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Abstract

Microbiomics, the investigation of microbial communities at different stages of disease,

at specific time-points, or at varying conditions in a particular habitat such as distinct

areas of the human body, or environmental samples such as clean rooms, or extremophile

ecosystems, is one of the most rapidly growing research areas nowadays. This is mainly

facilitated by the development of novel molecular classification approaches, as well as

the steadily decreasing sequencing costs during the last decade. As this research area is

still evolving by new developments in sequencing techniques and constantly growing

knowledge, there is a need for novel or adapted methods, approaches, and tools for all

the analysis steps of the community characterization and classification workflow.

This thesis introduces new approaches, methods, and tools for important steps in the

entire high-throughput characterization and classification process of complex microbial

communities. At the experimental design level, the effects of sequencing library normal-

ization on the final community profile and its diversity was investigated. Subsequently,

the Decontaminator, an effective tool for the removal of contaminating sequences from the

target data sets is introduced as a major improvement during sequence pre-processing.

For the core step, the taxonomic classification, an internal transcribed spacer (ITS) refer-

ence database, for fungal sequences was created. Tests of the ITS amplicon classification,

with a hand curated in-silico amplified and fully annotated ITS mock community, showed

good results for reference based classification and de-novo OTU picking approaches based

on the UNITE ITS reference sequences. Statistical analysis of determined community

profiles was extended by methods for differentially abundant feature detection. Therefor,

Metastats, edgeR, and limma+voom, were evaluated using simulated count data, reveal-

ing that the linear modeling approaches outperform Metastats for bigger library sizes

and fold change values. Based on this evaluation result, real community profiles obtained

from analyses conducted within this thesis were tested for differentially abundant fea-

tures. Finally, with the transcriptome analysis of two Campylobacter fetus subspecies, the

typical ε-proteobacterial promoter motif was also confirmed for C. fetus sp. Moreover, this

kind of analysis introduces a future direction for more detailed investigation of specific

members of a microbial community.

Keywords: High-throughput classification, Microbiome, Sequencing, DA feature de-

tection, Transcriptome analysis, Library normalization





Zusammenfassung

Mikrobiomik, die Erforschung von mikrobiellen Gemeinschaften in verschiedenen Krank-

heitsstadien zu bestimmten Zeitpunkten, oder unter unterschiedlichen Bedingungen,

in einem bestimmten Lebensraum (zB Körperregionen, spezielle Umgebungen wie

Reinräume oder extremophile Ökosysteme), zählt zu dem am schnellsten wachsenden

Forschungsgebieten. Diese Entwicklung wurde im letzten Jahrzehnt hauptsächlich durch

Fortschritte im Bereich der neuen molekularen Klassifikationsansätze, und durch stetig

sinkende Sequenzierungskosten unterstützt. Durch die Weiterentwicklung der Sequen-

zierungstechniken und dem stetigen Zuwachs an Wissen auf diesem jungen Forschungs-

gebiet besteht ein Bedarf an neuen oder verbesserten Verfahren, Methoden, und Werkzeu-

gen für alle Ebenen des Auswertungsprozesses.

Diese Dissertation stellt neue Ansätze, Methoden, und Werkzeuge für die wichtigsten

Schritte des gesamten Hochdurchsatz-Charakterisierungs- und Klassifizierungs-Prozesses

von komplexen mikrobiellen Gemeinschaften vor. Auf der Ebene des experimentellen

Designs wurden die Auswirkungen auf das mikrobielle Profil anhand von normalisierten

Sequenz-Bibliotheken untersucht. Der Vorverarbeitungsschritt wurde um den entwick-

elten Decontaminator, einem effektiven Werkzeug zur Erkennung und Entfernung von

verunreinigenden Sequenzen, erweitert. Für den Hauptanalyseschritt, der taxonomischen

Klassifizierung, wurde eine Referenz-Datenbank für Pilzsequenzen basierend auf der

Internal Transcribed Spacer (ITS) Markerregion erstellt. Um die Qualität und Zuverläs-

sigkeit der ITS-Amplikon Klassifikation zu bewerten, wurde eine von Hand kuratierte

und vollständig annotierte ITS Mock Gemeinschaft erzeugt, mit deren Hilfe UNITE als

brauchbare Ressource für sowohl referenz als auch de novo basierte Klassifizierungsmeth-

oden eignet. Die statistische Analyse der ermittelten mikrobiellen Profile wurde um

Methoden zur Identifizierung von differenziell abundanten Gruppen erweitert. Dazu

wurden die Methoden Metastats, edgeR, und limma+voom, mit simulierten Count-Daten

getestet und evaluiert. Hier konnte gezeigt werden, dass die linearen Modellierungsan-

sätze für größere Bibliotheks- und Effekt-Größen bessere Ergebnisse erzielen als Metastats.

Schließlich konnte durch die Transkriptom-Analyse von zwei Campylobacter fetus Sub-

spezies das ε-Proteobakterium Promotor Motiv auch für diese Subspezies bestätigt

werden. Darüber hinaus wurde hier mit der durchgeführten Transkriptom-Analyse eine

zukünftige Richtung für weiterführende detaillierte Untersuchungen von speziellen

Mitgliedern der mikrobiellen Gemeinschaft vorgestellt.

Keywords: Hochdurchsatz Klassifizierung, Mikrobiom, Sequenzierung, DA Feature

Identifizierung, Transkriptom Analyse, Library Normalisierung
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1. Introduction

Continuous and rapid development of deoxyribonucleic acid (DNA) sequencing

technologies and approaches, since the introduction of the "first-generation sequencing"

protocols in 1977 by Sanger et al. [1] and by Maxam and Gilbert [2], have set the course

for a new area of molecular diagnostics. Classical Sanger sequencing dominated

the last three decades before it was gradually replaced by newer methods, the so-

called "next-generation sequencing" (NGS) techniques [3]. Although this traditional

sequencing method benefits from high accuracy (> 99.999 %) and long read length

(> 800 bps) [4], these advantages are made to naught by long analysis times, costs,

and throughput. The major advantage of NGS over Sanger sequencing is the ability

to produce an enormous amount of data in a single run within a short period of

time at a low cost. Fig. 1.1 shows sequencing costs associated with DNA sequencing,

tracked by the National Human Genome Research Institute (NHGRI) over the last

two decades. Compared with the hypothetical trend of Moore’s Law [5], the drastic

reduction of DNA sequencing costs is illustrated after the transition from traditional

Sanger sequencing to NGS technologies in early 2008. Besides the advantages of

time, throughput and costs, NGS allows sequence determination from amplified DNA

fragments without cloning [6].

Especially in microbiology, the drastic reduction of sequencing costs is the main

reason why molecular characterization approaches have almost replaced traditional

cultivation based methods [7].

We live in a world which is dominated by microorganisms. This is supported by

the fact that the number of microorganisms on earth exceeds the number of human

beings by a factor of 10
21 [8]. As the majority of these microorganisms can not be

1



1. Introduction

Figure 1.1.: Sequencing costs

associated with DNA sequenc-

ing tracked by the National

Human Genome Research Insti-

tute (NHGRI) over the last two

decades. The hypothetical trend

by Moore’s Law [5], helps to

illustrate the drastic reductions

in DNA sequencing costs after

the transition from traditional

Sanger sequencing to NGS tech-

nologies in early 2008. (Source:

National Human Genome Re-

search Institute, 2014. Retrieved

from http://www.genome.gov/

sequencingcosts/)

cultivated in the laboratory, most of them have not been described or characterized yet

[9]. Microorganisms are very diverse and include bacteria, archaea, fungi, protozoa,

algae, lichens, and even viruses [10]. They have been found in almost all areas or

environments of life, colonizing not only surfaces. Moreover, they live on human

beings, animals, and plants. Microorganisms accomplish important functions in a

variety of life cycles such as improvement of soil, water, digestive processes, or

production of biofilms [11–13]. Additionally, the power of beneficial microbes has been

used over the last century for the production of food, in agriculture, and presumably

most importantly, in medicine [14, 15].

The human body is home to a wide range of microbial communities whose cells

outnumber human cells 10 to 1 [8]. During the last years and the availability of NGS,

it was possible to gain insights into microbial communities of different body sites such

as the skin, intestines, oral cavity, or lungs in different states of health [16]. Although

the relationship between the human host and its microbial coresidents is beneficial

in many cases, sometimes it evolves to the contrary [17]. Changes in the microbial

community composition have been related to digestive disorders and even to obesity

[18, 19]. Furthermore, they are under suspicion to be responsible for skin or gum

2
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diseases [20, 21]. Reasons which lead to this mutualistic ("commensal") conversion of

the relationship are still poorly understood and need further investigation [22].

In addition, to the thousands of beneficial microbes, host systems, such as the

human body, are ordinarily inhabited by infectious microorganisms. As long as the

immune system works properly, or the resistance of the host system is strong enough,

these microbes are not able to overpopulate or move into areas where they do not

occur normally. But when the balance of normal microbes is disrupted for some

reasons, they can become the main cause for serious infections, diseases, and even lead

to death. Such kinds of microorganisms are summarized as opportunistic pathogens

[23].

A well-known representative are fungi from the Candida species. They belong to the

normal human microbiota and have been found in the gastrointestinal and genital

tract, the skin, and lower respiratory tract (LRT) of almost all healthy humans [24–

27]. Although they are part of the "normal" microbiome of different human body

sites, Candida spp. are considered as one of the most important human opportunistic

pathogens [28]. Hence, distinguishing default fungal colonization from serious fungal

infections is a critical point in medical diagnostics, especially in pulmonary samples

[29]. Apart from the body’s Candida spp., any other environmental fungus is able

to affect internal organs and cause substantial infections such as pneumonia. At

special risks are immunocompromised patients, such as patients suffering from HIV

or undergoing cancer treatment but also patients treated at intensive care units (ICUs)

[30]. Nevertheless, Candida spp. are the most common pathogens causing serial severe

fungal infections in humans worldwide [31].

The vast majority of microbes is found in the gastrointestinal (GI) tract [32]. Previous

characterization approaches of the gut microbiome in humans and mice were able

to establish a connection between the microbial composition of the gut microbiome

and nutritional, as well as metabolic diseases or dysfunctions such as inflammatory

bowel disease (IBD), obesity, and its related diseases (diabetes, nonalcoholic fatty liver

disease, cardiovascular diseases, atherosclerosis, as well as certain cancers) [33–35].

Although these studies allowed deriving nutritional effects on the microbiome, as

3



1. Introduction

well as the impact of the microbiome on the host systems metabolism, little is known

about the effect of certain molecules such as phospholipids on the gastrointestinal

microbiome. Phospholipids are an important cell component and form a class of

phosphoric and amphiphile lipids. The most important function of phospholipids is

their ability of forming lipid bilayers in cell membranes [36] which play a crucial role

in the communication and transportation of chemicals and ions [37].

Apart from nutritional factors which alter the intestinal and genital microbiome, the

general population within these habitats is of special interest. For example, Campy-

lobacter species have been recognized as emerging animal and human pathogens.

Although the two major Camplylobater fetus subspecies fetus and veneralis (Cff, Cfv) are

highly syntenic they differ strikingly in pathogenicity [38]. Whereas both subspecies

are important factory farming pathogens, Cfv is adapted to bovines, causing infections

which lead to abortion in cattle. In contrast, Cff is known to colonize the intestinal

and genital-tract not only of bovines but also of sheep, birds and humans; causing

diarrhea, serious invasive infections and even death [39, 40]. Genomic investigations

on these pathogens allow insights into gene regulation, linkage of genes to particular

pathotypes, as well as on their role in virulence and host tropism.

Fundamental ecological processes are carried out by diverse activities of complex

microbial communities. Previous studies revealed that these communities do not

only define a habitat moreover they interact with the host systems and are important

indicators of responses to changed conditions [41–45]. Of special interest are environ-

ments inhabited by bacteria which are adapted to extreme conditions, such as drought,

extreme temperatures, or low support of oxygen and nutrients. These habitats are

putative sources for novel biocatalysts and enzymes. Industrial applications such

as the production of biofuels, diverse drugs, fine chemicals and certain commodity

products already benefit from the diverse enzymatic activities of microorganisms

[46, 47].

Of special interest within this context are Sphagnum-dominated bogs. Although

they are seen as very unique, they represent a very wide spread type of terrestrial

ecosystems. These bog ecosystems belong to the oldest and most constant vegetation

4



forms on earth for thousands of years. Mosses of the genus Sphagnum comprise

more than a hundred different species and belong to the most abundant type of bog

vegetation in the Northern hemisphere. They greatly contribute not only to global

carbon turnover, but also to global climate regulation [48]. Sphagnum mosses form

a unique habitat which is characterized by abiotic factors such as high acidity and

low temperature, extremely low concentrations of mineral nutrients and oxygen,

and extremely varying water saturation levels [49]. As this phylogenetically old

genus has no roots, important functions such as nutrient supply, protection, and

defense by biofilm formation to ensure moss growth and health are implemented by

phyllosphere bacteria [50]. Although microbial diversity of the Sphagnum microbiome

is well-described, little is known about its function. Metagenomic analysis of Sphagnum

mosses allow for the discovery of unique features and potential functional, as well

as structural differences to already described metagenomes of plants, peat soils, or

aquatic systems.

Technical advances of sequencing technologies have led to a new era of molecular

medicine and biotechnology. Recently introduced and steadily improving molecular

phylogenetic, culture independent analysis approaches allows answering different

questions within the "(meta)omics" life cycle, (see Fig. 1.2). Targeted amplicon se-

quencing (Sec. 1.1.1) enables fast insights and an overview of microbial community

composition. Additionally, whole genome shotgun sequencing (metagenomics) (Sec.

1.1.2) enables a structural and functional description of the complex microbial compo-

sition.

Figure 1.2.: Different questions

within the (meta)omics life cycle

can be answered by molecular

phylogenetic, culture independent

analysis approaches such as tar-

geted amplicon sequencing (Who

is there?), metagenomics (What are

they doing?), and metatranscrip-

tomics or -proteomics (How are

they doing it?). Adopted from The

Metagenomics Group at CBS2
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1. Introduction

Findings about metabolic activities and functions can be additionally enriched by

(meta)transcriptomic (Sec. 1.1.3) approaches. They allow for deeper insights on how

the communities are triggered and on what stimulates or inhibits particular activities.

Hence, mechanisms which allow pathogenic taxa to proliferate and subsequently

harm or alternate the host can be discovered and better understood. Additionally,

our planet’s microbial habitants and their capabilities can be further completed and

described in more detail.

These methods result in an enormous amount of sequencing data which poses new

and demanding challenges to the field of bioinformatics. High-throughput analysis

and characterization methods are needed to process, analyze, and maintain this mass

of data.

1.1. High-Throughput Characterization of Microbial

Communities

Although NGS technologies have been principally used for whole genome and tran-

scriptome sequencing [51], targeted sequencing of a specific gene region for solving

questions in population genetics has become a very common technique. This tech-

nique, also called microbiome analysis, tries to reveal the microbial composition and

diversity of a particular habitat. So, the microbiome is defined as the total number

of microbial genomes in a defined environment at a particular state or time point or

under predefined conditions [52]. Bacteria, archaea, lichens, fungi, or even viruses are

summarized as microbes. Microbiomes of interest can be for example human body

sites, soil, plants, clean rooms, foods, medical devices, or any other region of interest

[16, 53, 54].

Rapid development of sequencing technologies and the introduction of a new

sequencing strategy called "whole genome shotgun sequencing" (metagenomics), as well

as refined analysis tools and methodologies, allowed also for structural, as well as for

2http://www.cbs.dtu.dk/researchgroups/metagenomics/metagenomics.php
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1.1. High-Throughput Characterization of Microbial Communities

functional investigations of complex microbial communities. Metagenomics is often

used as a hypernym for both targeted amplicon sequencing, as well as for whole

genome shotgun sequencing, which is based on the underlying analysis workflow,

shown in Fig. 1.3.

Figure 1.3.: Summary of the bioinformatic analysis workflow of (a) targeted amplicon (left

branch) and (b) metagenomics (right branch) data analysis. (figure modified from [55])

1.1.1. Targeted Amplicon Sequencing ("Who is there?")

To characterize and classify complex microbial communities, a marker gene which

is shared amongst the whole domain is amplified by a set of universal primers

from DNA, which is directly extracted from the environmental sample, followed by

sequencing of the amplicons [56]. Typical marker genes are the ribosomal RNA of

the small subunit (16S SSU rRNA) for bacteria and archaea [57], and the internal

transcribed spacer (ITS) for fungi and lichens [58]. Both marker genes encode partially

for ribosomal DNA. Ribosomes are shared amongst all organisms and are highly

conserved within different species due to high evolutionary pressure and their role

in protein biosynthesis [59]. Additionally, different ribosomal structures (Tab. 1.1) in

prokaryotes and eukaryotes allow for distinct analysis of microbial communities of
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these two domains. Ribosomal subregions are relatively short (16S about 1.5 kbps,

ITS about 800 kbps ) making them faster and cheaper to sequence than many other

unique microbial genes.

Table 1.1.: Description of ribosomal structure in prokaryotes and eucaryotes. Both ribosomes

comprise a small and a large subunit, which can be distinguished according their sedimentation

coefficient, molecular mass, and proteins.
Pro. ribosome Large Subunit Smal Subunit # Protein

70S

50S
23S (2904 nt)

31

5S (120 nt)

30S 16S (1542 nt) 21

Eu. Ribosome Large Subunit Smal Subunit # Protein

80S

26S (4718 nt)

60S 5.8S (160 nt) 49

5S (120 nt)

40S 18S (1874 nt) 33

Although the small ribosomal subunit (16S) is only about 1.5 kbps long, it exceeds

the maximum read length of sequencing platforms of Illumina and Roche (∼400 bps

(paired-end) and ∼470 bps, respectively). Therefore, only particular regions of the 16S

gene, such as the hypervariable region 1 and 2 (V1 and V2) are amplified in typical

community characterization studies. Van de Peer et al. discovered in 1996 [60] nine

hypervariable regions (V1-V9) flanking highly conserved areas within the structure

of the 16S genes [60], shown in Fig. 1.4. The length of the different regions ranges

from about 200 to 470 bps which make them to an attractive loci for targeted amplicon

studies [61].

Figure 1.4.: The structure of the small ribosomal subunit is characterized by 9 hypervariable

regions flanking highly conserved loci of the small ribosomal subunit gene. The entire SSU

is about 1.5 kbps long and includes hypervariable regions (V1-V9) which range from about

200 to 470 bps. (Figure taken from [62])

8



1.1. High-Throughput Characterization of Microbial Communities

As a marker gene for the identification of fungi and lichens, a part of the eukaryotic

ribosome is used. However, in this case, the internal transcribed spacer (ITS) one and

two (ITS1, ITS2) have been introduced by Schoch et al. 2012 as universal loci for the

characterization of fungi and lichens. The eukaryotic ribosome is organized in tandem

repeats all over the genome which are separated by untranscribed spacer regions.

Within the ribosome, the small subunit is separated by two internal spacers from the

main large subunit [63], shown in Fig. 1.5. These internal spacers are transcribed into

rRNA but are removed before the final ribosome is built. Compared to the prokaryotic

ribosome, variable regions D1 and D2 have been identified within the LSU, [63] and

have been used for fungal community characterization as well [64].

Figure 1.5.: The eukaryotic ribosome gene cluster is organized in tandem repeats along the

genome which are separated by untranscribed spacers. It comprises the large subunit 60S

(including 28S, 5.8S, 5S rRNA) and the small subunit 40S (18S rRNA), whereby the 5S rRNA

can be encoded far apart from the main gene cassette. Variable regions D1/D2 have been

identified within the beginning of LSU. SSU and LSU are separated by two internal transcribed

spacer (ITS) regions. These regions are transcribed into rRNA but removed before the mature

ribosome is finally formed.
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In targeted amplicon studies a single sequencing run results in thousands of se-

quence reads for a given sample. To determine the phylogentic composition, individual

sequences are assigned to operational taxonomic units (OTUs). Each OTU represents a

specific taxonomic group at a particular phylogentic level (commonly 97 % similarity

at the sequence level corresponds to distinct species [65], 95 % to distinct genus level

groups). Finally, taxonomic classification and the quantitative number of reads which

were assigned to a particular OTU completes its annotation. During the last decade, a

variety of tools have been introduced to analyze amplicons of microbiome surveys.

Basically, they can be divided into two main approaches based on the used OTU

picking method: OTUs are either generated by de-novo OTU picking, which is based

upon unsupervised clustering, or reference/taxonomy OTU picking, in which OTUs

are formed by comparative classification using a reference database [55].

The basic workflow of both approaches is illustrated in Fig. 1.6. Briefly, de novo

based OTU picking, shown in Fig. 1.6a, comprises the following core working steps:

(1) pre-processing (sample splitting, trimming, removal of contaminating, or chimeric

sequences, denoising, quality filtering); (2) aligning sequences using multiple sequence

alignment (msa); (3) calculation of the distance between all sequences to allow for an

accurate calculation; (4) de novo OTU picking, clustering of sequences according to their

sequence similarity into distinct OTUs; (5) dereplication (for each OTU a representative

sequence is selected); (6) classification (each OTU representative is classified either by

a similarity search against a reference database or with an estimation approach); and

(7) statistical analysis and visualization (PCA, heatmaps, DA analysis, phylogenetic

distribution bar charts, calculation of diversity measures) [66].

Reference based OTU picking, shown in Fig. 1.6b, comprise the following working

steps: (1) pre-processing (sample splitting, trimming, removal of contaminating, or

chimeric sequences, denoising, quality filtering); (2) taxonomic classification by a simi-

larity search against a reference database; (3) OTU generation by grouping sequences

according to their taxonomic classification; and (4) statistical analysis and visualization

(PCA, heatmaps, DA analysis, phylogenetic distribution bar charts, calculation of α-

and β-diversity measures) [66].
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Figure 1.6.: Typical workflow for (a) de novo

based OTU comprising five main steps: (1) pre-

processing, (2) sequence alignment, (3) sequence

clustering, (4) taxonomic classification of cluster

representative sequence, (5) statistical analysis

and visualization. (b) reference/taxonomy based

OTU picking comprising three main steps: (1)

pre-processing, (2) taxonomic classification by

a similarity search against a reference database;

(3) OTU generation by grouping sequences ac-

cording to their taxonomic classification; (4) sta-

tistical analysis and visualization. Image taken

from [66]3.

For the described steps, a variety of tools and pipelines have been developed. Most

popular tools have been integrated in ready to use web-based pipelines, such as

SnoWMAn [67], or CloVR [68]. Or summarized in command line packages such as

mothur [69] or Quantitative Insights Into Microbial Ecology (QIIME) [70].

1.1.2. Shotgun Metagenomics ("What are they doing?")

Metagenomics enables culture-independent studies based on the whole genetic in-

formation of complex microbial communities which are directly sampled from a

particular environment. Sequencing of the whole genome provides information about

structure, function, and interactions of the microbial community with its habitat [71].

This approach results in a much more complete community description than targeted

amplicon studies. Moreover, with metagenomics it is possible to discover potentially

novel biocatalysts or enzymes, and construct evolutionary profiles of community

structure and function. Additionally, genomic linkages between function and phy-

logeny for uncultured organisms can be established [72]. The main steps involved in a

typical metagenome project are: (1) filtering of raw reads prior to main downstream

analysis, (2) assembling of reads into contigs, (3) comparing assembled contigs to
3Computational Medicine by Springer. Reproduced with permission of Springer in the format

Thesis/Dissertation via Copyright Clearance Center
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whole reference genomes, (4) taxonomic, as well as functional classification, and (5)

identification of functions, corresponding pathways using pathway databases such as

KEGG [73].

Furthermore, metagenomic profiles can be compared to other available metagenomes.

Finally, targeted amplicon analysis and metagenomic results can be combined for final

conclusions. Along with providing descriptive analysis about the composition and

function of microbial communities, metatranscriptomics allow additionally for the

investigation of underlying regulatory mechanisms. A variety of bioinformatic tools,

methods, and algorithms have been developed for each single step of the metagenomic

analysis workflow [55]. The most commonly and widespreadly used are combined

in automated analysis servers and pipelines such as the MG-Rast server [74] and

MEGAN [75].

1.1.3. (Meta)Transcriptomics ("How are they doing it")

In contrast to a metagenome, a (meta)transcriptome comprises only sequence infor-

mation of active - expressed genes at the time, place or state of investigation [76].

High-throughput sequencing of mRNAs obtained from natural microbial communities

(metatranscriptomics) or from a single microbial genome transcriptomics are able to pro-

vide the first insights into their activities and regulatory mechanisms [77]. Especially,

a technique called differentially RNA-seq (dRNA-seq) enables the selective analysis of

primary transcripts in the genome [78]. Whether these genes in question are trans-

lated into proteins is triggered by a number of either enhancing or inhibiting factors.

Investigations of the promoter region, 100-1000 bps 5’ upstream of the transcription

start site (TSS), of a primary transcript allows identification of sequence motifs for

regulatory elements and transcription factor binding sites. Therefore, conclusions

about regulatory mechanisms are feasible [76].
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1.2. Challenges of High-Throughput Sequencing Data

Analysis

Sequencing technologies are rapidly improving, and due to their steadily decreasing

costs, they have become more and more a standard procedure in research, as well as

in clinical practice [79]. Unfortunately, bioinformatic tools, methods, and algorithms

are struggling to keep pace with current developments, scientific findings, and newly

arising requirements.

A ubiquitous and fundamental step in targeted amplicon studies is the pre-processing

of the raw sequencing data. This is of great importance for two reasons. First, low

quality sequences, artificially created, or contaminating sequences hamper and slow

down the analysis process. Second and even more important, these kinds of data

skew the analysis result (OTU inflation) and compromise correctness and quality of

the final conclusions. Of special interest are misamplified fragments originating from

the host environment, such as human DNA fragments in bacterial GI community

studies. Commonly available tools such as DeconSeq [80] are based upon alignment

against special sequence collections such as human or mouse. This is a problem in

cases where the origin of the contamination is unclear, or misamplified sequences can

originate from multiple sources.

The core step of high-throughput characterization studies is the taxonomic classifi-

cation of the amplified fragments. Reference sequence databases are a key resource in

the classification and characterization of complex microbial communities. Regardless

of the classification approach used, a proper reference system is required for final

taxonomic annotation. Although reference systems for prokaryotes (bacteria and ar-

chaea) are well-established [81], comparable systems for eukaryotes such as fungi and

lichens are far away from being complete [81] even though they have taken on greater

importance during the last years. These systems have to be continuously extended,

curated, and maintained by experts to ensure high quality reference sequences, as

well as complete and correct annotations. Collective annotation approaches such as

initiated by Nilsson et al. [81] are important efforts towards reliable reference archives.
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Curated reference databases such as UNITE’s [82] formated versions for QIIME and

mothur or classification systems such as SnoWMAn’s fungal BLAT pipeline, or RDP’s

LSU [64] and ITS [83] classifier version have been recently released and are still under

development.

The final step of each high-throughput characterization study is the visualization and

statistical analysis of the classification results, shown in Fig. 1.3. Although statistical

approaches such as PCA, rarefaction, as well as α- and β-diversity measures are

well-established for data description, mechanisms for testing significant changes of

OTU abundance between different groups, places, states, or time points are lagging

behind. The classification result of microbial community surveys is represented as a

so-called feature matrix containing the number of reads observed (counts) for each OTU

(feature) for every single sample. This kind of representation is similar to the final

result of RNA-seq experiments. The major purpose of this type of experiment is the

detection of differentially expressed (DE) genes. Based on the similar nature of these

two kinds of problems and outputs, the evaluation of this already well-established

tools are needed on community data, to enrich final statistical analysis of the final

community profile.
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1.3. Objectives

The aim of this thesis is to introduce and evaluate new, as well as existing approaches,

methods, and tools for single steps of the entire high-throughput characterization and

classification process of complex microbial communities. Furthermore, these new or

extended approaches, methods, and tools are used for the analysis of real datasets to

solve different biological, medical, or ecological questions.

The major aims which are specified within this thesis are listed below.

• Investigation of the influence of sequencing library normalization on the

final community profile and its diversity

• Development of an application for the identification and removal of contam-

inating sequences

• Integration and evaluation of resources for fungal community analysis

• Evaluation and adaption of methods for differentially abundant feature de-

tection

• Transcriptome analysis of the Campylobacter fetus subspecies fetus and ven-

eralis

The following sections link the specified objectives with the projects and data, which

are analyzed within this thesis and the respective results, which are used to implement,

evaluate and adopt approaches, methods, and tools.

1.3.1. Investigation of how sequencing library normalization a�ects

community pro�le and diversity

The effect of sequence library normalization should be investigated by the analysis

and comparison of a standard and a normalized sequencing library, which originates

from the metagenome moss project (Sec. 2.1.4). This sequencing approach was planned

by members of the Bioinformatics Group of Dr. Gerhard Thallinger4 together with

4Bioinformatics Group, Institute for Knowledge Discovery, Graz University of Technology, Graz,
Austria
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the team of Prof. Dr. Gabriele Berg5. Aside from the comparison of untreated and

normalized sequencing libraries, the main aim of this Illumina-based metagenomic ap-

proach is to facilitate deeper insights into specific biochemical pathways and adaptive

strategies through the analysis of significantly changing functional subsystems.

1.3.2. Development of an application for identi�cation and removal of

contaminating sequences

An application for automated detection and removal of contaminating sequences

should be developed within the scope of this thesis. Firstly, the tool should be evaluated

using a well-described sequence set. Subsequently, the new pre-processing approach

should be applied on the amplicon sequence set generated within the diarrhea study

(Sec. 2.1.5) to demonstrate the effects of contaminating sequences on community

diversity.

1.3.3. Integration and evaluation of resources for fungal community

analysis

The fungal amplicon set, originating from a bronchoalveolar lavage survey should be

analyzed using the targeted amplicon sequencing pipeline SnoWMAn. Therefore, a

reference database for ITS amplicons has to be generated, tested, and incorporated

into the analysis pipeline. Additionally, the bacterial community profile of this survey

should be determined. The study was planned and realized by the team of Prof.

Robert Krause6, MD, to investigate the relationship of risk factors for Candida colo-

nization (Sec. 3.8). Therefore, the obtained community profile has to be tested for DA

abundant features, in the different experimental conditions of the ITS community

profiles, as well as in the bacterial communities. Furthermore, the results of the high-

throughput classification should be compared to the results of the traditional BAL

culture analysis.

5Institute of Environmental Biotechnology, Graz University of Technology,Graz, Austria
6Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria
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1.3.4. Evaluation and adaption of methods for di�erentially abundant

feature detection

To evaluate different methods for differential feature detection, simulated count data

(according to [84]), with a known number of truly DA features should be tested with

different methods. According to the result of this evaluation approach, community

profiles of data sets, which are evaluated within this thesis, should be tested for

differentially abundant features. In detail, the count data obtained from the datasets

created withing the metagenome moss project (Sec. 2.1.4), as well as from the Candida

(Sec. 2.1.1) and GI mouse amplicon studies (Sec. 2.1.3) are within the scope of the

differentially abundant feature detection.

1.3.5. Transcriptome analysis of Campylobacter fetus subspecies fetus

and veneralis

The expression data which is analyzed within this thesis was generated by the team of

Dr. Sabine Kienesberger7 and Ass.-Prof. Gregor Gorkiewicz8, MD, in the course of the

comprehensive study on two Campylobacter fetus subspecies (Sec. 2.1.2). Besides, the

comparative analysis effort of the two Campylobacter fetus subspecies, regulatory ele-

ments which might influence metabolism and virulence of the subspecies have been of

special interest. Therefore, differentially RNA-sequencing (dRNA-seq) was performed.

This data should be subjected to automated TSS identification and categorization, as

well as for the subsequent motif analysis in the determined promoter regions.

7Institute of Molecular Biosciences, University of Graz, Graz, Austria
8Institute of Pathology, Medical University of Graz, Graz, Austria
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The following sections describe the datasets, databases, approaches, applications,

methods, tools, and algorithms which were used to solve the discussed results of this

thesis. Different applications and resources are grouped according to their main topic

or overall characteristics.

2.1. Datasets

Five distinct datasets have been analyzed at different steps, of the analysis workflow,

using different high-throughput analysis approaches to investigate and answer various

questions. The following sections introduce and describe the experimental design, as

well as how the data was sampled, prepared, and analyzed prior to bioinformatic

analysis.

2.1.1. Bronchoalveolar Lavage (BAL) Study

The sampling effort for the BAL study comprise 55 adult patients (age > 18 years)

who were assigned according their health state and medical treatment into three

main groups (1,2,3). Group 1 and 2 were additionally split into two more subgroups

according to antibiotic treatment (A = no antibiotic treatment, B = with antibiotic

treatment).

Group 1 (control group) includes fifteen healthy patients who did not show any clinical,

radiological or laboratory evidence for an infectious diseases at sampling time point.

Group 2 comprise thirteen non-neutrophenic intubated and mechanically ventilated
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patients who where treated at the intensive care unit (ICU). Non of them showed

indications for a community acquired (CAP) or ventilator-associated (VAP) pneumonia

according to common case definitions [85, 86].

Group 3 includes twenty-seven patients who showed indications of VAP, CAP, or

aspiration associated pneumonia (ASP) according to common case definitions [85, 86],

as well as by X-rays of the lungs which were examined by blinded and independent

investigators. All patients in group 3 were treated with antibiotics because of their

disease state.

Patients who received antifungal therapy within 8 weeks before study start, as well

as patients with pulmonary diseases such as chronic obstructive pulmonary disease

(COPD), sarcoidosis, asthma bronchiale, malignant diseases of the lung, or intestinal

lung disease were excluded. Further exclusion criteria comprise all kinds of immuno-

supressive therapy, or HIV.

A total of 59 samples were obtained by deep tracheal aspiration (all samples group

1), bronchoscopic bronchoalveolar lavage of the right lung (all samples of group 2), or

directed pulmonary infiltrates suggestive of VAP. Samples were brought immediately

after extraction to the in-house microbiology laboratory of the Medical University

of Graz, aliquoted and stored at -70
◦C until further analysis. Bacterial, as well as

fungal DNA was extracted from both tracheal secretion and BAL samples by using

the MagNA Pure LC DNA Isolation Kit III9. The variable region 4 (V4) of the 16S

small-subunit (SSU) ribosomal gene was amplified from the obtained DNA isolated

by PCR, using the forward and revers primers given in Tab. 2.1 in combination with

30 6-mer multiplexing identifiers (MID).

Table 2.1.: Forward and reverse sequencing primers used for amplification of the variable

region four (V4) of the 16S gene within the BAL study.

Name Dir. Sequence

V4_RDP_FWD FWD AYTGGGYDTAAAGNG

V4_RDP_REV1 REV TACCRGGGTHTCTAATCC

V4_RDP_REV2 REV TACCAGAGTATCTAATTC

V4_RDP_REV3 REV CTACDSRGGTMTCTAATC

V4_RDP_REV4 REV TACNVGGGTATCTAATCC

9MagNA Pure LC, Roche Diagnostics, Vienna; http://www.roche.at
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The fungal ITS1 region was amplified in triplicate from DNA sample extracts using

the forward and reverse primers, given in Tab. 2.2 in combination with 30 6-mer

MIDs.

Table 2.2.: Forward and reverse sequencing primers used for amplification of the internal

transcribed spacer region 1 (ITS1) of the fungal ribosomal gene within the BAL study.

Name Dir. Sequence

ITS1F FWD CTTGGTCATTTAGAGGAAGTAA

ITS2 REV GCTGCGTTCTTCATCGATGC

After PCR an amplicon library was generated using equimolar amounts of PCR

products derived from the individual samples and bound to sequencing beads. Final

sequencing was performed on a Roch 454 GS FLX system at the Center of Medical

Research10 (ZMF) according to the manufacturers protocol.

Ethic statement

The study was approved by the institutional review board of the Medical University

of Graz (protocol no. 19-322 ex 07/08). From all subjects written informed consent

was obtained.

2.1.2. Campylobacter fetus Study

Campylobacter (C.) strains were grown on Columbia blood agar (CBA) plates contain-

ing 5 % sheep blood11 at 37
◦C in a microaerobic atmosphere12 for 24 h [87]. A total

number of 102 C. fetus strains were characterized distinctly to subspecies level and

subsequently tested in polymerase chain reaction (PCR) screens. Biochemical iden-

tification of subspecies C. fetus fetus and C. fetus veneralis were performed according

to growth in the presence of 1 % (wt/vol) glycine and the reduction of 0.1 % sodium

selenite in liquid culture [88]. For all isolates a subspecies-specific PCR assay [89]

was applied. For special cases, amplified fragment length polymorphism analysis

10Graz, Austria; http://www.medunigraz.at/zmf/
11bioMerieux, Marcy l’Etoile, France; http://www.biomerieux.fr/
12GENbag/GENbox MicroAir; bioMerieux, Marcy l’Etoile, France; http://www.biomerieux.fr/
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[90] and pulsed-field gel electrophoresis [91] was performed, to clarify equivocal

results [88]. For one representative of each subspecies (Campylobacter fetus fetus, Cff

and Campylobacter fetus veneralis, Cfv) a library was prepared for differentially RNA se-

quencing (dRNA-seq) according to the protocol described by Sharma et al. 2010 [92].

Briefly: extracted RNA was split into aliquots for cDNA library pairs construction.

One aliquote was treated with Terminator-5-phospate-dependent exonuclease13 (TEX)

to deplete processed RNAs (denoted TEX+); untreated library (denoted TEX-) [92].

cDNA libraries were constructed by vertis Biotechnology AG14 prior to TEX treatment.

Cluster amplification was performed with Illumina’s TruSeq PE Cluster Kit v.515 on

a Cluster Station. Libraries (TEX+, TEX-) were sequenced on two distinct lanes on

Illuminas HiSeq 2000 platform according to the TruSeq SBS 36 Cycle Kits v.515 and a

91 bps single-end protocol at the Institute for Molecular Infection Biology16 (IMIB).

Final sequencing image files were processed with Illumina’s Sequencing Control

Software (SCS), Real Time Analysis (RTA) v2.6, and CASAVA v.1.76 [38].

2.1.3. Gastrointestinal Mouse Study

The project was divided into two main sampling efforts. The first experimental setting

comprise seven wildtpye (WT), Mdr2 knockout (Mdr2-KO), and bile-duct ligated (BDL)

mice, each treated under normal diet (chow) for a period of eight weeks. Mdr2-KO mice

lack the liver specific P-glycoprotein which triggers the phosphatidylcholine transport

across the canalicular membrane [93]. As a consequence, secretion of phospholipids

into the bile is not possible within this type of mice. In BDL mice linkage between

bile and liver and so any kind of secretion is interrupted [94]. Fecal (F), as well as

mucosal (M) samples from different colonic locations, ileum (Ile), jejunum (Jej), and

caecum (Cae) had been collected. The experimental design of the first sampling effort

is summarized with the supplementary information in Appendix Tab. A.1.

The second sampling effort comprise two phenotypes, wildtype, and Mdr2-KO

13Epicentre (an Illumina company); Madison, WI, USA; http://www.epibio.com/
14Munich, Germany; http://www.vertis-biotech.com/
15Illumina Inc. San Diego, CA, USA, http://www.illumina.com/
16Wuerzburg, Germany; http://imib-wuerzburg.de/
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mice which were treated under a normal and a phospholipid enriched diet (phos-

phatidylcholines (PC); 5 % Phosphatidylcholin-enriched chow) over a period of eight

weeks. Fecal (F), as well as mucosal (M) samples from different colonic locations,

ileum (Ile), colon (Col), and caecum (Cae) had been collected. The experimental design

of the second sampling effort is summarized with the supplementary information in

Appendix Tab. A.2 and Tab. A.3.

Details about mice treatment, surgical procedures, and sample collection are avail-

able as supplementary information, Appendix (pp 178, 176). Briefly: the entire colon

was ligated and removed. To ensure purity of the extracted sample, distinct colonic

regions were ligated too. Fecal samples were obtained by incision of the particular

colonic regions and extraction of its entire content. Subsequently, the colonic section

was washed twice in 10 ml of sterile 0.9 % NaCl solution to remove all traces of feces.

Obtained samples were stored at -20
◦C until further analysis.

Community DNA was extracted using the Magna Pure LC DNA III Isolation Kit17,

according to the manufacturers protocol18. Hypervariable region one and two (V1-V2)

of the 16S small ribosomal subunit was amplified from the obtained DNA isolated by

PCR, using the forward and revers primers given in Tab. 2.3, in combination with 30

10-mer MIDs. After PCR an amplicon library was generated using equimolar amounts

of PCR products derived from the individual samples and bound to sequencing beads.

Final sequencing was performed on a Roche 454 GS FLX instrument at the Center of

Medical Research19 (ZMF), according to the manufacturer’s recommendations.

Table 2.3.: Forward and reverse sequencing primers used for amplification of the variable

region one and two (V1-V2) within the GI mouse study.

Name Dir. Sequence

V12_RDP_FWD FWD AGAGTTTGATCCTGGCTCAG

V12_RDP_REV REV CTGCTGCCTYCCGTA

V12_RDP_REV1 REV ATTACCGCGGCTGCTGG

17MagNA Pure LC, Roche Diagnostics, Vienna; http://www.roche.at/
18Magna Pure LC DNA Isolation Kit III (Bacteria, Fungi), Version 13, November 2012

19Graz, Austria; http://www.medunigraz.at/zmf/
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Ethic statement

The study was approved by the Federal Ministry of Science and Research20, Austria,

according to (TVG, BGBI. Nr. 501/1989 i.d.F. BGBI. l Nr. 162/2005; TVN, GZ: BMWF-

66.010/0046-II/3b/2012).

2.1.4. Sphagnum Moss Study

Peat moss samples of type Sphagnum magellanicum Brid. (section Sphagnum) were

collected from the Austrian Alpine bog Pirker Waldhochmoor21 in December 2011.

Four replicates represented by gametophyte22 living moss plants were collected from

four independent sampling points separated by 15 m each. The collected samples

were stored in sterile plastic bags at 4 to 8
◦C, during transportation to the laboratory,

for further processing. Community DNA isolation of the S. magellanicum microbiome

was performed by hybridization of 200 g of each sample in Stomacher bags (20 g/bag)

blended with 0.85 % NaCl solution (50 ml/bag); followed by subsequent shaking of

the diluted samples in a Stomacher laboratory blender23 for 3 min. Plant residuals

were removed from the suspension by a two-stage filtering process (500 µm and

63 µm). After discarding the supernatant24 the remaining pellets were resuspended in

1.5 ml of 0.85 % NaCl and centrifuged at high speed (10,000 g, 4
◦C) for 20 min. Finally,

the obtained pellets were stored at -70
◦C before DNA isolation. Community DNA

was extracted using the FastDNA Spin Kit for Soil25 according to the manufacturer’s

standard operating procedure (SOP). Before final sequencing, DNA aliquots from

all samples were pooled together. Paired-end whole genome shotgun sequencing

was performed by Eurofines MWG Operon26 on the Illumina HiSeq 2000
27 platform

(2x 100 bp). To allow for deeper ecological analysis most dominant sequences were

removed by applying a normalization treatment (Sec. 2.9.1) on one aliquot of the total

20Vienna, Austria; http://www.bmwfw.gv.at/
21N46◦37′38.66′′ E14◦26′5.66′′
22The haploid (sexual) state of adult plants and fungi.
23BagMixer, Interscience, Saint Nom, France; http://www.interscience.fr/
24Material that floats on the surface of a liquid.
25BIO 101, Qbiogene Inc., Carlsbad, CA, USA; http://www.qbiogene.com
26Ebersberg, Germany; http://www.eurofinsgenomics.eu/
27Illumina Inc. San Diego, CA, USA; http://www.illumina.com/systems/
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2.1. Datasets

community DNA prior to sequencing. The other aliquot was sequenced untreated

using the standard protocol. Library normalization, as well as the final sequencing

was performed by Eurofines MWG Operon28.

2.1.5. Diarrhea Study

To investigate alternations of the colonic microbiota in response to osmotic diarrhea

four voluntary healthy Caucasian male adults were tested. Age of the subjects ranged

from 26 to 47 at a body mass index (BMI) range of 24 to 26.6. None of the four subjects

(A-D) suffered either from diarrhea or had been treated with antibiotics for at least

twelve months prior to study start. During the study stool frequency and consistency

were daily monitored and recorded according to the Bristol stool chart [95]. Fig. 2.1

illustrates the study design comprising the four main treatment periods and the four

sample collection time points.

Figure 2.1.: Experimental design of the study "Alterations in the colonic microbiota in response

to osmotic diarrhea" [96]. From day -7 to day -2 all subjects were set on a free diet, followed by

a controlled standard diet from day -1 to day 0. Stool samples (F) were collected one week

before and one week after the induction of diarrhea (remission). Additionally, two more fecal

samples were taken together with mucosal biopsys (M) before the first dose of PEG (day 0)

and when diarrhea was maximally pronounced (day 3) [96]. The figure is modified from [96]

.

Pre-treatment period lasted for six intervention free days which was followed by

five days of standard diet (total calorie intake of 2150 kcal/d comprising 85 g protein,

77 g fat, 250 g carbohydrates, and 25 g fiber). On day three of the standard diet

period, osmotic diarrhea was induced by a dose of 50 g tid (150 g/d) of osmotic

28Ebersberg, Germany; http://www.www.eurofinsgenomics.eu/
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laxative polyethylene gycol (PEG) 4000
29. This treatment was applied on the next three

consecutive days. Finally, seven days of stool observation and free diet, post-treatment

period completed the study. Fecal samples (F), directly taken from stool, were collected

at four different time points by all subjects (-7, 0, 4, 7). Additionally, colonic mucosa (M)

samples were obtained by biopsy from three subjects (B-D), on day zero and day four.

Therefore, the targeted region was properly prepared before two biopsies were taken.

Both sample types were immediately frozen and stored at −20 ◦C for further analysis.

Subjects, time points, and tissue types are summarized with the Appendix Tab. D.1.

DNA was extracted using the QIAamp DNA Stool Mini Kit30 (stool) and the QIAmp

DNA Mini Kit30 (mucosal tissue) according to the manufacturers protocol. To increase

bacterial DNA yield the stool homogenate was incubated in boiling water for 5 minutes

prior to DNA extraction. Hypervariable region V1-V2 had been amplified with a set

of universal primers, given in Tab. 2.4 in combination with 6-mer MIDs. Sequencing

was performed on a Roch 454 GS FLX Sequencer at the Center of Medical Research31

(ZMF).

Table 2.4.: Forward and reverse sequencing primers used for amplification of the variable

region one and two (V1-V2) within the diarrhea study.

Name Dir. Sequence

BSF8 FWD AGAGTTTGATCCTGGCTCAG

BSR357 REV CTGCTGCCTYCCGTA

Ethic statement

The study was approved by the institutional review board of the Medical University

of Graz (protocol no. 20-090 ex 08/09). From all subjects written informed consent

was obtained.

29Forlax, Merck, Vienna, Austria; http://www.merck.at
30Qiagen, Hilden, Germany; http://www.qiagen.com/
31Graz, Austria; http://www.medunigraz.at/zmf/
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2.2. High-Throughput Characterization of Microbial

Communities using SnoWMAn

The Straightforward Novel Webinterface for Microbiome Analysis32 (SnoWMAn)

[67] was developed as a user-friendly and straightforward web application for pre-

processing, taxonomic classification, visualization, and statistical analysis of sequences

obtained from targeted amplicon sequencing experiments. It consists of five different

analysis pipelines, BLAT [97] and JGAST [98] adhering the reference/taxonomy based

OTU picking approach. Additionally, pipelines based on UCLUST [99], RDP [100], and

mothur [69] are available, which support OTU picking by cluster formation (according

the de novo OTU picking approach). A typical SnoWMAn community analysis includes

three main steps. First, obtained sequence data, quality files, primer sequences, and

descriptive metadata information has to be uploaded to SnoWMAn’s data repository.

In the second step, one out of five different pipelines and respective parameters have

to be chosen for community data analysis. Finally, the third step provides common

visualization and statistical analysis capabilities on the classification result [66].

Once the sequence data (FASTA [101] formated, and optional quality information),

as well as the mandatory description file (as plain text file) is uploaded, it can be

selected for taxonomic classification with one of the available pipelines, as described

in Sec. 2.2.1 and Sec. 2.2.2.

Pre-processing within all pipelines includes sample splitting, optional quality-,

chimera-, and duplicate filtering. In addition, sequences can be removed from down-

stream analysis according to their minimum length or the maximum number of

ambiguous bases (N’s). Primers added during the amplification step can be also

removed prior to classification to improve overall quality, as well as to speed up the

analysis.

32SnoWMAn; https://snowman.genome.tugraz.at/
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2.2.1. BLAT Pipeline

The BLAT pipeline is based upon the reference/taxonomic OTU picking approach,

see Fig. 1.6b. Each sequence of the microbial community is compared using the

alignment tool BLAT described by Kent 2002 [97] to an indexed and FASTA formated

reference database which is linked to a taxonomic annotation file. In a next step

the reference database for the BLAT classification step can be selected by the user.

Reference databases for bacteria and archaea 16S, as well as for fungal ITS amplicons

are available. The final job submission procedure, and options for visualization and

statistical analysis are generally discussed for all pipelines in Sec. 2.2.3.

2.2.2. RDP Pipeline

The RDP pipeline is based upon the Ribosomal Database Project (RDP) classifier

[100] and adheres to the de novo OTU picking approach, see 1.6a. The classifier is

implemented according a Naïve Bayes algorithm and can be trained on any kind of

sequence data. Currently, classification models for 16S rRNA (bacteria and archaea)

and fungal large ribosomal subunit (LSU) [64] sequences are available. Additionally,

training data and a classifier version for fungal internal transcribed spacer (ITS)

amplicons are announced [83]. Major RDP pipeline parameters are the structural

alignment model and the classifier version which have to be selected based on the data

within the penultimate step. Furthermore, cluster similarity and clustering steps can

be adapted for each analysis run. For analysis the pre-processed sequences are aligned

based on the selected secondary structure aligned model (such as Infernal [102]) to

identify the overall shared "core region". Sequences are then clustered according to

their sequence similarities into OTUs. For each cluster (OTU) a representative sequence

(proxy) is selected for final taxonomic annotation of the entire cluster. The selected

pre-trained RDP-classifier version is used to estimate taxonomic classification for each

proxy. In the de-replication step classification of each OTU specific proxy is assigned

to all members of the OTU. Based on the classification result several statistical analysis

and visualization capabilities are available via the web-application. They are generally
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summarized and discussed for all pipelines in Sec. 2.2.3.

2.2.3. Statistical Analysis and Visualization

Before the analysis is finally submitted all selected parameters according to the

chosen pipeline are summarized to give the user the chance for a last check. Once the

analysis is started its status and a rough time estimation can be monitored via the

web interface. Calculation time varies considerably according to the total number of

sequences, ranging from hours to days. Therefore, users can choose e-mail notification

optionally on analysis completion.

Final classification result can be visualized using different chart types such as bar

charts, pie charts, or line plots in absolute or relative scale. In addition, α-, as well as

β-diversity, rarefaction curves, and principal component analysis (PCA) [103] can be

calculated to compare microbial composition across samples or groups. Phylogenetic

overlap between samples can be easily visualized using integrated Venn diagrams

[104]. Figures and underlying data generated by the web-application can be easily

exported either as PNG, SVG, or as Microsoft Excel file. Furthermore, results of

all intermediate steps such as filtered sequence data, results of distance calculation,

clustering, and taxonomic classification can be exported and downloaded for further

analysis [67].

2.3. Reference Sequence Databases

The following sections describe two databases and one database collection which were

used for classification of the datasets described in Sec. 2.1.

2.3.1. Greengenes

The Greengenes33 [105] 16S reference database includes well-curated, non-chimeric,

and complete sequences of the 16S small-subunit ribosomal gene for bacteria and
33Greengenes; http://greengenes.secondgenome.com/
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archaea [105]. The main features of Greengenes are (1) a standardized set of descriptive

fields, (2) identification of potential chimeric sequences, and (3) taxonomic assignment

using multiple sequence alignment (MSA). Additionally, taxonomic annotation for

each sequence is available from independent curators, including Norman Pace [106],

Wolfgang Ludwig [107], Phil Hugenholtz [108], as well as from National Center for

Biotechnology Information (NCBI) [109], and the Ribosomal Database Project (RDP)

[110].

2.3.2. M5nr - The M5 Non-Redundant Protein Database

The M5nr34 [111] represents an indexed and searchable protein database which com-

bines certain resources of many popular sequence databases such as NCBI GenBank35

[109] and RefSeq36 [112], KEGG37 [73], Gene Ontology38 (GO) [113], the Integrated Mi-

crobial Genomes at the Joint Genome Institute [114], the SEED project39 [115], VBI’s40

PATRIC41 [116], the evolutionary genealogy of genes: Non-supervised Orthologous

Groups42 (eggNOG) [117], and UniProt43 [118] in one single database [111]. Similarity

searches across this database collection is performed either by using BLAST [119] or

BLAT [97].

