
Raoul RUBIEN, BSc

Daisy Chain Communication Protocol for
Chains of Robotic Particles forming

Shape-Shifting Displays

MASTER’S THESIS
to achieve the university degree of

Diplom-Ingenieur
Master’s degree programme: Software Engineering and Management

submitted to
Graz University of Technology

Supervisor
Univ.-Prof. Dipl.-Inform. Dr.sc.ETH Kay Uwe Römer

Advisor
Dott. Dott. mag. Matteo Lasagni

Institute for Technical Informatics
Graz, December 2016

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the
sources used. The text document uploaded to TUGRAZonline is identical to
the present master’s thesis.

Graz, December 15
th, 2016

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst,
andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den
benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche
kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument
ist mit der vorliegenden Masterarbeit identisch.

Graz am, 15. Dezember 2016

Datum Unterschrift

iii

Abstract

We present design, implementation and evaluation of a lightweight extensi-
ble communication protocol that guarantees synchronization among nodes
forming a predefined topology, despite their inaccurate clock source.

The ultimate goal of this project is to support the realization of a Shape-
Shifting Display, a mechanical display that is able to approximate 3D surfaces.
Such a display consists of multiple parallel chains able to change their curva-
ture under software control. Composed of sequentially connected modular
"robotic particles" that control the local curvature of the chain, each chain
outlines the contour of a corresponding slice of the target 3D surface.

As the actuation of the robotic particles needs to be synchronized due to
mechanical constraints, a communication protocol is developed to enable the
communication among particles (which are the nodes in our system) and to
ensure that their actuation is simultaneous.

The specific structure of a Shape-Shifting Display implies a predefined net-
work topology, where sequences of nodes (i.e., chains) connected to a back-
bone forms a matrix-like layout.

The communication protocol performs an automatic unattended network dis-
covery to provide an unique address to each node immediately after system
boot-up. The specific network topology allows us to define different address-
ing modes particularly suitable to represent the actual spatial arrangement of
nodes.

Our contribution includes the development and the implementation of the
communication protocol from both the hardware and software point of views.
In order to better support design decisions at every step, we also have ex-
tended an existing hardware simulator to make it suitable for our specific
application. An evaluation of the performance of the communication protocol

v

is also included to show how the synchronization requirements are fully
satisfied. Possible hardware extensions, such as the introduction of sensors,
can be added to the system as our protocol natively supports bi-directional
communication.

vi

Zusammenfassung

Wir präsentieren Design, Implementierung und Evaluierung eines leichtge-
wichtigen erweiterbaren Kommunikationsprotokolls, welches es ermöglicht,
formbare Knoten einer festgelegten Topologie trotz deren ungenauen Takt-
quelle zu synchronisieren.

Das grundsätzliche Ziel dieses Projektes ist die Realisierung eines Shape-
Shifting Displays, also eines mechanischen Displays, welches in der Lage
ist, 3D Flächen zu approximieren. Solch ein Display besteht aus mehreren
parallelen Ketten, die in der Lage sind, ihre Krümmung mittels Software
zu ändern. Jede Kette besteht aus mehreren, miteinander verbundenen mo-
dularen "robotischen Partikeln", welche die lokale Krümmung einer Kette
bestimmen und stellt den Umriss eines Flächenschnittes einer 3D Zielfläche
dar.

Da Aktuatoren aufgrund mechanischer Einschränkungen synchron aktiviert
werden müssen, wurde ein Kommunikationsprotokoll entwickelt, welches
die Kommunikation zwischen den Partikeln (in unserem System als Knoten
bezeichnet) ermöglicht und so deren simultane Aktivierung sicherstellt.

Die spezielle Struktur des Shape-Shifting Displays beinhaltet eine vordefinier-
te Netzwerktopologie, in der mittels eines Backbone sequenziell verbundene
Knoten (z.B. Ketten) eine matrixähnliche Form ergeben. Das Kommunikati-
onsprotokoll führt unmittelbar nach dem Hochfahren des Systems autonom
eine automatische Netzwerkerkennung aus, um jeden Knoten mit einer ein-
deutigen Adresse zu versorgen. Die spezielle Netzwerktopologie erlaubt es
dabei, bestimmte Adressierungsmodi zu definieren, um die aktuelle räumliche
Anordnung der Knoten zu bestimmen.

Unser Beitrag berücksichtigt bei der Entwicklung und Implementation des
Kommunikationsprotokolls nicht nur die Belange der Software, sondern auch

vii

der Hardware. Um jeden Schritt der Designentscheidungen besser unterstüt-
zen zu können, wurde ein bestehender Hardware Simulator erweitert und so
besser an unsere spezielle Applikation angepasst. Eine Performanzanalyse des
Kommunikationsprotokolls zeigt schlussendlich, wie die Synchronisations-
bedürfnisse befriedigt werden. Hardwareerweiterungen wie beispielsweise
Sensoren, können dem System hinzugefügt werden, da unser Protokoll bi-
direktionale Kommunikation unterstützt.

viii

Contents

Abstract v

Zusammenfassung vii

1. Introduction 1
1.1. Background . 2

1.1.1. Mechanical Implementation 2

1.1.2. Electrical Implementation 3

1.2. Limitations . 4

1.2.1. Power Supply . 4

1.2.2. Particle Localization . 4

1.2.3. Unicast Communication 4

1.2.4. Concurrent Actuation . 5

1.2.5. Remote Programming . 5

1.3. Motivation . 5

1.4. Contribution . 7

2. Protocol Design 9
2.1. Requirements and Constraints 10

2.2. Design . 12

2.2.1. Physical Layer . 13

2.2.2. Data Link Layer . 20

2.2.3. Network Layer . 22

2.2.4. Transport Layer . 28

2.2.5. Session Layer . 29

3. Implementation 39
3.1. Main Loop . 40

3.2. Receiver and Decoder . 41

3.2.1. Receiver . 41

ix

Contents

3.2.2. Decoder . 42

3.3. Transmitter and Encoder . 43

3.3.1. Manchester Code Signal Generator 43

3.4. Interpreter . 44

3.5. Scheduler . 44

3.6. Node Context . 45

3.7. Synchronization . 47

3.7.1. Raw Observation Value 48

3.7.2. Simple Moving Average 48

3.7.3. Weighted Moving Average 49

3.7.4. Moving Least Squares . 49

3.8. Optimization . 50

3.9. Commands . 50

3.10. Configuration . 53

3.11. Simulation . 56

3.11.1. Avrora Simulation Framework 57

3.11.2. Testing . 63

3.11.3. Visualization . 65

3.11.4. Network Use Case . 66

3.11.5. Build Environment . 66

4. Experimental Results 71
4.1. Manchester Decoding Memory Consumption 72

4.1.1. Evaluation Based on Simulation 72

4.1.2. Conclusion . 74

4.2. Timing Evaluation . 74

4.2.1. Discovery . 74

4.2.2. Addressing . 77

4.2.3. Conclusion . 79

4.2.4. General Timing Acquisition 80

4.2.5. Network Time Synchronization 82

4.2.6. Clock Skew Compensation 85

4.2.7. Scalability . 91

4.3. Other Observations . 92

4.4. Experiments . 95

4.4.1. Clock Skew Compensation 96

4.4.2. Time Synchronization . 97

x

Contents

4.4.3. Actuation . 98

4.4.4. Conclusion . 99

5. Related Work 101
5.1. Hardware Implementation . 101

5.2. Connectivity . 102

5.3. Actuation . 103

5.4. Collective Actuation . 103

5.5. Software . 104

6. Discussion 105

7. Conclusion 107

I. Appendix 109

A. Hardware and Network Design Proposal 111

B. Package Listing 117

C. Code Snippets 121

D. Node Context 123

E. Node States 125

F. Configuration Parameter Listing 127

G. Schematic Diagram 133

H. Network Visualization 135

I. Evaluation 137

xi

List of Figures

1.1. Shape shifting surface principle [4]; a grid of chains approxi-
mates a face structure . 2

1.2. Folded chain . 3

1.3. External force mechanics . 3

1.4. Folded shape shifting surface approximating a face shape . . . 6

1.5. Network structure’s communication paths example 6

2.1. Proposed network structure; each subsequent chain is con-
nected at the first particle to the previous chain; any node
provides three connection ports, each consisting of transmis-
sion (TX) and reception (RX) . 10

2.2. Open System Interconnect (OSI) layers 12

2.3. Protocol process stages . 12

2.4. Simplex Peer-to-Peer (P2P) communication link with comple-
mentary MOSFETs at both ends, communication wire is re-
placed with an actuator, a Shape Memory Alloy (SMA) wire . . 13

2.5. Full-duplex serial Peer-to-Peer (P2P) connection 14

2.6. Non Return to Zero (NRZ) versus Return to Zero (RZ) by
means of Manchester coding, also known as Bi-Phase-Level
(Bi-φ-L) . 15

2.7. Manchester coding; the code level is obtained by clock
exclusive-or (⊕) data . 15

2.8. Manchester coding timestamps of edge occurrences 16

2.9. On-the-fly decoding versus post-processing 17

2.10. Signal generator scheduling; two compare register versus one
compare register approach . 18

2.11. Reception and decoding sequence diagram; gray highlighted
areas are interrupted intervals 19

2.12. Header field . 20

xiii

List of Figures

2.13. Data structure example . 21

2.14. Little endian data structure on Microcontroller Unit (MCU) . . 21

2.15. Transmission bit stream example containing the structure data
as explained in fig. 2.13 . 21

2.16. Unicast package . 22

2.17. Multicast package . 22

2.18. Node classification matrix highlighting the possible node types:
origin node, inter head, inter node, tail node and orphan node 23

2.19. Discovery phase . 24

2.20. (rows× columns) network addressing schema 25

2.21. Directed out-tree highlighting a unicast route example Rout(...) 26

2.22. Directed in-tree highlighting a unicast route example Rin(...) . 26

2.23. Unicast Protocol Data Unit (PDU) 28

2.24. Multicast Protocol Data Unit (PDU) 28

2.25. Flow control in addressing phase, highlighted arrows represent
Protocol Data Units (PDUs) followed by reception (RX) timeout 29

2.26. Initiator transmission (TX) flow control state diagram with i
being the timeout/retry counter 30

2.27. Receiver transmission (TX) flow control state diagram with i
being the timeout/retry counter 31

2.28. Received edge versus forwarded edge timing in broadcast
mode; forwarded edge is delayed by a constant latency plus an
unpredictable jitter . 32

2.29. External pin change Interrupt Service Routine (ISR) latency . . 32

2.30. Time synchronization and phase shift; step-by-step illustration
of latencies a TimePackage experiences because it is constructed
by transmitter until executed by the receiver 34

2.31. TimePackage . 37

2.32. Actuation command addressing one node 38

2.33. Range actuation command addressing a node range 38

3.1. Invocation of the process() function 40

3.2. Main Finite State Machine (FSM) states of the node’s context . 41

3.3. Receiver, decoder and interpreter sequence diagram illustrating
the producer consumer mechanism 42

xiv

List of Figures

3.4. Registration of Light Emitting Diode (LED) blinking task 250

time units after boot with a separation of 100 time units and 60
total executions until task deactivation; applies to origin node
only . 45

3.5. NodeState overview . 46

3.6. Avrora’s software structure; platforms connected by wires to
allow inter-platform communication 59

3.7. Avrora simulation trace of several monitors 61

3.8. Particle monitor’s JavaScript Object Notation (JSON) configu-
ration file example snippet . 62

3.9. Avrora extension registration . 63

3.10. Simulated (1× 2) network visualization; communication sig-
nals of two neighbored particles showing a highlighted label
and detailed information at the bottom of the chart 66

3.11. Development tool chain; gray highlighted items reflect devel-
oped parts of our work . 67

4.1. Simulated buffer size versus Protocol Data Unit (PDU) length
of TimePackage I decoding; average case 73

4.2. Simulated buffer size versus Protocol Data Unit (PDU) length
of TimePackage II decoding; worst case 73

4.3. Simulated (3× 3) discovery phase; discovery duration differs
according to node’s connectivity 76

4.4. Measured (3× 3) discovery phase; supply voltage (VCC) fluc-
tuation causes discovery shifts 76

4.5. Simulated (3× 3) network geometry disclosure of node (3, 3)
showing AnnounceNetworkGeometryPackage’s PDU transmis-
sion duration (dpdu) . 78

4.6. Simulated (3× 1) network enumeration of node (2, 1) showing
PDU transmission duration (dpdu) of several Protocol Data Units
(PDUs) . 79

4.7. MCU clock frequency (fcpu) jitter of one falling edge at approx-
imately 40µs after trigger . 80

4.8. TimePackage’s PDU transmission duration (dpdu) jitter of last
falling edge distribution N (µ = 7.88ms, σ = 1.28µs), triggered
first falling Protocol Data Unit (PDU) edge 81

xv

List of Figures

4.9. Simulated (3× 3) network time synchronization in broadcast
mode showing the introduced forwarding delay in broadcast
mode (BCTdelay) spread among nodes 83

4.10. Clock skew compensation without averaging algorithm; beige
node (1, 1), green node (4, 1), blue node (7, 1), red node (12, 1),
network setup network configuration setup 1 (net1) 87

4.11. Clock skew compensation with Simple Moving Average
(SMAV) and 4 buffered values without outlier detection; beige
node (1, 1), green node (4, 1), blue node (7, 1), red node (12, 1),
network setup network configuration setup 1 (net1) 88

4.12. Clock skew compensation with averaging using Weighted Mov-
ing Average (WMA); beige node (1, 1), green node (4, 1), blue
node (7, 1), purple node (12, 1), network setup network con-
figuration setup 1 (net1) . 89

4.13. Clock skew compensation with averaging using Moving Least
Squares (MLS) and 40 buffered values without outlier detection;
beige node (1, 1), green node (4, 1), blue node (7, 1), red node
(12, 1), network setup network configuration setup 1 (net1) . . 89

4.14. MCU clock frequency (fcpu) sensitivity versus supply voltage
(VCC) as measured at the local time counting speed period
duration; supply voltage (top chart) versus time counting speed
(bottom chart); beige node (1, 1), red node (12, 1) 93

4.15. PDU transmission duration (dpdu) discretization as observed
on retransmission when tuning the clock skew compensation
using minimal adjustment step; target 7.88ms, actual values
within gray areas . 94

4.16. PDU transmission duration (dpdu) discretization of clock skew
compensation using minimal adjustment step; time counting
period as y-axis; beige node (1, 1), green node (4, 1), blue (7, 1)
red node (12, 1); applied network configuration setup 1 (net1) . 95

4.17. Clock skew compensation experiment with moving MCU clock
frequency (fcpu) of node (1, 1) (beige); green node (4, 1), blue
node (7, 1) red node (12, 1); applied network configuration
setup 1 (net1) . 96

xvi

List of Figures

4.18. Time synchronization distribution among nodes (2-12, 1) rela-
tive to origin node (1, 1); gray areas highlight the minimum to
maximum distribution; measurement duration approximately
15 minutes . 97

4.19. Actuation accuracy; yellow actuator (1-2, 1), green actuator
(3-4, 1), blue actuator (6-7, 1) and red actuator (11-12, 1), cyan
D4-D14 all actuators, (1-2, 1) as D1 98

B.1. Command . 117

B.2. Node command . 117

B.3. Node range command . 117

B.4. Command with payload . 117

B.5. Node range cmd. with payload 118

B.6. Node command with payload . 118

B.7. HeaderPackage . 118

B.8. RelayHeaderPackage . 118

B.9. ResetPackage . 118

B.10. AckPackage . 118

B.11. AckWithAddressPackage . 118

B.12. AnnounceNetworkGeometryPackage 118

B.13. SetNetworkGeometryPackage . 119

B.14. EnumerationPackage . 119

B.15. TimePackage . 119

B.16. HeatWiresPackage . 119

B.17. HeatWiresRangePackage . 119

B.18. HeatWiresModePackage . 120

B.19. ExtendedHeaderPackage (reserved) 120

B.20. SyncNetworkTimeHeaderPackage 120

C.1. Flow control handling example with Automatic Repeat Request
(ARQ) shortcut . 122

D.1. Node’s context overview categorized by layers 124

E.1. Node’s Finite State Machine (FSM) states 126

F.1. Project files structure . 128

F.2. Configuration files structure . 128

xvii

List of Figures

H.1. Downscaled (3× 3) network visualization showing the com-
munication wires’ signals of the network initialization phases
applying network time synchronization using broadcast mode;
frequent communication signals changes appear as rectangular
box . 136

I.1. ATtiny1634 MCU clock frequency (fcpu) versus supply voltage
(VCC) [16, pp. 272] . 139

xviii

List of Tables

2.1. Listing of classifiable node types 23

3.1. Applied options for avr-gcc of the GNU Compiler Collection
(GCC) for simulation and release compilation 51

3.2. Command id (CMD) listing and corresponding parameters . . 54

3.3. Heating mode heating mode (M) listing, MCU clock frequency
(fcpu)= 8MHz, actuator frequency (factuator) is formulated in
equation (3.9) . 55

3.4. Duration versus synchronization of a (6× 6) network simu-
lation; simulation of 150ms with Microcontroller Unit (MCU)
frequency fcpu = 8.0MHz using different synchronization in-
terval arguments . 64

3.5. Protocol Data Units (PDUs) for master device to origin node
communication . 67

3.6. Make rules listing of non-prefixed rules (first block) and project
dependent rules (subsequent blocks) 69

4.1. Protocol Data Unit (PDU) length versus simulated decoder’s
post-processing delay . 72

4.2. Simulated introduced forwarding delay in broadcast mode
(BCTdelay) evaluation summary of (6× 6) network simulation,
see also table I.1 . 82

4.3. Averaging strategy performance listing 92

F.1. Protocol configuration parameter and default arguments listing
(continued in table F.1) . 129

F.2. Protocol configuration parameter and default arguments listing
(continued) . 130

F.3. Microcontroller Unit (MCU) pinout parameter listing of
IoPins.h configuration file . 131

xix

List of Tables

I.1. Introduced forwarding delay in broadcast mode (BCTdelay) eval-
uation of (6× 6) network simulation with setup C as listed in
table 3.4 . 138

I.2. Nodes’ physical enumeration and nominal MCU clock frequen-
cy (fcpu) at VCC = 5.0V . 139

I.3. Evaluation networks and order setup 139

xx

1. Introduction

Programmable matter indicates a novel class of materials that are able to
change their physical properties under software control. Many different mate-
rials and approaches have been researched up to now. Changeable properties
are for example shape, volume, viscosity and texture [1]. Programmable
matter can be simple or complex material such as alloys or robotic enti-
ties. The matter is not necessarily stiff; it can be soft or liquid. A rather old
programmable matter technology is the well-known Liquid Crystal Display
(LCD). The programmable matter is the liquid crystal that aligns, and thus
displays shapes, when electrically actuated. Although nano-scaled, the field
does also consider larger scale programmable matter such as architectural
robotics, intelligent and adaptive built environments [2] and gives a good
example of coarse-grained material. The Animated Work Environment [3],
consisting of multiple work panels, provides a working environment for dif-
ferent requirements. The system interacts collaboratively with the user and
switches panels according to the users need.

The extent of this work is located in the robotic field of programmable matter,
where many preferably small-scale robotic entities are applied to achieve
different properties. The base of our work are small-scale robotic particles
which are used to implement a two-dimensional Shape-Shifting Display [4].
The Shape-Shifting Display is a network of many chains of robotic particles,
which are able to form their curvature under software control. A chain consists
of particles connected in a daisy chain manner. Hence the communication
within a chain can be established to subsequent particles only. By controlling
each chain, the display is able to approximate three-dimensional surfaces as
illustrated in fig. 1.1.

1

1. Introduction

Fig. 1.1.: Shape shifting surface principle [4]; a grid of chains approximates a face structure

1.1. Background

The electrical design of the currently applied shape-shifting chain, as proposed
by Lasagni et. al [5], consists of actuators, their electrical drivers and very basic
communication controllers embedded in a mechanical body. The controller
acts as a bus system participant and exploits the power supply wires as
communication channel. However, the electrical and communication design
bears many limitations which makes a system redesign necessary and requires
a new network protocol for communication.

1.1.1. Mechanical Implementation

To realize chains, particles are connected by two links to each consecutive
neighbor. Links, having in total three joints, can be collapsed but reside per
default in a locked state. This state can be controlled upon activation of
local actuators to unlock. This mechanism in combination with an externally
applied force is used to collapse links which leads to folding consecutive
particles, affecting the curvature of the chain. Fig. 1.2 illustrates the mechanical
principle of a folded chain. When applying multiple chains, they share the

2

1.1. Background

Fig. 1.2.: Folded chain Fig. 1.3.: External force mechanics

same externally applied force. For this reason all chains of a Shape-Shifting
Display are physically connected to a global mechanic system, which applies
the needed external force by pulling two threads per chain as illustrated in
fig. 1.3. Each thread is connected to the chain’s end, while it slides through
each other particle of the same chain. When applying the force, all chains are
compressed. If chains contain unlocked links, they will fold at their location.
Because of the mechanical implementation the compression of all chains
occurs synchronous. Thus, particle actuation must be synchronous. With that
structure and many fine-grained shape-able chains, a high resolution shape
shifting surface can be implemented.

1.1.2. Electrical Implementation

The very basic controller located in particles provides a basic communication
support and is able to unlock joints. All combined particles can be viewed as
a network of nodes. For the unlocking procedure a very simple actuator is
used. It consists of a Shape Memory Alloy (SMA) wire [6, 7], which contracts
if the wire temperature rises. Two actuators connect consecutive particles.
To activate the actuator the SMA wire must be heated, thus powered by
consecutive particles.

The power supply of each particle is obtained from a common power line,
all chains are connected to. Each chain is attached to the same power line.
Particles are connected in parallel to the power supply.

3

1. Introduction

With this power supply model, the power line is useable as communication
bus system. Thus as communication method the parasitic 1-Wire® protocol is
applied, as detailed in Lasagni et. al [5].

1.2. Limitations

1.2.1. Power Supply

In regular operation mode, particles receive commands and activate actuators
in a repetitive manner. For this reason the power supply must be switched
among two levels while communicating, and a third level for actuation. During
communication the microcontroller’s power supply must be buffered parasitic
from the 1-Wire® bus. If during communication the network’s total power
consumption exceeds the 1-Wire® maximum specification, parasitic powering
is not sufficient any more. A reliable 1-Wire® application allows a maximum
current drain of approximately 2mA [8, 9, pp. 2], which does not scale for
large particle networks.

1.2.2. Particle Localization

The usage of 1-Wire® does not allow a scalable method to localize the position
in the network. The first time a network is activated one must find out
each microcontroller’s 1-Wire® ID and map it to a position in the network.
To automate this task it is necessary to find all the 1-Wire® IDs and then
actuate pairs of consecutive particles to discover their sequences. Since only
consecutive particles can enable the connecting actuators, an increase of
current consumption indicates their reciprocal connection. Unfortunately the
complexity of this approach is T (n) = O(n2).

1.2.3. Unicast Communication

In the network’s use case, the 1-Wire® protocol allows only one commu-
nication between a master and a particle at a time. This is due to the bus

4

1.3. Motivation

characteristic, which does not allow local communication between consec-
utive particles. This means that, while two communication end points are
performing their transaction, no other communication can take place in the
network.

1.2.4. Concurrent Actuation

Particles having no possibility for local computations must be remotely trig-
gered to actuate. Although by using the unicast bus system, no synchro-
nization is required among particles, the number of concurrent actuations is
limited. This implementation does not scale in large networks.

1.2.5. Remote Programming

For firmware development and activation a remote programming must be
provided. We understand this procedure as programming the first particle, fol-
lowed by autonomous replication of the firmware to the subsequent neighbors.
The applied 1-Wire® protocol unfortunately does not provide an effective way
to implement this feature.

1.3. Motivation

As a consequence of the current electrical implementation, the system com-
prises severe limitations that must be overcome to be scalable for bigger
networks. Overcoming these limitations is our motivation to develop a new
daisy chain communication protocol. The protocol must be decoupled from
the power supply. The protocol should not make use of supplementary wires
because of several reasons. Additional wires introduce more sources of error
and make both, the electrical and mechanical system, more complicated.

The idea is to use the already available actuator wires as communication
channel. The actuator wires, having 150Ω per meter, provide enough conduc-
tance to transmit signals. The protocol shall use one actuator wire as simplex
channel. With two wires connected to each neighboring particle the protocol

5

1. Introduction

Fig. 1.4.: Folded shape shifting surface ap-
proximating a face shape

Fig. 1.5.: Network structure’s communica-
tion paths example

can communicate full duplex with subsequent neighbors. The protocol must
ensure synchronous actuation.

For that reason we proposed in our preceding work (attached in appendix
section A) a new particle hardware design and a corresponding network
structure. The hardware design allows exploiting actuators for both, actua-
tion and communication. In terms of communication, the proposed network
structure consists of daisy chain connected particles, see fig. 1.5. Chains are
connected at their first particle to their subsequent chain. This structure per-
mits connecting multiple particles in a square lattice manner, which can be
applied on a shape shifting surface as shown in fig. 1.4 and explained in [4].
The network allows an external communication with the topmost leftmost
network particle. Commands passed to this particle, with different destination
than the particle itself, are routed accordingly to the next neighboring particle.
With this Peer-to-Peer (P2P) [10, pp. 120] communication technique particles
require to know where to relay transmissions. For that reason the particle’s
awareness of position in network and connectivity to neighbors is necessary.

6

1.4. Contribution

1.4. Contribution

We propose a new protocol for networks of robotic chains connected linearly to
a backbone to overcome the stated limitations. The protocol implementation
relies on our preliminary work (attached in appendix section A), which
proposes a new electrical implementation of the robotic particle without
additional wires or changing the chain structure.

7

2. Protocol Design

In this chapter we elaborate the protocol design decisions with the focus on
what are the requirements to be achieved.

The protocol design relies on our previous work, (appendix section A); a new
network design to overcome the limitations of the current implementation
has been proposed. The network design provides three communication ports
for any particle, each consisting of transmission (TX) output and reception
(RX) input, as illustrated in fig. 2.5. From the protocol’s viewpoint a particle
represents a node acting as network participant. The communication ports
are located on the top, right and bottom side which we term according to
their hemispheric direction as north port, east port and south port. Between
ports it applies a serial P2P [11, pp. 156] connection. The two wire connection
of subsequent particles allows a lightweight full-duplex communication with-
out the need of Carrier Sense Multiple Access (CSMA) [11, pp. 708] as the
communication bus is shared by only two nodes. The network topology of
chains connected linearly to a backbone can be described as a subset of an un-
weighted rooted tree with the left most, topmost node as root [12, pp. 24]. For
simplicity we use the more general term, rooted tree, in the upcoming work.
Links are static which allows a simple global routing algorithm. A global
routing algorithm calculates the shortest source to destination path with the
knowledge of the connectivity status and costs of the whole network [10,
pp. 281].

With this specification we are able to construct differently sized, fully con-
nected networks by simply attaching multiple chains. The one and only
communication entry point to the network is located at the origin node’s
north port. The proposal assumes the same hardware implementation for
each connection port as illustrated in fig. 2.1.

9

2. Protocol Design

Fig. 2.1.: Proposed network structure; each subsequent chain is connected at the first particle
to the previous chain; any node provides three connection ports, each consisting of
transmission (TX) and reception (RX)

2.1. Requirements and Constraints

For the upcoming protocol development we have given requirements and
constraints which we must consider during the whole process. The given
requirements, such as network topology, physical link and much more, are
adopted from our preliminary work.

Scalability The protocol implementation must be scale-able for big networks,
since a high number of small-scale particles are to be addressed in real
use cases. We assume an addressing range of UINT8_MAX rows and
columns to be acceptable. With this upper limit 2552 participants can be
addressed.

Small-Scale and Lightweight With regards to physical forces and material
stress, long chains of particles are only feasible using a lightweight con-
struction design. By minimizing the particles’ dimension the display’s
resolution can be improved.

Low Price Since particles will be used in large numbers, they need to be
cheap. For that reason the amount of electronic parts is reduced to
a minimum. Despite electronic parts, for local computations a Micro-
controller Unit (MCU) must be applied that provides enough working
memory and storage. With regards to the instruction set and capabilities
the requirements are low.

10

2.1. Requirements and Constraints

Communication Throughput By using a simple MCU without dedicated
hardware that implements the physical layer, we need to bit bang the
communication. This means signal encoding, transmission, reception
and decoding of the Physical Layer (PHY) will be completely software
driven. We expect that a sophisticated connection oriented protocol
stack, providing automatic error corrections, cannot be realized without
harming the throughput. Thus it will cover basic use cases only.

Real Time Control The network behavior and command execution of sin-
gle network participants must be predictable to ensure synchronicity
between master device, chain contraction mechanics and network.

Time Synchronization As each particle’s clock is fed by the rather unstable
internal RC circuit, time synchronization has the goal of providing a
global time. To assure synchronous chain interactions, each particle must
be aware of both a global time and a compensating factor to compensate
the local MCU clock drift.

Automatic Localization The particle localization of the current implementa-
tion, a brute force method does not scale in large networks. It must be
replaced by an optimized detection method. The network must initial-
ize completely autonomous and subsequently be fully functional for
interaction with a master device.

Addressing Mode Instead of fixed identifiers as used by the 1-Wire® protocol,
particles must be accessible by a simple addressing scheme. As shown
in fig. 2.1, particles are identified by their (row, column) coordinate just
as the index of a matrix element. When communicating to particles they
must be addressable directly but also in a rectangular range manner.
The range is defined by the upper left and lower right corners.

