Lokomotivberechnungen.

A. Bewegungswiderstände.

Der bei der Zugbewegung von der Lokomotive zu überwindende Widerstand setzt sich bei gleichförmiger Fahrgeschwindigkeit zusammen aus dem Lauf-, Steigungs- und Krümmungswiderstand; man bezieht ihn in kg/t auf das Zuggewicht. Will man den Zug auf eine bestimmte Fahrgeschwindigkeit bringen, so muß die Lokomotive außerdem noch eine Arbeitsleistung verrichten, die gleich ist der erlangten lebendigen Kraft des Zuges.

1. Allgemeines.

Von den Bewegungswiderständen aus wird auf die erforderliche Zugkraft geschlossen.

In Abb. 14 greift die Zugkraft Z_e von außen an (gestrichelte Linie für Z_e am Puffer), also Lokomotive wird als Wagen gerechnet, d. h. ohne die maschinellen, inneren Widerstände. Dieselbe Zugkraft Z_e wird auch durch die Maschine an den Triebrädern auf den Schienen erweckt (ausgezogene Linie für Z_e auf der Schiene). Z_e wird hervorgerufen durch die Dampfkraft in den Arbeitszylindern. Auf dem Wege vom Zylinder zum Triebrad treten Verluste auf. Wären diese Verluste gleich 0, so entstände eine indizierte Zugkraft Z_i . Tatsächlich treten aber Verluste auf, so daß $Z_e < Z_i$. Vorläufig sei $Z_e = \eta \cdot Z_i$, worin $\eta \cong 0.9$ der Wirkungsgrad des Triebwerks.

Wenn $W_{gz}=Gesamt$ -Bewegungswiderstand eines ganzen Zuges einschließlich Lokomotive und Tender ("Zugwiderstand" genannt), so ist im Beharrungszustand — d. h. wenn keine Beschleunigung oder Verzögerung stattfindet — $Z_e^{kg}=W_{gz}^{\ \ kg}$. Zugwiderstand $W_{gz}^{\ \ kg}$ soll formelmäßig festgelegt werden. Hat man W_{gz} gefunden, so kennt man auch Z_e .

2. Verschiedene Arten von Widerständen.

$$Wkg = wkg/t \cdot Gt$$

 $W_{gz}^{\ \ kg}$ bzw. $w_{gz}^{\ \ kg/t}$ setzt sich zusammen aus:

- I. Laufwiderstand, in der graden und wagerechten Strecke W_{ϱ} bzw. w_l
- II. Krümmungswiderstand W_k bzw. w_k
- III. Steigungswiderstand Ws bzw. ws;

folglich kann sein: $w_{gz} = w_l + w_k + w_s$.

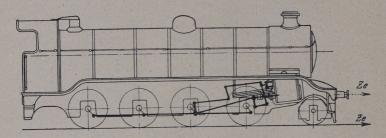


Abb. 14. Angriff der Zugkraft Ze.

- I. Laufwiderstand besteht aus:
 - a) Reibungswiderstand;

gleitende Reibung (Reibung der Achsschenkel in den Lagern und Maschinenreibung),

rollende Reibung (Reibung der Räder auf den Schienen).

b) Stoßwiderstand;

infolge Unebenheiten des Gleises und wegen der Gleislücken.

c) Luftwiderstand;

alle Formeln setzen in ihrer Grundform ruhende Luft in der Atmosphäre voraus, also kein Gegenwind und kein starker Seitenwind.

Häufig wird der Gesamt-Bewegungswiderstand getrennt in den der Lokomotive (einschließlich Tender) und den der Wagen:

$$W_{\varrho z}^{k\varrho}=W_L^{k\varrho^{i})}\,+W_w^{k\varrho}$$

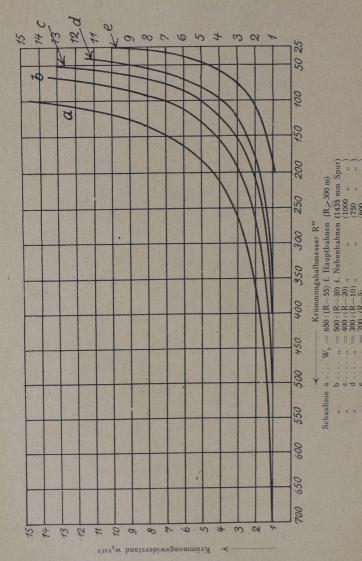
¹) Lokomotive zunächst immer als Wagen angesehen, also ohne Maschinerie.

- II. Krümmungswiderstand; ist der Widerstand in Bahnkrümmungen R^m
 - a) Röcklsche Formel; R = Halbmesser der Bahnkrümmung in m.

$$w_k^{kg/t} = \frac{650}{R^m - 55}$$
 bei $R \ge 300 \, ^m$ für Hauptbahnen
$$" = \frac{500}{R - 30} " R < 300 \, ^m " regelsp. Nebenbahnen
$$" = \frac{400}{R - 20}$$
 für Nebenbahnen (1000 mm Spur)
$$" = \frac{300}{R - 10} " " (750 \, mm ")$$

$$" = \frac{200}{R - 5} " " (600 \, mm ")$$$$

Abb. 15 zeigt die Krümmungswiderstände wie, die sich in Abhängigkeit von R aus diesen fünf Formeln ergeben (Schaulinie a bis e). Die Formeln können nur annähernd richtig sein; denn es kommt auf Achsstand und Art der Achsen an, d. h. ob feste oder Lenkachsen (z. B. Drehgestelle) vorhanden sind.


b) Frank sche Formel berücksichtigt den Achsstand in m.

$$\begin{split} w_k^{\ kg/t} &= \frac{d^m}{R^{\ m}} \cdot \left(180 - \frac{1000 \cdot d^m}{R^{\ m}}\right) \text{ für Personenzüge,} \\ \text{,,} &= \frac{d}{R} \cdot \left(180 - \frac{2000 \cdot d}{R}\right) \text{ ,, Güterzüge,} \end{split}$$

Bei vierachsigen D: ehgestellwagen ist d der Achsstand des Drehgestelles (nicht derjenige vom Zapfen des einen Drehgestelles bis zu dem des zweiten). Zwischen festen Achsen und Lenkachsen wird kein Unterschied gemacht. Für Lokomotiven benutzt Frank die Formel von Röckl.

