
Christof Rabensteiner BSc

Android Library Identification

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Computer Science

submitted to

Graz University of Technology

Dipl. Ing. Johannes Feichtner

O.Univ.-Prof. Dipl.-Ing. Dr.techn. Reinhard Posch

 Diplom-Ingenieur

Supervisor

Institute of Applied Information Processing
and Communications (IAIK)

Graz, February 2017

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis.

Date Signature

Abstract

While Android developers integrate more and more libraries into their apps, certain libraries

carry vulnerabilities or violate the user’s privacy by forwarding sensitive information. Both

tendencies create the need to identify libraries in apps to improve the risk assessment of

apps and to separate app code from library code. This thesis presents ASTLI, a static

program analysis tool that identifies third party libraries in Android apps. ASTLI learns

and recognizes libraries by extracting and comparing features, which depend on abstract

syntax trees (ASTs) and on signatures of methods. These features are designed to counter

obfuscation, dead code removal and various code optimizations. We evaluate ASTLI with

apps from an Open Source App Repository. Depending on the applied code transforma-

tions, between 96 and 97% (obfuscation, dead code removal), resp. 78% (optimizations) of

our predictions are correct.

Keywords: Android, Apps, Third Party Libraries, Static Program Analysis, AST,

Obfuscation, Reverse Engineering

i

Kurzfassung

Während App-Entwickler zunehmend die Funktionalität ihrer Anwendungen in Programm-

bibliotheken von Drittanbietern auslagern, weisen manche dieser Bibliotheken Sicherheits-

lücken auf oder verletzen die Privatssphäre der Benutzer, weil sie vertrauliche Daten weit-

erleiten. Diese Tendenzen erwecken das Bedürfnis, Bibliotheken in Apps zu erkennen um

die Risikobewertung von Apps zu verbessern und um Apps von Bibliotheken zu trennen.

Diese Arbeit präsentiert ASTLI, ein statisches Code-Analyse Werkzeug zur Bestimmung

von Bibliotheken in Android Apps. Um Bibliotheken zu lernen und zu erkennen, extrahiert

und vergleicht ASTLI Merkmale, welche auf abstrakten Syntaxbäumen und Signaturen

von Methoden basieren. ASTLI kann dabei das Umbenennen von Debugsymbolen (obfus-

cation), die Entfernung von unerreichbarem Code und Code-Optimierungen bewältigen.

Wir evaluieren ASTLI mit quelloffenen Apps und Bibliotheken. Abhängig von den ange-

wandten Umformungstechniken liegt das Werkzeug bei 96% bis 97% (Umbennen, Entfernen

von unerreichbarem Code), bzw. bei 78% (Optimierungen) der Vorhersagen richtig.

Keywords: Android, Apps, Bibliotheken, Statische Code-Analyse, Abstrakter Syn-

taxbaum, Obfuscation, Reverse Engineering

ii

Contents

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1

2 Android Ecosystem 5

2.1 Platform . 5

2.2 Runtime . 6

2.3 Build Process . 8

2.4 Gradle . 9

2.5 Proguard . 9

2.6 File Format . 11

3 Related Work 14

3.1 Code Based Plagiarism Detection . 14

3.1.1 App Repackaging . 14

3.1.2 Winnowing . 15

3.1.3 AST Distance . 16

3.1.4 Centroid . 19

3.2 Library Detection . 20

3.2.1 Common Libraries . 20

3.2.2 LibScout . 21

4 Approach 23

4.1 Requirements . 23

4.2 Overcoming Obfuscation . 24

4.2.1 Features . 24

4.2.2 Identifier Renaming . 25

4.2.3 Shrinking . 25

4.2.4 Optimizations . 26

4.3 Algorithm . 27

4.4 Extraction . 28

4.4.1 AST Vector . 29

4.4.2 Sanitized Signature . 31

4.4.3 Fingerprint and Package Hierarchy 32

4.4.4 Example . 33

4.5 Matching . 35

4.5.1 Overview . 35

4.5.2 Fingerprint Particularity . 35

4.5.3 Inclusion . 36

4.5.4 Similarity Score . 39

5 Design 42

5.1 Components . 42

5.2 Extraction with baksmali . 44

5.3 Persistence . 46

5.3.1 Hyper SQL . 46

5.3.2 Active Objects . 47

5.4 Learning And Matching . 47

6 Evaluation 50

6.1 Overview . 50

6.2 Unit Testing . 51

6.2.1 Mock Objects . 52

6.2.2 Arrange, Act and Assert . 53

6.2.3 Code Coverage . 53

6.3 Quick Evaluation . 54

6.3.1 Design . 54

6.3.2 Result Verification . 55

6.4 FOSS Evaluation . 55

6.4.1 Apps . 56

6.4.2 Libraries . 56

iv

6.4.3 Matching Configurations . 57

6.4.4 Gradle Setup . 57

7 Results 60

7.1 HSQL Embedded vs. Server Mode . 60

7.2 Comparing Features . 63

7.3 Determining Package Particularity Threshold 66

7.4 Determining Match Confidence Threshold 67

7.5 Comparing Matcher . 71

8 Conclusion 77

Bibliography 81

v

List of Figures

2.1 Android Software Stack . 6

2.2 Compilation from .class to .dex[1] . 7

2.3 Excerpt of Build Process . 8

2.4 Proguard Transformations . 10

2.5 Bytecode structure . 13

3.1 Example for AST-coverage based fingerprint extraction. Reproduced from

Potharaju et.al.[2] . 18

4.1 Venn Diagram of Package X in a Library and in Two Shrunken Apps . . . 26

4.2 High Level Description of the ASTLI algorithm; Top: Learning Phase;

Bottom: Matching Phase . 28

4.3 Extraction of AST from a Method Body 29

4.4 Conversion of an AST to an AST vector 30

4.5 Package Hierarchy Example . 33

4.6 Example for Extraction Steps . 34

4.7 Distribution of 120,000 Library Fingerprints 36

4.8 Greedy Class Inclusion Check . 38

4.9 Example, where Greedy Package Signature Inclusion Check fails 38

5.1 ASTLI Components . 43

5.2 Extraction Process Flow . 45

5.3 Database Scheme . 47

6.1 Test of Unit A . 52

6.2 Implementation of Unit A . 52

6.3 Test of Unit A with mocked Dependency B 53

6.4 Jacoco Code Coverage Report . 54

6.5 Example for App Folder Structure . 58

vi

7.1 Timing Diagram of both HSQL modes . 61

7.2 Runtime in Seconds (left), in Relation (right) 62

7.3 Confusion Matrix based on AST Vectors (left) and Sanitized Signatures (right) 64

7.4 Confusion Matrix with both Features combined 65

7.5 Influence of tpp on Accuracy and Keep Ratio 67

7.6 Comparing ROC-Curves of Different Build Types 70

7.7 Confidence Histograms; From Left to Right: Regular, Shrunken, Obfuscated 70

7.8 Confidence Histograms. Left: Shrunken and Obfuscated; Right: Shrunken,

Obfs. and Optimized . 71

7.9 Multiclass Metrics; n . . . amount of matches, l . . . amount of library packages 73

7.10 Precision (left), Recall (right) . 74

7.11 F1 (left), Accuracy (right) . 75

7.12 Runtime . 75

vii

List of Tables

2.1 Structure of apk and aar files compared 11

4.1 Example Result . 24

4.2 Mapping of Primitive and Object Types to Characters 32

6.1 Evaluation Strategies compared . 51

6.2 Build Types Compared . 57

6.3 Configurations for ASTLI Matching Algorithm 57

7.1 Example of how ASTLI’s Results are Mapped to Binary Classification Results 68

7.2 All Metrics of Hybrid Vs Similarity Matcher 73

viii

Acknowledgements

I thank Johannes Feichtner for his rapid and valuable feedback, his advice on how to

approach the problem, and his continuous encouragement. Without him, this thesis would

not exist. I also thank Prof. Roderik Bloem for his guide1 on how to write a master thesis,

which helped me to put my work into the right shape. I thank Prof. Keith Andrews for his

LATEX template2, which i used to write this thesis, and Peter Teufl, for piquing my curiosity

in the topic of mobile security. I also thank my colleagues at IAIK, the students from the

coworking space, and my friends for their support. My special thanks go to Erika, Alois,

Gabriel, and Manfred.

1https://www.iaik.tugraz.at/content/about_iaik/people/bloem_roderick/how_to_write_a_thesis.txt, accessed on 2017-02-03

2http://ftp.iicm.tugraz.at/pub/keith/thesis/thesis.zip, accessed on 2017-02-03

ix

https://www.iaik.tugraz.at/content/about_iaik/people/bloem_roderick/how_to_write_a_thesis.txt
http://ftp.iicm.tugraz.at/pub/keith/thesis/thesis.zip

1 Introduction

The mobile computing landscape changed drastically within the last decade. Smartphones

introduced the upheaval and other smart devices such as tablets, wearables, and smart

TVs followed. By now, these devices are deeply integrated in our everyday lives: We use

them to communicate, socialize, navigate, purchase, play games and more — they are a

portal to the digital world. In order to fulfill these duties, smartphones and friends are

equipped with a multitude of sensors, computational power, memory, and connectivity. The

technology that drives mobile devices becomes increasingly complex and the complexity

makes it easy to overlook weak spots. At the same time these devices receive, process and

forward a significant amount of personal information about their owner. The combination

of increasing complexity and increasing value make mobile devices an appealing target for

attackers.

A common attack surface for mobile devices are apps: An attacker can craft a malicious

app and trick users into installing it. Bad engineering practices and overlooked flaws in

apps can harm users just as well. It is generally hard to tell what exactly an app does

and in which jeopardy it puts the user, once it runs on a device. For this reason, security

experts inspect the code of apps and try to comprehend its behavior, which is known as

reverse engineering.

This thesis provides a tool that aids security experts when analyzing and reverse en-

gineering apps. The tool analyzes apps written for Google’s Operating System Android.

Android is a significant platform because it runs on a large share of mobile devices: 300

million Android devices (84% of the global market) were sold in the first quarter of 20161.

Furthermore, Android runs on tablets, watches, TVs, and even car media centers2. Its ver-

satility and its prevalence make Android a target for malware distributors, who leverage

its popularity to reach a large user base. This thesis focuses on threats that come from

specific components in Android apps: third party libraries.

1https://www.gartner.com/newsroom/id/3323017, accessed on 2016-07-12

2https://www.android.com/auto/, accessed on 2017-02-02

1

https://www.gartner.com/newsroom/id/3323017
https://www.android.com/auto/

The code of an Android app can be divided into code that was written by the app

developer (app code) and code that was not. The latter comes in the form of libraries

(thus library code). Libraries from third party suppliers are a cornerstone of the mobile

app ecosystem because they fill gaps which cannot be filled by app developers themselves;

UI components, networking capabilities, social– and ad network integration are some of

the features third party libraries offer. Despite their helpfulness, relying on libraries also

entails certain risks: If outdated, the library can leave apps exposed to vulnerabilities. The

Apache Cordova library, for instance, suffered from an exposure, which allowed an attacker

to alter the apps behavior by sending malicious intents3. Another risk are attackers, who

inject tampered libraries into apps. The dependency chain attack4, for instance, tricks a

developers build system into pulling malicious libraries. Furthermore, libraries can violate

the users privacy by collecting and disclosing personal information. By analyzing 100,000

apps, Grace et al.[3] revealed unsettling peculiarities: Certain ad libraries track users,

collect and forward their location, their call logs and their browser bookmarks or even

execute untrustworthy code from remote servers. These cases should give an example of

the risks both developers and users face when third party libraries come into play.

Problem Statement This thesis introduces ASTLI (Abstract Syntax Tree based Li-

brary Identification), a tool which analyzes Android applications and identifies third party

libraries. Identifying libraries is useful in a variety of situations: In the context of IT

security, it is useful to know included libraries because it allows the analyst to infer knowl-

edge of an app from its libraries. It is also convenient to separate app code from library

code because it allows the analyst to narrow down the subject of his analysis by excluding

the library code and focusing on the app code. Identifying libraries can also be helpful

from a legal perspective: Many software companies quarrel with License Contamination5.

This contamination happens when developers integrate Open Source Software (OSS) into

commercial products; The OSS license may not approve commercial use, which leads to

copyright infringements. A tool that automatically detects OSS libraries could prevent

such contamination.

Identifying libraries in apps is challenging because the original library code can be sub-

ject to a variety of transformations. One transformation is code obfuscation: It removes

all debug symbols and identifiers from the code, which prevents identifying libraries based

3https://cordova.apache.org/announcements/2015/05/26/android-402.html, accessed on 2016-03-03

4http://gary-rowe.com/agilestack/2013/07/03/preventing-dependency-chain-attacks-in-maven/, accessed on 2015-12-09

5http://www.zdnet.com/article/preventing-open-source-software-contamination/, accessed on 2017-01-31

2

https://cordova.apache.org/announcements/2015/05/26/android-402.html
http://gary-rowe.com/agilestack/2013/07/03/preventing-dependency-chain-attacks-in-maven/
http://www.zdnet.com/article/preventing-open-source-software-contamination/

on class- , package- or variable names. Another transformation is shrinking : This step

identifies dead code in libraries and removes it. Shrinking impedes library detection be-

cause it can remove a large chunk of evidence. Yet another set of transformations are

code optimizations, which aim to improve the runtime efficiency of the code. All these

transformation alter the library code and make it difficult to trace back the code to its

origin.

This thesis examines the transformation techniques of the byte code obfuscator Pro-

guard6. Proguard is integrated in the Android SDK, it can be used free of charge, it is easy

to activate and developers have good reasons to use it: Obfuscation prevents reverse en-

gineering and shrinking reduces the size of the application. These circumstances motivate

the assumption that Proguard’s transformations are used frequently.

Approach Our approach is based on ground truth of libraries: ASTLI learns libraries

and, when given an application, it can detect the learned libraries. When learning a library,

ASTLI extracts certain features from the library. These features are designed in a way that

code transformation techniques have little to no effect on them. One feature is based on

the Abstract Syntax Tree of a method (thus the tool’s name) and the other feature is

based on a simplified version of the methods signature. Both features combined form a

method’s fingerprint. All fingerprints of one class represent the class and all classes of a

package describe the package. When identifying libraries in apps, these descriptions serve

to estimate the similarity between packages. This thesis proposes multiple strategies for

measuring the similarity between packages and compares them to each other.

Research Questions Our research centers around the following questions:

• Can we identify libraries in applications?

• How do different code transformation techniques influence the identification?

• How well do our features identify code segments? Are they invariant to transforma-

tion techniques?

To answer these questions, we design an evaluation framework, evaluate ASTLI and

discuss its results. As data source for the evaluation, we crawl an app repository with

free and open source software, download the source code and build the apps with different

6https://www.guardsquare.com/en/proguard, accessed on 2017-01-31

3

https://www.guardsquare.com/en/proguard

code transformations. 96 − 97% of our predictions are correct, even if the code has been

obfuscated or shrunken. When optimizations are in place, 78% of our predictions are

correct.

Outline This thesis is structured as follows: Chapter 2 gives an overview of the Android

Platform from a developer’s perspective. It explains the design of the Android Runtime

and its difference to the Java Runtime. Afterwards it examines the build process of an

Android app. The chapter emphasizes the build tools Proguard and Gradle, because they

affect many of ASTLI’s design decisions. Eventually it describes both the format of Java

bytecode and the file format of Android apps and third party libraries.

After having established the basics, Chapter 3 reviews different approaches within the

realm of plagiarism detection. It analyzes, which attempts have been made to detect

plagiarism in Android market places, how those schemes are related to our scheme and

where they differ. It further examines two library detection schemes and explains the

differences to our scheme.

Chapter 4 analyzes the requirements for ASTLI. It introduces the features for the code

detection and discusses their invariance against code transformation techniques. Based on

these features, the chapter then presents the feature extraction- and the library detection

algorithm.

With the approach explained, Chapter 5 gives an overview of the design of ASTLI and

examines its individual components. It describes how we leveraged the disassembler baks-

mali to extract features from apps and libs, how ASTLI stores these features persistently

and how we decomposed the library detection problem into subtasks.

