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Abstract

Development cycles in software engineering are progressively getting shorter, new
apps gain popularity overnight and formerly unexploited data sources are tapped
by the minute. The automotive industry faces a fierce battle against the rest of the
consumer goods industry, causing automotive manufacturer’s customers to demand
the same rapid adaption to innovation.
While the traditional approach in developing cars is to specify requirements three
to five years ahead of start of production, this approach hardly works in software
development. Thus, in order to enable cars to quickly integrate new services and
consequently add value to the whole product, a sustainable software architecture
needs to be found.
Therefore, this thesis assesses various approaches of describing web services and how
to create value-adding mash-ups. This includes a close examination of the current
state of Semantic Web technologies and how to utilize them for linking up services
in a car manufacturer’s backend infrastructure. An exemplary implementation then
demonstrates where the key-issues are currently at, therefore following a bottom-up
approach using existing real-world services.
The existing gap between high-level abstractions envisioning machine-agents rea-
soning upon meaningful data and proprietary non-interoperable low-level imple-
mentations can only be bridged in semantically controlled and, thus, unambiguous
environments. The proposed workflow scheme introduced in the course of this thesis
tries to cover this middle ground by exposing only semantically annotated data and
manually mapping strings to semantically unambiguous things.
The results show, that existing web service implementations are still far from ha-
bituating a standardized environment. To enable Semantic Web technologies, data
providers would still have to reach consensus on a multiplicity of low-level imple-
mentation details.
A final discussion concludes from the lessons learned and leads to an outlook that
provides further implications for future research in this field.
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1 Introduction

Since the creation of the world wide web, the web itself is constantly transforming.
The current state of the art is that human beings invoke web services by browsing
the internet with dedicated web-browsers, like Google Chrome, Mozilla Firefox,
Microsoft Edge or others. Therefore, information is exchanged in a human-readable
way, usually as plain text enriched with tags, providing additional information for
its representation within a browser. The common standard here is the Hypertext
Markup Language or HTML. However, as machines themselves are being connected
to the web, the need for machine-understandable information exchange is arising.
Thus, a multitude of proposals for standards and best-practices is emerging, trying
to embed devices into the fabric of a so-called Web of Things (WoT).
Application Programming Interfaces (APIs) for web services are designed to offer
a non-HTML way of exposing and consuming resources for servers and clients,
respectively. As modern vehicles are equipped with an enormous variety of sensors
and actuators, they represent the ultimate WoT-device. Hence, embedding cars as
things into the WoT will be a critical endeavor for automotive manufacturers. Being
one of them, BMW is well-aware of this demand. On the occasion of their 100

th

anniversary, they published their new strategy ”NUMBER ONE >Next” in a press
release[1], stating:

”In the coming years, the Group will focus on broadening its technological
expertise, expanding the scope of digital connectivity between people, vehicles
and services and actively strengthening sustainable mobility.”[1, p. 1-2]

as well as

”A clear focus will be placed on high definition digital maps, sensor technology,
cloud technology and artificial intelligence, the decisive areas for success in this
segment.”[1, p. 4]

In order to make these visions come true, infrastructure has to be created, allowing
consumers to integrate their vehicles into the WoT and enabling them to integrate
third-party services to ultimately add further value to their product. These value-
adding services may occur in the form of data offered by physical devices, or
enterprises exposing their internal business processes online. However, there still
prevails the challenge of linking these individual services together to attain more
complex targets. Current best-practice usually requires software developers drawing
static links between services at creation or human reasoning for composition at
runtime. Here, semantic web technologies might provide a remedy.
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1 Introduction

In the course of this thesis, the following research questions should provide guidance
for the narrative:

How can web services be described?
After conducting extensive research, proposals for a generic description of
web services are to be examined and compared among each other. Afterwards,
one of these description methods is chosen for implementation in a proof-of-
concept (PoC) solution. This PoC has to be based on real world use-cases, to
demonstrate practical relevance.

How can various web services be composed to realize a specific use case?
Based on this formalized description of web services, concepts for web service
composition are to be examined. Yet again, existing proposals are to be com-
pared and discussed. For prototypical implementation, one of them is then to
be included in the PoC.

Which web service description and composition styles are most promising?
Based on an evaluation of the actual implementation of the PoC, the imple-
mented service composition style is verified for its capability in a real-world
environment.

With all these questions answered, a further outlook and implications for improve-
ments and future work can be made.
The thesis is divided into five chapters. The second chapter elaborates previous work
on web service description and composition. It also intends to provide an overview
of the required fundamentals as well as references for further reading. Based on this
theoretical backing the third chapter elucidates the chosen methodology and explains
how the results of this work were obtained. In chapter four, the results gained from
the PoC proposed in the methodology chapter are presented and interpreted. The
last chapter links these results to results from past work and distinguishes them from
previous approaches. Finally, these conclusions are used for further implications on
this topic.
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This chapter offers a theoretical background for the thesis, laying the foundation
for all chapters to follow. Its goal is to facilitate a basic understanding of the topic,
rather than provide an exhaustive clarification of all the theory used in the course of
this thesis. For in-depth investigation, further reading following the given references
is highly encouraged.
The first section starts with the basics of web technologies and the Semantic Web will
be discussed. Specifications that are used in further considerations will be examined
in more detail. Subsequently, an analysis of two major architectural approaches is
conducted, dissecting them into their fundamental principles. Based on technical
specifications and architectural rationale, various web service description techniques
will be analyzed in regards to their conformance to architectural principles, maturity
and application. In the last section, orthogonal components as authentication and
authorization will be considered and the popular OAuth standard presented.

2.1 The Semantic Web

Since its beginnings in 1989, the World Wide Web (WWW) has been subject to
unmatched progress and evolution, both in technologies enabling it and its impact
on modern society. The idea for a world-wide network arose when Tim Berners-
Lee and his colleagues tried to find a way to cut a Gordian knot of incompatible
networks, disk formats, data formats and character encoding schemes that had
emerged at CERN in the past decades. Therefore, they intended to create a shared
information space, where people as well as machines could communicate with each
other. To guide their endeavors, they formulated six criteria the web should be able
to accomplish:[2]

1. An information system must be able to record random associations between
any arbitrary objects, unlike most database systems;

2. If two sets of users started to use the system independently, to make a link
from one system to another should be an incremental effort, not requiring
unscalable operations such as the merging of link databases.

3. Any attempt to constrain users as a whole to the use of particular languages or
operating systems was always doomed to failure;

4. Information must be available on all platforms, including future ones;
5. Any attempt to constrain the mental model users have of data into a given

pattern was always doomed to failure;
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2 Related Work

6. If information within an organization is to be accurately represented in the
system, entering or correcting it must be trivial for the person directly knowl-
edgeable.

The basic architectural principles to accomplish these goals comprised a few already
well-established practices and protocols of software design.
For a better understanding, the original WWW architecture diagram is illustrated in
figure 2.1 (reillustrated after the original by Tim Berners-Lee.):

MacPC Xdumb

Addressing scheme + Common protocol + Format negotiation

HTTP
server

FTP
server

Gopher
server

NNTP
server

WAIS
gateway

XFIND
gateway

VMS/HELP
gateway

NeXT

Internet
News

Figure 2.1: WWW architecture diagram from 1990.

A key point in designing the web architecture was that specifications should be
independent while still being interoperable. This would allow parts of the web to
evolve, while older specifications would still remain operable. Thus, various different
protocols emerged, quickly becoming standards in what today is the World Wide Web.
Subsection 2.1.1 will further elaborate on these standards, namely Universal Resource
Identifiers (URIs), the Hypertext Transfer Protocol (HTTP) and the Hypertext Markup
Language (HTML).
To navigate or browse the web, client interfaces had to be implemented, today usually
referred to as ”web browsers”. The first popular web browser came in the form
of Mosaic in 1993, comprising a graphical user interface and able to offer simple
traversal of web content for the average user. Later on, large companies like Microsoft
with their Internet Explorer, as well as open source initiatives like Mozilla Firefox (in
fact a distant relative of Mosaic) further contributed to making the WWW accessible.
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2.1 The Semantic Web

Web browsers seemed to offer a good way for human users to interact with the web.
However, while most of the data offered through browsers was machine-readable,
hardly any data was machine-understandable. Envisioning a web, where the meaning
of data is not only comprehended by human agents, but also machine agents, Tim
Berners-Lee proposed the concept of the Semantic Web. [3] There, machine agents
should not be able to reason upon data through complex artificial intelligence, but
by semantic information encoded in web pages themselves.
This section elaborates the idea of the Semantic Web, starting by introducing the
semantic web technology stack. The following subsections will then further elaborate
the main building blocks of semantic web technologies. The technologies that are
used to realize the vision of the semantic web are usually depicted in a layered stack,
the so-called Semantic Web Technology Stack and stems from the current world wide
web standards, Hypertext Transfer Protocol (HTTP), Unified Resource Identifiers
(URI) and Hypertext Mark-up Language (HTML).
Figure 2.2 illustrates the Semantic Web Stack in three dimensional graphics (courtesy
of Benjamin Nowack).

Figure 2.2: The Semantic Web Technology Stack.

This particular figure differs from other illustrations, as the creator tried to emphasize
that the Semantic Web Technology Stack is ”not a piece of cake”, hinting at others
that depict a strictly layered two-dimensional stack. This representation is more
appropriate as some technologies are orthogonal to others and influence several
layers in parallel. On top of the current world wide web standards, the Resource

5
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Description Framework (RDF) is serialized into one of many different formats, like
XML, JSON-LD, RDFa and many others. Within RDF, a knowledge base may be
defined by using typing and classification provided by an ontology. These are usually
created in OWL and use a controlled set of terms. In parallel, SPARQL offers the
possibility to query RDF graphs. On top of an existing knowledge-base, logical
rules may be defined, to enable reasoners to create new knowledge from existing
annotated knowledge. Orthogonal components involve security and trust issues and
require authentication and authorization standards.

2.1.1 The Web Platform

The foundation of the Semantic Web is the World Wide Web, as has already been
explained briefly in the introduction part of this section. This subsection is intended
to point out key aspects of the URI, HTTP and HTML standards, which will be
used for further considerations in this chapter and those to follow. To get a deeper
understanding of the capabilities of these technologies, the corresponding official
W3C recommendation documents provide detailed specifications and guidance for
implementations.

URI/IRI - Uniform/Internationalized Resource Identifiers

In 1994, Tim Berners-Lee introduced the concept of Unified Resource Identifiers
(URIs) as a syntax to unambiguously describe an abstract or physical resource of
the web.[4] Initially, he also introduced subsets of URIs, namely Unified Resource
Locators (URL) and Unified Resource Names (URNs), both then specified in separate
documents[5][6]. However, the current definition of URIs [7] deems these distinctions
obsolete and the definition of the term ”resource” is given a much more generic
meaning. According to it, resources can be locations, namespaces, electronic doc-
uments, services and many other abstract or even physical things (URIs do not
necessarily have to identify web-resources only). To transcribe a URI, only a very lim-
ited set of characters is permitted. This set consists of the basic Latin alphabet, digits
and a few more special characters, encoded in US-ASCII. However, as globalization is
ever-progressing, the need for a more diverse character set is arising. URIs are often
compiled in a way that allows them to be remembered easily, hence using words
from natural language instead of strings compiled of random characters is a common
practice. By following this practice, URIs are further enhanced by semantics, as
they are then carrying human-interpretable information. However, for many people
that are non-native in English, Latin characters are as meaningless as randomly
compiled strings. This issue is often tried to be solved using existing transcriptions,
like pinyin for Chinese characters (Hanzi). Herein lies the problem that this adds
to further ambiguity in URIs (in pinyin there are only about 400, respectively 1500

unambiguous syllables, depending on differentiating tones or not1).
1http://chinese.stackexchange.com/questions/14596/how-many-syllables-does-chinese-have
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2.1 The Semantic Web

As a solution, Duerst and Suignard from W3C proposed Internationalized Resource
Identifiers (IRIs), extending the available set of characters for URIs from US-ASCII
only to UTF-8 encoded[8]. As the W3C has shown, to this date UTF-8 is the most
used character encoding, making up 87,1% of the web1. Thus, it appears to be an
obvious decision to incorporate UTF-8 in the syntax to describe resources too.
Regarding applicability, the W3C lists three conditions to enable practical use of
IRIs[8, p.4]:

• Protocols or format elements have to be explicitly designated to carry IRIs.
• Protocols or formats carrying IRIs have to be able to represent the extensive

range of characters.
• A URI corresponding to a certain IRI has to encode original characters into

so-called octets using UTF-8.

This means, for example, that according to its current specification HTTP does not
natively support IRIs as request targets. However, there is a way of mapping an IRI
onto a URI, replacing original characters by the hexadecimal notation of their octet
value. Duerst and Suignard offer a step-by-step instruction to do so [8, p.10-11]. In
section 7, they also offer informative guidelines on how to handle URIs/IRIs. To
maximize interoperability they recommend that systems which generate resource
identifiers should expose these in a URI using the aforementioned hexadecimal
notation for non-ASCII original characters.
Regarding the syntax of URIs/IRIs, RFC 3986[7, p.16] offers the specification for URI
composition.

http︸︷︷︸
scheme

: // www.example.org : 8080︸ ︷︷ ︸
authority

/ over/there︸ ︷︷ ︸
path

? service = 4sq︸ ︷︷ ︸
query

# venue︸ ︷︷ ︸
f ragment

Only the scheme and path components are required, although they might be empty.
All other components are optional.

scheme Each URI begins with a scheme name that refers to a specification for
assigning identifiers within that scheme. While most schemes are directly
named after a specific protocol they are associated with (e.g. http), it is a
common mistake to refer to schemes as protocols. Schemes can exist outside of
protocols, as can be observed with (e.g. the file-scheme). Within a scheme, the
syntax and semantics of a URI can be restricted even further. The registration
of a new scheme can be done at the Internet Assigned Numbers Authority
(IANA). A detailed description of the registration process can be found in a
best current practice (BCP) document, released by the IETF in 2015.[9]

authority Most URIs include the identifier of a naming authority that administrates
the hierarchical structure and semantics of the rest of that URI (path, query
and fragment). The authority name itself is also specified by a generic syntax:

1https://w3techs.com/technologies/overview/character_encoding/all
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user : unreserved︸ ︷︷ ︸
user in f ormation

@ www.example.org︸ ︷︷ ︸
host

: 8080︸︷︷︸
port

User information may contain a user name and other optional scheme-specific
information. The use of the format user:password, however, is highly discour-
aged as it is considered deprecated due to security considerations. The host
is either an internet protocol (IP) address or a domain name system (DNS)
registered name string. The port subcomponent indicates an optional port as
used in various transport protocols (TCP, UDP etc.). The type of transport
protocol used is defined by the scheme. Furthermore, schemes might also
define default port numbers (e.g. 21 for FTP with TCP, 20 for FTP with UDP).

path The path component allows to further distinguish hierarchically structured
resources within the scope of a URI’s scheme and naming authority. Every
subpath of the root path in the hierarchy is separated by the ”/” character.

query The query component allows to further distinguish non-hierarchically struc-
tured resources within the scope of the URI’s scheme and naming authority.
Beyond that, its syntax is not defined. However, in most implementations it
carries additional information in the form of key=value pairs.

fragment The fragment component identifies a subresource of a primary resource
by providing additional information. This subresource may be a subset of the
primary resource or a part or portion of it. Its interpretation is dependent on
the media-type of the representation.

In Semantic Web and Linked Data technologies, IRIs are used to unambiguously
identify things and their relations. However, as the generic syntax for IRIs allows
for rather long and verbose denotations, scoped compaction mechanisms would
allow to reduce verbosity and improve readability for human users. Based on these
considerations the compact URI scheme (CURIE) was specified. [10] CURIEs offer a
mechanism of compacting IRIs in a local scope (for example within a JSON or XML
document) and a mechanism of extending existing CURIEs to denote new IRIs. A
CURIE consists of two components, a prefix and a reference.

schema︸ ︷︷ ︸
pre f ix

: Place︸ ︷︷ ︸
re f erence

The prefix component must therefore be defined as a valid IRI before, while the
reference component must be able to be resolved to a valid IRI. In this exam-
ple, instead of spelling out http://schema.org/Place, prefix is defined to be
http://schema.org/ while reference is set to be Place, which then allows to
use the syntax schema:Place instead. This mechanism is also a key aspect of the
JSON-LD specification as will be shown in section 2.1.3.

8



2.1 The Semantic Web

HTTP - Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) has been part of the world wide web from
its earliest days on. When Tim Berners-Lee proposed the architecture for the WWW,
HTTP was only capable of retrieving HTML documents. The first documented
version of HTTP was version 0.9, while the first official RFC at the IETF was re-
leased with HTTP version 1.0.[11] In this section, the core features of HTTP are
presented, as they will be extensively used for the implementation introduced in
course of this thesis. This overview will be based on the specifications of HTTP
1.1.[12][13][14][15][16][17]
In its current version, HTTP/2 [18] these core features are still supported, however,
HTTP/2 aims to increase the efficiency of the protocol.
According to its specifications, HTTP is defined as an application-level protocol for
distributed, collaborative, hypermedia information systems. In addition, HTTPS provides
a secure extension for end-to-end secured connections.
Communication via HTTP always involves a connection of two programs. Every
program may be given the role of a client, establishing connections and sending
HTTP requests, a server, accepting connections and serve HTTP responses for given
requests, or both. Requests and responses are both HTTP messages. An HTTP re-
quest message begins with a request-line that includes a method, target URI, and
protocol version (e.g. http/1.1). Then, header fields containing request modifiers,
client information, and representation metadata follow. Finally, after an empty line
denoting the end of the header, a message body containing a payload may follow.
An HTTP response begins with a status line that states the protocol version and
a success or error code, paired with its textual reason phrase. Then, zero or more
headers may follow, containing server information, resource metadata, and represen-
tation metadata. The header section is delimited by an empty line again and may be
followed by an optional body, containing the payload.
In between a client and a server several intermediaries may exist, essentially catego-
rized into three types: proxies, gateways and tunnels.

Proxies are forwarding messages and might also translate them in the process. This
translation may even be from another application protocol to HTTP.

Gateways are also referred to as ”reverse proxies”. For outbound connections they
act as if they were the origin of messages, internally, however, they may reroute
a connection to another server.

Tunnels do not change a message’s content between two endpoints, but rather
deploys a virtually direct connection. A tunnel might be initiated by an HTTP
request and ceases to exist when the connection is closed on both endpoints.

A very important feature, especially in regards to the REST architectural approach
introduced later, is that HTTP is defined to be stateless, meaning that each message’s
semantics are understood on its own. Violating this requirement may result in secu-
rity and interoperability issues.
HTTP is strongly linked to URIs: they are used to target requests, indicate redirects,

9
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and define relationships. HTTP does not support the IRI format, however, as men-
tioned in the previous section, there is a defined algorithm to map IRIs to URIs.[8,
p.10-11]
Moreover, to retrieve and manipulate resource representations, HTTP provides dedi-
cated methods with strict semantic definitions.
For the fundamental functionality of creating, reading, updating and deleting (CRUD)
a resource, HTTP offers the following methods(as defined in [13]):

POST Perform resource-specific processing on the request payload (typically creat-
ing a resource).

GET Transfer a current representation of the target resource.
PUT Replace all current representations of the target resource with the request

payload.
DELETE Remove a the target resource from the server.

Additionally, HTTP defines the semantics of the methods HEAD, CONNECT, TRACE
and OPTIONS. OPTIONS provides a description of the communication options of a
resource, which is useful for the discovery of resources, especially those representing
web services. Each resource must support GET and HEAD, all other methods are
optional and might therefore not be available for every resource. A method is
considered as safe, when its semantics defines it to be read-only. Thus, GET, HEAD,
OPTIONS and TRACE are all considered safe. The word ”safe” implies that a method
is not expected to cause any harm, loss of property, or unusual burden on the origin server.
Another consideration regarding methods is whether they are idempotent or not.
Idempotency is given when a single request has the same effect as multiple requests
of the same kind. Of all the methods, every safe method plus PUT and DELETE are
considered to be idempotent.
Header fields have several purposes in HTTP. In a request, a header should provide
more information about the request context, make the request conditional based on the target
resource state, suggest preferred formats for the response, supply authentication credentials,
or modify the expected request processing. One functionality of headers is to perform
content negotiation. Therefore, the header field names Accept, Accept-Charset, Ac
cept-Encoding and Accept-Language are specified. They convey the expectations of
a client, regarding media-type, character set, encoding and language in the response.
Clients may use so-called quality-values to express their preference, e.g. the header Ac
cept-Language: de, en-gb;q=0.8, en;q=0.7 would indicate that a client prefers
German, but would also accept British English and other types of English. Other
applications for headers are authentication, controls and conditionals. Response
headers provide information about the server, about further access to the target resource, or
about related resources. To denote the content type of the body of the HTTP message,
the Content-Type response header may be used. The response header Location is
sometimes used to hint at a location in relation to a request. For example, when
a resource is invoked using the POST method, the Location header denotes the
URI of the created resource. The Vary response header tells a client which content
negotiation parameters might provide different representations of a resource.
The body of an HTTP message is hardly specified, depending on the method, a
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body may be required to be empty. For HTTP requests the body content type is
usually application/x-www-form-urlencoded, but there may also be other content
types used. In application/x-www-form-urlencoded parameters are denoted as
key-value pairs, separated by the character & and escaped by +. HTTP response
bodies may be serialized according to an Internet media type, or Multipurpose
Internet Mail Extensions (MIME) type. Internet media types may be registered at
the Internet Assigned Numbers Authority (IANA) and are denoted in the following
pattern:

text︸︷︷︸
type

\ html︸︷︷︸
subtype

; charset = UTF− 8︸ ︷︷ ︸
parameters

Another feature to convey meaningful responses with defined semantics are HTTP
status codes. Each status code consists of a three digit integer with the first digit
allowing to classify them as follows:

1XX denotes an informational status. The request was received, processing is con-
tinued.

