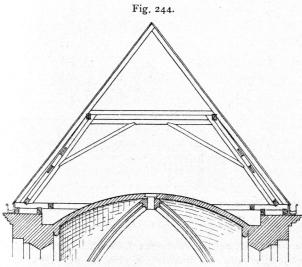
In diesen beiden Gleichungen sind H und S in Tonnen, r (die Länge des Spannriegels) und λ in Met. einzuführen.

Ist die Querschnittsbreite b und die Querschnittshöhe h, so ist $\mathcal{F}_{min} = \frac{h \, b^3}{12}$.

Beifpiel. Es fei $g=75\,\mathrm{kg}$, $s=75\,\mathrm{kg}$, $n=85\,\mathrm{kg}$, $e=3\,\mathrm{m}$, $\cos\alpha=0,832$, $\sin\alpha=0,555$, $\lambda_1+\lambda_2=7\,\mathrm{m}$ und $r=6\,\mathrm{m}$. Alsdann wird

$$H = -\frac{(\lambda_1 + \lambda_2) \, 3}{2.0,555} \left[(75 + 75) \, 0,832 + 85 \right] = -567 \, (\lambda_1 + \lambda_2) = -7.568 = -3969 \, \text{kg} = \infty - 4^{\,\text{t}} \, .$$

Da
$$\frac{\hbar b^3}{12} = 83.4.36 = \infty 12000$$
 fein muss, so wird für $h = 20$ cm: $b^3 = 7200$ und $b = 19.4$ cm.


Ein quadratischer Querschnitt von 20×20 cm ist sonach ausreichend. Die Annahme gleichzeitigen, größten Wind- und Schneedruckes ist überaus ungünstig.

Es ift nun Sorge zu tragen, dass derjenige Theil von H, welcher durch den einfeitigen Winddruck N erzeugt ist, d. h. H_w , unschädlich in die sesten Auflagerpunkte A und B befördert wird. H erstrebt Drehung des Stabes EB um den Punkt B und des Stabes DA um den Punkt A. Diese Drehungen sollen durch Anordnung der Stäbe $G\mathcal{F}$ und $G_1\mathcal{F}_1$ verhütet werden. Nimmt man an, dass jeder dieser beiden Stäbe die Hälste von H_w aufnimmt, vernachlässigt man den Biegungswiderstand der durchgehenden Hölzer bei D und E und nennt man E die Spannung des Stabes E bezw. E for muss

$$Y = \frac{H_w}{2} \cdot \frac{d}{q}$$

fein. Zu beachten ift, daß $\frac{H_w}{2}$ auch den Stabtheil EG bei G abzubrechen ftrebt; das Größstmoment ift hier $M_{max} = \frac{H_w c}{2}$. Während Y Zug ift, findet in $G_1 \mathcal{F}_1$ ein gleich großer Druck ftatt. Ferner wird darauf hingewießen, daß durch die beiden in $G\mathcal{F}$ und $G_1\mathcal{F}_1$ wirkenden Kräfte Momente in dem Balken erzeugt werden.

Die Anordnung der Fußbänder ift viel wirkfamer, als jene der Kopfbänder. Auch die Kehlbalkendächer mit liegenden Dachstühlen kommen in der Gegen-

Vom Dom zu Limburg ¹⁴¹).

1/150 n. Gr.

142) Nach: GEIER, a. a. O.

wart nur noch ausnahmsweise zur Ausführung; es empfiehlt sich desshalb, die Beispiele für solche Dächer aus guten, alten Bauten zu entnehmen.

Fig. 244 ¹⁴¹) zeigt den Dachftuhl vom Mittelschiff des Domes zu Limburg. Die Gesammtweite beträgt 11,20 m und die Firsthöhe 7,00 m. Unter die liegenden Stuhlsäulen, welche sich auf die Fusschwellen setzen, legen sich noch weitere Stuhlsäulen, welche die Spannriegel und die Kopfbänder ausnehmen.

In Fig. 245 ¹⁴²) ist der Dachstuhl des Münsters zu Ulm dargestellt. Die liegenden Stuhlfäulen, welche im Verein mit dem Spannriegel die Rahmenhölzer für die Kehlbalken tragen, umfassen dieselben; die Erhaltung der Form des Sprengwerkes wird durch Kopfbänder erstrebt. Die Sprengwerke sind in jedem vierten Gebinde,

¹⁴¹⁾ Nach: Zeitschr. f. Bauw. 1874, Bl. 12.