III. Steigungswiderstand (Abb. 16/17).

Der Bewegung eines Fahrzeuges setzt sich beim Befahren einer schiefen Ebene (Steigung) eine Kraft entgegen von der Größe $G^t \cdot \sin \alpha$; der Schienendruck ist $G^t \cdot \cos \alpha$ (Abb. 16). Dieser Widerstand bei einer Steigung, in kg bezeichnet, heißt: $W_s^{\ kg} = 1000 \cdot G^t \cdot \sin \alpha$. Da Steigungswinkel α sehr klein, so kann mit genügender Genauigkeit sin $\alpha = \operatorname{tg} \alpha$ gesetzt werden, und man erhält dann $W_s^{\ kg} = 1000 \cdot G^t \cdot \operatorname{tg} \alpha$. Es ist nun tg $\alpha = \frac{1}{n}$, oder, wenn die Steigung in mm eingeführt und diese Größe mit s bezeichnet wird, tg $\alpha = \frac{1}{n} = \frac{\operatorname{smm}}{1000}$; n ist also die Länge,

auf die der Höhenunterschied gerade 1 beträgt. Somit erhält man $W_s^{kg} = \frac{1000 \cdot G^t \cdot s^{mm}}{1000} = G^t \cdot s^{mm}$. Es ist also der Steigungswiderstand pro Tonne Zuggewicht ws kg/t = s, d. h. pro Tonne Zuggewicht erhält man soviel kg Widerstand als die Steigung (in mm gemessen) pro Meter beträgt (Abb. 17). s wird bei Steigung positiv als Fahrwiderstand, bei Gefälle negativ als Triebkraft eingesetzt.

Außerdem gibt es noch folgende zusätzliche Widerstandsarten, die nicht im Beharrungszustand auftreten:

- a) Beschleunigungs- oder Anfahrwiderstand Wakg bzw. wakg/t. Der Widerstand tritt in der Regel auf beim Anfahren; sein Gegensatz ist der
- b) Verzögerungswiderstand Wzkg bzw. wzkg/t beim Bremsen.
- a) und b) werden gemeinsam mit wp bezeichnet. Für beide gilt:

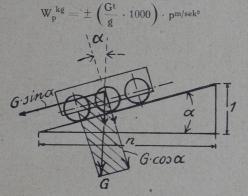


Abb. 16. Steigungswiderstand.

worin G = Fahrzeuggewicht in t,

g = Erdbeschleunigung in m/sek²,
 p = größte Anfahr- 'bzw. Verzögerungs - Beschleunigung in m/sek² (pa bzw. pz)

oder $w_p^{kg/t} = \pm \frac{1000}{\sigma} \cdot p$

z. B. Stadtbahnzug hat Gesamtgewicht (Tenderlokomotive + Wagen) von

$$\left\{ \begin{array}{l} G_{gz} = 350 \text{ t} \\ g = 10 \text{ m/sek}^2 \\ 1) \text{ pa} = 0.2 \text{ m/sek}^2 \end{array} \right\} W_p = \frac{350 \cdot 1000}{10} \cdot 0.2 = 7000 \text{ kg}$$

Beim Anfahren ist die "Beschleunigungsarbeit A" bis zur Erreichung der Geschwindigkeit V für 1 t Zuggewicht:

$$A^{\text{kg m/t}} = \frac{1000}{2 \cdot \text{g}} \cdot \left(\frac{1000 \cdot \text{V}}{60 \cdot 60}\right)^2 \cong 4 \cdot \text{V}^2$$

Will man den Zug auf eine Weglänge von $l^{\rm m}$ auf die Geschwindigkeit V bringen, so braucht man hierfür eine zusätzliche Zugkraft von ${\rm Z_p}^{\rm kg}=1000~{\rm G}^{\rm t}\cdot\left(\frac{4~{\rm V}^2}{l^{\rm m}}\right)$. Für die Weglängen $l=500~{\rm (II)},\,1000~{\rm (II)},\,1500~{\rm (III)}$ und $2000~{\rm m}~{\rm (IV)}$ sind die hiernach errechneten Werte für ${\rm w_p}$ in Abhängigkeit von Fahrgeschwindigkeit V aus den in Abb. 18 eingetragenen Schaulinien I bis IV abzulesen.

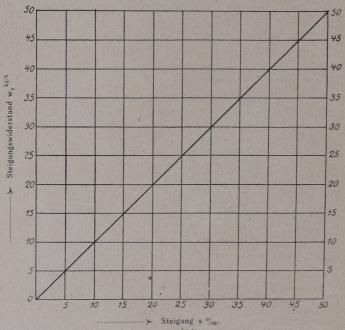
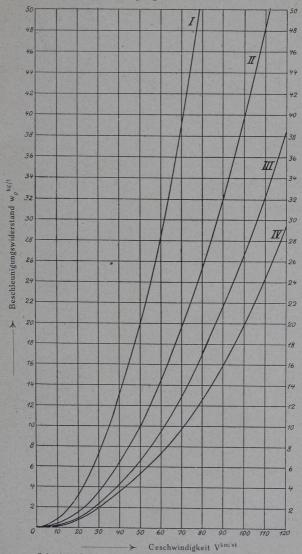



Abb. 17. Steigungswiderstand ws kg, t für verschiedene Steigungen.