Remote Programming Given the large number of particles, possible
firmware update must be supported by the new software imple-
mentation. Otherwise particles must be reprogrammed manually. For
this reason each particle must provide accessible Serial Programming
Interface (SPI) connectors, even if mounted in the mechanical body.
Because of the size requirement this is not possible and it also disagrees
with the low price requirement. A better approach is to program each
particle once before mounting them to chains. Later firmware updates
must be feasible using the proposed network structure. This means an
unattended replication programs the network subsequently after the
origin node has been reprogrammed once. This strategy parallelizes

11

2. Protocol Design

Fig. 2.2.: Open System Interconnect
(OSI) layers

Fig. 2.3.: Protocol process stages

the programming process and skips the need of touching each single
particle.

Debugging, Testing and Maintenance Future enhancements must be easily
implementable and testable. Instead of programming followed by trial
and error, an automated verification process is desired.

Self-Synchronizing Line Code In our preceding work (attached in appendix
section A) we considered the pros and cons of applicable line codes.
The proposed line code, the Manchester coding, combines both, clock
and data into one signal. This transmission/reception method is self-
synchronizing and has no need of additional clock wires.

2.2. Design

With respect to the requirements we decided to implement a lightweight
bit oriented daisy chain communication protocol that ensures synchronous
execution of commands. The protocol process, see fig. 2.3, autonomously
detects particle’s position in the chain and self-enumerates each network

12

2.2. Design

Fig. 2.4.: Simplex Peer-to-Peer (P2P) communication link with complementary MOSFETs at
both ends, communication wire is replaced with an actuator, a Shape Memory Alloy
(SMA) wire

participant so that after an initialization phase, the network is fully functional
and requires only synchronization. The proposed protocol design follows the
Open System Interconnect (OSI) [13, pp. 384-386] standard but is to be seen
as just a subset of the standard as it does not implement all layers seen in
fig. 2.2. The protocol stack [14, pp. 75] implements the physical layer, data
link layer, network layer, transport layer and session layer as highlighted in
illustration.

To keep track of the upcoming protocol description, highlighted margin notes
indicate the belonging to the process or layer described in fig. 2.3 and fig. 2.2.
In the following we will depict the corresponding margin note on the page’s
outer margin.

2.2.1. Physical Layer

Hardware

At the physical layer we specify the electrical circuits and channel coding. For
transmitting data an unipolar [11, pp. 131] Pulse-Code Modulation (PCM) is
applied. The signal levels are switched between 0V and 5V, which correspond
to ground (GND) and supply voltage (VCC).

The transmission/reception (TX/RX) hardware consists of a N-channel MOS-
FET on the TX side and a P-channel MOSFET on the RX side as shown in

13

2. Protocol Design

Fig. 2.5.: Full-duplex serial Peer-to-Peer (P2P) connection

fig. 2.4. The receiver pulls up the voltage level on the link wire to VCC using
a pull-up resistor. For generating a falling edge on the link the transmitter
activates the TX wire, enabling the MOSFET, and thus pulls down the volt-
age level to GND. A rising edge on the communication line is achieved by
pulling the TX wire to GND, which disables the MOSFET. Generated edges
are detected at the receiver’s side on the RX wire. By implementing both, the
TX/RX parts on each side, we achieve a full-duplex communication link using
two wires, i.e. actuation wires, as shown in fig. 2.5.

Line Code

The physical layer allows many degrees of freedom for PCM, however the
MCU is limited in memory and speed. Thus as line code, a very simple
PCM Phase Encoding (PE), has been chosen: the Manchester coding. The
advantages are the self-synchronizing nature and simplicity with regards to
the implementation. Furthermore the Manchester coding does not require
additional clock wires or a global clock.

The chosen encoding has some disadvantages. It does not provide error detec-
tion without introducing additional error detection bits into the payload [11,
pp. 85-90]. Although the hardware allows unipolar signaling (positive voltage
levels) only, a transmission must start with the inverted line value. Otherwise
a leading edge will be missed. To overcome this issue we assume, that each
transmission starts with a constant start bit value.

The Manchester coding belongs to the Return to Zero (RZ) coding group.
Thus it needs as wider transmission bandwidth. The signal rate, i.e. the baud
rate, is dependent on the data and is up to two times higher [15, pp. 75-78]
the bit rate. The RZ group encodes signal levels which return to zero after
consecutive bits with the same value. In contrast to RZ, Non Return to Zero
(NRZ) does do not return to zero on consecutive bits with the same value. This
leads to a lower transmission rate. A comparison among NRZ and RZ using

14

2.2. Design

Fig. 2.6.: Non Return to Zero (NRZ) versus Return to Zero (RZ) by means of Manchester
coding, also known as Bi-Phase-Level (Bi-φ-L)

Fig. 2.7.: Manchester coding; the code level is obtained by clock exclusive-or (⊕) data

NRZ-Level (NRZ-L) and Bi-Phase-Level (Bi-φ-L), better known as Manchester
code, are lined up in fig. 2.6.

The Manchester coding combines data with clock in one signal. The encoding
provides a clock transition in every bit interval. At the receiver’s side this is
used for receiving clock synchronization. The illustration in fig. 2.7 shows
the principle of the Manchester coding. Clock and data are merged with the
very basic exclusive-or (⊕) operation as expressed in equation (2.1). With the
inverse operation of ⊕ being ⊕ again, the separation of data and clock can
be simply formulated as equation (2.2). With this knowledge the receiver just
needs to detect the clock of a signal, to reproduce the data. Detailed encoding
and decoding examples are provided in equation (2.3) and equation (2.4).

manchester = clock⊕ data (2.1)
data = clock⊕manchester (2.2)

101010 = clock (2.3)
⊕ 001100 = data

100110 = manchester

101010 = clock (2.4)
⊕ 100110 = manchester

001100 = data

15

2. Protocol Design

Fig. 2.8.: Manchester coding timestamps of edge occurrences

Implementation

Fortunately the Manchester coding is simple to implement and can be pro-
cessed relatively fast. For signal de-/encoding we elaborated different bit bang
approaches. For any approach we apply the MCU’s 16 bit Timer/Counter
(TCNT) periphery feature of the ATtiny1634.

Manchester Decoding For both approaches an internal 16 bit TCNT is used.
The TCNT is set up to fast Pulse Width Modulation (PWM) mode [16, pp. 80].
When received signals are processed we reference the current TCNT as a
timestamp which is used for calculations. Both approaches are time-memory
trade-off, different in baud rate but have the same throughput as illustrated
in fig. 2.9.

On-the-fly Decoding In this approach the signal is decoded on-line in the
Interrupt Service Routine (ISR). Each edge change triggers an ISR where
the current edge timestamp is decoded according to the previous edge
timestamp (see fig. 2.8). This method does not need any explicit buffer
except of the previous timestamp value. On the other hand the baud
rate is limited by the duration the ISR takes to decode the signal edge.
Another aim is to exploit the Manchester coding self-synchronization
property for global time synchronization. This method poorly sustains
the synchronization needs, because without buffering one can hardly
infer timing adjustments, just from the last timestamp. A better approach
is to buffer timestamps and decode later.

Post-Processing In this approach a timestamp (see fig. 2.8) when the signal
edge occurs is buffered as fast as possible in the corresponding ISR
and decoded later. The disadvantage of this method is the large buffer
needed to store the signal.
The buffer size (bu f f er_size) per connection (also denoted as port) de-
pends on the amount of decoded data bytes the protocol should receive

16

2.2. Design

Fig. 2.9.: On-the-fly decoding versus post-processing

at once, the bit rate (two voltage transitions per bit) and the timestamp
resolution (16 bit). If the protocol must buffer 9 byte completely before
they are decoded, the bu f f er_size must be 288 byte (see equation (2.6)).
Additionally if a full-duplex communication for all three ports should
be achieved, three buffers must be allocated, which in total occupy 864
byte. The calculation can be seen as an upper bound approximation.
However the decoding process takes place partially simultaneous to
the reception. Therefore the effectively needed buffer can be reduced
by about 80% of the calculation above. The reduction is expected to be
linearly dependent on the received package size. The package size we
denote as protocol data unit size PDU size (| PDU |). The mentioned
fraction holds for a | PDU | of approximately 9 byte.
With about 1kB static RAM (SRAM) available on the MCU, this ap-
proach is limited but a Protocol Data Unit (PDU) of 9 byte can be safely
transferred at once, which is sufficient for the protocol implementation.
Thus the Maximum Transfer Unit (MTU) can be preliminary fixed at 9
byte.
With buffered data it is possible to infer much more timing adjustments
which are needed for global synchronization. The baud rate limit is also
higher as with the first approach.

| bu f f er | = byterx · sizeo f (uint16_t) · 8 · transitions (2.5)
= 9 · 2 · 8 · 2 = 288

with
byterx ... number o f received bytes to bu f f er

17

2. Protocol Design

Fig. 2.10.: Signal generator scheduling; two compare register versus one compare register
approach

Manchester Encoding For the signal generator the internal 16 bit TCNT
compare match ISR is applied. Two approaches have been explored. The trivial
approach uses two TCNT compare register where the advanced uses only one
compare register, as illustrated in fig. 2.10. In both methods the TCNT value
is incremented by the MCU’s PWM periphery but never changed manually.
Once transmission is enabled, each subsequent interrupt is scheduled by the
ISR before.

Two Compare Register Approach The method applies two TCNT compare
registers, thus two ISRs. Each interrupt is set up to occur once at each TX
clock phase. Both have a phase shift of π. With this setup the interrupt
occurring in the center of a clock, generates the Manchester coding
by terms of equation (2.1). The second interrupt rectifies the signal
according to the next data to be transmitted (see fig. 2.7). To save one
compare register and advanced approach has been tried out.

One Compare Register Approach This approach applies one interrupt for
generating signals in both phases, clock and data. For phase tracking
we use a 1 bit counter which is incremented by one each time the
interrupt occurs. When the counter equals zero the interrupt occurs at
the beginning of a phase, whereas if the counter equals one the interrupt
occurs at the half of a phase. With this information we can apply the
same signal generator strategy as described in the first approach by
using just one TCNT compare register.

18

2.2. Design

Fig. 2.11.: Reception and decoding sequence diagram; gray highlighted areas are interrupted
intervals

Design Decision

We have chosen to use a post-processing decoding method, although it re-
quires a large amount of SRAM [17, pp. 315]. Because buffering is much
faster than online decoding, this approach allows a higher communication
baud rate. The overall decoding throughput, consisting of both, buffering and
decoding, remains the same as with the online method (see fig. 2.9). With
this approach we have retrospection into the reception buffer which allows a
global time synchronization strategy to evaluate reception timings out of the
buffered reception.

The signal coding approach reduces the number of necessary TCNT compare
register to a minimum, which is vital for the protocol implementation. The
second compare register is needed for a different purpose. It also does not
touch the TCNT value which is continuously used for decoding and other
tasks.

The basic design approach of coding/decoding and processing is illustrated
in fig. 2.11. Gray highlighted areas are interrupted intervals due to ISR calls.

19

2. Protocol Design

TX/RX ISRs calls do never overlap.

2.2.2. Data Link Layer

The data link layer is responsible for collecting streams of received bits [15,
pp. 27] and vice versa creating streams of bits from packages. It provides con-
nectivity of subsequent network nodes only. The package frame introduced in
this layer consists of one package header (HDR) field, containing several data
link layer control bits as shown in fig. 2.12. An extensive package description
can be found in section B. The HDR field contains start bit (STB), parity bit
(PRT) and broadcast bit (BCT). The remaining bit is not used.

HDR︷ ︸︸ ︷
0 3 4 7

STB - PRT BCT0x0

0x1

hhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhh

Fig. 2.12.: Header field

STB The start bit (STB) is constantly set to one and necessary for the Manch-
ester coding. Without STB the decoding of a frame starting with a zero
would fail, because the first signal edge cannot be detected on the line
as described in section 2.2.1.

PRT The parity bit (PRT) is used for error detection of up to 1 bit. To assure
an even amount of total ones the PDU’s PRT is set accordingly (1 bit
even parity). Different error corrections/detections or Automatic Repeat
Requests (ARQs) are planned for future work since they are non-vital
features for the network protocol.

BCT The broadcast bit (BCT) bit changes the reception mode. A received
package having BCT set affects the subsequent reception only. The fol-
lowing PDU is indeed forwarded to any active connection port. Thus

20

2.2. Design

the signal is broadcasted with a minimum latency. This state remains
until the BCT flag is set. To retain the broadcast state longer, subsequent
packages must have the BCT flag set continuously. The broadcast im-
plemented in this layer differs from the multicast routing concept in
the network layer. This layer permits instant simultaneous broadcasting
with minimum latency, whereas the network layer must completely
receive a package until it is able to apply the routing algorithm.

For simplicity, as byte order we use the MCU’s internal endianness without
marshalling/unmarshalling tier [18, pp. 35]. Any data package is constructed
as C-Union/Struct [19, pp. 27] which, for transmission, is iterated bit-wise
beginning at C-Struct’s base address. A little endian byte order example
starting with the C-Struct’s least significant bit or byte (LSB) is illustrated in
fig. 2.14. The corresponding bit stream is illustrated in fig. 2.15.

typedef s t r u c t Data {
u i n t 8 _ t x ;
u i n t 8 _ t y ;
u i n t 1 6 _ t z ;

} Data ;

Data data = {
. x = 0xCA,
. y = 0xFE ,
. z = 0xBEEF ,

} ;

Fig. 2.13.: Data structure example

0 7

0xCA0x0

0xFE0x1

0xEF0x2

0xBE0x3

 data

Fig. 2.14.: Little endian data structure on
Microcontroller Unit (MCU)

0 7 8 15 16 23 24 31

11001010 11111110 11101111 10111110

0xCA 0xFE 0xEF 0xBE

Fig. 2.15.: Transmission bit stream example containing the structure data as explained in
fig. 2.13

21

2. Protocol Design

2.2.3. Network Layer
0 3 4 7

HDR

ROW

COL

node
address

{

hhhhhhhhh
hhhhhhhhh

Fig. 2.16.: Unicast package

0x0

0x1

0x2

0x3

0x4

0x5

0 3 4 7

HDR

ROW1

COL1

} top
left
node

ROW2

COL2

} bottom
right
node

hhhhhhhhh
hhhhhhhhh

Fig. 2.17.: Multicast package

The network layer is responsible for discovery, addressing, routing, flow
control and extends the P2P communication boundaries to node-to-node
communication. This requires an addressing and routing scheme. The intro-
duced frame consists of optional address fields as shown in fig. 2.16 and
fig. 2.17. The number of address fields varies depending on the use case:
unicast (one address), multicast (two addresses) or transmission to neighbor
(no address).

Discovery

When the system boots up, nodes need to retrieve their position in the network
before any address can be assigned. For this reason we introduce a node
classification scheme which determines a rough node position, depending
to the node’s connectivity. Basic types are nodes at the top, within or at
the end of chains: head nodes, inter nodes and tail nodes as the illustrated
classification matrix in fig. 2.18. An exhaustive description of all types is listed
in table 2.1.

The discovery phase starts immediately after nodes are powered. In the
discovery phase nodes generate pulse on the transmission wires, which

22

2.2. Design

Fig. 2.18.: Node classification matrix highlighting the possible node types: origin node, inter
head, inter node, tail node and orphan node

Node Type Description

origin node The top left node, connected at east port and south port.
inter node A node connected at north port and south port.
inter head A node connected within two head nodes at north port,

east port and south port.
tail node A node connected at north port only.
orphan node A node without any connected ports.

Table 2.1.: Listing of classifiable node types

are sensed by neighboring nodes. For proper sensing the origin node (top
left node) assumes a connected master device must not send any pulses
within this phase. The sensing phase consists of three parts as shown in
fig. 2.19: the counting-phase, classification-phase and post-classification-phase.
During the whole counting-phase, incoming pulses are counted for each port
separately. If a counter exceeds a specific threshold, the respective port is
marked as connected. In the classification-phase a node tries to classify itself
according to the ports connectivity. If a classification cannot be done within
this time window, the protocol assumes no neighbors are connected. The
post-classification-phase keeps pulsing for a short safety period. The design
decision was to provide more pulses than necessary, where a fraction of

23

2. Protocol Design

pulses are enough to assure a valid classification. When the discovery phase
is finished each node is classified as one of the listed types in table 2.1.

Fig. 2.19.: Discovery phase

Addressing

As addressing scheme we orient on a matrix manner numbering which uses
a (row× column) coordinate for each cell entry. The first network address
starts at (1, 1) which equals the origin node and resides on the top left in the
lattice. The subsequent node connected at the south port has the incremented
row address (2, 1). The subsequent east node is addressed (1, 2). Although
we orient on a matrix numbering which is rectangular, the addressing scheme
does not limit network size. The scheme may also be used to address networks
having irregular chain lengths such as rooted tree topologies. For simplicity
we consider addressing rectangular shaped networks only. Addressing modes
are unicast, multicast and broadcast.

Unicast A direct addressing mode where the address consists of address row
(ROW) and address column (COL). The unicast PDU is illustrated in
fig. 2.16.

Range Addressing Mode A range addressing mode where the address con-
sists of top left address row (ROW1), top left address column (COL1)
and bottom right address row (ROW2), bottom right address column
(COL2). The multicast PDU is illustrated in fig. 2.17.

Broadcast With this addressing mode messages are forwarded to all nodes.
No additional address information is required.

24

2.2. Design

Fig. 2.20.: (rows× columns) network addressing schema

Routing

Since we have a rather simple, static and well defined network structure, as
illustrated in fig. 2.20, we opted for a global routing algorithm. The algorithm
needs no further information except the network topology, which is a subset
of unweighted rooted tree with the origin node and the node’s address. With
this definition and the addressing scheme we are able to define the global
routing algorithm through a simple set of rules.

According to the package direction we split the undirected network (fig. 2.20)
into two directed spanning trees (fig. 2.21 and fig. 2.22). The directed out-tree
shows all possible paths from the origin node to the leaf nodes, whereas the
directed in-tree shows the flow back to the origin node. The routing rules
may result into none, one or two ports. At this point we assume unconnected
ports are excluded.

In the following we denote routing rules flowing along directed out-tree paths
as Rout(...) and Rin(...) the rules flowing along directed in-tree paths. The
routing rule result is a subset of ports: {north, east, south}. Generally seen,
the algorithm applies Rout(...) for forward routing. In case Rout(...) does not
provide any result backward routing Rin(...) is applied.

Unicast Routing In this use case packages carry one address field. An
intuitive set of directed out-tree and directed in-tree routing rules is

25

2. Protocol Design

Fig. 2.21.: Directed out-tree highlighting a
unicast route example Rout(...)

Fig. 2.22.: Directed in-tree highlighting a
unicast route example Rin(...)

described by Rout(...) in equation (2.6) and Rin(...) in equation (2.7). If
the broadcast bit (BCT) is set, no routing is done by this layer. The
unicast PDU is illustrated in fig. 2.23.

Rout(BCT, local, dest) 7→⊂ {east, south}

Rout(...) =



{} i f (BCT = 1)
{east} eli f (local.COL < dest.COL)
{south} eli f (local.COL = dest.COL) and

(local.ROW < dest.ROW)

{} otherwise

(2.6)

Rin(local, dest) 7→⊂ {north}

Rin(...) =

{
{north} i f (dest.COL < local.COL)
{} otherwise

(2.7)

Range Routing In this case we assume multicast transmissions are issued
only by the origin node. Thus packages traverse just the directed
out-tree which simplifies the routing rules (equation (2.8)). Backward
routing along the directed in-tree is not considered (equation (2.9)).

26

2.2. Design

The multicast range is defined by a rectangular shape having two
address coordinates, the top-left and bottom-right node. In this use case
packages always carry two address fields. The routing rules forward
a package to the east until the bottom-right node’s column is reached.
If the top-left node’s column is reached, the package is duplicated
and routed also to the south. The multicast PDU is illustrated in fig. 2.24.

Rout(local, dest1, dest2) 7→⊂ {east, south}

Rout(...) =


{} i f (dest2.ROW < local.ROW)

{east} eli f (local.COL < dest1.COL)
{east, south} eli f (dest1.COL ≤ local.COL) and

(local.COL ≤ dest2.COL)

(2.8)

Rin(local, dest1, dest2) 7→⊂ {north}
Rin(...) = {} (2.9)

Broadcast Routing A Broadcast routing is already implemented in the
data link layer. If the BCT flag is set, a routing algorithm at a higher
level is excluded. Otherwise the routing rules Rout(...) and Rin(...) are
applied for the corresponding PDUs. Broadcast is spread just along the
directed out-tree (equation (2.10)), backward routing is not considered
(equation (2.11)). In both use cases no address fields are carried at all.

Rout(local) 7→⊂ {north, east}
Rout(...) = {north, east} (2.10)

Rin(local) 7→⊂ {north}
Rin(...) = {} (2.11)

When a PDU is passed over the last link it can be transmitted without the
destination address, since this field is redundant. The protocol design intends
this method of communication to neighboring nodes but this part is intended
for future port, thus not implemented. The software design is prepared for this
kind of extension. For simplicity packages pass the last link unmodified.

27

2. Protocol Design

0 3 4 7

HDR CMDpart 1
{

ROW

COL

payload

part 2


Fig. 2.23.: Unicast Protocol Data

Unit (PDU)

0x0

0x1

0x2

0x3

0x4

0x5

0 3 4 7

HDR CMD
}

part 1

ROW1

COL1

ROW2

COL2

payload
 part 2

Fig. 2.24.: Multicast Protocol Data
Unit (PDU)

Flow Control

Despite the OSI layer design the protocol does not provide flow control at
this level. Due to the lightweight and real time nature of the protocol the
flow control is seen to be rather a part of the real time protocol, thus handled
beyond the transport layer as proposed in [20, pp. 501].

2.2.4. Transport Layer

The transport layer introduces a command id (CMD) an optional variable
sized payload field. The command id (CMD) field describes the action to be
executed by the receiving system. Depending on the CMD the package may
contain a payload field, whereas the payload size depends on the CMD’s
specification. The non-continuous payload field’s characteristic is based on a
implementation decision. The aim was not to patch a TX buffer, but instead use
a C-Union/Struct, which for transmission aims is iterated bit-wise from the
C-Struct’s base until the end. This decision requires a proper field alignment
within the structure which leads to placing the CMD field into the unused
4 bits in the HDR, while appending the remaining payload as illustrated

28

2.2. Design

Fig. 2.25.: Flow control in addressing phase, highlighted arrows represent Protocol Data Units
(PDUs) followed by reception (RX) timeout

in fig. 2.23 and fig. 2.24. Commands received by this layer are passed to an
interpreter which is discussed in the implementation part, section 3.

2.2.5. Session Layer

Besides global time synchronization and actuator scheduling the session layer
implements the real time protocol’s flow control. Due to the rather low baud
rate we assume transmitted PDU’s do not require retransmissions, thus no
acknowledgement (ACK) packages except of the special case are transmitted:
the very first transmission following the discovery process, the enumeration
phase.

Flow Control

A correlation between the node indegree and the discovery process duration
has been observed. On tail nodes the discovery phase ends approximately
15% earlier than on other nodes. This is due to the overlapping ISR’s triggered
by incoming signals and pulse generating ISR. The overlap leads to a non-
relevant pulse jitter which can be ignored. In detail this means some nodes
may be already listening to incoming data while others are still pulsing the
discovery signal.

To disambiguate discovery from data signals the protocol’s flow control
implements a stop-and-wait strategy for the first PDU transmissions after
the discovery phase. This applies to the addressing phase only. However, if
necessary the flow control may be used also for different packages.

The stop-and-wait-protocol implementation distinguishes between the node
initiating a communication (initiator) and the node waiting for reception

29

2. Protocol Design

Fig. 2.26.: Initiator transmission (TX) flow control state diagram with i being the timeout/retry
counter

(receiver). In the addressing phase the initiator sends a package containing
the new address to the neighbor. If the receiver receives this package correctly
it acknowledges (ACK I) by replying the same address. The initiator then
checks the content. In case of match it replies ACK II which terminates the
flow control on both sides. Otherwise the initiator retransmits the addressing
package.

Fig. 2.25 illustrates the flow with transmission errors highlighted in gray. The
corresponding Finite State Machines (FSMs) are illustrated in fig. 2.26 and
fig. 2.27. Waiting states are interrupted by timeouts which assures the system
never remains in a locked state. This process is repeated until a "retry" counter
is consumed, which ends up in an error state. The error state is a dead end
state. ARQs are implicitly ensured by the described initiator and receiver flow
control.

For regular communication, when the network is already initialized, the
proposed stop-and-wait-protocol produces too much overhead, since it is
acknowledged twice (ACK I and ACK II). For that reason a FSM with lesser
states is used. A further enhancement of the flow control can be achieved
by interacting with the data link layer’s PRT bit which may be of interest in
future work.

30

2.2. Design

Fig. 2.27.: Receiver transmission (TX) flow control state diagram with i being the timeout/retry
counter

Synchronization

The protocol’s focus is the synchronized execution of commands. Due to the
node design does not provide a Real Time Clock (RTC) or an external time
synchronization method, the protocol must provide an accurate synchroniza-
tion mechanism. The protocol also must consider the circumstance that MCUs
are clocked by their rather inaccurate internal RC circuit. Thus we encounter
two challenges, a missing global clock and a possible clock skew.

The underlying timing mechanism is sustained by a timer/counter MCU
feature, which allows us to calculate delays in clock cycles. Thus in equations
the time base is rather MCU cycles than seconds, if not specified differently.

Regarding communication, during the synchronization phase, we see two
possibilities. Packages can be spread through the network simultaneously
(broadcast mode) or subsequently (subsequent mode). In simultaneous mode
signals are relayed immediately when received, whereas in subsequent mode
a Protocol Data Unit (PDU) is received completely until it is retransmit-
ted. In both cases, broadcast and subsequent, the clock skew compensation
mechanism is the same. When a PDU is completely received, except of the
delivered data, it provides additional information such as "start time" and
"end time" of the reception. The access to this information is vital for the
whole synchronization process.

31

2. Protocol Design

Fig. 2.28.: Received edge versus forwarded edge timing in broadcast mode; forwarded edge is
delayed by a constant latency plus an unpredictable jitter

Fig. 2.29.: External pin change Interrupt Service Routine (ISR) latency

Broadcast Mode In this mode the synchronization phase takes place while
the network is set to broadcast mode. The origin node transmits a PDU
containing several timing arguments. The transmission is performed simulta-
neously on both, the east port and south port. The simultaneous transmission
introduces a minimal latency between both ports. When signals are received,
nodes in broadcast mode first relay the signal to any connected port and then
they record the timestamp. The relaying process, introduces a minimal latency
to signals passing the current node as illustrated in fig. 2.28. Unfortunately
this not only results in a simple shift that can be easily calculated according
to the path length a signal has traversed, but also introduces a reception and
transmission jitter at each node which is cumulated on each forwarding.

Time Synchronization Approach For this method the whole transmission de-
lay must be broken down to be able to recalculate the total duration
from the timestamp the PDU was issued by the origin node. The trans-
mission duration consists of the PDU transmission duration (dpdu) and
the introduced total signal latency (dlatency). The dlatency can be assumed
to be linearly dependent on the path length the message traverses. It
consists of the latency introduced by the transmitter and the signal
latency of one hop (dhop) that the PDU experiences as formulated in
equation (2.12) and equation (2.13). In small networks the introduced

32

2.2. Design

latency is neglect-able but it must be considered for larger networks.

dhop = dpci f + dinstr + dprologue + d f wd (2.12)
dlatency = (−2 + row + column) · dhop + (dinstr + dprologue + d f wd)

= (−1 + row + column) · dhop − dpci f (2.13)

The latency dhop can be split in two parts: a constant and a variable
latency. On the RX side the latency consists of four components: the pin
change interrupt hardware timing, the instruction interrupting mech-
anism, the ISR prologue and the signal forwarding duration (d f wd) as
illustrated in fig. 2.29. The pin change interrupt timing until the Pin
Change Interrupt Flag (PCIF) is set is guaranteed to be constantly three
clocks [16, pp. 50]. The prologue takes constantly 32 clocks thus be-
longs to the constant duration (dconst). The interrupt response time is
at least four clocks [16, pp. 12] which corresponds to four clocks for
the jump (dconst) and a variable duration (dvar) to interrupt the current
instruction. Since instructions are atomic, they cannot be interrupted,
but are executed trough. The instruction duration at the current MCU
may take one up to four clocks [16, pp. 278], which introduces a jitter.
The encountered unpredictability of dvar problem is because one cannot
make any assumptions about the instruction type executed when the
interrupt flag is set. In this work no approximation model is applied to
compensate the non-constant part, while instead an empirical value is
used. On the TX side we face a similar problem, except for the missing
pin change interrupt flag latency (dpci f). However this approach is a
far to complex and bears also a cumulative error source. Thus no deep
investigations for the synchronization in broadcast mode have been
done. For that reason we focus on the subsequent mode.

Subsequent Mode In this mode the synchronization phase takes place while
the network is not in broadcast mode. The origin node starts the synchroniza-
tion by sending synchronization PDUs on both ports simultaneously. When
these PDUs are received, they are interpreted, executed and lastly the current
node prepares the transmission of a new synchronization package. This new
package contains fresh timing arguments.

33

2. Protocol Design

Fig. 2.30.: Time synchronization and phase shift; step-by-step illustration of latencies a Time-
Package experiences because it is constructed by transmitter until executed by the
receiver

For this method only the transmission between two consecutive nodes must
be broken down, which is less error prone. Even if the RX and TX still suffer
of a jitter, this approach does not cumulate the jitter illustrated in fig. 2.29.