2.3.3. UNITE

The UNITE system for DNA based fungal species circumscriptions44 [82] is a reference

system for molecular identification of fungi based on their ITS sequence. Each fungal

species contained in the reference system is represented by at least two ITS sequences

34M5nr http://tools.metagenomics.anl.gov/m5nr/
35NCBI GenBank; http://www.ncbi.nlm.nih.gov/genbank/
36NCBI Reference Sequence Databse; http://www.ncbi.nlm.nih.gov/refseq/
37Kyoto Encyclopedia of Genes and Genomes; http://www.genome.jp/kegg/
38Gene Ontology; http://www.geneontology.org/
39SEED project http://theseed.org/
40Virginaia Bioinformatics Institute, Blacksburg, VA, USA; http://www.vbi.vt.edu/
41Pathosystems Resource Integration Center, Blacksburg, VA, USA; http://patric.vbi.vt.edu/
42eggNOG; http://eggnog.embl.de/
43UniProt; http://www.uniprot.org/
44UNITE; http://unite.ut.ee/
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of the International Nucleotide Sequence Database Collaboration (INSDC)45 [120].

Unite entries are given a unique and stable name based on the accession number type.

Taxonomic and ecological annotations are regular uniformed, updated, and corrected

as far as possible [81]. In addition, a subsystem of representative sequences is released,

mainly for local sequence similarity searches. Therefore, sequences are clustered on

different sequence similarity thresholds (97-99 %) into so-called "species hypothesis"

(SH). A random or manual selected representative is chosen for each of the hypothesis

to represent the cluster within the subsystem. The web-based identification system is

open to public and, in addition, different versions or formats of the UNITE database

are offered for download46 [82].

2.4. Sequencing Technologies and Platforms

Sequencing is the technique used to determine the primary structure, the series of

base pairs in fragments of nucleotide sequences such as DNA or RNA. Platforms

described in Sec. 2.4.1 and 2.4.2 are based upon "sequencing by synthesis" (SBS). This

method uses single stranded DNA fragments which are sequenced by synthesizing

the complementary strand along it [121]. Basically, the described NGS techniques

can be distinguished either by template preparation protocols, chemistry, detection

approaches, or their underlying base calling methods [122]. The following discussions

will briefly introduce the two different sequencing technologies and commercial

platforms that have been used for sequencing data generation of the processed datasets

within this thesis.

2.4.1. Roche Genome Sequencer (GS) FLX Instrument

The 454 GS FLX instrument [123] is based on the detection of luminescence created

during conversion of pyrophosphate (pyrosequencing) [124–126]) rather than chain

termination with dideoxynucleotides (traditional Sanger principle [1]). It comprises

45INSDC; http://www.insdc.org/
46http://unite.ut.ee/repository.php
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four major working steps: (1) ligation of adapters to DNA fragments; (2) emulsion

polymerase chain reaction (PCR, amplification); (3) distribution of beads among a

picotiter plate; and (4) pyrosequencing [127]. During sequencing for each base the four

nucleotides are subsequently incorporated into the single strand of DNA. Successful

incorporation of a nucleotide releases pyrophosphate (PPi) stoichiometrically. The

following reaction leads to emission of light which can be detected by a camera and

facilitates the sequence identification by the detected flowgram. The instrument is

able to create 400-600 kbps per run with 400-500 bps read lengths in about 10 days.

The vast amount within this analysis cycle is needed for the sample preparation. The

actual sequencing step of the 454 GS FLX instrument takes only about 8 hours.

2.4.2. Illumina MiSeq and HiSeq Platforms

The Illumina sequencing technology [128] relies on SBS and is also known as short-read

sequencing because of its maximum read length of ∼150-300 bps (Read length can

be almost doubled by using paired-end mode, yielding in a maximum read length

of ∼300-500 bps for each end of the template). Different instrument types such as

the Genome Analyzer (GA) II, the MiSeq or HiSeq platform use more or less the

same chemistry and are all based on the same sequencing principle which consists

of three main working steps: (1) library preparation; (2) cluster generation (bridge-

amplification); and (3) sequencing. During the sequencing step single stranded DNA

is synthesized by adding the four types of fluorescently labeled bases at one time in

each single step. Not incorporated molecules are washed away in each step which

allows for subsequent sequence identification by the fluorescent signal [128].

Main difference of the currently available platforms are throughput and time. The

HiSeq platform for instance, is able to produce up to 180 gbps (in Rapid Run Mode)

per sample with maximum read length of 150 bps (paired-end). Eight samples can

be processed without multiplexing within a single run in about 7 days. In contrast

the MiSeq which processes only one sample per run (without multiplexing) yields to

much less data per sample (540 mbps - 15 gbps) but benefits from lower run times, of

24-55 hours [129].
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2.5. Development Tools

Basic software development tools, frameworks, and libraries have been used within

this thesis. The following sections give a short introduction and overview on the used

tools.

2.5.1. Java

The Java programming language [130] is one of the most popular programming

languages in use, especially for client-server web applications [131]. The language is

object-oriented and adheres class-based design patterns, and benefits from almost

no implementation dependencies. Java applications are compiled to bytecode (class-

files) which enables execution, in a platform independent manner, on any computer

architecture providing a Java virtual machine (JVM) [130].

2.5.2. IGB-BioJava

IGB-BioJava is based upon the BioJava project [132], which is a freely available, open-

source Java software project. It presents a Java framework which was primarily devel-

oped for processing of different kinds of biological data using the Java programming

language. The major goal of the BioJava project is simplifying bioinformatics data

analysis, processing, as well as application development. It comprises analytical and

statistical routines and algorithms, parsers and converters, for various common file

formats. The Institute for Genomics and Bioinformatics (IGB)47 is hosting an extended

and customized version of the general BioJava library, the so-called IGB-BioJava.

2.5.3. JFreeChart

JFreeChart [133] is a freely available, open-source Java chart library which simplifies

integration of professional high quality charts in Java applications. JFreeChart supports

47Graz, Austria; http://genome.tugraz.at/
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a wide rage of different chart and output types such as Swing components, image

files (special noteworthy PNG and JPEG are supported), and common vector graphics

file formats (such as SVG, PDF, and EPS). The flexible software design facilitates

easy extension and is applicable for client-side, as well as for server-side application

[133].

2.5.4. The R Project for Statistical Computing

The R project [134] is a powerful programming language and environment for statistical

computing and graphics. R can be described as framework for data manipulation,

calculation, and graphical visualization. The major strength of R is its suite of operators

for array and matrix manipulations. As programming language R, is well-developed

and supports common concepts such as conditionals, loops, recursions, user defined

functions, as well as input and output facilities. The R environment represents a

coherent system which is very flexible and easy to adapt and extend. For example

it can be linked at runtime to C or C++ routines for computationally-intensive tasks

or extended by packages originating for example from the Bioconductor project (Sec.

2.5.5) [134].

2.5.5. Bioconductor

Bioconductor48 [135] is an open source, open development, software project to provide

and develop bioinformatic, as well as computational biology tools for analysis, visual-

ization, and comprehension of high-throughput genomic data generated by wet lab

experiments or moleculare biology. As it is based on the R programming language,

Biodonductor components are released and distributed as R packages. Moreover,

the analysis framework offers a large number of meta-data packages which provide

additional information about metabolic pathways, microarrays, genomes, organisms,

and other annotations for data enrichment. A wide range of analysis facilities such

48Bioconductor; http://www.bioconductor.org/
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as basic sequence analysis, statistical testing, DNA microarray, RNA-seq, ChIP-seq,

annotation, flow cytometry, and other data analysis mechanisms are available [135].

2.6. Decontamination and Chimera Filtering

2.6.1. Blast Like Alignment Tool - BLAT

The Blast Like Alignment Tool (BLAT) [97] is a very effective and fast tool for rapid

detection of sequence homology in highly similar sequences (nucleotide identity

≥ 95 %, translated protein identity ≥ 95 %) [136]. It was developed for measuring

sequence homology of biological sequences such as DNA, RNA, or protein sequences

in order to get information about their biological function. Although BLAT is based

upon the Basic logical alignment search tool BLAST [119] heuristics, it does not calculate

the optimal alignment of two sequences. It can use arbitrary sequence database and

input sequence file to create the final BLAT result list, in decreasing order according

to the calculated score. For each sequence of the input file the corresponding hit in the

reference database and its qualitative parameters, such as percentage of identity, number

of gaps, number of mismatches, alignment length, and positions are given [97]. Typical

applications of BLAT include cross-species protein or mRNA alignments in order to

determine homology, as well as detection of gene family members or protein-coding

sequences of a specific gene [136].

2.6.2. DeconSeq

DeconSeq49 [80] is a publicly available tool (web-based and stand alone version) for

rapid, automated identification, and removal of contaminating sequences in metage-

nomic as as well in targeted amplicon datasets (minimum read length 150 bps) by

alignment based comparison against reference genomes. The tool offers pre-processed

reference databases for complete genomes, such as human, mouse, bacterial, and viral

genomes. DeconSeq is based upon a modified version of the BWA-SW [137] aligner

49DeconSeq; http://deconseq.sourceforge.net/
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which developed for mapping low-divergent sequences against a large reference

genome [80].

2.6.3. UCHIME

UCHIME50 [138] was developed as fast and efficient algorithm for detecting chimeric

sequences which were formed out of two or more different fragments during PCR

in targeted amplicon studies. The core algorithm is based on a 3-way alignment

approch for each query sequence against two potential "parent" sequences from a

external reference database (reference mode). Additionally, UCHIME offers chimera

detection in de novo mode which uses the input database in combination with the

abundance information for each input sequence as reference database for calculating

the 3-way-alignment [138].

2.6.4. Acacia

Acacia51 [139] is a publicly available Java program for rapid and conservative error

correction of homopolymer over- and under-calls in pyrosequencing data. In contrast

to other tools, Acacia does not use all-against-all alignments. Homopolymer regions

are identified by using the quicker but less sensitive approach of empirical-derived

models [139].

2.7. Internal Transcribed Spacer (ITS) Mock Community

The following sections describe fundamental methods, tools, and databases (Sec. 2.3.3)

which were used to create the first mock community based on ITS amplicons.

50UCHIME; http://www.drive5.com/uchime/
51Acacia; http://acaciaerrorcorr.sourceforge.net/
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2.7.1. ITSx

ITSx52 [140] is a software utility to identify and extract ITS subregions ITS1, ITS2

and other ribosomal parts (small subregion (SSU), large subregion (LSU), 5.8S) from

large Sanger, as well as from high-throughput sequencing datasets. Subregional

sequences are extracted based on the predicted positions of the ribosomal genes.

Therefore, position predictions based on Hidden Markov Models (HMM) [141] which

are computed from large alignments comprising twenty eukaryotic groups are used.

ITSx is written in Perl for Unix-based systems and is publicly available [140].

2.7.2. ecoPCR

ecoPCR53 [142] is an electronic (in silico) polymerase chain reaction (PCR) running

tool which relies on the very efficient pattern matching algorithm Agrep [143]. It

allows PCR amplification simulation of a set of given input sequences using forward

and revers primer pairs. The software is developed for Unix platforms and is freely

available for download.

2.8. Di�erentially Abundant (DA) Feature Analysis

The next sections introduce briefly different statistical methods for detecting differen-

tially abundant (DA) features in microbiome samples. The methods are based on count

data obtained from high-throughput sequencing experiments. Counts are represented

as discrete number of reads which have been observed for a particular feature in

a selected sample. In microbiome samples features are represented by operational

taxonomic units (OTUs) which can be seen as distinct species when clustered at a

sequence similarity of at least 97 %. The input to all methods is presented as so called

Feature Abundance Matrix. Within this matrix rows correspond to specific features, and

columns to a single sample.

52ITSx; http://microbiology.se/software/itsx/
53ecoPCR; http://www.grenoble.prabi.fr/trac/ecoPCR
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2.8.1. Metastats

Metastats54 [144] facilitates pair-wise comparisons of multiple samples from two differ-

ent groups. It is applicable not only to 16S rRNA surveys but also to high-throughput

metagenomics data (using the extended Metastas approach, metagenomeSeq [145]).

The Metastats approach is based on two main assumptions. First, input data can be

grouped according to a certain criteria such as treatment, disease state, or gender into

two distinct groups. Each group comprises multiple individuals (samples). Second,

for each feature of a particular sample count data, representing the relative abundance

of the feature is available. To overcome sampling depths bias across multiple samples,

the raw abundance counts are simply normalized to the total contribution of each

feature per sample. The major strength of Metastats is handling sparsly-sampled

features using Fishers’s exact test [144, 146]. Differential abundance is tested according

to a two-sided t-test. Whether the detected DA feature is statistically significant, is

evaluated using a nonparametric t-test [147]. To control large false positive numbers

of the t-statistics the metastats approach employs the false discovery rate (FDR) [144].

Therefore the significance of the test is evaluated by a q-value, which is calculated as

described in Storey and Tibshirani [148].

2.8.2. edgeR - Empirical Analysis of digital gene expression (DGE) in R

edgeR55 [149] is an R Bioconductor [134, 135] package designed for the analysis of

replicated count-based expression data such as obtained from RNA-seq [150, 151],

ChIP-Seq [152], proteomics, or metagenomics experiments. The implementation is

originally based on a methodology for serial analysis of gene expression (SAGE [146])

of microarray experiments introduced by Smyth 2004 [153]. Testing for differential

abundance is applicable for two or more groups, with replicate measurements in

at least one of the groups. Statistical methods covered by edgeR are based on the

negative binomial (NB) distribution as a model for dispersion estimation, as well

as for exact tests, empirical Bayes methods, and generalized linear models, when

54Metastats; http://metastats.cbcb.umd.edu/
55edgeR, Bioconductor; http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
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working with more complex experiments. These and similar methods such as multiple

testing procedures that share information across all observations help to improve final

inference [149].

2.8.3. Limma: Linear Models for Microarray Data

Limma56 [154] is an R Bioconductor [134, 135] package for differential expression

analysis using linear modeling features for microarray experiments. It is designed for

simple replicated study designs, as well as for experiments with two or more groups,

direct or factorial designs, and time course experiments. The package is based on

normally distributed, continuous log-ratios, or -intensities obtained from microarray

experiments. The basic principle is to fit a linear model to the gene expression data.

For stable analysis, even for experiments with a small number of samples variance

shrinkage based on an empirical Bayes approach is used to borrow information across

samples and finally to estimate the biological variance.

2.8.4. voom

The voom [155] method "transforms" discrete count values as obtained from RNA-seq

experiments into normalized log-counts per million (log2-cpm) and associated preci-

sion weights. Subsequently, the transformed values are ready for linear modeling and

can be entered into the limma [154] analysis pipeline or any other microarray analysis

pipline operating on precision weights. Therefore, the mean-variance relationship

of the log-counts, as well as the precision weight for each observation is estimated

[155].

2.9. Metagenome Treatment and Analysis

The following sections describe the normalization protocol, as well as the used metage-

nomic analysis server for analysis and comparison of the Sphagnum moss sequencing

56Limma, Bioconductor; http://www.bioconductor.org/packages/2.12/bioc/html/limma.html
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libraries.

2.9.1. Library Normalization Protocol

Normalization of sequencing libraries is part of the library preparation step before

sequencing. Normalization and sequencing of the Sphagnum magellanicum moss com-

munities was performed by Eurofins MWG Operon 57 according to their protocol, see

Appendix page 188ff. Briefly: (1) One denaturation and reassociation cycle of the DNA

followed by (2) separation from reassociated ds-DNAs from remaining ss-DNAs (nor-

malized DNA) by passing the mixture over a hydroxylapatite column, and (3) finally,

PCR amplification of ss-DNAs after hydroxylapatite chromatography.

2.9.2. MG-RAST - The Metagenomics Rast Server

The Metagenomics Rast (MG-RAST) server58 [74] is a web-based phylogenetic and

functional annotation and analysis platform for metagenomic datasets. Furthermore,

amplicon (16S, 18S, LSU, ITS) and metatranscritpome (RNA-seq) sequence datasets

are supported. The pipeline offers the capacity to analyze large shotgun metagenomic

data sets up to terabases. It combines numerous bioinformatic tools and databases for

quality control, clustering, and taxonomic classification, as well as protein prediction

based on nucleic acid sequence datasets generated by next-generation sequencing

platforms. In addition, results can be visualized using principal component analysis

(PCA), hierarchical clustering (HC) [156], or heat maps. Furthermore the MG-Rast sever

supports comparisons between or to the 15,105
59 publicly available metagenomes.

57Ebersberg, Germany; http://www.eurofinsgenomics.eu/
58MG-RAST; http://metagenomics.anl.gov/
59As from: January 2014.
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2.10. Primary Transcript Analysis and Motif Identi�cation in two C. fetus subspecies

2.10. Primary Transcript Analysis and Motif Identi�cation

in two C. fetus subspecies

The transcription start site (TSS) identification and subsequent promoter region analy-

sis in two Campylobacter fetus subspecies was realized combining numerous bioinfor-

matic tools which are introduced in the following sections. Intermediate data produced

by these tools was modified, processed, combined, and evaluated by using R, see Sec.

2.5.4.

2.10.1. MEME - Multiple Em for Motif Elicitation

MEME60 [157] analyzes a set of given DNA or protein sequences for similarities and

produce a motif for each pattern it discovers amongst them. Within MEME, motifs do

not contain gaps and are presented as position-dependent letter-probability matrices.

For each position in the pattern, these matrices describe the probability of each possible

letter. Using statistical modeling techniques, MEME determines automatically the best

pattern and returns the number of occurrences, as well as the description of each

found motif in common formats such as HTML, XML, and plain TEXT [157].

2.10.2. Sequence Logo

Sequence logos61 [158] are a frequently used technique to investigate and visualize

conserved regions, as well as the frequencies and the total conservation among aligned

sequences. It represents the degree of conservation of nucleotides for each position by

a stack of letters, with the relative size of the letters presenting their frequency. The

information content of each position is directly proportional to the total height of the

letters in bits [158].

60MEME; http://meme.nbcr.net/meme/
61http://weblogo.berkeley.edu/logo.cgi
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2. Methods

2.10.3. CLC Genomics Workbench

The CLC Genomics Workbench62 [159] is designed as a user-friendly graphical cross-

platform desktop application supporting and integrating typical NGS analysis and

visualization tools, algorithms, and workflows. In addition to all features of the CLC

Main Workbench [160], it includes capabilities for classical genomics, epigenomics,

transcriptomics, read mapping, as well as for de novo assembly [159].

2.10.4. The Sequence Alignment/Map format and SAMtools

The Sequence Alignment/Map (SAM) format [161] was developed as simple and generic

alignment format for read alignments against reference sequences. It supports common

sequencing platforms, as well as read aligners and read lengths up to 128 mbps.

Furthermore, the format offers a well-defined interface for downstream analyses, such

as genotyping, variant detection, and assembly. The major strengths of the format are

its flexibility, the compact size, and its efficiency in random access of the contained

mapping information. Even more compact in size is the binary equivalent to SAM, the

so-called BAM format. Due to indexing and positional sorting, specific genomic regions

can be processed without loading the entire alignment. In addition to the SAM format,

the software package SAMtools offers various utilities for parsing, processing, and

conversion of alignments in SAM/BAM format. Most notable functions of the software

package are removal of PCR duplicates, sort and merge alignments, conversion from

and to different alignment formats, generate per-position information in the pileup

format, SNP and Indel variant calling, as well as illustration in a text-based viewer

[161].

62CLC Bio AS, Aarhus, Denmark; http://www.clcbio.com
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3. Results

3.1. Investigation of How Sequencing Library Normalization

A�ects the Community Pro�le and its Diversity

The main goal of library normalization is to remove the most dominant sequence

patterns to some kind of equilibrium between different abundant species.

3.1.1. Metagenome analysis of sequencing libraries

To investigate the effects of library normalization on the final taxonomic composition

paired-end, 2 x 100 bps, sequencing was performed, multiplexed, on one lane of the

HiSeq 2000 for the standard and the normalized library, see Sec. 2.9.1. Subsequently,

both libraries were analyzed using the metagenomic annotation pipeline MG-Rast

[74]. ∼172 Mio. and ∼141 Mio. sequences were analyzed after merging paired-end

reads (in retain-mode63) and default quality-based filtering. The data was classified

using the M5nr+ database [111] as annotation reference, using a maximum e-value of

1e-5, a minimum identity of 60 %, and a minimum alignment length of 15, measured

in aa for protein and bps for RNA databases. Community composition analysis of the

remaining ∼80 Mio. and ∼67 Mio. sequences, down to species level, is given in Tab.

3.1 and illustrated by Fig. 3.1a and Fig. 3.1b.

The survey was targeted towards functional systems carried out by bacteria. Al-

though the majority of the sequences were assigned to the Bacteria kingdom (Tab. 3.1),

63non-overlapping paired-ends will be retained in the output file as individual (non-joined) sequences.
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3. Results

Table 3.1.: Absolute and relative domain distribution calculated from the standard (a) library

and the normalized (b) library. OTU counts are given in brackets next to the corresponding

absolute value. The data was classified using the M5nr+ database as annotation reference,

using a maximum e-value of 1e-5, a minimum identity of 60 %, and a minimum alignment

length of 15, measured in aa for protein and bps for RNA databases.
Library Bacteria Eukaryota Other Unassigned /-unclassified

Standard 63,674,687 (7,976) 79.39 % 2,835,478 (10,704) 3.54 % 242,091 (330) 0.30 % 13,448,219 (1,152) 16.77 %

Normalized 51,655,401 (7,628) 76.73 % 2,767,353 (10,346) 4.11 % 212,289 (422) 0.32 % 12,690,154 (1,226) 18.85 %

(a) standard (b) normalized

Figure 3.1.: Taxonomic distribution for the standard (a) and the normalized (b) library, illus-

trated by a Krona plot [162]. The data was classified using the M5nr+ database as annotation

reference, using a maximum e-value of 1e-5, a minimum identity of 60 %, and a minimum

alignment length of 15, measured in aa for protein and bps for RNA databases.

and apart from a proportion of unassigned sequences, about 4 % of total sequences

originate from an eukaryotic host - mainly fungal and animal material (see Fig. 3.1b).

Furthermore, the effect of library normalization on community diversity was in-

vestigated by rarefaction analysis (see Sec. 3.3). Apart from the fact, that sampling

is still not complete, as more sampling or deeper sequencing would still increase

the final number of OTUs. Richness was shown to be higher within the normalized

sequencing libraries, although comprising less sequencing reads compared to the

standard library.
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3.1. Investigation of Sequencing Library Normalization

(a) standard (b) normalized

Figure 3.2.: Eukaryotic, contaminating community amount, of the moss metagenome, for the

standard (a) and the normalized (b) sequencing library illustrated by a Krona plot [162]. The

data was classified using the M5nr+ database as annotation reference, using a maximum

e-value of 1e-5, a minimum identity of 60 %, and a minimum alignment length of 15, measured

in aa for protein and bps for RNA databases.

Figure 3.3.: Rarefaction curves calculated from the metagenomes of the standard (blue) and

normalized (red) library. α-Diversity (species count) at ∼138 Mio. reads is given next to the

corresponding rarefaction curve. In addition, rarefaction analysis visualizes, that sampling

is still not complete, as more sampling or deeper sequencing would still increase the final

number of OTUs. Furthermore, Richness was shown to be higher within the normalized

sequencing libraries, although comprising less sequencing reads compared to the standard

library.
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3. Results

To test for statistical significance of changes between the standard and the normal-

ized library the Pearson χ2-test [163] was performed using the chiq.test R function

based on the taxonomic domain distribution obtained by MG-Rast, Tab. 3.1. The Pear-

son’s Chi-squared test with Yates’ continuity correction [163] (X-squared = 45,770.61,

df = 1, p-value < 2.2e-16) confirmed that cDNA sequencing library normalization

affects overall domain distribution.

3.1.2. Identi�cation of functional subsystems

The normalized sequencing data was assembled by a de novo approach into contigs

using the CLC Genomics Workbench [159] (version 4) and the recommended default

settings. 1,115,029 scaffolded contigs were obtained by this approach with an average

length of 501 bps. The assembled contigs were exported to FASTA [101] format using

the CLC Genomics Workbench export utils and provided for further analysis to the

team of Prof. Berg64, who performed functional subsystem analysis based on the

revealed contigs.

Within this inter-environmental comparison of the S. magellanicum with publicly

available metagenomes (summarized as higher plant and peat soil metagenomes), 198

functional subsystems were manually selected and subsequently tested for statistical

significant changes, within this thesis, as described in Sec. 3.4. The distribution of the

count data was checked, prior to analysis, by application of the Kolomogorov-Smirnov-

Test [164] on the raw abundances of selected metagenomes (Appendix Tab. B.1). In a

next pre-processing step, scale normalization factors were calculated to account for

the different library sizes of the raw data samples, prior to significance analysis. To

make the count data ready for linear modeling, raw counts were transformed using

the voom [155] function. Additionally, the probability distribution of each group was

visualized before and after data transformation using density plots, Fig. 3.4.

Finally, changes of subsystems between the different groups were assessed by statis-

tical analysis using the linear modeling approach implemented by the R Bioconductor

64Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
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3.1. Investigation of Sequencing Library Normalization

Figure 3.4.: Density plots of the statistically analyzed metagenomes illustrating the distribution

of the raw count data before and after data transformation using voom for the S. magellanicum,

as well as for the publicly available higher plant and peat soil metagenomes. The figure nicely

illustrates the successful transformation of the raw data distribution using the voom function

towards the normal distribution.

package limma+voom (version 3.16.8) [154]. From the 198 tested features, 106 and 37

functional subsystems were detected as differentially abundant within S. magellan-

icum and higher plants or S. magellanicum and peat soil, respectively. 26 functional

subsystems were found to be differentially abundant in both habitats.

Tab. 3.2 and Tab. 3.3 list the top 10 differential abundant subsystems between S.

magellanicum and higher plants and peat soils, respectively. A full list of differentially

abundant subsystems of S. magelanicum compared to higher plant metagenomes and

S. magelanicum compared to peat soil metagenomes, is available as supplementary

information, in Appendix Tab. B.2 and Tab. B.4, respectively.
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3. Results

Table 3.2.: Top ten differentially abundant functional subsystems detected between S. magel-

lanicum and higher plant metagenomes detected by limma+voom. Subsystems identified as

differentially abundant in both comparisons are highlighted by bold font type.

Subsystmes level 1 Subsystems level 2 LogFC AveExpr t-val p-val Adj. p-val

S. magellanicum/higher plants metagenomes

Stress response Dessication stress -8.52 3.88 -5.73 0.00 0.0007

Dormancy and sporulation Spore DNA protection -5.14 3.24 -4.67 0.00 0.0022

Phages, prophages, plasmids,

transposable elements
Gene Transfer Agent (GTA) -4.53 8.11 -11.83 0.00 0.0000

Membrane transport Protein secretion system. type IV -3.04 6.74 -9.68 0.00 0.0000

Membrane transport
Protein secretion system.

type VII (chaperone/usher pathway. CU)
-2.30 9.94 -11.28 0.00 0.0000

Cofactors, vitamins, pigments,

prostetic groups
Coenzyme B -2.25 3.49 -2.60 0.02 0.0473

Clustering-based subsystems
Putative GGDEF domain protein related

to agglutinin secretion
-1.99 6.56 -6.40 0.00 0.0003

Iron acquisition and metabolism Siderophores -1.80 9.24 -6.03 0.00 0.0005

Clustering-based subsystems Hypothetical associated with RecF -1.74 7.76 -12.82 0.00 0.0000

Clustering-based subsystems Related to menaquinone-cytochrome C reductase -2.14 4.46 -5.70 0.00 0.0033

Table 3.3.: Top ten differentially abundant functional subsystems detected between S. magellan-

icum and peat soil metagenomes detected by the limma+voom function. Subsystems identified

as differentially abundant in both comparisons are highlighted by bold font type.

Subsystmes level 1 Subsystems level 2 LogFC AveExpr t-val p-val Adj. p-val

S. magellanicum/peat soils metagenomes

Stress response Dessication stress -10.57 3.88 -6.88 0.00 0.0013

Dormancy and sporulation Spore DNA protection -7.68 3.24 -6.84 0.00 0.0013

Cofactor. vitamins, prostetic groups, pigments Coenzyme B -5.70 3.49 -6.47 0.00 0.0018

Respiration Reverse electron transport -4.32 4.51 -4.47 0.00 0.0114

Phages. prophages. transposable elements. plasmids - -3.54 5.71 -5.76 0.00 0.0033

Respiration Sodium ion-coupled energetics -3.31 6.35 -4.37 0.00 0.0114

Secondary metabolism Plant octadecanoids -2.88 3.52 -5.40 0.00 0.0042

Clustering-based subsystems Proteasome related clusters -2.84 4.25 -4.55 0.00 0.0114

Clustering-based subsystems Tricarboxylate transporter -2.44 10.17 -7.80 0.00 0.0013

Clustering-based subsystems
Related to menaquinone-cytochrome

C reductase
-2.14 4.46 -5.70 0.00 0.0033

48



3.2. Development of an Application for Identi�cation and Removal of Contaminating Sequences

3.2. Development of an Application for Identi�cation and

Removal of Contaminating Sequences

The Decontaminator is a platform independent JAVA [130] command line application

which enables detection and removal of randomly amplified sequence fragments

originating for example from the host system, or from other non-marker gene DNA. It

allows usage either as command line application or as a part of an analysis platform

such as SnoWMAn [67], or QIIME [70]. The application requires BLAT [97] output,

blast8 formatted, as well as the original target amplicon sequence file, in FASTA

format, as the initial input. Due to its generic design it can be easily extended to further

input, as well as other output formats, on demand. Combining the best BLAT hits

with the targeted amplicons during decontamination, the Decontaminator separates

true amplicons from contaminations according to the user specified thresholds. Finally,

statistic charts and tables are provided additionally to the filtered sequences to ensure

a comprehensive decontamination procedure. The basic Decontaminator IO workflow

is illustrated in Fig. 3.5.

Figure 3.5.: Decontaminator basic IO workflow.

The Decontaminator is based upon a BLAT ho-

mology search, using the targeted amplicons

and an appropriate marker gene reference DB

in FASTA format as input. Combining the best

BLAT hits with the targeted amplicons during

decontamination, the Decontaminator separates

true amplicons from contaminations, according

to the user specified thresholds. Finally, statistic

charts and tables are provided additionally to

the filtered sequences to ensure a comprehensive

decontamination procedure.

To account for technical sequences, fragments such as barcodes (MIDs), or primers,

at the beginning of the amplicons, the optional parameters barcode length (-bcl)

and primer length (-pl) can be specified. Both parameters are used to calculate the

true sequence length for the amplicon, which is needed for calculating the coverage

percentage, between the query and the subject sequence (query coverage, QC). For
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3. Results

Figure 3.6.: The Decontaminator filtering workflow. First, targeted amplicon sequences are

imported from the input FASTA file. In parallel the BLAT hit list is filtered according to score,

alignment length (align. length), and percentage of identity (ID %), to extract the best BLAT hit.

Second, for each amplicon, the corresponding BLAT hit is evaluated. Entries with no BLAT hit

are excluded. In the other case, amplicon length is used to calculate the query coverage (QC),

in respect to MID and primer length. Finally, reads which do not satisfy specified thresholds

(TH) for identity [%] (ID) and query coverage (QC) are excluded as well.

each input sequence the corresponding best BLAT hit, according to percentage of

identity (ID), alignment length, and bit-score is selected. In combination with the

calculated query coverage, these are the main parameters which are used for sequence

evaluation. Sequences with no BLAT hit at all are discarded as they do not show any

similarity to the marker gene structure. Additionally, sequences below the thresholds

for min. QC and for min. percentage identity are discarded as well. Both parameters

can be specified by the user, selecting the -c and -i option, respectively. Thus, also

chimeric fragments are likely to be removed by the Decontaminator because of low

query coverage, as shown in Fig 3.6. A full list of the Decontaminator parameters and

usage is included within the Appendix C on page 192.

Firstly, the Decontaminator had been evaluated using a small 16S test data set,

containing 295 true 16S fragments (region V1-V2), which were tagged with 6 bps MIDs

and amplified with the forward primers AGAGTTTGATCCTGGCTCAG and AYTGGGYDTAAAGNG

[165]. In a second step, 25 randomly amplified human fragments were added to the

initial test set. These fragments were created by in silico amplification using ecoPCR
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3.2. Development of an Application for Identi�cation and Removal of Contaminating Sequences

[142], with the same primers as used for the 16S fragments, within the human genome

(Homo_sapiens.GRCh37 release 72). Finally, 57 manually created chimeric sequences,

based on 16S fragments of the test set, were added. Artificial chimeric sequences, were

formed by a custom Java program, which combines fragments of two different reads

randomly. For each of these two sets a separate Decontaminator, as well as a DeconSeq

run was performed.

Results of the Decontaminator evaluation are summarized in Tab. 3.4. Parameters

and thresholds for different Decontaminator test cases are given as supplementary

information, Appendix Tab. C.1.

Table 3.4.: Decontaminator result summary of the first evaluation with a small 16S sequence

set manually contaminated with (a) 25 randomly amplified human sequence fragments, as

well as with (b) 57 manually created chimeras. In addition, the same dataset was filtered by

DeconSeq.
(a) incl. 25 human seq (b) incl. 57 chimeras

(320 sequences) (377 sequences)

Decontaminator DeconSeq Decontaminator DeconSeq

Seqs. Usable 295 340 352

Seqs. totally filtered 25 37 25

Seqs. low query coverage 0 12 0

Seqs. Low identity 0 0 0

Seqs. no BLAT hit (Decontaminator) 25 25 NA
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3. Results

3.3. Integration and Evaluation of Resources for Fungal

Community Analysis

To facilitate high-throughput classification and characterization of fungal communities,

an appropriate reference sequence set based on the marker gene for fungi, the internal

transcribed spacer region, was needed within the analysis pipeline SnoWMAn. There-

fore, the UNITE [82] reference set (release 15.10.2013), corresponding to the species

hypothesis (SH) resulting from clustering at 97 % sequence similarity was processed

and incorporated into SnoWMAn.

UNITE provides sequence and annotation information in separate files which are

linked with a UNITE specific identifier. Hence, 21,984 sequences and corresponding

annotations, down to species level, were combined to a (FASTA) database file and a

corresponding Greengenes [105] formatted annotation lookup file, using a custom Java

program. Finally, these newly created resources were incorporated into SnoWMAn’s

BLAT analysis pipeline.

3.3.1. Validation set for ITS classi�cation resources

For evaluation of the BLAT ITS reference sequence database based on UNITE, as

well as for the evaluation of the most recently introduced RDP classifier [100] for

ITS amplicons (beta version), or any other classification system for ITS fragments, in

silico mock communities for the ITS1/2 and ITS1 region were created. These mock

communities are based on 2,248 fungal sequences which cover the entire ITS1 and

ITS2 region, including 5.8S, as well as parts of 18S and LSU. Flanking regions of 18S

and LSU are necessary for providing primer binding sites in the in silico amplification

step. Sequences were selected manually, quality checked, and provided by Henrik R.

Nilsson65 and Kessy Abarenkov66. The selected mock targets cover all major fungal

phyla: (1) Basidiomycota (BAS), (2) Ascomycota (ASC), (3) Chytridiomycota (CHY), (4)

65Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
66Natural History Museum, University of Tartu, Estonia
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Early Diverging Linages (EAR, former Zygomycota), and (5) Glomeromycota (GLO),

see also Tab. 3.5.

Table 3.5.: Absolute and relative sequence distribution of the ITS mock communities at the

phylum level. Counts are presented for the manually selected fungal raw sequences (2,248), as

well as for the in silico amplified ITS1/ITS2 (1,363) and the ITS1 (1,965) region.

raw (2,248) amplified ITS1/2 (1,363) amplified ITS1 (1,965)

counts [%] counts [%] counts [%]

Ascomycota 952 42 639 47 922 46.92

Basidiomycota 640 28 403 30 984 50.08

Glomeromycota 370 16 262 19 23 1.83

Early Diverging Linages (Zygomycota) 187 8 38 3 0 0

Chytridiomycota 99 4 21 2 36 1.17

The true sequence distribution of the ITS1/2 mock community for taxonomic levels

from the phylum to the species is illustrated within Fig. 3.7a-e. For taxonomic levels

lower than phylum, phylogenetic groups which cover less than 2 % of the total

sequences abundance, have been summarized within Other.

Data tables for Fig. 3.16a-e are provided as supplementary information in Appendix

Tab. E.1-E.6.

The true sequence distribution of the ITS1 mock community for taxonomic levels

from the phylum to the species is illustrated within Fig. 3.8a-e. For taxonomic levels

lower than phylum, phylogenetic groups which cover less than 2 % of the total

sequences abundance, have been summarized within Other.

Data tables for Fig. 3.8a-e are provided as supplementary information in Appendix

Tab. E.7-E.9.

To ensure that sequences cover the same genetic region, a multiple sequence align-

ment (MSA) was done, as well as an inspection with ITSx [140], prior to in silico

amplification. Full GenBank [109] records were retrieved for all selected sequences

using the given Accession numbers via using the Entrez eUtils [166] querying system.

All obtained records were combined into one file which was pre-processed for in silico

PCR by the ecoPCRFormater [142] and the NCBI taxonomy database [167] dump

(release 24.10.2013). For the ITS1/2 mock community, the universal primers ITS1-F
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(CTTGGTCATTTAGAGGAAGTAA) and ITS4 (TCCTCCGCTTATTGATATGC) [168] were used to am-

plify fragments between 150 bps and 1,000 bps, allowing maximal 3 bps mismatches

within the primer binding site. Finally, a total set of 1,363 sequences were amplified

and remain for the first in silico ITS1/ITS2 mock community. Successfully amplified

fragments were enriched with their corresponding taxonomic annotation, down to the

species level, according to INSDC [120] using the given Accession number.

The ITS1 region was amplified with a maximal mismatch of 3 bps within the

primer binder site using the universal primers ITS1 (TCCGTAGGTGAACCTGCGG) and ITS2

(GCTGCGTTCTTCATCGATGC) [169]. ecoPCR was again used to amplify fragments between

150 bps and 700 bps. Finally, 2,017 were sucessfully amplified, whereby 1,965 were

fully annotated to at least a fungal phylum, according to INSDC [120] using the given

Accession number.

3.3.2. Validation of ITS classi�cation resources

The created in silico ITS1/2 and ITS1 mock communities were used to evaluate SnoW-

MAn’s BLAT pipeline based on the UNITE reference sequences (version 15.10.2013)

and the RDP ITS classifier (beta), which is part of SnoWMAn’s mothur [69] pipeline.

Apart from removal of sequences containing ambiguous bases, no special pre-processing,

such as chimera filtering, or denoising, was performed on the raw sequences. Hence,

17 and 24 sequences were removed due to these criteria by default pre-processing

within the analysis of the ITS1/2 and ITS1 mock, respectively, in both cases. Tab.

3.6 summarizes the sample overview of the taxonomic mock data analysis using

SnoWMAn’s mothur [69] pipeline with the RDP ITS classifier (beta) for taxonomic

classification.

The sample overview of the mock data analyzed by SnoWMAn’s BLAT pipeline

using the UNITE reference DB (version 15.10.2013) is summarized in Tab. 3.6.

To compare the classification result of both approaches, sequence distribution

amongst available taxonomic levels, was exported from SnoWMAn. Fig. 3.7a-e illus-

trates sequence distribution from the phylum to genus level of the classification result
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(a) phylum (b) class

(c) order (d) family

(e) genus

Figure 3.7.: Sequence distribution of the ITS1/2 mock community, for the true composition, as

well as obtained by classification with BLAT and the RDP ITS classifier (beta) at the class level,

at a classification confidence of 80 %, a cluster distance of 0.03 and for taxa covering more

than 2 % of total sequence abundance.



(a) phylum (b) class

(c) order (d) family

(e) genus

Figure 3.8.: Sequence distribution of the ITS1 mock community, for the true composition, as

well as obtained by classification with BLAT and the RDP ITS classifier (beta) at the class level,

at a classification confidence of 80 %, a cluster distance of 0.03 and for taxa covering more

than 2 % of total sequence abundance.



3.3. Integration and Evaluation of Resources for Fungal Community Analysis

Table 3.6.: Sample overview ITS mock communities analyzed by SnoWMAns mothur pipline

and the RDP ITS classifier (beta). The table presents the number of determined OTUs for

different cluster distances. In addition, the number of raw, filtered, not classified, unique, and

the final number of classified sequences are given for both approaches.
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OTUs

0.00 0.01 0.02 0.03 0.04 0.05 0.06

ITS1/2

RDP(beta) 1,363 17 0 1,346 1,141 1,045 937 878 821 775 743 715

BLAT 1,363 17 2 1,344 1,139 615

ITS1

RDP(beta) 1,965 24 0 1,941 1,938 1,938 1,937 1,932 1,922 1,905 1,885 1,865

BLAT 1,965 24 0 1,941 1,938 1,707

obtained by BLAT and the RDP ITS classifier (beta) for both mock communities, at a

classification confidence of 80 %. For taxonomic levels lower than phylum, sequences

not covering more than 2 % of overall abundance are summarized by the group

Other.

The taxonomic classification results have been compared against the true sequence

distribution at the phylum down to the genus level. Tab. 3.7 presents the absolute and

relative numbers of the correct classified taxons for each phylogenetic level for BLAT

and the RDP ITS classifier (beta).

Table 3.7.: Summary of taxonomic classification of BLAT and the RDP ITS classifier (beta) on

the introduced ITS mock communities. True mock sequence distribution have been compared

to the obtained taxonomic classification of both approaches. The table presents absolute and

relative numbers of correctly classified taxons for each phylogenetic level.
ITS1/2 mock ITS1 mock

BLAT RDP(beta) BLAT RDP(beta)

# corr. class. [%] # corr. class. [%] # corr. class. [%] # corr. class. [%]

phylum 1,026 76.0 1,062 78.0 1,830 94.0 1,664 85.0

class 972 72.0 919 68.0 1,813 93.0 1,398 72.0

order 853 63.0 719 53.0 1,794 92.0 1,201 61.0

family 691 51.0 500 37.0 1,752 90.0 896 46.0

genus 514 38.0 273 20.0 1,630 83.0 749 38.0
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3.4. Evaluation and Adaption of Methods for Di�erentially

Abundant Feature Detection

Three different approaches, two well-established methods for differentially expressed

gene detection in microarray and RNA-seq experiments (edgeR [149] and limma+voom

[154, 155]) and Metastats [144] have been evaluated using simulated count data repre-

senting the result of a typical targeted amplicon sequencing experiment comprising

two different groups. Additionally, efficiency of true positive detection was tested

using different effect sizes.

3.4.1. Simulation of count data

The simulated count data, which was used for the evaluation of the different methods,

was created according to the approach provided by McMurdie and Holmes [84].

Table 3.8.: Settings used for com-

munity profile simulation, accord-

ing to McMurdie and Holmes [84],

for subsequent evaluation of three

DA feature detection approaches.

settings values

# conditions 2

# min. seques per OTU 15

# max. OTUs 2,000

# samples in each condition 3; 5

# of reads per sample 2,000; 7,000; 10,000

# of replicates 1:3

effect sizes 1.25; 2.5; 5.0; 10.0

# truly DA features 30

# sample type Feces

# total simulations 72

In particular a set of 2,000 features with 30 truly

differentially abundant features, in 2 distinct condi-

tions, for four different effect sizes (fold change) are

created for subsequent evaluation. The full list of set-

tings for community profile simulation is provided

in Tab. 3.8. Differentially abundant features within

the two groups, are created by duplication of a given

community profile and randomly modifying features

according to the specified fold change values to cre-

ate the second condition. With the specified settings,

seen in Tab. 3.8, all possible combinations, based on

known community profile patters from feces, were

simulated. Finally, 72 community profiles with a known number of truly differentially

abundant features (# true DA features = 30) were created.
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3.4.2. Evaluation of DA feature detection using Metastats (R version)

DA detection with Metastats was performed by adapting the Metastats R script

provided by James R. White67, version April 2009, and the simulated count data

created in Sec. 3.4.1.

Prior to the evaluation analysis, results generated by Metastats’ web-service were

compared to the results of the R reimplementation. Apart from slight differences of p-

and q-values, which are very likely due to rounding errors, methods can be treated as

identical.

Table 3.9.: Analysis settings

used for DA detection with

metastats.

parameter value

significance threshold 0.05

significance by p values

# bootstrapping permutations 1,000

Tab. 3.9 summarizes the main settings which were used

for DA detection in the 72 simulated datasets. As the

simulated count data comprise in any case more than 2

samples, a two sample t-test is computed for each fea-

ture. Subsequently, distribution of the null t-statistics is

estimated by the specified number of bootstrapping per-

mutations (default 1000 permutations). Finally, q-values,

for the FDR control are calculated using previously determined p-values according

to the Fisher’s exact test [144, 146]. Results of the DA detection, for the different

simulation conditions, are summarized in Tab. 3.10-3.12.

3.4.3. Evaluation of DA feature detection using limma+voom

The R code of the limma+voom vignette [170], see Chapter 9.2 Sec. Two Groups, was

adapted for analysis of the simulated count data. To provide continuous and normally

distributed data, the simulated count data was transformed by voom, (Sec. 2.8.3) prior

to linear modeling. To avoid overflow because of taking the log of zero, all values were

increased by 1. Count data before and after data transformation by voom is illustrated

by Fig. 3.9(a) (before) and 3.9(b) (after), at the example of the simulated count data

2000_Feces_3_10.00_10.

67Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD,
USA, https://github.com/icj/Metagenomics/blob/master/metastats.R
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(a) raw (b) transformed by voom

Figure 3.9.: Distribution of the count data, 2000_Feces_3_10.00_10, (a) before and (b) after data

transformation using the voom function.

According to the description of the limma user guide, the matrix containing sim-

ulated count data was converted into a DGEList data object for further processing.

To account for different sequencing library sizes within the different samples, scale

normalization was applied on the simulated data. After specifying a design matrix

based on the experimental conditions, data was transformed by voom. In a next

step, it was fit to a linear model, which was subsequently used for calculating the

empirical Bayes statistics [153]. Finally, p-values were adjusted by using the method

described by Benjamini and Hochberg [171]. Only features with an adjusted p-value

less than 0.05 were considered as differentially abundant. Results of the DA detection

are summarized in Tab. 3.10-3.12.

3.4.4. Evaluation of DA feature detection using edgeR

The examples of the edgeR user guide [172] for differential expression analysis for

analyzing two or more groups, comprising replicated data, was adapted and used for

detection of DA features within the simulated data. Firstly, count data was increased

by one to prevent taking the log of zero, and turned into a DGEList data object. edgeR

was used according to the glm approach, which permits for more general comparisons.

Therefore, a model matrix, which describes the treatment conditions, was created
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based on the experimental groups. Before data was fit to a linear model (glmFit),

count data was normalized. In addition common, as well as tagwise dispersion was

estimated. Subsequently, likelihood ratio tests were conducted on the two coefficients

in the linear model using the glmLRT function. Finally, p-values were adjusted by using

the method by Benjamini and Hochberg [171]. Only features with an adjusted p-value

(FDR) less than 0.05 were considered as differentially abundant. Results of the DA

detection are summarized in Tab. 3.10-3.12.

3.4.5. Result summary of DA feature detection

The result of the DA detection for the different sets, of simulated count data, was

grouped by the number of maximum reads per sample, and summarized in Tab.

3.10-3.12 for all three evaluated approaches.
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Table 3.10.: Result summary of DA feature detection for evaluation of simulated count data,

with a maximum library size of 2,000 sequences, which was tested with metastats, edgeR,

and limma+voom. For the maximum number of 30 truly differentially abundant features, the

number of correctly identified (true positives, TP), incorrectly identified (false positives, FP),

not detected (false negatives, FN), and the number of "called" features is given. In addition,

for each condition the FDR is calculated.
sample type metastats edgeR voom+limma

2000_Feces # sig # TP # FP # FN FDR [%] # sig # TP # FP # FN FDR [%] # sig # TP # FP # FN FDR [%]

1_ 1.25_3 1 1 0 29 0.00 0 0 0 0 0 0 0 0

1_ 1.25_5 3 1 2 29 66.67 3 0 3 30 100.00 0 0 0 0

1_ 2.50_3 6 5 1 25 16.67 9 2 7 28 77.78 41 29 12 1 29.27

1_ 2.50_5 15 8 7 22 46.67 20 10 10 20 50.00 36 30 6 0 16.67

1_ 5.00_3 1 1 0 29 0.00 5 1 4 29 80.00 31 30 1 0 3.23

1_ 5.00_5 18 9 9 21 50.00 25 10 15 20 60.00 37 29 8 1 21.62

1_10.00_3 11 7 4 23 36.36 10 2 8 28 80.00 34 30 4 0 11.76

1_10.00_5 37 21 16 9 43.24 30 14 16 16 53.33 54 30 24 0 44.44

2_ 1.25_3 0 0 0 0 0.00 0 0 0 0 0 0 0 0

2_ 1.25_5 0 0 0 0 0 0 0 0 7 7 0 23 0.00

2_ 2.50_3 17 9 8 21 47.06 15 5 10 25 66.67 32 23 9 7 28.13

2_ 2.50_5 22 13 9 17 40.91 22 8 14 22 63.64 30 30 0 0 0.00

2_ 5.00_3 8 5 3 25 37.50 10 2 8 28 80.00 49 30 19 0 38.78

2_ 5.00_5 29 18 11 12 37.93 20 6 14 24 70.00 34 29 5 1 14.71

2_10.00_3 20 13 7 17 35.00 25 8 17 22 68.00 32 29 3 1 9.38

2_10.00_5 43 26 17 4 39.53 34 17 17 13 50.00 33 30 3 0 9.09

3_ 1.25_3 0 0 0 0 0 0 0 0 5 4 1 26 20.00

3_ 1.25_5 6 4 2 26 33.33 0 0 0 0 3 3 0 27 0.00

3_ 2.50_3 4 2 2 28 50.00 5 0 5 30 100.00 30 28 2 2 6.67

3_ 2.50_5 19 11 8 19 42.11 26 12 14 18 53.85 45 29 16 1 35.56

3_ 5.00_3 20 11 9 19 45.00 25 9 16 21 64.00 34 30 4 0 11.76

3_ 5.00_5 26 17 9 13 34.62 26 11 15 19 57.69 37 30 7 0 18.92

3_10.00_3 17 9 8 21 47.06 16 2 14 28 87.50 25 25 0 5 0.00

3_10.00_5 31 21 10 9 32.26 27 14 13 16 48.15 30 30 0 0 0.00
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Table 3.11.: Result summary of DA feature detection for evaluation of simulated count data,

with a maximum library size of 7,000 sequences, which was tested with metastats, edgeR,

and limma+voom. For the maximum number of 30 truly differentially abundant features, the

number of correctly identified (true positives, TP), incorrectly identified (false positives, FP),

not detected (false negatives, FN), and the number of "called" features is given. In addition,

for each condition the FDR is calculated.
sample type metastats edgeR voom+limma

7000_Feces # sig # TP # FP # FN FDR [%] # sig # TP # FP # FN FDR [%] # sig # TP # FP # FN FDR [%]

1_ 1.25_3 0 0 0 0 0 0 0 0 0 0 0 0

1_ 1.25_5 2 0 2 30 100.00 3 2 1 28 33.33 0 0 0 0

1_ 2.50_3 44 21 23 9 52.27 44 27 17 3 38.64 41 29 12 1 29.27

1_ 2.50_5 67 21 46 9 68.66 37 30 7 0 18.92 36 30 6 0 16.67

1_ 5.00_3 59 16 43 14 72.88 34 30 4 0 11.76 31 30 1 0 3.23

1_ 5.00_5 66 22 44 8 66.67 46 30 16 0 34.78 37 29 8 1 21.62

1_10.00_3 51 15 36 15 70.59 37 30 7 0 18.92 34 30 4 0 11.76

1_10.00_5 83 27 56 3 67.47 43 30 13 0 30.23 54 30 24 0 44.44

2_ 1.25_3 1 1 0 29 0.00 0 0 0 0 0 0 0 0

2_ 1.25_5 3 2 1 28 33.33 8 7 1 23 12.50 7 7 0 23 0.00

2_ 2.50_3 27 12 15 18 55.56 38 24 14 6 36.84 32 23 9 7 28.13

2_ 2.50_5 60 17 43 13 71.67 44 29 15 1 34.09 30 30 0 0 0.00

2_ 5.00_3 41 15 26 15 63.41 46 30 16 0 34.78 49 30 19 0 38.78

2_ 5.00_5 71 20 51 10 71.83 37 30 7 0 18.92 34 29 5 1 14.71

2_10.00_3 48 16 32 14 66.67 31 30 1 0 3.23 32 29 3 1 9.38

2_10.00_5 8 5 3 25 37.50 42 30 12 0 28.57 33 30 3 0 9.09

3_ 1.25_3 0 0 0 0 4 4 0 26 0.00 5 4 1 26 20.00

3_ 1.25_5 1 0 1 30 100.00 3 3 0 27 0.00 3 3 0 27 0.00

3_ 2.50_3 54 18 36 12 66.67 36 28 8 2 22.22 30 28 2 2 6.67

3_ 2.50_5 53 16 37 14 69.81 57 29 28 1 49.12 45 29 16 1 35.56

3_ 5.00_3 56 18 38 12 67.86 42 30 12 0 28.57 34 30 4 0 11.76

3_ 5.00_5 89 27 62 3 69.66 48 30 18 0 37.50 37 30 7 0 18.92

3_10.00_3 28 8 20 22 71.43 25 25 0 5 0.00 25 25 0 5 0.00

3_10.00_5 76 25 51 5 67.11 34 30 4 0 11.76 30 30 0 0 0.00
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Table 3.12.: Result summary of DA feature detection for evaluation of simulated count

data, with a maximum library size of 10,000, which was tested with metastats, edgeR, and

limma+voom. For the maximum number of 30 truly differentially abundant features, the

number of correctly identified (true positives, TP), incorrectly identified (false positives, FP),

not detected (false negatives, FN), and the number of "called" features is given. In addition,

for each condition the FDR is calculated.
sample type metastats edgeR voom+limma

10000_Feces # sig # TP # FP # FN FDR [%] # sig # TP # FP # FN FDR [%] # sig # TP # FP # FN FDR [%]

1_ 1.25_3 0 0 0 0 1 0 1 30 100.00 0 0 0 0

1_ 1.25_5 9 6 3 24 33.33 8 7 1 23 12.50 8 7 1 23 12.50

1_ 2.50_3 53 17 36 13 67.92 36 27 9 3 25.00 33 27 6 3 18.18

1_ 2.50_5 29 6 23 24 79.31 35 29 6 1 17.14 29 29 0 1 0.00

1_ 5.00_3 74 18 56 12 75.68 34 30 4 0 11.76 32 30 2 0 6.25

1_ 5.00_5 78 22 56 8 71.79 43 30 13 0 30.23 45 30 15 0 33.33

1_10.00_3 68 14 54 16 79.41 35 30 5 0 14.29 33 30 3 0 9.09

1_10.00_5 111 29 82 1 73.87 38 30 8 0 21.05 33 30 3 0 9.09

2_ 1.25_3 1 1 0 29 0.00 4 4 0 26 0.00 0 0 0 0

2_ 1.25_5 2 2 0 28 0.00 5 5 0 25 0.00 3 3 0 27 0.00

2_ 2.50_3 46 14 32 16 69.57 32 26 6 4 18.75 30 26 4 4 13.33

2_ 2.50_5 56 19 37 11 66.07 41 29 12 1 29.27 36 26 10 4 27.78

2_ 5.00_3 55 22 33 8 60.00 36 29 7 1 19.44 29 29 0 1 0.00

2_ 5.00_5 123 26 97 4 78.86 37 30 7 0 18.92 34 30 4 0 11.76

2_10.00_3 65 16 49 14 75.38 32 30 2 0 6.25 41 30 11 0 26.83

2_10.00_5 114 24 90 6 78.95 33 30 3 0 9.09 30 30 0 0 0.00

3_ 1.25_3 0 0 0 0 2 1 1 29 50.00 1 1 0 29 0.00

3_ 1.25_5 5 2 3 28 60.00 4 4 0 26 0.00 5 4 1 26 20.00

3_ 2.50_3 45 11 34 19 75.56 35 28 7 2 20.00 31 28 3 2 9.68

3_ 2.50_5 51 16 35 14 68.63 50 29 21 1 42.00 30 29 1 1 3.33

3_ 5.00_3 56 16 40 14 71.43 31 28 3 2 9.68 24 22 2 8 8.33

3_ 5.00_5 71 19 52 11 73.24 37 30 7 0 18.92 44 30 14 0 31.82

3_10.00_3 42 17 25 13 59.52 46 30 16 0 34.78 53 30 23 0 43.40

3_10.00_5 112 28 84 2 75.00 36 30 6 0 16.67 31 29 2 1 6.45
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3.5. Transcriptome analysis of Campylobacter fetus

subspecies fetus and veneralis

To identify potential transcription start sites (TSS), as well as to gain deeper insights

into the promoter structure of Campylobacterales, for both subspecies dRNA-seq, as

described in Sec. 2.1.2, analysis was performed.