2XX denotes a successful status. The request was received, accepted and processed
successfully.

3XX denotes a redirection status. The client is usually redirected to another resource
which requires further action to complete the original request.

4XX denotes a client error. The request used bad syntax or cannot be fulfilled in
general.

5XX denotes a server error. The request was valid, but the server fails for some
reason.

The HTTP specification defines an extensive set of terms and their semantics. How-
ever, applications may even extend this scheme by introducing their own status
codes.
In addition to the definition of HTTP itself, there exist several proposed standards
based on it. URI templates are defined as compact sequences of characters for describing
a range of Uniform Resource Identifiers through variable expansion.[19] A URI template is
delimited by { and } and may not be nested. Reserved operator characters from the
HTTP specification keep their semantics, variables within a template are comma ,

separated. A common use of templates is to describe the parameters of a URI with
query parameters.

http : //www.example.org : 8080/over/there {?latitude, longitude}︸ ︷︷ ︸
parameters

Another concept based on HTTP is the use of a Link header in the response. Proposed
by the IETF[20], this header should provide links between resources, independent of
their serialization format. As per definition, each Link header may contain a context
IRI, a link relation type, a target IRI, and optionally, target attributes. These target

11



2 Related Work

attributes comprise key/value pairs that further describe a link. A single resource
may provide several links to other resources, and its retrieved representation may
therefore carry more than one Link header.

HTML - Hypertext Markup Language

Besides the concepts for how to address resources and how to interact with them,
there need to be standards for how to represent them. The first and perhaps most
popular one was the hypertext markup language (HTML). Originally, HTML allowed
to annotate plain text with metadata, to denote the visual and audible representation
of web pages. The current version of HTML is HTML5. While HTML is a markup
language specifically representing web pages, there are also data formatting markup
languages that are programming language-agnostic and allow to structure arbitrary
data. Perhaps the most popular ones in this regard are the Extensible Markup
Language (XML)[21] and the JavaScript Object Notation (JSON)[22]. Both allow
hierarchical structuring of data.
The basic characteristics of XML may be described as follows:
The most essential definition of XML are elements. They may contain data of every
kind and may be multiply nested. The name of each element can be arbitrarily
chosen. Elements can be denoted in two ways. The first is to define key-value pairs,
using a start and an end tag:

<person>

<name> Markus Staud <\name>

<\person>

Listing 2.1: Basic XML element annotation

The other way of annotating data is to define it as an attribute of an element:

<person name=Markus Staud \>

Listing 2.2: XML element attributes

XML also supports comments:

<!-- This is a comment. -->

Listing 2.3: XML comment

Each XML document starts with a root or document element. This element contains
information about what mark-up language and which version of it are following.
The official Internet media type of xml is application/xml.
JSON’s core features can be summed even briefer:
JSON is essentially made of key-value pairs, denoted as follows:
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"person":{

"name":"Markus Staud"

}

Listing 2.4: Basic JSON key-value pair annotation

Each key may reference one of six datatypes: a plain string, a number, a boolean, an
array, an object or simply null. Listing 2.5 provides a minimal example for the anno-
tation of each datatype. Each member of an object is separated by a comma. Objects
may be multiply nested and are delimited in braces, while arrays are delimited in
brackets. JSON defines that members of an objects are unsorted, while members of
an array are sorted. This is important to notice, as it is the reason most parsers do
not preserve the order among object members.

{

"name":"Markus Staud",

"age":24,

"student":true,

"birthplace":{

"city":"Graz",

"country":"Austria"

},

"education":[

"VS Peter-Rosegger",

"BRG Oeversee",

"HTBLuVA BULME Graz",

"TU Graz"

],

"brother":null

}

Listing 2.5: JSON datatype syntax

Other than XML, JSON does not support comments. The official Internet media type
of JSON is application/json
JSON is usually considered as more readable for human users. Also, its syntax is
more terse than XML’s in most cases. Therefore, less data has to be transmitted
to convey the same information. Considering tooling, elaborate parsers for both
standards are available in every respectable programming language.

2.1.2 Data Model: RDF Graph

Before considering formats for the Resource Description Framework (RDF), a basic
understanding of RDF is required. This section is mostly based on the official
W3C RDF Working Group technical reports. A good overview is provided by the
RDF 1.1 primer[23] and normative specifications are found in the official W3C
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RDF 1.1. recommendation[24]. RDF provides a simple but powerful framework for
representing information. In its core, RDF expresses the relationship of two entities
using statements. These RDF statements consist of three fundamental elements: a
subject, a predicate and an object. Because of the ternary nature of an RDF statement,
they are also called triples. Figure 2.3 illustrates a triple in a common way, a node-
arc-node link:

Subject ObjectPredicate

Figure 2.3: Fundamental data model of RDF.

This node-directed arc-node relation can be further extended to a whole set of triples,
represented by a graph. The nodes of this graph can be of one of three types: IRIs,
literals and blank nodes. Arcs, on the other hand, can only be IRIs as per definition
of RDF.
Denoting triples in a code-style, textual format is called serialization. For RDF there
exist many different serialization formats, as will be discussed in section 2.1.3.
In RDF every ”entity” or ”thing” is called a resource. These resources are unambigu-
ously identified or denoted by IRIs.
Predicates may only be denoted as IRIs, in RDF called properties, and unambigu-
ously state a directed binary relationship between two nodes.
Listing 2.6 provides an example of denoting the relation of subject Daniel know-
ing object Markus in Turtle syntax, while using the semantics of the schema.org
vocabulary.

http://example.de/Daniel http://schema.org/knows http://example.at/Markus .

Listing 2.6: Formulation of an RDF statement in Turtle syntax

The owner of an IRI governs its inherent semantics. If third parties are reusing
an IRI to describe a relation, the semantics should be abide by them, as there
would be a loss in interoperability otherwise. In the example from listing 2.6 the
semantics of a publicly open vocabulary are used to foster interoperability. A more
detailed definition and delimitation of what vocabularies exactly are in Semantic
Web technologies will be discussed in section 2.1.4.
As already mentioned, RDF incorporates three basic types: IRIs, literals and blank
nodes.

IRIs syntax and specification of IRIs have already been described in detail in section
2.1.1. A specific resource denoted by an IRI is called the IRI’s referent. Relative
IRIs are allowed, if they can be resolved against a defined base IRI.
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Literals are concrete values like numbers, strings, booleans or dates. A resource
denoted by a literal is the literal’s value and therefore called literal value.
Only objects can represent literal values. Literals consist of two to three
components: a lexical form, a datatype IRI and in case the datatype IRI
is http://www.w3.org/1999/02/22-rdf-syntax-ns#langString, a language
tag. The literal value of a literal is thus either:

• a pair of the lexical form and its language tag or
• the lexical form if it can be resolved within the lexical space of the datatype

Datatype IRIs are called recognized if they refer to datatypes that can be han-
dled by the RDF processor of an implementation.

Blank nodes In the RDF specification, blank nodes are not well-defined, but merely
as being disjoint from IRIs and literals. Blank nodes are used in RDF implemen-
tations to locally identify resource. As such, they have to be unique within
their local boundaries to not create ambiguities. They can be useful when the
resource itself is either not known, or deemed not to be important. It can also
be used to model abstract concepts.

A final example should illustrate most of the concepts in RDF. The example includes
several different concepts specified by RDF. It models that the city of Liverpool is
home of two football stadiums, Anfield and Goodison Park. While Anfield is of type
schema:Place, Goodison Park is only referenced by its name, using a blank node.
The concept of blank nodes is also used to map different components of the address
of the stadium to the IRI identifying Anfield. Here it would just make little sense to
identify the address node binding the address components to the stadium with a
dedicated IRI. When examining the literals in the graph, the different possibilities
of annotation can be observed. The country, the stadium is in, is denoted in two
different languages. Here, the datatype is explicitly defined as xsd:langString, but
most parsers can infer this type automatically, whenever there is a language tag
defined. Similarly, if there is only a string to be found as the lexical value of a literal,
parsers usually default to the xsd:String datatype. Thus, this datatype is omitted
in the graph.
Figure 2.4 shows the example in a node-arc-node graph

This very example will be used in the next section to demonstrate the characteristics
of each serialization format considered in this thesis.

15



2 Related Work

h
tt

p
:/

/e
xa

m
p

le
.o

rg
/

ci
ti

es
#L

iv
er

p
o

o
l

h
tt

p
:/

/e
xa

m
p

le
.o

rg
/

st
ad

iu
m

s#
A

n
fi

el
d

sc
he

m
a:

co
nt

ai
n

sP
la

ce

h
tt

p
:/

/s
ch

em
a.

o
rg

/P
la

ce

rd
f:

ty
p

e

rd
f:

ty
p

e

sc
he

m
a:

co
nt

ai
n

sP
la

ce

“G
oo

d
is

o
n 

Pa
rk

“
sc

he
m

a:
n

am
e

sc
he

m
a:

ad
re

ss

“A
nf

ie
ld

“

sc
he

m
a:

n
am

e

sc
he

m
a:

im
ag

e
“L

iv
e

rp
o

o
l“

“A
nf

ie
ld

 R
d

“

h
tt

p
:/

/s
ch

em
a.

o
rg

/
P

os
ta

lA
d

d
re

ss

_:
ad

re
ss

sc
he

m
a:

ad
d

re
ss

C
o

u
n

tr
y

sc
h

em
a:

ad
d

re
ss

Lo
ca

lit
y

ht
tp

s:
//

up
lo

ad
.w

ik
im

ed
ia

.o
rg

/
w

ik
ip

ed
ia

/c
om

m
on

s/
8

/8
6

/
A

n
fi

el
d

%
2

C
_2

0
_O

ct
ob

er
_2

0
12

.j
pg

xs
d

:a
n

yU
R

I

“U
n

it
ed

 K
in

gd
o

m
“

en

“V
e

re
in

ig
te

s 
K

ö
ni

gr
ei

ch
“

d
e

sc
h

em
a:

st
re

et
A

dd
re

ss

rd
f:

ty
p

e

sc
h

em
a:

ad
d

re
ss

C
ou

nt
ry

Figure 2.4: Example of an RDF graph.
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2.1.3 Formats

Following the introduction of triple-based data mapping using RDF in subsection
2.1.2, this subsection provides a short overview of the most popular serialization
formats.
As the web in its current form is already using a variety of formats to serialize meta-
data, most of them have been only adapted or extended to ready them for semantic
web technologies. This is particularly the case with RDF/XML and JSON-LD which
are based on already well-known and widely-established serialization standards.
In the following, detailed overviews for the serialization formats of the Turtle family
as well as JSON-LD are provided, while RDF/XML and RDFa are only briefly dis-
cussed for the sake of completeness. All of the serialization formats can be converted
into another. Stolz et al. [25] proposed a useful online conversion tool that provides
multi-format conversion for multiple input serialization formats.1

RDF/XML was the first syntax developed to serialize RDF graphs, but is not as
widespread as all the others, mostly due to its verbosity. One unfortunate circum-
stance is, that CURIEs may only be used for XML element and attribute names
and not in attribute values. Same as for JSON-LD, a big advantage of RDF/XML is
that there are numerous standard XML parsers for every established programming
language. This enables developers to use already existing components to speed up
their implementation cycles. The RDF/XML specification provides further details
about its technical aspects.[26] An RDF/XML serialization example for the graph
presented in section 2.1.2 can be found in listing 1 in the appendix.
Other than RDF/XML, RDFa creates an additional semantic layer on top of HTML,
rather than being a serialization format on its own. As HTML is a well-known
standard in the web developers community, its uptake has therefore been much
higher. The W3C provides a primer for RDFa[27] introducing its different subsets,
RDFa Lite[28] and RDFa Core[29]. RDFa Lite is a rather lightweight specification,
only using five simple attributes: vocab, typeof, property, resource, and prefix.
Their semantics offer basic functionality to serialize RDF graphs. As HTML is still the
dominant format used to communicate across the WWW, minting HTML documents
with semantic annotations has high leverage. RDFa tries to accomplish just that.
It provides a format able to convey both human- and machine-processable data.
However, it might not always be efficient to provide data in both forms within one
resource representation, especially because an average human user cannot process
machine-understandable data and a machine cannot process human-understandable
data. Thus, it might be useful to separate those representations and obtain the desired
one through content negotiation. Same as for RDF/XML, an example for the RDFa
serialization of the graph presented in section 2.1.2 may be found in listing 2 in the
appendix.

1https://rdf-translator.appspot.com/
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Turtle

Turtle [30] was originally derived from another RDF serialization format, N-Triples.
For both, extensions to support multiple graphs within a single RDF dataset are
available: TriG for Turtle and N-Quads for N-Triples. Turtle uses the same basic
syntax as N-Triples, but adds some syntactic sugar to increase readability for human
users. Therefore, and for the sake of brevity, only a Turtle-serialized graph will be
examined to compare its syntax to the other RDF serialization formats. Considering
the example presented in section 2.1.2, the following listing demonstrates its Turtle
serialization:

@base <http://example.org/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix schema: <http://schema.org/> .

<stadiums#Anfield>

a schema:Place ;

schema:name "Anfield";

schema:image "https://upload.wikimedia.org/wikipedia/

commons/8/86/Anfield%2C_20_October_2012.jpg"^^xsd:anyURI ;

schema:address _:address .

<cities#Liverpool>

a schema:Place ;

schema:containsPlace <stadiums#anfield>,

[ schema:name "Goodison Park" ].

_:address

a schema:PostalAddress;

schema:addressCountry "United Kingdom"@en,

"Vereinigtes Koenigreich"@de;

schema:addressLocality "Liverpool";

schema:streetAddress "Anfield Rd" .

Listing 2.7: Formulation of an RDF graph in Turtle

The keyword @base specifies an absolute base IRI which all relative IRIs within a
graph definition relate to.
As may also be observed, Turtle enables developers to use CURIEs (see sec. 2.1.1) to
allow for a terser serialization of RDF graphs. This results in a better readability, but
leads to an increase in complexity for parser implementations. In Turtle, CURIEs are
defined by placing the keyword @prefix in front of them.
In general, both absolute and relative IRIs are denoted by putting them in chevrons
<>. CURIEs on the other hand must not be denoted by chevrons.
Every triple is denoted as S P O and has to be ended with a dot .. Furthermore, to
increase terseness even more, there are two shortcuts to express similar triples:
When two or more triples refer to the same subject, using a semicolon ; to end a
triple denotes that the following property and object refer to the same subject. When
two or more objects are linked to the same subject, by the same property a comma ,

may be used to end the first triple.
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The syntax for denoting literals also allows for some terse annotations: adding an
@-symbol followed by a qualified language acronym denotes the language tag of a
string. If there is no language tag, adding ^^ followed by a datatype IRI denotes the
datatype of the literal.
As it is considered to be good practice to type all resources, Turtle offers a spe-
cial token to abbreviate the http://www.w3.org/1999/02/22-rdf-syntax-ns#type

property. By simply using a instead of the property, the rdf:type of a resource is
defined.
Blank nodes are denoted by placing : in front of them. Blank node labels have to be
unique within a single Turtle document, as they must refer to the same node.
Another possibility to implicitly generate blank nodes is to use nesting, expressed
with []. This way, Turtle creates unlabeled blank nodes, which can be useful to
quickly denote property lists.

JSON-LD

JSON-LD is a serialization format for linked data based on the popular data se-
rialization standard JSON. Similar to RDFa it is therefore leveraging an existing,
ubiquitous standard and adds a semantic layer on top of it. Its emergence, however,
was quite troublesome, as there were different groups trying to achieve the same
goals, according to Lanthaler and Gütl.[31]
Originally developed at Digital Bazaar in 2010 and therefore usually accredited to
its CEO Manu Sporny, the RDF Working Group at W3C started to work on a JSON-
based RDF serialization format named RDF/JSON (similar to RDF/XML).[32] In
another place, Lanthaler and Gütl worked on a similar standard with SEREDASj[33].
While Lanthaler and Gütl would soon join forces with the JSON-LD community,
there prevailed general confusion and a variety of different views on how JSON-LD
and RDF/JSON should differ or complement each other. Consequently, JSON-LD
was agreed upon to represent not only linked data, but also to be able to serialize
RDF graphs. While this cumbersome process took a lot of discussion in all commu-
nities involved, it produced high leverage for JSON-LD in the end. Therefore, the
most influential groups agreed upon making JSON-LD a standard, capable of not
only expressing linked data but also of annotating semantics in JSON documents.
The work on RDF/JSON was discontinued and explicitly not recommended to be
used any further.
Currently, the W3C features the JSON-LD specification as an official recommendation
[34] and is also providing an official recommendation for processing algorithms and
implementation framework.[35]
In the specification of JSON-LD six design goals are stated:

• Simplicity, as no extra processor besides JSON and knowledge about the @id

and @context keyword are needed for basic annotation
• Compatibility, as a JSON-LD document is always a valid JSON document
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• Expressiveness, as the data model is a directed graph, which can express almost
every real-world concept

• Terseness, as the syntax is terse but still human-readable
• Zero edits, most of the time allowing JSON-LD to be embedded in an existing

JSON-based system
• Usable as RDF serialization format

Same as key-value pairs in JSON, JSON-LD documents are compiled of key-value
pairs as well. Due to its strong syntactical coupling to JSON, JSON-LD allows values
in a key-value pair to be: objects, arrays, strings, numbers, booleans and null. As
already mentioned, the data model of JSON-LD is that of a labeled, directed graph,
which is exactly the one introduced in subsection 2.1.2 as RDF-graph. On top of
JSON, JSON-LD defines a set of reserved keywords, marked by the prefix @ that is an
integral part of the standard. Most notable are the @context and the @id keywords:

@context is used to define and abbreviate the semantic meaning of keys within
a JSON-LD document. Thus, adding context to an existing JSON document
enables developers to semantically annotate a plain JSON document without
actually editing its original content.

@id is used to unambiguously identify a node within a graph.
@type defines the data type of either a node or a typed value (that is, a literal in

RDF).
@value assigns concrete data to a typed value.
@base defines a base URI that is used by relative URIs in a JSON-LD document to

refer to.
@graph denotes a graph in JSON-LD, containing several resources.

Furthermore, there are the keywords @language, @container, @list, @set, @reverse,
@index and @vocab, which should not be elaborated here for the sake of brevity.
The key features of JSON-LD involve several concepts:
As has already been mentioned, the context of a JSON-LD document is used to
expand the keys in a JSON-LD document, in the JSON-LD specification referred to
as ”terms”, to IRIs. Terms may be arbitrary strings that are not defined as keywords
and should, for further extensions, not be prefixed with the keyword-denoting @

character. Using the context, a JSON-LD parser is able to expand a term into its
unambiguous IRI. Context may be defined locally within a JSON-LD document or
at a remote location. Furthermore, the JSON-LD specification allows referencing of
remote context in combination with (re)definition of local context.
The concept of context therefore allows several representation forms of a JSON-LD
document: expanded, compacted and flattened. In the expanded form, the context
is removed from the document as all terms and vocabulary prefixes are expanded
into their full IRIs. Therefore, the expanded form is the most verbose form, with the
advantage of having all available context information explicitly denoted within a
document.
The compacted form is the opposite of the expanded form. By applying a given
context to a JSON-LD file, verbosity is reduced and human readability increased.
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Full IRIs are shortened to terms or prefixed terms, supposing appropriate context is
provided.
Flattening takes expansion one step further and additionally collects all properties
of a node in a single JSON object. Moreover, blank nodes are automatically labeled
with blank node identifiers. For certain applications this can simplify processing the
JSON-LD document enormously. When passing a context to the flattening algorithm,
it returns a flattened and compacted JSON-LD document.
Another highly useful concept is type-coercion. Hence, data type IRIs may be mapped
to terms, allowing for a sleeker representation and a better reusability of data type
definitions. Of course, data type-coercion only affects the representation of JSON-LD
documents in the compacted form. More advanced concepts can be found in the
specification of the standard.
To provide a demonstration of JSON-LD, its syntax and how it may be used to
serialize an RDF graph,the example presented in section 2.1.2 is serialized into
JSON-LD and presented in listing 2.8.
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{

"@context":[

{

"@base":"http://example.org/",

"xsd":"http://www.w3.org/2001/XMLSchema#",

"schema":"http://schema.org/"

}

],

"@graph":[

{

"@id":"stadiums#Anfield",

"@type":"schema:Place",

"schema:name":"Anfield",

"schema:image":{

"@value":"https://de.wikipedia.org/wiki/Datei:Anfield,_20_October_2012.jpg",

"@type":"xsd:anyURI"

},

"schema:address":{

"@id":"_:address",

"@type":"schema:PostalAddress",

"schema:addressCountry":[

{

"@value":"United Kingdom",

"@language":"en"

},

{

"@value":"Vereinigtes Koenigreich",

"@language":"de"

}

],

"schema:addressLocality":"Liverpool",

"schema:streetAddress":"Anfield Rd"

}

},

{

"@id":"cities#Liverpool",

"@type":"schema:Place",

"schema:containsPlace":[

{

"@id":"stadiums#anfield"

},

{

"schema:name":"Goodison Park"

}

]

}

]

}

Listing 2.8: Formulation of an RDF graph in JSON-LD
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2.1.4 Ontologies

The concept of ontologies originally derives from a branch of philosophy, meta-
physics, and is defined as the philosophical study of being in general, or of what applies
neutrally to everything that is real.[36] In computer sciences, ontology refers to a formal,
standardized knowledge representation. In practice, developers often struggle to
distinguish between vocabularies, taxonomies, thesauri and ontologies. A famous
overview from Woody Pidcock tries to carve out distinctive features for each speci-
men.[37]
Pidcock describes these terms as follows:

Controlled vocabulary refers to a list of terms, controlled by one vocabulary registra-
tion authority. Each and every term should be unambiguous in its meaning and
carry non-redundant semantics in comparison with the other terms. Pidcock
proposes two rules to be adhered to:

1. If the same term is commonly used to mean different concepts in different
contexts, then its name is explicitly qualified to resolve this ambiguity.

