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gesellschaft mbH (FFG), Das Land Steiermark, and Steirische Wirtschaftsförderung (SFG)
for their financial support.

Finally, a big thank goes to my family and friends for their help and support.

Graz, November 2016 Johannes Fuchs

III



Abstract

The emission limits of vehicles have become stricter and stricter over the past years and have
caused major challenges in the vehicle industry. Beside the improvements of conventional
vehicles (CVs), alternative vehicle concepts such as hybrid electric vehicles (HEVs) or electric
vehicles (EVs) have been established on the market. As the performance of EVs is still
limited due to the low energy densities of the electrical energy storage, HEVs have gained
more relevance in the last years. In contrast to CVs, HEVs contain at least two distinct energy
sources, which are commonly represented by means of an internal combustion engine (ICE)
and a battery. In order to exploit the benefits of HEVs like the recuperation of kinetic energy
or shifting of operating points, an appropriate operating strategy is necessary. Furthermore,
the scaling of components such as energy storages and energy sources represents an important
task.
In the scope of this thesis, novel methodologies for calculating optimal operating strategies
and component sizes are developed in the field of HEVs. The first part describes approaches
that take the operating and life cycle costs of HEVs into account. For this purpose, not only
the fuel costs but also costs due to battery aging and brake pad wear are included into the
optimization problem. In addition to cost-optimizing operating strategies, further approaches
are devised to consider thermal component limits as well as to reduce the number of start-
stop operations of the ICE.
In order to obtain optimal operating strategies, the mathematical method of deterministic
dynamic programming (DDP) is used in this work. The main benefit of this method is
that it always provides the global optimum but unfortunately, calculation becomes slow for
multidimensional state spaces. In order to reduce the calculation effort, a modified version of
DDP based on iterative dynamic programming is applied. Beside the calculation of optimal
operating strategies, DDP can also be used to determine optimal component sizes. The
second part of this thesis describes methodologies for the optimal sizing of energy sources as
well as electric traction motors.
All the methodologies developed in this thesis are demonstrated by means of simulation
studies based on a model of a series hybrid bus. Due to their general formulation, the
approaches can also be used in connection with other topologies and classes of HEVs.
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Kurzfassung

Die im Laufe der Zeit strenger gewordenen Grenzwerte für Fahrzeugemissionen haben zu
großen Veränderungen in der Fahrzeugindustrie geführt. Aus diesem Grund haben sich ne-
ben den Verbesserungen von konventionellen Fahrzeugen weitere, alternative Fahrzeugkon-
zepte wie Hybridelektrofahrzeuge oder Elektrofahrzeuge am Markt etabliert. Da jedoch die
Leistungsfähigkeit von rein elektrischen Fahrzeugen aufgrund der geringen Energiedichten
des Energiespeichers eingeschränkt ist, haben Hybridelektrofahrzeuge in den letzten Jahren
zunehmend an Bedeutung gewonnen. Im Gegensatz zu konventionellen Fahrzeugen beinhal-
tet dieses Fahrzeugkonzept mindestens zwei unterschiedliche Energiewandler, welche typi-
scherweise durch eine Kombination aus einer Verbrennungskraftmaschine und einer Batterie
repräsentiert werden. Um die Vorteile von Hybridelektrofahrzeugen wie Rekuperation von
Bremsenergie oder Lastpunktverschiebung nutzen zu können, ist eine passende Betriebsstra-
tegie notwendig. Darüber hinaus stellt die Auslegung von Komponenten wie z.B. der Ener-
giespeicher oder der Energiewandler eine wichtige Aufgabe dar.
Im Rahmen dieser Dissertation werden neuartige Methodiken für die Berechnung von opti-
malen Betriebsstrategien sowie für die Komponentenauslegung im Bereich der Hybridelek-
trofahrzeuge entwickelt. Der erste Teil beschreibt Ansätze für Betriebsstrategien, welche die
Berücksichtigung von laufenden Kosten sowie Lebenszykluskosten erlauben. Dabei werden im
Optimierungsproblem nicht nur die Treibstoffkosten, sondern auch die Kosten aufgrund von
Batteriealterung und Bremsverschleiß in Betracht gezogen. Zusätzlich zu den kostenoptima-
len Ansätzen werden weitere Betriebsstrategien beschrieben, welche thermische Komponen-
tengrenzen einhalten sowie die Anzahl der Start- und Stoppvorgänge der Verbrennungskraft-
maschine reduzieren.
Für die Berechnung der optimalen Betriebsstrategien wird in dieser Arbeit die mathemati-
sche Methode der deterministischen dynamischen Programmierung verwendet. Ein wichtiger
Vorteil dieses Algorithmus liegt darin, dass immer das globale Optimum berechnet wird. Nach-
teilig wirken sich mehrdimensionale Zustandsräume aus, welche zu langsamen Rechenzeiten
führen. Um den Rechenaufwand zu reduzieren, wird daher eine modifizierte Version der de-
terministischen dynamischen Programmierung auf Basis eines iterativen Ansatzes eingesetzt.
Neben der Berechnung von optimalen Betriebsstrategien kann die deterministische dynami-
sche Programmierung des Weiteren für die Bestimmung von optimalen Komponentenaus-
legungen verwendet werden. Der zweite Teil dieser Arbeit beschreibt Methodiken für die
optimale Dimensionierung von Energiewandlern und elektrischen Antriebsmaschinen.
Die in dieser Arbeit entwickelten Methodiken werden anhand von Simulationsstudien basie-
rend auf einem Modell eines seriellen Hybridbusses demonstriert. Die allgemeine Formulierung
der Ansätze erlaubt jedoch auch die Verwendung von anderen Topologien und Hybridfahr-
zeugklassen.
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1. Introduction

1.1. Motivation

Global economic growth in combination with an increasing consumption of fossil fuels has
led to negative impacts on the environment. In order to reduce emissions and to improve
sustainability, limits for all energy consuming sectors have been enacted by law. In the field
of mobility and transportation, maximum values of vehicle emissions like NOx, hydrocarbons
or particles have been introduced. Furthermore, mandatory fleet average CO2 standards have
been defined for all manufactures. The limits described have become stricter over the past
years for all types of vehicles and have caused major challenges in the vehicle industry. Beside
the improvements of conventional vehicles, new vehicle concepts have been introduced into
the market to fulfill the defined limits.
Typical CO2 standards defined by legislation are depicted in Figure 1.1. The corresponding
values for 2015 and 2020 which are defined by 130 g CO2/km and 95 g CO2/km are equivalent to
4.9 lit./100 km and 3.58 lit./100 km diesel fuel, respectively. In addition, the illustration shows the
fleet average type-approval CO2 emissions of newly registered light-duty vehicles in Germany
over the past years. As only newly registered vehicles are considered, a delayed trend occurs
in reality. Due to this circumstance and the increasing number of vehicles, the CO2 emissions
are still increasing [23].

Figure 1.1.: Fleet average type-approval CO2 emissions of newly registered light-duty vehicles
during a series of years in Germany. The blue and green levels represent the target
values for 2015 and 2020, respectively [23].

In order to avoid expensive penalties for exceeding emission target values, vehicle manufactur-
ers aim to introduce novel vehicle concepts instead of conventional vehicles. These alternative
vehicle types include for example hybrid vehicles or electric vehicles. In case of electric vehi-
cles, it is assumed that this vehicle type offers the best future concept in terms of efficiency

1
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and emissions. However, due to immature battery technology the performance of an electric
vehicle is very limited. Hence, at least for the next few years hybrid vehicles will provide a
practical alternative to the current vast number of conventional vehicles [115].

Conventional vehicles only use one energy source which is mostly an internal combustion
engine (ICE) in combination with a fuel tank. In contrast, hybrid vehicles contain at least
two distinct energy sources. A more general definition of this vehicle type is provided by the
International Electrotechnical Commission [42]:

”A hybrid vehicle is defined as one in which propulsion energy, during specified operational
missions, is availabe from two or more kinds or types of energy stores, sources, or converters.”

Based on hybrid vehicle concepts, there are a variety of possible combinations between en-
ergy sources and energy storages. The main advantages of hybrid vehicles are summarized
as follows:

• Recuperation of kinetic energy,

• Shifting of operating points of the ICE,

• Downsizing of the primary energy source (ICE),

• Reduction of idle losses through start-stop of the primary energy source (ICE),

• Zero-emission driving.

In contrast, the hybridization of a vehicle may lead to drawbacks like increased vehicle weight,
higher costs and higher complexity.
The typical configuration is represented by the use of an ICE combined with an electric motor
(EM). This type of hybrid vehicle belongs to the class of hybrid electric vehicles. Today, the
energy storage used in addition to the fuel tank is usually a battery but other concepts with
supercapacitors are also common. Due to this circumstance, this thesis focuses on hybrid
electric vehicles with a battery as energy storage.
To exploit the advantages of hybrid electric vehicles, an appropriate control strategy for the
energy management is necessary. The main task of such operating strategies is to minimize
a cost function L(·) which is generally given by fuel consumption fc over time. By means
of optimization results, the power-split us between the energy sources is determined for
occurring driving profiles. In addition, component limits such as the maximum power of the
EM PEM,max or the minimum energy content of the battery EBAT,min have to be considered to
prevent component damages and enhance the overall life span. Operating strategies of hybrid
electric vehicles are generally classified into two categories, namely rule-based and optimal
control concepts [23]. Rule-based strategies are especially suitable for real-time applications
whereas optimal strategies can be used for component sizing as well as benchmarking.
In recent years several researches have been conducted to improve operating strategies in
hybrid electric vehicles [83, 116, 90, 47, 38]. However, there are still challenges in terms of
introducing cost functions L(·) that do not only consider the fuel consumption fc. Minimizing
the operating costs of hybrid electric vehicles would be an example therefore. This thesis
focuses on the above mentioned task and provides novel approaches in the field of optimal
energy management in hybrid electric vehicles.
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1.2. Objectives

Besides the sizing of components, the use of an appropriate operating strategy is essential to
reduce fuel consumption fc of hybrid electric vehicles. In order to assess the applied operating
strategy for a given vehicle configuration, the calculation of a globally optimal reference is
of central interest. For this purpose, the energy management in hybrid electric vehicles is
converted into an optimization problem which can be solved in different ways. Depending on
the applied optimization algorithm, several constraints in terms of cost functions L(·) and
modeling of components need to be taken into account. In order to calculate the optimal
operating strategy the first approaches were based on linear programming (LP) [104]. Fur-
thermore, it has been shown that quadratic programming (QP) [50] as well as the maximum
principle of Pontryagin (PMP) which originates from optimal control theory can be applied
[24, 47]. The mentioned algorithms are restricted to convex functions and models which can
cause oversimplifications in some applications. To avoid these restrictions the use of dynamic
programming (DP) in several variants has been recommended in later work [61, 44].
In related work [53, 101, 3, 92, 23, 38] the optimal operating strategies calculated by means
of different algorithms were compared. Furthermore, the deviations between heuristic and
optimal operating strategies were evaluated in detail. As these comparisons are assumed to
be well-understood, this thesis focuses on other objectives which are described in the follow-
ing.
The usual goal of an optimal energy management strategy in hybrid electric vehicles is to
minimize fuel consumption fc. In contrast, there are applications such as freight traffic where
minimizing the operating or life cycle costs instead of fuel consumption fc is more important.
In this thesis, the objectives are defined by developing methodologies for obtaining optimal
operating costs of hybrid electric vehicles. Other tasks are given by means of the integra-
tion of thermal effects or the number of start-stop operations into the optimization problem.
Whereas the objectives described focus on operating strategies, the component sizing of hybrid
electric vehicles depicts another challenge. For this purpose, further methodologies should be
evolved within this thesis.

1.3. Contributions

The use of an algorithm that calculates the global optimum is essential to obtain the optimal
operating strategy as well as to compare different vehicle and component variations in a ”fair”
way. To solve the corresponding optimization problems, deterministic dynamic programming
(DDP) was finally chosen.
The contributions of this thesis are divided into two parts. The first part provides novel
approaches in terms of optimal operating strategies of hybrid electric vehicles. The approaches
developed consider cost-optimal operating strategies leading to minimum operating or life
cycle costs. In order to determine these costs, the fuel consumption fc as well as battery
aging and brake pad wear are considered. Further approaches include critical component
temperatures or the number of start-stop operations of the ICE into the optimization problem.
The second part describes methodologies for the optimal sizing of energy sources and electric
traction motors.
To summarize, this thesis provides novel approaches at the intersection of DDP and the
modeling of hybrid electric vehicles. Parts of corresponding results have been published and
can be found in [34, 35].
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1.4. Thesis Outline

Chapter 2 gives a short introduction to hybrid vehicles and describes rechargeable energy
storages, possible architectures as well as common classifications of this vehicle type.

In Chapter 3, a review of operating strategies for hybrid electric vehicles is shown and several
examples for heuristic and optimal strategies are presented in detail. Since this thesis focuses
on optimal operating strategies, the method of dynamic programming was chosen to obtain
globally optimal results.

To get an insight into the algorithm, different variants and practical modifications applied in
this thesis are shown in Chapter 4.

Chapter 5 presents a model of a hybrid electric bus which is used to demonstrate the method-
ologies of this thesis. For this purpose, the characteristics and parameters are depicted for
several component models.

Chapter 6 represents the central part of this thesis. It describes the novel methodologies
developed by the author as well as corresponding simulation results. These methodologies
deal with optimal component sizing as well as optimal operating strategies in the field of
hybrid electric vehicles.

The final Chapter 7 provides a conclusion of this thesis together with a short outlook.



2. Hybrid Electric Vehicles

This chapter gives an introduction to hybrid electric vehicles (HEVs) and outlines possible
configurations, architectures and characteristics of this vehicle type. Before focusing on HEVs,
a general description of the power at the wheels PW for all vehicle types is introduced to
analyze how energy consumption ec can be reduced.
Figure 2.1 shows a schematic representation of forces acting on a simplified vehicle model.

α

FT
FA

FG

FR

m·g

Figure 2.1.: Forces acting on a simplified vehicle model in order to describe the longitudinal
vehicle dynamics. FT represents the traction force at the wheels, FG the force
caused by gravity and gradients, FA the aerodynamic friction and FR the rolling
friction.

By means of the forces depicted in Figure 2.1 the longitudinal vehicle dynamics can be derived
as follows

m · v̇ = FT − (FG + FR + FA), (2.1)

where m represents the vehicle mass, v̇ the vehicle acceleration, FT the traction force at the
wheels, FG the force caused by gravity and gradients, FR the rolling friction and FA the
aerodynamic friction.
The forces in Equation 2.1 can be described in more detail by means of

FG = m · g · sin α, (2.2)

FR = fr · m · g · cos α, (2.3)

FA =
1

2
· ρ · cw · A · v2, (2.4)

where g represents the gravitational constant, α the road angle, fr a coefficient for the rolling
resistance, ρ the air density, cw the drag coefficient, A the frontal area and v the vehicle
velocity. Multiplying Equation 2.4 by the velocity v leads to the power at the wheels

PW = m · v̇ · v
︸ ︷︷ ︸

(1)

+ m · g · sin α · v
︸ ︷︷ ︸

(2)

+ fr · m · g · cos α · v
︸ ︷︷ ︸

(3)

+
1

2
· ρ · cw · A · v3

︸ ︷︷ ︸

(4)

. (2.5)
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For simplicity, Equation 2.5 neglects a possible energy consumption ec of auxiliary devices
(AUX) like air condition and alternator. The terms contributing to the power at the wheels PW

can be distinguished by the following four parts:

(1) Inertial power in order to describe the power to accelerate and decelerate the
vehicle which is also equivalent to the change of kinetic vehicle energy.

(2) Power to cope with changes of the potential vehicle energy resulting from gradients
along a route.

(3) Power to cope with rolling losses,

(4) Power to cope with aerodynamic losses.

Equation 2.5 provides several approaches on how to reduce the required power at the wheels PW

in order to improve fuel economy. For example, the reduction of vehicle mass m as well as
a lower rolling resistance fr due to advanced tires and tire conditions lead to lower fuel con-
sumption fc. Furthermore, a reduced product of air drag coefficient cw and frontal area A by
means of an enhanced vehicle design contributes to an overall lower energy consumption ec.
In addition to modified vehicle parameters, the driving behavior also influences the power
demand PDEM . The driver can significantly reduce the energy consumption ec by means of
lower velocities v and accelerations v̇. These mentioned improvements are described from a
general point of view and hold for all types of vehicles.
In a further step, negative power demands PDEM representing the braking case (power at the
wheels PW < 0) are analyzed. Conventional vehicles (CVs) with mechanical brakes convert
braking energy into heat and are not able to recuperate energy. In contrast, hybrid vehicles
(HVs) allow to store braking energy by means of one or more additional energy storages.
The recuperated energy can be re-used in the propulsion case (power at the wheels PW > 0)
which significantly contributes to higher efficiencies η. For example, the hybridization of
urban buses allows to reduce fuel consumption fc by up to 30 % [64, 14]. Beside other ad-
vantages which are itemized in Section 1.1, the recuperation of braking energy represents
an important benefit of HVs. General applications with a high recuperation potential are
driving scenarios with fast-changing velocities or steep up and downhill gradients.
As stated before, HVs contain at least two distinct on-board energy types with corresponding
energy converters. There are several combinations of energy sources possible but in many
cases the primary energy source is an ICE combined with a fuel tank. The choice of the second
energy storage strongly depends on its application but mostly a battery fulfills the require-
ments. More sophisticated concepts may use more than two energy storages to exploit their
advantages. Further HV concepts and possible energy storages in automotive applications
are described in the next section.

2.1. Overview of Energy Storages

Beside the usually used fuel tank, HVs contain a second energy storage to allow recuperation
of braking energy. The main characteristics of such devices are represented by energy density,
power density, costs and safety issues. In special applications the volumetric energy and
power density or the life span define further constraints.
Different energy storages are often compared in terms of energy and power densities leading
to the well-known Ragone-chart. The energy and power densities of energy storages are
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mainly influenced by means of corresponding operating points and losses, respectively. Thus,
it is important to specify typical storage efficiencies η. This extension allows to exclude
theoretical limits in terms of energy and power densities which are not usable in practical
applications. Figure 2.2 depicts the Ragone-chart of common energy storages for automotive
applications. The diagram considers an one-way storage efficiency η of 90 % and is based
on data sheets of the companies A123, Skeleton Technologies, Yunasko, Saft, Altair Nano,
Panasonic, Sanyo, Kokam, Varta, Wima, Epcos, Nesscap, Maxwell, Compact Dynamics,
Williams Hybrid Power, and CCM. Furthermore, the grey lines depict theoretical time spans
in which the energy storage is fully charged or discharged. Since no thermal limits are taken
into account in that case, significantly higher values of charge and discharge times are needed
in ”real life” to avoid overheating of the energy storage.
As can be seen from the chart, batteries provide an appropriate trade-off between energy and
power density. More details, further comparisons and requirements of energy storages can be
found in [45, 18, 52, 63, 78].
Due to relatively high power and energy densities, HVs generally contain beside the ICE a
battery as second energy storage and one or more electric motors (EMs) as energy converter.
Since the rechargeable energy is stored electrically, this type of HV is referred to as hybrid
electric vehicle (HEV). Another concept for HEVs is given by the use of supercapacitors
instead of batteries. This configuration is suitable for applications where low energy and
high power requirements need to be fulfilled.

Figure 2.2.: Gravimetric Ragone-chart (at an one-way storage efficiency η of 90 %) [114]. Blue:
Li-Ion cells and modules, green: NiMH cells and modules, red: supercapacitor
cells und modules, purple: flywheel modules. The grey lines depict time constants
which are obtained by dividing the energy density by the power density. These
time constants represent theoretical time spans in which the energy storage is
fully charged or discharged. Since no thermal limits are taken into account in
that case, significantly higher values of charge and discharge times are needed in
”real life” to avoid overheating of the energy storage.

In practice, a few buses in public transport have been equipped with supercapacitors (e.g.
[29, 111]) but this configuration is still rare due to the relatively high costs and space [82].
In addition to the hybrid vehicle configurations with batteries or supercapacitors rather non-
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typical concepts for the second energy storage and corresponding energy converter of HVs
can be designed as shown in [38]:

• Flywheel and electric motor (EM),

• Continuously variable transmission (CVT) and flywheel,

• CVT and torsion spring,

• Pneumatic pump/motor and accumulator,

• Hydraulic pump/motor and gas-filled accumulator,

• Superconductor coil and EM.

The following sections restrict the various configurations of HVs and focus on HEVs. Since
nowadays the majority of all HEVs contains a battery as second energy storage, this hybrid
configuration is used in the following.

2.2. Architectures

This section briefly describes and compares different architectures of HEVs. As stated in Sec-
tion 2.1 the focus is put on HEVs that use an ICE as the main energy source and a battery
as additional energy storage.

In general, there exist three different standard categories which are

• Series HEVs,

• Parallel HEVs,

• Power-split HEVs.

The corresponding illustrations of these architectures are depicted in Figures 2.3(a), 2.3(b),
and 2.3(c).

2.2.1. Series Hybrid Electric Vehicles

In series HEVs the vehicle is exclusively propelled electrically. Thus, there is no direct me-
chanical connection between the ICE and the powertrain. The architecture of a series HEV
can be described as a pure electric topology with an additional energy source. To convert
the mechanical power of the ICE into electrical power a generator with corresponding power
electronics (PE) is needed. The combination of ICE and generator is often denoted by an
engine-generator unit (EGU) or auxiliary power unit (APU), and can be used for vehicle
propulsion or recharging the battery. The mechanical decoupling of the generator unit allows
its flexible positioning inside the vehicle. Furthermore, inefficient operating points can be
avoided since the rotational speed of the ICE does not depend on the vehicle velocity v. In
many applications, components of the conventional drive train such as clutch and gear box
can be omitted.
In case of positive traction power an additional degree of freedom is given by the power-
split us between EGU and battery. Depending on the operating strategy, the EM operates
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(a) General topology of a series HEV.
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(b) General topology of a parallel HEV.
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(c) General topology of a power-split HEV.
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Figure 2.3.: Overview of general topologies of HEVs.

as generator in the braking case and the battery is used to store recuperation energy.
One disadvantage of this architecture is the additional energy conversion: Instead of a di-
rect mechanical connection between the ICE and the powertrain, two energy conversions are
performed by means of a generator and EM, which may lead to overall lower efficiencies η.
Further drawbacks arise from the generator, which leads to a higher vehicle mass and costs
compared to a parallel architecture.

2.2.2. Parallel Hybrid Electric Vehicles

In parallel HEVs, the vehicle is propelled mechanically. The parallel architecture represents
an extension of the topology of CVs and uses an EM as additional energy source. In contrast
to series HEVs, there is a direct mechanical connection between ICE and powertrain which
leads to a lower flexibility in terms of component positioning. Furthermore, the integration
of components such as clutch and gear box is necessary. Due to the mechanical connection
operating points of the ICE depend on vehicle velocity v. This circumstance does not allow
to avoid operating points with poor efficiency η. However, the combination of EM and ICE
allows to shift load points in regions with better efficiencies η. In parallel HEVs the ICE
and EM can supply the propulsion power either alone or in combination. This fact leads
to an additional degree of freedom for distributing the power flows in the vehicle. In the
recuperation case, the EM acts as generator and charges the battery.
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Predominantly, parallel HEVs may have a generally higher efficiency η than series HEVs
since no energy conversion between ICE and powertrain is needed. Other characteristics in
contrast to series HEVs are the integration of mechanical parts such as clutch and gear box
into the powertrain and the omission of the generator.

2.2.3. Power-split Hybrid Electric Vehicles

In literature, the term power-split is also referred to as combined or series-parallel. This type
of HEV is usually a parallel architecture with containing features of a series architecture and
utilizes the advantages of both concepts. In general, a planetary gear set (PGS) is used for
splitting the power flows between the propulsion systems. The drawbacks of this architecture
lies in the higher control effort and possible circulating power flows.

2.2.4. Further Variants and Modifications

More advanced combinations of hybrid architectures which cannot be converted into the stan-
dard variants are described as complex hybrid architectures [38, 17]. In series HEVs, there
are different variants for positioning one or more traction EMs. In the following, HEVs with
only one driving axle are described but the principles can also be applied for a higher number
of driving axles.
A common way is to use one central EM in combination with a differential to distribute the
power to the traction wheels. Another option is using two EMs for one axle. This concept
leads to advantages in terms of packaging, especially if the construction space is restricted.
The use of wheel hub motors is a further option which has gained more attention since it
provides a benchmark in terms of packaging and powertrain miniaturization. Drawbacks
of this concept are the high costs as well as problems with increased, unsprung masses. In
addition, the PGS needs to fulfill high requirements to cope with torque peaks introduced on
uneven roads by the wheels to the significant inertia of the drive train. Due to the drawbacks
mentioned above, only a few prototype vehicles have been equipped with this technology
[73, 97].

2.3. Classifications

In this section general characteristics for the classification of HEVs are shown. The param-
eters introduced are independent of the hybrid architectures and allow to compare different
configurations of HEVs. Firstly, the hybridization ratio hr is defined by

hr =
PBAT

PT OT AL

=
PBAT

PBAT + PICE

, (2.6)

where PBAT denotes the battery power at a defined, continuous C-rate (e.g. 3 C), PICE

the ICE power and PT OT AL the total available power of battery and ICE. Other variants
for describing the hybridization ratio hr exist in literature (e.g. [78]) but the definition of
Equation 2.6 is preferably used since it provides a normalized value between 0 and 1. The
values of the hybridization ratio hr for different vehicle categories can be classified into
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• hr = 0 for conventional vehicles,

• 0 < hr < 1 for hybrid vehicles,

• hr = 1 for electric vehicles.

Secondly, the scaling of the energy storage represents another key parameter in the design
process of HEVs. In Figure 2.4, the relation between these parameters is depicted for several
HEVs and electric vehicles (EVs) available in 2013. It can be seen that higher values of the
hybridization ratio hr lead to increased storage capacities CST O of the energy storage.
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Figure 2.4.: Overview of storage capacity CST O and hybridization ratio hr for some HEVs
and EVs available in 2013 [23].

Figure 2.4 shows that the values of the hybridization ratio hr lie in a wide range between
0 and 1 in the field of HEVs. Due to this circumstance, a more accurate classification of
HEVs by means of their functionality levels was introduced which has led to the following
categories

• Micro hybrid,

• Mild hybrid,

• Full hybrid,

• Plug-in hybrid.

General characteristics of HEVs are implicitly given on the basis of these categories. In Ta-
ble 2.1 the ranges of parameters such as the hybridization ratio hr, electric motor power PEM ,
battery energy content EBAT and voltage level are listed for each category.

Table 2.1.: Comparison of different HEV classifications [40].

Micro hybrid Mild hybrid Full hybrid Plug-in hybrid

Hybridization ratio hr (-) < 0.05 0.05 - 0.1 0.1 - 0.5 0.3 - 0.8
Energy content EBAT (kWh) ≪ 1 < 1 1 - 5 5 - 15
EM power PEM (kW) 2 - 3 10 - 15 ≫ 25 ≫ 25
Voltage level (V) 12 - 48 48 -150 > 200 > 200

In the following subsections the categories of HEVs are described in more detail.
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2.3.1. Micro Hybrid

Micro hybrids are only a slight extension of CVs: This class of HEVs does not need an
additional EM and uses the traditional alternator to perform the following operations:

• Recuperation of braking energy,

• Power supply to electrically driven auxiliaries.

In contrast to CVs, the idling losses and furthermore fuel consumption fc of the ICE can be
significantly reduced while the vehicle is stopped because the electronic control unit of the
ICE turns off the fuel injection. This circumstance leads to many start-stop operations during
typical driving scenarios (e.g. driving in the city). Thus, an intelligent battery management
is necessary to ensure that the state of charge SOC of the battery is always sufficiently high
to restart the ICE. Unlike other HEV concepts micro hybrids do not provide any traction
force while the ICE is stopped. Beside the standard operations like starting, the alternator
is generally designed to supply further electrical auxiliaries such as electrical fans or the
electrically powered hydraulic steering. The recuperation of braking energy is possible with
restrictions due to the low energy content of the battery EBAT .

