sources used. The text document uploaded to TUGRAZonline is identical to

the present master‘s thesis.

Date Signature

ii

Abstract

The growing complexity of application and product development processes and

the related increase of incorporated tools pushes the development of standard-

ized integration concepts. The Open Services for Lifecycle Collaboration (OSLC)

is a set of specifications for coupling data beyond tool boundaries, based on

technologies inspired by the web, such as RESTful services and Linked Data.

Making data accessible across tool boundaries induces new threats regarding

application security. Hence, already at the stage of planning seamless toolchains,

security can be considered as an integral part of the software concept.

In this work, security requirements for different scenarios of tool integra-

tion are elaborated. Especially authentication and trustworthiness between

lifecycle tools, confidentiality, and integrity of the communication, as well as

authorization to access resources, have been identified as important security

requirements. Conventional security mechanisms are discussed in a threat and

gap analysis, and the most promising mechanisms are integrated into the ac-

companying prototype implementation. The subsequent evaluation identifies

security weaknesses of methods like Transport Layer Security (TLS), HTTP

Basic Authentication, OAuth 1.0a, or OAuth 2.0. Findings of the prototype

implementation and evaluation are discussed and supplemented by recommen-

dations for the application of security mechanisms in different tool integration

scenarios.

Consequently, OAuth 2.0 for delegated access control to resources, as well

as a concept to establish trust relationships for server authentication are

recommended. Finally, potential approaches for solving remaining open issues

are presented.

iii

Kurzfassung

Die steigende Komplexität in Anwendungs- und Produktentwicklungsprozessen

und der daraus resultierenden Zunahme an eingesetzten Tools forciert die

Entwicklung von standardisierten Integrations-Werkzeugen. Open Services for

Lifecycle Collaboration (OSLC) ist eine Sammlung von Spezifikationen um

Daten über Toolgrenzen hinweg miteinander zu verbinden. Die Spezifikationen

basieren auf etablierten Internettechnologien wie REST und Linked Data.

Das Bereitstellen von Daten zwischen Tools induziert neue Bedrohungen im

Bezug auf Anwendungssicherheit. Bereits bei der Planung von Toolketten ist

Security folglich als integraler Bestandteil des Software-Konzepts einzustufen.

In dieser Arbeit werden Security-Anforderungen von verschiedenen Szenarien

in der Tool-Integration erarbeitet. Als wichtige Elemente werden dabei die

Security-Anforderungen Authentifizierung und Trust zwischen den Lifecycle-

Tools, Vertraulichkeit und Integrität der Kommunikation, sowie Autorisierung

zum Zugriff auf Ressourcen identifiziert. Konventionelle Security-Mechanismen

werden in einer Threat- und Gap-Analyse diskutiert und die aussichtsreichsten

in einer Prototyp-Implementierung umgesetzt. Die anschließende Evaluierung

beleuchtet Schwachstellen von Methoden wie Transport Layer Security (TLS),

HTTP Basic Authentication, OAuth 1.0a oder OAuth 2.0. Die Erkenntnisse aus

der Implementierung des Prototypen und der Evaluierung werden anschließend

diskutiert und Empfehlungen zum Einsatz von Security Mechanismen in ver-

schiedenen Szenarien der Tool-Integration dargelegt.

Schlussfolgernd wird OAuth 2.0 für die Autorisierung zum Zugriff auf

Ressourcen, sowie ein Konzept zum Aufbau von Vertrauensbeziehungen für die

Server-Authentifizierung empfohlen. Abschließend werden mögliche Lösungsansätze

für offene Punkte präsentiert.

iv

v

Acknowledgement

I want to dedicate this page to all those people who supported me and made

this thesis possible.

I am indebted to my supervisors Andrea Leitner and Bojan Suzic. I wish

thanks to Andrea Leitner for proposing this work to me, introducing me to the

topic, providing tools, reading and commenting the thesis, and above all for

the organizational effort to even enable this work. I am very thankful to Bojan

Suzic who guided me, pointed me to relevant work, backed me by carrying lots

of organizational stuff, and supported me by reviewing and commenting on

drafts of this thesis uncountable times.

Last but not least, I must express my gratitude to those close to my heart.

I want to thank Isabella for supporting me during the last year, and for her

steady understanding when I used a weekend again to write this thesis. I also

want to thank my parents Erna and Josef for their continuous support in all

matters.

vi

Contents

Abstract iii

List of Figures xi

List of Tables xii

Abbreviations xiii

1. Introduction 1

2. Tool Integration 3
2.1. Integration Technologies . 3

2.1.1. Message-Oriented Middleware 3
2.1.2. Service-Oriented Architecture 4
2.1.3. Enterprise Service Bus 4
2.1.4. Conclusion . 6

2.2. Open Services for Lifecycle Collaboration 6
2.2.1. Core Specification . 7
2.2.2. Authorization . 7
2.2.3. Domain Specifications 7
2.2.4. Tracked Resource Set . 9

2.3. Integration Scenarios . 9
2.3.1. OSLC Scenario: Direct Communication via OSLC 9
2.3.2. Platform Scenario: Communication via Centralised Inte-

gration Platform . 12

3. Security Goals and Requirements 13
3.1. RMIAS Security Goals . 13

3.1.1. Accountability . 14
3.1.2. Auditability . 14
3.1.3. Authenticity/Trustworthiness 15
3.1.4. Availability . 15
3.1.5. Confidentiality . 15

vii

Contents

3.1.6. Integrity . 16
3.1.7. Non-repudiation . 16
3.1.8. Privacy . 16

3.2. Security Requirements . 17
3.2.1. Authentication . 18
3.2.2. Authorization and Confidentiality 18
3.2.3. Integrity . 19

3.3. Additional Non-Functional Requirements 19
3.3.1. Usability . 19
3.3.2. Simple Configuration and Administration 19
3.3.3. Interoperability and Lightweight Integration 19

4. Related Work 20
4.1. Levels of Trust . 20
4.2. Access Control . 21

4.2.1. Methods of Access Control 22
4.3. Security Mechanisms . 24

4.3.1. Transport Layer Security 24
4.3.2. HTTP Basic Authentication 24
4.3.3. Form Based Authentication 25
4.3.4. Security Tokens . 26
4.3.5. OAuth . 26
4.3.6. OAuth 2.0 . 28
4.3.7. OpenID Connect . 29
4.3.8. Security Assertion Markup Language 30
4.3.9. User-Managed Access . 31
4.3.10. System for Cross-domain Identity Management 32
4.3.11. eXtensible Access Control Markup Language 33

4.4. Software Solutions for Lifecycle Tool Integration 34
4.4.1. Eclipse Lyo . 34
4.4.2. IBM Jazz . 35

4.5. Conclusion . 36

5. Threat and Gap Analysis 38
5.1. Definitions and Methodology . 38

5.1.1. Methodology . 38
5.1.2. Assets of the OSLC Scenario 39
5.1.3. Assets of Platform Scenario 40
5.1.4. Threats . 41
5.1.5. Security Objectives . 43

viii

Contents

5.1.6. Countermeasures . 44
5.2. Threat Analysis . 46
5.3. Gap Analysis . 51

5.3.1. Discussion of Threats . 51
5.3.2. Discussion of Security Objectives 54

5.4. Conclusion . 55

6. Implementation 57
6.1. Architecture . 57

6.1.1. Overview . 57
6.1.2. Components . 57
6.1.3. Libraries . 61
6.1.4. Sample Use-Cases . 63

6.2. Data Flow without Authorization 64
6.2.1. Refine - RM Tool . 64
6.2.2. Integration Platform - RM Tool 64

6.3. Authorization . 67
6.3.1. HTTP Basic . 67
6.3.2. OAuth 1.0a . 68
6.3.3. OAuth 2.0 Authorization Code 70
6.3.4. OAuth 1.0a Two-Legged 70
6.3.5. OAuth 2.0 Resource Owner Password Credentials 72

6.4. Discussion . 73

7. Evaluation 75
7.1. Evaluation Against Objectives 75

7.1.1. Authentication of the Server 76
7.1.2. Authentication of the user 76
7.1.3. Integrity and Confidentiality of OSLC, TRS, and SPARQL

Communication . 76
7.1.4. Grant Authorized Users Permission to OSLC Operations 77
7.1.5. Permission to Query via Tracked Resource Set (TRS)

Interface . 77
7.1.6. Permission to Query via SPARQL Interface 77
7.1.7. Conclusion . 77

7.2. Security Considerations of Applied Methods 78
7.2.1. Transport Layer Security (TLS) 79
7.2.2. HTTP Basic Authentication 81
7.2.3. OAuth 1.0a . 83
7.2.4. OAuth 2.0 . 86

ix

Contents

7.3. Discussion and Recommendations 90

8. Conclusion 93

A. Sample Messages 95
A.1. OSLC Messages . 95
A.2. TRS Messages . 101

Bibliography 105

x

List of Figures

2.1. Message-Oriented Middleware (MOM) 4
2.2. Service-Oriented Architecture (SOA) 5
2.3. Enterprise Service Bus (ESB) 5
2.4. Logo of the Open Services for Lifecycle Collaboration 6
2.5. OSLC conceptual model from [osl13] 8
2.6. OSLC Scenario - Direct Communication via OSLC 11
2.7. Platform Scenario - Communication via a Centralised Integration

Platform . 12

4.1. Levels of Trust in an onion like structure 21
4.2. Object Model of System for Cross-domain Identity Management

(SCIM) . 32

5.1. Methodology of the Threat Analysis 39

6.1. Architectural overview of prototype implementation 58
6.2. OAuth user authorization page of the RM Tool 59
6.3. Refine, displaying sample OSLC requirements from RM Tool . . 60
6.4. RDF triples from RM Tool stored in rdf4j triple store of the

Integration Platform . 62
6.5. Data flow diagram of Refine and RM Tool 65
6.6. Data flow diagram of Integration Platform and RM Tool 66
6.7. Data flow diagram of HTTP Basic authentication 68
6.8. Data flow diagram of OAuth 1.0a 69
6.9. Data flow diagram of OAuth 2.0 with grant type Authorization

Code . 71
6.10. Data flow diagram of two-legged OAuth 1.0a 72
6.11. Data flow diagram of OAuth 2.0 with grant type Resource Owner

Password Credentials . 73

7.1. Demonstration of clickjacking of OAuth 1.0a 86

xi

List of Tables

4.1. OAuth 1.0 vs OAuth 2.0 Terminology 27

5.1. Assets targeted by threats . 42
5.2. Threats addressed by countermeasures 46
5.3. Security objectives covered by countermeasures 47
5.4. Threats addressed by existing solutions 54
5.5. Security objectives addressed by existing solutions 55

7.1. Security objectives covered by prototype implementation 78
7.2. OAuth 1.0 vs. OAuth 2.0 from [Sir14] 90

xii

Abbreviations

Abbreviations

ABAC Attribute Based Access Control

ALM Application Lifecycle Management

API Application Programming Interface

CA Certificate Authority

CIA confidentiality, integrity and availability

CSRF cross-site request forgery

CRUD Create, Retrieve, Update, and Delete

DAC Discretionary Access Control

ESB Enterprise Service Bus

IBAC Identification Based Access Control

IdP Identity Provider

IETF Internet Engineering Task Force

IOS Interoperability Specification

JWT JSON Web Token

LDAP Lightweight Directory Access Protocol

LTI Lifecycle Tool Integration

MAC Mandatory Access Control

MITM Man-in-the-Middle

MOM Message-Oriented Middleware

NIST National Institute of Standards and Technology

OSLC Open Services for Lifecycle Collaboration

PLM Product Lifecycle Management

xiii

Abbreviations

RBAC Role Based Access Control

RDF Resource Description Framework

RMIAS Reference Model of Information Assurance & Security

SAML Security Assertion Markup Language

SCIM System for Cross-domain Identity Management

SDK Software Development Kit

SOA Service-Oriented Architecture

SSO Single sign-on

SWT Simple Web Token

TLS Transport Layer Security

TRS Tracked Resource Set

UMA User-Managed Access

XACML eXtensible Access Control Markup Language

xiv

1. Introduction

... Lifecycle Tool Integrations

A key issue in current computer-aided software engineering envi-

ronments is the desire to link tools that address different aspects of

the development process. [Was90]

The development process of products or applications requires the usage of

several software tools. Typically, the data of those tools have mutual dependen-

cies. A conventional approach to share data over tool boundaries is the usage of

Application Programming Interfaces (APIs), or connecting tools via a common

platform or enterprise bus system. Lifecycle Tool Integration (LTI) moves a

step ahead and provides a unified way of linking information between all tools

in the development process of a product. LTI additionally allows traceability of

entities in the process. The Open Services for Lifecycle Collaboration (OSLC)

[osl16] is an open community developing specifications for loosely coupled LTIs.

The specifications are based on techniques inspired by the web, such as Linked

Data, and RESTful services. The advantage of this concept is the idea to

implement the LTI interface of a tool once, and use it multiple times to couple

all tools in the lifecycle.

Securing ...

Security should never be an afterthought - it’s an integral part of

any software system design, and it should be well thought out from

the design’s inception. [Sir14]

Connected tools in a lifecycle widely open the doors for various threats by

sharing data (resources), and by using common authentication and authorization

flows. Hence, planning a concept for software security is an essential step, before

tools are connected to share and link their resources.

1

1. Introduction

Motivation and Goals. The OSLC specifications provide promising solutions

for lifecycle tool integration. Accessing and linking data across tool boundaries

requires methods for delegated access control and authorization. The speci-

fications enumerate some security methods, but this list raises unanswered

questions. How were these methods evaluated for security? Which methods

should be applied for which integration scenario? Are there open issues which

cannot be solved with these methods?

The goal of this work is to identify and evaluate solutions for defined integra-

tion scenarios. The elaboration of this goal was achieved step by step according

to the structure of this work, as described in the next paragraph.

Structure of the Work. The thesis starts with a general overview of tool

integration in Chapter 2. After describing the most important concepts for tool

integration, the OSLC specifications are introduced. Finally, the integration

scenarios considered in this work are defined at the end of the chapter.

Chapter 3 determines appropriate security requirements to the scenarios.

Based on a reference model, a new model for the context of LTI is derived, and

used to identify and clarify relevant requirements.

Chapter 4 outlines related work by introducing concepts and mechanisms

used to achieve the security requirements. Further, the chapter lists relevant

software solutions for LTI, including a proprietary software solution as well as

an open source library.

The threat and gap analysis in chapter 5 analyzes threats and countermea-

sures in the defined scenarios for the introduced security methods as well as for

existing software solutions. The chapter concludes with recommendations of

methods for applying to the prototype implementation in the next chapter.

An architectural overview of the prototype implementation is given in chapter

6, as well as the data flow between tools including authorization. Extensive

figures illustrate the data flow and explain the used security methods.

Chapter 7 pictures the outcome of this work with an evaluation of the

prototype, as well as recommendations and future perspectives in the discussion.

The concluding chapter 8 briefly summarizes scenarios and security re-

quirements and outlines the results from the prototype implementation and

evaluation.

2

2. Tool Integration

Before we can discuss security in the area of LTI, we need to introduce funda-

mental tool integration concepts and scenarios. This chapter starts by intro-

ducing commonly used integration technologies, before the concept of OSLC is

presented. Finally, integration scenarios using OSLC, which are deployed for

implementation and analysis purposes in the next chapters, are introduced.

2.1. Integration Technologies

Wassermann [Was90] states that a key issue of a development process is to ”link

tools that address different aspects of the development process.” This section

gives an introduction to integration technologies which are commonly used and

a demarcation to LTI. A more detailed overview of the described technologies

is provided by [Men07].

2.1.1. Message-Oriented Middleware

In a Message-Oriented Middleware (MOM) architecture [Men07] all integrated

tools are connected to a middleware layer, the message broker, pictured in

Figure 2.1. Transmitted messages are decoupled, asynchronous and routed via

the message broker. The middleware defines an interface for connecting all tools;

the interface may be different for each tool. The message broker transforms the

message to the data format of the receiving tool interface.

MOM solutions often use platform-specific and/or proprietary solutions

which cause interoperability problems to alternative vendors [Men07]. This

architecture is too inflexible for LTI.

3

2. Tool Integration

Figure 2.1.: Message-Oriented Middleware (MOM)

2.1.2. Service-Oriented Architecture

In a Service-Oriented Architecture (SOA), all tools provide their business logic

as services [Men07]. Figure 2.2 shows a simplified version of SOA. Each tool

registers its services and a description of the provided interface to a service

registry. If Tool A requires some service, it first looks up the service registry to

verify which connected tool provides the appropriate service. In a second step,

it retrieves the service description from Tool B and consumes the described

service. The communication typically is handled via SOAP or REST, [ECPB12]

describes the concepts of those network communication methods.

Lifecycle tool integrations, in particular OSLC, use many of the approaches

from the SOA architecture. Some of them are the usage of web technologies for

communication, and listings of offered services by service registries/providers.

2.1.3. Enterprise Service Bus

An Enterprise Service Bus (ESB) is a message-based information infrastructure

that provides interaction with distributed applications and services, in a secure

and reliable manner, using open standards [Men07]. Typically an ESB is

formed by a concatenation of service containers connected via a message

bus, as shown in Figure 2.3. Each of the service containers provides different

4

2. Tool Integration

Figure 2.2.: Service-Oriented Architecture (SOA)

methods for integrating tools. There exist various software products, offering

ESB capabilities; either free or commercial.

Figure 2.3.: Enterprise Service Bus (ESB)

This architecture is well suited in the enterprise scenario but requires custom

adapters for each tool in the integrated lifecycle.

5

2. Tool Integration

2.1.4. Conclusion

In this section, we introduced integration technologies. The MOM connects

all tools via a middleware layer. The need to transform data between the

different tools makes this solution inappropriate for LTI. An SOA allows tools

to consume services of each other. The OSLC specifications use this technology

to register and lookup services from other tools. The missing gap to the OSLC

specification is the definition of the data format and possibilities to link data

between different tools. Finally, we introduced the ESB. This solution builds

on MOM and SOA and is typically used in enterprise scenarios. An example

for an ESB in combination with OSLC is the IBM Jazz platform, which is

described in Section 4.4.2. This thesis focuses on the OSLC specifications for

tool integration, which will be introduced in the next section.

2.2. Open Services for Lifecycle Collaboration

This section briefly introduces a set of specification for tool integration, devel-

oped by the working groups of the OSLC initiative [osl16], initially started in

2008, and governed by the steering committee 1 at the OASIS Open Standards

Network. The goal of the OSLC initiative is to make software that integrates

easily with other software for building connected development environments.

Figure 2.4.: Logo of the Open Services for Lifecycle Collaboration

In contrast to the integration technologies discussed in Chapter 2.1, the

specifications define how to link data seamlessly between tools without copying

the information, or extracting it to a common database. The model can be

used either for Application Lifecycle Management (ALM) or Product Lifecycle

Management (PLM).

The base concept is linked data; using web technologies such as URI and the

Resource Description Framework (RDF) [MMM+04], which is a data model

1http://www.oasis-oslc.org/governance (Accessed: 2016-12-28)

6

2. Tool Integration

without type for describing and modeling of information. An artifact (e.g. a

requirement) can be uniquely identified and therefore accessed by other tools.

RESTful services allow to retrieve and search artifacts from tools with HTTPs

Create, Retrieve, Update, and Delete (CRUD) operations.

2.2.1. Core Specification

The OSLC core specification [osl13] is currently in final version 2.0. Version 3.0

is in draft state. In the following, always the final version 2.0 is mentioned.

Figure 2.5 illustrates the concepts and relationships of the OSLC core specifi-

cation. It defines the basic means of communication between tools. The Service

Provider Catalog lists Service Providers and may include OAuth configuration

and publisher information. A Service Provider facilitates a Creation Factory

and a Query Capability. The Creation Factory can be used to create new

resources using HTTP POST. A Query Capability lists the URIs of contained

resources. The resources can be retrieved, updated or deleted by using HTTP

GET, HTTP POST, or HTTP DELETE on the resource URIs.

2.2.2. Authorization

To control access to resources from an OSLC service provider the core speci-

fication defines an OAuthConfiguration resource to store three URLs for the

use of OAuth.[OAu09] Furthermore, three different ways of authentication are

recommended:

• HTTP Basic Authentication via SSL (TLS)

• OAuth Authentication

• Form Based Authentication

The specification does not mandate to use one of the above methods. In draft

version 3.0, additionally, OAuth 2.0 and OpenID Connect is recommended.

These and further security methods are described in Section 4.3.

2.2.3. Domain Specifications

In addition to the core specification, there are several domain-specific specifi-

cations, e.g. for change management, requirements management, and quality

7

2. Tool Integration

Figure 2.5.: OSLC conceptual model from [osl13]

management. The domain specifications define the basic terminology required

within these domains.

The example OSLC scenarios in this work and the accompanying prototype

implementation are in the domain of requirements management. The OSLC

requirements management specification [osl12] defines requirements as ”basis

for defining what the system stakeholders (users, customers, suppliers and so

on) need from a system and also what the system must do in order to meet

those needs, and how the surrounding processes must be orchestrated so that

quality, scope and timescale objectives are satisfied.” A framework for testing

in the domain of requirement management which integrates tools via OSLC is

presented by Aichernig et al. [AHL+14]

8

2. Tool Integration

2.2.4. Tracked Resource Set

The specification for Tracked Resource Sets (TRSs) [osl15b] can be used in

extension to the OSLC core and domain specifications. Currently, the specifica-

tion is in finalizing draft status. It defines a protocol which allows a server to

expose a set of resources. Clients can discover resources in the set, and track

modifications of the set.

A use case of the protocol is a centralized service extracting data from

multiple tools via TRS, and allowing clients to search in an indexed database

of extracted data. This enables tools to search for data in a more convenient

way, e.g. with SPARQL queries. SPARQL [PSH08] is a query language for RDF

resources.

An example data flow is shown in Chapter 6.

2.3. Integration Scenarios

Two integration scenarios will be considered in this thesis to evaluate different

security methods for LTI. The scenarios will be used in the subsequent chapters

for analysis of threats, implementation of a prototype, and evaluation of the

implementation and used security methods.

The first scenario handles the direct connection of tools via OSLC; the second

scenario additionally handles TRSs.

2.3.1. OSLC Scenario: Direct Communication via OSLC

The OSLC scenario describes a toolchain, loosely coupled via OSLC. Figure

2.6 describes an example lifecycle in the automotive sector with the successive

steps. The deployed tools of this example toolchain are not relevant for this

work and will not be further described.