In Chapter 6 we describe the evaluation framework, which consists of the three strategies.

The chapter explains how we apply unit testing and how we test ASTLI with real apps

and libraries. It further states the source for our sample data and gives details on how to

run the evaluation.

The outcome of the evaluation can be found in Chapter 7. Each section of this chapter

describes a particular problem domain, poses associated research questions and answers

them by presenting and discussing the evaluation results.

Chapter 8 proposes ideas and concepts for future work and concludes this thesis.

4

2 Android Ecosystem

This chapter examines the Android platform and its components. Section 2.1 looks at the

origin and the design of the Android operating system in order to establish the domain

in which this thesis operates. Section 2.2 gives an overview of both the design of runtime

environment and the code that is being used to run apps on Android. Section 2.3 takes

a look at the build tools bundled in the development kit and how they interact with each

other in the compilation process. We take a closer look at the tool Gradle (Section 2.4) and

Proguard (Section 2.5). These tools are of special interest, as it is crucial to understand

their functionality in order to motivate design decisions in Chapter 4. Finally, Section 2.6

explains how apps and library archives are structured.

2.1 Platform

Android is an open source operating system employed in mobile devices such as smart

phones, tablets, wearables and recently even in cars. The platform is being developed by

the Open Handset Alliance with Google as the driving force behind the project. First

introduced in 2008, Android managed to take over the smartphone market within a few

years reaching a market share of 65% in June 20161. The support the platform enjoys is

not limited to hardware: There is a vast supply of apps for Android coming from a range of

market places. In June 2016 Google’s official market place Google Play offered 2.2 million

apps 2, followed by the Apple App Store (2 million) and leaving the remaining contenders

far behind.

Figure 2.13 illustrates the different layers of the Android stack. At the bottom, we

find a Linux Kernel, which provides basic operating system features like file system ac-

cess, process management, etc. The employed kernel features several adaptions, which

serve the purpose to suit the mobile environment. Those adaptions are also referred to

1https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=8&qpcustomd=1, accessed on 2016-07-18

2http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/; accessed on 2016-07-18

3adapted from https://source.android.com/source/index.html

5

https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=8&qpcustomd=1
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://source.android.com/source/index.html

Figure 2.1: Android Software Stack

as Androidism[4], and some of them have been merged back into the Linux kernel4. The

hardware abstraction layer provides standardized interfaces to access hardware com-

ponents such as cameras, Bluetooth connectivity or speakers. On top of that we find a

set of native libraries, which provide functions like media playback, 2D and 3D graphics

and a browser engine. On the same abstraction level we find the Android Runtime,

which is composed of an implementation of Java’s core libraries and a virtual machine that

runs a Java bytecode derivative named Dalvik EXecutable (dex). Since this component

influences the design of Android as a platform for third party software, Section 2.2 will

shed more light on it. The Application Framework Layer offers a set of high level build-

ing blocks for applications, including but not limited to user interface components, access

to resources, locations and others. Finally, we have both stock apps, which are being

shipped with the device and third party apps, which can be installed and uninstalled

at the users liking. The system presented in this thesis will analyze the second class of

applications and their libraries.

2.2 Runtime

The Java compiler produces byte code, which is platform independent. A platform depen-

dent virtual machine then interprets or optimizes the code at runtime. On PCs and servers,

4https://kernelnewbies.org/Linux_3.3#head-b733d694037e0b34ad47e1b5d38ebc4d1bd1d89f, accessed on 2016-07-18

6

https://kernelnewbies.org/Linux_3.3#head-b733d694037e0b34ad47e1b5d38ebc4d1bd1d89f

the Java Virtual Machine (JVM) usually performs this task. However, mobile devices

lack in computational power an memory and are hence not fit to run a JVM. In order to

deal with constraints, such as slow CPUs, little RAM, no swap space and being battery

powered, Android deploys its own virtual machine named Android Runtime (ART)[4,

p. 62].

The following list describes major differences between the ART and the JVM:

• JVM gets served .class files, whereas ART requires the entire application code

to be compiled into a single .dex. Figure 2.2 illustrates how the build tool dx

merges different code segments. Doing so facilitates the reuse of symbols from one

big constant pool, which can cut code size in half.

• ART is a register-based VM, whereas the JVM is stack-based. In register machines,

instructions need to reference operands and destination explicitly. In stack machines,

operands are being pushed on a stack beforehand and the instruction operates on

the top of stack implicitly. A direct consequence is that instructions of register

machines are longer and more complicated because of explicit referencing, but the

code itself becomes more compact because of increased semantic density and also

faster in execution because stack maintenance can be omitted5. dx takes care of the

necessary register allocation.

Figure 2.2: Compilation from .class to .dex[1]

Note that the name Dalvik Executable stems from the discontinued VM named Dalvik,

which was replaced by ART in Android 4.4. Although the internals of the VM were

redesigned from scratch, the code format .dex has remained unchanged.

5https://sites.google.com/site/io/dalvik-vm-internals/2008-05-29-Presentation-Of-Dalvik-VM-Internals.pdf, accessed on 2016-07-28

7

https://sites.google.com/site/io/dalvik-vm-internals/2008-05-29-Presentation-Of-Dalvik-VM-Internals.pdf

2.3 Build Process

Figure 2.3: Excerpt of Build Process

In order to build software for Android one can use the set of tools that come with the

official Android SDK6. Figure 2.3 depicts how some of these tools interact with each other

while building an app. The build process starts with the compiler javac, which compiles

Java source code to bytecode. Whereas most of the source is written by hand, a special file

that goes by the name R.java is being generated automatically by the Android Asset

Packaging Tool (aapt). R.java provides references to resources over static members,

which allows to check statically whether or not a resource has been referenced correctly.

In the next step, both the compiled application code and library code run through the

obfuscation tool named Proguard. The level of obfuscation performed in this step depends

6Available through https://developer.android.com/studio/index.html#downloads

8

https://developer.android.com/studio/index.html#downloads

on how the developer configured the build script. Section 2.5 describes the transformations

in more detail. Afterwards dx transforms the class files into .dex and merges them into a

single file named classes.dex. More details on what happens in this step can be found in

Section 2.6. In the final step aapt compiles resource files and packages them with the code

into an apk archive such that the app is ready for installation or distribution. The entire

build process is orchestrated by Gradle, which is explained in the following section.

2.4 Gradle

Gradle is a model driven build tool that that uses the language groovie to describe build

configurations. The tool has been introduced in 2007 with the idea of filling the gap

between Ant and Maven. Ant is configurable but lacks in conventions, which makes build

descriptions verbose. Maven on the other hand offers a strong model, but little freedom

of deviation within that model[5]. Both tools rely on XML for describing the build, which

can become hard to read for longer documents due to its verbosity. Gradle provides useful

defaults (”convention over configuration”), but also allows to redefine the model, if needed.

Gradle also handles dependency management, meaning that one can reference depending

libraries from within the build script and Gradle will take care of their availability. The

Android SDK comes with Gradle and a plugin for building Android Apps and Android

Libraries7. This plugin also lets one configure how Proguard should transform the code.

The build script itself is named build.gradle and found in the root directory of a project

or in a first level subfolder (”module”). In Chapter 7 we will see how to adapt these scripts

in order to build apks with different obfuscation settings.

2.5 Proguard

Proguard is an obfuscator for Java bytecode, which gets shipped with the Android SDK

and is seamlessly integrated into the build process of apps. In order to employ Proguard,

a developer only needs to activate the option minifyEnabled within projects build script.

This option activates a set of default transformations which cover the most common use

cases. Figure 2.4 depicts, which transformation Proguard can apply and in which order

these transformations will be performed.

The following list describes the transformations in detail:

7https://google.github.io/android-gradle-dsl/current/

9

https://google.github.io/android-gradle-dsl/current/

Figure 2.4: Proguard Transformations

Shrinking Hereby, Proguard identifies unreachable code using control flow analysis and

strips it from the final code set. The goal of this feature is to reduce the code

to the bare minimum, which has several benefits: The app becomes easier to ship

and consumes less storage on the users device8. The smaller code size also leads to

shorter startup times when launching an app, which improves the user experience.

After identifying dead code one can also drop unreferenced resources, which reduces

the final archive size even further. When minifyEnabled is activated, Proguard will

shrink the code without any further configurations. Therefor, this transformation is

expected to be found frequently in released apps.

Optimization In this step, Proguard performs transformations with the aim to improve

efficiency and reduce the runtime, including but not limited to techniques as inlining,

constant folding, constant value propagation and a multitude of peephole optimiza-

tions9. This step includes replacing, rearranging, adding and removing code instruc-

tions without altering its semantics. Note that in the Java stack, optimizations are

usually not performed by the Java compiler, but by the runtime environment at run-

time, which also holds for the Android platform. Because some optimizations done by

Proguard happen to be incompatible with Androids Runtime10, these transformation

are turned off per default and need to be activated manually.

Obfuscation is a general term for measures that impede code from being reverse engi-

neered. There are a variety of ways to perform this task with a varying degree of

sophistication. Proguards employs a rather naive approach and obfuscates by re-

moving debug symbols such names of variables, classes, methods, arguments and

packages. The original name is hereby replaced with a shorter, meaningless sequence

8see http://proguard.sourceforge.net/results.html for examples

9see http://proguard.sourceforge.net/manual/optimizations.html for a complete list

10https://sites.google.com/a/android.com/tools/recent/proguardimprovements, accessed on 2016-07-25; https://stackoverflow.com/questions/35321742/

android-proguard-most-aggressive-optimizations, accessed on 2016-07-25

10

http://proguard.sourceforge.net/results.html
http://proguard.sourceforge.net/manual/optimizations.html
https://sites.google.com/a/android.com/tools/recent/proguardimprovements
https://stackoverflow.com/questions/35321742/android-proguard-most-aggressive-optimizations
https://stackoverflow.com/questions/35321742/android-proguard-most-aggressive-optimizations

of characters, which results in package names as a.a.a.a. Doing so achieves two

goals: It disguises code semantics and reduces the code size. This transformation is

included with minifyEnabled. Note that in this thesis we use the term identifier

renaming when referring to this transformation.

Preverification In this step, Proguard adds information that helps the class loader to

ensure that the code does not perform any obvious malicious actions. However, the

Android Runtime does not utilize this information11. For that reason we will neglect

this feature when performing our analysis.

2.6 File Format

This section examines the different file formats we will encounter throughout this thesis.

It explains the structure of apps and libraries, followed by a review of the bytecode format

within those archives. These explanations help to understand where ASTLI operates and

motivate design decisions in Chapter 4.

App.apk Lib.aar

AndroidManifest.xml AndroidManifest.xml

classes.dex classes.jar

res/ res/

assets/ assets/

lib/ jni/

resources.arsc lint.jar

META-INF proguard.txt

libs/

R.txt

Table 2.1: Structure of apk and aar files compared

11http://proguard.sourceforge.net/manual/examples.html#androidactivity, accessed on 2016-07-25

11

http://proguard.sourceforge.net/manual/examples.html#androidactivity

Apps

Android Apps are distributed using the Android Application Package (apk) format,

which is a zip archive following the structure[6] presented in Table 2.1 on the left side.

The file AndroidManifest.xml contains package name, a range of comptabile API Versions,

entry points and other metadata. The actual code of the app is stored in the file named

classes.dex. All classes from the app and the depending libraries have been prepared

for the Runtime and merged into it. The folders assets/ and res/ hold resource files for

the application. Those folders differ in the fact that res-files are managed to a certain

degree by the build tools in terms of referencing and localizing them, where asset-files

are managed by the developer. The file resources.arsc contains resources too, but only

precompiled strings and binary XML. The folder lib contains platform dependent native

code and META-INF holds archive related meta data and optional code signatures.

Libraries

Third party libraries come in two different, yet related file formats named jar and aar. The

former abbreviation stands for Java Archive and can be seen as the universal format for

distributing code in the Java ecosystem. It contains byte code in the form of .class files,

which are located in subdirectories determined by the respective package. In conventional

Java applications, depending libraries need to be available on the classpath during runtime

such that the class loader can fetch classes on demand. In the case of Android apps, the

library code gets merged with the application code at compile time because there is no

option to make the library code separately available on the device. If a library does not

rely on any resources, then it can be delivered as a jar. Some libraries however do rely on

resources such as visual components. The format Android Archive Library (aar) was

introduced to cover this usecase by bundling library code, resources and meta data in one

zip archive. aar and apk files exhibit a similar structure, which can be seen in Table 2.1.

The entries above the dashed line are present in both formats and fulfill the same purpose,

whereas the entries below the line have format specific tasks. Instead of classes.dex, the

library holds a classes.jar file. Here, the code has not been compiled to .dex because it

would be much harder to merge it with the app code during compilation that way, which

has to happen eventually before the code gets onto a device. Native code is located in the

folder named jni/. Proguard related settings for a library can be found in the optional file

named proguard.txt. The folder libs/ holds dependencies, R.txt contains the output

12

of aapt and lint.jar has custom lint filters.

Bytecode

Java bytecode is organized in a strict hierarchy of packages and classes. A class bundles

state and behavior in form of variables and methods. Related classes are in turn bundled

in a package. Figure 2.5 illustrates an example hierarchy: It shows the classes of Package

tld.company.project.pckgA and their methods. We also notice that packages can have

subpackages (e.g. subPckgB is a sub package of pckgA). The fact that bytecode contains

groups of packages and classes helps ASTLI with the detection of similar packages.

l i b . j a r
t l d . company . p r o j e c t . pckgA

ClassA
doThat ()
doThis ()

ClassB
doThat ()
doThis ()

ClassC
doThat ()
doThis ()

t l d . company . p r o j e c t . pckgA . subPckgB (. . .)

Figure 2.5: Bytecode structure

Note that Android Application Packages and bytecode packages are different concepts

despite sharing the term package. In order to keep the terminology unambiguous, we use

the term package when referring to bytecode package in this thesis.

Conclusion

This chapter discussed fundamental components of the Android Ecosystem. It showed how

the Android software stack is build and on which layer of the stack the work of this thesis

is located. We further examined the design of the Android Runtime and the build process

of an Android app. In order to understand design decisions, we investigated what features

the obfuscation tool Proguard offers. Eventually we presented the archive format of both

apps and libraries and the structure of the java bytecode within.

13

3 Related Work

This chapter inspects approaches of different fields that are related to the work in this

thesis. Section 3.1 covers the field of code based plagiarism detection. It explains which

problem plagiarism detection solves and how it is related to library detection. Section 3.2

takes a look at Android library detection approaches.

3.1 Code Based Plagiarism Detection

Detecting plagiarized Android apps is a well investigated field of research because it aims to

find repackaged apps. This section explains what app repackaging is and points out reasons

for being such common attack vector, followed by a in-depth review of three plagiarism

detection approaches.

3.1.1 App Repackaging

App repackaging is the act of obtaining a legitimate application package, integrating ma-

licious code and redistributing it over alternative channels. Attackers do this to spy on

users, steal their sensitive information (location data, login credentials) or to impersonate

them. Another intent for repackaging an app is to add or replace advertisements such

that an attacker can harvest ad revenue. The design of the Android software stack fa-

cilitates repackaging, whereas platforms such as iOS are less prone. Many Android apps

can be reverse engineered with little cost and proficiency. The application format .dex

can be lead back to bytecode using d2j-dex2jar and decompiled with a Java decompiler1.

Alternatively one can transform the code into the assembly language smali, perform mod-

ifications and reassemble the app. Another promotive factor lies in the openness of the

platform. Android users can install apps from untrusted sources, which is known as side-

loading. Although sideloading is disabled per default, it is both easy and common to bypass

1JD-GUI, http://jd.benow.ca/ or Procyon, https://bitbucket.org/mstrobel/procyon

14

http://jd.benow.ca/
https://bitbucket.org/mstrobel/procyon

this measure. There is a wide range of third party market places and APK repositories

to choose apps from. Some of those markets offer legitimate apps, while others focus on

pirated content. Repackaged apps are common because users are willing to sideload and

because there is a vast supply.

Code based plagiarism detection can be used to identify apps that have been repackaged,

because both the original app and the copycat share a large amount of code. The same

holds for identifying library code: When both library and app share segments of code, it is

likely that the app relies on the library. Thus, plagiarism detection offers a range of ideas

that are worth exploring for the sake of library detection. The following sections elaborate

on different plagiarism detection approaches.