Time Synchronization Approach When a synchronization PDU is received
we focus on the time span since remote PDU construction until local ex-
ecution (dctor_intp) of the package. This delay is the sum of the receiver’s
the interpreter delay (dintp), PDU transmission duration (dpdu) and a
constructor to transmission delay (dpre_tx) as illustrated in fig. 2.30 (Total
Transmission Delay: TX time line illustrates the constructor and PDU
transmission, RX time line illustrates the receiver’s reception, interpreter
and local time ISR timings). Thus the time of PDU construction (tctor)
is the time when the PDU is interpreted (tint) minus dctor_intp (equa-
tion (2.14)) as formulated in equation (2.15). By considering these delays
we can conclude the amount of local time increments during the PDU

34

2.2. Design

transmission.

dctor_intp = dintp + dpdu + dpre_tx (2.14)
with

dpre_tx ≈ 381µs ∧= 3 · dcode

tctor = tint − dctor_intp (2.15)

To be more accurate also the local time counting ISR must be shifted to
be in phase with the remote one as illustrated in fig. 2.30 (Remote vs.
Local Time ISR: TX time line illustrates the initiator’s local time ISR, RX
time line illustrates the receiver’s local time ISR). Without shifting we
would create a cumulative off-by-one error of the local time among all
network nodes. The TimePackage carries data about the transmitter’s
local time (ttx) when the PDU was constructed, the transmitter’s local
time clock delay (dsep_remote), the current delay until next local time
increment (duntil_cc), the force update local time flag (FU) and the end bit
(EB). With this information the shift in between tcc_tx and tcc (dcc_shi f t) can
be calculated. For this we take the difference of duntil_cc and tctor as basis.
From this delay we take the remainder of the division as formulated in
equation (2.16). For this calculation we assume that local time counter
clock delay (dsep), or in other words the clock skew, is already correctly
adjusted. The newly obtained value dcc_shi f t can now be used to shift the
local time ISR compare value (tcc) accordingly. Instead of shifting tcc by
the whole amount of dcc_shi f t, a step-wise shifting has been implemented.
This means if dcc_shi f t exceeds a specific threshold the shift value is the
threshold itself, dcc_shi f t otherwise.

dcc_shi f t = (tcc − duntil_cc) mod dsep (2.16)

duntil_cc = dsep ·
duntil_cc_remote

dsep_remote

The dsep[ms] at a MCU clock frequency (fcpu) of 8MHz corresponds
to approximately 6.528ms as formulated in equation (2.18). Thus the

35

2. Protocol Design

current local time (tnow) overflows every 428 seconds.

dsep = 51 · dcode (2.17)

dsep[ms] =
dsep

fcpu
(2.18)

t′cc = tcc +
dsep

2
dpdu = dcode · pdu_bits (2.19)

dpdu[ms] =
dpdu

fcpu

with
dcode = 1024 (2.20)

Clock Skew Compensation A time skew may be introduced by many pa-
rameters. The most significant are inaccurate resistor-capacitor (RC) oscillator
due to production factors, oscillator’s temperature drift, VCC voltage drop,
ripple, et cetera. To compensate a possible time skew we state that nodes
adjust their local time counting along the origin node’s counting speed. To
obtain a clock speed from the origin node a fixed time span reference is
needed. As reference the data clock duration of the Manchester code (dcode) or
the time package’s dpdu can be used. Due to accuracy we opted for the longer
time interval dpdu.

The compensation mechanism firstly observes dpdu (equation (2.19)) and
updates all dependent values such as dsep which holds (equation (2.17)) and
the new baud rate by updating dcode in equation (2.20). By updating the baud
rate the local changes are also exposed to the subsequent neighbor on the
next TX.

In the optimal case, if two subsequent neighbors have the same fcpu, dsep
resides at about 80% of the maximum value which gives us ±20% margin for
adjustments. If even more margin is needed the constant in equation (2.17)
can be tuned.

Tuning the internal RC oscillator adjustment as proposed by [21] has also been
considered. Although the applied MCU provides an internal RC oscillator

36

2.2. Design

0 3 4 7

HDR CMD0x0

tctor0x1

}
time when PDU is constructed

dsep0x3

}
time ISR
separation (dsep_remote)

duntil_cc0x5

}
number of cycles until
next time ISR (duntil_cc_remote)

FU EB0x7

}
force update time and end bit

Fig. 2.31.: TimePackage

calibration register (OSCCAL), we do not use this feature to adjust the fcpu
since it has two major issues: the tuning possibility is not so fine grained
and a linear adjustment of the OSCCAL does not cause a linear fcpu change.
Because of these issues no further investigation regarding OSCCAL has been
done.

The environmental temperature is not considered in the adjustment model.
However it is assumed that the synchronization process must be triggered
frequently to stay consistent. If the system shares the same environmental
temperature, this will cache the problem largely. For sporadic fast temperature
changes of network parts the protocol provides no automatic adjustment.

For both, time synchronization and clock skew compensation, the protocol
provides one PDU, the TimePackage which is illustrated in fig. 2.31. Each
received package triggers the clock skew compensation, whereas the time
synchronization only if the FU flag is set.

Actuation Command Scheduling

Actuation commands to be scheduled are defined by the command PDU
which contains the destination node fig. 2.32 (or range of nodes fig. 2.33),
a command start time (tstart), the actuation command duration (d) and the

37

2. Protocol Design

0 3 4 7

HDR CMDhackxxx

ROW

COL

tstart

d

L R

Fig. 2.32.: Actuation command ad-
dressing one node

0x0

0x1

0x2

0x3

0x4

0x5

0x6

0x7

0x8

0 3 4 7

HDR CMD hackxxx

ROW1

COL1

ROW2

COL2

tstart

d

L R

Fig. 2.33.: Range actuation com-
mand addressing a node
range

affected wires’ flags (left wire flag (L), right wire flag (R)). Independent of tnow
the command is scheduled for the next period which matches start 6 tnow 6
(start + duration). When this period is passed the command is removed from
the scheduler. During this period the affected wires are powered according to
the actuator PWM setting, which per default is set to 50% duty cycle.

38

3. Implementation

This chapter is focused on the software implementation made to achieve the
proposed protocol design and elaborates the following items:

1. overall software structure
2. line encoding and decoding
3. network time synchronization
4. programming code optimization
5. protocol commands
6. protocol configuration
7. simulation and testing

Based on the available flash size we focus at avoiding a high level program-
ming languages such as C++. For the ATtiny1634 MCU we apply the free of
charge AVR compiler avr-gcc of the GNU Compiler Collection (GCC) with
gnu99 standard. The basic key data of the ATtiny1634 MCU are 16kB flash
(program memory), 1kB SRAM (working memory), one 8 bit and one 16
bit Timer/Counter (TCNT). As clock source the factory calibrated internal
oscillator at a frequency of fcpu= 8MHz is used.

To realize the desired protocol behavior the software is designed to be state
driven. This eases implementation of context sensitive actions, which are
natural for protocols. The node’s context corresponds to any possible state the
protocol can reach. The implemented Finite State Machine (FSM) is oriented
to the State pattern as proposed in [22, pp. 398]. A rough overview of all FSM
states and transitions can be found in the appendix in fig. E.1. Although the
pattern is proposed for Object Oriented Programming (OOP) we implement
the behavior in C language.

39

3. Implementation

void main () {
while (t rue) { process () ; }

}

Fig. 3.1.: Invocation of the process() function

3.1. Main Loop

The main process (process()) is programmed to check whether actions can be
performed within the current state and the given context. Thus it is called in
a loop as illustrated in fig. 3.1. In general process() is called which checks for
executable current tasks, eventually changes node states and finally returns.
With this design, states are effectively interruptible and can be cut short if
necessary. For instance the TX/RX flow control must never get stuck in a
state without the possibility to recover. For timeout implementation we apply
counters which are incremented based on the amount of calls to process().

The process() is independent of the TX coding and RX buffering. The interface
between process() and TX/RX are two types of buffers at each communication
port. For transmission, a 9 byte buffer is provided onto which the PDU to
be transmitted is written. In case of transmissions the process() writes data
onto this buffer. Due to parallel decoding the least reception buffering ratio
(bu f f ering_ratio) is assumed to be below 10%. For safety reasons twice the
expectation value is used. For reception a 28 times UINT_16 buffer containing
raw values to be decoded is available (equation (3.1)). In case of decoding, the
process() consumes data from this buffer. Both buffer types are allocated for
each communication port.

bu f f er_size[B] = dbu f f ering_ratio · 2 · | PDU |max ·8 · 2e (3.1)
with

bu f f ering_ratio = 20%
| PDU |max = 9

The FSM’s states are sketched in fig. 3.2. They are similar to the protocol
stages proposed in fig. 2.3.

40

3.2. Receiver and Decoder

Fig. 3.2.: Main Finite State Machine (FSM) states of the node’s context

3.2. Receiver and Decoder

The chosen post-processing decode strategy has been investigated and dis-
cussed in 2.2.1. The process consists of a producer and consumer part as
illustrated in fig. 3.3.

3.2.1. Receiver

The physical layer reception is handled in the Pin Change ISR (PCI) which is
basically capturing any rising or falling edge and storing to a ring buffer. The
data produced is the current 16 bit Timer/Counter (TCNT) value whenever
the ISR is triggered and the edge direction (rising/falling). Because of limited
SRAM memory reasons the LSB of the TCNT is ignored to store the edge
direction, which results in a slight compression. To achieve more accuracy
this feature can be turned off which results in storing each edge as a Boolean.
Thus occupies additionally one byte per edge of SRAM. The decoding is
performed in the process() function.

41

3. Implementation

Fig. 3.3.: Receiver, decoder and interpreter sequence diagram illustrating the producer con-
sumer mechanism

3.2.2. Decoder

In reception states the process() function tests whether the RX ring buffers
provide data for decoding. If yes, the data is consumed until the buffer
is empty otherwise the decoder ends. This process repeats multiple times
until a PDU is completely decoded. The decoder starts after the reception
ISR stored the first TCNT timestamp. It decodes parallel to the ongoing
reception as long timestamps can be consumed from the buffer as illustrated
in fig. 2.9. Decoding terminates when the buffer stays empty for longer than
2 · dcode. The post-processing is investigated and proposed in section 2.2.1.
This strategy needs an interruptible decoding implementation which requires
a state driven approach. As already discussed in the Manchester coding
approach in section 2.2.1, a 1 bit counter for clock phase tracking is applied.
The clock phase is the binary FSM’s state on which the decoded result is based
on. In this producer/consumer implementation, although the producer (ISR)
interrupts the consumer (process()) to avoid race conditions, no additional
locking mechanism is required.

42

3.3. Transmitter and Encoder

3.3. Transmitter and Encoder

If data is to be transmitted, the process() function writes a PDU to the corre-
sponding buffer’s port. For transmitting with the introduced flow control in
section 2.2.5 each transmitting state implements its own transmission han-
dler. This is necessary to enable a per state flow control implementation
which allows to shortcut states if needed. For example the flow control in
the addressing phase differs from the flow control in subsequent phases. The
transmission handler puts the node into the correct sub-state (initiator or
receiver), enables the Manchester coding generator and returns. To make this
non-blocking behavior blocking, the handler is implemented state driven. It
introduces sub states which are similar the introduced FSM’s states illustrated
in fig. 2.26 and fig. 2.27. An example is listed in the appendix, fig. C.1

3.3.1. Manchester Code Signal Generator

When the physical layer’s transmission is enabled, the first generated signal
on TCNT compare match tcc, is scheduled up to two dcode in the future starting
from the current TCNT as formulated in equation (3.2). When the first trans-
mission ISR has triggered it generates the corresponding signal and schedules
the next ISR in dcode/2 cycles (equation (3.3)). The resulting maximum baud
rate is about 15.63kBd (equation (3.4)) which corresponds to a transmission
rate of approximately 0.98kB/s. The resulting communication speed, being
about 1.6 times faster than proposed in M-TRAN: Self-Reconfigurable Modu-
lar Robotic System [23], is assumed to be fast enough for scalable network

43

3. Implementation

communication.

tcc = TCNT + 2 · dcode (3.2)

t′cc = tcc +
dcode

2
(3.3)

baud_rate =
2 · fcpu

dcode
(3.4)

baud_rate = 15.625kBd
with
dcode = 1024
fcpu = 8.0MHz

3.4. Interpreter

The interpreter is implemented stateless and very minimalist. It is called
by the process() function and validates the parity of the decoded data and
whether it is interpretable as PDU. The buffer type is a C-Union consisting
of all possible PDU types. This eases the data reinterpreting without an
explicit C style cast. If a PDU is buffered the interpreter decides based on
the CMD field which action is to be performed. If the PDU is associated to
an executive function, it is called with the correctly casted PDU type. The
invocation sequence diagram can be found in fig. 3.3.

3.5. Scheduler

For additional extra features, which are not vital to the protocol, a simple
scheduler is provided. The scheduler accepts tasks to be registered, which
are executed when a set of rules is satisfied. Such a set may consist of
constraints as the local time, required node type, task start/end time and
cyclic task characteristic. The scheduler is called from the process() loop and
tests each task’s rules set. The advantage of the scheduler is programming
code deduplication and performance gain. Otherwise, without scheduling,
each task is forced to apply its own specific counter and implementation

44

3.6. Node Context

addCyclicTask (TASK_ID , toggleHeartbeatLed , 250 , 1 0 0) ;
taskEnableNodeTypeLimit (TASK_ID , NODE_TYPE_ORIGIN) ;
taskEnableCountLimit (TASK_ID , 6 0) ;

Fig. 3.4.: Registration of Light Emitting Diode (LED) blinking task 250 time units after boot
with a separation of 100 time units and 60 total executions until task deactivation;
applies to origin node only

for triggering at the desired time. The scheduler is absolutely necessary for
the protocol evaluation as, for measuring the characteristics of the network
synchronization and actuation. Tasks carrying out these experiments will be
triggered by the origin node’s scheduler.

For example, a 30 times executed cyclic Light Emitting Diode (LED) blinking
of the origin node is easily achieved by a cyclic task that is initially executed
250 time intervals after boot with a separation of 100 time units as illustrated
in fig. 3.4.

3.6. Node Context

As node context we denote all protocol relevant resources a node is able to
access. These are buffers, synchronization parameters, counters, FSM states
and much more. The node context is packed into a global NodeState structure.
The information stored in NodeState is necessary for the implementation of
all protocol layers such as buffering, scheduled data, local time et cetera. An
overview is illustrated in fig. 3.5.

Node Information about node connectivity, address in network and the
node’s FSM states. The complete FSM is illustrated in fig. E.1 of ap-
pendix.

DiscoveryPulseCounters Discovery and port connectivity information.
Communication Coding and decoding related buffers and adjustment param-

eters.
CommunicationProtocol Network layer and flow control related parameters.

45

3. Implementation

Fig. 3.5.: NodeState overview

DirectionOrientedPorts Facade [22, pp. 212] of Communication, Communi-
cationProtocol and implementations bundled to direction aware com-
munication ports (north port, east port and south port).

LocalTimeTracking Contains the current local time and adjustment parame-
ters.

TimeSynchronization Stores statistical information of measured reference
time spans. Used by the synchronization algorithm to update the time
and compensate the clock skew locally.

ActuationCommand Command scheduling and execution related parame-
ters.

Scheduler Executes registered tasks at specified local timestamps considering
also the node state and type.

Alerts Alerting implementation for severe errors. The implementation is not
essential thus skipped when release compiling.

Periphery Non-vital periphery control, such as LEDs, test points et cetera.
Evaluation Implementation of evaluation tasks which are registered to the

scheduler to provide basic functionality for measuring experimental
results. For example: boot network, synchronize time, compensate clock
skew and execute actuation cyclically.

The complete structure diagram of NodeState including associated network
layers is sketched in the appendix in fig. D.1.

46

3.7. Synchronization

3.7. Synchronization

For reasons of protocol implementation and hardware restrictions, it is recom-
mended to synchronize the network time and time-clock speed periodically.
For the same reason minimal measuring inaccuracy is to be expected when
acquiring timings of TimePackage delays. This inaccuracy is expected to
be non-skewed normal distributed and fit the normal distribution model
N (µ, σ).

The synchronization mechanism introduced in section 2.2.5 gains accuracy
when TimePackages are transmitted multiple times. Having access to various
measurements provides a base for several averaging methods. Thus we have
implemented and evaluated the following approaches: Raw Observation Value
(ROV), Simple Moving Average (SMAV), Weighted Moving Average (WMA)
and Moving Least Squares (MLS). The aim is to calculate an accurate reference
time span (X) which is necessary for time synchronization and clock skew
compensation.

Basically the averaging extension requires just a simple protocol modification
which bypasses observed dpdu to a lightweight First In First Out (FIFO) queue.
According to the configuration, the queue delivers its data to the averaging
algorithm on each insertion. The compile time configuration allows only
one algorithm to be chosen. Concatenation of multiple algorithms is not
supported. This means whenever a TimePackage is interpreted the data is
bypassed throughout the FIFO to the averaging algorithm. The final outcome
is then considered by the synchronization implementation that updates the
timing dependencies, as stated in equation (2.17) and equation (2.18).

The queue has a very lightweight implementation. It is iterable only when
full. Thus it is necessary to pre-fill it with default expectation values which
reflect the current time clock speed. Otherwise the synchronization process is
slightly delayed.

On cyclic network synchronization, the values buffered in the FIFO repre-
sent a moving window of measured observations. Besides smoothing, this
also provides the possibility to perform deeper data analysis such as trend,
distribution, distribution skewness, median et cetera.

47

3. Implementation

Additionally to the update methods, an outlier rejection feature can be com-
bined with the some methods. The rejection filter can be activated to skip
outliers before the mean is calculated. It does not affect the values captured
and stored to the buffer. As outlier rejection strategy two options are pro-
vided: a normal distribution (N) standard deviation (σ) based rejection, and
an alternative implementation that constantly counts rejected and accepted
values. With these counters it adjusts an acceptance window around the
mean to fulfill a defined rejection percentage. The outlier rejection has been
implemented due to the assumption that the buffer may not suffice to capture
a statistically representative amount of observations.

3.7.1. Raw Observation Value

The ROV is naive method which immediately updates the newly retrieved
clock speed arguments. This method is used as baseline (equation (3.5)).

X = x0 (3.5)
with

x0 ... last observed value

3.7.2. Simple Moving Average

The SMAV approach takes each buffered value, considering eventually acti-
vated outlier rejection, and calculates the arithmetic mean (equation (3.6)).

X =
1
n

n−1

∑
i=0

xi (3.6)

with
xi ... bu f f ered observed values
n ... number bu f f ered values

48

3.7. Synchronization

3.7.3. Weighted Moving Average

A very simple implementation of the WMA algorithm with one buffered
value. The weighted average of both, the current and newly observed value,
represent the new current value (equation (3.7)) where X represents the
history of previous values and x0 is a new update.

X = p · Xold + (1− p) · x0 (3.7)
with

x0 ... last observed value
p ... weight o f smoothed observations

1− p ... weight o f newly observed value

3.7.4. Moving Least Squares

The method is inspired by Fine-Grained Network Time Synchronization
using Reference Broadcasts, [24] where observed broadcast PDUs are used
to synchronize a network time. The MLS method applies a least squares
linear regression on the buffered values to obtain an averaged value. It also
considers outlier rejection if configured. The regression fits a line through
the given values trying to minimize the squared error S(β1, β2) between the
value and the fitted line. As values we use the timing observation made at
each TimePackage (yn) and the position in queue (xn).

S(β1, β2) =
n−1

∑
i=0

(f (β1, β2, xi)− yi)
2 (3.8)

with
f (β1, β2, xn) = β1 + β2 · xn

β1 = X
β2 ... gradient o f f (β1, β2, xn)

xi ... bu f f ered observed values
yi ... position o f xi in bu f f er

49

3. Implementation

With MLS we have a tool that provides more than an averaged argument X.
Since it results in β1 and β2 of the linear function f (β1, β2, xn) one could infer
a trend out of β2 which describes the slope.

3.8. Optimization

Optimization can be tuned by several parameters but is always a speed-size
trade-off. For speed optimization one may want to inline as many functions as
possible as long the program fits onto the MCU’s flash. In case of debugging
it is advantageous if all function calls are visible to the debugger as with a
complete call trace, errors are easier to find. Despite of an exhaustive usage of
the inline keyword at early stage of development, we face the problem of too
less flash memory. Since the maximum program size is limited to the MCU’s
16kB flash size, we are forced to make use of inline in very rare cases.

The most performant effects towards speed and size we observed with the
arguments listed in table 3.1.

3.9. Commands

The commands carried by PDUs are expressed by the CMD field. A detailed
listing of CMD and payload values is presented in table 3.2.

AckPackage Acknowledge package for flow control.
AckWithAddressPackage Acknowledge package for flow control during ad-

dressing phase.
AnnounceNetworkGeometryPackage Automatic response containing the net-

work geometry. It is replied onto the EnumerationPackage which has
the network discovery breadcrumb flag (B) set.

EnumerationPackage Package containing the receiver’s address assignment.
The B flag is set automatically in order to be forwarded to the right
most, bottom most node only. The tail node receiving this flag replies
an AnnounceNetworkGeometryPackage response.

50

3.9. Commands

Flag Description Scope

-std=gnu99 GNU dialect of ISO C99 global
-Os optimize for size global
-fpack-struct pack all structure members together with-

out holes
global

-funsigned-bitfields let bit-fields be unsigned global
-funsigned-char let the type char be unsigned global
-fdce perform dead code elimination global
-ffunction-sections place each function item into its own sec-

tion
global

-fdata-sections place each function item into its own sec-
tion

global

-fshort-enums allocate to an enum type only as many
bytes as it needs

release

-gstabs produce debugging information debug

Table 3.1.: Applied options for avr-gcc of the GNU Compiler Collection (GCC) for simulation
and release compilation

51

3. Implementation

ExtendedHeaderPackage This CMD is reserved. It allows protocol extension
if further CMDs are necessary due to the fact that the 4 bit width CMD
is exhausted.

HeaderPackage Package transporting header flags to the neighbor. It is not
relayed at all. A HeaderPackage is necessary for updating the BCT flag
of all network nodes.

HeatWiresPackage The actuation command contains address, time and du-
ration for scheduling an actuation. The package is routed to the corre-
sponding ROW and COL. The command is executed in the next time
interval matching tstart and d. The L as well the R indicate the affected
actuators.

HeatWiresRangePackage Similar to HeatWiresPackage except the address-
ing mode. The address is expressed as a rectangular range by the top
left and lower right corner as ROW1, COL1 and ROW2, COL2.

HeatWiresModePackage Package for tuning the actuation power. The heat-
ing mode (M) can be set to maximum, strong, medium and weak as
listed in table 3.3. The values correspond 100%, 75%, 50% and 25% PWM
duty cycle. The default is 50%. The corresponding PWM frequency can
be calculated as stated in equation (3.9).

factuator =
fcpu

(2 ·UINT8_MAX · prescaler)
(3.9)

with
prescaler = 64

ResetPackage Package initiating an immediate node reset.
RelayHeaderPackage Header which is relayed to east port and south port

subsequently. A RelayHeaderPackage is necessary for updating the BCT
flag of all network nodes.

SetNetworkGeometryPackage Package stating new network geometry. It is
relayed to the east port and east port. Nodes outside the new geometry
switch to sleep mode. The new geometry network rows (ROWS) and
network columns (COLS) must be within the bounds as reported by
AnnounceNetworkGeometryPackage.

SyncNetworkTimeHeaderPackage This package is issued only by the mas-
ter device to the origin node. The purpose is to trigger network time
synchronization.

52

3.10. Configuration

TimePackage The time synchronization PDU contains the fields ttx, dsep_remote,
duntil_cc and the flags FU and EB. The arguments are necessary for the
receptionist to convert delays from the transmitter’s to the local time
computation, where ttx is the transmitter’s local time when the PDU
is constructed, dsep_remote is the current transmitter’s time unit counting
separation in cycles and duntil_cc is the number of clocks until the time is
incremented in cycles when the PDU is constructed. The FU indicates
the receiver to update the local time to ttx with respect of transmission
latency. The constant EB is used for PDU RX timing measuring. This
package is issued by the origin node.

3.10. Configuration

The source code structure allows tuning of many implementation parts which
makes the firmware highly configurable. The configuration folder contains
header files of each implementation part as shown in the appendix in fig. F.1
and fig. F.2. The provided parameters can be split in two parts, protocol and
hardware related. This section describes the protocol related configuration
only. For the hardware configuration, which mainly sets up the wiring and
internal MCU configuration registers the source code must be looked up. A
complete listing of configurable parameters as well the MCU pinout are listed
in the appendix from table F.1 and table F.3.

Actuation.h The actuation parameters define the PWM duty cycle of the
actuator SMA wires. The levels weak, medium and strong are ad-
justable whereas the maximum level which corresponds to 100%
cannot be changed. The higher the value the higher the duty cycle
(UINT8_MAX ∧

= 100%, 0 ∧= 0%). The PWM mode is phase correct [16,
pp. 81] with TCNT prescaler 64 and can not be changed.

Evaluation.h For obtaining reproducible experimental results, experiments
have been implemented as tasks and registered to the scheduler. This
file contains arguments relevant to evaluation only.

communication/[Communication.h, ManchesterDecoding.h] The frequen-
cy is formulated in equation (3.9). The clock adjustment for the
Manchester coding (encoding and decoding) can be tuned with this

53

3. Implementation

Command CMD Parameters Figure

HeaderPackage 0x01 HDR, CMD fig. B.7
RelayHeaderPackage 0x03 HDR, CMD fig. B.8
ResetPackage 0x04 HDR, CMD fig. B.9
AckPackage 0x05 HDR, CMD fig. B.10

AckWithAddress-
Package

0x06 HDR, CMD,
ROW, COL

fig. B.11

AnnounceNetwork-
GeometryPackage

0x07 HDR, CMD,
ROWS, COLS

fig. B.12

SetNetworkGeometry-
Package

0x08 HDR, CMD,
ROW, COL

fig. B.13

EnumerationPackage 0x09 HDR, CMD,
ROW, COL, B

fig. B.14

TimePackage 0x10 HDR, CMD, ttx,
dsep_remote,
duntil_cc, FU, EB

fig. B.15

HeatWiresPackage 0x11 HDR, CMD,
ROW, COL,
tstart, d, L, R

fig. B.16

HeatWiresRange-
Package

0x11 HDR, CMD,
ROW1, ROW2,
COL1, COL2,
tstart, d, L, R

fig. B.17

HeatWiresMode-
Package

0x12 HDR, CMD, M fig. B.18

ExtendedHeaderPack-
age (reserved)

0x15 HDR, CMD fig. B.19

SyncNetworkTime-
HeaderPackage

0x02 HDR, CMD, ttx fig. B.20

Table 3.2.: Command id (CMD) listing and corresponding parameters

54

3.10. Configuration

M Duty Cycle [%] Frequency [Hz] Power

0x00 100% 0 maximum
0x01 75% ≈ 244.1 strong
0x02 50% ≈ 244.1 medium
0x03 25% ≈ 244.1 weak

Table 3.3.: Heating mode heating mode (M) listing, MCU clock frequency (fcpu)= 8MHz,
actuator frequency (factuator) is formulated in equation (3.9)

parameters. The values are based on the underlying TCNT and its setup.
For transmission this means the clock cycle duration.
For the reception, the separation of subsequent signal edges must be
classified into three groups: short separation (line coding half bit delay),
long separation (line coding clock delay) and timeout. The classification
is needed for decoding the Manchester coding. The default settings
adjust the TX/RX clock period to 2 · 1024 MCU clocks, thus the fxmission=
3906.25Hz. Separations ≤ dcode · 0.75 are classified as short, separations
≤ dcode · 1.25 as long and separations > dcode · 1.25 as timeout.

CommunicationProtocol.h The communication protocol settings define flow
control timeout and retransmission counters. The flow control counters
are implemented as a process() loop counter which are decremented
until zero accordingly. On counter = 0 a timeout is detected.

Discovery.h, Particle.h The discovery phase’s pulse generation and mini-
mum received pulses can be tuned in this file. If more pulses than the
defined discovery pulse counter are registered, the corresponding ports
are marked as connected. If a node is found to be connected within
minimum/maximum neighbors discovery pulse loops the discovery
phase switches to pulsing only (turns RX off). If the maximum neigh-
bors pulsing loops is reached the discovery is finished. The counter
compare value parameter can be tuned to change the PWM frequency.
The PWM is in clear timer on compare match mode (CTC) [16, pp. 78]
with TCNT prescaler 8 and cannot be changed. The discovery signal
frequency (fdiscovery) can be calculated as in equation (3.10). Different
process() loop separation delay can be tuned for the phase until a node’s
connection is determined and the phase until the maximum pulses (post

55

3. Implementation

discovery pulsing) are reached.

fdiscovery ≈
fcpu

8 · 0x80 · 2
≈ 3906.25Hz (3.10)

IoPins.h, Leds.h, Periphery.h This files are meant for non-vital hardware
extensions that do not affect the protocol such as LEDs or test points
(TPs). The frequency of LED signals such as heartbeat and many more
can be tuned in this files.

interrupts/* The settings defined in this folder are mostly related to the
pinout and MCU configuration register. The hardware configuration is
not covered in this document.

Scheduler.h The scheduler implementation requires an array of tasks. The
static array size and task identifiers are defined in this file.

Stdout.h The function print f (...) redirects the output to UART1. The format
is 8 data bits, no parity bit and 1 stop bit (8N1). The configuration allows
only setting the baud rate.

synchronization/* The protocol implementation bears many strategies for
processing measured reference time spans which directly affects syn-
chronization and clock skew compensation. Which strategy is applied
and how it is tuned can be configured in this folder. A detailed list of
arguments is found in the appendix.