2.3.2. Mild Hybrid

The main difference between mild and micro hybrids consists in the fact that an additional
EM contributes to the drivetrain. This component is used to assist the ICE while accelerating
or to recuperate braking energy. Compared to micro hybrids the higher battery energy con-
tent EBAT in combination with a higher EM power PEM improves the recuperation of braking
energy. However, pure electric propulsion is generally not possible due to low hybridization
ratios hr of 0.05 - 0.1.

2.3.3. Full Hybrid

In addition to the functions of mild hybrids such as electric boost and regenerative braking,
full hybrid vehicles allow to start and drive with the EM only. Due to a higher energy
content of the battery EBAT compared to mild hybrids the recuperation of braking energy
is enhanced. Full hybrids also provide the zero emission property (ZE) but as a result of
the limited size of EM and battery, the pure electric driving range is limited. In contrast
to plug-in hybrids, the battery can only be charged by means of the ICE combined with
the EM. Generally, a charge-sustaining operating strategy is implemented since this type of
hybrid cannot be charged externally. In contrast to a charge-depleting behavior, the charge-
sustaining operating strategy keeps the battery’s state of charge SOC at around a defined
level. The difference between charge-depleting and charge sustaining operating strategies
is outlined later in Section 3.1.3. In this thesis methodologies based on charge-sustaining
operating strategies are developed which are suitable for both mild and full hybrids.
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2.3.4. Plug-in Hybrid

Plug-in hybrids provide the same functionalities as full hybrids but have a higher energy
content of the battery EBAT . This characteristic allows pure electric driving for at least daily
average urban distances (≈ 15 km - 100 km) [78]. As an additional feature to full hybrids
the battery can be recharged from the grid. Thus, charge-depleting operating strategies in
combination with recharging at a socket are meaningful options to reduce fuel consumption fc.
In order to achieve an overall reduction of CO2, the energy mix of the recharging current
needs to be taken into account.
As an example, let us assume a vehicle’s fuel consumption fc of 5 lit./100 km. In addition,
combustion of diesel fuel is considered which produces CO2 emissions of 2.64 kgCO2

/lit. The
CO2 emissions for producing electrical energy are 558 g/kWh according to the energy mix of
the European Union in 2013 [32]. Furthermore, the transmission losses of electrical energy
are neglected. Based on these specifications, the fuel consumption fc and the electrical energy
consumption eec can be compared as follows:

eec =
5 lit./100 km · 2.64 kgCO2

/lit.

0.558 kgCO2/kWh
= 23.66 kWh/100 km. (2.7)

By means of Equation 2.7, a maximum electrical energy consumption eec,max of the vehicle
can be determined for a given fuel consumption fc and energy mix. If the electrical energy
consumption eec is higher than the calculated limit, then the use of electrified vehicles leads
to higher CO2 emissions compared to conventional vehicles.

A further category of HEVs based on pure EVs is called the range extended plug-in hy-
brid. This HEV type uses the EM as the only propulsion energy source but in contrast to
EVs, a range extender (REX) or APU is integrated to recharge the battery if depleted to a
specific minimum value. Range extended plug-in hybrids use a series hybrid topology which
allows to decouple the REX from the drivetrain. One drawback of such series hybrid concepts
is that the reliability of the whole electric drivetrain has to be at least as high as for standard
ICE cars. The operating strategy of range extended plug-in hybrids is almost equivalent to
strategies of EVs: if the level of the battery’s state of charge SOC falls below a certain limit,
the REX will be used to recharge the battery. By means of this strategy the overall range of
the vehicle can be enhanced.

2.4. Summary

In this chapter an introduction to HEVs was given. After a short description of the power
at the wheels PW of vehicles, different classes of energy storages were shown. Furthermore,
possible architectures of HEVs, their classification as well as the pros and cons were described.
Overall, it can be seen that finding an optimal configuration for HEVs poses a complex
task due to the high number of degrees of freedom which include for example the vehicle
architecture, the scaling of components or the implemented operating strategy. This thesis
focuses on the latter but also provides approaches in terms of optimal component sizing. In
the following chapter different categories of operating strategies are outlined.



3. Operating Strategies for Hybrid Electric
Vehicles

A control or operating strategy is used to execute several tasks in order to fulfill requirements
of driver and vehicle components. Beside the consideration of component limits like maxi-
mum power or maximum temperature, its main goal is generally to achieve a lower energy
consumption ec of the vehicle. In contrast to conventional vehicles (CVs), operating strategies
of hybrid electric vehicles (HEVs) are more complex due to a higher number of degrees of
freedom and constraints. This chapter describes and classifies several control strategies for
HEVs and outlines their pros and cons.

Since HEVs use two or more distinct energy sources, the main task of an operating strategy
is to split the power flows from the energy sources under defined vehicle operating conditions
(e.g velocity v, acceleration v̇, temperatures ϑ or power demand PDEM ) in order to reduce
fuel consumption fc.
Firstly, the basics and challenges of operating strategies for HEVs are described by means of
taking a closer look at the power flows in the vehicle. Figures 3.1(a) and 3.1(b) show the main
components such as energy sources and energy converters for a series as well as a parallel
HEV. In addition, component energies as well as power flows are depicted for selected parts
of the HEV. In order to mathematically describe the energy distribution between energy
sources and energy consumers it is necessary to define a summing point. As this summing
point cannot store energy, not only the energy but also the sum of all power flows remains
zero at this point. Thus, an equation can be set up to describe the power balance in the
HEV.
Secondly, the power balance at the summing point needs to be specified in more detail. For
this purpose, the power of all energy sources and energy consumers is related to the summing
point by means of mathematical component models which may significantly differ in terms
of complexity and accuracy. The model complexity can vary from oversimplified approaches
containing constant efficiencies to highly sophisticated approaches considering for example
thermal effects, component limits, time lags or moments of inertia. The choice of component
models mainly depends on the application and affects the trade-off between accuracy and
computational effort. Although the calculated power flows at the summing point are strongly
influenced by means of the component models, the sum of all power flows always remains
zero. The resulting power balance at the summing point represents a central part in terms
of optimizing the operating strategies for HEVs.

In the following, the power balances at the summing points of Figures 3.1(a) and 3.1(b)
are described in detail.

14
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(a) Energies and power flows in a series HEV.
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(b) Energies and power flows in a parallel HEV.

Figure 3.1.: Energies and power flows in series and parallel HEVs. Both figures depict ener-
gies and power flows of selected components where EF UEL denotes the energy
contained in the fuel tank, EECH the stored electrical energy of the battery, EW

the energy stored in the inertia of the wheels, PGEN the power of the generator,
PAUX the power of the electrical auxiliaries, PBAT the available power at the
battery terminal, PDEM the power demand due to the driving cycle, PW the
power at the wheels, PBRK the power of the mechanical brakes, PGB the power
at the gear box output and PEM the mechanical power of the EM. The relations
between these energies and power flows are defined by means of component mod-
els. In addition, a summing point is depicted for each topology. As the summing
points cannot store energy, an equation can be set up in order to describe the
power balance. This equation represents a central element in terms of optimizing
the operating strategies of HEVs.
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In case of a series hybrid topology shown in Figure 3.1(a), the power balance at the summing
point ESUM can be derived as follows:
The energy at the summing point ESUM is always zero and consequently, the sum of power
flows remains also zero.

ESUM = 0 (3.1)

d

dt

(

ESUM

)

= 0 (3.2)

PGEN + PBAT − PAUX − PDEM = 0, (3.3)

where PGEN denotes the power of the generator, PBAT the available power at the battery
terminal, PAUX the power of the auxiliaries and PDEM the power demand due to the driving
cycle. In order to determine the power demand PDEM , the power at the wheels PW and the
power of the mechanical brakes PBRK are taken into account.

The energy balance at the summing point of a parallel hybrid topology shown in Figure 3.1(b)
can be derived as follows:
Again, the sum of power flows at the summing point is zero.

ESUM = 0 (3.4)

d

dt

(

ESUM

)

= 0 (3.5)

PGB + PEM − PDEM = 0, (3.6)

where PGB denotes the output power of the gear box, PEM the power of the electric motor
and PDEM the power demand due to the driving cycle. The power demand PDEM considers
the power at the wheels PW as well as the power of the mechanical brakes PBRK . In contrast
to the series topology, the power of auxiliaries PAUX is not taken into account at the summing
point but implicitly considered by means of the electric motor power PEM .
Until now, the energy balance in a HEV was demonstrated by means of a series and parallel
hybrid topology. The principle can also be used for more complex topologies but in that case
the summing point needs to be adjusted accordingly.

Based on the power flow analysis described above, operating strategies can be derived for
HEVs. In general, there are two main categories of operating strategies which are either
classified into rule-based or optimization-based concepts. Both concepts are divided into
further sub-categories that differ for example in terms of optimality, complexity or in the use
of predicted data. In the following, these categories of operating strategies are described in
more detail.

3.1. Rule-based Strategies

Rule-based strategies use heuristics to define the power-split us in a HEV. Hence, this type of
concept is also referred to as heuristic strategies [38]. The main idea of this type of operating
strategy is to apply ”if-then” rules that assign a combination of state variables x and control
variables u to corresponding power-splits us. The derivation of rules can be done by means of
intuition, human expertise as well as mathematical models. Typical rules are for example:
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• If the state of charge (SOC) is below a defined limit, then the ICE is additionally used
for recharging,

• If the SOC is above a defined limit, then the EM is preferably used,

• If the velocity v of the vehicle is low, then only the EM is used,

• If high power demands PDEM occur, then the EM assists the ICE.

In the next step, these ”if-then” conditions are transformed into mathematical relations. For
this purpose, concepts usually based on boolean or fuzzy logic are applied to describe the
operating strategy. Since no knowledge about future driving conditions is used, the resulting
rules are causal and especially suitable in real-time applications. The main drawback of this
concept is that these operating strategies are sub-optimal in nearly all applications. The
reason for this sub-optimality is that no future data about the driving profile can be taken
into account. For example, the information about future downhill gradients cannot be used
in order to prefer electric propulsion. To summarize, rule-based strategies cannot be applied
to assess the minimum fuel consumption fc for given vehicle configurations and driving cycles.
However, the extension and optimization of rules is possible and can be considered to improve
the fuel economy of defined scenarios. The following subsections provide a brief overview of
rule-based control strategies. Further details can be found in [38, 87].

3.1.1. Deterministic Concepts

In the deterministic or boolean approach the rule-based operating strategy is usually im-
plemented by means of look-up tables. Thus, the power-split us used to describe the split
between the power of the battery PBAT and the engine PICE is defined for a given com-
bination of state variables x and control variables u. For example, the power-split us can
depend on the state of charge SOC, the total power demand P ′

DEM given by the sum of
power demand due to the driving cycle PDEM and electrical auxiliaries PAUX , the total
torque demand M ′

DEM given by the sum of torque demand due to the driving cycle MDEM

and generator MGEN , or the velocity v.

The power-split us is defined as follows

us =
PBAT

PDEM + PAUX

=
PBAT

P ′
DEM

, (3.7)

where PBAT denotes the battery power, PDEM the power demand due to the driving cycle,
PAUX the power demand of electrical auxiliaries and P ′

DEM the total power demand. In
other words, the power-split us provides the ratio of pure electric power to the total power
demand P ′

DEM . Furthermore, a positive battery power PBAT discharges the battery and a
negative battery power PBAT charges the battery.
In case of propulsion (PDEM > 0 or MDEM > 0) a power-split us of 1 represents pure electric
driving. In this scenario the battery delivers the power for propulsion and for the auxiliaries.
In addition, pure propulsion by means of the engine is described with a power-split us of 0.
In that case, the power of the electrical auxiliaries PAUX is only provided by the generator.
The use of both energy sources, battery and engine, is considered by means of power-splits
of 0 < us < 1. In case of braking (PDEM < 0 or MDEM < 0), recuperation of braking energy
is described by means of a power-split us of 1. Obviously, charging of the battery is only
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possible if the power demand of electrical auxiliaries PAUX is lower than the recuperation
power.
Until now, the driving scenarios only require power-splits us that lie between 0 and 1. How-
ever, the value ranges of the power-split us need to be extended in order to take into account
further scenarios. Whereas a power-split of us < 0 considers recharging during propulsion, a
power split of us > 1 supports recharging in case of braking.
To summarize the power-split us can be classified into the following value ranges

• us = 0 ICE propulsion (generator provides electric power of the auxiliaries PAUX),

• us = 1 Electric propulsion / electric braking,

• 0 < us < 1 ICE and electric propulsion,

• us < 0 Recharging in case of propulsion,

• us > 1 Additional recharging in case of electric braking.

In the next step, control maps can be designed on the basis of driving scenarios and corre-
sponding power-splits us. Figures 3.2(a) and 3.2(b) show typical control maps for heuristic
operating strategies. The illustrations also depict the variety of combinations to define the
size and shape of power-split regions. These regions are mainly restricted by means of com-
ponent limits such as maximum engine power PICE or maximum charge or discharge power
of the battery PBAT and can be seen as a reference for the power-split us. In practical ap-
plications, the power-split us determined by the control maps needs to be adjusted if further
component limits like temperatures are exceeded.

SOC

us = 1

us < 0

us = 0

0 < us < 1

us = 1

PDEM

additional mechanical

braking

0
0

'

(a) Control map depending on the battery’s
state of charge SOC and total power demand
P ′

DEM given by the sum of power demand
due to the driving cycle PDEM and electri-
cal auxiliaries PAUX .

us  �
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� 0 �s 0 �
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(b) Control map depending on velocity v and
total torque demand M ′

DEM given by the
sum of torque demand due to the driving
cycle MDEM and generator MGEN .

Figure 3.2.: Examples for rule-based operating strategies (based on [98, 38]). The power-
split us is categorized in: recharging in case of propulsion (us < 0), ICE
propulsion (us = 0), electric propulsion / braking (us = 1), ICE combined
with electric propulsion (0 < us < 1). A more detailed explanation can be
found in the text above.



3.1. Rule-based Strategies 19

Regions with preferable recharging (us < 0) can contain very low values of the power split us

especially if the total power demand P ′
DEM is small. Hence, a lower constraint of the power-

split us in this region needs to be considered in practical implementations. As depicted in
Figures 3.2(a) and 3.2(b) the different regions of the power-split us are divided by means of
boundaries. In that case, limit cycles and ”chattering” can occur if operating points of state
variables x and control variables u exactly lie on these boundaries. To avoid these problematic
effects as well as to obtain a stable behavior of the controller, the implementation of hystereses
and the smoothing of the power-split map are recommended.

3.1.2. Fuzzy Concepts

Another approach for rule-based operating strategies relies on fuzzy logic. The main advan-
tages of these methods are the following [87]:

• Robustness, since they are tolerant to imprecise specifications, measurements and com-
ponent variations,

• Ideal ”Man-Machine Interface”, since the fuzzy rules can be easily defined and tuned if
necessary.

Fuzzy logic represents a practical control concept especially if the system model is unknown
or only partly described. However, there are also drawbacks which are for example:

• Manual tuning of rules in case of large-scale applications which may be time-consuming,

• Plurality of rules for a higher number of input variables which may not fulfill real-time
requirements,

• Stability proofs are only available for certain classes of fuzzy logic systems [33, 100, 105].

Compared to the deterministic case, the fuzzy logic allows to use descriptions such as slightly,
fairly, low, normal, high, cold or warm in the implementation of control rules. The mapping
of fuzzy rules into mathematical relations is carried out by means of membership functions.
For given sets of control variables u, corresponding degrees of memberships are calculated.
Figures 3.3(a) and 3.3(b) depict examples how to define membership functions in the context
of HEVs.
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descriptions normal and high.
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high.

Figure 3.3.: Examples for typical membership functions in fuzzy control of HEVs [86].
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Finally, the degrees of membership are ”defuzzified” by means of weighting functions together
with fuzzy logic to obtain corresponding power-splits us and control variables u. Represen-
tative examples for the implementation of fuzzy logic in operating strategies of HEVs and
further references can be found in [87, 16, 89, 39].

3.1.3. Concepts for Plug-in Hybrid Electric Vehicles

Until now, the mentioned rule-based operating strategies provide a charge-sustaining behavior
which is necessary to fulfill the power demands PDEM of different scenarios over a longer
period of time. However, a pure charge-sustaining strategy is not desirable for plug-in HEVs
in terms of fuel economy. As stated in Section 2.3.4, plug-in HEVs can be charged from
the grid and have a higher battery energy content EBAT compared to other HEV categories.
Thus, a more efficient operating strategy that exploits the external recharging of the battery
should be applied. This strategy can be described as follows: At the beginning of each
driving scenario, electric propulsion is preferably used until a minimum limit of the state of
charge SOC is reached. This part of the strategy can be denoted as charge-depleting mode
which is also the operating strategy of EVs. If the state of charge SOC falls below a defined
threshold the charge-sustaining mode is activated to maintain the functionality of HEVs. The
combination of both modes described above leads to the charge-depleting / charge-sustaining
operating strategy (CDCS) [120] depicted in Figure 3.4.
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Figure 3.4.: Charge-depleting / charge-sustaining operating strategy for plug-in HEVs. In the
charge-depleting mode the vehicle is mainly propelled electrically until a lower
threshold of the state of charge SOC is reached. Then, the charge-sustaining
mode is activated to keep the state of charge SOC around a defined level.

For shorter driving cycles, the CDCS operating strategy maximizes the part of pure electric
driving since the ICE is only activated for power demands PDEM that exceed the maximum
EM power PEM . This circumstance significantly improves the fuel economy if the charge-
depleting mode is activated. In addition, the overall emissions can be reduced if the current
for recharging the battery comes from renewable energy sources.
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3.2. Optimization-based Strategies

A further class of operating strategies in HEVs is based on different optimization concepts. In
contrast to rule-based strategies, the power demand PDEM of a driving scenario is assumed
to be known in advance. Thus, it is possible to calculate for a given vehicle configuration the
globally optimal control strategy, which is especially useful to perform the following tasks:

• Calculating a benchmark for an operating strategy,

• Comparing different vehicle concepts and component sizes.

Representative methods to determine the global optimum are dynamic programming (DP)
[8], the maximum principle of Pontryagin (PMP) [36] or linear programming (LP) [106]. The
resulting operating strategies have a-causal behavior since the calculation considers future
data. Consequently, these strategies are not directly applicable in real-time applications but,
by means of appropriate modifications, parts of the results can be re-used. Concepts based on
modified optimal strategies are for example model predictive control (MPC) [15] or equivalent
consumption minimization strategies (ECMS) [75]. Unfortunately, these methods generally
lead to sub-optimal solutions over a whole driving scenario due to the lack of sufficient future
data.

3.2.1. Fundamentals

The goal of an optimization method is to find the optimal control variable u∗ that minimizes
a defined performance index J of the general form

J(x0, u) =

tf∫

t0

L(t, x, u) dt, (3.8)

where J denotes the performance index, x0 the initial state, u the control variables, t0 the
initial time, tf the final time and L(·) the cost function that may depend on time t, state
variables x and control variables u. If the performance index J is to be maximized, then only
the sign of the cost function L(·) has to be inverted.
Furthermore, the optimization may consider system dynamics f(·), final values of the state
variable xf as well as constraints of both state and control variables:

ẋ = f(t, x, u) (3.9)

x(tf ) = xf , (3.10)

umin ≤ u ≤ umax, (3.11)

xmin ≤ x ≤ xmax, (3.12)

x ∈ X , (3.13)

u ∈ U . (3.14)

The solution of Equation 3.8 leading to the optimal performance index J∗(x0, u) is described
by means of the optimal control variable u∗.
In a further step, the function

J (t, xt) = min
u([t,tf ])

tf∫

t

L(τ, x, u) dτ, (3.15)
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is introduced. The function describes the optimal cost-to-go depending on time as well as on
corresponding state variables xt. Further references and more detailed information in terms
of optimization theory and optimal control can be found in [23, 38, 87].

In order to obtain the optimal control variable u∗ the following ”principle of optimality”
taken from [6] must hold:

”An optimal policy has the property that whatever the initial state and initial decision are,
the remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision.”

The ”principle of optimality” states that if the performance index J(x0, u∗([t0, tf ])) is optimal,
then the performance index J(x∗(t1), u∗([t1, tf ]) of a truncated control variable u∗([t1, tf ]) is
optimal, too. The justification of this fact is proved by contradiction. Supposing that the
optimal control variable over time u∗(t) is not optimal in a truncated interval [t1, tf ], an-
other solution would exist and improve the performance index J(x∗(t1), u∗([t1, tf ]) of the
sub-problem. Obviously, the assumption that the control variable over time u∗(t) describes
the optimal solution, is not valid any longer. A graphical description of the principle of opti-
mality is shown in Figure 3.5.

Non-optimal trajectories

Optimal trajectory x*(t),

Optimal cost-to-go (t,x*(t))

J(x*(t1),u
*([t1,tf]))= (t1,x

*(t1))

J(x0,u
*(t))

xf=x(tf)

Figure 3.5.: Illustration of the trajectory of the optimal state variable x∗(t) from initial state
x0 to final state xf and corresponding optimal cost-to-go J (t, x∗(t)). As de-
scribed in the principle of optimality [6], the trajectory of the state variable x∗(t)
in the sub-interval t = [t1, tf ] has to be optimal, too.

By means of the ”principle of optimality” the Hamilton-Jacobi-Bellman equation (HJBE) can
be derived which is briefly shown in Appendix B.1. Additional information is also provided
in [8].
The HJBE is defined by means of a partial differential equation

∂

∂t
J (t, x) + min

u∈U

(

L(t, x, u) +
∂

∂x
J (t, x) · f(t, x, u)

)

= 0, (3.16)

where J (·) denotes the optimal cost-to-go, L(·) the cost function and f(·) the system dynam-
ics. The optimal control variable u∗ is given by means of the solution of Equation 3.16 but
generally an analytical expression cannot be found in practical cases. However, the HJBE
represents a powerful tool to find optimal solutions with the help of numerical methods.
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Another analytic approach for calculating optimal solutions is given by minimizing the Hamil-
tonian function

H(t, x, u, λ) = L(t, x, u) + λ · f(t, x, u) (3.17)

where L(·) denotes the cost function and f(·) the system dynamics. In addition, the symbol λ
represents weighting factors that are denoted as Lagrange multipliers [49]. In contrast to
solving the HJBE, this approach allows to significantly reduce the computational time.
In the following, both approaches for calculating the optimal control variable u∗ are described
in more detail.

3.2.2. Methods for Optimal Control

In the previous section the optimal control problem was introduced from a mathematical
point of view which has led to the Hamiltonian function H(·) as well as to the HJBE. Based
on these derivations, two optimization methods are commonly used to solve the optimal
control problem:

1.) Dynamic Programming,

2.) Pontryagin’s maximum principle.

The former represents a numerical method to calculate the solution of the HJBE, whereas
the latter depicts an analytical approach based on minimizing the Hamiltonian function H(·).

As an alternative, approximations of the cost function L(·) of Equation 3.8 allow to use further
optimization techniques such as linear programming (LP) or quadratic programming (QP).
Although the computational effort can be substantially reduced, the necessary discretization
as well as simplifications of the optimization problem generally lead to approximations of the
optimal solutions.

Dynamic Programming

Dynamic programming (DP) [6] is a numerical method for solving multistage decision-making
problems and has been applied in many areas of science [62, 8, 9]. This method calculates
optimal solutions for problems of various complexity. Depending on the formulation of the
optimization problem, the algorithm also allows to determine globally optimal solutions. Fur-
ther, DP is a suitable method for solving the HJBE that has been introduced in Section 3.2.1
and for calculating an optimal operating strategy for HEVs.
The calculation of a DP has polynomial complexity and is efficient for a low number of state
variables x and control variables u:
If we assume an optimization problem containing N stages and Nu discretized values of the
control variable u, then a ”brute-force” search will lead to

NBF = NN−1
u (3.18)

possible solutions. Instead of evaluating all variants, which needs exponential computational
time, and afterwards taking the optimum, DP can handle such problems with polynomial
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complexity. If we assume that the state variable is discretized into Nx values then the
calculation effort can be estimated by means of

NDP = (N − 1) · Nx · Nu. (3.19)

Unfortunately, for multidimensional state spaces X the calculation becomes slow due to the
”curse of dimensionality” [8] but this effect can be reduced through the use of approximation
techniques.
As stated before, DP represents a powerful tool for solving the HJBE and obtaining the global
optimum. For the sake of completeness, the relation between the HJBE and DP is provided
in Appendix B.3.

The goal of the DP algorithm is to calculate the optimal control policy

π = {u∗
0, u∗

1, ..., u∗
N−1}, u∗

k ∈ Uk (3.20)

that minimizes the performance index J(x0, π).
Since DP is a numerical method, the continuous cost function L(·) of Equation 3.8 needs to
be discretized leading to the performance index

J(x0, π) = LN (xf ) +
N−1∑

k=0

Lk(xk, uk), k = 0, 1, ..., N − 1, (3.21)

where LN (xf ) denotes the costs for deviations from a desired final state xf and Lk(·) the
discrete cost function. Furthermore, the continuous system dynamics f(·) are discretized by
means of

xk+1 = fk(xk, uk), k = 0, 1, ..., N − 1. (3.22)

In order to describe the discrete system dynamics fk(·), several approaches like the methods
of Euler or Runge-Kutta can be taken into account [49].
In Section 3.2.1 the principle of optimality has been described. It states that sub-trajectories
of an optimal path have to be also optimal. Hence, the original optimization problem of
Equation 3.21 is parted into a sub-problem

J(xi, π([i, N − 1])) = LN (xf ) +
N−1∑

k=i

Lk(xk, uk), (3.23)

which is minimized by the truncated optimal control policy π([i, N−1]) = {u∗
i , u∗

i+1, ..., u∗
N−1}.

In the next step the discrete function J (i, xi) is introduced to express the truncated perfor-
mance index J(xi, π([i, N − 1])). This function describes the corresponding sum of minimum
costs between stages i and N .
By means of Equation 3.23 the central calculation step of DP can be derived in order to find
the optimal control variable

u∗
k = arg min

uk∈Uk

(

Lk(xk, uk) + J (k + 1, fk(xk, uk)
)

,

k = N − 1, N − 2, ..., 1, 0.
(3.24)

Finally, the optimal control policy π can be obtained by proceeding from state x0 to xf .
Based on the principle of optimality, the optimal control variable u∗

k that minimizes the cost-
to-go J (k, x∗

k) is chosen at each stage index k.
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In order to use DP for calculating the optimal operating strategies of HEVs, the cost func-
tion L(·) as well as the state variables x and control variables u have to be defined accordingly.
The number of stages N is often given by means of the time discretization of the driving cycle
but the use of a discretized distance provides another option. Usually, the state of charge SOC
of the battery defines the state variable x and the battery power PBAT is used as control
variable u. In addition, disturbances w over time are included in order to consider the power
demand PDEM of the driving cycle.
Since DP is a central topic of this thesis, Chapter 4 provides a more detailed description and
compares different variants and adaptations in terms of its implementation.

Maximum Principle of Pontryagin

The maximum (or sometimes denoted as minimum) principle of Pontryagin states that an
optimal control variable u∗ minimizes the Hamiltonian function H(·) defined in Equation 3.17.
Thus, the following inequality must hold:

H(t, x∗(t), u∗(t), λ∗(t)) ≤ H(t, x∗(t), u, λ∗(t)). (3.25)

The minimization of the Hamiltonian function H(·) provides a simplification of the HJBE
and allows to drastically reduce the calculation effort. However, the minimization only uses
necessary conditions and consequently, it is possible that the calculated optimal control vari-
able u∗ just leads to locally optimal solutions.

In addition to Equation 3.25, the minimization of the Hamiltonian function H(·) can be
described as follows

u∗(t) = arg min
u∈U

H(t, x∗(t), u, λ∗(t)). (3.26)

Based on Equation 3.26, the Pontryagin’s maximum principle (PMP) can be derived, which
leads to the following set of differential Equations 3.27 - 3.28.