3.1.2 Winnowing

In [7] Aiken et.al. present the plagiarism detection algorithm winnowing. They further

evaluate the service Measure of Software Similarity (MOSS), which applies winnowing for

detecting plagiarism in programming classes. The algorithm slices a text file into overlap-

ping chunks, hashes them and selects a fraction of them as document representatives. The

following listing explains each step in detail and applies it to this example document:

The quick brown fox jumps over the lazy dog

1. Remove noise like whitespace characters and canonicalize the document.

thequickbrownfoxjumpsoverthelazydog

2. Slice the document into continuous substrings of length k (k-grams). The example

uses k = 5.

thequ hequi equic quick uickb ickbr ... helaz elazy lazyd azydo zydog

3. Hash each k-gram using a collision resistant hash function.

7e ef b9 28 39 20 16 ... 0c 2f af c8 14 76 11 21

4. For each w sized group of consecutive hashes (window), add the smallest hash value

and its offset to a set with unique elements. In the example, w is set to 4.

15

1 2 3 4 5 6 7

7e ef b9 28 39 20 16 . . . add (28, 4)

7e ef b9 28 39 20 16 . . . dont add (28, 4) again

7e ef b9 28 39 20 16 . . . add (20, 6)

7e ef b9 28 39 20 16 . . . add (16, 7)
...

5. This set represents the document (fingerprint)

[(28, 4), (20, 6), (16, 7), ...]

In order to see if two documents share a substring longer than the noise threshold k,

the algorithm computes both their fingerprint and checks if they share hash values. The

approach is based on the following hypothesis: If two fingerprints have the same hash

value, the k-grams are likely to coincide as well, because the hash function is collision

resistant. Choosing a hash from a local window allows to discard other hashes and to keep

the fingerprint small.

Gap Analysis

Winnowing is designed to deal with documents in text format. In order to use winnowing

for matching libraries, one could adjust the algorithm to work with binary input. However,

defining a set of noise characters to be removed in Step 1 is not possible for binary files

in general, and may also not be possible for .dex-files in particular. Alternatively, one

could decompile or disassemble APKs with baksmali and replace variable and method

identifiers with a placeholder. This preprocessing step would allow winnowing to operate

on the resulting text files. Another benefit of winnowing lies in its agnostic attitude

towards the language of a document: The entire algorithm makes no assumptions on

structure or semantics. This enables detection for documents in any language, whether it

be programming or natural languages. Eventually the algorithm was not applied for library

detection because taking advantage of bytecode characteristics was expected to yield better

recognition rates.

3.1.3 AST Distance

In [2] Potharaju et.al. investigate how attackers use social engineering techniques and

app repackaging in order to distribute malware across Android market places. Within

16

their study, they propose three approaches for detecting repackaged apps. One of these

approaches goes by the name AST-Distance and inspired many design decisions of this

thesis. The algorithm relies on .dex format for input files and computes app fingerprints

based on features extracted from Abstract Syntax Trees (ASTs). The following listing

describes how fingerprints are being extracted:

1. Transform .dex file into a custom assembly language.

2. Remove all artifacts except for the following:

• For each method signature keep the number of arguments.

• For each invoke-direct and invoke-virtual instruction in the method body,

keep the instruction.

• Replace variable identifiers with the placeholder local for local variables or

param otherwise.

3. Construct an Abstract Syntax Tree of the remaining instructions within the method

body.

4. Generate fingerprints out of the ASTs by counting features and populating them

in a fixed sized feature vector. This feature vector is composed of horizontal and

vertical features. A horizontal feature is the occurrence of two leaf notes with the

same parent nodes in the AST, whereas a vertical feature is a directed path within

the tree of arbitrary length.

5. Compute the fingerprint of an app by summing up over all method fingerprints.

Figure 3.1 illustrates how an example method gets transformed into a fingerprint. In

order to tell whether an app is a plagiarism of another app, AST-Distance uses the euclidean

distance between both app fingerprints and reports a match if the distance is below a

certain threshold. The algorithm leans on the hypothesis that two apps are similar if their

fingerprints are located within a small neighborhood.

Gap Analyis

ASTLI adopts concepts of AST-distance because the latter approach yields a high detection

rate (0.5% false positives) and because both problems seemed related enough to reduce one

to the other. One of the adopted concepts lies in the transformation from ASTs to feature

17

Abstract Syntax Tree Feature Vector

METHOD

ARGUMENT DIRECT VIRTUAL

LOCAL LOCAL

vertical feature horizontal feature

Feature Index Count
METHOD
VIRTUAL
DIRECT

ARGUMENT
PARAMETER

LOCAL
METHOD-VIRTUAL
METHOD-DIRECT

VIRTUAL-PARAMETER
VIRTUAL-LOCAL

DIRECT-PARAMETER

1
2
3
4
5
6
7
8
9

10
11

1
1
1
1
1
2
1
1
1
1
0

PARAMETER

Feature Index Count
DIRECT-LOCAL

METHOD-ARGUMENT
METHOD-VIRTUAL-PARAMETER

METHOD-VIRTUAL-LOCAL
METHOD-DIRECT-PARAMETER

METHOD-DIRECT-LOCAL
PARAMETER-PARAMETER

LOCAL-LOCAL
LOCAL-PARAMETER
PARAMETER-LOCAL

12
13
14
15
16
17
18
19
20
21

1
1
1
1
0
1
0
0
1
1

Final Feature Vector: <1,1,1,1,1,2,1,1,1,1,0,1,1,1,1,0,1,0,0,1,1>

Abstract Representation
.method public foo(ARG)
 invoke-direct {LOCAL}
 invoke-virtual {LOCAL, PARAM}
.end method

.method public foo(I)V
 invoke-direct {v2}, Landroid/app/Activity;.<init>:()V
 invoke-virtual {v1, v0}, Lcom/Fuzzer;.findViewById:(I)V;
.end method

1)

Intermediate Representation

2)

3) 4)

Figure 3.1: Example for AST-coverage based fingerprint extraction. Reproduced from
Potharaju et.al.[2]

vectors, which makes comparing methods cheaper than detecting graph isomorphism or

computing the tree editing distance between ASTs[8]. However, AST-Distance suffers

from the following shortcomings:

• It is questionable if AST based fingerprints actually capture the full extend of an

app, since most of the instruction are being removed in Step 2.

• Some dimensions in the AST-distance vector depend on each other, which makes them

a burden without adding information. One example for dependence are all vertical

features that start with method and are longer than one node (e.g. method-virtual).

Adding method as the root node in a vertical path is redundant because of .dex’s fixed

instruction syntax and because there cannot be a root node apart from method. Also

the features local-param and param-local depend on each other since the algorithm

ignores the order in which they occur. In total, only 12 out of 21 dimensions do not

depend directly on each other, which wastes 43% of each vector.

• In Step 5 AST-distance creates an app fingerprint by summing over all its method fin-

gerprints. We can adopt this idea for library identification by summing over smaller

app components such as packages or classes. However, this idea requires each com-

ponent to be ”complete” when creating the fingerprint, which means that all methods

18

of a class should be present. Unfortunately, the requirement is not met when con-

sidering that libraries may contain dead code and that Proguard removes such code

during compile time. Shrinking causes large chunks of library code to be removed,

which renders the component fingerprints useless because it breaks the fingerprint

hypothesis.

3.1.4 Centroid

Chen et.al introduce a different approach for app clone detection in [9], which leverages a

methods control flow graph for the generation of feature vectors. The authors employ their

method to analyze apps and detect plagiarism across third party markets. The following

listing describes the fingerprint extraction process in detail:

1. Transform .dex to smali using baksmali.

2. Construct a control flow graph (CFG) for each method. Nodes of the graph represent

instruction blocks, edges represent flow dependencies between the blocks.

3. Create a 3D-CFG by converting each node of the CFG to a vector 〈x, y, z〉 ∈ N,

where x denotes the block index, y the amount of outgoing edges and z the loop

depth of the block.

4. Add two weights w1 and w2 to every node with w1 = s and w2 = s+ si. s represents

the amount of all statements per block and si represents the amount of invoke-

statements per block.

5. Calculate the center of mass (centroid) of a 3D-CFG for both weights.

6. Create a fingerprint by joining the two centroids.

Similar to AST-Distance, Centroid avoids the graph isomorphism problem by conveying

the graph into a vector. The algorithm compares methods by computing and normalizing

their Chebyshev distance. They further introduce a quasimetric to compute the similarity

between two apps based on its centroids. When looking up a centroid in the database, the

algorithm does not compare it to all centroids, but to centroids within a certain range after

having them sorted upon storage.

19

Gap Analysis

Centroid can be adopted for library detection. Having features per method is more expen-

sive than app level features, but it suits some library identification related use cases (e.g.

shrinking) better. We also adopted the idea of sorting feature vectors upon storage and

limiting the amount of comparisons to a certain range, which helped us to keep the lookup

below quadratic growth. Eventually we dismissed this feature extraction process because

we expected better results with the AST based extraction.

Conclusion

This section explained what app repackaging is and which impact it has on users and de-

velopers. It also depicted the relation between code based plagiarism detection and library

detection and how plagiarism detection can be used to find repackaged apps. Eventually it

discussed three approaches that detect plagiarism and analyzed how these approaches can

be adapted in order to perform library detection.

3.2 Library Detection

This section will inspect two approaches that deal with third party library detection in

Android apps, but have different requirements and approaches to the problem than this

thesis.

3.2.1 Common Libraries

In [10] Li et.al. analyze apps from different markets in order to populate a list of com-

monly employed libraries. They publish this list to improve research on application clone

detection. Li et.al. deduce library popularity by inferring library packages from apps. In

the first step, their algorithm analyzes a set of apps and counts how often a package name

occurs. After that, the algorithm refines the list by filtering out packages that are unlikely

to belong to a common library. An example for such packages are those which occur less

than 10 times or packages with obfuscated names. Eventually, the algorithm compares apps

with a shared package pairwise. This step establishes how similar the apps themselves and

the shared package of both apps are. If both apps and shared packages have similar code

segments, the apps are classified as clones, which implies that the package contains app

20

code. If the packages match, but the apps do not, then the package is classified as a library

package.

Gap Analysis

Maintaining a library database by hand can be both time-consuming and prone to incom-

pleteness. The automated inference eliminates these costs and risks, but also takes its toll:

Counting the package occurrence relies on the package names being unchanged, which does

not hold for apps where identifiers are renamed. The system therefor skips apps that are

believed to be obfuscated, whereas the approach presented in this thesis deals with obfus-

cation on various levels. The approach of Li et.al. also relies on heuristics such as package

naming conventions. This can lead to false positives when library developer disregard these

naming conventions.

3.2.2 LibScout

In [11] Backes et.al. describe the tool LibScout, which detects third party libraries in obfus-

cated apps. This tool leverages both the package hierarchy structure and method signatures

to build library profiles. The algorithm transforms method signatures into obfuscation in-

variant fuzzy descriptors by removing identifiers and class types. These descriptors are

then hashed and fed into a Merkle tree, which represents the package hierarchy.

Gap Analysis

Compared to the approach in Section 3.2.1, LibScout is based on ground truth. Libraries

need to be collected and labeled manually, which is likely to result in a incomplete data

set. However, learning libraries explicitly enables LibScout to recognize libraries and their

exact version in obfuscated apps. With that ability the authors analyze 5000 popular apps

on Google Play and find libraries with known exposures. They further investigate how

frequent developers update libraries in their apps.

Both the work of Backes et.al. and the work done in this thesis exhibit similar premises

and requirements. The difference lies in how the problem has been tackled: LibScout uses

method signatures and package hierarchies for comparison. ASTLI uses those features

too, but adds features extracted from the code implementation. This improves recognition

rates in the case of shrunken apps: Whereas LibScout cannot handle libraries where more

than 40% of the original code has been removed, ASTLI can match libraries as long as a

21

certain amount of code is available. However, LibScout is expected to scale better because

its approach of comparing packages is less complex than the one used by ASTLI.

Conclusion

This section discussed two approaches that share the goal of detecting libraries, but reach

that goal within a different scope. The former approach infers libraries from packages,

which scales better but excludes obfuscated apps and risks false positives. The latter

approach requires libraries to be learned beforehand, which is time consuming and prone

to incompleteness but enables detection in obfuscated apps.

22

4 Approach

In this chapter we introduce our solution to the library detection problem. Section 4.1 lists

requirements and limitations of the approach. In Section 4.2 we introduce the features that

we use to describe code segments and discuss their invariance against common obfuscation

techniques. Section 4.3 gives an overview on the design of the detection algorithm and

shows how the different steps relate to each other. Eventually we examine the major steps

in the algorithm, which are the extraction step in Section 4.4 and the matching step in

Section 4.5.

4.1 Requirements

We design a static analysis tool that is able to detect libraries in application archives. We

can split the primary functionality of the tool into two steps: In the learning phase the

tool learns given libraries. In the matching phase, the tool analyzes a given application

archive and tries to match its packages with the packages of learned libraries. The following

list describes the requirements for the toolkit:

1. If an app includes a library, the tool shall identify both the name and the version

of the library.

2. The tool shall handle application archives, even if they have been obfuscated. The

tool shall deal with common obfuscation techniques, especially techniques that are

employed by Proguard.

3. After analyzing an app, the tool shall report which package from the app belongs

to which library. Table 4.1 shows an example of how the result from the app analysis

looks like. The table lists all app packages, to which library package the app package

was mapped, how confident the match is (between 0 and 100%) and how much

evidence was present (cl represents the amount of classes in the package, m represents

the amount of methods in all classes of the package). Row 1 in the table states that

23

the app package a.b.pckgA was mapped to the package org.lib.pckg1 from the

library libA. ASTLI is 100% confident that the match is correct and a.b.pckgA

contained 7 classes and 12 methods, which were used to make the decision.

App Package Lib Package Lib & Version Confidence Evidence

a.b.pckgA org.lib.pckg1 libA 1.1 100% 7 cl, 12 m

a.b.pckgB org.lib.pckg2 libB 1.0 93% 1 cl, 1 m

.

a.b.pckgC no match

Table 4.1: Example Result

We also set the following limitations of the tool:

• We focus on apps compiled for the Android platform.

• We will not consider libraries written in native code because we cannot employ the

proposed feature extraction techniques in native code without further adaptions.

• We can only detect libraries that have been learned before. Other libraries will not

be detected by the toolkit.

4.2 Overcoming Obfuscation

One can detect libraries in unobfuscated apps by leveraging names of packages, classes and

methods. Obfuscated apps however lack in those names, so we require different features

to identify libraries. This section introduces features used for extraction and identification

of libraries and discusses their invariance with regard to obfuscation. The analysis focuses

on techniques that are employed by the obfuscation tool Proguard (see Section 2.5) and

motivates design decisions that have been made to overcome these obstacles.

4.2.1 Features

We rely on features that exhibit the following properties:

24

1. Identification The feature should allow us to identify a code segment. The feature

shall change for different sections of code, but remain the same for similar sections

of code.

2. Obfuscation Invariance The feature should be invariant to transformations performed

by an obfuscator.

With theses properties in mind, we base our approach on two features named AST vec-

tors and sanitized signatures. AST vectors are vectors obtained by extracting structural

dependencies of a methods abstract syntax tree. We adopted this feature from the AST-

Distance approach described in Section 3.1.3. Sanitized signatures result from removing all

identifiers from a method signature. These identifiers include the name of the method and

the class identifier in all parameter types and in the return type. Section 4.4.2 sheds more

light on how ASTLI sanitizes signatures. We combine an AST vector and a sanitized sig-

nature to a fingerprint. Analogous to the bytecode structure (see Section 2.6), fingerprints

are grouped in package hierarchies. Section 4.4.3 explains this data structure in detail.

The following sections argue why our chosen features fulfill the stated properties with

respect to Proguard’s obfuscation techniques.

4.2.2 Identifier Renaming

In this transformation Proguard replaces the original debug symbols with meaningless

character sequences. If a developer activates this transformation during compilation of

an app, the package names in the application archive will not disclose hints on included

libraries. This means that if we want to find libraries in apps with replaced identifiers, we

cannot simply rely on comparing package names. AST vectors and sanitized signatures do

not contain identifiers, which makes them invariant to identifier renaming.