1. Requirements are defined in a requirements management tool.

2. A system specification is created via a SysML tool based on the defined

requirements.

3. The specification is handed over to a simulation tool, e.g. AVL Model.CONNECT.

4. Export the simulation results to a data management platform, e.g. AVL

SANTORIN.

9

2. Tool Integration

5. (Optional) Read the requirements from the requirement management tool,

refine (modify) them and update the requirements in the requirement

management tool, e.g. by VIRTUAL VEHICLE REFINE.

6. Import the requirements and the stored simulation results to a validation

tool, e.g. AVL MAGIC evaluates the result and AVL VeVaT checks if all

requirements are fulfilled.

7. Store the validation results to the requirements management tool.

8. (Repeat) Further refine requirements or system specification.

The scenario investigated here focuses on the communication parts via OSLC;

the other parts are usual API communication protocols which are out of scope

in this work. The relevant parts of the OSLC scenario are marked in Figure

2.6 with a grey box. Thus are the communication parts between Refine, the

requirement management tool, and the validation tool (AVL VeVaT). The

connections between those tools implemented using OSLC. A similar scenario

which integrates Refine, VeVaT, and a requirements management tool using

OSLC was introduced by Marko, Leitner, Herbst & Wallner [MLHW15].

The challenges of this scenario are to analyse if the security mechanisms,

proposed by OSLC, fit all security requirements, and discuss other relevant

security and access control mechanisms.

10

2. Tool Integration

Figure 2.6.: OSLC Scenario - Direct Communication via OSLC

11

2. Tool Integration

2.3.2. Platform Scenario: Communication via Centralised

Integration Platform

The Platform Scenario is more complex as it defines not a fixed model, but an

architecture for integration.

Figure 2.7.: Platform Scenario - Communication via a Centralised Integration Platform

As clearly represented in Figure 2.7, on top of the system is a centralized in-

tegration platform. The tools may communicate directly via an Interoperability

Specification (IOS), e.g. OSLC, or communicate via the integration platform.

In addition to the peer-to-peer system of the OSLC scenario, the integration

platform can be used to handle authentication and access control. Furthermore,

centralized databases, e.g. RDF triplestores, extract and permanently store

resources from different lifecycle tools. This provides additional features to the

users. First, it allows to access information from tools, even if they are offline.

And second, information from different tools can be searched or queried easily

with query languages like SPARQL.

An additional challenge to the OSLC scenario may be to enable a Single

sign-on (SSO) experience to the user. The user should not be forced to log

into each single tool, but only to the integration platform. A more complex

challenge is access control. As long as the resources are stored within one tool,

the tool can control access to the resources. But after extracting resources

by the integration platform to a database, the integration platform obtains

responsibility of access control to the resources. Access control policies need to

be centralized or kept synchronized with the individual tool policies.

12

3. Security Goals and

Requirements

Defining security goals1 is crucial before we can discuss the requirements1 of

different scenarios of LTI. A common approach of defining security goals is the

triad of confidentiality, integrity and availability (CIA) [WM11]. But the CIA

triad is far away from a complete list of security goals, threats have evolved,

and extended models became necessary. We decided to derive our requirements

on a more recent model, the Reference Model of Information Assurance &

Security (RMIAS) [CH13], considering the context of LTI.

The following Section 3.1 describes the security goals introduced as part of

the RMIAS model. In Section 3.2 we define our derived security requirements for

LTI. Section 3.3 lists non-functional requirements which have to be considered

when applying methods for achieving security requirements.

3.1. RMIAS Security Goals

The Reference Model of Information Assurance & Security was proposed by

Cherdantseva and Jeremy [CH13] to address the evolution of security threats

by providing an abstract framework for information security. It is a model

with four dimensions: Information System Security Life Cycle, Information

Taxonomy, Security Goals and Security Countermeasures. The dimension of

Security Goals contains the following goals:

• Accountability

• Auditability

• Authenticity/Trustworthiness

1Notation Hint: Security goals in the context of this work are abstract security-related
targets. Security security requirements define the set of mandatory requirements of this work.

13

3. Security Goals and Requirements

• Availability

• Confidentiality

• Integrity

• Non-repudiation

• Privacy

In the remainder of this section, we give a short explanation of each security

goal and put them in the context of LTI.

3.1.1. Accountability

Definition from RMIAS: An ability of a system to hold users responsible for

their actions (e.g. misuse of information).

The system needs to know in a transparent way which information is pro-

vided to whom and which modifications have been made. Typically a user is

responsible for an action, in the context of LTI accountability may be addition-

ally relevant on tool level, e.g. which tool accessed information from a service

provider.

According to Pearson and Charlesworth [PC09], accountability compromises

the following claims:

• Transparent usage of data.

• Assurance of privacy policies.

• Trusting users, by providing information on the usage of user’s data.

• Responsibility, by implementing diligence and compliance measures to

conform to regulations.

• Policy compliance to ensure services comply with laws and organisational

policies.

3.1.2. Auditability

Definition from RMIAS: An ability of a system to conduct persistent, non-

bypassable monitoring of all actions performed by humans or machines within

the system.

Typically each tool implements its own system to monitor actions within the

tool, as well as the incoming and outgoing communication. The missing gap in

14

3. Security Goals and Requirements

the integration scenario is what happens between the tools, supposed the tools

don’t communicate directly with each other.

3.1.3. Authenticity/Trustworthiness

Definition from RMIAS: An ability of a system to verify identity and establish

trust in a third party and in information it provides.

In tool integration, a tool A depends on information given by a tool B. For

A trustworthiness of B and authenticity of the information provided by B is

mandatory. Thus, we need mechanisms allowing A establish trust to B and

mechanisms to validate B is the originator of received messages. Authenticity

is about verifying the originator of received messages, and trustworthiness is

related to the establishment of a trust relationship between tools.

3.1.4. Availability

Definition from RMIAS: A system should ensure that all system’s components

are available and operational when they are required by authorized users.

Availability targets to the ability of providing information and services if

they are required. It heavily depends on the architecture of a system. A failure

of a component which is required by many other components, a single point

of failure, is critical to a distributed system. In the scenario of LTI, at least

centralized parts as authentication services or service registries need to be

secured towards availability. But tool integration generates further questions:

how can we provide that the information hold by a distinct tool is available

when required.

3.1.5. Confidentiality

Definition from RMIAS: A system should ensure that only authorized users

access information.

Each tool needs to protect its data, no matter if it is stored in a tool’s

database or transferred between tools. Providing confidentiality depends on

other security goals as authenticity or trustworthiness. In the context of LTI,

15

3. Security Goals and Requirements

the protection of the communication between trusted tools from unauthorized

parties is essential.

3.1.6. Integrity

Definition from RMIAS: A system should ensure completeness, accuracy and

absence of unauthorized modifications in all its components.

In addition to authenticity, a tool needs to ensure integrity of information to

guarantee that the information was not altered. In tool integration we need to

protect all data extracted from a tool. Therefore we need trust relationships

between all communication partners and mechanisms to check received messages

were not altered on the communication channel.

3.1.7. Non-repudiation

Definition from RMIAS: An ability of a system to prove (with legal validity)

occurrence/non-occurrence of an event or participation/non-participation of a

party in an event.

A mechanism providing non-repudiation needs to ensure none of the commu-

nication partners exchanging messages can deny participation in a part or the

whole communication [KMZ02]. Therefore evidences of the origin and receipt

of messages need to be done. An interpretation of the above definition is that

the integration system requires to be able to prove who sent which messages

between two tools. To allow such a proof we rely on some of the other security

requirements, as integrity, authenticity and trustworthiness.

3.1.8. Privacy

Definition from RMIAS: A system should obey privacy legislation and it should

enable individuals to control, where feasible, their personal information (user-

involvement).

The protection of information from unauthorized parties is given by the

confidentiality goal. The information an user is allowed to see is derived in the

ideal case from the integrated tools. The same holds for personal information

16

3. Security Goals and Requirements

of an user. But it is important to track the information flows and specify which

information is exposed to whom.

If personal information (e.g email address, or user name) is necessary for

tool integration, it is required to protect those information from unauthorized

parties.

3.2. Security Requirements

The following definition of security requirements holds for both scenarios, the

OSLC Scenario described in Section 2.3.1 and the Platform Scenario described

in Section 2.3.2. Not all of the requirements might be necessary for every

use-case of the scenarios. Especially in a trusted secure environment, such as a

company intranet, some of the requirements might be from less interest than

in an insecure environment or communication via the Internet.

Security goal have been prioritized. Only the most important once will be

considered in the following. From the other security goals presented in the

previous section, security requirements are derived.

The following RMIAS security goals will not be discussed in this work:

• Accountability: Identifying the responsibility for misuse of data and

controlling compliance on regulations is an important security goal. But

installing a system for accountability is not part of this work.

• Auditability: In a first step it is important to provide a secure commu-

nication between tools and/or a secure integration platform. The security

goal of auditability needs to be discussed in future work.

• Availability: Providing information and services when they are required

is crucial for every distributed system. Mostly this can be achieved by an

appropriate architecture and IT infrastructure. This work focuses on other

security goals and availability is not specified as security requirement.

• Non-repudiation: Proving the receipt and the originator of messages

may be a legal requirement for some specific use-cases. For our scenarios

non-repudiation was identified as out-of-scope.

• Privacy: Protection of personal information of an user is more than

encrypting the communication channels. Even in a trusted relationship

of two tool, one tool might not handle sensitive data over to the other

17

3. Security Goals and Requirements

tool. Different methods can be used to protect those data, including

access control methods, cryptography, and masking or transforming of

data. In this work privacy is not discussed, except the protection of user

credentials.

The following sections identify the security requirements and describe the

relation to LTI.

3.2.1. Authentication

This requirement covers the security goals authenticity and trustworthiness.

For the LTI scenarios the requirement can be further partitioned:

1. Authentication of the communication partner. A tool shall accept

only messages from a trusted party. In an insecure environment this

deduces the need to authenticate the communication partner, another

tool or the integration platform.

2. Authentication of the user. A tool may need to authenticate an user

before it provides access to a resource. This leads to the requirement

of user authentication and federated user identification to establish a

mapping between multiple tool identities of a particular user.

3.2.2. Authorization and Confidentiality

The authorization requirement is deduced from the security goal confidentiality.

The system shall grant only authorized parties access to a resource. This implies

to protect the resources with an access control method. In our scenarios the

access control can be handled by the tools or the integration platform. Further-

more this requirement demands, data sent via insecure communication channels

shall be protected from all types of unauthorized disclosure or modification.

User credentials required for authentication/authorization need more pro-

tection than just encrypting the communication channels. Credentials required

to authenticate to a service provider shall not be accessible by the client appli-

cation. This is a consequence of missing trust between tools. A tool may not

assume, another tool is able to protect user credentials in an appropriate way.

18

3. Security Goals and Requirements

3.2.3. Integrity

Integrity of data in transit shall be ensured by the client tool. This requirement

is based on a previous authentication and trustworthiness of the communication

partner. A communication partner may be a third party tool or components of

the integration platform.

3.3. Additional Non-Functional Requirements

The ISO/IEC 25010:2011 [ISO11] defines security as a non-functional require-

ment. This section introduces additional non-functional requirements contiguous

to the security requirements. The additional non-functional requirements have

to be considered when security methods are applied. Some security methods

may fully comply with all security requirements, but might be inadequate to

meet the additional non-functional requirements.

3.3.1. Usability

Adding a security layer to LTIs shall not affect the usability of the system in a

way the users are displeased. All unnecessary interaction of the user with the

system needs to be avoided. Multiple logins to different tools or often repeating

logins by the user shall be avoided.

3.3.2. Simple Configuration and Administration

Administration covers activities as the installation of tools, creation, and deploy-

ment of security certificates, or user/role management. The initial configuration

and the continued administration of security related components shall be of

reasonable effort for the system administrator. The security layer shall not

increase the effort of administration in an inappropriate way.

3.3.3. Interoperability and Lightweight Integration

Exclusively, standardized methods shall be used to increase interoperability of

tools. Further, the security layer shall not increase the complexity of the LTI

system in a way that costs and effort to adapt the tool for the integration are

inappropriate.

19

4. Related Work

This chapter gives an overview of related work by introducing concepts and

mechanisms which are used to fulfil the defined security requirements for the

previously defined scenarios. Further, software solutions for LTI are introduced.

The chapter starts by introducing Levels of Trust as a proposed solution to

specify trust relationships between tools for particular use cases. Access control

is part of the security requirements, therefore the most common access control

concepts are described. In Section 4.3, a list of security mechanism related to

the LTI context are discussed. At least, existing software solutions for LTI are

described.

4.1. Levels of Trust

In an integration scenario with multiple tools, the trust relationships between

those tools may differ. E.g., trustworthiness of a tool might be assumed in a

closed intra-corporate network.

We need a way to specify those varying degrees of trust. Therefore, we

propose an approach which is derived from X.509 certificates chains [CSF+08],

used in public key infrastructures. [GIJ+12] describes the chain-of-trust concept

used for X.509 certificates. The concept utilizes levels of trust to verify the

validity of a certificate.

In the LTI scenario, the first outer level could contain tools connected across

corporation borders (inter-corporation). But also within a corporation we can

distinguish between projects, departments, and other classifications.

These levels lead to an onion-like structure, which differs from every integra-

tion scenario.

Abstract example of levels of trust in a corporation scenario: Figure 4.1

is an abstract example of an integration scenario with four different levels

20

4. Related Work

Figure 4.1.: Levels of Trust in an onion like structure

of trust. This levels have to be modified and/or expanded depending on the

use-case.

• L1: Project: Full trust between tools

• L2: Intra-Corporation: Trustworthiness of tools, but no assumptions

of confidentiality and integrity of the intra-tool communication.

• L3: Inter-Corporation: No assumptions on trustworthiness, confiden-

tiality, or integrity of communication, but those can be assured with

according security mechanisms.

• L4: No Trust: Impossible to guarantee correctness of the information

from those tools.

4.2. Access Control

Access control [Kha12] is generally a mechanism or procedure that allows,

denies, or restricts access to a system.

In the field of LTI there are a couple of issues related to access control that

need to be addressed:

• Identification of Users.

A mechanism granting access to a system requires the previous knowledge

21

4. Related Work

of the user making the access attempt. Thus, the problem of access

control implies the problem of user identification. All security goals

related to user identification, described in Section 3.1, need to be fulfilled

before access control can be provided. To identify the user we need

authenticity/trustworthiness, availability, confidentiality, and integrity. In

a company scenario, the identity of an user may be provided in form of

authentication assertions by an identity management system. An attribute

based access control model which requires no user identification is unlikely

in LTI, since most tools are build upon user or role based authentication.

• Mapping of Tool Users.

A typical approach for access control by lifecycle tools is some kind of

access control based on users and/or roles, corresponding to an Role

Based Access Control (RBAC) model, which is introduced in the next

section. All tools, which are deployed for the prototype implementation

in Section 6, have access control models based on RBAC. The integration

system needs to know mappings of users and roles between different tools.

• Diversity of Access Control Models.

Various methods providing access control exists; an overview is given in

Section 4.2.1. This infers the problem of providing a suitable federated

access control system.

4.2.1. Methods of Access Control

A simple form of access control is to allow access to a resource based on the user’s

identity. This approach is called Identification Based Access Control (IBAC).

But it is not scalable enough for the integration scenario. Various models

[MNN14] exist in extension to IBAC. This section describes some of the most

frequently used models.

Mandatory Access Control (MAC) is the most important access control

model to military applications [MNN14]. MAC is a centralized model, based on

security enforcement rules defined by an administrator. Rules cannot be deleted,

updated, or added by an user. The decision to grant access to a resource is done

by identifying the user and the resource, and deciding based on the defined

security level of the user and the sensitivity of the resource. The main advantage

of MAC is simplicity and control of the system by an administrator [MNN14].

22

4. Related Work

A disadvantage of the model is its inflexible behavior. In an integration scenario

with frequently changing tools, users, and resources, keeping rules up-to-date

defining by an administrator is an expensive task.

Discretionary Access Control (DAC) is the most widely used model of

access control [AC01]. In difference to MAC, not all access rights are predefined

and can be modified by the holder of the resource. Furthermore, users can

form groups, and rights can be assigned to groups instead of users. This model

enables a fine-grained access control, but maintenance and verification of rights

is difficult as the user controls the rights.

Role Based Access Control (RBAC) [FK92] can be seen as a combination

of MAC and DAC. Rights are predefined by an administrator and can not be

modified by the resource owner. In difference to MAC and DAC [AC01], rights

are assigned to roles instead of users or groups of users. In a second step, one

or multiple roles can be assigned to users. Thus, the resulting model has the

advantages of MAC combined with the possibility of fine-grained access control.

However, the problem of administrating large systems remains.

Attribute Based Access Control (ABAC) [Kha12] creates decision based on

attributes. Access rights are granted by a combined validation of attributes from

the requestor (e.g. role, job title), the service (e.g. read, write), the resource

being accessed, and the environment (e.g. time, location). Thus, an ABAC

system is composed of four entities:

1. A requestor sends requests and invokes actions to the service.

2. A service providing an interface with pre-defined operations.

3. A resource shared among different services, with a specific set of state

data.

4. An environment contains information that might be useful for making

the decision, such as date and time.

Each resource can be associated with a set of attributes; the access structure of

an user is defined as a logical expression over these attributes [MNN14]. The

model allows a fine-grained, and scalable access control.

23

4. Related Work

4.3. Security Mechanisms

In the previous chapters, we defined integration scenarios and security require-

ments. This section gives an overview of frequently used security mechanisms

and protocols in the context of the security requirements.

4.3.1. Transport Layer Security

Provides: Authentication and Integrity.

The TLS protocol [DR08], formerly Secure Sockets Layer (SSL), is a stan-

dard of the Internet Engineering Task Force (IETF)1 providing communication

security. It is composed of two layers: the TLS Record Protocol and the TLS

Handshake Protocol.

The TLS Record Protocol uses symmetric encryption for data encryption, to

guarantee that the connection is private. Keyed-Message Authentication Codes

(MAC) are used for integrity checks to guarantee the connection is reliable.

The TLS Handshake Protocol provides mechanisms for authentication using

asymmetric or public key cryptography. The authentication is optional but

recommended for one or both communication partners. The protocol guarantees

that the negotiation of a shared secret is secure and reliable.

There are two different configurations of TLS, one-way with server certificates

and two-way (mutual TLS) with server and client certificates. Mutual TLS

additionally allows the server to authenticate the client. In LTI mutual TLS

is not supported in general, as the assumption of existent and valid client

certificates does not always hold.

Adding security via TLS can be easily implemented by the usage of the web

protocol HTTPS instead of HTTP.

4.3.2. HTTP Basic Authentication

Provides: Authentication.

HTTP Basic Authentication [FHBH+99a] is part of the HTTP protocol [FHBH+99b]

and specified by the IETF for the purpose of user authentication. The authen-

1https://www.ietf.org (Accessed: 2017-01-06)

24

4. Related Work

tication is handled via the HTTP Authorization header. The web server replies

an unauthenticated request from a client with the header:

WWW -Authenticate: Basic realm=" RealmName"

The client’s browser tries to authenticate the requested realm. If there is no

open session, the user is asked for username and password in a dialog box.

Subsequently, the username and password are send encoded, but not encrypted,

to the web server via the HTTP header:

Authorization: Basic base64encoded=un&pw

To protect username and password, and guarantee authenticity of the server,

typically HTTPS is used.

The great advantage of these protocol is its simplicity and high degree of

popularity. But there are some shortcomings. At first, the HTTP Authoriza-

tion header needs to be transferred with every request, resulting in a lower

performance for authentication checks and the requirement to use TLS always.

Furthermore, if we login to a third party tool, the browser login box is decorated

out of place with a different look and feel. At last there is no way to provide

a logout, the session is handled by the browser or browser platform of the

requesting tool.

4.3.3. Form Based Authentication

Provides: Authentication

Form based authentication is no specification, it describes a method of authen-

tication using a form. Typically a user has to enter username and password at

a web page. However, for needs of LTI, redirection to an authentication page

is not sufficient. The service provider needs to inform the client tool about a

successful login, and the service provider may need to authenticate the client

tool as well.

A possible solution is to use a web API for login instead. Therefore, the client

sends the user credentials with a HTTP request to the service provider. This

solution carries along similar problems as HTTP Basic authentication. The

user credentials are exposed to the client and sent in plaintext to the service

provider.

25

4. Related Work

4.3.4. Security Tokens

Security tokens [Rou12] are often used to pass information between commu-

nication partners. All of the following protocols use some sort of security

tokens.

A very simple form are Simple Web Tokens (SWTs). These tokens consist

of name/value pairs, called attributes. The HMAC-SHA256 attribute is always

the last and mandatory, it is a HMAC-SHA256 keyed-hash of all other attributes.

A JSON Web Token (JWT) is a method for representing claims, encoded

as JSON objects, defined by the IETF [BSJ15]. The objects are encoded,

digitally signed and optionally encrypted. JWTs are separated to three parts:

JWT header, JWT second part and JWT third part. The header describes the

cryptographic operations within the token, the second part is used as payload

or encrypted key. The third part is reserved for the signature or ciphertext. A

JWT contains, quite similar to SWTs, name/value pairs in form of a JSON

string set. Each of the pairs is called claim, each claim name is unique within a

JWT.

4.3.5. OAuth

Provides: Authorization

OAuth [Rou12] is specified in multiple versions, this section describes OAuth

1.0a [OAu09]. The purpose of this protocol is to enable consumers (applica-

tions) to access resources from a service provider, without requiring the user to

disclose authentication information to the consumer application.

OAuth defines three roles: consumer, service provider and user. In a typical

web application scenario, the consumer is the user’s web browser, the service

provider is a web application allowing to access protected resources via OAuth,

and the user is the owner of the resources.

OAuth defines three request URLs: The Request Token URL is used to obtain

an unauthorised request token, the User Authorization URL is used to obtain

user authorization for consumer access, and the Access Token URL is used to

exchange the user-authorised request token for an access token.

The OAuth protocol parameters are sent encoded (and signed) in the HTTP

Authorization header.

26

4. Related Work

The OAuth workflow consists of three steps:

1. The consumer obtains an unauthorized request token from the service

provider.

2. The user authorizes the request token. Therefore the user is redirected to

the service provider and enters authentication information.

3. The consumer exchanges the request token for an access token from the

service provider.