3. Widerstandsformeln in der geraden wagerechten Strecke.

Schaulinie I . . . $l=500~{\rm m}$ Schaulinie III . . . $l=1500~{\rm m}$ " IV . . . $l=2000~{\rm m}$ " IV . . . $l=2000~{\rm m}$ Abb. 18. Beschleunigungswiderstand w $_{\rm p}^{\rm ~kg/t}$ für verschiedene V nach 500, 1000, 1500 und 2000 m Anfahrweg l.

Die Clark'sche Formel gab ziemlich richtige Werte, solange die Geschwindigkeiten der Fahrzeuge noch klein waren. Als sie größer wurden, erkannte man, daß das zweite Glied mit V² zu große Werte ergab. Daher stellte aus Versuchen heraus die E.D. Erfurt die sogenannte "Erfurter Formel" auf.

II. Erfurter Formel:

$$w^{\,kg/t} = 2.4 + \frac{V^2}{1300}$$

In Formel I und II ist der Reibungswiderstand bei Lokomotiven und Wagen derselbe, was tatächlich nicht zutrifft. Später erkannte man richtiger, daß der Zugwiderstand auf 1: ∞ in einer Geraden nicht eine Funktion des Gewichtes allein sein kann, sondern eine Funktion des Gewichtes und der dem Wind entgegenstehenden Flächen (Windäquivalentflächen), daß also der Luftwiderstand von der Zusammensetzung des Zuges abhängt. Am vordersten Fahrzeug ist er am stärksten, geringer bei den über das vorhergehende Fahrzeug nervorragenden Querschnittsflächen der Wagen, und am kleinsten an den nicht vorstehenden Endflächen jedes Wagens. Man kann den Luftwiderstand herabmindern durch schneidenförmige Ausbildung der Flächen am vorderen und hinteren Zugende; ferner durch Verkleinerung der Abstände zwischen den einzelnen Fahrzeugen. Bei langen Wagen ist der Einfluß des Windes am kleinsten, und er läßt sich bedeutend verkleinern durch Verbindung der Wagen mittels Faltenbälgen.

III. Frank.

Er hat zur Berücksichtigung der vorerwähnten Einflüsse und der verschiedenen Zugzusammensetzungen an Stelle der wirklichen Lokomotivquerflächen und Wagenquerflächen, zwecks Feststellung des Luftwiderstandes, Rechnungsflächen eingeführt und nach angestellten Ablaufversuchen mit einzelnen Lokomotiven und ganzen Zügen die folgenden Formeln aufgestellt:

$$\begin{split} & \text{ für Lokomotiven } w_l^{\text{ kg/t}} = 2.5 + 0.0142 \cdot \left(\frac{V}{10}\right)^2 + 0.54 \cdot 1.1 \cdot \frac{FL}{GL} \cdot \left(\frac{V}{10}\right)^2 \\ & \text{ für Wagen } w_w^{\text{ kg/t}} = 2.5 + 0.0142 \cdot \left(\frac{V}{10}\right)^2 + 0.54 \cdot \frac{2 + n \cdot f_w}{n \cdot q} \cdot \left(\frac{V}{10}\right)^2 \end{split}$$

Hierin bedeuten:

- FL die Größe der Lokomotiv-Querprojektion in Quadratmeter, FL = 10 qm bei großen, regelspurigen Lokomotiven;
- 1,1 einen Beiwert, um die verschiedenen, hintereinanderliegenden Flächen zu berücksichtigen, die zur Vergrößerung des Windwiderstandes beitragen;
- 1,1 FL die Rechnungsfläche (Windäquivalentfläche) zur Berechnung des Luftwiderstandes der Lokemotive in qm;
- fw die mittlere Windäquivalentfläche eines Wagens; sie ist 0,56 für jeden Personen- und bedeckten Güterwagen, 1,62 für jeden offenen leeren Güterwagen, 0,32 für jeden offenen beladenen Güterwagen,

0,76 ein Mittelwert für jeden Güterwagenzug, bestehend aus n/2 gedeckten Wagen,

" n/4 offenen leeren Wagen,

" n/4 offenen beladenen Wagen;

n die Wagenzahl;

2 die Querfläche des ersten der Lokomotive folgenden Wagens in qm;

q das mittlere Gewicht eines Wagens in t.

Für den ganzen Zug wird

$$\begin{split} W_{gz} &= W_L + W_w \text{ oder } W_{gz}^{\text{ kg}} = \left(G_L + G_w\right)^{\text{ t}} \cdot \left[2.5 + 0.0142 \cdot \left(\frac{V}{10}\right)^2\right] \\ &+ 0.54 \cdot 1.1 \cdot F_L^{\text{ qm}} \cdot \left(\frac{V}{10}\right)^2 + 0.54 \cdot \left(2 + n \cdot f_w\right)^{\text{ qm}} \cdot \left(\frac{V}{10}\right)^2 \end{split}$$

Die Formel gilt für alle Züge, ausgenommen für D-Züge (Wagen mit Faltenbälgen) und für Züge mit Kurzkuppelungen, weil Frank mit solchen Zügen keine Versuche gemacht hat. Beispiele für einen Abteilwagenzug, bestehend aus 10 Abteilwagen und für einen "mittleren" Güterwagenzug sind in den Zusammenstellungen 4 und 5 durchgerechnet.