Initially generated sequence reads (treated and untreated) were mapped to their

corresponding reference genomes (Cff : NC_008599.1, Cfv: HG004426.1) using the CLC

Genomics Workbench (version 4) and the recommended default settings. Tab. 3.13

summarizes the CLC mapping results for each Campylobacter subspecies for untreated

(TEX-), as well as for cDNA libraries treated (TEX+) with terminator exonuclease.

Table 3.13.: CLC Genomics Werkbench mapping report summarized for Campylobacter fetus

fetus (Cff) and Campylobacter fetus veneralis (Cfv) for untreated (TEX-) and for cDNA libraries

treated with terminator exonuclease (TEX+). For the reference bases mapping approach, the

reference genomes NC_008599.1 for Cff and HG004426.1 for Cfv were used. Sequence yield

was lower for both untreated C. fetus subspecies cDNA libraries, compared to the TEX+

libraries. Additionally, mapping efficiency is higher within TEX+ sequencing libraries for both

subspecies.
C. fetus fetus C. fetus veneralis

counts reads [%] avg. len. num of bases counts reads [%] avg. len. num of bases

TE
X

+

Reference - - 1,773,615 1,773,615

TE
X

+

Reference - - 994,014 1,988,028

Mapped 5,222,345 94.12 91 475,233,395 Mapped 8,686,431 93.44 91 807,027,221

Not mapped 326,316 5.88 91 29,694,756 Not mapped 623,046 6.56 91 56,697,186

Total 5,548,661 100 91 504,928,151 Total 9,491,477 100 91 863,724,407

TE
X

-

Reference - - 1,773,615 1,773,615

TE
X

-

Reference - - 994,014 1,988,028

Mapped 11,021,336 88.10 91 1,002,941,576 Mapped 11,309,554 89.61 91 1,029,169,414

Not mapped 1,488,747 11.90 91 135,475,977 Not mapped 1,311,639 10.39 91 119,359,149

Total 12,510,0831 100 91 1,138,417,553 Total 12,621,193 100 91 1,148,528,563

To make the CLC mapping information usable for further processing, it was exported

to BAM format [161] directly via the CLC Workbench export mechanisms. SAM tools

[161] were subsequently used to transform the binary representation of the mapping

into a plain text format. Within the same step, the mapping information was split

into separate files according to mappings on the forward or the reverse strand. To

get the base counts for each position of the genome (the number of times a single

position in the genome was covered by a base of one of the sequencing reads) the
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plain mapping information was loaded into R, for each subspecies and strand. Finally,

from the tabular mapping information positions and counts were extracted and stored

as an R vector object for further processing.

3.5.1. Transcription Start Site (TSS) Identi�cation

Due to cDNA library enrichment with terminator exonuclease, primary transcripts

are enriched, as seen in Fig. 3.10b. This causes a steep increase within the counts

for a certain position over the length of the mapped read compared to the untreated

library, as seen in Fig. 3.10a. To intensify this effect and to overcome some kind of

ambient mapping, counts less or equal to seven had been set to zero. The algorithms

for the identification of potential TSS iterates through all positions of the genome and

validates the count value by calculating the mean expression for a window of 89 bps

up- and downstream of the current position. Each position with an expression value

bigger or equal to the mean expression of the flanking areas is treated as potential TSS.

Based on the average read length of 91 bps obtained TSS are sorted in ascending order

for a final distance check. All positions which are at least 91 bsp apart are considered

as potential TSS for further processing and motif search.

3.5.2. Transcription Start Site Categorization

The TSS identification approach revealed 646 TSS on the leading strand and 574 TSS

on the lagging strand of C. fetus subspecies fetus and 1,457 TSS on the leading strand

and 1,132 TSS on the lagging strand of C. fetus subspecies veneralis, respectively. The

given gene loci information, from the already annotated reference genomes, was used

to assign the potential TSS into one of the five categories, specified by Sharma et al.

[92]: (1) antisense, (2) internal, (3) orphan, (4) primary, and (5) secondary, illustrated in

Fig. 3.11. A primary TSS is located within the next 500 bps upstream of an annotated

mRNA start. A Secondary TSS is more than likely the same as the primary TSS but

with smaller coverage. Internal TSS are found within an annotated gene on the same

strand, whereas, TSS situated inside or within 100 bps of an oppositely encoded gene
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(a) TEX-

reference
annotation

(b) TEX+

Figure 3.10.: In the example of C. fetus veneralis the difference between the final sequence

mapping based on untreated (a) or on cDNA libraries treated with terminator exonulease (b)

is illustrated. Sequence reads were mapped by the CLC Genomics Workbench 5, read mapping

algorithm to the corresponding reference genome, HG004426.1. Direct comparison of the two

mappings visualizes once the drastic reduction of sequencing reads, as well as the enrichment

of primary transcripts.
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are considered as Anitsense. Detected TSS which do not match any of the specified

criteria are summarized as Orphans.

Figure 3.11.: A primary TSS is located in the next 500 bps upstram of an annotated mRNA

start. A Secondary TSS is more or likely the same as the primary TSS but with smaller coverage.

Internal TSS are found within an annotated gene on the same strand, whereas TSS situated

inside or within 100 bps of an oppositely encoded gene are considered as Anitsense. figure

modified from [92].

An R script was written for final TSS categorization. In more detail: annotation

information and protein coding regions were extracted from the GenBank annotation

file and loaded into R for each strand separately. All genes encoded in the same

direction were sorted in ascending order. The processing starts in forward direction.

For each gene gi and the following gene gi+1 start and end positions, as well as flanking

regions (such as 501 bps upstream of the current gene start site), were determined.

First, it was determined if any TSS positions was detected within this region. For more

than one TSS, it is subsequently distinguished between primary, secondary, or internal

category. According to these specifications each TSS is likely to fit in more than one

category, as seen in Fig. 3.12. For antisense TSS identification for each gene encoded on

the complementary strand are evaluated according to the specifications illustrated in

Fig. 3.11. After finishing coding region processing on the forward strand the procedure

is repeated for the reverse strand. Finally, any TSS which was not assigned to any

of the categories is denoted as an orphan. The categorization result for both C. fetus

subspecies veneralis and fetus is given separately for each direction in Tab. 3.14.
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Figure 3.12.: The Venn Diagram illustrates the TSS categorization result for (a) C. fetus veneralis

and (b) C. fetus fetus. According to the categories described in Fig. 3.12, TSS are likely to fit in

more than one category.

Table 3.14.: TSS categorization result summary for Cfv and Cff. The table summarizes the

number of found TSS for each category and separated by strand. Categorization was per-

formed according to the illustration in Fig. 3.11. In addition to the overall sum of TSS found

per category, the number of uniquely observed TSS per category is included within the

presentation.

category primary secondary internal antisense orphan

strand + - + - + - + - + -

Cfv 685 518 116 81 1082 758 103 73 NA NA

1203 197 1840 176 37

unique 1095 195 1837 176 37

Cff 445 372 39 33 353 309 40 30 NA NA

817 72 662 70 28

unique 716 71 662 70 28

3.5.3. Promoter Motif Analysis

For all previously determined TSS of the two C. fetus subspecies fetus and veneralis,

the region 60 bps upstream of the potential TSS was extracted for subsequent motif

analysis. A motif within the target sequences extracts was searched using the MEME

web service [157] by allowing a maximal sequence shift in both directions of 3 bps. For

797 C. fetus veneralis and 575 C. fetus fetus promoter regions, an extended Pribnow box

(tgnTAtaAT) as the -10 motif was identified. In addition, a periodic, wave-like AT-rich

signal upstream of potions -14 was found in both subspecies, as seen in Fig. 3.14

and 3.13. Sequences in which the motif was not found within a maximum sequence

shift of 3 bps, may either originate from internal or secondary TSS, which are not

responsible for whole operon regulation. Or these sequences originate from falsely

identified TSS.
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Figure 3.13.: For 797 and 575 extracted promoter regions of C. fetus venerals and C. fetus fetus,

respectively, an extended Pribnow box (tgnTAtaAT) as the -10 motif was identified using

MEME, in addition to a periodic, wave-like AT-rich signal upstream of potions -14.
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Figure 3.14.: For 575 extracted promoter regions of C. fetus venerals, an extended Pribnow box

(tgnTAtaAT) as the -10 motif was identified using MEME, additionally to a periodic, wave-like

AT-rich signal upstream of potions -14.
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3.6. E�ects of Osmotic Diarrhea on the Human

Gastrointestinal Microbiome

For various diseases of the human GI tract, diarrhea is one of the most observed

concomitant feature. To investigate whether alterations in the colonic microbiota is

caused by the disease or by the accompanying diarrhea the team of Ass.-Prof. Gregor

Gorkiewicz68 planned and carried out the study described in Sec. 2.1.5. The raw data

of this targeted amplicon sequencing base line project69 was used to investigate the

effects of different pre-processing steps, in particular focusing on the detection and

removal of contaminating sequences using the novel Decontaminator application.

3.6.1. Bacterial community pro�le analysis

To investigate the effects of different types of contaminates on the finally deter-

mined number of OTUs, the raw data was once again analyzed, applying different

pre-processing approaches prior to phylogenetic analysis. Known contaminates are

chimeric, low quality, noisy, or randomly amplified sequences.

515,212 raw sequences obtained by 454 sequencing represent the basis for further

processing with the microbiome analysis pipeline SnoWMAn. In particular, SnoW-

MAn’s RDP pipeline, RDP classifier 2.5 and the Infernal [102] alignment model 2008

for bacteria were used for each analysis run using default pre-processing settings.

Samples were automatically split by given MIDs, with rejection of amplicons with

erroneous or no barcode match at all. Additionally, sequences with ambiguous bases

(containing N’s), to short sequences (less than 150 bps length), or with more than

2 mismatches within the given amplification primers (forward and reverse) were

discarded within each run. According to this default pre-processing criteria 69,856

sequences had been removed from the initial amplicon set. The following paragraphs

summarize the main results obtained by (1) quality filtering of the raw sequences

68Institute of Pathology, Medical University of Graz, Graz, Austria
69First targeted amplicon sequencing survey of the Microbiome Unit of the Medical University of

Graz and the Bioinformatics Group of Graz University of Technology.
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according to QUAL scores, (2) by removal of contaminations within the raw sequences

using the Decontaminator, (3) by denoising of the raw sequences only, (4) by chimera

detection and removal as the only pre-processing, and finally (5) by analysis of the

fully pre-processed raw data sequence set.

Community pro�le analysis of raw sequences quality �ltered First, the raw data

was analyzed using SnoWMAn’s RDP pipeline, including quality filtering according

to the attached QUAL files and default RDP quality filtering settings. 70,837 were

filtered according to the criteria given in Tab. 3.15, whereby only 19 sequences were

removed by an average quality score of less than 20. The remaining 444,356 amplicons

were assigned to 5,727 OTUs at a distance of 0.03.

Table 3.15.: Sequences filtered according to no barcode and quality, including trimming, within

the community profile analysis with quality filtering only.
no barcode filtering and trimming totally removed remaining

# sequences removed 21,080 49,776 70,856 444,356

Community pro�le analysis of sequences decontaminated only Second, raw se-

quences were filtered for contaminating sequences originating not from bacterial

DNA, prior to community profile analysis with SnoWMAn’s RDP pipeline. Therefore

taxonomic comparison using a blast like approach (BLAT) was performed by using

BLAT (v.34) and the Greengenes database (release May 2009). In the next step, the

BLAT output, in blast8 format, was passed to the Decontaminator for identification

and the removal of non bacterial sequences (Settings for the Decontaminator are given

as supplementary information within the Appendix Tab. D.2). 27,395 sequences were

removed from the initial raw sequence set, according to the criteria given in Tab.

3.16.

The remaining 487,817 decontaminated raw sequences were uploaded for commu-

nity profile analysis with the RDP pipeline to SnoWMAn. Integrated quality filtering

of SnoWMAn was not performed within this approach. 51,246 amplicons were filtered

according to the basic filtering criteria. A summary of the totally filtered sequences is
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Table 3.16.: Result of the decontamination procedure applied on the raw sequences. The table

summarizes the number of sequences, before and after detection and removal of contaminating

sequences. In addition, removed sequences are listed according to their exclusion criteria,

low percentage of identity, or query coverage, and no BLAT hit. A total number of 27,395

sequences were removed from the raw data set during the decontamination step.
before removed remain low qc low ident low qc low ident no BLAT hit

# sequences 515,212 27,395 487,817 0 9,364 0 18,031

presented in Tab. 3.17. The remaining 436,571 amplicons were assigned to 4,869 OTUs

at a distance of 0.03.

Table 3.17.: Sequences filtered by default within the standard pre-processing step of the analysis

pipeline. Prior to pre-processing contaminating sequences were removed by the Decontamina-

tor. In total 51,246 sequences were removed because of no barcode match, ambiguous bases, or

read length.
no barcode filtering and trimming totally removed remaining

# sequences removed 15,239 36,007 51,246 436,571

Community pro�le analysis of sequences denoised only Within the third pre-

processing approach of the diarrhea study, raw sequencing data was pre-processed

and quality filtered with Acacia [139], prior to community profile analysis. Acacia

was applied on the raw data using the default settings, except from the quality

score cutoff, which was set to twenty. 39,431 sequences were removed from the

515,212 raw sequences. A full summary of the Acacia analysis statistics is provided as

supplementary information in Appendix Tab. D.3.

The remaining 475,781 sequences were used for community profile analysis with

SnoWMAn’s RDP pipeline. Again, integrated RDP quality filtering, using QUAL

scores, is not performed within this analysis approach.

Table 3.18.: Sequences filtered by default within the standard pre-processing step of the analysis

pipeline. Prior to pre-processing error correction (denoising) using Acacia was performed. In

total 14,219 sequences were removed because of no barcode match, ambiguous bases, or read

length in addition to the 39,431 sequences, removed by Acacia.
no barcode filtering and trimming totally removed remaining

# sequences removed 9,579 4,640 14,219 461,562
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14,219 amplicons were filtered according to the basic filtering criteria in addition to

the 39,431 sequences, removed by Acacia. A Summary of the totally filtered sequences

is presented in Tab. 3.18. The remaining 461,562 amplicons were assigned to 5,350

OTUs at a distance of 0.03.

Community pro�le analysis of sequences chimera checked only This analysis run

of the diarrhea raw sequence set comprises chimera detection and removal using

UCHIME [138], in addition to the default sequence filtering process by SnoWMAn.

UCHIME was applied on 444,356 sequences which remained after default sequence

filtering, see Tab. 3.19. During chimera detection, 8,955 sequences were identified

as potential chimeras by UCHIME used in reference based mode (reference DB:

silva.gold.aligned release 104 [173]).

Table 3.19.: Sequences filtered by default within the standard pre-processing step of the

analysis pipeline, as well as removed by detection and removal of chimeric sequences using

UCHIME. In total 78,811 sequences, 8,955 of these are supposed to be chimeric, were removed

because of no barcode match, ambiguous bases, read length, or due to identification as chimera

prior to taxonomic classification.

no barcode filtering and trimming chimera removal totally removed remaining

# sequences removed 21,080 48,776 8,955 78,811 436,401

Community pro�le analysis of fully preprocessed sequences Finally, the raw se-

quences were pre-processed in sequential order using the approaches described within

the above paragraphs prior to community profile analysis with SnoWMAn. Tab. 3.20

summarizes the result of each single filtering step up to the ultimately filtered sequence

set. The 466,956 remaining sequences were uploaded to SnoWMAn and once again

default filtering was performed, as seen in Tab. 3.20. Thereafter, 428,811 sequences

were clustered into 4,375 distinct OTUs at a distance of 0.03.

As a last point, Tab. 3.21 summarizes the main results of the previous sections in a

common table.
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Table 3.20.: The table summarizes the number of sequences removed during the complete

pre-processing analysis chain from the raw amplicon. The number of removed sequences

is given for all specified exclusion criteria, such as no barcode, low quality, read length,

ambiguous bases (summarized within filtering and trimming), contaminations, noise, and

chimeric sequences. A total number of 86,401 sequences have been removed by the combination

of the different pre-processing approaches prior to downstream analysis.

no barcode filtering and trimming contaminations noise chimera removal totally removed remaining

# sequences removed 10,654 19,804 27,395 20,861 7,687 86,401 428,811

Table 3.21.: Summary of removed and retained sequences after the different pre-processing

methods and the finally obtained number of OTUs, at a cluster distance of 0.03. Raw data of

the diarrhea study was analyzed using SnoWMAn’s RDP pipeline (classifier version 2.5) after

application of different pre-processing approach combinations.

# raw seqs
# removed by

default

# removed by

pre-processing
# totally removed # retained # OTUs (distance 0.03)

removed by default (no prepro.) 70,856 444,356 5,727

quality filtering70
70,856 444,356 5,727

decontamination 51,246 27,395 78,641 436,571 4,869

denoising 515,212 14,219 39,431 53,650 461,562 5,350

chimera filtering 69,856 8,955 78,811 436,401 5,146

full pre-processing 30,458 87,101 86,401 428,811 4,375

3.6.2. Comparison of pre-processing on remaining sequences per sample

With the application of different pre-processing approaches, and their combinations on

the raw sequence set, varying amounts of sequences were removed from the original

sequence set. Tab. 3.22 summarizes the remaining sequences (library size) per sample

after different pre-processing stages. Additionally, for each stage the remaining library

size is compared to the initial amount of sequences per sample.

70
19 sequences were identified with an avg. qual score below 20. Additionally, these sequences do not

exceed the min. sequence length. As a consequence they have been already filtered within the default
trimming and pre-processing step.
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Table 3.22.: Summary of library size per sample, of the diarrhea study, after application of

different pre-processing stages. In addition, the table compares the number of the remaining

sequences to the unfiltered library size values of the raw data set for each sample. Interestingly

the number of sequences per sample was increased after denoising by Acacia only. This can

be explained by the fact that pre-processing with Acacia includes error-correction within the

reads as well.
raw only denoising only chimera only decontaminating fully processed

# seqs # seqs + [%] # seqs - [%] # seqs - [%] # seqs - [%]

AF1 18,693 19,781 1,088 5.82 18,039 654 3.50 18,365 328 1.79 17,763 930 5.24

AF2 16,986 17,678 692 4.07 16,436 550 3.24 16,794 192 1.14 16,277 709 4.36

AF3 16,017 16,466 449 2.80 15,732 285 1.78 15,955 62 0.39 15,674 343 2.19

AF4 12,578 13,054 476 3.78 12,300 278 2.21 12,505 73 0.58 12,248 330 2.69

BF1 18,644 19,008 364 1.95 18,191 453 2.43 18,401 243 1.32 17,958 686 3.82

BF2 18,986 19,668 682 3.59 18,326 660 3.48 18,802 184 0.98 18,171 815 4.49

BF3 22,220 22,842 622 2.80 22,024 196 0.88 22,148 72 0.33 21,961 259 1.18

BF4 22,793 23,613 820 3.60 22,158 635 2.79 22,634 159 0.70 22,042 751 3.41

BM2 25,836 27,068 1,232 4.77 25,490 346 1.34 25,360 476 1.88 25,034 802 3.20

BM3 27,011 28,323 1,312 4.86 26,790 221 0.82 26,133 878 3.36 25,934 1,077 4.15

CF1 16,918 17,507 589 3.48 16,239 679 4.01 16,773 145 0.86 16,127 791 4.90

CF2 16,449 17,000 551 3.35 16,070 379 2.30 16,372 77 0.47 16,005 444 2.77

CF3 20,555 21,342 787 3.83 20,378 177 0.86 20,523 32 0.16 20,350 205 1.01

CF4 17,460 18,141 681 3.90 17,237 223 1.28 17,426 34 0.20 1,7207 253 1.47

CM2 25,875 27,147 1,272 4.92 25,712 163 0.63 25,098 777 3.10 24,952 923 3.70

CM3 24,198 25,338 1,140 4.71 24,053 145 0.60 23,554 644 2.73 23,412 786 3.36

DF1 11,394 11,664 270 2.37 11,053 341 2.99 10,693 701 6.56 10,377 1,017 9.80

DF2 18,778 19,461 683 3.64 18,203 575 3.06 18,059 719 3.98 17,508 1,270 7.25

DF3 22,483 23,170 687 3.06 21,992 491 2.18 22,240 243 1.09 21,781 702 3.22

DF4 21,626 22,403 777 3.59 20,741 885 4.09 21,363 263 1.23 20,519 1,107 5.39

DM2 25,000 26,066 1,066 4.26 24,516 484 1.94 24,483 517 2.11 24,051 949 3.95

DM3 23,856 24,822 966 4.05 23,721 135 0.57 22,890 966 4.22 22,760 1,096 4.82

classified 444,356 461,562 435,401 436,571 428,111

filtered 70,856 53,650 10.41 79,811 15.49 78,641 15.26 87,101 16.91
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3.6.3. Comparison of �ltered sequences

Filtered sequences generated within the separate pre-processing approaches, described

previously in Sec. 3.6.1, were used to investigate the overlap between different criteria

(contaminations, noise, chimeras, or bad quality). Therefore sequence identifiers were

extracted from FASTA headers of all discarded sequencing files and imported into

R. The VennDiagram functionality of R was used to illustrate intersections between

the different filtering groups, (1) contaminating sequences (red), (2) noise (green), (3)

chimeras (blue), and (4) low quality (yellow), shown in Fig. 3.15

Figure 3.15.: Filtered sequences between the different pre-processing stages and approaches

were visualized using a Venn diagram. It allows illustrating the overlap between filtered

sequences by the different criteria: (1) contaminating sequences (red), (2) noise (green), (3)

chimeras (blue), and (4) low quality (yellow).

77





3.7. E�ects of Phospholipds on the Gastrointestinal Microbiome in Mice

3.7. E�ects of Phospholipds on the Gastrointestinal

Microbiome in Mice

The main goal of this targeted amplicon survey is to investigate the effects of phospho-

lipids on the gastrointestinal microbiome of mice. Therefore, an experiment comprising

different mice types, dietetic treatments, and material sources (details seen in Sec. 2.1.3)

was planned and accomplished by the team of Prof. Peter Fickert, MD71. Within this

thesis, the bacterial community profiles of the different sample types were determined

and subsequently tested for differentially abundant features.

Tab. 3.23 summarizes abbreviations and descriptions of the different dietetic con-

ditions, mice types, intestinal regions, and groups defined within this survey. The

experimental design of the survey is given in more detail in Sec. 2.1.3.

Table 3.23.: Sample abbreviation and descriptions used within the gastrointestinal mouse

survey for mice type, dietetic conditions, gastrointestinal region, source type, as well as for the

more generalized intestinal region groups.

mice types dietetic condition intestinal region source type intestinal region groups

WT wild type N normal F feces Ile Ileum SI small bowel, Ile + Jej

KO knock out E enriched M mucosa Jej Jejunum LI large bowel, Cae + Col

BD bile-duct ligated Cae Caecum

Col Colon

3.7.1. Bacterial community pro�le analysis

1,633,199 sequences were obtained by 454 sequencing of the collected samples of the

survey described in Sec. 2.1.3 whereby 818,525 originate from the first sequencing

effort and 814,676 from the second. After the manual detection and removal of con-

taminating sequences (Decontaminator v.6) and chimeras (UCHIME, mothur v.1.31.2),

noise reduction and quality filtering (Acacia, v.1.52.b0), the remaining 1,633,199 se-

quences were uploaded to SnoWMAn for downstream analysis. Settings and detailed

results for the pre-processing are included as supplementary information in Appendix

Tab. A.4 and Tab. A.5, respectively. Finally, 1,107,388 sequences were classified using

71Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
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the RDP classifier (v.2.5). Tab. 3.24 shows the sample overview of totally classified

sequences, unique sequences, and detected OTUs at different cluster distances. Sample

overviews for each sample grouped by sample type Source is included as supplemen-

tary information in Appendix Tab. A.6-A.9.

Table 3.24.: Sample overview summary for the GI mouse study. The table presents the total

and unique number of finally classified sequences, as well as the obtained number of distinct

OTUs, at different cluster distances.

Sample Seqs Unique Seqs
number of OTUs at distance

0.0 0.01 0.02 0.03 0.04 0.05 0.06

Total 1,107,388 232,489 85,309 38,513 17,568 10,633 70,97 5,330 39,39

Taxonomic distribution between mice types, dietetic treatment, sample material, and

source was visualized and discussed with the team of Prof. Peter Fickert, MD. Based

on the different community profiles, the main focus for the subsequent differentially

abundant feature detection was set on samples originating from all different ileum

locations.

In addition to the evaluation of samples of source type ileum, all samples had been

generalized by assigning them to group (1) large bowel (LI), or (2) small bowel (SI). To

be exact, samples of source type caecum and colon are grouped to LI and ileum and

jejunum to SI. Tab. 3.25 summarizes the number of sequences for each group and the

number of OTUs created at different cluster distances.

Table 3.25.: Sample overview summary, GI mouse study for subgroups SI and LI. For both

subgroups the number of sequences used within the taxonomic classification step and the

obtained OTUs at different cluster size values is presented. In addition, the total and unique

number of classified sequences and the final number of total OTUs at different cluster distances

is included.

Sample Seqs Unique Seqs
number of OTUs at distance

0.0 0.01 0.02 0.03 0.04 0.05 0.06

Total LI 660,934 61,111 30,827 15,097 9,315 6,255 4,712 3,483

Total SI 446,454 28763 12,543 5306 3,400 2,522 2058 1,676

Total 1,107,388 232,489 85,309 38,513 17,568 10,633 7,097 5,330 3,939
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3.7.2. Analysis of di�erentially abundant features

The final classification result, the OTU feature table, was exported from SnoWMAn and

used for differentially abundant feature detection according to the methods evaluated

in Sec. 2.8. DA feature detection was accomplished for taxonomic ranks starting at

the phylum down to the genus and OTU level (cluster distance 0.03, classification

confidence threshold of 80 %, and "other" threshold of 2 %) for samples collected

in mice’s ileum (overall 62 samples), as well as for SI vs LI (SI: 80 samples, LI: 92

samples). Briefly: the feature matrix, the OTU counts per sample, were imported into

R. All counts were increased by 1 to prevent taking the log from 0 and stored within

a DGEList object. To scale the raw library sizes, the calcNormFactors [174] function

was applied using the relative log expression (RLE) method [175]. Subsequently, a model

matrix according to the experimental design was created. The common dispersion of

all biological coefficients of variation (BCV) averaged over all OTUs, as well as the

OTU-specific dispersion of the dataset, were calculated (estimateGLMTagwiseDisp,

estimateGLMTrendedDisp, respectively). Prior to the likelihood ratio test (glmLRT)

[176, 177] for the given contrasts seen in Tab. 3.26, the read counts for each feature

were fit to a negative binomial generalized log-linear model (glmFit). To account for

multiple testing and control of the Type I error (FDR), p-values were adjusted by

using the method described by Benjamini and Hochberg [171]. Only features with an

adjusted p-value less than 0.05 were considered as differentially abundant.

Di�erentially abundant feature detection in samples of source type ileum

10,633 distinct OTUs (clustered at a distance of 0.03), as well as the taxonomic features

determined for phylum to genus, in 12 possible contrasts were tested within the

DA feature analysis using the adapted edgeR approach evaluated in Sec. 2.8, and

described in more detail in Sec. 3.7.2.

The subgroup of samples of source type ileum comprises 62 samples. Comparisons of

community profiles were made within contrasts having just a single varying condition.

All possible contrasts according to these criteria are listed in Tab. 3.26.
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Table 3.26.: Contrasts considered within DA testing of mouse study samples of source type

ileum. The GI mouse study comprises 62 samples for source type ileum, which can be grouped

according to type, diet, source, and region. Community profile comparisons between groups

having just a single varying condition are considered within the DA detection.

contrasts 1-4 contrasts 5-8 contrasts 9-12

WT.N.F.Ile-BD.N.F.Ile KO.N.F.Ile-WT.N.F.Ile KO.N.F.Ile-KO.E.F.Ile

KO.E.M.Ile-KO.N.M.Ile KO.N.M.Ile-BD.N.M.Ile WT.E.M.Ile-WT.N.M.Ile

KO.E.F.Ile-WT.E.F.Ile WT.E.M.Ile-KO.E.M.Ile WT.N.M.Ile-KO.N.M.Ile

KO.N.F.Ile-BD.N.F.Ile WT.N.F.Ile-WT.E.F.Ile WT.N.M.Ile-BD.N.M.Ile

The result of DA feature analysis in samples of source type ileum, is summarized in

Tab. 3.27. The top 30 features detected as differentially abundant, according to a FDR

less than 0.05, for each taxonomic level, as well as for OTUs is given as supplementary

information in Appendix Tab. A.10-A.15

Table 3.27.: Summary table of DA feature detection of the GI mouse study based on samples

of source type ileum. DA feature detection was performed using the R Bioconductor package

edgeR. Only features with an adjusted p-value less than 0.05 were considered as differentially

abundant. The table lists DA features detected at the phylum down to the OTU (species) level.

Additionally, the number of unique features per level and contrasts is given.

phylum class order family genus OTU

total 29 40 37 53 42 249

unique features 9 11 13 18 17 143

unique contrasts 10 11 11 10 11 12

Di�erentially abundant feature detection in samples grouped by SI and LI

DA feature detection as previously described in Sec. 3.7.2 was repeated by grouping

samples of source type caecum (40) and colon (52) to group large bowel (LI, 92 samples)

and samples of source type jejunum and ileum to group small bowel (SI, 80 samples).

Comparisons of community profiles are made within contrasts having just a single

varying condition. 34 possible contrasts were built according to these criteria and are

listed in Tab. 3.28.

The result of the DA feature analysis in samples grouped by SI and LI, is summa-

rized in Tab. 3.29. The top 30 features detected as differentially abundant, according
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Table 3.28.: The total number of samples of the GI mouse study was grouped into 2 main

subgroups by merging samples of source type caecum (40) and colon (52) to group large bowel

(LI, 92 samples) and samples of source type jejunum and ileum to group small bowel (SI, 80

samples). The table comprises all possible contrasts (34) between different community profiles

which have just a single varying condition.

contrasts 1-12 contrasts 13-23 contrasts 24-34

KO.N.F.SI-WT.N.F.SI KO.N.F.SI-KO.N.F.LI KO.N.F.SI-KO.E.F.SI

WT.N.M.LI-KO.N.M.LI WT.N.M.LI-WT.E.M.LI WT.N.M.LI-WT.N.M.SI

WT.N.F.SI-BD.N.F.SI KO.N.M.LI-BD.N.M.LI KO.N.M.LI-KO.E.M.LI

KO.E.M.SI-KO.N.M.SI WT.N.M.SI-BD.N.M.SI WT.N.M.SI-KO.N.M.SI

KO.N.F.SI-BD.N.F.SI WT.N.F.LI-WT.N.F.SI WT.N.F.LI-KO.N.F.LI

WT.N.M.LI-BD.N.M.LI WT.E.M.SI-WT.E.M.LI WT.E.M.SI-KO.E.M.SI

KO.N.M.LI-KO.N.M.SI KO.N.F.LI-KO.E.F.LI KO.N.F.LI-BD.N.F.LI

BD.N.M.LI-BD.N.M.SI KO.E.F.SI-WT.E.F.SI KO.E.F.SI-KO.E.F.LI

WT.N.F.LI-WT.E.F.LI WT.N.F.LI-BD.N.F.LI BD.N.M.SI-KO.N.M.SI

WT.E.M.SI-WT.N.M.SI WT.N.F.SI-WT.E.F.SI BD.N.F.SI-BD.N.F.LI

WT.E.M.LI-KO.E.M.LI KO.E.M.SI-KO.E.M.LI WT.E.F.LI-KO.E.F.LI

WT.E.F.SI-WT.E.F.LI

to a FDR less than 0.05, for each taxonomic level, as well as for OTUs is given as

supplementary information in Appendix Tab. A.16-A.21

Table 3.29.: Summary table of DA feature detection of the GI mouse study based on samples

of groups SI and LI. DA feature detection was performed using the R Bioconductor package

edgeR. Only features with an adjusted p-value less than 0.05 were considered as differentially

abundant. The table lists DA features detected at the phylum down to the species level.

Additionally, the number of unique features per level and contrasts is given.

phylum class order family genus OTU

total 137 135 70 207 215 2,638

unique features 17 14 11 24 27 710

unique contrasts 33 33 25 31 29 34
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3.8. Candida sp. Colonization of the Lower Respiratory

Tract in Humans

To investigate the influences, such as antibiotic treatment or medication at the in-

tensive care unit on the bacterial, as well as on the fungal community profile of the

lower respiratory tract the experiment described in Sec. 2.1.1 was accomplished. The

survey focuses on Candida sp. in the human lower respiratory tract and how they are

affected within different conditions. Within this thesis, the bacterial, as well as the

fungal community profile, was determined and tested for DA features within the

different treatment groups, as well as in different sample collection types. In addition,

traditional BAL and tracheal secretion culture results were compared to the taxonomic

classification.

Tab. 3.30 summarizes abbreviations and descriptions of the different treatment

groups and sample types, the subgroups of 3B. The experimental design of the survey

is given in more detail in Sec. 2.1.1.

Table 3.30.: Sample abbreviation and descriptions used within the BAL survey for main groups,

as well as for subgroups of group 3B.

main groups subgroups of 3B

1A control no antibiotics NAP Nosocomial-Accquired Pneumonia

1B control with antibiotics VAP Ventilation-Accquired Pneumonia

2A mechanically ventilated, treated at ICU, no pneumonia, no antibiotics CAP Community-Acquired Pneumonia

2B mechanically ventilated, treated at ICU, no pneumonia, with antibiotics NTS No Type Specified

3B mechanically ventilated, treated at ICU, pneumonia, with antibiotics

3.8.1. Bacterial community pro�le analysis - BAL study

429,680 16S amplicons were obtained by 454 sequencing. Prior to high-throughput

analysis with SnoWMAn’s RDP pipeline, the raw sequences were filtered for contam-

inating sequences by the Decontaminator, as well as for chimeras using UCHIME.

Additionally, the remaining data was denoised and quality filtered using Acacia,

before it was uploaded to SnoWMAn’s data directory. Within RDP’s preprocessing

step, sequences with no matching MIDs, as well as sequences with a length less than
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150 bps or containing ambiguous bases (N’s), were discarded. Finally, 238,990 16S am-

plicons remained for phylogenetic classification using the RDP Classifier (version 2.5).

Complete analysis settings are included as supplementary information in Appendix

Tab. F.20. The summary by main groups, as well as subgroups of group 3B, of the

sample overview, presenting the number of distinct OTUs built at different cluster

distances is given in Tab. 3.31. The entire sample overview for each sample is provided

as supplementary information in Appendix Tab. F.3.

Table 3.31.: Summary of the sample overview for the BAL study, bacteria. Number of distinct

OTUs determined at different cluster distances summarized for main groups, as well as for

subgroups of group 3B.

number of OTUs at different cluster distances

Sample Seqs Unique Seqs 0.0 0.01 0.02 0.03 0.04 0.05 0.06

Total 1A 31,923 3,045 1,610 705 491 421 378 343

Total 1B 20,193 2,040 1,152 522 373 322 295 276

Total 2B 27,781 2,310 1,254 544 363 299 256 235

Total 3B 13,5497 10,381 4,702 1,899 1,211 950 786 689

Total 3B ASP 41,828 3,476 1,806 771 503 406 353 311

Total 3B NAP 19,755 2,030 1,151 536 362 305 256 234

Total 3B VAP 68,610 5,498 2,718 1,217 815 666 577 514

Total 3B CAP 5,304 424 265 104 57 51 47 42

Total 238,990 31,174 18,238 7,542 3,071 1,938 1,471 1,191 1,028

For a first overview about the community profile within the main groups, α-diversity

scores (at a cluster distance of 0.03) according to Richness [178], Chao1 [179], Chao1

(bc) [180], Shannon [181], Evenness [178], and ACE [182] were calculated using SnoW-

MAn’s statistics features. Tab. 3.32 summarizes the different scores for the five main

subgroups. The full table, presenting different scores for each sample, is given as

supplementary information in Appendix Tab. F.3.

Table 3.32.: Summary of α-diversity scores according to Chao1, Chao1 (bc), Shannon, and ACE,

as well as Richness and Eveness calculated for the main groups of the bacterial BAL samples.

Sample Richness Chao1 Chao1 (bc) Shannon Evenness ACE

Total 1A 491 652.29 645.69 3.98 0.64 606.28

Total 1B 373 521.63 516.08 3.31 0.56 492.72

Total 2A 684 1,182.90 1,175.70 3.60 0.55 1,138.26

Total 2B 363 667.22 657.00 2.94 0.50 591.91

Total 3B 1,211 1,711.59 1,706.59 4.19 0.59 1,690.56

Community profiles for the main groups at the phylum level at a classification
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confidence of 80 %, a cluster distance of 0.03, and a threshold for Other of 2 %

are presented as sequence distribution barcharts, seen in Fig. 3.16a-e. Charts and

sequence distribution tables were directly generated and exported with SnoWMAn’s

visualization and statistical analysis tools. Count tables for Fig. 3.16a-e are included as

supplementary information in Appendix Tab. F.5-F.9.

To get an overview about community profiles and their similarity of different

samples, PCA was performed for all samples by SnoWMAn, illustrated in Fig.3.17.

The major goal of PCA is to transform the given data set and reduction of dimensions,

to an alternative data set which can be illustrated within the 2D space. This allows for

community profile comparison by spatial arrangement. Samples which are located at

smaller spatial distances than others share more similarities within their community

profiles than samples observed further away. Generally, samples from the same group,

type, or similar shared conditions are assumed to cluster together within a PCA plot;

ideally they can be subsequently separated from each other. Although some kind of

cluster formation can be observed within the first two components of the PCA plot

(Fig. 3.17), these clusters cannot be explained by any of the defined groups of the

experimental design.

In addition, community profiles of different subtypes of group 3B were illustrated

using PCA, seen in Fig. 3.18. With this illustration, community profiles of subgroups

are visually compared. As already observed for all samples, no clear separation or no

shared community profile was found between samples of the same sub-source type

(VAP, NAP, CAP, ASP).
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(a) 1A (b) 1B

(c) 2A (d) 2B

(e) 3B

Figure 3.16.: Absolute sequence distribution at the phylum (a) down to the genus (e) level, at a

classification confidence of 80 % and taxa covering more than 2 % of main BAL study groups.
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Figure 3.17.: PCA of OTU abundance for all samples of the bacterial BAL dataset. The main

groups are presented by shape and color, according to the included legend. Although there

seems to be a separation within the first 2 components, this is not confirmed by any of the

known criteria (group 1A-3B).

Figure 3.18.: PCA of OTU abundance for samples of group 3B. Subgroups of 3B are presented

by shape and color, according to the included legend. Although there seams to be a separation

within the first 2 components, this is not confirmed by any of the known subgroups (VAP,

NAP, CAP, ASP).
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3.8.2. Analysis of di�erentially abundant features

The final classification result, the OTU feature table, was exported from SnoWMAn

and used for differentially abundant feature detection according to the methods

evaluated in Sec. 2.8, and described in more detail in Sec. 3.7.2. DA feature detection

was accomplished for taxonomic ranks starting at the phylum down to the genus

and OTU level (cluster distance of 0.03, classification confidence threshold 80 %, and

"other" threshold of 2 %) for samples collected in the lower respiratory tract of 58

humans. Features with an adjusted p-value (FDR) less than 0.05 were considered as

statistically significant.

Di�erentially abundant feature detection in �ve main groups

578 distinct OTUs (clustered at a distance of 0.03), as well as the taxonomic features

determined for the phylum to the genus in 10 possible contrasts, were tested within

the DA feature analysis using an adapted edgeR approach, Sec. 3.7.2.

The experiment comprises 58 samples, which are assigned according to their treat-

ment into five main groups: 1A (8 samples), 1B (7 samples), 2A (7 samples), 2B (6

samples), and 3B (30 samples). Changes within the community profile, between the

different treatment groups in Tab. 3.33, were tested.

Table 3.33.: The experiment comprises 58 samples, which are assigned according to their

treatment into five main groups: 1A (8 samples), 1B (7 samples), 2A (7 samples), 2B (6

samples), and 3B (30 samples). Changes within the community profile, between the different

treatment groups presented in this table have been considered for DA feature detection.

contrasts 1-4 contrasts 5-7 contrasts 8-10

1A-1B 1A-3B 1B-3B

1A-2A 1B-2A 2A-2B

1A-2B 1B-2B 2A-3B

2B-3B

The result of the DA analysis in bacterial samples between the main groups is

summarized in Tab. 3.38. The top 30 features detected as differentially abundant,
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according to a FDR less than 0.05, for each taxonomic level, as well as for OTUs is

given as supplementary information in Appendix Tab. F.23-F.28.

Table 3.34.: Summary table of DA feature detection of the BAL study, bacteria main groups.

The DA feature detection was performed using the R Bioconductor package edgeR. Only

features with an adjusted p-value less than 0.05 were considered as differentially abundant.

The table lists DA features detected at the phylum down to the species level. In addition, the

number of unique features per level and contrasts is given.

phylum class order family genus OTU

total 17 36 87 182 178 578

unique featurs 4 11 39 39 39 258

unique contrasts 9 10 10 10 10 10

Di�erentially abundant feature detection in subgroups of group 3B

Community composition of 29 samples of group 3B, in respect to their sample type,

was performed. Therefore, the original feature table was reduced to samples of group

3B, excluding the single sample of type CAP. Furthermore, features with no counts

at all, were excluded from the feature matrix. DA feature detection as previously

described in Sec. 3.7.2 was repeated by comparison of community profiles of different

types of group 3B. This resulted in testing of 1,203 OTU features in 3 possible contrasts:

(1) 3B.ASP-3B.VAP, (2) 3B.ASP-3B.NAP, and (3) 3B.VAP-3B.NAP. Taxonomic groups

from the phylum to the genus level were also tested for DA.

The result of the DA analysis in bacterial samples between types of group 3B is

summarized in Tab. 3.35.

Table 3.35.: Summary table of DA feature detection of the BAL study, bacteria and main groups.

DA feature detection was performed using the R Bioconductor package edgeR. Only features

with an adjusted p-value less than 0.05 were considered as differentially abundant. The table

lists DA features detected at the phylum down to the species level. In addition, the number of

unique features per level and contrasts is given.

phylum class order family genus OTU

total 3 5 22 55 58 183

unique featurs 3 4 11 32 32 118

unique contrasts 2 2 3 3 3 3
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3.8.3. Fungal community pro�le analysis

543,566 ITS1 amplicons were obtained by 454 sequencing. Prior to high-throughput

analysis with SnoWMAn’s BLAT pipeline, the raw sequences were filtered for contam-

inating sequences by the Decontaminator, as well as for chimeras using UCHIME. In

addition, the remaining data was denoised and quality filtered using Acacia, before it

was uploaded to SnoWMAn’s data directory. Furthermore, 10 samples were excluded

from downstream analysis due to negative PCR amplificaton. Within BLAT’s pre-

processing step, sequences with no matching MIDs, as well as sequences with a length

less than 150 bps or containing ambiguous bases, were discarded. Finally, 466,582 ITS1

amplicons remain for phylogenetic classification using the UNITE reference database

(release 15.10.2013). Complete analysis settings are included as supplementary infor-

mation in Appendix Tab. F.21.

Table 3.36.: Summary and sample overview of BAL study for fungi. Number of distinct OTUs

determined using SnoWMAn’s BLAT pipeline, are summarized for the main groups, as well

as for the subgroups of group 3B.

Sample Sequences Unique sequences # OTU

Total 1A 38,653 135

Total 1B 39,412 567

Total 2A 55,536 232

Total 2B 60,243 70

Total 3B 251,022 309

Total 3B ASP 56,893 189

Total 3B NAP 31,189 96

Total 3B VAP 162,940 140

Total 444,866 51,248 855

Phylogenetic analysis of the fungal community by BLAT, for the remaining 48

samples, resulted in 855 distinct species (OTUs).

Of special interest within this analysis is the fungal community profile of the

different treatment groups (1A, 1B, 2A, 2B, 3B), as well as the different sample types

within group 3B (ASP, NAP, VAP). Tab. 3.36 presents the number of finally determined

distinct species according to their group relationship. The number of OTUs determined

for each sample is included within the supplementary information in Appendix F.22.

Richness, the number of distinct species found for each sample, is listed in Tab.
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3.37, as well as α-diversity scores according to Chao(1), Chao1(bc), Shannon, Evenness,

and ACE are summarized for the five main groups and subgroups of 3B in Tab. 3.37.

Different α-diversity scores calculated separately for each samples are included as

supplementary information in Appendix Tab. F.17.

Table 3.37.: Summary of α-diversity scores according to Chao1, Chao1 (bc), Shannon, and ACE,

as well as Richness and Eveness calculated for the main groups of the fungal BAL samples.

Sample Richness Chao1 Chao1 (bc) Shannon Evenness ACE

Total 1B 567 802.76 796.52 4.70 0.74 732.92

Total 2A 232 470.10 457.00 2.47 0.45 380.96

Total 2B 70 113.56 107.80 1.68 0.40 116.55

Total 3B 309 561.02 551.45 2.61 0.45 545.88

Total 3B ASP 189 373.38 363.00 1.88 0.36 380.86

Total 3B NAP 96 120.20 117.00 2.54 0.56 118.26

Total 3B VAP 140 244.17 234.23 2.04 0.41 233.59

As the main focus of the survey is targeted to the amount of Candida sp., sequence

distribution for the five main groups is illustrated at the genus level, seen in Fig. 3.19a-e.

Clusters which do not include more than 2 % of the total abundance are summarized to

taxon Other. Absolute count data for this figures is given as supplementary information

in Appendix Tab. F.11-F.9.

Similarities within the fungal community profile between the different samples

were visualized using SnoWMAn’s integrated PCA. Fig. 3.20 compares community

composition amongst all samples, as well as between sample types of group 3B, seen

in Fig. 3.21.
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(a) 1A (b) 1B

(c) 2A (d) 2B

(e) 3B

Figure 3.19.: Absolute sequence distribution at the phylum (a) down to the genus (e) level, at a

classification confidence of 80 % and taxa covering more than 2 % of main fungal BAL study

groups.
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Figure 3.20.: Principle component analysis of all 48 ITS BAL samples. Subgroups of 3B are

presented by shape and color, according to the included legend. Although there seems to be a

separation between certain groups, not all five main groups can be spatially separated within

the PCA plot.

Figure 3.21.: PCA of only BAL ITS samples of group 3B. Subgroups of 3B are presented by

shape and color, according to the included legend. PCA analysis of subgroups of group 3B

samples illustrated that community profiles of different sample types are highly varying, and

no pattern was recognized within the types.
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3.8.4. Analysis of di�erentially abundant features

The final classification result, the OTU feature table, was exported from SnoWMAn

and used for differentially abundant feature detection according to the methods

evaluated in Sec. 2.8, and described in more detail in Sec. 3.7.2. The DA feature

detection was accomplished for taxonomic ranks starting at the phylum down to the

species ("Other" threshold of 2 %) level for samples collected in the lower respiratory

tract of 58 humans. Features with an adjusted p-value (FDR) of less than 0.05 were

considered as statistically significant.

Di�erentially abundant feature detection in �ve main groups

1,180 distinct OTUs (clustered at a distance of 0.03), as well as the taxonomic features

determined for phylum to genus, in 10 possible contrasts, were tested within the DA

feature analysis using an adapted edgeR approach, Sec. 3.7.2.

The experiment comprises 58 samples, whereby 10 samples were excluded due

missing ITS amplicons during PCR. The remaining 48 are assigned according to their

treatment into five main groups: 1A (4 samples), 1B (5 samples), 2A (7 samples), 2B (6

samples), and 3B (26 samples). Changes within the community profile between the

different treatment groups, listed in Tab. 3.33, were tested.

The result of the DA analysis in fungal samples between the main groups is

summarized in Tab. 3.38. The top 30 features detected as differentially abundant

according to a FDR of less than 0.05 for each taxonomic level, as well as for OTUs, is

given as supplementary information in Appendix Tab. F.29-F.34.

Di�erentially abundant feature detection in subgroups of group 3B

DA feature detection of 26 samples of group 3B in respect to their type was performed.

Therefore, the original feature table was reduced to samples of group 3B. Furthermore,

features with no counts at all, were excluded from the feature matrix. DA feature
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Table 3.38.: Summary table of DA feature detection of the BAL study, fungi, main groups. DA

feature detection was performed using the R Bioconductor package edgeR. Only features with

an adjusted p-value less than 0.05 were considered as differentially abundant. The table lists

DA features detected at the phylum down to the species level. In addition, the number of

unique features per level and contrasts is given.

phylum class order family genus OTU

total 7 31 82 151 191 1,180

unique featurs 3 9 17 33 47 352

unique contrasts 4 10 10 10 10 10

detection as previously described in Sec. 3.8.4 was repeated by the comparison of

community profiles of different types of group 3B.