2. If multiple terms are used to mean the same thing, one of the terms is
identified as the preferred term in the controlled vocabulary and the other
terms are listed as synonyms or aliases.

taxonomy refers to a controlled vocabulary extended by establishing a hierarchy
among the terms. Pidcock deems it good practice to limit all relations of
multiple children to a single parent to be the same. A multi-hierarchical
structure may also be allowed, by relating multiple parents to single child
terms.

thesaurus refers to a taxonomy with additional associating relationships.
ontology may refer to each of the above, but expressed in an ontology representation

language. This language defines a grammar using formal constraints to specify
how relations can be established among the terms of an ontology.

The W3C created a standard to describe and serialize ontologies, based on RDF (see
section 2.1.2). The Web Ontology Language (OWL) provides a defined syntax to
annotate ontologies, and specifications on how to serialize them in different formats.
According to the specifications of its current version (OWL 2) OWL is designed to
facilitate ontology development and sharing via the Web, with the ultimate goal of making
Web content more accessible to machines.[38] The illustration in figure 2.5 provides an
overview of the main building blocks and structure of OWL.
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Figure 2.5: The structure of OWL 2.

The center of the graph illustrates the ontology itself, either in its abstract notion, or
already mapped onto an RDF graph structure. In the upper ”syntax layer”, different
serialization formats are presented. These are typically the same as for every RDF
graph, including JSON-LD. The bottom ”semantics layer” should depict the seman-
tics inherent to and expressed by the ontology and its terms.
Ontologies are sometimes categorized into lightweight or heavyweight. This usually
refers to how strictly an ontology forces rules on a certain domain. Lightweight
ontologies may not aim to completely specify every relation in a certain domain,
while heavyweight ontologies may be extensively verbose in their representation of
knowledge. Therefore, establishing an ontology is usually a trade-off between how
explicitly knowledge should be expressed and how easy applications based on an
ontology are to implement.
In practice, there are a few already well-established ontologies/vocabularies. Prob-
ably the most famous and verbose one is dbpedia1. dbpedia is essentially an RDF
representation of the popular wikipedia online encyclopedia. The problem with
dbpedia is, that it is too verbose for most applications to be completely recognized.
Therefore, a consortium of leading search engine providers, Google, Microsoft, Ya-
hoo and Yandex, created schema.org2. schema.org defines a set of terms, describing

1http://wiki.dbpedia.org/
2http://schema.org/
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basic concepts for things from everyday life. Other popular ontologies are Dublin
Core1 and GoodRelations2. Ontologies usually describe terms within encapsulated
domains. One of these domain-specific ontologies is Hydra3. Hydra tries to provide
terms to describes the structure of web resources and how to interact with them.
Section 2.5.1 will provide a more detailed discussion of Hydra and how to use it.

2.1.5 Reasoning

Reasoning is sometimes referred to as ”the engine of semantic web technologies”.
Reasoners enable the inference of implicit knowledge from explicit knowledge bases
and defined rules or assertions. Therefore, reasoning relies heavily on formal logics
and their definition (first-order logic, description logic, etc.).
A simple example would be the following:

A sonOf B.
B brotherOf C.

Now two rules are defined:

X brotherOf Z ∧ Z gender ”male”→ Z brotherOf X
X uncleOf Y ⇐⇒ X brotherOf Z ∧ Y sonOf Z

Reasoning upon these two triples and the two rules, a reasoner may infer that:

C uncleOf A.

Reasoning upon data may be able to create new relations among resources of a
knowledge base, however, depending on the complexity of the formal logic funda-
mental to the knowledge base, it can also be rather expensive. Apart from that, not
every set of logics is decidable, meaning, that not every problem statement can be
resolved to a boolean decision within finite time. For a more detailed discussion, see
Krötzsch et al. [39].
As no knowledge base can ever be exhaustive in describing real-world relations,
assumptions have to be made, whenever a certain relation is not known, neither
explicitly nor implicitly upon reasoning. To escape this problem, assumptions about
the world outside a knowledge base have to be made. An intuitive way of approach-
ing this problem is the Open World Assumption (OWA). The OWA states, that if
something is not explicitly or implicitly known, it is ”unknown” or ”undefined”. If,
for example, a human being does not know whether Vienna is the capital of Austria,
it will simply respond with ”I don’t know, could be.”. On the other hand, the Closed

1http://purl.org/dc/terms/
2http://purl.org/goodrelations/v1/
3http://www.hydra-cg.com/
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World Assumption (CWA) states, that if something is not explicitly or implicitly
known, it is false. In this case, if asked whether Vienna was the capital of Austria, a
human being would respond with a definite ”No.”.
Obviously, the CWA would lead to a false negative here. However, in programming
most data-models are based on the CWA, as unknown results or states can usually
not be processed any further by a machine. In Linked Data (sec. 2.1.6) the creators
embrace the fact that knowledge is incomplete and are thus assuming an open
world (which does not mean that every application using LD does or is able to,
respectively).

2.1.6 Linked Data

While academic workers and standardization groups are busy creating standards
for the Semantic Web to enable a global web of semantic data, web developers and
enterprises are still somewhat skeptical to use it. Some experts have even deemed it
to fail (and still would) as web expert Clay Shirky1 and various critics in a survey
of 895 experts by the Pew Research Center.[40] Lanthaler and Gütl refer to this
phenomenon as Semaphobia.[33] To bridge the gap between the envisioned Semantic
Web and the current state of a web of encapsulated proprietary data silos, merely
connected to the infrastructure, the idea of linked data emerged. Introduced by Tim
Berners-Lee himself, the renowned creator of the web has actually declared linked
data as an integral part of the Semantic Web. However, as can be seen in figure 2.2,
modern literature usually refers to linked data as a reduced subset compiled from
different layers of the Semantic Web technology stack. To classify whether data is
”linked data” Berners-Lee first introduced a basic set of four rules:

1. Use URIs as names for things
2. Use HTTP URIs so that people can look up those names.
3. When someone looks up a URI, provide useful information, using the standards

(RDF*, SPARQL)
4. Include links to other URIs so that they can discover more things.

Therefore, data is only classified as to be ”linked data”, when it satisfies all of these
rules.
In 2010 this rating scheme was further extended to a classification scheme for Linked
Open Data. This was meant to encourage data providers to make their data accessible
under an open license. Here, the idea of granting ”stars” is pursued, with five stars
being the maximum rating. Accordingly, stars are to be ”awarded” to data fulfilling
the following requirements:[41]

1http://www.shirky.com/writings/herecomeseverybody/semantic_syllogism.html
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? Available on the web (whatever format) but with an open license, to be Open
Data

? ? Available as machine-readable structured data (e.g. excel instead of image scan
of a table)

? ? ? as (2) plus non-proprietary format (e.g. CSV instead of excel)
? ? ? ? All the above plus, use open standards from W3C (RDF and SPARQL) to

identify things, so that people can point at your stuff
? ? ? ? ? All the above, plus: Link your data to other people’s data to provide context

In terms of interlinking data in triples or quads, JSON-LD is highly capable of
serializing relations between entities of data. However, accessing this data via defined
web interfaces is a completely different challenge, especially when one of the basic
principles of the web, to decentralize data, is taken into consideration.
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2.2 Web Service Architectures

To expose web services to a consumer, a service provider has to make its resources
accessible. In general, to enable two software components to communicate with
each other, an application programming interface (API) has to be specified. The
W3C defines an API as ”a software interface that exposes access to some internal
functionality of a piece of software for use by programmers, to get access to specific
information, to trigger special behavior, or perform some other action.”[42] Web APIs
are therefore software interfaces that allow programmers to access the functionality
of another software explicitly via the world wide web. For simplification reasons,
the expression web API abbreviates to API within this thesis. The challenges in
providing a service over the web prevails in countless facets: discovery of the service,
trust issues, communicating implementation changes, state of transaction, efficient
transfer of coarse-grained hypermedia and many more. To guide the provider of a
service in the design of web services, architectural patterns apply a defined set of
constraints to overcome some of these challenges. However, every constraint is of
course a limitation of variance and thus often leads to a trade-off, improving one
characteristic while reducing another. In this section, a brief overview of architectural
approaches is given.

2.2.1 Classical Service Oriented Architectures

Classical service oriented architectures (SOA) comprise all so-called WS* standards.
The prefix WS here indicates that the standard is part of a web services framework,
based on the very first building blocks for web service exposure: SOAP, WSDL and
UDDI.

SOAP - Simple Object Access Protocol

The W3C currently features SOAP in version 1.2 as a recommendation, hence
a detailed specification document is provided.[Mitra.2007] SOAP (originally the
acronym for ”Simple Object Access Protocol”, which was deprecated since version
1.2) is a protocol introduced to be a transport-agnostic way of exchanging information.
Therefore, a standardized format was specified: the SOAP envelope. The SOAP
envelope is nothing more than a well-defined XML template, containing a header
and a body. Per definition, the SOAP message framework consists of four parts:

1. The SOAP processing model
2. The SOAP extensibility model
3. The SOAP underlying binding framework
4. The SOAP message construct
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The processing model of SOAP was designed for distributed messaging, involving an
initial sender, zero or more intermediaries and an ultimate receiver. Each of those par-
ticipants is also called a node in SOAP. Via ”roles”, defined in the envelope’s header,
each node involved in the transmission of a SOAP message is given permissions to
act upon. If permitted, the node then processes all mandatory header blocks and, if
he is the ultimate receiver, the body. If a node does not understand a header block,
he must return a fault message. An intermediate receiver of a SOAP message can
either forward and process it as specified in its header blocks or ”actively” forward
it by taking actions not specified in the header blocks.
The extensibility model of SOAP allows to extend the SOAP messaging framework
by SOAP features, messaging exchange patterns and modules. Features can be
expressed either as header blocks within the SOAP processing model or within
binding specifications in the SOAP binding framework. Message exchange patterns
are patterns for message exchange between nodes. Therefore, they are a particular
type of feature. Modules specify syntax and semantics of one or more header blocks
and thus realize zero or more features.
The underlying binding framework enables to bind the SOAP protocol to under-
lying protocols. Popular bindings include HTTP, SMTP and FTP. Therefore, SOAP
is transport-agnostic, that is, independent of the underlying protocol. The SOAP
binding framework provides a specification to realize such a binding to an under-
lying protocol. This specification allows the ”on the wire” representation of the
SOAP envelope to be of a different format than XML, despite XML being the defined
serialization format of SOAP.
The SOAP message construct defines the structure and syntax of a SOAP message
serialized as XML 1.0.
This brief summary should convey a basic understanding of the principles that form
the foundation of SOAP, as well as highlighting the key characteristics for further
discussion.

WSDL - Web Service Description Language

The Web Service Description Language (WSDL) is a formal approach to model the
behavior of a web service using the XML format. As such it would have also fit
perfectly into section 2.3 of this thesis. However, as WSDL, in combination with
SOAP and UDDI, is part of the classic framework of SOA, it is described here.
WSDL separates the description model into two stages: an abstract and a concrete
stage. At the abstract level, WSDL defines how messages are transmitted and received,
independent from underlying protocols. This definition is usually done in XML
schema or similar type definitions. Operations cluster one or more messages by
defining message exchange patterns, orchestrating a sequence of incoming and
outgoing messages. These operations are then grouped in interfaces.
At the concrete level, bindings specify how WSDL is bound to underlying protocols
like SOAP or HTTP. Endpoints then associate network addresses with the previously
defined bindings. Finally, services group together endpoints that implement the
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same interface. The highlighted expressions in this paragraph all denote components
of WSDL. These components collectively describe a web service as can be seen in
figure 2.6.
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Figure 2.6: The WSDL 2.0 description framework.

However, according to the WSDL specification, only the type definition component
is required in a description. Each WSDL document may then includes one or more
description components. Therein, each WSDL interface represents a set of operations
which may or may not be actually invoked during an interaction.
With the emergence of semantic web technologies, there have also been approaches
to enable WSDL for semantic annotations. Accordingly, the W3C defined the Seman-
tic Annotations for WSDL (SAWSDL) standard in 2007.[43] Essentially, SAWSDL
defines two mechanisms: the xml-attribute modelReference creates an association
between a WSDL (or XMLS) component and a semantic resource. The xml-attributes
liftingSchemaMapping and loweringSchemaMapping map datatypes in WSDL from
plain XML to the semantics of defined IRIs. This way, a conversion between a
service’s input and output parameters and semantically meaningful terms of an
ontology can be created.
Contrary to a common misconception, WSDL may actually be used to describe REST-
ful web services. However, it was originally intended to describe remote procedure
calls (RPCs) to enable clients to correctly invoke a server’s functions. Therefore,
using it to describe RESTful APIs is usually a lot more complex than with newer
description formats, dedicated to REST. For further explanation see section 2.3 ff.
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UDDI - Universal Description, Discovery and Integration

Complementary to SOAP as an access protocol and WSDL as a standardized descrip-
tion of a web service’s capabilities and how to access them, UDDI is a registry system
to publicly offer web services. UDDI was designed to provide access to registered
WSDL descriptions of web services, using SOAP messages. It was intended to pro-
vide a central discovery of web services. As both SOAP and WSDL are XML-based,
UDDI also relies on the XML standard.
In its current version 3.0 the UDDI specifications define:[44]

• SOAP APIs that applications use to query and to publish information to a
UDDI registry

• XML Schema schemata of the registry data model and SOAP message formats
• WSDL definitions of the SOAP APIs
• UDDI registry definitions (technical models - tModels) of various identifier

and category systems that may be used to identify and categorize UDDI
registrations

Thus, UDDI allows service providers and business owners to register services in a
registry. Each registration involves three sub-registries, emulating the concept of a
telephone directory:

White Pages identify each service provider. They include basic information about a
company, its data and the services it offers.

Yellow Pages offer a classification of businesses and the services they provide by
using standardized taxonomies.

Green Pages provide technical descriptions of a web service. If multiple bindings
are available in the WSDL description of a service, each binding would be
listed in a separate Green Pages entry.

However, in practice UDDI did not gain the popularity the creators wished for. Al-
though renowned software companies like Microsoft or IBM provided infrastructure
and tooling for UDDI, they shut down their UDDI endpoints after they experienced
dire straits.12 Therefore, at present, UDDI is not used in public services anymore but
only internally at a few companies.

1http://www.infoworld.com/article/2673442/application-development/

microsoft--ibm--sap-discontinue-uddi-registry-effort.html
2https://www.innoq.com/blog/st/2010/03/uddi-r.i.p./
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2.2.2 REST - Representational State Transfer

A remarkable milestone in API architecture was set by Roy Fielding in his doctoral
thesis in 2000.[45, p.76-107] There, Fielding introduced the concept of Representa-
tional State Transfer, typically abbreviated to REST. Based on extensive research
and a combination of best practice efforts in previous literature, he derived this
architectural style with a focus on distributed hypermedia systems. Starting from
the ”Null Style”, an architectural style with no constraints at all, Fielding developed
a set of constraints specifying the REST architectural style.
Essentially, REST consists of a set of five mandatory and one optional constraint.

Client-Server is the first and basic constraint. The idea is to separate the user inter-
face concern (client) from the data storage concern (server). This allows both
components to evolve independently from another, enhancing portability for
the user interface and scalability as server components can be simplified.

Stateless requires that a server in a client-server communication does not store
the state of a session. Therefore, a client must always send complete requests
including all the information needed for the server to process them. This princi-
ple improves visibility, as no past requests have to be considered in monitoring
systems, reliability, as partial failures are detected and fixed easier, and scala-
bility, as session states don’t have to be stored and managed by the server. The
downside of this constraint is, however, that data has to be submitted to the
server repetitively, as shared context cannot be stored on the server. Moreover,
a server cannot monitor whether the application is consistently executed on
the client-side, as it has no information about its state.

Cache allows clients to reuse response data from past requests whenever it is ex-
plicitly declared as cacheable. Consequently, some interaction can be avoided
completely, meaning that the server can tend to other requests. Improvement
in efficiency, scalability and user-perceived performance can be achieved. How-
ever, reliability could decrease due to inconsistency if the cached data is not
up-to-date.

Uniform Interface represents the most important constraint of REST. Component
interfaces are generalized and thus offer improved visibility of interactions and
a simplified system architecture. The application on the server is decoupled
from the interface itself, which, again, enables client and server implementa-
tions to evolve independently. A drawback using this principle is a reduction
in efficiency, as information is communicated in a standardized format, of-
ten including overhead information not needed in a specific application. To
implement this generality of interfaces, Fielding introduces four key principles:

1. Identification of resources
2. Manipulation of resources through representations
3. Self-descriptive messages
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4. Hypermedia as the engine of application state (commonly abbreviated to
HATEOAS)

As these principles have to be adhered to later in this work, a detailed exami-
nation will be provided later in this section.

Layered systems allow an architecture to comprise a hierarchy of layers. Each com-
ponent has only components in its scope which it interacts with. This way the
system knowledge is restricted to a single layer and complexity is reduced.
By introducing intermediaries in higher layers, scalability can be improved
by load balancing and shared caching. Intermediaries also enable additional
security measures, such as firewalls. The only negative aspect in using layered
systems may be increased latency, reducing user-perceived performance. REST
also allows intermediaries to actively modify the content of messages, given
that they are self-descriptive and their semantics are visible to intermediaries.

Code on-demand is an optional constraint. It allows additional functionality in
clients by downloadable code segments. Therefore, clients need an engine able
to execute these code snippets, for example a browser that supports JavaScript.
If clients do not possess said engine, they should still be supported in a way
that they would not break, as this constraint is considered optional.

APIs that comply to at least all the mandatory constraints are referred to as ”RESTful”.
Finally, but probably most importantly, Fielding’s goal was ”to create an architectural
model for how the Web should work” itself, trying to preserve ”the core constraints that
make the Web successful”.

The four interface constraints of REST

As a central feature of REST, uniform interfaces between components are required.
Thus, the following four key-principles have to be adhered to when designing a
RESTful API:

Identification of resources is done by a naming authority, which has to make sure
that the semantic validity of the assigned resource identifier remains intact
over time. A resource does no have to necessarily exist yet to be addressed,
templates for example may address only the concept of a resource. In HTTP,
the concept of URIs is used to identify resources.

Manipulation of resources through representations a representation consists of data,
metadata describing the data, and metadata to describe the metadata. A repre-
sentation of a resource captures its current state. However, a representation can
also be used to express the intended state of resource. Thus, a uniform interface
may manipulate a resource according to the representation that was applied
to it. In HTTP a resource’s representation is retrieved via invocation of HTTP
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GET. This representation then may be altered by a client and transferred back
to the server using HTTP PUT. The server then applies the alterations to the
resource itself, resulting in a manipulation of the resource via representation.

Self-descriptive messages are enforcing stateless interaction between requests. Stan-
dard methods (in HTTP: GET, POST, PUT, etc.) and well-defined media types
(ideally publicly registered at the IANA) are used to convey semantics and
information. No information from previous requests must be used, the entire
state handling is moved into the domain of the client.

HATEOAS defines that a server has to interact with a client by exposing dynamically
created hypermedia descriptions of a resource. Depending on the state of a
resource, a server may provide different responses. Moreover, in addition to a
current representation of the value(s) of a resource, the server provides ways
to interact with the resource, in a self-descriptive way. Therefore, interaction is
driven by exposing state transition options in an hypermedia format. Examples
and a more practical description will be provided in section 2.4.

The Richardson Maturity Model

In their book Webber et al.[46, p.19] introduce an interesting concept for classi-
fying a web services’ maturity level. They refer to it as the Richardson Maturity
Model (RMM), named after its creator, Leonard Richardson. Richardson defined four
stages of ”maturity” of an API, classifying to which extent an API adheres to REST
principles. Figure 2.7 provides an illustration of the model (illustrated by Martin
Fowler).

Figure 2.7: The Richardson Maturity Model.
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As depicted in figure 2.7, the basic stage is level 0 or ”the swamp of POX” (plain old
XML). To classify for level 0, an API only has to support HTTP as communication
protocol, but not use any of its inherent semantics. The exchanged HTTP messages
are essentially XML (or any other mark-up language, like JSON) forms that have to
be known by both client and server a priori, both in syntax and semantics. The server
is contacted via a single address and there are no other URI-identified resources
that the server handles. HTTP is therefore only used to transmit the data, but useful
mechanisms as the resource data model, content negotiation or method and status
code semantics are not used.
Level 1 of the Richardson Maturity Model is achieved by introducing resources. In-
stead of calling all procedures and retrieve every object from a single URI, resources
provide a more structured data model. Instead of always invoking the same endpoint
with different parameters, the functionality of the endpoint is distributed among
resources, which embody more specific functionality.
The next step towards the glory of REST lifts an API to level 2 of the Richardson Ma-
turity Model. Instead of invoking each resource with the same method, the semantics
of an operation may be conveyed terser by using the methods defined according to
their HTTP specification. To retrieve a resource, HTTP GET should be used, to create
a new resource a POST or a PUT may be disposed (see section 2.1.1 for details).
The final step to reach the glory of REST is achieved when an API is using HATEOAS.
This means that a client only needs the entrypoint of an API and may then explore it
by ”following its nose”, meaning that each resource provides a description of itself,
operations that it supports and links to access related resources in a meaningful way.
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2.3 Static Web Service Description

Currently, the most popular style of providing documentation for an API is in plain
textual form. This could, for example, be in the form of an HTML-document or a
PDF-file. This way, developers are (ideally) supplied with a verbose description of
how to invoke and interact with an API. They process the semantics of the content
and create client applications according to their understanding. As this kind of a
description does not involve any specified syntax, a machine cannot process its
content.
Figure 2.8 provides an example, taken from the documentation of the current version
of the Yelp Search API.

Figure 2.8: Exemplary web service description in plain text.