Im Aufbau muß man die Frank'sche Formel als richtig ansehen; höchstens könnten Änderungen in folgender Weise notwendig werden. Da bei Frank der Reibungswiderstand für Lokomotiven und Wagen jedesmal der gleiche, nämlich 2,5 kg/t, er aber bei Lokomotiven höher sein muß als bei Wagen, empfiehlt es sich, den nach Frank errechneten Lokomotivwiderstand nachträglich nach einem der beiden folgenden Grundsätze zu vergrößern:

a) Man denke sich, WL gelte für zweigekuppelte Lokomotiven; für dreigekuppelte Lokomotiven mache man einen Zuschlag von 0,5 kg/t Lokomotivgewicht, entsprechend für mehr Kuppelachsen. Wenn also für Zweikuppler der Reibungswiderstand 2,5 kg/t war, so ist er

> für Dreikuppler 3,0 kg/t, " Vierkuppler 3,5 ", " Fünfkuppler 4,0 ",

b) $Z_i=\frac{Z_e}{\eta}$. Man kann Z_e belassen, wie es sich aus der Widerstandsformel ergeben hatte und erhält daraus Z_i , indem zu setzen ist

IV. Schnellbahn-Studiengesellschaft.

Berücksichtigt — im Gegensatz zu Frank — verschieden große Reibungswiderstände bei Lokomotiven und Wagen. Die "Studiengesellschaft für elektrische Schnellbahnen" stellte in den Jahren 1902 bis

Zusammenstellung 4.

	į
"Abteil-Wagenzug"	
"Abtei	-
für	
"Frank"	
nach	
Widerstandsberechnung nach	

$W_L + W_w = G_L \cdot \left[\frac{2.5 + 0.0142 \cdot \left(\frac{V_1}{10} \right)^2}{10.0142 \cdot \left(\frac{V_2}{10} \right)^2} \right] + 0.54 \cdot 1.1 \cdot F_L \cdot \left(\frac{V_2}{10} \right)^2$	$+ G_{w} \cdot \left[2.5 + 0.0142 \cdot \left(\frac{V}{10} \right)^{2} \right] + 0.54 \cdot (2 + n \cdot f_{w}) \cdot \left(\frac{V}{10} \right)^{4}$	$= 520 \left[2.5 + 0.0142 \cdot \left(\frac{\mathrm{V}}{10} \right)^2 \right] + 0.54 \cdot 18.6 \cdot \left(\frac{\mathrm{V}}{10} \right)^2$	$\mathbf{W_{gz}} = 1300 + 17,428 \cdot \left(rac{ ext{V}}{10} ight)^2 = 1300 + rac{ ext{V}^2}{5,73}$
$Z_{u\acute{c}zusammensetzun\acute{c}}$: $W_L+W_w=G_L\cdot \left[rac{2.5}{2.5} ight]$	10 Abteilwagen zu je $\mathbf{q} = 40$ t Gewicht Wasensewicht $\mathbf{G_w} = 40 \times 10 = 400$ t	Lok und Tendergewicht $G_L = \frac{120 \text{ t}}{520 \text{ t}}$ Gesamt-Zuggewicht	$ m f_w=0.56~qm$; $ m F_L=10~qm$.

			Wi	Widerstände		W in k	kg bei V in	V in k	km/st b	bzw. v i	in m/sek	k	
Steigungen	ıngen	V = 10	20 5 55	8.33	40	13.85	60	70	08	90	100	110	120
1		-	4 970	4 460	T KOO	707	1 090	11 11 11 11 11 11 11 11 11 11 11 11 11	0010	002.0	9 0 4 2	0 490	0606
1:8		1 520	15/0	1 400	1 280	09/1	1 950	cct z	2 420	7 (20	2 040	3 420	5 850
1:500	2 0/00	2 360	2 410	2 500	2 620	2775	2 970	3 195	3 460	3 760	4 085	4 460	4 870
1:400	2,5 0/00	2 620	2 670	2 760	2 880	3 035	3 230	3 455	3 720	4 020	4 345	4 720	5 130
1:300	3,330/0	3 055	3 105	3 195	3315	3 470	3 665	3 890	4 155	4 455	4 780	5 155	5 565
1:250	40/00	3 400	3 450	3 540	3 660	3 855	4 010	4 235	4 500	4 800	5 125	5 500	5 910
1:200	5 %00	3 920	3 970	4 060	4 180	4 335	4 530	4 755	5 020	5 320	5 645	6.020	6 430
1:150	6,66 0/00	4 785	4 835	4 925	5 045	5 200	5 395	5 620	5 885	6 185	6 510	6885	7 295
1:125	8 0/00	5 480	5 530	5 620	5 740	5 835	0609	6315	6 580	6 880	7 205	7 580	7 990
1:100	100/00	6 520	6 570	0999	6 780	6 935	7 130	7 355	7 620	7 920	8 245	8 620	9 030
1:60	16,66 0/00	10 020	10 070	10 160	10 280	10 435	10 630	10 855	11 120	11 420	11 745	12 120	12 530
1:40	25 0/00	14 320	14 370	14 460	14580	14 735	14 930	15 155	15 420	15 720	16 045	16 420	16 830

1) Das eigentliche Gewicht ist etwas niedriger, aber auf 40 t abgerundet der leichteren Rechnung wegen.

Zusammenstellung 5.

Widerstandsberechnung nach "Frank" für "Güterzug".

Zugzusammensetzung:

30 Wagen gedeckt 15 " offen leer

15 , offen beladen 60 = Wagenanzahl

 $f_w=0.76\ qm\,;\ F_L=10\ qm$

Mittleres Gewicht eines Wagens q = 20 t

$$\begin{split} W_L + W_w &= G_L \cdot \left[2.5 + 0.0142 \cdot \left(\frac{V}{10} \right)^2 \right] + 0.54 \cdot 1.1 \cdot F_L \cdot \left(\frac{V}{10} \right)^2 \\ &+ G_w \cdot \left[2.5 + 0.0142 \cdot \left(\frac{V}{10} \right)^2 \right] + 0.54 \cdot (2 + n \cdot f_w) \cdot \left(\frac{V}{10} \right)^2 \\ &= 1320 \cdot \left[2.5 + 0.0142 \cdot \left(\frac{V}{10} \right)^2 \right] + 0.54 \cdot (11 + 2 + 60 \cdot 0.76) \cdot \left(\frac{V}{10} \right)^2 \\ \mathbf{W}_{gz} &= 3300 + 50.388 \cdot \left(\frac{V}{10} \right)^2 = 3300 + \frac{V^2}{1.98} \end{split}$$