The result of the DA analysis in fungal samples between types of group 3B is

summarized in Tab. 3.39.

Table 3.39.: Summary table of DA features detection in different types of group 3B of fungal

samples, BAL study. DA feature detection was performed using the R Bioconductor package

edgeR. Only features with an adjusted p-value less than 0.05 were considered as differentially

abundant. The table lists DA features detected at the phylum down to the species level. In

addition, the number of unique features per level and contrasts is given.

phylum class order family genus OTU

total - 8 33 41 54 123

unique features - 5 16 20 27 78

unique contrasts - 3 3 3 3 3
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3.8.5. Comparison of microbiological diagnostic results with results of

high-throughput classi�cation

In addition to the high-throughput classification and characterization approach, tra-

ditional bronchoalveolar lavage and tracheal secretion cultures were performed and

analyzed by the team of Prof. Robert Krause, MD72 within the BAL survey. 40 out of

the initial 58 samples revealed positive cultures for known bacterial strains. Thereby

19 samples were positively tested for known pathogenic strains, such as Klebsiella

pneumoniae, Staphylococcus aureus, or Pseudomonas aeruginosa. The complete culture

result is given in detail as supplementary information in Appendix Tab. F.35.

Table 3.40.: Representative sequences used for comparison of the culture and the taxonomic

classification result. For each microbial strain, detected by the culture approach, a representa-

tive sequence was selected from the public sequence repository GenBank. Species name and

respective Accession number, as well as the name used within the culture result is presented

within the table.

Representative species name RefAccession culture name

Aspergillus robustus EF661435.1 Schimmelpilze

Candida albicans AB437043.1

Candida boidinii FJ914930.1

Candida dubliniensis AJ865083.1

Candida glabrata HE993757.1

Candida parapsilosis FM172980.1

Corynebacterium lactis HE983830.1

Enterobacter cloacae KF535159.1 Enterobacter

Enterococcus feacalis FJ378663.2 nicht hoemolyt. Streptococcus

Escherichia coli J01859.1

Haemophilus influenzae AY613741.1

Klebsiella pneumoniae KC990817.1 Klebsiella sp

Klebiella oxytoca AB626120.1

Neisseria sp. oral strain AY005028.1 Neisseria

Proteus mirabilis KF535110.1

Pseudomonas aeruginosa KJ156527.1

Staphylococcus aureus DQ630753.1

Staphylococcus lugdunensis AY903258.1 Koagulase negative Staphylokokken

Streptococcus mitis NR_028664.1 alpha haemolyt. Streptococcus

Streptococcus pneumoniae GU326244.1

Streptococcus viridans AF076036.1

BAL and tracheal secretion culture results revealed 21 distinct bacterial or fungal

strains. For group names such as alpha haemolyt. Streptococcus a representative se-

quence was manually selected and used for further processing. Tab. 3.40 lists all 21

72Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, Graz, Austria

98



3.8. Candida sp. Colonization of the Lower Respiratory Tract in Humans

reference sequences and the corresponding culture name in the case of group names.

Reference sequences were manually selected, according to the given cultures names,

and extracted from GenBank.

To compare the culture results with the high-throughput analysis result, pre-

processed and split sequence information was exported from SnoWMAn to distinct

FASTA files. Reference sequences were merged to a single database file which was

indexed using formatdb. In the next step, a simple bash script was used to run BLAT

analysis for each sample (16S and ITS) against the created culture reference DB. BLAT

output was further processed using a custom R script which selects the best BLAT hit

for each sequence and piles them up (counting of how often a specific hit occurs).

Tab. 3.41 compares the high-throughput classification with the culture result, for all

Candida sp. positive samples and a corresponding abundance that covers more than

2 % of the average library size.

The comparison was evaluated in respect to the agreement on detected Candida

sp.. The Sync column distinguishes between match (
√

, Candida sp. was detected as

the most abundant feature), partial match (∼, more than one high abundant Candida

sp. was not detected either by culture or by molecular characterization), or no match

(X, high abundant Candida sp. sequence count within the molecular approach, but

negative culture result). For low abundant73 Candida sp., data not shown in Tab. 3.41,

no corresponding positive culture result was available.

73less than 2 % of the average library size
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Table 3.41.: Comparison of the taxonomic classification with the BAL culture result, for all

samples which contain more than 2 % of the average library size sequences, identified as

Candida sp. Sync column evaluates the comparison by match (
√

, Candida sp. was detected

as the most abundant feature), partial match (∼, more than one high abundant Candida sp.

was not detected either by culture or by molecular characterization), or no match (X, high

abundant Candida sp. sequence count within the molecular approach, but negative culture

result).

Representative sequence and Accession number

culture result bacterial count sync
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201-2A-NTS-0 0 17 8,638 0 0

C. boidinii

C. dubliniensis
1.00E+03 ∼

203-2A-NTS-0 1 725, 158 0 1 negative X

252-2B-NTS-0 0 5,826 144 0 0 negative X

255-2B-NTS-0 0 8,228 195 0 0

C. albicans

Schimmelpilz

1.00E+03

1.00E+03

∼

256-2B-NTS-0 0 8,107 202 0 0 negative X

301-3B-VAP-0 0 16,093 220 0 6 C. albicans 1.00E+03

√

302-3B-VAP-0 0 10,805 195 0 0 C. albicans 1.00E+02

√

302-3B-VAP-1 0 5,036 67 0 0 negative X

303-3B-VAP-0 0 7,168 122 0 0 C. albicans 1.00E+03

√

303-3B-VAP-1 0 18,638 214 0 0 C. albicans 1.00E+01

√

304-3B-ASP-0 261 11,376 110 0 0 negative X

304-3B-ASP-1 0 5,891 90 2 0 negative X

309-3B-VAP-0 1 21,969 262 0 0 C. albicans
√

318-3B-ASP-0 0 1,293 13 1,233 0

C. albicans

C. glabrata

1.00E+03

1.00E+06

√

319-3B-VAP-0 0 15,826 155 0 7 C. albicans 1.00E+01

√

322-3B-NAP-0 0 11,903 149 0 0 negative X

323-3B-VAP-0 1 11,443 125 0 2 C. albicans 1.00E+01

√

324-3B-ASP-0 0 18,318 198 3 1 negative X

326-3B-VAP-0 0 8,412 80 0 0 C. albicans 1.00E+01

√

327-3B-ASP-0 142 797 0 0 0 negative X

328-3B-NAP-0 0 1,219 10 14 0 negative X

401-2A-NTS-0 0 10,035 190 0 1 C. albicans 1.00E+03

√

403-2A-NTS-0 0 492 1 0 0 negative X

405-2B-NTS-0 0 14,623 332 0 13 C. albicans 1.00E+05

√

406-2A-NTS-0 0 1,530 32 0 0 negative X

609-3B-ASP-0 0 2,914 60 0 0 negative X

612-3B-VAP-0 0 6,867 3,185 0 1 C. albicans 1.00E+02 ∼
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4. Discussion

The following sections summarize, review, and critically discuss the results obtained

related to the specific objectives for this thesis. In the course of this research work,

new approaches, methods, and tools for important steps in the entire high-throughput

characterization and classification process of complex microbial communities have

been created, evaluated, adopted, or extended. At the experimental design level, the

effects of sequencing library normalization on the final community profile and its

diversity was investigated. Subsequently, the Decontaminator, an effective tool for

the removal of contaminating sequences from the target data sets is introduced as

a major improvement during sequence pre-processing. For the core step, the taxo-

nomic classification, an internal transcribed spacer (ITS) reference database for fungal

sequences was created. Tests of the ITS amplicon classification with a hand curated

in-silico amplified and fully annotated ITS mock community, showed good results for

reference based classification and de-novo OTU picking approaches based on the UNITE

ITS reference sequences. Statistical analysis of determined community profiles was

extended by methods for differentially abundant feature detection. Therefor, Metastats,

edgeR, and limma+voom, were evaluated using simulated count data, revealing that

the linear modeling approaches outperform Metastats for bigger library sizes and fold

change values. Based on this evaluation result, real community profiles obtained from

analyses conducted within this thesis were tested for differentially abundant features.

Finally, with the transcriptome analysis of two Campylobacter fetus subspecies, the

typical ε-proteobacterial promotor motif was also confirmed for C. fetus sp. Moreover,

this kind of analysis introduces a future direction for more detailed investigation of

specific members of a microbial community.
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4.1. Investigation of How Sequencing Library Normalization

A�ects the Final Community Pro�le and its Diversity

Within this thesis, the effects of library normalization on the final community profile

and its diversity was investigated. The number of DNA copies per species of a

metagenomic sample may differ by several orders of magnitude. This can be easily

explained by the community composition, as more abundant species are more likely

to be collected than the less abundant ones. Consequently, DNA of rare species is less

often amplified during PCR. To overcome this "ousting" of rare species, DNA library

normalization can be performed.

The effects of sequencing library normalization was studied, using the example of

the community profile of a normalized and a standard shotgun sequencing library,

sampled at an Alpine peat bog habitat. The main focus of the survey was the analysis

of functional systems covered by bacteria. However, sampling of bacterial DNA in an

eukaryotic host leads very likely to contaminations by host DNA.

The first examination of the sequence distribution at the phylum level revealed that

normalization of sequencing libraries affects overall domain distribution with a shift

to more eukaryotic sequences and a higher percentage of unassigned sequences. These

observations had been confirmed using the χ2-test [163]. Additionally, rarefaction

analysis illustrated that, although the standard library comprises more sequences,

Richness [178] is higher within the community profile based on the normalized

sequencing libraries. This effect can be explained by the fact that within the normalized

sequencing libraries, low abundant species are ousted by high abundant species to a

lesser extent. Furthermore, rarefaction analysis illustrates that further sample collection

or deeper sequencing would still increase species count, as rarefaction curves have

not reached saturation yet.

Surprisingly, the contaminating, eukaryotic fraction of the metagenomic community

profile was not that large as expected. Additionally, DNA of the host system S. magge-

lanicum (phylum Streptophyta) revealed only to 16 % of overall eukaryotic DNA.

This can be explained by the two stage mechanical filtering procedure, which was
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performed during sample processing. It seems as this simple purification approach

facilitates successful filtering of fragments from the moss host. The remaining amount

of contaminating DNA originates mainly from fungal and animal material, which

is also common in peat bogs. This is also reflected within the shift to eukaryotic

sequences within the normalized community profile, as these species belong to the

less abundant inhabitants of the investigated habitat.

Conclusively, with this experimental design on sequencing library normalization

it was shown that, although the effects on the contaminating sequences within the

community profile had not been that drastic as expected, less abundant species are

covered to a higher extent after library normalization.

4.2. Development of an Application for Identi�cation and

Removal of Contaminating Sequences

The Decontamiantor was implemented as a platform independent standalone JAVA

[130] command line tool for integration into the pre-processing step of the different

analysis pipelines of SnoWMAn [67]. Apart from the integration into SnoWMAn, the

structure and interfaces, provided by the Decontaminator implementation, allow for

easy standalone or use within other pipeline systems, such as mothur [69], CloVR

[68], or QIIME [70].

The major goal of the Decontaminator is to identify and remove contaminating

sequences in targeted amplicon sequencing projects. The removal of sequences which

do not originate from the targeted source (contaminations), noise, as well as of

sequences of poor quality, or artificial sequences (chimeras), is a very crucial step

in the pre-processing of targeted amplicon sequencing data [183]. All these kinds

of "unwanted" sequence fragments falsify the result. Especially the final number of

OTUs, and subsequent community diversity is artificially increased (OTU inflation),

which can lead to false conclusions [183].

Firstly, the Decontaminator was evaluated by using a small dataset of true 16S
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amplicons in a two-step procedure. Within this evaluation, it was also shown, by

in silico amplification, that the universal 16S marker gene primers lead to random

amplification of DNA within the human genome. This might be also true for other

eukaryotic host genomes to a certain extent [184–186]. These sequences were used in

combination with the true 16S amplicons for the first evaluation step. As expected,

the decontamination result revealed that these randomly amplified fragments do

not have BLAT [97] hits at all. This confirms that contaminating sequences can be

identified by using their marker gene structure using a BLAT similarity search. In the

second evaluation step, in addition to the contaminating sequences, manually created

chimeras have been added to the true 16S test fragment set in order to investigate how

they are treated by the Decontaminator approach.

Chimeric sequences are a mixture of two or more 16S sequence fragments which

are merged by accident during PCR. Hence, it was expected that chimeric sequences

show a low query coverage within the BLAT result, as they match different reference

sequences partially. This is true for chimeras formed by fragments of distinct species.

Chimeras which are products of similar fragments or of related species, still show

high-scoring BLAT hits and high percentage of query coverage.

The same test datasets were used to investigate the detection and removal of con-

taminations by the standalone version of DeconSeq [80] (v.0.4.3). Although DeconSeq

is more tailored towards finding contaminations within metagenomic datasets, it can

be also used for genomic data as long as read length is > 150 bps.

The direct comparison of the Decontaminator and DeconSeq showed, that both ap-

proaches were able to identify all randomly amplified human contaminations correctly,

whereas, chimeras were only detected by the Decontaminator. Despite DeconSeq also

facilitates optimization by the percentage of identity and query coverage, even for

high query coverage values, none of the chimeras was identified.

In addition, the Decontaminator was used to filter a 16S targeted amplicon sequenc-

ing raw data set, originating from the diarrhea study, (described in Sec. 2.1.5) [96].

Exemplified by this survey, different pre-processing approaches and combinations in

respect to the effect on finally observed OTUs and community diversity, have been
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evaluated. The comparison of filtered sequences according to chimera detection, noise

(incl. quality) filtering, and decontamination of the raw sequences revealed, that nearly

half of noisy and low quality sequences, as well as about 7 % of chimeric sequences

were already removed by the Decontaminator.

By comparing the number of finally obtained OTUs at different stages of pre-

processing, it was revealed that the number of OTUs decreases by one quarter, in

raw sequences compared to the fully pre-processed data set. Although each different

pre-process step decreases the finally observed OTU counts, decontamination was

shown to have the biggest effect. This is explained by the Decontaminator filtering

criteria which allows via cutoffs for percentage identity and percentage query coverage

to discard sequences of poor quality, or short reads, as well. BLAT results with low

percentage identity can be explained by sequencing noise or homopolymimeric regions

which are also filtered during denoising using tools such as Acacia [139].

Conclusively, the Decontaminator, a novel tool developed within this thesis, was

shown to be an effective approach for the identification and removal of contaminating

sequences and partially for chimeric sequences. The major advantage of the Decontam-

inator compared to other tools such as DeconSeq is that the origin of the contaminating

sequences can remain unknown. The basic assumption of the Decontamintor is, that

contaminating fragments do not follow the characteristic marker gene structure. This

also means that for each marker gene only one reference database has to be stored

and maintained for sequence similarity analysis.

Furthermore, the Decontaminator is implemented as a JAVA application, which

allows for platform independent usage. The generic structure of the implementation

enables easy adaption and extension to other input formats or evaluation mechanisms

than the standard blast8 BLAT output. Although the Decontaminator was developed

for the integration into SnoWMAn’s analysis pipelines, the provided command line

interface can also be easily used within other pipelines such as mothur, CloVR, QIIME,

or independently on the command line only, prior to phylogenetic analysis. The

identification and removal of contaminating sequences is one of the first pre-processing

steps. Hence, samples are mostly not de-multiplexed or trimmed. As a consequence
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artificial oligos which might be ligated to the amplified fragments, such as MIDs or

primers, are still part of the sequence. The Decontaminator facilitates consideration of

theses oligos by specific off-set parameters which are used for calculation of the true

query coverage.

4.3. Integration and Evaluation of Resources for Fungal

Community Analysis

Within this thesis, a fungal reference database, based on the UNITE [82] system

for DNA-based fungal species circumscriptions, was created and incorporated into

SnoWMAn’s BLAT pipeline. Currently, fungal community analysis is supported by

common approaches such as mothur and QIIME by using the provided UNITE

sequence collection, as well as by CloVR [68] using a custom ITS reference sequence

set. In addition, an ITS training set for the RDP classifier [110] was announced already

at the end of last year, and released officially just during finishing this thesis74. As a

consequence, the evaluation of resources for fungal community profiling was done

on the beta version of the RDP ITS classifier. Nevertheless, although these newly

evaluation results were not shown within this thesis the obtained results are discussed

within the following paragraphs.

Although existing tools, methods, and pipelines for fungal community profile

analysis are continuously improving, community analysis based on ITS amplicons

is still in its infancy. Therefore, an in silico ITS mock community was created for

the evaluation of this newly integrated resource, as well as for already existing or

upcoming resources for fungal ITS characterization and classification.

Although the large subunit (LSU) has a longer tradition in mycology for phy-

logenetic analysis of fungal species [187–190], the ITS region was introduced by

Schoch et al. [58] as the universal barcode for fungi. Recent comparisons by Porras-

Alfaro et al. [83] also confirmed that LSU and ITS regions show similar classification

accuracies.

74RDP classifier 2.8, release 8. July 2014
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More general consideration of the community profile analysis in bacterial commu-

nity studies addressed the 3 % gold standard for species discrimination, which is based

on the 16S ribosomal small subunit (SSU) [191]. This 97 % sequence similarity level was

also confirmed as a good threshold for species discrimination in fungi of the phylum

Basidomycota [192]. In contrast, for phylum Ascomycota, it was shown that a cluster

distance of 0.02 (98 % sequence similarity within the clusters) reaches better species

discrimination compared to 0.03 [192]. In addition, these cluster similarity cut-off

values were confirmed for ITS1, as well as for ITS2 fragments [192]. Nevertheless, the

97 % similarity level for species level approximation, is also supported by the results

of previous analysis [193–196].

The in silico mock communities were created by in silico amplification from a set of

manually selected sequences, provided by Henrik R. Nilsson75 and Kessy Abarenkov76.

Although for all fungal sequences in this set it was guaranteed that the full ITS1 and

ITS2 region was covered some of the sequences did not generate an amplicon during

the in silico amplification. This can be explained by a lack of primer binding sites within

the flanking 18S or LSU region or the fact that the used primers are biased towards

certain species. Subsequent annotation of the successful amplified ITS mock sequences

revealed that only one third of all mock sequences have an explicit annotation down to

species level. Precisely, two thirds of all mock sequences contain at least one ambiguous

description for one or more taxonomic level, such as "derived from ...", "unidentified",

"Incertae sedis", or "uncultured fungus". These incomplete fungal annotations are a

consequence of the difficulties in fungal species identification by traditional methods.

A large proportion of fungi cannot be kept in culture and thus cannot be examined by

traditional culture dependent methods; other fungi do not seem to produce tangible

fruiting bodies, such that morphological examination becomes hard or impossible.

In addition, fungal annotations suffer from inconsistencies in name declaration

that are caused by fungi which occur in several morphological forms, resulting in

different names for the sexual and asexual or vegetative reproduction of the same

fungus [197].

75Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
76Natural History Museum, University of Tartu, Estonia
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Furthermore, sequence names contained in public repositories, such as GenBank,

essentially rely on accurate and correct user input. Thus, a significant number of

sequences within this repository was discovered with erroneous, ambiguous, or

imprecise annotations the so-called "dark taxa" [198, 199]. However, by annotation

improvement approaches such as the initiative started by Nilsson et al. [81] or the

currently introduced standards and protocols for sequence data quality improvement

from Schoch et al. [197], will help to improve references which were used for the

identification of fungi, and subsequently also for annotation and characterization.

For now, available methods, tools, and reference systems have to be continuously

updated and evaluated, through approaches such as the introduced ITS mock com-

munities. Within this thesis, two different taxonomic classification approaches and

their reference sequence sets were investigated by the analysis of the created mock

communities.

First, the annotated ITS1/2 in silico mock was used to test SnoWMAn’s BLAT

pipeline using the newly incorporated ITS reference DB. This evaluation revealed

that all sequences were identified as kingdom fungi. Further consideration of the

classification result at different taxonomic levels showed that annotation within the

reference system is very poor for lower taxonomic levels such as family, genus, or

species. Almost 20 % of total counts were assigned to an unidentified fungal family level,

which increases to a quarter of ambiguous species annotations such as "uncultured

Glomos", "uncultured fungus", or similar descriptions.

The same analysis was repeated for the ITS1 mock community. Interestingly, the

amount of ambiguous annotations at lower taxonomic levels decreases to ∼13 % at

the genus level. It seems as shorter fragments are more suitable for reference based OTU

picking. This might be based on the underlying homology search for which it is more

likely to find good matching results for shorter fragments.

Second, the beta version of the RDP ITS classifier [83, 100], trained on manually

curated ITS sequences (based on UNITE), was evaluated using the ITS1/2 mock

community. For the beta version of the classifier this analysis showed an increasing

amount of unclassified sequences ranging from 15 % at the phylum level to almost
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50 % at the genus level, at a classification confidence threshold of 80 %, and a cluster

distance of 0.03. Hence, this approach was still far from allowing full characterization

of fungal communities.

Subsequently the RDP ITS classifier (beta version) was applied to the ITS1 mock

community. From this analysis similar results compared to the previously evaluated

ITS1/2 mock were obtained. In particular, the amount of unclassified sequences

increased nearly to 50 % at the genus level.

Also the comparison of the final taxonomic classification, at different phylogenetic

levels, between the BLAT and the RDP classifier approach (beta version) resulted

in overall promising results for BLAT (percentage of correct identified sequences >

80 % at all phylogenetic levels), whereas the number of correctly identified sequences

decreases from 85 % at the phylum to 40 % at the genus level for the beta version of

the RDP ITS classifier. This might be caused more or less by the amount of unclassified

sequences, which ranges from ∼13 % at the phylum level to ∼50 % at the genus

level for both mock communities. With the official release of the RDP classifier 2.8,

including the updated training set, based on the UNITE reference sequences, as well

as on ITS sequences obtained from the Warcup77 collection, these observations were

mainly confirmed.

For the UNITE training set, the amount of unclassified sequences ranged from 1.5 %

at the phylum level to about 4 % at the genus level. In contrast, for the Warcup training

set, the fraction of unclassified sequences starts at about 5 % at the phylum level and

reaches almost 25 % at the genus level. Although the amount of unclassified sequences

was drastically decreased the percentage of correct identified sequences resulted to less

than 50 % at the family and genus level for the RDP classifier 2.8 trained on the UNITE

sequence set. The same classifier version trained on the sequences from the Warcup

collection showed high levels of correct identified sequences at the phylum and class

level, but for lower taxonomic levels nearly half of all sequences were annotated

incorrectly. The better performance of the RDP classifier 2.8 trained on the Warcup

77Warcup is a version from an active curatorial effort kindly provided by Paul Greenfield, Vinita
Deshpande and colleagues of the Australian CSIRO (manuscript in preparation)
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collection is very likely based on the more sensitive selection of training sequences,

as only sequences with a full and unambiguous taxonomic annotation were chosen.

The comparison of correctly identified sequences between the two mock communities

showed overall better results for the ITS1 mock.

Conclusively, the novel reference DB for community profile analysis using SnoW-

MAn’s BLAT pipeline was shown as confident classification resource for ITS amplicons,

although fungal annotations suffer from classification deficiencies at lower taxonomic

levels. In addition, the reference based OTU picking approach used by BLAT out-

performed the de novo OTU picking and classification method of the RDP classifier

although both approaches rest on the same reference sequence collection.

For a more elaborate classification approach using the newly introduced ITS classifi-

cation resource, SnoWMAn’s UCLUST pipeline needs to be adopted and extended

for BLAT. This would allow for de novo OTU picking using the clustering approach of

UCLUST and subsequent BLAT classification of each cluster representative with the

created ITS reference DB. In addition, the training sets of the RDP classifier have to be

extended and improved to allow for confident classifications also at lower taxonomic

levels.

4.4. Evaluation and Adaption of Methods for Di�erentially

Abundant Feature Detection

The evaluation of three different approaches, (1) Metastats [144], (2) edgeR [149],

and (3) limma+voom [154, 155], for differentially abundant feature detection on

simulated count data, confirmed that methods already well-established for differen-

tially expressed gene detection in microarray or RNA-seq experiments (edgeR and

limma+voom), can be applied for the analysis on community profile count data as

well.

There are two crucial things which have to be considered. First, as the final feature

matrix which represents the community profile, is very sparse (counts for most
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features are zero), this might cause problems in logarithmic calculations. To overcome

this common structure of the data, a small value can be add to each count value of

the feature matrix. Second, basic assumptions on the data distribution have to be

satisfied in order to guarantee valid results. To account for the correct distribution of

the count data, it can be transformed, for example using voom, prior to processing

with limma.

Within this thesis, different methods for DA feature detection were compared, as

well as in addition, their performance on different sample sizes, effect sizes, number

of samples, and replicates was evaluated.

Unlike the results of McMurdie and Holmes [84] the smallest amount of max.

sequences per samples (2000) resulted in overall bad results for all three methods.

Especially for log fold change (logFC) values of 1.25, regardless of the sample size, or

the replicate number, DA feature detection failed. For bigger effect sizes (logFC1e−10.0,

and logFC = 1e−5.0), between 20 and 40 differentially abundant features were detected

within the 2000 targets. However, the false discovery rate (FDR) exceeded 50 % for

results created by limma+voom and edgeR.

The bad performance on count data, which show only nominal difference within

their differentially abundant features, is continued even for big sample sizes. Whereas,

edgeR and limma+voom are able to detect a small fraction of the DA features, for data

with smaller group sizes and number of replicates at high confidence (low FDR), the

number of not detected truly DA abundant features still remains higher than 90 %. For

edgeR and limma+voom the number of false negatives (FN) decreases with increasing

library size and samples per group, independently from the number of replicates.

Furthermore, for both methods, it was shown that almost all truly DA features had

been detected, for effect sizes bigger than 1.25, at low rates of false positives (FP). In

contrast, the number of DA features by Metastats increases for bigger library sizes,

but this is linear to the number of FPs. For almost all results obtained by Metastats

the false discovery rate was 50 % or higher.

Interestingly, for small sample sizes over all simulated count data scenarios, Metas-

tats showed the best results, with the lowest average FDR. With increasing sample
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sizes, this benefit diminishes. With the comparison of the average FDR for all three

methods, and bigger library sizes, Metastas was outperformed by edgeR, as well

as by limma+voom. Further comparison of edgeR and limma+voom revealed that

limma+voom performs better than edgeR as library size increases.

The analysis of the real targeted amplicon sequencing datasets, originating from

the GI mouse, as well as from the BAL study, showed that very sparse data cannot be

properly transformed by the voom method and consequently not be processed with

limma. Alternatively methods based on other count data distributions such as edgeR,

which was evaluated within this thesis, or DESeq2 [200] or metagenomicSeq [145],

evaluated by McMurdie and Holmes, can be used as long as the analyzed count data

is correctly distributed.

By using different simulation criteria, the evaluation approach revealed, that features

with higher effect sizes are more likely to be detected, independently of replicate

or sample size. Further consideration within the two approaches showed, that the

number of false positives cannot be further reduced by bigger sample size per group

for increasing replicate numbers. This was observed for both methods and moderate

library sizes.

Conclusively, the evaluation performed within this thesis showed, that both ap-

proaches, edgeR and limma+voom, which were originally developed for the analysis

of RNA-seq and microarray experiments, are applicable for DA feature detection in

microbiome, as well as in metagenome count data, as long as the data distribution

conforms with the basic assumptions. Furthermore, correction of Type I errors, using

methods such as introduced by Benjamini and Hochberg [171], are absolutely nec-

essary for limiting the number of FPs within the final result. In addition to a more

sophisticated multiple testing correction which is offered by both approaches, they

allow for the comparison of more groups, as well as for more complex experimental

designs than Metastats.
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4.5. High-throughput Characterization of Bacterial and

Fungal Community Pro�les of the BAL Survey

With the analysis of the bronchoalveolar lavage (BAL) survey data the first targeted

amplicon sequencing study based on fungal ribosomal DNA using SnoWMAn, was

accomplished within this thesis. The characterization of fungal community profiles

by molecular techniques is not as well-established as for bacteria and archaea. As a

consequence, resources for automated high-throughput classification and characteri-

zation are lagging behind [201]. Nevertheless, fungal community profiling is rapidly

emerging as the role of the fungal microbiome as a cofactor in health and disease has

been underestimated so far [202]. Additionally, current studies showed that the major-

ity of fungi can not be detected by traditional culture approaches [203–205]. Hence,

characterization approaches of the healthy fungal microbiome, also called mycobiome

[202], at different body sites [206–210], as well as fungal community profiling within

different diseases such as cystic fibroses [203], chronic obstructive pulmonary disease

(COPD) [209], or inflammatory bowel disease (IBD) [207], become more and more the

focus of attention.

In general Candida sp. are carried by almost all human without causing disease

[211]. They have been identified together with other fungal species in the oral cavity

of healthy humans [212]. In addition, previous investigations on BAL samples, taken

from lung transplantation patients, also revealed high portions of Candida sp. compared

to healthy individuals [213]. This was also observed in patients who were admitted to

or developed pneumonia at the intensive care unit (ICU) [214].

Currently, the biggest resource for ITS sequences is the UNITE [82] system for DNA-

based fungal species circumscriptions. By using their reference sequence collection and

annotations, a reference database for SnoWMAn’s BLAT pipeline was implemented

and tested within this thesis. Subsequently, this newly introduced resource was used

for determining the fungal community profile of the BAL study samples. In addition to

the fungal community profile, DNA from the same samples was used for investigations

on the bacterial community composition.
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Not just classification resources are still under development, but also sequencing

preparation techniques are struggling with the protocols of universal amplification of

the ITS marker gene. Not surprisingly, about 17 % of the samples showed missing ITS

amplicons during PCR, and therefore had to be excluded from downstream analysis

and evaluation. Furthermore, the comparison of the libraries sizes between the ITS

and the 16S samples revealed that, although sequencing of the ITS samples results in

almost twice as many reads as the 16S sequencing approach, variance in library size is

much higher within the ITS data.

The phylogenetic analysis of the ITS samples showed that for all samples which

received antibiotic treatment apart from the control group who did not show any

clinical, radiological, or laboratory evidence for an infectious disease at the sampling

time point, fungi of genus Candida as the most abundant feature, as shown in Sec. 3.8.3.

This observation reaffirms the results of Bousbia et al. [214]. The overall comparison

of sample composition resulted in a high variability within samples of the same group.

This was also confirmed by the PCA, seen in Fig. 3.20, as no clear separation according

to the main groups was possible.

The bacterial community profile of the control group was dominated mainly by

Bacteroides. For almost half of the control group samples, considerable amounts of

Streptococcus were also found. Interestingly, from the relative sequence distribution it

seems that high amounts of Streptococcus decrease or even eliminate the Bacteroides

population, which was previously observed within the control group. This high

amount of genus Streptococcus was also found for almost all samples of group 2, with

no or very sparse population of Bacteroides. Group 3 was identified as the groups

with the most varying community profile. About half of the samples were dominated

again by Streptococcus, whereas no common prevalent genus or shared pattern was

identified within the other half.

By the comparison of different α-diversity scores of groups 1 and 2, it was nicely

shown that antibiotic treatment reduces bacterial richness. Interestingly, the number

of distinct bacterial species, the obtained number of OTUs, was drastically increased

between the patients of the control and the ICU group. This might be based on the
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one hand on some kind of disease or on the other hand on the medical treatment at

the ICU.

4.5.1. DA abundant feature analysis of BAL community pro�les

The determined community profiles for bacteria, as well as for fungi were tested

for differential abundant features using edgeR. The first evaluation by limma+voom

confirmed that not properly distributed count data causes inconclusive results, even

by transformation using the voom function. As a consequence edgeR was used for

community profiles evaluation at different taxonomic levels, from phylum down to the

OTU (species) level. First, the profiles of the 5 main groups were tested. At the genus

level a total of 46 community features were tested as differentially abundant within

all different group comparisons. Candida was reaffirmed as most the "up regulated"

feature (logFC > 1e−11) for all groups compared to the control group, independently

of antibiotic treatment. Penicillium was detected as most the "down regulated" genus

level feature (logFC > 1e−10) within samples of group 1A compared to samples of

both conditions of group 2.

The comparison of genus level features, within the different types of group 3B,

revealed that almost 50 % of the differentially abundant features were regulated in the

same direction, when NAP and VAP were compared to ASP. Hence, it is likely that

these features are triggered by factors of medical treatment at the hospital. Interestingly,

almost all features which were detected as differentially abundant between ASP and

NAP or ASP and VAP were shown to be either up- or down regulated between NAP and

VAP, which might be another indication for the importance of the medical treatment

on the alterations of the community profile.

39 bacterial features were tested as differentiability abundant within all main

treatment groups. Neisseria and Haemophilus revealed to be the most "down regulated"

features at the genus level (logFC > 1e−8.5), tested in group 2B compared to group

3B. As both of this groups are treated at the ICU and with antibiotics this down

regulation might be triggered by the pneumonia. Interestingly, Neisseria was also
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shown to be "up regulated" in samples without pneumonia but treated with antibiotics.

Additionally, a similar effect was observed for the genus Mycoplasma. It was tested

as up regulated feature in group 3 samples compared to, group 1A, 1B, as well as

to 2A. This observation enforce that these alterations within the community profile

are triggered by the disease, pneumonia, an not by the medical treatment. Further

investigations on comparisons within group 1 and 2, towards the effect of antibiotic

treatment, resulted for both groups in an up regulation of Neisseria and a down regulation

of Fusobacterium.

Further considerations within subgroups of group 3B revealed, that features which

are not regulated the same direction between NAP and VAP compared to ASP, are

mainly contrary regulated between NAP and VAP. Hence, this behavior might point

towards an association between these features.

A very interesting follow-up analysis would be the combined analysis of the bacterial

and fungal community compositions. Surveys which comprise the bacterial, as well as

the fungal community profile are not very common, but not to say unique. This kind

of association or dissociation would allow to explain whether bacteria, or fungi are

occupying the habitat of the other.

4.5.2. Comparison of traditional BAL and tracheal secretion culture

results with high-throughput characterization and classi�cation

For the targeted amplicon sequencing data originating from the BAL study which was

analyzed within this thesis, also traditional BAL and tracheal secretion culture tests

were available. This allowed for the cross comparison of the obtained results from

both analysis approaches.

The design of the comparison procedure focused on the microbial strains identified

previously by the traditional cultures. Hence, other microbial strains contained within

the samples were neglected. Independent from a positive or a negative test result all

samples were used within this evaluation approach.
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The comparison of the results towards Candida spp. colonization revealed that for

more than 50 % of the samples analyzed by molecular techniques, Candida albicans was

identified as the most abundant community species. Additionally, a smaller amount

of Candida dubliniensis was identified for almost all these samples. In contrast, only

a quarter was tested positive for Candida spp. colonization using traditional BAL

and tracheal secretion cultures. However, all culture results which were positively

tested for Candida spp. colonization were confirmed by the molecular characterization

approach.

Further considerations, especially of the samples which showed a negative culture

result, revealed that for most of them a significant amount of at least one of the strains

in question was identified.

The comparison of bacterial strains detected by traditional BAL and tracheal secre-

tion culture with the taxonomic classification result revealed that for the vast majority

of samples, BAL and tracheal secretion culture results were confirmed by molecular

identification. But, for some of the samples, other strains than identified by culture

dependent techniques were detected as well. This could be explained on the one

hand by some kind of specificity, for some of the microbial strains in questions, of

the used media or on the other hand by the dominance of one community species

which inhibits grows of others. However, it is also likely that a particular strain or the

mixture of strains generally hampers the cultivation approach.

The comparisons above were performed on a present/absent level, it would have

been more informative also to compare species abundance between both techniques.

Unfortunately, there is no base line study or ratio available to directly compare count

values with the corresponding bacterial count. Therefore, an extra targeted amplicon

sequencing survey and related culture experiment, with controlled bacterial strains,

on the same samples, would be necessary to determine the relation between these two

quantitative numbers.

With this kind of comparison of bacterial strain identification by either molecular

techniques or by traditional culture dependent methods, it was shown that molecular
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techniques coincide with traditional approaches, but allow for a more complete

community profile of the investigated habitat/sample.

Conclusively, this targeted amplicon sequencing survey helped to establish microbial

community studies of fungi using SnoWMAn, as well as supported deeper insights into

the Candida spp. colonization of the lower respiratory tract in humans, under different

conditions of medical treatment. In addition, the combination of the fungal with the

bacterial community profiles demonstrates a new direction for future analysis.

4.6. High-throughput Characterization of the Bacterial

Community Pro�les of the Phospholipid Survey in

Mouse

After the conducted community profile analysis, the data was initially evaluated by

the team of Prof. Peter Fickert78. The major goal was to identify phylogenetic groups

which change between different experimental groups, summarized in Tab. 3.23, in

order to get deeper insights into the effects of phospholipids on the gastrointestinal

microbiome. These first evaluations revealed that alterations of the GI microbiome

caused by phospholipids are more likely to occur in the upper colonic region, such

as the ileum. Therefore, further downstream analysis was focused on samples of the

source type ileum. In addition, the analysis on the community profiles, showed more

similar community structure within samples of the upper intestinal tract, jejunum

and ileum, and the lower intestinal tract, caecum and colon. Therefore, samples were

additionally combined according to their intestinal region.

During the initial phylogenetic community profile analysis for some of the fecal

samples extracted from the ileum, unclassified was identified as the most abundant

community feature. Further investigation of sequences of these unclassified OTUs

revealed eukaryotic DNA originating mainly from plant material. This is not unlikely,

as for upper intestinal regions, the digestion process is not entirely completed. Thus, it

78Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
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was also shown that random amplifications with the used universal bacterial marker

gene primers occur in eukaryotic DNA other than human and mouse. To remove this

unwanted sequences, the targeted amplicon data set was pre-processed using the novel

Decontaminator approach. Thereby, the relative amount of unclassified sequences,

as well as the number of OTUs, was drastically reduced. The remaining amount of

unclassified amplicons was manually evaluated with BLAST. Here it was confirmed

that these unclassified OTUs originate from uncultured, unclassified 16S rRNA.

The direct comparison to DeconSeq reaffirmed that not all sources of contaminating

sequences can be removed by the DeconSeq approach without prior knowledge. In

particular for the sequencing data which originated from fecal material the amount of

filtered sequences differs by server orders of magnitude between the Decontaminator

and DeconSeq. This is not surprising as it was shown that the main source of contami-

nating material in feces originates from plant residues rather than from the mouse

host.

The visualization of the different community profiles, by PCA [103], MDS [215]

plots, or by β-diversity according to Bray-Curtis [216] (comparisons not shown within

this thesis), revealed a high degree of inter group and sample variation. As some kind

of clustering of different sample types was observed within the visualization by PCA

and MDS plots, a bias according to extraction day or time, person or location were

investigated (data is not presented within this thesis). However, with these variables

no association of the formed clustered could be established.

4.6.1. DA abundant feature analysis of GI mouse survey community

pro�les

The community profiles were tested for differential abundant features using edgeR, at

different taxonomic levels, from the phylum down to the OTU (species) level.

First, community profiles of samples of the source type ileum were tested. Although

sequence distribution charts, as well as PCA plots, did not look very promising, for
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almost all conditions, DA features were detected (see Tab. 3.27). At the genus level, 17

different features were detected amongst almost all contrasts.

The genus Akkermansia was observed as being significantly increased (logFC >

1e−4) in KO mice for both material types (feces and mucosa) under the phospholipid

enriched diet, as well as compared to WT mice, which were fed with the enriched diet.

The highest increase, of Akkermansia was detected within the comparison of WT and

KO mice of source type feces and the enriched diet (logFC ∼1e−8).

This might be interesting because bacteria of the genus Akkermansia were related

to obesity in former studies within the gut microbiome of mice [217]. Staphylococcus

and Streptococcus were detected as highly up regulated (logFC 1e−6.5-1e−8) under the

enriched diet of KO and WT mice in samples of material feces. Interestingly, strains of

genus Pseudomonas were drastically down regulated (logFC ∼1e−6) in BD mice under

normal conditions of material type mucosa, compared to WT, as well as to KO mice.

The most down regulated genus, Enterococcus, was observed within the comparison

of WT and KO mice under an enriched diet in material type feces. A similar effect

for Enterococcus was observed for comparisons of WT mice under a normal diet of

material type feces, to BD and KO mice. Hence, this shift in Enterococcus abundance

seems to be triggered by mice phenotype rather than by diet.

Several genus level features have been detected as differentially abundant between

comparisons of samples under different dietetic conditions. Therefore, Mycoplasma and

the already mentioned Akkermansia were the only ones that showed significant changes

within both material types. Species of type Mycoplasma have been linked to different

intestinal cancer types by previous studies [218, 219]. Interestingly, Mycoplasma was

down regulated within comparisons between KO type mice for samples with an enriched

diet, whereas, they were up regulated in WT mice samples under the same dietetic

conditions (logFC ∼1e−5). In addition, a high increase of Mycoplasma was observed

between KO and BD mice which received a normal Chow diet (logFC ∼1e−7.6).

Generally, effects presumably caused by dietetic treatment seems to affect more

likely the community profile of the mucosa than the feces. This might be explained

by digestive processes which start much earlier than in the GI tract. Presumably the
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delivered phospholipids are absorbed or digested before they can be processed to

feces.

Second, community profiles of the introduced subgroups small and large bowels

were tested for differentially abundant features at different taxonomic levels. By

merging samples according to the small and large bowel, the previous observation on

the effects on the sample material was confirmed. No significant features were called in

contrasts towards the comparison of dietetic composition in samples originating from

fecal material. In addition, differentially abundant genus level features were only called

within comparisons of the group SI, in respect to the dietetic treatment. For mucosal

material, three significantly changing genus level features, Alistipes, Lactobacillus, and

Lactococcus were shown to be down regulated in WT mice under different diets not

only within samples of the small bowel, but also of the large bowel. Interestingly, a

down regulation of bacterial strains of genus Helicobacter was observed within the small

bowel, for WT, as well as for KO mice, in mucosal tissues under an enriched diet.

Conclusively, the conducted study provided deeper insights into the GI microbiome

of different mice types, material sources, and colonic regions under two different

dietetic conditions. Although not all alterations within the community profiles, which

were observed in the sequence distribution plots, could be confirmed by statistical

methods, DA analysis of the obtained community profiles between different conditions

revealed interesting community features for further analysis directions.

4.7. Transcriptome Analysis of the two Campylobacter

fetus subspecies fetus and veneralis

The analysis of the transcriptome of two Campylobacter fetus subspecies by using

dRNA-seq analysis, previous observations on promoter structure in Helicobyter pylori

[92, 220] or related Campylobacter jejuni [221] species could be confirmed. In particular,

the comparison of the final mappings, based on cDNA libraries treated with termi-

nator exonuclease (TEX+) and on untreated (TEX-) sequencing reads revealed, that

TEX+ sequencing enriches primary transcripts and subsequently facilitates automated
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TSS identification, based on the coverage information for each position. The TSS

identification process itself can be easily adapted and applied on any kind of transcrip-

tome data, obtained by dRNA-seq (TEX+) experiments. The developed R script for

TSS detection required piled-up mapping files as input, which have to be generated

prior to TSS identification. Any read mapper/aligner can be used to create the initial

mapping file. Within this thesis, the CLC Genomics Workbench [159] mapper was

chosen according to its accuracy, efficiency, and visualization facilities compared to

other popular read mapping tools, such as Bowtie [222], or BWA [223]. Although

mapping information has to be manually processed prior to TSS identification, the

subsequent categorization, evaluation, and TSS visualization procedures are combined

as a single R [134] routine.

The categorization of the TSS showed a considerably lower number of antisense TSS

in both C. fetus subspecies compared to H. pylori [92], which may also be related to

TEX+ treatment of the cDNA libraries.

For the promoter motif analysis, the R routine automatically extracts the 50 bps

upstream region of each detected TSS. The motif analysis by the MEME [157] web-

server showed the characteristic ε-proteobacterial promoter signature also for both

C. fetus subspecies. Moreover, the obtained promoter consensus sequence of both

subspecies revealed an extended Pribnow box (tgnTAtaAT) at the -10 position, as

promoter motif. Furthermore, it was shown that the -35 motif was replaced by a

periodic AT-rich signal upstream of position -14. The observations made within this

thesis are consistent with the promoter motif survey of other ε-proteobacteria such as

H. pylori [92]. As a last point, the analysis reaffirmed that the promoter region is 100 %

conserved between the two subspecies.

Although the transcriptome analysis workflow for TSS identification and motif

analysis was not implemented as straightforward analysis workflow, it is still easy

to be applied to other transcriptome data. Parameters such as average read length,

coverage cut-off value, or extraction size can be easily customized within the R routine.

The main advantage of separating the analysis approach is that users are able to use

their favorite read mappers, and do not have to install other software. Furthermore,
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no additional tools for the final motif search and visualization have to be installed, as

they can be used via a web-service.

Conclusively, the bacterial transcriptome was shown as an additional resource for

investigations on genome composition, as well as on regulation of virulence. Hence, it

should be considered as future perspectives in community profile analysis. The most

abundant or the most significant changing OTU obtained by community profiling or

DA detection could be further investigated by a subsequent transcriptome analysis.

The obtained information on the genome composition and regulation facilitates deeper

insights on what or how community changes are triggered and regulated.
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All main aspects of microbial community analysis have been evaluated, adapted, or

extended within this thesis. For the experimental design and the used sequencing

approach it was shown, by comparison of a standard and normalized sequencing

library, that library normalization affects overall community Richness. Additionally, it

allows detection of less abundant community members because they are not ousted

by the prevalent groups of the sampling habitat any more.

In the context of the pre-processing step of targeted amplicon sequencing studies,

a tool for identification and removal of contaminating sequences was implemented

and evaluated within this thesis. It could be shown that random amplifications by the

universal marker gene primers are very likely and lead to OTU inflation, similar to

sequencing noise, and chimeras. Furthermore, the comparison of different types of

pre-processing approaches revealed, that removal of contaminating sequences has the

biggest impact on the final number of observed OTUs. Moreover, the Decontaminator

allows for partial removal of noisy, as well as of chimeric sequences due to control of

percentage identity and percentage query coverage.

For the most important step of a microbial community study, the classification and

characterization step, a new resource for fungal community profile characterization

was introduce into SnoWMAn’s BLAT pipeline. For evaluation of this and other

resources for ITS amplicon characterization the first in silico ITS mock communities

were created. They were subsequently used for quality control of the created BLAT ITS

reference DB, as well for the beta version of the RDP ITS classifier. During creation of

the mock communities the main obstacle of fungal community analysis was discovered

- missing, ambiguous, or incomplete taxonomic descriptions of fungal sequences. The
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classification of the mock communities revealed that reference based OTU picking by

SnoWMAn’s BLAT pipeline leads to more confident taxonomic classifications as the

de novo OTU picking approach of the RDP ITS classifier (beta version), although both

approaches rest on the same ITS reference sequences collection.

Statistical analysis of the final community profile was extended by the evaluation

of different methods and approaches for the detection of differentially expressed

features in microarray experiments, as well as in community profile data. Within the

evaluation approach it was demonstrated that edgeR and limm+voom can also be

used for DA feature detection using count data, as long as fundamental assumptions

such as distribution of the data are valid. In addition, the comparison of the three

methods using simulated count data emphasizes that methods which are based upon

linear modeling approaches and support more complicated experimental designs, such

as edgeR and limma+voom are more suitable for statistical testing of differentially

abundant features.

The application of the obtained knowledge, from this evaluation, to the generated

feature tables of currently analyzed microbiome data sets demonstrated, that DA

feature detection provides a valuable impact to the statistical analysis framework

within the community profile analysis.

Finally, the transcriptome analysis of the two Campylobacter fetus subspecies showed

future perspectives for the community profile analysis. The DA feature detection

could identify the most interesting features, possible candidates, for the subsequent

transcriptome analysis. This would support to get deeper insights into what regulates

a certain species and as a consequence the community profile.