After a successful authorization, the consumer can access protected resources

from the service provider with the access token. All request must be signed

from the consumer and verified by the service provider. The protocol defines

the signature methods HMAC-SHA1, RSA-SHA1, and PLAINTEXT (only if the com-

munication is protected via HTTPS).

Table 4.1.: OAuth 1.0 vs OAuth 2.0 Terminology

OAuth 1.0 OAuth 2.0 Description
User Resource Owner The owner of a resource, typically a

user (person).
Service Provider Resource Server A service hosting resources.
Consumer Client An application accessing resources

of the service provider.
Request Token Authorization

Code/Grant
A value expressing authorization
from the user, can be exchanged for
an access token.

Access Token Access Token A value used to gain access to a pro-
tected resource.

Consumer Key Client ID A value used to identify the Con-
sumer to the Service Provider

Consumer Secret Client Secret A secret to prove ownership of the
Consumer Key.

27

4. Related Work

4.3.6. OAuth 2.0

Provides: Authorization

The OAuth 2.0 Authorization Framework is based on OAuth 1.0 and is

standardized by the IETF [Har12]. It allows a third-party application to obtain

access to a service. Table 4.1 gives a list of important terminology differences

between OAuth 1.0 and OAuth 2.0.

OAuth 2.0 defines four roles: the resource owner is capable of granting

access to a protected resource, it is called end-user if the resource owner is a

person; the resource server is hosting the protected resources and is capable of

answering resource requests using access tokens; the client is an application

which is requesting protected resource on behalf of the resource owner; and the

authorization server is authenticating the resource owner and issuing access

tokens to the client.

The OAuth 2.0 workflow consists of three steps:

1. The client requests authorization from the resource owner, and receives

an authorization grant. The authorization is preferably done indirectly

via the authorization server.

2. The client requests an access token from the authorization server by

presenting the authorization grant.

3. The client requests a protected resource from the resource server by

presenting the access token.

OAuth 2.0 introduces the term bearer token. Using bearer tokens is one

possible way how to request tokens; it is the simplest way and specified as the

default. Any party in possession of a bearer token can use the token. It does

not require to make a proof-of-possession, e.g. by the usage of cryptography.

From the steps above we see that OAuth 2.0 has a cleaner separation of

roles, especially the separation of resource server and authorization server.

Furthermore, signatures from OAuth 1.0 are obsolete; to protect requests,

OAuth 2.0 recommends HTTPS. The protocol is designed to provide better

support for non-browser based clients. Refresh tokens are introduced, which

allow generating new access tokens without the need to follow all of the three

steps. This simplifies the procedure of creating short-lived access tokens (session

28

4. Related Work

tokens) and long-lived refresh tokens. Finally, a series of other standards is

based on the OAuth 2.0 standard, including UMA and OpenID Connect.

4.3.7. OpenID Connect

Provides: Authentication

The OpenID Connect protocol [SBJ+14] is an identity layer on top of OAuth

2.0, using bearer tokens and JWTs. The purpose of the protocol is to provide

authentication based on OAuth 2.0.

OpenID Connect introduces an ID token, a JWT containing claims about

the authentication of an end-user. The token must include information about

the issuer, the subject (an identifier for the end-user), the audience(s) the token

is intended for, the expiration time and the issue time, as well as optional and

custom claims.

The OpenID Connect workflow consists of the following steps (notations

from OAuth 2.0 are used):

1. The client sends an authentication request to the authorization server.

The authorization server authenticates the end-user and redirects the

end-user back to the client with an authorization code.

2. The client sends a request, using the authorization code, to the token

endpoint. The token endpoint is a service used to exchange authorization

token for a access token, or ID token in OpenID Connect. The token

endpoint responds with an ID token and access token.

3. The client validates the ID token and retrieves the end-user’s subject

identifier.

4. The client requests protected resources using the access token or retrieves

information the the end-user using the UserInfo Endpoint. The UserInfo

Endpoint returns claims about the end-user.

29

4. Related Work

4.3.8. Security Assertion Markup Language

Provides: Authorization and Authentication

Security Assertion Markup Language (SAML) is a set of specifications for

federated identity management [BT11]. SAML is standardized by the OASIS2

standards consortium in the current version V2.0 [oO05]. Identity Federation

[MKL09] allows to link different identities of a subject, which are managed by

different service providers. A subject is typically an end-user. The end-user is

authenticated to an identity provider, and the information is shared between

the identity provider and the service providers. Therefore one major application

of SAML is SSO. All requests and responses of SAML are done with XML.

The specification is composed of four main components: assertions, protocols,

bindings, and profiles.

• Assertions express security information about subjects, used by service

providers to make decisions. There are three types of assertions: Au-

thentication, attribute, and authorization decision. An Authentication

statement describes when and how the subject was authenticated to the

identity provider. The attribute statement describes the attributes of a

subject, e.g. the name of the user. Finally, the authorization decision

statement expresses which resources the subject is permitted to access

under which conditions.

• Protocols define the request and response pairs of SAML messages.

The protocols are defined independently from the used communication

protocols. The SAML core specification includes protocols for assertion

query, authentication, SSO and other.

• Bindings define the mapping between the SAML protocol messages and

the used communication protocols. The most important bindings are to

SOAP, HTTP GET, and HTTP POST.

• Profiles There are various core protocols and some protocols for the use

with other specifications, e.g. XACML. In general profiles build the top

layer of the SAML structure. Each profile targets a specific function, e.g.

SSO. Different combinations of protocols and bindings allow different

implementations of the same profile.

2https://www.oasis-open.org (Accessed: 2017-01-06)

30

4. Related Work

The functionality of SAML can be compared to OpenID Connect providing

authentication and authorization. For comprehensive authorization systems

SAML recommends profiles which combine SAML with XACML. The advan-

tages of SAML are its specification which allows various different implemen-

tations and the high acceptance of the standard, especially in the enterprise

segment. On the other hand it is more complex then token based systems as

OpenID Connect or OAuth.

4.3.9. User-Managed Access

Provides: Authorization

User-Managed Access (UMA) is a specification [HMMC15] recommended by

the Kantara Initiative3. The specification is a profile of OAuth 2.0 and defines

how resource owners can control access to protected resources by arbitrary

clients. The authorization is governed by a centralized authorization server

based on policies of the resource owner.

The UMA protocol composes three phases, (notations from OAuth 2.0 are

used):

1. Protect a resource: The resource owner introduces the resource, pro-

tected at resource server, to the authorization server. The authorization

server starts to protect the resources based on OAuth. UMA does not

specify how the resource owner configures the authorization server with

policies for the protection of the resources.

2. Get authorization: The client wants to access a protected resource

of a resource server. The client must first gain authorization from the

authorization server. The API is protected based on OAuth.

3. Access a resource: The client successfully presents the resource server

the authorization gained in the second step and obtains access to the

protected resource.

The UMA specification recommends OpenID Connect for authentication if

an identification of the end-user is required in addition to the authorization

needs provided by UMA and OAuth 2.0.

3https://kantarainitiative.org (Accessed: 2017-01-06)

31

4. Related Work

The possibility of centralizing and federating the authorization is an interest-

ing concept for tool integration. It’s OAuth 2.0 based design makes the concept

flexible for different use-cases. Currently, UMA is an RFC draft and is in the

process to get standardized by IETF. Such a standardization would probably

lead to an higher acknowledge and acceptance by vendors. Beside the publicity

of the specification its complexity is another disadvantage. It is considerably

more complex than OAuth or OpenID Connect.

UMA will not be further discussed in this work. At the time, there are

hardly any real world implementations. Hence, either any tools support those

method, why the effort for implementation would be increased compared to

other methods. For further reading, [Suz16] analyzes and compares OAuth 2.0

against UMA for cloud integration scenarios.

4.3.10. System for Cross-domain Identity Management

Provides: Cross-Domain Identity Management.

The System for Cross-domain Identity Management (SCIM) specifications are

standardized [GWMH15] by the IETF and designed to make federated identity

management easier. SCIM can be deployed as an approach to exchange and

synchronize identity information required for authentication or authorization

purpose. It defines a schema for representing users and groups and a protocol

providing operations on these resources. The protocol works via HTTP using

JSON for object representation.

Figure 4.2.: Object Model of SCIM

32

4. Related Work

The object model, pictured in Figure 4.2, is quite simple. All objects are de-

rived from the Resource object. A Resource contains attributes for identification

and meta information, e.g. creation date or resource type. A User is derived

from Resource, containing user information. And further EnterpriseUser is

derived from User, extending the object with enterprise related user informa-

tion, e.g. manager or job position. Groups are used to model organisational

structures and can contain users and/or other groups.

The objects can be retrieved, searched or updated with a REST API using

HTTP POST, GET, PUT, DELETE and PATCH. The API defines the following oper-

ations: Create, Read, Replace, Delete, Update, Search and Bulk. Furthermore

it defines endpoints to discover supported features.

4.3.11. eXtensible Access Control Markup Language

Provides: Authorization

The eXtensible Access Control Markup Language (XACML) is a standard

from OASIS, currently in version 3.0 [OAS13]. XACML is a general purpose

policy system [LPL+03]. It defines a XML based syntax for a policy language

and how to process those policies. The main purpose of XACML is to provide

interoperability between access control implementations of different applica-

tions. It is basically an ABAC system but there also exists a profile of XACML

for RBAC [OAS14].

The specification defines the work-flow of XACML in the following steps:

1. Policy administration points (PAP) create policies and policy sets. A

policy set can contain policies, other policy sets, and policy-combining

algorithms. The PAPs make the policies and policy sets available to a

policy enforcements point (PEP).

2. A client, called access requester, sends an access request to the PEP.

3. The PEP sends the request in its native form to an context handler, a

system which converts requests to XACML form.

4. The context handler constructs an XACML request context and sends it

to the policy decision point (PDP).

5. The PDP requests any additional attributes from the context handler.

33

4. Related Work

6. The context handler requests the attributes from a policy information

point PIP, a system which acts as source of attribute values.

7. The PIP obtains the requested values.

8. The PIP returns the requested attributes to the context handler.

9. Optionally, the context handler adds a resource to the context.

10. The context handler sends the attributes and the resource to the PDP,

which evaluates the policy.

11. The PDP returns the authorization decision, embedded in the context,

to the context handler.

12. The context handler converts the context to the response format of the

PEP and returns the response to the PEP.

13. The PEP permits or denies access, dependent on the received response.

The described work-flow of the comprehensive specification provide a good

way to integrate decentralized policy systems. Therefore XACML is an excel-

lent choice for distributed authorization systems [LPL+03]. But in fact this

comprehensive language comes at cost of complexity and verbosity.

4.4. Software Solutions for Lifecycle Tool

Integration

So far, we introduced concepts and mechanisms to fulfil the defined security

requirements. The remainder of this section conceives a library and a software

platform for LTIs. The section starts by introducing a community library for

OSLC, the Eclipse Lyo library, and further the commercial software platform

IBM Jazz.

4.4.1. Eclipse Lyo

Eclipse Lyo [ecl16] is a community project, started in 2011, with the goal to

enable tool integration with OSLC. It provides a library, reference implementa-

tions, and test suites for OSLC and TRS.

Library OSLC4J is a Java Software Development Kit (SDK) which helps to

implement OSLC and TRS tools easily. The focus of the community is in Java;

however, JavaScript and further languages are planned.

34

4. Related Work

The SDK provides functionality to implement clients and servers conforming

to OSLC specifications, including methods for authorization of messages by

HTTP Basic, HTTP Form, and OAuth 1.0a. The library was deployed for the

implementation of our prototype, described in Chapter 6.

Reference Implementation The contained reference implementations demon-

strate the use of the Eclipse Lyo library for various OSLC domain specifications

as well as sample implementations of TRS.

An example OSLC service provider, connected to a Bugzilla4 bug-tracker

database, is used in the threat and gap analysis of the next chapter. Further,

a reference implementation of a TRS service provider, in the requirements

management domain, was utilized as the base for the TRS implementation of

our prototype, described in Chapter 6.

4.4.2. IBM Jazz

The IBM Jazz [Cornd] platform is a set of commercial software tools for lifecycle

management. The provided functionality, including OSLC interfaces, a TRS

client and a SPARQL database make it to a suitable reference for the Platform

Scenario.

IBM Rational Collaborative Lifecycle Management delivers solutions for

requirement management, quality management, change and configuration man-

agement, as well as project planning and tracking. It is compromised by the

products Rational Team Concert, Rational Quality Manager, and Rational

DOORS Next Generation.

The IBM Jazz solution is analyzed in the context of the defined security

requirements in the gap analysis of the next chapter.

Architecture The base component is the Jazz Team Server, a Java based

web application running in an IBM WebSphere Application server. All into

the platform integrated tools are registered at the Jazz Team Server. After the

registration, the tools can communicate with each other. The team server acts

as a central point for lifecycle project management and user administration. The

team server provides a central user database that is shared with all connected

4https://www.bugzilla.org (Accessed: 2017-01-08)

35

4. Related Work

tools. Furthermore, it allows synchronization with a Lightweight Directory

Access Protocol (LDAP).

For integration of external tools into the Jazz web container, a software

development kit (SDK) is provided. A more loosely integration is enabled by

integrating the tools via OSLC. For this purpose, the IBM Rational Team

Concert application provides an OSLC adapter.

Authentication The Jazz Team Server provides different methods for au-

thentication: Java EE container authentication for the IBM core tools, and

redirection of the authentication to the Jazz Team Server for other tools. Con-

tainer authentication allows SSO based on HTTP Form, Basic authentication

or with client certificates. Further, authentication via OpenID Connect and the

Kerberos protocol are an option. Kerberos can only be used for tools deployed

in a WebShere Application Server using Microsoft’s Windows Active Directory.

For tool to tool authentication, OAuth 1.0a and OpenID Connect can be

deployed. Especially tools integrated with OSLC use those mechanisms to grant

authorisation for requests. Each pair of tools need to be registered as ”friends,”

and the tools need to store a secret to secure this communication. OpenID

Connect requires no pair-wise authorization; the user is authenticated via a

Jazz Authorisation Server and SSO is supported.

Authorisation The Jazz platform uses a role-based authorization system.

However, the authorization system only works for tools integrated into the web

container using container authentication. Other tools are themselves responsible

for access control. Tool to tool authorization is done via OAuth 1.0a or OpenID

Connect, as described above.

IBM Lifecycle Query Engine (LQE) The LQE can be used to extract re-

sources from lifecycle tools via TRS, index them and make the resources

available for the other tools. Connected tools and users can search resources in

a central database, for instance with SPARQL queries.

4.5. Conclusion

In this chapter, concepts, mechanisms, and software solutions in the context

of securing lifecycle tool integrations were introduced. The chapter starts

36

4. Related Work

by describing levels of trust which will be further used for defining trust

relationships between integrated tools. Next, common models for access control

were introduced, since understanding of those is favorably for authorization

concepts applied in this work. Section 4.3 lists security mechanisms which are

analyzed in the subsequent threat analysis. As an outcome of this analysis,

some methods were implemented with a prototype for evaluation purposes.

Concluding, a library for OSLC, and an existing commercial solution for LTI

were described.

The intention of this chapter is not to make a technology decision. Therefore,

Chapter 5 provides a threat and gap analysis concluding on which of the

described methods of Section 4.3 will be implemented with a prototype.

37

5. Threat and Gap Analysis

For the decision on an implementation of a prototype a threat and gap analysis

was done. The analysis starts with defining the methodology and assets, deriving

threats for the scenarios, and concluding security objectives and countermea-

sures. Next, in a threat analysis, the security objectives are discussed. The gap

analysis discusses which and how existing solutions cover the defined threats

and security objectives. Finally, concluding from the analysis, the decision

making of the methods used for the prototype is explained.

The focus of the threat and gap analysis lies on securing tool communication

(OSLC and TRS), authorization of access to resources, confidentiality of user

credentials, and access to the triple store (e.g. via SPARQL interface). Security

within lifecycle tools, as well as security of user data and resources at the

integration platform are considered as out of scope, as they are executed within

the tools as part of proprietary processes, and therefore are excluded from

inter-tool data flows.

5.1. Definitions and Methodology

5.1.1. Methodology

The analysis model uses concepts from a model proposed by Zefferer and

Zwattendorfer [ZZ14]. Their model for the evaluation of server-based signature

solutions is based on concepts of the Common Criteria [com13]. The authors

of the model highlight the possibility to use it with different implementations.

”The proposed evaluation model is based on an abstract architectural model

for server-based signature solutions and can hence be applied to arbitrary

implementations.” [ZZ14] Therefore, it suits well to our needs of evaluating an

abstract scenario of an implementation in the domain of LTI. Subject to the

different domain, we adjusted the model to the needs of developing a prototype

of an LTI implementation. Figure 5.1 gives an overview of the adjusted model.

38

5. Threat and Gap Analysis

Figure 5.1.: Methodology of the Threat Analysis

A definition of each entity in the model is given in the subsequent sections.

The workflow of the evaluation consists of the the following steps:

1. Assets, which need to be protected, are defined.

2. The threats, assets are exposed to, are derived.

3. Security objectives which counter the threats and meet the security

requirements are deduced.

4. Countermeasures, suitable to meet the security objectives and additionally

the defined non-functional requirements, are discovered and discussed.

5.1.2. Assets of the OSLC Scenario

”Assets are values that need to be protected” [ZZ14]. According to ISO/IEC

27000 ”there are many types of assets, including (a) information; (b) software,

such as a computer program; (c) physical, such as a computer; (d) services; (e)

people, and their qualifications, skills, and experience; and (f) intangibles, such

as reputation and images.” [ISO09]

With the notation A.o.x we define assets of the OSLC scenario, whereas x

consecutively numbers the assets. The defined assets are scoped to the scenario

of an OSLC tool interaction. Values within a tool are defined out of scope.

Further, the threats are analyzed on an abstract level, omitting assets and

39

5. Threat and Gap Analysis

threats to specific authorization or authentication methods. Specific security

considerations to the implemented methods of the prototype are discussed in

Chapter 7.

A.o.1 Communication channels between OSLC services. Confidential data

including OSLC resources and authentication credentials might be exchanged

between lifecycle tools. The entire data in transit is defined as an asset.

A.o.2 Retrieval of resources managed by an OSLC service. The client shall

be able to rely on the OSLC service for retrieving resources from a service

provider in a confidential and trustworthy way. The service for retrieval does

not allow to alter resources in any way. But resources may be altered in a

second step by another service, (A.o.3-A.o.5).

A.o.3 Creation of resources managed by an OSLC service. The client shall be

able to rely on the OSLC service for creating resources at a service provider

in a confidential and trustworthy way.

A.o.4 Update of resources managed by an OSLC service. The client shall be

able to rely on the OSLC service for updating resources at a service provider

in a confidential and trustworthy way.

A.o.5 Deletion of resources managed by an OSLC service. The client shall be

able to rely on the OSLC service for deleting resources at a service provider

in a confidential and trustworthy way.

A.o.6 Credentials for user authentication, including passwords, biometrics,

and private key material of the user. Secret credentials of an user for access

to a service provider shall be kept confidential from unauthorized parties as

well as from client tools.

A.o.7 OSLC resources hold by lifecycle tools. OSLC resources shall be kept

confidential from unauthorized parties.

5.1.3. Assets of Platform Scenario

In the Platform scenario, OSLC is used to query and alter resources. Therefore

all assets of the OSLC scenario need to be protected. Further, assets which are

defined in this section, expand the introduced assets for the OSLC scenario.

A.p.1 Retrieval of TRSs. The client shall be able to rely on the service

for retrieving change logs of OSLC resources, called Tracked Resource Sets

(TRSs), from a service provider in a confidential and trustworthy way. The

40

5. Threat and Gap Analysis

service for retrieval does not allow to alter resources in any way. But resources

may be altered in a second step by another service, (A.o.3-A.o.5).

A.p.2 Access to resources of the triplestore via SPARQL queries. The service

does not allow to alter resources in any way. The service shall be protected

from unauthorized access.

5.1.4. Threats

Threats potentially compromise the assets’ security [ZZ14]. For the analysis,

we identified general types of threats which may harm an implementation of

the OSLC or Platform scenario, focused to the previously defined assets.

Potential threats were observed by research from different sources. The

STRIDE threat model [HLOS06] defines categories of threats which were

matched with our scenarios, the Guidelines for Writing RFC Texts on Security

Considerations [RK03] and the OWASP Top 10 [OWA16] renders more precisely

threats for the Internet environment. Bhatti, Bertino and Ghafoor [BT11]

published in their book threats specific to identity management system like

OAuth and SAML.

In the following paragraphs we describe and discuss the observed threats.

T.1 Disclosure of Communication. Eavesdropping or Man-in-the-Middle

(MITM) attacks may be used to read data from the communication between

tools, or the integration platform. The eavesdropper may obtain all commu-

nication data, parts of it, or may only be able to recognise patterns in the

communication data.

T.2 Message Insertion/Update/Deletion. An attacker is able to insert, up-

date, or delete messages from the communication channel. These kinds of

attacks most likely may be MITM or replay attacks.

T.3 Impersonation of Identity. An attacker obtains all necessary information

which is required to be authenticated as another identity. Spoofing, phishing,

social engineering, or access to an authorization server can be used to obtain

the information. The attacker can authenticate to tools and gains access rights

in the context of the impersonated identity. Depending on the authentication

method, a leaked password or token is sufficient.

T.4 Disclosure of sensible user authentication credentials. The threat of

disclosed credentials in the communication is covered by T.1. But even

providing authentication credentials of an user to other tools in the lifecycle,

41

5. Threat and Gap Analysis

threats the confidentiality of this information. Other tools in the lifecycle

may not be able to protect the received information in the same way the

client tool can.

T.5 Unauthorized Access. Resources hold by tools, or resources of the RDF

triple store in the Platform scenario are accessed by unauthorized parties.

T.6 Misuse of APIs, respective the OSLC interface, TRS interface, SPARQL

interface, and APIs of the integration platform for authentication or au-

thorization. Users may be permitted to access those interfaces, but use the

interfaces in an inappropriate way with the intention to gain access without

authorization.

T.7 Redirection to malicious service providers. An attacker attempts to

redirect the client tool to access a malicious page instead of a real service

provider.

Table 5.1.: Assets targeted by threats

T.1 T.2 T.3 T.4 T.5 T.6 T.7
A.o.1 x x x x
A.o.2 x x x x x
A.o.3 x x x x x x
A.o.4 x x x x x
A.o.5 x x x x x
A.o.6 x1) x x
A.o.7 x x x x x x
A.p.1 x x x x x
A.p.2 x x x x x
1) Depending on the authentication method,

credentials may be transferred in plaintext.