		Widerstä	nde W ii	n kg bei '	V in km/s	t bzw. v i	in m/sek
Stei	gungen	$V = 10 \\ v = 2,77$	20 5,55	30 8,33	40 11,11	50 13,85	60 16,66
1;∞		3 351	3 502	3 754	4 108	4 562	5 118
1:500	2 %/00	5 991	6 142	6 394	6 748	7 202	7 758
1:400	2,5 % 0/00	6 651	6 802	7 054	7 408	7 862	8 418
1:300	3,33 %	7 747	7 898	8 150	8 504	8 958	9 514
1:250	4 0/00	8 631	8 782	9 034	9 388	9 842	10 398
1:200	5 %/00	9 951	10 102	10 354	10 708	11 162	11 718
1:150	6,66 %	12 142	12 293	12 545	12 899	13 353	13 909
1:125	8 % 00	13 911	14 062	14 314	14 668	15 122	15 678
1:100	10 º/oo	16 551	16 702	16 954	17 308	17 762	18 318
1:60	16,66 º/oo	25 342	29 902	30 154	30 508	30 962	31 518
1:40	25 %	36 351.	36 502	36 754	37 108	37 562	38 118

1906 Schnellbahnversuche auf der Strecke Berlin-Zossen an, woraus die folgende Widerstandsformel entstand. Sie ist besonders geeignet für D-Züge, weil Versuche mit solchen zugrunde liegen.

$$\begin{split} W_{gz}^{\ kg} &= W_L^{\ kg} + W_w^{\ kg} = G_L^{\ t} \cdot (4 + 0.027 \cdot V) + 0.0052 \, V^2 \cdot F_L^{\ qm} \\ &+ G_w^{\ t} \cdot (1.3 + 0.0067 \cdot V) + 0.0052 \, V^2 \cdot \Sigma f_w^{\ qm} \end{split}$$

Hierin bedeuten: FL \approx 10 qm bei großen, regelspurigen Lokomotiven die Größe der Lokomotiv-Querprojektion,

" \cong 7,5 qm bei zugeschärfter Rauchkammertür, $f_{\rm w}=1~{
m qm}$ für jeden D-Wagen, $=2~{
m qm}$ für jeden Abteilwagen.

In den Zusammenstellungen 6 und 7 sind Beispiele für einen Abteilwagen- und einen D-Zug durchgerechnet.

Für "Schnellbahn-Motorwagen" gilt die Formel:

$$\label{eq:wkg} W^{kg} = G^t \cdot (1.8 + 0.0067 \cdot V) + 0.0052 \cdot V^2 \cdot F^{qm} \text{, worin } F = 7.5 \text{ qm.}$$

V. Vereinfachte Widerstandsformeln.

Widerstand nur als Funktion des Gewichtes, nicht auch als Funktion der dem Wind entgegenstehenden Flächen.

$$\approx 2.5 + \frac{v}{3500}$$
 vierachsige Abteilwagen,

"
$$\simeq 2.5 + \frac{V^2}{2500}$$
 } zwei- oder dreiachsige Abteilwagen, bedeckte Güterwagen,

,,
$$\cong 2.5 + \frac{V^2}{2000}$$
 Güterzug, bestehend aus:

1/2 gedeckte Wagen, wenigstens halbbeladen,
1/4 offene leere Wagen,

1/4 offene beladene Wagen,

"
$$\cong 2.5 + rac{V^2}{1000}$$
 offene leere Wagen,

Als Hilfstabelle zum Ausrechnen der Widerstände nach den "vereinfachten Widerstandsformeln" dient die Zusammenstellung 8. Die Widerstände sind dort für ein Gesamtzuggewicht von 1000 t errechnet. Für leichtere bzw. schwerere Zuggewichte lassen sich die Fahrwiderstände hieraus leicht ermitteln.

VI. Sanzin1).

Gibt den Lokomotiv- und Tenderwiderstand nur für Lokomotiven unter Dampf, Sanzin trennt das Gewicht L, auf den Lokomotiv- und Tenderlaufachsen von dem Gewicht L2 auf den Lokomotivkuppelachsen.

$$W_i^{kg} = 0,006 \cdot F \cdot V^2 + L_1^t \cdot (1.8 + 0.015 \cdot V) + L_2^t \cdot (a + \frac{0.1075}{D^m} \cdot V)$$

¹⁾ Z. V. D. I. 1907, S. 1699; Organ 1907, S. 69.

Zusammenstellung 6,

Widerstandsberechnung nach "Studiengesellschaft" für "Abteil-Wagenzug".

$W_L + W_w = G_L \cdot (4 + 0.025 \cdot V) + 0.0052 \cdot V^2 \cdot F$ + G \tau 0.3 \tau 0.0067 \tau V + 0.0159 \tau V^2 \tau S \tau 0.0067	$=120 \cdot (4+0.027 \cdot V) + 0.052 \cdot V^2 + 400 \cdot (1.3+0.00) + 0.104 \cdot V^2$	$W_{gz} = 1000 + 5.92 \cdot V + 0.156 \cdot V^2$
	Wagengewicht $G_{w}=40\times10=400$ t Loke, and Tendergewicht $G_{L}=\frac{120 \text{ t}}{6820}$ Gresumt-Zuösewicht $G_{02}=\frac{520 \text{ t}}{620}$	$f = 2 \text{ qm}$; Σ (f) = 20 F = 10 qm