Time.h For local time tracking the cyclical ISR separation is adjusted in
this file. The detailed reasoning for the chosen value can be read in
section 2.2.5.

3.11. Simulation

To reduce the time spending on development, minimize the risk of design
errors, enhance the code quality and especially for analysis reasons we apply
a simulation framework. The simulation, providing complete insight into the
MCU’s, is necessary for a highly diagnostic evaluation, which otherwise is
not feasible just on hardware. Another reason for simulation is the aim for
holistic simulation of Shape-Shifting Displays. Different future simulations,
i.e. forces, mechanical stress, shape shift planning etc., can be adopted to

56

3.11. Simulation

use the output of a network simulation. In general concatenating multiple
simulation frameworks is possible by using the simulation output as input
for the next simulation framework. With such a concatenation an entire
simulation, beginning with network communication layer, is feasible.

For simulation a tool that is capable of simulating a whole network of nodes
is needed. It should provide the possibility of monitoring, logging and syn-
chronous execution of node’s firmware. From the evaluated frameworks the
top two simulators are SimulAVR and Avrora1. The benefit of SimulAVR
is the debugging capability in combination with GDB debugger and DDD
graphical user interface. For a network simulation SimulAVR cannot be used
out of the box. It does also not provide any MCU, such as the ATtiny we
need. Instead Avrora provides many features for instrumentation out of the
box. The Avrora simulator covers all our listed needs and is easily extensible.
The Avrora simulation framework is excellent for scale-able sensor network
simulation. Unfortunately, Avrora cannot be used in combination with GDB
when simulating networks, but this circumstance can be overcome with the
features the framework provides. Although the latest Avrora release is older
than SimulAVR’s we have opted to use the Avrora simulation framework.

3.11.1. Avrora Simulation Framework

The Avrora framework is a non-intrusive simulation framework [25] of the
UCLA Compilers Group2 written in Java for experimentation, profiling and
analysis. It allows a target code to be written without the need of inserting
extra code for instrumentation. In other words the compiled code to be run
on a physical MCU can be used directly for simulation. The fundamental
instrumentation approach is based on probes, watches and events. Simulation
mechanisms such as monitoring are built on top of this instrumentation points.
This allows the framework to be very flexible with respect to the provided
features, since they can be easily extended. The simulation output is very
detailed which makes it possible to reuse the data in many other tools such as
automated testing framework, network visualization or even in future work
such as simulating physical forces, friction et cetera. The produced data is a

1http://compilers.cs.ucla.edu/avrora
2http://compilers.cs.ucla.edu

57

http://compilers.cs.ucla.edu/avrora
http://compilers.cs.ucla.edu

3. Implementation

very promising base for future work, as long the work flow allows to simulate
the whole process starting from the original firmware.

Synchronization

The framework simulates each node in a separate thread. This introduces
the need of a special synchronization mechanism that ensures the nodes
having the same progress. This is vital for networks, especially because
communication relies on timing. Avrora considers two timing strategies [26].

Synchronization Intervals Each node’s execution is divided into intervals.
Each node runs until the end of its interval and waits until all other
nodes reach the same point of simulation, the interval end. For a cycle-
by-cycle synchronization the interval length corresponds to 1.

Wait for neighbors This approach uses a sliding window strategy which
assures all nodes are within a specified time interval. If a node’s progress
is beyond the specified window it is blocked until all nodes are again
within the window interval.

The Avrora framework set up for protocol simulation synchronizes nodes
in intervals of 4 MCU cycles. Good experimental values are within [2, 32].
This values are be justified with the approximate amount of instructions the
simulation is allowed to drift. In this application the unwanted introduced
jitter can be used positively to test the protocol robustness. A limitation of
the framework is a missing clock drift model. The simulation framework’s
most important benefit is the possibility to abstract not only the MCU but
also whole printed board circuits (PCBs). With connected nodes there is no
need for synthetic signal generation. Otherwise for simulation and testing the
MCU must be fed with manually generated samples which is to be avoided.
In total this means a fully connected network of communicating nodes can be
simulated with only one firmware and without externally applied signals.

Avrora Platform Extension

To simulate a network of nodes we implemented a particle platform. It ab-
stracts the particle hardware concept (see appendix section G) which includes

58

3.11. Simulation

Fig. 3.6.: Avrora’s software structure; platforms connected by wires to allow inter-platform
communication

59

3. Implementation

the physical layer as illustrated in fig. 2.4 and some LEDs. A MOSFET ab-
straction is not provided but could be easily implemented and adopted to
the framework. The particle platform is implemented similar to the physical
PCB’s schematic diagram as shown in section G. For networking it provides
two wires (TX/RX) per port (north port, east port and south port) which
are connected respectively by a network builder before the simulation starts.
The network builder is able to construct a (rows× cols) network with nodes
having the same firmware and optionally appending one extra node to the net-
work’s origin node as master device having a different firmware as illustrated
in fig. 2.1. With this system communication signals generated by a specific
MCU are propagated as follows: MCU TX pin→ wire→ MOSFET→ wire
connecting platforms→ wire→ MOSFET→ MCU RX pin. An illustration of
Avrora’s internal software structure shows the inter-platform communication
in fig. 3.6.

Avrora Monitor Extension

The simulation framework provides many analysis monitors for example
function calls, interrupts, memory profiling and much more. For our specific
needs we implemented a monitor that is exactly tailored to the node’s platform
– the particle monitor. Among others it monitors communication wires and the
MCU’s internal SRAM and translates events into readable logs. For example
the default memory monitor reports in line 5 a write of 0x60 onto the SRAM
address 0x6a of platform 0 as SRAM[6a] ← (60) whereas the extended
particle monitor reports SRAM[Particle. discoveryPulseCounters. loopCount]
← (96) as illustrated in fig. 3.7.

The particle monitor configurable to interpret changes of any SRAM address
as one or multi byte width data and present it as signed/unsigned, hex-
adecimal, decimal, binary, character, float or double. On multi byte data the
monitor watches any byte change and reinterprets the new value with respect
to the current write offset. The platform number to address mapping and vice

60

3.11. Simulation

Fig. 3.7.: Avrora simulation trace of several monitors

versa are formulated in equation (3.11) and equation (3.12).

given (M× N) network | id ∈N, m, n ∈N+, m ≤ M, n ≤ N
idToAddress(id) 7→ (m, n)

addressToId(m, n) 7→ id

idToAddress(id) = ((id mod N) + 1),
⌊

id
N

⌋
+ 1) (3.11)

addressToId(m, n) = (n− 1) ·M + m (3.12)

The example configuration in fig. 3.8 defines the loopCount member address
and data type and also the MCU port A pins’ human readable names. With
this feature we can watch the node’s internal global state. This approach is
limited to global variables only with a constant address, since local variables’
addresses must be found out dynamically at simulation run time.

The complete configuration file length is about 2500 lines of code, which
makes it very inconvenient to maintain. If a small change is done in source,
for instance one member is removed, the whole file must be reedited. For that
reason an auto generator was implemented in Python that creates a JavaScript
Object Notation (JSON) configuration file out of the C source code. For more
details about the generator refer to the development repository3. With the

3https://github.com/ProgrammableMatter/cstruct-to-json

61

https://github.com/ProgrammableMatter/cstruct-to-json

3. Implementation

" P a r t i c l e . discoveryPulseCounters " : [
{

" property " : " loopCount " ,
" type " : " unsigned " ,
" address " : " g l o b a l S t a t e B a s e +10 "

} ,
] ,
"A. out " : [

{
" property " : " (EAST_TX | EAST_SW | TP3 | PA4 | \

SOUTH_TX | SOUTH_SW | TP2 | ERROR) " ,
" type " : " b i t " ,
" address " : 59

} ,
] ,

Fig. 3.8.: Particle monitor’s JavaScript Object Notation (JSON) configuration file example
snippet

framework’s built-in monitors and especially the tailored particle monitor
there is no need for a debugger. The gathered uniform monitor dump is
easily parsed with simple regular expressions and used for automatic JUnit
testing.

Extensions

The particle related Avrora extensions4 are not meant to be added to the
simulation framework, but instead the framework to be added to the exten-
sion’s Java project. To register the extended parts (particle platform, particle
monitor and the ParticleSimulation class) the Avrora framework’s registration
methods have been slightly refined. The registration can be simply achieved
from outside the framework as illustrated in fig. 3.9. Hence other projects
implementing different platforms/extensions are not forced to touch the
simulation framework any more.

Due to the missing build manager the file structure has been modified slightly

4https://github.com/ProgrammableMatter/avrora-particle-platform

62

https://github.com/ProgrammableMatter/avrora-particle-platform

3.11. Simulation

public c l a s s Main {
public s t a t i c void main (S t r i n g [] args) {

Defaul t s . addPlatform
(" p a r t i c l e−platform " , P a r t i c l e P l a t f o r m . Factory . c l a s s) ;

Defaul t s . addSimulation
(" p a r t i c l e−s imulat ion " , P a r t i c l e S i m u l a t i o n . c l a s s) ;

Defaul t s . addMonitor
(" p a r t i c l e−monitor " , Par t i c l eP la t formMoni tor . c l a s s) ;

edu . ucla . cs . compilers . avrora . avrora . Main . main (args) ;
}

}

Fig. 3.9.: Avrora extension registration

and configured for Maven. The modified framework5 is available at the Open
Source Sonatype Repository Hosting (OSSRH)6 as Maven package. With
this modification the framework can be started on command line with the
additionally registered extensions. For unit testing purposes the registration
must be done similarly before a simulation starts.

3.11.2. Testing

During development the continuous testability is an important criterion and
has been always prioritized. The applied simulation framework produces
enough information for JUnit testing. This removes the need of breakpoint
debugging such as with GDB completely. It also speeds up the development
process and minimizes the time for finding implementation errors. The work
flow is very simple:

1. write JUnit test case
2. implement feature in firmware
3. run JUnit test which does automatically

a) start the simulation
b) capture the output
c) evaluate the output

5https://github.com/avrora-framework
6https://oss.sonatype.org/#nexus-search;quick~avrora-framework

63

https://github.com/avrora-framework
https://oss.sonatype.org/#nexus-search;quick~avrora-framework

3. Implementation

set- synchronization simulation inspection total CPU freq.

up interval [cycles] dur. [s] dur. [s] dur. [s] [MHz]

A 2 ≈ 238 ≈ 98 ≈ 336 8.0
B 4 ≈ 176 ≈ 91 ≈ 267 8.0
C 8 ≈ 136 ≈ 93 ≈ 229 8.0
D 12 ≈ 132 ≈ 98 ≈ 230 8.0
E 16 ≈ 128 ≈ 91 ≈ 219 8.0
F 20 ≈ 127 ≈ 94 ≈ 221 8.0
G 32 ≈ 123 ≈ 92 ≈ 215 8.0

Table 3.4.: Duration versus synchronization of a (6× 6) network simulation; simulation of
150ms with Microcontroller Unit (MCU) frequency fcpu = 8.0MHz using different
synchronization interval arguments

4. refine JUnit test case
5. refine the firmware and go to step 3 unless the test succeeds

Limitations are the simulated time and produced output. A (6× 6) network
simulation (36 nodes) can be quite exhaustive in terms of duration and
memory occupied by the log output. The evaluation of the 36 nodes’ output
slows down the testing process significantly. To improve this tests must be
parallelized and are run through even if assertions fail. Test case parallelizing
speeds the evaluation process up by a factor of 3. The implementation inspects
the log output for each test case in parallel using Java streams. The inspection
does not assert but saves the result for later assertion. The real JUnit tests just
evaluate the stored result after inspection to ensure that all results can be run
through.

As simulation synchronization interval multiple setups have been evaluated.
Synchronization intervals of 4 up to 8 MCU clocks (setup B and C in table 3.4)
are sufficient accurate for the line de-/coding. For example a 0.15 second
simulation of 36 nodes takes about 176 seconds followed by approximately 94
seconds for log inspection (total 4.5 minutes) and produces about 410MB logs
(setup B in table 3.4). The JUnit tests are found in the default Maven folder
src/test/java of the particle platform implementation4.

64

3.11. Simulation

3.11.3. Visualization

Because simulation output can be very exhaustive, having tens up to hun-
dreds of megabytes, it is very time consuming to follow what is happening.
Therefore a network visualization tool7 has been implemented in Python.
The tool visualizes wire signals, ISR actions or changes of SRAM registers
on a time line. The visualization takes a user defined source (i.e. north port,
ISR, TX wires or an arbitrary register address) and the simulation output as
input. It filters all events of the specified sources from the input and renders
the visualization. On the visualization chart each event is marked with a
clickable bullet. On mouse click a label showing the event’s value appears
and the current time value is copied to clipboard. The visualization is straight
forward for integer values such as digital wire signals, uint8_t or uint16_t.
In case of char and enum a user defined mapping can be applied to translate
this events to integer. The mapping also allows to define a human readable
string that is shown on mouse click at the respective position in chart. If no
mapping is defined the tool toggles events between 0 and 1. The visualization
tool provides more details in the status bar as illustrated in fig. 3.10. Besides
showing a label on mouse click, the tool also indicates the

event time t in [ms] when it occurred, the
numeric value y, the
current mouse position’s time t1 in [ms], the time
difference between both positions in [ms] and the amount of
MCU cycles passed between the positions.

The chart in fig. 3.10 shows two time lines marked as [0]tx-east and [1]tx-north
which represent the transmission wire signals of node 0 and 1. The time lines
represent the discovery phase followed by the addressing phase and at the
end the time synchronization phase. It labels the first PDU transition’s event
as "low" that occurred at t ≈ 10.9[ms], shows the difference until the mouse
pointer which in this case is di f f . ≈ 3.1[ms]. The time span corresponds to
about 25k MCU cycles. In other words the PDU TX started at millisecond
10.9 past simulation start and took 3.1 milliseconds. The presented chart is a
very basic visualization example. A more detailed visualization of an (3× 3)

7https://github.com/ProgrammableMatter/network-visualization

65

https://github.com/ProgrammableMatter/network-visualization

3. Implementation

low

[0] tx-east

[1] tx-north

Fig. 3.10.: Simulated (1× 2) network visualization; communication signals of two neighbored
particles showing a highlighted label and detailed information at the bottom of the
chart

network showing all phases until the time synchronization can be found in
the appendix in fig. H.1

3.11.4. Network Use Case

The described network structure in fig. 2.1 of section 2 introduces a master
device coordinating network activities. This master device is not required
during the initialization phase and must not generate discovery signals,
otherwise the network initialization will definitely fail. It seems natural to
use the same but slightly enhanced protocol firmware and a particle node
hardware as master device. This is possible as long the use case is realizable
with the available MCU resources. The only restriction is the limited set of
PDUs allowed to be issued to the origin node (1, 1) as listed in table 3.5. The
origin node does not filter PDUs, thus any PDU will be captured, interpreted
and executed which, for development and testing, may be helpful.

A simple use case: boot the network, wait until enumeration phase has
finished, issue several SyncNetworkTimeHeaderPackages followed by Heat-
WiresRangePackages or HeatWiresRangePackages.

3.11.5. Build Environment

To speed up the deployment process, provide code analysis tools we config-
ured a tool chain as illustrated in fig. 3.11 using CMake, a cross-platform

66

3.11. Simulation

PDU Purpose

HeatWiresPackage actuation command
HeatWiresRangePackage actuation command
HeatWiresModePackage actuation command setup
ResetPackage reboot network
RelayHeaderPackage routed broadcast package to enable

BCT
SyncNetworkTimeHeaderPackage tell origin node to resynchronize
ResetPackage reboot network
SetNetworkGeometryPackage redefine a new network geometry

Table 3.5.: Protocol Data Units (PDUs) for master device to origin node communication

Fig. 3.11.: Development tool chain; gray highlighted items reflect developed parts of our work

67

3. Implementation

build tool. To sustain a test driven development we decided to build multiple
executables for each test case. Thus any project is set up to produce exactly
one executable which, in case of test-able firmware, is configured to be in a
predefined state according to the test-case needs.

The implementation’s core parts are chosen not to be compiled as libraries
since each project’s target MCU can be configured separately. Thus the core
implementation used by a certain project is linked the to the project folder.
This reduces the need to compile each library for any target MCU used by
projects.

A project allows to configure the following parts:

Programmer Configuration of an Avrdude supported programmer to be
used when deploying to the real MCU. This part also adds custom rules
which stripes the corresponding sections (.text, .data, .bss, .fuses, et
cetera) from the executable to read/write/verify the MCU’s flash and
fuses.

MCU Allows configuration of the Avr-gcc supported MCUs (-mmcu flag).
Compiler Configuration of many avr-gcc flags and optimization settings in

detail.
Custom Make Rules Different predefined Make rules may be extended, i.e.

Avrora related rules can be added by linking a project folder to the rule
folder.

Debugger Simple RS-232 debugging configuration such as baud rate and
device.

Considering each project provides its own set of Make rules, they are prefixed
with the respective "ProjectName_". The global Make rules "all", "clean" and
"help" are not prefixed. In the overview listing of table 3.6 we skip the prefix
for simplicity. The Make rules are not designed to support JUnit testing, but
rather allow starting a simulation process for dynamic analysis.

The highlighted parts in fig. 3.11 correspond to the thesis’s practical develop-
ment. For more details on how the project directory is structured one may
consider consulting the source code repository8.

8https://github.com/ProgrammableMatter/particle-firmware

68

https://github.com/ProgrammableMatter/particle-firmware

3.11. Simulation

Rule Purpose

all build all executables
clean delete object files
help lists all make rules

.elf compile the executable
flash writes executable to MCU
erase erases MCU’s flash
verify compare executable with MCU flash
fuse write all fuses
rfuse read all fuses
rhfuse read high fuse
rlfuse read low fuse
refuse read extended fuse

avrora-simulate start simulation
avrora-elf-dump print elf dump
avrora-inter-procedural-
side-effect-analysis

invokes the inter-procedural side-effect analysis
tool

avrora-analyze-stack stack analysis tool to determine worst-case stack
depth

avrora-cfg shows the control flow graph
avr-cycles shows the object dump decorated with MCU

cycles per instruction

Table 3.6.: Make rules listing of non-prefixed rules (first block) and project dependent rules
(subsequent blocks)

69

4. Experimental Results

The evaluation focuses on memory consumption, communication timings,
time synchronization accuracy and other unexpected findings observed during
the evaluation process. By combining measured data and protocol behavior
we prove the protocol scalability. The evaluation will pass through in a bottom-
up approach, beginning with basics and finishing at the time synchronization
experiments. The following items will be discussed:

1. Manchester decoding memory consumption
2. timing evaluation

a) discovery phase
b) enumeration phase
c) general timing acquisition

3. experiments

a) clock skew compensation
b) time synchronization
c) actuation of actuators

The software development was largely sustained by the Avrora simulator,
thus measurements obtained by simulation are compared to measurements
of real hardware. This should prove the correlation of simulation and execu-
tion on real hardware. Unfortunately some parts are difficult to evaluate in
hardware or simulation, hence this comparison cannot be made of each and
any evaluation.

All simulated results are performed with the synchronization setup as stated
in table 3.4, setup C: platform thread synchronization each 8 MCU cycles,
MCU frequency fcpu= 8.0MHz. Hardware evaluations are performed on a
network having a geometry of (12× 1), supplied with a regulated voltage
VCC= 5.1V connected at origin node node (1, 1) (unless specified differ-
ently).

71

4. Experimental Results

PDU Len. Min. Max. Avg.

[bits] [µs] [µs] [µs]

AckPackage 8 277 294 285
AckWithAddressPackage 24 305 323 314
EnumerationPackage 25 295 309 302
TimePackage I 56 286 314 298
TimePackage II 56 294 331 308

Table 4.1.: Protocol Data Unit (PDU) length versus simulated decoder’s post-processing delay

4.1. Manchester Decoding Memory Consumption

The line code decoding requires buffering of received signals. Because of
the limited working memory, the implementation buffers just a fraction
(bu f f ering_ratio) of the total buffer needed to capture the largest possible
PDU. The evaluation proves that a buffering ratio of 20% as stated in equa-
tion (3.1) is sufficient.

4.1.1. Evaluation Based on Simulation

Contrary to our expectations the evaluation of the post-processing strategy
(which is discussed in section 2.2.1) shows no relevant decoding delay (illus-
trated in fig. 2.9) nor relevant increment of the decoder’s buffer consumption
for different PDU size (| PDU |). Table 4.1 shows a summary of measured
delays between received PDUs and the decoding process’ end. We observe
a rather constant average post-processing delay regardless of the | PDU |.
This is due to the Manchester coding and the varying baud rate, which is
dependent on the encoded data. The real data carried by these PDUs results
in rather mixed bits to be encoded (fig. 4.1). A lower baud rate leaves more
space in between reception ISRs for decoding, which results in a less buffer
consuming decoding.

For evaluating the decoder’s buffer worst-case consumption we compare a
typical TimePackage (section 3.9) against a prepared one. The TimePackage,

72

4.1. Manchester Decoding Memory Consumption

Fig. 4.1.: Simulated buffer size versus Protocol Data Unit (PDU) length of TimePackage I
decoding; average case

Fig. 4.2.: Simulated buffer size versus Protocol Data Unit (PDU) length of TimePackage II
decoding; worst case

having a PDU length of | PDU |= 7 byte, is a rather long PDU. In fig. 4.1
we present the average case decoder’s buffer consumption of the typical
TimePackage. The PDU contains mixed bits in the first 5 byte followed by two
bytes 0x5555, which in binary representation are alternating bits 0b101010....
This results in the coded data having a fluctuating baud rate for the first 5
byte but a lower and constant baud rate for the last 2 byte. Fig. 4.1 shows
the correlation between the described coding frequency and the buffer con-
sumption. In contrast, the prepared TimePackage II causes a linear increasing
buffer consumption as illustrated in fig. 4.2. This is due to the manually forced
higher baud rate for the bytes carrying the bits 0b000000.... In the worst-case
we observe the decoder buffer consumption increases by approximately 10/6
byte per PDU byte as formulated in equation (4.1).

bu f f er_size ≈ 2 · k· | PDU | (4.1)
with

k ≈ 10
6

73

4. Experimental Results

The buffer consumption evaluation shows that it is strongly dependent on
the data carried by the PDU, whereas assumptions based only on just the
PDU size (| PDU |) are weak. Furthermore we can state that the decoder’s
post-process delay (see table 4.1 TimePackage I and II) is proportional to the
buffer consumption (fig. 4.2). Since in the average case, as depicted in fig. 4.1,
has a rather constant and low buffer consumption, it explains the low post-
process delay of not prepared PDUs: AckPackage, AckWithAddressPackage,
EnumerationPackage and TimePackage I (see table 4.1).

4.1.2. Conclusion

Considering the worst case (fig. 4.1) we are able to conclude that a buffering
ratio of only bu f f ering_ratio= 20% is more than sufficient: equation (4.2).

bu f f ering_ratio = 20% (4.2)

4.2. Timing Evaluation

In the timing evaluation we investigate communication delays of the discovery
and addressing phase to prove the scalability of our protocol. In addition
we analyze which difficulty we face when the implementation measures the
length of reference time spans and the result of the time synchronization and
clock skew compensation.

4.2.1. Discovery

The discovery phase is the time period within each node listens to signals
generated by their neighbors, to detect their rough position in the network.
This position is necessary for the subsequent addressing process.

In general the discovery duration per node depends on two aspects: the
number of calls to process() and the ISR load. The limit of calls to process()
reflects the discovery timeout. On timeout the discovery phase is forced to
terminate. The duration of process() is influenced by the ISR load. To reduce

74

4.2. Timing Evaluation

the ISR load, the discovery pulse period is configured to be the same as the
default Manchester coding’s clock period, as earlier stated in equation (3.10).
We observe a longer process() delay at nodes having a higher connectivity
degree, except one special case: discovery of fully connected nodes has a
shorter delay. This is due to all neighbors are discovered before the discovery
safety timeout occurs and thus are not obligated to wait until the discovery
timeout. On a network level, the total discovery phase duration is the time
span from the first node entering the phase until the last node leaves the
discovery phase. As illustrated in fig. 4.3, the simulated (3 × 3) network
example shows a total discovery phase duration of 12ms. In contrast, the
hardware based evaluation shows a total duration of 13ms.

Evaluation Based on Simulation In the simulated (3× 3) network example
of fig. 4.3, we see a fully connected node (1, 2) (inter head) finishing
the discovery at first, followed by the least connected nodes (3, 1) (3, 2)
and (3, 3) (tail nodes). The longest duration can be observed at nodes
having two connections which are: (1, 1), (2, 1), (2, 2), (1, 3) and (2, 3)
(inter nodes). The discovery phase takes 12ms.

Evaluation Based on Hardware In our experiments we see varying boot up
phase delays among network nodes. This happens due to the falling VCC
of the power supply from the least to the most distant network node.
In the evaluated (3× 3) network example we see a VCC drop of about
100mV at node (3, 3) without evidence of ripple. Since the particles are
timed by their internal RC oscillator, a minor voltage drop of 50mV is
more than sufficient to slow down the clock and thus extend the boot up
delays relevantly. This affects the discovery phase’s start, which takes
place within an interval of 1ms as illustrated in fig. 4.4. The interval is
expected to be longer the higher the VCC voltage drop among particles.
Despite the asynchronous boot up, the shifted discovery start does not
cause any protocol errors when executed on hardware.

Conclusion

The evaluation shows that the internal clock’s RC circuit is very sensitive to
the supplied VCC. Except for the asynchronous boot up we see no relevant
discrepancy between simulation and hardware evaluation. Although the

75

4. Experimental Results

Fig. 4.3.: Simulated (3 × 3) discovery
phase; discovery duration differs
according to node’s connectivity

Fig. 4.4.: Measured (3 × 3) discovery
phase; supply voltage (VCC)
fluctuation causes discovery
shifts

76

4.2. Timing Evaluation

simulation is able to simulate a random start, we did not use this feature
extensively to reduce the simulation time.

4.2.2. Addressing

In the addressing phase, addresses are assigned to all network nodes. The
phase is initiated by the top most, left most node (origin node) and thus
the enumeration process is based on the discovery phase’s result. The origin
node switches to enumeration mode (enumerator) assigns the address to
its neighbors and leaves this mode. Subsequently, the neighbors switch to
enumeration mode, assign addresses to their neighbors and so forth. This
address propagation scheme does parallelize addressing of nodes. Therefore
the total addressing duration depends on the longest path, which again is
dependent on the network geometry. The addressing phase is finished by
the AnnounceNetworkGeometryPackage PDU. This package is issued by
the bottom most, right most node of the network to inform the origin node
of its position. The origin node considers this information as the network
geometry.

Addressing The addressing follows a flow control as illustrated in fig. 2.25 in
section 2.2.5. The enumerator sends a new address, the receiver acknowledges
the address value and waits for ACK from the enumerator. If the enumerator
receives the correct address, it means that the transmission had no errors.
The enumerator can either acknowledge the transaction, or fall back and
retransmit the enumeration message. This flow control is necessary to avoid
misinterpreted discovery signals as messages. Such cases may easily occur due
to VCC voltage fluctuation as described in section 4.2.1. Until the enumerator
does not receive an ACK the addressing transaction is not finished successfully.
The transaction can be interrupted by timeout on both nodes.

Network Geometry Feedback The network geometry disclosure is initiated
by bottom most, right most node which sends its local address back to the
origin node, immediately after the enumeration transaction is finished. Fig. 4.5
shows node (2, 3) acknowledging the enumeration transaction. Node (3, 3)

77

4. Experimental Results

Fig. 4.5.: Simulated (3× 3) network geometry disclosure of node (3, 3) showing Announce-
NetworkGeometryPackage’s PDU transmission duration (dpdu)

responds with an AnnounceNetworkGeometryPackage which is routed to the
origin node.

Evaluation Based on Simulation The simulation output of a (3× 1) network,
illustrated in fig. 4.6, shows a simple enumeration example. After all the
simulation suffers of minimal jitter, thus presented PDU transmission
delays are no absolute values. The measurements are averaged values of
multiple simulations. The time delay between a PDU is received and the
corresponding response (PDUsep) depends on the line code decoding
which is partially post-processed. The post-processing duration again
depends on the size of remaining data to be processed at the timestamp
when the currently receiving PDU is completely received. In the example
illustrated in fig. 4.6, the PDUs EnumerationPackage, AckWithAddress-
Package and AckPackage having a size of 25, 24 and 8 bits, the size
differs relevantly but the introduced PDUsep delay having about 0.6ms
does not. This confirms the explanation in section 4.1.1.

Evaluation Based on Hardware The hardware evaluation of the same (3× 1)
network geometry at a specific MCU shows slightly different results. The
transmission delay of EnumerationPackage, AckWithAddressPackage,
AckPackage differ for instance by ±3%. If we consider the current
transmitting MCU’s clock frequency deviation at a base frequency of

78

4.2. Timing Evaluation

Fig. 4.6.: Simulated (3× 1) network enumeration of node (2, 1) showing PDU transmission
duration (dpdu) of several Protocol Data Units (PDUs)

fcpu= 8.0MHz, we obtain the same percentage of deviance. Thus we
can state that both evaluations, hardware and simulated, correlate well.
Apart from the package timings we, were forced to increase the discovery
phase to 150% of the duration used in simulation, as well as the post
discovery separation between discovery and the subsequent PDU (PDsep)
up to 1.5ms. This was to overcome the asynchronous boot up delay
introduced by the VCC voltage difference among nodes. Also alerting
mechanisms, such as parity error and buffer overflow, have to be turned
off temporarily until the enumeration phase starts. Short discovery
timings are necessary in simulation where simulated real time is very
costly. Instead in large real hardware networks it is expected to be
necessary to adjust both parameters.