4.2.3 Shrinking

In this step Proguard removes dead code from the application archive. What code is

dead and what is not depends entirely on the app that includes the code. In the learning

phase we cannot tell which parts of a library will be removed during app compilation. In

preliminary tests we identified cases where more than 90% of the library packages were

removed.

25

Figure 4.1: Venn Diagram of Package X in a Library and in Two Shrunken Apps

Shrinking does not only decide if an entire package gets in- or excluded; it can also

remove unused classes in packages and unused methods in classes. Figure 4.1 illustrates

this by an example. The big circle represents a Package X. When learning the library, all

the classes of Package X are available. When analyzing App A, which has been shrunken

at compile time, only a subset of the classes of Package X is present. App B has also been

shrunken at compile time, but since App B needs different classes of Package X than App

A, the included subsets differ.

Since all methods in a class and all classes in a package can be subject to dead code elim-

ination, we need to adapt the feature extraction process. AST-distance (see Section 3.1.3),

the foundation of our approach, computes vectors per app by summing up over its method

vectors. When we consider that methods or classes can be removed between learning and

matching phase, then the sum of method vectors fails to represent a class, and the sum

of class vectors fails to represent a package. This motivates the decision to collect fea-

tures per method in the learning phase and to use them in the matching phase. The

downside of storing features per method is that it complicates the matching process both

computationally and storage wise, compared to a lower level of detail.

4.2.4 Optimizations

Code optimizations involve rearranging, replacing, adding and removing code segments.

Some of the transformations can affect our features in theory, but we can show in our

evaluation that those transformations have a minor impact on the detection rates. It is

also important to distinguish which feature is affected by the transformation and how

26

much. A slight change in the AST vector does not necessarily inhibit a correct mapping,

since the similarity between AST vectors is based on their distance. However, a sanitized

signature that has been altered cannot be led back to the original method, since we check

for strict equality when comparing signatures.

Proguard Version 5.3 offers 29 optimizations 1. Some of these optimizations are disabled

by default because they are known to cause trouble on certain versions of Android’s Run-

time; for that reason we do not expect to encounter them. The following optimizations are

known to affect our features:

Inlining Hereby Proguard replaces a method invocation with the body of the invoked

method. This usually affects short or unique methods, but also tail recursive methods

can be inlined. Inlining alters the AST vector, however if it is a short method that

is being inlined, we can argue that the alteration is limited as well.

Code Merging With this transformation Proguard identifies duplicated code fragments

and merges them by modifying branch targets. Merging affects the AST vector

because it reduces the nodes in the abstract syntax tree.

Method Parameter Removal This transformation causes Proguard to identify unused pa-

rameters in methods and remove them from the signature. If a method undergoes

this transformation, the sanitized signature will be affected and we will not be able

to match it with the corresponding method.

Note that our design focuses on dealing with renamed identifiers and shrunken apps.

We are less concerned with handling different optimization techniques because applying

them requires considerable testing efforts for app developers; their inconvenience makes

optimizations less frequent and therefore less relevant in our opinion.

4.3 Algorithm

This section introduces a high level description of the library detection and discusses how

the individual steps of our detection approach interact with each other.

Figure 4.2 describes the steps of ASTLI on a high level. The upper side explains how

the learning phase is structured, whereas the lower side depicts the matching phase. The

following listing gives a short overview of each step:

1http://proguard.sourceforge.net/manual/optimizations.html accessed on 2016-10-10

27

http://proguard.sourceforge.net/manual/optimizations.html

Figure 4.2: High Level Description of the ASTLI algorithm; Top: Learning Phase; Bot-
tom: Matching Phase

1. When learning a library, ASTLI converts the library into the .dex format. This

conversion is delegated to the build tool dx included in the Android SDK. The con-

version to .dex allows ASTLI to use the same extraction method for both application

archives and libraries.

2. In this step ASTLI generates fingerprints and package hierarchies from a .dex file.

Both phases share this step. Section 4.4 elaborates on this part of the approach in

more detail.

3. After extracting fingerprints and arranging them in package hierarchies, ASTLI stores

the results in a database.

4. In the final step of the matching phase ASTLI fetches package hierarchies from the

database and compares them with package hierarchies from the application. Sec-

tion 4.5 explains the details of this step.

4.4 Extraction

This section explains how ASTLI extracts features from .dex-files. We start with the

extraction of AST vectors in Section 4.4.1 and sanitized signatures in Section 4.4.2. We

extract these features from every method in a .dex-file and assemble them to fingerprints.

Section 4.4.3 explains how and why fingerprints are structured in package hierarchies. We

conclude this section with a thorough example, which shows how a fingerprint emerges

from a method.

28

4.4.1 AST Vector

ASTLI generates an AST vector by building an abstract syntax tree and conveying this

tree to a vector. AST vectors have the edge over ASTs when we want to compare methods,

because they allow us to express the similarity of two methods by computing their distance.

Listing 4.3 describes how ASTLI builds the AST out of a method body. The following

listing explains each step in detail:

Input : Method Body
Output: Abstract Syntax Tree

1 AST ← createRootNode();
2 foreach instruction ∈ method body do
3 keep instructions with opcode in {INVOKE_DIRECT, INVOKE_VIRTUAL};
4 instructionNode ← createNode(instruction.opcode);
5 foreach parameter ∈ instruction do
6 parameterNode ← createNode(parameter.type);
7 instructionNode.addChild(parameterNode);

8 end
9 AST.addChild(instructionNode);

10 end
11 return AST

Listing 4.3: Extraction of AST from a Method Body

• In Line 1 we generate the root node of our tree.

• In Line 2 we iterate over all instructions within the method body

• We consider instructions of type INVOKE_DIRECT and INVOKE_VIRTUAL2; therefor we

skip over other instructions in Line 3. We chose these types because they are the most

common invocation types according to Potharaju et.al.[2]. Alternatively, we could

keep track of all invocation types (including _SUPER, _STATIC and _INTERFACE),

which would yield a more detailed vector.

• In Line 4 we create a node for the current invocation. Its type depends on the type

of the invocation.

• In Line 5-8 we go through the parameters of the current invocation. For each pa-

rameter we create a node. The type of the node depends on whether the parameter

2Dalvik opcodes explained: https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html; accessed on 2017-02-02

29

https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html

is a local variable or a parameter of the method (By parameter we mean if the pa-

rameter passed to the method in the invocation statement is a parameter of the

method we are currently conveying to an AST; For clarification, consult the example

in Section 4.4.4). We add this node as a child of the invocation node.

• In Line 9 we add the instruction node as a child of the tree root.

ASTLI converts the tree into a vector by counting both horizontal and vertical features.

We borrow the definition from AST-Distance in Section 3.1.3: A horizontal feature is a

pair of leaf nodes with the same parent node, whereas a vertical feature is a directed path

of arbitrary length, which starts at the root node of the tree. Each dimension in our AST

vector resembles the amount of occurrences of a particular horizontal or vertical feature.

The following enumeration explain how ASTLI counts the occurrences in Listing 4.4:

Input : Abstract Syntax Tree
Output: Abstract Syntax Tree Vector

1 vector = createVector();
2 //count horizontal features;
3 foreach invokactionNode ∈ AST.getChildren() do
4 #locals ← |{c ∈ invokactionNode.getChildren() | c.type = local}|;
5 #params ← |{c ∈ invokactionNode.getChildren() | c.type = param}|;
6 vector[local local] ←

(
#locals

2

)
;

7 vector[param param] ←
(
#params

2

)
;

8 end
9 //count vertical features;

10 foreach lvl1Node ∈ AST.getChildren() do
11 increment(vector[lvl1Node]);
12 foreach lvl2Node ∈ lvl1Node.getChildren() do
13 increment(vector[lvl2Node]);
14 increment(vector[lvl1Node, lvl2Node]);

15 end

16 end
17 return vector

Listing 4.4: Conversion of an AST to an AST vector

• Line 1 initializes our vector.

• Lines 3 to 8 count the horizontal features by going through all first level nodes of

the AST and determining the amount of leaf pairs for each node. Line 4 and Line 5

30

count the amount of local variables and parameters of the current invocation node.

Line 6 and 7 compute the amount of pairs of type local-local and param-param.

Determining the amount of pairs is equivalent to the handshake problem3, so we can

compute it using the binomial coefficient over 2.

• Line 10 to 16 count the vertical features by iterating over all first level nodes of the

AST again. Line 11 increments the occurrence count of the current node by 1. In

Line 12 we iterate over the children of the current node and increment the occurrences

of both paths, be it either level 2 only or a conjunction of level 1 and level 2.

Note that our conversion neglects some dimensions from the original scheme in [2] for

the following reasons:

method This vertical feature is always 1 for each AST. Keeping track of it makes sense

in conjunction with grouping vectors by summing them up. Since we do not group

vectors in this way, we removed this dimension.

method-* Here we have a dependency to each path that is composed of the same nodes

but does not start with method (e.g. method-direct-local and direct-local).

Since method is the only possible root node for our AST, each path starts with a

method node. Knowing that our path started with method does not add information,

therefore it can be omitted.

argument was removed because the amount of arguments is included in the sanitized

signature of the method.

local-param was removed because it depends on the amount of locals and params. Since

we keep track of both, we can omit mixed pairs.

4.4.2 Sanitized Signature

Sanitized signatures contain information from a method signature that are invariant to

obfuscation techniques. In order to sanitize the signature from features prone to obfusca-

tion, ASTLI removes method identifiers, parameter names and modifiers from the original

signature. It further replaces parameter types and the return type with a single letter code.

Table 4.2 illustrates how ASTLI maps different types to characters. For primitive types,

3http://mathworld.wolfram.com/HandshakeProblem.html, accessed on 2016-10-23

31

http://mathworld.wolfram.com/HandshakeProblem.html

ASTLI adopts the mapping from smali4. Since object types can be subject to identifier

renaming, they are mapped to a obfuscation invariant token according to the following

rules:

Primitive Object

boolean Z int I current class T

byte B long J class in same package O

short S float F external class E

character C double D

Table 4.2: Mapping of Primitive and Object Types to Characters

• If the type matches with the type of the class we are currently processing, we assign

the letter T.

• If the type belongs to the same package as the current class, we assign the letter O.

• Otherwise we assign the letter E for external.

4.4.3 Fingerprint and Package Hierarchy

After having extracted both AST vector and sanitized signature, ASTLI combines both

features to a fingerprint. These fingerprints can already be used for the matching process,

but just by themselves they do not provide enough information to map packages unam-

biguously. An example for ambiguous methods are getters and setters : They have a similar

structure and thus a similar fingerprint, but they do not necessarily belong to the same

class.

We can overcome ambiguity by capturing the entire structure of a package. Two unre-

lated methods might share the same fingerprint, but two unrelated classes are unlikely to

share all of their fingerprints. The same logic holds for packages: We can conclude that two

packages are related if their classes share the same fingerprints. To draw this conclusion we

require a data structure that groups fingerprints in classes and classes in packages. We refer

to this data structure as package hierarchy. Figure 4.5 illustrates an example of a package

hierarchy: Package X is composed of classes and each class is a group of fingerprints.

4https://github.com/JesusFreke/smali/wiki/TypesMethodsAndFields, accessed on 2016-10-26

32

https://github.com/JesusFreke/smali/wiki/TypesMethodsAndFields

Figure 4.5: Package Hierarchy Example

4.4.4 Example

Figure 4.6 contains a complete example of all extraction steps. We convert the method

doSomething from the class ClassX located in the package hello. Note that we use smali

to represent the method and its implementation. The original Java source code equivalent

should help to gain a better understanding of the .dex format, but is not involved in the

extraction process. The following listing explains what happens in each step:

1. In this step we create an AST out of the methods implementation. We add one

root node method and process the instruction invoke-direct {v0, v1, p1}. For

this instruction we create the node inv-direct. The parameters v0, v1 of the

invoke-direct statement are local parameters. v0 is an instance of ClassY, which

is always the first parameter of a instance method invocation, whereas v1 is an

Integer that contains the value of ClassX.field1. p1 is the parameter number.

For v0, v1 and p1 we generate two local nodes and one param node and add them

to the inv-direct node as children.

2. In this step we convert the tree to an AST vector by counting both vertical and

horizontal features. The vertical features are paths consisting of 1 or 2 nodes. We

count the following paths of 1 length: DRC:1, because of the inv-direct node; LOC:2,

PAR:1 because of the respective child nodes; VRT:0 since there is no invoke-virtual

node in the tree. Paths of length 2 are: DRC-LOC:2 and DRC-PAR:1. Both INV-LOC

and INV-PAR remain 0. We finally generate the horizontal features by counting the

pairs of local and param nodes. There is 1 local pair, thus LOC-LOC:1 and no param

pair.

33

public ClassY doSomething(float[] number, ClassX x) {

 return new ClassY(field1, number);

}

.method public doSomething([FLhello/ClassX;)Lhello/ClassY;

 new-instance v0, Lhello/ClassY;

 iget v1, p0, Lhello/ClassX;->field1:I

 invoke-direct {v0, v1, p1}, Lhello/ClassY;-><init>(I[F)V

 return-object v0

.end method

[FT:O

inv-direct

local local param

VRT:0
DRC:1
PAR:1
LOC:2

VRT-PAR:0
VRT-LOC:0
DRC-PAR:1
DRC-LOC:2

method

Java Source Equivalent

DEX (represented in smali)

AST

Fi
n

ge
rp

ri
n

t

1

2

3

AST Vector

Sanitized Signature:

LOC-LOC:1
PAR-PAR:0

ve
rt

ic
al

 f
. (

p
at

h
s)

h
or

iz
.f

.

Figure 4.6: Example for Extraction Steps

3. In this step we generate the sanitized signature. We are interested in the parameters

[F, which represents the parameter float[] number, and hello/ClassX5, followed

by the return type hello/ClassY. Parameters and return type are colored green in

the .dex-box of the figure. We leave [F as is and replace the parameter hello/ClassX

with the character T because the type matches the class we are currently processing.

We add a colon : to divide parameter types from return type and replace the return

type hello/ClassY with the character O because the type is located in the hello

package. This generates the sanitized signature [FT:O.

The fingerprint on the bottom right box of the figure is composed of sanitized signature

and AST vector.

5In this description we omitted the the prefix ’L’ and suffix ’;’ of smali object types to improve readability.

34

4.5 Matching

This section explains how ASTLI matches packages from an application archive to packages

from learned libraries. Section 4.5.1 gives an overview of the entire matching process.

Section 4.5.2 introduces the concept of fingerprint particularity and explains how it helps

ASTLI to find better matching candidates. Section 4.5.3 defines the inclusion relation ⊆
between packages and Section 4.5.4 explains how ASTLI measures similarity between two

package hierarchies.

4.5.1 Overview

In the matching process, we are given a set of package hierarchies Pa which we extracted

from an application archive. For each package hierarchy pa ∈ Pa we do the following:

1. We sort all fingerprints in pa by particularity in descending order such that we

can choose a set of particular fingerprints. Section 4.5.2 explains what a particular

fingerprint is. We refer to particular fingerprint as needles, which should portray the

metaphor of finding a needle in a haystack.

2. For each needle, we query the database (haystack) for fingerprints that have the

exact same AST vector and sanitized signature. We collect the package hierarchies

of similar fingerprints and store them in the candidate set Pl.

3. For each candidate pl ∈ Pl, we check if pa⊆ pl, which means that the application

package is included in the library package. Section 4.5.3 defines this relation and

explains how to compute it.

4. If pa⊆ pl, we compute the similarity s(pa, pl), which depends on the AST vectors in

pa and pl. Otherwise, we set s(pa, pl) to 0. Section 4.5.4 elaborates on the definition

and computation of the similarity score.

5. We sort package candidates by similarity score in descending order and yield the

package with the highest score that meets a minimum threshold as a match.