To describe web services in a machine-readable syntax, a broad spectrum of proposals
have emerged, based on both SOAP and REST principles.
WSDL (see section 2.2.1) was the first one introduced and widely used in combination
with SOAP. [47] Metadata descriptions of web services provide a full documentation
of the capabilities and accessible resources of an API. The approach of metadata
descriptions for RESTful APIs has already been mentioned when examining WSDL.
These descriptions can be downloaded by API designers at design time which then
design a client application upon them. However, these so-called ”out-of-bound”
descriptions (as they have to be obtained outside of runtime interaction with an
API) are widely considered to violate REST, where interfaces are required to be
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self-descriptive at runtime. Thus, even if these API design frameworks claim to be
RESTful, they may only conform to the second level of the Richardson Maturity
Model, exploiting HTTP verbs and URI identified resources.
As the main motivation of these frameworks is to specify a machine-readable syntax,
they must be able to describe the following aspects:

• A structured representation of the resources of an API.
• Links between resources.
• HTTP methods that can be applied to each resource and their expected inputs

and outputs.
• Supported content/media types and the data schemas that are accepted and

exploited by an API.

A formal description would then enable the automatic generation of client and
server stubs, provide a portable format to configure clients and servers and enable
visualization tools to provide structured graphical representations of an API.
WADL, RAML and Swagger all provide frameworks for creating resource paths and
defining resources and their CRUD actions. In this section, the main characteristics
of WADL, as the first of its kind, and Swagger, as the currently most popular, are
discussed.

2.3.1 WADL - Web Application Description Language

The Web Application Description Language (WADL) was created to describe RESTful
APIs, based on a resource-centred view. Originally, it was proposed as the REST
version of the more with classic SOA associated WSDL (see section 2.2.1). The
standard proposal has been officially submitted to the W3C in 2009, however, it has
never been awarded the status of an official W3C standard.[48]
WADL uses XML as its serialization format. Each WADL description exhibits an ap

plication element as its root element. WADL supports the use of CURIEs to provide
better readability for human readers. Dataformats that will be exchanged while
interacting with the API may be declared using the grammars container element. The
resources element contains all the resources provided by the API and is attributed
with the base URI of the API. A single resource may be attributed by an id, a
relative path, a type and a queryType. A resource may contain param elements that
can be further specified as header, query, or template parameters. A resource may
also specify method elements that describe the HTTP methods that can be applied to
the resource. Moreover, resource elements may contain other resource elements,
which are then hierarchical subresources of a resource.
Listing 2.9 illustrates the use of the WADL syntax by exemplifying the Yahoo News
Search API.
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<?xml version="1.0"?>

<application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://wadl.dev.java.net/2009/02 wadl.xsd"

xmlns:tns="urn:yahoo:yn"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:yn="urn:yahoo:yn"

xmlns:ya="urn:yahoo:api"

xmlns="http://wadl.dev.java.net/2009/02">

<grammars>

<include

href="NewsSearchResponse.xsd"/>

<include

href="Error.xsd"/>

</grammars>

<resources base="http://api.search.yahoo.com/NewsSearchService/V1/">

<resource path="newsSearch">

<method name="GET" id="search">

<request>

<param name="appid" type="xsd:string"

style="query" required="true"/>

<param name="query" type="xsd:string"

style="query" required="true"/>

<param name="type" style="query" default="all">

<option value="all"/>

<option value="any"/>

<option value="phrase"/>

</param>

<param name="results" style="query" type="xsd:int" default="10"/>

<param name="start" style="query" type="xsd:int" default="1"/>

<param name="sort" style="query" default="rank">

<option value="rank"/>

<option value="date"/>

</param>

<param name="language" style="query" type="xsd:string"/>

</request>

<response status="200">

<representation mediaType="application/xml"

element="yn:ResultSet"/>

</response>

<response status="400">

<representation mediaType="application/xml"

element="ya:Error"/>

</response>

</method>

</resource>

</resources>

</application>

Listing 2.9: Example of a WADL service description
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The intent of the creators of WADL was to complete four goals:

1. Support for development of resource modeling tools for resource relationship
and choreography analysis and manipulation.

2. Automated generation of stub and skeleton code and code for manipulation of
resource representations.

3. Configuration of client and server using a portable format.
4. A common foundation for individual applications and protocols to re-use and

perhaps extend rather than each inventing a new description format.

2.3.2 Swagger, RAML and API blueprint

While the uptake of WADL in real-world implementations has been rather low, other
formats evolved from it. Swagger, the RESTful API modeling language (RAML) and
API blueprint all deviate from WADL.
Swagger was originally created by Wordnik an online dictionary for English words
and a nonprofit organization as such. In 2015 its specification was donated to the
Open API Initiative making it open source and thus open for everyone to contribute.
According to their official website, their goal is to ”define a standard, language-agnostic
interface to REST APIs which allows both humans and computers to discover and understand
the capabilities of the service without access to source code, documentation, or through
network traffic inspection.”[49]
To achieve this goal, Swagger provides extensive tooling and supports two different
design approaches:

1. The top-down approach involves the Swagger Editor to create a Swagger
description of the API and the Swagger Codegen tool which can then be used
to automatically generate server and client stubs.

2. The bottom-up approach uses an existing REST API and creates a Swagger
definition from it, again using the Swagger editor. This can be done either
manually or automatically if the API was implemented using a supported
framework.

While Swagger offers open source tools for editing description files and code genera-
tion, there are also numerous commercial tools available.
As mentioned in the beginning of this section, Swagger originally deviated from
WADL. Other than WADL, however, Swagger specifies JSON and YAML (YAML
Ain’t Mark-up Language), a superset of JSON but emphasizing indents, to be used
as its serialization formats.
The basic skeleton code of a Swagger description is illustrated in listing 2.10

swagger: ’2.0’

info: <version, author, license info>

host: api.example.org

basePath: /v1

schemes: <http, https, ws, wss>
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consumes:

produces:

- application/json

paths:

/payments/payment

get:

parameters:

responses:

definitions:

parameters:

responses:

securityDefinitions:

security:

tags:

externalDocs:

Listing 2.10: Swagger skeleton code

Every Swagger document starts by providing a swagger key, stating the Swagger
version it complies to. The most current version of Swagger, at present, is 2.0. An
info key provides metadata about the API, like API version, author and license
info. The host key contains the authority URI of the API, basePath a URI relative to
the host representing the base path of the API every relative path URI defined in
the description refers to. The protocols supported by the API are stated in schemes,
whereas the Internet media-types consumed and exposed by the API are defined in
consumes and produces, respectively. Resource identifiers and the operations that
they support are contained in the paths object. Swagger supports the definition
of complex types by defining so-called schemas in the definitions object. Data
types in Schema are based on primitive types supported by JSON-Schema.[50] JSON
Schema is a declarative format for describing data (therefore a meta-metadata for-
mat). Reusability is enforced by defining global parameters and responses that may
be referenced in the parameter and response keys of a single operation in the paths

objects.
Similar to Swagger, RAML provides a specification for resource-oriented API descrip-
tion, focusing on complying to the DRY(”Don’t repeat yourself!”)-principle. Thus,
more features enabling developers to reuse code are included in the specification.
Other than Swagger, in its current version (1.0) RAML only supports the top-down
approach of specifying and developing REST APIs. Moreover, RAML is specified
to use only JSON. A package for the Atom editor supports syntax checking and,
same as for Swagger, libraries exist to generate server and client stubs for a variety
of programming languages.
As with Swagger and RAML, API blueprint provides similar extended functionality
of WADL. However, other than the others, API blueprint is defined as to be using
the Markdown Syntax for Object Notation (MSON).
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2.4 Dynamic Web Service Description

A more recent approach to describe APIs is the concept of so-called hypermedia
APIs. Instead of providing one exhaustive metadata description in a single document
a priori, resources, and methods to interact with them, are described dynamically
in the process of the client interacting with the resources. This is exactly what Roy
Fielding stipulated with the HATEOAS constraint. A client may only possess knowl-
edge about an API’s entrypoint and may then interact with the API by only acting
upon the description provided in a response.
To get a practical understanding of the HATEOAS constraint, a fictional banking API
might be considered. A user might retrieve a representation of his or her bank ac-
count by performing an HTTP GET. In the response the user gets his account balance,
as expected. Without any further information conveyed to the client a priori, it does
not know how to progress. What if the user wants to transfer money to his account?
Or from his account? How would the client know if and how this is possible? The
solution is, to not only respond with the account balance, but also provide additional
information on which next steps might be followed. Depending on the account
balance, if it is positive, a client might be provided with options to transfer money
both to and from the account. However, in case the account balance is negative, the
server may only provide the option to transfer money to the account. Assuming
a client knows how to interpret the instructions for transferring money, a server
implementation might be updated to then also support the retrieval of a detailed
collection of transaction from the last 30 days. Consequently, after retrieving the
account balance, the server provides the options to transfer money and, in addition,
get a list of past transactions. The client, however, was not updated to semantically
comprehend and act upon the new option. Still, it does not break (meaning that all
other interaction would also fail) as the server only provided the new options in
addition to the existing ones.
To serialize these capabilities of the HATEOAS principle, there are have been several
proposals for formats. One of the most lightweight and popular ones is the Hypertext
Application Language (HAL). Besides HAL, there have also been other, more expres-
sive approaches that are now being used in applications. The most notable ones in
this regard are SIREN, Collection+JSON and MASON, all of which are registered as
vendor-specific Internet media-types at the IANA.
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2.4.1 HAL - Hypertext Application Language

One proposed standard to implement the HATEOAS principle is the Hypertext
Application Language (HAL).[51] In one sentence, its creator describes HAL as a set
of conventions for expressing hyperlinks in either JSON or XML.
The conventions of HAL are designed to be simple, generic and working across
different domains. HAL tries to implement HATEOAS by providing a uniform
connector interface, decoupling servers and clients. Its dedicated media type appli

cation/vnd.hal+json defines a document to be HAL compliant and, by now, JSON
is the only supported serialization format.
In its current version, HAL defines resource representations as Resource Objects
with two different properties:

links contains single Link Objects or Link Object arrays, IRIs linking to other
resources

embedded contains Resource Objects embedded within the current object

A resource object in HAL is not required to exhibit linked and embedded properties,
however. Therefore, empty JSON objects are conforming to HAL as well.
Figure 2.9 illustrates the data model for each resource object:

Figure 2.9: The fundamental data model of HAL.

As depicted in figure 2.9, each HAL resource object may consist of three entities:
links exhibiting references to related resources, embedded resources, and properties
of the resource itself (in plain JSON). To get a practical understanding of how to
apply HAL to a real-world scenario, a similar example as the one introduced in the
beginning of this section may be considered.

42



2.4 Dynamic Web Service Description

GET /accounts/9813497 HTTP/1.1

Host: bank.org

Accept: application/hal+json

HTTP/1.1 200 OK

Content-Type: application/hal+json

{

"_links": {

"self": { "href": "/accounts/9813497" },

"next": { "href": "/accounts/9813497?page=2" },

"paymentOrders": { "href": "/accounts/9813497/paymentOrders" },

"movement": { "href": "/accounts/9813497/movements{?id}",

"templated": true }

},

"_embedded":{

"movements":[

{

"id":"m82374",

"amount": -87.00,

"currency":"EUR"

}

{

"id":"m82374",

"amount": 7.00,

"currency":"EUR"

}

]

}

"balance": 1712.90

"currency":"EUR"

}

Listing 2.11: Exemplary account balance HAL resource

The example illustrates the response retrieved by a user checking his or her bank
account. As a human user might guess from the link referencing a next resource,
a single resource here embeds a subcollection of account movement resources.
Moreover, a client may create payment orders by following the paymentOrders link.
To obtain a more detailed view of a single account movement, instructions of how to
create the associated URI template are provided in the link movement.
In conclusion, HAL creates an additional layer of defined semantics on top of JSON.
A client still has to understand the semantics each link, embedded resource and
plain JSON property provides. This rules out the use of automated machine clients,
as plain strings do not inherent an unambiguous meaning for them. In theory, HAL
does not prohibit the use of IRIs in JSON keys or values. It does, however, not
provide any guidelines for their application either, unlike JSON-LD. This leaves HAL
rather inept for semantic web technologies and the RDF data model.
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2.5 Semantic Web Service Description

In their fundamental publication coining the term ”Semantic Web” [3] Berners-
Lee et al. present the idea of locating and interlinking services (or as they call
them, ”programs that perform a specific function”) by using Semantic Web technologies.
Moreover, they suggest depositing some sort of service description in directories
analogous to the Yellow Pages (or similar to the approach of UDDI).
In the previous sections, API description formats as Swagger and RAML, as well
as dynamic hypermedia formats like HAL have been discussed. In this section,
various proposals taking into account the Semantic Web approach for describing web
services should be examined. While conventional API description languages (WADL,
Swagger, etc.) offer a machine-readable way of documenting an API’s capabilities, they
do not carry any machine-understandable semantics. This does not enable automatic
service discovery and composition. When interacting with a web resource, using the
HTTP protocol, the constraints of REST govern that only methods defined within
the HTTP standard are to be used (using self-defined methods would imply the
use of ”out-of-band” information). The semantics of these methods are well-defined
and can thus be understood by both server and client. Some of the methods may
carry different headers, query parameters and/or input parameters. In an automated
service composition scenario, these parameters may be subject to requirements that
need to be met, which means they also have to be described semantically. Moreover,
when a method is applied to a resource, its effect is often depending on its input
parameters. This means that the resulting state after applying a method to a certain
resource has also to be described semantically depending on the input parameters
of the method. To differentiate between the meaning of dynamic and semantic web
descriptions in this thesis, the following may be considered: a dynamic web-service
description may not necessarily use RDF and IRIs to describe itself. As with HAL
or SIREN, they may only specify a set of reserved keyword strings with a defined
meaning. A semantic web-service description, on the other hand, is incorporating
the HATEOAS approach paired with ontologies to disambiguate the vocabulary
used to describe an API. Relevant examples discussed in this section are Hydra and
RESTdesc.

2.5.1 Hydra

Hydra is essentially a controlled vocabulary intended to offer a lightweight set of
terms to enable semantically unambiguous descriptions of HATEOAS-supporting
APIs.[52]
As a vocabulary, Hydra is not bound to any Semantic Web serialization format,
although it is often associated with JSON-LD. Hydra is yet to be announced as a
standard, therefore there is still a lot of discussion within the community, regarding
how to represent API descriptions. Hence, a number of the concepts, ideas and
proposals in the current Hydra specification might change, depending on which
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ideas are backed by the most consensus. In this thesis, the unofficial draft of the
Hydra specifications from June 2016 is the reference for all discussion.
The basic concept of Hydra is to provide unambiguous terms to enable HATEOAS-
conforming interaction of a client with a resource exposed by a server. A client
recognizing the terms of the Hydra vocabulary may then be able to interact with a
server by generating the relevant HTTP requests.
Figure 2.10 tries to provide a graphical overview of the classes and properties defined
in Hydra. Per definition, Hydra complies with the Open World Assumption, therefore
not forcing its users to use class definitions as they are. However, implementation
of the OWA in clients is not feasible and it is strongly recommended to use the
data-model provided by Hydra as-is.

Figure 2.10: Graph illustrating the Hydra core vocabulary in its current form.

One key information missing in this illustration is the range definition for each
property. The range of a property defines which types of objects are expected
to be referenced by a property. The extensive ontology definition of the Hydra
core vocabulary is obtained by retrieving Hydra’s official JSON-LD remote con-
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text1. In the following description of the semantics of Hydra, Hydra’s base URI
http://www.w3.org/ns/hydra/core# is compacted by the CURIE hydra.
For the documentation of an API, Hydra offers the hydra:ApiDocumentation class.
Every object in Hydra may be annotated with a human-readable hydra:title and
hydra:description. Objects typed hydra:ApiDocumentation exhibit a property hy

dra:entrypoint which refers to the actual resource described. The referred resource
itself may then be of type hydra:Resource or a subclass of it.
A resource may be invoked using different HTTP methods. The invocation and pa-
rameterization of these methods may be defined in an object of type hydra:Operation
and related to the resource by the property hydra:operation.
hydra:Class definitions allow to describe the type of resources that are exposed
by the server. A class describes what properties its instantiated objects exhibit and
which operations they support. The properties supported may then be annotated
according to whether they are required, read-only or write-only.
In its current version, Hydra also defines a concept for IRI templates in
hydra:IriTemplate. As templates incorporate variables as strings, those have to be
mapped to properties using hydra:IriTemplateMapping.
Resources often provide a collection of other resources. In Hydra the hydra:Collection
and hydra:PagedCollection types annotate a collection’s members, respectively a
delimited view of members of a collection.
To annotate HTTP status codes, hydra offers little more semantics than the HTTP
description itself. A statuscode may be describe only by its integer code, and a textual
title and description.
Hydra also enables discovery of web services by a mechanism using the HTTP Link

header field. An API might therefore be discovered by providing the link to its
documentation http://www.w3.org/ns/hydra/core#apiDocumentation in the link
header field. From there, a client may traverse the resources of an API.
As Hydra is still incomplete, important aspects of an API like authentication and
authorization are both not yet covered in the current version. Nevertheless, Hy-
dra proposes an intriguing approach to integrate API descriptions in linked data
technologies.

2.5.2 RESTdesc

RESTdesc was created to provide a defined standard for both denoting a service’s
description and enabling its discovery.[53] Herein, the creators of RESTdesc explicitly
state, that its focus is on the functionality of a web service, rather than the technical
process of invoking a service. RESTdesc is serialized in Notation3 (N3), a superset of
Turtle, thus very similar but with extended functionality support (and as such even
superseding the RDF specification). N3 also offers support for most reasoners, thus
allowing inference of new services compositions. These could potentially offer new
functionality, conjuring a vision of automatic service composition.

1http://www.w3.org/ns/hydra/context.jsonld
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On a technical level, RESTdesc describes the semantic of a web-service by so-called
pre- and postconditions in N3. It also offers inherent support for the HTTP Link

header, the HTTP OPTIONS method and URI templates (see section 2.1.1 for short
references). In their article, Verbourgh et al. demonstrate the capabilities of RESTdec
with a simple example. Subject of the example is a web service that exposes pho-
tographs by performing a request on the resource /photos/.
It starts with an informal expression to describe the functionality of a service:

I can retrieve a photo by going to /photos/ and appending its identifier.

Mapping this expression in RDF and applying the logical principles of universal
and existential quantification, the formal N3-serialization of this expression can be
denoted as in listing 2.12.

f?photo :photoId ?id.g

=>

f :request :uri ("/photos/" ?id);

:response [ :represents ?photo ].g.

Listing 2.12: Derivation of a RESTdesc service description

Using the basic example from listing 2.12, the full extent of RESTdescs capabilities
may be demonstrated by applying concrete concepts from HTTP, like URI templates
and HTTP methods. The result is demonstrated in listing 2.13.

@prefix : <http://restdesc.no.de/ontology#>.

@prefix http: <http://www.w3.org/2006/http#>.

@prefix tmpl: <http://purl.org/restdesc/http-template#>.

{

?photo :photoId ?id.

}

=>

{

_:request http:methodName "GET";

tmpl:requestURI ("/photos/" ?photoId);

http:resp [ tmpl:represents ?photo ].

}.

Listing 2.13: Example of a RESTdesc service description

This snippet essentially denotes that, given there exist a photograph and an identifier
to it (precondition), a user may perform an HTTP GET request to retrieve it. The
photograph’s id has to be appended to the request URI and the response represents
the requested photograph.
In a final example the concepts of pre- and postconditions may be discussed. While
the service denoted in listing 2.13 retrieves a photograph by its URI, the example in
listing 2.14 describes the upload of a photograph. The precondition here is that the
client has a resource foaf:Image. For the request itself, the HTTP POST method shall
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be used. The request’s body is specified to contain the photograph. The response
of the service is specified to return the identifier of the uploaded photograph. The
last line in the listing is the postcondition. In this case the postcondition hints at a
possible retrieval of the uploaded picture, by using the photographs identifier that
has just been obtained. On close examination, this postcondition turns out to be the
precondition of the photograph retrieval service presented in listing 2.13.

@prefix foaf: <http://xmlns.com/foaf/>.

{

?photo a foaf:Image.

}

=>

{

_:request http:methodName "POST";

http:requestURI "/photos";

http:body [ tmpl:formData ("photo=" ?photo) ];

http:resp [ tmpl:location ("/photos/" ?photoId) ].

?photo :photoId ?photoId.

}.

Listing 2.14: RESTdesc service description with pre- and postcondition

Based on these findings, context-based service discovery is enabled.
Assuming a client possesses a picture:

<http://example.org/photo.jpg>a foaf:Image.

it can recognize that this satisfies the precondition in listing 2.14. Furthermore, if the
client follows the postcondition, it may also realize how to retrieve this very photo
again. This mechanism can be extended even further by adding a goal to it. A client
may then exploit various paths to achieve this goal.

Figure 2.11: RESTdesc automatic service composition.
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2.6 Access Control

An important horizontal factor in any communication stack is security. In terms
of access to protected resources, security considerations usually try to solve two
problems: the problem of authentication and the problem of authorization. While
authentication is the process of verifying the identity of the entity trying to access
a resource, authorization is the process of permitting such an access. In order to
authorize an entity, this entity has to authenticate first, to make sure it really is who
it claims to be. For authentication purposes, there exist two specification extensions
for HTTP, the Digest and the Basic authentication mechanism.[54][55][56]
Besides, there is also an initiative supported by a group of major software companies
to create an interoperable authentication mechanism, OpenID.[57] For authorization,
OAuth emerged as a widely adopted concept and shall therefore be described in
more detail in this section. As in the process of authorization authentication is a key
part, HTTP Basic will also be be discussed in this section.

2.6.1 OAuth

OAuth is an open standard for authorization and as such enables third party ap-
plications to obtain scoped access to a resource. That being said, OAuth is not an
authentication protocol1. It is currently available at version 2.0[58] which replaced
version 1.0[59] and is not backwards compatible. In fact, OAuth 1.0 and 2.0 share
few implementation details and OAuth 1.0 is considered deprecated and unsafe2.
Furthermore, it is important to note that OAuth was explicitly designed for HTTP
only. OAuth addresses several of the inherent issues of authorization by separating
the role of client and owner of a resource. This is done by issuing different credentials
to a client requesting access to a resource than to the owner of a resource. The client
obtains a so-called ”token”, specified as a string denoting a specific scope, lifetime, and
other access attributes. Moreover, OAuth allows for tokens not only to be obtained via
the server hosting the resource, but a dedicated separate authorization server. This
way, resource providers can shift their security focus towards this dedicated server.
OAuth 2.0 specifies the roles of four entities: resource owner, resource server, client
and authorization server. The following figure (fig. 2.12) should convey a deeper
understanding of the defined protocol flow.