Discussion Table 5.1 illustrates which of the defined assets are targeted by

the introduced threats. The mapping between assets and threats is explained

in the following discussion. A detailed discussion of assets, threats and the

resulting security objectives and countermeasures is given in Section 5.2.

T.1 Disclosure of the communication threatens all messages in the OSLC

communication workflow. The workflow includes retrieval, creation, update,

and deletion of resources. The attacker is able to read information about the

42

5. Threat and Gap Analysis

transferred resources and monitor operations. Depending on the authentication

method, user credentials can be read from the communication. Furthermore, in

the Platform scenario, TRS and SPARQL queries can be monitored to gain

information about resources, processes, and users.

T.2 Unrecognized insertion, update, or deletion may allow access to protected

resources and APIs, allowing to perform a query and other operations on the

OSLC, TRS, and SPARQL interfaces.

T.3 With impersonation of a user’s identity, an attacker can create, retrieve,

update, delete resources, or query a triplestore with the access rights of the

impersonated identity.

T.4 Disclosure of user credentials targets to the authentication credentials

the user applies to sign in to a service provider or integration platform services.

T.5 An attacker can gain access to protected resources of an OSLC service

provider or a triplestore by monitoring the communication or accessing the

services with impersonated identity or misuse of APIs. Therefore, this threat is

based on all other introduced threats.

T.6 Misusing APIs of the service provider or integration platform, no matter

if done by intention or not, may allow to perform some operations without

authorization or read protected information.

T.7 Redirection to malicious service providers. If the malicious service

provider can convince the client to be a trustful service provider, the malicious

service can record confidential data, such as OSLC resources or client credentials.

5.1.5. Security Objectives

Security objectives are derived from the defined security requirements, threats,

and assets. The objectives must be able to counter all potential threats and

should meet the defined security requirements from Chapter 3.

In the remaining of this subsection we introduce the derived security objec-

tives.

For a mutual communication between the two parties both, the server and

the client/user, needs to be authenticated. The need for authentication was

already elaborated in Section 3.

O.1 Authentication of the server. A client initiating a communication to

a server shall be able to verify the authenticity of the server. Without

43

5. Threat and Gap Analysis

authentication, malicious servers can persuade the client to disclose secret

information.

O.2 Authentication of the user. The server needs to authenticate the user.

Authorization to resources managed by OSLC services is based on the

user’s identity provided.

O.3 Integrity of the OSLC, TRS, and SPARQL communication. If a party in

the communication cannot check the integrity of messages, it has no assurance

that the message was not modified in transit. The integrity of resources which

are stored in a tool is not examined in this work, as mentioned earlier.

O.4 Confidentiality of the OSLC, TRS, and SPARQL communication. In

addition to the integrity of data in transit, the information must be kept

confidential. Confidentiality is not treated for resources retraining at the

tools.

O.5 Grant authorized users permission to create, retrieve, update, and delete

OSLC resources.

O.6 Confidentiality of the user’s authentication credentials. The credentials,

required to authenticate to a service provider, have to be kept secret from

unauthorized parties. This includes ’trusted’ parties, as the client application,

other lifecycle tools, and the integration platform. Only the user and the

service provider should be aware of the credentials to minimize the risk of

leaked credentials.

O.7 Grant authorized client tools permission to query TRSs from a service

provider.

O.8 Grant authorized users permission to query resources from a triplestore

via a SPARQL interface.

5.1.6. Countermeasures

Finally, the countermeasures define a set of security methods, which have to

be considered for usage in the prototype implementation. The methods were

introduced in Chapter 4. The chosen methods are discussed regarding compli-

ance of the non-functional requirements defined in Section 3.3. Table 5.2 shows

which threats are addressed by the introduced countermeasures.

The following countermeasures, starting with C.o, were identified for the

OSLC scenario.

44

5. Threat and Gap Analysis

C.o.1 Secure communication by using TLS with server certificates. HTTPS,

which uses TLS, is used instead of HTTP for the communication channel

between the OSLC interfaces. With server certificates, the OSLC client

can verify the trustworthiness of the service provider. The service provider

cannot verify the trustworthiness of the OSLC client. Therefore, the client

additionally has to authenticate with some other method to the service

provider.

C.o.2 HTTP basic authentication. The user is authenticated with HTTP

basic authentication to the service provider. This method mandates the usage

of HTTPS to protect the authentication credentials, which are transferred in

plaintext. HTTP basic authentication is one of the suggested methods for

resource authorization by the OSLC core specification [osl13].

C.o.3 Form based authentication. Another method which is suggested by

the OSLC core specification. The OSLC client is redirected to a login form

of the service provider. The user credentials are transferred in plaintext from

the client to the login form; therefore HTTPS needs to be used to protect

integrity and confidentiality of the credentials.

C.o.4 Authorization with OAuth 1.0a. OSLC resources are protected with

OAuth 1.0a, also suggested by the OSLC core specification. At least if the

PLAINTEXT signature method is used for the OAuth messages, HTTPS is

required to protect the transferred tokens.

C.o.5 Authorization with OAuth 2.0. OSLC resources are protected with

OAuth 2.0. HTTPS is required to protect the transferred tokens.

C.o.6 Authentication with OpenID Connect. The protocol is based on OAuth

2.0 and adds the features of authentication and the SSO. OpenID Connect

is suggested by the OSLC core specification draft version 3.0. With OpenID

Connect the tools retrieve the authentication from an identity provider,

without the need to manage users authentication credentials on their own.

C.o.7 Authentication/authorization with SAML. SAML can be used similar

to OAuth 2.0 and OpenID Connect for identity management, providing

authorization, and authentication with SSO.

The following countermeasures, starting with C.p, were additionally identified

for the Platform scenario. The above defined countermeasures C.o are also

used for the Platform scenario. All of the following countermeasures have

the purpose of access control and can detect misuse of APIs if a user tries to

45

5. Threat and Gap Analysis

access resources without permission.

C.p.1 Access control with a centralized model. Access control to resources

of the integration platform is provided by a centralized access control model,

independent of access control policies of the lifecycle tools. Access policies

can be assigned to resources at the integration platform’s administration

page.

C.p.2 Access control delegated to tools. The integration platform delegates

authorization to the lifecycle tool which is in possession of the corresponding

resource. The integration platform forwards the user authorization for the

resource to the appropriate tool.

C.p.3 Access control with XACML. Every lifecycle tool supports the XACML

protocol. The authorization decision of the integration platform is based on

homogeneous policies of the lifecycle tools. Protocols like OpenID Connect

or SAML might be used for identity management, required for making the

authorization decision.

Table 5.2.: Threats addressed by countermeasures

C
.o

.1

C
.o

.2

C
.o

.3

C
.o

.4

C
.o

.5

C
.o

.6

C
.o

.7

C
.p

.1

C
.p

.2

C
.p

.3
T.1 x
T.2 x
T.3 x x x x x
T.4 x x1) x x x x
T.5 x x x x x x x
T.6 x x x x x x x x x
T.7 x
1) Only if the user credentials are not visible to the

client tool. E.g. by entering the credentials via an

HTML iframe hosted by the service provider.

5.2. Threat Analysis

The following analysis helps to identify the most convenient countermeasures

used for the proposed solution in the next chapter. It is structured by the security

46

5. Threat and Gap Analysis

objectives which need to be fulfilled. Table 5.3 shows which countermeasures

cover the security objectives.

Table 5.3.: Security objectives covered by countermeasures

C
.o

.1

C
.o

.2

C
.o

.3

C
.o

.4

C
.o

.5

C
.o

.6

C
.o

.7

C
.p

.1

C
.p

.2

C
.p

.3

O.1 x
O.2 x1) x x x x x x
O.3 ∼ ∼ ∼ ∼ ∼ ∼ ∼
O.4 ∼ ∼ ∼ ∼ ∼ ∼ ∼
O.5 x x x x x x
O.6 ∼ ∼ ∼ ∼ ∼ ∼ ∼
O.7 x x x x x x
O.8 x2) x2) x2)

x covered, ∼ partly covered

1) Only if mutual TLS with client certificates is used.

2) Assuming a previous user authentication.

Authentication - O.1, O.2 TLS with server certificates can be used to

authenticate the server. The client verifies a certificate of the service provider

or integration platform. To further verify the authenticity of the client, mutual

TLS can be used. In a mutual TLS scenario, both communication partners

have certificates which allow a mutual authentication.

However, client certificates are often not available, especially if multiple de-

vices, including mobile devices, are used. Therefore, another method is required

to authenticate the user. Different authentication methods can be deployed,

including HTTP Basic, Form authentication, OAuth, OpenID Connect, and

SAML (C.o.2 - C.o.6).

A possible threat to the authenticity of the client is the impersonation

of identities. In this case the attacker obtains authentication information of

the user. The attacker may steal the information with methods as spoofing or

phishing, whereas the user is redirected to a malicious site for entering username

and password. Other methods are social engineering or brute force attacks

to exploit insecure user passwords. Some of the attacks are only applicable if

passwords are used for user authentication/authorization.

47

5. Threat and Gap Analysis

Authenticity of the server (service provider or integration platform) basically

is protected by verifying the server certificate. But typically applications allow

the user to accept unknown or expired server certificates. This enables attackers

manifold possible attacks, including MITM, and to masquerade as a server to

the client.

Summarized, client authentication methods can be used in combination with

TLS to establish authenticity. The same authentication methods can be used

for all connections, including OSLC, TRS, and SPARQL services.

Integrity and Confidentiality - O.3, O.4 Integrity and confidentiality of the

communication channel can be protected with TLS, assuming authenticity of

server and client as discussed in the last paragraph.

OSLC/TRS Operations - O.5, O.7 All OSLC/TRS operations can be exe-

cuted with the same HTTP REST API. The service provider grants permission

to resources based on user rights. Therefore, an authorization/authentication

method can be used to authorize access to resources on behalf of the user.

The same method which is used to verify the authenticity of the client, as

discussed above, can be utilized (C.o.2 - C.o.6). Furthermore, consumer and

service provider tools need to authenticate each other, eavesdropping, MITM,

or spoofing attacks cannot be prevented otherwise.

Additionally, insecure implementation of the OSLC interface or the autho-

rization/authentication method can lead to attacks by misusing the API. Each

service provider, implementing the OSLC specification, needs to take care of a

correct implementation. In addition, the specifications of the utilized security

methods have to be implemented carefully, kept up-to-date, and comply with

possible security considerations of the specifications. Protocols as OAuth 2.0,

SAML, or XACML are comprehensive and require a large effort to implement

them carefully. The usage of libraries can reduce the work. We will further

discuss the issue of the implementation effort in Chapter 7.

Confidentiality of user credentials - O.6 Although confidentiality of the

communication can be assured by TLS, authentication credentials, in addition

need to be protected against the other tools in the lifecycle. Some authenti-

cation methods, as HTTP Base or Form authentication, require transmitting

authentication credentials from the client to the server.

48

5. Threat and Gap Analysis

Confidentiality of authentication data can be provided by token, assertion,

or redirection based methods. Some implementations of HTTP Form authenti-

cation, as well as OAuth 1.0a, or OAuth 2.0 redirect the users to enter their

password in a form, hosted by the service provider, unseizable for the client

application. Further, SSO methods as OpenID Connect or SAML can be used,

whereas only the authorization server needs to know the users’ credentials.

OAuth and OpenID Connect use tokens for the communication instead of pass-

words, SAML uses assertions. In Chapter 6 the detailed data flow, including

authentication data, will be illustrated for HTTP Basic authentication, OAuth

1.0a, and OAuth 2.0. Further in Chapter 7, we discuss security issues related

to confidentiality of user credentials with those methods.

Possible attacks are spoofing, phishing or social engineering. Those threats

are covered by methods protecting the confidentiality of the communication

and authenticity of the communication partners.

To improve the protection of credentials, client authentication methods,

whereas the client application does not need to be aware of the user’s credentials,

such as OAuth, OpenID Connect, or SAML, should be used.

SPARQL Query - O.8 For the protection of the SPARQL communication

and the authentication, the same holds as discussed for OSLC operations. But,

the authorization to resources in the triple store is an additional difficulty. The

integration platform needs to make authorization decisions, which users are

allowed to access which resources of the triple store.

The used access control system may induce additional threats. If access

control is delegated to tools (C.p.2), the extra communication between the

tool and the integration platform needs to be protected. In the scenario of

using XACML (C.p.3) the required components, the policy decision and policy

enforcement points need to be protected. Making the access control decisions

directly via the integration platform (C.p.1), only requires protecting the query

API of the platform, which is basically the same problem as the protection of

the OSLC communication.

Usability, Configuration, Interoperability. Beside threat resistance, usabil-

ity, simple configuration and administration, a well as interoperability and

lightweight integration are important criteria to choose suitable countermea-

sures. These non-functional requirements were introduced in Section 3.3 and are

49

5. Threat and Gap Analysis

discussed regarding security objectives and countermeasures in this paragraph.

TLS is easy to install and use with HTTPS, but it requires to install server

certificates which are accepted by all clients. Mutual TLS further increases the

security by client authentication, but requires a client certificate infrastructure.

SSO and no SSO can categorize the client authentication/authorization

mechanisms. HTTP Basic and Form authentication, and OAuth authorization

provide no SSO; hence the user has to login to every service provider. OpenID

Connect and SAML can be configured as SSO provider to increase the usability

of the system.

The intention of SSO is to remove redundancy in administration of multiple

logins. But in terms of configuring the system, the SSO solutions may require

installing additional identity providers. Further, synchronization and transfer

of identities increases the effort of configuration and maintenance. Although,

some corporations may already have implemented an identity management

system, which can be used to provide identity information for SSO.

Form authentication and SAML have further issues with interoperability.

Form authentication is not standardized, therefore service providers have to

define the workflows leading to diverse flows. The clients have to implement

multiple authentication workflows for different service providers. Also SAML

has issues with its SOAP based communication on different client types, [NB13]

describe this issue and mentions the usage of OAuth related protocols instead

of SAML. In contrast, OAuth 2.0 uses HTTP REST, similar to the OSLC

protocol, and defines multiple device flows, including mobile devices.

Regarding the authorization method for the integration platform, the in-

troduced countermeasures have different advantages and disadvantages. A

centralized access control model (C.p.1) is easy to understand by the users,

needs no custom implementations by the service providers, and therefore is

adequate in terms of interoperability. On the other hand, each service provider

has its own access control system in addition to the integration platform, infer-

ring redundancy and extra work for the system administrator. Another way

is to delegate access control to the tools (C.p.2). Querying resources from the

service provider via OSLC can be used to check if the user is allowed to access

a resource. Hence, the workload of the system administrator is reduced and

interoperability is still given. But this method destroys some advantages of the

centralized data store in the integration platform. The delegated access control

check requires licenses for the tools, needs the tools are always online, and

50

5. Threat and Gap Analysis

additionally decreases the performance dramatically. To get the advantages of

the centralized method without the problems of the tool delegation method,

XACML (C.p.3) can be deployed. The lifecycle tools provide access control

policies to the integration platform and the platform can enforce the policies

without the need to contact the tool for every access request. However, such an

XACML enforced system requires a lot of additional configuration work and

every tool needs to implement the XACML workflow. Different lifecycle tools

have very diverse access control systems, the effort for adoption to XACML

might not be reasonable in many cases.

5.3. Gap Analysis

After defining and discussing threats and countermeasures, we discuss threats

which are not covered by existing solutions for LTI in a gap analysis. The gap

analysis, combined with the previous threat analysis, helps to identify suitable

security methods for implementing a prototype. Afterward, the prototype will

be evaluated in Chapter 7.

The gap analysis is done for existing solutions which already were introduced

as related work in Section 4.4. Implementations of the OSLC core specification

were analyzed with two different authorization methods, HTTP Basic authen-

tication and OAuth 1.0a. An example from the Eclipse Lyo project [ecl16],

connecting to a Bugzilla [bug16] service provider, was used therefore. Further,

the IBM Jazz platform [Cornd], in major version 6, was tested by using Basic

authentication, OAuth 1.0a, and a Form authentication method.

5.3.1. Discussion of Threats

The different solutions are targeted by the same threats, depending on the

authentication method. An overview, which threats are counteracted by the

solutions, is given by Table 5.4. For the Jazz platform no open source code is

available, hence some countermeasures may be implemented which we do not

know about.

The following paragraphs are structured according to the applied user autho-

rization/authentication method. HTTPS with server certificates is assumed for

all scenarios, consequently, the clients can verify the authenticity of the service

51

5. Threat and Gap Analysis

provider. Thus, confidentiality and integrity of the communication channel can

be assured by verifying the authenticity of the user by the server.

Basic Authentication HTTP Basic authentication is a plain form of user

authentication which can be used for LTI. Both, the Eclipse Lyo libraries and

IBM Jazz, provide an implementation of this authentication method.

Sending the username and password in plaintext implies some major threats,

even if a secure communication line with TLS is established. The specification

of HTTP Basic authentication, RFC 2167 [FHBH+99a], already lists potential

threats which are discussed in the following for the LTI scenario. Secure storage

of the passwords on the server is supposed as a duty of the service provider

and not discussed here.

One major problem is the user in person. Using weak passwords exposes them

to brute force attacks. The server can counterfeit, by setting password policies,

impacting the usability of the system with long and complex passwords.

Further, a user might accept invalid certificates of the server, making spoof-

ing or MITM attacks possible. The server can act as a proxy and read user

credentials from the authorization header, or masquerade as a service provider

and receive requests from the client including the authorization information

[OHB06].

At last, the client application type may be a problem. HTTP Basic au-

thentication is developed for web applications. The browser asks for username

and password and adds the authorization header to the HTTP request. But

for native workstations or mobile applications typically the authentication is

handled by the application itself. Thus, it appears that the client application

has access to the username and password at the service provider in plaintext.

A special trust relationship between server and client is required, which is not

given for many scenarios.

HTTP Digest authentication [FHBH+99a] can be used to counterfeit some of

the described attacks, including brute force, MITM, and spoofing attacks. But

modifications of those attacks, such as dictionary, or precomputed dictionary

attacks in combination with MITM or spoofing still threaten the authentication.

More issues and threats are discussed at Chapter 7, when evaluating the

prototype implementation. In conclusion, HTTP Basic is the most simple and

a widely accepted authentication method, but is ”[...] very much on the weak

end of the security strength spectrum.” [FHBH+99a]

52

5. Threat and Gap Analysis

OAuth 1.0a and OAuth 2.0 Authorization OAuth can be implemented for

delegated access control of resources, where the authorization is granted by the

user. OAuth 1.0a implies a range of security considerations [OAu09], the same

holds for OAuth 2.0 [LMH13].

The OAuth 1.0a protocol mandates to use either PLAINTEXT, HMAC-SHA1,

or RSA-SHA1 to sign OAuth messages. PLAINTEXT fully relies on a secure

communication channel. The other signature methods further protect integrity

and authenticity of the messages as long as the consumer secret is kept secret.

OAuth 2.0 always mandates the use of TLS.

Spoofing and MITM attacks can be applied for eavesdropping of the message

content. Those, exchanged security tokens may be stolen and misused. Service

providers can minimize the risk by limiting the scope and validity of tokens.

Security tokens should be cryptographic secure in a way that it is practically

impossible to expose the token within its validity time range by usage of brute

force or similar attacks. Further, service providers should not solely rely the

authenticity of the client on the OAuth consumer secret, additional information,

such as the IP address of the client, should be verified.

The user has to struggle with phishing, spoofing, MITM, and cross-site

request forgery (CSRF) attacks. With incorporated service providers, spoofing

and MITM attacks enable attackers to reveal the consumer secret or tokens.

Moreover, the user is redirected to a login page of the service provider. This

procedure endangers to phishing, CSRF, and clickjacking attacks for catching

the user’s password.

In conclusion, OAuth is a suitable solution to protect the users credentials

against the client application. However, when implementing the OAuth pro-

tocol both, service provider and consumer, have to consider many potential

vulnerabilities. The evaluation, in Chapter 7, discusses further issues.

Form and SSO Authentication The OSLC specification [osl13] lists HTTP

Form authentication as a possible way for resource authorization based on

user authentication. The IBM Jazz platform uses this method per default.

Typically a request to a service provider is redirected, the user enters username

and password, and finally the client can send requests authenticated by an

HTTP session cookie. A workaround for redirection is to send the username

and password directly to a Java servlet of the Jazz service provider. Form

authentication is non-standardized and therefore further will not be discussed.

53

5. Threat and Gap Analysis

IBM Jazz implements OpenID Connect to allow an OAuth-like workflow

with an SSO feature. No available open-source solution, including the Eclipse

Lyo project, could be found to include OpenID Connect in this analysis.

Table 5.4.: Threats addressed by existing solutions

OSLC OSLC IBM Jazz 2)

with Basic Auth1) with OAuth1)

T.1 x x x
T.2 x x x
T.3 x x x
T.4 x x
T.5 x x x
T.6 −2)

T.7 x x x
1) Using TLS (HTTPS) with server certificates.

2) The source code of the Jazz platform is not public.

Countermeasures against API misuse cannot be verified.

5.3.2. Discussion of Security Objectives

Table 5.5 displays a mapping of security objectives addressed by existing

solutions. In overall it depends on the use of TLS and user authentication/au-

thorization methods, which address authentication of the server and user,

integrity and confidentiality of the communication, protection of OSLC and

TRS operations, and some authentication/authorization methods protect the

confidentiality of user credentials (O.1 - O.7). A further issue which was found

is the protection of SPARQL queries from the triple store of the integration

platform (O.8). This will be discussed in the following paragraph.

SPARQL Query Authorization The Jazz platform implements an RBAC

model to enforce access rights, based on the user’s identification or the user’s

mapping to a role. No reference project to read from a triplestore is implemented

with the Eclipse Lyo project.

On the administration page of the Lifecycle Query Engine (LQE), access

can be granted to users or groups of users (roles). Access can be granted for

all resources of the triplestore or to resources of individual TRS sources. This

54

5. Threat and Gap Analysis

Table 5.5.: Security objectives addressed by existing solutions

OSLC OSLC IBM Jazz 1)

with Basic Auth1) with OAuth1)

O.1 x x x
O.2 x x x
O.3 x x x
O.4 x x x
O.5 x x x
O.6 x x2)

O.7 x x x
O.8 x3)

x covered, ∼ partly covered

1) Using TLS (HTTPS) with server certificates.

2) Depending on the user authorization method.