4.2.3. Conclusion

Despite the need of specific tuning of the hardware based evaluation, com-
paring the simulation and hardware based protocol timings we see a strong
correlation in between both. Due to the applied parallelized addressing strat-
egy, the addressing duration can be notated as equation (4.3). With this linear

79

4. Experimental Results

Fig. 4.7.: MCU clock frequency (fcpu) jitter of one falling edge at approximately 40µs after
trigger

notation T (n) = O(ROWS + COLS) we prove the addressing scalability.

T (n) = O(c′ + c′′ · (ROWS + COLS) + c′′′ · (ROWS + COLS))
= O(ROWS + COLS) (4.3)

with
c′ ... total discovery delay
c′′ ... per node address transaction delay
c′′′ ... per node network geometry transmission delay

ROWS ... total network rows
COLS ... total network columns

4.2.4. General Timing Acquisition

In this section we investigate distribution of measurements as taken by the
protocol implementation as well the cumulative effect among nodes.

As stated in section 3.7 we expect measured timings to have a minimal
measuring error. However the distribution is assumed to be a non-skewed
normal distribution (N) having a specific variance around a mean (µ). To
prove this assumption we investigate two measurements in detail: the MCU’s
clock frequency (fcpu) jitter and the TimePackage transmission delay (dpdu).
The MCU’s clock frequency illustrated in fig. 4.7 shows a non-skewed normal

80

4.2. Timing Evaluation

Fig. 4.8.: TimePackage’s PDU transmission duration (dpdu) jitter of last falling edge distribution
N (µ = 7.88ms, σ = 1.28µs), triggered first falling Protocol Data Unit (PDU) edge

distribution having N (µ = 40.2167µs, σ = 10.08ns). The measurement is
taken at µ= 40.2167µs at a falling edge.

At protocol layer the PDU transmission duration of a TimePackage has been
measured. Fig. 4.8 shows the distribution of the last falling edge of the Time-
Package. The trigger is set at the first falling PDU edge, since we observe
falling edges to be steeper than riding. The total delay in between trigger and
highlighted edge is 63 · dcode which corresponds to 64512 cycles, or approxi-
mately 8ms. This jitter, again shows a non-skewed normal distribution (N)
having N (µ = 7.88ms, σ = 1.283µs).

Conclusion

With the above results we are able to prove that that the MCU’s clock jitter
propagates up to protocol layer measurements and that the jitter observed at
protocol layer still remains a non-skewed normal distribution. Furthermore,
having a normal distribution, the described averaging strategies Raw Ob-
servation Value (ROV), Simple Moving Average (SMAV), Weighted Moving
Average (WMA) and Moving Least Squares (MLS) suit our application.

81

4. Experimental Results

Delay Min. Max. Avg.

[µs] [µs] [µs]

east-south signal generation shift 0.249 0.250 0.250
BCTEdelay 5.875 7.875 6.969
BCTSdelay 6.126 8.126 7.219

Table 4.2.: Simulated introduced forwarding delay in broadcast mode (BCTdelay) evaluation
summary of (6× 6) network simulation, see also table I.1

4.2.5. Network Time Synchronization

The main goal of our work is network time synchronization which is vital for
synchronous actuation. The time synchronization process as described by the
protocol can be achieved in two ways: in broadcast or subsequent mode. In
this section we evaluate the strength and weaknesses of both methods and
conclude why one approach is chosen over the other.

Broadcast Mode

In this mode the first time-synchronization can be issued by the origin node
as soon the AnnounceNetworkGeometryPackage is received. In this state
the network must be in broadcast mode which means that any incoming
signal edge at each node’s north port (except of origin node) is forwarded
to the east port and south port before it is captured for decoding. Hence the
TimePackage is transmitted simultaneously to any node with an introduced
forwarding delay in broadcast mode (BCTdelay), see table 4.2.

Evaluation Based on Simulation In fig. 4.9 for simplicity the BCTdelay is as-
sumed to be constant. The reason for the TimePackages shift is the
node’s position in network and the data propagation. In fig. 4.9 the
origin node transmits to (1, 2), and (2, 1) simultaneously, these nodes
broadcast to their subsequent neighbors and so on. The detailed parts
the delay consists of are discussed in section 2.2.5.
If we investigate the measured BCTdelay values we can split them into
two distinct groups. This is due to a time shift of approximately 0.25µs

82

4.2. Timing Evaluation

Fig. 4.9.: Simulated (3× 3) network time synchronization in broadcast mode showing the
introduced forwarding delay in broadcast mode (BCTdelay) spread among nodes

83

4. Experimental Results

between the east port and south port signal generation. The east port for-
warding delay (BCTEdelay) and south port forwarding delay (BCTSdelay)
differ exactly by this time shift as listed in table 4.2.

Evaluation Based on Hardware An overall comparison of the introduced
BCTEdelay of a simulated network (7µs) to an optimized test imple-
mentation on a physical MCU (4.4178µs) proves that the values are still
reasonable. The difference we can explain due one extra function call
in the simulated implementation versus the optimized implementation
run on the real MCU. More details on the evaluated BCTdelay values are
listed in the appendix in table 4.2.
According to our observations we consider the broadcast mode syn-
chronization to be not well scaling. The reason for that is the not well
predict-able signal edge shift.

Signal Shift Any forwarded signal edge is shifted by a specific BCTdelay.
We observe an obvious jitter on signal forwarding. If forwarded
PDUs’ delays are distorted by each MCU’s specific BCTdelay plus
a normal distributed ISR jitter, the PDU length cannot be seen as
accurate time span reference any more.

Predictability The BCTdelay is not well predict-able. On each forwarding
it dependents on the current MCU’s fcpu. Even if the delay is very
short it should not be neglected in large networks.

Subsequent Mode

In this mode the synchronization is performed in between two subsequent
nodes only. The transaction is kept very simple and does not implement any
ARQ’s. The initiator sends a TimePackage without expecting any response.
The receiver considers the carried data and the PDU reception duration for
local clock skew, local time and phase synchronization.

To be more precise on time measurements we favor falling over rising edges
to achieve a bit more accuracy. The applied MOSFETs’ gate capacity is quite
high, which makes rising edges less steep and may lead to a slightly higher
inaccuracy of PCI timing measurements. The observed magnitude of the time
taken, since a high level is assigned to the line until it reaches VCC, is about
one MCU cycle at a base frequency of 8MHz: 1 · 1s

8MHz .

84

4.2. Timing Evaluation

With respect to the online Manchester coding implementation we observed
asymmetric delays when generating a clock or data signal. In other words
when the corresponding ISR calls the line code implementation to generate
the next signal it takes longer until the response is visible on the line if the
signal is a clock signal. Otherwise if the signal is a bit signal the response
delay is shorter. The total difference in between both is approximately 8
instructions.

Conclusion

Despite the broadcast method provides sufficient synchronization accuracy in
small networks, we aim on (i) relying on as less as possible adjust-able param-
eters built in the protocol and not to cope with overcomplicated calculations
and (ii) scalability. The subsequent mode, considering the first and last signal
edge of subsequently sent TimePackages as time reference, obtains a more
accurate result. Thus we favor synchronization using the subsequent over
the broadcast mode regardless of the network size. The time synchronization
propagation delay can be notated as equation (4.4).

T (n) = O(c′ · (ROWS + COLS))
= O(ROWS + COLS) (4.4)

with
c′ ... per node TimePackage transmission delay

ROWS ... total network rows
COLS ... total network columns

4.2.6. Clock Skew Compensation

The clock skew compensation is an essential part to sustain the time syn-
chronization accuracy over long periods. Without clock skew compensation,
once the time is synchronized among particles, it will drift over time. In this
section we will discuss implementation modifications which, during hardware
based evaluation, turned out to be necessary such as: (i) reference time span

85

4. Experimental Results

measurement and (ii) averaging algorithms. The clock skew compensation
evaluation is based on hardware only.

For compensating the local MCU frequency to comply with the north port
neighbor’s time counting speed, a node needs to adopt its frequency pa-
rameters. The parameters are deduced from a time span reference which is
obtained from any TimePackage. Once the total TimePackage PDU length
(equation (2.19)) is known, a relative time span reference is used to calcu-
late several parameters to compensate the local clock skew. After the new
frequency parameters are updated locally, to expose this new calculations,
the communication baud rate (dcode) is updated accordingly. Thus the next
TimePackage, passed to the subsequent south port neighbor, propagates the
new timing.

When measuring the reference time span of the TimePackage we observe the
necessity to not start measuring at a Manchester coding clock edge. This is
due to the online implementation of the Manchester coding algorithm, which
introduces two different delays before generating an edge: delay of Manchester
coding clock edge and delay of bit-edge. Unlike stated in the protocol design
and with respect to the observations so far we update equation (2.19) and
simplify it to equation (4.5). The update considers measuring the delay in
between the second and last but one edge of the TimePackage PDU. In other
words the delay from the first bit-edge to the last bit-edge.

dcode =
dpdu

63
(4.5)

with
63 ... number o f measured dcode intervals in TimePackage

In addition the evaluation reveals a very sensitive reaction of the MCU clock
frequency (fcpu) to the applied power supply voltage (VCC). A VCC ripple
of ±100mV destabilizes the MCU clock frequency too much. All together
this means, a fluctuation of the origin node’s fcpu affects the whole network
synchronization. For this reason, we evaluate several averaging algorithms, as
stated in section 3.7.

In the following figures we compare averaging algorithms by means of a
(12× 1) network. The measurements are always taken at nodes (1, 1) (first
node), (4, 1), (7, 1) and (12, 1) (last node), unless specified differently. The

86

4.2. Timing Evaluation

Fig. 4.10.: Clock skew compensation without averaging algorithm; beige node (1, 1), green
node (4, 1), blue node (7, 1), red node (12, 1), network setup network configuration
setup 1 (net1)

measured output represents the local time counting frequency as time period
(y-axis) at the respective node over time (x-axis).

Raw Observation Value

With this method, the baseline, the clock skew is adjusted immediately after
the first TimePackage is received, as illustrated in fig. 4.10. To compensate the
whole network’s clock skew only one TimePackage needs to be propagated
throughout the network. Hence there is no averaging we observe a jittering
after each interpreted TimePackage. The disadvantage of this method is the
sensitivity to outliers. The result always dependent on the lastly received
TimePackage. Another disadvantage of the abrupt adjustment is a possible
communication disruption. If the correction is so big, the new baud rate may
be out of bound for the subsequent neighbor.

Simple Moving Average

The SMAV, which makes use of four buffered values, shows a better result
compared to the baseline method. The measured outcome is illustrated in
fig. 4.11. In contrast to the baseline it overcomes the possible communication
disruption because the adjustment takes place step-wise. Any obtained timing
argument is weighted equally throughout each buffered value. This means

87

4. Experimental Results

Fig. 4.11.: Clock skew compensation with Simple Moving Average (SMAV) and 4 buffered
values without outlier detection; beige node (1, 1), green node (4, 1), blue node
(7, 1), red node (12, 1), network setup network configuration setup 1 (net1)

it takes exactly as many received TimePackages as the buffer size, until
the time skew is completely compensated according to the TimePackage
transmitting neighbor. This method reduces the jittering which makes it
hardly observable.

Thus compensation in between subsequent neighbors takes longer the bigger
the buffering is. For applying this algorithm with outlier detection, a repre-
sentative set of buffered values is needed which roughly estimated is > 40
measured values. In huge networks this can lead to unwanted long delays
until the time synchronization is stable. Apart from this, the results with
outlier detection do not improve relevantly, thus no further evaluation details
about this investigation are presented.

Weighted Moving Average

In our evaluation the WMA, which buffers only one value, we found to scale
well with a weight argument of p = 0.75 (equation (3.7)). In figure fig. 4.12 we
observe longer delay until the clock skew is compensated as with the SMAV.
If we investigate the curvatures more detailed we observe an asymptotic
convergence towards the target. Thus compared to SMAV we find the WMA
to perform slightly poorer. On systems lacking of Random Access Memory
(RAM) we would be satisfied with WMA, otherwise we favor the SMAV over
WMA.

88

4.2. Timing Evaluation

Fig. 4.12.: Clock skew compensation with averaging using Weighted Moving Average (WMA);
beige node (1, 1), green node (4, 1), blue node (7, 1), purple node (12, 1), network
setup network configuration setup 1 (net1)

Fig. 4.13.: Clock skew compensation with averaging using Moving Least Squares (MLS) and 40
buffered values without outlier detection; beige node (1, 1), green node (4, 1), blue
node (7, 1), red node (12, 1), network setup network configuration setup 1 (net1)

Moving Least Squares

The evaluation of MLS showed very poor results. In the experiment we
observed an overshooting of the clock skew compensation. For a better vi-
sualization the buffer of averaged values has been increased ten times. This
helps smoothing the result for a better explanation. The result of fig. 4.13

shows that overshooting occur even on short network paths. This is visible at
the green curvature, which represents the internal time counting frequency
of node (4, 1) which is only three nodes away from the origin node (beige
curvature).

89

4. Experimental Results

The overshooting occurs due to the nature of the MLS algorithm, which tries
to keep the sum of squared errors minimal. This means, outliers having higher
divergence to the mean are weighted quadratic. Thus the fitting function is
very strong influenced by outliers.

Another serious problem is the communication disruption, which happens
due to the overshooting. The first overshooting peeks after network boot,
which are the highest, show a divergence of about ±800µs. This leads to
moving the baud rate outside the limits, which can be seen at the red curvature
of node (12, 1) in fig. 4.13. The curvature moves outside the measurement
window. On a long term measurements we see that this state never recovers.

The outlier rejection lets the previous results to perform even worse. A
rejection bound of µ± 2·σ and µ± 5·σ resulted in even more overshooting,
whereas a boundary of µ± 10·σ produces again similar results as without
outlier rejection. A boundary of µ ± 10·σ cannot be justified, thus outlier
rejection does not gain performance at all.

Averaging Strategies Comparison

The implemented averaging strategies have been compared with respect to
the memory usage, calculation complexity, adjustment parameters quantity,
convergence duration and accuracy gain compared to the baseline method
ROV.

Moving Least Squares All tested MLS based setups produce unusable results.
Even with outlier rejection this method seems to be hardly adjustable
for this application. This method cannot be recommended at all.

Simple Moving Average Experiments with large buffer heavily extend the
convergence delay. Large buffers may be useable in small networks but
do not scale well. Out of both outlier strategies, the N σ dependent and
the adaptive rejection, we definitely favor the σ dependent rejection even
if the calculation is more costly as the adaptive method’s calculation.
The adaptive rejection method implies too many adjustable parameters.
SMAV performs well with a buffer size of four.

Weighted Moving Average The WMA method performed well, except of the
asymptotic convergence. The convergence duration is longer compared

90

4.2. Timing Evaluation

to SMAV but still an option on systems having less RAM or flash
memory.

Raw Observation Value This method is not recommendable as the possible
accuracy gain, of multiple synchronization PDUs, remains unused.

Conclusion

For productive usage we opt for the SMAV method with a FIFO buffer size
of 4 measured values and no outlier rejection mechanism. A short perfor-
mance overview is listed in table 4.3. In the upcoming experiments the same
configuration is enrolled onto the (12 × 1) test network, unless specified
differently.

With the SMAV method activated, the clock skew compensation propagation
delay among nodes can be noted as equation (4.6).

T (n) = O(c′ · (ROWS + COLS) · c′′)
= O(ROWS + COLS) (4.6)

with
c′ ... per node TimePackage transmission delay
c′′ ... FIFO bu f f er size

ROWS ... total network rows
COLS ... total network columns

4.2.7. Scalability

In our evaluation we have proven the scalability of the unattended addressing
method (equation (4.3)), the time synchronization (equation (4.4)) and the
clock skew compensation (equation (4.6)) propagation. The delay of all these
strategies together, again has an linear scaling dependent on the network
geometry: T (n) = O(ROWS + COLS).

91

4. Experimental Results

Setup Method FIFO Outlier Performance

Size Detection

1 ROV - - useable (baseline)
2 WMA - - good
3 SMAV 4 - good
4 SMAV 40 2σ long convergence delay
5 SMAV 40 adaptive many tuning parameter
6 MLS 4 - poor
7 MLS 40 2σ,5σ,10σ very poor

Table 4.3.: Averaging strategy performance listing

4.3. Other Observations

Vcc Ripple

With the current hardware design and the applied MCU we observe a very
high fcpu sensitivity to the applied VCC. In our experiments, for usability
reasons, we used the on-board LEDs for signaling. In the (12× 1) test network
this lead to a VCC ripple of VCC±100mV, which was measurable at the first
node (1, 1). We observed a local time clock speed drift according to the ripple.
In further investigations we found that at the fcpu of an ATtiny1634 drifts
±32kHz if VCC drifts ±100mV away from 5.0V (measured at node (1, 1) with
network configuration setup 0 (net0)).

However the internal RC oscillator is realized, we decided to not modify the
hardware, but instead skip the LEDs and omit pulsing loads especially during
synchronization. This immediately affected the accuracy when compensating
the clock skew and synchronizing network time. Other steps to reduce this
problem are: operate the MCU at 3.3V where the fcpu function is flat (see
appendix fig. I.1), assure a stable power VCC at each node and shorter periods
for network synchronization. In total this means, even with no pulsing LEDs,
the network must be synchronized after actuations, since they drain a multiple
of the LEDs power as shown in fig. 4.14.

92

4.3. Other Observations

Fig. 4.14.: MCU clock frequency (fcpu) sensitivity versus supply voltage (VCC) as measured
at the local time counting speed period duration; supply voltage (top chart) versus
time counting speed (bottom chart); beige node (1, 1), red node (12, 1)

93

4. Experimental Results

Fig. 4.15.: PDU transmission duration (dpdu) discretization as observed on retransmission when
tuning the clock skew compensation using minimal adjustment step; target 7.88ms,
actual values within gray areas

Measurement Discretization

In fig. 4.15 we see the last falling edge of the TimePackage as transmitted
by node (6, 1), whereas in the optimum case the edge should meet the
marker. The marker’s position outlines the same edge of the TimePackage as
transmitted by the first node (1, 1).

Apart from the jitter mentioned so far, the analysis of dpdu of the whole test net-
work shows a decision problem in between discrete values. When a reference
time span of an incoming TimePackage is measured, it is used to recalculate
the skew compensation and baud rate as formulated in equation (2.17) and
equation (4.5). This down-scaling necessarily introduces a discretization error
when casting the measured floating point value to integer which manifests as
the decision problem as seen in fig. 4.15.

For transmission this means if the new dpdu is ±1, the total integer discretiza-
tion delay (ddiscrete) of one PDU is about ±8µs and can be formulated as
equation (4.7). The calculated ddiscrete fits perfectly to the span in between the
discretization centers of fig. 4.15.

ddiscrete = ±64 · 1
fcpu

(4.7)

≈ ±8µs

As the discretization error occurs at each node, the error cumulates the longer
the path. In general, even if the standard distribution rises, we observe a new

94

4.4. Experiments

Fig. 4.16.: PDU transmission duration (dpdu) discretization of clock skew compensation using
minimal adjustment step; time counting period as y-axis; beige node (1, 1), green
node (4, 1), blue (7, 1) red node (12, 1); applied network configuration setup 1 (net1)

N ′, which in detail, is a Gaussian mixture consisting of multiple N of each
discretization. The new expectation value µ′ of N ′ resides the at the same
marker’s position, which we formulate as equation (4.8).

E(dpdu|node = (1, 1)) ∧= E(dpdu|node = (n, 1)) (4.8)

The same cumulative discretization error is observable in a frequency trend
analysis as illustrated in fig. 4.16 which shows the compensated time clock
frequency after a long term synchronization run. The offset between green
and red curves of approximately 10µs is classifiable as the discretization error.
The decision problem in between two discrete values can be perfectly followed
in the time span of −1s to 300µs of the red curvature.

Given the specified hardware requirements, the observable discretization error
shows that with a 16 bit TCNT, on which the whole protocol implementation
relies, the limits of possible accuracy are reached with the given constraint
formulated in equation (2.17). By skipping this constraint, the discretization
can be minimized to a fraction and equation (4.7) does not hold any more.

4.4. Experiments

The main target of our experiments is to measure the clock skew compensa-
tion and time synchronization. For this reason we evaluate three experiments:

95

4. Experimental Results

Fig. 4.17.: Clock skew compensation experiment with moving MCU clock frequency (fcpu)
of node (1, 1) (beige); green node (4, 1), blue node (7, 1) red node (12, 1); applied
network configuration setup 1 (net1)

(i) clock skew experiment, (ii) time synchronization experiment and (iii) ac-
tuation experiment. In experiment (i) the origin node’s clock speed factory
calibration is changed on purpose, to prove the clock skew compensation
of subsequent nodes compensates the new frequency change. In experiment
(ii) we measure the synchronicity of the time counting among nodes. The last
experiment (iii) shows the synchronicity of actuator commands, which is our
main goal.

4.4.1. Clock Skew Compensation

In this experiment the first node (1, 1) is prepared to change its fcpu contin-
uously. This is realized by incrementing and decrementing the OSCCAL.
The deviation is bounded to OSCCAL±8 which in frequency is within
[7.920, 8.566]MHz. The rather coarse-grained step-wise fcpu change is illus-
trated in fig. 4.17 as beige curvature.

The continuous compensation propagation manifests as delay since the change
of fcpu of node (1, 1) until a subsequent nodes reacts to it. For nodes (4, 1),
(7, 1) and (12, 1) this is visible in the delayed response of the green, blue and
red curvatures. In the experiment the response delay from first to last node is
about 5s. The delay can be decreased by more frequent synchronizations.

The experiment also reveals the coarse-grained fcpu tuning characteristic of

96

4.4. Experiments

Fig. 4.18.: Time synchronization distribution among nodes (2-12, 1) relative to origin node
(1, 1); gray areas highlight the minimum to maximum distribution; measurement
duration approximately 15 minutes

OSCCAL as discussed in section 2.2.5. Compared to our implementation the
granularity is roughly 8 times smaller than with OSCCAL.

4.4.2. Time Synchronization

In this experiment we compare the network time deviance among all test
networks’ nodes. The nodes are configured to toggle an output signal each 64
time clock intervals. This duration corresponds to approximately 410ms. When
the network is synchronized, it receives TimePackages exactly in between
these long interval toggles. This leaves enough time to propagate and execute
the TimePackages until the next toggle. Another reason for the extremely long
interval is ensure the measurement does not include edges of strongly shifted
time intervals of the next or previous interval. The measurement illustrated
in fig. 4.18 is taken after a long stabilization phase, to ensure the network is
in a stable state.

Due to meter limitations and experiment setup we cannot measure the N
arguments µ and σ. However, based on the time span of the edge distribution,
the formulated distribution model of equation (4.8) is identifiable.

The observed time clock frequency shifting is a result of the measurement
discretization as described in section 4.3. As outcome of several measurement
repetitions we observe 90% of the synchronization deviation of any node to

97

4. Experimental Results

the origin node to be within µ± 10ms, with µ being the origin node’s current
local time.

4.4.3. Actuation

In the actuation experiment the network is prepared to firstly synchronize then
actuate each left actuator simultaneously. As per default the communication
line resides at a high level, we are only able to measure the actuator’s terminal
which is switched to GND. In fig. 4.19 a VCC voltage drop, according to the
load of all activated actuators, is visible. A more detailed investigation showed
a voltage drop of 900mV at node (1, 1) and 1100mV at node (12, 1) at the
same experiment. On such heavy VCC impacts a network resynchronization
is urgently necessary.

Fig. 4.19.: Actuation accuracy; yellow actuator (1-2, 1), green actuator (3-4, 1), blue actuator
(6-7, 1) and red actuator (11-12, 1), cyan D4-D14 all actuators, (1-2, 1) as D1

98

4.4. Experiments

4.4.4. Conclusion

We could prove the clock skew compensation algorithm is compensating
MCU clock frequency discrepancies successfully. The algorithm is expected to
cover a wider range than 650kHz as shown in the experiment. The necessary
time synchronization accuracy, which is enough to be in range of seconds, can
be achieved as shown by the results of time synchronization and actuation
experiments.

99

5. Related Work

Nowadays many different approaches to enable programmable matter exist.
Programmable matter raises complex problems, that can be seen from dif-
ferent perspectives: changeable property (i.e. shaping) by software, system
structure (chain/lattice based [27–29]) actuator type and stimulus, actuation
environment (i.e. sliding, floating [30]), hardware implementation (i.e. self-
contained, power supply, externally applied forces), communication, actuation
planning (decentralized, centralized, meta programming), user interface [31, 1,
32] (i.e. soft materials [33], posing [34], placing [35]), system reconfigurability,
self-reproducibility and degree of freedom (DOF). A short exploration of
these viewpoints reveals that in the programmable matter field they are very
closely related. Thus design decisions are hardly based on just one viewpoint
but rather the sum of them. In our short survey we review the most important
aspects related to our work: hardware implementation, connectivity, actuation,
collective actuation, and software. The survey should bring clearer under-
standing and emphasize general difficulties of programmable matter to be
mastered.

5.1. Hardware Implementation

Many proposed systems apply self-contained robotic particles that have
enough features implemented to enable autonomous actuation of these robots.
The strength of self-contained robots is autonomy in terms of independent
computations and actuations. Robotic parts having an own microcontroller
unit are capable of local computations or scheduling of specific tasks. With
regards to actuation they are able to perform actuations without externally
applied forces or direct cooperation with neighbored robotic particles. This

101

5. Related Work

does not necessarily state that lightweight systems, lacking these features, are
weak because the true potential of a system depends on the use.

Miche [36], a good example of local computation, outsources the commu-
nication to a dedicated unit to save computational capacity of the main
computation unit. Another hardware implementation with focus on scalabil-
ity to very large numbers of interacting units is proposed in Claytronics [37]
utilizing Catoms.

5.2. Connectivity

As connectivity we refer to the software or communication connectivity,
instead of mechanical connectivity. Finding an adequate communication
design for a specific programmable matter implementation is a very sensitive
task. The most prioritized questions are: is the system reconfigurable [23,
38–40] or static, is unidirectional communication sufficient, is sensor data to
be transported, is the communication limited to subsequent neighbors or is it
multi-layered?

Reconfigurable systems imply that particles are able to move from one phy-
sical position of the network to another and integrate at the new position.
Such systems require a more sophisticated network protocol that is able to
handle these dynamic links efficiently. However, static systems having their
particles residing at the same position in network require at least automatic
position detection without the need of manually specifying network addresses
of any particle. Having thousands of particles, doing this manually is not
reasonable.

Depending on the needs, a protocol may not necessarily need to implement a
bi-directional communication for each transmitted data. In real-time systems
the responses on received data such as "acknowledge" or "task done" may be
redundant. In fault tolerant systems even the response "error occurred" may
be not of interest. On the other hand, one may be interested in extensibility
of the system and allow particles to be extended with sensors to introduce
the capability of interaction with humans. Other systems may inherently
introduce the need of sensor data to allow interaction in between the target
and actual state. This is especially necessary for systems capable of posing.

102

5.3. Actuation

Posing means providing a Tangible User Interface (TUI), where a user is able
to modify shapes by hand.

In reconfigurable systems, where particles do not necessarily know at which
place they reside and where the next neighbor is, a multi-layered communica-
tion is advantageous. By communicating in layers such as neighbor, local and
global the communication complexity can be reduced. Each layer introduces
its own context, constraints and eventually its own communication channel,
which also allows duplex communication without interfering. Examples are
the Catoms [41, 42] proposing neighbored communication via inductive cou-
pling, local communication via infrared, and global via IEEE 802.15.4 ZigBee
and Posey [34] utilizing infrared and ZigBee.

5.3. Actuation

Many actuation technologies, the unit generating force for actuation, such as
pneumatic, hydraulic, motoric, SMA [43] have been proposed. A very impor-
tant group of actuators are the shape changing materials. This field includes
actuators that are rather weak compared to motoric or hydraulic actuators
and may be too weak for use in everyday systems. They outperform the
strong ones in terms of weight, size, power consumption and environmental
influences [44]. In environments lacking of electric power supply other stimuli
for actuation such as pH, heat, light etc. are of interest. Further important
properties of shape changing materials are: deformation strength and power
requirement, speed and resolution [45], number of memory shapes [46] and
environment compatibility [47].

5.4. Collective Actuation

With a collective of robotic particles, programmable matter’s performance
can be enhanced in many regards. The programming and communication
complexity can be decomposed and assigned to groups of particles which
can be more autonomous. The work proposed in [48], explains how to in-
crease forces and physical robustness, simplify control and communication

103

5. Related Work

by local control and fault isolation by means of a cell, which is a cluster
of reconfigurable particles. Collective robotic particles can be also found in
other programmable matter scientific fields, with focus on meta programming
languages and decentralization of programs.

5.5. Software

Most scientific programmable matter publications propose great systems
but apply just a small set of particles for evaluation. The answer to how
the performance scales in systems having thousands of such units remains
unclear. The software part of programmable matter addresses how particles
can be controlled efficiently.

A simple method to control programmable matter is to apply a centralized
program communicating and controlling each unit, which performs well in
small systems but does not scale with system growth. However, finding the
optimal actuation plan to achieve a target state given an arbitrary start state
is a hard calculation problem. For this reason one may tend to break down
the whole problem to smaller ones and delegate them to subordinate units or
groups of units (meta modules) [49].

A meta module grants the responsibility for the subset it consists of plans,
executes and controls the set in a decentralized manner. This requires more
effort when programming the global program, which then is compiled to
distributable program parts, distributed to meta modules and executed by
particles. On the other hand, this method gains performance in different
areas: it reduces the calculation complexity for planning, lowers the amount
of needed communication and communication links in between particles and
also reduces the error handling complexity or even may introduce a fault tol-
erance. Newly introduced constraints by meta modules, i.e. illegal movements,
are easier manageable at module level than globally. An approach for pro-
gramming meta modules using a meta language that produces distributable
programs is Meld [50] and [51–53].