1https://oauth.net/articles/authentication/
2http://www.ceilers-news.de/serendipity/803-Verfahren-der-Kryptographie,

-Teil-15-MD4,-MD5,-SHA-und-SHA-1-alle-unsicher!.html(in German)
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Authorization Server

Resource Server

Authorization Request

Access Token

Authorization Grant

Authorization Grant

Access Token

Protected Resource

Figure 2.12: Abstract OAuth 2.0 Protocol Flow.

1. The client authenticates at the resource owner and requests authorization.
2. The resource owner replies with an authorization grant, which can be of five

types.
3. The client requests an access token at the authorization server, authenticating

via its authorization grant.
4. The authorization server validates the authorization grant and, upon success,

issues an access token.
5. Using this token, the client can now request the protected resource from the

resource server by presenting the obtained token.
6. The token is validated at the resource server and, upon success, the request is

served.

As mentioned in step two, there are several types of authorization grant specified:

Authorization Code Here an authorization server works as an intermediary be-
tween a client of a resource and its owner. The client sends its request to the
authorization server which then authenticates the resource owner and obtains
authorization. Afterwards, the resource owner is directed to the client issuing
an authorization code. The client may then request access tokens from the
authorization server using this code.

Implicit Here no intermediate authorization code is issued, but the client directly
obtains an access token from the resource owner. Compared to the Authoriza-
tion Code Flow this Flow is simpler but also more vulnerable, as the access
token is transmitted back to the client in the form of a URI fragment, exposing
it to possible unauthorized parties.
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Resource Owner Password Credentials Here the resource owner credentials, pass-
word and username, are used to directly obtain an access token. Therefore the
resource owner credentials have to be accessed directly by the client. They are
then exchanged for an access token, therefore not requiring the client to store
the resource owner credentials but only use them once. To increase security,
the resource owner’s credentials may not be stored in the client but exchanged
with a long-lived access token or a refresh token.

Client Credentials Here, an access token is issued upon authentication credentials
provided by a permanently authorized client.

Extension OAuth 2.0 also allows for so-called extension grant-types, creating a
loophole for custom authorization process definitions.

The OAuth 2.0 specification denotes a number of suggestions for the implementation
of its authorization flow. For clients, two different types are defined, namely confi-
dential and public. As already implied by the used terms, confidential clients assure
to keep their credentials confidential, while public clients do not. To authenticate
with an authorization server, two methods are proposed within the specification:
The first method uses the HTTP Basic authentication scheme.[56] Therefore, the
HTTP Basic username is set to the OAuth client id and the HTTP Basic password

is set to the OAuth client secret. Conforming to the HTTP Basic scheme, the
credentials are then encoded in a Base64-String and inserted into the Authorization

header as follows:

Authorization: Basic TWFya3VzOlRoaXMgaXMgQW5maWVsZA==

The HTTP request itself is proposed to be encoded in the application/x-www-form-
urlencoded encoding type.

The second method suggests to put client id and client secret into the body of
the HTTP request, as a key-value pair. However, this method is not recommended.
Transmission of the credentials as query-parameters appended to the request URI is
explicitly forbidden according to the OAuth 2.0 specification.
As far as HTTP endpoints are concerned, the protocol defines three different end-
points that are utilized within a protocol flow. Server-side there are the authorization
endpoint and the token endpoint. Client-side there is the redirection endpoint. The
authorization endpoint handles the authorization of clients by resource-owners.
The token endpoint is then used by the client to exchange its authorization grant
or refresh token for an access token. To do so, clients have to authenticate at the
token endpoint. The redirection endpoint is used by the authorization endpoint to
return the authorization grant credentials to the client. The specification of OAuth
2.0 requires authorization endpoints to support HTTP GET and permit the imple-
mentation of HTTP POST for the authorization code retrieval. From a semantic point
of view the use of HTTP POST is debatable, as an authorization code is retrieved.
However, the request may also be interpreted as triggering an authorization code
generation process, which would conform to the semantics of HTTP POST. A request
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to the authorization endpoint must contain a response type parameter which can
be of either code (for the authorization code protocol flow) or token (for the implicit
protocol flow). Both public and confidential clients utilizing the implicit grant type
are required to register their redirection endpoint URI at the authorization server. If
multiple or no redirection URIs are registered, the client has to include the parameter
redirection uri in its request parameters.
To obtain an access token from a token endpoint, a client must use the HTTP POST
method. To protect users from exposing their authorization grant credentials or
access token, the authorization server must require the use of TLS (transport layer
security).
Another concept defined in the OAuth specifications is that of the scope of an access
token. Clients may request a certain scope for an access token. If a different scope is
granted, there must be a scope parameter included in the server response. If a client
does not include a scope parameter within its request parameters, the server may
either throw an error or use a default scope.
In case the resource owner denies access, or any request parameter other than
the redirection uri is missing or invalid, the authorization server must include an
error parameter in its response. Optionally, the server may also include an er

ror description and an error uri parameter in the response.
To provide a standardized way of transfering tokens in a request, the OAuth 2

specification is extended by a separate specification defining the use of so-called
”Bearer Tokens”.[60] A Bearer token may be included in a request by either putting it
in a header field, a URI request parameter or the request body. When in the header,
the Authentication header field must be used and the format of the value must
use the syntax Bearer {Base64Token}. When using the body of a request to insert a
token, the Content-Type header field must be set to application/x-www-form-ur

lencoded. The key then has to be named access token and the value has to be the
token itself. If an HTTP GET request is sent, the body insertion method is explicitly
prohibited according to the specification. Putting a token into the request parameters
of the target URI of a request is not recommended. However, if it has to be imple-
mented, the token must be associated with the defined query key access token.
As has already been mentioned before, the OAuth 2.0 specification leaves a few
details on implementation intentionally undefined. This may encourage developers
to define their own optimized software solutions, but complicates the definition of
an exhaustive vocabulary or model to describe OAuth processes.
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After the previous chapter has deployed a firm theoretical background and pointed
out the open ends of state-of-the-art research, this chapter proposes a concept to
bridge the gap between high-level abstraction and low-level implementation by
introducing a workflow-based architecture. The first section will provide an abstract
concept introducing generic workflows. Starting from this conceptual high-level view,
each section will go further into detail, guiding the considerations from the top-level
abstraction to the bottom-level implementation. Following the concept proposal,
an architecture linking up necessary components is presented. After an abstract
consideration of these components, exemplary description files to implement them
are provided. Next, various existing real-world services are presented to deploy an
understanding of how web services are invoked and what they provide. Finally, the
limitations delimiting the scope of this thesis are stated.
At the end of this chapter a conclusive understanding about the working principles of
the proposed concept should be acquired, before the results of their implementation
are dissected in the next chapter.

3.1 Concept of Generic Workflows

The fundamental concept proposed in this thesis stems in the abstract vision of
considering web-services as single, encapsulated items, embedded within a defined
workflow. Each item abstracts a specified functionality, without binding it to any
specific web-service. Thus, items embody generic interfaces, similar to the concept
of separating abstract and concrete stages in WSDL (see section 2.2.1). A generic
item is basically defined by its inputs and outputs. A workflow may then be created
manually by linking several generic workflow items to each other. This creates a vast
number of possibilities of combining workflow items. Interlinking workflow items
is done by mapping inputs and outputs, guiding the way of parameters through a
workflow. In this first version, workflows do not support loops. However, a workflow
item may be instantiated several times if a service is required to be called more than
once. Branches may be created by simply mapping one workflow input or workflow
item output to multiple workflow item inputs. However, inputs cannot be assigned
to multiple outputs, resulting in a compulsory 1:n-relation of workflow item outputs
(workflow inputs) to workflow item inputs (workflow outputs). The idea behind
this manual workflow creation is that developers can create and deploy workflows
in the backend without having to update software in any vehicle in the field. The
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services provided by a vehicle are in fact included in a workflow, again represented
by workflow items. Users on the other hand, may then only execute a workflow
in a single call. Internal execution and structure of a workflow are opaque to its caller.
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Figure 3.1: General workflows concept.
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3.2 Proposed Architecture

The proposed architecture to handle and serve workflows consists of several com-
ponents. These components are intended to mediate interaction between three
fundamental entities: users (or agents acting on their behalf), developers and third
party services.

User The entity invoking a workflow. The scope of this thesis does not specify
whether a workflow is invoked directly by a user (for example directly via
HMI device in a vehicle) or by a machine agent, acting on behalf of a user (for
example an integrated personal assistant in a vehicle, or from the backend as a
result of natural language processing).

Developer The entity creating new workflows, workflow items and, if necessary,
service mappings and service-specific context descriptions.

Third party service The web APIs providing a service. This service must be acces-
sible over the web and may typically involve acquisition of specific data, but
also physical services like preparing food or beverages.

The mediating components themselves collectively form the desired system.
In conclusion, several interfaces for this system have to be considered and defined.
The system interface for users has to expose workflow descriptions and eventually
workflow results. To allow machine-agents to interact with this interface, data
exposed by this interface must be semantically annotated and compliant to well-
known, defined LOD vocabularies. In the further course of this thesis, this interface
will be referred to as the ”User Interface”. In addition to this user interface, users
may also configure information stored in their account, like credit card data or
credentials for third party applications. Thus, a ”User Configuration Interface” may
also be proposed. Another system interface has to accept new workflow, workflow
item and service mapping descriptions, as well as service-specific context files. This
interface will from here on be referred to as ”Developer Interface”, as it may only
be accessible for developers of new descriptions. The third system interface to be
defined, mediates between the system and third party service entities. Therefore,
this interface will be referred to as ”Third-Party Interface” in the following.
Figure 3.2 illustrates all the fundamental entities and their interfaces with the
workflow handling system.
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Figure 3.2: Overall architecture abstraction.

Based on these abstractions, the internal architectural structure of the system is
designed.

3.2.1 Basic components

After the desired functionality has been defined in a rather abstract high-level
examination, the basic system components performing this functionality have to
be designed. Therefore, each interface is examined on its own to identify its basic
components.

User Interface

The user interface exposes workflow descriptions and allows users to invoke a work-
flow and receive its results. Additionally, all data should be semantically annotated
using pre-defined, well-known vocabularies. To satisfy these requirements, the ar-
chitectural approach of REST (see section 2.2.2) provides an excellent architectural
rationale to guide design considerations. Furthermore, the Richardson Maturity
Model provides a good reference guideline to verify whether the user interface is
truly RESTful.
REST is not bound to any protocol, however, as Fielding himself was co-authoring the
HTTP standard, it has been widely adopted in RESTful applications. The Richardson

56



3.2 Proposed Architecture

Maturity Model therefore requires HTTP as transport system, to qualify for level
0. By using HTTP, three of Fielding’s mandatory constraints are already satisfied:
HTTP is based on client-server relations and natively supports caching and layered
systems.
The next level of the Richardson Maturity Model is reached by using a URI-based
representation structure server-side. This satisfies the identification of resource con-
straint, established by the principle of uniform interfaces in REST. For the system,
this means that everything the user can access, has to be organized by IRI-identified
resources. Instead of always querying the same endpoint, these resources can now
be queried directly. From the requirements specified in the user interface definition,
there are four fundamental resources interacting with a user: the entrypoint of
the API, a collection of available workflows, workflows themselves and the results
of a processed workflow instance. These can be organized hierarchically within a
controlled server host authority domain.
Level 2 in the Richardson Maturity Model is achieved by adhering to the semantics
of the HTTP method verbs. An exhaustive list and short descriptions of the most im-
portant ones has already been provided in section 2.1.1. To some extent this satisfies
the self-descriptive messages constraint. Applied to the proposed architecture, this
means that the entrypoint may be accessed by HTTP GET. The available collection
of workflows, as well as the description for each workflow may be also retrieved by
applying HTTP GET to the workflows resource. To create a new worker instance
of a workflow, an HTTP POST carrying further request parameters is transmitted.
The created workflow result can then be requested by HTTP GET again. The last
level to climb in the Richardson Maturity Model is to enable the interface for HA-
TEOAS. In section 2.4 different approaches for hypermedia-enabled serialization are
described. However, few of them incorporate semantic web technologies and utilize
only enclosed proprietary vocabularies, comprising string represented keywords.
Hydra, on the other hand, provides an additional semantic layer on top of JSON-LD
and exists under the open world assumption. This predestines Hydra for linked
data applications, as it provides defined semantics for describing resources and their
interaction. By enabling the interface to be self-descriptive and HATEOAS, all of the
uniform interface constraints are satisfied. The only constraint left is the ”stateless”
constraint, demanding that each client request to the server must include all the
relevant information without the server using context from previous interactions.
Thus, the proposed architecture has to ensure that this constraint is also satisfied, by
ensuring that each interaction with a resource has to be independent from previous
or future interactions.
Taking all these constraints into account, the following components have been
found:

• From the user’s point of view, the system behaves like an HTTP server. More-
over, as this server acts as an intermediary, providing resources obtained from
third-party servers, it is even more concise to denote the system as gateway
(as defined in the HTTP terminology, see section 2.1.1), considering the overall
context. This server will also be referred to as the ”workflow server” in the
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following.
• Within the authority of the workflow server, there are several resources for users

to interact with. When requesting the root of the server, the hydra:ApiDocumentation
of the user interface is provided. It describes how to invoke the /workflows

collection, to obtain a list of available workflows. By performing HTTP GET on
the /workflows collection, an extensive list of available workflows is provided.
Choosing one of them and performing HTTP GET yields a Hydra conforming
description of the workflow. Performing an HTTP POST containing all required
parameters should create a corresponding workflow instance. This instance
contains the workflow results and can be retrieved by an HTTP GET.

Figure 3.3 depicts all the components and their orchestration.

/workflows

GET: list of workflows

GET: result of workflow

User 
Interface

Figure 3.3: Basic components of the User Interface.

User Configuration Interface

While the user interface enables users to invoke workflows and retrieve their results,
a configuration interface may allow them to securely store data that may be used by
workflows, to warrant a smooth and seamless workflow process. Third party APIs
usually need authentication and authorization, a problem that can only be solved
using an orthogonal component. This component provides a user, authenticated
with the workflow server, to enable the workflow server to act on his or her behalf.
The implementation of this component could also be in the form of a triplestore,
thus enabling the data to be linked easily when needed by a workflow. If a user is
not yet registered with a service, or needs to provide credentials for a service yet, a
mechanism may be implemented, linking up a users phone with the configuration
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interface, thus enabling him or her to add his or her credentials. Other than in desktop
or other handheld environments, the distraction of a driver from the essential driving
task has to be taken into consideration too.

Developer Interface

The developer interface has to be capable of adding and parsing new workflow
descriptions, workflow item descriptions, service mappings and service-specific
context. Therefore, it would be beneficial, to provide developers with tooling to
allow an easy creation of descriptions and reduce error-proneness by validating
and verifying these descriptions in a sandbox environment, before deploying them.
However, these considerations are out of scope of this thesis and will be presented
in the outlook section. Assuming a developer has created valid descriptions, they
may be deployed on the server. For this thesis, a rather easy solution was found:
developers upload their description files into the file system of the server, assuming
they have the according rights and roles to do so. The workflow server’s integrated
parser will then periodically check these directories for changes and update its
internal repositories.
Therefore, the following components have to be implemented:

• The file system and a directory hierarchy associated to the different types of
description.

• A parser, recognizing the structure of each description file and parsing them
for the server implementation.

The process of a developer creating a description is outlined in figure 3.4.

/workflows/

/item_templates/

/serviceMappings/

Upload

Developer 
Interface

/contexts/

creates

Figure 3.4: Basic components of the Developer Interface.
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Third-Party Interface

The third-party interface has to support different kinds of service-implementations
and might be the toughest interface to implement. Several assumptions have to be
made to constrain the range of services supported. Few public APIs are actually
truly RESTful, usually because they lack support of the HATEOAS constraint or
do not provide self-descriptive responses. A multiplicity of standards for architec-
tural aspects as serialization format, authorization method, authentication method,
invocation style and many more exist and reaching consensus on how to design
an API is a field of science on its own. Thus, one of the objectives in this thesis
is to identify and integrate the most common practices and contemplate the most
promising efforts in implementing an API. As already described in section 2.1.1
and 2.1.3 JSON has become a very commonly used media-type in real-world APIs.
JSON-LD even adds a layer on top of it, enabling implementation of RDF graph
structures. To semantically interpret these graphs, the workflow server-internal HTTP
client has to recognize a defined set of IRIs, ideally even entire vocabularies. For
the internal HTTP client to understand how to invoke a third-party service, the
service has to provide specific instructions. In an ideal world, the third-party service
would natively expose a description of its capabilities, using a vocabulary both
parties understand. One vocabulary trying to establish this mutual understanding
is Hydra. Hence, if a third-party service exposes instructions of how to interact
with it in Hydra, the internal HTTP client would get a natively instructed and need
no further input from developers trying to integrate a service. The world as we
know it, however, is far from ideal. That said, a component has to be found, able to
instruct the internal HTTP client whenever there is no Hydra description provided
by a third-party provider itself. The proposed component intended to offer salva-
tion is a server-internal repository, storing manually compiled service descriptions.
Developers may then either bind this internal hydra:ApiDocumentation resource
to a workflow item, or, in the best case it is provided externally. Once the client
knows how to correctly invoke a third-party service, it may still not comprehend
the response of the service. As already discussed in section 2.1.1 and 2.1.3, there are
numerous serialization formats and media-types on the web. Therefore, the scope
of this thesis is limited to JSON and its extension, JSON-LD. While a JSON-LD
response conforming to recognized vocabularies may be natively processed by the
workflow server, plain JSON responses cannot be integrated easily. Thus, there has to
be some workaround, enhancing a plain JSON response with additional semantics,
to enable a seamless integration into the internal RDF graph structure. This may be
resolved by injecting service-specific JSON-LD context. A more detailed description,
however, will be provided in section 3.2.4 when discussing the implementation of
service-specific context.
To recap: given a third-party service provider is using Hydra and JSON-LD as serial-
ization format, APIs may be integrated into a workflow description seamlessly, as
the workflow server-internal client may then be capable of natively comprehending
the service provider’s semantics. In case the service provider is responding in plain
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JSON, a developer can create a mapping context, similar to a lifting scheme in
SAWSDL. The illustration in figure 3.5 depicts the least optimal (and, unfortunately,
to date most common) case of a non-Hydra descriptive, non-JSON-LD capable third-
party API integrated into the workflow server environment (JSON icon designed by
Madebyoliver from Flaticon).

suppliesinstructs

Figure 3.5: Basic components of the Third-Party Service Interface.
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3.2.2 Workflow description

A workflow is compiled of various different workflow items. Each of these items
has an interface for input and output parameters. To describe a workflow in an RDF
conforming structure that can later be parsed by the workflow server implementation,
a recognized vocabulary has to be defined. Linked Open Data recommendations
suggest to use publicly defined and accessible vocabularies to enable client developers
to implement their semantics. However, finding vocabularies that natively provide all
the semantics needed in a new system, is usually a quite cumbersome task. As already
discussed in section 2.1.4, there are numerous publicly available vocabularies, some
already extensively used. One of them was created to describe APIs in particular
and already introduced in section2.5.1: the Hydra vocabulary. Considering the
external behavior of a workflow, Hydra appears to be capable of describing inputs,
outputs and invocation method of a workflow, using the hydra:operation property.
Regarding a description of the internal structure of a workflow, that is workflow
items and their mapping, Hydra provides no support whatsoever. However, as
previously defined, workflows are opaque for their invoking entity. Consequently,
the internal description of a workflow is invisible for its invoking entity. This very
fact allows for the conclusion that the internal structure of a workflow does not
qualify as open as in Linked Open Data. Hence, the only entity required to parse the
internal structure of a workflow is the workflow server. In conclusion, the definition
of a proprietary vocabulary to describe the internal workflow structure is feasible.
Each workflow contains a title, a human-readable description, operations to be
applied to it, items and a mapping. Every workflow description is of the proprietary
type vocab:Workflow. As only title, description and operation are exposed by the
workflow server, they are tied to the Hydra IRIs hydra:title, hydra:description
and hydra:operation. For the internal properties of a workflow, the proprietary
vocabulary terms vocab:items and vocab:mapping are defined. An exemplary JSON-
LD workflow description template is listed below in listing 3.1.

{

"@id":"host:workflows/transaction",

"@type":"vocab:Workflow",

"hydra:title":"Transaction Workflow",

"hydra:description":"Basic customer - provider transaction from within a

vehicle.",

"hydra:operation":[

... ],

"vocab:items":[

... ],

"vocab:mapping":[

... ]

}

Listing 3.1: Basic structure of the workflow description concept
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In this example, the CURIE host: refers to the hosting authority of the workflow
server, as for example http://example.org/. In a node-arc-node graph, a workflow
description entity would look like demonstrated in figure 3.6.

host:workflows/
transaction

vocab:Workflow

rdf:type
“Transaction Workflow“

“Basic customer - provider 
transaction from within a 

vehicle.“

hydra:title

hydra:description

vocab:items

vocab:mappinghydra:operation

Figure 3.6: Exemplary workflow description resource.