4.5.2 Fingerprint Particularity

Some fingerprints are more likely to match with unrelated fingerprints than others. When

we populate a set of candidates, we are better of with rare, particular fingerprints than

35

0 5 10 15 20 25 30 35 40
Length of AST Vector

0

10000

20000

30000

40000

50000

60000

2 4 6 8 10 12 14
Length of Purged Signature

0

10000

20000

30000

40000

50000

Figure 4.7: Distribution of 120,000 Library Fingerprints

with frequent ones, because a rare fingerprint will yield less false positive candidates than

a frequent fingerprint. We can estimate particularity by observing how fingerprints are

distributed. Both histograms in Figure 4.7 depict the distribution of 120,000 fingerprints:

The left histogram shows the distribution over the length of AST vectors, whereas the

right histogram shows the distribution over the length of sanitized signatures. From these

distributions we observe that a fingerprint with a long signature or a long AST vector

is more particular, because it occurs less frequent. This helps us when we want to find

appropriate candidates for a package hierarchy. If the fingerprint that we look up is rare,

then we can confine the set of candidates and thus save time.

We approximate the particularity of a fingerprint with the particularity score. Let m =

(s, v) be a method fingerprint with a sanitized signature s and an AST vector v. Then the

particularity score of m is defined as

score(m) := ws · length(s) + wv · ‖v‖1, (4.1)

whereas length(s) returns the amount of character of s and ‖v‖1 denotes the Manhat-

tan distance of v. We weight both dimensions with ws and wv in order to rectify the

distributions.

4.5.3 Inclusion

The inclusion relation⊆ expresses if a package hierarchy p is included in a package hierarchy

p′. Inclusion depends on the sanitized signatures in both package hierarchies. We use

36

inclusion instead of equivalence in order to handle the loss of code when an obfuscator

removes dead code from an app. Therefor, inclusion is reflexive and transitive, but not

symmetric. We define inclusion as follows:

p⊆ p′ ⇔ ∃fc : p 7→ p′, fc... injective. (4.2)

In other words: Package p is included in Package p′ if and only if there exists an injective

mapping fc for all classes in p to the classes in p′. We require injectivity because we expect

each library class to end up as one application class at most.

We add further requirements for our class mapping fc: Let c ∈ p be a class in the package

p and c′ ∈ p′. Then

fc(c) = c′ ⇒ c⊆ c′. (4.3)

If we map an application class c to a library class c′, then the application class is included

in the library class. The inclusion relation between classes is defined analogous to the

inclusion relation between packages:

c⊆ c′ ⇔ ∃fm : c 7→ c′, fm... injective. (4.4)

However, we can only map a fingerprint m ∈ c to a fingerprint m′ ∈ c′ if their sanitized

signatures are equal, or:

fm(m) = m′ ⇒ Signature of m and m′ are equal. (4.5)

Now that we defined inclusion for both packages and classes, we can describe how we

determine inclusion.

Determine Class Inclusion

Let c = {s1, ..., sn} be a class consisting of sanitized signatures si (for the sake of simplicity,

we ignore AST vectors and fingerprints for now). Then we can determine if c⊆ c′ in a greedy

manner as described in Listing 4.8. The idea behind this approach is to find all signatures

from c in c′. If we find one, we delete it from the c′ set such that we do not pick the given

signature in c′ twice. If we found all signatures from c in c′, we know that there is an

injective mapping fm and thus c⊆ c′.

37

Input : Class c, Class c′

Output: True if c⊆ c′

1 foreach si ∈ c do
2 if si ∈ c′ then
3 remove si from c′

4 else
5 return False;
6 end

7 end
8 return True;

Listing 4.8: Greedy Class Inclusion Check

Determine Package Inclusion

In order to determine if package p is included in package p′, we need to find an injective

mapping fc for all classes in p to classes in p′. This task is less straightforward than the

mapping fm for methods because of the lacking symmetry in the class inclusion relation.

Figure 4.9 illustrates an example, where the greedy approach from Listing 4.8 fails.

Figure 4.9: Example, where Greedy Package Signature Inclusion Check fails

We are given the packages p and p′ and we can tell that p⊆ p′, because there exists an

injective mapping fc with fc(c1) = c′1 and fc(c2) = c′2. However, the greedy approach fails

because class c1 can also be assigned to c′2, since c1⊆ c′2 holds. If we assign c1 to c′2, we end

up with c2 being unassigned, because c2 ��⊆ c′1.

In the case where a valid assignment is not possible, we could backtrack by amend-

ing some assignments until we explore all possibilities. However, we opted to reduce the

problem such that we can solve it with the Hungarian Algorithm[12]. Given a set of

38

workers, a set of tasks and a cost matrix, this algorithm assigns workers to tasks such that

the overall costs are minimized. Instead of workers and tasks, we use classes of p and p′.

We construct our cost matrix Ms as follows:

Ms ∈ {0, 1}|p|×|p
′|, Ms[i, j] =

0 if ci⊆ c′j

1 otherwise
(4.6)

If we apply the Hungarian Algorithm on Ms, we end up with an assignment fc. Since

the algorithm minimizes the cost of fc, it prefers assignments that cost 0 over the ones that

cost 1. Eventually, we compute the overall cost of fc with

cost(Ms, fc) :=

|p|∑
i=1

Ms[i, fc(i)] (4.7)

and can argue that if

cost(Ms, fc) = 0⇔ ∃fc : p 7→ p′, fc... injective.⇔ p⊆ p′ (4.8)

4.5.4 Similarity Score

The similarity score helps us to determine how similar two packages hierarchies p and p′

are. The score depends on the similarity of the AST vectors in the respective packages.

Packages that are similar yield a higher score than packages that are not. This section

explains how we compute similarity between packages, classes and AST vectors.

Package Similarity

We compute the similarity score s(p, p′) by leveraging the Hungarian Algorithm, because

it helps us to find the mapping between classes with maximum similarity. We fill the cost

matrix S with the similarity score of the respective classes s(c, c′), which is explained in

the following section.

S ∈ R|p|×|p′|, S[i, j] =

s(c, c′) if ci⊆ c′j

0 otherwise
(4.9)

Since the Hungarian Algorithm minimizes the costs in the cost matrix, we apply it on

an inverted matrix Sinverted, where we negate each entry and shift it by the maximum:

39

Sinverted = (max(S)− S[i, j])ij (4.10)

After the Hungarian Algorithm generated a mapping fc, we can compute the similarity

with cost(S, fc) as defined in Definition 4.7.

Class Similarity

Let c = {m1, ...,mn} be a class consisting of a list of fingerprints mi where each fingerprint

consist of a sanitized signature si and an AST vector vi. Then the class similarity s(c, c′)

can be determined with the Hungarian Algorithm once again. First, we generate the cost

matrix T :

T ∈ R|c|×|c′|, T [i, j] =

s(vi, v
′
j) if si = s′j

0 otherwise
(4.11)

We invert T as in Equation 4.10 and let the Hungarian Algorithm find the best assign-

ment. We use the cost function cost(T, fc) in Definition 4.7 to determine the similarity

score s(c, c′). The next section explains how we measure similarity between the two AST

vectors vi and v′j.

AST vector Similarity

We express the similarity between two AST vectors v and v′ with the following formula:

s(v, v′) = max(0, ‖v‖1 − ‖v − v′‖1) (4.12)

We use the Manhattan distance in order to determine distance and length of vectors

because we adopted this metric from [8], who introduced the feature extraction process.

This formula fulfills the following requirements:

• We want the similarity to be 0 if the vectors are too far apart. The threshold where

similarity becomes 0 is reached if the difference between to vectors is greater than

the vector itself.

• We do not accept negative values for similarity, because we want to avoid the situation

where a mismatch of vectors worsens the overall score of an assignment. We ensure

this requirement by taking the maximum between the difference and 0.

40

• We require maximum similarity when both vectors are equal. In that case ‖v − v′‖1
becomes 0, such that s(v, v′) = ‖v‖1.

• If ‖v1‖1 > ‖v2‖1, we require s(v1, v1) > s(v2, v2) because we want larger and therefor

more particular vectors to have more influence on the assignment cost.

Conclusion

This chapter explained how we designed the solution of the library detection problem. First

we introduced and motivated both a set of requirements and limitations. We explained

which features we extract and discussed their theoretical performance with regards to

different obfuscation techniques. After that we introduced the algorithm and its different

phases. We went into detail on the learning phase, where the extraction of feature takes

place, and on the matching phase, where the same features are used to map code segments.

41

5 Design

This chapter explains the design of ASTLI. It first gives a general overview in Section 5.1

by explaining how responsibilities are separated into components and how components

interact with each other. The successive sections examine these components in more detail.

Section 5.2 describes the feature extraction process and its tie to the .dex disassembler

baksmali. Section 5.3 explains how learned libraries are stored to and retrieved from

disk. We conclude this chapter with an in dept review of how learning and matching was

implemented.

5.1 Components

In the design process we identified responsibilities and assigned them to components. Each

component has its distinct responsibility which requires it to operate on a certain level of

abstraction. In order to prevent mixing different abstraction levels, we partitioned the tool

and reduced dependencies between components to the minimum. Figure 5.1 depicts the

components in the form of a package diagram. The following listing describes each com-

ponent bottom up by starting from the component with the fewest outgoing dependencies.

baksmali/* contains a fork of the .dex file disassembler baksmali. We leverage the code

of this project and adapt its program flow. The altered version parses a .dex file and

returns handles that enable the inspection of dexed classes. We use these handles for

the feature extraction. Note that this component is actually composed of multiple

packages that share the prefix org.jf.baksmali, but has been portrayed as one

single component in Figure 5.1 for the sake of clarity.

extraction handles the feature extraction process. It delegates .dex file parsing to baksmali

and iterates over classes and methods to extract ASTs, fingerprints and package hi-

erarchies. Section 5.2 describes this component in more detail.

42

Figure 5.1: ASTLI Components

db deals with persistent storage of package hierarchies. It offers an API to store and

retrieve hierarchies. This component relies on the object relational mapping frame-

work Active Objects and on the in-memory database HyperSQL. Section 5.3 explains

which classes enable persistent storage and how the database scheme is designed.

pojo contains data structures that represent fingerprints, package hierarchies and vectors.

The name is an acronym for Plain Old Java Object, which hints the lack of depen-

dencies to external libraries. All components in ASTLI1 rely on pojo because they

use pojo classes to communicate with each other.

learn receives extracted package hierarchies and stores them to the database.

match takes extracted package hierarchies and matches them with package hierarchies

from the database. This component handles the matching process and delegates

individual sub tasks to respective components find, score and postprocess. Sec-

tion 5.4 goes into more details on how the responsibilities are divided.

1except baksmali

43

find Given a package hierarchy, this component finds package hierarchies from the persis-

tent storage and offers them as candidates to the matching algorithm.

score determines the similarity score between two package hierarchies.

postprocess contains classes that handle results of the matching algorithm. Post pro-

cessing task involve verifying the classification results, extracting scores for further

analysis and formatting results for review.

main serves as entry point for the application. It handles the command line arguments

and bootstraps the algorithms. main extracts package hierarchies from a given input

file via the extraction component and passes them on to either the matching or the

learning algorithm.

5.2 Extraction with baksmali

Figure 5.2 breaks the feature extraction process down into single steps. It shows, which

transformations the input file undergoes and in which class these transformations occur.

The white rectangles with rounded edges indicate the input/output format of a step,

whereas the wrapping boxes represent classes, components and external libraries. The

following listing explains each step:

Feature Extractor acts as the entry point for external components through its public API

and manages the entire extraction process. It receives a file of type jar or .dex and

returns a list of package hierarchies, which serve as input for both the learning and

matching algorithm. The class delegates individual subtasks to the following classes

or components and passes on their intermediary results.

dx is part of the Android SDK2 and bundles all class-files in a jar-file to a single .dex file.

This preprocessing step is exclusive to the library learning phase because Android

Apps are already dexed. By converting libraries to .dex, ASTLI can apply the same

feature extraction procedures in both learning and matching phase.

baksmali parses the .dex file and returns a list of class definitions, which represent classes

of the .dex file. The feature extractor passes the class definitions on to the package

hierarchy generator, which orchestrates the actual extraction.

2located in <SDK>/build-tools/<VERSION>/lib/dx.jar

44

Figure 5.2: Extraction Process Flow

Mapping Handler Before performing the extraction, the feature extractor lets the map-

ping handler parse a so called mapping file. This mapping file is a byproduct of com-

piling Android apps with Proguard and maps obfuscated class, package and method

names to their original name. The mapping is useful when evaluating the matching

algorithm, because it enables verification of matches by comparing package names.

This step is optional and depends on whether or not a mapping file is available.

Package Hierarchy Generator iterates though class definitions and delegates extraction

of ASTs and Fingerprints to dedicated classes. If the generator receives a mapping, it

will use the mapping to translate names of classes, packages and types. Furthermore,

the package hierarchy generator will assemble fingerprints into corresponding package

hierarchies. The package hierarchy generator does not receive bare class definitions

45

but class definitions wrapped in Class AST Builders.

Class / Method AST Builders handle the transformation of code instructions into ASTs.

The class AST builder iterates over all methods of a class definition, whereas the

method AST Builder creates ASTs (Listing 4.3) and sanitized signatures (Section 4.4.2).

AST To Fingerprint Transformer counts horizontal and vertical features in an AST and

assembles those feature into an AST vector as described in Listing 4.4.

5.3 Persistence

ASTLI offers to learn features of libraries and to match those features in apps. The two

phases do not necessarily run in direct succession. Therefor the features from the learning

phase cannot be kept in memory for the matching phase. Even if learning and matching

run consecutively, learning the same libraries repeatedly from scratch is much more time-

consuming than learning libraries once and storing the extracted features persistently.

In order access learned features during the matching phase, ASTLI stores results in a

database. The database is managed by Hyper SQL. Furthermore, ASTLI relies on the

Object Relational mapping framework Active Objects which simplifies database related

input and output operations.

5.3.1 Hyper SQL

Hyper SQL3 is a lightweight relational database management system, which can operate in

multiple modes. One mode is the server mode, in which Hyper SQL runs in an independent

process. Another mode is the embedded mode, where Hyper SQL runs in the same process

as the application that connects to it.

During the development process we used Hyper SQL in embedded mode for the sake of

simplicity. In production, a user might chose to use Hyper SQL in server mode. If a user

analyzes multiple apps in a row, the server mode prevents needles startup times in between

runs, which are caused by loading the database into memory.

3http://hsqldb.org/

46

http://hsqldb.org/

5.3.2 Active Objects

Active Objects4 is a framework that maps objects to entities in a database scheme. In-

stead of converting objects to entities and vice versa, the developer creates and annotates

interfaces. Active Objects then generates the corresponding database scheme and handles

the conversions.

Figure 5.3: Database Scheme

Figure 5.3 depicts the database scheme used for storing and retrieving components.

The scheme contains four entities: libraries, packages, clazzes5 and methods. The entire

scheme follows a tree like structure. A library can have many packages, but a package

only belongs to one library. The same 1 to n relation holds for the other entities and their

parents. ASTLI stores extracted features in the method table under the columns signature

and vector.

5.4 Learning And Matching

This section discusses the design of learn and match components and their sub components

find, score and postprocess. Learning and matching are on opposing ends of complexity:

While the learn component merely forwards extracted features to a database, match has

to deal with a variety of decisions and parameters that influence its results, including

questions as:

• Which packages make suitable candidates for package comparison?

4https://developer.atlassian.com/docs/atlassian-platform-common-components/active-objects

5We use the identifier clazz to refer to classes in order to prevent naming collisions with java.lang.Class

47

https://developer.atlassian.com/docs/atlassian-platform-common-components/active-objects

• How should packages be compared and the score be estimated?

• How similar should packages be? At which threshold should a match be accepted or

rejected?

In order to answer these questions we designed a framework which allows us to deploy

ASTLI with different matching strategies and parameters. Apart from how we perform

matching, we also distinguish how we deal with the matching results. For these situations

we implemented two modes of operation:

Production Mode This mode is intended for end users and follows the requirements stated

in Section 4.1. In this mode, ASTLI prepares and prints results in a human readable

format without further analysis.

Evaluation Mode In this mode results undergo further analysis. We question the correct-

ness of the result by checking if a package has been matched correctly or if a package

should have been recognized because it is in the database. This mode collects data

for analysis and makes it available in an exportable format such as csv or JSON. The

evaluation mode also provides logging of intermediate results for debugging purposes.