3) Using RBAC model defined in Jazz Team Server, similar to C.p.1

system is easy to understand for the administrator, and the lifecycle tools do

not need to implement some access control protocol, as XACML. However, it

allows no fine-grained access control and adds redundancy by having multiple

access control systems within the lifecycle.

The access control policies for the triplestore may diverge from the policies of

the resource holding lifecycle tools. Users might get access to resources without

permission of the resource holding lifecycle tool.

5.4. Conclusion

Concluding from the threat and gap analysis a selection of methods used for

the prototype needs to be done. As a base principle, only standardized security

methods are considered to increase interoperability. This standardized approach

uses existing technologies to solve open problems instead of developing new

solutions.

Standardized approach. With so many schemes in various stages of

adoption, it is only prudent for organizations to take an incremental,

”integrateable” approach, designing new solutions that complement

existing standards. [BBG07]

55

5. Threat and Gap Analysis

Decisions for the Prototype Implementation. A distinct finding of the

threat and gap analysis is the need for securing the communication channels.

All of the used LTI solutions (OSLC, and other) are based on HTTP requests.

For this reason, adoption to HTTPS, which applies TLS, will be a general

assumption for the prototype implementation.

The OSLC specification [osl13] recommends HTTP Basic authentication,

OAuth 1.0a, and Form authentication. The decision was made to exclude

Form authentication because its diverging implementations would contradict

the standardized approach. HTTP Basic and OAuth 1.0a will be used to

authenticate OSLC and TRS communication with the prototype. The libraries

from the Eclipse Lyo [ecl16] can be used to reduce implementation work.

Many service providers redeemed OAuth 1.0a by OAuth 2.0 in the last years,

thus OAuth 2.0 will be implemented and evaluated additionally.

Out-of-Scope and Future Work. To limit the scale of the prototype and its

evaluation, SSO methods and access control methods for the Platform scenario

will be omitted and need to be discussed in future work.

OpenID Connect and SAML have distinguished as possible candidates for a

SSO requirement. OpenID Connect may be preferred as an extension of OAuth

2.0, SAML may be preferred in a corporate environment with an existing SAML

infrastructure.

For access control of e.g. an SPARQL interface in the Platform scenario,

we have identified three different possible solutions. The delegation of access

control to the lifecycle tools may have too many disadvantages, especially the

need of always online and accessible tools and the additionally required time

for access control. A centralized access control model produces redundancy

in administrating policies, but is easy to understand and implement. A draft

specification of the OSLC initiative, the Indexable Linked Data Provider Specifi-

cation [osl15a], extends this approach by allowing to query access contexts from

the service providers. This approach helps to reduce redundancy and unifies

access policies. Nevertheless, a corporation may seek to harmonize policies from

all tools to a common ground. XACML can be utilized for such a scenario. For

veritable results, implementations of those methods need to be compared and

evaluated in future work.

56

6. Implementation

Based on the findings of the previous chapters, a prototype was developed. The

implementation illustrates the introduced scenarios in Section 2.3 with respect

to the defined security requirements in Chapter 3.

In this chapter, the prototype is described in detail, including an overview of

the architecture, a brief description of each component, data flows between the

components, and a detailed description of the authorization methods.

6.1. Architecture

6.1.1. Overview

The prototype, shown in Figure 6.1, consists of three main parts; RM Tool,

Refine, and Integration Platform; which are described in more detail in the

next section. The components are coupled to each other using the requirements

management specification of OSLC and TRS. The connection between RM Tool

and Refine reflects a typical OSLC scenario with two tools connected via OSLC.

To illustrate the Platform scenario the components Integration Platform and

RM Tool were used together with an RDF triple store providing an SPARQL

interface.

6.1.2. Components

All of the following components were placed at disposal, the task was to modify

the components in terms of authorization and connect them together to a

tool-chain. The following paragraphs describe the components and highlight

the initial state, modifications, and extension.

RM Tool The RM Tool is a Java web server providing requirements [osl12]

by an OSLC interface, a prototype of a requirements management provider.

57

6. Implementation

Figure 6.1.: Architectural overview of prototype implementation

The purpose of RM Tool is to store requirements, and offer an OSLC interface

to other tools for CRUD operations to the resources.

Initial State: The server has provided functions to retrieve, update, and store

OSLC resources. For the usage as a prototype, persistence is solved file based.

Further, HTTP Base authentication was implemented for authentication of

requests. For test purpose, RM Tool was connected to an IBM Jazz platform.

58

6. Implementation

Modifications:

• Implementation of the TRS specification [osl15b] to provide changelogs

of requirements.

• Service provider implementation of the OAuth 1.0a [OAu09] specification

for authorization by an user. Figure 6.2 shows the user authorization

page for OAuth.

• Service provider implementation of two-legged OAuth 1.0a for authoriza-

tion by a trusted client without user interaction.

• Service provider implementation of the OAuth 2.0 [Har12] specification

with grant type Authorization Code for authorization by a user.

• Service provider implementation of OAuth 2.0 with grant type Resource

Owner Password Credentials for authorization by a trusted client without

user interaction.

Figure 6.2.: OAuth user authorization page of the RM Tool

Refine VIRTUAL VEHICLE Refine is a tool which allows retrieving require-

ments using OSLC, altering (refine), and updating them at the requirement

59

6. Implementation

management server. A use case of Refine is described with the OSLC Scenario

2.3.1. Figure 6.3 shows a screenshot of the main view after loading OSLC

requirements from RM Tool.

Figure 6.3.: Refine, displaying sample OSLC requirements from RM Tool

Initial State: Refine is implemented in Java and uses the Eclipse SWT [Fou17]

toolkit. For authorization of requests to retrieve resources, load resource pre-

views, and update the resources, Refine already provided two different methods:

HTTP Basic and authentication to IBM Jazz with form authentication.

Modifications:

• Consumer implementation of OAuth 1.0a to connect to OSLC service

providers, authorized by the user.

• Consumer implementation of OAuth 2.0 with grant type Authorization

Code to connect to OSLC service providers, authorized by the user.

60

6. Implementation

• Automatic redirection to login/authorization page of the service providers,

to authorize the connection by the user.

• Web service handling OAuth 1.0a and OAuth 2.0 callbacks after the user

authorized the connection at the service provider.

• Minor changes to the OSLC interface to allow connections to RM Tool.

Integration Platform The Integration Platform is a prototype implementa-

tion of a TRS client for the domain of requirements management. It is equipped

to collect OSLC requirements from multiple TRS providers, and store them in

an RDF triple store.

Initial state: The Integration Platform is implemented in Java and connects

to an Eclipse RDF4J [Fou16b] triple store. Figure 6.4 shows a screen-shot

of the rdf4j web administration page. Connections to TRS providers can be

authorized with HTTP Base authentication.

Modifications:

• Support of the OSLC requirements domain.

• Implementation of OAuth 1.0a and OAuth 2.0.

• Installation and configuration of a rdf4j triple store.

6.1.3. Libraries

Eclipse Lyo The Eclipse Lyo library [ecl16], introduced in Section 4.4.1, is

used by all components to handle the OSLC and TRS communication. Fur-

thermore, the library provides methods to authorize the communication.

Initial state: Interface for OSLC and TRS communication; authorization

with HTTP Basic and OAuth 1.0a.

Modifications:

• Extended the OAuth 1.0a authorization provider web service by OAuth

2.0 grant types Authorization Code and Resource Owner Password Cre-

dentials.

61

6. Implementation

Figure 6.4.: RDF triples from RM Tool stored in rdf4j triple store of the Integration Platform

• Helper class for OSLC and TRS clients to connect to service providers

via OAuth 2.0 grant types Authorization Code and Resource Owner

Password Credentials.

net.oauth Initially developed by Netflix Inc., and extended by Google Inc.,

net.oauth [net10] is a Java library providing functionality for creation and

validation of OAuth 1.0a messages, including signature creation and validation.

Usage: The library is used for consumer and service provider implementation

of OAuth 1.0a. Therefore, it is referenced by the Eclipse Lyo packages and the

RM Tool.

Apache Oltu Apache Oltu [Fou16a] is a Java library for OAuth 2.0, further-

more, it covers also implementations for related protocols as JWT, and OpenID

Connect.

62

6. Implementation

Usage: The library is used for consumer and service provider implementation

of OAuth 2.0. Therefore it is referenced by the Eclipse Lyo packages and the

RM Tool.

6.1.4. Sample Use-Cases

This section illustrates a sample use-case of the prototype implementation. The

RM Tool represents a requirements management software; Refine a third-party

tool to modify requirements, and the Integration Platform regularly loads

modified requirements from RM Tool and stores them to an RDF triple store.

For authorizing the access to requirements OAuth is used.

Requirement refinement. A user wants to refine existing requirements from

RM Tool, using a third-party tool Refine.

First, the user starts Refine and loads requirements from RM Tool. The

user has to authorize the transfer with OAuth. Therefore, the user is

redirected to an authorization web page of the RM Tool. After granting

authorization, the requirements are loaded via OSLC. The user can now

refine some requirements. Finally, Refine links the updated resources to

the original requirement and updates them at the RM Tool. The same

OAuth access token can be used for updating the requirements. Repeating

the user authorization step is not necessary.

Search for requirements. A user wants to search requirements from different

service providers.

The Integration Platform is capable of connecting to multiple requirements

provider. It uses functional users1 of the service providers to load resources

via OAuth without user interaction. The two-legged mode of OAuth 1.0a

requires authorization for each message, OAuth 2.0 allows retrieving an

OAuth token with the grant type Resource Owner Password Credentials.

Regularly, change logs from service providers are loaded and modifications

are applied to an RDF triple store. Now the user can query the database

via an SPARQL interface.

1A functional user is utilized by a client tool to access resources of a service provider, with
access rights of the functional user. The service provider maps the functional user uniquely
to the appropriate client tool. Thereby, a client tool can access resources of a service provider
without the need of authenticating with a normal user.

63

6. Implementation

6.2. Data Flow without Authorization

This section describes the data exchanges between the components of the

prototype. Authorization of the communication is further explained in the

subsequent section. Messages of a sample data flow can be found in Appendix A.

6.2.1. Refine - RM Tool

Figure 6.5 shows the data flow between Refine and RM Tool for the case of

loading requirements.

Step 1: At first Refine loads the rootservices1 (Listing A.1) document from

RM Tool. Access to this document requires no authorization. The document

contains URLs for OAuth authorization, and service provider catalogs.

Step 2: After obtaining authorization, Refine loads the service provider

catalog (Listing A.2) which contains further OSLC information including URLs

for Query Capability to query resources and URLs for Creation Factories to

create OSLC resources.

Step 3: A list of requirements is retrieved from the query capabilities (Listing

A.3) URL.

Step 4: Each requirement from the list is loaded with an HTTP GET from

RM Tool (Listing A.4) and displayed in Refine.

6.2.2. Integration Platform - RM Tool

Figure 6.6 shows the data flow between the Integration Platform and RM Tool

for the case of initially loading requirements from a TRS provider. The initial

flow includes loading resources from a base repository in addition of processing

change logs, described in the following steps.

Step 1: After obtaining authorization, the Integration Platform loads the

TRS (Listing A.5) from RM Tool by an HTTP GET. It contains a change log

with the latest changes of requirements and a link to a base resource, described

in step 2.

1The OSLC specification [osl13] defines the OAuth URLs in the service provider catalogs.
The solution from IBM Jazz [Cornd] additionally requires rootservices on top of the service
provider catalogs. The rootservices document includes ULRs to service provider documents
as well as OAuth URLs. A sample document is listed in Appendix A. For testing purposes
with the IBM Jazz platform, the prototype was implemented with rootservices.

64

6. Implementation

Figure 6.5.: Data flow diagram of Refine and RM Tool

Step 2: The base resource (Listing A.6) is loaded, which may be split up

into several pages of base files. The base represents all resources of the TRS

provider at a specific point in time. The cuttoffEvent corresponds to the point

65

6. Implementation

Figure 6.6.: Data flow diagram of Integration Platform and RM Tool

of time after which modifications to the requirements are not included in the

base.

Step 3: Changelogs of modifications, split up to pages, are loaded from RM

66

6. Implementation

Tool. This step is skipped if all changes since the cut-off event are already listed

in the TRS document from step 1.

Step 4: Depending on the information from the previous steps, modified or

new requirements are loaded from RM Tool using the OSLC READ operation

(Listing A.4), and the requirements are stored in an RDF triple store.

6.3. Authorization

The prototype implementation allows authorization with HTTP Basic, OAuth

1.0a, and OAuth 2.0 for the OSLC communication between the Integration

Platform and RM Tool as well as between Refine and the RM Tool. Those

authorization methods were described in Section 4.3. This section describes

how the mechanisms were used with the prototype and show the data flow in

detail.

6.3.1. HTTP Basic

The simplest form of authorization sends with every single HTTP request an

Authorization header containing the username and password in an encoded

form. The prototype supports HTTP Basic authentication for communication

of the Integration Platform and RM Tool, as well as communication from Refine

to the RM Tool.

Configuration The Integration Platform and Refine need to know username

and password for the RM Tool. At the Integration Platform, an administrator

has to configure username and password of a functional user to access the RM

Tool. At Refine the user has to configure username and password in the settings

of the Refine tool.

Data Flow At each request the Integration Platform or Refine sends to the

RM Tool, an authorization header is appended. The header contains username

and password for the RM Tool, encoded with Base64.

Authorization: Basic base64encoded=un&pw

Figure 6.7 gives a schematic view of the data flow.

67

6. Implementation

Figure 6.7.: Data flow diagram of HTTP Basic authentication

6.3.2. OAuth 1.0a

Authorization with OAuth allows delegating the authorization to the user while

keeping users credentials secret. This means, the client application does not

need to know secret user credentials of the service provider. As this form of

authorization requires user interaction, it is implemented only for the connection

between Refine and the RM Tool.

Configuration No configuration, OAuth URLs are loaded from the OSLC

rootservices document.

Data Flow Figure 6.8 shows the data flow for OAuth 1.0a authorization

between Refine and the RM Tool in detail. In the first step, Refine uses

the oauthRequestTokenUrl URL from the rootservices document to get a

request token. The HTTP header is signed with an OAuth signature using the

HMAC-SHA1 method with the consumer key.

The second step is the user authorization step. Therefore, Refine calls the

oauthUserAuthorizationUrl with the received token. Then, the RM Tool redi-

rects the user agent in the browser to an authorization page, requesting an

username and password. After a successful authentication, the RM Tool calls the

oauth callback URL with the requested token and a unique, randomly-generated

verifier.

Finally, in the third step, the authorized request token can be exchanged for

an access token. Refine calls the oauthAccessTokenUrl with a signed request,

containing the token and verifier. The received token secret is appended to the

68

6. Implementation

signature. The RM Tool responds with an access token and a token secret.

After completing the three steps to get an access token, the token can be

used with a signed request to retrieve protected resources. The service provider

determines the validity period of the token.

Figure 6.8.: Data flow diagram of OAuth 1.0a

69

6. Implementation

6.3.3. OAuth 2.0 Authorization Code

OAuth 2.0 with grant type Authorization Code is implemented to connect

Refine with the RM Tool. The configuration and data flow have a huge common

ground with OAuth 1.0a.

Configuration The URLs for OAuth 1.0a from the rootservices document

can be reused.

Data Flow The data flow drawn in Figure 6.9 is comparable to OAuth 1.0a.

The most significant difference is, the messages are not signed.

The process starts by requesting an authorization grant, or authorization

code. The client id identifies the client application, redirect url is used for the

callback and state can be freely chosen by the client, e.g. to map the request

later to the callback. After that, the RM Tool creates a unique authorization

code.

In the second step, the client is redirected to a web page for authorization.

In the prototype, the RM Tool acts as resource server and authorization server.

Therefore the redirection is done instantly after creating the authorization

grant. By entering username and password the authorization of the grant is

completed and the callback URL of Refine is invoked.

At third, the grant is exchanged for an access token. Therefore the autho-

rization code is sent to the service provider and an access token is issued. The

prototype uses token type bearer, which is a simple plain text token. Optionally

an expiration date and scope for the token could be set.

After completing the three steps to get an access token, the token can be

used in an authorization header to retrieve protected resources.
Authorization: Bearer access_token

6.3.4. OAuth 1.0a Two-Legged

The OAuth flow is called three-legged because there are three steps to receive

an access token. Two-legged means to skip one step, the user authorization

step. Therefore two-legged OAuth can be used without user interaction, which

is required for the connection between the Integration Platform and RM Tool.

The OAuth 1.0a specification [OAu09] does not describe such a two-legged

flow. Therefore, different unstandardized variations of two-legged OAuth exist.

70

6. Implementation

Figure 6.9.: Data flow diagram of OAuth 2.0 with grant type Authorization Code

The username and password of a functional user of the service provider are

placed as consumer key and secret of the client. One way is to skip the user

authorization step and perform only the steps to get a request token and

exchange the request token for an access token.

The prototype uses even a one-step solution, implemented by the Eclipse

Lyo libraries. This flow does not require to request access tokens. The request

for a resource is signed with the OAuth consumer secret and consumer key. We

could call this flow one- or zero-legged, but for convenience, we will also call it

two-legged OAuth in the following.

Configuration Consumer key and consumer secret need to be configured at

the Integration Platform. Optionally, an OAuth realm has to be set if claimed

71

6. Implementation

by the service provider.

Figure 6.10.: Data flow diagram of two-legged OAuth 1.0a

Data Flow The implemented algorithm skips the OAuth steps to retrieve an

access token. Similar to HTTP Basic authentication every OSLC message is

signed with the HMAC-SHA1 algorithm, as described in the OAuth specification

[OAu09]. The signature contains an empty oauth token. The data flow is drawn

in Figure 6.10.

6.3.5. OAuth 2.0 Resource Owner Password Credentials

In contrast to OAuth 1.0a, the OAuth 2.0 specification [Har12] enumerates

authorization grant types which require no user interaction. The Resource

Owner Password Credentials grant type is used in the prototype in the same

way as OAuth 1.0a two-legged. This grant type directly uses the username

and password for the client id and client secret and thus can skip the user

authorization step. In our scenario, we use the username and password of a

functional user of the service provider.

Configuration The client id and client secret need to be configured at the

Integration Platform. Furthermore, the URL for requesting an access token is

required. This URL may be configured or read from the OSLC rootservices

document.

72

6. Implementation

Data Flow As shown in Figure 6.11, there is only one step to get an access

token. The token can be used the same way as with grant type Authorization

Code.

Figure 6.11.: Data flow diagram of OAuth 2.0 with grant type Resource Owner Password
Credentials

The Integration Platform sends a request with grant type client credentials

to the RM Tool. The request contains the client id and client secret which are

used as username and password of a functional user of RM Tool. The RM Tool

checks the credentials and issues an access token.

6.4. Discussion

The purpose of the prototype implementation was to test different security

methods in the defined scenarios. The wide array of different use-cases, methods

and technologies forced to focus on a subset of methods.

HTTP Basic authentication was already implemented at all of the com-

ponents. It’s simple usage made it suitable to test communication between

the components before implementing the more complex OAuth authorization

methods. OAuth 1.0a was implemented throughout the OSLC core specification

[osl13] recommends its usage and the Eclipse Lyo library provides functionality

for usage on client and server side. Looking ahead in the future, OAuth 1.0a

73

6. Implementation

may become obsolete and replaced by OAuth 2.0 and other OAuth related

frameworks. Therefore, the prototype was extended with OAuth 2.0 support.

TLS was not deployed with the prototype by purpose. Usage of it makes the

configuration of the prototype more complex and hampers analysis of the data

flow between the components. Although it is recommended to use in a real

environment.

The prototype is evaluated in more detail in the next chapter.

74

7. Evaluation

In the previous chapter, a prototype implementation was presented. The findings

from the prototype are discussed in this chapter.

At the start, in Section 7.1 we discuss which previously defined security

objectives are fulfilled by the prototype. Further, Section 7.2 indicates security

considerations of the methods and technologies used by the prototype. Finally,

the results of the prototype and gained knowledge are discussed in Section 7.3.

7.1. Evaluation Against Objectives

In chapter 3 we defined security requirements based on the RMIAS [CH13]

model. The requirements are authentication, authorization and confidentiality,

and integrity. The threat analysis in chapter 5 lists and discusses assets and

threats and concludes security objectives and countermeasures. The results

of this analysis were used to decide about the used methods of the prototype

implementation, HTTP Basic authentication, OAuth 1.0a, and OAuth 2.0.

In this section, the prototype implementation is faced against the previous

introduced security objectives. Those, defined in Section 5.1.5, are: O.1 Au-

thentication of the server ; O.2 Authentication of the user ; O.3 Integrity of

OSLC, TRS, and SPARQL communication; O.4 Confidentiality of the OSLC,

TRS, and SPARQL communication; O.5 Grant authorized users permission to

create, retrieve, update, and delete OSLC resources ; O.6 Confidentiality of user

credentials ; O.7 Permission to query via TRS interface; and O.8 Permission to

query via SPARQL interface.

The security considerations of the applied methods are omitted in this section

but discussed in detail in the next section.

75

7. Evaluation

7.1.1. Authentication of the Server

Since HTTP protocols are used as the basis for all parts of the communication,

Transport Layer Security (TLS) implemented by HTTPS protocol is the first

choice to authenticate the server. By checking the certificate of the server,

authenticity of those can be ensured.

A drawback is the administration of the service provider certificates, which

have to be installed and updated by the system administrator. This addi-

tional administration effort harms the non-functional requirement of simple

configuration. Possible solutions are discussed in the security considerations

section.

TLS is not activated for the prototype by intention, because the basic

architecture stays the same, whatever HTTP or HTTPS is used. On the other

hand omitting TLS allowed recording of the communication for development

and evaluation purpose.

7.1.2. Authentication of the user

Many lifecycle tools determine access rights to resources by verifying authentic-

ity of the requesting user. The implemented method HTTP Basic authentication

can be used to authenticate a user.

However, for the needs of access to resources, instead of an authentication

method, a method for delegated access control, such as OAuth, is sufficient.

Access control is discussed in the next paragraphs.

For SSO applications authentication is essential, and methods like OpenID

Connect may be used therefore. Such a method was not applied for the prototype,

but will be outlined in the discussion of this evaluation.

7.1.3. Integrity and Confidentiality of OSLC, TRS, and

SPARQL Communication

Integrity and confidentiality are provided when using HTTPS with TLS for all

of the communication interfaces. First the consumer or client checks authenticity

of the server/provider by verifying the server certificate. Access to sensible or

confidential data is given by the provider after an additional step of authorization

of the consumer by using the implemented methods HTTP Basic or OAuth.