The hydra:operation property defines how to invoke a workflow, what parameters
need to be passed and what return parameters are to be expected. The concept
is mostly based on the concept of hydra:Resource and hydra:Operation spec-
ifying how to invoke a resource of an API. Each operation has the properties
hydra:method, hydra:expects, hydra:returns and hydra:statusCodes. Addition-
ally, in its current version, Hydra defines three subClasses of hydra:Operation:
CreateResourceOperation, ReplaceResourceOperation and DeleteResourceOper

ation. The hydra:operation property therefore has a range of hydra:Operation
and all its subclasses. If the creator of a workflow wants to not only describe which
property to expect as an input or output, but also add descriptive properties about a
property, Hydra offers the property hydra:supportedProperty. At first glance this
may sound very convoluted and confusing, hence a short example might provide
some clarity: if a workflow expects an input dc:identifier at runtime, but its
creator wants to convey that the parameter is required, this relation has to be de-
scribed somehow. By introducing a resource of type hydra:SupportedProperty that
describes a property hydra:property, for example with a property hydra:required,
this relation can be established. Another reason to introduce this intermediary
hydra:SupportedProperty node is to disambiguate mappings within a workflow.
These are done by the ID of a hydra:SupportedProperty rather than the property’s
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ID itself. A detailed discussion about why this is necessary will be provided in the
explanation of the mapping mechanism of a workflow. The example in listing 3.9
demonstrates how this part of a description may look like.

...

"hydra:operation":[

{

"hydra:method":"POST",

"hydra:expects":[

{

"hydra:supportedProperty":[

{

"@id":"#input:id",

"property":"dc:identifier",

"hydra:required":true

}

]

}

],

"hydra:returns":[

{

"supportedProperty":[

{

"@id":"#output:order",

"property":"schema:order",

"hydra:required":true

}

]

}

]

}

],

...

Listing 3.2: Exemplary hydra:Operation class object
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Demonstrated in the form of a node-arc-node graph node, a hydra:Operation class
object (or one of its subclasses) would look like in figure 3.7.

host:workflows/
transaction

hydra:operation

hydra:expects

“POST“

hydra:returns

hydra:method

hydra:supportedProperty hydra:supportedProperty

dc:identifier

true

#input/id

hydra:property

hydra:required

schema:order

true

#output/order

hydra:property

hydra:required

Figure 3.7: Exemplary hydra:Operation class object.

The proprietarily defined property vocab:items describes the instantiation of work-
flow items within the described workflow. This mechanism allows to detach defini-
tion and instances of a workflow item, similar to the concept of classes and objects in
object-oriented programming. While every workflow item has the same functionality,
different instances can be invoked with different parameters, altering the behavior of
a workflow item. Instantiation is performed by defining JSON-LD @id and @type of
an instance.
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Listing 3.3 demonstrates the instantiation of two workflow items, discovery and
hmiPickOne.

...

"vocab:items":[

{

"@id":"instances:discovery1",

"@type":"defs:/discovery"

},

{

"@id":"instances:hmi1",

"@type":"defs:/hmiPickOne"

}

],

...

Listing 3.3: Exemplary instantiation of workflow items

Figure 3.8 illustrates the item instantiation in a graph. As there is no concept of
arrays in standard RDF, multiple identical property arcs have to be used within a
graph.

host:workflows/
transaction

instances:discovery1 instances:hmi1

vocab:items
vocab:items

defs:/discovery

rdf:type

defs:/hmiPickOne

rdf:type

Figure 3.8: Exemplary instantiation of workflow items.
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The second proprietarily defined property in workflow descriptions is vocab:mapping.
It maps the inputs and outputs of the workflow and each workflow item it contains.
Not to be confused with hydra:mapping, it inheres the meaning of mapping arbitrary
workflow and workflow item inputs and outputs rather than URI template variables
and properties, as in Hydra. Using hydra:mapping here would corrupt its semantics
and may be interpreted falsely by a machine client. Thus, a context-specific term has
to be introduced here. While the inputs and outputs of the workflow are defined
within the same document, the workflow item inputs and outputs are defined in their
separate description document (see next section). A single mapping is represented
by a blank node, containing one of each proprietarily defined properties vocab:from
and vocab:to. It is important to note that not the properties itself are mapped,
but their descriptions in the corresponding descriptive hydra:SupportedProperty

instance. As properties may be unambiguous within the definition of a workflow
item, it is still possible to instantiate multiple workflow items from the same defi-
nition. Thus, to disambiguate the input and output properties of each instance, the
information of which instance is associated with which mapped property must not
get lost.
Listing 3.4 shows the continuous mapping of a workflow consisting of two workflow
items.

...

"vocab:mapping":[

{

"vocab:from":"#inputs/id",

"vocab:to":"instances:discovery1#input/id"

},

{

"vocab:from":"instances:discovery1#output/location",

"vocab:to":"instances:hmi1#input/collection"

},

{

"vocab:from":"instances:hmi1#output/collection",

"vocab:to":"#output/order"

},

],

...

Listing 3.4: Example of input/output mapping of workflow items
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In figure 3.9 the corresponding RDF graph representation is illustrated.

host:workflows/
transaction

#inputs/id

instances:discovery1
#input/id

vocab:from

vocab:to

instances:discovery1
#output/location

instances:hmi1
#input/collection

vocab:from

vocab:to

instances:hmi1
#output/collection

#output/order

vocab:from

vocab:to

vocab:mapping

vocab:mapping

vocab:mapping

Figure 3.9: Exemplary mapping of workflow item instances.
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After discussing all the components of a workflow description in detail, the resulting
graph shows how all the resources are related to each other. Compiled from all the
graph examples introduced in this section, the overall graph can be assembled as
presented in figure 3.10.
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Figure 3.10: Overall graph of an exemplary workflow description.
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3.2.3 Workflow item description

While already mentioned briefly in section 3.2.2, this section goes further into detail
about how to describe workflow items. In the proposal of the concept of workflow
items, several ideas and approaches are tried to be taken into account. Similar to
the concept of the abstract stage in WSDL, a workflow item description should
be as generic as possible and not coercively bind to a specific third-party web
API. It should enable the support of various different service providers for similar
services, without the need of creating provider-specific workflow items or even entire
workflows for each of them. The specific binding of a workflow item template then
happens via the vocab:serviceMapping property and will be elaborated in detail
in the following. Workflow item definitions are thus involving a trade-off: to enable
them to support various providers of a service, only their common functionality can
be used. However, if a developer desires to utilize specific, extensive functionality of
a single provider, he or she would have to create a unique workflow item, binding it
to only one service. This way, the freedom of choosing between generics and specifics
is still left with the developer of a workflow.
As previously mentioned, workflow description files act similar to class definitions
in object-oriented programming languages. Within a workflow, developers can create
multiple instances of the same workflow item definition. As each instance of a
workflow still has the same input and output properties, their identifying IRIs have
to be disambiguated to preserve a well-defined, unambiguous mapping relation
within a workflow. To foster a better understanding of the structure of a generic
workflow item description, a minimal working example is compiled step-by-step in
the course of this section.
The basic workflow item resource structure consists of the properties: hydra:title,
hydra:description, vocab:serviceMapping, vocab:input and vocab:output. As
all of these properties are for internal use (meaning they are not exposed by the user
interface on the workflow server), proprietary vocabulary may be used. Moreover,
each workflow item resource is defined to be of type vocab:WorkflowItemTemplate.
hydra:title and hydra:description have already been discussed before, they
merely offer human readable information about a resource. As has already been
mentioned briefly in this section, vocab:serviceMapping inherits the information of
a service binding. It can be assigned in two ways: If a service is bound at runtime,
an input property can be indirectly assigned to the service mapping by using the
vocab:from property. If the binding is static, the URI of the mapped service can
be assigned directly to the vocab:serviceMapping property as a string literal. This
mechanism again emphasizes the freedom of defining generic or specific workflow
items. vocab:input and vocab:output define the input and output properties of a
workflow item. They will be discussed in more detail later in this section.
In its basic structure, a description example then looks like in listing 3.19.

70



3.2 Proposed Architecture

"@id":"http://example.org/definitions/discovery",

"@type":"vocab:WorkflowItemTemplate",

"hydra:title":"Discovery Service Item",

"hydra:description":"Discovery of locations close to a certain location.",

"vocab:serviceMapping":{

"vocab:from":"#input/serviceUrl"

},

"vocab:input": [

...

],

"vocab:output":[

...

]

Listing 3.5: Basic structure of a workflow item description

Yet again, this example can be illustrated in form of an RDF graph (figure 3.11).

host:definitions/
discovery

vocab:
WorkflowItemTemplate

rdf:type

“Discovery Service Item“

“Discovery of locations 
close to a certain location.“

host:definitions/
discovery#input/

serviceUrl

vocab:serviceMapping

vocab:from

hydra:title

hydra:description

vocab:input vocab:output

Figure 3.11: Exemplary workflow item description resource.

As already mentioned before, vocab:input and vocab:output define the input,
respectively output interface of a workflow item. Similar to hydra:expects and
hydra:returns they use the hydra:supportedProperty mechanism to define the
incoming and outgoing properties of a workflow item at runtime. This mechanism is
not needed for the mapping of concrete services to workflow items, as there services
would use unambiguous properties themselves. Listing 3.6 shows a minimal example
of how input and output of a workflow item could be defined. Figures 3.12 and 3.13

then provide the associated RDF graph form.
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...

"input": [

{

"@id":"#input",

"supportedProperty":[

{

"@id":"#input/lat",

"@type":"hydra:SupportedProperty",

"property":"schema:latitude",

"required":true

},

{

"@id":"#input/lng",

"@type":"hydra:SupportedProperty",

"property":"schema:longitude",

"required":true

},

...

]

}

],

"output":[

{

"@id":"#output",

"supportedProperty":[

{

"@id":"#output/locationCollection",

"property":"schema:collection",

"required":true

} ,

...

]

}

]

...

Listing 3.6: Input and output property description of a workflow item
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host:definitions/
discovery#input

host:definitions/
discovery#input/lat

hydra:supportedProperty

host:definitions/
discovery#input/lng

hydra:supportedProperty

hydra:
SupportedProperty

true

schema:latitude

rd
f:typ

e

hydra:property

hydra:required

hydra:
SupportedProperty

true

schema:latitudehydra:property

rd
f:typ

e

hydra:required

Figure 3.12: Exemplary workflow item input description resource.

host:definitions/
discovery#output

hydra:supportedProperty

host:definitions/
discovery#output/
locationCollection

hydra:
SupportedProperty

true

schema:collectionhydra:property

rd
f:typ

e

hydra:required

Figure 3.13: Exemplary workflow item output description resource.
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The overall minimal working example for a workflow item description can be
illustrated as a whole in an RDF graph. This graph may easily be in the graph
describing a workflow, as it represents the type definition of a workflow item
instance. Therefore, the rdf:type property connects both graphs, while the mapping
in the workflow interconnects inputs and outputs of the instantiated workflow
items.
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Figure 3.14: Overall graph of an exemplary workflow item description.
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3.2.4 Service mapping

The last missing piece of the proposed workflows framework is the concept of
service mappings. As has already been mentioned in the previous section, the
service mapping implements the concrete binding of a workflow item to a third-
party service API. In section 3.2.1, the user interface was specified to support not only
self-created, internally stored service descriptions, but also the possibility to parse
and natively understand service descriptions provided by an external service provider
himself. Thus, Hydra has been identified as a promising approach to enable services
to provide an RDF conforming solution. To access the description for the behavior of
an API, Hydra offers the ApiDocumentation concept. In its domain, publicly defined
properties are indicating API-specific classes, possible status codes and an entrypoint.
The workflow parser is currently comprehending objects from two different types
in the range of hydra:entrypoint: hydra:IriTemplate and hydra:Resource. Both
will be discussed in the course of this section.
In addition to the existing Hydra vocabulary, an extension to support the semantic
annotation of OAuth authorization is proposed.
While the semantic description of a service enables the internal client to invoke
the service API correctly, it does not warrant that the internal client understands
the response. Most state-of-the-art APIs support only plain JSON and only few
will provide JSON-LD. Thus, the JSON-to-JSON-LD parsing mechanism outlined in
section 3.2.1 has to be implemented as well.
Discussing one issue after another, listing 3.7 starts by presenting an example for the
basic structure of a descriptive hydra:ApiDocumentation resource:

"@id":"http://localhost:8080/definitions#YelpLocations",

"@type":"hydra:ApiDocumentation",

"hydra:title":"Yelp business search API",

"hydra:description":"Discovery of venues close to a certain location.",

"hydra:statusCodes":[

...

],

"hydra:entrypoint":{

...

},

"hydra_ext:authorization":{

...

}

Listing 3.7: Basic structure of a hydra:ApiDocumentation class object

The semantics of both hydra:title and hydra:description has already been pre-
sented. hydra:statusCodes contains semantically annotated descriptions of possible
response status codes, in particular their meaning and possible cause. The most
important property, however, is hydra:entrypoint, as it points directly to a de-
scription of how to interact with the API. As already mentioned, the proposed
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implementation recognizes two possible types for an entrypoint. The first one is
hydra:IriTemplate. An IRI template indicates a queriable resource, thus supporting
HTTP GET only. hydra:template represents the IRI template, annotated as defined
in IETFC RFC 6570 (see section ??). A template contains several variables, place-
holders for values. These variables are mapped via hydra:IriTemplateMapping

objects, assigned to a hydra:IriTemplate by the hydra:mapping property. Each hy

dra:IriTemplateMapping maps a hydra:variable to a hydra:property. The prop-
erty hydra:variableRepresentation indicates whether mapped IRIs should be
interpreted as plain strings or extended by language and/or datatype information.
Listing 3.8 provides an example for the description of an IRI template resource.

...

"hydra:entrypoint":{

"@id":"https://api.yelp.com/v3/businesses/search/",

"@type":"hydra:IriTemplate",

"hydra:template":"https://api.yelp.com/v3/businesses/search/{?latitude,longitude}",

"hydra:variableRepresentation": "BasicRepresentation",

"hydra:mapping": [

{

"@type": "IriTemplateMapping",

"hydra:variable": "latitude",

"hydra:property":{

"@id":"schema:latitude"

}

},

{

"@type": "IriTemplateMapping",

"hydra:variable": "longitude",

"hydra:property":{

"@id":"schema:longitude"

}

},

]

}

...

Listing 3.8: Hydra description of an API in the form of a templated URI query

The second recognized type in the range of hydra:entrypoint is hydra:Resource.
Each hydra:Resource supports the property hydra:operation, describing the hy

dra:Operation to interact with the resource. The semantics operation descrip-
tions have already been examined when introducing workflow descriptions. hy
dra:returns may be omitted here, especially when a service-specific context has to
be used to parse a JSON response into JSON-LD.

76



3.2 Proposed Architecture

...

"hydra:entrypoint":{

"@id":"https://api.yelp.com/v3/businesses/search/",

"@type":"hydra:Resource",

"hydra:operation":{

"@type":"hydra:Operation",

"hydra:method":"POST",

"hydra:expects":[

{

"hydra:supportedProperty":[

{

"hydra:property":"schema:latitude",

"hydra:required":true

}

]

}

],

"hydra:returns":[

{

"hydra:supportedProperty":[

{

"hydra:property":"schema:collection",

"hydra:required":true

}

]

}

]

}

},

...

Listing 3.9: Exemplary hydra:entrypoint

With the internal HTTP client now able to request resources from third-party APIs,
the next step would be to enable the client to parse responses in a meaningful
way. Thus, a mechanism has to be implemented, parsing plain JSON responses
into semantically annotated JSON-LD objects. In the proposed approach, some
characteristics of the JSON-LD processing algorithm are tried to be exploited. By
injecting a service-specific JSON-LD @context into the plain JSON response, strings
can be retrospectively resolved to IRIs by JSON-LD term expansion. Moreover,a term
definition cannot only be used to map a term to an IRI, but also to map a term to
a keyword. The latter is then referred to as a keyword alias. To demonstrate this
functionality, a short example may be considered. Listing 3.10 shows an example for
a plain JSON response. In this example, a client may have obtained a list of Premier
League fixtures.
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[

{

"id": "4f6e2f42e4b0e4284308fd7a",

"name": "Liverpool FC vs. Everton FC",

"date": "01.04.2017",

"stadium":"Anfield Road"

}

]

Listing 3.10: Example for a plain JSON reponse

As one can clearly see, all the keys in this response are plain strings rather than IRIs
and could therefore not be processed by semantically enabled clients. However, by
exploiting the term expansion mechanism of a JSON-LD processor, a service-specific
context may be injected into the response before the JSON-LD expansion algorithm is
applied. The template in listing 3.11 provides exactly this functionality. The response
is wrapped by the @graph keyword, this way the context applies to all JSON objects
in the response.

{

"@context":[

*** remote context ***

{

*** local context ***

}

],

"@graph":[

*** plain JSON ***

]

}

Listing 3.11: Context injection template

For demonstration purposes, the example from listing 3.10 is now injected with spe-
cific context, using the template presented in listing 3.11. This context should trans-
form every plain key string name with the IRI key string http://schema.org/name. In
addition, it is assumed that a bound workflow item requires to extract the id of the el-
ement, thus the context maps it to the IRI http://purl.org/dc/terms/identifier.
After injecting appropriate context, the result looks like in listing 3.12.
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{

"@context":[

{

"id":"http://purl.org/dc/terms/identifier",

"name":"http://schema.org/name"

}

],

"@graph":[

[

{

"id": "4f6e2f42e4b0e4284308fd7a",

"name": "Liverpool FC vs. Everton FC",

"date": "01.04.2017",

"stadium":"Anfield Road"

}

]

]

}

Listing 3.12: Exemplary context-injection

This representation now conforms to the compacted form of a JSON-LD document.
As such, a JSON-LD processor can now apply the expansion or flattening algorithms.
An extensive list of JSON-LD processor implementations may be found at the official
webpage of JSON-LD1. For quick validation of contexts and whether they lead to
the desired results, the JSON-LD playground provides excellent tooling support2.
Applying the expansion algorithm to the example in listing 3.12, leads to the JSON-
LD converted response in listing 3.13.

[

{

"http://purl.org/dc/terms/identifier": [

{

"@value": "4f6e2f42e4b0e4284308fd7a"

}

],

"http://schema.org/name": [

{

"@value": "Liverpool FC vs. Everton FC"

}

]

}

]

Listing 3.13: JSON-LD-converted JSON response after context-injection

1http://json-ld.org/#developers
2http://json-ld.org/playground/
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A client that recognizes the IRIs can now comprehend its meaning. However, there
are still issues when using this mechanism. As JSON responses may be nested in
multiple layers, they may consequently contain ambiguous JSON key names within
a single response. Thus, a mechanism enabling hierarchical unwrapping has to be
considered. To illustrate this issue, listing 3.14 provides a relevant example.

{

"@context":[

{

"response":"_:response",

"event":"_:event",

"venue":"_:venue",

"id":"http://purl.org/dc/terms/identifier",

"name":"http://schema.org/name"

}

],

"@graph":[

{

"response": {

"event": [

{

"id": "4f6e2f42e4b0e4284308fd7a",

"name": "Liverpool FC vs. Everton FC ",

"venue": {

"name": "Anfield Road"

}

}

]

}

}

]

}

Listing 3.14: Example for a nested class definition

To resolve or drill-down the base object, the approach here is to assign blank nodes to
the keys of the parenting instances. Applying the expansion algorithm, the resulting
JSON-LD file from listing 3.15 is obtained.
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[

{

"_:response": [

{

"_:event": [

{

"http://purl.org/dc/terms/identifier": [

{

"@value": "4f6e2f42e4b0e4284308fd7a"

}

],

"http://schema.org/name": [

{

"@value": "Liverpool FC vs. Everton FC "

}

],

"_:venue": [

{

"http://schema.org/name": [

{

"@value": "Anfield Road"

}

]

}

]

}

]

}

]

}

]

Listing 3.15: Context-injection converted nested class definition

Ignoring and unwrapping all the blank node keys in the evaluation of the response
would then still create a feasible result, if it was not for the problem of ambiguity. As
can be observed in listing 3.14, the JSON object now contains two keys called name,
which is perfectly compliant to the JSON specification as there are no ambiguously
named keys within the same nesting level of an object. To extract the name of the
venue of the event, blank nodes for response, event and venue have to be defined.
As both the event object and the venue object contain a name key, the processor
expands them both as http://schema.org/name. To avoid this behavior the nesting
structure of the response has to be included in the mapping for JSON-LD. Thus, the
workflow framework simply adds a logical layer on top of JSON-LD, as shown in
listing 3.16.

81



3 Methodology

{

"@context":[

*** remote context ***

{

*** local context ***

}

],

"vocab:disambiguateJson":{

*** disambiguating mappings ***

}

"@graph":[

*** plain JSON ***

]

}

Listing 3.16: Context injection template

The logical layer is implemented by adding the proprietary defined property vo

cab:disambiguateJson to the service-specific context file. By using the syntax Par

ent.Child.Property.{IRI-Subproperty}.(...).{IRI} instead of only the name
of the key, an internal parser (not the JSON-LD processor) can disambiguate wrongly
applied context. Listing 3.17 therefore presents the same example extended by the
vocab:disambiguateJson property, containing disambiguating key-value pairs.
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{

"@context":[

{

"response":"_:response",

"event":"_:event",

"venue":"_:venue",

"id":"http://purl.org/dc/terms/identifier",

"name":"http://schema.org/name"

}

],

"http://localhost:8080/vocab#disambiguate":{

"http://schema.org/location":"response.event.venue.{http://schema.org/name}",

"http://schema.org/name":"response.event.{http://schema.org/name}"

},

"@graph":[

{

"response": {

"event": [

{

"id": "4f6e2f42e4b0e4284308fd7a",

"name": "Liverpool FC vs. Everton FC ",

"venue": {

"name": "Anfield Road"

}

}

]

}

}

]

}

Listing 3.17: Nested objects response with ambiguities

The internal parser will then apply the disambiguation algorithm and return a
response according to listing 3.18.