ẋ∗(t) =
∂H

∂λ
(t, x∗(t), u∗(t), λ∗(t)), (3.27)

λ̇∗(t) = −
∂H

∂x
(t, x∗(t), u∗(t), λ∗(t)). (3.28)

H(t, x∗(t), u∗(t), λ∗(t)) ≤ H(t, x∗(t), u, λ∗(t)). (3.29)

A brief derivation of the conditions of Equations 3.27 - 3.28 is provided in Appendix B.2.
Additional information and formal proofs about the PMP can be found in [36, 49, 8].
The set of coupled differential Equations 3.27 and 3.28 describes a two-point boundary value
problem with boundary conditions on the basis of the initial state variable x(t0) and final
co-state λ(tf ), respectively. Instead of using a fixed state at the final time tf , it is possible
to include an additional term ϕ(·) which penalizes deviations from a defined final state xf .
By means of the additional term ϕ(·), λ(tf ) is implicitly determined, which leads to the
following relation

λ(tf ) =

(

∂

∂x
ϕ(x(t))

)

t=tf

. (3.30)
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Usually, the Hamiltonian function H(·) contains the mass flow rate of fuel ṁf as cost function
and the time derivative of the state of charge ˙SOC as system dynamics f(·). The weighting
between these terms is given with the help of the generally time-depending co-state λ(t) and
the control variable u is defined by means of the battery power PBAT .
In previous work, the behavior of the co-state λ has been investigated in detail [23, 47, 55]. It
has been shown that the co-state λ is continuous and monotonically decreasing over time for
unconstrained optimization problems [23]. If possible limits of state variables (xmin, xmax)
are reached, the co-state λ becomes discontinuous. In case of reaching the maximum limit
of the state of charge SOC, the co-state λ will discontinuously decrease to preferably use
battery power PBAT . In [55], for example, a method to handle such constraints is described.
It appropriately divides the optimization problem into sub-problems and uses an iterative
approach. The approach stops if all sub-trajectories stay within the state limits. In contrast,
the work of [48] presents a method which adds a quadratic penalty term to the Hamiltonian
function H(·) to avoid the exceeding of limits of the state variable x.

If the system dynamics f(·) does not depend on the state of charge SOC, then a constant
co-state λ is obtained since

λ̇(t) = −
∂

∂SOC

(

L
(
PBAT (t), PDEM (t)

)
+ λ(t) · f(PBAT (t))

)

= 0. (3.31)

As shown in [38], this assumption can be used if a charge-sustaining behavior of the battery
in combination with small charge and discharge swings is assumed. Then, the Hamiltonian
function H(·) acquires a new meaning and can be depicted as a sum of power terms

PF (u, PDEM (t)) + s · PECH(u) = ṁf (u, PDEM (t)) · HLV + s · PECH(u), (3.32)

where s denotes the equivalence factor that can be seen as the weight between the use of
fuel power PF and electrochemical power PECH . Whereas the fuel power PF is given by
means of the mass flow rate of fuel ṁf multiplied by the lower heating value HLV , the
electrochemical power PECH of the battery is determined by means of the sum of terminal
battery power PBAT and power loss PLOSS,BAT . In addition, the battery power PBAT or the
power-split us can be used as control variable u. Obviously, a higher value of the equivalence
factor s leads to a preferred use of the ICE and vice-versa. This approach provides the basis
for the causal equivalent consumption minimization strategy (EMCS) which will be described
in the next Section 3.3.

Further Algorithms

In addition to DP and PMP, further optimization techniques such as linear programming (LP)
and quadratic programming (QP) can be used to obtain the optimal operating strategies for
HEVs. One thing both variants have in common is that a discrete version

J(x0, π) =

kf∑

k=k0

Lk(xk, uk) (3.33)

of Equation 3.8 is used. This approximation allows to reduce excessive memory usage and
furthermore leads to low calculation times while handling a multidimensional state space X .
Depending on the algorithm, special requirements in terms of the cost function L(·) as well
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as the model formulations and system dynamics f(·) must be taken into account. In general,
these simplifications lead to sub-optimal results compared with DP or PMP.
LP has been successfully used for optimizing the control strategy of HEVs in [104]. The au-
thors applied a number of transformations to obtain a linear program in standard form. As
an example, the relation between fuel consumption fc and engine power PICE as well as the
mathematical description between electrical and mechanical power of the EM are assumed
to be linear. Further work based on LP can be found in [99, 7].
In contrast to LP, the method of QP includes quadratic relations in the cost function L(·)
in combination with linear constraints and calculates solutions that are close to the global
optimum [23]. For example, the framework of QP allows to consider a quadratic approxi-
mation between fuel consumption fc and engine power PICE . Representative work has been
performed by [5, 50, 119].

3.3. From Optimal to Real-time Strategies

After an introduction to heuristic and optimal control laws in Sections 3.1 and 3.2, respec-
tively, a further category of operating strategies is introduced that uses adapted optimal
concepts in real-time applications. Obviously, these approaches lead to sub-optimal solu-
tions due to the assumption that the whole driving cycle is not known in advance. Typical
methods of such online controllers are the equivalence consumption minimization strategy or
model predictive control. Although some of these methods use predicted data, this category
is assigned to causal control methods [38].

3.3.1. Equivalent Consumption Minimization Strategy

The equivalent consumption minimization strategy (ECMS) was firstly introduced by [75]
with the help of a heuristic concept. This strategy is suitable for HEVs in the charge-
sustaining mode and uses the fact that consumption of electrical energy can be converted
into an equivalent amount of fuel.
In Section 3.2 the PMP, which can also serve for deriving the ECMS from an optimal point of
view, has been introduced. In that case, the co-state λ represents the equivalence factor s. In
contrast to the PMP, the ECMS reduces the global optimization problem to an instantaneous
minimization problem without any use of information regarding the future.
The battery can be seen as an auxiliary, reversible fuel tank that is never refilled externally.
In order to keep the state of charge SOC charge-sustaining, the electricity used during the
battery discharge phase must be replenished later by means of the fuel from the tank in
combination with the ICE and the generator. If the state of charge SOC is higher than a
defined reference, the use of electrical energy will save an equivalent amount of fuel in the
future. In both scenarios a virtual fuel consumption can be determined by means of the use
of electrical energy and fuel consumption fc. As described in [83], an instantaneous virtual
fuel consumption is obtained which can be converted into an equivalent power PEQV leading
to

PEQV (t, u, s) = PF (u, PDEM (t)) + s · PECH(u), (3.34)

which is equal to the definition of Equation 3.32. The equivalence factor s that can be seen
as the weight between the use of fuel power PF and electrochemical power PECH . Whereas
the fuel power PF is given by means of the mass flow rate of fuel ṁf multiplied by the lower
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heating value HLV , the electrochemical power PECH of the battery is determined by means
of the sum of terminal battery power PBAT and power loss PLOSS,BAT . In terms of the
power loss PLOSS,BAT , specifications of the battery as for example thermal limits need to be
considered. The goal of the ECMS is to minimize the equivalent power PEQV in Equation 3.34
at each time instant. In order to obtain an improved fuel economy, an appropriate estimation
of the equivalence factor s is necessary.

Estimation of equivalence factors

The equivalence factor s plays an important role since it influences the fuel consumption fc

and the use of battery power PBAT . In the following, several methods for the estimation of
the equivalence factor s are presented that are either based on heuristic or optimal approaches.
These methods include model-based, PMP-based as well as DP-based approaches.

The value of the equivalence factor s depend on the driving cycle and affects the fuel consump-
tion fc of the vehicle. Furthermore, the battery tends to be discharged if the equivalence fac-
tor s is too low (charge-depleting behavior), or to be charged if it is too high (charge-increasing
behavior) [83]. In the simplest implementation the value of the equivalence factor s is only
represented by means of a constant. In other variants a set of at least two equivalence factors
{s1,...,sn} is used that consider the chain of efficiencies through which the fuel power PF is
transformed into electrochemical power PECH and vice-versa. If constant efficiencies η are
assumed, then two equivalence factors sch and sdis are needed to describe the battery charge
and discharge modes. The following Figures 3.6(a) and 3.6(b) depict both modes.
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(a) Discharge mode: To compensate a discharge
battery energy (∆EBAT < 0), an equivalent
amount of fuel energy ∆EBAT /(ηEL · ηICE) is
needed.
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(b) Charge mode: The use of a charge battery en-
ergy (∆EBAT > 0) saves an equivalent amount
of fuel energy ∆EBAT · ηEL/ηICE .

Figure 3.6.: Cases for describing the fuel equivalence of energy storages by means of constant
efficiencies η (based on [38]).

The resulting equivalence factors for discharging sdis and charging sch can be approximated
by

sdis =
1

ηEL · ηICE

, (3.35)

sch =
ηEL

ηICE

. (3.36)

Another method to estimate the equivalence factors sch and sdis has been shown in [90]. In
contrast to the previous approach, no knowledge about the component efficiencies is needed.
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Instead, several simulations with different (constant) power-splits us are carried out for a
defined driving cycle. By means of the results, the energy content of the battery EBAT and
the energy content of the fuel tank EF UEL are compared, which leads approximately to two
piecewise linear functions. The gradients of these functions represent the equivalence factors
sch and sdisch, respectively.

As stated before, the ECMS can also be derived from an optimal point of view by means of
the PMP. In Section 3.2 it has been shown that an optimal control variable u∗ minimizes the
Hamiltonian function H(·):

u∗(t) = arg min
u∈U

H(t, x∗(t), u, λ∗(t)). (3.37)

This knowledge is used again to derive the ECMS. Instead of solving a set of differential
Equations 3.27 - 3.28 to obtain the global optimum, the ECMS only calculates the optimal
control variable u∗ at each time instant and can be applied in real-time applications. Since
future driving conditions are assumed to be unknown the ECMS generally calculates sub-
optimal but causal solutions compared to the PMP.
The following Equations 3.38 and 3.39 provide a comparison of the Hamiltonian function

H(t, x, u, λ) = L(t, x, u) + λ · f(t, x, u) (3.38)

and the equivalent power

PEQV (t, u, s) = PF (u, PDEM (t)) + s · PECH(u). (3.39)

It can be seen that the equivalent power PEQV of Equation 3.39 depicts a specific formulation
of the general Hamiltonian function H(·) of Equation 3.38. Due to this fact the results of
PMP can be re-used to estimate the equivalence factor s. Generally, the equivalence factor s
and the co-state λ differ by means of a constant factor which needs to be considered accord-
ingly. Based on the PMP, it is possible to calculate reference trajectories of the equivalence
factor s for several driving scenarios. Further comparisons between PMP and ECMS are
presented in [93, 47].

By means of the necessary conditions of optimality, which state that an optimal control
variable u∗ should minimize the Hamiltonian function H(·), it is possible to derive another
relation for calculating the equivalence factor s:

∂H

∂u
=

∂H

∂PBAT

=
∂PF

∂PBAT

+ s ·
∂PECH

∂PBAT

!
= 0, (3.40)

where PF is the fuel power (mass flow rate ṁf times lower heating value HLV ), PBAT the
battery power and PECH the electrochemical power. Finally, this leads to

s = −
∂PF

∂PECH

. (3.41)

The DP algorithm calculates the optimal cost-to-go J that in the following example describes
the optimal fuel consumption fc over time index k and state of charge SOC. The values of
the cost-to-go J at the grid points can be used to estimate the equivalence factor s. In
Figure 3.7 a small part of the cost-to-go J is depicted to show the change of fuel power PF
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Figure 3.7.: Illustration of the estimation of the equivalence factor s by means of a two di-
mensional grid. The indices k and i represent the discretized time and state
of charge SOC, respectively. Additionally, the values of the optimal cost-to-
go J and the energy content of the battery EBAT are stored at each grid node.
Whereas the left figure generally depicts the whole grid, the right figure shows
a small part in order to graphically sketch the estimation of the equivalence
factor s.

and electrochemical power PECH for one given grid point. As the state grid is limited as shown
in Figure 3.7(a), the equivalence factor s cannot be calculated directly at the boundaries of
the state variables (xmin, xmax).

The estimation of the equivalence factor s for a given time index k and SOC index i can be
mathematically described as follows:

s = −
∂PF

∂PECH

≈ −
∆PF

∆PECH

= −
∆J1

∆t
− ∆J2

∆t
∆EBAT,1

∆t
−

∆EBAT,2

∆t

= −
Jk+1,i+1 − Jk+1,i−1

EBAT,k+1,i+1 − EBAT,k+1,i−1

(3.42)
Based on this relation, the optimal trajectory of the equivalence factor s over time can be
obtained by means of the DP results.

Implementations of Equivalent Consumption Minimization Strategies

As described before, the equivalence factor s strongly influences the optimality of an ECMS.
A-causal methods based on optimal control concepts allow to calculate meaningful ranges and
optimal trajectories for the equivalence factor s but the results are only valid for predefined
scenarios. Since the future driving conditions are generally not known in advance, only parts
of the calculated off-line solutions such as initial values of the equivalence factor s0 can be
used for real-time applications. An important task of the ECMS is to appropriately adjust
the equivalence factor s depending on driving situations to achieve results that are close to
the optimal solution. This general approach is defined as adaptive-ECMS (A-ECMS) strategy
and has been implemented in several variants [3, 38, 72, 94].
A representative sketch of an adaptive ECMS is depicted in Figure 3.8. In the central element
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of this structure Power-split, the split between the two energy sources, ICE and battery, is
calculated for a given power demand PDEM and equivalence factor s. In case of the power-
split us, lower values of the equivalence factor s lead to a preferable use of the battery and
vice-versa.
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Figure 3.8.: Simplified structure of a typical adaptive ECMS-Controller. Depending on the
actual battery’s state of charge SOC, the controller adjusts the equivalence fac-
tor s and weights the power split between ICE and battery.

The controller is usually a PI-controller which accordingly adapts the equivalence factor. The
input of the controller ∆SOC is represented by the difference between the reference SOCref

and the actual SOC. Instead of PI-controllers, it is possible to use weighting functions h(·)
for penalizing high values of ∆SOC.
As an example, the author of [51] recommended the following weighting function h(SOC(t))
that are similar to the form of PI-controllers:

h(SOC(t)) = pp · pi =

(

1 +

(
SOCref − SOC(t)

SOCref − SOCmin

)2·nSOC+1
)

·

(

1 + tanh

(
hSOCI

(SOC(t))

SOCtol

))

,

(3.43)

hSOC,I

(

SOC(t)
)

= 0.99 · hSOC,I(t − ∆t) + 0.01 ·
(

SOCref − SOC(t)
)

, (3.44)

where pp denotes the proportional term, pi the integral term, SOCref the reference value of
SOC, SOCmin the minimum value of SOC, nSOC the function order, SOCtol the tolerance of
the hyperbolic tangent function and ∆t the sampling time.
Equation 3.43 consists of two sub-functions that represent the P-correction term pp and the
I-correction term pi, respectively. The latter contains a moving average function (Equation
3.44) to weight the effects of past deviations from SOCref . In Figures 3.9(a) and 3.9(b)
variations of the proportional and integral correction terms pp and pi are depicted for different
orders nSOC and tolerance factors SOCtol. The values of SOCref and SOCmin were defined
with 65% and 50%, respectively.

Other implementations of A-ECMS integrate data of past, present or future driving condi-
tions to improve the estimation of the equivalence factor s [91, 74, 54, 2, 107]. One technique
that uses data from the past is based on the principle of pattern recognition [37, 43]. Optimal
values of the equivalence factor s are pre-calculated off-line for a set of representative driving
patterns, which are composed of representative driving scenarios [91]. By means of charac-
teristic parameters such as average velocity, total time and stand-still time, the algorithm
decides which representative driving pattern is closest to the current driving scenario and
chooses the corresponding value of the equivalence factor s.
If predictive data such as altitude profiles of the route is available, the additional information
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Figure 3.9.: The proportional and integral terms pp and pi for an adaptive ECMS and different
parameters (based on [51]).

can be used to adapt the equivalence factor s. Since the slope information is a function of
the distance, a velocity profile has to be defined in order to obtain the power demand PDEM

over time. Furthermore, information about speed limits or traffic conditions can be included
to increase the accuracy of the estimation. The adaptations by means of predicted data can
be characterized as a concept based on model predictive control, which is described in the
following.

3.3.2. Model Predictive Control

The use of information of future driving conditions leads to the concept of model predictive
control (MPC). The term MPC defines a range of control methods which make explicit use
of a model of the process to calculate the control signal. The ideas, appearing in greater or
lesser degree in the predictive control family, are basically [15]:

• Explicit use of a model to predict the process output at future time instants,

• Calculation of a control sequence minimizing an objective function,

• Receding strategy, so that the horizon is displaced towards the future at each instant.

The principle of MPC is to use predicted information for a given time horizon to minimize
an objective function. Since it is a receding strategy, only the first control signal of the cal-
culated sequence is applied. Afterwards, the time horizon is shifted by one time step and the
optimal control strategy is calculated again with updated state and prediction information.
The quality of the solution mainly depends on the predicted information as well as the applied
model complexity. In terms of real-time implementations, there is a trade-off between the
time horizon of predicted data and the corresponding computational effort.

As presented in Section 3.2, there are several algorithms that calculate the optimal con-
trol strategy for HEVs. In previous work, DP has been applied to solve the MPC problem for
HEV applications [3]. Although non-linearities are properly handled, the solutions can only
be obtained for short time horizons due to the high computational effort. Other approaches
use LP and corresponding variants such as mixed-integer LP [85] to obtain the optimal con-
trol strategy. In contrast to DP, the calculation effort of such methods is quite low but in
general this framework does not allow to integrate cost functions L(·) with higher complexity.
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A meaningful compromise between model complexity and computational effort is provided
by QP. It has been shown in previous work (e.g. [50]) that QP is a recommended technique
for MPC in real-time operating strategies of HEVs.

3.3.3. Use of Dynamic Programming Results

Another approach for obtaining a real-time strategy is to use the optimal results of DP. For
this purpose, the knowledge acquired from DP simulations over different driving conditions
is statistically analysed in terms of control variables u and state variables x. In the next
step, rules are extracted to construct a causal control strategy. According to the rule-based
strategies described in Section 3.1, look-up tables can be used to relate typical state variables x
and control variables u such as state of charge SOC, vehicle speed v, power demand PDEM

or power-split us [121, 12, 10, 11]. Although this approach is based on the optimization of
several cycles, the control strategies generally represent neither optimal nor charge-sustaining
behavior. To reduce these drawbacks, stochastic dynamic programming (SDP) has been
applied in related work [60, 67, 27]. The corresponding results show that SDP leads to an
improved operating strategy for general driving conditions.
Further approaches propose the use of concepts based on machine learning [70, 69]. By means
of the results of DP, neural networks are trained to describe the operating strategy as well
as to predict future driving conditions.

3.4. Summary

In this chapter the categories of state-of-the-art operating strategies for HEVs together with
their pros and cons were outlined. The classification includes rule-based and optimization-
based strategies as well as causal approaches for real-time applications. Since this thesis
focuses on calculating different benchmarks of optimal operating strategies, only methods
that allow to obtain the global optimum are suitable for this purpose. Another restriction is
given by non-linear component models and cost functions L(·) used to describe optimization
problems. Among the methods mentioned in this chapter, only the framework of DP fulfills
these requirements. Due to this circumstance, DP was chosen as numerical method to solve
the optimization problems. The next chapter provides a more detailed description of different
variants of DP and presents the implemented DP-method of this thesis.



4. Dynamic Programming for Hybrid Electric
Vehicles

In the previous chapter several methods for obtaining the optimal operating strategy of hy-
brid electric vehicles (HEVs) were described and compared. It has been shown that only the
method of dynamic programming (DP) allows to calculate the globally optimal operating
strategy for non-linear objective functions and component models. For this reason, the DP
algorithm was chosen in this thesis to solve optimization problems which are presented later
in Chapter 6.
This chapter focuses on the method of DP and provides an introduction to different variants
and modifications in the field of HEVs. Further details and extensive derivations of several
approaches can be found in [8, 9].

As stated in Equation 3.2, the DP algorithm calculates the optimal control policy

π = {u∗
0, u∗

1, ..., u∗
N−1} (4.1)

that minimizes the performance index

J(x0, π) = LN (xf ) +
N−1∑

k=0

Lk(xk, uk, wk), k = 0, 1, ..., N − 1, (4.2)

where J(x0, π) denotes the performance index, LN (xf ) the costs of deviations from a desired
final state xf and Lk(·) the discrete cost function. In addition, the system dynamics of the
discrete form

xk+1 = fk(xk, uk, wk), k = 0, 1, ..., N − 1 (4.3)

are integrated into the optimization problem. For this purpose, an Euler forward approxima-
tion is used in this work. In contrast to the definition in Section 3.2, additional disturbances w
in the cost function L(·) and system dynamics f(·) are considered. For the classification of
deterministic and stochastic dynamic programming, the properties of disturbances w are of
high importance for the calculation of the optimal solution.
The definition of Equation 4.2 represents the so-called backward approach, which means that
the trajectory of the optimal state variable x∗ is calculated from the final state xf to the
initial state x0. The direction of calculation can be reversed but then the given system dy-
namics f(·) as shown in Equation 4.3 have to be inverted too. This task can be complicated
if the inversion of the system dynamics f(·) is not unique or not analytically solvable. For
example, the inversion of the system dynamics

xk+1 = x2
k + u2

k, (4.4)

leads to two solutions
xk = ±

√

xk+1 − u2
k, (4.5)

if no further restrictions of the state space X are taken into account. Due to the drawbacks
described above, the backward approach is denoted as the standard method of DP.

34
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Basic Example

Before focusing on DP for HEVs, a basic example for calculating the shortest path is shown
in the following. Figure 4.1(a) depicts a simple road network with representative towns A - H
and corresponding distances between these towns. The goal is to calculate the shortest route
between the towns A and H by means of the DP algorithm.
Instead of evaluating all possible variants, which needs exponential computational time, and
afterwards taking the total minimum distance, DP can handle such problems with polynomial
complexity. The reduction of calculation time is based on the principle of optimality [6]
which states that all sub-trajectories of an optimal trajectory have to be optimal, too. In
Figure 4.1(b) the calculation as well as the reconstruction process of the shortest path problem
is shown. The algorithm starts at the final state (town H), but in this example the calculation
direction can be reversed. At each town only the saved optimal cost-to-go J of the previous
towns and distances to reach these towns are needed to calculate the optimal path. To give an
example: In town E the possible candidates of the previous towns are represented by F and G
with corresponding optimal cost-to-go of J (F ) = 80 and J (G) = 90, respectively. Thus, the
overall cost-to-go J at town E are either 110 (E-F) or 140 (E-G). Obviously, the minimum
value is chosen to obtain the minimum distance. At the node of town E the optimal value of
the cost-to-go J = 110 as well as the previous town (F) are saved. After the last calculation
step at town A, the optimal cost-to-go J (A), which also represents the best performance
index J , are obtained and the shortest path can be easily reconstructed. Finally, the optimal
sequence leading to the minimum distance between A and H is given by A-B-E-F-H.
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Figure 4.1.: Principle of DP: Finding the shortest path of a road network between the towns
A and H.

Example for Hybrid Electric Vehicles

In the next step, the method of DP is described for HEV applications. Generally, the dis-
cretized time is chosen to define the number of stages N but the use of the discretized distance
is also an option. The general formulation of Equations 4.2 and 4.3 is determined according
to the requirements of HEVs.

A specific configuration of a dynamic program for obtaining the optimal operating strategy
of HEV is listed in the following:
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• x : State of charge SOC of the battery,

• u : Battery power PBAT ,

• w : Power demand PDEM ,

• L(·) : Fuel consumption fc.

In this example the system dynamics f(·) describes the state of charge at the following stage
SOCk+1 as a function of the current state of charge SOCk and the battery power PBAT . An
additional function is used to convert the engine power PICE , which depends on the power
demand PDEM as well as on the battery power PBAT , to an equivalent fuel consumption fc.
Further, successful implementations of different DP variants for HEV applications can be
found for example in [61, 76, 112].

4.1. Deterministic Dynamic Programming

The main characteristic of deterministic dynamic programming (DDP) lies in the fact that all
disturbances w are known in advance. In contrast to stochastic dynamic programming, the
power demand PDEM of a driving scenario is exactly defined, which is the general approach
for benchmarking a vehicle configuration or operating strategy.
The central calculation step of DDP is defined by minimizing the cost-to-go

J (k, xk) = min
uk∈Uk

(

Lk(xk, uk, wk) + J
(
k + 1, fk(xk, uk, wk)

))

(4.6)

where J denotes the cost-to-go, k the index of the stage variable, L(·) the cost function,
f(·) the system dynamics, x the state variables, u the control variables and w the distur-
bances. These calculations represent the main computational effort of the algorithm. Since
the introduction of DP, the main challenge has been the high calculation effort to solve the
optimization problems. Over the past decades, several approaches have been developed to
reduce the computational time by means of approximation techniques. The following sec-
tions provide a brief overview of such methods in the field of HEVs. Further, more general
information can be found in [38, 8, 9, 56, 62].

4.1.1. Discretization and Interpolation

Since DP is a numerical method, the discretization of state variables x and control variables u
as well as the number of stages N significantly influences the calculation effort. In general, a
higher discretization leads to a more accurate solution together with a higher computational
time and vice-versa. By means of Equation 4.6, the complexity O of a deterministic dynamic
program containing one state and control variable can be determined with

O
(
(N − 1) · p · q

)
, (4.7)

where N denotes the number of stages. Furthermore, p and q represent the discretization of
the state variable x and control variable u, respectively.
If it is assumed that more than one equally discretized state variables x as well as control
variables u are used, the corresponding complexity O is given by

O
(
(N − 1) · pn · qm

)
. (4.8)
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By means of Equation 4.8, it can be seen that the complexity O significantly increases. In
literature, this drawback is referred to as the ”curse of dimensionality” [8] but the effect can
be reduced by means of approximation methods that are outlined later in Section 4.1.2.

The main calculation step of DDP that is described in Equation 4.6 consists of two terms
Lk(xk, uk, wk) and J

(
k +1, f(xk, uk, wk)

)
which represent the costs for reaching the previous

stage k + 1 and the corresponding cost-to-go J (k + 1, xk+1), respectively. Whereas the first
term can be determined by the cost function L(·), the latter value is usually obtained by
means of interpolating the cost-to-go J (k + 1, xk+1). If all control variables u cause state
variables xk+1 that exactly lie on the grid nodes of stage k + 1, then the interpolation can
be avoided and consequently, the calculation effort is reduced. The described variants of the
calculation step are depicted in Figures 4.2(a) and 4.2(b).

stagek k+1

x

(a) Interpolation needed.

stagek k+1

x

(b) No interpolation needed.

Figure 4.2.: Two possible cases can occur during a one-dimensional calculation step at stage k:
In general, the cost-to-go J

(
k+1, xk+1

)
have to be interpolated but if the control

variables u cause state variables xk+1 that exactly lie on the grid nodes of stage
k + 1, then the interpolation can be avoided.

Until now, the central calculation step of DDP has been described for one state and control
variable but the principles remain the same for state spaces X with higher dimensions. In
Figures 4.3(a) and 4.3(b) the possible variants to determine the cost-to-go J

(
k +1, xk+1

)
are

depicted for two state variables x and control variables u.

4.1.2. Modifications of Dynamic Programming

To reduce the impact of the ”curse of dimensionality”, several methods were developed which
include for example the approach of iterative dynamic programming as well as the boundary-
line method. All of these modifications have in common that they reduce the calculation effort
to solve the optimization problem. Unfortunately, most of these methods cannot guarantee
the global optimality. However, modifications of DP provide a trade-off between the accuracy
of the calculated solution and the computational time and therefore are of central interest in
many applications [80, 8, 9, 62].
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stagek k+1

x1

x2

(a) Interpolation needed.

stagek k+1

x1

x2

(b) No interpolation needed.

Figure 4.3.: Two-dimensional calculation step at stage k: As the one-dimensional case the
cost-to-go J

(
k + 1, xk+1

)
of the stage k + 1 have to be interpolated in general

but if the control variables u cause state variables xk+1 that exactly lie on the
grid nodes of stage k + 1, then the interpolation can be avoided.

Iterative Dynamic Programming

Compared to the classic DDP approach, the concept of iterative dynamic programming (IDP)
reduces the calculation time as well as the memory usage. It has been successfully applied in
different areas of science [62, 56] including the optimization of HEVs [113].
The basic idea of this method is to start with a coarse grid and calculate the corresponding
optimal trajectory. In the next step, the grid around the previous optimal trajectory is
restricted by means of an adjustable grid reduction factor. The next iteration refines the
reduced grid and calculates the optimal trajectory again. This procedure is repeated until a
sufficient convergence of the solution is obtained. Instead of calculating the solution by means
of a very fine grid, this method allows to efficiently reduce the calculation time. The definition
of the grid reduction factor strongly influences the convergence as well as the optimality of
the method. In general, a high value of the grid reduction factor provides a fast convergence
with a higher deviation of the global optimum and vice-versa. In Figures 4.4(a) - 4.4(d), the
principle of IDP is sketched by means of different iterations.