Conclusively, with the direct application of the gained knowledge on data, from

current targeted amplicon sequencing surveys, the need for the developed tools,

created resources, and evaluated methods and approaches have been shown by

practical examples.
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Table A.1.: The table summarizes the total number of samples collected during the first sampling effort, of the GI mouse study, including the

information about phenotype (Type: wildtype (WT), knockout (KO), bile-duct ligated (BDL)), Diet (chow (Normal)), Material (feces (F), mucosa

(M)), each single mouse (individual (Ind.)), and the colonic location (Source) where the sample was collected (ileum (Ile), jejunum (Jej), caecum

(Cae), colon (Col))
Sample Type Diet Material Ind. Source Sample Type Diet Material Ind. Source Sample Type Diet Material Ind. Source

K2014-WT-N-F-Jej WT Normal F K2014 Jej K2017-KO-N-M-Ile KO Normal M K2017 Ile K2017-KO-N-M-Cae KO Normal M K2017 Cae

K2014-WT-N-F-Ile WT Normal F K2014 Ile K2017-KO-N-M-Col KO Normal M K2017 Col K2018-KO-N-M-Jej KO Normal M K2018 Jej

K2014-WT-N-F-Cae WT Normal F K2014 Cae T1173-BD-N-F-Jej BD Normal F T1173 Jej K2018-KO-N-M-Ile KO Normal M K2018 Ile

K2015-WT-N-F-Jej WT Normal F K2015 Jej T1173-BD-N-F-Ile BD Normal F T1173 Ile K2018-KO-N-M-Col KO Normal M K2018 Col

K2015-WT-N-F-Ile WT Normal F K2015 Ile T1173-BD-N-F-Cae BD Normal F T1173 Cae K2018-KO-N-M-Cae KO Normal M K2018 Cae

K2015-WT-N-F-Cae WT Normal F K2015 Cae T1174-BD-N-F-Jej BD Normal F T1174 Jej K2019-KO-N-M-Jej KO Normal M K2019 Jej

K2016-WT-N-F-Jej WT Normal F K2016 Jej T1174-BD-N-F-Ile BD Normal F T1174 Ile K2019-KO-N-M-Ile KO Normal M K2019 Ile

K2016-WT-N-F-Ile WT Normal F K2016 Ile T1174-BD-N-F-Cae BD Normal F T1174 Cae K2019-KO-N-M-Col KO Normal M K2019 Col

K2016-WT-N-F-Cae WT Normal F K2016 Cae K2014-WT-N-M-Jej WT Normal M K2014 Jej K2019-KO-N-M-Cae KO Normal M K2019 Cae

K2017-KO-N-F-Jej KO Normal F K2017 Jej K2014-WT-N-M-Ile WT Normal M K2014 Ile T2172-BD-N-M-Jej BD Normal M T2172 Jej

K2017-KO-N-F-Ile KO Normal F K2017 Ile K2014-WT-N-M-Cae WT Normal M K2014 Cae T2172-BD-N-M-Ile BD Normal M T2172 Ile

K2017-KO-N-F-Cae KO Normal F K2017 Cae K2014-WT-N-M-Cae WT Normal M K2014 Cae T2172-BD-N-M-Col BD Normal M T2172 Col

K2018-KO-N-F-Jej KO Normal F K2018 Jej K2015-WT-N-M-Jej WT Normal M K2015 Jej T2172-BD-N-M-Cae BD Normal M T2172 Cae

K2018-KO-N-F-Ile KO Normal F K2018 Ile K2015-WT-N-M-Ile WT Normal M K2015 Ile T2173-BD-N-M-Jej BD Normal M T2173 Jej

K2018-KO-N-F-Cae KO Normal F K2018 Cae K2015-WT-N-M-Col WT Normal M K2015 Col T2173-BD-N-M-Ile BD Normal M T2173 Ile

K2019-KO-N-F-Jej KO Normal F K2019 Jej K2015-WT-N-M-Cae WT Normal M K2015 Cae T2173-BD-N-M-Col BD Normal M T2173 Col

K2019-KO-N-F-Ile KO Normal F K2019 Ile K2016-WT-N-M-Jej WT Normal M K2016 Jej T2173-BD-N-M-Cae BD Normal M T2173 Cae

K2019-KO-N-F-Cae KO Normal F K2019 Cae K2016-WT-N-M-Ile WT Normal M K2016 Ile T2174-BD-N-M-Jej BD Normal M T2174 Jej

T1172-BD-N-F-Jej BD Normal F T1172 Jej K2016-WT-N-M-Col WT Normal M K2016 Col T1174-BD-N-M-Ile BD Normal M T1174 Ile

T1172-BD-N-F-Ile BD Normal F T1172 Ile K2016-WT-N-M-Cae WT Normal M K2016 Cae T1174-BD-N-M-Col BD Normal M T1174 Col

T1172-BD-N-F-Cae BD Normal F T1172 Cae K2017-KO-N-M-Jej KO Normal M K2017 Jej T1174-BD-N-M-Cae BD Normal M T1174 Cae

1
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Table A.2.: The table summarizes the first part of samples collected during the second sampling

effort, of the GI mouse study, including the information about phenotype (Type: wildtype

(WT), knockout (KO)), Diet (chow, (Normal), 5 % Phosphatidylcholin-enriched chow (Enrich)),

Material (feces (F), mucosa (M)), each single mouse (individual (Ind.)), and the colonic location

(Source) where the sample was collected (ileum (Ile), caecum (Cae), colon (Col)).
Sample Type Diet Material Ind. Source Sample Type Diet Material Ind. Source

K2290-WT-N-M-Ile WT Normal M K2290 Ile MB001-WT-E-M-Ile WT Enrich M MB001 Ile

K2290-WT-N-M-Col WT Normal M K2290 Col MB001-WT-E-M-Col WT Enrich M MB001 Col

K2290-WT-N-M-Cae WT Normal M K2290 Cae MB001-WT-E-M-Cae WT Enrich M MB001 Cae

K2291-WT-N-M-Ile WT Normal M K2291 Ile MB002-WT-E-M-Ile WT Enrich M MB002 Ile

K2291-WT-N-M-Col WT Normal M K2291 Col MB002-WT-E-M-Col WT Enrich M MB002 Col

K2291-WT-N-M-Cae WT Normal M K2291 Cae MB002-WT-E-M-Cae WT Enrich M MB002 Cae

K2292-WT-N-M-Ile WT Normal M K2292 Ile MB003-WT-E-M-Ile WT Enrich M MB003 Ile

K2292-WT-N-M-Col WT Normal M K2292 Col MB003-WT-E-M-Col WT Enrich M MB003 Col

K2292-WT-N-M-Cae WT Normal M K2292 Cae MB003-WT-E-M-Cae WT Enrich M MB003 Cae

K2293-WT-N-M-Ile WT Normal M K2293 Ile MB004-WT-E-M-Ile WT Enrich M MB004 Ile

K2293-WT-N-M-Col WT Normal M K2293 Col MB004-WT-E-M-Col WT Enrich M MB004 Col

K2293-WT-N-M-Cae WT Normal M K2293 Cae MB004-WT-E-M-Cae WT Enrich M MB004 Cae

K2294-WT-N-M-Ile WT Normal M K2294 Ile MB005-WT-E-M-Ile WT Enrich M MB005 Ile

K2294-WT-N-M-Col WT Normal M K2294 Col MB005-WT-E-M-Col WT Enrich M MB005 Col

K2294-WT-N-M-Cae WT Normal M K2294 Cae MB005-WT-E-M-Cae WT Enrich M MB005 Cae

K2295-KO-N-M-Ile KO Normal M K2295 Ile MB006-WT-E-M-Ile WT Enrich M MB006 Ile

K2295-KO-N-M-Col KO Normal M K2295 Col MB006-WT-E-M-Col WT Enrich M MB006 Col

K2295-KO-N-M-Cae KO Normal M K2295 Cae MB006-WT-E-M-Cae WT Enrich M MB006 Cae

K2296-KO-N-M-Ile KO Normal M K2296 Ile MB007-KO-E-M-Ile KO Enrich M MB007 Ile

K2296-KO-N-M-Col KO Normal M K2296 Col MB007-KO-E-M-Col KO Enrich M MB007 Col

K2296-KO-N-M-Cae KO Normal M K2296 Cae MB007-KO-E-M-Cae KO Enrich M MB007 Cae

K2297-KO-N-M-Ile KO Normal M K2297 Ile MB008-KO-E-M-Ile KO Enrich M MB008 Ile

K2297-KO-N-M-Col KO Normal M K2297 Col MB008-KO-E-M-Col KO Enrich M MB008 Col

K2297-KO-N-M-Cae KO Normal M K2297 Cae MB008-KO-E-M-Cae KO Enrich M MB008 Cae

K2298-KO-N-M-Ile KO Normal M K2298 Ile MB009-KO-E-M-Ile KO Enrich M MB009 Ile

K2298-KO-N-M-Col KO Normal M K2298 Col MB009-KO-E-M-Col KO Enrich M MB009 Col

K2298-KO-N-M-Cae KO Normal M K2298 Cae MB009-KO-E-M-Cae KO Enrich M MB009 Cae

K2299-KO-N-M-Ile KO Normal M K2299 Ile MB010-KO-E-M-Ile KO Enrich M MB010 Ile

K2299-KO-N-M-Col KO Normal M K2299 Col MB010-KO-E-M-Col KO Enrich M MB010 Col

K2299-KO-N-M-Cae KO Normal M K2299 Cae MB010-KO-E-M-Cae KO Enrich M MB010 Cae



Table A.3.: The table summarizes the second part of samples collected during the second

sampling effort, of the GI mouse study, including the information about phenotype (Type)

(wildtype (WT), knockout (KO)), Diet (chow, (Normal), Phosphatidylcholin-enriched chow

(Enrich)), Material (feces (F), mucosa (M)), each single mouse (individual (Ind.)), each single

mouse (individual (Ind.)), and the colonic location (Source) where the sample was collected

(ileum (Ile), caecum (cae), colon (col)).
Sample Type Diet Material Ind. Source Sample Type Diet Material Ind. Source

MB011-KO-E-M-Ile KO Enrich M MB011 Ile K2299-KO-N-F-Col KO Normal F K2299 Col

MB011-KO-E-M-Col KO Enrich M MB011 Col MB001-WT-E-F-Ile WT Enrich F MB001 Ile

MB011-KO-E-M-Cae KO Enrich M MB011 Cae MB001-WT-E-F-Col WT Enrich F MB001 Col

MB012-KO-E-M-Ile KO Enrich M MB012 Ile MB002-WT-E-F-Ile WT Enrich F MB002 Ile

MB012-KO-E-M-Col KO Enrich M MB012 Col MB002-WT-E-F-Col WT Enrich F MB002 Col

MB012-KO-E-M-Cae KO Enrich M MB012 Cae MB003-WT-E-F-Ile WT Enrich F MB003 Ile

K2290-WT-N-F-Ile WT Normal F K2290 Ile MB003-WT-E-F-Col WT Enrich F MB003 Col

K2290-WT-N-F-Col WT Normal F K2290 Col MB004-WT-E-F-Ile WT Enrich F MB004 Ile

K2291-WT-N-F-Ile WT Normal F K2291 Ile MB004-WT-E-F-Col WT Enrich F MB004 Col

K2291-WT-N-F-Col WT Normal F K2291 Col MB005-WT-E-F-Ile WT Enrich F MB005 Ile

K2292-WT-N-F-Ile WT Normal F K2292 Ile MB005-WT-E-F-Col WT Enrich F MB005 Col

K2292-WT-N-F-Col WT Normal F K2292 Col MB006-WT-E-F-Ile WT Enrich F MB006 Ile

K2293-WT-N-F-Ile WT Normal F K2293 Ile MB006-WT-E-F-Col WT Enrich F MB006 Col

K2293-WT-N-F-Col WT Normal F K2293 Col MB007-KO-E-F-Ile KO Enrich F MB007 Ile

K2294-WT-N-F-Ile WT Normal F K2294 Ile MB007-KO-E-F-Col KO Enrich F MB007 Col

K2294-WT-N-F-Col WT Normal F K2294 Col MB008-KO-E-F-Ile KO Enrich F MB008 Ile

K2295-KO-N-F-Ile KO Normal F K2295 Ile MB008-KO-E-F-Col KO Enrich F MB008 Col

K2295-KO-N-F-Col KO Normal F K2295 Col MB009-KO-E-F-Ile KO Enrich F MB009 Ile

K2296-KO-N-F-Ile KO Normal F K2296 Ile MB009-KO-E-F-Col KO Enrich F MB009 Col

K2296-KO-N-F-Col KO Normal F K2296 Col MB010-KO-E-F-Ile KO Enrich F MB010 Ile

K2297-KO-N-F-Ile KO Normal F K2297 Ile MB010-KO-E-F-Col KO Enrich F MB010 Col

K2297-KO-N-F-Col KO Normal F K2297 Col MB011-KO-E-F-Ile KO Enrich F MB011 Ile

K2298-KO-N-F-Ile KO Normal F K2298 Ile MB011-KO-E-F-Col KO Enrich F MB011 Col

K2298-KO-N-F-Col KO Normal F K2298 Col MB012-KO-E-F-Ile KO Enrich F MB012 Ile

K2299-KO-N-F-Ile KO Normal F K2299 Ile MB012-KO-E-F-Col KO Enrich F MB012 Col



Table A.4.: The table summarizes tools and settings which were used for the analysis of the

16S GI mouse study data. Each row contains the used tool followed by the version, as well as

the customized parameter. For all other parameters of the tools which are not listed within the

table, the default values have been used.

release/version settings

Decontaminator
blat ref DB perc. Identity query coverage MID off-set primer off-set

v.2 GG 09May2011 95 75 0 0

UCHIME
mode reference DB

mothur v.1.31.2 reference SILVA relase 105

Acacia
min. avg. quality threshold other settings

1.52.b0 22 default

SnoWMAn
pipeline classifier version infernal model

v.1.2 RDP RDP classifier 2.5 ncbi16S_508_mod5

Table A.5.: The table summarizes the number of filtered and remaining sequences after each

pre-processing step. The 16S amplicons of the GI mouse study were noise reduced and

quality filtered (Acacia), as well as filtered for contaminating sequences (Decontaminator) and

chimeras (UCHIME) prior to the phylogenetic analysis.

number of sequences G30ZHI201 G30ZHI202 G30ZHI203 HUIXUCX01 HUIXUCX02 HUIXUCX03 HUIXUCX04 total

raw 375833 378926 206758 267279 247950 236591 237823 1951160

contaminations 15279 13628 22956 26979 26529 22459 21533 149363

after decontamination 360554 365298 183802 240300 221421 214132 216290 1801797

chimeras 15279 13628 22956 26979 26529 22459 21533 149363

noise and low quality 41993 30465 18673 33398 26453 13008 4608 168598

after denoising and qual. Fitering 318561 334833 165129 206902 194968 201124 211682 1633199

toally removed 57272 44093 41629 60377 52982 35467 26141 317961

after preprocessing 318561 334833 165129 206902 194968 201124 211682 1633199

removed by snowman 525811

for classification 1107388
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Appendix A. Supplementary information gastrointestinal mouse study

Table A.6.: Sample overview of the 16S GI mouse study samples analyzed using SnoWMAn’s

RDP pipeline. The table summarizes the number of the finally obtained distinct species (OTUs)

for different cluster distances, for each sample of source type caecum.

Sample Sequs Unique Seqs
number of OTUs at different distances

0.0 0.01 0.02 0.03 0.04 0.05 0.06

K2015-WT-N-M-Cae 6310 1570 1069 819 568 454 383 352 320

K2298-KO-N-M-Cae 7317 1398 1012 815 548 437 374 337 310

K2018-KO-N-F-Cae 4666 2209 1624 1277 962 796 687 629 563

T1174-BD-N-M-Cae 830 344 245 214 172 158 142 130 120

T2172-BD-N-M-Cae 8109 2641 1856 1428 987 771 633 561 479

K2016-WT-N-F-Cae 6230 2269 1599 1178 826 650 554 496 442

K2019-KO-N-F-Cae 9394 3664 2556 1871 1300 1032 867 763 677

MB005-WT-E-M-Cae 5811 1252 847 692 452 373 319 292 262

MB010-KO-E-M-Cae 11298 1133 816 656 468 381 332 307 274

K2290-WT-N-M-Cae 4449 646 472 385 272 224 201 182 165

MB012-KO-E-M-Cae 7937 1460 1042 802 563 461 389 348 317

K2295-KO-N-M-Cae 10283 988 695 581 410 346 292 261 238

MB009-KO-E-M-Cae 2968 602 373 296 222 187 163 150 135

T1173-BD-N-F-Cae 10163 3203 2214 1612 1081 858 730 634 553

K2294-WT-N-M-Cae 8737 1513 990 796 476 372 326 298 275

K2299-KO-N-M-Cae 7205 1332 968 762 483 394 356 328 295

MB004-WT-E-M-Cae 8057 1866 1234 902 626 519 452 410 369

MB007-KO-E-M-Cae 10046 2460 1597 1106 720 554 464 412 368

K2292-WT-N-M-Cae 7351 1617 1156 920 688 567 471 418 372

K2297-KO-N-M-Cae 4528 941 666 539 387 320 281 254 223

K2018-KO-N-M-Cae 6161 2167 1532 1168 847 702 618 557 501

MB006-WT-E-M-Cae 4129 1225 884 738 552 464 409 372 328

MB001-WT-E-M-Cae 7262 2022 1437 1127 800 642 550 498 439

K2017-KO-N-M-Cae 2426 1335 995 831 666 571 507 460 403

MB011-KO-E-M-Cae 7205 1512 1035 754 487 395 352 330 302

MB008-KO-E-M-Cae 4846 1170 856 687 524 430 377 336 295

K2019-KO-N-M-Cae 5921 1325 939 757 546 455 384 350 308

K2015-WT-N-F-Cae 5283 2056 1343 912 598 472 402 359 331

K2014-WT-N-M-Cae 12529 4670 3155 2222 1416 1051 827 712 605

T1172-BD-N-F-Cae 11414 3847 2725 1971 1368 1075 892 780 667

K2296-KO-N-M-Cae 11959 1241 882 692 438 355 307 266 237

K2293-WT-N-M-Cae 3463 1045 802 648 510 438 388 350 313

MB003-WT-E-M-Cae 7039 1165 844 645 460 376 320 298 272

K2291-WT-N-M-Cae 6077 1104 785 604 429 366 323 298 277

K2014-WT-N-F-Cae 4885 1749 1232 871 595 501 441 402 363

T1174-BD-N-F-Cae 9513 3145 2188 1560 1075 864 712 635 533

T2173-BD-N-M-Cae 5417 1275 889 710 495 398 341 297 261

K2017-KO-N-F-Cae 2109 1166 714 616 477 398 352 320 285

MB002-WT-E-M-Cae 11317 1874 1296 970 624 512 438 394 354

K2016-WT-N-M-Cae 9376 1916 1357 1048 670 523 445 400 360

Total Cae 280020 32834 18083 9209 6036 4294 3388 2630
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Table A.7.: Sample overview of the 16S GI mouse study samples analyzed using SnoWMAn’s

RDP pipeline. The table summarizes the number of finally obtained distinct species (OTUs)

for different cluster distances, for each sample of source type colon.

Sample Sequs Unique Seqs
number of OTUs at different distances

0.0 0.01 0.02 0.03 0.04 0.05 0.06

K2290-WT-N-F-Col 2865 1258 938 805 622 541 470 429 380

MB006-WT-E-M-Col 12455 779 458 329 172 123 91 76 66

MB007-KO-E-M-Col 15348 932 551 401 218 159 124 105 92

MB003-WT-E-F-Col 14382 3290 2155 1605 1020 800 665 585 505

K2015-WT-N-M-Col 6615 1377 961 760 525 422 352 314 275

MB007-KO-E-F-Col 2258 1063 811 681 562 486 434 403 354

T2173-BD-N-M-Col 5846 1481 1029 846 617 520 452 396 346

MB011-KO-E-M-Col 8139 936 638 471 319 267 242 226 210

K2018-KO-N-M-Col 8577 4213 3174 2508 1793 1374 1103 961 800

K2294-WT-N-F-Col 3042 1083 753 659 512 433 385 355 318

K2019-KO-N-M-Col 11027 1446 918 726 508 413 349 308 269

MB008-KO-E-M-Col 9744 859 608 483 326 261 221 203 188

MB001-WT-E-F-Col 8386 2563 1826 1468 1041 843 707 631 545

MB010-KO-E-F-Col 4514 2172 1675 1355 1055 896 769 687 603

MB001-WT-E-M-Col 3842 1180 845 655 489 398 349 314 279

K2299-KO-N-M-Col 9787 973 688 563 374 305 265 232 214

K2294-WT-N-M-Col 12586 1904 1334 979 635 513 448 399 352

K2293-WT-N-M-Col 16789 929 533 368 181 125 90 69 57

T1174-BD-N-M-Col 664 240 160 138 102 85 70 61 57

T2172-BD-N-M-Col 13673 2040 1291 1000 690 549 459 404 352

MB012-KO-E-F-Col 7978 3470 2525 1993 1465 1154 948 833 717

K2295-KO-N-M-Col 7864 1139 842 687 496 417 363 335 305

MB010-KO-E-M-Col 9062 562 339 259 140 93 66 52 44

K2296-KO-N-M-Col 6402 461 317 250 152 111 95 80 70

K2291-WT-N-F-Col 6156 2804 2084 1685 1322 1095 927 814 699

K2297-KO-N-F-Col 3818 1251 904 745 556 466 397 358 313

K2291-WT-N-M-Col 16891 932 525 388 218 156 117 99 91

MB011-KO-E-F-Col 4657 2264 1715 1382 1101 926 803 719 617

K2297-KO-N-M-Col 4189 662 476 368 243 203 187 167 155

K2299-KO-N-F-Col 7125 2469 1727 1405 1008 819 688 605 524

MB005-WT-E-M-Col 8248 783 555 431 268 214 183 159 143

K2296-KO-N-F-Col 5014 1415 964 789 576 464 406 364 325

K2292-WT-N-F-Col 4299 2047 1500 1259 1001 833 721 643 560

MB002-WT-E-F-Col 2562 1354 1053 883 731 608 520 470 422

MB006-WT-E-F-Col 6230 1918 1344 1096 754 622 536 479 422

K2016-WT-N-M-Col 11735 2867 2028 1536 1027 803 667 576 488

MB005-WT-E-F-Col 4187 1229 887 758 567 480 412 375 332

K2298-KO-N-M-Col 8575 675 433 340 194 146 124 109 100

MB004-WT-E-M-Col 11133 804 515 384 243 187 154 135 124

K2295-KO-N-F-Col 3368 1629 1233 1037 844 705 621 563 494

MB009-KO-E-F-Col 4803 2326 1744 1377 1043 854 716 633 558

MB003-WT-E-M-Col 7520 582 386 317 201 159 135 120 108

MB008-KO-E-F-Col 3637 1680 1242 1005 800 667 584 523 451

K2298-KO-N-F-Col 2782 1090 810 696 559 481 428 385 352

MB012-KO-E-M-Col 7121 1130 762 514 347 298 267 248 228

K2293-WT-N-F-Col 3170 1040 737 637 471 398 343 306 278

MB002-WT-E-M-Col 4881 802 602 475 334 275 240 219 204

MB009-KO-E-M-Col 7967 1308 751 525 354 300 260 240 218

K2017-KO-N-M-Col 4971 1233 835 699 538 461 406 360 323

K2290-WT-N-M-Col 11497 835 568 423 268 207 179 162 146

K2292-WT-N-M-Col 9205 887 627 448 291 225 196 176 161

MB004-WT-E-F-Col 3328 1853 1428 1162 938 780 664 589 509

Total Col 380914 34530 19962 10705 7024 4907 3786 2852
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Table A.8.: Sample overview of the 16S GI mouse study samples analyzed using SnoWMAn’s RDP pipeline. The table summarizes the number

of finally obtained distinct species (OTUs) for different cluster distances, for each sample of source type ileum.

Sample Sequs Unique Seqs
number of OTUs at different distances

Sample Sequs Unique Seqs
number of OTUs at different distances

0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.0 0.01 0.02 0.03 0.04 0.05 0.06

K2019-KO-N-F-Ile 4193 699 458 349 173 91 73 65 62 MB005-WT-E-M-Ile 420 94 65 48 32 27 26 25 24

MB003-WT-E-M-Ile 308 96 56 42 30 25 23 22 20 K2292-WT-N-F-Ile 9321 1804 1017 756 373 215 172 147 131

K2291-WT-N-F-Ile 7342 1449 854 645 321 183 140 120 105 MB009-KO-E-M-Ile 3924 966 657 486 348 288 250 223 207

MB011-KO-E-M-Ile 462 108 87 72 54 39 38 36 34 MB004-WT-E-F-Ile 3879 1028 666 527 323 224 187 166 150

K2016-WT-N-M-Ile 5618 745 484 368 188 113 86 73 71 MB012-KO-E-F-Ile 13200 3745 2376 1673 1013 719 588 498 418

MB008-KO-E-F-Ile 10365 2153 1319 978 575 388 323 294 259 K2018-KO-N-M-Ile 5793 1527 1025 756 513 407 361 342 314

MB003-WT-E-F-Ile 6957 1207 668 448 205 123 98 88 79 K2293-WT-N-M-Ile 1159 293 199 149 106 86 77 72 70

MB012-KO-E-M-Ile 5442 1320 838 583 363 280 236 215 181 MB001-WT-E-M-Ile 2446 320 221 161 73 53 46 39 36

MB010-KO-E-M-Ile 289 103 70 53 41 39 37 35 34 K2016-WT-N-F-Ile 18165 2044 1115 757 295 141 105 85 72

T1172-BD-N-F-Ile 7983 1466 950 718 388 257 217 192 172 T1174-BD-N-M-Ile 514 235 166 145 116 103 96 92 92

K2014-WT-N-F-Ile 5690 1097 742 543 281 182 155 138 129 K2019-KO-N-M-Ile 5773 1015 592 420 238 153 129 115 109

K2296-KO-N-M-Ile 2408 336 233 171 92 69 57 53 49 MB007-KO-E-M-Ile 4725 773 495 371 192 131 110 104 95

K2298-KO-N-F-Ile 4875 1179 759 571 378 285 241 216 202 MB006-WT-E-M-Ile 2050 332 208 164 76 43 37 31 30

K2297-KO-N-M-Ile 1876 459 302 220 145 110 100 92 87 K2293-WT-N-F-Ile 5229 1220 786 597 377 270 230 205 180

T2172-BD-N-M-Ile 6976 1138 734 569 333 227 184 165 150 K2017-KO-N-M-Ile 7328 1918 1104 800 470 334 270 226 199

K2014-WT-N-M-Ile 2898 546 360 278 162 121 100 93 90 K2294-WT-N-F-Ile 5474 1271 816 638 391 272 232 205 187

MB001-WT-E-F-Ile 13986 2451 1469 877 427 282 236 209 182 MB006-WT-E-F-Ile 17023 2837 1492 1004 391 198 147 121 101

K2015-WT-N-M-Ile 3927 830 495 377 211 151 120 110 100 K2294-WT-N-M-Ile 454 153 106 89 66 58 56 54 50

MB009-KO-E-F-Ile 5094 1595 1090 787 555 438 369 329 295 K2299-KO-N-M-Ile 3020 670 440 299 200 156 142 128 118

MB010-KO-E-F-Ile 7381 1392 770 525 225 111 84 72 61 MB004-WT-E-M-Ile 1297 288 212 155 109 85 74 71 65

K2291-WT-N-M-Ile 2237 419 276 190 97 60 48 43 39 MB005-WT-E-F-Ile 5350 1159 704 526 305 209 180 157 144

K2298-KO-N-M-Ile 1288 337 242 195 135 110 97 93 88 K2015-WT-N-F-Ile 4412 610 417 304 143 75 50 38 35

K2295-KO-N-F-Ile 6134 1475 996 766 500 362 299 267 243 K2297-KO-N-F-Ile 4390 1071 684 552 354 253 216 191 175

K2292-WT-N-M-Ile 1790 387 254 199 110 73 61 58 56 K2299-KO-N-F-Ile 6838 1784 1210 943 624 466 398 342 300

K2295-KO-N-M-Ile 3566 806 559 425 250 185 159 143 133 MB011-KO-E-F-Ile 10455 1764 917 665 299 158 125 108 98

K2290-WT-N-F-Ile 7777 1306 821 605 300 191 158 138 132 T1174-BD-N-F-Ile 5260 850 569 449 201 103 77 62 56

K2018-KO-N-F-Ile 5601 928 645 496 270 178 150 136 119 MB002-WT-E-F-Ile 7366 1179 736 555 248 138 107 91 81

MB008-KO-E-M-Ile 1709 377 256 198 136 106 94 85 78 T1173-BD-N-F-Ile 9584 1556 1012 717 377 240 200 180 166

T2173-BD-N-M-Ile 11052 1732 1138 834 454 332 272 241 220 K2296-KO-N-F-Ile 7987 1439 888 657 346 207 165 146 134

K2017-KO-N-F-Ile 3860 1337 714 482 283 192 164 146 135 MB007-KO-E-F-Ile 6123 1402 868 672 414 276 233 205 181

K2290-WT-N-M-Ile 1058 212 145 117 69 46 39 38 36

Total Ile 329799 22199 10378 4538 2961 2221 1837 1498
MB002-WT-E-M-Ile 698 233 169 135 94 81 78 72 69

1
6
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Table A.9.: Sample overview of the 16S GI mouse study samples analyzed using SnoWMAn’s

RDP pipeline. The table summarizes the number of finally obtained distinct species (OTUs)

for different cluster distances, for each sample of source type jejunum.

Sample Sequs Unique Seqs
number of OTUs at different distances

0.0 0.01 0.02 0.03 0.04 0.05 0.06

T2173-BD-N-M-Jej 6416 1119 743 552 358 266 220 200 188

T2172-BD-N-M-Jej 6772 1221 827 647 431 333 284 253 233

K2015-WT-N-M-Jej 5097 1292 858 597 394 308 269 245 229

K2016-WT-N-M-Jej 3457 602 377 278 149 90 71 62 58

K2017-KO-N-F-Jej 6358 1481 854 574 283 175 155 131 124

K2018-KO-N-M-Jej 3303 803 535 362 243 200 175 156 148

K2014-WT-N-M-Jej 3605 519 330 250 131 68 57 50 48

K2016-WT-N-F-Jej 7239 998 580 436 190 90 68 57 47

K2015-WT-N-F-Jej 5913 831 548 410 172 90 68 53 46

T2174-BD-N-M-Jej 7103 1573 1000 650 434 337 295 261 236

T1172-BD-N-F-Jej 5021 1057 735 551 306 210 181 164 154

T1173-BD-N-F-Jej 735 179 120 100 65 48 41 39 37

K2014-WT-N-F-Jej 14839 2341 1431 947 419 237 184 152 130

T1174-BD-N-F-Jej 6553 1252 796 529 236 133 102 90 72

K2018-KO-N-F-Jej 11740 2161 1449 972 500 333 280 245 224

K2019-KO-N-F-Jej 9321 1436 827 610 297 171 134 111 99

K2017-KO-N-M-Jej 3112 578 386 309 199 155 132 115 106

K2019-KO-N-M-Jej 10071 1445 954 658 381 264 220 201 187

Total Jej 116655 9306 4939 2134 1367 1069 900 780
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Table A.10.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from the

RDP pipeline, at the phylum level (classification confidence 80 %, cluster distance 0.03, "other" threshold 2 %). For each DA phylum level feature

(TAX), the contrast (G1, G2), the number of samples per contrast group, as well as the raw counts and counts per million (cpm) normalized by

library size, per contrast group, are given. Additionally, the statistical result parameters of edgeR, the logFC and the FDR, for each phylum and

contrast are included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Tenericutes KO.N.M.Ile BD.N.M.Ile 8 3 1741 0 73451.27 345.67 7.5834 0.0149

Tenericutes KO.N.M.Ile KO.E.M.Ile 8 6 1741 0 73451.27 358.86 7.5336 0.0001

Tenericutes WT.N.M.Ile BD.N.M.Ile 8 3 1502 0 62960.90 345.67 7.3613 0.0183

Verrucomicrobia WT.E.F.Ile KO.E.F.Ile 6 6 0 1335 301.24 43629.64 -7.0936 0.0000

Verrucomicrobia KO.N.F.Ile KO.E.F.Ile 8 6 0 1335 315.66 43629.64 -6.9755 0.0000

Cyanobacteria/Chloroplast WT.N.F.Ile KO.N.F.Ile 8 8 880 0 32405.39 315.66 6.5384 0.0000

Cyanobacteria/Chloroplast WT.N.F.Ile BD.N.F.Ile 8 3 880 0 32405.39 347.02 6.3952 0.0165

Tenericutes WT.E.F.Ile KO.E.F.Ile 6 6 683 0 18575.56 313.01 5.7428 0.0017

Tenericutes WT.N.F.Ile WT.E.F.Ile 8 6 0 683 318.03 18575.56 -5.7252 0.0005

Cyanobacteria/Chloroplast WT.E.F.Ile KO.E.F.Ile 6 6 807 0 9182.48 313.01 4.7487 0.0020

Actinobacteria WT.N.M.Ile KO.N.M.Ile 8 8 223 0 9851.45 347.30 4.6838 0.0000

Actinobacteria WT.N.M.Ile WT.E.M.Ile 8 6 223 0 9851.45 375.08 4.5831 0.0004

Verrucomicrobia KO.N.M.Ile KO.E.M.Ile 8 6 0 147 347.30 8201.28 -4.4231 0.0001

TM7 WT.N.F.Ile WT.E.F.Ile 8 6 157 0 6599.97 301.24 4.3645 0.0019

Verrucomicrobia WT.E.M.Ile KO.E.M.Ile 6 6 0 147 375.08 8201.28 -4.3225 0.0028

Tenericutes WT.E.M.Ile KO.E.M.Ile 6 6 128 0 7681.22 358.86 4.2849 0.0215

TM7 WT.N.F.Ile KO.N.F.Ile 8 8 157 0 6599.97 315.66 4.2526 0.0004

Bacteroidetes WT.E.M.Ile KO.E.M.Ile 6 6 296 5698 17916.35 310751.09 -4.1130 0.0281

Proteobacteria WT.E.F.Ile KO.E.F.Ile 6 6 403 1192 4736.36 63905.99 -3.7173 0.0182

TM7 WT.E.F.Ile KO.E.F.Ile 6 6 0 126 301.24 4047.77 -3.6903 0.0061

Cyanobacteria/Chloroplast WT.N.M.Ile KO.N.M.Ile 8 8 104 0 4783.58 347.30 3.6472 0.0076

TM7 KO.N.F.Ile KO.E.F.Ile 8 6 0 126 315.66 4047.77 -3.5784 0.0047

Cyanobacteria/Chloroplast WT.N.M.Ile WT.E.M.Ile 8 6 104 0 4783.58 375.08 3.5467 0.0148

Tenericutes WT.N.F.Ile KO.N.F.Ile 8 8 0 179 318.03 3493.20 -3.3510 0.0234

Tenericutes WT.N.M.Ile WT.E.M.Ile 8 6 1502 128 62960.90 7681.22 3.0266 0.0403

TM7 WT.N.M.Ile KO.N.M.Ile 8 8 47 0 2467.57 347.30 2.6999 0.0279

Firmicutes WT.N.M.Ile WT.E.M.Ile 8 6 11308 1277 483141.82 79098.82 2.6101 0.0021

TM7 WT.N.M.Ile WT.E.M.Ile 8 6 47 0 2467.57 375.08 2.5993 0.0403

Firmicutes WT.E.M.Ile KO.E.M.Ile 6 6 1277 4608 79098.82 258122.23 -1.7059 0.0401
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Table A.11.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from the

RDP pipeline, at the class level (classification confidence 80 %, cluster distance 0.03, "other" threshold 2 %). For each DA class level feature

(TAX), the contrast (G1, G2), the number of samples per contrast group, as well as the raw counts and counts per million (cpm) normalized by

library size, per contrast group, are given. Additionally, the statistical result parameters of edgeR, the logFC and the FDR, for each class and

contrast are included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Verrucomicrobiae WT.E.F.Ile KO.E.F.Ile 6 6 0 1335 428.01 71897.01 -7.2392 0.0000

Bacteroidia WT.N.F.Ile KO.N.F.Ile 8 8 0 629 423.64 28009.61 -5.8945 0.0000

Bacteroidia WT.E.F.Ile KO.E.F.Ile 6 6 0 848 428.01 49070.28 -6.6883 0.0000

Actinobacteria WT.N.M.Ile KO.N.M.Ile 8 8 223 0 10227.14 375.29 4.6059 0.0000

Verrucomicrobiae KO.N.F.Ile KO.E.F.Ile 8 6 46 1335 2298.16 71897.01 -4.9252 0.0001

Deltaproteobacteria WT.E.F.Ile KO.E.F.Ile 6 6 0 1135 428.01 62050.49 -7.0263 0.0001

Clostridia WT.E.F.Ile KO.E.F.Ile 6 6 0 1179 428.01 65457.45 -7.1032 0.0002

Chloroplast WT.E.F.Ile KO.E.F.Ile 6 6 807 0 51300.09 380.72 6.9075 0.0002

Gammaproteobacteria WT.N.M.Ile BD.N.M.Ile 8 3 1075 0 53326.02 351.32 7.0606 0.0002

Mollicutes WT.N.F.Ile WT.E.F.Ile 8 6 0 683 423.64 45068.59 -6.5789 0.0002

Mollicutes WT.E.F.Ile KO.E.F.Ile 6 6 683 0 45068.59 380.72 6.7206 0.0002

Gammaproteobacteria KO.N.M.Ile BD.N.M.Ile 8 3 995 0 47958.05 351.32 6.9078 0.0003

Actinobacteria WT.N.M.Ile WT.E.M.Ile 8 6 223 0 10227.14 427.18 4.4422 0.0007

Deltaproteobacteria KO.N.M.Ile KO.E.M.Ile 8 6 0 386 375.29 20119.03 -5.5763 0.0009

Verrucomicrobiae KO.N.M.Ile KO.E.M.Ile 8 6 0 147 375.29 8207.77 -4.2934 0.0009

Epsilonproteobacteria KO.N.M.Ile KO.E.M.Ile 8 6 737 9 30454.44 1056.73 4.8084 0.0010

Bacteroidia WT.N.M.Ile KO.N.M.Ile 8 8 58 1081 2995.44 50302.26 -4.0433 0.0012

Mollicutes KO.N.M.Ile KO.E.M.Ile 8 6 1741 16 82395.54 1401.17 5.8269 0.0012

TM7_genera_incertae_sedis KO.N.M.Ile KO.E.M.Ile 8 6 0 122 375.29 6744.76 -4.0132 0.0013

TM7_genera_incertae_sedis WT.N.F.Ile KO.N.F.Ile 8 8 157 0 7846.42 383.24 4.2038 0.0014

TM7_genera_incertae_sedis KO.N.F.Ile KO.E.F.Ile 8 6 0 126 383.24 6962.29 -4.0353 0.0032

TM7_genera_incertae_sedis WT.E.F.Ile KO.E.F.Ile 6 6 0 126 428.01 6962.29 -3.8863 0.0052

Deltaproteobacteria WT.E.M.Ile KO.E.M.Ile 6 6 0 386 427.18 20119.03 -5.4115 0.0071

Verrucomicrobiae WT.E.M.Ile KO.E.M.Ile 6 6 0 147 427.18 8207.77 -4.1291 0.0071

Bacilli WT.N.M.Ile WT.E.M.Ile 8 6 10280 1098 482558.95 80964.30 2.5749 0.0087

TM7_genera_incertae_sedis WT.N.F.Ile WT.E.F.Ile 8 6 157 0 7846.42 428.01 4.0548 0.0099

Bacteroidia WT.N.M.Ile BD.N.M.Ile 8 3 58 347 2995.44 41305.90 -3.7592 0.0123

TM7_genera_incertae_sedis WT.E.M.Ile KO.E.M.Ile 6 6 0 122 427.18 6744.76 -3.8489 0.0131

Mollicutes WT.N.F.Ile KO.N.F.Ile 8 8 0 179 423.64 7244.07 -3.9547 0.0134

Bacteroidia WT.E.M.Ile KO.E.M.Ile 6 6 39 455 2546.23 25702.07 -3.2885 0.0219
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Table A.12.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from the

RDP pipeline, at the order level (classification confidence 80 %, cluster distance 0.03, "other" threshold 2 %). For each DA the order level feature

(TAX), the contrast (G1, G2), the number of samples per contrast group, as well as the raw counts and counts per million (cpm) normalized by

library size, per contrast group, are given. Additionally, the statistical result parameters of edgeR, the logFC and the FDR, for each order and

contrast are included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Bacillales KO.N.F.Ile KO.E.F.Ile 8 6 0 641 413.38 46507.67 -6.6615 4.40E-07

Verrucomicrobiales WT.E.F.Ile KO.E.F.Ile 6 6 0 1335 423.40 93021.55 -7.6215 3.60E-06

Bacillales WT.E.F.Ile KO.E.F.Ile 6 6 0 641 423.40 46507.67 -6.6219 8.75E-06

Bacteroidales WT.N.F.Ile KO.N.F.Ile 8 8 0 629 425.25 29850.60 -5.9785 1.04E-05

Bacteroidales WT.E.F.Ile KO.E.F.Ile 6 6 0 848 423.40 53829.18 -6.8334 1.06E-05

Actinomycetales WT.N.M.Ile KO.N.M.Ile 8 8 223 0 11084.90 363.91 4.7527 1.75E-05

Desulfovibrionales WT.E.F.Ile KO.E.F.Ile 6 6 0 1131 423.40 66626.19 -7.1408 8.28E-05

Verrucomicrobiales KO.N.F.Ile KO.E.F.Ile 8 6 46 1335 2886.66 93021.55 -4.9905 8.93E-05

Clostridiales WT.E.F.Ile KO.E.F.Ile 6 6 0 1179 423.40 73473.17 -7.2815 0.000119

Chloroplast WT.E.F.Ile KO.E.F.Ile 6 6 807 0 52093.91 407.17 6.8377 0.000154

Mycoplasmatales WT.N.F.Ile WT.E.F.Ile 8 6 0 683 425.25 45954.88 -6.5993 0.000163

Mycoplasmatales WT.E.F.Ile KO.E.F.Ile 6 6 683 0 45954.88 407.17 6.6568 0.000206

Pseudomonadales WT.N.M.Ile BD.N.M.Ile 8 3 726 0 33892.92 377.57 6.3183 0.000436

Actinomycetales WT.N.M.Ile WT.E.M.Ile 8 6 223 0 11084.90 412.13 4.5973 0.000454

Pseudomonadales KO.N.M.Ile BD.N.M.Ile 8 3 687 0 31008.88 377.57 6.1903 0.000567

Desulfovibrionales KO.N.M.Ile KO.E.M.Ile 8 6 0 383 363.91 19873.67 -5.5945 0.000697

Verrucomicrobiales KO.N.M.Ile KO.E.M.Ile 8 6 0 147 363.91 8990.00 -4.4552 0.000697

Campylobacterales KO.N.M.Ile KO.E.M.Ile 8 6 737 9 32726.92 1028.49 4.9456 0.000807

Mycoplasmatales KO.N.M.Ile KO.E.M.Ile 8 6 1741 16 79137.39 1320.07 5.8462 0.001046

Bacteroidales WT.N.M.Ile KO.N.M.Ile 8 8 58 1081 2995.99 50360.73 -4.0464 0.001246

Enterobacteriales WT.N.M.Ile BD.N.M.Ile 8 3 336 0 15845.36 377.57 5.2241 0.001332

Enterobacteriales KO.N.M.Ile BD.N.M.Ile 8 3 296 0 13634.96 377.57 5.0082 0.002112

Bacillales WT.N.M.Ile KO.N.M.Ile 8 8 79 0 4169.89 363.91 3.3518 0.005517

Desulfovibrionales WT.E.M.Ile KO.E.M.Ile 6 6 0 383 412.13 19873.67 -5.4377 0.005723

Verrucomicrobiales WT.E.M.Ile KO.E.M.Ile 6 6 0 147 412.13 8990.00 -4.2990 0.005723

Lactobacillales WT.N.M.Ile WT.E.M.Ile 8 6 10163 1080 482879.51 76492.36 2.6577 0.006771

Bacteroidales WT.N.M.Ile BD.N.M.Ile 8 3 58 347 2995.99 41220.89 -3.7584 0.008225

Mycoplasmatales WT.N.M.Ile BD.N.M.Ile 8 3 1516 0 70037.00 377.57 7.3619 0.008225

Mycoplasmatales KO.N.M.Ile BD.N.M.Ile 8 3 1741 0 79137.39 377.57 7.5379 0.009395

Chloroplast WT.N.M.Ile KO.N.M.Ile 8 8 104 0 5370.41 363.91 3.7133 0.013347
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Table A.13.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from the

RDP pipeline, at the family level (classification confidence 80 %, cluster distance 0.03, "other" threshold 2 %). For each DA the family level feature

(TAX), the contrast (G1, G2), the number of samples per contrast group, as well as the raw counts and counts per million (cpm) normalized by

library size, per contrast group, are given. Additionally, the statistical result parameters of edgeR, the logFC and the FDR, for each family and

contrast are included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Staphylococcaceae KO.N.F.Ile KO.E.F.Ile 8 6 0 641 415.22 46760.93 -6.6511 5.63E-09

Streptococcaceae WT.N.F.Ile WT.E.F.Ile 8 6 0 1462 420.56 90660.32 -7.5887 3.76E-08

Enterococcaceae WT.E.F.Ile KO.E.F.Ile 6 6 4841 0 304396.06 415.29 9.3514 2.24E-07

Staphylococcaceae WT.E.F.Ile KO.E.F.Ile 6 6 0 641 409.02 46760.93 -6.6704 2.69E-07

Streptococcaceae WT.E.F.Ile KO.E.F.Ile 6 6 1462 0 90660.32 415.29 7.6049 7.96E-07

Verrucomicrobiaceae WT.E.F.Ile KO.E.F.Ile 6 6 0 1335 409.02 90317.92 -7.6196 7.96E-07

Prevotellaceae WT.N.M.Ile KO.N.M.Ile 8 8 0 235 400.61 11183.01 -4.6409 4.69E-06

Enterococcaceae WT.N.F.Ile KO.N.F.Ile 8 8 701 0 36224.37 415.22 6.2836 1.07E-05

Propionibacteriaceae WT.N.M.Ile KO.N.M.Ile 8 8 147 0 7813.95 393.47 4.1457 2.30E-05

Porphyromonadaceae WT.N.M.Ile KO.N.M.Ile 8 8 0 129 400.61 6693.22 -3.9021 6.33E-05

Desulfovibrionaceae WT.E.F.Ile KO.E.F.Ile 6 6 0 1126 409.02 76128.76 -7.3729 7.17E-05

Lachnospiraceae WT.E.F.Ile KO.E.F.Ile 6 6 0 918 409.02 62256.05 -7.0829 7.17E-05

Verrucomicrobiaceae KO.N.F.Ile KO.E.F.Ile 8 6 46 1335 2764.69 90317.92 -5.0029 8.87E-05

Prevotellaceae KO.N.M.Ile KO.E.M.Ile 8 6 235 0 11183.01 401.90 4.6387 0.000101

Mycoplasmataceae WT.N.F.Ile WT.E.F.Ile 8 6 0 683 420.56 43730.48 -6.5375 0.000116

Streptophyta WT.E.F.Ile KO.E.F.Ile 6 6 807 0 49617.74 415.29 6.7360 0.000203

Ruminococcaceae WT.N.M.Ile KO.N.M.Ile 8 8 0 165 400.61 7939.42 -4.1494 0.000223

Mycoplasmataceae WT.E.F.Ile KO.E.F.Ile 6 6 683 0 43730.48 415.29 6.5538 0.000283

Streptococcaceae WT.N.M.Ile KO.N.M.Ile 8 8 167 0 8381.87 393.47 4.2483 0.000377

Desulfovibrionaceae KO.N.M.Ile KO.E.M.Ile 8 6 0 383 393.47 23756.22 -5.7446 0.000412

Helicobacteraceae KO.N.M.Ile KO.E.M.Ile 8 6 806 9 38790.21 1014.80 5.1910 0.000412

Pseudomonadaceae WT.N.M.Ile BD.N.M.Ile 8 3 725 0 36670.71 405.17 6.3311 0.000449

Verrucomicrobiaceae KO.N.M.Ile KO.E.M.Ile 8 6 0 147 393.47 9365.57 -4.4088 0.000484

Pseudomonadaceae KO.N.M.Ile BD.N.M.Ile 8 3 684 0 34502.88 405.17 6.2431 0.000542

Propionibacteriaceae WT.N.M.Ile WT.E.M.Ile 8 6 147 0 7813.95 405.51 4.1087 0.000673

Mycoplasmataceae KO.N.M.Ile KO.E.M.Ile 8 6 1757 16 87393.37 1477.76 5.8385 0.001148

Enterobacteriaceae WT.N.M.Ile BD.N.M.Ile 8 3 336 0 17203.71 405.17 5.2414 0.001414

Enterobacteriaceae KO.N.M.Ile BD.N.M.Ile 8 3 296 0 15189.05 405.17 5.0617 0.002123

Lactobacillaceae WT.N.M.Ile WT.E.M.Ile 8 6 9874 1038 491739.69 74125.45 2.7295 0.005351

Prevotellaceae KO.N.M.Ile BD.N.M.Ile 8 3 235 0 11183.01 405.17 4.6254 0.005999
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Table A.14.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from the

RDP pipeline, at the genus level (classification confidence 80 %, cluster distance 0.03, "other" threshold 2 %). For each DA genus level feature

(TAX), the contrast (G1, G2), the number of samples per contrast group, as well as the raw counts and counts per million (cpm) normalized by

library size, per contrast group, are given. Additionally, the statistical result parameters of edgeR, the logFC and the FDR, for each genus and

contrast are included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Streptococcus WT.N.F.Ile WT.E.F.Ile 8 6 0 1462 534.16 126520.18 -7.7195 1.11E-11

Staphylococcus KO.N.F.Ile KO.E.F.Ile 8 6 0 641 533.54 57090.21 -6.5738 2.57E-09

Streptococcus WT.E.F.Ile KO.E.F.Ile 6 6 1462 0 126520.18 533.48 7.7211 5.08E-09

Ureaplasma WT.N.F.Ile WT.E.F.Ile 8 6 0 448 534.16 39030.92 -6.0249 5.64E-09

Staphylococcus WT.E.F.Ile KO.E.F.Ile 6 6 0 641 529.51 57090.21 -6.5836 1.13E-07

Enterococcus WT.E.F.Ile KO.E.F.Ile 6 6 4836 0 419034.75 533.48 9.4482 1.13E-07

Ureaplasma WT.E.F.Ile KO.E.F.Ile 6 6 448 0 39030.92 533.48 6.0265 2.31E-07

Akkermansia WT.E.F.Ile KO.E.F.Ile 6 6 0 1335 529.51 119414.89 -7.6473 8.05E-07

Enterococcus WT.N.F.Ile KO.N.F.Ile 8 8 700 0 46855.97 533.54 6.2892 1.68E-05

Lactococcus WT.N.M.Ile KO.N.M.Ile 8 8 162 0 10971.67 530.99 4.2093 1.90E-05

Propionibacterium WT.N.M.Ile KO.N.M.Ile 8 8 147 3 10257.46 729.51 3.6967 8.54E-05

Lactococcus WT.N.M.Ile WT.E.M.Ile 8 6 162 0 10971.67 530.86 4.2096 0.000206

Propionibacterium WT.N.M.Ile WT.E.M.Ile 8 6 147 0 10257.46 530.86 4.1114 0.000206

Pseudomonas WT.N.M.Ile BD.N.M.Ile 8 3 689 0 46166.92 528.73 6.2793 0.000255

Pseudomonas KO.N.M.Ile BD.N.M.Ile 8 3 667 0 44919.28 528.73 6.2398 0.000279

Corynebacterium WT.N.M.Ile KO.N.M.Ile 8 8 72 0 5294.41 530.99 3.1657 0.000294

Roseburia WT.N.M.Ile KO.N.M.Ile 8 8 0 62 529.88 4618.50 -2.9750 0.000488

Akkermansia KO.N.M.Ile KO.E.M.Ile 8 6 0 147 530.99 13503.21 -4.5056 0.001726

Corynebacterium WT.N.M.Ile WT.E.M.Ile 8 6 72 0 5294.41 530.86 3.1660 0.001785

Mycoplasma KO.N.M.Ile KO.E.M.Ile 8 6 1757 16 117255.02 1944.81 5.8655 0.00199

Helicobacter KO.N.M.Ile KO.E.M.Ile 8 6 798 23 53320.85 2569.80 4.3395 0.00199

Mycoplasma WT.N.F.Ile KO.N.F.Ile 8 8 0 253 534.16 17275.57 -4.8517 0.00212

Akkermansia WT.N.F.Ile KO.N.F.Ile 8 8 0 130 534.16 9215.89 -3.9498 0.00212

Roseburia KO.N.M.Ile KO.E.M.Ile 8 6 62 0 4618.50 533.10 2.9672 0.002575

Mycoplasma WT.N.F.Ile WT.E.F.Ile 8 6 0 189 534.16 17205.37 -4.8458 0.002813

Lactobacillus WT.N.M.Ile WT.E.M.Ile 8 6 7980 912 527376.61 81646.79 2.6904 0.003009

Mycoplasma WT.E.F.Ile KO.E.F.Ile 6 6 189 0 17205.37 533.48 4.8474 0.006049

Akkermansia KO.N.F.Ile KO.E.F.Ile 8 6 130 1335 9215.89 119414.89 -3.6862 0.006244

Mycoplasma KO.N.F.Ile KO.E.F.Ile 8 6 253 0 17275.57 533.48 4.8534 0.009875

Akkermansia WT.E.M.Ile KO.E.M.Ile 6 6 0 147 530.86 13503.21 -4.5059 0.009976
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Table A.15.: The table presents the top 30 differentially abundant features, determined by edgeR, based on the feature table obtained from the

RDP pipeline, at the OTU level (classification confidence 80 %, cluster distance 0.03, "other" threshold 2 %). For each DA the OTU level feature

(TAX), the contrast (G1, G2), the number of samples per contrast group, as well as the raw counts and counts per million (cpm) normalized by

library size, per contrast group, are given. Additionally, the statistical result parameters of edgeR, the logFC and the FDR, for each OTU and

contrast are included. Furthermore, for each OTU the RDP classification result and confidence is available from the table.
TAX G1 G2 # G1 # G2 rcG1 rcG2 cpm G1 cpm G2 logFC FDR Domain Prob Phylum Prob Class Prob Order Prob Familiy Prob Genus Prob

271 KO.N.F.Ile BD.N.F.Ile 8 3 0 148 133.89 6742.10 -54.876 5.18E-17 Bacteria; 1; Firmicutes; 0.95; Clostridia; 0.94; Clostridiales; 0.92; Lachnospiraceae; 0.81; Marvinbryantia; 0.23;

271 WT.N.F.Ile BD.N.F.Ile 8 3 0 148 134.08 6742.10 -54.858 5.35E-17 Bacteria; 1; Firmicutes; 0.95; Clostridia; 0.94; Clostridiales; 0.92; Lachnospiraceae; 0.81; Marvinbryantia; 0.23;

271 KO.N.M.Ile BD.N.M.Ile 8 3 1 68 150.90 3173.07 -42.497 6.51E-09 Bacteria; 1; Firmicutes; 0.95; Clostridia; 0.94; Clostridiales; 0.92; Lachnospiraceae; 0.81; Marvinbryantia; 0.23;

271 WT.N.M.Ile BD.N.M.Ile 8 3 4 68 201.74 3173.07 -38.680 1.31E-07 Bacteria; 1; Firmicutes; 0.95; Clostridia; 0.94; Clostridiales; 0.92; Lachnospiraceae; 0.81; Marvinbryantia; 0.23;

150 KO.N.F.Ile KO.E.F.Ile 8 6 0 740 133.89 16711.24 -67.948 1.40E-07 Bacteria; 1; Firmicutes; 1; Bacilli; 1; Bacillales; 1; Staphylococcaceae; 0.99; Staphylococcus; 0.99;

2282 KO.N.M.Ile BD.N.M.Ile 8 3 0 38 134.16 1830.50 -36.141 1.51E-06 Bacteria; 1; Bacteroidetes; 1; Flavobacteria; 1; Flavobacteriales; 1; Flavobacteriaceae; 1; Cloacibacterium; 0.76;

2421 KO.E.F.Ile WT.E.F.Ile 6 6 0 554 133.59 12505.51 -63.800 2.86E-06 Bacteria; 1; Tenericutes; 1; Mollicutes; 1; Mycoplasmatales; 1; Mycoplasmataceae; 1; Ureaplasma; 1;

1142 WT.N.M.Ile BD.N.M.Ile 8 3 0 83 134.47 3839.37 -46.724 2.87E-06 Bacteria; 1; Bacteroidetes; 0.96; Bacteroidia; 0.53; Bacteroidales; 0.53; Porphyromonadaceae; 0.42; Paludibacter; 0.23;

592 WT.N.M.Ile BD.N.M.Ile 8 3 0 38 134.47 1831.75 -36.118 2.87E-06 Bacteria; 1; Firmicutes; 0.97; Clostridia; 0.96; Clostridiales; 0.95; Ruminococcaceae; 0.94; Pseudoflavonifractor; 0.56;

100 KO.E.F.Ile WT.E.F.Ile 6 6 0 4631 133.59 103626.90 -94.290 7.05E-06 Bacteria; 1; Firmicutes; 1; Bacilli; 1; Lactobacillales; 1; Enterococcaceae; 0.99; Enterococcus; 0.98;

150 KO.E.F.Ile WT.E.F.Ile 6 6 740 1 16711.24 156.35 65.943 1.32E-05 Bacteria; 1; Firmicutes; 1; Bacilli; 1; Bacillales; 1; Staphylococcaceae; 0.99; Staphylococcus; 0.99;