{

"http://schema.org/location": [

{

"@value": "Anfield Road"

}

],

"http://schema.org/name": [

{

"@value": "Liverpool FC vs. Everton FC"

}

]

}

Listing 3.18: Disambiguated JSON-LD converted response
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Implementation of API Authorization

As has already been elaborated in section 2.6.1, authorization is necessary with most
APIs and must therefore be handled by the proposed workflow framework. OAuth
offers a specified protocol flow and can thus be perfectly described by a standard vo-
cabulary. However, Hydra is yet to address orthogonal aspects such as authentication
and authorization. Thus, in this thesis, an extension to Hydra is proposed, enabling
Hydra to convey descriptions of authorization protocol flows in JSON-LD. Basic
properties of the OAuth flow are: grant type, token endpoint and authorization end-
point. Additionally, the introduction of a property hydra ext:requiredHeaders may
be considered, as some APIs require specific, but usually static, header parameters.

...

"hydra_ext:authorization":{

"@type":"OAuth2",

"hydra_ext:grantType":"password",

"hydra_ext:tokenEndpoint":"https://api.yelp.com/v3/businesses/search/",

"hydra_ext:requiredHeaders":[

{

"hydra_ext:headerKey":"Content-Type",

"hydra_ext:headerValue":"application/json"

}

]

}

...

Listing 3.19: Proposed Hydra OAuth extension
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3.3 Used APIs

One key aspect in the target definition of this thesis was the utilization of real APIs.
In the curb side pick-up use case mentioned in chapter 1 there are several services
involved: one service discovering nearby coffee vendors, one service to pay for the
coffee and various services within the vehicle (positioning, user interaction, etc.).
To integrate these services into the workflow framework, their structure has to be
examined in detail.

3.3.1 Discovery services

The first class of services to be examined are discovery services. These services
should provide a set of locations within a defined vicinity of a defined point of
interest. Additionally, there may be further filters applied to constrain results. After
an online survey, three services were found to offer these capabilities: the Foursquare
Search Venues API1, the Yelp Search API2 and the OpenTabs Locations API3. Based
on a review for common capabilities and general style of invocation for these services,
a generic discovery template may be designed. This design starts with a review of
the request parameters of each service. The chosen approach in this thesis was to
compare the semantics of all parameters and check for similarities. Following this
review, table 3.1 has been assembled:

Generic Foursquare Yelp OpenTabs
lat ll.lat cll.lat latitude
lng ll.long cll.long longitude

radius radius radius filter radius
query query term filter
limit limit limit limit

Table 3.1: Mapping of request parameters for discovery services.

In this table, a more or less arbitrary generic string is chosen to map the different
string representations. However, as discussed on numerous occasions already, things
should be defined through unambiguous IRIs, rather than plain strings. Thus, it
should be tried to map IRI definitions from well-known vocabularies, rather than
creating arbitrary strings. Table 3.2 defines the semantics of each of those parameters
in a human-understandable way and exemplifies how a mapping of well-known
property names could look.

1https://developer.foursquare.com/docs/venues/search
2https://www.yelp.com/developers/documentation/v3/business_search
3http://www.opentabs.de/
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Generic Schema Property Description
lat schema.org/latitude Latitude coordinate of the point of interest.
lng schema.org/longitude Longitudinal coordinate of the point of interest.

radius schema.org/geoRadius Radius from point of interest to be considered.
query schema.org/query String to filter the returned results.
limit schema.org/numberOfItems Parameter limiting the returned results.

Table 3.2: Request parameter description.

After this generic interface for HTTP requests has been found, an output interface
generalizing possible responses has to be considered. Again, a review of each API
provider’s response specifications has been conducted. The results are presented in
table 3.3.

Generic Foursquare Yelp OpenTabs
id id id ident

name name name name
lat location.lat location.coordinate.latitude gps lat
lng location.lng location.coordinate.longitude gps lng

country location.cc location.country code country iso
city location.city location.city city

address location.address location.address address1

Table 3.3: Mapping of response parameters for discovery services.

Same as for the request parameters, rather than using ambiguous strings as keys for
the mapped response values, it is highly recommended to use unambiguous IRIs
from well-known public vocabularies. Therefore, instead of using a generic string
definition, suitable terms in public vocabularies should be used. In this concrete
example, there are two concepts which can be used to map the outputs: for the id of
the location dc:identifier provides suitable semantics, while all the other output
parameters fit perfectly into schema:Place. A full list of the generic output interface
for a discovery service can be found in table 3.4.

Generic Schema.org/Place
name name

lat geo.latitude
lng geo.longitude

contry Country
city addressLocality

address streetAddress

Table 3.4: Mapping of response location parameters to schema.org/Place.
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3.3.2 Vehicle services

As the vehicle will play a central role in processing a workflow, it will have to provide
several services. Each vehicle represents a surrogate of its driver, implemented by its
interior HMI capability. What used to be pressing buttons and turning knobs, has
also evolved with remarkable speed during the last decade. Vehicles like the new
BMW 7 series offer gesture control, speech assistance and multiple touch interfaces
within the vehicle. Therefore, to interact with a user, each vehicle has to provide
some sort of HMI service.
For the PoC in this thesis, only rudimentary services were mocked, to incorporate
human interaction in a workflow. One interaction service is the HmiPickOne service.
A client may HTTP POST a hydra:Collection to it, the vehicle’s HMI device(s)
presents it to the user and the user may pick one item of the collection. For creating
an order, the implementation also mocks an HmiPickMultiple service, with the same
basic function as HmiPickOne, but allowing a user to pick multiple items from a list.
Besides interacting with the user, vehicle offer much more data that may be exploited
in a workflow. Thus, car manufacturers are working on implementations for vehicle
APIs exposing relevant parameters like position, speed, fuel consumption and many
more, into their cloud. Services in the backend, like the workflow processor, may
then use this data to add value to a user’s experience. As there is no real-world
implementation now, vehicle data are also only simulated in the PoC.

3.3.3 Payment services

One of the most delicate web service applications is web payment. Web payment
and online banking are already widely implemented but the hype for the so-called
”fintech” (abbreviated from financial technologies) business is still growing.1 The
W3C even set up a dedicated Web Payments Working Group to standardize web
payment solutions.
Credit card providers like Visa with its CyberSource API2 and MasterCard with
its Payment Gateway3 also provide APIs to enable online payment transactions.
Interestingly, the latter therefore provides its own WADL description4.
Probably the most popular online payment service and one of the earliest players
in this market, is PayPal. PayPal offers one the most RESTful APIs, incorporating
HATEOAS by using the HAL (see section 2.4.1) standard. To create a payment,
PayPal provides its Payment API. The PayPal Payment API allows direct credit card
payments, stored credit card payments, or PayPal account payments. A payment

1https://www.bloomberg.com/gadfly/articles/2016-08-19/the-bubble-in-fintech-doesn-t-look-
much-like-one

2https://developer.visa.com/products/cybersource
3https://eu-gateway.mastercard.com/api/documentation/apiDocumentation/index.html?

locale=en_US
4https://eu-gateway.mastercard.com/api/documentation/apiDocumentation/reference/

wadl20090202.xsd?locale=en_US
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request must contain a specified intent, the payer and the transaction. However,
when using the PayPal payment, the user must be redirected to an approval URI,
provided by PayPal, which contains an HTML login. This payment flow is already
well-established in the desktop- and handheld-environments, but rather inconvenient
when a user is busy driving a vehicle. Thus, the scope of this thesis excludes this
option and concentrates on credit card payments. As discussed before, there are two
ways to pay by credit card: via submitting the complete credit card object, or via
using the PayPal Vault, where credit cards can be stored. This payment method is
also called ”tokenized” credit card.
Every Payment API interaction needs to be authorized via OAuth 2. PayPal uti-
lizes the client credentials flow, providing tokens in exchange for dedicated client
credentials. Therefore, in an implementation it would make sense to assign client
credentials to each vehicle/user account. For each invocation of the Payment API, the
token is then included in the Authentication header field according to the Bearer
Token specification.
To create a payment, PayPal requires several parameters:

intent describes the intended payment process, for immediate payment, intent has
to be set to sale.

payer describes the identity of the user and includes credit card data.
transaction describes transaction details, as item list, payment sum and payment

recipient.

For the workflow handling system to act as an intermediary for credit card payments
via PayPal, it must know the email and merchant ID of the provider of a service.

3.3.4 Ordering services

Currently, there seem to be only a few services providing open APIs for third party
applications. Most providers offering this kind of service typically act only in certain
(geographic) areas. Thus, these services are a good example for the necessity of
hyperlocal service support. OpenTabs is a start-up from Munich providing a mobile
app for ordering food and beverages at a specified location. Similar providers are
YQ in New Zealand, beat the q in Australia and Tapingo in the US. What they all
have in common is that they provide services that allow users to order at partnered
venues offering food and beverage. After ordering, a user may either pick up the
order or, depending on the provider, has it delivered to a specified location. Thus,
there is no queuing and the order is already processed upon arrival.
The process of ordering food is separated into several APIs: as has already been
mentioned in section 3.3.1, OpenTabs provides its own location discovery API. After
the OpenTabs ID of a location is obtained, OpenTabs provides a Menus API to
request the available menu items at a defined location. From this menu, a user might
then assemble an order and use the Orders API to post an order to the previously
chosen location.
For authorization, OpenTabs utilizes the OAuth2 resource owner protocol flow.
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However, there are some out of specification peculiarities in the authorization flow.
While OAuth2 specifies the endpoints for requesting access and refresh tokens to be
the same, OpenTabs defines two different endpoints. Moreover, in its current version,
OpenTabs requires clients to add the header "x-opentabs-api-key: ios 3.0" to all
of their calls, including authorization calls.

3.4 Limitations

The components proposed in this thesis have the potential to solve complex mashups
and execute powerful workflows. However, to enable powerful performance, no less
powerful and thus intricate implementations are required. Therefore, as time and
resources were limited within the scope of this thesis, certain limitations had to be
defined.
As already discussed in section 3.2, the scope of this thesis excludes the actual trigger
of a workflow. The trigger may not be explicitly set by a human user, but may be
set by some assistance function in the backend or after some artificial intelligence
reasoning upon a user’s behavioral patterns. For example, driver fatigue sensors
may ask a tired driver for a coffee break and suggest nearby coffee shops.
For sake of simplicity there have also been numerous constraints in the imple-
mentation of the workflow server, as will be discussed in chapter 4 again. The
implementation of user authentication may be solved using OpenID or similar stan-
dards, or within proprietary specifications. User credentials may also be stored on
a hardware token, like a vehicle’s keys. The PoC implementation in the course of
this thesis assumes that each user acts in a user-specific environment and is securely
authenticated with the orthogonal user store component. Thus no authentication
with the user interface is implemented.
As has already been briefly discussed in section 3.3, there are countless different
implementations of service authorization. Therefore, the scope of which methods to
support has to be defined in advance. As only OpenTabs and Paypal will be used
in the PoC implementation, OAuth 2 resource owner and client credential grant
types are the only ones being implemented. Deprecated authorization protocols like
OAuth 1.X and proprietary authorization methods are also deemed out of scope.
The user configuration interface will also not be implemented, but simulated by
hardcoded parameters, again for the sake of brevity and demonstration purposes.
In its current state, the workflow processor will also not be able to perform federated
queries within one workflow item. In particular, this refers to requests that have
to be split, as different data from different APIs have to be obtained. An example
would be a request for the friends of a friend from some social network API, e.g.
Facebook (note: this is a hypothetical example and does not imply whether or not
this is implemented in Facebook). One request may have to get a friends ID, while
the other retrieves the people linked with that ID. In the current implementation, a
workflow item for each request would have to be created.
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4 Results

Following the implementation of the concepts proposed in the previous chapter, this
chapter presents and discusses the findings and results obtained. First, a comparison
and review of the different description approaches examined in chapter 2 is con-
ducted. Next, the use-case driven implementation carried out in the course of this
thesis is presented. The final section of this chapter will then provide an overview of
the lessons learned during the implementation work.

4.1 Review of existing Web Service Description approaches

Several publications have investigated existing approaches to describe web services.
Sheng et al.[61] provide an extensive overview of web service description and
composition approaches. They also define and provide a set of assessment criteria
for web services. Verborgh et al. have published a similar survey of existing semantic
web service descriptions.[47] In their article, the authors differ between lightweight
semantic descriptions, SPARQL-based descriptions, logic-based descriptions and
JSON-based descriptions.
For the review conducted in the course of this thesis, an evaluation schema had to
be defined. Therefore, several criteria where rated, based on the scale in table 4.1:

++ The criterion is satisfied to its full extent in every dimension.
+ The criterion is satisfied to its full extent in several dimensions.
0 The criterion is supported in all dimensions, but insufficiently satisfied.
- The criterion is insufficiently supported and only met in a few dimensions.

- - The criterion is not met in any dimension.

Table 4.1: Definition of rating scale.
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The criteria used in this thesis have been defined as follows:

Readability is defined to assess the capability of a description format to be read and
consequently understood without the need of a profound understanding of
any specified standards. In general, the more verbose and human-readable a
description style is, the better the rating.

Flexibility is defined as the ability of a description to adapt to changes in the ca-
pabilities of a web service during runtime. These changes may be due to
restructuring or extending an API. For example, if clients will be caused to
break without an out-of-bound update themselves, a rather negative rating
will be awarded.

Syntax is defined to express the capabilities and rate the inherent semantic power
of the syntactical allowance of a description standard. The semantic power is
essentially rated based on the terseness of a syntax when expressing a relation.

Semantics is defined as the capability of a description standard to incorporate
semantic web technologies as the RDF data model, IRIs, ontologies and reason-
ing.

Based on the evaluation schema and the criteria that have been established, each
web-service description is examined and discussed accordingly.

Plain text description is according to the work of Verborgh et al.[47] the most pop-
ular form of web service description. Naturally, textual description allows for
verbosity and the use of any vocabulary. Therefore, a description might provide
concise and elaborate terms to provide the semantics for developers wishing to
integrate a service. Assuming a diligent textual description is provided, this for-
mat offers great readability as it provides documentation in natural language,
which is even amenable for non-experts. Thus, plain textual description offers
great readability (++). As soon as an API is changed however, clients have
no chance of adapting to the changes, as they have no in-band access to this
information. Developers would have to start their whole development process
again and manually adapt their clients. Thus, plain textual description offers
no flexibility whatsoever (- -). Regarding the syntax of a textual description
there are usually no specifications either. There may exist some conventions,
as textual descriptions are often offered via HTML-document and are written
in English, but the representation of the text itself is under no further syntax
definition, enforcing terseness. A negative rating was deemed to be appropriate
due to these syntactical insufficiencies(-). The unconstrained nature of textual
descriptions denies them any capability for semantic web technologies (- -).

Static description formats provide structured documentation and tooling to auto-
matically generate human-readable representations of the code-like textual
description documents. A short phase of adaption is necessary to enable a
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human to comprehend the syntax and get used to the tooling, however, once ex-
perienced with the pattern of a standard, the rather rigorous structure enables
a fast comprehension. Thus, readability was rated predominantly positively
(+). A change in the structure or extension of an API is not registered by
deployed clients in the field and thus out of band. However, developers may
use automatic code generation tools to quick start implementations and may
experience reduced development cycles. A client still has to be manually up-
dated, but developers are saved effort, therefore flexibility is rated negatively
(-). In terms of syntax, standards like Swagger offer a well-proven terminology
that concisely describes the data model imposed by the standard. The syntax
is capable of efficiently describing the structure used in most existing HTTP
conforming APIs (++). Semantic web technologies are not supported by static
description languages. Keywords are plain strings and given defined semantics
within the standard, but are not using unambiguous IRIs. In conclusion the
worst rating is applicable (- -).

Dynamic description formats typically involve lightweight terminology. Due to
their distributed nature, a human would still need to explore APIs step-by-step
and might assume certain functionality by interpreting the semantics of used
key names. Moreover, for some standards an understanding of the semantics
imposed by the HTTP specifications is required. Due to their shortcomings
in these dimensions, dynamic description formats are rated only positively
(+). In terms of flexibility, due to their dynamic nature, existing client imple-
mentations do not break upon server-side changes. While clients may not
comprehend changes without an update, they are still capable of utilizing
existing functionality. Therefore, the flexibility rating is also positive (+). The
syntax used by most dynamic description standards is lightweight and easy to
comprehend itself. However, due to their lightweight character, space for indi-
vidual interpretations of the documentations and their underlying data-models
is remaining. Thus, the syntax rating is given a neutral rating (0). As most
dynamic description standards are based on some other serialization standard,
they would in theory support the use of IRIs as keys and values. However,
none of the standards of HAL, SIREN and Collection+JSON unambiguously
use IRIs as keywords in their syntax. Their data models are usually similar
to RDF, but do not use standards from the semantic web technology stack.
Therefore, the semantics rating for them is only predominantly positive (+).

Semantic description formats are denoted in RDF-enabled serialization standards
like JSON-LD, Turtle and RDF/XML. A basic understanding of the RDF model
is therefore required to interpret a response. IRIs may be unambiguous but still
require definition of their unambiguous meaning in some way. In vocabularies
like schema.org this is done in a machine- and human-readable form, but
other vocabularies might not be as extenisvely documented. Due to these
reasons, human-readability may be achieved, but requires some effort by a
human reader. Therefore, a neutral rating (0) is awarded in this dimension.
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As semantic description standards base on dynamic description standards,
they also embrace the HATEOAS approach. Beyond that, clients that recognize
vocabularies may even comprehend server-side extensions and changes as
long as they adhere to the recognized vocabularies. Thus, semantic description
standards are awarded the best flexibility rating (++). Complexity and capability
of the syntax depend on the used serialization format. In general, the RDF data
model allows to describe almost every kind of relationship in the existing world.
However, this capability comes at the expense of verbosity and convoluted
annotations sometimes. The syntax rating of semantic description formats is
therefore neutral (0). As already implied by the classification category’s name,
semantic description formats provide elaborate functionality to incorporate
semantic web technologies and evolve with the research efforts put into the
Semantic Web. Unambiguous IRIs are an integral part of the standards and the
RDF model is even extended in some formats. Therefore semantic standards
are awarded the best possible rating (++).

Table 4.2 sums up the discussion in a more clearly arranged format.

Readability Flexibility Syntax Semantics
Plain text description ++ - - - - -
Static description formats + - ++ - -
Dynamic description formats + + 0 +
Semantic description formats 0 ++ 0 ++

Table 4.2: Evaluation of the different web service description approaches.
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4.2 Discovery Workflow Implementation

For the validation of the proposed workflow concept, a minimal working example
was implemented. The workflow handling system was deployed using the Java Jetty
server framework.
To add workflow, workflow item, service mapping and service-specific context
descriptions, the server periodically checks its filesystem for new files, parses them,
and, on success, adds them to its internal repository.
Starting from the entry point of the user interface, a user client is provided with
HATEOAS conforming responses, using JSON+LD as the default content type and
Hydra, schema.org and dublin-core as defined recognized vocabularies. This enables
clients that recognize all these vocabularies to interact with the user interface.
Before the workflow handling system is able to make use of a service, a client has to
authorize it. As has alread been discussed, a popular standard to authorize clients
to act on someones behalf is OAuth. Depending on the protocol flow used by an
API, different scenarios to authorize the workflow handling system with the API
are possible: the workflow handling system may redirect the authentication step
to a user’s phone, where the user may easily confirm his identity and authorize
the client. The token endpoint would then be redirected to the workflow handling
service system, which would then extract the token and refresh it automatically,
everytime it has expired. Another possibility would be that the user has to use the
user configuration interface to manually enter their credentials and step through the
authorization flow.
To demonstrate the interaction of a client with the workflow handling system, a
workflow with only a single generic workflow item was described. The workflow may
be considered as a discovery workflow, expecting a location’s latitude and longitude,
a search radius around the location, the entrypoint of a service that should be used
and a limit to the locations that are returned. The whole workflow then returns an
array of locations that have been discovered.
As the client implementation is out of scope for the considerations within this thesis,
the client is simulated by using Postman, a Google Chrome plugin, that supports
excellent tooling for producing and analyzing HTTP interaction.
The entrypoint for a client wishing to interact with the workflow handling system
was the resource at /workflows/. The base URI is depending on the actual authority
providing this functionality in a productive system. For this PoC the server was set
up locally and thus running on localhost:8080. A client may therefore retrieve a
collection of the available workflows by performing an HTTP GET on the entrypoint
resource http://localhost:8080/workflows/. Figure 4.1 illustrates the response
obtained using Postman.
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Figure 4.1: Response of the entrypoint resource.
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The retrieved resource representation proves to be of type hydra:Collection and
lists all workflows that are currently available in the repository. The user agent may
discover the expected inputs and outputs of a workflow by performing an HTTP
GET on a single workflow member, thus retrieving a detailed description of the
workflow. Based on the output description, a user agent may then be able to decide
whether the workflow satisfies the agent’s objectives and whether the agent wants to
invoke it. Figure 4.2 presents the response for an HTTP GET request to retrieve a
detailed description of the discovery workflow.
If examined closely, it may be observed that the vocab:mapping and vocab:items

properies are not included in the representation. This is due to the definition that
workflows may be opaque for the user. Moreover, the user interface was defined
to only expose Hydra, schema.org and dublin-core terms. Exposing proprietary
defined terms would violate this constraint. Assuming a client is content with
the output generated by a workflow, it will consequently try to invoke it. Upon
recognizing the property hydra:operation in the retrieved workflow description
depicted in figure 4.2, a client comprehends the instructions provided to perform
the operation and acts accordingly. As a result, the client performs an HTTP POST
to the http://localhost:8080/workflows/discovery/ resource, which creates an
instance of the discovery workflow and executes it. Upon successful execution, the
server returns the status code 201: Created and appends the Location header
containing the ID of the resource representing the workflow result. This practice is
recommended in the official HTTP 1.1 specifications and part of the semantics of
POST. Therefore, some standard client programs, like Postman, automatically follow
the link provided in the Location header by immediately performing an HTTP GET
to the provided URI. Therefore, the response in figure 4.3 indicates that the server
responds right away with the workflow results.
The results of the workflow are as-well serialized in JSON-LD and conforming to the
vocabularies defined to be recognized. The result of a workflow may be stored for
future applications and retrieved by an HTTP GET request as shown in figure 4.4.
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Figure 4.2: Detailed description of a workflow resource.
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Figure 4.3: Execute a workflow.
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Figure 4.4: Retrieve an existing workflow instance.
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4.3 Lessons learned