Boundary-line method

Another method to extend the classical DP approach is to use the boundary-line method [101].
In contrast to other modifications of DP, this method not only reduces the calculation time
but also allows to calculate the global optimum. Starting from the initial state x0 as well as
from the end state xf , the algorithm calculates the boundaries of feasible state space regions
by means of applying the minimum and maximum control variables (umin, umax), respectively.
Afterwards, a new grid excluding infeasible states is defined and used for the optimization.
Especially for a small number of stages N the boundary-line method significantly reduces the
computational effort. Figure 4.5 depicts the principle of the boundary-line method for one
state variable x. In addition, it has been shown that the boundary-line algorithm can also be
applied to a state space X with higher dimensions [26, 28]. For this purpose, the boundaries
of the state variable (xmin, xmax) are described by means of level-set functions.
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Figure 4.4.: Principle of IDP. Firstly, the optimal trajectory is calculated by means of a coarse
grid. In the following iterations the state space X is reduced and refined around
the previous trajectory. Compared to a fine discretization of the whole grid, this
method allows to reduce the calculation time.
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Figure 4.5.: Boundary-line method for one state variable x. The algorithm calculates ex-
tremal state values that describe the boundaries of the feasible state space X .
The grey regions are not feasible and consequently excluded in the optimization.
Usually, the boundary line is integrated into the new grid (red points).
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Further Variants

A further class of DP methods approximates the cost-to-go J of all grid points in order to
obtain a lower computational time as well as to reduce the memory requirements [80]. By
means of polynomials the shape of the cost-to-go matrix can be fitted and instead of saving
the whole grid, only the corresponding coefficients have to be stored. Especially if the matrix
has a convex shape, a low order of the polynomials is sufficient to obtain high accuracy.
Based on these approximations with polynomials, it has been shown that the central calcula-
tion step of DP (Equation 4.6) can be transformed into a local optimization problem [57]. By
means of this approach it is possible to avoid the evaluation of all discretized control variables
u ∈ U and directly calculate the optimal control variable u∗. The demonstration by means
of one state variable x shows a significantly lower computation time and an accuracy which
is still close to the global optimum.

A further method described in [113] avoids to save the path matrix containing the opti-
mal control variables u∗ of each grid point. As this path matrix is mainly used to reconstruct
the trajectories of the optimal state variable x∗, another approach is taken into account. For
this purpose, the optimal control variable u∗ is obtained by means of the cost-to-go matrix
together with a local optimization problem. This approach is related to MPC and needs, es-
pecially in combination with an approximated cost-to-go matrix, very low memory compared
to the reference case.

4.2. Stochastic Dynamic Programming

DDP assumes that all disturbances w are exactly defined for a given optimization problem.
If only the stochastic properties of occurring disturbances w are known, which represents a
more general approach, another method called stochastic dynamic programming (SDP) is
recommended to obtain optimal solutions. As a restriction, it is assumed that the distur-
bances w can be described by means of Markov chains. For this purpose, all corresponding
transition probabilities have to be known in advance.

The goal of the optimization is to obtain a control policy π(xk) which considers probabil-
ities in terms of the disturbances w. As an example in the field of HEVs, the authors of [84]
use the following performance index

J
(
x0, π(xk)

)
= E

wk

{

LN (xN ) +
N−1∑

k=0

Lk(xk, π(xk), wk)

}

, (4.9)

where E{·} denotes the expected value, L the cost function, x the state variable, w the
disturbances and π(xk) the control policy for a given state variable x.

For high values of the number of stages N , the Functional 4.9 can be seen as an infinite
horizon problem. In such problems, the optimal costs do not depend on the initial state x0 as
the resulting costs determined by means of the performance index are always the same. Thus,
a stationary cost-to-go Jk(xk) can be calculated which is not a function of time [27, 9]:

J (k, xk) = J (k + 1, xk). (4.10)
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The intermediate calculation step of the SDP becomes implicit with

J (k, xk) = min
π(xk)

(

E
wk

{

Lk(xk, π(xk), wk) + γ · J
(

k, fk(xk, π(xk), wk)
)}
)

, (4.11)

where γ, 0 < γ < 1, is usually used as discount factor to ensure the convergence of π(xk).

To solve Equation 4.11 as well as to obtain the optimal stationary control policy π(xk), an it-
erative method is usually chosen. Amongst several approaches, representative algorithms are
based on value iteration or policy iteration. Whereas the latter shows a faster convergence, the
former guarantees global optimality. Further information and derivations are provided by [9].

Based on simulation results, it has been successfully shown that SDP can be applied to
obtain optimal control strategies for HEVs [84, 44, 59, 67]. The calculated stationary control
policies π(·) are stored by means of look-up tables which can be easily integrated within
a simulation framework. Beside the reduction of fuel consumption fc, further approaches
were implemented to minimize a weighted sum of emissions [60]. In addition to simulation
studies, the author of [27] also validated the control strategy by means of a hybrid bus and
demonstrated the use of SDP in practice.

4.3. Summary

In this chapter different variants of DP were described. Since prescribed driving cycles are
used for different case studies, the stochastic approach was excluded in this thesis and DDP
was chosen to calculate the globally optimal operating strategy.
In order to fulfill the requirements of several optimization problems, a general framework for
DDP was set up. In addition, the method of IDP was included to reduce the calculation
effort. As in various related work the code was written in MATLAB®, but unfortunately this
language is known to be quite slow in terms of handling for-loops. This fact leads to very
high computational times for optimization problems with high-dimensional state spaces X .
To reduce this drawback as well as to keep the flexibility of MATLAB®, the core of the
algorithm was written in C/MEX code. It turned out that especially in case of parameter
studies the overall calculation time was reduced by a factor of up to 20 compared to a complete
implementation in MATLAB®.



5. Model of a Hybrid Electric Bus

A model of a HEV is used in order to assess the performance of operating strategies by means
of simulations. Due to the generality of the operating strategies derived within this work, the
vehicle type as well as the hybrid topology can be selected without any limits.
This thesis focuses on optimal operating strategies of HEVs for defined driving cycles. As the
resulting strategies are optimized for these driving scenarios, a vehicle type used for similar
driving cycles over the total life span depicts a representative application. In order to fulfill
this requirement, a model of a hybrid bus in public transport was chosen.
Hybrid buses usually use either a parallel (e.g.[110]) or a series hybrid topology (e.g.[31]).
Since the methodologies developed in this thesis do not directly depend on hybrid topologies,
a series topology was selected. The bus model consists of several components and describes
its main functionalities such as power split, recuperation and given component limits.
The following sections depict the parameters and characteristics of the considered component
models in detail.

5.1. Vehicle

Figure 5.1 shows a photograph of the vehicle model which is based on a Volvo 7700 hybrid
bus in a two-axle configuration.

Figure 5.1.: Photograph of a Volvo 7700 hybrid bus [14]. The corresponding parameters are
used for the vehicle model of this thesis.
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5.1.1. Model description

The total weight of the bus model is defined as a constant parameter. Due to this assumption,
the influence of different numbers of passengers is neglected. Furthermore, the total weight is
defined for a reference configuration with corresponding sizes of battery and engine-generator
unit. In order to consider energy sources that differ from these reference sizes, the total weight
of the vehicle needs to be adapted accordingly. The consideration of scaled components is
particularly important in terms of determining the optimal sizes of energy sources.

5.1.2. Characteristics

Table 5.1 shows the parameters of the vehicle model used in this work and lists the corre-
sponding values of vehicle mass m, drag coefficient cw, reference area A as well as maximum
velocity vmax.

Table 5.1.: List of vehicle parameters.

constant parameters symbol value unit

vehicle mass m 18.9 t
drag coefficient cw 0.9 -
reference area A 8.1 m2

maximum velocity vmax 80 km/h

5.2. Tire and Gear Box

This section describes the parameters of tire and gear box which are part of the drivetrain.

5.2.1. Model description

The tire model of the hybrid bus contains a kinematic approach. Hence, the tire parameters
are defined by means of the wheel radius r and the rolling friction coefficient fr. The tire
model used is sufficient for the analysis of power flows and neglects further effects like slips
due to differences between bus and wheel speeds.
Based on the maximum speed of the electric traction motors (nmax = 10000 rpm) and the
bus (vmax = 80 km/h), the gear ratio ig of the three-speed gear box is calculated as follows

ig =
104 rpm · π · 0.45 m · 3.6

30 · 80 km/h
= 21.2 . (5.1)

Furthermore, a brake model is necessary in order to fulfill negative power demands of the
driving cycles which exceed the maximum recuperation power. Because of safety reasons, it
is assumed that the mechanical brakes provide all requested torque demands MDEM if no
recuperation is considered. Due to this simplified brake model, effects such as brake pad wear
are neglected.
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5.2.2. Characteristics

Table 5.2 depicts the parameters of gear box and tire.

Table 5.2.: List of gear box and tire parameters.

constant parameters symbol value unit

ratio of the three-speed gear box ig 21.2 -
gear box efficiency ηg 0.92 -

wheel radius r 0.45 m
rolling friction coefficient fr 0.007 -

5.3. Electric Motor

The bus model consists of one driving axle which contains two identical electric traction
motors in order to propel the bus as well as to recuperate energy.

5.3.1. Model description

The model of the electric motor (EM) is based on measurement data and has a maximum
speed nmax of 10000 rpm. In order to obtain a more general model, the maximum continuous
torque Mcont,max depicts a scalable parameter. As the model of the EM is only given for the
propulsion mode, an extension is necessary to represent the generator mode. The maximum
torque curves over speed are assumed to be symmetric in both modes. In order to determine
the efficiencies of the generator mode ηgen, symmetric losses PLOSS,EM are taken into account.
The following Equations 5.2 - 5.6 briefly describe the approach.

PLOSS,EM,gen = PLOSS,EM,mot, (5.2)

PMECH,gen − PEL,gen = PEL,mot − PMECH,mot, (5.3)

Furthermore, the absolute values of the mechanical power PMECH,mot and PMECH,gen are
assumed to be the same.

PMECH − ηgen · PMECH =
PMECH

ηmot
− PMECH , (5.4)

1 − ηgen =
1

ηmot
− 1, (5.5)

ηgen = 2 −
1

ηmot
. (5.6)

On the basis of Equation 5.6, the efficiencies between motor mode ηmot and generator
mode ηgen can be converted. However, the use of efficiency maps leads to the drawback
that undefined efficiency values η occur for a mechanical power PMECH of zero. To avoid
this circumstance, maps containing power loss PLOSS,EM over speed n and torque M are
used in this work. For this purpose, the efficiency maps are converted into power loss maps.
In order to determine the power loss PLOSS,EM on the axes (speed n = 0, torque M = 0),
the original power loss map is extrapolated accordingly.
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5.3.2. Characteristics

Figure 5.2(a) shows the efficiency map and the maximum continuous torque curve of the
electric motor. Figure 5.2(b) depicts the power loss map of the motor and generator modes.
As described before, symmetric maximum torque curves over speed as well as symmetric
power loss PLOSS,EM are assumed.
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(b) Power loss map of the EM.

Figure 5.2.: Efficiencies η and power loss PLOSS,EM of the EM. The left figure depicts the
efficiency map of the EM in the propulsion mode. The generator efficiencies ηgen

are calculated by means of symmetric power loss PLOSS,EM . As the efficiencies η
cannot be defined for a mechanical power PMECH of zero, the power loss map
of the right figure is used. The power loss PLOSS,EM on the axes (speed n = 0,
torque M = 0) are obtained by means of extrapolating the original map.

Table 5.3 depicts the parameters of the EM. Whereas the number of traction motors NEM and
the maximum speed nmax are constant, the maximum continuous torque Mcont,max represents
the scalable parameter. As the corner speed ncor of the EM remains constant, the maximum
continuous power PEM,cont,max is implicitly defined.

Table 5.3.: List of EM parameters.

constant parameters symbol value unit

number of traction motors NEM 2 -
maximum speed nmax 104 rpm
corner speed ncor 3120 rpm

scaled parameters symbol reference value unit

maximum continuous torque Mcont,max 400 Nm
maximum continuous power PEM,cont,max 130.7 kW



5.4. Battery 46

5.4. Battery

Besides the engine-generator unit, the battery represents the second energy source of the
hybrid electric bus.

5.4.1. Model description

In order to model the electrical behavior of the battery, a pack based on a single cell type
”Kokam SLPB 100216216H” [25] is built. As the nominal voltage UNOM of the vehicle’s
electrical system is defined by 360 V, the number of serial cells is implicitly given by 96.
In order to describe the battery dynamics, a equivalent circuit model is used. It contains
the open-circuit voltage UOC as well as an internal resistance RBAT and is depicted in Fig-
ure 5.3.

=

R
BAT

U����

U�� �

f(SOC)

IBAT

Figure 5.3.: Equivalent circuit model of the battery.

Figure 5.4(a) shows the measured terminal voltage UT ERM of the cell over the depth of
discharge for different C-rates. By means of these discharge curves, the internal resistance
RBAT is estimated which leads to the following equation

R̂BAT =
∆U

∆I
=

UC1
− UC2

(C1 − C2) · CBAT

, (5.7)

where UC denotes the terminal voltage UT ERM at a corresponding C-rate and CBAT the

capacity of the battery. The mean value of the estimated internal resistances R̂BAT is used
to determine the internal resistance RBAT as well as to calculate the power loss PLOSS,BAT

of the battery. In contrast to related work [38, 101], the charging of the battery is modeled
in more detail. For this purpose, the maximum charge current ICH depends not only on
the maximum charging C-rate CCH but also on the maximum open-circuit voltage UOC,max.
Figure 5.4(b) shows the described characteristic for different C-rates.

5.4.2. Characteristics

Figure 5.4(a) depicts typical measured discharging curves of the cell for different C-rates.
The open-circuit voltage UOC is estimated by means of the terminal voltage UT ERM of the
lowest C-rate corrected by the corresponding voltage drop at the internal resistance RBAT .
Figure 5.4(b) shows the reduction of the charge current ICH as well as the limited terminal
voltage UT ERM over time. This behavior is also included into the battery model.
Table 5.4 depicts the parameters of the battery pack. The maximum C-rate for charging CCH

and discharging CDIS , the number of serial cells NCELLS , the minimum voltage Umin, the
nominal voltage UNOM , the maximum voltage Umax and the specific heat capacity cp are



5.5. Power Electronics 47

(a) Discharge curves for different C-rates [25]. (b) Charge curves for different C-rates [25].

Figure 5.4.: Discharge and charge curves for different C-rates of the battery.

assumed to be constant. To obtain a scalable battery model, the capacity CBAT is considered
as adjustable parameter. The internal resistance RBAT as well as the mass mbat are implicitly
scaled by means of the battery capacity CBAT .

Table 5.4.: List of battery pack parameters.

constant parameters symbol value unit

maximum C-rate (discharge) CDIS 10 1/h
maximum C-rate (charge) CCH 3 1/h
number of cells NCELLS 96 -
minimum voltage Umin 270.3 V
nominal voltage UNOM 360 V
maximum voltage Umax 417.8 V
specific heat capacity cp 650 J/(kg · K)

scaled parameters symbol reference value unit

capacity CBAT 40 Ah
internal resistance of a 40 Ah cell RBAT 134.4 mΩ
mass of the battery pack mbat 130 kg

5.5. Power Electronics

The component power electronics (PE) represents the link between the EM and the high-
voltage vehicle’s electrical system.

5.5.1. Model description

The model considers the efficiency η as function of the input power PP E . By means of the
power flow direction, the input power PP E is either taken from the vehicle’s electrical system
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in case of propulsion or from the EM in case of recuperation. Furthermore, the model uses
the same efficiency characteristics for both power flow directions.

5.5.2. Characteristics

Figure 5.5 shows the generic function which describes the efficiency η of the PE depending on
the input power PP E . In order to obtain a scalable model, the maximum input power PP E,max

can be adjusted. Table 5.5 depicts the corresponding reference value.
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Figure 5.5.: Efficiency η of the power electronics depending on the input power PP E .

Table 5.5.: List of power electronics parameters.

scaled parameters symbol reference value unit

maximum input power PP E,max 200 kW

5.6. Engine-Generator Unit

Due to the chosen series topology of the hybrid bus, the primary energy source is represented
by means of the engine-generator unit (EGU).

5.6.1. Model description

The EGU consists of an ICE, gear box, generator and PE. The gear box converts torques M
as well as rotational speeds n between ICE and generator. Based on the maximum torque
curves of ICE and generator, the ratio of the gear box ig is defined by 0.5. The generator
and the PE are modeled as described in Sections 5.3 and 5.5, respectively.
Due to the series hybrid topology, the EGU is decoupled from the vehicle speed v. Thus,
the combination of torque M and speed n to obtain a required electrical EGU power PEGU

can be chosen arbitrarily. In terms of a low fuel consumption fc, the load point with the
maximum efficiency ηmax is selected for a demanded electrical EGU power PEGU . This
approach provides an optimal relation between electrical EGU power PEGU and maximum
efficiency ηmax.
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5.6.2. Characteristics

Figure 5.6(a) depicts the efficiency map of the EGU. For this purpose, all component ef-
ficiencies η of the package are projected to the efficiency map of the ICE. In addition to
the calculated efficiencies η of the EGU, the optimal load points leading to minimum fuel
consumption fc are depicted for a given electrical EGU power PEGU . Figure 5.6(b) shows
the corresponding function which represents the maximum efficiency ηmax over the electrical
EGU power PEGU .
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Figure 5.6.: Efficiency η of the EGU. Based on the efficiencies of the overall package, the load
points with maximum efficiency ηmax for a given electrical EGU power PEGU are
used.

Table 5.6 shows the parameters used to obtain different sizes of the EGU. By means of
the maximum electrical EGU power PEGU,max, the function of Figure 5.6(b) as well as the
mass mEGU of the package are linearly scaled.

Table 5.6.: List of engine-generator unit parameters.

scaled parameters symbol reference value unit

maximum electrical EGU power PEGU,max 200 kW
mass megu 440 kg

5.7. Summary

In this chapter, the component models of a hybrid electric bus were described which include
the vehicle, tire, gear box, EM, battery, EGU and PE. For this purpose, the characteristics of
the models as well as the scalable and constant parameters of each component were presented.
In the next chapter, the bus model is applied to demonstrate novel approaches in terms of
optimal operating strategies and component sizing.



6. Approaches for Optimal Energy
Management

The previous Chapter 5 has described the components of a series hybrid bus in detail and
specified the characteristics, the parameters as well as the possible scaling of components.
The current chapter demonstrates novel approaches of optimal energy management for hy-
brid electric vehicles by means of simulation studies.

In order to provide the reader a brief overview, the sections of this chapter can be cate-
gorized as follows:

• Section 6.1 focuses on the optimization method and defines a set of reference parameters
used in the methodologies of this work,

• Section 6.2 and 6.3 deal with the optimal component sizing of energy sources and electric
motors, respectively,

• The remaining sections describe approaches for optimal operating strategies which con-
sider cost-optimal (Section 6.4) as well as energy-optimal approaches including compo-
nent limits (Section 6.5 and 6.6).

As methodologies for optimal operating strategies and component sizing are developed in this
thesis, an algorithm to calculate the global optimum is mandatory. Since no simplifications
of the component models described in Chapter 5 are taken into account, only the method of
dynamic programming (DP) guarantees the calculation of the global optimum.
All the methodologies of this work which either deal with optimal component sizing or optimal
operating strategies are described on the basis of stand-alone approaches. These approaches
can be combined in order to define further optimization problems but in that case, limits of
the optimization method like the ”curse of the dimensionality” need to be taken into account.

In this work, a model of a series hybrid bus is used to demonstrate the developed method-
ologies by means of simulation studies. Figure 6.1 sketches a simplified version of the bus
model and graphically highlights the components and effects considered by the methodologies.
According to the description of Section 5.6, Figure 6.1 considers a general representation of
the EGU which contains a gear box. However, if the maximum power of ICE and generator
is obtained at the same rotational speeds n, then the gear box can be removed leading to an
improved efficiency η.
Although a model of a series hybrid bus is applied for the simulation studies, the framework
of the methodologies developed in this work also allows to integrate further hybrid topologies
and vehicle types. For this purpose, the number of components as well as their corresponding
parameters need to be adjusted appropriately.
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Figure 6.1.: Simplified model of a series hybrid bus. The figure highlights the components
which are used to demonstrate the methodologies developed in this thesis.

In the following, the structure of this chapter is outlined:

• Section 6.1: Reference simulations

A reference configuration of the hybrid bus is used to evaluate the influence of specific
parameters of the dynamic program. Furthermore, parameters such as the initial state
of charge SOC0 or the discretizations of state variables ∆x and control variables ∆u
are determined for the simulation studies.

• Section 6.2: Sizing of energy sources

This section presents a methodology for the optimal sizing of the traction energy sources.
For the demonstration, a set of optimal sizes of EGU and battery is calculated. By
means of further parameters like initial component costs (ccomp,egu, ccomp,bat) or fuel
costs cfuel, the optimal configuration can be selected.

• Section 6.3: Sizing of electric motors

In addition to the sizing of energy sources, this section deals with the optimal sizing of
EMs in HEV applications. The methodology is demonstrated by means of sizing the
electric traction motors on the basis of standard operating modes.

• Section 6.4: Cost-optimal operating strategies

In this section, cost-optimal operating strategies are calculated in order to minimize
operating costs cop and life cycle costs clife of HEVs. Beside the fuel consumption fc,
the approach considers cyclic and calendaric battery aging as well as brake pad wear.

• Section 6.5: Operating strategies including thermal effects

A further approach for optimal operating strategies is developed which not only mini-
mizes the fuel consumption of HEVs but also considers temperature limits of the battery.

• Section 6.6: Operating strategies for the engine-generator unit

The last section deals with optimal operating strategies for the EGU. The methodology
allows to penalize the number of engine starts NST ART by means of a time-based
approach.
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6.1. Reference Simulations

This section presents the results of different reference simulations in order to determine spe-
cific parameters of the DP algorithm. As described before, the simulation model is based on
a series hybrid electric bus and uses a reference configuration containing

• A battery capacity CBAT of 40 Ah,

• A maximum power of the engine-generator unit PEGU,max of 160 kW,

• A constant power PAUX of 10 kW to consider auxiliary devices.

Furthermore, representative driving cycles for buses were chosen by means of the Braun-
schweig city driving cycle, the Manhattan bus cycle and the Orange County bus cycle. The
corresponding velocity profiles over time are shown in Appendix D.

Table 6.1 compares representative characteristics of these driving cycles such as mean power,
maximum power, maximum velocity or length. The value of the mean power is an important
parameter to roughly estimate the fuel consumption fc. Compared to the other driving cycles,
the Manhattan bus cycle contains the lowest mean power and lowest maximum velocity.

Table 6.1.: General characteristics of the driving cycles used in this thesis.

characteristic unit Braunschweig
bus cycle

Manhattan
bus cycle

Orange County
bus cycle

mean power † kW 0032.2 0017.7 0028.3
maximum power kW 0229.2 0220.8 0191.6
mean velocity km/h 0022.5 0011.0 0019.8
maximum velocity km/h 0058.2 0040.5 0065.4
duration s 1740.0 1089.0 1909.0
length km 0010.9 0003.3 0010.5
idling time s 0442.0 0374.0 0407.0

† The mean value of the power at the wheels PW combined with no recuperation of
braking energy is taken into account.

The DP algorithm is applied in order to calculate the global optimum of operating strategies
and component sizes. Unfortunately, the initial parameters of a dynamic program such as
the discretization of state variables ∆x and control variables ∆u are not known in advance
and strongly depend on the optimization problem. Fine discretizations lead to a higher
accuracy of the solution as well as to higher calculation times and vice-versa. Therefore,
these contrary items, accuracy and low computational effort, should be taken into account
to appropriately configure a dynamic program. By means of comparing the results of several
parameter variations, a set of initial parameters is determined. The initial and final values
of the battery’s state of charge (SOC0 and SOCf ) depict further parameters which influence
the calculation of the operating strategy.
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The optimization problem of this section is summarized as follows:

min
uk∈Uk

N−1∑

k=0

ṁf (uk, xk, wk) · ∆t

s.t.

xk+1 =
uk · ∆t

CBAT · 3600
+ xk

0 ≤xk ≤ 1

−120 ≤uk ≤ 400

x0 = SOC0

xf = SOC0

xk ∈ Xk

uk ∈ Uk

The battery current IBAT is used as control variable uk, the battery’s state of charge SOC as
state variable xk and the power demand PDEM as disturbance wk. In addition, limits of the
control and state variables as well as a sampling time ∆t of 1 s are considered. The initial
state of charge SOC0 depicts a parameter which is optimized in this section.

As the battery of the modeled bus cannot be charged externally, charge-sustaining oper-
ating strategies need to be implemented, which leads to equal values of the initial and final
state of charge (SOC0 and SOCf ). In order to obtain these values, the use of a periodic
continuation of driving cycles is proposed. By means of this approach, the trajectory of the
state of charge SOC as well as its initial value SOC0 and final value SOCf converge. Figures
6.2(a) - 6.2(c) depict the state of charge SOC over time for different driving cycle profiles
and initial values. The driving cycles are repeated fifteen times with defined values of the
initial state of charge SOC0 of 50 %, 70 % and 90 %. All the scenarios have in common that
a convergence of the state of charge SOC is obtained after a few periods of the driving cycles
despite different initial values. The results show that the trajectories tend to high values of
the state of charge SOC in order to exploit higher discharging as well as charging powers of
the battery.
As the maximum terminal voltage UT ERM of the battery is limited by means of the max-
imum open-circuit voltage UOC,max, the charging power of the battery and implicitly the
recuperation potential decrease for very high values of the state of charge SOC. Due to these
contrary effects, a convergence of the state of charge trajectory is finally obtained for each
vehicle configuration. Based on the results, the initial and final value of the state of charge
(SOC0 and SOCf ) are defined by 85 %. These values are further used to substitute a higher
number of periodical scenarios by only one driving cycle, which allows to significantly reduce
calculation time.

As described in Chapter 4, a general framework for applying the DP algorithm was built.
In order to determine the specific parameters of the dynamic program, a number of varia-
tions were calculated. Table 6.2 compares the corresponding results in terms of accuracy and
calculation time for different driving cycles. To calculate the benchmark for each driving
cycle, a very fine discretization of the state variable state of charge (∆SOC = 10−5) and
control variable battery current (∆IBAT = 0.125 A) was used. It can be seen that the IDP
approach (five iterations, initial state of charge discretization ∆SOC = 10−3, battery cur-
rent discretization ∆IBAT = 0.5 A) represents a good compromise in terms of accuracy and



6.1. Reference Simulations 54

0 0.5 1 1.5 2 2.5

x 10
4

50

60

70

80

90

Time in s

S
O

C
 in

 %

(a) Trajectories of the state of charge based on the Braunschweig city driving cycle.
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(b) Trajectories of the state of charge based on the Manhattan bus cycle.
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(c) Trajectories of the state of charge based on the Orange County bus cycle.

Figure 6.2.: State of charge (SOC) trajectories over time for different driving cycles and initial
values. In order to obtain a convergence of the SOC, the driving cycle profiles
are repeated fifteen times. According to the simulation results, the initial value
of the SOC was finally defined by 85 % for all driving cycles.

calculation time. Hence, these parameters are used as reference in order to configure several
dynamic programs in the following sections.