298 WT.N.M.Ile KO.N.M.Ile 8 8 0 248 134.47 4285.81 -48.304 1.46E-05 Bacteria; 1; Firmicutes; 1; Clostridia; 1; Clostridiales; 1; Lachnospiraceae; 0.97; Lachnobacterium; 0.53;

13 WT.N.M.Ile BD.N.M.Ile 8 3 0 79 134.47 3661.01 -46.041 1.55E-05 Bacteria; 1; Bacteroidetes; 0.99; Bacteroidia; 0.84; Bacteroidales; 0.84; Marinilabiaceae; 0.5; Anaerophaga; 0.5;

40 WT.N.M.Ile KO.N.M.Ile 8 8 0 1020 134.47 17209.49 -68.317 2.09E-05 Bacteria; 0.99; Firmicutes; 0.81; Erysipelotrichia; 0.64; Erysipelotrichales; 0.64; Erysipelotrichaceae; 0.64; Allobaculum; 0.22;

637 KO.E.F.Ile WT.E.F.Ile 6 6 0 270 133.59 6160.62 -53.606 3.24E-05 Bacteria; 1; Firmicutes; 1; Bacilli; 1; Lactobacillales; 1; Enterococcaceae; 1; Enterococcus; 1;

393 WT.N.M.Ile KO.N.M.Ile 8 8 172 0 3027.23 134.16 43.340 3.37E-05 Bacteria; 1; Firmicutes; 1; Bacilli; 1; Lactobacillales; 1; Streptococcaceae; 1; Lactococcus; 1;

39 WT.N.M.Ile KO.N.M.Ile 8 8 0 172 134.47 3013.53 -43.247 3.37E-05 Bacteria; 1; Firmicutes; 0.96; Clostridia; 0.94; Clostridiales; 0.94; Lachnospiraceae; 0.78; Coprococcus; 0.24;

141 WT.N.M.Ile KO.N.M.Ile 8 8 3 360 184.92 6161.53 -49.371 5.40E-05 Bacteria; 1; Bacteroidetes; 0.94; Sphingobacteria; 0.36; Sphingobacteriales; 0.36; Flammeovirgaceae; 0.2; Limibacter; 0.12;

13 WT.N.F.Ile BD.N.F.Ile 8 3 2 86 167.56 3973.29 -44.360 5.71E-05 Bacteria; 1; Bacteroidetes; 0.99; Bacteroidia; 0.84; Bacteroidales; 0.84; Marinilabiaceae; 0.5; Anaerophaga; 0.5;

364 KO.N.F.Ile WT.N.F.Ile 8 8 32 762 669.45 12931.62 -42.379 6.67E-05 Bacteria; 1;
Cyanobacteria

Chloroplast;
1; Chloroplast; 1; Chloroplast; 1; Streptophyta; 1;

528 KO.N.F.Ile WT.N.F.Ile 8 8 0 239 133.89 4135.07 -47.844 6.67E-05 Bacteria; 0.99; Bacteroidetes; 0.96; Bacteroidia; 0.65; Bacteroidales; 0.65; Marinilabiaceae; 0.33; Anaerophaga; 0.33;

2053 WT.N.M.Ile KO.N.M.Ile 8 8 0 167 134.47 2929.83 -42.843 7.74E-05 Bacteria; 1; Firmicutes; 0.71; Clostridia; 0.68; Clostridiales; 0.65; Ruminococcaceae; 0.21; Ethanoligenens; 0.13;

832 WT.N.M.Ile BD.N.M.Ile 8 3 0 88 134.47 4063.20 -47.538 8.76E-05 Bacteria; 1; Bacteroidetes; 0.98; Bacteroidia; 0.81; Bacteroidales; 0.81; Porphyromonadaceae; 0.7; Paludibacter; 0.35;

59 WT.N.M.Ile BD.N.M.Ile 8 3 39 2427 790.39 108481.71 -70.707 8.76E-05 Bacteria; 1; Bacteroidetes; 0.95; Bacteroidia; 0.47; Bacteroidales; 0.47; Porphyromonadaceae; 0.43; Paludibacter; 0.25;

2282 WT.N.M.Ile BD.N.M.Ile 8 3 6 38 235.38 1830.50 -28.739 8.76E-05 Bacteria; 1; Bacteroidetes; 1; Flavobacteria; 1; Flavobacteriales; 1; Flavobacteriaceae; 1; Cloacibacterium; 0.76;

1665 KO.E.F.Ile WT.E.F.Ile 6 6 133 0 3084.93 134.03 43.627 9.07E-05 Bacteria; 1; Verrucomicrobia; 1; Verrucomicrobiae; 1; Verrucomicrobiales; 1; Verrucomicrobiaceae; 1; Akkermansia; 1;

1069 KO.E.F.Ile WT.E.F.Ile 6 6 355 0 8018.45 134.03 57.357 9.07E-05 Bacteria; 1; Bacteroidetes; 0.97; Bacteroidia; 0.63; Bacteroidales; 0.63; Marinilabiaceae; 0.28; Anaerophaga; 0.28;

4350 WT.N.M.Ile KO.N.M.Ile 8 8 1 131 151.29 2327.17 -38.022 9.67E-05 Bacteria; 1; Firmicutes; 0.96; Clostridia; 0.94; Clostridiales; 0.94; Lachnospiraceae; 0.67; Lachnobacterium; 0.08;

63 KO.N.F.Ile WT.N.F.Ile 8 8 548 0 9310.04 134.08 59.502 0.000104 Bacteria; 1; Firmicutes; 0.98; Erysipelotrichia; 0.67; Erysipelotrichales; 0.67; Erysipelotrichaceae; 0.67; Allobaculum; 0.33;

592 KO.N.M.Ile BD.N.M.Ile 8 3 4 38 201.12 1831.75 -30.844 0.000104 Bacteria; 1; Firmicutes; 0.97; Clostridia; 0.96; Clostridiales; 0.95; Ruminococcaceae; 0.94; Pseudoflavonifractor; 0.56;
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Table A.16.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from the

RDP pipeline, at the phylum level (classification confidence 80 %, cluster distance 0.03, "other" threshold 2 %), for samples grouped by SI (ileum

and jejunum) and LI (caecum and colon). For each DA phylum level feature (TAX), the contrast (G1, G2), the number of samples per contrast

group, as well as the raw counts and counts per million (cpm) normalized by library size, per contrast group, are given. Additionally, the

statistical result parameters of edgeR, the logFC and the FDR, for each phylum and contrast are included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Bacillales WT.N.M.SI BD.N.M.SI 11 6 155 0 3809.88 259.49 3.7182 1.95E-25

Mycoplasmatales KO.N.M.LI KO.N.M.SI 16 11 0 1757 266.29 41112.10 -7.1019 1.15E-15

Mycoplasmatales WT.N.M.LI WT.N.M.SI 15 11 0 2122 267.04 49852.60 -7.3761 1.25E-15

Bacillales KO.N.F.SI KO.E.F.SI 11 6 0 641 270.16 29216.74 -6.5912 1.37E-15

Actinomycetales WT.N.M.LI WT.N.M.SI 15 11 0 303 267.04 7198.46 -4.5923 6.07E-15

Enterobacteriales WT.E.M.LI WT.E.M.SI 12 6 0 412 268.32 18611.89 -5.9502 9.81E-14

Enterobacteriales WT.N.M.LI WT.N.M.SI 15 11 0 336 267.04 8386.51 -4.8084 2.80E-13

Pseudomonadales WT.N.M.LI WT.N.M.SI 15 11 0 726 267.04 17805.59 -5.8921 2.80E-13

Pseudomonadales WT.E.M.LI WT.E.M.SI 12 6 0 919 268.32 41118.45 -7.0923 3.94E-13

Pasteurellales WT.N.F.SI BD.N.F.SI 11 6 0 146 269.21 6867.84 -4.5132 9.35E-13

Enterobacteriales KO.N.M.LI KO.N.M.SI 16 11 0 296 266.29 7261.28 -4.6060 9.66E-13

Pasteurellales KO.N.F.SI BD.N.F.SI 11 6 0 146 270.16 6867.84 -4.5092 9.90E-13

Actinomycetales WT.N.M.SI KO.N.M.SI 11 11 303 0 7198.46 260.50 4.6248 1.40E-11

Campylobacterales WT.N.M.LI WT.N.M.SI 15 11 93026 530 1664925.14 12244.29 7.0826 1.58E-10

Verrucomicrobiales KO.N.F.SI KO.E.F.SI 11 6 46 1335 1403.36 59243.55 -5.3673 4.45E-10

Campylobacterales KO.E.M.LI KO.E.M.SI 12 6 73522 9 1655835.35 665.68 11.2166 1.21E-09

Mycoplasmatales WT.N.F.SI WT.E.F.SI 11 6 0 683 269.21 30502.27 -6.6577 1.36E-09

Bacillales WT.E.F.SI KO.E.F.SI 6 6 0 641 269.52 29216.74 -6.5937 1.65E-09

Verrucomicrobiales WT.E.F.SI KO.E.F.SI 6 6 0 1335 269.52 59243.55 -7.6130 1.65E-09

Bacillales KO.E.F.LI KO.E.F.SI 6 6 0 641 263.54 29216.74 -6.6224 2.32E-09

Desulfovibrionales KO.E.M.LI KO.E.M.SI 12 6 0 383 265.97 15783.82 -5.7261 2.58E-09

Campylobacterales WT.E.M.LI WT.E.M.SI 12 6 63144 21 1415414.82 1179.07 10.1863 4.04E-09

Bacillales WT.N.M.LI WT.N.M.SI 15 11 0 155 267.04 3809.88 -3.6812 6.96E-09

Xanthomonadales WT.N.M.LI WT.N.M.SI 15 11 0 91 267.04 2502.79 -3.0699 7.20E-09

Lactobacillales WT.N.M.LI WT.E.M.LI 15 12 2448 0 43253.13 268.32 7.1652 1.53E-08

Desulfovibrionales KO.N.M.SI KO.E.M.SI 11 6 0 383 260.50 15783.82 -5.7522 1.78E-08

Lactobacillales WT.E.M.LI WT.E.M.SI 12 6 0 1080 268.32 48641.60 -7.3344 2.16E-08

Chloroplast WT.N.F.LI WT.N.F.SI 8 11 0 2677 269.43 65625.45 -7.7609 3.29E-08

Deferribacterales WT.N.M.LI WT.E.M.LI 15 12 0 251 267.04 5580.13 -4.2268 1.17E-07

Desulfovibrionales WT.E.F.SI KO.E.F.SI 6 6 0 1110 269.52 47247.72 -7.2871 1.18E-07
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Table A.17.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from the

RDP pipeline, at the class level (classification confidence 80 %, cluster distance 0.03, "other" threshold 2 %), for samples grouped by SI (ileum

and jejunum) and LI (caecum and colon). For each DA order level feature (TAX), the contrast (G1, G2), the number of samples per contrast

group, as well as the raw counts and counts per million (cpm) normalized by library size, per contrast group, are given. Additionally, the

statistical result parameters of edgeR, the logFC and the FDR, for each class and contrast are included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Mollicutes KO.N.M.LI KO.N.M.SI 16 11 0 1757 249.07 39438.49 -7.1387 1.37E-15

Mollicutes WT.N.M.LI WT.N.M.SI 15 11 0 2149 248.03 47626.61 -7.4161 1.47E-15

Gammaproteobacteria WT.N.M.LI WT.N.M.SI 15 11 0 1167 248.03 26996.92 -6.5975 2.21E-13

Actinobacteria WT.N.M.LI WT.N.M.SI 15 11 0 303 248.03 7004.14 -4.6561 7.29E-13

Gammaproteobacteria WT.E.M.LI WT.E.M.SI 12 6 0 1355 250.64 57759.03 -7.6807 1.56E-12

Epsilonproteobacteria WT.N.M.LI WT.N.M.SI 15 11 93026 530 1555530.98 11173.39 7.1159 3.90E-11

Epsilonproteobacteria KO.E.M.LI KO.E.M.SI 12 6 73522 9 1530945.83 626.01 11.1971 3.05E-10

Verrucomicrobiae KO.N.F.SI KO.E.F.SI 11 6 46 1335 1326.29 53667.10 -5.3099 1.21E-09

Epsilonproteobacteria WT.E.M.LI WT.E.M.SI 12 6 63144 21 1327280.16 1129.42 10.1571 1.79E-09

Mollicutes WT.N.F.SI WT.E.F.SI 11 6 0 683 253.89 28342.30 -6.6382 1.91E-09

Verrucomicrobiae WT.E.F.SI KO.E.F.SI 6 6 0 1335 253.81 53667.10 -7.5588 3.80E-09

Gammaproteobacteria WT.E.M.LI KO.E.M.LI 12 12 0 744 250.64 14628.35 -5.7026 8.52E-09

Deltaproteobacteria KO.E.M.LI KO.E.M.SI 12 6 0 386 245.96 14157.43 -5.6812 9.17E-09

Chloroplast WT.N.F.LI WT.N.F.SI 8 11 0 2677 251.27 61284.46 -7.7629 3.24E-08

Bacilli WT.E.M.LI WT.E.M.SI 12 6 0 1098 250.64 47142.00 -7.3878 3.47E-08

Bacilli WT.N.M.LI WT.E.M.LI 15 12 2451 0 39902.02 250.64 7.1475 4.81E-08

Deltaproteobacteria KO.N.M.SI KO.E.M.SI 11 6 0 386 243.88 14157.43 -5.6920 6.36E-08

Deferribacteres WT.N.M.LI WT.E.M.LI 15 12 0 251 248.03 5224.73 -4.2376 1.35E-07

Verrucomicrobiae KO.N.F.LI KO.E.F.LI 8 6 0 325 248.46 13534.36 -5.6007 1.59E-07

Bacilli WT.E.M.LI KO.E.M.LI 12 12 0 1432 250.64 27246.59 -6.5980 2.16E-07

Verrucomicrobiae KO.E.M.LI KO.E.M.SI 12 6 0 147 245.96 5540.33 -4.3363 3.72E-07

Deltaproteobacteria WT.E.F.SI KO.E.F.SI 6 6 0 1134 253.81 45194.49 -7.3111 3.83E-07

Clostridia WT.N.F.LI WT.N.F.SI 8 11 27694 424 866431.47 9582.60 6.4932 3.83E-07

Bacteroidia WT.N.F.LI WT.N.F.SI 8 11 1223 0 38294.12 253.89 7.0716 3.83E-07

Deltaproteobacteria KO.E.F.LI KO.E.F.SI 6 6 0 1134 244.10 45194.49 -7.3610 6.48E-07

Verrucomicrobiae KO.N.M.SI KO.E.M.SI 11 6 0 147 243.88 5540.33 -4.3471 1.33E-06

Epsilonproteobacteria KO.N.F.LI KO.N.F.SI 8 11 367 0 11689.94 251.46 5.3748 2.28E-06

Epsilonproteobacteria KO.N.M.LI KO.N.M.SI 16 11 75351 2136 1182034.57 46718.09 4.6601 3.25E-06

Gammaproteobacteria WT.N.M.SI BD.N.M.SI 11 6 1167 0 26996.92 243.53 6.6212 3.96E-06

Mollicutes WT.N.M.SI BD.N.M.SI 11 6 2149 6 47626.61 500.55 6.4953 3.96E-06
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Table A.18.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from the

RDP pipeline, at the order level (classification confidence 80 %, cluster distance 0.03, "other" threshold 2 %), for samples grouped by SI (ileum

and jejunum) and LI (caecum and colon). For each DA order level feature (TAX), the contrast (G1, G2), the number of samples per contrast

group, as well as the raw counts and counts per million (cpm) normalized by library size, per contrast group, are given. Additionally, the

statistical result parameters of edgeR, the logFC and the FDR, for each order and contrast are included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Verrucomicrobia KO.N.F.SI KO.E.F.SI 11 6 0 1335 208.41 37890.04 -7.3430 7.74E-17

Tenericutes KO.N.M.LI KO.N.M.SI 16 11 0 1741 216.65 34026.50 -7.1299 3.77E-16

Tenericutes WT.N.M.LI WT.N.M.SI 15 11 0 2125 216.82 39688.00 -7.3508 6.01E-16

Actinobacteria WT.N.M.LI WT.N.M.SI 15 11 0 303 216.82 6136.65 -4.6613 8.02E-13

Verrucomicrobia WT.E.F.SI KO.E.F.SI 6 6 0 1335 193.53 37890.04 -7.4880 2.92E-10

Verrucomicrobia KO.N.F.LI KO.E.F.LI 8 6 0 325 215.98 11905.49 -5.6205 1.37E-08

Tenericutes WT.N.F.SI WT.E.F.SI 11 6 0 683 209.48 14513.76 -5.9529 2.18E-08

Cyanobacteria/Chloroplast WT.N.F.LI WT.N.F.SI 8 11 0 2677 216.71 50793.25 -7.7070 2.30E-08

Verrucomicrobia KO.E.M.LI KO.E.M.SI 12 6 0 147 218.23 5428.51 -4.4813 5.47E-08

Verrucomicrobia KO.N.M.SI KO.E.M.SI 11 6 0 147 213.01 5428.51 -4.5144 1.30E-07

Deferribacteres WT.N.M.LI WT.E.M.LI 15 12 0 251 216.82 4661.96 -4.2692 1.70E-07

Tenericutes KO.N.M.SI KO.E.M.SI 11 6 1741 0 34026.50 221.83 7.1001 4.41E-07

Tenericutes WT.N.M.SI BD.N.M.SI 11 6 2125 0 39688.00 223.69 7.3150 4.81E-07

Verrucomicrobia WT.E.F.LI KO.E.F.LI 6 6 0 325 216.19 11905.49 -5.6193 8.81E-07

Tenericutes KO.N.M.SI BD.N.M.SI 11 6 1741 0 34026.50 223.69 7.0931 9.06E-07

TM7 KO.N.F.LI KO.E.F.LI 8 6 0 190 215.98 7019.73 -4.8606 1.60E-06

Proteobacteria WT.N.M.LI WT.N.M.SI 15 11 93458 1834 1368628.91 33217.44 5.3635 2.69E-06

TM7 KO.N.F.SI KO.E.F.SI 11 6 0 126 208.41 3641.71 -3.9855 6.30E-06

TM7 WT.N.F.SI KO.N.F.SI 11 11 157 0 3276.98 208.41 3.8183 6.40E-06

Actinobacteria WT.N.M.SI WT.E.M.SI 11 6 303 0 6136.65 226.49 4.6056 8.44E-06

Cyanobacteria/Chloroplast KO.N.F.LI KO.N.F.SI 8 11 0 640 215.98 12573.07 -5.6990 1.36E-05

Tenericutes WT.E.F.SI KO.E.F.SI 6 6 683 0 14513.76 206.74 5.9687 1.96E-05

Tenericutes WT.E.M.LI WT.E.M.SI 12 6 0 128 216.80 4884.05 -4.3365 2.52E-05

TM7 WT.E.F.LI KO.E.F.LI 6 6 0 190 216.19 7019.73 -4.8594 2.96E-05

Tenericutes WT.E.F.LI WT.E.F.SI 6 6 0 683 216.19 14513.76 -5.9069 4.73E-05

Cyanobacteria/Chloroplast KO.N.F.SI KO.E.F.SI 11 6 640 0 12573.07 206.74 5.7591 6.59E-05

TM7 WT.N.F.LI WT.N.F.SI 8 11 0 157 216.71 3276.98 -3.7616 8.45E-05

Verrucomicrobia WT.E.M.SI KO.E.M.SI 6 6 0 147 226.49 5428.51 -4.4335 0.000116

Deferribacteres WT.N.M.LI KO.N.M.LI 15 16 0 138 216.82 2072.77 -3.1097 0.000122

Actinobacteria KO.N.M.LI KO.N.M.SI 16 11 0 71 216.65 1332.54 -2.5165 0.00016
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Table A.19.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from the

RDP pipeline, at the family level (classification confidence 80 %, cluster distance 0.03, "other" threshold 2 %), for samples grouped by SI (ileum

and jejunum) and LI (caecum and colon). For each DA family level feature (TAX), the contrast (G1, G2), the number of samples per contrast

group, as well as the raw counts and counts per million (cpm) normalized by library size, per contrast group, are given. Additionally, the

statistical result parameters of edgeR, the logFC and the FDR, for each family and contrast are included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Staphylococcaceae KO.N.F.SI KO.E.F.SI 11 6 0 641 313.17 34447.82 -6.6199 2.04E-20

Mycoplasmataceae KO.N.M.LI KO.N.M.SI 16 11 0 1757 297.12 47461.42 -7.1502 9.52E-16

Mycoplasmataceae WT.N.M.LI WT.N.M.SI 15 11 0 2122 302.26 56370.19 -7.3760 1.51E-15

Prevotellaceae WT.N.M.LI KO.N.M.LI 15 16 0 2379 302.26 42101.82 -6.9555 3.83E-15

Propionibacteriaceae WT.N.M.LI WT.N.M.SI 15 11 0 215 302.26 6113.16 -4.1803 5.84E-14

Enterobacteriaceae WT.E.M.LI WT.E.M.SI 12 6 0 412 303.76 21246.02 -5.9639 9.44E-14

Enterobacteriaceae WT.N.M.LI WT.N.M.SI 15 11 0 336 302.26 9478.32 -4.8086 3.64E-13

Pseudomonadaceae WT.N.M.LI WT.N.M.SI 15 11 0 725 302.26 20081.56 -5.8886 4.44E-13

Pseudomonadaceae WT.E.M.LI WT.E.M.SI 12 6 0 918 303.76 46829.06 -7.1024 5.69E-13

Enterobacteriaceae KO.N.M.LI KO.N.M.SI 16 11 0 296 297.12 8287.83 -4.6383 7.64E-13

Pasteurellaceae KO.N.F.SI BD.N.F.SI 11 6 0 146 313.17 7872.65 -4.4997 7.64E-13

Pasteurellaceae WT.N.F.SI BD.N.F.SI 11 6 0 146 314.44 7872.65 -4.4937 8.29E-13

Prevotellaceae KO.N.F.LI KO.N.F.SI 8 11 2225 0 79880.64 313.17 7.8325 1.06E-12

Staphylococcaceae KO.E.F.LI KO.E.F.SI 6 6 0 641 279.46 34447.82 -6.7646 1.47E-12

Enterococcaceae WT.E.F.SI KO.E.F.SI 6 6 4841 0 230530.90 312.67 9.3633 1.79E-12

Staphylococcaceae WT.E.F.SI KO.E.F.SI 6 6 0 641 307.24 34447.82 -6.6451 1.79E-12

Enterococcaceae WT.E.F.LI WT.E.F.SI 6 6 0 4841 294.53 230530.90 -9.4398 2.43E-12

Enterococcaceae WT.N.F.SI KO.N.F.SI 11 11 701 0 20513.58 313.17 5.8732 2.02E-11

Helicobacteraceae WT.N.M.LI WT.N.M.SI 15 11 93026 530 1932421.62 13921.79 7.1121 5.21E-11

Propionibacteriaceae WT.N.M.SI KO.N.M.SI 11 11 215 0 6113.16 296.08 4.2059 7.89E-11

Helicobacteraceae KO.E.M.LI KO.E.M.SI 12 6 73521 9 1922255.76 778.77 11.2115 4.86E-10

Verrucomicrobiaceae KO.N.F.SI KO.E.F.SI 11 6 46 1335 1669.67 67775.16 -5.3180 8.16E-10

Prevotellaceae WT.N.F.LI KO.N.F.LI 8 8 0 2225 303.15 79880.64 -7.8740 1.38E-09

Verrucomicrobiaceae WT.E.F.SI KO.E.F.SI 6 6 0 1335 307.24 67775.16 -7.6209 1.43E-09

Helicobacteraceae WT.E.M.LI WT.E.M.SI 12 6 63144 21 1637626.27 1347.40 10.2048 1.76E-09

Mycoplasmataceae WT.N.F.SI WT.E.F.SI 11 6 0 683 314.44 33341.17 -6.5677 2.95E-09

Xanthomonadaceae WT.N.M.LI WT.N.M.SI 15 11 0 91 302.26 2943.08 -3.1202 5.59E-09

Bacteroidaceae WT.E.M.LI KO.E.M.LI 12 12 1490 0 35970.35 305.35 6.7155 9.48E-09

Lactobacillaceae WT.E.M.LI WT.E.M.SI 12 6 0 1039 303.76 53789.40 -7.3017 1.01E-08

Enterococcaceae WT.N.F.LI WT.N.F.SI 8 11 0 701 303.15 20513.58 -5.9146 1.08E-08
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Table A.20.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from the

RDP pipeline, at the genus level (classification confidence 80 %, cluster distance 0.03, "other" threshold 2 %), for samples grouped by SI (ileum

and jejunum) and LI (caecum and colon). For each DA the genus level feature (TAX), the contrast (G1, G2), the number of samples per contrast

group, as well as the raw counts and counts per million (cpm) normalized by library size, per contrast group, are given. Additionally, the

statistical result parameters of edgeR, the logFC and the FDR, for each genus and contrast are included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Staphylococcus KO.N.F.SI KO.E.F.SI 11 6 0 641 471.24 50387.96 -6.5745 3.60E-21

Ureaplasma WT.N.F.SI WT.E.F.SI 11 6 0 448 471.65 34558.99 -6.0307 2.09E-19

Ureaplasma KO.N.M.SI BD.N.M.SI 11 6 0 0 467.03 463.55 0.0097 3.58E-19

Ureaplasma WT.N.M.SI BD.N.M.SI 11 6 0 0 465.19 463.55 0.0045 3.58E-19

Ureaplasma WT.N.M.LI WT.E.M.LI 15 12 0 0 467.71 467.34 0.0010 3.58E-19

Staphylococcus KO.N.M.SI BD.N.M.SI 11 6 0 0 467.03 463.55 0.0097 1.39E-18

Staphylococcus WT.N.M.SI BD.N.M.SI 11 6 0 0 465.19 463.55 0.0045 1.39E-18

Staphylococcus WT.N.M.LI WT.E.M.LI 15 12 0 0 467.71 467.34 0.0010 1.39E-18

Mycoplasma WT.N.M.LI WT.N.M.SI 15 11 0 2103 467.71 88665.31 -7.3986 8.68E-15

Propionibacterium WT.N.M.LI WT.N.M.SI 15 11 0 215 467.71 9545.34 -4.1910 3.20E-13

Lactococcus WT.N.M.LI KO.N.M.LI 15 16 659 0 20964.07 465.42 5.3276 4.80E-13

Staphylococcus WT.E.F.SI KO.E.F.SI 6 6 0 641 466.72 50387.96 -6.5870 9.12E-13

Enterococcus WT.E.F.SI KO.E.F.SI 6 6 4836 0 369625.90 471.02 9.4484 9.12E-13

Staphylococcus KO.E.F.LI KO.E.F.SI 6 6 0 641 453.72 50387.96 -6.6230 1.13E-12

Enterococcus WT.E.F.LI WT.E.F.SI 6 6 0 4836 453.66 369625.90 -9.4965 1.47E-12

Helicobacter WT.N.M.LI WT.N.M.SI 15 11 92834 528 2911106.30 22321.86 7.0228 1.60E-12

Ureaplasma WT.E.F.SI KO.E.F.SI 6 6 448 0 34558.99 471.02 6.0324 4.61E-12

Ureaplasma WT.E.F.LI WT.E.F.SI 6 6 0 448 453.66 34558.99 -6.0805 4.66E-12

Pseudomonas WT.E.M.LI WT.E.M.SI 12 6 0 892 467.34 69994.28 -7.0587 1.20E-11

Enterococcus WT.N.F.SI KO.N.F.SI 11 11 701 0 30202.54 471.24 5.8372 2.05E-11

Mycoplasma KO.N.M.LI KO.N.M.SI 16 11 33 1757 1394.34 74640.71 -5.6795 7.31E-11

Helicobacter KO.E.M.LI KO.E.M.SI 12 6 73314 23 2876899.82 2270.23 10.2711 9.24E-11

Lactococcus WT.N.M.LI WT.E.M.LI 15 12 659 0 20964.07 467.34 5.3223 1.40E-10

Streptococcus KO.N.F.SI BD.N.F.SI 11 6 0 712 471.24 55833.48 -6.7223 2.02E-10

Helicobacter WT.E.M.LI WT.E.M.SI 12 6 63012 43 2469005.00 3831.18 9.3107 7.27E-10

Odoribacter KO.N.F.LI BD.N.F.LI 8 3 0 68 453.73 10768.16 -4.4026 8.52E-10

Streptococcus WT.N.F.SI KO.N.F.SI 11 11 776 0 33699.95 471.24 5.9948 9.96E-10

Butyricicoccus KO.N.F.LI KO.N.F.SI 8 11 202 0 11843.12 471.24 4.4911 2.60E-09

Oscillibacter KO.N.F.LI KO.N.F.SI 8 11 219 0 12828.54 471.24 4.6056 1.09E-08

Enterococcus WT.N.F.LI WT.N.F.SI 8 11 0 701 453.90 30202.54 -5.8853 1.11E-08
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Table A.21.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from the

RDP pipeline, at the OTU level (classification confidence 80 %, cluster distance 0.03, "other" threshold 2 %), for samples grouped by SI (ileum

and jejunum) and LI (caecum and colon). For each DA the OTU level feature (TAX), the contrast (G1, G2), the number of samples per contrast

group, as well as the raw counts and counts per million (cpm) normalized by library size, per contrast group, are given. Additionally, the

statistical result parameters of edgeR, the logFC and the FDR for each OTU and contrast are included. For each OTU, the RDP classification

result and confidence is available from the table.
TAX G1 G2

number

samples G1

number

samples G2

raw counts

G1

raw counts

G2

cpm G1 cpm G2 logFC FDR Domain
Domain

Prob
Phylum

Phylum

Prob
Class

Class

Prob
Order

Order

Prob
Familiy

Family

Prob
Genus

Genus

Prob

459 WT.N.M.LI BD.N.M.LI 15 6 0 147 59.93 1528.41 -4.5097 4.98E-53 Bacteria; 1; Firmicutes; 0.99; Clostridia; 0.99; Clostridiales; 0.99; Ruminococcaceae; 0.99; Oscillibacter; 0.54;

143 KO.N.F.LI BD.N.F.LI 8 3 0 143 59.92 2915.59 -5.4382 2.69E-51 Bacteria; 1; Firmicutes; 0.98; Clostridia; 0.96; Clostridiales; 0.96; Geosporobacter; 0.21;

271 WT.N.M.LI BD.N.M.LI 15 6 1 2936 63.92 29389.33 -8.6852 1.11E-48 Bacteria; 1; Firmicutes; 0.95; Clostridia; 0.94; Clostridiales; 0.92; Lachnospiraceae; 0.81; Marvinbryantia; 0.23;

271 KO.N.M.LI BD.N.M.LI 16 6 1 2936 63.68 29389.33 -8.6902 7.35E-44 Bacteria; 1; Firmicutes; 0.95; Clostridia; 0.94; Clostridiales; 0.92; Lachnospiraceae; 0.81; Marvinbryantia; 0.23;

143 BD.N.F.SI BD.N.F.LI 6 3 0 143 59.94 2915.59 -5.4379 9.06E-43 Bacteria; 1; Firmicutes; 0.98; Clostridia; 0.96; Clostridiales; 0.96; Geosporobacter; 0.21;

1414 KO.N.M.LI KO.N.M.SI 16 11 3 0 71.17 59.94 0.2223 8.70E-41 Bacteria; 0.99; Bacteroidetes; 0.97; Sphingobacteria; 0.68; Sphingobacteriales; 0.68; Sphingobacteriaceae; 0.3; Pseudosphingobacterium; 0.3;

143 WT.N.F.LI BD.N.F.LI 8 3 15 143 172.31 2915.59 -4.0231 2.49E-39 Bacteria; 1; Firmicutes; 0.98; Clostridia; 0.96; Clostridiales; 0.96; Geosporobacter; 0.21;

354 WT.N.F.LI BD.N.F.LI 8 3 2 94 74.91 1936.78 -4.5605 3.58E-37 Bacteria; 1; Firmicutes; 0.99; Clostridia; 0.98; Clostridiales; 0.98; Lachnospiraceae; 0.77; Lachnobacterium; 0.33;

354 KO.N.F.LI BD.N.F.LI 8 3 5 94 97.34 1936.78 -4.2126 1.03E-34 Bacteria; 1; Firmicutes; 0.99; Clostridia; 0.98; Clostridiales; 0.98; Lachnospiraceae; 0.77; Lachnobacterium; 0.33;

785 WT.N.F.LI BD.N.F.LI 8 3 0 124 59.92 2535.45 -5.2373 9.39E-34 Bacteria; 1; Firmicutes; 0.92; Clostridia; 0.92; Clostridiales; 0.92; Ruminococcaceae; 0.61; Sporobacter; 0.19;

785 KO.N.F.LI BD.N.F.LI 8 3 0 124 59.92 2535.45 -5.2373 9.39E-34 Bacteria; 1; Firmicutes; 0.92; Clostridia; 0.92; Clostridiales; 0.92; Ruminococcaceae; 0.61; Sporobacter; 0.19;

354 BD.N.F.SI BD.N.F.LI 6 3 0 94 59.94 1936.78 -4.8498 4.74E-33 Bacteria; 1; Firmicutes; 0.99; Clostridia; 0.98; Clostridiales; 0.98; Lachnospiraceae; 0.77; Lachnobacterium; 0.33;

799 WT.N.M.LI BD.N.M.LI 15 6 14 196 115.87 2017.89 -4.0372 1.01E-32 Bacteria; 1; Bacteroidetes; 1; Bacteroidia; 0.73; Bacteroidales; 0.73; Rikenellaceae; 0.73; Alistipes; 0.73;

271 WT.N.F.LI BD.N.F.LI 8 3 0 8696 59.92 173697.13 -11.3312 2.65E-32 Bacteria; 1; Firmicutes; 0.95; Clostridia; 0.94; Clostridiales; 0.92; Lachnospiraceae; 0.81; Marvinbryantia; 0.23;

271 KO.N.F.LI BD.N.F.LI 8 3 0 8696 59.92 173697.13 -11.3312 2.65E-32 Bacteria; 1; Firmicutes; 0.95; Clostridia; 0.94; Clostridiales; 0.92; Lachnospiraceae; 0.81; Marvinbryantia; 0.23;

587 WT.N.F.LI BD.N.F.LI 8 3 0 116 59.92 2375.88 -5.1438 3.63E-32 Bacteria; 1; Firmicutes; 0.93; Clostridia; 0.8; Clostridiales; 0.78; Ruminococcaceae; 0.18; Pseudoflavonifractor; 0.1;

587 KO.N.F.LI BD.N.F.LI 8 3 0 116 59.92 2375.88 -5.1438 3.63E-32 Bacteria; 1; Firmicutes; 0.93; Clostridia; 0.8; Clostridiales; 0.78; Ruminococcaceae; 0.18; Pseudoflavonifractor; 0.1;

1414 WT.N.M.LI BD.N.M.LI 15 6 17 132 127.86 1378.56 -3.3562 4.76E-32 Bacteria; 0.99; Bacteroidetes; 0.97; Sphingobacteria; 0.68; Sphingobacteriales; 0.68; Sphingobacteriaceae; 0.3; Pseudosphingobacterium; 0.3;

586 WT.N.F.LI BD.N.F.LI 8 3 0 199 59.92 4031.98 -5.9050 7.16E-32 Bacteria; 1; Firmicutes; 0.98; Clostridia; 0.97; Clostridiales; 0.97; Anaerosporobacter; 0.34;

586 KO.N.F.LI BD.N.F.LI 8 3 0 199 59.92 4031.98 -5.9050 7.16E-32 Bacteria; 1; Firmicutes; 0.98; Clostridia; 0.97; Clostridiales; 0.97; Anaerosporobacter; 0.34;

271 BD.N.M.SI KO.N.M.SI 6 11 2512 3 25153.75 76.28 8.2305 1.08E-28 Bacteria; 1; Firmicutes; 0.95; Clostridia; 0.94; Clostridiales; 0.92; Lachnospiraceae; 0.81; Marvinbryantia; 0.23;

1065 WT.N.M.LI BD.N.M.LI 15 6 0 108 59.93 1138.81 -4.0876 2.54E-28 Bacteria; 1; Firmicutes; 0.86; Clostridia; 0.86; Clostridiales; 0.86; Peptococcus; 0.36;

2901 WT.N.F.LI BD.N.F.LI 8 3 0 119 59.92 2436.02 -5.1797 4.17E-27 Bacteria; 1; Firmicutes; 1; Clostridia; 1; Clostridiales; 1; Anaerosporobacter; 0.1;

2901 KO.N.F.LI BD.N.F.LI 8 3 0 119 59.92 2436.02 -5.1797 4.17E-27 Bacteria; 1; Firmicutes; 1; Clostridia; 1; Clostridiales; 1; Anaerosporobacter; 0.1;

1163 WT.N.M.LI BD.N.M.LI 15 6 0 93 59.93 988.97 -3.8855 1.88E-26 Bacteria; 1; Firmicutes; 1; Clostridia; 0.98; Clostridiales; 0.98; Lachnospiraceae; 0.96; Coprococcus; 0.42;

799 KO.N.M.LI BD.N.M.LI 16 6 5 196 78.66 2017.89 -4.5552 1.42E-24 Bacteria; 1; Bacteroidetes; 1; Bacteroidia; 0.73; Bacteroidales; 0.73; Rikenellaceae; 0.73; Alistipes; 0.73;

785 WT.N.M.LI BD.N.M.LI 15 6 0 41 59.93 469.51 -2.8227 3.45E-24 Bacteria; 1; Firmicutes; 0.92; Clostridia; 0.92; Clostridiales; 0.92; Ruminococcaceae; 0.61; Sporobacter; 0.19;

2901 WT.N.M.LI BD.N.M.LI 15 6 0 43 59.93 489.49 -2.8819 3.69E-24 Bacteria; 1; Firmicutes; 1; Clostridia; 1; Clostridiales; 1; Anaerosporobacter; 0.1;

2053 KO.N.M.LI KO.N.M.SI 16 11 0 1256 59.93 6903.70 -6.6796 4.29E-24 Bacteria; 1; Firmicutes; 0.71; Clostridia; 0.68; Clostridiales; 0.65; Ruminococcaceae; 0.21; Ethanoligenens; 0.13;

1335 WT.N.M.LI BD.N.M.LI 15 6 0 198 59.93 2037.87 -4.9230 2.91E-23 Bacteria; 0.99; Firmicutes; 0.83; Clostridia; 0.83; Clostridiales; 0.83; Peptococcus; 0.36;
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A.1. Sample extraction protocol of GI mouse study



Protokoll Mikrobiom Tierversuch 
mdr 2 -/- und mdr 2 +/+ 
Probenentnahme bei 4 Wochen und 8 Wochen 
 
Proben: 
 
1 Dickdarm: 
Gesamten Dickdarm mit Ligaturen abbinden und entfernen 
 
Inzision des Dickdarm und gesamten Darminhalt in steriles Eppendorfröhrchen geben und 
einfrieren. 
 
Anschl. Ligaturen lösen  und Dickdarm längs aufschneiden. Dickdarm in 10ml sterilem NaCl 
0,9% 2xig waschen und von Stuhlresten befreien (nur in NaCl Lösung spülen, nicht aber mit 
Instrument ausstreichen!) . Dickdarm in einem Teil einfrieren. 
 
2 Dünndarm: 
 
Dünndarm mit Ligaturen in proximalen und distalen Dünndarm unterteilen und abbinden  und 
prox. und distalen in einem Teil entfernen. 
 
a. Inzision des prox. Dünndarm und gesamten Darminhalt in steriles Eppendorfröhrchen 
geben und einfrieren. 
Anschl. Ligaturen lösen  und prox. Dünndarm längs aufschneiden. Dünndarm in 10ml 
sterilem NaCl 0,9% 2xig waschen und von Stuhlresten befreien (nur in NaCl Lösung spülen, 
nicht aber mit Instrument ausstreichen!). Prox. Dünndarm in einem Teil einfrieren.  
 
b. Inzision des dist. Dünndarm und Darminhalt in steriles Eppendorfröhrchen geben und 
einfrieren. 
Anschl. Ligaturen lösen  und dist. Dünndarm längs aufschneiden. Dünndarm in 10ml sterilem 
NaCl 0,9% 2xig waschen und von Stuhlresten befreien (nur in NaCl Lösung spülen, nicht 
aber mit Instrument ausstreichen!) Dist. Dünndarm in einem Teil einfrieren 
 
3 Leber: 
Einen Leberteil in sterilem Eppendorf einfrieren. 
 
4. Stuhl  
 
Bei Tieren die in Woche 8 getötet werden in Woche 4 eine Stuhlprobe entnehmen und in 
steriles Eppendorf geben und einfrieren. 
 
Zwischen allen Arbeitsschritten Instrumente mit Wasser von Stuhlresten reinigen und anschl. 
abflammen.  
 
Alle Proben bei -20°C einfreieren. 
 



A.2. Surgical procedures and mice treatment protocol of GI

mouse study











Appendix B.

Supplementary information metagenome

moss study

183



Table B.1.: Summary of the Kolmogorov-Smirnov test results for the metagenome moss study.

The raw count data of the selected subsystems for metagenomes of the S. magellanicum, higher

plants and peat soils, were tested for normal distribution using the one-sample Kolmogorov-

Smirnov test.
Metagenomes # subsystems p-value statistic

Peat soils 990 < 2.2e-16 0.9368

Higher platns 990 < 2.2e-16 0.9744

S. magellanicum 198 < 2.2e-16 0.9949



Table B.2.: DA functional subsystems (adj. p-values < 0.05) between the S. magellanicum

and higher plant metagenomes, part I. The table summarizes the statistical testing result of

DA feature detection using limma+voom. The detected subsystems are sorted descending,

according the logFC values. Subsystems which were tested as differentially abundant between

both, the S. magellanicum/plant metagenomes and the S. magellanicum/peat soils metagenomes,

are highlighted with bold text.
Subsystmes level 1 Subsystems level 2 LogFC AveExpr t-val p-val Adj. p-val

S. magellanicum/higher plants metagenomes

Stress response Dessication stress -8,52 3,88 -5,73 0,00 0,0007

Dormancy and sporulation Spore DNA protection -5,14 3,24 -4,67 0,00 0,0022

Phages, prophages, transposable elements, plasmids Gene Transfer Agent (GTA) -4,53 8,11 -11,83 0,00 0,0000

Membrane transport Protein secretion system, type IV -3,04 6,74 -9,68 0,00 0,0000

Membrane transport
Protein secretion system,

type VII (chaperone/usher pathway, CU)
-2,30 9,94 -11,28 0,00 0,0000

Cofactors, vitamins, prostetic groups, pigments Coenzyme B -2,25 3,49 -2,60 0,02 0,0473

Clustering-based subsystems
Putative GGDEF domain protein

related to agglutinin secretion
-1,99 6,56 -6,40 0,00 0,0003

Iron acquisition and metabolism Siderophores -1,80 9,24 -6,03 0,00 0,0005

Clustering-based subsystems Hypothetical associated with RecF -1,74 7,76 -12,82 0,00 0,0000

Clustering-based subsystems Tricarboxylate transporter -1,72 10,17 -10,23 0,00 0,0000

Virulence, diesease and defense Invasion and intracellular resistance -1,72 5,76 -4,89 0,00 0,0017

Iron acquisition and metabolism - -1,62 12,76 -4,82 0,00 0,0019

Membrane transport Protein secretion system, type I -1,47 6,63 -7,02 0,00 0,0002

Clustering-based subsystems D-tyrosyl-tRNA(Tyr) deacylase (EC 3.1....) cluster -1,33 8,89 -8,03 0,00 0,0001

Membrane transport - -1,23 13,24 -4,92 0,00 0,0017

Fatty acids, lipids and isoprenoids Triacylglycerols -1,18 7,62 -5,15 0,00 0,0012

Virulence, diesease and defense
Bacteriocins, ribosomally synthesized

antibacterial peptides
-0,99 7,20 -5,11 0,00 0,0013

Carbohydrates Aminosugars -0,98 10,93 -6,54 0,00 0,0003

Membrane transport Protein secretion system, type V -0,84 8,89 -7,12 0,00 0,0002

Cofactors, vitamins, prostetic groups, pigments Coenzyme M -0,73 6,35 -2,80 0,02 0,0351

Clustering-based subsystems Oxidative stress -0,67 7,22 -4,06 0,00 0,0054

Secondary metabolism
Bacterial cytostatics,

differentiation factors and antibiotics
-0,64 7,47 -3,10 0,01 0,0229

Clustering-based subsystems
Biosynthesis of galactoglycans

and related lipopolysacharides
-0,63 12,26 -4,91 0,00 0,0017

Clustering-based subsystems
Probably organic hydroperoxide

resistance related hypothetical protein
-0,62 8,55 -4,33 0,00 0,0036

Clustering-based subsystems Probably Ybbk-related hypothetical membrane proteins -0,59 8,43 -5,38 0,00 0,0010

Stress response Periplasmic stress -0,55 9,62 -5,73 0,00 0,0007

Clustering-based subsystems Three hypotheticals linked to lipoprotein biosynthesis -0,55 9,02 -7,05 0,00 0,0002

Stress response - -0,51 11,43 -9,31 0,00 0,0000

Clustering-based subsystems Hypothetical in lysine biosynthetic cluster -0,51 9,79 -7,87 0,00 0,0001

Carbohydrates Sugar alcohols -0,46 12,46 -3,99 0,00 0,0059

Motility and chemotaxis - -0,46 11,64 -2,86 0,02 0,0332

Clustering-based subsystems Pyruvate kinase associated cluster -0,45 9,63 -6,74 0,00 0,0002

Clustering-based subsystems
Hypothetical lipase related

to phosphatidate metabolism
-0,44 8,92 -4,26 0,00 0,0040

Nucleosides and nucleotides Detoxification -0,43 10,37 -7,46 0,00 0,0001

Clustering-based subsystems DNA polymerase III epsilon cluster -0,41 9,52 -5,20 0,00 0,0012

Motility and chemotaxis Flagellar motility in Prokaryota -0,40 12,72 -3,84 0,00 0,0074

Cofactors, vitamins, prostetic groups, pigments Riboflavin, FMN, FAD -0,39 10,69 -7,33 0,00 0,0001

Virulence, diesease and defense - -0,39 11,86 -5,46 0,00 0,0009

Virulence, diesease and defense Adhesion -0,39 8,89 -3,83 0,00 0,0074

Clustering-based subsystems
Putative asociate of RNA

polymerase sigma-54 factor rpoN
-0,38 10,57 -3,98 0,00 0,0060

Clustering-based subsystems recX and regulatory cluster -0,37 8,68 -3,35 0,01 0,0154

Miscellaneous - -0,31 12,18 -6,60 0,00 0,0002

Regulation and cell signaling - -0,30 13,34 -5,77 0,00 0,0007

Clustering-based subsystems tRNA sulfuration -0,25 9,26 -3,27 0,01 0,0175

Cell wall and capsule - -0,23 13,52 -3,39 0,01 0,0146

Clustering-based subsystems Probably GTP or GMP signaling related -0,22 10,98 -3,00 0,01 0,0266

Cell wall and capsule Gram-positive cell wall components -0,21 10,20 -2,70 0,02 0,0415

Respiration - -0,20 12,99 -3,27 0,01 0,0175

Clustering-based subsystems
Ribosomal protein L28P relates to a set

of uncharacterized proteins
-0,20 10,26 -3,02 0,01 0,0258
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Table B.3.: DA functional subsystems (adj. p-values < 0.05) between the S. magellanicum

and higher plant metagenomes, part I. The table summarizes the statistical testing result of

DA feature detection using limma+voom. The detected subsystems are sorted descending,

according the logFC values. Subsystems which were tested as differentially abundant between

both, the S. magellanicum/plant metagenomes and the S. magellanicum/peat soils, metagenomes

are highlighted with bold text.
Subsystmes level 1 Subsystems level 2 LogFC AveExpr t-val p-val Adj. p-val

S. magellanicum/higher plants metagenomes

Photosynthesis Electron transport and photophosphorylation 1,90 7,48 9,00 0,00 0,0000

Photosynthesis Light-harvesting complexes 1,76 5,03 4,35 0,00 0,0035

Secondary metabolism Plant alkaloids 1,54 7,16 3,73 0,00 0,0088

RNA metabolism - 1,53 8,74 5,16 0,00 0,0012

Clustering-based subsystems Related to menaquinone-cytochrome C reductase 1,31 4,46 3,67 0,00 0,0095

Clustering-based subsystems Carotenoid biosynthesis 1,15 8,72 11,03 0,00 0,0000

Virulence, diesease and defense Toxins and superantigens 1,01 5,37 3,55 0,00 0,0114

Clustering-based subsystems Sarcosine oxidase 0,93 8,54 4,01 0,00 0,0058

Clustering-based subsystems Molybdopterin oxidoreductase 0,75 8,66 2,95 0,01 0,0287

Amino acids and derivatives - 0,75 10,27 3,43 0,01 0,0139

Stress response Acid stress 0,70 9,11 7,08 0,00 0,0002

Secondary metabolism
Biologically active compounds in

metazoan cell defence and differentiation
0,66 9,75 4,17 0,00 0,0046

Phages, prophages, plasmids,

transposable elements
Pathogenicity islands 0,66 11,15 8,29 0,00 0,0001

Respiration ATP synthases 0,64 11,43 7,15 0,00 0,0002

Clustering-based subsystems Chromosome replication 0,59 8,81 4,73 0,00 0,0020

Metabolism of aromatic compounds Anaerobic degradation of aromatic compounds 0,57 11,22 8,79 0,00 0,0000

Secondary metabolism Plant hormones 0,57 11,05 8,05 0,00 0,0001

Clustering-based subsystems Methylamine utilization 0,57 11,63 7,37 0,00 0,0001

Clustering-based subsystems Putative isoquinoline 1-oxidoreductase subunit 0,55 9,64 5,21 0,00 0,0012

Protein metabolism Protein folding 0,51 12,59 5,63 0,00 0,0007

Clustering-based subsystems Probably pyrimidine biosynthesis-related 0,51 8,84 5,91 0,00 0,0006

Membrane transport Sugar Phosphotransferase Systems, PTS 0,50 11,04 9,51 0,00 0,0000

Regulation and cell signaling Quorum sensing and biofilm formation 0,47 9,58 4,72 0,00 0,0020

Membrane transport Protein secretion system, type II 0,47 11,01 5,33 0,00 0,0010

RNA metabolism Transcription 0,46 13,33 5,76 0,00 0,0007

Carbohydrates Fermentation 0,45 13,30 9,17 0,00 0,0000

Nucleosides and nucleotides - 0,45 11,73 3,09 0,01 0,0229

Secondary metabolism Aromatic amino acids and derivatives 0,45 8,27 2,63 0,02 0,0456

Clustering-based subsystems Choline bitartrate degradation, putative 0,41 9,37 5,12 0,00 0,0013

Carbohydrates One-carbon metabolism 0,38 14,17 7,60 0,00 0,0001

Amino acids and derivatives Branched-chain amino acids 0,38 14,08 7,85 0,00 0,0001

Fatty acids, lipids and isoprenoids Isoprenoids 0,37 12,73 5,44 0,00 0,0009

Fatty acids, lipids and isoprenoids - 0,35 12,27 4,62 0,00 0,0023

Clustering-based subsystems Two related proteases 0,34 10,00 2,77 0,02 0,0367

Carbohydrates Central carbohydrate metabolism 0,34 15,23 8,05 0,00 0,0001

Carbohydrates CO2 fixation 0,32 13,46 7,04 0,00 0,0002

Metabolism of aromatic compounds - 0,31 11,22 4,72 0,00 0,0020

Protein metabolism Protein degradation 0,30 13,36 4,17 0,00 0,0046

Carbohydrates Organic acids 0,28 13,05 4,80 0,00 0,0019

Fatty acids, lipids and isoprenoids Fatty acids 0,28 13,73 6,59 0,00 0,0002

Stress response Heat shock 0,28 12,31 4,98 0,00 0,0015

Clustering-based subsystems TldD cluster 0,26 9,90 2,85 0,02 0,0334

Amino acids and derivatives Lysine, threonine, methionine, and cysteine 0,25 14,51 6,47 0,00 0,0003

Nucleosides and nucleotides Pyrimidines 0,24 13,25 5,66 0,00 0,0007

Clustering-based subsystems Ribosome-related cluster 0,22 10,64 2,64 0,02 0,0456

Metabolism of aromatic compounds
Peripheral pathways for catabolism

of aromatic compounds
0,21 13,05 2,60 0,02 0,0473

Virulence, diesease and defense Detection 0,21 11,46 2,58 0,03 0,0478

Amino acids and derivatives Histidine metabolism 0,20 11,81 3,40 0,01 0,0146

Protein metabolism Protein processing and modification 0,20 13,30 2,64 0,02 0,0456

Sulfur metabolism Inorganic sulfur assimilation 0,20 11,95 3,70 0,00 0,0092

Phages, prophages, transposable elements, plasmids Phages, prophages -0,18 13,00 -2,82 0,02 0,0351

Amino acids and derivatives Alanine, serine, and glycine 0,17 13,15 3,10 0,01 0,0229

Phosphorus metabolism - 0,16 12,99 3,68 0,00 0,0093

Amino acids and derivatives Arginine, urea cycle, polyamines 0,16 13,48 2,58 0,03 0,0478

Cofactors, vitamins, prostetic groups, pigments NAD and NADP -0,15 12,02 -2,58 0,03 0,0478

Cofactors, vitamins, prostetic groups, pigments Pyridoxine 0,14 11,86 2,81 0,02 0,0351

Cofactors, vitamins, prostetic groups,pigments Folate and pterines 0,12 14,93 3,13 0,01 0,0220
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Table B.4.: DA functional subsystems (adj. p-values < 0.05) between S. magellanicum and peat

soil metagenomes. The table summarizes the statistical testing result of DA feature detection

using limma+voom. The subsystems are sorted descending according to the logFC values. Sub-

systems which were as tested differentially abundant between both, the S. magellanicum/plant

metagenomes and the S. magellanicum/peat soils, metagenomes are highlighted with bold text.