Following the implementation of the workflow handling system concept, this section
discusses issues that have emerged, proposes strategies to solve them and draws the
lessons learned during the implementation of the concept.
A major challenge was to generalize web services to enable workflow items to bind
to more than one service. From an economic point of view, in an open unregulated
market, every competitor tries to outperform the others by providing more value.
Thus, even when service providers offer similar essential functionality (Foursquare
and Yelp are both offering venue discovery, rating, etc.) they will try to distinguish
from one another in offering what they perceive as the best technical solution to
provide a service. Thus, there is a fine line between using standards and creating
individual solutions. Generic service abstractions make sense when, for example,
quality and coverage of data vary depending on locality. While YQ may offer great
service coverage in New Zealand, Tapingo may provide a similar service quality
in California. This aspect is one of the main reasons to try and enforce a generic
approach. However, most service providers typically develop their solutions inde-
pendent from one another. Moreover, they may use different standards or interpret a
standard’s specification differently. Innovative service implementations may even
have to propose new approaches that are not standardized at all. These circumstances
lead to a host of implementation challenges.
When requesting a representation or a collection of representations, most providers
adhere to the semantics of HTTP verbs and use GET to retrieve a representation from
a server. However, some providers violate the semantics of HTTP verbs. In some
client as well as server implementations, HTTP GET is only supported to a certain
length of requests (2-8kB in modern browsers for example). Thus, some providers
abuse HTTP’s semantics and use HTTP POST instead, as there is no length limit
for requests. One example would be the menu discovery service provider locu that
changed its invocation style from using HTTP GET in its v1 API to HTTP POST in its
v2 API. Exceptions like this are very hard to map in a service mapping description.
Nevertheless, most providers adhere to the semantics imposed by HTTP and use
HTTP GET.
A related issue arose when reviewing the possibilities of including parameters in
a request. Parameters may be appended directly to a URI, using the embedded
query mechanism. Another option would be to transfer key-value pairs as HTTP
headers. A third possibility is to insert key-value pairs into the body of a request.
This could even prove to be more complex, as data in the body may be formatted
using an arbitrary Internet media-type, or even worse, vendor specific, unregistered
Internet media-type. According to the HTTP specifications, a payload in an HTTP
GET request body does not have defined semantics. However, best practices usually
stipulate that parameters that are used in querying a collection resource are put
into the query part of a URI. Hydra provides an appropriate mechanism with the
hydra:IriTemplate and hydra:IriTemplateMapping classes that allow to map a
property to a variable in a templated query. In its current version, however, Hydra
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does not provide any terms to annotate, whether specific headers have to be set and
in which way they have to be set. Headers play a big part in content negotiation,
therefore they are often required by a server. While hydra offers a way to express
which parameter an operation expects to be performed, it does not provide semantics
to annotate whether they are to be included in a header or in the body part. Moreover
there is no term definition of what content-type the body should use.
Aside from the problem of where to actually put parameters, there are also some
more complex issues in their representation. Considering two similar services that
both require a radius in their request parameters. Both may be mapped and thus
disambiguated to some vocabulary property, for example schema:geoRadius. In the
semantic definition of schema:geoRadius the human-readable description states: In-
dicates the approximate radius of a GeoCircle (metres unless indicated otherwise via Distance
notation). When examining the definition of both radius request input parameters
definitions, one turns out to be annotated in meters, the other in kilometers. More-
over, the first is defined to be an integer, while the second is specified as floating
point number. These issues would require further conversions of both datatype and
unit. Hydra provides no functionality whatsoever to tackle these issues. Therefore,
the workflow handling system would not be able to represent these services in a
single generic workflow item.
As API design is still in transformation, API providers come up with individual
concepts and ideas of how to publish their data. The Foursquare venue search API
defines something like a conditional required parameter. While this relation is easy
to understand for human developers, it may be hard to comprehend by a machine
and would probably require a rather verbose description. Conditional requirements
are not supported in Hydra and are not considered in the scope of this thesis.
Another peculiarity worth noting is that some workflow items may be dependent
on others, as in some would need to be used in combination with specific others.
For example, if a discovery workflow item provides an id that needs to be used to
construct the templated URI of another service (from the same provider) providing
the menu of that venue, there exists an evident dependence. In that case, the menu
providing service is bound to the discovery service. It is in general not possible to
use the Foursquare-internal ID of a venue to invoke a Yelp service providing details
of the same venue. For some domains there might be provider independent IDs that
can be used, or even unambiguous URIs that identify a physical location.
While the idea of using unambiguous IRIs from publicly available and internally
recognized vocabularies is both promising and intriguing, it can prove to be very
cumbersome to be implemented and sometimes even impossible. On the one hand
defined semantics of a term should not be abused, as otherwise reliability would be
diminished. On the other hand there is no vocabulary able to express every concept
in the real world in one term. Thus, vocabularies usually offer rather vague concepts
to be used instead of a concise term. For client implementations this is a problem
as they would then lack an unambiguous understanding semantics and will need
additional (out-of-band) information.
As has already been discussed in chapter 3, more than one instance of the same
workflow item may be instantiated within a workflow. However, each workflow
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item expects the same inputs an output properties during execution. To enable the
unambiguous mapping of workflow inputs and outputs and workflow item inputs
and outputs, not the properties themselves are mapped, but the properties describing
team in each instance. As each instance is disambiguated during instantiation by
requiring a unique name within a workflow, input and output properties of each
workflow item instance are also unambiguous. Within a service mapping, properties
then have to be unambiguous again (which has to be the case as a service would
naturally need unambiguous input parameters).
For the orthogonal authorization component, the proposed extension of Hydra was
implemented by setting up a token store. Before each service invocation, the system
would check if a valid token exists. Therefore, a token store stores the token details
in a hash map with the URI of the service to be authorized as key. The token details
include the access token, its expiration time and the refresh token (if available).
Depending on the used OAuth protocol flow a token may be refreshed if it has
expired or retrieved again.

103





5 Conclusions

This final chapter is intended to provide a short wrap-up of all previous chapters,
draw conclusions and highlight the most essential findings. The research questions
stated in chapter 1 shall be answered and further implications may provide an
outlook and points of reference for future research and implementation work.

5.1 Discussion

The most important conclusions that were to be drawn from this thesis regard the
answers to the research questions postulated in the very first chapter. They have
been stated as follows:

How can web services be described?
Several approaches for web service description have been examined and com-
pared among each other according to a self-defined rating scheme (see section
4.1). In a nutshell, four fundamental approaches were distinguished: plain
textual description, static web service description, dynamic web service de-
scription and semantic web service description. Description may essentially
be provided in two ways: either a priori of interaction or during interaction
at runtime. Industrial standards like WADL, Swagger and RAML provide
frameworks to describe web services a priori, but fail to satisfy the HATEOAS
constraint of REST. HATEOAS conforming standards like HAL, SIREN and
Collection+JSON provide a defined generic syntax to enable self-descriptive
APIs at runtime, while semantic description standards like JSON-LD+Hydra go
one step further and incorporate the RDF data model and IRI defined resources
in their approach. Eventually, RESTdesc even extends the RDF data model by
including logics and quantification.

How can various web services be composed to realize a specific use case?
In their work, Sheng et al.[61] offer an elaborate survey of existing methods
of web service composition. They distinguish between manual and automatic
composition and static and dynamic composition. Manual composition requires
a human developer to manually link web services and map their inputs and
outputs. Automatic composition tries to incorporate and leverage semantic web
technologies and artificial intelligence techniques to attain a defined objective.
One such example presented in this thesis was RESTdesc which supports the
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exploration of different paths from a given set of preconditions to a final set
of postconditions. However, there are no existing publicly available real-world
implementations supporting RESTdesc or similar automatic composition ser-
vices, therefore the implementation presented in this thesis relies on manual
service description. Considering whether the implementation is classified as
static or dynamic, it is found that the implementation offers hybrid capabilities:
workflow and workflow item descriptions have to be created at design time,
but the implementation allows entities invoking a specific workflow to choose
a concrete service mapping at runtime. Moreover, newly created workflows
may be added instantly to the workflow server, due to the runtime capabilities
of the workflow parser. In summary, workflows are static in their functionality
but dynamic with respect to service providers.
The results show that the implementation is indeed capable of realizing a
stipulated use-case. However, automatic service composition may gain more
traction in the future if standards like RESTdesc experience a wider acceptance
among web service developers.

Which web service description and composition styles are most promising?
RESTdesc provides an interesting approach for web service description and
composition. Rather than focusing on describing technical details of invocation,
the creators shift the focus to describing the functionality of a service. However,
for this approach to work in practice, the underlying technical layer is required
to strictly adhere to specified implementation details. In the world wide web
developers tend to apply best practice approaches and not everyone is an expert
in RDF graphs. The progress of a proposed architecture is critically dependent
on its uptake and adoption in real-life implementations. At the time this thesis
was compiled, there could be no popular public web-service found that allowed
interaction in a way that RESTdesc could be applied. In conclusion, as one
requirement of this thesis was to provide a solution that integrates existing web
services, RESTdesc was deemed to be an inappropriate choice, albeit offering
promising glimpses for future implementations. A more detailed examination
was provided for JSON-LD and the Hydra vocabulary. JSON-LD allows the
reuse of existing JSON parser implementations to utilize fundamental semantic
web technologies and its popularity is ever increasing. Hydra is still a draft
but is already providing useful terms to describe interaction with a resource.
Defined semantics for authentication and authorization purposes are lacking in
particular and need to be addressed in future extensions. To enable automatic
service composition for JSON-LD and Hydra, however, extensions would have
to be proposed.
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5.1.1 Semantic Web Technologies

A fundamental consideration regarding the semantic web is whether the semantic
web technology stack may ever deliver what it is promising. For example, the
very statement An important facet of agents’ functioning will be the exchange of ”proofs”
written in the Semantic Web’s unifying language contradicts some of the fundamental
design principles of the web as originally stated by Tim Berners-Lee (ironically, thus
contradicting himself). Trying to standardize a unifying language for the Semantic
Web would indeed constrain users to use a particular language (third principle) and
constraining web users to represent their data in an RDF graph triple relation model
most certainly constrains the mental model of data into a given pattern. Moreover,
if ontologies have to be matched, e.g. by using the sameAs property, linking from
one system to another is hardly scalable anymore (violating the second principle).
Thus, the Semantic Web might never be the next level of the World Wide Web, but a
constraint subset of it. Until this state is achieved, linked (open) data may generate
enough leverage to demonstrate that the RDF data model may actually create added
value in some domains.

5.1.2 Classical SOA vs. REST

The decision of which architecture to choose can be tricky and should best be use-
case driven, as also remarked by Fielding.[45] While REST has always been defined
as an architectural style for hypermedia driven network-based applications, there is
no such explicit definition for classical SOA. Numerous discussions go under the
title ”REST vs. SOAP” although these two can hardly be compared to each other
as one is an architectural style, while the other is merely a protocol. In fact, SOAP
could theoretically be implemented in a RESTful architecture. However, in classical
SOAs, SOAP is complying with WSDL, which per-definition establishes a contract
between client and server. SOAP/WSDL APIs usually make extensive use of RPCs
which leads to a tight coupling of client and server. This violates the REST principle
of uniform interfaces as clients need a priori knowledge. Although possible in theory,
describing RESTful APIs in WSDL is rather cumbersome, as WSDL was primarily
designed to describe RPCs. In REST, other proposals to describe RESTful APIs have
emerged, one of them being WADL, a WSDL-inspired description framework for
RESTful API description.
While SOAP is specified to be serialized in XML only, there are derivatives of it using
different serialization formats like SOAPjr, a hybrid of SOAP and JSON-RPC (thus
the suffix jr). SOAPjr allows to still use a SOAP-like specification but on a lower
overhead cost than using the more verbose XML format.
In theory, the concept of using SOAP, WSDL and UDDI as a technology stack for
web service technologies seems rather intriguing. However, as reality has shown,
few public service providers have made use of it, arguably because of the extensive
amount of specifications web developers would have to comply with. Imposing
this framework on everyone that wants to provide web services would also violate
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several basic principles of the web. Most of the larger public UDDI nodes have been
shut down in recent past, seemingly deeming this framework to only exist as a side
note in future web service technologies.
As noted before, REST offers principles more in the form of an architectural rationale.
A protocol natively occupying support for the REST architecture, and thus often
mistakenly confused with REST itself, is HTTP. Whereas HTTP is only used as a
transfer means in SOAP, it incorporates many mechanisms that make it comply with
the requirements of REST.
Classical SOA offers a wide repository of standards, originally entirely based on
XML. Besides SOAP, WSDL and UDDI there is a host of complimentary standards,
known as the WS∗ standards. These standards are still widely used in the business
world of the likes of IBM and SAP, but have high entry barriers for web developers
both on the server and the client side. In public APIs a veritable hype has propelled
REST to become a buzzword for HTTP APIs in general. Understanding REST and
designing truly RESTful APIs is perhaps no less difficult than comprehending
SOA standards, thus the popular conception of REST being easier to implement is
misleading. Especially the self-descriptive and HATEOAS principles are frequently
violated or neglected, as pointed out by Fielding himself1. However, simple HTTP
APIs that adhere to some of the principles imposed by REST have gained huge
popularity and most providers rather abusively name their APIs RESTful to get their
share of the hype. Hence, the Richardson maturity model was created to provide a
practical framework to validate the ”RESTfulness” of an HTTP API.
Hypermedia is arguably great for high-bandwidth, non-time-critical applications.
However, for time-critical, low-bandwidth applications like single sensors in the
WoT, neither REST nor SOA might not offer the right architectural rationale.

5.1.3 Workflow Concept Implementation

The concept proposed in this thesis tries to model complex mash-ups of web services
by reducing each service to its functionality and design functional abstract work-
flow items accordingly. These items are then bound to one or more concrete web
service APIs. Wrapping similar web services in generic templates leads to an obvious
increase in interoperability, as the abstraction of APIs reduces them to their core
functionality. The binding of different service providers to the same generic work-
flow item enables a single service-mashup to use the data stock of several providers.
Consequently, this allows for a combination of locally constraint datasets and de-
taches third parties from relying on single data providers offering insufficient local
data, eventually resulting in hyperlocal service-mashups. While generic workflow
item classes increase interoperability, they severely constrain the individual services
they are wrapping. For a certain domain some functionality might be considered
fundamental as there are recurring concepts in each application, trying to solve
domain-specific problems. However, individual characteristics of an API can also be

1http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
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crucial unique selling points for its provider. Here, a dual approach was proposed,
allowing developers to create generic workflow items offering basic functionality for
mash-up purposes, as well as specific workflow items with extensive functionality
for more sophisticated applications.
The main benefit in using a standardized workflow server infrastructure lies in a
reduced effort to deploy and validate every single service-mash-up. Workflow item
descriptions may be reused and thus not validated again. The validation process
of each workflow is reduced and may only involve tests for functionality, as the
surrounding infrastructure assures other orthogonal aspects.
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5.2 Implications

One of the existing challenges in expanding the idea of the semantic web is to tear
down its sometimes rather high barriers to entry. Providing a triple or quad store in
combination with a highly available and secure SPARQL endpoint is rather costly
and demands knowledgeable experts in implementing and maintaining them. Also,
the idea of The Semantic Web originally intended to encourage decentralized data
retention rather than treasuring up data within encapsulated silos.
The initial vision of a single catholic ontology has been overtaken by reality, as the
real world is too versatile, too individual to be mapped to unambiguous and atomic
definitions. Domain-specific vocabularies, delimiting functionality but enabling in-
teroperability, have shown promising results. Semantics may only be defined by
reaching a consensus in a community of users. This process is cumbersome and
could potentially lead to numerous debates. The main challenge of semantic web
technologies lies in providing developers an infrastructure generic and well-defined
enough to be interoperable, yet still open enough to allow them to set themselves
apart from competition. In the recent past, controlled vocabularies like schema.org
have increasingly gained leverage as they have been adopted by heavyweights of
the software industry. In conclusion, different and more lightweight linked data
approaches like JSON-LD could bridge the gap between semantic and existing con-
ventional web technologies in the future.
Standardized service description will further evolve to cope with the growing in-
crease of ubiquitous data. As human beings will be joined in the world wide web by
an increasing number of machines, browsing the web has to be made accessible for
them too. Thus, describing web services in plain text in an HTML document only
will be deprecated soon. Content negotiation is already allowing clients to customize
a retrieved representation depending on their nature.
Service composition will still have to be carried out manually. Unless service descrip-
tions are widely adapting technologies like RESTdesc, the challenge of automatic
service composition persists.
Security and trust consideration will continue to be major focus points of future
research. However, by establishing standards in these fields, a seamless integration
with semantic or linked data technologies seems possible. OAuth and OpenID are
just two examples containing the threats imposed by potential attackers.
For consumer goods providers such as BMW, wrapping third-party services in
semantically meaningful representation may provide short-time relief from the
growing demands of their consumer base. In the rapidly transforming world wide
web, however, consensus finding will prove to be the key to enable and facilitate
interoperability.
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Additional Listings

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:schema="http://schema.org/"

>

<rdf:Description rdf:about="http://example.org/stadiums#Anfield">

<schema:image rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

https://upload.wikimedia.org/wikipedia/commons/8/86/Anfield%2C_20_October_2012.jpg

</schema:image>

<rdf:type rdf:resource="http://schema.org/Place"/>

<schema:address rdf:nodeID="f1d8ef1e30572430d89e346c9e4490257b1"/>

<schema:name>Anfield</schema:name>

</rdf:Description>

<rdf:Description rdf:nodeID="f1d8ef1e30572430d89e346c9e4490257b1">

<schema:addressLocality>Liverpool</schema:addressLocality>

<schema:addressCountry xml:lang="en">United

Kingdom</schema:addressCountry>

<schema:streetAddress>Anfield Rd</schema:streetAddress>

<schema:addressCountry xml:lang="de">Vereinigtes

Koenigreich</schema:addressCountry>

<rdf:type rdf:resource="http://schema.org/PostalAddress"/>

</rdf:Description>

<rdf:Description rdf:about="http://example.org/cities#Liverpool">

<rdf:type rdf:resource="http://schema.org/Place"/>

<schema:containsPlace

rdf:resource="http://example.org/stadiums#anfield"/>

<schema:containsPlace rdf:nodeID="ub30bL13C15"/>

</rdf:Description>

<rdf:Description rdf:nodeID="ub30bL13C15">

<schema:name>Goodison Park</schema:name>

</rdf:Description>

</rdf:RDF>

Listing 1: Formulation of an RDF graph in RDF/XML
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<div xmlns="http://www.w3.org/1999/xhtml"

prefix="

schema: http://schema.org/

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

xsd: http://www.w3.org/2001/XMLSchema#

rdfs: http://www.w3.org/2000/01/rdf-schema#"

>

<div typeof="schema:Place" about="http://example.org/cities#Liverpool">

<div rel="schema:containsPlace"

resource="http://example.org/stadiums#anfield"></div>

<div rel="schema:containsPlace">

<div typeof="rdfs:Resource">

<div property="schema:name" content="Goodison Park"></div>

</div>

</div>

</div>

<div typeof="schema:Place" about="http://example.org/stadiums#Anfield">

<div rel="schema:address">

<div typeof="schema:PostalAddress">

<div property="schema:addressCountry" xml:lang="de"

content="Vereinigtes Koenigreich"></div>

<div property="schema:addressLocality" content="Liverpool"></div>

<div property="schema:streetAddress" content="Anfield Rd"></div>

<div property="schema:addressCountry" xml:lang="en" content="United

Kingdom"></div>

</div>

</div>

<div property="schema:name" content="Anfield"></div>

<div property="schema:image" datatype="xsd:anyURI"

content="https://upload.wikimedia.org/wikipedia/

commons/8/86/Anfield%2C_20_October_2012.jpg"></div>

</div>

</div>

Listing 2: Formulation of an RDF graph in RDFa
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List of Abbreviations

API . . . Application Programming Interface
BCP . . . Best Current Practice
CoAP . . . Constrained Application Protocol
CRUD . . . Create, Read, Update, Delete
CURIE . . . Compact URI
CWA . . . Closed World Assumption
DNS . . . Domain Name System
FTP . . . File Transfer Protocol
HAL . . . Hypertext Application Language
HATEOAS . . . Hypermedia As The Engine of Application State
HMI . . . Human Machine Interaction
HTML . . . Hypertext Markup Language
HTTP . . . Hypertext Transfer Protocol
IANA . . . Internet Assigned Numbers Authority
IETF . . . Internet Engineering Task Force
IoT . . . Internet of Things
IP . . . Internet Protocol
IRI . . . Internationalized Resource Identifier
JSON . . . JavaScript Object Notation
JSON-LD . . . JSON for Linked Data
LD . . . Linked Data
LOD . . . Linked Open Data
MIME . . . Multipurpose Internet Mail Extensions
MQTT . . . Message Queuing Telemetry Transport
OWA . . . Open World Assumption
OWL . . . Web Ontology Language
PoC . . . Proof-of-concept
RDF . . . Resource Description Framework
REST . . . Representational State Transfer
RFC . . . Request for Comments
RPC . . . Remote Procedure Call
SAWSDL . . . Semantic Annotations for WSDL
SOA . . . Service Oriented Architecture
SOAP . . . Simple Object Access Protocol
SPARQL . . . SPARQL Protocol And RDF Query Language
TCP . . . Transmission Control Protocol
TLS . . . Transport Layer Security
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Turtle . . . Terse RDF Triple Language
UCS . . . Universal Character Set
UDP . . . User Datagram Protocol
URI . . . Uniform Resource Identifier
URL . . . Uniform Resource Locator
URN . . . Uniform Resource Name
US-ASCII . . . US-American Standard Code for Information Interchange
UTF-8 . . . UCS Transformation Format
W3C . . . World Wide Web Consortium
WoT . . . Web of Things
WWW . . . World Wide Web
XML . . . Extensible Markup Language
YAML . . . YAML Ain’t Markup Language
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