Figure 6.3 depicts the results of different iterations of the IDP approach on the basis of
the Braunschweig city driving cycle. Every iteration restricts the state space X by means of
a grid reduction factor of 0.5. The remaining state space X is refined for the next iteration,
which improves the accuracy of the solution. Instead of using a very fine discretization, IDP
allows to reduce the calculation effort while still providing a high accuracy of the result.
Figure 6.4 shows the split of EGU efficiencies η for different driving cycles by means of a
histogram. For this purpose, the ratio of operating points depending on the efficiencies η is
depicted for different driving cycles. It can be seen that the optimal operating strategies only
switch between idling (η = 0 %) and high efficiencies (η > 30 %) and strictly avoid inefficient
load points of the EGU.
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Figure 6.3.: State of charge trajectories of different iterations. The method of IDP is applied
to calculate optimal trajectories of the state of charge SOC. For this purpose,
a grid reduction factor of 0.5 is used. After each iteration, the restricted state
space X is refined to improve the accuracy of the solution.
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Figure 6.4.: Histogram of EGU efficiencies η. The figure shows the ratio of operating points
depending on the efficiencies η for three different driving cycles. The optimal
operating strategies only switch between idling (η = 0 %) and high efficiencies
(η > 30 %) and avoid the use of inefficient load points.
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Table 6.2.: Variation of the configuration of a typical dynamic program used in this thesis.
The dynamic program contains the battery’s state of charge SOC as state vari-
able x as well as the battery current IBAT as control variable u and minimizes the
fuel consumption fc. Characteristic parameters like the accuracy and the calcula-
tion time are compared for different discretizations of the state of charge ∆SOC,
discretizations of the control variable ∆IBAT and driving cycles. To obtain a ref-
erence result, very fine discretizations of the state of charge ∆SOC and battery
current ∆IBAT are used. Furthermore, the results of the iterative dynamic pro-
gramming (IDP) approach containing a grid reduction factor of 0.5 are depicted
for the first and last iteration. The comparisons show that the iterative approach
(five iterations, initial state of charge discretization ∆SOC = 10−3, battery cur-
rent discretization ∆IBAT = 0.5 A) provides a meaningful trade-off in terms of
accuracy and calculation time.

state of
charge dis-
cretization

∆SOC

iteration
(total

iterations)

battery
current dis-
cretization

∆IBAT

fuel consumption fc calculation
time †

unit - - A lit. s

Braun- 1.000 · 10−3 1 (5) 0.500 6.403 (+ 0.14 %) 00304

schweig 6.250 · 10−5 5 (5) 0.500 6.399 (+ 0.08 %) 01520

bus 6.250 · 10−5 1 (1) 0.500 6.398 (+ 0.06 %) 04394

cycle 3.125 · 10−5 1 (1) 0.125 6.394 (100.00 %) 32733

Manhattan 1.000 · 10−3 1 (5) 0.500 2.431 (+ 0.37 %) 00181

bus 6.250 · 10−5 5 (5) 0.500 2.425 (+ 0.12 %) 00903

cycle 6.250 · 10−5 1 (1) 0.500 2.425 (+ 0.12 %) 02752

3.125 · 10−5 1 (1) 0.125 2.422 (100.00 %) 20817

Orange 1.000 · 10−3 1 (5) 0.500 6.300 (+ 0.17 %) 00335

County 6.250 · 10−5 5 (5) 0.500 6.293 (+ 0.06 %) 01677

bus 6.250 · 10−5 1 (1) 0.500 6.293 (+ 0.06 %) 04793

cycle 3.125 · 10−5 1 (1) 0.125 6.289 (100.00 %) 36039

† The calculations were performed on an Intel Core i5-3470 CPU with 3.20 GHz and 8 GB
RAM on a 64-bit operating system.

This section outlined the influence of different discretizations of state variables x and control
variables u as well as the benefits of IDP by means of a reference simulation model. Further-
more, useful values of the initial and final state of charge (SOC0 and SOCf ) for periodical
driving cycles were defined. Based on the results obtained, a general configuration of a dy-
namic program was determined which is applied in the following sections in order to calculate
optimal operating strategies and component sizes.
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6.2. Sizing of Energy Sources

The model of the hybrid electric bus used in this work contains an EGU and a battery as
energy sources. In order to fulfill the power demand PDEM of given driving scenarios, these
components need to be sized accordingly. Representative parameters of driving cycles such as
mean power and maximum power mainly influence the sizes of energy sources. For example,
the sum of the battery and EGU powers must cover a desired maximum power of the driving
cycle. As described in Section 2.3, the hybridization ratio hr depicts a further degree of
freedom in terms of sizing the energy sources.
In this section, the optimal sizes of energy sources are determined for different vehicle con-
figurations and driving cycles. By means of the DP algorithm, the minimum power of the
EGU PEGU,min is calculated for several battery capacities CBAT . Based on the results ob-
tained, optimal design rules for the energy sources can be derived.

6.2.1. Methodology

The minimum power of the EGU PEGU,min is calculated with the help of an iterative approach
which consists of two parts: Firstly, the DP algorithm calculates the optimal fuel consump-
tion fc and guarantees that the vehicle configuration covers the power demands PDEM of the
driving cycle. Secondly, the maximum power of the EGU PEGU,max is iteratively adapted ac-
cording to the previously calculated results. If no feasible solution exists, then the maximum
EGU power PEGU,max is increased and vice-versa. The described approach is repeated until
the maximum EGU power PEGU,max sufficiently converges.
Since different sizes of battery and EGU affect the overall vehicle mass m, the masses of en-
ergy sources need to be scaled. For this purpose, corresponding gravimetric power densities
are determined on the basis of the parameters described in Sections 5.4 and 5.6, respectively.
These gravimetric power densities are used to linearly scale the masses of the energy sources
for different sizes.
The following optimization problem is solved for a given set of battery capacity CBAT and
maximum power of the engine-generator unit PEGU,max:

min
uk∈Uk

N−1∑

k=0

ṁf (uk, xk, wk, CBAT , PEGU,max) · ∆t

s.t.

xk+1 =
uk · ∆t

CBAT · 3600
+ xk

0 ≤xk ≤ 1

−3 · CBAT ≤uk ≤ 10 · CBAT

x0 = 0.85

xf = 0.85

xk ∈ Xk

uk ∈ Uk

where the battery current IBAT is used as control variable uk, the battery’s state of charge SOC
as state variable xk and the power demand PDEM as disturbance wk. In addition, limits of
the control and state variables as well as a sampling time ∆t of 1 s are considered. By means
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of the defined optimization problem, the minimum size of the EGU is determined for a given
battery capacity CBAT .

6.2.2. Results

Before focusing on optimal combinations of energy sources, two extreme limits can be con-
sidered:

• If the battery capacity CBAT is very small, then the EGU has to fulfill the maximum
power demand PDEM,max of the driving cycle,

• If the battery capacity CBAT is very high, then the EGU only needs to provide the
mean power demand P DEM of the driving cycle.

In order to determine these limits, only the power of the driving cycle PDEM is taken into
account. Thus, the results obtained provide a rough estimate in terms of sizing the energy
sources and can be used for plausibility checks. To improve the accuracy for the sizing
of energy sources, the efficiencies η of all vehicle components need to be included into the
optimization problem. The previously described methodology fulfills this requirement and
calculates the minimum power of the EGU PEGU,min for a given battery capacity CBAT .
Figure 6.5 shows the minimum power of the EGU PEGU,min depending on the battery capac-
ity CBAT for different driving cycles. The results represent a set of optimal solutions which
can also be denoted as Pareto front [102, 68]. Additionally, the figure shows that the EGU
power PEGU converges for higher battery capacities CBAT . This trend can be justified by
means of the limited recuperation potential of the driving cycles. If initial component costs
of the EGU as well as the battery (ccomp,egu and ccomp,bat) are known, then the cost-optimal
configuration of the set of optimal solutions can be determined.
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Figure 6.5.: Minimum EGU power PEGU,min depending on the battery capacity CBAT for
three driving cycles. The figure depicts possible combinations of battery capac-
ity CBAT and EGU power PEGU which fulfill the power demands PDEM of the
driving cycles.
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Figure 6.6 shows the corresponding fuel consumption fc of the previously determined com-
binations of energy sources. The figure shows that the fuel consumption fc decreases until
a battery capacity CBAT of approximately 100 Ah. For higher battery capacities CBAT , the
fuel consumption fc slightly increases due to influences of higher battery masses mbat together
with the limited recuperation potential. The results shown in Figures 6.5 and 6.6 allow to de-
fine further optimization problems that include for example combinations of initial component
costs (ccomp,egu and ccomp,bat) and fuel consumption fc.
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Figure 6.6.: Minimum fuel consumption fc depending on the battery capacity CBAT for dif-
ferent driving cycles. For each battery capacity CBAT , the minimum power of
the EGU PEGU,min is used to calculate the corresponding fuel consumption fc.

In this section, optimal configurations of the energy sources EGU and battery were calcu-
lated. The results obtained provide a set of optimal solutions which can also be denoted as
Pareto front. Furthermore, the minimum fuel consumption fc was calculated for all optimal
configurations. Based on the results, it is possible to determine the optimal combination of
energy sources, which minimizes parts of the life cycle costs clife.
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6.3. Sizing of Electric Motors

This section presents a novel approach for the optimal sizing of electric motors (EMs) in
hybrid electric vehicles (HEVs). EMs are usually scaled with the help of standardized duty
cycles in order to fulfill desired requirements of power, torque and speed. For example, the
international standard IEC 60034-1 [41] defines ten operating modes containing eight period-
ical (S1 - S8) and two aperiodical (S9 - S10) duty cycles. This work focuses on two commonly
used duty cycles and sizes the EMs on the basis of the S1 and S2 modes. According to [41],
these modes are defined as follows:

”Duty type S1 – Continuous running duty:
Operation at a constant load maintained for sufficient time to allow the machine to reach
thermal equilibrium.”

”Duty type S2 – Short-time duty:
Operation at constant load for a given time, less than that required to reach thermal equilib-
rium, followed by a time de-energized and at rest of sufficient duration to re-establish machine
temperatures within 2 K of the coolant temperature.”

In general, the sizing of EMs in terms of the S1 and S2 modes is carried out with the help of
defined limits like continuous power, continuous torque, maximum power over a certain time
span or maximum torque over a certain time span. However, the scaling of EMs in HEVs
depicts a more complex task as parameters like the hybridization ratio hr, the driving cycle
or the operating strategy need to be considered.
In related work [19, 58, 76, 101, 109], the EM is modeled by means of a maximum torque
curve over speed. The limits of this maximum torque curve are usually determined with
the speed and torque demands due to driving cycles. Furthermore, the work of [79] restricts
the maximum torque curve over speed on the basis of the maximum and minimum battery
current IBAT . All of these approaches do not distinguish between the S1 and S2 modes and
assume that thermal limits of the EM are not exceeded.
In contrast, the methodology of this work considers thermal effects and calculates optimal
specifications in terms of the S1 and the S2 modes for EMs in HEVs.

6.3.1. Methodology

Firstly, the same reference configuration of the hybrid electric bus is used as shown in Sec-
tion 6.1. In order to demonstrate the approach proposed in this section, the electric traction
motors are optimized in terms of the S1 and S2 modes. As the approach needs a scalable
EM model, the model of Section 5.3 is expanded by considering the effects caused due to
overloading and voltage dependencies. Figure 6.7 depicts the original efficiency map defined
for the S1 mode of the EM. In order to obtain the efficiencies η in case of the S2 mode as
well as overloading, a quadratic extrapolation of the power loss PLOSS,EM is carried out for
several speeds n as shown for example in [23].

The EM provides in case of overloading a higher torque M than in the continuous S1 mode. In
literature [81, 20, 21, 98, 96] several approaches are taken into account to consider the ratio be-
tween maximum S2 torque Mmax and continuous S1 torque Mcont. These approaches strongly
differ among the manufacturers, EM types as well as the corresponding power electronics. In
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Figure 6.7.: Efficiency map of the scaled EM based on the continuous S1 mode. In order
to obtain the efficiencies η in case of overloading as well as the S2 mode, an
extrapolation of the power loss PLOSS,EM is carried out by means of a quadratic
approach.

order to describe overloading effects, this work takes into account the characteristic equiva-
lent circuit model of an EM as shown in Figure 6.8. The equivalent circuit model is given
by means of the resistance REM , the inductance LEM and the voltage due to the counter-
electromotive force UEMF which is proportional to the speed n. As the EM current IEM is
proportional to the torque M , the overloaded EM leads to higher voltage drops ∆U at the
resistance REM . Therefore, lower voltages UEMF and corner speeds ncor are obtained in case
of an overloaded EM.
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Figure 6.8.: Equivalent circuit of an EM. The EM is modeled by means of a resistance REM ,
an inductance LEM and a voltage due to the counter-electromotive force UEMF

which is proportional to the speed n. Furthermore, U denotes the voltage of the
high-voltage vehicle’s electrical system and IEM the current of the EM which
is proportional to the torque M . In case of overloading, lower voltages UEMF

and corner speeds ncor are obtained as the current IEM causes higher voltage
drops ∆U .

If the EM is operated on its maximum S2 torque Mmax, the corresponding corner speed ncor,max

decreases compared to the corner speed ncor,cont of the S1 mode. In order to determine the
corner speed in case of overloading, the efficiency η at the continuous corner speed ncor,cont

and continuous S1 torque Mcont is taken into account. As shown in Figure 6.7, the corre-
sponding efficiency η at this load point is 86 %. Furthermore, it is assumed that the overall
power loss PLOSS,EM (14 %) can be divided into electrical and mechanical losses which are
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estimated by 10 % and 4 %, respectively. By means of this approximation, the ratio of the
voltage drop ∆U to the voltage U is determined by 10 %.
For example, it is assumed that the EM can be overloaded by means of a factor cov of three
below the corner speed ncor for short time spans. In that case, the EM current IEM also
increases by this factor which causes an additional voltage drop of 2 · ∆U

U
= 20 %. Thus, the

voltage UEMF and the corner speed ncor,max decrease by 20 % in this example. In order to
describe the behavior for speeds n that exceed the corner speed ncor, an affine reduction of
the maximum S2 torque Mmax is applied based on data sheets of [21, 96].

As stated in Section 5.3, the maximum speed nmax as well as the continuous corner speed ncor,cont

of the EM are defined by 10000 rpm and 3120 rpm, respectively. In order to include the volt-
age dependencies of the high-voltage vehicle’s electrical system into the EM model, a linear
approach is taken into account. For this purpose, the corner speed ncor as well as the max-
imum power PEM,max are linearly scaled on the basis of a nominal voltage UNOM of 360 V.
Table 6.3 shows the corresponding values of the previously described parameters.

Table 6.3.: List of characteristics of the EM.

maximum speed nmax 104 rpm
continuous corner speed ncor,cont 3120 rpm
nominal voltage UNOM 360 V

Figure 6.9(a) depicts the overall efficiency map of the EM containing the continuous S1
mode as well as the S2 mode in case of an assumed overloading factor cov of 3. Furthermore,
Figure 6.9(b) shows the continuous S1 torque curves over speed of the EM for different voltage
levels of the high-voltage vehicle’s electrical system.
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Figure 6.9.: Overloading effects as well as voltage dependencies of the EM. The left figure
depicts the efficiency map of the continuous S1 mode as well as the S2 mode
in case of an overload factor cov of 3. The right figure shows the continuous
torque Mcont over speed for different voltage levels of the high-voltage vehicle’s
electrical system.

In a further step, an acceleration scenario of the bus is simulated in order to demonstrate the
effects due to different voltage levels of the high-voltage vehicle’s electrical system. For sim-
plicity, it is assumed that both electrical traction machines provide a maximum torque Mmax

of 600 Nm and the energy sources fulfill the corresponding power demands. Figure 6.10
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shows that the time span for reaching the maximum velocity vmax significantly depends on
the voltage level of the high-voltage vehicle’s electrical system. As these effects may also
influence the sizing of EMs on the basis of driving cycles, the methodology of this section
uses voltage-dependent EM models.
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Figure 6.10.: Acceleration scenario of the bus for different voltage levels of the high-voltage
vehicle’s electrical system. The two electrical traction machines are sized to
provide a maximum torque Mmax of 600 Nm. It can be seen that the time span
for reaching the maximum velocity vmax significantly depends on the voltage
level of the high-voltage vehicle’s electrical system.

After describing the scalable EM model used in this section, further characteristics are nec-
essary to determine the requirements for the S1 mode. As this operating mode represents
the continuous mode of the EM, the thermal behavior of the EM needs to be considered
appropriately. For this purpose, a simplified thermal model is introduced depicted in Fig-
ure 6.11. The model consists of two point masses and distinguishes between the windings
and the remaining parts of the EM. The inputs of the model are given by means of the power
loss PLOSS,EM of corresponding load points and the cooling power PCOOL. Furthermore, a
thermal resistance RT H is used to consider heat flows between the two point masses. The
model outputs are defined by means of the winding temperature ϑw and the temperature of
remaining parts ϑr. The following two equations describe the thermal behavior of the EM:

ϑw(t) =
1

cp,w · mw
·

∫ (

PW,EM (t) −
ϑw(t) − ϑr(t)

RT H

)

dt + ϑw,0, (6.1)

ϑr(t) =
1

cp,r · mr
·

∫ (

PR,EM (t) −
ϑr(t) − ϑw(t)

RT H

− PCOOL(t)
)

dt + ϑr,0. (6.2)

Table 6.4 lists the values of all thermal parameters of the EM model. As the corner speed ncor

of the EM is defined as a constant, the continuous S1 torque Mcont scales the continuous
power Pcont of the EM. By means of the constant power-to-weight ratio PWR, the contin-
uous power Pcont can be converted into an equivalent mass containing the masses of the
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windings mw and remaining parts mr. Furthermore, the power loss PLOSS is divided into
two parts to describe the losses caused in the windings and remaining parts. As the EM
model uses a total power loss map to determine the power loss PLOSS of corresponding load
points, the distribution between the power loss in the windings PW,EM and the remaining
parts PR,EM need to be approximated. Since the load points of driving cycles usually cover
a broad range of torque and speed requirements, a constant ratio is taken into account for
simplicity.

Windings

Remaining parts

RTHPLOSS,EM

PCOOL

cp,w  mw 

 Þw

cp,r  mr 

 Þr

PW,EM

PR,EM

Figure 6.11.: Thermal model of the EM. The model consists of two point masses (mw, mr)
with corresponding thermal capacities (cp,w, cp,r) to distinguish between the
windings and the remaining parts of the EM. The inputs of the model are
given by means of the power loss PLOSS,EM due to the load points as well as
the cooling power PCOOL. Furthermore, a thermal resistance RT H is used to
describe the heat flow between the two point masses. The model outputs are
defined by means of the temperatures ϑw and ϑr.

In order to determine the cooling power PCOOL of the EM, the power loss PLOSS,EM along the
S1 torque curve are calculated in the first step. Furthermore, it is assumed that the EM can
provide a constant continuous cooling power PCOOL which does not depend on the speed n of
the EM. The value of the continuous cooling power PCOOL is approximated by means of the
maximum continuous power loss PLOSS,EM,max below the corner speed ncor,cont. Figure 6.12
depicts the corresponding approach to determine the continuous cooling power PCOOL for a
given EM model. After the description of the scalable EM model, the methodology for the
optimal sizing of EMs based on the S1 and S2 modes is summarized in the following:
The goal of the methodology is to iteratively determine the continuous S1 torque Mcont and
the maximum S2 torque Mmax of the EM for given driving cycles. In addition, the volt-
age dependencies as well as the thermal limits are integrated into the optimization. The
DP algorithm is applied to calculate the optimal operating strategy for an initial maximum
S2 torque Mmax,0 of the EM. If no feasible solution is obtained, then the maximum S2
torque Mmax is increased and vice-versa.
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Table 6.4.: Thermal parameters of the EM.

power-to-weight ratio PWR 1.8 † kW/kg
specific heat capacity windings cp,w 385 J/(kg · K)
specific heat capacity remaining parts cp,r 449 J/(kg · K)
initial temperature ϑinit 40 °C
maximum temperature ϑmax 160 °C
ratio of mw/(mw + mr) 0.15 -
ratio of mr/(mw + mr) 0.85 -
ratio of PW,EM /(PW,EM + PR,EM ) 0.67 -
ratio of PR,EM /(PW,EM + PR,EM ) 0.33 -
thermal resistance RT H 0.01 K/W

† Mean value based on data sheets [13] of the EMs 10.18.13, 10.18.22 and
12.18.13.
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Figure 6.12.: Power loss PLOSS,EM of the EM. The power loss as well as the continuous me-
chanical power PMECH are depicted over the speed n. In order to determine the
continuous cooling power PCOOL of the EM the maximum loss PLOSS,EM,max

below the corner speed ncor,cont is used. The power loss in case of overloading
is determined by a quadratic extrapolation of the continuous power loss map.
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To summarize, the following optimization problem is solved for a given maximum S2torque Mmax:

min
uk∈Uk

N−1∑

k=0

ṁf (uk, xk, wk, Mmax) · ∆t

s.t.

xk+1 =
uk · ∆t

CBAT · 3600
+ xk

0 ≤xk ≤ 1

−120 ≤uk ≤ 400

x0 = 0.85

xf = 0.85

xk ∈ Xk

uk ∈ Uk

where the battery current IBAT is used as control variable uk, the battery’s state of charge SOC
as state variable xk and the power demand PDEM as disturbance wk. In addition, limits of
the control and state variables as well as a sampling time ∆t of 1 s are considered.

After sizing the EM on the basis of the S2 mode, the requirements for the continuous S1 mode
are calculated in the next step. For this purpose, the thermal behavior of the EM needs to be
considered in more detail. The proposed approach takes into account the continuous cooling
power PCOOL of the EM which must be higher than the mean power loss P LOSS,EM due to
given load points. Furthermore, this part of the methodology considers thermal limits like
the maximum winding temperature ϑw,max. If thermal limits are exceeded, the continuous
S1 torque is increased until a sufficient convergence is obtained.
In order to increase the degrees of freedom in terms of the sizing of electric traction motors,
a two-speed gear is integrated into the drivetrain. By means of this expansion, the sizing of
the EM not only depends on the driving cycle but also on the ratio of the second gear.

6.3.2. Results based on a Battery

The previously described methodology is applied for the optimal sizing of electric traction
motors in HEVs.
Firstly, the optimal maximum S2 torque Mmax is determined for the driving cycles of Ap-
pendix D (Braunschweig city driving cycle, Manhattan bus cycle and Orange County bus
cycle). The consideration of voltage swings of the battery’s terminal voltage UT ERM depicts
another degree of freedom in the formulation of the optimization problem. Table 6.5 depicts
the results, which are based on the reference configuration of the hybrid bus as shown in
Section 6.1. It can be seen that the considered voltage swings of the battery’s terminal volt-
age UT ERM do not affect the results. In that case, one can conclude that the sizing of the
EM in terms of the S2 mode significantly depends on the load points of the driving cycle.

The next part of the methodology considers the optimal sizing of the EMs in terms of the
S1 mode. The optimal continuous S1 torque is iteratively increased until no thermal limits
of the EM are exceeded. For example, Figure 6.13 shows the temperatures of the windings
as well as the remaining parts of the EM for the Braunschweig city driving cycle. As the
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Table 6.5.: Comparison of the maximum S2 torque Mmax for different driving cycles, voltage
dependencies and a battery as energy storage. The results show that the voltage
swings of the battery’s terminal voltage UT ERM do not affect the sizing of the
EM. Furthermore, the RMS current as well as the mean power loss are depicted.

neglected voltage considered voltage
dependencies dependencies

Braunschweig city driving cycle 578.7 Nm 578.7 Nm
Manhattan bus cycle 462.9 Nm 462.9 Nm
Orange County bus cycle 386.7 Nm 386.7 Nm

internal resis- RMS current mean power loss
tance of the in the battery in the battery

battery

Braunschweig city driving cycle 134.4 mΩ 82.8 A 921 W
Manhattan bus cycle 134.4 mΩ 71.6 A 689 W
Orange County bus cycle 134.4 mΩ 80.9 A 880 W

temperatures are lower than the limit of 160 °C, the size of the EM with corresponding cooling
power PCOOL is defined accordingly in this example.
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Figure 6.13.: Temperatures of the windings as well as the remaining parts of the EM for the
Braunschweig city driving cycle. As the temperatures are lower than the limit
of 160 °C, the EM is appropriately sized in terms of the continuous S1 mode.

In the next step, the drivetrain is expanded by means of a two-speed gear box. In order to
determine the second gear ratio, the ratio of the first gear derived in Section 5.2 is multiplied
by means of a factor. In this section, the range of this factor is limited by 1 and 3, respectively.
Due to the additional gear, the operating strategy contains another degree of freedom which
can be exploited to reduce the maximum S2 torque Mmax as well as the continuous S1 torque
Mcont. Figure 6.14 depicts both torques Mmax and Mcont of the electric traction motors over
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the normalized ratio of the second gear. The results show that the integration of a second gear
leads to reductions especially for the maximum S2 torque Mmax. On the basis of different
driving cycles, it can be concluded that the ratio of the first to the second gear should be
within a range of 1.2 and 1.4.
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Figure 6.14.: Optimal sizes of the electrical traction machines depending on the normalized
ratio of the second gear. The blue lines depict the maximum S2 torque Mmax

and the red lines show the continuous S1 torque Mcont.

Furthermore, the DP algorithm provides the corresponding fuel consumption fc due to differ-
ent driving cycles and electric traction motors. Figure 6.15 depicts the fuel consumption fc

over the second gear ratio. Beside the reduction of the maximum S2 torque Mmax and
the continuous S1 torque Mcont, the integration of a second gear also leads to a lower fuel
consumption fc.
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Figure 6.15.: Fuel consumption fc depending on the second gear. It can be seen that the
integration of a second gear leads to a lower fuel consumption fc.
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As the results of Figures 6.14 and 6.15 depict Pareto fronts in terms of optimal EMs and fuel
consumption fc, the optimal ratio of the second gear can be determined. For this purpose,
the initial costs ccomp,em of the EM, the fuel consumption fc or a combination of both can be
taken into account to calculate the cost-optimal configuration.

In this subsection, the electrical energy storage was defined by means of a battery. Since the
sizing of EMs was not affected by the voltage swings of the battery’s terminal voltage UT ERM ,
the influence of another type of electrical energy storage is evaluated in the following.

6.3.3. Results based on a Supercap

So far the sizing process of the EM was presented for an almost fixed battery voltage UT ERM .
In order to demonstrate a scenario containing larger voltage swings, the battery is replaced
by means of a supercap. For this purpose, two different supercap types are considered in this
work:
Firstly, the influence of a high supercap capacitance CSC is evaluated. As a high supercap
capacitance CSC leads to small voltage swings, the maximum torque Mmax of the EM should
not depend on the voltage and furthermore, smaller sizes of the EMs will result.
Secondly, the vehicle configuration contains a small supercap capacitance CSC . For this
purpose, the supercap capacitance CSC is optimized for given driving cycles. An optimized
supercap should be discharged during a cycle to around 50 % of the maximum voltage Umax.
Hence, 75 % of the maximum supercap energy ESC will be used during the cycle and recov-
ered by the generator. As the voltage swings increase in case of a small supercap the sizing
of the EM is significantly affected.
The two chosen supercap types described before provide limits in terms of sizing the power
source and traction machines. In order to determine the optimal combination, further pa-
rameters like component costs and gear box ratio can be taken into account.

The supercap model is based on the type ”EMHSP-0051C0-340R0” [22]. As the maximum
voltage Umax of the supercap (340 V) and the vehicle’s electrical system (360 V) are approxi-
mately the same, no DC/DC converter will be used to shift the power supply voltage to the
optimum motor inverter voltage. Table 6.6 depicts the parameters of the supercap applied
in this subsection.

Table 6.6.: Parameters of the supercap ”EMHSP-0051C0-340R0” [22]. This type of super-
cap has an energy density of 2.13 Wh/kg which is significantly lower than the
energy density of batteries. For example, an energy density of 128 Wh/kg can be
determined for the fully charged battery pack of Section 5.4.

constant parameters symbol value unit

maximum discharge current IDIS 700† A
maximum charge current ICH 700† A
maximum voltage Umax 340 V
internal resistance RSC 24.5 mΩ
capacitance C 51 F
supercap mass msc 384 kg

† Assumed value.
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Furthermore, Figure 6.16(a) depicts the linear relation between the open-circuit voltage UOC

and the state of charge SOC. The term state of energy SOE is usually referred to as the state
of charge SOC for energy storages like flywheels and supercaps. Figures 6.16(a) and 6.16(b)
depict the difference between the open-circuit voltage UOC depending on the SOC as well as
the SOE.
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(a) Open-circuit voltage UOC of the supercap de-
pending on the state of charge SOC.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

SOE in %

O
pe

n−
ci

rc
ui

t v
ol

ta
ge

 in
 V

(b) Open-circuit voltage UOC of the supercap de-
pending on the state of energy SOE.