Subsystmes level 1 Subsystems level 2 LogFC AveExpr t-val p-val Adj. p-val

S. magellanicum/peat soils metagenomes

Stress response Dessication stress -10,57 3,88 -6,88 0,00 0,0013

Dormancy and sporulation Spore DNA protection -7,68 3,24 -6,84 0,00 0,0013

Cofactor, vitamins, prostetic groups, pigments Coenzyme B -5,70 3,49 -6,47 0,00 0,0018

Respiration Reverse electron transport -4,32 4,51 -4,47 0,00 0,0114

Phages, prophages, plasmids,

transposable elements
- -3,54 5,71 -5,76 0,00 0,0033

Respiration Sodium ion-coupled energetics -3,31 6,35 -4,37 0,00 0,0114

Secondary metabolism Plant octadecanoids -2,88 3,52 -5,40 0,00 0,0042

Clustering-based subsystems Proteasome related clusters -2,84 4,25 -4,55 0,00 0,0114

Clustering-based subsystems Tricarboxylate transporter -2,44 10,17 -7,80 0,00 0,0013

Clustering-based subsystems
Related to menaquinone-cytochrome

C reductase
-2,14 4,46 -5,70 0,00 0,0033

Motility and chemotaxis
Social motility and nonflagellar

swimming in bacteria
-1,70 4,72 -4,18 0,00 0,0150

RNA metabolism - -1,46 8,74 -4,09 0,00 0,0165

Clustering-based subsystems D-tyrosyl-tRNA(Tyr) deacylase cluster -1,38 8,89 -3,60 0,00 0,0298

Clustering-based subsystems Oxidative stress -1,33 7,22 -4,41 0,00 0,0114

Clustering-based subsystems Hypothetical associated with RecF -1,11 7,76 -3,43 0,01 0,0335

DNA metabolism - -0,94 11,27 -4,40 0,00 0,0114

Clustering-based subsystems Nucleotidyl-phosphate metabolic cluster -0,68 11,11 -3,32 0,01 0,0394

Stress response - -0,53 11,43 -4,92 0,00 0,0074

Virulence, diesease and defense - -0,45 11,86 -3,45 0,01 0,0335

Phages, prophages, plasmids,

transposable elements
Phages, prophages -0,32 13,00 -3,16 0,01 0,0478

Nucleosides and nucleotides Pyrimidines 0,24 13,25 3,45 0,01 0,0335

Carbohydrates Central carbohydrate metabolism 0,24 15,23 4,07 0,00 0,0165

Amino acids and derivatives Branched-chain amino acids 0,30 14,08 3,95 0,00 0,0185

Carbohydrates CO2 fixation 0,33 13,46 4,39 0,00 0,0114

Carbohydrates Organic acids 0,35 13,05 3,55 0,00 0,0305

Stress response Heat shock 0,35 12,31 3,59 0,00 0,0298

Protein metabolism Protein degradation 0,41 13,36 3,43 0,01 0,0335

Clustering-based subsystems Methylamine utilization 0,46 11,63 3,21 0,01 0,0450

Fatty acids, lipids and isoprenoids Isoprenoids 0,47 12,73 3,98 0,00 0,0184

Secondary metabolism Plant hormones 0,47 11,05 3,25 0,01 0,0435

Metabolism of aromatic compounds
Anaerobic degradation

of aromatic compounds
0,50 11,22 3,77 0,00 0,0232

Metabolism of aromatic compounds - 0,56 11,22 3,92 0,00 0,0187

Cofactor, vitamins, prostetic groups, pigments Tetrapyrroles 0,79 12,84 6,13 0,00 0,0024

Membrane transport Sugar Phosphotransferase Systems, PTS 0,84 11,04 6,96 0,00 0,0013

Membrane transport Protein secretion system, type II 1,07 11,01 4,96 0,00 0,0074

Clustering.based subsystems Carotenoid biosynthesis 1,67 8,72 5,51 0,00 0,0039

Photosynthesis Electron transport and photophosphorylation 2,56 7,48 4,46 0,00 0,0114
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Normalization of one shotgun library for Illumina s equencing 

 
 

Starting Material  
One Illumina TrueSeq Shotgun Library from moss communities. 
 
Table 1: Description of the sample 

No. Sample  Description  Vol. (µl)  Total amount (pg) 

    

1 M2 Illumina TrueSeq 
Shotgun Library 

6 49 

 

Library amplification 
The library was amplified with PCR (number of cycles indicated in Table 2) using a proof reading 
enzyme (see Fig. 1, N0) and SBS3 and SBS8 sequencing primers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 : Analysis of the PCR-amplified N0 and N1 library on a Shimadzu MultiNA 
microchip electrophoresis system. M = 100 bp ladder 

 

Normalization 
Normalization was carried out by one cycle of denaturation and reassociation of the DNA, resulting in 
the N1-library. Reassociated ds-DNAs were separated from the remaining ss-DNAs (normalized DNA) 
by passing the mixture over a hydroxylapatite column. After hydroxylapatite chromatography, the ss-
DNAs were PCR amplified (see Fig.1, N1 and Table 2 for number of cycles and barcode). 
 

Size fractionation 
For Illumina sequencing, the tagged N1 library was eluted from a preparative agarose gel in the size 
range of 300 –500 bp. An aliquot of the size fractionated library was analyzed by capillary 
electrophoresis (Fig. 2).  
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Figure 2 : Analysis of the size fractionated N1 library on a Shimadzu MultiNA microchip 
electrophoresis system. M = 100 bp ladder 

 

Description of the normalized library 
The library has a size range of 300 – 500 bp. The primers used for PCR amplification were designed for 
TruSeq sequencing according to the instructions of Illumina.  
 
The following adapter sequences flank the DNA insert: 
 
TrueSeq_Sense_primer                                                                                                    
5´- AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-3’ 
 
TrueSeq_Antisense_ NNNNNN_primer    Barcode 
5’-CAAGCAGAAGACGGCATACGAGAT-NNNNNN-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’. 
 
The total length of the flanking sequences is 122 bp. 
 
Table 2: Properties of the library  

No. 1 
Sample  M2 
Barcode  GCCAAT 
Cycles N0  15 
Cycles N1  6 
Conc. (ng/µl)  48 
Volume (µl)  20 

 
 
 

    bp       M     M2 
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usage: java -jar Decontaminator.jar -q <querySequenceFile> -o <filteredOutputFile>

-b <blatResultFile> -i <percentageIdentityThreshold> -c

<percentageQueryCoverageThreshold>

In case of very big files, it might be necessary to increase java memory

to eg min 1G and max to 12G, -Xms1024m -Xmx12288m, respectively.

-b <arg> BLAT mapping, default blast8 format

-bcl <arg> length of used barcodes. Value is used to "correct" query coverage calculation

-c <arg> threshold for percentage identiy of the BLAT mapping result.

BLAT results below this threshold are

discarded

-fa <arg> file path to write the query coverage histogram to (default: result file,

plus "_alignment_length.png"

-fc <arg> file path to write the charts data to "_charts_data.tsv"

-fp <arg> file path to write the percentage identity histogram to

(default: result file, plus "_identity.png")

-fq <arg> file path to write the query coverage histogram to (default: result file, plus

"_coverage.png"

-i <arg> threshold for percentage identiy of the BLAT mapping result. BLAT results below

this threshold are discarded

-nl <arg> query sequences identified as pontential contaminations are not written to

file separatly

-nn query sequences identified as pontential contaminations are not written to

file separatly

-o <arg> file name and path for the filtered output file, fasta formated

-pl <arg> length of used primer (in case of multiple primeres, use length of longest).

Value is used to "correct" query coverage calculation.

-q <arg> file path to the query sequence file in fasta format which should be deconatminated

Table C.1.: Decontaminator settings used for the three step evaluation process. Firstly, the

raw true 16S amplicon set was tested for contaminating sequences using the given seconds.

Subsequently, the same set was mixed with 25 sequences which originate from the human

host and finally, with 57 manually created chimeric sequences.
cutoff % identity cutoff QC barcode length primer length

clean set 80 55 6 14

(a) incl. 25 human seqs 80 55 0 0

(b) incl. 57 chimeric seqs 80 55 6 0



Appendix D.

Supplementary information diarrhea

study

193



Table D.1.: Sample summary of the diarrhea study. Fecal (F) samples were collected from four

patients (A-D) on four different timepoints (TP; 1-4). Additionally, Mucosal (M) biopsy tissue

was taken from three of these patients (B-D) at two timepoints (TP; 2,3) of the experiment.
Sample Patient TP Type Sample Patient TP Type

AF1 A 1 F BF4 B 4 F

AF2 A 2 F DF1 D 1 F

AF3 A 3 F DF2 D 2 F

AF4 A 4 F DF3 D 3 F

CF1 C 1 F DF4 D 4 F

CF2 C 2 F BM2 B 2 M

CF3 C 3 F BM3 B 3 M

CF4 C 4 F DM2 D 2 M

BF1 B 1 F DM3 D 3 M

BF2 B 2 F CM2 C 2 M

BF3 B 3 F CM3 C 3 M

Table D.2.: Summary of settings which were used for detection and removal of contaminating

sequences by the Decontaminator, in the 16S raw data of the diarrhea study.
version BLAT ref DB % identity cutoff QC barcode length primer length

v.5 GreneGenes May 2011 80 55 6 14

Table D.3.: Summary of analysis statics of Acacia, for removal and correction of low quality

sequences, as well as of sequencing noise, for the 16S diarrhea study data.
Description FS0825402 FJC1PKF02 sum

Mean length (before filtering) 229.0 239.0

Length SD (before filtering) 51.862 34.913

Length SD collapsed (before filtering) 76.5483 67.908

# Seqs usable 164680 311101 475781

# Seqs thrown out 23093 16338 39431

# Low quality 33 13 64

# Outside length range 16180 13455 29635

# with early N’s 14101 7158 21259

# collapsed too short 12074 5426 17500

# Unique sequences 50307 71479 121786

# Singletons 19524 25004 44528

# Reference sequences 27796 35659 63455

# Sequences corrected 30679 40726 71405
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Table E.1.: True sequence distribution of

the ITS1/2 mock at the phylum level.

pyhlum
# sequences

counts [%]

Ascomycota 639 46.88

Basidiomycota 403 29.57

Glomeromycota 262 19.22

Zygomycota 38 2.79

Chytridiomycota 21 1.54

Table E.2.: True sequence distribution of

the ITS1/2 mock community at the species

level for taxa covering more than 2 % of

the total sequence abundance.

species
# sequences

counts [%]

uncultured Glomus 85 6.24

uncultured Russula 32 2.35

uncultured Ascomycota 24 1.76

Metarhizium anisopliae 22 1.61

Other 1200 88.04

Table E.3.: True sequence distribution of

the ITS1/2 mock community at the class

level for taxa covering more than 2 % of

total sequence abundance.

class
# sequences

counts [%]

Agaricomycetes 329,00 24.14

Glomeromycetes 253 18.56

Sordariomycetes 220 16.14

Dothideomycetes 148 10.86

Eurotiomycetes 87 6.38

Leotiomycetes 80 5.87

unidentified 56 4.11

Incertae sedis 47 3.45

Pucciniomycetes 47 3.45

Lecanoromycetes 20 1.47

Chytridiomycetes 20 1.47

Other 56 4.11

Table E.4.: True sequence distribution of

the ITS1/2 mock community at the genus

level for taxa covering more than 2 % of

total sequence abundance.

genus
# sequences

counts [%]

unidentified 398 29.20

Inocybe 69 5.06

Fusarium 54 3.96

Cortinarius 43 3.15

Puccinia 36 2.64

Glomus 28 2.05

Metarhizium 23 1.69

Ilyonectria 23 1.69

Rhizophagus 23 1.69

Acaulospora 21 1.54

Other 645 47.32



Table E.5.: True sequence distribution of

the ITS1/2 mock at the order level for taxa

covering more than 2 % of total sequence

abundance.

order
# sequences

counts [%]

Hypocreales 181 13.28

Agaricales 178 13.06

Glomerales 160 11.74

unidentified 87 6.38

Diversisporales 72 5.28

Pleosporales 72 5.28

Russulales 64 4.70

Capnodiales 59 4.33

Pucciniales 47 3.45

Incertae sedis 39 2.86

Helotiales 33 2.42

Eurotiales 31 2.27

Polyporales 25 1.83

Erysiphales 18 1.32

Other 315 23.11

Table E.6.: True sequence distribution of

the ITS1/2 mock community at the family

level for taxa covering more than 2 % of

total sequence abundance.

family
# sequences

counts [%]

unidentified 156 11.45

Glomeraceae 153 11.23

Incertae sedis 97 7.12

Nectriaceae 87 6.38

Inocybaceae 71 5.21

Russulaceae 58 4.26

Cortinariaceae 48 3.52

Gigasporaceae 38 2.79

Pucciniaceae 36 2.64

Trichocomaceae 31 2.27

Clavicipitaceae 29 2.13

Pleosporaceae 27 1.98

Mycosphaerellaceae 24 1.76

Acaulosporaceae 22 1.61

Teratosphaeriaceae 20 1.47

Other 466 34.19
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Table E.7.: True sequence distribution of

the ITS1 mock at the phylum level.

phylum
# sequences

counts [%]

Ascomycota 922 46.92

Basidiomycota 984 50.08

Chytridiomycota 36 1.83

Glomeromycota 23 1.17

Table E.8.: True sequence distribution of

the ITS1 mock community at the genus

level for taxa covering more than 2 % of

total sequence abundance.

genus
# sequences

counts [%]

Cortinarius 96 4.89

unidentified 72 3.66

Inocybe 65 3.31

Lactarius 48 2.44

Russula 37 1.88

Other 1647 83.82

Table E.9.: True sequence distribution of

the ITS1 mock at the class level for taxa

covering more than 2 % of total sequence

abundance.

class
# sequences

counts [%]

Agaricomycetes 858 43.66

Sordariomycetes 264 13.44

Lecanoromycetes 167 8.50

Dothideomycetes 158 8.04

Eurotiomycetes 133 6.77

Leotiomycetes 93 4.73

Pezizomycetes 72 3.66

Tremellomycetes 31 1.58

Other 189 9.62
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Table E.10.: True sequence distribution of

the ITS1 mock at the order level for taxa

covering more than 2 % of total sequence

abundance.

order
# sequences

counts [%]

Agaricales 432 21.98

Russulales 116 5.90

Hypocreales 106 5.39

Polyporales 98 4.99

Boletales 71 3.61

Pezizales 71 3.61

Pleosporales 68 3.46

Xylariales 63 3.21

Capnodiales 62 3.16

Lecanorales 60 3.05

Eurotiales 54 2.75

Helotiales 46 2.34

Peltigerales 42 2,14

Verrucariales 39 1.98

Diaporthales 36 1.83

Hymenochaetales 31 1.58

Teloschistales 29 1.48

Other 541 27,53

Table E.11.: True sequence distribution of

the ITS1 mock community at the family

level for taxa covering more than 2 % of

total sequence abundance.

family
# sequences

counts [%]

Cortinariaceae 107 5.45

Russulaceae 92 4.68

Inocybaceae 68 3.46

Xylariaceae 52 2.65

Trichocomaceae 51 2.60

unidentified 41 2.09

Verrucariaceae 39 1.98

Mycosphaerellaceae 35 1.,78

Polyporaceae 33 1.68

Nectriaceae 32 1.63

Boletaceae 30 1.53

Agaricaceae 30 1.53

Fomitopsidaceae 29 1.48

Other 1326 67.48
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Table F.1.: The table summarizes the collected 16S samples during the BAL study, including

information about patient (PA), experimental group (GR, control no antibiotics (1A), control

with antibiotics (1B), ICU no antibiotics (2A), ICU with antibiotics (2B), ICU, pneumonia,

with antibiotics (3B)), type (no type specified (NTS), community associated pneumonia (CAP),

ventilation associated pneumonia (VAP), aspiration (ASP)), and timepoint (TP).
SAMPLE PAT GR TYPE TP SAMPLE PAT GR TYPE TP

087-1A-NTS-0 87 1A NTS 0 609-3B-ASP-0 609 3B ASP 0

095-1A-NTS-0 95 1A NTS 0 301-3B-VAP-0 301 3B VAP 0

097-1A-NTS-0 97 1A NTS 0 301-3B-VAP-1 301 3B VAP 1

105-1A-NTS-0 105 1A NTS 0 302-3B-VAP-0 302 3B VAP 0

106-1A-NTS-0 106 1A NTS 0 302-3B-VAP-1 302 3B VAP 1

107-1A-NTS-0 107 1A NTS 0 303-3B-VAP-0 303 3B VAP 0

108-1A-NTS-0 108 1A NTS 0 303-3B-VAP-1 303 3B VAP 1

109-1A-NTS-0 109 1A NTS 0 304-3B-ASP-0 304 3B ASP 0

098-1B-NTS-0 98 1B NTS 0 304-3B-ASP-1 304 3B ASP 1

099-1B-NTS-0 99 1B NTS 0 305-3B-VAP-0 305 3B VAP 0

100-1B-NTS-0 100 1B NTS 0 306-3B-VAP-0 306 3B VAP 0

101-1B-NTS-0 101 1B NTS 0 309-3B-VAP-0 309 3B VAP 0

102-1B-NTS-0 102 1B NTS 0 310-3B-NAP-0 310 3B NAP 0

103-1B-NTS-0 103 1B NTS 0 312-3B-VAP-0 312 3B VAP 0

104-1B-NTS-0 104 1B NTS 0 313-3B-NAP-0 313 3B NAP 0

401-2A-NTS-0 401 2A NTS 0 313-3B-VAP-1 313 3B VAP 1

402-2A-NTS-0 402 2A NTS 0 314-3B-CAP-0 314 3B CAP 0

403-2A-NTS-0 403 2A NTS 0 318-3B-ASP-0 318 3B ASP 0

406-2A-NTS-0 406 2A NTS 0 319-3B-VAP-0 319 3B VAP 0

201-2A-NTS-0 201 2A NTS 0 320-3B-ASP-0 320 3B ASP 0

202-2A-NTS-0 202 2A NTS 0 321-3B-NAP-0 321 3B NAP 0

203-2A-NTS-0 203 2A NTS 0 322-3B-NAP-0 322 3B NAP 0

405-2B-NTS-0 405 2B NTS 0 323-3B-VAP-0 323 3B VAP 0

610-2B-NTS-0 610 2B NTS 0 324-3B-ASP-0 324 3B ASP 0

252-2B-NTS-0 252 2B NTS 0 325-3B-VAP-0 325 3B VAP 0

255-2B-NTS-0 255 2B NTS 0 326-3B-VAP-0 326 3B VAP 0

256-2B-NTS-0 256 2B NTS 0 327-3B-ASP-0 327 3B ASP 0

257-2B-NTS-0 257 2B NTS 0 328-3B-NAP-0 328 3B NAP 0

608-3B-ASP-0 608 3B ASP 0 612-3B-VAP-0 612 3B VAP 0



Table F.2.: The table summarizes the collected ITS samples during the BAL study including

information about patient (PA), experimental group (GR, control no antibiotics (1A); control

with antibiotics (1B), ICU no antibiotics (2A), ICU with antibiotics (2B), ICU, pneumonia,

with antibiotics (3B)), type (no type specified (NTS), community associated pneumonia (CAP),

ventilation associated pneumonia (VAP), aspiration (ASP)), and timepoint (TP).
SAMPLE PAT GR TYPE TP SAMPLE PAT GR TYPE TP

087-1A-NTS-0 87 1A NTS 0 612-3B-VAP-0 612 3B VAP 0

095-1A-NTS-0 95 1A NTS 0 301-3B-VAP-0 301 3B VAP 0

105-1A-NTS-0 105 1A NTS 0 302-3B-VAP-0 302 3B VAP 0

107-1A-NTS-0 107 1A NTS 0 302-3B-VAP-1 302 3B VAP 1

098-1B-NTS-0 98 1B NTS 0 303-3B-VAP-0 303 3B VAP 0

100-1B-NTS-0 100 1B NTS 0 303-3B-VAP-1 303 3B VAP 1

101-1B-NTS-0 101 1B NTS 0 304-3B-ASP-0 304 3B ASP 0

103-1B-NTS-0 103 1B NTS 0 304-3B-ASP-1 304 3B ASP 1

104-1B-NTS-0 104 1B NTS 0 305-3B-VAP-0 305 3B VAP 0

401-2A-NTS-0 401 2A NTS 0 306-3B-VAP-0 306 3B VAP 0

402-2A-NTS-0 402 2A NTS 0 309-3B-VAP-0 309 3B VAP 0

403-2A-NTS-0 403 2A NTS 0 313-3B-NAP-0 313 3B NAP 0

406-2A-NTS-0 406 2A NTS 0 313-3B-VAP-1 313 3B VAP 1

201-2A-NTS-0 201 2A NTS 0 318-3B-ASP-0 318 3B ASP 0

202-2A-NTS-0 202 2A NTS 0 319-3B-VAP-0 319 3B VAP 0

203-2A-NTS-0 203 2A NTS 0 320-3B-ASP-0 320 3B ASP 0

405-2B-NTS-0 405 2B NTS 0 321-3B-NAP-0 321 3B NAP 0

610-2B-NTS-0 610 2B NTS 0 322-3B-NAP-0 322 3B NAP 0

252-2B-NTS-0 252 2B NTS 0 323-3B-VAP-0 323 3B VAP 0

255-2B-NTS-0 255 2B NTS 0 324-3B-ASP-0 324 3B ASP 0

256-2B-NTS-0 256 2B NTS 0 325-3B-VAP-0 325 3B VAP 0

257-2B-NTS-0 257 2B NTS 0 326-3B-VAP-0 326 3B VAP 0

608-3B-ASP-0 608 3B ASP 0 327-3B-ASP-0 327 3B ASP 0

609-3B-ASP-0 609 3B ASP 0 328-3B-NAP-0 328 3B NAP 0
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Table F.3.: Sample overview of the bacterial BAL study samples analyzed using SnoWMAn’s RDP pipeline. The table summarizes the number of

obtained OTUs for different cluster distances for each sample, as well as for the main groups and of the total community profile.
Sample Sequences Unique Sequs 0.0 0.01 0.02 0.03 0.04 0.05 0.06 Sample Sequences Unique Sequs 0.0 0.01 0.02 0.03 0.04 0.05 0.06

105-1A-NTS-0 3562 471 402 266 144 108 98 93 86 303-3B-VAP-0 3192 655 487 303 185 139 117 105 93

107-1A-NTS-0 3881 643 548 324 205 157 141 130 123 303-3B-VAP-1 5219 807 585 300 164 120 111 104 98

087-1A-NTS-0 3495 424 362 240 114 81 69 66 62 313-3B-NAP-0 3884 577 396 195 97 79 70 59 55

108-1A-NTS-0 3659 646 526 331 171 121 111 104 99 324-3B-ASP-0 8432 1156 851 429 200 136 118 110 102

097-1A-NTS-0 4070 481 408 252 137 98 87 85 83 302-3B-VAP-0 5901 266 143 59 16 12 10 9 9

106-1A-NTS-0 4252 510 431 274 160 116 103 100 93 327-3B-ASP-0 5393 680 559 398 201 159 134 124 113

109-1A-NTS-0 4153 491 407 274 105 68 63 60 59 302-3B-VAP-1 2240 251 188 91 54 45 44 41 39

095-1A-NTS-0 4851 597 495 299 136 98 95 89 83 328-3B-NAP-0 4033 448 344 217 83 46 44 41 39

Total 1A 31923 3045 1610 705 491 421 378 343 325-3B-VAP-0 4081 556 433 291 195 158 134 128 119

101-1B-NTS-0 4426 536 442 281 114 70 62 61 59 320-3B-ASP-0 5426 396 284 143 76 66 61 60 58

098-1B-NTS-0 1464 286 254 185 127 111 107 104 103 321-3B-NAP-0 3632 734 552 373 202 138 111 96 84

103-1B-NTS-0 3287 442 370 232 111 80 76 74 72 314-3B-CAP-0 5304 576 424 265 104 57 51 47 42

102-1B-NTS-0 4388 594 483 296 119 80 74 70 66 304-3B-ASP-0 6092 405 244 96 27 11 11 11 10

099-1B-NTS-0 673 131 122 97 59 44 43 40 40 310-3B-NAP-0 3847 637 445 278 155 96 84 72 66

100-1B-NTS-0 3082 490 416 316 183 138 120 114 108 304-3B-ASP-1 5072 524 404 248 97 56 51 48 47

104-1B-NTS-0 2873 333 305 199 96 68 62 59 58 319-3B-VAP-0 3211 437 347 202 81 57 53 51 49

Total 1B 20193 2040 1152 522 373 322 295 276 612-3B-VAP-0 4110 340 272 148 67 50 48 46 44

401-2A-NTS-0 2843 392 312 205 123 86 75 64 57 313-3B-VAP-1 4293 544 420 240 118 86 75 72 68

201-2A-NTS-0 2731 679 563 384 238 165 125 107 88 323-3B-VAP-0 5057 614 479 281 117 79 72 66 66

202-2A-NTS-0 6382 797 589 347 121 92 84 77 73 318-3B-ASP-0 4903 799 610 329 187 132 110 96 83

406-2A-NTS-0 2613 415 339 200 131 107 91 78 71 326-3B-VAP-0 4170 554 420 234 124 90 89 85 82

403-2A-NTS-0 2949 752 642 435 296 228 187 154 143 301-3B-VAP-0 4170 522 412 251 133 94 86 83 79

402-2A-NTS-0 3556 456 396 271 141 97 87 83 77 301-3B-VAP-1 4834 534 408 245 117 84 80 76 70

203-2A-NTS-0 2522 595 487 322 199 148 120 99 90 306-3B-VAP-0 4034 874 682 425 269 209 181 165 156

Total 2A 23596 -1 3162 1897 974 684 539 443 394 312-3B-VAP-0 5108 291 189 63 20 12 11 11 10

405-2B-NTS-0 4555 502 417 263 109 69 61 53 48 608-3B-ASP-0 3571 658 495 303 151 106 88 75 66

256-2B-NTS-0 2726 634 518 341 216 162 140 121 113 609-3B-ASP-0 2939 314 265 162 94 74 60 55 48

252-2B-NTS-0 9331 750 583 293 123 83 67 62 58 305-3B-VAP-0 3868 760 521 370 176 110 85 74 63

610-2B-NTS-0 2820 213 174 93 54 43 33 27 25 322-3B-NAP-0 4359 496 392 216 101 75 69 65 64

257-2B-NTS-0 5010 534 427 259 116 81 70 65 58 309-3B-VAP-0 5122 571 427 235 110 84 78 72 68

255-2B-NTS-0 3339 404 343 206 106 78 71 71 69 Total 3B 135497 10381 4702 1899 1211 950 786 689

Total 2B 27781 2310 1254 544 363 299 256 235 Total 238990 31174 18238 7542 3071 1938 1471 1191 1028
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Table F.4.: α-diversity scores according to Chao1, Chao1 (bc), Shannon, ACE, as well as to Richness and Eveness calculated by SnoWMAn, based

on the final bacterial community of the BAL study samples. Scores are presented for each sample, as well as for the main groups and the total

community profile at a distance of 0.03.
Sample Richness Chao1 Chao1 (bc) Shannon Evenness ACE Sample Richness Chao1 Chao1 (bc) Shannon Evenness ACE

087-1A-NTS-0 81.00 161.67 138.75 3.14 0.72 124.77 301-3B-VAP-0 94.00 158.00 134.00 3.11 0.68 108.62

095-1A-NTS-0 98.00 131.06 126.11 2.47 0.54 124.82 301-3B-VAP-1 84.00 99.13 95.00 2.44 0.55 92.94

097-1A-NTS-0 98.00 143.13 132.20 3.20 0.70 119.99 302-3B-VAP-0 12.00 30.00 19.50 0.07 0.03 27.40

105-1A-NTS-0 108.00 290.25 225.00 3.17 0.68 142.31 302-3B-VAP-1 45.00 49.90 48.50 1.85 0.49 49.96

106-1A-NTS-0 116.00 198.57 186.13 2.59 0.54 158.55 303-3B-VAP-0 139.00 193.15 190.48 2.76 0.56 221.91

107-1A-NTS-0 157.00 177.35 175.07 4.12 0.82 177.86 303-3B-VAP-1 120.00 140.63 138.90 3.10 0.65 146.22

108-1A-NTS-0 121.00 160.06 154.33 3.59 0.75 146.23 304-3B-ASP-0 11.00 23.25 18.00 0.03 0.01 36.54

109-1A-NTS-0 68.00 268.00 163.00 2.32 0.55 102.79 304-3B-ASP-1 56.00 65.00 61.00 2.25 0.56 60.87

Total 1A 491.00 652.29 645.69 3.98 0.64 606.28 305-3B-VAP-0 110.00 183.63 177.56 2.26 0.48 170.83

098-1B-NTS-0 111.00 121.80 120.56 3.37 0.72 124.74 306-3B-VAP-0 209.00 328.12 323.43 3.16 0.59 337.26

099-1B-NTS-0 44.00 66.50 61.50 2.07 0.55 64.92 309-3B-VAP-0 84.00 106.56 103.00 1.66 0.38 99.22

100-1B-NTS-0 138.00 246.90 240.14 2.24 0.45 269.59 310-3B-NAP-0 96.00 162.67 156.00 1.75 0.38 157.34

101-1B-NTS-0 70.00 142.25 115.33 2.48 0.58 95.35 312-3B-VAP-0 12.00 36.50 22.50 0.05 0.02 27.71

102-1B-NTS-0 80.00 98.00 93.20 2.75 0.63 93.77 313-3B-NAP-0 79.00 139.50 134.65 1.64 0.37 180.07

103-1B-NTS-0 80.00 92.25 90.11 2.10 0.48 90.58 313-3B-VAP-1 86.00 100.40 97.00 3.28 0.74 100.36

104-1B-NTS-0 68.00 108.50 98.60 2.46 0.58 93.99 314-3B-CAP-0 57.00 99.25 83.00 1.11 0.27 66.65

Total 1B 373.00 521.63 516.08 3.31 0.56 492.72 318-3B-ASP-0 132.00 219.03 213.48 1.67 0.34 225.41

201-2A-NTS-0 165.00 249.48 245.50 3.24 0.63 271.13 319-3B-VAP-0 57.00 67.13 64.20 2.36 0.58 66.50

202-2A-NTS-0 92.00 194.08 177.00 1.57 0.35 131.86 320-3B-ASP-0 66.00 109.56 103.80 0.66 0.16 95.61

203-2A-NTS-0 148.00 235.12 230.50 2.71 0.54 244.06 321-3B-NAP-0 138.00 210.32 204.00 2.92 0.59 188.72

401-2A-NTS-0 86.00 174.00 164.83 1.17 0.26 152.16 322-3B-NAP-0 75.00 79.00 78.11 3.01 0.70 83.79

402-2A-NTS-0 97.00 136.20 131.36 2.39 0.52 131.24 323-3B-VAP-0 79.00 103.50 97.20 2.99 0.68 93.30

403-2A-NTS-0 228.00 460.26 451.13 3.45 0.64 454.56 324-3B-ASP-0 136.00 212.06 202.60 3.49 0.71 202.49

406-2A-NTS-0 107.00 185.13 179.06 1.93 0.41 178.21 325-3B-VAP-0 158.00 302.11 293.05 1.56 0.31 277.63

Total 2A 684.00 1182.90 1175.70 3.60 0.55 1138.26 326-3B-VAP-0 90.00 102.00 99.43 3.23 0.72 98.45

252-2B-NTS-0 83.00 127.46 123.07 1.50 0.34 129.31 327-3B-ASP-0 159.00 249.73 245.72 1.33 0.26 268.25

255-2B-NTS-0 78.00 101.14 97.13 2.35 0.54 94.42 328-3B-NAP-0 46.00 64.00 53.50 2.01 0.53 50.22

256-2B-NTS-0 162.00 296.48 289.73 3.34 0.66 339.49 608-3B-ASP-0 106.00 223.04 212.00 1.94 0.42 185.51

257-2B-NTS-0 81.00 108.56 104.33 1.82 0.41 102.36 609-3B-ASP-0 74.00 305.13 254.60 0.98 0.23 153.65

405-2B-NTS-0 69.00 133.22 125.10 1.32 0.31 117.82 612-3B-VAP-0 50.00 66.67 61.25 1.56 0.40 58.79

610-2B-NTS-0 43.00 68.00 64.11 0.98 0.26 73.31 Total 3B 1211.00 1711.59 1706.59 4.19 0.59 1690.56

Total 2B 363.00 667.22 657.00 2.94 0.50 591.91
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Table F.5.: Relative sequence distribution at the phylum level determined with SnoWMAn’s

RDP pipeline, at a classification confidence of 80 %, a cluster distance of 0.03, for clusters with

more than 2 % overall abundance. The table presents counts for all samples of group 1A of the

16S amplicon set.

087-1A-NTS-0 095-1A-NTS-0 097-1A-NTS-0 105-1A-NTS-0 106-1A-NTS-0 107-1A-NTS-0 108-1A-NTS-0 109-1A-NTS-0

Actinomyces 0.00 0.00 0.00 3.40 0.00 0.00 2.13 0.00

Alkalibacterium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.60

Aquabacterium 3.69 0.00 2.09 0.00 0.00 0.00 0.00 2.24

Bacteroides 18.80 16.57 32.16 11.37 16.39 13.58 23.18 50.73

Bradyrhizobium 2.15 4.21 5.90 4.58 0.00 2.83 0.00 9.61

Cloacibacterium 0.00 0.00 4.96 0.00 0.00 0.00 0.00 0.00

Fusobacterium 0.00 0.00 0.00 6.51 0.00 3.50 0.00 0.00

Gemella 0.00 0.00 0.00 0.00 0.00 2.96 2.71 0.00

Granulicatella 0.00 0.00 0.00 0.00 0.00 2.78 2.84 0.00

Oribacterium 0.00 0.00 0.00 2.39 0.00 0.00 0.00 0.00

Parvimonas 0.00 0.00 0.00 2.44 0.00 0.00 0.00 0.00

Pasteurella 0.00 0.00 0.00 0.00 0.00 2.34 0.00 0.00

Porphyromonas 0.00 0.00 0.00 0.00 0.00 3.38 0.00 0.00

Prevotella 4.75 0.00 0.00 6.46 2.96 0.00 11.78 0.00

Propionibacterium 13.36 0.00 3.78 0.00 2.38 4.69 0.00 5.30

Pseudomonas 12.27 0.00 10.91 0.00 4.70 2.53 0.00 2.94

Staphylococcus 0.00 0.00 0.00 0.00 0.00 4.07 0.00 2.62

Streptobacillus 0.00 0.00 0.00 0.00 0.00 3.32 0.00 0.00

Streptococcus 5.67 46.53 0.00 37.84 6.59 20.20 20.61 0.00

Tropheryma 0.00 0.00 0.00 2.64 43.70 0.00 0.00 0.00

Undibacterium 0.00 0.00 2.14 0.00 0.00 0.00 2.30 0.00

Veillonella 0.00 0.00 0.00 2.16 0.00 5.13 0.00 0.00

Other 12.36 11.05 14.74 15.02 13.83 13.99 21.59 11.85

Unclassified 26.95 21.65 23.32 5.19 9.45 14.69 12.87 12.11



Table F.6.: Relative sequence distribution at the phylum level determined with SnoWMAn’s

RDP pipeline, at a classification confidence of 80 %, a cluster distance of 0.03, for clusters with

more than 2 % overall abundance. The table presents counts for all samples of group 1B of the

16S amplicon set.

098-1B-NTS-0 099-1B-NTS-0 100-1B-NTS-0 101-1B-NTS-0 102-1B-NTS-0 103-1B-NTS-0 104-1B-NTS-0

Actinomyces 0.00 0.00 0.00 0.00 2.87 0.00 0.00

Alkalibacterium 0.00 3.57 0.00 3.50 2.62 0.00 2.61

Aquabacterium 0.00 2.82 0.00 0.00 2.12 2.56 2.33

Bacteroides 29.23 59.73 0.00 46.43 47.74 31.88 45.35

Bradyrhizobium 14.14 3.57 0.00 4.74 3.19 2.01 14.03

Corynebacterium 4.64 0.00 0.00 0.00 0.00 0.00 0.00

Janthinobacterium 0.00 0.00 0.00 0.00 0.00 0.00 2.09

Neisseria 0.00 0.00 7.24 0.00 0.00 0.00 0.00

Paracoccus 0.00 0.00 0.00 4.52 0.00 0.00 0.00

Prevotella 5.12 0.00 5.97 0.00 0.00 0.00 0.00

Propionibacterium 0.00 0.00 0.00 8.34 2.76 0.00 0.00

Pseudomonas 0.00 0.00 0.00 2.53 0.00 42.99 0.00

Ralstonia 0.00 4.90 0.00 2.44 2.12 0.00 2.16

Rothia 0.00 0.00 2.63 0.00 0.00 0.00 0.00

Staphylococcus 7.17 0.00 0.00 4.16 0.00 0.00 0.00

Streptococcus 4.85 0.00 72.45 0.00 3.12 0.00 0.00

Other 21.86 9.06 10.12 11.82 18.07 14.15 14.17

Unclassified 12.98 16.34 1.59 11.52 15.38 6.42 17.26



Appendix F. Supplementary information BAL study

Table F.7.: Relative sequence distribution at the phylum level determined with SnoWMAn’s

RDP pipeline, at a classification confidence of 80 %, a cluster distance of 0.03, for clusters with

more than 2 % overall abundance. The table presents counts for all samples of group 2B of the

16S amplicon set.

252-2B-NTS-0 255-2B-NTS-0 256-2B-NTS-0 257-2B-NTS-0 405-2B-NTS-0 610-2B-NTS-0

Atopobium 0.00 0.00 2.53 0.00 0.00 0.00

Bacteroides 2.16 32.17 0.00 8.46 2.37 15.25

Bradyrhizobium 0.00 6.41 0.00 0.00 0.00 0.00

Enterococcus 0.00 0.00 0.00 0.00 12.43 0.00

Gemella 0.00 0.00 5.28 0.00 0.00 0.00

Granulicatella 0.00 0.00 4.15 0.00 0.00 0.00

Haemophilus 10.48 0.00 0.00 43.73 0.00 6.70

Lactobacillus 0.00 0.00 3.23 0.00 0.00 0.00

Mycoplasma 0.00 16.95 0.00 0.00 0.00 0.00

Neisseria 57.80 0.00 0.00 0.00 0.00 0.00

Prevotella 0.00 2.13 20.98 0.00 0.00 0.00

Pseudomonas 0.00 24.02 0.00 0.00 0.00 0.00

Ralstonia 0.00 2.01 0.00 0.00 0.00 0.00

Streptococcus 16.66 0.00 54.04 40.44 74.80 76.31

Veillonella 0.00 0.00 4.73 0.00 3.01 0.00

Other 0.84 10.78 3.78 5.23 2.59 1.06

Unclassified 12.06 5.54 1.28 2.14 4.81 0.67
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Table F.8.: Relative sequence distribution at the phylum level determined with SnoWMAn’s RDP pipeline, at a classification confidence of 80 %,

a cluster distance of 0.03, for clusters with more than 2 % overall abundance. The table presents counts for the first part of samples of group 3B

for the 16S amplicon set.
301-3B-VAP-0 301-3B-VAP-1 302-3B-VAP-0 302-3B-VAP-1 303-3B-VAP-0 303-3B-VAP-1 304-3B-ASP-0 304-3B-ASP-1 305-3B-VAP-0 306-3B-VAP-0

Actinomyces 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Aeromonas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Alkalibacterium 0.00 3.04 0.00 0.00 0.00 0.00 0.00 3.82 0.00 0.00

Aquabacterium 0.00 0.00 0.00 2.01 0.00 0.00 0.00 3.67 0.00 0.00

Atopobium 0.00 0.00 0.00 0.00 6.33 7.74 0.00 0.00 0.00 4.29

Bacteroides 15.78 45.74 0.00 9.82 0.00 3.62 0.00 52.78 0.00 0.00

Bradyrhizobium 5.30 20.44 0.00 2.90 0.00 0.00 0.00 11.47 0.00 0.00

Corynebacterium 0.00 0.00 0.00 61.79 0.00 0.00 0.00 2.33 0.00 0.00

Dermabacter 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Dolosigranulum 0.00 0.00 0.00 13.35 0.00 0.00 0.00 0.00 0.00 0.00

Eubacterium 0.00 0.00 0.00 0.00 2.51 4.87 0.00 0.00 0.00 0.00

Fusobacterium 0.00 2.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gemella 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 33.76 0.00

Granulicatella 0.00 0.00 0.00 0.00 6.52 7.03 0.00 0.00 0.00 10.24

Helicobacter 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Janthinobacterium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lactobacillus 0.00 0.00 0.00 0.00 0.00 2.87 0.00 0.00 2.66 0.00

Lactococcus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Leptotrichia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mogibacterium 0.00 0.00 0.00 0.00 0.00 2.18 0.00 0.00 0.00 0.00

Moraxella 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mycoplasma 28.68 0.00 0.00 0.00 39.47 28.07 0.00 0.00 0.00 0.00

Nocardioides 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Novosphingobium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Parvimonas 0.00 0.00 0.00 0.00 4.07 3.49 0.00 0.00 0.00 0.00

Peptoniphilus 0.00 0.00 0.00 0.00 3.51 3.85 0.00 0.00 0.00 0.00

Planococcus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Prevotella 4.68 0.00 0.00 0.00 21.12 20.71 0.00 0.00 0.00 15.59

Propionibacterium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Pseudomonas 0.00 0.00 99.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ralstonia 0.00 3.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rothia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.15 20.33

Schwartzia 2.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sphingomonas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Staphylococcus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.58 7.39 0.00

Streptococcus 0.00 3.19 0.00 0.00 0.00 0.00 0.00 0.00 50.62 22.56

Treponema 4.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tropheryma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ureaplasma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Veillonella 0.00 0.00 0.00 0.00 2.79 0.00 0.00 0.00 0.00 0.00

Other 21.70 15.45 0.22 7.63 6.55 11.52 0.18 9.35 2.12 9.82

Unclassified 16.71 6.37 0.44 2.50 7.14 4.04 99.82 14.00 1.29 17.18
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Table F.9.: Relative sequence distribution at the phylum level determined with SnoWMAn’s RDP pipeline, at a classification confidence of 80 %,

a cluster distance of 0.03, for clusters with more than 2 % overall abundance. The table presents counts for the second part of samples of group

3B for the 16S amplicon set.
309-3B-VAP-0 310-3B-NAP-0 312-3B-VAP-0 313-3B-NAP-0 313-3B-VAP-1 314-3B-CAP-0 318-3B-ASP-0 319-3B-VAP-0 320-3B-ASP-0 321-3B-NAP-0

Actinomyces 0.00 0.00 0.00 0.00 5.75 0.00 0.00 0.00 0.00 2.75

Aeromonas 0.00 0.00 0.00 5.95 0.00 0.00 0.00 0.00 0.00 0.00

Alkalibacterium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.71 0.00 0.00

Aquabacterium 0.00 0.00 0.00 0.00 6.13 0.00 0.00 8.28 0.00 0.00

Atopobium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Bacteroides 7.61 0.00 0.00 0.00 23.81 11.12 0.00 51.04 0.00 0.00

Bradyrhizobium 0.00 0.00 0.00 0.00 4.38 0.00 0.00 2.74 0.00 0.00

Corynebacterium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Dermabacter 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Dolosigranulum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Eubacterium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fusobacterium 0.00 3.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gemella 0.00 33.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.55

Granulicatella 0.00 2.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.26

Helicobacter 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Janthinobacterium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lactobacillus 3.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lactococcus 13.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Leptotrichia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mogibacterium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Moraxella 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 88.33 0.00

Mycoplasma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Nocardioides 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Novosphingobium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Parvimonas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Peptoniphilus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Planococcus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Prevotella 0.00 0.00 0.00 0.00 0.00 0.00 3.20 0.00 0.00 2.20

Propionibacterium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Pseudomonas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ralstonia 0.00 0.00 0.00 0.00 5.17 0.00 0.00 0.00 0.00 0.00

Rothia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.05

Schwartzia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sphingomonas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.96 0.00 0.00

Staphylococcus 0.00 0.00 0.00 19.70 0.00 0.00 63.37 0.00 0.00 0.00

Streptococcus 63.06 49.75 99.41 0.00 0.00 79.24 26.70 0.00 5.55 65.80

Treponema 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tropheryma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ureaplasma 0.00 4.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Veillonella 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Other 7.07 5.90 0.53 1.44 19.66 8.07 5.65 13.08 5.44 4.57

Unclassified 4.37 1.14 0.06 72.91 35.10 1.56 1.08 19.18 0.68 1.82
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Table F.10.: Relative sequence distribution at the phylum level determined with SnoWMAn’s RDP pipeline, at a classification confidence of 80 %,

a cluster distance of 0.03, for clusters with more than 2 % overall abundance. The table presents counts for the third part of samples of group 3B

for the 16S amplicon set.
322-3B-NAP-0 323-3B-VAP-0 324-3B-ASP-0 325-3B-VAP-0 326-3B-VAP-0 327-3B-ASP-0 328-3B-NAP-0 608-3B-ASP-0 609-3B-ASP-0 612-3B-VAP-0

Actinomyces 0.00 0.00 6.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Aeromonas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Alkalibacterium 3.30 3.28 0.00 0.00 2.13 0.00 3.00 0.00 0.00 0.00

Aquabacterium 0.00 4.63 0.00 0.00 2.37 0.00 7.49 0.00 0.00 0.00

Atopobium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Bacteroides 22.71 27.03 21.11 0.00 15.37 0.00 61.91 0.00 0.00 7.69

Bradyrhizobium 3.90 4.07 2.24 0.00 2.35 0.00 0.00 0.00 0.00 7.47

Corynebacterium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Dermabacter 0.00 0.00 0.00 0.00 2.59 0.00 0.00 0.00 0.00 0.00

Dolosigranulum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Eubacterium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fusobacterium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gemella 0.00 0.00 3.02 0.00 0.00 0.00 0.00 6.24 0.00 0.00

Granulicatella 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Helicobacter 0.00 2.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Janthinobacterium 0.00 0.00 0.00 0.00 0.00 0.00 2.45 0.00 0.00 0.00

Lactobacillus 0.00 0.00 0.00 0.00 0.00 4.06 0.00 0.00 0.00 0.00

Lactococcus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Leptotrichia 0.00 0.00 3.45 0.00 3.12 0.00 0.00 0.00 0.00 0.00

Mogibacterium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Moraxella 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mycoplasma 0.00 0.00 0.00 74.74 9.09 0.00 0.00 0.00 0.00 0.00

Nocardioides 0.00 0.00 0.00 0.00 21.65 0.00 0.00 0.00 0.00 0.00

Novosphingobium 24.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Parvimonas 0.00 0.00 0.00 9.14 0.00 0.00 0.00 0.00 0.00 0.00

Peptoniphilus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Planococcus 0.00 0.00 9.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Prevotella 0.00 0.00 14.84 3.95 2.49 0.00 0.00 40.88 0.00 0.00

Propionibacterium 2.41 0.00 0.00 0.00 0.00 0.00 2.16 0.00 0.00 9.17

Pseudomonas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ralstonia 2.68 3.03 0.00 0.00 0.00 0.00 2.03 0.00 0.00 0.00

Rothia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Schwartzia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sphingomonas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Staphylococcus 0.00 10.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Streptococcus 0.00 13.25 8.94 2.79 9.42 78.90 0.00 49.59 14.70 0.00

Treponema 0.00 2.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tropheryma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 81.73 0.00

Ureaplasma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Veillonella 0.00 0.00 4.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Other 16.38 11.75 15.39 6.79 17.10 7.19 9.87 2.41 3.10 7.96

Unclassified 24.48 17.48 10.65 2.60 12.30 9.85 11.08 0.87 0.48 67.71
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Table F.11.: Relative sequence distribution at the genus level determined with SnoWMAn’s

BLAT pipeline, at a classification confidence of 80 % and clusters with more than 2 % overall

abundance. The table presents counts for all samples of group 1A of the ITS BAL amplicon set.

087-1A-NTS-0 095-1A-NTS-0 105-1A-NTS-0 107-1A-NTS-0

Amylostereum 0.00 10.95 0.00 0.00

Armillaria 13.72 0.00 0.00 0.00

Aspergillus 0.00 0.00 0.00 15.42

Bjerkandera 0.00 9.50 0.00 0.00

Didymella 0.00 0.00 3.91 0.00

Dioszegia 0.00 5.33 0.00 0.00

Epicoccum 0.00 0.00 5.27 0.00

Heterobasidion 0.00 21.33 2.07 0.00

Malassezia 28.94 0.00 0.00 48.94

Meira 0.00 7.15 0.00 0.00

Penicillium 6.14 0.00 0.00 2.03

Phoma 0.00 0.00 5.33 0.00

Piptoporus 0.00 0.00 2.01 0.00

Pluteus 0.00 10.52 0.00 0.00

Trametes 0.00 25.09 0.00 0.00

Wallemia 0.00 0.00 0.00 27.26

unidentified 50.32 6.91 74.21 4.84

Other 0.87 3.22 7.20 1.51



Table F.12.: Relative sequence distribution at the genus level determined with SnoWMAn’s

BLAT pipeline, at a classification confidence of 80 % and clusters with more than 2 % overall

abundance. The table presents counts for all samples of group 1B of the ITS BAL amplicon set.

098-1B-NTS-0 100-1B-NTS-0 101-1B-NTS-0 103-1B-NTS-0 104-1B-NTS-0

Amphinema 0.00 0.00 0.00 2.13 0.00

Aspergillus 0.00 3.31 0.00 0.00 0.00

Bjerkandera 2.74 0.00 0.00 0.00 2.42

Cladosporium 0.00 0.00 0.00 5.60 3.66

Cystofilobasidium 21.44 0.00 0.00 0.00 0.00

Dioszegia 0.00 5.34 0.00 0.00 0.00

Entomocorticium 2.06 0.00 0.00 0.00 0.00

Fomitopsis 0.00 0.00 0.00 0.00 3.68

Heterobasidion 0.00 7.78 0.00 6.98 6.34

Hyphodontia 0.00 2.40 0.00 0.00 0.00

Hypholoma 0.00 0.00 0.00 7.15 7.66

Malassezia 0.00 3.65 21.33 0.00 0.00

Mensularia 0.00 0.00 3.09 0.00 0.00

Mrakia 9.17 0.00 0.00 0.00 0.00

Onnia 0.00 0.00 9.33 0.00 0.00

Phlebia 0.00 0.00 0.00 0.00 2.32

Physisporinus 0.00 0.00 0.00 2.72 0.00

Postia 0.00 0.00 0.00 2.19 5.74

Psathyrella 0.00 0.00 0.00 3.51 0.00

Pulvinula 0.00 3.22 0.00 0.00 0.00

Resinicium 2.36 0.00 0.00 8.15 3.14

Rigidoporus 0.00 0.00 0.00 3.90 2.72

Schizophyllum 5.70 3.72 0.00 0.00 0.00

Sporobolomyces 0.00 6.29 0.00 0.00 0.00

Steccherinum 0.00 0.00 0.00 0.00 2.25

Stereum 4.58 0.00 0.00 0.00 0.00

Stropharia 0.00 0.00 0.00 3.20 2.79

Trametes 2.99 12.36 0.00 2.59 4.10

Volvopluteus 0.00 0.00 0.00 2.06 2.11

Wallemia 0.00 0.00 65.17 0.00 0.00

unidentified 27.49 40.25 0.00 10.08 10.64

Other 21.47 11.68 1.08 39.74 40.41
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Appendix F. Supplementary information BAL study

Table F.13.: Relative sequence distribution at the genus level determined with SnoWMAn’s

BLAT pipeline, at a classification confidence of 80 % and clusters with more than 2 % overall

abundance. The table presents counts for all samples of group 2A of the ITS BAL amplicon set.