104

6. Discussion

Originally the protocol was meant to also sustain remote programming of
nodes. This means once the origin node is flashed with newer firmware, it
replicates the same onto the subsequent nodes. This feature is very desirable
to save a lot of time, otherwise spent on reprogramming nodes multiple
times.

Regarding error detection and fault tolerance, no deep investigation has
been made. The protocol only implements ARQ during a short initialization
phase and detects up to one bit flip in regular communications. The error
detection could be enhanced. For instance, an error reporting to the origin
node would be very helpful. Error correction strategies are more complicated
since they bear also many questions: how can the protocol still remain a real
time protocol, how to keep the communication overhead low, et cetera.

At an early phase we had a simultaneous data stream broadcasting method in
mind. As highlighted during evaluation, we do not recommend simultaneous
communication throughout whole networks. However a method where data
is transmitted as a stream of subsequent packages is reasonable. Since this
is rather a streaming than flooding method, a stream position to network
address mapping is necessary as formulated in equation (6.1) and vice versa
in equation (6.2). Due to the extent this part suits well for future work.

given (M× N) network, stream position p | m, n ∈N+; p ∈N, p < M · N

networkAddress(p) 7→ (m, n)

networkAddress(p) =

(
M− (p mod M)

N −
⌊ p

N

⌋)T

(6.1)

streamPosition(m, n) 7→ p
streamPosition(m, n) = (M · N − (m + (n− 1) ·M)) (6.2)

105

6. Discussion

The clock skew compensation is the crucial point of the whole protocol.
We expect the compensation to be improvable by using a hybrid strategy.
Averaging strategies perform well with a larger buffer, but this also vastly
increases the synchronization delay from boot until the network is stable. A
combination of Weighted Moving Average and Simple Moving Average would
shorten the delay until the network is stable and allows larger buffering.

The difficulty we face on clock skew compensation is the sensitive oscillator
stability. We faced a tightly VCC coupled clock speed at the operating voltage.
To overcome this issue, one may synchronize the network more frequently; but
we also suggest stabilizing the supply voltage at each node, suppressing any
kind of supply voltage ripples or eventually also switch to a crystal oscillator
driven approach. To improve the synchronization accuracy the requirement as
formulated in equation (2.17), using an integer multiplier of the Manchester
coding’s clock as clock rate base, should be modified to use a TimePackage
PDU duration as clock rate base. This prevents the discretization error of
reference time spans.

106

7. Conclusion

In this work we focused on some limitations that inhibit the realization
of a Shape-Shifting Display as proposed in Lasagni et. al [4, 5]. A Shape-
Shifting Display is a mechanical display composed of programmable robotic
particles, which can spatially rearrange in order to show arbitrary 3D shapes.
Robotic particles form a large network. The communication between these
particles needs to be scalable to support a growing number of nodes, and
time synchronization among the particles must be guaranteed for proper
actuation.

According to the imposed requirements, we had to exploit the actuators as
communication medium. This allows stable communication with the chosen
baud rate of 15.63kBd (0.98kB/s), which is the fastest stable communication
rate our protocol implementation is able to handle.

With respect to the needed accuracy – in the range of seconds – and the given
requirements, we have been able to present promising results. Statistically
seen, the achieved synchronization looses about 2ms of accuracy per node.
In a maximum sized network of (255× 255) the introduced inaccuracy is
expected to be approximately ±1 second.

Among the major challenges, we had to face the instability of the internal
oscillator, which is the local clock source of each node and is tightly coupled
to the power supply voltage. Even small ripples of the supply voltage lead to
severe nodes de-synchronization.

In order to aid the protocol development and easily assess the performance
of our protocol, we have extended an existing AVR simulator to support our
network topology. This allowed us to carry out multiple tests, to inspect mem-
ory, to visualize the communication packets and estimate the synchronization
among nodes. This has constantly driven and sped up our development.
Roughly more than 95% of the total development has been achieved with the

107

7. Conclusion

simulator only, while the real physical hardware has been used to validate
the results.

The outcome consists of a modular hardware, the protocol itself and several
simulation tools that make the application quite generic. It is applicable
in many different environments not just in a Shape-Shifting Display only,
especially in systems where a scalable lightweight hardware implementation
is vital.

With the evaluated experiments, we could prove the proposed synchronization
mechanism as functional and the protocol as scalable. Beside these results,
our experiments emphasized the microcontroller oscillator’s frequency sen-
sitivity on supply voltage fluctuations. The specific microcontroller used in
our application, ATtiny1634, introduces a relevant microcontroller frequency
change, even if the supply voltage fluctuates 50mV. This experience should
be considered from an electrotechnical viewpoint in future work.

108

Part I.

Appendix

109

A. Hardware and Network Design
Proposal

111

1

Daisy Chain Communication for long Chains of
Robotic Particles

Raoul Rubien, BSc
rubienr@sbox.tugraz.at

Abstract—Chains of robotic particles are able to change
their shape in a programmatically. By applying multiple chains
surfaces capable of shifting their form may be realized. The
sum of such chains can be viewed as programmable matter. Pro-
grammable matter is a collection of small scaled units integrating
computing, sensing, actuation, and locomotion mechanisms [1]
that is able to change physical properties on command [2] and
thus a universal material. It usually consists of a high volume of
units.

We apply particle chains as presented by Lasagni et al. in
[3] and present a method to exploit the actuators in the system
as communication channel. This method helps minimizing the
particle size and thus the weight which extends the maximum
chain length. It overcomes also other limitations of that work.

This work elaborates the design and assembly of a particle
prototype and also the necessary programming tool chain. It
focuses on the hardware implementation. Software details as
communication protocol, addressing or network discovery will
be part of the upcoming work based on the outcome of this
project.

I. INTRODUCTION

Unlike several in literature proposed folding methods [1, 2,
4] the force guided chain nodes do not utilize motors, magnetic
adherence fields or origami folding to achieve folding. Force
guided chains are made of tied particles that are fold-able
in two directions of one geometric dimension similarly to a
snake’s shape when moving on a plane surface. With multi-
ple parallel mounted chains, shape shifting surfaces may be
realized. Such surfaces are able to approximate 3-dimensional
models at least partly in a 2.5-dimension.

A. Functionality

All nodes of a free-hanging particle chain [3] are naturally
pulled down by gravity. Thus the chain’s natural state is
unfolded and the particles are ordered in a line. Between
neighboring particles two connections, one at the left and a
second at the right-side, are realized with monostable hinged
edges, as illustrated in fig. 1a. When the chain is straight,
the edges reside in a locked state. In this state an utilization
of the external force (4) and (5) in fig. 1a would lead to a
contraction of the chain but will not shape it. Only if hinges are
unlocked in advance the force would lead to shape forming. As
an example let us see what happens if the chain is contracted
but one left hinge in-between two particles is unlocked and
all other are locked. The applied force contracts the chain and
thus compresses the particle’s left-side (shorten the distance)

Report date 6th February 2016

(a) Mechanical design of chained
particles with hinges (2) that are un-
locked actuators (3). When applying
external force (4) unlocked hinges
are folded.

(b) Shaped chain example. Chain is
aligned to a grid following a shape.

Figure 1: Mechanical design and folding example [3] of a
chain.

at the unlatched hinge position whereas the right-side remains
at the same length. This ends in folding of two particles to the
direction where the hinge was previously unlocked as shown
in the highlighted zone of fig. 1a.

B. Limitations

The applied particles do not operate autonomously. They
have to be coordinated at a higher level. Thus they must at
least communicate with a bus master. In Lasagni et al. as
communication protocol the Dallas 1-Wire®1 bus is utilized.
Among others, for this application the bus brings significant
disadvantages. 1) The protocol’s maximum current limitation:
If the current consumption of the attached devices exceeds
the limitation communication must be decoupled from the
power supply. To overcome this issue in Matteo et al. the
communication is decoupled through time division. The sys-
tem switches in between power supply and communication
mode accordingly. As a consequence of that the bus master
looses synchronization with the slaves which introduces a
delay after each operation to restore the bus communication.
During communication the particle power supply must be

1https://en.wikipedia.org/wiki/1-Wire (01/2016)

2

buffered beforehand with a capacitor which introduces a more
electronic parts per particle. 2) Large addressing overhead
of 64 Bits: The addressing is rather huge according to the
needed payload for this application thus the addressing field
produces a lot of overhead. 3) Lack of advanced features:
The bus provides no advanced addressing features which were
desirable in a particle network such sending a datum to a
range of nodes. 4) Also the network discovery comes with
some limitations. Network addresses can be easily retrieved
with the Dallas 1-Wire® bus but not the placement of nodes.
Thus the network positions must be probed in a brute-force
way. Beside the bus limitations a chain’s maximum length is
physically limited by its weight.

II. MOTIVATION

The optimal particle design would be very small. Combining
a optimal hardware design, a customized communication pro-
tocol and the chained arrangement we want to present a daisy
chain communication method which in contrast to Matteo et
al. [3] exploits the actuators embedded in the system.

Our primary motivation is to minimize the size and weight
of particles. Therefore we attempt to lessen the number of
electronic components per particle since this physical param-
eters help chains to be miniaturized and extend the physically
limited maximum length. Although we decouple communi-
cation from power supply we cannot eliminate the need of
time division multiplexing as transmissions and actuating must
never overlap.

Our secondary motivation is to enhance the communication
overhead, the duration and also the network discovery. Thus
we set up a daisy chain protocol which allows using the
underlying physical infrastructure as bus or peer to peer
network. For the upcoming work this ensures enough freedom
to choose one or both option/s for data transmission according
to the use case scenario. With two actuator wires per particle
pair the communication protocol can be developed to support
full duplex operation.

III. GOALS

As the new protocol’s physical layer differs from the current
one there is no chance to re-use the circuity. This circumstance
forces us to build a new prototype that is able to sustain
the upcoming work. The outcome we are interested in are
a combination of hardware and software infrastructure that
sustains the protocol development. 1) Hardware related: a) a
fully functional PCB project (schema and routed PCB) that
can be chained, that allows b) modifying rapidly the number of
network nodes and c) a simple debugging method (for example
test point pinout). 2) Software related: a) a Unix-based tool-
chain, b) a test software that can be used to check newly
assembled boards for errors, c) a simple debug possibility
and d) a convenient method to invoke test cases on a sensor
network simulator.

IV. REQUIREMENTS

With respect to the principal requirements illustrated in
fig. 2 the project requirements can be listed as: 1) Building a

Figure 2: Principal Requirements

Figure 3: Front and back-side of the current unequipped
particle PCB layout [3]. The dimensions are approximately
2cm× 1cm.

development particle prototype that substitutes the design of
fig. 3 during development. In contrast to the currently existent
particle, the new prototype must be capable of transmitting
data to adjacent nodes using the actuator wires. 2) A new
prototype must be able to control the actuators and provide
the support for serial full-duplex communication via a N/P-
Channel MOSFET. 3) Prototypes have to be handy, offer
access to test points such as rx, tx before and after the
MOSFET transistors and 4) several spare test points directly
connected to the MCU. Despite of the productive particle the
development PCB size is not required to be at minimum.
5) CLKO [5] pin must be connected to one test point for
potential internal RC-oscillator calibration. 6) Particles have
to signal their internal state such as heartbeat, status, error by
means of LEDs. 7) The ISP programming interface must be
easily accessible. 8) Self-programming: Particles need to be
capable of enrolling their firmware on their next neighbors.
9) Actuators should be replaced by 5V light bulbs with
similar electrical characteristics. 10) The network topology is a
combination of tree [6] [7] and linear daisy chain [7] network.
Additionally added chains must be connect-able to the network
as illustrated in fig. 4a.

V. MATERIALS AND METHODS

This section elaborates the hardware development and soft-
ware simulation approach with regard to the listed require-
ments in section IV. Decisions made are explained in detail.

A. MCU selection
With respect to the requirements in section IV we started

searching a low level economically priced MCU. When com-

3

paring MCUs of different manufacturer we chose Atmel®

because of several reasons. The most significant are the
availability of 1) a free of charge usable open-source compiler,
2) a variety of inexpensive programmer hardware, 3) good
documentation and many examples and 4) the increasingly
used MCU family. With the Tiny (ATTiny) MCU category
Atmel® provides small sized 8-Bit low level micro controllers
which perfectly meets our needs.

1) First prototype: The firstly created development particle
board applied an ATTiny20 MCU. This MCU provides 2
Kilobytes of flash memory and 128 Bytes of static random
access memory (SRAM). To proof the protocol concept with
the chosen MCU a quick survey demonstrated that 2 Kilobytes
of flash will not be sufficient. Just the implementation of a
simple neighbor discovery exhausted up to 50% of the flash
memory. Regarding SRAM size we did no extra survey but
the experience we made showed up that this resource may be
critically low.

2) Modified requirements: During investigating the com-
munication protocol requirements have been refined slightly.
A chain communication port was introduced to connect whole
chains to the network without the need of additional master
device per chain. For that reason three independent pin change
interrupts, one per reception wire, are necessary. Hence the AT-
Tiny20 is not be applicable any more. Also self-programming
is desirable at a later moment when the firmware of a whole
network of particles has to be exchanged. This can be solved
using a customized boot loader that receives, writes and
forwards a firmware. Further we desire a big MCU package
on the development board since it is very handy to mount and
access for later measurements.

3) Result: Taking in account that the MCU package on a
productive particle should be as small as possible we chose
the ATTiny1634. This MCU comes with 16 Kilobyte of flash
memory, 2 Kilobyte of SRAM, enough pin change interrupts
and also 2 UART ports.

4) Side benefit: The shift away from the ATTiny20 also
eases the firmware flashing. In case of ATTiny20 flashing a
firmware is very costly since it supports no Serial Peripheral
Interface (SPI) but only a Tiny Protocol Interface (TPI).
A modified RS232 breakout board from SparkFun2 with a
customized avrdude3 configuration using BitBang4 protocol
had to be applied. Fortunately this is not necessary for the
SPI supported by the ATTiny1634.

B. Network topology

For this project many network topologies may be applicable
but as mentioned our motivation is to exploit the already avail-
able actuator wires. They can be safely used as communication
channel. Since each particle is connected via two actuators to
its neighbors we can use them to build a dual cable network
system [8]. The network system uses one wire as up-link
channel and the second as down-link channel.

2www.sparkfun.com (01/2016)
3http://www.nongnu.org/avrdude/ (01/2016)
4https://en.wikipedia.org/wiki/Bit banging (01/2016)

1) Network topology: We also opted for building a daisy-
chained network where nodes are connected as peer to peer
nodes. With that decision particles can be connected as linear
network to achieve a particle chain. Due to the fact that a
high number of chains is to be expected within an application
the communication with chains needs to be bundled. In case
of chains being connected directly to a master device (no
bundled communication) each chain occupies two I/O pins.
That also implies that multiple master devices need to be
employed if the number of available pins is exceeded as
illustrated in fig. 4b. It also complicates the protocol by adding
the necessity of master to master communication. A bundled
method lowers the amount of occupied I/O pins at the network
master regardless of the network size (fig. 4a). Thus we embed
three identical communication channels per particle: 1) north
- the communication port to the upper particle, 2) south -
the communication port to the lower particle and 3) chain
- the communication port to the next chain. The chosen
network topology is a tree structure with chained nodes. This
involves some risks. If a particle malfunctions the network
is split into two parts. The interrupted segment is then not
able to communicate with the root any more. Furthermore
the daisy chained nodes’ nature is to work as repeater. Each
received data must be intercepted and forwarded. This adds a
specific delay per node during data forwarding. Nevertheless
the delay can be minimized by forwarding each received signal
immediately to the next communication ports. Preliminary
experiments showed the time shift between incoming signal
and forwarded signal is about 2.2µs per MCU. The test was
set up with an ATMega2560 using an external crystal oscillator
at 16MHz. This delay is expected to be longer in the real
application since the MCU frequency is lower and the main
routine is not remaining empty as in our test. Hence a slightly
increased interrupt latency is caused by the jitter of multi cycle
operations being executed when the inputting signal arrives.

2) Linking the network: To realize the network, particles
chains are connected at the first chain’s particle (later ad-
dressed as head particle or head), to the next chain. As an
example two chains a and b are connected by linking the
head particle’s chain port of a to the head’s north port of
chain b. With this arrangements we can construct a network
as illustrated in fig. 4a. The only communication entry point
to the network is the north communication port of first chain’s
head particle which we term as the origin node.

C. Hardware layout

To sustain the upcoming development of a new communi-
cation protocol which uses actuators as communication lines
a custom PCB that is capable of switching the actuator
working mode (communication or actuating) is necessary. Also
effortless access to hardware is desirable to be less time
consuming when analyzing the physical communication. For
that reasons a new prototype PCB needs to be developed and
assembled. It should permit the developer to have fast access
to several important test points and provide some visual signals
as well.

4

(a) Particle network with cascaded
particle chains. They are connected
their first particle.

(b) Particle network without cas-
caded chains. Each chain communi-
cates directly to one master device.

Figure 4: Cascaded chains versus direct chain communication.
Dashed rectangles represent set of nodes.

1) Preparatory work: The current particle development
board (V1.21) has past several versions. The first idea was
to chain particles without using an underlying frame. Devel-
opment nodes were conceptually designed to be connected at
their power supply pads by using strong inflexible wires as
depicted in fig. 5a. This should give enough stability to handle
short chains and protect the light bulb terminals from breaking.
Therefore the pads were realized stable and placed along the
whole adjacent PCB sides. As a consequence of that, once a
chain is assembled segments cannot be detached any more.
Though detaching chain parts is desirable. To deal with that
we mounted particles on a matrix board as shown in fig. 5b.
All particle to particle connections were passed via jumpers.
The result was stable and handy but unfortunately the fixing
consumed too much time.

(a) Proposed model of a particle
chain. Power supply can be soldered
on a stable rail. Actuators may be
replaced by 5V light bulbs.

(b) First working version (1.0) of a
development particle chain. Actua-
tors are substituted by light bulbs.

Figure 5: First implementation of a development particle chain.

2) Current result: For the reasons mentioned before we
decided to build a grid board (see fig. 6a and fig. 6b) that
provides the network connections for each particle. The idea
is to make the network configurable by plugging/unplugging
particles to/from the grid board. The In-System Programmable
port is outsourced to the board which makes the particle design

more uncomplicated. The upcoming protocol development will
for sure need debugging capabilities. For these tasks the board
provides three arbitrarily usable test pints and several LEDs.
It is most likely that the protocol needs to synchronize the
particles. How this is solved in detail is not part of this work.
Never the less if the internal oscillator has to be calibrated
at runtime the CLKO pin is needed to reflect the internal
oscillator frequency. Therefore the CLKO pin is connected
to one test point. If at a later moment an additionally serial
communication is desired it can be derived from the SPI port
since the MOSI/MISO pins also provide UART.

(a) An exemplary 3 × 3 grid board. It provides
the network infrastructure.

(b) Pluggable particle
board. Two leads pro-
vide additional stability
when plugged into the
grid board.

Figure 6: A grid board exemplar and the particle board in
detail.

D. Software simulation

To speed up the upcoming software development a software
simulation is desired. Fortunately a particle network does
not need synthesized input samples if any network node can
be depicted in a network simulation. Hence we just need
a simulation framework that is capable of simulating whole
networks. Anyway if a network can be simulated there are
still issues to investigate. For example how are particle’s
clock synchronized within the framework? Is the framework
capable of scaling the clock or introduce clock drift per
particular particles? Since one network does not only consist
of MCUs but also some periphery components per particle’s
PCB we want to simulate a particle as a whole. With this
desires we investigated available simulations and opted for
the Avrora [9] sensor network simulation. Among others the
framework is capable of simulating an ATTiny16 MCU and
it is possible to simulate particles as a whole. The specific
implementation of a particle including actuators, test points
and LEDs is achieved by implementing Avrora’s Platform
interface. A proof of concept has been done with particle
prototype hardware version 1.0. A neighbor discovery has been
implemented by use of the simulation and then successfully
tested on hardware.

E. Tool chain

The current state of the project also covers software imple-
mentations for concept proving. We organized the source with

5

CMake and a couple of Unix tools. With that we constructed a
build chain to easily launch builds, flash particles, start sensor
network simulations, retrieving simulation statistics or debug
particles via UART and much more.

VI. FUTURE WORK

In our future work we plan to develop a communication
protocol that provides a way to communicate to each chain’s
particle. The protocol will span the first three layers of the
OSI model: 1) Physical Layer, 2) Data Link Layer and
3) Network Layer and will address the network coding [10],
self-enumeration and addressing, scheduling of actuator tasks
and time synchronization.

For the time synchronization it is to be determined if
exploiting the synchronization of a Manchester coding (layer
2) is accurate enough or if it has to be solved in layer 3. Since
particles use their internal oscillator it is of high interest if
calibrating the internal oscillator at runtime [11] is feasible.

Also enrolling of particles’ firmware we plan to achieve by
using a customized boot loader to speed up the deployment in
networks. The idea is to replicate on particles firmware to its
next neighbor et cetera.

VII. ACKNOWLEDGEMENTS

This project was supported by the Institute for Technical
Informatics of Graz University of Technology and Matteo
Lasagni who has always been sincere and helpful and assisted
this project.

REFERENCES

[1] Seth Copen Goldstein; Jason D. Campbell; Todd C. M.
Programmable Matter.

[2] Ara N. Knaian, Kenneth C. Cheung, Maxim B.
Lobovsky, Asa J. Oines, Peter Schmidt-Neilsen, and
Neil a. Gershenfeld. The Milli-Motein: A self-folding
chain of programmable matter with a one centimeter
module pitch. IEEE International Conference on Intelli-
gent Robots and Systems, pages 1447–1453, 2012.

[3] Matteo Lasagni and Kay Römer. Force-guiding particle
chains for shape-shifting displays. CoRR, abs/1402.2507,
2014.

[4] E Hawkes, B An, N M Benbernou, H Tanaka, S Kim, E D
Demaine, D Rus, and R J Wood. Programmable matter
by folding. Proceedings of the National Academy of
Sciences of the United States of America, 107(28):12441–
12445, 2010.

[5] Atmel. 8-bit Atmel tinyAVR Microcontroller with 16K
Bytes In-System Programmable Flash, 2 2014. Rev.
8303H.

[6] Joseph Kizza. Guide to computer network security.
Springer, London, 2015.

[7] Barrie Sosinsky. Networking bible. Wiley, Indianapolis,
IN, 2009.

[8] Andrew Tanenbaum. Computer networks. Prentice-Hall,
Englewood Cliffs, N.J, 1988.

[9] Ben L. Titzer, Daniel K. Lee, and Jens Palsberg. Avrora:
Scalable sensor network simulation with precise timing.

In 2005 4th International Symposium on Information
Processing in Sensor Networks, IPSN 2005, volume
2005, pages 477–482, 2005.

[10] Andrew Tanenbaum. Computernetzwerke. Pearson,
Munchen, 2012.

[11] Atmel. AVR054: Run-time calibration of the internal RC
oscillator, 4 2008. Rev. 2563C-AVR-04/08.

LIST OF FIGURES

1 Mechanical design and folding example [3] of a
chain. 1

2 Principal Requirements 2
3 Front and back-side of the current unequipped

particle PCB layout [3]. The dimensions are
approximately 2cm× 1cm. 2

4 Cascaded chains versus direct chain communica-
tion. Dashed rectangles represent set of nodes. . 4

5 First implementation of a development particle
chain. 4

6 A grid board exemplar and the particle board in
detail. 4

LIST OF TABLES

CONTENTS

I Introduction 1
I-A Functionality 1
I-B Limitations 1

II Motivation 2

III Goals 2

IV Requirements 2

V Materials and methods 2
V-A MCU selection 2

V-A1 First prototype 3
V-A2 Modified requirements 3
V-A3 Result 3
V-A4 Side benefit 3

V-B Network topology 3
V-B1 Network topology 3
V-B2 Linking the network 3

V-C Hardware layout 3
V-C1 Preparatory work 4
V-C2 Current result 4

V-D Software simulation 4
V-E Tool chain 4

VI Future work 5

VII Acknowledgements 5

B. Package Listing

xxx
0 3 4 7

HDR CMD0x0

Fig. B.1.: Command

0 3 4 7

HDR CMD0x0

ROW0x1

COL0x2

Fig. B.2.: Node command

0 3 4 7

HDR CMD0x0

ROW10x1

COL10x2

ROW20x3

COL20x4

Fig. B.3.: Node range command

0 3 4 7

HDR CMD0x0

payload0x1

hhhhhhhhhhhhhh
hhhhhhhhhhhhhh

Fig. B.4.: Command with payload

117

B. Package Listing

0 3 4 7

HDR CMD0x0

ROW10x1

COL10x2

ROW20x3

COL20x4

payload0x5

hhhhhhhhhhhhhh
hhhhhhhhhhhhhh

Fig. B.5.: Node range cmd. with payload

0 3 4 7

HDR CMD0x0

ROW0x1

COL0x2

payload0x3

hhhhhhhhhhhhhh
hhhhhhhhhhhhhh

Fig. B.6.: Node command with payload

xxx

0 3 4 7

HDR 0x010x0

Fig. B.7.: HeaderPackage

0 3 4 7

HDR 0x030x0

Fig. B.8.: RelayHeaderPackage

0 3 4 7

HDR 0x040x0

Fig. B.9.: ResetPackage

0 3 4 7

HDR 0x050x0

Fig. B.10.: AckPackage

0 3 4 7

HDR 0x060x0

ROW0x1

COL0x2

Fig. B.11.: AckWithAddressPackage

0 3 4 7

HDR 0x070x0

ROW0x1

COL0x2

Fig. B.12.: AnnounceNetworkGeometry-
Package

118

0 3 4 7

HDR 0x080x0

ROWS0x1

COLS0x2

Fig. B.13.: SetNetworkGeometryPackage

0 3 4 7

HDR 0x090x0

ROW0x1

COL0x2

B0x3

Fig. B.14.: EnumerationPackage

0 3 4 7

HDR 0x100x0

tctor0x1

dsep0x3

duntil_cc0x5

FU EB0x7

Fig. B.15.: TimePackage

0 3 4 7

HDR 0x110x0

ROW0x1

COL0x2

tstart0x3

d0x5

L R0x6

Fig. B.16.: HeatWiresPackage

0 3 4 7

HDR 0x110x0

ROW10x1

COL10x2

ROW20x3

COL20x4

tstart0x5

d0x7

L R0x8

Fig. B.17.: HeatWiresRangePackage

119

B. Package Listing

0 3 4 7

HDR 0x120x0

M0x1

Fig. B.18.: HeatWiresModePackage

0 3 4 7

HDR 0x150x0

Fig. B.19.: ExtendedHeaderPackage
(reserved)

0 3 4 7

HDR 0x020x0

ttx0x1

0x2

Fig. B.20.: SyncNetworkTimeHeaderPack-
age

120

C. Code Snippets

121

C. Code Snippets

void __handleSendAnnounceNetworkGeometry (StateType endState) {

v o l a t i l e TxPort * t x P o r t =
&P a r t i c l e A t t r i b u t e s . communication . por ts . tx . north ;

v o l a t i l e CommunicationProtocolPortState * commPortState =
&P a r t i c l e A t t r i b u t e s . pro toco l . por ts . north ;

switch (P a r t i c l e A t t r i b u t e s . pro toco l . por ts . north . i n i t i a t o r S t a t e) {

/ / e n a b l e tx
case INITIATOR_TRANSMIT :

constructAnnounceNetworkGeometryPackage (
P a r t i c l e A t t r i b u t e s . node . address . row ,
P a r t i c l e A t t r i b u t e s . node . address . column) ;

enableTransmission (t x P o r t) ;
commPortState−>i n i t i a t o r S t a t e =

INITIATOR_TRANSMIT_WAIT_FOR_TX_FINISHED ;
break ;

/ / wa i t f o r tx f i n i s h e d
case INITIATOR_TRANSMIT_WAIT_FOR_TX_FINISHED :

i f (txPort−>i s T r a n s m i t t i n g) { break ; }
commPortState−>i n i t i a t o r S t a t e = INITIATOR_IDLE ;
goto __INITIATOR_IDLE ;

break ;

/ / tx f i n i s h e d
case INITIATOR_WAIT_FOR_RESPONSE :
case INITIATOR_TRANSMIT_ACK :
case INITIATOR_TRANSMIT_ACK_WAIT_FOR_TX_FINISHED :
case INITIATOR_IDLE :
__INITIATOR_IDLE :

P a r t i c l e A t t r i b u t e s . node . s t a t e = endState ;
break ;

}
}

Fig. C.1.: Flow control handling example with Automatic Repeat Request (ARQ) shortcut

122

D. Node Context

123

D. Node Context

Fig.D
.
1.:N

ode’s
context

overview
categorized

by
layers

124

E. Node States

125

E. Node States

Fig. E.1.: Node’s Finite State Machine (FSM) states

126

F. Configuration Parameter Listing

127

F. Configuration Parameter Listing

<project>
libs/

common/
simulation/
uc-core/

actuation/
communication/
communication-protocol/
configuration/
delay/
discovery/
evaluation/
interrupts/
parity/
particle/
periphery/
scheduler/
stdout/
synchronization/
time/

main/

Fig. F.1.: Project files structure

configuration/
Actuation.h
Communication.h
CommunicationProtocol.h
Discovery.h
interrupts/

ActuationTimer.h
DiscoveryPCI.h
DiscoveryTimer.h
LocalTime.h
ReceptionPCI.h
TimerCounter0.h
TimerCounter1.h
TimerCounter.h
TxRxTimer.h
Vectors.h

IoPins.h
Particle.h
Periphery.h
Time.h

Fig. F.2.: Configuration files structure

128

Pa
ra

m
et

er
D

ef
au

lt
A

rg
um

en
t

Fi
le

A
C

T
U

A
T

IO
N

_C
O

M
PA

R
E_

VA
LU

E_
PO

W
ER

_S
TR

O
N

G
((

U
IN

T
8_

M
A

X
/

4)
∗3

)
A

ct
ua

ti
on

.h
A

C
T

U
A

T
IO

N
_C

O
M

PA
R

E_
VA

LU
E_

PO
W

ER
_M

ED
IU

M
(U

IN
T

8_
M

A
X

/
2)

A
ct

ua
ti

on
.h

A
C

T
U

A
T

IO
N

_C
O

M
PA

R
E_

VA
LU

E_
PO

W
ER

_W
EA

K
(U

IN
T

8_
M

A
X

/
4)

A
ct

ua
ti

on
.h

C
O

M
M

U
N

IC
A

TI
O

N
_D

EF
A

U
LT

_T
X

_R
X

_C
LO

C
K

_D
EL

A
Y

((
ui

nt
16

_t
)1

02
4)

co
m

m
un

ic
at

io
n/

C
om

m
un

ic
at

io
n.

h
C

O
M

M
U

N
IC

A
T

IO
N

_D
EF

A
U

LT
_M

A
X

_S
H

O
R

T_
R

EC
EP

TI
O

N
_O

V
ER

TI
M

E_
PE

R
C

EN
TA

G
E_

R
A

TI
O

((
fl

oa
t)

0.
75
)

co
m

m
un

ic
at

io
n/

C
om

m
un

ic
at

io
n.

h
C

O
M

M
U

N
IC

A
TI

O
N

_D
EF

A
U

LT
_M

A
X

_L
O

N
G

_R
EC

EP
TI

O
N

_O
V

ER
TI

M
E_

PE
R

C
EN

TA
G

E_
R

A
TI

O
((

fl
oa

t)
1.