Both the ability for fine tuning and the different modes of operation affect the matching

process. This increased complexity manifests itself in the architecture: The matching phase

has been divided into multiple sub components, whereas the learning phase is composed of

one single class. The following listing explains how we broke down the matching process

into smaller tasks:

match This package consists of three classes. The class MatchingAlgorithm bootstraps

the matching process. As already mentioned, there are multiple strategies to per-

form the matching which can be tweaked with parameters. The user decides upon

strategy and parameters and MatchingAlgorithm interprets the user’s directives and

assembles the matching process accordingly. The class MatchingProcess directs

the process and forwards intermediate results between sub tasks. The third class

SetupLogger logs strategies and parameters before running the matching process.

By doing so the class attaches information on the setup to the matching results,

which renders the results more traceable.

48

find Given a package from an app, this component finds and offers appropriate package

candidates from the database. We implemented two approaches of finding and offer-

ing candidates. The class NeedleFinder implements the idea described in the listing

of Section 4.5.1, Step 1 and 2: First, it extracts the most particular fingerprints

(needles) from the application package. Then it looks in the database (haystack) for

similar fingerprints and offers the corresponding packages as candidates. The second

approach NameWithFallbackFinder looks up packages by their name. If it does not

find packages with the same name in the database, it falls back to the needle-haystack

approach. NameWithFallbackFinder is intended for in production use: If the app is

not obfuscated, we can leverage clear names to improve the detection accuracy.

score contains all classes that establish similarity between two packages. We implemented

three approaches for comparing package hierarchies: InclusionChecker implements

the signature based inclusion check described in Section 4.5.3. SimilarityMatcher

implements the score computation described in Section 4.5.4. The third implemen-

tation HybridMatcher combines both approaches by using InclusionChecker as

precondition for the SimilarityMatcher: We compute similarity score only if pack-

age inclusion ⊆ holds. The score component further hosts an implementation of the

Hungarian Algorithm6, which aids all assignment related decisions in this component.

postprocess Contains all implementations that decide what do do with matching results,

depending on the chosen mode of operation. In evaluation mode, ASTLI prints

results and statistics in .csv format such that it can be exported and analyzed with

an external framework. In production mode, we prepare the match result and print

it a human readable table format.

Conclusion

This chapter examined how ASTLI was designed. It gave an overview over the archi-

tecture of the toolkit and described both purpose and dependencies of each component.

We emphasized three aspects of the architecture: feature extraction, persistence storage

of features and feature matching. We discussed how ASTLI benefits from other tools as

baksmali, dx, Active Objects and Hyper SQL and we introduced two modes of operation

named production mode and evaluation mode.

6imported from Kevin Stern, https://github.com/KevinStern/software-and-algorithms

49

https://github.com/KevinStern/software-and-algorithms

6 Evaluation

Throughout this thesis we introduced concepts and ideas to solve certain aspects of library

identification. We discussed theoretic benefits and made assumptions in order to justify

our design decisions. In this chapter we introduce the evaluation framework, which helps

us to verify our claims. Section 6.1 gives an overview on the evaluation strategies and

motivates their design. Section 6.2, 6.3, and 6.4 go into more detail on each strategy.

6.1 Overview

The primary target of the evaluation is to find out how well ASLTI works and where its

weaknesses lie. In order to gain comprehensive results and to minimize the probability of

missing weak spots, we evaluate a large set of randomly chosen apps and libraries. Only

with a large enough sample set we can compensate for bias introduced by outliers. Another

target of the evaluation is to have feedback on the sanity of the code base. When imple-

menting a new strategy, tweaking parameters or fixing a bug, it is often more important to

receive feedback quickly at the cost of comprehensiveness. We compromise between com-

prehensiveness and time saving by introducing the three evaluation strategies. Table 6.1

compares key characteristics of the strategies with each other and the following listing

summarizes each strategy:

Unit Testing This strategy gives immediate feedback on the codebase’s state by checking

if its components, the so-called units, fulfill the developers expectations. Unit testing

is fast and its results shed light on the codebase’ sanity. Section 6.2 explains how we

applied this concept.

Quick Evaluation This strategy analyzes a homemade application and matches a small set

of libraries. The goal of the quick evaluation is to give a first impression on accuracy

and performance of the matching and to determine if all components collaborate as

expected. Section 6.3 goes into more detail on this strategy.

50

FOSS Evaluation This strategy analyzes a comprehensive set of open source apps and

matches a large set of libraries. The results of this strategy back our claims on

accuracy and performance. Due to the size of the sample set, this evaluation takes

the longest to perform. Section 6.4 explains, how we selected apps and libraries and

how we designed the evaluation.

Unit Quick FOSS

Framework JUnit JUnit Gradle

App Sample Size - 1 App 52 Apps

App Source - written FOSS

Library Sample Size - 2 libs 97 libs

Runtime few seconds < 1 minute ∼ 30 minutes

Result Verification assertions manually externally

Dependencies mocked real real

Evaluation Results in Section - 7.1 and 7.2 7.3, 7.4, and 7.5

Table 6.1: Evaluation Strategies compared

6.2 Unit Testing

Unit Testing is a technique that verifies automatically if components (units) are fit for

use. Thereby, the developer constructs a test case that runs the component and checks

if it behaved in an expected way. Having a comprehensive test suite gives the developer

immediate feedback on the sanity of the codebase and therefore confidence of his work: He

can implement changes and by running the test suite, he can check if the changes introduced

unexpected behavior. We use JUnit1 to write and run our test suite. Each test case in this

suite contains assertions on the behavior of ASTLI’s components. The following sections

explain patterns and concepts which we used when designing and implementing the test

suite.

1http://junit.org/

51

http://junit.org/

6.2.1 Mock Objects

A unit test should check the behavior of exactly one unit. This assumption does not

hold if the unit depends on other components. In such cases, the unit runs code from its

dependencies and therefore relies on their correctness. Consider the example of a unit test

(Figure 6.1) and a unit (Figure 6.2):

1 c l a s s UnitTestA {
2

3 void testDoThis () {
4 A a = new A(new B()) ;
5

6 a s s e r t (a . doThis () . equa l s (
7 ”expected ”)) ;
8 }
9

10 }

Listing 6.1: Test of Unit A

1 c l a s s A {
2

3 void A(B b) {
4 t h i s . b = b ;
5 }
6

7 St r ing doThis () {
8 St r ing tmp = b . doThat () ;
9 St r ing r e s u l t = trim (tmp)

10 r e turn r e s u l t ;
11 }
12

13 }

Listing 6.2: Implementation of Unit A

In this example we test Unit A and make sure that Method A.doThis() behaves as

expected. Now Unit A depends on B because A.doThis() invokes B.doThat() in Listing 6.2,

Line 8. This implies that the outcome of A.doThis() relies on both the correctness of

A.doThis() and B.doThat(). If A.doThis() does not return the expected result, we

cannot be sure if the error lies in A.doThis() or B.doThat(). However, the test case

of A.doThis() shall fail if and only if there is an error in A.doThis(). In other words:

B.doThat() shall not influence the test case because B is not being tested.

A Mock object limits the scope of a test to the respective unit. It offers the same

interface as the dependency but acts differently, because its behavior can be overridden.

By doing so, we can assume that the mock follows our expectations in a particular situation,

whereas the real dependency might deviate from our expectation. Mocking allows us to

uncouple a unit from its dependencies and thereby exclude dependencies as causes of defect.

Listing 6.3 improves the test case of Listing 6.1 by replacing B with a mock object.

We create and configure mocks with the Mockito2 framework and we use this technique

2http://site.mockito.org/

52

http://site.mockito.org/

1 c l a s s UnitTestA {
2

3 void testDoThis () {
4 B bmock = mock(B. c l a s s) ;
5 when(bmock . doThat ()) . thenReturn (” expected ”) ;
6 A a = new A(bmock) ;
7 a s s e r t (a . doThis () . equa l s (”expected ”)) ;
8 }
9

10 }

Listing 6.3: Test of Unit A with mocked Dependency B

whenever creating a mock and adapting it to the situation is less complex than providing

an actual implementation.

6.2.2 Arrange, Act and Assert

Each unit test follows the Arrange, Act and Assert pattern (AAA), which divides the test

into three sections: In the Arrange section we set up all components and make sure that all

preconditions for the test subject are met. This involves creating a particular instance of a

scenario by instantiating the subject and creating and injecting mock objects. In the Act

section we kick off the test by invoking the method/s that are being tested. Eventually, we

verify the test case in the Assert section by comparing the results with our expectations.

6.2.3 Code Coverage

All in all we implemented a test suite composed of 86 test cases. We opted to write

unit tests for units that require a certain degree of complexity and are therefore more

error-prone. Units that perform auxiliary tasks, such as user interface handling, managing

control flow and reporting, are covered by the strategy described in the Section 6.3. Our

unit test suite covers 62% of all instructions and 66% of all branches. Figure 6.4 gives a

detailed overview on the coverage status of each component.

53

Figure 6.4: Jacoco Code Coverage Report

6.3 Quick Evaluation

The quick evaluation (QE) strategy gives feedback on how well components interact with

each other. This strategy shares similarities with the concept of integration testing because

both combine multiple units with external resources and test them as a whole. QE tests

fill the gap between unit tests and FOSS evaluation, because they are much faster than the

latter but cover the entire software stack as opposed to the former. The following sections

motivate the design of this strategy and explain how matching results are being verified.

6.3.1 Design

The QE strategy does not only tell if the tool succeeds to detect libraries, but also how

well the detection works. Its results give an intuition on how changes of the code base or

parameters affect the tool’s accuracy and performance. This aids the developer in making

design decisions as it debunks poor ideas early on.

In order to provide rapid feedback, the QE strategy focuses on short run times at the

cost of the result’s significance. The detection rates these tests yield should be taken with

a grain of salt because they stem from a small sample set. This set consists of one sample

app, two libraries and a total amount of 150 learned packages. We wrote the sample app

ourselves for the following reasons:

• When reviewing test results, we benefit from knowing how the app is designed and

which libraries are in place. The best way to have this knowledge is to design the

app ourselves.

54

• We need .apks build with different compilation and obfuscation settings. If we build

the app ourselves, we can control all parameters of the build process.

• We wrote and built an app to get familiar with the development and build process

of Android apps. This helped us to make assumptions on how apps are being built

and delivered, which influenced the design of ASTLI.

QE tests also help to verify the sanity of parts that are not covered by unit tests. For

this, QE tests use the same entry and exit points as would, which includes most of the

auxiliary units implicitly.

6.3.2 Result Verification

During QE tests, ASTLI generates .csv files, which contain matches between application

packages and library packages. The correctness of the matches is verified by comparing the

package name. When testing obfuscated apps, matches cannot be verified as is because

the names have been altered at build time. For this reason we implemented a parser for

Proguard mapping files which we briefly introduced in Section 5.2. The parser extracts

a dictionary from the mapping file which helps to restore the original names of classes,

methods and packages.

The QE tests neither impose expectations on the detection rate nor on the run time;

instead, the results require manual review. Automated verification has not been imple-

mented because we are more interested in how results are generated and less in the actual

results. The output of a QE test consists of Table 4.1 and of multiple log files. Each log

file keeps track of events and intermediary results with a varying degree of detail. Fine

grained logging allows us to skim over results and to investigate the reasons for certain

conclusions.

6.4 FOSS Evaluation

The Free and Open Source Software (FOSS) Evaluation matches a comprehensive set of

apps with learned libraries. The name refers to the Open Source licencing of analyzed apps.

We chose Open Source apps because we can build them with custom obfuscation settings

and we can extract information on included libraries. By knowning the used libraries

we can verify the correctness of ASTLI’s matches. Based on the assumption that FOSS

apps exhibit the same bytecode composition and library inclusion as other apps, we can

55

generalize our findings on this set such that it holds for Android applications in general.

Section 6.4.1 describes how we chose and populated the set of apps and how we prepared

them for the evaluation. Section 6.4.2 explains which libraries we used for the evaluation.

Section 6.4.3 describes how the matching process can be configured. Section 6.4.4 describes

how we used Gradle to create a command line utility to start ASTLI and to generate the

evaluation input.

6.4.1 Apps

To populate a large set of apps, we chose to crawl the F-Droid Repository3. This repository

contains aproximately 1000 FOSS licensed Android apps. We were not interested in the

.apk files from the repositories because we need to build custom .apk files from the source

code of the app. We generated our apps by scripting the following tasks:

1. Crawl the F-Droid Repository and if the app description contains a GitHub URL,

use git clone to check out the repository.

2. For each repository, check if the repository was built with Gradle. We require Gradle

builds because we know how to extend the build script such that we can automatically

build the app with different obfuscation settings.

3. For each Gradle app we filter the repositories where the command ./gradle build

would finish without error message. We focus on apps that can be build this way.

4. For each buildable app we append custom build types to the build script and build

the app with them. Table 6.2 explains which build types we added and which trans-

formations they perform.

5. Eventually we harvest the resulting archives and place them in a separate directory.

After these filters 52 applications remained, which formed our final app set.

6.4.2 Libraries

We chose to alter the build script of our collection of easily buildable apps such that

we can harvest depending libraries of each app. For this we wrote a Gradle task that

would download and copy the dependencies to a separate folder. By populating our library

3http://f-droid.org, accessed on 2017-01-27

56

 http://f-droid.org

Build Type Identifier 1reg 2obf 3shr 4os 5opt

Shrinking 3 3 3

Obfuscation 3 3 3

Optimization 3

Packages 711 711 463 486 447

Table 6.2: Build Types Compared

data base with dependencies from our app set, we make sure to provide enough positive

matches. In the end we collected 97 libraries, which consist of 678 packages, 12.158 classes

and 121.742 methods.

6.4.3 Matching Configurations

The FOSS evaluation tackles a variety of problems and each problem domain requires its

own configuration of the matching algorithm. Table 6.3 shows all configurations and list

their exact parameters. The threshold for matching confidence tmc tells, how confident

a match needs to be in order to be accepted. The threshold for package particularity tpp

decides, how particular a package needs to be in order to be analyzed. An exact description

of the parameters and a motivation for the chosen values can be found in the respective

section in Chapter 7.

Configuration ID Used In Matcher Finder tmc tpp

default Production Similarity NameWithFallback .5 80

tpp Section 7.3 Similarity Needle .5 0-200

tmc Section 7.4 Similarity Needle none 80

simmat Section 7.5 Similarity Needle .5 80

hybmat Section 7.5 Hybrid Needle .5 80

Table 6.3: Configurations for ASTLI Matching Algorithm

6.4.4 Gradle Setup

Gradle did not only help us to populate a set of apps and libs, but also offered a command

line interface to learn libraries and analyze apps from the FOSS dataset. For this we

implemented the following tasks:

57

fossStore-<LibName>.jar learns the library LibName.jar from folder libs/4.

fossStore learns all libraries in the subfolder libs/.

match-<AppName>-<BuildType>-<ConfigurationID> matches the app AppName build

with BuildType and uses the matching parameters from ConfigurationID. The

folder that contains the apps needs to follow this structure: Each app has its own

folder in apks/. The folder contains different build types. If the build type is obfus-

cated, then the Proguard mapping file shall have be extended with the suffix .txt.

Figure 6.5 states an example of the folder structure.

saveResultOf-<AppName>-<BuildType>-<ConfigurationID> runs the former match

task with the same parameters and archives the results.

fossEvaluate-<AppName> runs the matching process with all build types of the app

AppName with all existing configurations and archives the results.

fossEvaluate runs the entire evaluation with all apps, all build types and all configurations.

apks
app1

unobfuscated−bui ld−type . apk
obfusctated−bui ld−type . apk
obfusctated−bui ld−type . apk . txt

app2 (. . .)
app3 (. . .)

Figure 6.5: Example for App Folder Structure

Gradle scans the two folders apks/ and libs/ to create these tasks dynamically. The

command gradle tasks -all lists all available tasks. We used IPython5 to process

ASTLI’s output files, to compute metrics and to create the plots used in Chapter 7.