Figure 6.16.: Open-circuit voltage UOC of the supercap depending on the SOC and the SOE.

In order to determine the maximum S2 torque Mmax of the electric traction motors, the same
methodology is applied as described in Section 6.3.1. Table 6.7 depicts the corresponding re-
sults for different driving cycles and voltage dependencies due to the terminal voltage UT ERM

of the supercap.

Table 6.7.: Comparison of the maximum torque Mmax for different driving cycles, voltage
dependencies and a supercap as energy storage. The results show that the sizing
process does only slightly depend on the terminal voltage swings of the supercap
as the state of charge SOC of the supercap varies just as much as up to 11 %.
Furthermore, the root mean square (RMS) current IRMS,SC as well as the mean
power loss PLOSS,SC are depicted.

neglected voltage† considered voltage state of charge
dependencies dependencies range

Braunschweig city driving cycle 510.9 Nm 510.9 Nm 89 % - 100 %
Manhattan bus cycle 414.9 Nm 414.9 Nm 93 % - 100 %
Orange County bus cycle 386.7 Nm 399.6 Nm 90 % - 100 %

internal resis- RMS current mean power
tance of the SC in the SC loss in the SC

Braunschweig city driving cycle 24.5 mΩ 187.2 A 859 W
Manhattan bus cycle 24.5 mΩ 148.4 A 540 W
Orange County bus cycle 24.5 mΩ 182.5 A 816 W

† The maximum torque curve of the EM does not depend on the motor inverter voltage.

The results show that the sizing of the EMs slightly depends on the terminal voltage UT ERM

in case of the Orange County driving cycle. This relatively small difference comes from the
maximum speed of the Orange County driving cycle which is higher than the maximum speeds
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of the other two driving cycles. In contrast to the results of Table 6.5 lower values of the max-
imum torque Mmax are obtained for neglected voltage dependencies. These discrepancies can
be justified by means of operating the electrical energy storages at different operating points.
As the sizing of the EMs does only slightly depend on the terminal voltage of the supercap, it
can be concluded that the capacitance of the supercap (”EMHSP-0051C0-340R0”) is too high
and thus too heavy and costly for the requirements of the driving cycles. Although configu-
rations containing a big supercap capacitance lead to minimum sizes of the EM, the overall
vehicle provokes higher initial costs due to the ”oversized” supercap. Another drawback is
given by the low energy density of supercaps which causes additional vehicle mass as well as
higher operating costs. In order to find an improved vehicle configuration, the capacitance of
the supercap CSC is optimized in the next step. For this purpose, a scalable supercap model
based on the parameters of Table 6.6 is used. Again, the optimization algorithm calculates
the maximum torque of the traction machines Mmax for neglected and considered voltage
dependencies. As a further restriction operating points of the inverter leading to a low ef-
ficiency η should be avoided. For this purpose, the minimum state of charge SOC of the
supercap is defined by 50 % which is equivalent to a state of energy SOE of 25 %. Table 6.8
depicts the minimum capacitance of the supercap Cmin and the maximum torque Mmax of
the traction machines for different driving cycles.

Table 6.8.: Comparison of the minimum capacitance CSC,min as well as corresponding param-
eters, RMS current IRMS,SC , mean power loss PLOSS,SC , maximum torque Mmax,
voltage dependencies and different driving cycles in case of a supercap as en-
ergy storage. The results show that the sizing process of the traction machines
significantly depends on the terminal voltage swings of the optimized supercaps.
Furthermore, the RMS current IRMS,SC as well as the mean power loss PLOSS,SC

are depicted. In contrast to the results of Table 6.7 a lower RMS current IRMS,SC

and a higher power loss PLOSS,SC are obtained. This behavior is described in the
text below.

neglected voltage considered voltage
dependencies dependencies

Braunschweig city driving cycle 503.9 Nm 892.9 Nm
Manhattan bus cycle 410.2 Nm 668.4 Nm
Orange County bus cycle 382.1 Nm 708.5 Nm

minimum supercap (SC) state of charge
capacitance mass range

Braunschweig city driving cycle 12.0 F 90.4 kg 50 % - 100 %
Manhattan bus cycle 9.5 F 71.5 kg 50 % - 100 %
Orange County bus cycle 8.5 F 64.0 kg 50 % - 100 %

internal resis- RMS current mean power
tance of the SC in the SC loss in the SC

Braunschweig city driving cycle 104.1 mΩ 136.3 A 1934 W
Manhattan bus cycle 131.5 mΩ 115.8 A 1763 W
Orange County bus cycle 147.0 mΩ 134.2 A 2647 W

In addition, Table 6.8 evaluates neglected and considered effects due to the terminal voltage
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of the supercap. The simulation results show that the maximum torque Mmax significantly
depends on the terminal voltage of the supercap. In contrast to the results of Table 6.7 a
lower RMS current IRMS,SC and a higher power loss PLOSS,SC are obtained. This behavior
is described in the following:
As the EMs and supercaps are optimized in this section the same reference vehicle configu-
ration of Chapter 5 is used for the remaining components. In order to determine the two
component limits minimum capacitance CSC,min and maximum torque Mmax the DP algo-
rithm is applied for corresponding vehicle configurations. In addition, the DP algorithm
provides the optimal operating strategy which significantly depends on the supercap capac-
itance CSC . The DP algorithm decides to preferably use the engine-generator unit in case
of a low capacitance CSC to keep the motor inverter voltage on a higher level as well as
to avoid a state of charge SOC below the minimum limit of 50 %. Thus, a reduced RMS
current IRMS,SC is obtained for a minimum supercap capacitance CSC,min compared to a
high supercap capacitance CSC . In addition, the internal supercap resistance RSC increases
for a low supercap capacitance CSC which causes a higher power loss PLOSS,SC .
As the sizing of EMs is affected due to the voltage swings of the supercap it can be concluded
that voltage-dependent effects of the power source need to be considered for the optimal
sizing of EMs on the basis of driving cycles.
To summarize, Tables 6.7 and 6.8 provide limits for the sizing of EMs and supercaps. The
results show that a high value of the supercap capacitance CSC leads to low values of the
maximum torque Mmax of the EM and vice-versa. As another degree of freedom the gear ra-
tio of the three-speed gear box ig can be optimized for different driving cycles. This approach
allows to handle higher voltage swings of the supercap and consequently leads to lower values
of the minimum capacitance of the supercap CSC and to smaller EMs. In order to determine
the optimal sizes of supercap and EMs, further parameters can be considered which are for
example component costs. In addition, effects like calendric or cyclic aging of supercaps can
be included into the optimization.

In this section, two approaches for the optimal sizing of EMs were presented which either
consider or neglect the voltage of the vehicle’s electrical system. Whereas voltage-dependent
effects can be neglected for a battery, these effects significantly influence the optimization in
case of supercaps. Beside the sizing of traction machines, the approaches can also be used to
determine optimal combinations of EMs and energy storages.

6.4. Cost-optimal Operating Strategies

In the Sections 6.1-6.3, the optimization goal was to minimize the fuel consumption fc. How-
ever, in applications such as public transport or freight traffic, the optimization of costs is
more important than only minimizing the fuel consumption fc.
This section focuses on minimizing the operating costs of HEVs and expands the previously
applied fuel-optimal approaches. For this purpose, costs which are influenced through the
operating strategy are considered in the optimization problem. In addition to the fuel costs
due to the fuel consumption fc, the operating strategy also provokes component wear. In
order to obtain costs for the exchange of components, aging models need to be applied. By
means of the aging determined as well as the costs for replacing components, the operating
costs cop due to component wear can be finally calculated.
The approaches used in this section consider battery aging and brake pad wear. The effects
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of battery aging are divided into cyclic and calendric aging. Parts of the methodologies de-
veloped within this section have been published [34, 35]. The following subsections describe
the approaches for cost-optimal operating strategies in detail.

6.4.1. Cyclic Battery Aging

In general, the use of the battery leads to a trajectory of the state of charge SOC containing
several micro cycles. The number of state of charge swings as well as their amplitudes are
one of the key factors which influence the life span of the battery [88, 4]. In order to obtain
costs due to cyclic aging, the resulting aging due to the state of charge profile needs to be
determined.
Beside the fuel costs due to fuel consumption fc, the first approach for cost-optimal operating
strategies additionally considers costs due to cyclic battery aging. In the following, the
methodology proposed as well as simulation results are presented.

Methodology

As shown in related work [26], a usual method to determine cyclic battery aging is given
by applying a linear aging model on the basis of a constant energy or charge throughput
of the battery. The term ”linear aging” means that for example one cycle with a depth of
discharge of 100 % causes the same aging as 10 cycles with a depth of discharge of 10 %.
Thus, the charge throughput over the depth of discharge is assumed to be constant and given
by means of the number of full discharge cycles. In contrast, the work of [95] uses a more
detailed battery model and considers a severity factor map to weight the impacts of different
battery temperatures ϑBAT and state of charge swings. As these factors mainly depend on
characteristics like cell chemistry as well as anode and cathode compositions, a suitable map
needs to be constructed with the help of data from battery manufacturers or exhaustive mea-
surements. In general, the required data is only available with much effort and thus, another
approach should be taken into account. In this section, an approach based on a non-linear
charge throughput model is used in order to determine cyclic battery aging.

In the first part of the methodology, the optimization problem is defined by means of a
general functional

J(SOC0, IBAT ) =

tf∫

t0

(

c1 · ṁf (IBAT , SOC, PDEM ) + c2 ·
IBAT

2

105

)

dt, (6.3)

where fc represents the fuel consumption, IBAT the battery current, c1 the fuel costs per liter
and c2 a weighting factor to penalize high battery currents IBAT . Additionally, a constant
factor of 10−5 is used to keep both cost terms in similar value ranges. Whereas the fuel
consumption fc can be directly converted into costs by means of fuel costs cfuel, several
mathematical formulations can be used in order to describe battery aging and corresponding
costs. In Equation 6.3, the square value of the battery current IBAT is included to consider the
use of battery energy EBAT . Other mathematical relations are also suitable to penalize high
changes of the state of charge SOC. For example, these functions can consider the absolute
value of the battery current IBAT or the battery power PBAT .
As the optimization goal is to minimize the performance index J , the division by c1 does
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not influence the result. By introducing the weighting factor β = c2/c1, a more general
formulation of Equation 6.3 is obtained:

J(SOC0, IBAT ) =

tf∫

t0

(

ṁf (IBAT , SOC, PDEM ) + β ·
IBAT

2

105

)

dt. (6.4)

Now, β represents the weighting factor to prefer or reduce the use of the battery. For different
values of the weighting factor β, optimal state of charge trajectories are calculated and a set
of optimal solutions is obtained. In order to find the global optimum of the minimum costs,
the rainflow counting algorithm is applied to evaluate the number of cycles with correspond-
ing depths of discharge.
The rainflow counting algorithm originates from mechanical fatigue and stress analysis [65]
and has been applied in many scientific areas [71, 103]. In addition, it has been shown that
the rainflow counting algorithm is also suitable to determine the battery aging due to cyclic
stress [46, 117, 118]. A short introduction to the basics of the algorithm is given in Ap-
pendix A.
By means of a battery aging model in combination with the rainflow counting algorithm,
the calculated battery cycles are converted into an equivalent cyclic battery aging. Finally,
the state of charge trajectory leading to the minimum costs is taken from the set of optimal
solutions in order to determine the optimal operating strategy.

Figure 6.17 describes the methodology used in this section for a given weighting factor β.
The optimal operating strategy is calculated in the first part. In the next step, the results
are evaluated in order to determine the fuel consumption fc as well as the cyclic battery
aging. After a brief introduction to the methodology, the particular steps of Figure 6.17
”Optimization” and ”Evaluation” are described in more detail.

Optimization
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Figure 6.17.: Overview of the methodology. The methodology contains two main parts: The
first part calculates the optimal operating strategy for a given value of the
weighting factor β. Afterwards, the second part evaluates the fuel consump-
tion fc as well as the state of charge trajectory in order to determine cyclic
battery aging.

The DP algorithm is applied to calculate the optimal operating strategy. In contrast to previ-
ous sections, the results cannot be directly used to determine cyclic battery aging. The reason
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for this drawback is that the performance index J of Equation 6.4 only considers changes of
the state of charge between two time steps.

In order to describe cyclic battery aging, a non-linear model is applied. Figure 6.18(a) depicts
the relative capacity over the full discharge cycles [30]. As a capacity loss of 20 % defines the
battery’s end-of-life, the maximum number of full discharge cycles is specified by 1500. In
addition, Figure 6.18(b) shows the cylic aging model which is based on measured data [66].
In contrast to a constant charge throughput model, the approach used in this work leads to
a significantly higher cycle life especially for a low depth of discharge.
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(a) Relative capacity over the full discharge cycles
for the ”Kokam SLPB100216216H” cell [30].
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(b) Cycle life over the depth of discharge for a constant
charge throughput model as well as for an approx-
imation based on measured data [66].

Figure 6.18.: Model used to describe cyclic battery aging. The left figure shows the relative
battery capacity depending on the full discharge cycles. As a capacity loss of
20 % defines the battery’s end-of-life, the maximum number of full discharge
cycles is specified by 1500. The right figure depicts the approach of this work in
order to describe the cycle life over the depth of discharge. In contrast to a con-
stant charge throughput model, the proposed approach leads to a significantly
higher cycle life especially for a low depth of discharge.

As stated above, the defined dynamic program used for the optimization considers micro
cycles between two time steps. Thus, the trend of the state of charge trajectory over longer
time spans is neglected. Battery cycles containing high amplitudes are implicitly converted
into an equivalent number of micro cycles. Although the depth of discharge is probably the
same, the resulting battery aging differs due to the non-linearity of the cyclic aging model.
As an alternative, a further state variable x can be introduced into the dynamic program.
By means of this expansion, the actual height of the micro cycles is stored for positive and
negative swings. This variant leads to high calculation times and can also not evaluate state
of charge trajectories over longer time spans. Figure 6.19 graphically sketches this problem.
Whereas the state of charge swing ∆SOC is determined by means of the expanded dynamic
program, a swing containing different signs of the micro cycles such as ∆SOCmax cannot be
evaluated. Because of this circumstance, the approach of Equation 6.4 is used in combina-
tion with a further evaluation. Although the calculation of the global optimum cannot be
guaranteed, global optimality is nearly obtained after the evaluation of a plurality of state of
charge trajectories.
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Figure 6.19.: Evaluation of a state of charge trajectory. Whereas cycles like ∆SOC are di-
rectly determined by means of an expanded dynamic program, swings such as
∆SOCmax can only be evaluated off-line.

To summarize, the following optimization problem is solved for different values of the weight-
ing factor β and battery capacities CBAT :

min
uk∈Uk

N−1∑

k=0

(

ṁf (uk, xk, wk, CBAT ) + β ·
u2

k

105

)

· ∆t

s.t.

xk+1 =
uk · ∆t

CBAT · 3600
+ xk

0 ≤xk ≤ 1

−3 · CBAT ≤uk ≤ 10 · CBAT

x0 = 0.85

xf = 0.85

xk ∈ Xk

uk ∈ Uk

where the battery current IBAT is used as control variable uk, the battery’s state of charge SOC
as state variable xk and the power demand PDEM as disturbance wk. In addition, limits of
the control and state variables as well as a sampling time ∆t of 1 s are considered.

In the evaluation step of the methodology, the fuel consumption fc and cyclic battery aging
are determined for a given weighting factor β. Whereas the fuel consumption fc can be di-
rectly derived from the optimization results, the calculation of the cyclic battery aging needs
another approach. As described before, the rainflow counting algorithm is used to obtain
the number of micro cycles and swings of the state of charge trajectory. After the evaluation
step, the corresponding fuel consumption fc as well as cyclic battery aging is obtained for
a given weighting factor β. The methodology described is repeated for several values of the
weighting factor β in order to derive a set of optimal solutions. The globally optimal solu-
tion is finally approximated by means of the optimum of locally optimal operating strategies.
Further parameters such as fuel costs per liter cfuel or battery costs per kWh cbat need to be
defined in order to obtain cost-optimal operating strategies.
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Results

Firstly, the aging models of Figure 6.18 are compared by means of simulations. For this
purpose, different weighting factors β and driving cycles are used. Table 6.9 shows the
corresponding results and depicts the fuel consumption fc as well as the cyclic battery aging of
constant and non-linear charge throughput models. It can be seen that the charge throughput
model used in this work leads to significantly lower cyclic aging compared to the constant
model. In addition, it can be concluded that the constant charge throughput model causes
too pessimistic results in terms of cyclic aging.

Table 6.9.: Comparison of cyclic battery aging due to constant and non-linear charge through-
put models for different weighting factors β.

driving cycle weighting fuel cyclic aging cyclic aging
factor β consumption fc (non-linear model) (constant model)

Braunschweig 0 ·10−2 6.39 lit. 3.16 · 10−5 2.57 · 10−4

city 1 · 10−1 6.96 lit. 1.19 · 10−5 1.18 · 10−4

driving 2 · 10−1 7.48 lit. 5.71 · 10−6 6.87 · 10−5

cycle 5 · 10−1 7.73 lit. 4.21 · 10−6 4.83 · 10−5

1 ·10−2 7.81 lit. 4.27 · 10−6 4.79 · 10−5

0 ·10−2 2.42 lit. 1.72 · 10−5 1.38 · 10−4

Manhattan 1 · 10−1 2.71 lit. 7.74 · 10−6 7.66 · 10−5

bus 2 · 10−1 3.07 lit. 2.62 · 10−6 3.59 · 10−5

cycle 5 · 10−1 3.21 lit. 1.81 · 10−6 2.23 · 10−5

1 ·10−2 3.24 lit. 1.78 · 10−6 2.19 · 10−5

Orange 0 ·10−2 6.29 lit. 3.32 · 10−5 2.65 · 10−4

County 1 · 10−1 6.94 lit. 1.01 · 10−5 1.07 · 10−4

bus 2 · 10−1 7.36 lit. 5.45 · 10−6 6.68 · 10−5

cycle 5 · 10−1 7.70 lit. 2.78 · 10−6 3.14 · 10−5

1 ·10−2 7.78 lit. 2.71 · 10−6 2.70 · 10−5

In a further step, the influence of the weighting factor β on the cost-optimal operating strate-
gies is evaluated. Figures 6.20(a) and 6.20(b) depict the optimum values of fuel consump-
tion fc and cyclic battery aging for the Braunschweig city driving cycle. The results show that
higher values of the weighting factor β lead to a lower cyclic aging of the battery. Obviously,
the fuel consumption fc increases with the weighting factor β as the EGU is more frequently
used to fulfill the power demands PDEM of the driving cycle.

In order to determine the optimal operating costs, the parameters fuel costs per liter cfuel

as well as battery costs per kWh cbat need to be defined. By means of these parameters, it
is possible to relate the set of optimal operating strategies of Figure 6.20 to equivalent costs.
The minimum of these costs provides the optimal operating costs cop.
Based on the reference configuration of Section 6.1, parameter studies were performed. In
order to cover a broad parameter range, fuel costs cfuel of 1 €/lit. and 3 €/lit. as well as
battery costs cbat of 200 €/kWh and 1000 €/kWh are chosen.
Figure 6.21 depicts the operating costs cop over the weighting factor β for different fuel
costs cfuel and battery costs cbat by means of the Braunschweig city driving cycle. As the
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(a) Fuel consumption fc depending on the weight-
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(b) Cyclic battery aging depending on the weight-
ing factor β.

Figure 6.20.: Influence of the weighting factor β. The fuel consumption fc and cyclic battery
aging are compared for different values of the weighting factor β. As a higher
value of β leads to a lower use of the battery, the cyclic battery aging decreases.
In contrast, the fuel consumption fc increases for higher values of the weighting
factor β in order to fulfill the power demand PDEM of the driving cycle.

minimum operating costs cop are found for low values of the weighting factor β, the scale is
limited by 1. The results of the other two driving cycles are presented in Appendix C.

Until now, the battery capacity CBAT was defined by 40 Ah. In the following, the influence
of variable battery capacities CBAT on the minimum operating costs cop is evaluated. For
this purpose, a set of optimal operating strategies is calculated by means of several values
of the weighting factor β and battery capacities CBAT . Afterwards, the minimum operating
costs cop are evaluated for given battery capacities CBAT as well as fuel costs cfuel and battery
costs cbat.

Figure 6.22 depicts the minimum operating costs cop and fuel costs cfuel over the battery
capacity CBAT . Additionally, different values of fuel costs cfuel and battery costs cbat as well
as the Braunschweig city driving cycle are used. The costs due to cyclic battery aging are
represented by means of the difference between the operating costs cop and fuel costs due to
fuel consumption fc. The results of the evaluated capacity range show two effects:

• Bigger battery capacities CBAT lead to lower fuel consumptions fc as the recuperation
potential can be better exploited.

• Bigger battery capacities CBAT reduce the cyclic aging effects. This circumstance can be
justified by means of the applied non-linear battery aging model. As a bigger capacity
leads to lower depth of discharges, the cyclic aging is reduced. As only cyclic aging
effects are considered, the higher costs for exchanging the battery are not included in
this simulation study.

The corresponding results of the other two driving cycles are presented in Appendix C.

In this subsection, the optimal operating strategies leading to minimum operating costs cop

were calculated for a hybrid bus. If the life cycle costs clife should be minimized, the scaling
of operating costs cop unfortunately provides an estimation. A more accurate approach is
given by including the costs for replacing components into the optimization process. In the
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Figure 6.21.: Variable fuel costs cfuel and battery costs cbat over the weighting factor β. The
optimum for given fuel costs cfuel and battery costs cbat is determined by means
of the minimum operating costs cop over the weighting factor β.

following, a methodology to minimize life cycle costs clife including the exchange of batteries
is presented.

6.4.2. Calendric Battery Aging

In applications such as freight traffic not only the operating costs cop but also the life cycle
costs clife of vehicles are probably of high significance. As the methodology of Section 6.4.1
minimizes the operating costs cop for one driving cycle, another approach needs to be taken
into account to optimize life cycle costs clife. For this purpose, calendric battery aging effects
are additionally considered in the optimization problem. For a certain vehicle life span, the
optimal number of batteries NBAT is calculated on the basis of cyclic and calendric battery
aging effects.

Methodology

In order to model calendric aging effects, a linear approach is taken into account. For this
purpose, it is assumed that the battery can withstand a defined time span if no cyclic aging
occur. In addition, the total number of driving cycles NCY C during the vehicle life span needs
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(c) Fuel costs cfuel of 1 €/lit. and battery costs cbat

of 500 €/kWh.
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(e) Fuel costs cfuel of 1 €/lit. and battery costs cbat

of 1000 €/kWh.

20 40 60 80 100 120 140 160
15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

Battery capacity in Ah

C
os

ts
 in

 €

 

 
Total costs
Fuel costs

(f) Fuel costs cfuel of 3 €/lit. and battery costs cbat
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Figure 6.22.: The figures show the minimum operating costs cop as well as the fuel costs due
to fuel consumption fc depending on the battery capacity CBAT . Furthermore,
different values of fuel costs cfuel and battery costs cbat as well as the Braun-
schweig city driving cycle are used. The costs due to cyclic battery aging are
represented by means of the difference between operating costs cop and fuel costs
due to fuel consumption fc.
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to be known. By means of these two parameters, the calendric battery aging per driving cycle
is finally obtained. Further effects such as operating and shelf temperature are neglected for
simplicity.
As the modeled calendric battery effects are not influenced by means of the operating strategy,
the results of the previous subsection can be used again. To describe the total battery aging,
the calculated cyclic aging is expanded with the help of an offset representing the calendric
aging. By means of the battery aging per cycle and the number of driving cycles NCY C

over the defined vehicle life span, the total battery aging is calculated. The results obtained
need to be appropriately rounded as obviously only integer numbers of batteries NBAT are
replaced over the life time.

Results

Based on the methodology described above, the calendric battery aging is calculated for a
defined vehicle life span of 10 years. In addition, the operating hours hop of the hybrid bus are
defined by 2000 and 5000 hours/year, respectively. By means of the duration of the driving
profiles used in this work, the total number of driving cycles NCY C over the vehicle life span
is calculated. Table 6.10 depicts the calendric battery aging for different driving cycles on
the basis of the above mentioned parameters.

Table 6.10.: Number of total driving cycles NCY C and calendric battery aging per cycle.

driving cycle operating hours life span # cycles calendric aging
(h/year) (years) (-) (1/cycle)

Braunschweig city 2000 10 041379 2.4 · 10−5

driving cycle 5000 10 103448 9.7 · 10−6

Manhattan 2000 10 066116 1.5 · 10−5

bus cycle 5000 10 165290 6.1 · 10−6

Orange County 2000 10 037716 2.7 · 10−5

bus cycle 5000 10 094290 1.1 · 10−5

In order to determine the cyclic and calendric aging of batteries, the calculated set of different
weighting factors β of the previous Section 6.4.1 is used again. As mentioned before, this
approach is valid since the calendric life of the battery cannot be controlled by means of the
operating strategy. As the calendric aging represents a constant offset, the optimal operating
strategy would be the same compared to the pure cyclic battery aging approach.
Until now, only the operating costs cop for one driving cycle are minimized. However, if
the life cycle costs clife should be calculated, then the costs for the replacement of batteries
are important. The previously obtained operating costs cop cannot be linearly scaled over
a life span as only an integer number of batteries NBAT is used. In order to overcome this
drawback, another approach is introduced, which leads to the following definition of life cycle
costs

clife = NCY C · cfuel · fc + NBAT · cbat · EBAT , (6.5)

where NCY C represents the total number of driving cycles, cfuel the fuel costs per liter, fc the
fuel consumption, NBAT the number of batteries, cbat the battery costs per kWh and EBAT

the energy content of the battery.
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Table 6.11 depicts the share of calendric and cyclic battery aging leading to the minimum life
cycle costs clife for the Braunschweig city driving cycle as well as fuel costs cfuel of 1 €/liter
and battery costs cbat of 500 €/kWh. The variable parameters are defined by the battery
capacity CBAT and operating hours hop. The results of the other two driving cycles are
shown in Appendix C.

Table 6.11.: Share of battery aging effects based on the Braunschweig city driving cycle, fuel
costs cfuel of 1 €/liter and battery costs cbat of 500 €/kWh. The variable param-
eters are defined by the battery capacity CBAT and operating hours hop. By
means of the number of driving cycles NCY C , the total battery aging as well as
the needed number of batteries NBAT are determined.

battery operating cyclic calendric battery total battery number of
capacity hours aging aging aging aging batteries

(Ah) (h/year) (1/cycle) (1/cycle) (1/cycle) (-) (-)

040 2000 2.31 · 10−5 2.42 · 10−5 4.73 · 10−5 1.95 2
040 5000 2.59 · 10−5 9.67 · 10−6 3.56 · 10−5 3.68 4
060 2000 1.84 · 10−5 2.42 · 10−5 4.26 · 10−5 1.77 2
060 5000 1.84 · 10−5 9.67 · 10−6 2.81 · 10−5 2.90 3
080 2000 2.08 · 10−5 2.42 · 10−5 4.50 · 10−5 1.86 2
080 5000 1.47 · 10−5 9.67 · 10−6 2.44 · 10−5 2.51 3
100 2000 1.58 · 10−5 2.42 · 10−5 4.00 · 10−5 1.65 2
100 5000 1.58 · 10−5 9.67 · 10−6 2.55 · 10−5 2.64 3

Figure 6.23 depicts the minimum life cycle costs clife depending on the battery capacity CBAT

as well as operating hours hop of 2000 h/year and 5000 h/year, respectively. The driving pro-
file is defined by means of the Braunschweig city driving cycle. Fuel costs cfuel of 1 €/liter and
3 €/liter as well as battery costs cbat of 200 €/kWh, 500 €/kWh and 1000 €/kWh are used in
order to cover a set of current and future price levels. The evaluated battery capacity range
has a defined maximum by means of 150 Ah. As a constant power of the EGU of 160 kW is
assumed, the power demand PDEM of the driving cycle provides a minimum limit in terms
of the battery capacity CBAT . By means of the calculated results, the optimum battery
capacity CBAT leading to minimum life cycle costs clife can be determined for a variable set
of prices.
The corresponding results of the other two driving cycles are shown in Appendix C.