25
)

co
m

m
un

ic
at

io
n/

C
om

m
un

ic
at

io
n.

h
C

O
M

M
U

N
IC

A
TI

O
N

_T
X

_R
X

_N
U

M
BE

R
_B

U
FF

ER
_B

Y
TE

S
((

ui
nt

8_
t)

9)
co

m
m

un
ic

at
io

n/
C

om
m

un
ic

at
io

n.
h

R
X

_N
U

M
BE

R
_S

N
A

PS
H

O
TS

((
ui

nt
8_

t)
28
)

co
m

m
un

ic
at

io
n/

C
om

m
un

ic
at

io
n.

h

M
A

N
C

H
ES

T
ER

_D
EC

O
D

IN
G

_R
X

_N
U

M
BE

R
_S

N
A

PS
H

O
TS

9
co

m
m

un
ic

at
io

n/
M

an
ch

es
te

rD
ec

od
in

g.
h

co
ns

ul
t

im
pl

em
en

ta
ti

on
−

in
te

rr
up

ts
/*

D
EV

IA
TI

O
N

_M
A

T
H

_S
Q

R
T

de
fin

ed
sy

nc
hr

on
iz

at
io

n/
D

ev
ia

ti
on

.h

SA
M

PL
E_

FI
FO

_N
U

M
_B

U
FF

ER
_E

LE
M

EN
T

S
4

sy
nc

hr
on

iz
at

io
n/

Sa
m

pl
eF

iF
oT

yp
es

.h
T

IM
E_

SY
N

C
H

R
O

N
IZ

A
TI

O
N

_S
A

M
PL

ES
_F

IF
O

_B
U

FF
ER

_I
TE

R
A

TO
R

_E
N

D
((

ui
nt

8_
t)
(S

A
M

P
LE

_F
IF

O
_N

U
M

_B
U

FF
E

R
_E

LE
M

E
N

T
S
+

1)
)

sy
nc

hr
on

iz
at

io
n/

Sa
m

pl
eF

iF
oT

yp
es

.h

SA
M

PL
E_

FI
FO

_A
D

A
PT

IV
E_

R
EJ

EC
T

IO
N

_R
ED

U
C

E_
C

O
U

N
TE

R
S_

LI
M

IT
((

ui
nt

16
_t
)2

00
0)

sy
nc

hr
on

iz
at

io
n/

Sa
m

pl
eF

iF
oT

yp
es

.h
SA

M
PL

E_
FI

FO
_A

D
A

PT
IV

E_
R

EJ
EC

T
IO

N
_U

PD
A

TE
_R

EJ
EC

TI
O

N
_I

N
TE

RV
A

L_
TH

R
ES

H
O

LD
((

ui
nt

8_
t)

25
)

sy
nc

hr
on

iz
at

io
n/

Sa
m

pl
eF

iF
oT

yp
es

.h
SA

M
PL

E_
FI

FO
_A

D
A

PT
IV

E_
R

EJ
EC

T
IO

N
_U

PD
A

TE
_R

EJ
EC

TI
O

N
_S

TE
P

((
ui

nt
8_

t)
10
)

sy
nc

hr
on

iz
at

io
n/

Sa
m

pl
eF

iF
oT

yp
es

.h
SA

M
PL

E_
FI

FO
_A

D
A

PT
IV

E_
R

EJ
EC

T
IO

N
_U

PD
A

TE
_R

EJ
EC

TI
O

N
_M

IN
_I

N
TE

RV
A

L
((

in
t8

_t
)1

0)
sy

nc
hr

on
iz

at
io

n/
Sa

m
pl

eF
iF

oT
yp

es
.h

SA
M

PL
E_

FI
FO

_A
D

A
PT

IV
E_

R
EJ

EC
T

IO
N

_U
PD

A
TE

_R
EJ

EC
TI

O
N

_M
A

X
_I

N
TE

RV
A

L
((

in
t1

6_
t)

20
00

0)
sy

nc
hr

on
iz

at
io

n/
Sa

m
pl

eF
iF

oT
yp

es
.h

SA
M

PL
E_

FI
FO

_A
D

A
PT

IV
E_

R
EJ

EC
T

IO
N

_A
C

C
EP

TA
N

C
E_

R
A

TI
O

((
ui

nt
16

_t
)9
)

sy
nc

hr
on

iz
at

io
n/

Sa
m

pl
eF

iF
oT

yp
es

.h

T
IM

E_
SY

N
C

H
R

O
N

IZ
A

TI
O

N
_S

A
M

PL
E_

O
FF

SE
T

((
ui

nt
16

_t
)I

N
T

16
_M

A
X
)

sy
nc

hr
on

iz
at

io
n/

Sy
nc

hr
on

iz
at

io
n.

h
SY

N
C

H
R

O
N

IZ
A

TI
O

N
_T

IM
E_

PA
C

K
A

G
E_

D
U

R
A

TI
O

N
_C

O
U

N
TI

N
G

_F
IR

ST
_T

O
_L

A
ST

_B
IT

_E
D

G
E

de
fin

ed
sy

nc
hr

on
iz

at
io

n/
Sy

nc
hr

on
iz

at
io

n.
h

SY
N

C
H

R
O

N
IZ

A
TI

O
N

_S
TR

A
T

EG
Y

_R
A

W
_O

BS
ER

VA
TI

O
N

un
de

fin
ed

sy
nc

hr
on

iz
at

io
n/

Sy
nc

hr
on

iz
at

io
n.

h
SY

N
C

H
R

O
N

IZ
A

TI
O

N
_S

TR
A

T
EG

Y
_M

EA
N

de
fin

ed
sy

nc
hr

on
iz

at
io

n/
Sy

nc
hr

on
iz

at
io

n.
h

SY
N

C
H

R
O

N
IZ

A
TI

O
N

_S
TR

A
T

EG
Y

_P
R

O
G

R
ES

SI
V

E_
M

EA
N

un
de

fin
ed

sy
nc

hr
on

iz
at

io
n/

Sy
nc

hr
on

iz
at

io
n.

h
SY

N
C

H
R

O
N

IZ
A

TI
O

N
_S

TR
A

T
EG

Y
_M

EA
N

_W
IT

H
O

U
T_

O
U

TL
IE

R
un

de
fin

ed
sy

nc
hr

on
iz

at
io

n/
Sy

nc
hr

on
iz

at
io

n.
h

SY
N

C
H

R
O

N
IZ

A
TI

O
N

_S
TR

A
T

EG
Y

_M
EA

N
_W

IT
H

O
U

T_
M

A
R

K
ED

_O
U

TL
IE

R
un

de
fin

ed
sy

nc
hr

on
iz

at
io

n/
Sy

nc
hr

on
iz

at
io

n.
h

SY
N

C
H

R
O

N
IZ

A
TI

O
N

_E
N

A
BL

E_
A

D
A

PT
IV

E_
M

A
R

K
ED

_O
U

TL
IE

R
_R

EJ
EC

TI
O

N
un

de
fin

ed
sy

nc
hr

on
iz

at
io

n/
Sy

nc
hr

on
iz

at
io

n.
h

SY
N

C
H

R
O

N
IZ

A
TI

O
N

_S
TR

A
T

EG
Y

_L
EA

ST
_S

Q
U

A
R

E_
LI

N
EA

R
_F

IT
TI

N
G

un
de

fin
ed

sy
nc

hr
on

iz
at

io
n/

Sy
nc

hr
on

iz
at

io
n.

h
SY

N
C

H
R

O
N

IZ
A

TI
O

N
_S

TR
A

T
EG

Y
_L

EA
ST

_S
Q

U
A

R
E_

LI
N

EA
R

_F
IT

TI
N

G
_W

IT
H

O
U

T_
O

U
TL

IE
R

un
de

fin
ed

sy
nc

hr
on

iz
at

io
n/

Sy
nc

hr
on

iz
at

io
n.

h
SY

N
C

H
R

O
N

IZ
A

TI
O

N
_O

U
TL

IE
R

_R
EJ

EC
TI

O
N

_S
IG

M
A

_F
A

C
TO

R
((

C
al

cu
la

ti
on

Ty
pe
)2

.0
)

sy
nc

hr
on

iz
at

io
n/

Sy
nc

hr
on

iz
at

io
n.

h
SY

N
C

H
R

O
N

IZ
A

T
IO

N
_S

T
R

A
TE

G
Y

_M
EA

N
_O

LD
_V

A
LU

E_
W

EI
G

H
T

((
fl

oa
t)

0.
75
)

sy
nc

hr
on

iz
at

io
n/

Sy
nc

hr
on

iz
at

io
n.

h
SY

N
C

H
R

O
N

IZ
A

T
IO

N
_S

T
R

A
TE

G
Y

_M
EA

N
_N

EW
_V

A
LU

E_
W

EI
G

H
T

((
fl

oa
t)

0.
25
)

sy
nc

hr
on

iz
at

io
n/

Sy
nc

hr
on

iz
at

io
n.

h

SY
N

C
H

R
O

N
IZ

A
T

IO
N

_T
Y

PE
S_

C
TO

R
S_

FI
R

ST
_S

Y
N

C
_P

A
C

K
A

G
E_

LO
C

A
L_

TI
M

E
((

ui
nt

16
_t
)3

50
)

sy
nc

hr
on

iz
at

io
n/

Sy
nc

hr
on

iz
at

io
nT

yp
es

C
to

rs
.h

SY
N

C
H

R
O

N
IZ

A
TI

O
N

_T
Y

PE
S_

C
TO

R
S_

FA
ST

_S
Y

N
C

_P
A

C
K

A
G

E_
SE

PA
R

A
TI

O
N

((
ui

nt
8_

t)
40
)

sy
nc

hr
on

iz
at

io
n/

Sy
nc

hr
on

iz
at

io
nT

yp
es

C
to

rs
.h

SY
N

C
H

R
O

N
IZ

A
TI

O
N

_T
Y

PE
S_

C
TO

R
S_

SY
N

C
_P

A
C

K
A

G
E_

SE
PA

R
A

TI
O

N
((

ui
nt

16
_t
)8

0)
sy

nc
hr

on
iz

at
io

n/
Sy

nc
hr

on
iz

at
io

nT
yp

es
C

to
rs

.h
SY

N
C

H
R

O
N

IZ
A

TI
O

N
_T

Y
PE

S_
C

TO
R

S_
TO

TA
L_

FA
ST

_S
Y

N
C

_P
A

C
K

A
G

ES
((

ui
nt

16
_t
)3

0)
sy

nc
hr

on
iz

at
io

n/
Sy

nc
hr

on
iz

at
io

nT
yp

es
C

to
rs

.h

Ta
bl

e
F.

1
.:

Pr
ot

oc
ol

co
nfi

gu
ra

ti
on

pa
ra

m
et

er
an

d
de

fa
ul

t
ar

gu
m

en
ts

lis
ti

ng
(c

on
ti

nu
ed

in
ta

bl
e

F.
1
)

129

F. Configuration Parameter Listing

Param
eter

D
efault

A
rgum

ent
File

A
C

TU
A

TIO
N

_C
O

M
PA

R
E_VA

LU
E_PO

W
ER

_STR
O

N
G

((U
IN

T
8_M

A
X

/
4)∗

3)
A

ctuation.h
A

C
T

U
A

T
IO

N
_C

O
M

PA
R

E_VA
LU

E_PO
W

ER
_M

ED
IU

M
(U

IN
T

8_M
A

X
/

2)
A

ctuation.h
A

C
T

U
A

T
IO

N
_C

O
M

PA
R

E_VA
LU

E_PO
W

ER
_W

EA
K

(U
IN

T
8_M

A
X

/
4)

A
ctuation.h

C
O

M
M

U
N

IC
A

T
IO

N
_PR

O
TO

C
O

L_T
IM

EO
U

T
_C

O
U

N
TER

_M
A

X
((uint8_t)250)

C
om

m
unicationProtocol.h

C
O

M
M

U
N

IC
A

T
IO

N
_PR

O
TO

C
O

L_R
ET

R
A

N
SM

ISSIO
N

_C
O

U
N

TER
_M

A
X

((uint8_t)3)
C

om
m

unicationProtocol.h

R
X

_D
ISC

O
V

ER
Y

_PU
LSE_C

O
U

N
TER

_M
A

X
((uint4_t)30)

D
iscovery.h

M
IN

_N
EIG

H
BO

R
S_D

ISC
O

V
ER

Y
_LO

O
PS

((uint8_t)(50))
D

iscovery.h
M

A
X

_N
EIG

H
BO

R
S_D

ISC
O

V
ER

Y
_LO

O
PS

((uint8_t)(250))
D

iscovery.h
M

A
X

_N
EIG

H
BO

R
_PU

LSIN
G

_LO
O

PS
((uint8_t)(254))

D
iscovery.h

D
EFA

U
LT

_N
EIG

H
BO

R
_SEN

SIN
G

_C
O

U
N

TER
_C

O
M

PA
R

E_VA
LU

E
((uint16_t)0x80)

D
iscovery.h

EVA
LU

A
T

IO
N

_SIM
PLE_SY

N
C

_A
N

D
_A

C
T

U
A

T
IO

N
defined

Evaluation.h
EVA

LU
A

T
IO

N
_SY

N
C

_C
Y

C
LIC

A
LLY

undefined
Evaluation.h

EVA
LU

A
T

IO
N

_SY
N

C
_W

IT
H

_C
Y

C
LIC

_U
PD

A
T

E_T
IM

E_R
EQ

U
EST_FLA

G
undefined

Evaluation.h
EVA

LU
A

T
IO

N
_SY

N
C

_W
IT

H
_C

Y
C

LIC
_U

PD
A

T
E_T

IM
E_R

EQ
U

EST_FLA
G

_IN
_PH

A
SE_SH

IFTIN
G

undefined
Evaluation.h

EVA
LU

A
T

IO
N

_SY
N

C
_W

IT
H

_C
Y

C
LIC

_U
PD

A
T

E_T
IM

E_R
EQ

U
EST_FLA

G
_TH

EN
_A

C
TU

A
TE_O

N
C

E
undefined

Evaluation.h

see
table

F.
3

−
IoPins.h

LED
S_SU

PPR
ESS_O

U
TPU

T
defined

Leds.h

PA
R

T
IC

LE_D
ISC

O
V

ER
Y

_LO
O

P_D
ELA

Y
delay_us(30)

Particle.h
PA

R
T

IC
LE_D

ISC
O

V
ER

Y
_PU

LSE_D
O

N
E_PO

ST_D
ELA

Y
delay_m

s(3.5)
Particle.h

PER
IPH

ER
Y

_R
EM

O
V

E_IM
PL

defined
Periphery.h

A
D

D
R

ESS_BLIN
K

_STA
T

ES_LED
_O

N
_C

O
U

N
T

ER
_M

A
X

((uint8_t)30)
Periphery.h

A
D

D
R

ESS_BLIN
K

_STA
TES_LED

_O
FF_C

O
U

N
T

ER
_M

A
X

((uint8_t)30)
Periphery.h

A
D

D
R

ESS_BLIN
K

_STA
TES_LED

_SEPA
R

A
TIO

N
_BR

EA
K

_C
O

U
N

TER
_M

A
X

((uint8_t)90)
Periphery.h

A
D

D
R

ESS_BLIN
K

_STA
TES_LED

_SEPA
R

A
TIO

N
_FLA

SH
_C

O
U

N
TER

_M
A

X
((uint8_t)7)

Periphery.h
A

D
D

R
ESS_BLIN

K
_STA

TES_LED
_SEPA

R
A

TIO
N

_LO
N

G
_BR

EA
K

_C
O

U
N

TER
_M

A
X

((uint8_t)140)
Periphery.h

T
IM

E_IN
T

ERVA
L_BLIN

K
_STA

T
ES_PER

IO
D

_M
U

LT
IPLIER

((uint8_t)60)
Periphery.h

SC
H

ED
U

LER
_M

A
X

_TA
SK

S
5

Scheduler.h
SC

H
ED

U
LER

_TA
SK

_ID
_EN

A
BLE_A

LER
T

S
((uint8_t)0)

Scheduler.h
SC

H
ED

U
LER

_TA
SK

_ID
_SET

U
P_LED

S
((uint8_t)1)

Scheduler.h
SC

H
ED

U
LER

_TA
SK

_ID
_SY

N
C

_PA
C

K
A

G
E

((uint8_t)2)
Scheduler.h

SC
H

ED
U

LER
_TA

SK
_ID

_H
EA

R
T

BEA
T

_LED
_TO

G
G

LE
((uint8_t)3)

Scheduler.h
SC

H
ED

U
LER

_TA
SK

_ID
_H

EA
T

_W
IR

ES
((uint8_t)4)

Scheduler.h

STD
O

U
T_U

A
R

T
_BA

U
D

_R
A

T
E

(19200)
Stdout.h

LO
C

A
L_TIM

E_IN
_PH

A
SE_SH

IFTIN
G

_O
N

_LO
C

A
L_T

IM
E_U

PD
A

TE
defined

Tim
e.h

LO
C

A
L_TIM

E_IN
_PH

A
SE_SH

IFTIN
G

_M
A

X
IM

U
M

_STEP
((uint16_t)2000)

Tim
e.h

LO
C

A
L_TIM

E_T
R

A
C

K
IN

G
_IN

T
_D

ELA
Y

_M
A

N
C

H
ESTER

_C
LO

C
K

_M
U

LTIPLIER
((uint8_t)51)

Tim
e.h

Table
F.

2.:Protocolconfiguration
param

eter
and

default
argum

ents
listing

(continued)

130

Parameter Default Value Port Pin

__NORTH_TX_PIN Pin0

D 0__NORTH_TX_DIR CDir
__NORTH_TX_OUT COut
__NORTH_TX_IN CIn

__NORTH_RX_PIN Pin5

C 5__NORTH_RX_DIR CDir
__NORTH_RX_OUT COut
__NORTH_RX_IN CIn

__NORTH_RX_SWITCH_PIN Pin4

C 4__NORTH_RX_SWITCH_DIR CDir
__NORTH_RX_SWITCH_OUT COut
__NORTH_RX_SWITCH_IN CIn

__EAST_TX_PIN Pin7

A 7__EAST_TX_DIR ADir
__EAST_TX_OUT AOut
__EAST_TX_IN AIn

__EAST_RX_PIN Pin0

B 0__EAST_RX_DIR BDir
__EAST_RX_OUT BOut
__EAST_RX_IN BIn

__EAST_RX_SWITCH_PIN Pin6

A 6__EAST_RX_SWITCH_DIR ADir
__EAST_RX_SWITCH_OUT AOut
__EAST_RX_SWITCH_IN AIn

__SOUTH_TX_PIN Pin3

A 3__SOUTH_TX_DIR ADir
__SOUTH_TX_OUT AOut
__SOUTH_TX_IN AIn

__SOUTH_RX_PIN Pin4

A 4__SOUTH_RX_DIR ADir
__SOUTH_RX_OUT AOut
__SOUTH_RX_IN AIn

__SOUTH_RX_SWITCH_PIN Pin2

A 2__SOUTH_RX_SWITCH_DIR ADir
__SOUTH_RX_SWITCH_OUT AOut
__SOUTH_RX_SWITCH_IN AIn

Table F.3.: Microcontroller Unit (MCU) pinout parameter listing of IoPins.h configuration file

131

G. Schematic Diagram

133

H. Network Visualization

135

H. Network Visualization
[0
] tx

-n
o
rth

[0
] tx

-e
a
st

[0
] tx

-so
u
th

[1
] tx

-n
o
rth

[1
] tx

-e
a
st

[1
] tx

-so
u
th

[2
] tx

-n
o
rth

[2
] tx

-e
a
st

[2
] tx

-so
u
th

[3
] tx

-n
o
rth

[3
] tx

-e
a
st

[3
] tx

-so
u
th

[4
] tx

-n
o
rth

[4
] tx

-e
a
st

[4
] tx

-so
u
th

[5
] tx

-n
o
rth

[5
] tx

-e
a
st

[5
] tx

-so
u
th

[6
] tx

-n
o
rth

[6
] tx

-e
a
st

[6
] tx

-so
u
th

[7
] tx

-n
o
rth

[7
] tx

-e
a
st

[7
] tx

-so
u
th

[8
] tx

-n
o
rth

[8
] tx

-e
a
st

[8
] tx

-so
u
th

Fig. H.1.: Downscaled (3× 3) network visualization showing the communication wires’ signals
of the network initialization phases applying network time synchronization using
broadcast mode; frequent communication signals changes appear as rectangular box

136

I. Evaluation

137

I. Evaluation

N
ode

W
ire

Tim
e
[m

s]
east-south

signalshift
[m

s]
B

C
T

E
delay

[µs]
B

C
T

S
delay

[µs]

(1,1)
E

58.495750359
S

58.496000599
0.00025024

7.37496
7.6251

(2,1)
E

58.503375559
S

58.503625699
0.00025014

6.62524
6.87458

(3,1)
E

58.510250939
S

58.510500279
0.00024934

6.50062
6.74976

(1,2)
E

58.502250979
S

58.502500119
0.00024914

5.87543
6.12577

(2,2)
E

58.508375549
S

58.508625889
0.00025034

7.74972
7.99996

(3,2)
E

58.516375609
S

58.516625849
0.00025024

7
7.24914

(1,3)
E

58.509250979
S

58.509500119
0.00024914

6.75087
7.00011

(2,3)
E

58.516250989
S

58.516500229
0.00024924

7.87544
8.12568

(3,3)
E

58.524375669
S

58.524625909
0.00025024

B
C

T
delay

m
inim

um
0.24914

5.87543
6.12577

B
C

T
delay

m
axim

um
0.25034

7.87544
8.12568

B
C

T
delay

average
0.2497844444

6.969035
7.2187625

Table
I.

1.:Introduced
forw

arding
delay

in
broadcastm

ode
(B

C
T

delay)
evaluation

of
(6×

6)
netw

ork
sim

ulation
w

ith
setup

C
as

listed
in

table
3.

4

138

Particle ID Nominal fcpu[MHz] Network Address

1 8.178 (1, 1)
2 8.180 (2, 1)
3 8.191 (3, 1)
4 8.211 (4, 1)
5 8.241 (5, 1)
6 8.254 (6, 1)
7 8.279 (7, 1)
8 8.284 (8, 1)
9 8.386 (9, 1)
10 8.303 (10, 1)
11 8.355 (11, 1)
12 8.382 (12, 1)

Table I.2.: Nodes’ physical enumeration and nominal MCU clock frequency (fcpu) at VCC =
5.0V

Network Name Particle ID Ordre Network Geometry

net0 {6} (1, 1)
net1 {6, 3, 9, 1, 7, 4, 11, 2, 10, 5, 12, 8} (12, 1)

Table I.3.: Evaluation networks and order setup

Fig. I.1.: ATtiny1634 MCU clock frequency (fcpu) versus supply voltage (VCC) [16, pp. 272]

139

141

Nomenclature

(m× n) network geometry notation of a network having m rows and n
columns

(m, n) network address notation referring to the node at row m and column
n

B byte
BCTEdelay east port forwarding delay
BCTSdelay south port forwarding delay
BCTdelay introduced forwarding delay in broadcast mode
Bd baud
PDUsep time delay between a PDU is received and the corresponding re-

sponse
PDsep separation between discovery and the subsequent PDU
N normal distribution
| PDU | PDU size
µ mean
⊕ exclusive-or
X reference time span
σ standard deviation
b bit
bu f f er_size buffer size
bu f f ering_ratio reception buffering ratio
d actuation command duration
dcc_shi f t shift in between tcc_tx and tcc
dcode data clock duration of the Manchester code
dconst constant duration
dctor_intp time span since remote PDU construction until local execution
ddiscrete integer discretization delay
d f wd signal forwarding duration
dhop signal latency of one hop

143

Nomenclature

dinstr current instruction duration
dintp interpreter delay
dlatency total signal latency
dpci f pin change interrupt flag latency
dpdu PDU transmission duration
dpre_tx constructor to transmission delay
dprologue ISR prologue duration
dsep_remote transmitter’s local time clock delay
dsep local time counter clock delay
duntil_cc_remote delay until next remote local time increment
duntil_cc delay until next local time increment
dvar variable duration
dxmission TX/RX clock cycle delay
factuator actuator frequency
fcpu MCU clock frequency
fdiscovery discovery signal frequency
fxmission TX/RX clock frequency
kB kilo byte
kBd kilo baud
kb kilo bit
net0 network configuration setup 0
net1 network configuration setup 1
process() main process
tcc_tx remote time ISR compare value
tcc local time ISR compare value
tctor time of PDU construction
tint time when the PDU is interpreted
tnow current local time
tstart command start time
ttx transmitter’s local time

B network discovery breadcrumb flag
BCT broadcast bit

CMD command id
COL address column
COL1 top left address column

144

Nomenclature

COL2 bottom right address column
COLS network columns

EB end bit

FU force update local time flag

GND ground

HDR package header

L left wire flag

M heating mode

PRT parity bit

R right wire flag
ROW address row
ROW1 top left address row
ROW2 bottom right address row
ROWS network rows

STB start bit

VCC supply voltage

145

Glossary

1 bit even parity uneven sum of 1 bits results in PRT = 1, PRT = 0 otherwise
1-Wire® a communication bus system; 1-Wire is a registered trademark of

Maxim Integrated Products, Inc
normpd f (µ, σ) normal probability distribution function with mean = µ and

standard deviance σ

AckPackage acknowledgement package
AckWithAddressPackage acknowledgement package with address fields
Actuation.h actuation configuration file
ActuationTimer.h actuation timing configuration file
actuator a SMA wire that contracts when heated; it is also used as communi-

cation wire
AnnounceNetworkGeometryPackage automatic response package contain-

ing the network geometry
ATtiny AVR microcontroller for applications that need performance but a

small package
ATtiny1634 ATtiny MCU with 16kB flash and 1kB SRAM
avr-gcc AVR C compiler
avrdude driver program for simple Atmel AVR MCU programmer
Avrora AVR simulation and analysis framework http://compilers.cs.

ucla.edu/avrora/

baud rate the rate at which the signal changes
bit bang software driven input/output to emulate an interface
bit oriented a bit oriented protocol framing is not bound to byte boundaries
bit rate the rate of bits per time interval
broadcast sending to all network participants
broadcast mode if BCT is set signals are passed through

C style cast data type conversion from one type into a different type

147

http://compilers.cs.ucla.edu/avrora/
http://compilers.cs.ucla.edu/avrora/

Glossary

chain a sequence of connected particles using north or south connection ports
CMake cross platform build tool
Communication.h communication and line coding configuration file
CommunicationProtocol.h protocol timing configuration file

daisy chain sequential wired network participants without loops
data link layer defines flow control and error detection, also termed layer 2
DDD data display debugger, see also https://www.gnu.org/software/ddd/
decoder line code decoder
Deviation.h standard deviation configuration file
directed in-tree if any unique path from a network node to a given node s is

a directed path
directed out-tree if any unique path from the given node s to every other

network node is a directed path
Discovery.h discovery configuration file
DiscoveryPCI.h discovery ISR configuration file
DiscoveryTimer.h discovery pulse generator timing configuration file

east port particle’s right/east TX/RX connection wires
endianness order of multi-byte values
EnumerationPackage package containing the node’s address assignment
Evaluation.h evaluation configuration file
event triggered depending on simulation time
ExtendedHeaderPackage reserved package CMD for extensibility

flash programmable program memory
flow control defines the communication sequence mechanism to ensure com-

munication reliability
frame chunk of data, PDU
fuse essential MCU configuration bits/flags

GDB GNU Project debugger, see also https://www.gnu.org/software/gdb/
gdb.html

global routing algorithm routing algo. which uses the total knowledge of a
network

gnu99 the C99 with GNU extensions

head node the origin node or any chain’s first node having also the east port
connected