Conclusion

This chapter presented the evaluation framework which consists of three evaluation strate-

gies: Unit Tests offer immediate feedback on the code base sanity. The FOSS evaluation

4This folder is located in <astli-root>/src/integrationTest/resources/fossEvaluation

5https://ipython.org, accessed on 2017-01-27

58

https://ipython.org

assesses ASTLI’s performance by leveraging an extensive data set. The quick evaluation

closes the gap between the former strategies, because it operates on real apps and libraries

but takes little time to run. With the framework established, the following chapter in-

troduces a set of questions regarding performance and classification quality of ASTLI and

uses the framework to answer them.

59

7 Results

This chapter presents the outcome of the evaluation. Each section is structured as follows:

We introduce a problem domain and pose one or more research questions. We explain

how we prepared and executed the evaluation, including the chosen sample sources, the

algorithm parameters and data analysis methods. We conclude each section with the

outcome and discuss, motivate, and question the results.

In Section 7.1 we find out which HSQL mode is faster. In Section 7.2 we revisit AST

vectors and purged signatures and analyze how well they identify code segments. In Sec-

tion 7.3 and Section 7.4 we try to find reasonable parameters for the matching algorithm.

In Section 7.5 we compare two package similarity measurements and use multiclass metrics

to analyze how well ASTLI performs.

7.1 HSQL Embedded vs. Server Mode

HSQL can operate in server mode and in embedded mode (see Section 5.3.1): When running

in the former mode, the HSQL DBMS runs in its own process and communicates with

ASTLI over the network. When in embedded mode, HSQL and ASTLI run in the same

process. Depending on the scenario, one mode might perform better than the other. In this

section we introduce a likely scenario and explain how the chosen HSQL mode influences

the scenario. Afterwards we introduce the evaluation setup and what we want to find out.

We conclude this section with the evaluation results and its discussion.

Scenario

Consider the following scenarios:

• A user has a large set of libraries that he or she wants to feed into ASTLI’s database.

• A user has a large set of apps that he or she wants to analyze.

60

In both cases ASTLI runs multiple times consecutively and each run requires a startup

and teardown phase.

Figure 7.1: Timing Diagram of both HSQL modes

Figure 7.1 depicts a timing diagram and how the HSQL mode influences the runtime

performance of the given scenario: In the upper part HSQL runs in server mode. The

HSQL server process takes some time to start up (notice the flat angle of the rising edge

in 1). This startup time depends on the size of the database. Every time when the actual

app analysis starts, ASTLI has a quick startup phase (steep angle of the rising edge in 2).

ASTLI communicates with the server process to fetch learned libraries (3). The lower part

of Figure 7.1 depicts the timing of ASTLI in embedded mode. The startup phase of ASTLI

is longer because the database needs its time to get ready. On the other hand, the actual

runtime of ASTLI is shorter because the communication with the database does not run

over the network stack.

Evaluation Setup

Given the two modes and their influence on the scenario, we want to find out which mode

performs better:

61

• What has more impact on the runtime: network communication overhead or repeat-

edly prolonged startup overhead?

• Which mode of operation prevails in which situation?

In order to answer these questions we measure and compare the runtime of ASTLI in

the following cases:

1. Learn a randomly chosen library from the FOSS library set (Section 6.4.2).

2. Learn all 97 libraries from the FOSS library set consecutively.

3. Analyze a randomly chosen app from the FOSS app set with the default matching

parameters.

Evaluation Results

Figure 7.2 compares both modes in absolute numbers and depicts the relative difference

between modes. In all three cases, the server mode takes much longer than the embedded

mode. The additional startup and teardown time of the embedded mode carry no weight

compared to the network communication overhead. We can conclude that the overhead

of the network communication excels the startup overhead in any case. For this reason

we operate HSQL in embedded mode for the evaluation and do not recommend using the

server mode in production.

Scenario Embedded Server

Learn 1 Lib 8s 31s

Learn 97 Libs 544s 8447s

Match 1 App 10s 210s

Learn 1 Lib Learn 97 Libs Match 1 App
0

5

10

15

20

25

Embedded
Server

F
ac

to
r

Figure 7.2: Runtime in Seconds (left), in Relation (right)

62

7.2 Comparing Features

In Section 4.2.1 we specified that our features shall identify code segments such that similar

code segments share features, whereas unrelated segments have distinctive features. We

introduced AST vectors and sanitized signatures and argued why these features fulfill the

identity property. In this section we use our homemade application to show to which

degree the identity property holds. This section is structured as follows: We introduce

the evaluation questions and describe the evaluation setup. We conclude the section with

results and its discussion.

Questions

We want to know how well the chosen features and the feature comparison algorithm

identifies packages. We break this question down as follows:

• How well do AST vectors identify code segments?

• How well do sanitized signatures identify code segments?

• How well do both features combined identify code segments?

In order to answer these questions we deploy the confusion matrix M = (mij): It depicts

how well we assign labels to Android application packages. It further visualizes the odds

of labeling packages incorrectly. Each row resembles a label and each column resembles

an actual package. The color of the cell mij indicates, how confident ASTLI is that the

.apk package i belongs to the library package j. We can draw conclusions on the matching

quality from the structure of M : If its main diagonal is confident and the rest is not, the

features identify code segments without confusion.

Evaluation Setup

We leverage the packages from the homemade application of the QE Strategy1 to build the

confusion matrix. With 150 packages the sample set is large enough to have a variety of

different packages and small enough to visualize its confusion matrix properly. With this

set, we analyze our obfuscated, but not shrunken or optimized sample application. We

compute the similarity score between each package from the application with each package

from our learned libraries.

1See Section 6.3

63

Evaluation Results

This section analyzes three confusion matrices based on AST vectors, sanitized signatures,

and both features combined.

Figure 7.3: Confusion Matrix based on AST Vectors (left) and Sanitized Signatures (right)

Figure 7.3 shows the confusion matrix when establishing similarity using AST vectors

on the left and sanitized signatures on the right. The x and y-axis are sorted by package

particularity2. Packages with small particularity are located on top / left, whereas packages

on bottom / right have high particularity. On the left matrix we notice that AST vectors

similarity is confident on the main diagonal. However, the AST vector based similarity is

prone to confusion. In the upper right part of the matrix we find that many packages have

been labeled incorrectly with high confidence. We can explain this observation by the fact

that a small application package can be easily mapped to a large library package. The

other way around does not hold: large application packages are not confused with small

library packages. We conclude that AST vector based similarity is a good start but does

not provide enough accuracy.

The confusion matrix on the right of Figure 7.3 is based on sanitized signatures. This

similarity measure only yields two values: It is either absolutely confident if a package

is included in another package3, or not confident otherwise. Compared to AST vector

similarity, we notice that there is less confusion in the upper right part of the matrix, where

less particular app packages are compared to more particular library packages. However,

a lot of confusion arises with small application packages. The reason for this confusion is

2The concept of package particularity is explained in Section 4.5.2

3See Section 4.5.3

64

that large packages are more likely to contain all signatures of small packages. We conclude

that sanitized signatures yield promising results if the package particularity is greater than

150.

Figure 7.4: Confusion Matrix with both Features combined

The matrix in Figure 7.4 combines both features, which means: We only allow mapping

of methods if their signature is equal. By combining both features, we can settle most of

the confusion from the previous attempts. We notice that there is some confusion left in

low particularity packages in the top rows of the matrix. The small clusters around the

main diagonal in the top left area come from the fact that these packages are semantically

related because they implement the same interfaces. We conclude that combining AST

vectors and sanitized signatures enables accurate package matching and eliminates most

of the confusion.

Conclusion

This section backs the claims we made about our features in Section 4.2.1. We showed that

both AST vectors and sanitized signature based similarity perform good on their own, but

that we can eliminate most of the confusion when we combine both features. We also saw

that low package particularity is still prone to confusion, which is what we deal with in the

next section.

65

7.3 Determining Package Particularity Threshold

Section 7.2 showed that confusion is more common below a certain package particularity. In

order to prevent confusion and improve accuracy, we introduce the threshold for minimum

package particularity (tpp). Before we process an application package, we check if the

package is particular enough. If not, we simply ignore the package because we cannot rely

on its matches. The higher we choose tpp, the more accurate the results become. However,

with a high tpp we ignore more packages and thus gain less insights from the analysis. We

measure this influence with the keep ratio:

keep ratio =
|Analyzed Packages of App|

|Packages of App|
(7.1)

In this section we try to find a reasonable value for tpp such that we compromise between

accuracy and keep ratio. We pose the following question: How much particularity does a

package need such that we get reliable results?

Evaluation Setup

In order to find a good value for tpp we leverage the FOSS sample apps and libraries from

Section 6.4. We analyze all apps in all build types and use the tpp configuration. For

tpp we try values between 0 and 200. After we get the results from ASLTI, we build a

confusion matrix and derive accuracy and keep ratio.

Evaluation Results

Figure 7.5 shows how tpp influences accuracy and keep ratio. For small values of tpp the

keep ratio stays near 1, which means that we analyze almost all packages. The accuracy

in this area is at .7, which means that 30% of all matches are incorrect. The higher

tpp becomes, the more packages we drop and the more accurate our results become. At

tpp = 75 the accuracy reached .9 and stagnates from there on, whereas the keep ratio

keeps on declining. This observation matches our observation from Figure 7.3: Confusion

arises below a certain package particularity, but decreases above a certain particularity. We

conclude that we consider any value for tpp below 80 as reasonable, depending on which

goal (high accuracy versus high keep ratio) has more importance. We dissuade from values

above 80 for tpp because they do not improve accuracy. Our final recommendation for tpp

is 80 because it yields the highest accuracy without dropping too many packages.

66

0 25 50 75 100 125 150 175 200
0.0

0.2

0.4

0.6

0.8

1.0

Minimum Package Particularity

Accuracy
Keep Ratio

Figure 7.5: Influence of tpp on Accuracy and Keep Ratio

7.4 Determining Match Confidence Threshold

In this section we try to find a reasonable value for the match confidence threshold tmc,

which is a parameter of the matching algorithm. We first introduce how we measure

confidence in a match and how we decide on accepting or rejecting a match. We then

explain how we designed the evaluation and discuss the evaluation results.

Match Confidence

ASTLI expresses the similarity between an application package pa and a library package pl

with the similarity score s(pa, pl) described in Section 4.5.4. This score depends on both how

similar and on how particular packages are: More particular packages yield a higher score,

whereas less particular packages yield a lower score. This imbalance is problematic when

ASTLI decides on whether accepting or rejecting a match, because a constant threshold

for all packages favors more particular packages over less particular ones with no regard

to the actual similarity. We counteract to the imbalance by deriving the confidence of a

match from the package similarity as follows:

confidence(pa, pl) =
s(pa, pl)

s(pa, pa)
(7.2)

The confidence between pa and pl is ∈ [0, 1] because 0 ≤ s(pa, pl) < s(pa, pa).

67

Match Confidence Threshold

We introduce the match confidence threshold tmc which decides if a match is to be accepted

or rejected, based on its confidence. The question we pose is: How confident does a match

need to be such that we can accept it? If we require little confidence for accepting a match,

we are likely to find more matches overall but we also report more incorrect matches. If we

require high confidence, our matching results are more trustworthy but at the same time

we are more likely to miss out on matches.

Evaluation Setup

In order to find the best value for tmc we leverage our FOSS sample set from Section 6.4.

We analyze all apps in all build types and use the tmc configuration. We remodel our

multiclass problem into a binary classification problem with the One-Vs-All approach.

This binary classifier tells whether a package is known (positive, +) or unknown to the

system (negative, -). We transform each match into the new problem domain as follows:

• Replace learned library packages with positive.

• Replace others packages, such as not learned library packages or application packages,

with negative.

Table 7.4 gives an example of this transformation. On the left we see a list of matches

that ASTLI produced, on the right we see how the matches have been mapped to the

binary classification. The following listing explains what happens in each line:

Multiclass Binary Class

Actual Predicted Actual Predicted Confidence

1 libA.pckgA libA.pckgA + + 100%

2 libA.pckgB libB.pckgC + + 60%

3 libA.pckgC <no match> + - 0%

4 appB.pckgA <no match> - - 0%

5 appB.pckgB libA.pckgC - + 20%

Table 7.1: Example of how ASTLI’s Results are Mapped to Binary Classification Results

68

• Line 1 contains a correct match with maximum confidence (true positive).

• Line 2 contains an incorrect match, because libA.pckgB is not libB.pckgC. The

binary classifier interprets it as true positive though because both packages belong to

the learned libraries. This example should illustrate that this binary classifier only

distinguishes between learned and not learned libraries, not that libraries have been

identified correctly. Therefor the metrics retrieved from the binary classifier do not

represent the multi classifier.

• In Line 3 ASTLI failed to recognize libA.pckgC (false negative).

• In Line 4 ASTLI correctly rejected to match appB.pckgA (true negative).

• In Line 5 ASTLI failed to reject appB.pckgB (false positive).

With our match results transformed into binary classifications, we build receiver opera-

tional characteristics (ROC) curves, which illustrate the performance of a binary classifier

and reveal how the accept threshold for confidence influences both T+ and F+ rate. The

ROC curves shed light on the separability of known and unknown packages and aid the

search of a reasonable threshold value for tmc. We do this for different build types to see

how well we can distinguish known from unknown packages if certain code transformations

are in place.

Evaluation Results

Figure 7.6 compares different ROC-curves of the binary classifier. The classifier separates

known from unknown packages with high accuracy in almost all build types. The area under

the ROC-curves (AUC) for these build types is above 99.5%. The only build type where

our classifier performs suboptimal is the one with obfuscation, shrinking and optimizations

activated. In this build type the AUC is 87.7%, which is still acceptable.

Figure 7.7 and Figure 7.8 shows how known and unknown package matches are dis-

tributed over their confidence. The red bar indicates the occurrence of unknown packages,

the green bar the occurrence of known packages. Note that the y-axis is scaled logarith-

mically because matches with confidence = 1 and confidence = 0 tend to dominate the

histogram. We notice that regular and shrunken app packages can be separated perfectly

at tmc = 0.8. Separability in the confidence histogram of obfuscated app packages (Fig-

ure 7.7, right) is still good because the distributions barely overlap. The same holds for

69

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

1.0

0.85

0.74

0.64

0.46 0.25

regular (AUC=99.9%)
obfuscated (AUC=99.8%)
shrunken (AUC=99.7%)
obf.,shr. (AUC=99.5%)
obf.,shr.,opt. (AUC=87.7%)

Figure 7.6: Comparing ROC-Curves of Different Build Types

obfuscated and shrunken app packages in Figure 7.8, left. As we learned in Figure 7.6, app

packages with all possible transformations applied are the hardest to separate. Judging

from the corresponding ROC-Curve, the best value for tmc is around 0.5 because it opti-

mizes accuracy. If either true- or false positive rate are significantly more important than

the other, one could consider a value for tmc that would favor either of them. However the

influence of tmc on true- or false positive rate is rather limited.

0.0 0.5 1.0100

101

102

103

0.0 0.5 1.0100

101

102

103

0.0 0.5 1.0100

101

102

103

Figure 7.7: Confidence Histograms; From Left to Right: Regular, Shrunken, Obfuscated

70

0.0 0.5 1.0100

101

102

103

0.0 0.5 1.0100

101

102

Figure 7.8: Confidence Histograms. Left: Shrunken and Obfuscated; Right: Shrunken,
Obfs. and Optimized

Conclusion

This section defined the measure for confidence of a match and introduced the threshold

tmc for deciding on whether to accept or to reject a match. In order to find reasonable

value for tmc we transformed our multiclass problem into a binary classification problem

and used ROC-curves to visualize the quality of the classifier. After analyzing the results

we recommend tmc = 0.5 because it is expected to yield the highest accuracy.

7.5 Comparing Matcher

In Section 5.4 we presented two approaches for estimating the similarity between two

packages. In this section we evaluate both matchers in order to determine which one

performs better. We first summarize the basic principles behind the matchers and compare

them, followed by an explanation of our evaluation setup. We conclude the section with

the evaluation results and its discussions.