In this subsection, cyclic and calendric aging effects of the battery were considered in order
to optimize life cycle costs clife of a hybrid bus. Since the operating strategy also influences
the use of the mechanical brakes, the brake pad wear depicts another parameter which can
be included into the optimization problem. The following subsection describes a possible
approach to solve this problem.

6.4.3. Brake Wear

This subsection describes cost-optimal operating strategies with battery aging as well as brake
wear considered. For this purpose, the previous approach of Section 6.4.2 is expanded with
the help of a mechanical brake model. In case of negative power at the wheels (PW < 0) of the



6.4. Cost-optimal Operating Strategies 83

20 40 60 80 100 120 140 160
2

3

4

5

6

7

8

x 10
5

Battery capacity in Ah

C
os

ts
 in

 €

 

 
Total costs (2000 hours/year)
Fuel costs (2000 hours/year)
Total costs (5000 hours/year)
Fuel costs (5000 hours/year)

(a) Fuel costs cfuel of 1 €/lit. and battery costs cbat

of 200 €/kWh.

20 40 60 80 100 120 140 160
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

6

Battery capacity in Ah

C
os

ts
 in

 €

 

 
Total costs (2000 hours/year)
Fuel costs (2000 hours/year)
Total costs (5000 hours/year)
Fuel costs (5000 hours/year)

(b) Fuel costs cfuel of 3 €/lit. and battery costs cbat

of 200 €/kWh.

20 40 60 80 100 120 140 160
2

3

4

5

6

7

8

9

x 10
5

Battery capacity in Ah

C
os

ts
 in

 €

 

 
Total costs (2000 hours/year)
Fuel costs (2000 hours/year)
Total costs (5000 hours/year)
Fuel costs (5000 hours/year)

(c) Fuel costs cfuel of 1 €/lit. and battery costs cbat

of 500 €/kWh.

20 40 60 80 100 120 140 160
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

6

Battery capacity in Ah

C
os

ts
 in

 €

 

 
Total costs (2000 hours/year)
Fuel costs (2000 hours/year)
Total costs (5000 hours/year)
Fuel costs (5000 hours/year)

(d) Fuel costs cfuel of 3 €/lit. and battery costs cbat

of 500 €/kWh.

20 40 60 80 100 120 140 160
2

3

4

5

6

7

8

9

x 10
5

Battery capacity in Ah

C
os

ts
 in

 €

 

 
Total costs (2000 hours/year)
Fuel costs (2000 hours/year)
Total costs (5000 hours/year)
Fuel costs (5000 hours/year)

(e) Fuel costs cfuel of 1 €/lit. and battery costs cbat

of 1000 €/kWh.

20 40 60 80 100 120 140 160
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

6

Battery capacity in Ah

C
os

ts
 in

 €

 

 
Total costs (2000 hours/year)
Fuel costs (2000 hours/year)
Total costs (5000 hours/year)
Fuel costs (5000 hours/year)

(f) Fuel costs cfuel of 3 €/lit. and battery costs cbat

of 1000 €/kWh.

Figure 6.23.: Comparison of life cycle costs clife for the Braunschweig city driving cycle de-
pending on the battery capacity CBAT and operating hours hop. For different
values of fuel costs cfuel and battery costs cbat, the optimal battery capacity
CBAT leading to the minimum life cycle costs clife can be determined.
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driving cycle, the operating strategy either provides this power by means of the mechanical
brakes or the use of the electric traction motors in order to recuperate energy. As recuperation
and mechanical braking lead to corresponding component wear, the calculated operating
strategy should provide power splits leading to minimum life cycle costs clife. In the following,
the methodology proposed as well as results based on simulations are presented.

Methodology

In order to determine the costs due to brake wear, a model of the mechanical brake is
needed. For this purpose, the brake model based on the work of [108] is used, which is
depicted in Figure 6.24. The model shows a linear relation between brake wear and cumulative
braking energy for different temperatures. For simplicity, a constant operating temperature
is assumed which reduces the number of model parameters. Due to the linearity of the model,
the wear is a function of the braking energy. The cumulative work done by the brake is only
needed to define the corresponding slope of the function.
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Figure 6.24.: Illustration of the brake model (slightly modified from [108]). The model shows
a linear relation between wear and cumulative work for different operating tem-
peratures.

The brake model applied in this work contains one parameter which defines the slope of
the linear function. To calculate this parameter, the cumulative braking energy for a nor-
malized brake wear of 100 % needs to be known. Table 6.12 depicts the cumulative brake
energy demand of all driving cycles used in this work if no recuperation is taken into ac-
count. Furthermore, it is assumed that the mechanical brakes can withstand 3 years if no
recuperation is taken into account and the bus is operated with annual operating hours hop

of 5000 h/year on the basis of a given driving cycle. The costs for replacing the mechanical
brakes ccomp,brake are estimated by 5000 €. By means of these assumptions, the mechanical
brake energies can be directly converted into equivalent braking costs.
In the next step, the life cycle costs clife including the exchange of batteries and brakes are
given by

clife = NCY C · cfuel · fc + NBAT · cbat · EBAT + NBRAKE · ccomp,brake, (6.6)
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Table 6.12.: Total brake energy demands of different driving cycles.

driving cycle total brake energy demand
(kWh)

Braunschweig city driving cycle 11.3
Manhattan bus cycle 04.6
Orange County bus cycle 10.9

where NCY C represents the total number of driving cycles, cfuel the fuel costs per liter, NBAT

the number of batteries, cbat the battery costs, EBAT the energy content of the battery,
NBRAKE the number of brakes and ccomp,brake the brake costs.
To find the optimal operating strategy, the set of optimal solutions of Section 6.4.1 is used
again. As the weighting factor β was applied to weight the use of the battery, the power split
between recuperation and mechanical braking is implicitly influenced. As the recuperation
power is limited by means of the electric traction motors as well as the maximum charge power
of the battery, a minimum limit of braking costs is given. Furthermore, it can be concluded
that a higher value of the weighting factor β leads to a preferable use of the mechanical
brakes and vice-versa. By means of this approach, it is possible to obtain the minimum life
cycle costs clife for given fuel costs cfuel, battery costs cbat and brake costs ccomp,brake. In the
following, results based on simulations are shown by means of a parameter study.

Results

To demonstrate the methodology described before, a small parameter study was performed.
The variable parameters are defined by means of the driving cycle, battery capacity CBAT ,
operating hours hop, fuel costs cfuel and battery costs cbat. Furthermore, a constant vehicle
life span of 10 years and brake costs ccomp,brake due to the exchange of brakes of 5000 € are
assumed.
Table 6.13 depicts the optimal share of operating costs cop and life cycle costs clife for the
Braunschweig city driving cycle. In addition, fuel costs cfuel of 1 €/liter as well as battery
costs cbat of 500 €/kWh are used, which represent usual values of today. In contrast, Ta-
ble 6.14 depicts the results of a future scenario. For this purpose, fuel costs cfuel of 2 €/liter
and battery costs cbat of 200 €/kWh are assumed.
Both tables show that the operating costs cop as well as the life cycle costs clife are mainly
influenced by means of the fuel costs cfuel and battery costs cbat. The results of the other
two driving cycles are presented in Appendix C.

In this section, cost-optimal operating strategies considering battery aging and brake pad
wear were presented. The approach can be used to minimize operating costs cop as well as
life cycle costs clife of HEVs. The simulation results show that the ratio of braking costs is
relatively small compared to the overall life cycle costs clife.
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Table 6.13.: Share of operating costs cop and life cycle costs clife for given fuel costs cfuel of
1 €/liter and battery costs cbat of 500 €/kWh. The life span of the bus is defined
by 10 years.

operating costs per cycle for the Braunschweig city driving cycle

battery operating fuel battery brake total
capacity hours costs costs costs costs

(Ah) (h/year) (€) (€) (€) (€)

040 2000 6.43 0.34 0.06 6.83
040 5000 6.41 0.26 0.06 6.73
080 2000 5.71 0.65 0.03 6.39
080 5000 5.74 0.35 0.03 6.12

life cycle costs for the Braunschweig city driving cycle

battery operating fuel battery brake total
capacity hours costs costs costs costs

(Ah) (h/year) (k€) (k€) (k€) (k€)

040 2000 266.2 14.4 05 285.6
040 5000 663.1 28.8 10 701.9
080 2000 236.4 28.8 05 270.2
080 5000 594.7 43.2 05 642.9

Table 6.14.: Share of operating and life cycle costs for given fuel costs of 2 €/liter and battery
costs of 200 €/kWh. The life span of the bus is defined by 10 years.

operating costs per cycle for the Braunschweig city driving cycle

battery operating fuel battery brake total
capacity hours costs costs costs costs

(Ah) (h/year) (€) (€) (€) (€)

040 2000 12.79 0.16 0.06 13.01
040 5000 12.79 0.12 0.06 12.97
080 2000 11.42 0.26 0.03 11.71
080 5000 11.42 0.18 0.03 11.63

life cycle costs for the Braunschweig city driving cycle

battery operating fuel battery brake total
capacity hours costs costs costs costs

(Ah) (h/year) (k€) (k€) (k€) (k€)

040 2000 0529.3 08.6 05 0542.9
040 5000 1323.3 14.4 10 1347.7
080 2000 0472.7 11.5 05 0489.2
080 5000 1181.8 23.0 05 1209.8
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6.5. Operating Strategies Including Thermal Effects

In the approaches of Section 6.4, the thermal effects of components were neglected. However,
a possible exceeding of thermal limits may be crucial in terms of component life spans. As
the operating strategy mainly influences component temperatures, thermal limits need to
be considered in the optimization problem. Since DP is applied for calculating the globally
optimal operating strategy, the number of state variables should be low in order to avoid
the ”curse of dimensionality”. In the following, a methodology to obtain optimal operating
strategies including thermal limits of the battery is described.

6.5.1. Methodology

It is assumed that the EGU as well as the electric traction motors of the bus are appropriately
scaled and do not exceed thermal limits for a given operating strategy. By means of this
simplification, the temperature of the battery ϑBAT remains as critical thermal state and
therefore is included into the optimization problem. In addition to the state of charge SOC,
the battery temperature ϑBAT defines the second state variable x of the dynamic program.
Furthermore, the cooling power PCOOL of the battery provides the second control variable u.
The thermal part of the battery is modeled by means of a point mass mbat and a corresponding
specific heat capacity cp,bat. Thus, the change of the battery temperature ϑBAT can be
described as follows

dϑBAT

dt
=

1

cp,bat · mbat

·
(

PLOSS,BAT − PCOOL

)

(6.7)

=
1

cp,bat · mbat

·
(

I2
BAT · RBAT (ϑBAT ) − PCOOL

)

, (6.8)

where ϑBAT represents the battery temperature, PLOSS,BAT the electrical losses, PCOOL the
cooling power, IBAT the current and RBAT the internal battery resistance. Two different
relations between RBAT and the battery temperature ϑBAT are considered, which are shown
in Figure 6.25. Whereas the temperature-dependent approach uses a generic, non-linear ap-
proach, the other approach assumes a constant battery resistance RBAT based on a reference
temperature of 20 °C.

In order to determine the electrical power PEL used to provide the cooling power PCOOL, a
further relation is introduced by means of the coefficient of performance

COP =
PCOOL

PEL

. (6.9)

For simplicity, constant coefficient of performance values are assumed in the following simu-
lation studies. The electrical power PEL due to the battery cooling PCOOL is added to the
power of the auxiliary devices PAUX . The described approach allows to integrate the feedback
loop between battery temperature ϑBAT , cooling power PCOOL and electrical power PEL into
the optimization problem.
Figure 6.26 shows the thermal model based on the work of [38, 77] which is used to determine
the temperature of the battery ϑBAT . The electrical power loss PLOSS,BAT and the cooling
power PCOOL represent the control variables u. Furthermore, the model outputs are given
by means of the battery temperature ϑBAT and the electrical power PEL.
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Figure 6.25.: Two models to describe the internal battery resistance RBAT of the battery
pack depending on the battery temperature ϑBAT . Whereas the temperature-
dependent function considers the influence of the battery temperature ϑBAT ,
the constant approximation neglects this effect.

To summarize, the following optimization problem is solved for different models of the in-
ternal resistance RBAT as well as coefficients of performance COP:

min
u1,k∈U1,k, u2,k∈U2,k

N−1∑

k=0

ṁf (u1,k, u2,k, x1,k, RBAT (x2,k), wk, COP ) · ∆t

s.t.

x1,k+1 =
u1,k · ∆t

CBAT · 3600
+ x1,k

x2,k+1 =
1

cp,bat · mbat

·
(

u2
1,k · RBAT (x2,k) − u2,k

)

· ∆t + x2,k

0 ≤x1,k ≤ 1

20 ≤x2,k ≤ 30

−120 ≤u1,k ≤ 400

0 ≤u2,k ≤ 104

x1,0 = 0.85

x1,f = 0.85

x2,0 = 25

x2,f = 25

x1,k ∈ X1,k

x2,k ∈ X2,k

u1,k ∈ U1,k

u2,k ∈ U2,k

where the battery current IBAT is used as control variable u1,k, the cooling power PCOOL as
control variable u2,k, the battery’s state of charge SOC as state variable x1,k, the temperature
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of the battery ϑBAT as state variable x2,k and the power demand PDEM as disturbance wk.
In addition, limits of the control and state variables as well as a sampling time ∆t of 1 s are
considered.

PE�

P����

P��LL���T Thermal

Battery

Model
�BAT

Figure 6.26.: Thermal battery model with corresponding input and output signals. The ther-
mal behavior of the battery is modeled by means of a point mass with corre-
sponding battery mass mbat and specific heat capacity cp,bat.

6.5.2. Results

In the following simulations, the reference configuration of the hybrid electric bus containing
a battery capacity CBAT of 40 Ah and a maximum power of the EGU PEUG,max of 160 kW
is used. Furthermore, the variable battery parameters are defined by means of different tem-
perature ranges, constant or temperature-dependent internal resistances and coefficients of
performance COP.
All simulations have in common that the initial battery temperature ϑBAT,0 and final battery
temperature ϑBAT,f is determined by 25 °C. The initial parameters of the dynamic program
are the same as shown in Section 6.1. In addition, the maximum cooling power PCOOL,max

is defined by 10 kW discretized in 5 kW steps and the discretization of the battery tempera-
ture ϑBAT is prescribed by 1 °C.

Table 6.15 presents the results of the parameter studies performed and depicts the fuel con-
sumption fc depending on different driving cycles, temperature-dependences of the internal
resistance RBAT and coefficients of performance COP. The results show that the defined
values of the coefficient of performance COP do not influence the fuel consumption fc. This
behavior can be justified by the fact that the battery cooling is only activated if high recu-
peration power is available. The left column of Figure 6.27 shows this relation for different
driving cycles. Furthermore, the fuel consumption fc tends to be higher for a constant internal
resistance RBAT of the battery. In case of a temperature-dependent resistance model, the op-
timal operating strategy tries to keep the battery temperature ϑBAT on a higher level within
the allowed temperature range. Thus, the internal resistance RBAT as well as the power
loss PLOSS,BAT decrease compared to the constant approach and an improved efficiency η
in terms of charging and discharging is achieved. This circumstance leads to different fuel
consumptions fc between constant and temperature-dependent resistance models but also to
an increased battery aging due to higher temperature levels. The battery temperatures ϑBAT

over time are compared for both resistance models in the right column of Figure 6.27.
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Table 6.15.: Results of parameter studies. The variable parameters are defined by means of
the driving cycle, constant or temperature-dependent resistance models and the
coefficient of performance COP. The fuel consumption fc is used to compare the
different parameter configurations. In addition, the allowed temperature range
of the battery is defined by 20 °C - 30 °C.

parameter internal
resistance
function

coefficient of
performance

COP

fuel
consumption

fc

Braunschweig const. 2 6.390 lit.

bus const. 3 6.390 lit.

cycle f(ϑBat) 2 6.377 lit.

f(ϑBat) 3 6.377 lit.

Manhattan const. 2 2.419 lit.

bus const. 3 2.419 lit.

cycle f(ϑBat) 2 2.415 lit.

f(ϑBat) 3 2.415 lit.

Orange County const. 2 6.285 lit.

bus const. 3 6.285 lit.

cycle f(ϑBat) 2 6.263 lit.

f(ϑBat) 3 6.263 lit.

This section presented a methodology for calculating optimal operating strategies with ther-
mal limits considered. For this purpose, the battery temperature ϑBAT was included into
the optimization problem. By means of a parameter study, the influence of different driving
cycles, battery resistance models and coefficients of performance COP were evaluated. Al-
though the differences are relatively small in case of the hybrid electric bus used in this work,
the obtained results can be important for operating strategies of pure electric vehicle con-
cepts. In that case, the energy consumption ec due to the cooling or heating of components
can significantly influence the vehicle range.



6.5. Operating Strategies Including Thermal Effects 91

−500 −400 −300 −200 −100 0 100 200 300
0

1

2

3

4

5

6

7

8

9

10

Power demand in kW

C
oo

lin
g 

po
w

er
 in

 k
W

 

 
COP = 2
COP = 3

(a) Cooling power PCOOL over power demand
PDEM for different coefficients of perfor-
mance COPs and the Braunschweig city driv-
ing cycle.
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(b) Battery temperature ϑBAT over time for dif-
ferent internal resistance models and the
Braunschweig city driving cycle.
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(c) Cooling power PCOOL over power demand
PDEM for different coefficients of performance
COPs and the Manhattan bus cycle.
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(d) Battery temperature ϑBAT over time for dif-
ferent internal resistance models and the
Manhattan bus cycle.
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(e) Cooling power PCOOL over power demand
PDEM for different coefficients of performance
COPs and the Orange County bus cycle.
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(f) Battery temperature ϑBAT over time for dif-
ferent internal resistance models and the Or-
ange County bus cycle.

Figure 6.27.: The left column evaluates the cooling power PCOOL depending on the power
demand PDEM as well as different coefficients of performance COP and driving
cycles. The relations show that the battery cooling is only activated if high re-
cuperation power is available. The right column shows the battery temperature
ϑBAT over time for constant and temperature-dependent resistance models and
different driving cycles. In case of the latter model, the battery temperature
ϑBAT tends to higher values. As the battery resistance RBAT as well as the
power loss PLOSS,BAT decrease for higher battery temperatures ϑBAT , an im-
proved efficiency η in terms of charging and discharging is achieved but battery
aging also increases.
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6.6. Operating Strategies for the Engine-Generator Unit

In the previous sections, the start and stop operations of the engine are not considered in
the optimization problem. Thus, the calculated operating strategies may contain frequent
engine starts, which leads to negative effects in terms of component life spans as well as
driver comfort. In order to reduce the number of engine starts NST ART , different approaches
can be taken into account. The work of [1], for example, presents an energy-based approach
to penalize engine starts. The underlying idea of this method is based on the assumption
that the electrical energy used to start the engine must be compensated later by means of
an additional fuel consumption fc. This relation is valid for mild and full hybrid vehicles
since the battery cannot be externally charged. The energy-based approach uses the DP
algorithm to calculate the global optimum. In addition to the state of charge SOC, the state
space X is expanded by means of a binary variable to define the states ”engine on” and
”engine off”. The transition between these engine states is parted into two sections: Firstly,
only the EM provides a constant torque to start the engine. Secondly, the engine delivers a
constant torque and the EM is used to compensate the difference between the torque demand
and engine torque. In order to determine the additional fuel consumption due to the start of
the engine, further characteristics such as engine inertia, brake torque of the engine as well
as the maximum torque of the EM are considered.
As an alternative to the previously described energy-based approach, this section presents
a time-based approach in order to reduce the number of engine starts NST ART . The main
difference of both methods lies in the number of parameters. Whereas the former needs
additional component parameters of engine and EM, the latter only uses one optimization
parameter which is denoted as minimum idle time tidle,min. In the following, the time-based
approach is described in detail.

6.6.1. Methodology

Before focusing on the time-based approach, two limits in terms of an operating strategy for
the engine can be determined:

• 1.) The engine starts are not considered:
The engine is deactivated if its power demand is smaller than zero. Obviously, the fuel
consumption fc of the deactivated engine is zero. This approach leads to a maximum
number of engine starts NST ART in combination with a minimum fuel consumption fc.

• 2.) The engine always remains in the idle mode:
The engine is idling if its power demand is smaller than zero. Thus, the minimum num-
ber of engine starts NST ART as well as the maximum fuel consumption fc is obtained.

The proposed time-based approach provides solutions which lie between these two extremal
limits. The minimum idle time tidle,min depicts the optimization parameter and weights the
number of engine starts NST ART . If the time span between two requested engine power
demands is lower than a given minimum idle time tidle,min, then the engine remains in the
idle mode. The illustrations of Figures 6.28(a) and 6.28(b) graphically describe the extremal
cases for given power demands of the engine. In contrast, Figure 6.28(c) depicts the proposed
time-based method using a defined minimum idle time tidle,min.
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(a) Approach with a deactivated engine. If the required engine power PICE is lower than zero,
then the engine is deactivated.
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(c) Approach with minimum idle time tidle,min. If the required engine power PICE is lower
than zero, then the engine either idles or is deactivated depending on the minimum idle
time tidle,min.

Figure 6.28.: Approaches to consider start-stop operations of the engine.

The optimal operating strategy with a considered minimum idle time tidle,min is calculated
by means of the DP algorithm. In the previous Sections 6.1 - 6.4, the state of charge SOC
represents the only state variable x. In order to integrate the state of the engine as well as
the minimum idle time tidle,min, the state space X needs to be expanded. For this purpose,
another state variable called xice is introduced. The length of xice is variable and depends on
the defined minimum idle time tidle,min. If the idle time tidle is neglected, then only a binary
variable (”engine on” and ”engine off”) remains. As the discretization of the velocity profile
is specified by 1 s, the same interval is used for the state variable xice.

Table 6.16 summarizes the expansions of the dynamic program and describes the transi-
tions between the states of the state variable xice for a minimum idle time tidle,min > 2. The
table is also valid for lower idle times tidle, but the numbers of states and transitions need to
be decreased accordingly.



6.6. Operating Strategies for the Engine-Generator Unit 94

Table 6.16.: Transitions between the states of the state variable xice. The table describes the
costs as well as the next state xice,k+1 for a given state xice,k and required engine
power PICE . The table is valid for minimum idle times tidle,min > 2. If lower
times are required, then the number of states and corresponding transitions can
be reduced.

xice,k condition xice,k+1 costs

tidle,0 PICE > 0 tidle,1 ṁf (PICE)
tidle,0 PICE <= 0 tidle,0 0

tidle,1 PICE > 0 tidle,1 ṁf (PICE)
tidle,1 PICE <= 0 tidle,2 ṁf (idle)

tidle,2 PICE > 0 tidle,1 ṁf (PICE)
tidle,2 PICE <= 0 tidle,3 ṁf (idle)

... ... ... ...

tidle,N PICE > 0 tidle,1 ṁf (PICE)
tidle,N PICE <= 0 tidle,0 0

To summarize, the following optimization problem is solved for variable idle times tidle:

min
uk∈Uk

N−1∑

k=0

ṁf (uk, xk, xice,k, wk) · ∆t

s.t.

xk+1 =
uk · ∆t

CBAT · 3600
+ xk

xice,k+1 = f(xice,k, PICE)

0 ≤xk ≤ 1

0 ≤xice ≤ tidle

−120 ≤uk ≤ 400

x0 = 0.85

xf = 0.85

xice,0 = 0

xice,f = 0

xk ∈ Xk

xice,k ∈ Xice,k

uk ∈ Uk

where the battery current IBAT is used as control variable uk, the battery’s state of charge SOC
as state variable xk, the ”state of the engine” as state variable xice,k and the power demand
PDEM as disturbance wk. In addition, limits of the control and state variables as well as a
sampling time ∆t of 1 s are considered.



6.6. Operating Strategies for the Engine-Generator Unit 95

6.6.2. Results

In the following, the presented time-based approach is demonstrated by means of simulations.
The simulation model contains the reference configuration as shown in Section 6.1. Since the
model uses a series hybrid topology, the start-stop operations of the EGU are included into
the optimization problem. In order to calculate the global optimum, the driving cycles must
be known in advance. For this purpose, the velocity profiles of Appendix D are used.
Figure 6.29 depicts the number of engine starts NST ART depending on the minimum idle
time tidle,min for three driving cycles. The results show that a lower minimum idling time tidle,min

leads to a higher number of engine starts NST ART . As the EGU is started at least once per
driving cycle, a lower threshold is given for long minimum idle times tidle,min.

Figure 6.30 shows the fuel consumption fc depending on the minimum idle time tidle,min

for three driving cycles. It can be seen that the fuel consumption fc increases with longer
minimum idle times tidle,min and vice versa.
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Figure 6.29.: Number of engine starts NST ART depending on the minimum idling
time tidle,min. A lower minimum idle time tidle,min leads to a higher number
of engine starts NST ART and vice versa.

On the basis of simulation results, the influence of several minimum idle times tidle,min is
evaluated. As minimizing the number of engine starts NST ART and minimizing the fuel
consumption fc depict contrary objectives, the optimal value for the minimum idle time
tidle,min mainly depends on the application. If the focus is put on an improved driver comfort
or longer component life spans, then higher values for the minimum idle time tidle,min need
to be taken into account.
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Figure 6.30.: Fuel consumption fc depending on the minimum idling time tidle,min. A longer
minimum idle time tidle,min leads to an increased fuel consumption fc.

6.7. Summary

In this chapter, novel methodologies in terms of optimal component sizing as well as operating
strategies were presented for applications in the field of HEVs. These methodologies were de-
scribed on the basis of stand-alone approaches which can also be combined in order to obtain
further optimization goals. A model of a series hybrid bus was used for the demonstration
but the generality of the proposed approaches also allows to consider other vehicle types and
topologies. In order to calculate globally optimal results, the mathematical method of IDP
was applied.
In the first section, initial parameters of the dynamic program such as discretizations of
state variables ∆x and control variables ∆u were defined. For this purpose, a reference
configuration of the bus including a battery capacity CBAT of 40 Ah and a maximum EGU
power PEGU,max of 160 kW was used. In order to determine initial values of the state of
charge SOC0, the driving cycles were periodically continued until a convergence of the state
of charge trajectory was obtained. As the hybrid bus cannot be charged from the grid, the
initial state of charge SOC0 and the final state of charge SOCf need to be equal and were
defined by 85 %. In terms of a meaningful trade-off between accuracy and calculation time,
the IDP algorithm was applied containing an initial state of charge discretization ∆SOC of
10−3 and a battery current discretization ∆I of 0.5 A. Furthermore, the number of iterations
and the grid reduction factor were defined by five and 0.5, respectively. All the parameters
determined within the first section were used in the following simulation studies.
The second section described the optimal sizing of the two energy sources battery and EGU.
By means of an iterative approach, the minimum power of the EGU PEGU,min was deter-
mined for given battery capacities CBAT leading to a set of optimal combinations of traction
energy sources. Furthermore, the minimum fuel consumption fc was calculated for this set
of optimal energy sources. Compared to a very low battery capacity CBAT , the results show
a reduction of fuel consumption fc of approximately 30 % for a high battery capacity CBAT .