(V.790

			M	Widerstände	tände	Win	kg bei	bei Vin km/	m/st bz	st bzw. v in	m/sek		
Steig	Steigungen	V = 10 v = 2,77	20 5,55	8,33	40 11,11	50 13,85	60 16,66	70 19,44	80 22,22	90 25,0	100 27,77	30,55	120
8		1 075	1 185	1 320	1 490	1 685	1 920	2175	2 475	2 780	3 152	3 540	3 960
1:500	20/03	2115	2 225	2 360	1 530	2 725	2 960	3 215	3515	3 820	4 192	4 580	2 000
1:400	2.5%	2 375	1 485	2 620	2 790	2 985	3 220	3 475	3 775	4 080	4 452	4 840	5 260
1;300	00	2810	2 920	3 055	3 225	3 420	3 655	3 910	4 210	4 515	4 887	5 275	5 695
1;250	40/00	3 155	3 265	3 400	3 570	3 765	4 000	4 255	4 555	4 860	5 232	5 620	6 040
1;200	50/00	3 675	3 785	3 920	4 090	4 285	4 520	4 775	5 0 7 5	5 380	5 752	6 140	6 560
1;150	6,66 %	4 535	4 650	4 785	4.955	5 450	5 385	5 640	5 940	6 245	6 617	7 005	7 425
1:125	80/00	5 235	5 345	5 480	5 650	5 845	080 9	6 335	6 635	6 940	7 312	7 700	8 120
1:100	100/00	6 275	6385	6 520	0699	6885	7 120	7 375	7 675	7 980	8 352	8 740	9 160
1:60	16,66 %	9 7 7 5	9 885	10 050	10 490	10 385	10 620	10 875	11 175	11 480	11 852	12 240	12 660
1:40	250/00	14 075	14 185	14 320	14 490	14 685	14 920	15 175	15 475	15 780	16 152	16 540	16960

[&]quot;) Das eigentliche Gewicht ist etwas niedriger, aber auf 40 t abgerundet der leichteren Rechnung wegen.

Zusammenstellung 7.

Widerstandsberechnung nach "Studiengesellschaft" für "D. Wagenzug".

Zugzusammensetzung:

7 vierachsige D-Wagen zu je q=40 t Gewicht 4 sechsachsige " " $G_{\rm w}=(7\cdot40)+(4\cdot50)=480$ t Lok.-u. Tendergewicht GL = 130 t 130t 610t

Gesamt-Zuggewicht Ggz == f=1 qm; $\Sigma(f)=11$ F=10 qm

 $= 130 \cdot (4 + 0.027 \cdot V) + 0.052 \cdot V^2 + 480 \cdot (1.3 + 0.0067 \cdot V)$ $+G_{w}\cdot(1,3+0,0067\cdot V)+0,0052\cdot V^{2}\Sigma(f)$ $W_L + W_w = G_L \cdot (4 + 0.027 \cdot V) + 0.0052 \cdot V^2 \, F$ +0,0572 · V2

 $W_{gz} = 1144 + 6,726 \cdot V + 0,1092 \cdot V^2$

	120 33,33	0 70 70	4 815	5 060	5 565	5 975	6.584	7 600	8 415	9 635	13 700	18 785
s k	110 30,55	2008	4 485	4 830	5 235	5 645	6 255	7 275	8 085	9 305	13 370	18 455
n m/sek	100 27,77	9 910	4 190	4 435	4 940	5 350	5 960	6 980	7 790	9 010	13 075	18 160
bzw. v in	90 25,0	9.635	3 915	4 155	4 665	5 075	5 685	6 705	7 515	8 735	12 800	17 885
km/st.b	80 22,22	9.880	3 660	3 905	4 410	4 820	5 430	6 450	7 260	8 480	12 545	17 630
V in k	70 19,44	9.150	3 430	3 675	4 180	4 590	5 200	6 220	7 030	8 250	12 315	17 400
bei	99'91	1 940	3 220	3 465	3 970	4 380	4 990	6 010	6 820	8 040	12 105	17 190
/ in kg	50 13,85	1 755	3 035	3 280	3 785	4 195	4 805	5 825	6 635	7 855	11 920	17 005
inde W	40	1 590	2870	3115	3 620	4 030	4 640	2 660	6 470	7 690	11 755	16840
Widerstände	8,33	1 445	2 725	2 970	3 475	3 885	4 4 4 9 5	5 5 5 1 5	6 325	7 545	11 610	16 695
Wic	20,555	1 320	2 600	2 845	3 350	3 760	4 370	5 390	6 200	7 420	11 485	16 550
	V = 10 v = 2,77	1 220	. 2500	2 745	3 250	3 660	4 270	5 290	6 100	7 320	11 385	16 470
	Steigungen		2 0/00	2,5 0/00	3,33 0/00	4 0/00	00/09	00%999	8 %00	10 %	16,66 %	25 0/00
	Steig	8	1:500	1:400	1;300	1:250	1:200	1:150		0	1:60	1:40

Hierin bedeuten:

L, das Gewicht auf den Lokomotiv- und Tenderlaufachsen in t,

L2 das Gewicht auf den gekuppelten Achsen in t,

D den Kuppelraddurchmesser in m,

a = 5,5 für Zweikuppler,

a = 7.0 , Dreikuppler, a = 8.0 , Vierkuppler, a = 8.8 , Fünfkuppler.

VII. Strahl1).

Nur für Lokomotiven unter Dampf und für Dauerleistungen, also bei Anstrengung bis zur Grenze der Verdampfungsfähigkeit.

$$w_i^{kg/t} = 2.5 + 0.067 \cdot \left(\frac{V}{10}\right)^2 + \left[a + 0.116 \cdot \frac{V}{D^m}\right] \cdot \left(\frac{G_r}{G_{L \perp T}}\right)^t$$

Hierin bedeuten:

D den Kuppelraddurchmesser in m,

Gr das Lokomotivgewicht auf den gekuppelten Achsen in t, G_{L+T} das betriebsfähige Gesamtgewicht von Lokomotive

nebst Tender in t,

a = 2,5 für Zweikuppler,

a=4.0 , Dreikuppler, a=5.5 , Vierkuppler, a=7.0 , Fünfkuppler.