Matchers

A matcher takes two packages pa and pl and computes the similarity s(pa, pl) between those

packages. We implemented three different approaches for matching:

• Inclusion Matcher4:

si(pa, pl) =

1 if pa⊆ pl

0 otherwise
(7.3)

4See Section 4.5.3

71

• Similarity Matcher5:

ss(pa, pl) = cost(Mpa,pl , fMpa,pl
) (7.4)

• Hybrid Matcher:

sh(pa, pl) =

ss(pa, pl) if pa⊆ pl

0 otherwise
(7.5)

The inclusion matcher was merely used for evaluation purposes in Section 7.2 because

of its binary output. The other two matchers are intended for use in production. They

differ in the fact that the hybrid matcher uses the package inclusion relation pa⊆ pl as a

precondition for calculating the similarity, whereas the similarity matcher always computes

the similarity. The implementation of the inclusion relation, on which the hybrid matcher

is based, enables short-cut evaluation, which is used to speed up the computation in the

case of pa��⊆pl. This performance gain relies on the assumption that the sanitized signatures

are invariant to all possible transformations. However, some Proguard optimizations alter

the method signature (see Section 4.2.4). If sanitized signatures of methods are altered,

the inclusion check might fail and we end up with sh(pa, pl) = 0 and rejecting the match

wrongfully, whereas ss(pa, pl) might still be high enough to achieve a correct match.

Evaluation Setup

We pose the following questions:

1. How well does ASTLI recognize Application Packages?

2. Does our assumption that our chosen features are truly invariant to transformation

hold? If not, in which cases it does not?

3. Which matcher performs better in terms of time and matching quality?

In order to answer these questions, we leverage our FOSS sample set and analyze all apps

in all build types. We perform the matching with both the hybrid (hybmatch configuration)

and the similarity matcher (simmatch configuration). From the given results we derive the

following multiclass performance metrics[13] using the formulas in Figure 7.9:

Accuracy tells how many application packages have been labeled correctly compared to

all matches.

5See Section 4.5.4

72

Precision describes the ability of ASTLI to not mislabel packages.

Recall describes the ability of ASTLI to find all instances of a library package.

FScore describes the harmonic mean between Precision and Recall.

accuracy =
1

n

l∑
i=1

tpi precisionM =
1

l

l∑
i=1

tpi
tpi + fpi

recallM =
1

l

l∑
i=1

tpi
tpi + fni

F1ScoreM =
2 precisionMrecallM
precisionM + recallM

Figure 7.9: Multiclass Metrics; n . . . amount of matches, l . . . amount of library packages

Results

This section compares the metrics of both matchers. Table 7.2 gives an overview over

all metrics. The cells are colored according to which matcher performs better: green for

similarity matcher and orange for hybrid matcher. The graphs in Figure 7.10, Figure 7.11,

and Figure 7.12 compare the metrics. The build types are distributed along the x axis.

regular obfuscated shrunken obf.,shr. obf.,shr.,opt.

Accuracy
hybrid 97.17% 97.03% 96.51% 96.46% 57.63%

similarity 96.76% 96.61% 93.30% 93.40% 78.83%

Precision
hybrid 97.11% 96.88% 96.10% 95.89% 34.31%

similarity 98.03% 97.80% 94.81% 94.69% 70.64%

Recall
hybrid 97.79% 97.56% 96.98% 96.72% 33.20%

similarity 99.15% 98.92% 97.05% 96.80% 71.95%

F1
hybrid 97.13% 96.90% 96.02% 95.81% 33.31%

similarity 98.17% 97.94% 94.94% 94.80% 70.32%

Runtime
hybrid 317s 336s 265s 294s 259s

similarity 380s 388s 284s 310s 276s

Table 7.2: All Metrics of Hybrid Vs Similarity Matcher

73

ASLTI Performance. Then looking at the graphs in Figure 7.10 and Figure 7.11 we

notice that all metrics perform well in all build types except the obfuscated, shrunken and

optimized build type. In these build types the hybrid matcher scores above 95.8%, whereas

the similarity matcher performs above 93.3%. The metrics of the obfuscated, shrunken

and optimized build type collapse, especially the metrics of the hybrid matcher. After

getting to the bottom of this observation, we realized: When apps are built with Proguard

optimizations turned on, some of the optimizations alter method signatures. The altered

signatures break the inclusion relation between original library package and transformed

app package, which causes the hybrid matcher to wrongfully reject the match. With

optimizations turned on, the metrics of the hybrid matcher drop below 50%, which is

why the bar does not show up in the graphs of Figure 7.10 and Figure 7.11. The similarity

matcher, which does not use the package inclusion relation as a shortcut, yields sub optimal

but stable results when optimizations are activated.

0.5

0.6

0.7

0.8

0.9

1.0

Hybrid Matcher
Similarity Matcher

1reg 2obf 3shr 4os 5opt
0.5

0.6

0.7

0.8

0.9

1.0

Hybrid Matcher
Similarity Matcher

1reg 2obf 3shr 4os 5opt

Figure 7.10: Precision (left), Recall (right)

The Better Matcher The color pattern in Table 7.2 reveal which matcher dominates

which situation. The similarity matcher outperforms the hybrid matcher by far when it

comes to optimized applications. On the other hand, the shortcut of the package inclusion

relation helps the hybrid matcher to be slightly faster than the similarity matcher. The

hybrid matcher is generally more accurate and more precise in with shrunken apps, but

the differences in these sections are marginal. Overall, both matchers have their strength

and weaknesses which depend on the situation. The biggest discrepancy lies in optimized

applications, which is why we recommend the similarity matcher in production.

74

1reg 2obf 3shr 4os 5opt
0.5

0.6

0.7

0.8

0.9

1.0

Hybrid Matcher
Similarity Matcher

0.5

0.6

0.7

0.8

0.9

1.0

Hybrid Matcher
Similarity Matcher

1reg 2obf 3shr 4os 5opt

Figure 7.11: F1 (left), Accuracy (right)

0

100

200

300

400

Se
co

nd
s

Hybrid Matcher
Similarity Matcher

1reg 2obf 3shr 4os 5opt

Figure 7.12: Runtime

Conclusion

This chapter discussed evaluation results. We learned that HSQL’s embedded mode out-

performs the server mode in all our scenarios. We examined AST vectors and purged

signatures and learned that they identify obfuscated packages on their own, but improve

the results if combined. In the confusion matrix we noticed that most confusion arises in

packages with low particularity. For this we introduced the package particularity threshold

tpp. We tried different values for tpp to see how it affects the accuracy of the results. We

argued that tpp = 80 yields accurate results without dropping too many application pack-

ages. We introduced match confidence and the match confidence threshold tmc for deciding

on whether to accept or to reject a match. In order to find a reasonable value for tmc

75

we remodeled our problem into binary classification and build ROC-curves. These curves

showed how well ASTLI can distinguish known from unknown packages. After their anal-

ysis we recommended tmc = 0.5, which yields the highest accuracy. In our last evaluation

we compared hybrid with similarity matcher by computing accuracy, precision, recall and

f1 score from the matching results. We showed that the hybrid matcher runs faster but

fails in the edge case of optimized apps. Apart from that, both matchers yield stable and

reliable recognition results.

76

8 Conclusion

Libraries are a key ingredient in Androids app ecosystem because they fill gaps, ease devel-

opment and enrich the user experience. At the same time their usage can be problematic

for security, privacy, and even legally. This thesis presented the analysis tool ASTLI, which

identifies libraries in Android apps. ASTLI uses libraries as ground truth: It learns libraries

by extracting features and identifies libraries in apps by comparing them. The ground truth

can lead to incompleteness of the library database, but is necessary to guarantee accurate

results when dealing with obfuscation techniques.

Obfuscation techniques impede library recognition because they alter the code in various

ways: Identifier renaming replaces names of variables, classes and packages, shrinking

eliminates evidence of libraries by removing dead code, and optimizations rearange code

segments and replace instructions. All these techniques are implemented by the obfuscator

Proguard, which is of particular interest due of its seamless integration into the Android

SDK and its convenient cost-benefit ratio for app developers.

AST vectors and sanitized signatures counter Proguard’s transformations. The former is

based on Abstract Syntax Tree of a method’s body, and the latter constitutes a simplified

version of a method’s signature. ASTLI combines AST vector and sanitized signature to a

fingerprint, groups fingerprints by their class and classes by their package. These groups

of subgroups of fingerprints form a package hierarchy and represent both app and library

packages. Package hierarchies are invariant to identifier renaming because neither AST vec-

tor nor sanitized signature depend on any identifier. They are also invariant to shrinking

because the matching approach is geared to deal with loss of evidence. Package hierar-

chies are invariant to some but not all code optimizations, but since many optimizations

strategies require careful tuning and testing, they are expected to occur rarely.

When analyzing an app and comparing app packages with library packages, ASTLI oper-

ates in two steps: First, it proposes a set of candidates by extracting particular fingerprints

(needles) and searching for similar fingerprints in the database (haystack). After having a

set of candidates, ASTLI computes the similarity between app package and candidates. The

77

similarity is expressed with the highest scoring assignment between fingerprints. ASTLI

applies the Hungarian Algorithm to find this assignment. The most similar candidate is

reported as a match, if the match is confident enough. ASTLI relies on baksmali to extract

features, on HSQL and Active Objects to store and load features persistently, and on the

build tool dx to convert jar-libraries into the .dex format.

The evaluation framework of ASTLI consists of three strategies: Unit testing helped

us to verify the codebase sanity, the quick evaluation helped us to understand how design

decisions affect ASTLI and the FOSS evaluation served to estimate the accuracy of ASTLI’s

predictions. The evaluation yielded the following conclusions:

• HSQL performs better in the embedded mode.

• AST vectors and sanitized signatures combined identify packages with little confusion.

• More particular app packages yield more reliable results.

• ASTLI is good at distinguishing known from unknown packages: The area under the

ROC Curve is > 99.5% for obfuscated and/or shrunken apps and 87.7% for optimized

apps.

• Depending on the applied code transformations, 96 - 97% (obfuscation, shrinking),

resp. 78% (optimizations) of our predictions are correct.

The following listing summarizes ideas for future research:

Improve AST Vector AST vectors can be improved by covering more instructions of the

Dalvik instruction set. More instructions increase the dimensionality of the vector, so

the tradeoff between increased accuracy at the cost of increased complexity is subject

to future research. Another way of covering more instructions without increasing the

vector’s dimensionality could be achieved by grouping semantically related instruc-

tions.

Improve Sanitized Signatures When encoding the types in sanitized signatures, ASTLI

roughly differs between object types by assigning them to one of three categories.

ASTLI could refine this distinction by leveraging the fact that framework classes (Ac-

tivities, Views, Intents) cannot be obfuscated by Proguard because they are needed

as entry points. A finer distinction between those types yields more unique signatures

and is expected to improve accuracy. This idea was inspired by Derr et al.[11].

78

Cluster Similar Packages When learning library packages, similar packages can be grouped

into clusters. This could speed up the matching process, because it reduces the sim-

ilarity check to a single representative of the cluster.

Fine Grained Results Currently ASTLI reports matches between packages. The matching

algorithm could be extended such that it reports matches on class- or method level.

This could be useful when using ASTLI to detect license contamination, because

developers do not always include entire FOSS libraries, but also smaller code chunks.

Leverage Relationships between Packages Many packages of the same library stand in

relationship to each other. When visualizing packages in a hierarchy, two packages

can have a common ancestor. Consider the packages org.company.lib.pckgA and

org.company.lib.pckgB: Both packages have org.company.lib as common path.

If ASLTI maps the app package a.b.c.d to org.company.lib.pckgA, it could favor

other packages in org.company.lib as candidates for a.b.c because the relationship

between package is preserved. ASLTI could further leverage the relationship between

packages to exclude matches that violate established relationships.

CVE Lookup ASTLI could be extended such that it queries detected libraries for com-

mon vulnerabilities and exposures (CVE) in databases like the National Vulnerability

Database1. This could speed up the app analysis.

1https://nvd.nist.gov/, accessed on 2017-02-02

79

https://nvd.nist.gov/

Bibliography

[1] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of android application

security.,” in USENIX security symposium, vol. 2, p. 2, 2011.

[2] R. Potharaju, A. Newell, C. Nita-Rotaru, and X. Zhang, “Plagiarizing smartphone

applications: attack strategies and defense techniques,” in Engineering Secure Software

and Systems, pp. 106–120, Springer, 2012.

[3] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure analysis of

mobile in-app advertisements,” in Proceedings of the fifth ACM conference on Security

and Privacy in Wireless and Mobile Networks, pp. 101–112, ACM, 2012.

[4] K. Yaghmour, Embedded Android. O’Reilly Media, 2013.

[5] M. McCullough and T. Berglund, Building and Testing with Gradle. ” O’Reilly Media,

Inc.”, 2011.

[6] N. Elenkov, Android Security Internals: An In-Depth Guide to Android’s Security

Architecture. No Starch Press, 2015.

[7] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local algorithms for docu-

ment fingerprinting,” in Proceedings of the 2003 ACM SIGMOD international confer-

ence on Management of data, pp. 76–85, ACM, 2003.

[8] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen,

“Accurate and efficient structural characteristic feature extraction for clone detection,”

in Fundamental Approaches to Software Engineering, pp. 440–455, Springer, 2009.

[9] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability simultaneously in

detecting application clones on android markets,” in Proceedings of the 36th Interna-

tional Conference on Software Engineering, pp. 175–186, ACM, 2014.

80

[10] L. Li, T. F. Bissyandé, J. Klein, and Y. L. Traon, “An investigation into the use of

common libraries in android apps,” arXiv preprint arXiv:1511.06554, 2015.

[11] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library detection in android

and its security applications,” in Proceedings of the ACM Conference on Computer

and Communications Security, ACM, 2016.

[12] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval research

logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[13] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for

classification tasks,” Information Processing & Management, vol. 45, no. 4, pp. 427–

437, 2009.

[14] J.-H. Ji, G. Woo, and H.-G. Cho, “A plagiarism detection technique for java program

using bytecode analysis,” in Convergence and Hybrid Information Technology, 2008.

ICCIT’08. Third International Conference on, vol. 1, pp. 1092–1098, IEEE, 2008.

[15] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, “Dexpler: converting android

dalvik bytecode to jimple for static analysis with soot,” in Proceedings of the ACM

SIGPLAN International Workshop on State of the Art in Java Program analysis,

pp. 27–38, ACM, 2012.

[16] I. Santos, Y. K. Penya, J. Devesa, and P. G. Bringas, “N-grams-based file signatures

for malware detection.,” ICEIS (2), vol. 9, pp. 317–320, 2009.

[17] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware detection,”

in Computer security applications conference, 2007. ACSAC 2007. Twenty-third an-

nual, pp. 421–430, IEEE, 2007.

[18] H. Tamada, M. Nakamura, A. Monden, and K.-i. Matsumoto, “Design and evaluation

of birthmarks for detecting theft of java programs.,” in IASTED Conf. on Software

Engineering, pp. 569–574, 2004.

81

	Contents
	List of Figures
	List of Tables
	Introduction
	Android Ecosystem
	Platform
	Runtime
	Build Process
	Gradle
	Proguard
	File Format

	Related Work
	Code Based Plagiarism Detection
	App Repackaging
	Winnowing
	AST Distance
	Centroid

	Library Detection
	Common Libraries
	LibScout

	Approach
	Requirements
	Overcoming Obfuscation
	Features
	Identifier Renaming
	Shrinking
	Optimizations

	Algorithm
	Extraction
	AST Vector
	Sanitized Signature
	Fingerprint and Package Hierarchy
	Example

	Matching
	Overview
	Fingerprint Particularity
	Inclusion
	Similarity Score

	Design
	Components
	Extraction with baksmali
	Persistence
	Hyper SQL
	Active Objects

	Learning And Matching

	Evaluation
	Overview
	Unit Testing
	Mock Objects
	Arrange, Act and Assert
	Code Coverage

	Quick Evaluation
	Design
	Result Verification

	FOSS Evaluation
	Apps
	Libraries
	Matching Configurations
	Gradle Setup

	Results
	HSQL Embedded vs. Server Mode
	Comparing Features
	Determining Package Particularity Threshold
	Determining Match Confidence Threshold
	Comparing Matcher

	Conclusion
	Bibliography

		2017-02-06T13:27:23+0000
	Christof Rabensteiner