6.7. Summary 97

On the basis of the optimal set of traction energy sources combined with additional parame-
ters like initial costs (ccomp,egu, ccomp,bat) or fuel consumption fc, the optimal sizes of traction
energy sources can be finally determined.
The third section presented an approach for the optimal scaling of EMs for HEVs. For the
demonstration, the optimal continuous S1 torque Mcont as well as the optimal maximum S2
torque Mmax of the electric traction motors were optimized for given driving cycles. The
methodology considers the overloading of the EM as well as voltage-dependencies due to
voltage swings of the vehicle’s electrical system. The results show that the voltage swings of
the vehicle’s electrical system do not affect the optimization if a battery is used as energy
storage. In addition, a second gear was included in the drivetrain leading to a further degree
of freedom. By means of this expansion, the optimal continuous torque Mcont can be reduced
by up to 25 % on the basis of the chosen driving cycles. In a further step, the battery was
replaced by a supercap. The simulation results depict that significantly higher values of the
maximum torque Mmax are required due to the voltage swings of the supercap.
In the fourth section, cost-optimal operating strategies for HEVs were calculated. For this
purpose, not only the fuel consumption fc but also battery aging effects as well as brake pad
wear were included in the optimization problem. Firstly, the operating costs cop are described
by means of costs due to fuel consumption fc as well as costs due to cyclic battery aging. In
contrast to linear aging models, the use of a non-linear aging model based on data sheets and
related work leads to significantly lower cyclic aging. The methodology allows to determine
the optimal operating strategy leading to minimum operating costs cop. In a further step,
calendric aging effects were included in order to estimate the life cycle costs clife of HEVs.
The results show that finding the optimal battery capacity CBAT is mainly influenced by
the operating hours hop of the bus. Furthermore, the braking costs due to brake pad wear
were included into the optimization problem. Based on the mechanical brake model used, it
turned out that costs for the exchange of mechanical brakes are relatively small compared to
the total life cycle costs clife.
In the fifth section, an approach for optimal operating strategies containing thermal effects
was described. In order to demonstrate the approach, not only the fuel consumption fc but
also the thermal behavior of the battery was considered in the optimization process. The
minimum fuel consumption fc was calculated for different coefficients of performance COP
and models of the battery’s internal resistance RBAT . Although the differences between the
results are very small in case of the hybrid bus, the proposed methodology may be important
for pure electric vehicle concepts.
The sixth section presented a methodology which controls the number of start-stop oper-
ations NST ART of the engine by means of a time-based approach. For this purpose, the
dynamic program was expanded by means of a further state variable xice in order to con-
sider the idling time tidle of the engine. The methodology allows to determine the optimal
value of the minimum idling time tidle,min leading to a compromise of the contrary items fuel
consumption fc and driver comfort.



7. Summary and Conclusion

The main goal of this thesis has been the development of novel methodologies in order to
optimize the component sizing as well as the operating strategies of hybrid electric vehicles
(HEVs).
Starting from the basics of this vehicle type in Chapter 2, the state-of-the-art of operating
strategies for HEVs was described in Chapter 3. It turned out that only the mathematical
method of dynamic programming (DP) fulfills the requirements of the optimization prob-
lems defined within this thesis. Therefore, the following Chapter 4 provided a more detailed
introduction to DP and outlined the different variants as well as their pros and cons. In ad-
dition, the modifications of the DP algorithm used in this work were described. The devised
approaches of this thesis were demonstrated by means of a series hybrid bus model. In Chap-
ter 5, the component models of the bus were presented with respect to their characteristics
and parameters.
Chapter 6 represents the central part of this thesis and describes the methodologies developed.
After the definition of a reference simulation model and determining the specific parameters
of the dynamic program in Section 6.1, the Sections 6.2 and 6.3 deal with the optimal siz-
ing of components. The remaining Sections 6.4 - 6.6 provide novel approaches in terms of
optimal operating strategies of HEVs. In Section 6.2, a methodology for calculating optimal
sizes of both energy sources, engine-generator unit (EGU) and battery, was described. For
this purpose, the scaling of the energy sources was performed based on linear approaches.
As the results depict Pareto fronts, further parameters are needed to find the optimal con-
figuration of energy sources. These parameters include, for example, the initial component
costs or the fuel costs. Another methodology described in Section 6.3 deals with the optimal
sizing of electric motors (EMs). The demonstration was carried out by means of the electric
traction motors of the hybrid bus. The methodology allows to calculate the optimal EM for
a given driving cycle profile in terms of the S1 and S2 operating modes. The optimization
considers overloading of the EM as well as voltage dependencies due to the voltage swings
of the vehicle’s electrical system. By means of simulation results, it can be concluded that
the sizing of EMs depends on the chosen type of electrical energy storage. Whereas voltage
swings of the vehicle’s electrical system can be neglected for batteries, these effects need to be
considered in case of supercaps. Section 6.4 describes methodologies to calculate cost-optimal
operating strategies in order to minimize operating as well as life cycle costs. Beside the fuel
costs, the first part considers costs due to cyclic battery aging. In contrast to constant charge
throughput models, a non-linear charge throughput model on the basis of measurement data
was applied leading to significantly lower aging. By means of a combination of DP and the
rainflow counting algorithm, the ratio of fuel costs and costs due to cyclic battery aging
was calculated. In a further step of the first part, calendric aging effects were included for
determining life cycle costs of HEVs. The second part considers costs due to brake pad wear
in the optimization process on the basis of a linear brake wear model. The methodology
developed allows to determine the cost-optimal operating strategies for variable parameters
such as fuel and battery prices and battery capacities. Based on simulations containing cur-
rent as well as future price levels, it can be concluded that the operating as well as the life

98
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cycle costs are mainly influenced by the fuel costs. In Section 6.5, an approach for optimal
operating strategies including battery temperatures was described. For this purpose, not only
the fuel consumption but also the thermal behavior of the battery was integrated into the
optimization problem. The results based on the bus model show that the additional power
demand through the cooling of the battery is relatively small. However, the approach can be
used for optimizing the operating strategies of pure electric vehicles. In that case, the energy
consumption of auxiliaries is probably significant in terms of the vehicle range. Section 6.6
provides a methodology which allows to control the number of start-stop operations of the
internal combustion engine (ICE). In contrast to related work, a time-based approach was
taken into account which considers a minimum idling time of the engine. On the basis of
this approach, several operating strategies depending on minimum idling times are calculated.
The selection of the optimal operating strategy is mainly influenced by the desired applica-
tion. In terms of a lower fuel consumption, low values of the minimum idling time should
be chosen. In contrast, higher values of this parameter lead to improved driver comfort and
NVH behavior.

Outlook

In this thesis, novel approaches in terms of optimal energy management for HEVs were demon-
strated with the help of a series hybrid bus model. As the methodologies developed do not
depend on the hybrid topology, other types of HEVs can be used in future work. In terms of
cost-optimal strategies, further components which are controlled by means of the operating
strategy can be taken into account. As an example, costs due to the wear of components like
clutches, ICE or EM would lead to better estimations of operating and life cycle costs.
Other improvements can be provided with respect to the use of more advanced component
models, but limits due to the optimization framework need to be taken into account. Al-
though DP can handle high model complexities, the number of state variables is restricted
in practice due to the ”curse of dimensionality”. Further work may consider the scaling of
components like EGU, battery or EM in more detail. For this purpose, the approaches of this
thesis need to be replaced by more detailed functions. As stated above, the methodologies
of this work use DP for calculating the globally optimal solution. Instead of DP, faster algo-
rithms such as quadratic programming or Pontryagin’s maximum principle can be applied but
in that case, component models as well as the optimization problems need to be simplified.
This thesis has focused on optimal operating strategies which on the one hand provide bench-
marks but one the other hand can only be applied off-line. Since the development of causal
operating strategies was not the goal of this thesis, future work may concentrate on this task.
For this purpose, the globally optimal results can be used in order to derive and improve
rules for causal operating strategies. As simulation studies were performed within this work,
the validation of the proposed methodologies by means of measurement data can be taken
into account in the future.



A. Rainflow Counting Algorithm

The rainflow counting algorithm is a well-known method in the field of mechanical stress
analysis. It belongs to the class of cycle-counting algorithms and was originally introduced
by [65]. The principle of the algorithm is that a strain profile can be converted into cycles
with corresponding amplitudes.

A

strain

time

B

C

F

H

J

D

E

G

Example of a load profile (green line)
for the demonstration of the rainflow
counting algorithm. The profile is con-
verted into nine half cycles with corre-
sponding amplitudes A-J.

The left figure depicts the principle of the rain-
flow counting algorithm and shows a given load
profile containing the strain over time. The
algorithm only uses the extremal values and
omits all remaining points. In the next step,
water droplets are generated at each extremum.
Like the behavior of a pagoda roof during rain,
these droplets flow to the next extremum and
fall down. Afterwards, the following two sce-
narios occur:

• If two droplets merge, then only the
droplet with the bigger amplitude re-
mains. The other droplet is removed and
the corresponding amplitude is stored
(red lines),

• If the droplet falls on the ground, the
corresponding amplitude is stored (blue
lines).

In the evaluation step, the calculated ampli-
tudes of the water droplets can be divided into
half and full cycles. By means of stress or fa-
tigue models, these cycles can be finally con-
verted into an equivalent damage.
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B. Mathematical Derivations

B.1. Hamilton-Jacobi-Bellman Equation

In the following, a brief derivation of the Hamilton-Jacobi-Bellman Equation (HJBE)is pro-
vided as shown in [49].
The performance index

J(x0, u) =

tf∫

t0

L
(

τ, x, u
)

dτ + Lf (tf , x(tf )) (B.1)

is to be minimized by means of an optimal control variable u∗.
In a further step, the performance index J(·) of Equation B.1 is expanded in order to describe
the optimal cost-to-go J (·):

J (t, xt) = min
u([t,tf ])∈U

{ tf∫

t

L
(

τ, x, u
)

dτ + Lf (tf , x(tf ))

}

. (B.2)

By subdividing the interval, we obtain

J (t, xt) = min
u([t,tf ])∈U

{ t+∆t∫

t

L
(

τ, x, u
)

dτ +

tf∫

t+∆t

L
(

τ, x, u
)

dτ + Lf (tf , x(tf ))

}

. (B.3)

The principle of optimality requires that

J (t, xt) = min
u([t,t+∆t])∈U

{ t+∆t∫

t

L
(

τ, x, u
)

dτ + J (t + ∆t, xt + ∆xt)

}

. (B.4)

Rewriting Equation B.4 leads to

0 = min
u([t,t+∆t])∈U

{ t+∆t∫

t

L
(

τ, x, u
)

dτ + J (t + ∆t, xt + ∆xt) − J (t, xt)

}

. (B.5)

Taking the limit as ∆t → 0 gives

0 = lim
∆t→0

1

∆t
min

u([t,t+∆t])∈U

{ t+∆t∫

t

L
(

τ, x, u
)

dτ + J (t + ∆t, xt + ∆xt) − J (t, xt)

}

. (B.6)
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Two different notations are considered in terms of the state variable:

• x can be seen as a state function over the integration interval,

• xt represents a vector of states.

In the following equations, the difference between these notations vanishes and consequently,
the notation x is used to describe the state variable.

0 = min
u∈U

{

L
(

t, x, u
)

+
d

dt
J (t, x)

}

. (B.7)

0 = min
u∈U

{

L
(

t, x, u
)

+
∂

∂t
J (t, x) +

∂

∂x
J (t, x) · ẋ

}

. (B.8)

Finally, the HJBE is obtained by means of

0 =
∂

∂t
J (t, x) + min

u∈U

{

L
(

t, x, u
)

+
∂

∂x
J (t, x) · f

(
t, x, u

)

}

. (B.9)

B.2. Pontryagin’s Maximum Principle

This section provides a brief introduction to Pontryagin’s maximum principle (PMP) based
on [49].

Firstly, the performance index J(·) is expanded by means of the system dynamics f(·) leading
to the augmented functional

J(x0, u) =

tf∫

t0

(

L(t, x, u) + λT ·
(

f(t, x, u) − ẋ
))

dt. (B.10)

The Hamiltonian function defined in Equation 3.17 is used to obtain

J(x0, u) =

tf∫

t0

(

H(t, x, u, λ) − λT ẋ
)

dt. (B.11)

In the next step, the variation of the performance index δJ can be described by means of

δJ =

tf∫

t0

{[
∂H

∂x
+ λ̇

]T

· δx +

[
∂H

∂u

]T

· δu +

[
∂H

∂λ
− ẋ

]T

· δλ
)
}

dt. (B.12)

By means of Equation B.12 necessary conditions in terms of the state x and co-state λ can
be derived:

λ̇∗(t) = −
∂H

∂x
(t, x∗(t), u∗(t), λ∗(t)) (B.13)

ẋ∗(t) =
∂H

∂λ
(t, x∗(t), u∗(t), λ∗(t)) (B.14)
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In order to determine the optimal control variable u∗, a further condition needs to be taken
into account. The variational approach uses the condition

∂H

∂u
(t, x∗(t), u∗(t), λ∗(t)) = 0, (B.15)

which can only be applied for unconstrained control variables.
In contrast, the PMP uses another approach which allows to consider constrained control
variables. Thereby, the condition

H(t, x∗(t), u∗(t), λ∗(t)) ≤ H(t, x∗(t), u, λ∗(t)) (B.16)

must hold.

B.3. Relation between Dynamic Programming and the
Hamilton-Jacobi-Bellman Equation

This section describes the relation between DP and the HJBE and is based on [8].

Since DP is a numerical method, the time horizon [0,T] is divided into N pieces which leads
to a discretization interval of

∆ =
T

N
(B.17)

Furthermore, the optimal cost-to-go function of the continuous-time problem J (t, x) is ap-
proximated by J̃ (t, x).
Now, the DP equations are represented by

J̃ (N · ∆, x) = LN (N · ∆, x), (B.18)

and

J̃
(

k · ∆, x
)

= min
u∈U

[

L(x, u) · ∆ + J̃
(

(k + 1) · ∆, x + f(x, u) · ∆
)]

, k = 0, ..., N − 1.

(B.19)

Assuming that J̃ (t, x) has the required differentiability properties, a Taylor series can be
defined around (k · ∆, x). A first order approximation leads to

J̃
(

(k + 1) · ∆, x + f(x, u) · ∆
)

= J̃ (k · ∆, x)+

∂

∂t
J̃ (k · ∆, x) · ∆ +

[
∂

∂x
J̃ (k · ∆, x)

]T

· f(x, u) · ∆.
(B.20)

With the help of Equation B.20, the DP Equation B.19 can be rewritten in

J̃ (k · ∆, x) = min
u∈U

[

L(x, u) · ∆ + J̃ (k · ∆, x)+

∂

∂t
J̃ (k · ∆, x) · ∆ +

[
∂

∂x
J̃ (k · ∆, x)

]T

· f(x, u) · ∆

]

.

(B.21)
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Cancelling J̃ (k · ∆, x) from both sides of Equation B.21 and dividing by ∆, yields to

0 = min
u∈U

[

L(x, u) +
∂

∂t
J (k · ∆, x) +

[
∂

∂x
J (k · ∆, x)

]T

· f(x, u)

]

. (B.22)

For the transition between discrete-time and continuous-time cost-to-go functions, it is as-
sumed that

lim
k→∞,∆→0,k∆=t

J̃ (k · ∆, x) = J (t, x), for all t, x. (B.23)

By means of Equation B.23, the continuous version of Equation B.22

0 = min
u∈U

[

L(x, u) +
∂

∂t
J (t, x) +

[
∂

∂x
J (t, x)

]T

· f(x, u)

]

(B.24)

is obtained with the boundary condition

J (T, x(T )) = LN (N · ∆, x(N · ∆)). (B.25)

The comparison of Equations 3.16 and B.24 shows that both derivations lead to the same
result. Thus, it can be concluded that DP represents a suitable method for solving the
HJBE.
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Figure C.1.: Minimum costs depending on the battery capacity CBAT for different fuel
costs cfuel and battery costs cbat for the Manhattan bus cycle.
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Figure C.2.: Minimum costs depending on the battery capacity CBAT for different fuel
costs cfuel and battery costs cbat for the Orange County bus cycle.
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Figure C.3.: Variable fuel costs cfuel and battery costs cbat over β for the Manhattan bus
cycle.

Table C.1.: Share of battery aging effects based on the Manhattan bus cycle, fuel costs cfuel

of 1 €/liter and battery costs cbat of 500 €/kWh. The variable parameters are
defined by the battery capacity CBAT and operating hours hop.

battery operating cyclic calendric battery total battery number of
capacity hours aging aging aging aging batteries

(Ah) (h/year) (1/cycle) (1/cycle) (1/cycle) (-) (-)

040 2000 1.36 · 10−5 1.51 · 10−5 2.87 · 10−5 1.90 2
040 5000 1.72 · 10−5 6.05 · 10−6 2.33 · 10−5 3.84 4
060 2000 1.18 · 10−5 1.51 · 10−5 2.69 · 10−5 1.78 2
060 5000 1.18 · 10−5 6.05 · 10−6 1.79 · 10−5 2.95 3
080 2000 8.17 · 10−6 1.51 · 10−5 2.33 · 10−5 1.54 2
080 5000 5.89 · 10−6 6.05 · 10−6 1.19 · 10−5 1.97 2
100 2000 6.36 · 10−6 1.51 · 10−5 2.15 · 10−5 1.42 2
100 5000 4.65 · 10−6 6.05 · 10−6 1.07 · 10−5 1.77 2
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Figure C.4.: Variable fuel costs cfuel and battery costs cbat over β for the Orange County bus
cycle.

Table C.2.: Share of battery aging effects based on the Orange County bus cycle, fuel costs
cfuel of 1 €/liter and battery costs cbat of 500 €/kWh. The variable parameters
are defined by the battery capacity CBAT and operating hours hop.

battery operating cyclic calendric battery total battery number of
capacity hours aging aging aging aging batteries

(Ah) (h/year) (1/cycle) (1/cycle) (1/cycle) (-) (-)

040 2000 2.41 · 10−5 2.65 · 10−5 5.06 · 10−5 1.91 2
040 5000 2.72 · 10−5 1.06 · 10−5 3.78 · 10−5 3.56 4
060 2000 1.81 · 10−5 2.65 · 10−5 4.46 · 10−5 1.68 2
060 5000 1.81 · 10−5 1.06 · 10−5 2.87 · 10−5 2.70 3
080 2000 1.99 · 10−5 2.65 · 10−5 4.64 · 10−5 1.75 2
080 5000 1.99 · 10−5 1.06 · 10−5 3.05 · 10−5 2.88 3
100 2000 1.47 · 10−5 2.65 · 10−5 4.12 · 10−5 1.55 2
100 5000 1.05 · 10−5 1.06 · 10−5 2.11 · 10−5 1.99 2
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Figure C.5.: Comparison of life cycle costs clife depending on battery capacity CBAT and
operating hours hop for the Manhattan bus cycle. The optimal battery capacity
CBAT leading to the minimum life cycle costs clife can be determined for different
values of fuel costs cfuel and battery costs cbat.
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(c) Fuel costs cfuel of 1 €/lit. and battery costs cbat

of 500 €/kWh.
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(d) Fuel costs cfuel of 3 €/lit. and battery costs cbat

of 500 €/kWh.
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(e) Fuel costs cfuel of 1 €/lit. and battery costs cbat

of 1000 €/kWh.
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(f) Fuel costs cfuel of 3 €/lit. and battery costs cbat

of 1000 €/kWh.

Figure C.6.: Comparison of life cycle costs clife depending on battery capacity CBAT and
operating hours hop for the Orange County bus cycle. The optimal battery
capacity CBAT leading to the minimum life cycle costs clife can be determined
for different values of fuel costs cfuel and battery costs cbat.
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Table C.3.: Share of operating costs cop and life cycle costs clife for given fuel costs cfuel of
1 €/liter and battery costs cbat of 500 €/kWh. The life cycle of the bus is defined
by 10 years.

operating costs per cycle for the Manhattan bus cycle

battery operating fuel battery brake total
capacity hours costs costs costs costs

(Ah) (h/year) (€) (€) (€) (€)

040 2000 2.44 0.21 0.02 2.67
040 5000 2.42 0.17 0.02 2.61
080 2000 2.18 0.34 0.01 2.53
080 5000 2.19 0.17 0.01 2.37

life cycle costs for the Manhattan bus cycle

battery operating fuel battery brake total
capacity hours costs costs costs costs

(Ah) (h/year) (k€) (k€) (k€) (k€)

040 2000 161.4 14.4 05 180.8
040 5000 400.7 28.8 05 434.5
080 2000 143.9 28.8 05 177.7
080 5000 363.0 28.8 05 396.8

Table C.4.: Share of operating costs cop and life cycle costs clife for given fuel costs cfuel of
2 €/liter and battery costs cbat of 200 €/kWh. The life cycle of the bus is defined
by 10 years.

operating costs per cycle for the Manhattan bus cycle

battery operating fuel battery brake total
capacity hours costs costs costs costs

(Ah) (h/year) (€) (€) (€) (€)

040 2000 4.88 0.08 0.02 4.98
040 5000 4.85 0.07 0.02 4.94
080 2000 4.35 0.13 0.01 4.49
080 5000 4.35 0.08 0.01 4.44

life cycle costs for the Manhattan bus cycle

battery operating fuel battery brake total
capacity hours costs costs costs costs

(Ah) (h/year) (k€) (k€) (k€) (k€)

040 2000 322.9 05.8 05 333.7
040 5000 801.3 11.5 05 817.8
080 2000 287.8 11.5 05 304.3
080 5000 719.5 17.3 05 741.8
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Table C.5.: Share of operating costs cop and life cycle costs clife for given fuel costs cfuel of
1 €/liter and battery costs cbat of 500 €/kWh. The life cycle of the bus is defined
by 10 years.

operating costs per cycle for the Orange County bus cycle

battery operating fuel battery brake total
capacity hours costs costs costs costs

(Ah) (h/year) (€) (€) (€) (€)

040 2000 6.34 0.36 0.06 6.76
040 5000 6.31 0.27 0.06 6.64
080 2000 5.66 0.67 0.03 6.36
080 5000 5.66 0.44 0.03 6.13

life cycle costs for the Orange County bus cycle

battery operating fuel battery brake total
capacity hours costs costs costs costs

(Ah) (h/year) (k€) (k€) (k€) (k€)

040 2000 238.9 14.4 05 258.3
040 5000 594.5 28.8 10 633.3
080 2000 213.6 28.8 05 247.4
080 5000 534.0 43.2 05 582.2

Table C.6.: Share of operating costs cop and life cycle costs clife for given fuel costs cfuel of
2 €/liter and battery costs cbat of 200 €/kWh. The life cycle of the bus is defined
by 10 years.

operating costs per cycle for the Orange County bus cycle

battery operating fuel battery brake total
capacity hours costs costs costs costs

(Ah) (h/year) (€) (€) (€) (€)

040 2000 12.58 0.17 0.06 12.81
040 5000 12.61 0.11 0.06 12.78
080 2000 11.33 0.27 0.03 11.63
080 5000 11.33 0.18 0.03 11.54

life cycle costs for the Orange County bus cycle

battery operating fuel battery brake total
capacity hours costs costs costs costs

(Ah) (h/year) (k€) (k€) (k€) (k€)

040 2000 0474.6 08.6 05 0488.2
040 5000 1189.0 11.5 10 1210.5
080 2000 0427.2 11.5 05 0443.7
080 5000 1067.9 17.3 05 1090.2



D. Driving Cycles

In Chapter 6 different approaches for optimal energy management were demonstrated with
the help of driving cycles, which are the ”Braunschweig city driving cycle”, the ”Manhattan
bus cycle” and the ”Orange County bus cycle”. The corresponding velocity profiles are shown
in the following Figures D.1 - D.3.
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Figure D.1.: Velocity profile of the ”Braunschweig city driving cycle”.
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Figure D.2.: Velocity profile of the ”Manhattan bus cycle”.
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Figure D.3.: Velocity profile of the ”Orange County bus cycle”.
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E. List of Abbreviations

APU Auxiliary power unit

AUX Auxiliary devices

CDCS Charge-depleting / charge-sustaining

COP Coefficient of performance

CV Conventional vehicle

CVT Continuously variable transmission

DDP Deterministic dynamic programming

DP Dynamic programming

ECMS Equivalent consumption minimization strategy

EGU Engine-generator unit

EM Electric motor

EV Electric vehicle

HEV Hybrid electric vehicle

HJBE Hamilton-Jacobi-Bellman equation

HV Hybrid vehicle

ICE Internal combustion engine

LP Linear programming

MPC Model predictive control

NVH Noise, Vibration, Harshness

PE Power electronics

PGS Planetary gear set

PMP Pontryagin’s maximum principle

PWR Power-to-weight ratio

QP Quadratic programming

REX Range extender

RMS Root mean square

SDP Stochastic dynamic programming

SOC State of charge

SOE State of energy

ZE Zero-emission
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F. List of Symbols

Greek Symbols

Symbol Unit Description

α rad Road angle
β · Weighting factor
γ - Discount factor
δ · Variation
η - Efficiency
λ · Co-state
ρ kg/m3 Air density
π · Control policy
ϑ °C Temperature
ϑBAT °C Battery temperature
ϑw °C Temperature of the windings
ϑr °C Temperature of the remaining parts
∆ · Difference

Sub- / Superscripts

Subscripts Superscripts

0 initial ∗ optimum
cont continuous x̂ estimation
f final ẋ time derivative
gen generator T transpose
max maximum x mean
min minimum
mot motor
ref reference
tol tolerance
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Latin Symbols

Symbol Unit Description

A m2 Frontal area
C F Capacitance
CBAT Ah Battery capacity
CCH 1/h C-Rate (charging)
CDIS 1/h C-Rate (discharging)
CSC F Supercap capacitance
CST O kWh Storage capacity
E{·} · Expected value
EBAT kWh Energy content of the battery
EF UEL kWh Energy content of the fuel tank
EP ROP kWh Energy for propulsion
ESC kWh Energy content of the supercap
ESUM kWh Energy at the summing point
FA N Aerodynamic friction
FG N Force due to gradients
FR N Rolling friction
FT N Traction force
H(·) · Hamiltonian function
HLV kWh/kg Lower heating value
IBAT A Battery current
ICH A Charge current
IDIS A Discharge current
IEM A Electric motor current
IRMS A Root mean square current
J · Performance index
L(·) · Cost function
LEM H Electric motor inductance
M Nm Torque
MDEM Nm Torque demand
MDEM Nm Total torque demand
N - Number of stages
NBAT - Number of batteries
NBRAKE - Number of brakes
NCELLS - Number of battery cells
NCY C - Total number of driving cycles
NST ART - Number of engine starts
PBAT W Battery power
PBRAKE W Braking power
PCOOL W Continuous cooling power
PDEM W Power demand due to the driving cycle
P ′

DEM W Total power demand
PECH W Electrochemical power
PEGU W Electrical power of the engine-generator unit
PEL W Electrical power
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Symbol Unit Description

PEM W Electric motor power
PEQV W Equivalent power
PF W Fuel power
PICE W Engine power
PLOSS,BAT W Power loss battery
PLOSS,EM W Power loss electric motor
PLOSS,SC W Power loss supercap
PMECH W Mechanical power
PP E W Input power of the power electronics
PR,EM W Power loss in the remaining parts
PT OT AL W Total propulsion power
PW W Power at the wheels
PW,EM W Power loss in the windings
RBAT Ω Internal battery resistance
REM Ω Electric motor resistance
RSC Ω Internal supercap resistance
RT H K/W Thermal resistance
U V Voltage
UEMF V Counter-electromotive force
UNOM V Nominal voltage
UOC V Open-circuit voltage
UT ERM V Terminal voltage

J · Cost-to-go
O - Complexity
U · Control space
X · State space

cbat €/kWh Battery costs per kWh
ccomp,bat € Component costs battery
ccomp,brake € Component costs brake
ccomp,egu € Component costs engine-generator unit
ccomp,em € Component costs electric motor
cfuel €/liter Fuel costs per liter
clife € Life cycle costs
cop € Operating costs
cov - Overload factor
cp,bat J/(kg · K) Specific heat capacity battery
cp,w J/(kg · K) Specific heat capacity windings
cp,r J/(kg · K) Specific heat capacity remaining parts
cw - Drag coefficient
ec kWh Energy consumption
eec kWh Electrical energy consumption
f(·) · System dynamics
fc liter Fuel consumption
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Symbol Unit Description

fr - Rolling friction coefficient
g m/s2 Gravitational acceleration
h(·) · Weighting function
hop h/year Operating hours per year
hr - Hybridization ratio
ig - Ratio of the gear box
k - Index of the stage variable
m kg Mass
mbat kg Battery mass
megu kg Mass of the engine-generator unit
mr kg Mass of the remaining parts
msc kg Supercap mass
mw kg Mass of the windings
ṁf kg/s Mass flow rate of fuel
n rpm Speed
ncor rpm Corner speed
s - Equivalence factor
sch - Equivalence factor (charge mode)
sdis - Equivalence factor (discharge mode)
t s Time
tidle s Idle time
u · Control variable
us - Power-split
x · State variable
xice - Additional state variable for the engine
v m/s Velocity
v̇ m/s2 Acceleration
w · Disturbances
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