Therefore the whole communication for confidential data is done after mutual

76

7. Evaluation

authentication. Cryptography of the TLS protocol underlying HTTPS ensures

integrity and confidentiality.

7.1.4. Grant Authorized Users Permission to OSLC

Operations

The implemented methods HTTP Basic authentication and OAuth are used to

control access to resources for authorized users. Confidential or sensible data

can only be accessed after a previous authorization of the user. HTTP Basic

authentication and OAuth differ in the data flow, as shown in the previous

chapter, and therefore provide different levels of security, which will be discussed

in the security considerations section. The methods can be used in the same

manner by all of the OSLC Create, Retrieve, Update, and Delete (CRUD)

operations.

7.1.5. Permission to Query via TRS Interface

The TRS client can authenticate the service provider with TLS. The prototype

implementation further facilitates HTTP Basic and OAuth for access control

to resources of the service providers. OAuth should be preferred to protect

the users credentials against the TRS client application, which was already

discussed in the threat and gap analysis.

7.1.6. Permission to Query via SPARQL Interface

HTTP Basic might be used to authenticate the user or OAuth for authentication

by the client tool on behalf of the user. However, the Integration Platform

needs a way to determine access rights of a user to resources of multiple service

providers. As exposed in the conclusion of the threat and gap analysis, the

scope of the implementation was limited by omitting SSO and access control

methods for the Platform scenario. Possible solutions are discussed in Section

7.3.

7.1.7. Conclusion

Table 7.1 summarizes, which security objectives are covered by the prototype

implementation.

77

7. Evaluation

Table 7.1.: Security objectives covered by prototype implementation

Security objectives Prototype implementation
Authe Server O.1 x

Authe User O.2 x1)

Integ Com O.3 x
Conf Com O.4 x
OSLC Ops O.5 x
Conf Cred O.6 x2)

TRS Query O.7 x
Sparql Query O.8 ∼
x covered, ∼ partly covered

1) If HTTP Basic authentication is used.

2) If OAuth is used.

The prototype implementation covers all security objectives related to the

OSLC scenario. Confidentiality of the user’s credentials can be assured by using

OAuth 1.0a or OAuth 2.0 instead of HTTP Basic authentication. When we

further assume exclusive use of HTTPS, the solution can further provide authen-

ticity of the service provider, integrity and confidentiality of the communication

channel, as well as access control for OSLC and TRS interfaces. In conclusion

the prototype is suitable to cover these objectives. In the next section, security

considerations of the applied methods are discussed. Open issues to cover the

objective of access control for SPARQL interfaces of the Integration scenario

are treated in the discussion of this chapter and the previous threat and gap

analysis.

7.2. Security Considerations of Applied Methods

All of the security methods from the implementation infer different security

issues. In Chapter 5 we discussed various threats, including disclosure of commu-

nication; message insertion/modification/deletion; impersonation of identities ;

disclosure of user credentials; unauthorized access; and API misuse. Now we

debate concrete security issues of the prototype and elaborate security consid-

erations which have to be made for an implementation in a real environment.

TLS is mandatory for a proper communication channel protection, therefore

we start with TLS before talking about the implemented authentication/au-

78

7. Evaluation

thorization methods. A basic description of the methods can be found in

Chapter 4.

7.2.1. Transport Layer Security (TLS)

In the LTI scenario, TLS is used as an underlying transport layer of HTTP.

[Res00] illustrates the resulting HTTP protocol. The first source for security

considerations to TLS is the official specification of the protocol [DR08]. [MS13]

provides a historical overview of attacks on different versions of TLS.

Protocol Version. To allow legacy support, browsers and other systems

support connections to former SSL/TLS protocols. The SSL protocol, in version

1.0, 2.0, and 3.0 was obsoleted by TLS because weaknesses have been found;

hence it should not be used any longer. Most browsers stopped support for SSL

3.0 after the Padding Oracle On Downgraded Legacy Encryption (POODLE)

attack was exploited [MDK14]. POODLE makes man-in-the-middle attacks to

obtain data via a padding-oracle-attack. Doung and Rizzo introduced Browser

Exploit Against SSL/TLS (BEAST) [DR11], an chosen-plaintext attack against

SSL 3.0 and TLS 1.0. Therefore e.g. the U.S. National Institute of Standards and

Technology (NIST) recommends using TLS 1.1 or 1.2 over TLS 1.0 [PMC14].

Currently, TLS 1.1 and TLS 1.2 provide the highest level of security. Im-

portant is to keep in mind, limiting the set of supported versions reduces

interoperability with (older) software systems. Contrariwise, older version open

gateways to offenders for eavesdropping and MITM attacks.

Cipher Suite TLS supports various cipher suites. The cipher suite defines

a method for key exchange, a bulk encryption method, a message authentication

code, and a pseudorandom function. An example is TLS RSA WITH AES 128 CBC SHA,

with RSA for key exchange, AES 128 CBC as 128-bit symmetric block encryp-

tion method in CBC mode, and SHA-1 as the hash function. Server and client

negotiate which cipher suite is used. But for both, a system administrator can

limit the set of allowed cipher suites. Selection of used cipher suites directly

influences the security level, e.g. AES 128 has a complexity of 2128, while recov-

ering the block cipher 3-DES has been proven with a complexity of 286 [Bih96].

Recommendations to cipher suites can be looked up from different institutes,

an overview of those is given by [SKV+16].

79

7. Evaluation

Usage. The entire content provided by the service provider must be protected

with TLS. Intuitively, URLs to protected resources need to be secured via TLS,

otherwise eavesdropping in a physical network (LAN) [JZI10] or a wireless

network (WLAN) [Cas02] is an easy task. But further other URLs, like rootser-

vices, OSLC service provider catalogs, or OAuth URLs, have manifold effects

on security. If an attacker can modify URLs inside a rootservices or service

provider catalog document, the attacker can redirect consumers to malicious

pages. Accordingly, unprotected pages offer possibilities for attackers to read

and modify content by MITM attacks or redirect clients unnoticed to fake

service providers.

Certificate and Key Management. Certificates, including the key material

used to verify authenticity and establishment of a confidential connection, are

a critical part of the architecture.

”The system is only as strong as the weakest key exchange and

authentication algorithm supported.” [DR08]

Recommendations from NIST, according to TLS algorithms and key lengths

can be found in [PMC14]. Key generation tools typically generate certificates

with of sufficient strength. For instance, the OpenSSL tool generates keys for

RSA with a default key length of 2048 bits.

”Implementations and users must be careful when deciding which

certificates and certificate authorities are acceptable; a dishonest

certificate authority can do tremendous damage.” [DR08]

A critical part in LTI is limiting acceptable certificates to the smallest possible

amount, considering usability and system administration efforts. In the best case,

a client tool allows only connections to a list of registered service providers, and

vice versa. The requirement for lightweight integration makes such an approach

impractical, due to the administration effort of maintaining records of trusted

service providers per lifecycle tool. The TLS specification of X.509 certificates

[CSF+08] describes the concept of certificate chains. These chains can be used

to arrange a lifecycle with different levels of trust, as described in Section 4.1.

By example, a corporation can create a root certificate which is trusted by all

clients within the organization. For more granularity, a corporation can issue

80

7. Evaluation

Certificate Authorities (CAs) on project levels, whereas lifecycle tools trust

only certificates issued with these CA certificates. On department, corporation,

and other trust levels, similar solutions can be deployed.

User Awareness

”Even when certificates are implemented ”perfectly” human behav-

ior often renders them moot.” [Dav11]

All browsers at the time allow users to ignore certificate warnings for mismatched

domains or certificates past its validity time [Dav11]. With such behavior, a user

might connect to a fake service provider or the communication is intercepted

by a malicious proxy server. Where feasible, client tools should remove the

possibility to accept invalid certificates by the users, for browser-based clients

education of user awareness is vital.

Faulty Configuration or Implementation. Accepting invalid or unknown

server certificates entirely breaks the TLS protection. But a proper implementa-

tion and configuration of TLS can be time-consuming. Especially in non-browser

software, the tool developers need to handle certificate validation. [GIJ+12]

demonstrate broken SSL/TLS implementations for non-browser software. In

the worst case, a developer disables certificate validation to counter problems

with certificates. [GIJ+12] lists some quotes from developer’s forums:

”I want my client to accept any certificate (because I’m only ever

pointing to one server) but I keep getting a javax.net.ssl.SSLException:

Not trusted server certificate exception”1

7.2.2. HTTP Basic Authentication

Although HTTP Basic Authentication is easy to implement with a high inter-

operability, Basic Authentication is ”[...] very much on the weak end of the

security strength spectrum”. [FHBH+99a]

1http://stackoverflow.com/questions/2642777/trusting-all-certificates-using-httpclient-
over-https (Accessed: 2016-11-25)

81

7. Evaluation

Digest Authentication. Using weak passwords, Basic Auth is vulnerable to

dictionary and brute force attacks. An improvement to Basic Auth is Digest

Auth, also described in the same protocol specification [FHBH+99a]. In gen-

eral Digest Auth uses hashed instead of plaintext passwords for transfer. If

sufficiently strong cryptographic hash algorithm are used, plaintext passwords

are not recoverable from the hash values. Compared to other authentication

mechanisms, Digest Auth is still considered to have a weak security level. The

specification [FHBH+99a] lists scenarios where MITM attacks are possible for

Basic and Digest Auth, [ANN03] further describes MITM attacks even when

tunnelling the communication via TLS.

However, Digest Auth solves many problems of Basic Auth, such as brute

force, dictionary attacks, eavesdropping of passwords, and replay attacks. But

the security level depends on the usage of a hash function. The specification

describes only the use of MD5 [Riv92]. This message-digest algorithm has

already shown several security issues [WFLY04], and even the author of MD5,

Ronald L. Rivest, stated it as ”clearly broken (in terms of collision-resistance)”

[Riv05]. A hash function is collision resistant if it is difficult to find the inputs

to the hash function which result in the same output. Applying such an attack

to Digest Auth is not practical at the time, but might be feasible conceivable.

Storing Passwords. When using Basic Auth for web applications, the users

browser stores the credentials in place of the client application. In LTI different

types of applications, such as native or browser-based, might require storing the

credentials by the client tool. In the prototype both, Refine and the Integration

Platform, store username and password to gain access to the RM Tool. In a

more complex scenario with multiple OLSC/TRS consumers and providers,

each of them needs to store client credentials of each other, leading to a massive

security issue.

Every client tool accessing a service provider has to store user credentials from

the provider. E.g., if ten applications access a service provider, ten applications

hold the passwords, additionally to the service provider. The likelihood of

compromised passwords increases dramatically.

Client Tool Authentication. In the LTI scenarios, we need to authenticate

the service provider and the client tool. As described in the last paragraphs,

TLS with server certificates can be used to verify the authenticity of the service

82

7. Evaluation

provider. If deploying certificates for the client tools is feasible, those can be

used to verify the client tools’ authenticity.

Otherwise, the user authentication/authorization method can be considered

as a solution. When utilizing OAuth, the service provider identifies the client

tool by a unique pair of client identifier and client secret. Using a compromised

OAuth access token is not possible as long as the attacker cannot present a

valid client identifier and secret to the service provider. There exists no similar

concept for Basic/Digest Auth, accordingly an attacker can immediately use

compromised user credentials for requests to a service provider.

7.2.3. OAuth 1.0a

Similar to HTTP Basic Authentication, OAuth 1.0a is foreseen by the OSLC

Core Specification Version 2.0 [osl13]. Additionally, we assume to use TLS as

underlying transport layer protection protocol. The first source for security

issues of the OAuth 1.0a protocol is the security considerations chapter of the

specification [OAu09].

Protocol Version. For OAuth 1.0 a security flaw called session fixation attack

[Ham09] was published, which led to the development of OAuth 1.0a. The

attacker connects to the service provider to receive a request token. Instead of

authorizing it, the attacker convinces the victim by social engineering to click a

link for authorizing the token. The service provider accepts the request, as the

request token is valid. The victim cannot detect an attack is ongoing, as the

victim is redirected to the legitimate page of the service provider. The attacker

now exchanges the request token to an access token. Finally, the attacker can

use the approved access token to request resources with access rights of the

victim.

For mitigation of those attack, an OAuth 1.0a client sends the oauth callback

URI with the query of the request token. An attacker cannot modify these

URI. After user authorization, the service provider invokes the callback and

appends an oauth verifier. This verifier is necessary to exchange the request

token for an access token, but the attacker is not able to read the response

from the callback.

Since TLS does not prevent the session fixation attack, OAuth 1.0a must be

used. The following security considerations hold for OAuth 1.0a.

83

7. Evaluation

Signature. OAuth specifies three different signature methods, HMAC-SHA1,

RSA-SHA1, and PLAINTEXT, which are used to sign all OAuth requests. A

signature is not necessary if the protection with TLS holds, but it provides

additional security if TLS is disabled or broken. PLAINTEXT appends a signature

string without the use of a cryptographic operation, it does not increase the

level of security. Utilizing PLAINTEXT signatures in combination with TLS could

be considered, but HMAC-SHA1 or RSA-SHA1 should be preferred. The prototype

uses HMAC-SHA1 signatures for OAuth 1.0a requests.

A further advantage in security is that the signature binds an access token

to a relying party. Only the consumer tool which claimed the OAuth token can

use it since every request to protected resources needs to be signed with the

consumer secret and token secret.

Signature key: oauth_consumer_secret&oauth_token_secret

The token secret is unique for each OAuth token; the consumer secret is

unique for each client tool. Hence the access token is bounded for usage only by

the requester of the access token. A compromised access token cannot be used

by an attacker unless the consumer secret is compromised as well. Breaking

TLS is not sufficient to break OAuth 1.0a, the consumer secret needs to be

compromised by some additional attacks.

The consumer secret has to be protected by the service provider and consumer.

The service provider is typically a web server application and therefore able to

store the credentials in a protected database on the server. Protection by the

consumer is more challenging and depends on the type of the client. Possible

solutions are to store the credentials in a hardware security module (HSM)

or to query the credentials from a web service. Obfuscating the credentials in

the source code should be only considered for tools with low-security demands

because decompiling the application to retrieve the secret is just a matter of

time.

Scoping. The protocol defines no ways to scope the delegation rights. The

service provider may want to restrict delegated access rights of a consumer

tool to specific domains. E.g., a TRS client could be limited to have read-only

access rights.

Clickjacking and Automatic Login. Malicious consumer tools can request

OAuth tokens without notice of the user by a clickjacking [HMW+12] attack.

84

7. Evaluation

The attack is done in the following steps:

1. The malicious tool M gets a new request token from the service provider

SP .

2. M convinces a user U of SP to click a link by a social engineering attack.

3. The user agent of U is redirected to a malicious page of M . The page

contains the user authorization page of SP as hidden iFrame covered

by another frame of M . Figure 7.1 shows a demonstration page. A fake

page displaying cat photos covers the OAuth authorization page to the

RMProvider. If U clicks to see more cats, U authorizes a token for M to

access the RM Tool.

4. M convinces U to click on a link of the page. If the user clicks the link,

instead the accept button of the hidden iFrame is clicked.

5. The token of M was authorized without knowledge of U . M can access

protected resources on behalf of U .

There are several ways to prevent a web page is displayed within an iFrame.

Framebuster, also called framekiller, are JavaScript implementations which

detect if the page is the top level window or embedded in another page.

Framebasters can disable navigation if the authorization page is embedded.

Though there are solutions to bypass framebusting [RBBJ10]. Some browsers

allow to take advantage of the X-FRAME-OPTIONS header to block any iFrames.

An effective and general solution is, to deactivate automatic login. The

user is asked by the service provider for the user credentials with every token

authorization request. Even if the user has an open session at the service

provider or already requested a token for the client earlier, submission of

user credentials is mandatory. Figure 6.2 shows a web page of the prototype

implementation, asking the user for authorization of an access request. The

Eclipse Lyo [ecl16] library for OAuth implements a session management and

only asks for a password if the user has no session open. For improved security,

that behaviour should be changed.

Two-Legged. The OAuth 1.0a protocol specification defines no way for dele-

gated access without user interaction. Our use-cases require such a mode for the

connection of TRS interfaces. The solution for the prototype was a derivative

from the specified three-legged flow. The algorithm is described in Chapter 6,

and the data flow is pictured in Figure 6.10.

85

7. Evaluation

Figure 7.1.: Demonstration of clickjacking of OAuth 1.0a

The two-legged mode is not specified, but the implementation is straight

forward if the three-legged mode already is used. However, due to the lack of a

specification, service providers and clients may implement the method slightly

different resulting in interoperability problems and questionable security.

7.2.4. OAuth 2.0

The intention on the development of OAuth 2.0 [Har12] was to simplify the

OAuth 1.0a signature process and adapt it for multiple devices. OAuth 1.0a

86

7. Evaluation

showed more and more problems with native and mobile applications. The

IETF has published a threat model and security considerations [LMH13] for

OAuth 2.0.

OAuth 2.0 and the Road to Hell. In 2009, Eran Hammer, author of OAuth

1.0 and at this time lead author of OAuth 2.0, resigned and withdrew his name

from the OAuth 2.0 framework specification. He explained his reasons in a

blog writing called ”OAuth 2.0 and the Road to Hell” [Ham12] claiming the

specification is likely to produce insecure implementations.

OAuth 2.0 defines multiple grants for usage with different client types,

removes signatures and introduces the concept of bearer token. Chapter 6

describes bearer tokens and some of the grant types. Removing signatures

should help to make the client side implementation easier. Further, the grant

types specify flows for different application types, including native and mobile

applications. At least the framework is easily extensible. Multiple protocols,

including OpenID Connect and UMA, are built on top of OAuth 2.0.

The main points of Hammer are: security solely depends on the correct

implementation and usage of TLS; tokens are not bound to a consumer tool;

and the specification is much more comprehensive, harder to understand for

implementers without a solid security background knowledge.

Unbound Tokens. A critical issue of OAuth 2.0 are the unbound access

tokens, namely the bearer tokens. A token can be leaked by several ways, on

transport, at consumer or service provider, and at authorization server. In

difference to OAuth 1.0a, a leaked OAuth 2.0 bearer (access) token is sufficient

to access resources, without the need to steal the consumer secret. The bearer

token specification [JH12] provides some recommendations for their usage, as

the usage of TLS, and short-term validity durations of the tokens. Further, it

recommends to add authentication information of the client application to the

token but does not specify how.

A possible solution is the generation of signatures, similar to OAuth 1.0.

Additionally, binding of bearer tokens to clients could prevent utilization of

leaked token.

Implementation Challenges. Implementing an OAuth 2.0 service provider is

challenging when considering all possible vulnerabilities. On client side things are

87

7. Evaluation

much easier, nevertheless, using tested libraries is recommended. The prototype

uses the Apache Oltu library [Fou16a], but especially when implementing a

service provider, still many vulnerabilities need to be considered.

Yang and Manoharan identified six root causes of vulnerabilities at their

study of security vulnerabilities of the OAuth 2.0 protocol [YM13].

1. No requirement or no recommendation of TLS protection on callback

endpoints.

TLS needs be used for all endpoints, including the callback endpoint of

the client. This requirement complicates the development of the client

tool, but provides authentication of the client callback endpoint and

reduces risks of the leakage of an authorization code.

2. Allowing multiple uses of authorization codes.

To overcome this problem, limiting the validity of authorization codes

is requested by the specification. It requires to limit validity time of the

codes to ten minutes and recommends to allow usage of a code only

once. At an attempt to use an authorization code multiple times, the

authorization server should revoke all access tokens issued previously with

this authorization code.

3. The removal of the signature requirement of authorization request disables

authorization server to validate the authenticity of the client application.

Optionally, a client tool can be authenticated with TLS, but this solution

might be impractical due to the additional effort of certificate management,

as discussed before.

4. No vetting process is enforced to ensure the security of the client applica-

tion before enabling the automatic authorization granting feature.

As discussed for OAuth 1.0a Clickjacking and Automatic Login, entering

user credentials for every token request should be enforced. But forcing

the user to type in credentials declines the usability. Instead the service

provider may verify additional information, e.g. the client’s IP address,

and ask the user only for a password if these information cannot be

verified.

5. Flexible redirection URIs validation mechanism is not adopted.

OAuth 2.0 uses client callback URIs to bind the client to the requested

token. Flexible URIs allow to manipulate them while the validation is still

valid. For example, an attack may manipulate a relative URI to redirect

callback from authorization server to a malicious location. Such an attack

88

7. Evaluation

is called open redirector or covert redirect [BBDLM14].

6. No authenticity of the authorization code.

Authorization codes are mapped to a redirect URI, but not to an authen-

ticated client. OAuth 1.0a establishes this authentication with signatures.

The problem is similar to unbound tokens as discussed before.

Scopes OAuth 2.0 allows defining scopes for access tokens. By example,

tokens for TRS clients may be limited to read-only rights.

Two-Legged. On the contrary to OAuth 1.0, the OAuth 2.0 framework

specifies flows, called grants, for delegated access without user interaction. The

prototype uses the Resource Owner Password Credentials grant, described in

Section 6.3.5.

A client id and a client secret are used for authenticating the client tool and

making the access decision by the authorization server. Because the secret is

transferred in plaintext, usage of TLS is mandatory. Each tool with two-legged

access, e.g. TRS clients, have to be registered at the service provider with

the client id. The service provider may link a functional user2 to the client id

for handling access rights similar to regular users. Each client tool should be

registered with an unique client id. Security of the methods depends on the

service provider and client tools to keep the client secret confidential.

Comparison of OAuth 1.0 and OAuth 2.0 Table 7.2 gives a brief comparison

of OAuth 1.0 and OAuth 2.0 from Prabath Siriwardena [Sir14]. The differences

from the evaluation of the prototype implementation are described in the

following.

Siriwardena used the hash algorithm SHA-256 instead of the algorithm

specified [OAu09] for OAuth 1.0a, SHA-1. The SHA-256 algorithm provides

higher security than SHA-1, but using unspecified algorithms causes problems

in interoperability. Further, the comparison declines OAuth 1.0 as less developer

friendly. That is a typical statement, based on the effort for creating signatures.

But implementation of the prototype pointed out that in fact, the signatures

2A functional user is utilized by a client tool to access resources of a service provider, with
access rights of the functional user. The service provider maps the functional user uniquely
to the appropriate client tool. Thereby, a client tool can access resources of a service provider
without the need of authenticating with a normal user.