148

https://www.gnu.org/software/ddd/
https://www.gnu.org/software/gdb/gdb.html
https://www.gnu.org/software/gdb/gdb.html

Glossary

HeaderPackage package without address and payload fields
HeatWiresModePackage actuation mode package
HeatWiresPackage actuation command package
HeatWiresRangePackage actuation command package referring to a rectan-

gular range

initiator the node initiating a transmission
inline the keyword that indicates to duplicate function code rather than

translate to function calls
inter head any chain’s first node having also the east port connected
inter node a node between first and last node of a chain
interpreter associates the CMD field value to executive implementation
interrupt response time latency between PCIF is set and ISR execution
IoPins.h pinout configuration file

jitter time variation in a series of time intervals
JUnit testing Java unit testing framework

Leds.h general LED IO switch configuration file
line code method of coding data on a transmission line
little endian least significant byte stored at lowest address
LocalTime.h local time tracking configuration file

Make GNU make utility to maintain groups of programs
Manchester coding line code incorporating data and clock in one signal, also

termed PE
ManchesterDecoding.h Manchester decoding configuration file
marshalling transformation of data to a transport-able format
master device a device sending commands to the network
Maven Java build manager
MOSFET metal-oxide-semiconductor field-effect transistor
multicast sending to group of network participants

network layer defines package routing, also termed layer 3
node network participant, usually referred to as particle
node indegree number of incoming connections
NodeState the global node context structure
north port particle’s upper/north TX/RX connection wires

149

Glossary

offline algorithm that needs the whole data to process
online algorithm that processes piece-by-piece
origin node top most, left particle having at least one connection at the east

port or south port
orphan node particle without any connection

package mangling package modification before relaying
particle a shape shifting chain link
particle monitor monitor watching and reporting events of the extended

particle platform
particle platform particle PCB simulator abstraction
Particle.h particle loop configuration file
ParticleSimulation class particle simulation implementation for the Avrora

framework
Periphery.h non vital periphery configuration file
physical layer defines voltage level and wiring, also termed PHY or layer 1
pin change interrupt timing latency between pin change until PCIF is set
port particle’s TX/RX connection wires
probe triggered by simulator when a particular location in the program is

reached
programmer hardware to write the MCU flash
protocol stack set of protocol layers

RC circuit RC circuit
real time protocol a protocol that ensures responses within specific time

constraints
receiver the node receiving a transmission
ReceptionPCI.h reception interrupt configuration file
RelayHeaderPackage automatically forwarded package to north and east

port
ResetPackage package to reset a network node
return to zero signal of consecutive bits returns to zero, even on bits with

same value
rooted tree rooted tree network is a tree with a specially designated root

node
RS-232 standard for serial communication

SampleFiFoTypes.h FIFO buffer configuration file

150

Glossary

Scheduler.h scheduler configuration file
session layer ensures reliability and automatic recovery, also termed layer 5
SetNetworkGeometryPackage package stating a new network geometry
Shape-Shifting Display a mechanical display that is able to approximate 3D

surfaces
SimulAVR simulator for the Atmel AVR family http://www.nongnu.org/

simulavr/
south port particle’s bottom/south TX/RX connection wires
spanning tree a spanning sub graph of a graph
State pattern design pattern to implement behavior changes according to a

context
Stdout.h print f (...) configuration file
stop-and-wait-protocol simple flow control, the sender waits for ACK after

each PDU TX
SyncNetworkTimeHeaderPackage package header causing the origin node

to re-synchronize the network time
Synchronization.h synchronization types configuration file
SynchronizationTypesCtors.h synchronization types configuration file

tail node last particle of a chain
Time.h local time tracking configuration file
TimePackage synchronization package
TimerCounter0.h timer counter configuration file
TimerCounter1.h timer counter configuration file
TimerCounter.h timer counter configuration file
transport layer transforms packets to data, also termed layer 4
tree network a connected network that contains no cycle
TxRxTimer.h TX/RX configuration file

unicast sending to one network participant
unipolar a signal that uses two polarities according to a reference point
unipolar a signal that uses one polarity according to a reference point
unmarshalling transformation of transport-able format to data

Vectors.h ISR vectors configuration file

watch triggered by simulator when a particular location in the memory is
modified

151

http://www.nongnu.org/simulavr/
http://www.nongnu.org/simulavr/

Acronyms

ACK acknowledgement
ARQ Automatic Repeat Request

Bi-φ-L Bi-Phase-Level

CSMA Carrier Sense Multiple Access
CTC clear timer on compare match mode

DOF degree of freedom

FIFO First In First Out
FSM Flying Spaghetti Monster
FSM Finite State Machine

GCC GNU Compiler Collection

ISR Interrupt Service Routine

JSON JavaScript Object Notation

LCD Liquid Crystal Display
LED Light Emitting Diode
LSB least significant bit or byte

MCU Microcontroller Unit
MLS Moving Least Squares
MTU Maximum Transfer Unit

NRZ Non Return to Zero
NRZ-L NRZ-Level

OOP Object Oriented Programming

153

Acronyms

OSCCAL internal RC oscillator calibration register
OSI Open System Interconnect
OSSRH Open Source Sonatype Repository Hosting

P2P Peer-to-Peer
PCB printed board circuit
PCI Pin Change ISR
PCIF Pin Change Interrupt Flag
PCM Pulse-Code Modulation
PDU Protocol Data Unit
PE Phase Encoding
PHY Physical Layer
PWM Pulse Width Modulation

RAM Random Access Memory
RC resistor-capacitor
ROV Raw Observation Value
RTC Real Time Clock
RX reception
RZ Return to Zero

SMA Shape Memory Alloy
SMAV Simple Moving Average
SPI Serial Programming Interface
SRAM static RAM

TCNT Timer/Counter
TP test point
TUI Tangible User Interface
TX transmission
TX/RX transmission/reception

WMA Weighted Moving Average

154

Bibliography

[1] M. K. Rasmussen, E. W. Pedersen, M. G. Petersen, and K. Hornbæk,
“Shape-changing interfaces: A review of the design space and open
research questions,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’12, Austin, Texas, USA: ACM,
2012, pp. 735–744 (cit. on pp. 1, 101).

[2] A. D. Kapadia, I. D. Walker, K. E. Green, J. C. Manganelli, H. Houayek,
A. M. James, V. K. T. Kanuri, T. Mokhtar, I. Siles, and P. Yanik, “Re-
thinking the machines in which we live: a multidisciplinary course in
architectural robotics,” IEEE Robotics and Automation Magazine, vol. 21,
no. 3, pp. 143–150, Aug. 2014 (cit. on p. 1).

[3] M. D. Gross and K. E. Green, “Architectural robotics, inevitably,” Inter-
actions, vol. 19, no. 1, pp. 28–33, Jan. 2012 (cit. on p. 1).

[4] M. Lasagni and K. Römer, “Force model of a robotic particle chain
for 3d displays,” in Proceedings of the 30th Annual ACM Symposium on
Applied Computing, ser. SAC ’15, Salamanca, Spain: ACM, 2015, pp. 314–
319 (cit. on pp. 1, 2, 6, 107).

[5] M. Lasagni and K. Römer, “Force-guiding particle chains for shape-
shifting displays,” CoRR, vol. abs/1402.2507, 2014 (cit. on pp. 2, 4, 107).

[6] G. Song, B. Kelly, and B. N. Agrawal, “Active position control of a
shape memory alloy wire actuated composite beam,” Smart Materials
and Structures, vol. 9, no. 5, p. 711, 2000 (cit. on p. 3).

[7] B. L. Kelly, “Beam shape control using shape memory alloys.,” DTIC
Document, Tech. Rep., 1998 (cit. on p. 3).

[8] Maxim, Guidelines for reliable 1-wire networks, Appnote148, Maxim In-
tegrated Products, Nov. 2001. [Online]. Available: http://www.maxim-
ic.com/an148 (cit. on p. 4).

155

http://www.maxim-ic.com/an148
http://www.maxim-ic.com/an148

Bibliography

[9] Maxim, How to power the extended features of 1-wire® devices, Appnote4255,
Maxim Integrated Products, Jan. 2008. [Online]. Available: http://www.
maxim-ic.com/an4255 (cit. on p. 4).

[10] D. Comer, Computernetzwerke und Internets: Mit Internet-Anwendungen.
München: Pearson Studium, 2002, isbn: 382737023x (cit. on pp. 6, 9).

[11] B. Sklar, Digital communications: Fundamentals and applications. Upper
Saddle River, N.J: Prentice-Hall PTR, 2001, isbn: 0130847887 (cit. on
pp. 9, 13, 14).

[12] R. Ahuja, Network flows: Theory, algorithms, and applications. Englewood
Cliffs, N.J: Prentice Hall, 1993, isbn: 013617549x (cit. on p. 9).

[13] R. Williams, Computer systems architecture: A networking approach. Harlow,
England New York: Addison-Wesley, 2001, isbn: 0201648598 (cit. on
p. 13).

[14] G. Coulouris, Distributed systems: Concepts and design. Harlow, England
New York: Addison-Wesley, 2005, isbn: 0321263545 (cit. on p. 13).

[15] L. Peterson, Computer networks: A systems approach. Amsterdam Boston:
Morgan Kaufmann Publishers, 2003, isbn: 155860832x (cit. on pp. 14,
20).

[16] Atmel, 8-bit atmel tinyavr microcontroller with 16k bytes in-system pro-
grammable flash, ATtiny1634, Rev. 8303H, Atmel, Feb. 2014. [Online].
Available: http : / / www . atmel . com / images / atmel - 8303 - 8 - bit -
avr-microcontroller-tinyavr-attiny1634_datasheet.pdf (cit. on
pp. 16, 33, 53, 55, 139).

[17] J. Reichardt, Lehrbuch Digitaltechnik: Eine Einführung mit VHDL. Mün-
chen: Oldenbourg, 2011, isbn: 9783486706802 (cit. on p. 19).

[18] U. Hammerschall, Verteilte Systeme und Anwendungen: Architekturkon-
zepte, Standards und Middleware-Technologien. München Boston u.a.: Pear-
son Studium, 2005, isbn: 3827370965 (cit. on p. 21).

[19] K. Schmaranz, Softwareentwicklung in C++. Berlin u.a.: Springer, 2003,
isbn: 3540443436 (cit. on p. 21).

[20] J. Kurose, Computernetze: Ein Top-Down-Ansatz mit Schwerpunkt Internet.
München: Pearson Studium, 2002, isbn: 3827370175 (cit. on p. 28).

156

http://www.maxim-ic.com/an4255
http://www.maxim-ic.com/an4255
http://www.atmel.com/images/atmel-8303-8-bit-avr-microcontroller-tinyavr-attiny1634_datasheet.pdf
http://www.atmel.com/images/atmel-8303-8-bit-avr-microcontroller-tinyavr-attiny1634_datasheet.pdf

Bibliography

[21] Atmel, Avr054: Run-time calibration of the internal rc oscillator, Application
Note, Rev. 2563C-AVR-04/08, Atmel, Apr. 2008. [Online]. Available:
http://www.atmel.com/Images/doc2563.pdf (cit. on p. 36).

[22] E. Gamma, Entwurfsmuster: Elemente wiederverwendbarer objektorientierter
Software. München Boston u.a.: Addison-Wesley, 2004, isbn: 3827321999

(cit. on pp. 39, 46).

[23] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and
S. Kokaji, “M-tran: Self-reconfigurable modular robotic system,” IEEE/-
ASME Transactions on Mechatronics, vol. 7, no. 4, pp. 431–441, Dec. 2002

(cit. on pp. 43, 102).

[24] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-
nization using reference broadcasts,” SIGOPS Oper. Syst. Rev., vol. 36,
no. SI, pp. 147–163, 2002 (cit. on p. 49).

[25] B. L. Titzer and J. Palsberg, “Nonintrusive precision instrumentation of
microcontroller software,” in Proceedings of the 2005 ACM SIGPLAN/SIG-
BED Conference on Languages, Compilers, and Tools for Embedded Systems,
ser. LCTES ’05, Chicago, Illinois, USA: ACM, 2005, pp. 59–68 (cit. on
p. 57).

[26] B. L. Titzer, D. K. Lee, and J. Palsberg, “Avrora: Scalable sensor network
simulation with precise timing,” in Proceedings of the 4th International
Symposium on Information Processing in Sensor Networks, ser. IPSN ’05,
Los Angeles, California: IEEE Press, 2005 (cit. on p. 58).

[27] M. Jorgensen, E. Ostergaard, and H. Lund, “Modular atron: Modules
for a self-reconfigurable robot,” 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol.
2, pp. 2068–2073, 2004 (cit. on p. 101).

[28] K. C. Cheung, E. D. Demaine, J. R. Bachrach, and S. Griffith, “Pro-
grammable assembly with universally foldable strings (moteins),” IEEE
Transactions on Robotics, vol. 27, no. 4, pp. 718–729, Aug. 2011 (cit. on
p. 101).

[29] A. N. Knaian, K. C. Cheung, M. B. Lobovsky, A. J. Oines, P. Schmidt-
Neilsen, and N. a. Gershenfeld, “The milli-motein: A self-folding chain
of programmable matter with a one centimeter module pitch,” IEEE

157

http://www.atmel.com/Images/doc2563.pdf

Bibliography

International Conference on Intelligent Robots and Systems, pp. 1447–1453,
2012 (cit. on p. 101).

[30] P. J. White, M. L. Posner, and M. Yim, “Strength analysis of miniature
folded right angle tetrahedron chain programmable matter,” in Pro-
ceedings - IEEE International Conference on Robotics and Automation, 2010,
pp. 2785–2790 (cit. on p. 101).

[31] H. Ishii, D. Lakatos, L. Bonanni, and J.-B. J. Labrune, “Radical atoms:
Beyond tangible bits, toward transformable materials,” vol. XIX, no.
February, pp. 31–51, 2012 (cit. on p. 101).

[32] C. Khoo and F. Salim, “Lumina: A soft kinetic material for morphing
architectural skins and organic user interfaces,” Proceedings of the 2013
ACM international joint . . ., pp. 53–62, 2013 (cit. on p. 101).

[33] N. Correll, Ç. D. Önal, H. Liang, E. Schoenfeld, and D. Rus, “Soft au-
tonomous materials—using active elasticity and embedded distributed
computation,” in Experimental Robotics: The 12th International Symposium
on Experimental Robotics, O. Khatib, V. Kumar, and G. Sukhatme, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 227–240 (cit.
on p. 101).

[34] M. Weller, E. Do, and M. D. Gross, “Posey: Instrumenting a poseable
hub and strut construction toy,” in Proceedings of the 2nd international
conference on Tangible and Embedded Interaction, ACM, 2008, pp. 39–46

(cit. on pp. 101, 103).

[35] M. P. Weller, M. D. Gross, and S. C. Goldstein, “Hyperform specification:
Designing and interacting with self-reconfiguring materials,” Personal
and Ubiquitous Computing, vol. 15, no. 2, pp. 133–149, 2011 (cit. on p. 101).

[36] K. Gilpin, K. Kotay, and D. Rus, “Miche: Modular shape formation
by self-dissasembly,” in Proceedings - IEEE International Conference on
Robotics and Automation, 2007, pp. 2241–2247 (cit. on p. 102).

[37] S. Goldstein and T. Mowry, “Claytronics: A scalable basis for future
robots,” Robosphere, pp. 1–6, 2004 (cit. on p. 102).

[38] M. Yim, D. Duff, and K. Roufas, “Polybot: A modular reconfigurable
robot,” in Proceedings 2000 ICRA. Millennium Conference. IEEE Interna-
tional Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065), vol. 1, 2000, pp. 514–520 (cit. on p. 102).

158

Bibliography

[39] M. Jorgensen, E. Ostergaard, and H. Lund, “Modular atron: Modules
for a self-reconfigurable robot,” 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol.
2, pp. 2068–2073, 2004 (cit. on p. 102).

[40] V. Zykov, E. Mytilinaios, M. Desnoyer, and H. Lipson, “Evolved and de-
signed self-reproducing modular robotics,” IEEE Transactions on Robotics,
vol. 23, no. 2, pp. 308–319, 2007 (cit. on p. 102).

[41] B. Kirby, J. Campbell, B. Aksak, and P. Pillai, “Catoms: Moving robots
without moving parts,” in Proceedings of the . . ., vol. 20, 2005, p. 1730

(cit. on p. 103).

[42] B. T. Kirby, B. Aksak, J. D. Campbell, J. F. Hoburg, T. C. Mowry, P.
Pillai, and S. C. Goldstein, “A modular robotic system using magnetic
force effectors,” in IEEE International Conference on Intelligent Robots and
Systems, 2007, pp. 2787–2793 (cit. on p. 103).

[43] M. Follador, M. Cianchetti, A. Arienti, and C. Laschi, “A general method
for the design and fabrication of shape memory alloy active spring
actuators,” Smart Materials and Structures, vol. 21, no. 11, p. 115 029, 2012

(cit. on p. 103).

[44] G. Song and N. Ma, “Robust control of a shape memory alloy wire
actuated flap,” Smart Materials and Structures, vol. 16, no. 6, N51, 2007

(cit. on p. 103).

[45] P. J. White and M. Yim, “Scalable modular self-reconfigurable robots
using external actuation,” in IEEE International Conference on Intelligent
Robots and Systems, 2007, pp. 2773–2778 (cit. on p. 103).

[46] E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine,
D. Rus, and R. J. Wood, “Programmable matter by folding.,” Proceedings
of the National Academy of Sciences of the United States of America, vol. 107,
no. 28, pp. 12 441–5, 2010 (cit. on p. 103).

[47] M. Coelho and J. Zigelbaum, “Shape-changing interfaces,” Personal
and Ubiquitous Computing, vol. 15, no. 2, pp. 161–173, Feb. 2011 (cit. on
p. 103).

[48] J. Campbell and P. Pillai, “Collective actuation,” The International Journal
of Robotics Research, vol. 27, no. 3-4, pp. 299–314, 2008 (cit. on p. 103).

159

Bibliography

[49] M. De Rosa, S. C. Goldstein, P. Lee, P. Pillai, and J. Campbell, “A tale of
two planners: Modular robotic planning with ldp,” in 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2009, Dec.
2009, pp. 5267–5274 (cit. on p. 104).

[50] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and P. Pillai,
“Meld: A declarative approach to programming ensembles,” in IEEE
International Conference on Intelligent Robots and Systems, 2007, pp. 2794–
2800 (cit. on p. 104).

[51] D. J. Christensen and H. H. Lund, “Metamodule control for the atron
self-reconfigurable robotic system,” in Proceedings of the The 8th Confer-
ence on Intelligent Autonomous Systems, 2004, pp. 685–692 (cit. on p. 104).

[52] M. P. Ashley-Rollman, P. Lee, S. C. Goldstein, P. Pillai, and J. D. Camp-
bell, “A language for large ensembles of independently executing
nodes,” in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5649

LNCS, 2009, pp. 265–280 (cit. on p. 104).

[53] C. Unsal and P. K. Khosla, “A multi-layered planner for self-reconfig-
uration of a uniform group of i-cube modules,” Intelligent Robots and
Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on, vol.
1, 598–605 vol.1, 2001 (cit. on p. 104).

160

Index
1 bit even parity, 20

1-Wire®, 4, 5, 11

BCTEdelay, 84, 138

BCTSdelay, 84, 138

BCTdelay, 82, 84, 138

PDUsep, 78

N , 48, 90, 95, 97

| PDU |, 17, 72, 73

µ, 80, 81, 95, 97, 98

⊕, 15

X, 47

σ, 48, 90, 97

bu f f er_size, 16, 17

bu f f ering_ratio, 40, 72, 74

d, 37, 52

dcc_shi f t, 35

dcode, 36, 43, 86

dconst, 33

dctor_intp, 34

ddiscrete, 94

d f wd, 33

dhop, 32, 33

dintp, 34

dlatency, 32

dpci f , 33

dpdu, 32, 36, 47, 80, 94

dpre_tx, 34

dsep_remote, 35, 53

dsep, 35, 36

duntil_cc, 35, 53

dvar, 33

fcpu, 35–37, 39, 71, 79, 80, 84, 86, 92,
96, 139

fdiscovery, 55

net0, 92

process(), 40–44, 55, 74, 75

tcc, 35, 43

tctor, 34, 35

tint, 34

tnow, 36, 38

tstart, 37, 52

ttx, 35, 53

ACK, 29, 30, 77

AckPackage, 50, 54, 72, 74, 78

AckWithAddressPackage, 50, 54,
72, 74, 78

Actuation.h, 53, 128–130

ActuationCommand, 46

ActuationTimer.h, 128

actuator, 3, 5, 29, 38, 98

addressing, 24

Alerts, 46

AnnounceNetworkGeometryPack-
age, xv, 50, 52, 54, 77, 78,
82

ARQ, 84, 105

ATtiny, 57

ATtiny1634, 16, 39, 92, 108

161

Index

avr-gcc, xix, 39, 51, 68

Avrora, 57, 58, 60, 62, 68, 71

Avrora extension, 58, 60

B, 50

baud rate, 14, 16, 17, 19, 29, 36, 43,
56, 68, 72, 73, 87, 90, 94, 107

BCT, 20, 21, 27, 52

Bi-φ-L, 15

bit bang, 11, 16

bit oriented, 12

bit rate, 14, 17

broadcast, 21, 24, 32, 33, 67

broadcast mode, xvi, xviii–xx, 31,
32, 82–84, 136, 138, 143

broadcast routing, 27

build environment, 66

C, 39

C style cast, 44

C++, 39

chain, 1–3, 7, 148–151

CMake, 66

CMD, 28, 38, 44, 50, 52, 117

COL, 24, 26, 27, 38, 52, 117

COL1, 24, 52

COL2, 24, 52

COLS, 52

command scheduling, 37

Communication, 45

communication throughput, 11

Communication.h, 53, 128, 129

CommunicationProtocol, 45

CommunicationProtocol.h, 55, 128,
130

compiler, 68

concurrent actuation, 5

configuration, 128

CSMA, 9

CTC, 55

custom Make rules, 68

daisy chain, 5

data link layer, 13, 20, 27, 30

DDD, 57

debugger, 68

decoder, xiv, 42, 72–74

decoding, 42

Deviation.h, 129

directed in-tree, 25, 26

directed out-tree, 25–27

DirectionOrientedPorts, 46

discovery, 22

Discovery.h, 55, 128, 130

DiscoveryPCI.h, 128

DiscoveryPulseCounters, 45

DiscoveryTimer.h, 128

DOF, 101

east port, 9, 23, 32, 46, 52, 60, 82, 84,
143, 148–150

EB, 35, 53

electrical implementation, 3

endianness, 21

EnumerationPackage, 50, 54, 72, 74,
78

Evaluation, 46

Evaluation.h, 53, 130

ExtendedHeaderPackage, 52, 54

FIFO, 47, 91, 92

flash, 39, 50, 69, 91

flow control, xiv, 22, 28–31, 40, 43,
45, 50, 55, 77

frame, 20

162

Index

FSM, 30, 39, 40, 42, 43, 45

FU, 35, 37, 53

fuse, 69

GCC, 39

GDB, 57, 63

global routing algorithm, 9, 25

GND, 13, 14, 98

gnu99, 39

hardware, 13

HDR, 20, 22, 28, 38, 117

HeaderPackage, 52, 54

HeatWiresModePackage, 52, 54, 67

HeatWiresPackage, 52, 54, 67

HeatWiresRangePackage, 52, 54, 67

initiator, 29, 30, 35, 43, 84

inline, 50

inter head, xiv, 23, 75

inter node, xiv, 23

interpreter, xiv, 29, 42, 44

interrupt response time, 33

interrupts/, 56, 129

IoPins.h, xix, 56, 128, 130, 131

ISR, 16, 18, 19, 29, 33–35, 37, 41–43,
56, 65, 74, 75, 84, 85

Java, 57, 62, 64

jitter, xiv, xv, 29, 32–34, 58, 80, 81,
84, 87, 88, 94

JSON, 61

Json generator, 61

JUnit, 63, 64

JUnit testing, 62, 63, 68

L, 38, 52

LCD, 1

LED, 45, 56

Leds.h, 56, 130

lightweight, 10

line code, 12, 14, 72, 78, 85

little endian, 21

localization, 4

LocalTime.h, 128

LocalTimeTracking, 46

low price, 10

LSB, 21, 41

M, 52

main loop, 40

Make, 68

Make rules, 68

mancester decoding, 16

Manchester coding, xiii, 12, 14–18,
20, 42, 43, 53, 55, 72, 75, 85,
86, 106

ManchesterDecoding.h, 53, 129

marshalling, 21

master device, 11, 23, 66

Maven, 63, 64

MCU, 10, 11, 14, 16–18, 21, 31, 33,
36, 39, 50, 53, 55–58, 60, 61,
64–66, 68, 69, 71, 78, 80, 81,
84, 86, 92, 99

mechanical implementation, 2

memory consumption, 71

MLS, 47, 49, 50, 89, 90

monitor, 60

MOSFET, 13, 14, 60

MTU, 17

multicast, 21, 22, 24, 26, 27

network layer, 13, 21, 22

network use case, 66

163

Index

node, xiv, xv, 9, 22–25, 27, 29, 31,
37–39, 41, 43, 45, 50, 55, 57,
58, 60, 61, 65, 66, 76–79, 82

node context, 45

node indegree, 29

NodeState, 45, 46

north port, 9, 23, 46, 60, 65, 82, 86

NRZ, 14

NRZ-L, 15

on-the-fly decoding, 16

online, 19, 85, 86

OOP, 39

origin node, xiv, xv, xvii, xix, 9, 11,
23–26, 32, 33, 36, 45, 52, 53,
60, 66, 67, 71, 77, 78, 82, 86,
89, 96–98, 105, 151

orphan node, xiv, 23

OSCCAL, 37, 96, 97

OSI, 13, 28

OSSRH, 63

P2P, 6, 9, 22

particle, 3, 7, 11, 58, 60, 62, 66

particle localization, 4

particle monitor, 60, 62

particle platform, 58, 62, 64

Particle.h, 55, 128, 130

ParticleSimulation class, 62

PCB, 60

PCI, 41, 84

PCIF, 33

PCM, 13, 14

PDU, 17, 20, 24, 26, 27, 29, 31, 32,
34, 35, 37, 40, 42–44, 53, 65,
66, 72–74, 77, 78, 81, 84, 86,
94, 106

PE, 14

Periphery, 46

Periphery.h, 56, 128, 130

PHY, 11

physical layer, 11, 13, 14, 41, 43, 60

pin change interrupt timing, 33

port, 16, 20, 40, 60

post-processing, 16

power supply, 4

predictability, 84

protocol stack, 13

PRT, 20, 30

PWM, 16, 18, 38, 52, 53, 55

Python, 61, 65

R, 38, 52

RAM, 88, 91

range routing, 26

RC, 36, 75, 92

RC circuit, 11, 31, 75

real time control, 11

real time protocol, 28, 29, 105

receiver, 30, 34, 35, 43, 50, 84

reception, 41

ReceptionPCI.h, 128

RelayHeaderPackage, 52, 54, 67

remote programming, 5

ResetPackage, 52, 54, 67

rooted tree, 9, 25

routing, 25

ROV, 47, 48, 90

ROW, 24, 26, 27, 38, 52, 117

ROW1, 24, 52

ROW2, 24, 52

ROWS, 52

RS-232, 68

RTC, 31

164

Index

RX, 9, 13, 14, 33–35, 40, 42, 53, 55,
60

RZ, 14

SampleFiFoTypes.h, 129

scalability, 10

Scheduler, 46

Scheduler.h, 56, 130

session layer, 13, 29

SetNetworkGeometryPackage, 52,
54, 67

Shape-Shifting Display, v, vii, 1, 3,
107, 108

signal generator, 43

signal shift, 84

simulation, 56

simulation framework, 57

SimulAVR, 57

SMA, 3, 53, 103

small-scale, 10

SMAV, 47, 48, 87, 88, 90, 91

south port, 9, 23, 24, 32, 46, 52, 60,
82, 84, 86, 143, 150

spanning tree, 25

SPI, 11

SRAM, 17, 19, 39, 41, 60, 65

State pattern, 39

STB, 20

Stdout.h, 56, 130

stop-and-wait-protocol, 29, 30

SyncNetworkTimeHeaderPackage,
52, 54, 67

synchronization, 6, 11, 12, 14, 16,
17, 19, 29, 31, 53, 58, 64, 82

Synchronization.h, 129

synchronization/, 56

SynchronizationTypesCtors.h, 129

tail node, xiv, 23, 50

TCNT, 16, 18, 19, 41–43, 53, 55, 95

testing, 63

The Flying Spaghetti Monster, 42

time synchronization, 11

Time.h, 56, 128, 130

TimePackage, xiv, xv, 34, 35, 37, 47,
49, 53, 54, 72–74, 80–82, 84,
86–88, 94, 106

TimerCounter0.h, 128

TimerCounter1.h, 128

TimerCounter.h, 128

TimeSynchronization, 46

transmission rate, 43

transport layer, 13, 28

tree network, 150

TUI, 103

TX, 9, 13, 14, 18, 28, 33–36, 40, 60,
65

TX/RX, 13, 14, 20, 40, 55, 60

TxRxTimer.h, 128

unicast, xiv, 5, 22, 24, 26

unicast communication, 4

unicast routing, 25

unipolar, 13, 14

unmarshalling, 21

VCC, 13, 14, 36, 71, 75, 77, 79, 84, 86,
92, 98, 106

Vectors.h, 128

visualization, 65

WMA, 47, 49, 88, 90

165