Tafel I^2) zeigt eine Übersicht älterer und neuerer Widerstandsformeln, ihre Formen und Benutzungsarten nebst Literaturangaben. In Abb. 19 sind die für einen bestimmten D-Zug nach verschiedenen Widerstandsformeln errechneten Gesamtwiderstände vergleichsweise aufgetragen.

4. Widerstände für Schmalspurlokomotiven.

$$\mathbf{w}_{\mathrm{gz}}^{\,\mathrm{kg/t}} = \mathbf{w}_{\mathrm{l}}^{\,\mathrm{kg/t}} + \mathbf{w}_{\mathrm{s}}^{\,\mathrm{kg/t}} + \mathbf{w}_{\mathrm{k}}^{\,\mathrm{kg/t}} = \mathrm{Lauf}$$
-, Steigungs- und Krümmungswiderstand.

Der Luftwiderstand (sonst ein Bestandteil von w1) wird bei den vorkommenden geringen Geschwindigkeiten vernachlässigt.

$$\begin{split} w_1 &= 2.4 + \frac{V^2}{1000} \; \text{(nach "Clark")}; \; \; w_s = s \; ^0\!/_{00}; \\ w_k &= \frac{400}{R^m - 20} \; \; \text{für } \; 1000^{mm} \; \text{Spur,} \\ w_k &= \frac{300}{R^m - 10} \; \; \text{für } \; 750^{mm} \; \text{Spur,} \\ w_k &= \frac{200}{R^m - 5} \; \; \text{für } \; 600^{mm} \; . \text{Spur und weniger.} \end{split}$$

2) Vgl. Anhang.

¹⁾ Anstrengung der Dampflokomotiven, Strahl, S. 30.

errechnet nach den "vereinfachten Widerstandsformeln" $w_{gz}^{kg/t} = 2.5 +$ Fahrwiderstände Wkg für Gesamt-Zuggewicht $G_{gz} = 1000$ t, Zusammenstellung 8.

										Y		
				Fahrv	widerst	tände	W in 1	kg für	V in 1	km/st		
Steigung	×	10	20	30	40	50	09	102	08	06	100	110 ·
	1 500	9 570	077.0	3 100	3 570	4 170	4 900	5 770	6770	7 900	9170	10 570
	0000	9.550	2 700	2 950	3 300	3 750	4 300	4 950	5 700		7 500	8 550
	9.500	9.540	0996	2 860	3 140	3 500	3 940	4 460	2 000	5 740	6 500	7 340
1:8	3 000	9.535	2 635	2 800	3 035	3 335	3 700	4 135	4 635	5 200	5 835	6 535
	3 500	2 530	2615	2 755		3 215	3 530	3 900	4 330	4 815	5 355	5 955
		2 525	2 600	2 725	2 900	3 125	3 400	3 750	4 100	4 525	2 000	5 525
	1 500	4 570	4 770	5 100	5 570	6170	0069	7 770	8 770	0066	11 170	12 570
	0000 6	4 550		4 950	5 300	5 750	6 300	6 950	7 700	8 550	9 500	10 550
	2500		4 660	4 860	5 140	5 500	5 940	6460	7 060	7 740	8 500	9 340
1:500	3 000	4 535	4 635		5 085		5 700	6 135	6 635	7 200	7 835	8 535
	3500	4 530	4 615		4 955		5 530	5 900	6 330	6815	7 355	7 955
	4 000	4 525			4 900	5 125	5 400	5 750	6 100	6 525	7 000	7 525
	1500	5 070	5 270	5 600	6 070	6 670	7 400	8 270	9 270	10 400	11 670	13 070
	2 000	5 050	5 200	5 450	5 800	6 250	0089	7 450	8 200	9 050		11 050
4000	2 500	5 040	5 160	5 360	5 640	00009	6 440	0969	7 560	8 240	00006	9840
1:400	3 000	5 035	5 135	5 300	5 535	5 835	6 200	6 635	7 135	7 700	8 335	9 035
	3 500	5 030	5115	5 255	5 455		6 030	6 400	6 830	7 315		8 455
	4 000	5.025	5 100	5 225	5 400	5 625	2 300	6 250	0099	7 025		8 025
	1500	0069	6 100	6 435	0069	7 510	8 235	9 100		11 235	12 500	13 900
	2 000	5 885	6 035	6 285	6 635	7 085	7 635	8 285	9 035	9885	10 835	11 885
1 . 200	2500	5875	5 995	6 195	6 475	6 835	7 275	7 795		9 0 7 5	9835	10 675
1:000	3 000	5 870	5 970	6 135	6 370	0299	7 035	7 440		8 535		9 870
		5 865	5 950	0609	6 290	6 550	6 865	7 235		8 150	8 690	9 290
	4 000	2 860	5 935	0909	6 235	6 460	6 735	7 055		7 860	8 335	8 860