89

7. Evaluation

Table 7.2.: OAuth 1.0 vs. OAuth 2.0 from [Sir14]

OAuth 1.0 OAuth 2.0
An access-delegation protocol An authorization framework for

access delegation
Signature based: HMAC-SHA256,
RSA-SHA256

Non-signature-based, Bearer To-
ken Profile

Less extensibility Highly extensible via grant types
and token types

Less developer friendly More developer friendly
TLS required only during the ini-
tial handshake

Bearer Token Profile mandates us-
ing TLS during the entire flow

Secret key never passed on the
wire

Secret key goes on the wire
(Bearer Token Profile)

require no effort, as libraries can be used to create them. On the other hand,

OAuth 2.0 is a much more comprehensive protocol, especially for implementation

of the authorization and resource server the effort is much higher. Furthermore,

Siriwardena states that TLS is required only during the initial handshake of

OAuth 1.0. It is true that signatures protect integrity and authenticity of access

tokens, but TLS is still required to protect integrity and confidentiality of the

payload and response from requests.

7.3. Discussion and Recommendations

Concluding from the evaluation we discuss and recommend the methods for

the scenarios introduced in Chapter 2.

Security of the Communication Channel. Certain is TLS needs to be de-

ployed for service providers. This holds for all types of interfaces, as OSLC, TRS,

or SPARQL service providers interfaces. The evaluation indicated especially the

need to protect OAuth callback endpoints via the HTTPS protocol [YM13]. An

issue is the effort for certificate and key management; the evaluation discusses

an approach to organize server certificates in levels of trust, based on certificate

chains.

90

7. Evaluation

Authorization Both integration scenarios rely on access control between the

tools. HTTP Basic authentication was evaluated because it is recommended

by the OSLC specification. Security of this authentication form was shown to

be weak. Digest authentication, which transfers message digests of the user

credentials instead of plaintext credentials, is an improvement but still threatens

confidentiality of user credentials.

In contrast, OAuth 1.0a keeps the user credentials confidential towards the

consumer tools. Furthermore, the specification is easy to understand, and

the signatures add an additional security level compared to HTTP Basic

authentication or OAuth 2.0. But just those signatures complicate development

of OAuth 1.0a clients, a disadvantage which can be tempered using libraries

as shown with the prototype implementation. Other disadvantages are the

lack of access scopes, flows for different client types, and the missing flow

without user interaction. But the key argument against OAuth 1.0a is the

future development. The most prominent service providers, such as Amazon,

Google, Facebook, or Microsoft, have already switched to OAuth 2.0. Using

OAuth 1.0a for legacy support may be convenient, but new tools may already

have implemented OAuth 2.0 more likely.

In conclusion from the prototype and evaluation, we recommend to favor

OAuth 2.0 over OAuth 1.0a and HTTP Basic authentication. However, the

OAuth 2.0 framework has some security issues, if the implementation of client

or server is not in proper form and does not consider all vulnerabilities. Li-

braries could be used to decrease the risk, but as far as we know, there is no

reference implementation of an OAuth 2.0 server and client for an OSLC service

provider and consumer. We recommend to extend the Eclipse Lyo libraries

[ecl16] for OSLC and TRS interfaces by an OAuth 2.0 implementation to ease

the development of new tools in a lifecycle. The prototype implementation

demonstrates such an implementation. Due to the similarities to OAuth 1.0a,

OAuth 2.0 can be implemented for OSLC without the need of modifications to

the OSLC core specification.

Future work For the Platform scenario (Section 2.3.2) SSO is a useful require-

ment. OpenID Connect is based on OAuth 2.0, and therefore an convenient

adoption. The OpenID Connect protocol reuses the methods from OAuth

2.0 for delegated access, and includes the functionality of authentication. All

connected tools need to use the same identity server or synchronize the user

91

7. Evaluation

information. In an corporate environment a LDAP service might be used. Oth-

erwise protocols as SCIM might be considered. The prototype implementation

does not cover SSO and federation of identities, therefore further research is

required for the Platform scenario.

Another point of the Platform scenario which requires more investigation is

access control to the SPARQL service of a TRS client. Possible solutions were

discussed in the threat and gap analysis of Section 5.2.

92

8. Conclusion

The process of securing lifecycle tool integrations is subject to diverse security

requirements spanned by various integration scenarios. Therefore, one of the

first and most important steps of this work was to define relevant integration

scenarios and infer security requirements.

The OSLC [osl13] scenario covers the communication between tools in the

lifecycle. The Platform scenario extends the communication scenario by a

central integration platform used to construct a common database of OSLC

resources. Querying the database is possible without the need of contacting the

resource holding tool. Our derived security requirements include authentication

of tools and users, authorization to access resources, confidentiality of resources

and user credentials, and integrity of data in transit.

A threat and gap analysis was used to identify suitable methods utilized for

a prototype implementation. The architecture of the prototype involves three

tools including an OSLC consumer, an OSLC service provider, and a TRS

[osl15b] client regularly loading resources from service providers. HTTP Basic

authentication [FHBH+99a], OAuth 1.0a [OAu09], and OAuth 2.0 [Ham12]

were used to comply the security requirements. The final evaluation includes a

comparison of the utilized methods and gives security considerations as well as

recommendations of methods to deploy for the scenarios.

Summarized, OAuth 2.0 satisfied the needs for the OSLC communication

parts most. In combination with TLS for authentication of the tools, as well

as protection of integrity and confidentiality of the communication channels,

OAuth 2.0 fulfills all requirements for delegated access to resources. In compar-

ison to OAuth 1.0a, it can be considered as less secure because of the missing

signatures, however, it supports multiple devices and data flows, is adjustable

and can be used as an underlying protocol for multiple other specifications.

This makes it to the most promising access delegation protocol of the next years.

In the evaluation we recommend to extend the libraries [ecl16] for OSLC by

OAuth 2.0, similar to the work we have done in the prototype implementation.

93

8. Conclusion

Further research is necessary for the part of access control to the integration

platform. Different solutions were discussed in the threat and gap analysis,

as well as in the discussion of the evaluation. A promising candidate for a

lightweight integration is a centralized access control model encapsulated from

the tools, but with disadvantages due to the redundant access control policies.

A more comprehensive solution, suitable for organizations with large lifecycles

is the usage of the XACML [OAS13] protocol. UMA [HMMC15] might be

considered to combine delegated access of OAuth 2.0 with access control using

XACML.

To close with a remark from the introduction, security should be thought as

an integral part when linking tools in a lifecycle.

Security should never be an afterthought - it’s an integral part of

any software system design, and it should be well thought out from

the design’s inception. [Sir14]

94

Appendix A.

Sample Messages

This appendix lists sample OSLC and TRS messages in XML format. Irrelevant

parts of the messages for gaining an understanding of OSLC and TRS were

removed to improve readability.

A.1. OSLC Messages

OSLC Rootservices

HTTP GET http://prototype:8081/RMProvider/rootservices

1 <?xml version=”1.0” encoding=”UTF−8”?>

2 <rdf:Description rdf:about=”http://prototype:8081/RMProvider/rootservices”

3 xmlns:oslc rm=”http://open−services.net/ns/rm#”>

4 <dcterms:title>OSLC−RM Adapter/RM Provider Root Services</

dcterms:title>

5 <oslc rm:rmServiceProviders rdf:resource=”http://INNB01637:8081/

RMProvider/services/catalog/singleton” />

6 <jfs:oauthRealmName>RMProvider</jfs:oauthRealmName>

7 <jfs:oauthDomain>http://prototype:8081/RMProvider/</jfs:

oauthDomain>

8 <jfs:oauthRequestTokenUrl rdf:resource=”http://prototype:8081/

RMProvider/services/oauth/requestToken”/>

9 <jfs:oauthUserAuthorizationUrl rdf:resource=”http://prototype

:8081/RMProvider/services/oauth/authorize” />

10 <jfs:oauthAccessTokenUrl rdf:resource=”http://prototype:8081/

RMProvider/services/oauth/accessToken”/>

95

Appendix A. Sample Messages

11 </rdf:Description>

Listing A.1: RM Tool Rootservices

OSLC Service Provider Catalog

HTTP GET http://prototype:8081/RMProvider/services/catalog/singleton

1 <rdf:RDF

2 xmlns:oslc=”http://open−services.net/ns/core#”>

3 <oslc:ServiceProviderCatalog rdf:about=”http://prototype:8081/

RMProvider/services/catalog/singleton”>

4 <oslc:domain rdf:resource=”http://open−services.net/ns/rm#”/>

5 <oslc:serviceProvider>

6 <oslc:ServiceProvider rdf:about=”http://prototype:8081/

RMProvider/services/serviceProviders/1”>

7 <oslc:prefixDefinition>

8 <oslc:PrefixDefinition>

9 <oslc:prefixBase rdf:resource=”http://open−services.

net/ns/core#”/>

10 <oslc:prefix>oslc</oslc:prefix>

11 </oslc:PrefixDefinition>

12 </oslc:prefixDefinition>

13 <dcterms:title rdf:parseType=”Literal”>Beates RM Service

Provider</dcterms:title>

14 <oslc:details rdf:resource=”http://prototype:8081/RMProvider/

services/”/>

15 <oslc:service>

16 <oslc:Service>

17 <oslc:queryCapability> <!−−Read Requirements−−>

18 <oslc:QueryCapability>

19 <oslc:resourceShape

20 rdf :resource=”http://prototype:8081/

RMProvider/services/requirement?resourceShapes=true”/>

21 <oslc:queryBase rdf:resource=”http://

prototype:8081/RMProvider/services/

requirements”/>

22 <oslc:usage rdf:resource=”http://open−services

.net/ns/core#default”/>

96

Appendix A. Sample Messages

23 <oslc:resourceType rdf:resource=”http://open

−services.net/ns/rm#Requirement”/>

24 <oslc:resourceType rdf:resource=”http://open

−services.net/ns/rm#LinkType”/>

25 <dcterms:title rdf:parseType=”Literal”>

Resource Provider Query Capability

26 </dcterms:title>

27 <oslc:label>Resource Provider Query

Capability</oslc:label>

28 </oslc:QueryCapability>

29 </oslc:queryCapability>

30 <oslc:creationFactory> <!−−Create Requirements

−−>

31 <oslc:CreationFactory>

32 <oslc:resourceShape

33 rdf :resource=”http://prototype:8081/

RMProvider/services/requirement?resourceShapes=true”/>

34 <oslc:creation rdf:resource=”http://prototype

:8081/RMProvider/services/requirements”/>

35 <oslc:usage rdf:resource=”http://open−services

.net/ns/core#default”/>

36 <oslc:resourceType rdf:resource=”http://open

−services.net/ns/rm#Requirement”/>

37 <dcterms:title rdf:parseType=”Literal”>

Resource Provider Creation Factory

38 </dcterms:title>

39 <oslc:label>Resource Provider Creation

Factory</oslc:label>

40 </oslc:CreationFactory>

41 </oslc:creationFactory>

42 <oslc:domain rdf:resource=”http://open−services.net/

ns/rm#”/>

43 </oslc:Service>

44 </oslc:service>

45 <dcterms:identifier>1</dcterms:identifier>

46 <dcterms:description rdf:parseType=”Literal”>OSLC

Service Provider for RM service</dcterms:description>

97

Appendix A. Sample Messages

47 <dcterms:created rdf:datatype=”http://www.w3.org/2001/

XMLSchema#dateTime”>2016−07−22T12:11:53.636Z

48 </dcterms:created>

49 </oslc:ServiceProvider>

50 </oslc:serviceProvider>

51 <dcterms:description rdf:parseType=”Literal”>OSLC Service

Provider Catalog</dcterms:description>

52 <dcterms:title rdf:parseType=”Literal”>OSLC Service Provider

Catalog</dcterms:title>

53 </oslc:ServiceProviderCatalog>

54 </rdf:RDF>

Listing A.2: RM Tool Service Provider Catalog

OSLC Query Capability

HTTP GET http://prototype:8081/RMProvider/services/requirements

1 <?xml version=”1.0” encoding=”UTF−8”?>

2 <rdf:RDF

3 xmlns:oslc=”http://open−services.net/ns/core#”

4 xmlns:oslc rm=”http://open−services.net/ns/rm#”>

5 <oslc:ResponseInfo rdf:about=”http://prototype.v2c2.at:8081/RMProvider/

services/requirements”>

6 <rdfs:member>

7 <oslc rm:Requirement rdf:about=”http://prototype:8081/RMProvider/

services/requirements/Req2”>

8 <oslc:instanceShape rdf:resource=”http://prototype:8081/RMProvider

/services/resourceShapes/requirement/requirements”/>

9 <dcterms:created rdf:datatype=”http://www.w3.org/2001/

XMLSchema#dateTime”>2016−07−23T07:14:46.99Z</dcterms:

created>

10 <dcterms:modified rdf:datatype=”http://www.w3.org/2001/

XMLSchema#dateTime”>2016−07−23T07:14:46.99Z</dcterms:

modified>

11 <oslc:serviceProvider rdf:resource=”http://prototype:8081/

RMProvider/services/serviceProviders/1”/>

12 <dcterms:identifier>Req2</dcterms:identifier>

13 <dcterms:title rdf:parseType=”Literal”>Battery Requirement 3</

dcterms:title>

98

Appendix A. Sample Messages

14 <dcterms:description rdf:parseType=”Literal”>The SOC shall be

between 20−80%.</dcterms:description>

15 </oslc rm:Requirement>

16 </rdfs:member>

17 <rdfs:member>

18 <oslc rm:Requirement rdf:about=”http://prototype:8081/RMProvider/

services/requirements/Req1”>

19 <oslc:instanceShape rdf:resource=”http://prototype:8081/RMProvider

/services/resourceShapes/requirement/requirements”/>

20 <dcterms:created rdf:datatype=”http://www.w3.org/2001/

XMLSchema#dateTime”>2016−07−23T07:14:46.99Z</dcterms:

created>

21 <dcterms:modified rdf:datatype=”http://www.w3.org/2001/

XMLSchema#dateTime”>2016−07−23T07:14:46.99Z</dcterms:

modified>

22 <oslc:serviceProvider rdf:resource=”http://prototype:8081/

RMProvider/services/serviceProviders/1”/>

23 <dcterms:identifier>Req1</dcterms:identifier>

24 <dcterms:title rdf:parseType=”Literal”>Battery Requirement 2</

dcterms:title>

25 <dcterms:description rdf:parseType=”Literal”>The battery

termperature shall be between 10 and 30 deg C.</dcterms:

description>

26 </oslc rm:Requirement>

27 </rdfs:member>

28 <rdfs:member>

29 <oslc rm:Requirement rdf:about=”http://prototype:8081/RMProvider/

services/requirements/Req0”>

30 <oslc:instanceShape rdf:resource=”http://prototype:8081/RMProvider

/services/resourceShapes/requirement/requirements”/>

31 <dcterms:created rdf:datatype=”http://www.w3.org/2001/

XMLSchema#dateTime”>2016−07−23T07:14:46.99Z</dcterms:

created>

32 <dcterms:modified rdf:datatype=”http://www.w3.org/2001/

XMLSchema#dateTime”>2016−07−23T07:14:46.99Z</dcterms:

modified>

33 <oslc:serviceProvider rdf:resource=”http://prototype:8081/

RMProvider/services/serviceProviders/1”/>

99

Appendix A. Sample Messages

34 <dcterms:identifier>Req0</dcterms:identifier>

35 <dcterms:title rdf:parseType=”Literal”>Battery Requirement 1</

dcterms:title>

36 <dcterms:description rdf:parseType=”Literal”>When accelerating

for a period of 30 sec using boost mode, the battery

temperature increase should not exceed a delta temperature

of 20 deg C.</dcterms:description>

37 </oslc rm:Requirement>

38 </rdfs:member>

39 <oslc:totalCount rdf:datatype=”http://www.w3.org/2001/XMLSchema#

int”>3</oslc:totalCount>

40 </oslc:ResponseInfo>

41 </rdf:RDF>

Listing A.3: RM Tool Query Capability

OSLC Requirement

HTTP GET http://prototype:8081/RMProvider/services/requirements/Req0

1 <rdf:RDF

2 xmlns:oslc=”http://open−services.net/ns/core#”

3 xmlns:oslc rm=”http://open−services.net/ns/rm#”>

4 <rdf:Description rdf:about=”http://prototype:8081/RMProvider/services/

requirements/Req0”>

5 <oslc:instanceShape rdf:resource=”http://prototype:8081/RMProvider/

services/resourceShapes/requirement/requirements”/>

6 <dcterms:created rdf:datatype=”http://www.w3.org/2001/XMLSchema#

dateTime”>2016−07−23T07:14:46.99Z</dcterms:created>

7 <dcterms:modified rdf:datatype=”http://www.w3.org/2001/XMLSchema#

dateTime”>2016−07−23T07:14:46.99Z</dcterms:modified>

8 <oslc:serviceProvider rdf:resource=”http://prototype:8081/RMProvider/

services/serviceProviders/1”/>

9 <dcterms:identifier>Req0</dcterms:identifier>

10 <dcterms:title rdf:parseType=”Literal”>Battery Requirement 1</

dcterms:title>

11 <dcterms:description rdf:parseType=”Literal”>When accelerating for

a period of 30 sec using boost mode, the battery temperature

increase should not exceed a delta temperature of 20 deg C.</

dcterms:description>

100

Appendix A. Sample Messages

12 <rdf:type rdf:resource=”http://open−services.net/ns/rm#Requirement”/>

13 </rdf:Description>

14 </rdf:RDF>

Listing A.4: RM Tool Requirement

A.2. TRS Messages

Tracked Resource Set (TRS)

HTTP GET http://prototype:8081/RMProvider/services/trs

1 <?xml version=”1.0” encoding=”UTF−8”?>

2 <rdf:RDF

3 xmlns:trs=”http://open−services.net/ns/core/trs#”>

4 <trs:TrackedResourceSet rdf:about=”http://prototype:8081/RMProvider/

services/trs”>

5 <trs:base rdf:resource=”http://prototype:8081/RMProvider/services/trs/

base”/>

6 <trs:changeLog>

7 <trs:ChangeLog>

8 <trs:previous rdf:resource=”http://prototype:8081/RMProvider/

services/trs/changeLog/2”/>

9 <trs:change>

10 <trs:Creation rdf:about=”http://prototype:8081/RMProvider/

services/trs:2016−07−23T09:05:17Z:3”>

11 <trs:changed rdf:resource=”http://prototype:8081/RMProvider/

services/requirements/Req4”/>

12 <trs:order rdf:datatype=”http://www.w3.org/2001/XMLSchema#

int”>3</trs:order>

13 </trs:Creation>

14 </trs:change>

15 <trs:change>

16 <trs:Creation rdf:about=”http://prototype:8081/RMProvider/

services/trs:2016−07−23T09:05:17Z:4”>

17 <trs:changed rdf:resource=”http://prototype:8081/RMProvider/

services/requirements/Req3”/>

18 <trs:order rdf:datatype=”http://www.w3.org/2001/XMLSchema#

int”>4</trs:order>

101

Appendix A. Sample Messages

19 </trs:Creation>

20 </trs:change>

21 <trs:change>

22 <trs:Creation rdf:about=”http://prototype:8081/RMProvider/

services/trs:2016−07−23T09:05:17Z:5”>

23 <trs:changed rdf:resource=”http://prototype:8081/RMProvider/

services/requirements/Req2”/>

24 <trs:order rdf:datatype=”http://www.w3.org/2001/XMLSchema#

int”>5</trs:order>

25 </trs:Creation>

26 </trs:change>

27 </trs:ChangeLog>

28 </trs:changeLog>

29 </trs:TrackedResourceSet>

30 </rdf:RDF>

Listing A.5: Tracked Resource Set (TRS)

TRS Base

HTTP GET http://prototype:8081/RMProvider/services/base

1 <?xml version=”1.0” encoding=”UTF−8”?>

2 <rdf:RDF>

3 <ldp:Page rdf:about=”http://prototype:8081/RMProvider/services/trs/base1”

>

4 <ldp:pageOf>

5 <ldp:Container rdf:about=”http://prototype:8081/RMProvider/services/

trs/base”>

6 <trs:cutoffEvent rdf:resource=”http://prototype:8081/RMProvider/

services/trs:2016−07−23T09:05:17Z:5”/>

7 <rdfs:member rdf:resource=”http://prototype:8081/RMProvider/

services/requirements/Req4”/>

8 <rdfs:member rdf:resource=”http://prototype:8081/RMProvider/

services/requirements/Req3”/>

9 <rdfs:member rdf:resource=”http://prototype:8081/RMProvider/

services/requirements/Req2”/>

10 </ldp:Container>

11 </ldp:pageOf>

102

Appendix A. Sample Messages

12 <ldp:nextPage rdf:resource=”http://prototype:8081/RMProvider/services/

trs/base/2”/>

13 </ldp:Page>

14 </rdf:RDF>

Listing A.6: TRS Base Resource

TRS Change Log

HTTP GET http://prototype:8081/RMProvider/services/trs/changeLog

1 <?xml version=”1.0” encoding=”UTF−8”?>

2 <rdf:RDF

3 xmlns:oslc=”http://open−services.net/ns/core#”>

4 <trs:ChangeLog rdf:about=”http://prototype:8081/RMProvider/services/trs/

changeLog”>

5 <trs:previous rdf:resource=”http://prototype:8081/RMProvider/services/

trs/changeLog/2”/>

6 <trs:change>

7 <trs:Creation rdf:about=”http://prototype:8081/RMProvider/services/

trs:2016−07−23T09:05:17Z:3”>

8 <trs:changed rdf:resource=”http://prototype:8081/RMProvider/

services/requirements/Req4”/>

9 <trs:order rdf:datatype=”http://www.w3.org/2001/XMLSchema#int”

>3</trs:order>

10 </trs:Creation>

11 </trs:change>

12 <trs:change>

13 <trs:Creation rdf:about=”http://prototype:8081/RMProvider/services/

trs:2016−07−23T09:05:17Z:4”>

14 <trs:changed rdf:resource=”http://prototype:8081/RMProvider/

services/requirements/Req3”/>

15 <trs:order rdf:datatype=”http://www.w3.org/2001/XMLSchema#int”

>4</trs:order>

16 </trs:Creation>

17 </trs:change>

18 <trs:change>

19 <trs:Creation rdf:about=”http://prototype:8081/RMProvider/services/

trs:2016−07−23T09:05:17Z:5”>

103

Appendix A. Sample Messages

20 <trs:changed rdf:resource=”http://prototype:8081/RMProvider/

services/requirements/Req2”/>

21 <trs:order rdf:datatype=”http://www.w3.org/2001/XMLSchema#int”

>5</trs:order>

22 </trs:Creation>

23 </trs:change>

24 </trs:ChangeLog>

25 </rdf:RDF>

Listing A.7: TRS Change Log

104

Bibliography

[AC01] Ryan Ausanka-Crues. Methods for access control: advances and

limitations. Harvey Mudd College, 301, 2001.

[AHL+14] Bernhard K Aichernig, Klaus Hörmaier, Florian Lorber, Dejan

Nickovic, Rupert Schlick, Didier Simoneau, and Stefan Tiran. In-

tegration of Requirements Engineering and Test-Case Generation

via OSLC. In Quality Software (QSIC), 2014 14th International

Conference on, pages 117–126. IEEE, 2014.

[ANN03] Nadarajah Asokan, Valtteri Niemi, and Kaisa Nyberg. Man-in-

the-middle in tunnelled authentication protocols. In International

Workshop on Security Protocols, pages 28–41. Springer, 2003.

[BBDLM14] Chetan Bansal, Karthikeyan Bhargavan, Antoine Delignat-

Lavaud, and Sergio Maffeis. Discovering concrete attacks on

website authorization by formal analysis. Journal of Computer

Security, 22(4):601–657, 2014.

[BBG07] Rafae Bhatti, Elisa Bertino, and Arif Ghafoor. An Integrated

Approach to Federated Identity and Privilege Management in

Open Systems. Communications of the ACM, 50(2):81–87, 2007.

[Bih96] Eli Biham. How to Forge DES-Encrypted Messages in 2ˆ 28

Steps. Technion Computer Science Department Technical Report

CS0884, 1996.

[BSJ15] John Bradley, Nat Sakimura, and Michael Jones. JSON Web

Token (JWT). RFC 1654, RFC Editor, 2015. URL: http://www.

rfc-editor.org/rfc/rfc1654.txt.

[BT11] Elisa Bertino and Kenji Takahashi. Identity Management: Con-

cepts, Technologies, and Systems. Artech House, 2011.

105

http://www.rfc-editor.org/rfc/rfc1654.txt
http://www.rfc-editor.org/rfc/rfc1654.txt

BIBLIOGRAPHY

[bug16] Bugzilla. https://www.bugzilla.org/, 2016. Accessed: 2016-

11-30.

[Cas02] Marco Casole. WLAN Security-Status, Problems and Perspective.

In Proceedings of European Wireless, 2002.

[CH13] Yulia Cherdantseva and Jeremy Hilton. A Reference Model of

Information Assurance & Security. 2013 International Conference

on Availability, Reliability and Security, pages 546–555, 2013.

[com13] Common Criteria (2013). http://www.commoncriteriaportal.

org/, 2013. Accessed: 2016-11-30.

[Cornd] International Business Machines Corporation. IBM Jazz. https:

//jazz.net/, n.d. Accessed: 2016-11-30.

[CSF+08] D. Cooper, S. Santesson, S. Farell, S. Boeyen, Russell Housley,

and W. Polk. Internet X.509 Public Key Infrastructure Certificate

and CRL profile. RFC 5280, RFC Editor, 2008. URL: http:

//www.rfc-editor.org/rfc/rfc5280.txt.

[Dav11] Joshua Davies. Implementing SSL/TLS using cryptography and

PKI. John Wiley and Sons, 2011.

[DR08] Tim Dierks and Eric Rescorla. The transport layer security

(TLS) protocol version 1.2. RFC 5246, RFC Editor, 2008. URL:

http://www.rfc-editor.org/rfc/rfc5246.txt.

[DR11] Thai Duong and Juliano Rizzo. Here come the XOR ninjas.

Unpublished manuscript, 320, 2011.

[ecl16] Eclipse Lyo. http://www.eclipse.org/lyo/, 2016. Accessed:

2016-11-30.

[ECPB12] Thomas Erl, Benjamin Carlyle, Cesare Pautasso, and Raj Bal-

asubramanian. SOA with REST: Principles, Patterns & Con-

straints for Building Enterprise Solutions with REST. Prentice

Hall Press, 2012.

106

https://www.bugzilla.org/
http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/
https://jazz.net/
https://jazz.net/
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.eclipse.org/lyo/

BIBLIOGRAPHY

[FHBH+99a] John Franks, P Hallam-Baker, J Hostetler, S Lawrence, P Leach,

Ari Luotonen, and L Stewart. HTTP Authentication: Basic and

Digest Access Authentication. RFC 2617, RFC Editor, 1999.

URL: http://www.rfc-editor.org/rfc/rfc2616.txt.

[FHBH+99b] John Franks, Phillip Hallam-Baker, Jeffrey Hostetler, Scott

Lawrence, Paul Leach, Ari Luotonen, and Lawrence Stewart. Hy-

pertext Transfer Protocol – HTTP/1.1. RFC 2616, RFC Editor,

1999. URL: http://www.rfc-editor.org/rfc/rfc2616.txt.

[FK92] David F. Ferraiolo and D. Richard Kuhn. Role-Based Access

Controls. 15th National Computer Security Conference, pages

554–563, 1992.

[Fou16a] Apache Software Foundation. Apache Oltu. https://oltu.

apache.org/, 2016. Accessed: 2016-11-30.

[Fou16b] Eclipse Foundation. Eclipse RDF4J. http://rdf4j.org/, 2016.

Accessed: 2016-11-30.

[Fou17] Eclipse Foundation. SWT: The Standard Widget Toolkit. https:

//www.eclipse.org/swt/, 2017. Accessed: 2017-01-15.

[GIJ+12] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai,

Dan Boneh, and Vitaly Shmatikov. The most dangerous code

in the world: validating SSL certificates in non-browser software.

In Proceedings of the 2012 ACM conference on Computer and

communications security, pages 38–49. ACM, 2012.

[GWMH15] Kelly Grizzle, Erik Wahlstroem, Chuck Mortimore, and Phil Hunt.

System for Cross-domain Identity Management: Core Schema.

RFC 6749, RFC Editor, 2015. URL: http://www.rfc-editor.

org/rfc/rfc7643.txt.

[Ham09] Eran Hammer. Explaining the OAuth Session Fixa-

tion Attack. https://hueniverse.com/2009/04/23/

explaining-the-oauth-session-fixation-attack, 2009.

Accessed: 2016-10-16.

107

http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
https://oltu.apache.org/
https://oltu.apache.org/
http://rdf4j.org/
https://www.eclipse.org/swt/
https://www.eclipse.org/swt/
http://www.rfc-editor.org/rfc/rfc7643.txt
http://www.rfc-editor.org/rfc/rfc7643.txt
https://hueniverse.com/2009/04/23/explaining-the-oauth-session-fixation-attack
https://hueniverse.com/2009/04/23/explaining-the-oauth-session-fixation-attack

BIBLIOGRAPHY

[Ham12] Eran Hammer. OAuth 2.0 and the Road to

Hell. https://hueniverse.com/2012/07/26/

oauth-2-0-and-the-road-to-hell, 2012. Accessed: 2016-10-

21.

[Har12] Dick Hardt. The OAuth 2.0 Authorization Framework. RFC

6749, RFC Editor, 2012. URL: http://www.rfc-editor.org/

rfc/rfc6749.txt.

[HLOS06] Shawn Hernan, Scott Lambert, Tomasz Ostwald, and Adam

Shostack. Threat Modeling - Uncover Security Design Flaws

Using The STRIDE Approach. MSDN Magazine-Louisville, pages

68–75, 2006.

[HMMC15] Thomas Hardjono, Eve Maler, Maciej Machulak, and Domenico

Catalano. User-Managed Access (UMA) Profile of OAuth 2.0.

Kantara Initiative, 2015.

[HMW+12] Lin-Shung Huang, Alex Moshchuk, Helen J. Wang, Stu-

art Schecter, and Collin Jackson. Clickjacking: At-

tacks and Defenses. In Presented as part of the 21st

USENIX Security Symposium (USENIX Security 12),

pages 413–428, Bellevue, WA, 2012. USENIX. URL:

https://www.usenix.org/conference/usenixsecurity12/

technical-sessions/presentation/huang.

[ISO09] ISO/IEC. Information technology – Security techniques – Infor-

mation security management systems – Overview and vocabulary,

2009.

[ISO11] ISO/IEC. Systems and software engineering – Systems and soft-

ware Quality Requirements and Evaluation (SQuaRE) – System

and software quality models, 2011.

[JH12] Michael B. Jones and Dick Hardt. The OAuth 2.0 Authorization

Framework: Bearer Token Usage. RFC 6750, RFC Editor, 2012.

URL: http://www.rfc-editor.org/rfc/rfc6750.txt.

[JZI10] Maziar Janbeglou, Mazdak Zamani, and Suhaimi Ibrahim. Redi-

recting network traffic toward a fake DNS server on a LAN. In

108

https://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell
https://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/huang
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/huang
http://www.rfc-editor.org/rfc/rfc6750.txt

BIBLIOGRAPHY

3rd IEEE International Conference on Computer Science and

Information Technology, pages 429–433, 2010.

[Kha12] Abdul Raouf Khan. Access control in cloud computing envi-

ronment. ARPN Journal of Engineering and Applied Sciences,

7(5):613–615, 2012.

[KMZ02] Steve Kremer, Olivier Markowitch, and Jianying Zhou. An

intensive survey of fair non-repudiation protocols. Com-

puter Communications, 25(17):1606 – 1621, 2002. URL:

http://www.sciencedirect.com/science/article/pii/

S014036640200049X, doi:http://dx.doi.org/10.1016/

S0140-3664(02)00049-X.

[LMH13] Torsten Lodderstedt, Mark McGloin, and Phil Hunt. OAuth 2.0

Threat Model and Security Considerations. RFC 6819, RFC Ed-

itor, 2013. URL: http://www.rfc-editor.org/rfc/rfc6819.

txt.

[LPL+03] Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis Kafura,

and Sumit Shah. First Experiences Using XACML for Access

Control in Distributed Systems. In Proceedings of the 2003 ACM

Workshop on XML Security, XMLSEC ’03, pages 25–37. ACM,

2003. URL: http://doi.acm.org/10.1145/968559.968563,

doi:10.1145/968559.968563.

[MDK14] Bodo Möller, Thai Duong, and Krzysztof Kotowicz.

This POODLE Bites: Exploiting The SSL 3.0 Fallback.

https://www.openssl.org/ bodo/ssl-poodle.pdf, 2014.

[Men07] Falko Menge. Enterprise service bus. In Free and open source

software conference, volume 2, pages 1–6, 2007.

[MKL09] Tim Mather, Subra Kumaraswamy, and Shahed Latif. Cloud

Security and Privacy: An Enterprise Perspective on Risks and

Compliance. ”O’Reilly Media, Inc.”, 2009.

[MLHW15] Nadja Marko, Andrea Leitner, Beate Herbst, and Alfred Wallner.

Combining Xtext and OSLC for Integrated Model-Based Re-

quirements Engineering. In Software Engineering and Advanced

109

http://www.sciencedirect.com/science/article/pii/S014036640200049X
http://www.sciencedirect.com/science/article/pii/S014036640200049X
http://dx.doi.org/http://dx.doi.org/10.1016/S0140-3664(02)00049-X
http://dx.doi.org/http://dx.doi.org/10.1016/S0140-3664(02)00049-X
http://www.rfc-editor.org/rfc/rfc6819.txt
http://www.rfc-editor.org/rfc/rfc6819.txt
http://doi.acm.org/10.1145/968559.968563
http://dx.doi.org/10.1145/968559.968563

BIBLIOGRAPHY

Applications (SEAA), 2015 41st Euromicro Conference on, pages

143–150. IEEE, 2015.

[MMM+04] Frank Manola, Eric Miller, Brian McBride, et al. RDF Primer.

W3C recommendation, 10(1-107):6, 2004.

[MNN14] Abhishek Majumder, Suyel Namasudra, and Samir Nath. Taxon-

omy and classification of access control models for cloud environ-

ments. Continued Rise of the Cloud, pages 23–55, 2014.

[MS13] Christopher Meyer and Jörg Schwenk. Sok: Lessons learned

from ssl/tls attacks. In International Workshop on Information

Security Applications, pages 189–209. Springer, 2013.

[NB13] Moustafa Noureddine and Rabih Bashroush. An authentication

model towards cloud federation in the enterprise. Journal of

Systems and Software, 86(9):2269–2275, 2013.

[net10] net.oauth - OAuth 1.0 Revision A Library. http://repo1.maven.

org/maven2/net/oauth/, 2010. Accessed: 2016-08-14.

[OAS13] OASIS. eXtensible Access Control Markup Language (XACML)

Version 3.0. OASIS Standard, 2013.

[OAS14] OASIS. XACML v3.0 Core and Hierarchical Role Based Access

Control (RBAC) Profile Version 1.0. OASIS Standard, 2014.

[OAu09] OAuth Core Workgroup. OAuth Core 1.0 Revision A. http:

//oauth.net/core/1.0a/, 2009. Accessed: 2016-04-10.

[OHB06] Rolf Oppliger, Ralf Hauser, and David Basin. SSL/TLS session-

aware user authentication–Or how to effectively thwart the man-

in-the-middle. Computer Communications, 29(12):2238–2246,

2006.

[oO05] Security Services Technical Committee of OASIS. SAML

V2.0 Standard. OASIS Standard, 2005. URL: https://wiki.

oasis-open.org/security/FrontPage.

110

http://repo1.maven.org/maven2/net/oauth/
http://repo1.maven.org/maven2/net/oauth/
http://oauth.net/core/1.0a/
http://oauth.net/core/1.0a/
https://wiki.oasis-open.org/security/FrontPage
https://wiki.oasis-open.org/security/FrontPage

BIBLIOGRAPHY

[osl12] Open Services for Lifecycle Collaboration Requirements Manage-

ment Specification Version 2.0. http://open-services.net/

bin/view/Main/RmSpecificationV2, 2012. Accessed: 2017-01-

07.

[osl13] Open Services for Lifecycle Collaboration Core Specifica-

tion Version 2.0. http://open-services.net/bin/view/Main/

OslcCoreSpecification, 2013. Accessed: 2017-01-03.

[osl15a] Open Services for Lifecycle Collaboration Indexable Linked Data

Provider Specification Version 2.0. http://open-services.net/

wiki/core/IndexableLinkedDataProvider-2.0/, 2015. Ac-

cessed: 2016-11-30.

[osl15b] Open Services for Lifecycle Collaboration Tracked Resource Set

Specification Version 2.0. http://open-services.net/wiki/

core/TrackedResourceSet-2.0, 2015. Accessed: 2016-11-30.

[osl16] Open Services for Lifecycle Collaboration (OSLC). http://

open-services.net/, 2016. Accessed: 2017-01-03.

[OWA16] OWASP. OWASP Top Ten Project. https://www.owasp.

org/index.php/Category:OWASP_Top_Ten_Project, 2016. Ac-

cessed: 2016-10-30.

[PC09] Siani Pearson and Andrew Charlesworth. Accountability as a

Way Forward for Privacy Protection in the Cloud. In Cloud

computing, pages 131–144. Springer, 2009.

[PMC14] Tim Polk, Kerry McKay, and Santosh Chokhani. Guidelines for

the selection, configuration, and use of transport layer security

(TLS) implementations. NIST Special Publication, 800:52, 2014.

[PSH08] Eric Prud’Hommeaux, Andy Seaborne, and Steve Harris.

SPARQL query language for RDF. W3C recommendation, 2008.

[RBBJ10] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin Jackson.

Busting Frame Busting: A Study of Clickjacking Vulnerabilities

at Popular Sites. IEEE Oakland Web, 2:6, 2010.

111

http://open-services.net/bin/view/Main/RmSpecificationV2
http://open-services.net/bin/view/Main/RmSpecificationV2
http://open-services.net/bin/view/Main/OslcCoreSpecification
http://open-services.net/bin/view/Main/OslcCoreSpecification
http://open-services.net/wiki/core/IndexableLinkedDataProvider-2.0/
http://open-services.net/wiki/core/IndexableLinkedDataProvider-2.0/
http://open-services.net/wiki/core/TrackedResourceSet-2.0
http://open-services.net/wiki/core/TrackedResourceSet-2.0
http://open-services.net/
http://open-services.net/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

BIBLIOGRAPHY

[Res00] Eric Rescorla. HTTP Over TLS. RFC 2818, RFC Editor, 2000.

URL: http://www.rfc-editor.org/rfc/rfc2818.txt.

[Riv92] Ronald Rivest. The MD5 Message-Digest Algorithm. RFC 1321,

RFC Editor, 1992. URL: http://www.rfc-editor.org/rfc/

rfc1321.txt.

[Riv05] Ronald Rivest. [Python-Dev] hashlib - faster md5/sha, adds

sha256/512 support. https://mail.python.org/pipermail/

python-dev/2005-December/058850.html, 2005. Accessed:

2016-10-20.

[RK03] Eric Rescorla and Brian and Korver. Guidelines for Writing RFC

Text on Security Considerations. RFC 3552, RFC Editor, 2003.

URL: http://www.rfc-editor.org/rfc/rfc3552.txt.

[Rou12] Derrick Rountree. Federated Identity Primer. Syngress, 2012.

[SBJ+14] Nat Sakimura, John Bradley, Michael B. Jones, Breno

de Medeiros, and Chuck Mortimore. OpenID Connect Core

1.0. The OpenID Foundation, 2014.

[Sir14] Prabath Siriwardena. Advanced API Security: Securing APIs

with OAuth 2.0, OpenID Connect, JWS, and JWE. Apress, 2014.

[SKV+16] Dimitris E Simos, Kristoffer Kleine, Artemios G Voyiatzis, Rick

Kuhn, and Raghu Kacker. TLS Cipher Suites Recommendations:

A Combinatorial Coverage Measurement Approach. In Software

Quality, Reliability and Security (QRS), 2016 IEEE International

Conference on, pages 69–73. IEEE, 2016.

[Suz16] Bojan Suzic. Securing Integration of Cloud Services in Cross-

domain Distributed Environments. In Proceedings of the 31st

Annual ACM Symposium on Applied Computing, SAC ’16, pages

398–405. ACM, 2016. URL: http://doi.acm.org/10.1145/

2851613.2851622, doi:10.1145/2851613.2851622.

[Was90] Anthony I Wasserman. Tool integration in software engineering

environments. In Software Engineering Environments, pages

137–149. Springer, 1990.

112

http://www.rfc-editor.org/rfc/rfc2818.txt
http://www.rfc-editor.org/rfc/rfc1321.txt
http://www.rfc-editor.org/rfc/rfc1321.txt
https://mail.python.org/pipermail/python-dev/2005-December/058850.html
https://mail.python.org/pipermail/python-dev/2005-December/058850.html
http://www.rfc-editor.org/rfc/rfc3552.txt
http://doi.acm.org/10.1145/2851613.2851622
http://doi.acm.org/10.1145/2851613.2851622
http://dx.doi.org/10.1145/2851613.2851622

BIBLIOGRAPHY

[WFLY04] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Colli-

sions for Hash Functions MD4, MD5, HAVAL-128 and RIPEMD.

IACR Cryptology ePrint Archive, 2004:199, 2004.

[WM11] Michael E Whitman and Herbert J Mattord. Principles of infor-

mation security. Cengage Learning, 2011.

[YM13] Feng Yang and Sathiamoorthy Manoharan. A security analysis of

the OAuth protocol. In Communications, Computers and Signal

Processing (PACRIM), 2013 IEEE Pacific Rim Conference on,

pages 271–276. IEEE, 2013.

[ZZ14] Thomas Zefferer and Bernd Zwattendorfer. An Implementation-

independent Evaluation Model for Server-based Signature Solu-

tions. 10th International Conference on Web Information Systems

and Technologies (WEBIST), pages 302–309, 2014.

113

	Abstract
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Tool Integration
	Integration Technologies
	Message-Oriented Middleware
	Service-Oriented Architecture
	Enterprise Service Bus
	Conclusion

	Open Services for Lifecycle Collaboration
	Core Specification
	Authorization
	Domain Specifications
	Tracked Resource Set

	Integration Scenarios
	OSLC Scenario: Direct Communication via OSLC
	Platform Scenario: Communication via Centralised Integration Platform

	Security Goals and Requirements
	RMIAS Security Goals
	Accountability
	Auditability
	Authenticity/Trustworthiness
	Availability
	Confidentiality
	Integrity
	Non-repudiation
	Privacy

	Security Requirements
	Authentication
	Authorization and Confidentiality
	Integrity

	Additional Non-Functional Requirements
	Usability
	Simple Configuration and Administration
	Interoperability and Lightweight Integration

	Related Work
	Levels of Trust
	Access Control
	Methods of Access Control

	Security Mechanisms
	Transport Layer Security
	HTTP Basic Authentication
	Form Based Authentication
	Security Tokens
	OAuth
	OAuth 2.0
	OpenID Connect
	Security Assertion Markup Language
	User-Managed Access
	System for Cross-domain Identity Management
	eXtensible Access Control Markup Language

	Software Solutions for Lifecycle Tool Integration
	Eclipse Lyo
	IBM Jazz

	Conclusion

	Threat and Gap Analysis
	Definitions and Methodology
	Methodology
	Assets of the OSLC Scenario
	Assets of Platform Scenario
	Threats
	Security Objectives
	Countermeasures

	Threat Analysis
	Gap Analysis
	Discussion of Threats
	Discussion of Security Objectives

	Conclusion

	Implementation
	Architecture
	Overview
	Components
	Libraries
	Sample Use-Cases

	Data Flow without Authorization
	Refine - RM Tool
	Integration Platform - RM Tool

	Authorization
	HTTP Basic
	OAuth 1.0a
	OAuth 2.0 Authorization Code
	OAuth 1.0a Two-Legged
	OAuth 2.0 Resource Owner Password Credentials

	Discussion

	Evaluation
	Evaluation Against Objectives
	Authentication of the Server
	Authentication of the user
	Integrity and Confidentiality of OSLC, TRS, and SPARQL Communication
	Grant Authorized Users Permission to OSLC Operations
	Permission to Query via TRS Interface
	Permission to Query via SPARQL Interface
	Conclusion

	Security Considerations of Applied Methods
	Transport Layer Security (TLS)
	HTTP Basic Authentication
	OAuth 1.0a
	OAuth 2.0

	Discussion and Recommendations

	Conclusion
	Sample Messages
	OSLC Messages
	TRS Messages

	Bibliography

		2017-01-22T13:05:42+0000
	Markus Postl