1 200 1 200	1 500 2 000 2 500 3 000 3 500	7 570 7 550 7 540 7 535 7 535	7 770 7 700 7 660 7 635 7 635	8 100 7 950 7 860 7 800 7 755	8 570 8 300 8 140 8 035 7 955	9170 8750 8500 8335 8215	9 900 9 300 8 940 8 700 8 530	10 770 9 950 9 460 9 135 8 900	11 770 10 700 10 060 9 635 9 330	12 900 11 550 10 740 10 200 9 815	14 170 12 500 11 500 10 835 10 355	15 570 13 550 12 340 11 535 10 955
	4 000		7 600	F 0	7 900	8 125		8 750	9 100	9 525		
10	1500 2 000 2 500	9 235 9 220 9 210	9435 9370 9330	9 770 9 620 9 530	10 230 9 970 9 810	10 830 10 420 10 170	11 570 10 970 10 610	12 430 11 620 11 130	13 430 12 370 11 730	14 570 13 220 12 410		17 230 15 220 14 010
001:1	3 500 3 500 4 000	9 200 9 195 9 190	9 300 9 280 9 265	9 470 9 420 9 390	9 700 9 620 9 565	10 000 9 880 9 790	10 370 10 195 10 065	10 800 10 56 5 10 415	11 200 10 995 10 765	11 870 11 480 11 190	12 400 12 020 11 665	13 200 12 620 12 190
	1500	12 570		13 100	13 570	14 170	14 900	15 770	16 770	17 900	19 170	20 570
1.100	2 500	12 540		12 860	13 140	13 500	13 940	14 460	15 060	15 740	16 500	17 340
	3 500	12 535	12 635	12 800	13 035	13 335	13 530	14 135	14 635	15 200	15 835	16 535
	4 000	12 525		12 725	12 900	13 125	13 400	13 750	14 100	14 525	15 000	15 525
	1 500	19 270	19 470	19 800	20 270				23 470	24 600		27 267
1:60	2 500	19210	19 330	19 530	19.810				21 730	22 410		24 010
	3 500	19 200	19 300 19 280	19 470	19 700	20 000 19 880	20 370 20 195	20 800 20 565	21 200 20 995	21 870 21 480	22 400 22 020	23 200 22 620
	4 000	19 180	19 265	19 390	19 565				20 765	21 190		22 190
	1500	27 570 27 550	27 770	28 100 27 950	28 570	29 170	29 900	30 770	31 770	32 900	34 170	35 570
1:40	2 500			27 860		28 500	28 940		30 060		31 500	
	3 500			97 755		28 335	28 700		29 635		30 835	
	4 000			27 725		28 125	28 400		29 550		30 000	
											STATE OF THE PARTY.	

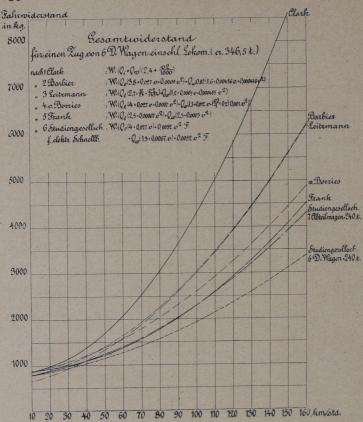


Abb. 19. Laufwiderstand für bestimmten Zug, berechnet nach verschiedenen Widerstandsformeln.

Für Schmalspur fehlt es an Versuchen. Man rechnet häufig nach folgender Tabelle: 1)

Spur	Wagen w _w	Lokomotiven w _l .	Krümmung w _k
1000 750 6 00	$2,6 + 0,0003 \cdot V^{2}$ $2,7 + 0,0002 \cdot V^{2}$ $2,8 + 0,0002 \cdot V^{2}$	$\begin{array}{c} 2.7 \cdot \sqrt{a + 0.0015} \cdot V^2 \\ 2.8 \cdot \sqrt{a + 0.001} \cdot V^2 \\ 2.9 \cdot \sqrt{a + 0.0008} \cdot V^2 \end{array}$	400: (R — 20) 350: (R — 10) 200: (R — 5)

Hierin ist a=3 für schwere Güterzuglokomotiven, a=2 für Personenzuglokomotiven.

¹⁾ Vgl. Hütte, 22. Aufl., Bd. III, S. 718,

5. Anwendung der Widerstandsformeln.

I. Bei Lokomotivversuchen, wenn deren Zweck ist, einerseits genau Zugkraft und Leistungen (Z und N), anderseits den Verbrauch an Dampf und Kohlen hiertür $(\mathfrak{D}/_{N-st})$ und $B/_{N-st})$ möglichst genau festzustellen. In diesem Falle müssen genaue Widerstandsformeln, mit Berücksichtigung der Windflächen, für den betreffenden Versuchszug geeignet, genommen werden. Bei Vorhandensein eines Meßwagens im Versuchszug lassen sich nachträglich die gemessenen Kräfte mit den aus den Widerstandsformeln berechneten vergleichen.

II. Für die Konstruktion einer Lokomotive, wenn das Leistungsprogramm (Geschwindigkeit, Steigung, Zuglast) gegeben ist.

III. Zur Berechnung der "Schleppleistungen") einer vorhandenen Lokomotive.

Es ist dies eine Aufgabe, die der Betrieb stellt. Es sollen für vorhandene Lokomotiven, d. h. Lokomotivgattungen, die "Belastungen" festgesetzt werden, die von diesen Lokomotiven auf bestimmten Strecken (also nach dem Strecken-Längsprofil) mit bestimmten Geschwindigkeiten gefahren werden können. Hierfür ist es nicht vorteil-haft, Widerstandsformeln zu benutzen, die Windflächen enthalten. Das Zuggewicht soll ja erst gesucht werden, und daher kann über die Windflächen (Zugzusammensetzung) nicht vorher schon etwas gesagt Es ist also wichtig, vereinfachte Widerstandsformeln zu benutzen, die den Widerstand nur vom Gewicht abhängig feststellen lassen. Solche vereinfachten Formeln können nicht allgemein, sondern nur für bestimmte Zugarten einigermaßen genau festgestellt werden. Nachher steht es frei, mit Hilfe der genaueren Formeln nachzuprüfen. Selbstverständlich spielen hierbei auch die vorher gemachten Betriebserfahrungen eine Rolle. Denn aus dem Betrieb ist bekannt, welche Lasten zwischen zwei Haltestellen von bestimmten Lokomotivbauarten befördert werden können.