201-2A-NTS-0 202-2A-NTS-0 203-2A-NTS-0 401-2A-NTS-0 402-2A-NTS-0 403-2A-NTS-0 406-2A-NTS-0

Alternaria 0.00 0.00 0.00 4.99 0.00 0.00 0.00

Armillaria 0.00 0.00 0.00 0.00 0.00 43.91 0.00

Blumeria 0.00 6.25 0.00 0.00 0.00 0.00 0.00

Candida 98.79 0.00 55.81 93.23 0.00 6.52 49.38

Cladosporium 0.00 0.00 3.76 0.00 0.00 0.00 0.00

Clitocybe 0.00 0.00 0.00 0.00 0.00 7.46 0.00

Entomocorticium 0.00 0.00 4.57 0.00 0.00 0.00 0.00

Kazachstania 0.00 0.00 0.00 0.00 0.00 28.02 0.00

Malassezia 0.00 12.38 0.00 0.00 20.20 0.00 45.72

Marasmiellus 0.00 0.00 0.00 0.00 24.74 0.00 0.00

Mycena 0.00 65.91 0.00 0.00 0.00 0.00 0.00

Penicillium 0.00 5.11 6.05 0.00 0.00 0.00 0.00

Rigidoporus 0.00 9.94 0.00 0.00 0.00 0.00 0.00

Wallemia 0.00 0.00 0.00 0.00 34.86 0.00 0.00

unidentified 0.00 0.00 15.55 0.00 18.23 2.30 3.73

Other 1.21 0.41 14.25 1.78 1.97 11.79 1.17

Table F.14.: Relative sequence distribution at the genus level determined with SnoWMAn’s

BLAT pipeline, at a classification confidence of 80 % and clusters with more than 2 % overall

abundance. The table presents counts for all samples of group 2B of the ITS BAL amplicon set.

252-2B-NTS-0 255-2B-NTS-0 256-2B-NTS-0 257-2B-NTS-0 610-2B-NTS-0

Acremonium 0.00 0.00 0.00 0.00 28.89

Aspergillus 0.00 0.00 0.00 0.00 3.11

Bjerkandera 0.00 0.00 3.60 0.00 0.00

Candida 51.08 98.92 89.90 0.00 6.22

Ceriporiopsis 0.00 0.00 0.00 0.00 4.00

Cladosporium 0.00 0.00 0.00 34.26 0.00

Malassezia 16.24 0.00 5.96 29.09 0.00

Resinicium 0.00 0.00 0.00 0.00 26.67

unidentified 32.35 0.00 0.00 35.16 28.44

Other 0.33 1.08 0.54 1.50 2.67
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Table F.15.: Relative sequence distribution at the genus level determined with SnoWMAn’s BLAT pipeline, at a classification confidence of 80 %

and clusters with more than 2 % overall abundance. The table presents counts for all samples of group 3B (part I) of the ITS BAL amplicon set.

301-3B-VAP-0 302-3B-VAP-0 302-3B-VAP-1 303-3B-VAP-0 303-3B-VAP-1 304-3B-ASP-0 304-3B-ASP-1 305-3B-VAP-0 306-3B-VAP-0 309-3B-VAP-0 313-3B-NAP-0 313-3B-VAP-1 318-3B-ASP-0

Alternaria 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 23.61 0.00 2.31 0.00 0.00

Armillaria 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Artomyces 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Aspergillus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.16 0.00 0.00

Boletus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.57 0.00 0.00

Botryobasidium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.97 0.00

Candida 99.82 99.47 99.63 99.82 99.94 97.10 54.08 0.00 10.02 97.53 0.00 0.00 93.07

Cercospora 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.79 0.00 0.00

Cladosporium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.40 13.59 0.00

Filobasidium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Golovinomyces 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Heterobasidion 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.97 0.00 0.00 0.00 0.00 0.00

Knufia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Malassezia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.08 0.00 0.00 0.00 27.97 0.00

Meripilus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Monographella 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 35.44 0.00 0.00

Penicillium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 70.97 0.00 0.00 0.00 0.00 0.00

Phellinus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Phialemonium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 26.43 0.00

Plicaturopsis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 41.76 0.00 0.00 0.00 0.00

Rhodotorula 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Saccharomyces 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sarcinomyces 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sporidiobolus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.89 0.00 0.00

Tilletiopsis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Trametes 0.00 0.00 0.00 0.00 0.00 0.00 43.89 0.00 0.00 0.00 0.00 0.00 0.00

Tricholoma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.57 0.00 7.07 0.00 0.00

Trichosporon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tricladium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.43 0.00

Wallemia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.42 0.00 0.00

unidentified 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.10 15.59 0.00 6.75 13.69 2.65

Other 0.18 0.53 0.37 0.18 0.06 2.90 2.03 1.90 1.45 2.47 5.19 1.91 4.29



Table F.16.: Relative sequence distribution at the genus level determined with SnoWMAn’s BLAT pipeline, at a classification confidence of 80 %

and clusters with more than 2 % overall abundance. The table presents counts for all samples of group 3B (part II) of the ITS BAL amplicon set.

319-3B-VAP-0 320-3B-ASP-0 321-3B-NAP-0 322-3B-NAP-0 323-3B-VAP-0 324-3B-ASP-0 325-3B-VAP-0 326-3B-VAP-0 327-3B-ASP-0 328-3B-NAP-0 608-3B-ASP-0 609-3B-ASP-0 612-3B-VAP-0

Alternaria 0.00 0.00 0.00 0.00 43.30 0.00 0.00 14.43 0.00 0.00 0.00 0.00 0.00

Armillaria 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.45 0.00

Artomyces 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.72 0.00 0.00 0.00 0.00 0.00

Aspergillus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.09 0.00 0.00 0.00 0.00

Boletus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Botryobasidium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Candida 86.43 53.99 0.00 97.45 52.66 90.31 0.00 62.12 41.05 89.86 10.10 39.84 98.07

Cercospora 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cladosporium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.96 0.00 0.00 0.00 0.00 0.00

Filobasidium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.12 0.00 0.00 0.00 0.00 0.00

Golovinomyces 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.85 0.00 0.00 0.00 0.00

Heterobasidion 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Knufia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.94 0.00 0.00

Malassezia 0.00 10.74 0.00 0.00 0.00 3.74 62.30 0.00 0.00 8.33 17.34 0.00 0.00

Meripilus 0.00 0.00 10.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Monographella 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Penicillium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Phellinus 0.00 0.00 28.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Phialemonium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.16 0.00

Plicaturopsis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rhodotorula 2.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Saccharomyces 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 37.89 0.00 0.00 0.00 0.00

Sarcinomyces 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.97 0.00 0.00

Sporidiobolus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tilletiopsis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 33.25 0.00 0.00

Trametes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.34 0.00

Tricholoma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Trichosporon 2.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tricladium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Wallemia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

unidentified 2.75 34.97 58.49 0.00 3.58 4.45 36.68 2.17 4.16 0.00 26.31 17.18 0.00

Other 5.83 0.31 2.75 2.55 0.46 1.50 1.01 1.48 4.94 1.81 4.10 3.03 1.93



Table F.17.: α-diversity scores according to Chao1, Chao1 (bc), Shannon, ACE, as well as to Richness and Eveness calculated by SnoWMAn,

based on the final fungal community profile of the BAL study samples. Scores are presented for each sample, as well as for the main groups and

the total community profile at the species level.
Sample Richness Chao1 Chao1 (bc) Shannon Evenness ACE Sample Richness Chao1 Chao1 (bc) Shannon Evenness ACE

087-1A-NTS-0 30.00 NaN 36.00 1.85 0.54 33.18 301-3B-VAP-0 9.00 NaN 9.00 0.04 0.02 9.26

095-1A-NTS-0 46.00 78.67 68.75 2.37 0.62 64.37 302-3B-VAP-0 23.00 151.00 83.00 0.13 0.04 96.03

105-1A-NTS-0 50.00 64.40 61.00 1.46 0.37 63.88 302-3B-VAP-1 7.00 NaN 8.00 0.08 0.04 8.84

107-1A-NTS-0 34.00 74.50 52.00 1.64 0.47 47.06 303-3B-VAP-0 5.00 NaN 5.00 0.07 0.05 6.99

Total 1A 135.00 207.25 197.33 3.03 0.62 178.27 303-3B-VAP-1 5.00 NaN 5.00 0.01 0.01 5.86

098-1B-NTS-0 183.00 226.20 222.38 3.38 0.65 217.25 304-3B-ASP-0 19.00 28.00 24.00 0.18 0.06 26.03

100-1B-NTS-0 90.00 220.67 184.50 3.31 0.74 135.39 304-3B-ASP-1 51.00 123.90 109.50 0.92 0.23 117.90

101-1B-NTS-0 25.00 31.13 29.20 1.09 0.34 36.40 305-3B-VAP-0 17.00 17.50 17.00 1.33 0.47 17.62

103-1B-NTS-0 288.00 380.48 375.62 4.48 0.79 359.08 306-3B-VAP-0 15.00 16.50 15.75 1.59 0.59 19.23

104-1B-NTS-0 258.00 324.27 320.22 4.62 0.83 312.77 309-3B-VAP-0 22.00 72.00 44.50 0.16 0.05 51.86

Total 1B 567.00 802.76 796.52 4.70 0.74 732.92 313-3B-NAP-0 65.00 77.00 74.43 2.31 0.55 75.09

201-2A-NTS-0 33.00 58.00 48.00 0.46 0.13 41.71 313-3B-VAP-1 20.00 28.00 23.00 1.87 0.62 25.64

202-2A-NTS-0 18.00 NaN 33.00 1.13 0.39 23.52 318-3B-ASP-0 18.00 20.67 19.50 0.93 0.32 21.26

203-2A-NTS-0 104.00 168.80 161.27 2.08 0.45 163.23 319-3B-VAP-0 54.00 68.00 65.38 0.79 0.20 67.02

401-2A-NTS-0 23.00 43.25 35.00 0.33 0.10 34.89 320-3B-ASP-0 7.00 NaN 7.00 1.40 0.72 8.11

402-2A-NTS-0 21.00 27.25 24.33 1.59 0.52 25.62 321-3B-NAP-0 14.00 22.00 17.00 1.64 0.62 21.37

403-2A-NTS-0 81.00 157.56 147.11 2.14 0.49 123.79 322-3B-NAP-0 21.00 39.00 28.50 0.22 0.07 28.93

406-2A-NTS-0 28.00 53.60 48.00 0.94 0.28 72.09 323-3B-VAP-0 22.00 46.50 32.50 1.10 0.36 33.41

Total 2A 232.00 470.10 457.00 2.47 0.45 380.96 324-3B-ASP-0 20.00 29.00 25.00 0.47 0.16 27.12

252-2B-NTS-0 17.00 35.00 24.50 1.10 0.39 27.63 325-3B-VAP-0 9.00 9.50 9.00 0.93 0.42 9.50

255-2B-NTS-0 18.00 30.25 25.00 0.09 0.03 24.96 326-3B-VAP-0 20.00 22.00 20.50 1.35 0.45 22.61

256-2B-NTS-0 20.00 26.13 24.20 0.43 0.15 33.03 327-3B-ASP-0 35.00 47.50 44.00 1.74 0.49 51.16

257-2B-NTS-0 23.00 35.25 30.00 1.56 0.50 31.80 328-3B-NAP-0 8.00 8.17 8.00 0.45 0.22 8.67

405-2B-NTS-0 13.00 15.00 14.20 0.10 0.04 16.27 608-3B-ASP-0 19.00 27.00 22.00 1.78 0.61 23.25

610-2B-NTS-0 14.00 14.67 14.25 1.91 0.72 15.61 609-3B-ASP-0 78.00 154.05 145.36 1.79 0.41 163.20

Total 2B 70.00 113.56 107.80 1.68 0.40 116.55 612-3B-VAP-0 16.00 25.00 21.00 0.82 0.29 28.00

Total 3B 309.00 561.02 551.45 2.61 0.45 545.88
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Table F.18.: The table summarizes the number of filtered and remaining sequences after each

pre-processing step. The ITS amplicons of the BAL study were noise reduced and quality

filtered by Acacia, as well as filtered for contaminating sequences using the Decontaminator

prior to phylogenetic analysis.

number of sequences H70LSVG01 H70LSVG03 total

raw 256956 286610 543566

noise and low quality 26258 29137 55395

after denoising and qual. Fitering 230698 257473 488171

toally removed 26258 29137 55395

after preprocessing 488171

removed by snowman 21589

for classification 466582

not classified (contaminations) 21716

finally classified 444866



Table F.19.: The table summarizes the number of filtered and remaining sequences after each

pre-processing step. 16S amplicons of the BAL study were noise reduced and quality filtered

by Acacia, as well as filtered for contaminating sequences using the Decontaminator prior to

phylogenetic analysis.

number of sequences H70LSVG02 H70LSVG04 total

raw 168409 261271 429680

noise and low quality 17068 43689 60757

after denoising and qual. Fitering 151341 217582 368923

contaminations 1953 3083 5036

after decontamination 149388 214499 363887

after preprocessing 149388 214499 363887

removed by snowman 124897

for classification 238990

Table F.20.: The table summarizes tools and settings which were used within 16S BAL study

pre-processing, as well as for the final phylogenetic classification.

release/version settings

Decontaminator
blat ref db perc. Identity query coverage offset MID offset primer

v.5 GG 09May2011 95 75 10 20

uchime
mode reference db

mothur v.1.31.2 reference SILVA relase 105

Acacia
min. avg. quality threshold other settings

1.52.b0 22 default

SnoWMAn
pipeline classifier version infernal model

v.1.2 RDP RDP classifier 2.5 ncbi16S_508_mod5

Table F.21.: The table summarizes tools and settings which were used within ITS BAL study

pre-processing, as well as for final the phylogenetic classification.

release/version settings

Acacia
min. avg. quality threshold other settings

1.52.b0 22 default

SnoWMAn
pipeline reference db

v.1.2 BLAT unite IST 15.Oct.2013
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Appendix F. Supplementary information BAL study

Table F.22.: Sample overview of the fungal BAL study samples analyzed using SnoWMAn’s

BLAT pipeline. The table summarizes the number of finally obtained distinct species (OTUs)

for different cluster distances for each sample, as well as for the main groups and of the total

community profile.
Sample Sequences Unique Seqs # OTUs Sample Sequences Unique Seqs # OTUs

105-1A-NTS-0 8411 849 50 303-3B-VAP-0 7287 682 5

107-1A-NTS-0 10673 1423 34 326-3B-VAP-0 13674 1214 20

087-1A-NTS-0 10355 1473 30 313-3B-NAP-0 16152 1679 65

095-1A-NTS-0 9214 1122 46 303-3B-VAP-1 18848 1038 5

Total 1A 38653 135 324-3B-ASP-0 20498 2040 20

101-1B-NTS-0 9714 1243 25 327-3B-ASP-0 2185 709 35

100-1B-NTS-0 8873 1253 90 302-3B-VAP-0 11006 1128 23

098-1B-NTS-0 6599 1201 183 301-3B-VAP-0 16346 1924 9

103-1B-NTS-0 7033 1275 288 302-3B-VAP-1 5110 465 7

104-1B-NTS-0 7193 1450 258 328-3B-NAP-0 1380 164 8

Total 1B 39412 567 306-3B-VAP-0 898 124 15

406-2A-NTS-0 3163 413 28 325-3B-VAP-0 6417 861 9

401-2A-NTS-0 10964 1149 23 320-3B-ASP-0 326 49 7

403-2A-NTS-0 1824 491 81 321-3B-NAP-0 1308 203 14

402-2A-NTS-0 11301 1409 21 608-3B-ASP-0 1684 370 19

203-2A-NTS-0 13182 1648 104 304-3B-ASP-0 11828 1050 19

201-2A-NTS-0 8834 1200 33 304-3B-ASP-1 11025 1070 51

202-2A-NTS-0 6268 681 18 319-3B-VAP-0 18487 1769 54

Total 2A 55536 232 609-3B-ASP-0 7457 903 78

405-2B-NTS-0 15053 1856 13 612-3B-VAP-0 10243 1309 16

257-2B-NTS-0 15550 2342 23 313-3B-VAP-1 4812 743 20

256-2B-NTS-0 9230 993 20 323-3B-VAP-0 21973 1897 22

255-2B-NTS-0 8506 853 18 322-3B-NAP-0 12349 1195 21

252-2B-NTS-0 11679 1287 17 305-3B-VAP-0 5118 682 17

610-2B-NTS-0 225 50 14 318-3B-ASP-0 1890 467 18

Total 2B 60243 70 309-3B-VAP-0 22721 1852 22

Total 3B 251022 309
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Table F.23.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from

SnoWMAn’s RDP pipeline, at the phylum level. For each DA phylum level feature (TAX), the contrast (G1, G2), the number of samples per

contrast group, as well as the raw counts and counts per million (cpm) normalized by library size, per contrast group, are given. Additionally,

statistical result parameters of edgeR, the logFC and the FDR, for each phylum and contrast are included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Tenericutes 1A 3B 8 30 0 7574 235.04 50753.75 -7.6267 0.0002332

Cyanobacteria/Chloroplast 1A 3B 8 30 0 3601 235.04 30019.08 -6.8720 0.0002332

Tenericutes 2A 3B 7 30 0 7574 260.93 50753.75 -7.4550 0.0008855

Cyanobacteria/Chloroplast 2A 3B 7 30 0 3601 260.93 30019.08 -6.6979 0.0008855

Tenericutes 1B 3B 7 30 0 7574 261.16 50753.75 -7.4538 0.0008872

Cyanobacteria/Chloroplast 1B 3B 7 30 0 3601 261.16 30019.08 -6.6968 0.0008872

Fusobacteria 1B 2A 7 7 0 668 261.16 25095.07 -6.4382 0.0012495

Tenericutes 1A 2B 8 6 0 566 235.04 24880.08 -6.5997 0.0028923

Fusobacteria 2A 2B 7 6 668 0 25095.07 330.96 6.1458 0.0040784

Tenericutes 2A 2B 7 6 0 566 260.93 24880.08 -6.4280 0.0040784

Fusobacteria 2A 3B 7 30 668 648 25095.07 3371.97 2.8736 0.0042141

Fusobacteria 1A 1B 8 7 781 0 12161.84 261.16 5.3993 0.0069189

Cyanobacteria/Chloroplast 2B 3B 6 30 0 3601 330.96 30019.08 -6.4019 0.0077994

Tenericutes 1B 2B 7 6 0 566 261.16 24880.08 -6.4268 0.0081709

Fusobacteria 1A 2B 8 6 781 0 12161.84 330.96 5.1069 0.0127958

Actinobacteria 1A 2B 8 6 4099 107 144357.85 5483.82 4.7078 0.0204568

Fusobacteria 1B 3B 7 30 0 648 261.16 3371.97 -3.5646 0.0306517
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Table F.24.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from

SnoWMAn’s RDP pipeline, at the class level (classification confidence 80 %, cluster distance 0.03, "other" threshold 2 %). For each DA class

level feature (TAX), the contrast (G1, G2), the number of samples per contrast group, as well as the raw counts and counts per million (cpm)

normalized by library size, per contrast group, are given. Additionally, statistical result parameters of edgeR, the logFC and the FDR, for each

class and contrast are included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Erysipelotrichia 2A 3B 7 30 267 0 9108.48 296.48 4.8980 1.10E-13

Flavobacteria 1A 3B 8 30 280 0 8293.09 296.48 4.7482 2.61E-12

Erysipelotrichia 1A 2A 8 7 0 267 193.37 9108.48 -5.4037 3.77E-06

Erysipelotrichia 1B 2A 7 7 0 267 241.09 9108.48 -5.0876 5.80E-05

Mollicutes 1A 3B 8 30 0 7574 193.37 52243.32 -7.8931 0.000132

Chloroplast 1A 3B 8 30 0 3601 193.37 30676.47 -7.1265 0.000156

Flavobacteria 1A 2A 8 7 280 0 8293.09 274.23 4.7929 0.000186

Flavobacteria 1A 1B 8 7 280 0 8293.09 241.09 4.9433 0.000214

Fusobacteria 1B 2A 7 7 0 668 241.09 22382.35 -6.3765 0.000764

Mollicutes 2A 3B 7 30 0 7574 274.23 52243.32 -7.4391 0.000876

Erysipelotrichia 2A 2B 7 6 267 0 9108.48 327.54 4.7082 0.000877

Chloroplast 2A 3B 7 30 0 3601 274.23 30676.47 -6.6720 0.001014

Mollicutes 1B 3B 7 30 0 7574 241.09 52243.32 -7.5973 0.00117

Chloroplast 1B 3B 7 30 0 3601 241.09 30676.47 -6.8297 0.00117

Fusobacteria 2A 3B 7 30 668 648 22382.35 2685.71 3.0246 0.001921

Flavobacteria 1A 2B 8 6 280 0 8293.09 327.54 4.5627 0.001979

Mollicutes 1A 2B 8 6 0 566 193.37 22158.20 -6.6578 0.001979

Fusobacteria 1A 1B 8 7 781 0 12870.10 241.09 5.5808 0.002919

Negativicutes 1B 2B 7 6 0 280 241.09 17647.76 -6.0314 0.003735

Fusobacteria 2A 2B 7 6 668 0 22382.35 327.54 5.9890 0.004373

Mollicutes 2A 2B 7 6 0 566 274.23 22158.20 -6.2039 0.005943

Negativicutes 2B 3B 6 30 280 607 17647.76 1806.14 3.2209 0.005973

Chloroplast 2B 3B 6 30 0 3601 327.54 30676.47 -6.4401 0.005973

Mollicutes 1B 2B 7 6 0 566 241.09 22158.20 -6.3620 0.00698

Fusobacteria 1A 2B 8 6 781 0 12870.10 327.54 5.1933 0.00934

Clostridia 2A 2B 7 6 734 0 24569.99 327.54 6.1194 0.011818

Betaproteobacteria 2B 3B 6 30 5552 4635 274367.28 32458.19 3.0774 0.012837

Negativicutes 1A 1B 8 7 367 0 5821.49 241.09 4.4432 0.016204

Clostridia 2B 3B 6 30 0 1741 327.54 13739.11 -5.2832 0.020638

Negativicutes 1B 2A 7 7 0 156 241.09 5441.34 -4.3446 0.021174
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Table F.25.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from

SnoWMAn’s RDP pipeline, at the order level (classification confidence 80 %, cluster distance 0.03, "other" threshold 2 %). For each DA order

level feature (TAX), the contrast (G1, G2), the number of samples per contrast group, as well as the raw counts and counts per million (cpm)

normalized by library size, per contrast group, are given. Additionally, statistical result parameters of edgeR, the logFC and the FDR, for each

order and contrast are included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Pasteurellales 2B 3B 6 30 4474 0 222478.73 271.75 9.5355 2.98E-30

Pasteurellales 2A 3B 7 30 1142 0 45082.68 271.75 7.2330 4.02E-20

Erysipelotrichales 2A 3B 7 30 267 0 8809.22 271.75 4.8911 6.98E-14

Neisseriales 2B 3B 6 30 5393 150 279862.92 1331.05 7.6693 5.77E-13

Flavobacteriales 1A 3B 8 30 280 0 7602.28 271.75 4.6742 3.19E-12

Rhodobacterales 1B 3B 7 30 200 0 6377.08 271.75 4.4276 2.12E-11

Pasteurellales 1A 2B 8 6 0 4474 215.30 222478.73 -9.8160 8.02E-10

Pasteurellales 1B 2B 7 6 0 4474 246.42 222478.73 -9.6524 1.83E-08

Pasteurellales 1A 2A 8 7 0 1142 215.30 45082.68 -7.5136 5.88E-07

Neisseriales 1A 2B 8 6 0 5393 215.30 279862.92 -10.1469 3.42E-06

Pasteurellales 1B 2A 7 7 0 1142 246.42 45082.68 -7.3500 6.11E-06

Erysipelotrichales 1A 2A 8 7 0 267 215.30 8809.22 -5.1675 7.69E-06

Erysipelotrichales 1B 2A 7 7 0 267 246.42 8809.22 -5.0058 6.02E-05

Rhodobacterales 1A 1B 8 7 0 200 215.30 6377.08 -4.7036 7.09E-05

Flavobacteriales 1A 2A 8 7 280 0 7602.28 265.94 4.6881 0.000192

Flavobacteriales 1A 1B 8 7 280 0 7602.28 246.42 4.7893 0.0002

Rhodobacterales 1B 2A 7 7 200 0 6377.08 265.94 4.4407 0.000227

Mycoplasmatales 1A 3B 8 30 0 7518 215.30 60253.38 -7.9320 0.000248

Chloroplast 1A 3B 8 30 0 3601 215.30 33441.37 -7.0830 0.000302

Actinomycetales 1A 2B 8 6 4086 0 109182.17 282.65 8.4453 0.000326

Actinomycetales 2B 3B 6 30 0 9090 282.65 80839.95 -8.0119 0.000388

Burkholderiales 1B 2A 7 7 1049 0 34842.76 265.94 6.8768 0.00047

Burkholderiales 2A 3B 7 30 0 3762 265.94 28038.19 -6.5643 0.000544

Mycoplasmatales 2A 3B 7 30 0 7518 265.94 60253.38 -7.6658 0.000593

Flavobacteriales 1A 2B 8 6 280 0 7602.28 282.65 4.6109 0.000599

Burkholderiales 1A 2A 8 7 1015 0 27171.25 265.94 6.5183 0.000765

Rhizobiales 1A 2A 8 7 1339 0 36515.05 265.94 6.9439 0.000765

Chloroplast 2A 3B 7 30 0 3601 265.94 33441.37 -6.8169 0.000777

Rhizobiales 2A 3B 7 30 0 3550 265.94 26287.57 -6.4710 0.000777

Erysipelotrichales 2A 2B 7 6 267 0 8809.22 282.65 4.8273 0.00086
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Table F.26.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from

SnoWMAn’s RDP pipeline, at the family level (classification confidence 80 %, cluster distance 0.03, "other" threshold 2 %). For each DA family

level feature (TAX), the contrast (G1, G2), the number of samples per contrast group, as well as the raw counts and counts per million (cpm)

normalized by library size, per contrast group, are given. Additionally, statistical result parameters of edgeR, the logFC and the FDR for each

family and contrast are included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Pasteurellaceae 2B 3B 6 30 4474 0 197220.02 258.57 9.4097 1.02E-29

Enterococcaceae 2B 3B 6 30 566 0 25531.24 258.57 6.4621 3.44E-21

Pasteurellaceae 2A 3B 7 30 1142 0 41156.46 258.57 7.1501 1.04E-19

Erysipelotrichaceae 2A 3B 7 30 267 0 9131.30 258.57 4.9850 4.41E-14

Flavobacteriaceae 1A 3B 8 30 280 0 8382.33 258.57 4.8599 5.61E-13

Rhodobacteraceae 1B 3B 7 30 200 0 6899.16 258.57 4.5824 6.36E-12

Neisseriaceae 2B 3B 6 30 5393 150 237521.96 1564.74 7.2177 2.48E-11

Pasteurellaceae 1A 2B 8 6 0 4474 240.84 197220.02 -9.5003 3.34E-09

Porphyromonadaceae 1A 3B 8 30 131 0 3935.20 258.57 3.7783 9.35E-09

Lachnospiraceae 1A 3B 8 30 111 0 3865.46 258.57 3.7435 1.03E-08

Oxalobacteraceae 1B 3B 7 30 96 0 3842.30 258.57 3.7379 1.99E-08

Pasteurellaceae 1B 2B 7 6 0 4474 253.04 197220.02 -9.4369 5.09E-08

Enterococcaceae 1A 2B 8 6 0 566 240.84 25531.24 -6.5526 1.78E-07

Enterococcaceae 1B 2B 7 6 0 566 253.04 25531.24 -6.4891 1.55E-06

Pasteurellaceae 1A 2A 8 7 0 1142 240.84 41156.46 -7.2407 2.28E-06

Enterococcaceae 2A 2B 7 6 0 566 258.73 25531.24 -6.4597 3.46E-06

Neisseriaceae 1A 2B 8 6 0 5393 240.84 237521.96 -9.7679 1.23E-05

Fusobacteriaceae 2A 3B 7 30 664 117 23022.31 1279.26 4.1376 1.27E-05

Pasteurellaceae 1B 2A 7 7 0 1142 253.04 41156.46 -7.1772 1.59E-05

Erysipelotrichaceae 1A 2A 8 7 0 267 240.84 9131.30 -5.0756 2.47E-05

Erysipelotrichaceae 1B 2A 7 7 0 267 253.04 9131.30 -5.0121 0.000121

Rhodobacteraceae 1A 1B 8 7 0 200 240.84 6899.16 -4.6730 0.000173

Flavobacteriaceae 1A 2A 8 7 280 0 8382.33 258.73 4.8576 0.0002

Flavobacteriaceae 1A 1B 8 7 280 0 8382.33 253.04 4.8870 0.00027

Rhodobacteraceae 1B 2A 7 7 200 0 6899.16 258.73 4.5800 0.000272

Mycoplasmataceae 1A 3B 8 30 0 7518 240.84 62966.42 -7.8529 0.000328

Streptophyta 1A 3B 8 30 0 3601 240.84 31185.43 -6.8400 0.000502

Moraxellaceae 1A 3B 8 30 0 4793 240.84 43177.15 -7.3088 0.000529

Erysipelotrichaceae 2A 2B 7 6 267 0 9131.30 264.43 4.9537 0.000571

Flavobacteriaceae 1A 2B 8 6 280 0 8382.33 264.43 4.8287 0.000581
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Table F.27.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from

SnoWMAn’s RDP pipeline, at the genus level (classification confidence 80 %, cluster distance 0.03, "other" threshold 2 %). For each DA genus

level feature (TAX), the contrast (G1, G2), the number of samples per contrast group, as well as the raw counts and counts per million (cpm)

normalized by library size, per contrast group, are given. Additionally, statistical result parameters of edgeR, the logFC and the FDR, for each

genus and contrast are included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Neisseria 2B 3B 6 30 5393 0 226976.2 257.4067 9.617026 3.25E-28

Haemophilus 2B 3B 6 30 3358 0 147558.7 257.4067 8.995943 1.93E-28

Tropheryma 1A 1B 8 7 1858 0 57783.19 254.4233 7.65788 0.002311

Tropheryma 1A 2A 8 7 1858 0 57783.19 257.9026 7.640587 0.00138

Tropheryma 1A 2B 8 6 1858 0 57783.19 260.4866 7.627699 0.004058

Pseudomonas 1B 2A 7 7 1413 0 52918.95 257.9026 7.513699 0.006437

Staphylococcus 2A 2B 7 6 1260 0 45659.89 260.4866 7.288209 0.01152

Haemophilus 2A 3B 7 30 1114 0 41285.96 257.4067 7.159177 3.07E-20

Bradyrhizobium 1B 2A 7 7 984 0 35585.91 257.9026 6.941835 0.001618

Pseudomonas 1A 2A 8 7 1073 0 32942.67 257.9026 6.830449 0.010782

Bradyrhizobium 1A 2A 8 7 1006 0 31605.92 257.9026 6.770816 0.00138

Propionibacterium 1A 2A 8 7 1023 0 31245.5 257.9026 6.754429 0.000834

Propionibacterium 1A 2B 8 6 1023 0 31245.5 260.4866 6.74152 0.002524

Enterococcus 2B 3B 6 30 566 0 25889.39 257.4067 6.486371 6.88E-22

Fusobacterium 2A 2B 7 6 662 0 23335.66 260.4866 6.321238 0.002377

Parvimonas 2A 2B 7 6 614 0 21846.01 260.4866 6.226103 0.004772

Rothia 2A 2B 7 6 513 0 19578.43 260.4866 6.067825 0.007973

Propionibacterium 1B 2A 7 7 369 0 12972.02 257.9026 5.488648 0.004835

Propionibacterium 1B 2B 7 6 369 0 12972.02 260.4866 5.475739 0.014786

Fusobacterium 1A 1B 8 7 368 0 11285.66 254.4233 5.305421 0.002766

Fusobacterium 1A 2B 8 6 368 0 11285.66 260.4866 5.275264 0.004815

Actinomyces 2A 2B 7 6 274 0 10131.03 260.4866 5.119863 0.021571

Solobacterium 2A 3B 7 30 259 0 9184.349 257.4067 4.996856 1.99E-14

Solobacterium 2A 2B 7 6 259 0 9184.349 260.4866 4.980835 0.000283

Neisseria 1B 3B 7 30 223 0 8649.386 257.4067 4.907619 2.76E-09

Neisseria 1B 2A 7 7 223 0 8649.386 257.9026 4.90474 0.001584

Paracoccus 1B 3B 7 30 200 0 7147.432 257.4067 4.636616 1.91E-12

Paracoccus 1B 2A 7 7 200 0 7147.432 257.9026 4.633582 0.000184

Paracoccus 1B 2B 7 6 200 0 7147.432 260.4866 4.620582 0.000665

Cloacibacterium 1A 1B 8 7 202 0 6501.51 254.4233 4.51247 0.000544
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Table F.28.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from

SnoWMAn’s RDP pipeline, at the OTU level (classification confidence 80 %, cluster distance 0.03, "other" threshold 2 %). For each DA OTU level

feature (TAX), the contrast (G1, G2), the number of samples per contrast group, as well as the raw counts (rcG1, rcG2) and counts per million

(cpm) normalized by library size, per contrast group, are given. Additionally, statistical result parameters of edgeR, the logFC and the FDR, for

each OTU and contrast are included. In addition, for each OTU the RDP classification result and confidence are available from the table.

TAX G1 G2 # G1 # G2 rc G1 rc G2 cpm G1 cpm G2 logFC FDR Phylum Class Order Familiy Genus

86 2B 3B 6 30 5353 1 151605.95 175.13 9.5932 3.94E-33 Proteobacteria; Betaproteobacteria; Neisseriales; Neisseriaceae; Neisseria; 0.93;

76 2B 3B 6 30 3313 23 93908.90 299.12 8.1957 3.06E-25 Proteobacteria; Gammaproteobacteria; Pasteurellales; Pasteurellaceae; Haemophilus; 0.91;

171 2B 3B 6 30 418 0 12032.16 169.49 5.9821 4.00E-25 Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides; 1;

301 2B 3B 6 30 408 1 11712.03 175.15 5.9012 1.23E-24 Proteobacteria; Gammaproteobacteria; Pasteurellales; Pasteurellaceae; Pasteurella; 0.43;

640 2B 3B 6 30 356 0 10240.95 169.49 5.7501 5.34E-24 Proteobacteria; Gammaproteobacteria; Pasteurellales; Pasteurellaceae; Haemophilus; 0.69;

359 2B 3B 6 30 294 1 8486.97 175.13 5.4376 4.51E-23 Proteobacteria; Gammaproteobacteria; Pasteurellales; Pasteurellaceae; Pasteurella; 0.59;

53 2B 3B 6 30 482 1 13805.49 175.13 6.1381 4.53E-22 Firmicutes; Bacilli; Lactobacillales; Enterococcaceae; Enterococcus; 0.99;

613 2B 3B 6 30 237 0 6848.70 169.49 5.1713 5.71E-20 Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus; 1;

290 2A 3B 7 30 175 0 4396.57 169.49 4.5343 1.60E-16 Actinobacteria; Actinobacteria; Actinomycetales; Corynebacteriaceae; Corynebacterium; 0.99;

76 2A 3B 7 30 1040 23 25339.63 299.12 6.3067 2.54E-16 Proteobacteria; Gammaproteobacteria; Pasteurellales; Pasteurellaceae; Haemophilus; 0.91;

27 2A 3B 7 30 138 3 3503.19 186.40 4.0856 2.50E-15 Bacteroidetes; Bacteroidia; Bacteroidales; Prevotellaceae; Prevotella; 1;

2730 1B 3B 7 30 200 0 5019.26 169.49 4.7243 5.29E-15 Proteobacteria; Alphaproteobacteria; Rhodobacterales; Rhodobacteraceae; Paracoccus; 0.97;

329 2A 3B 7 30 206 8 5145.39 214.67 4.4533 1.57E-14 Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus; 1;

4776 1A 3B 8 30 102 0 2331.32 169.49 3.6248 1.29E-11 Proteobacteria; Gammaproteobacteria; Pseudomonadales; Pseudomonadaceae; Pseudomonas; 0.93;

226 1A 3B 8 30 120 0 2705.57 169.49 3.8381 2.20E-11 Fusobacteria; Fusobacteria; Fusobacteriales; Leptotrichiaceae; Streptobacillus; 0.98;

1621 2A 3B 7 30 155 12 3913.55 237.25 3.9284 2.85E-11 Proteobacteria; Betaproteobacteria; Neisseriales; Neisseriaceae; Neisseria; 0.75;

1752 1A 3B 8 30 92 0 2118.41 169.49 3.4879 3.51E-11 Actinobacteria; Actinobacteria; Actinomycetales; Propionibacteriaceae; Propionibacterium; 1;

123 1B 3B 7 30 177 5 4461.55 197.78 4.3557 4.23E-11 Firmicutes; Bacilli; Bacillales; Staphylococcaceae; Staphylococcus; 1;

61 2A 3B 7 30 522 59 12778.88 502.44 4.6113 5.14E-11 Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus; 1;

86 1B 3B 7 30 256 1 6356.79 175.13 5.0219 1.72E-10 Proteobacteria; Betaproteobacteria; Neisseriales; Neisseriaceae; Neisseria; 0.93;

4955 1B 3B 7 30 85 0 2230.68 169.49 3.5618 1.45E-09 Proteobacteria; Alphaproteobacteria; Rhizobiales; Bradyrhizobiaceae; Bradyrhizobium; 0.96;

147 1A 3B 8 30 83 0 1923.54 169.49 3.3505 3.34E-09 Bacteroidetes; Sphingobacteria; Sphingobacteriales; Sphingobacteriaceae; Pseudosphingobacterium; 0.43;

2927 1A 3B 8 30 68 0 1609.35 169.49 3.0960 3.34E-09 Firmicutes; Bacilli; Lactobacillales; Carnobacteriaceae; Carnobacterium; 0.98;

1587 1A 3B 8 30 73 0 1712.18 169.49 3.1846 3.34E-09 Proteobacteria; Betaproteobacteria; Burkholderiales; Burkholderiales_incertae_sedis; Tepidimonas; 0.9;

2947 1A 3B 8 30 82 6 1902.40 203.37 3.0988 4.92E-09 Fusobacteria; Fusobacteria; Fusobacteriales; Leptotrichiaceae; Leptotrichia; 1;

2574 1A 3B 8 30 82 1 1902.40 175.15 3.2926 4.92E-09 Proteobacteria; Gammaproteobacteria; Pseudomonadales; Pseudomonadaceae; Pseudomonas; 0.71;

1641 1A 3B 8 30 221 32 4840.31 350.52 3.7095 5.31E-09 Bacteroidetes; Flavobacteria; Flavobacteriales; Flavobacteriaceae; Cloacibacterium; 0.93;

#### 1A 3B 8 30 61 0 1460.99 169.49 2.9583 1.05E-08 Proteobacteria; Gammaproteobacteria; Pseudomonadales; Moraxellaceae; Psychrobacter; 1;

1104 1A 3B 8 30 129 16 2895.80 259.67 3.3762 1.43E-08 Bacteroidetes; Bacteroidia; Bacteroidales; Porphyromonadaceae; Porphyromonas; 0.98;

998 1A 3B 8 30 128 21 2881.26 288.24 3.2297 2.41E-08 Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae; Escherichia/Shigella; 0.44;



Table F.29.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from

SnoWMAn’s BLAT pipeline, at the phylum level (classification confidence 80 %, "other" threshold 2 %). For each DA phylum level feature (TAX),

the contrast (G1, G2), the number of samples per contrast group, as well as the raw counts and counts per million (cpm) normalized by library

size, per contrast group, are given. Additionally, statistical result parameters of edgeR, the logFC and the FDR, for each phylum and contrast are

included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Glomeromycota 1B 3B 5 26 782 0 1777.01 247.56 3.4023 2.60E-05

Basidiomycota 1B 3B 5 26 19746 26386 831212.57 99653.99 3.0601 0.008294

Glomeromycota 1B 2B 5 6 782 0 1777.01 222.06 3.4013 0.01194

Glomeromycota 1B 2A 5 7 782 0 1777.01 210.52 3.3578 0.014295

Ascomycota 1B 3B 5 26 2302 200693 95992.92 1227167.85 -3.6762 0.015398

Glomeromycota 1A 1B 4 5 0 782 136.05 1777.01 -3.9945 0.024425

Ascomycota 1B 2B 5 6 2302 37782 95992.92 1212548.01 -3.6589 0.03303
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Table F.30.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from

SnoWMAn’s BLAT pipeline, at the class level (classification confidence 80 %, "other" threshold 2 %). For each DA class level feature (TAX), the

contrast (G1, G2), the number of samples per contrast group, as well as the raw counts and counts per million (cpm) normalized by library

size, per contrast group, are given. Additionally, statistical result parameters of edgeR, the logFC and the FDR, for each class and contrast are

included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Glomeromycetes 1B 3B 5 26 782 0 23722.06 154.07 7.1472 7.98E-19

Glomeromycetes 1B 2A 5 7 782 0 23722.06 159.87 7.0799 1.97E-06

Saccharomycetes 1B 3B 5 26 0 182994 124.45 1103194.42 -13.0071 2.45E-06

Saccharomycetes 1B 2B 5 6 0 37545 124.45 1017497.37 -12.8905 6.28E-06

Glomeromycetes 1B 2B 5 6 782 0 23722.06 160.30 7.0761 6.28E-06

Saccharomycetes 1B 2A 5 7 0 28501 124.45 661281.01 -12.2688 8.26E-06

Saccharomycetes 1A 3B 4 26 0 182994 147.55 1103194.42 -12.7225 9.18E-05

Saccharomycetes 1A 2B 4 6 0 37545 147.55 1017497.37 -12.6058 0.000136

Saccharomycetes 1A 2A 4 7 0 28501 147.55 661281.01 -11.9841 0.000234

Glomeromycetes 1A 1B 4 5 0 782 147.55 23722.06 -7.1832 0.000496

Sordariomycetes 1A 2A 4 7 1665 0 60177.90 159.87 8.4223 0.001576

Tremellomycetes 1A 2A 4 7 505 0 18354.95 159.87 6.7104 0.001576

Leotiomycetes 2A 3B 7 26 393 137 8630.70 849.73 3.3114 0.001903

Microbotryomycetes 2A 3B 7 26 0 4066 159.87 10461.70 -5.9019 0.001903

Sordariomycetes 2A 3B 7 26 0 8810 159.87 23820.52 -7.0863 0.001903

Dothideomycetes 2A 3B 7 26 0 3269 159.87 8408.19 -5.5875 0.001903

Tremellomycetes 1A 2B 4 6 505 0 18354.95 160.30 6.7067 0.003742

Leotiomycetes 1B 2A 5 7 0 393 124.45 8630.70 -6.0224 0.004353

Leotiomycetes 2A 2B 7 6 393 0 8630.70 160.30 5.6202 0.004451

Microbotryomycetes 2B 3B 6 26 0 4066 160.30 10461.70 -5.8983 0.006149

Dothideomycetes 2B 3B 6 26 0 3269 160.30 8408.19 -5.5839 0.006149

Microbotryomycetes 1B 3B 5 26 0 4066 124.45 10461.70 -6.2854 0.00778

Exobasidiomycetes 2A 3B 7 26 0 581 159.87 3376.76 -4.2747 0.008041

Eurotiomycetes 1A 2B 4 6 4855 35 183277.98 1040.43 7.4371 0.009306

Leotiomycetes 1A 2A 4 7 0 393 147.55 8630.70 -5.7277 0.013542

Tremellomycetes 2A 3B 7 26 0 549 159.87 2924.61 -4.0700 0.01544

Exobasidiomycetes 2B 3B 6 26 0 581 160.30 3376.76 -4.2710 0.019501

Exobasidiomycetes 1B 3B 5 26 0 581 124.45 3376.76 -4.6651 0.023308

Tremellomycetes 2B 3B 6 26 0 549 160.30 2924.61 -4.0663 0.032321

Microbotryomycetes 1A 3B 4 26 0 4066 147.55 10461.70 -6.0059 0.034042
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Table F.31.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from

SnoWMAn’s BLAT pipeline, at the order level (classification confidence 80 %, "other" threshold 2 %). For each DA order level feature (TAX), the

contrast (G1, G2), the number of samples per contrast group, as well as the raw counts and counts per million (cpm) normalized by library

size, per contrast group, are given. Additionally, statistical result parameters of edgeR, the logFC and the FDR, for each order and contrast is

included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Malasseziales 2B 3B 6 26 4751 0 116765.03 146.69 9.4705 2.38E-26

Glomerales 1B 3B 5 26 780 0 23111.81 146.69 7.1343 8.24E-20

Hypocreales 1A 3B 4 26 1665 0 59827.98 146.69 8.5059 3.56E-18

Atheliales 1A 3B 4 26 230 0 8385.74 146.69 5.6739 2.14E-14

Hypocreales 1B 3B 5 26 735 0 18191.68 146.69 6.7898 2.33E-13

Thelephorales 1B 3B 5 26 154 0 4374.76 146.69 4.7381 8.53E-11

Malasseziales 2A 2B 7 6 0 4751 145.84 116765.03 -9.4768 3.15E-08

Glomerales 1B 2A 5 7 780 0 23111.81 145.84 7.1404 1.01E-06

Saccharomycetales 1B 3B 5 26 0 182989 136.58 1023075.25 -12.6926 1.90E-06

Glomerales 1B 2B 5 6 780 0 23111.81 146.13 7.1378 3.71E-06

Malasseziales 1B 2B 5 6 0 4751 136.58 116765.03 -9.5619 3.71E-06

Saccharomycetales 1B 2B 5 6 0 37544 136.58 916261.76 -12.5336 4.70E-06

Hypocreales 1A 2A 4 7 1665 0 59827.98 145.84 8.5123 5.53E-06

Atheliales 1A 2A 4 7 230 0 8385.74 145.84 5.6798 1.13E-05

Saccharomycetales 1B 2A 5 7 0 28499 136.58 595292.29 -11.9114 1.40E-05

Saccharomycetales 1A 3B 4 26 0 182989 140.64 1023075.25 -12.6547 3.81E-05

Atheliales 1A 2B 4 6 230 0 8385.74 146.13 5.6772 5.09E-05

Malasseziales 1A 2B 4 6 0 4751 140.64 116765.03 -9.5239 5.09E-05

Saccharomycetales 1A 2B 4 6 0 37544 140.64 916261.76 -12.4957 5.93E-05

Hypocreales 1B 2A 5 7 735 0 18191.68 145.84 6.7962 6.27E-05

Saccharomycetales 1A 2A 4 7 0 28499 140.64 595292.29 -11.8735 0.000104

Russulales 1A 2A 4 7 2966 0 97136.55 145.84 9.2113 0.00011

Hymenochaetales 1B 2A 5 7 1258 0 37191.49 145.84 7.8266 0.000116

Thelephorales 1B 2A 5 7 154 0 4374.76 145.84 4.7440 0.000116

Hymenochaetales 1B 3B 5 26 1258 309 37191.49 2013.13 4.1973 0.000141

Atheliales 1A 1B 4 5 230 0 8385.74 136.58 5.7653 0.00022

Glomerales 1A 1B 4 5 0 780 140.64 23111.81 -7.1876 0.00022

Agaricales 1B 2B 5 6 3209 0 86676.79 146.13 9.0444 0.000326

Hymenochaetales 1B 2B 5 6 1258 0 37191.49 146.13 7.8240 0.000326

Thelephorales 1B 2B 5 6 154 0 4374.76 146.13 4.7415 0.000326
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Table F.32.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from

SnoWMAn’s BLAT pipeline, at the family level (classification confidence 80 %, "other" threshold 2 %). For each DA family level feature (TAX),

the contrast (G1, G2), the number of samples per contrast group, as well as the raw counts and counts per million (cpm) normalized by library

size, per contrast group, are given. Additionally, statistical result parameters of edgeR, the logFC and the FDR, for each family and contrast are

included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Ophiocordycipitaceae 1A 3B 4 26 1665 0 60257.48 144.77 8.5328 2.72E-29

Pluteaceae 1A 3B 4 26 941 0 33101.05 144.77 7.6690 9.20E-26

Schizophyllaceae 1B 3B 5 26 972 0 26942.62 144.77 7.3721 9.99E-26

Hapalopilaceae 1A 3B 4 26 911 0 32050.32 144.77 7.6225 1.00E-25

Meripilaceae 2A 3B 7 26 4639 0 94764.12 144.77 9.1858 2.56E-22

Glomeraceae 1B 3B 5 26 780 0 22667.06 144.77 7.1227 5.25E-22

Stereaceae 1A 3B 4 26 1017 0 35762.92 144.77 7.7805 9.60E-22

Strophariaceae 1B 3B 5 26 452 0 12249.72 144.77 6.2365 1.00E-20

Meruliaceae 1B 3B 5 26 1216 0 32872.17 144.77 7.6590 9.29E-20

Fomitopsidaceae 1B 3B 5 26 628 0 17018.50 144.77 6.7101 5.78E-19

Cortinariaceae 1B 3B 5 26 318 0 8664.84 144.77 5.7380 1.73E-18

Atheliaceae 1A 3B 4 26 230 0 8352.52 144.77 5.6847 1.49E-16

Tremellaceae 1A 3B 4 26 498 0 17585.17 144.77 6.7572 2.26E-16

Stereaceae 1B 3B 5 26 440 0 12112.00 144.77 6.2199 9.77E-16

Tremellaceae 1B 3B 5 26 481 0 13402.24 144.77 6.3656 1.02E-15

Psathyrellaceae 1B 3B 5 26 323 0 8740.05 144.77 5.7504 4.32E-14

Meripilaceae 1B 3B 5 26 525 0 14246.84 144.77 6.4538 8.07E-13

Peniophoraceae 1B 3B 5 26 156 0 4439.67 144.77 4.7756 1.28E-12

Fomitopsidaceae 1A 3B 4 26 208 0 7567.25 144.77 5.5425 1.36E-12

Thelephoraceae 1B 3B 5 26 154 0 4239.10 144.77 4.7105 2.14E-12

Psathyrellaceae 1A 3B 4 26 211 0 7674.33 144.77 5.5628 2.67E-12

Mycenaceae 1B 3B 5 26 148 0 4128.88 144.77 4.6722 2.97E-12

Ophiocordycipitaceae 1A 2A 4 7 1665 0 60257.48 144.79 8.5326 1.60E-09

Hapalopilaceae 1A 2A 4 7 911 0 32050.32 144.79 7.6223 6.00E-09

Pluteaceae 1A 2A 4 7 941 0 33101.05 144.79 7.6688 6.00E-09

Schizophyllaceae 1B 2A 5 7 972 0 26942.62 144.79 7.3719 1.67E-08

Ophiocordycipitaceae 1A 2B 4 6 1665 0 60257.48 146.20 8.5200 3.02E-08

Meruliaceae 2A 3B 7 26 166 0 3467.12 144.77 4.4215 7.41E-08

Hapalopilaceae 1A 2B 4 6 911 0 32050.32 146.20 7.6097 8.00E-08

Pluteaceae 1A 2B 4 6 941 0 33101.05 146.20 7.6562 8.00E-08
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Table F.33.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from

SnoWMAn’s BLAT pipeline, at the genus level (classification confidence 80 %, "other" threshold 2 %). For each DA genus level feature (TAX),

the contrast (G1, G2), the number of samples per contrast group, as well as the raw counts and counts per million (cpm) normalized by library

size, per contrast group, are given. Additionally, statistical result parameters of edgeR, the logFC and the FDR, for each genus and contrast are

included.

TAX G1 G2 num samples G1 num samples G2 rawCounts G1 rawCounts G2 cpm G1 cpm G2 logFC FDR

Ophiocordyceps 1A 3B 4 26 1665 0 59830.94 143.52 8.5341 4.07E-30

Amylostereum 1A 3B 4 26 1017 0 36251.41 143.52 7.8116 3.70E-27

Pluteus 1A 3B 4 26 941 0 33553.04 143.52 7.7001 8.19E-27

Bjerkandera 1A 3B 4 26 911 0 32487.90 143.52 7.6535 1.01E-26

Rigidoporus 2A 3B 7 26 4639 0 95173.01 143.52 9.2036 4.75E-26

Mensularia 1B 3B 5 26 1257 0 36310.56 143.52 7.8139 4.03E-25

Schizophyllum 1B 3B 5 26 705 0 20255.60 143.52 6.9724 5.62E-25

Hypholoma 1B 3B 5 26 343 0 9928.04 143.52 5.9450 6.93E-20

Clitocybe 1A 3B 4 26 335 0 12152.33 143.52 6.2361 7.47E-20

Resinicium 1B 3B 5 26 915 0 26240.28 143.52 7.3456 1.05E-18

Kazachstania 2A 3B 7 26 687 0 14129.59 143.52 6.4534 3.60E-18

Postia 1B 3B 5 26 341 0 9879.34 143.52 5.9379 6.64E-18

Physisporinus 1B 3B 5 26 294 0 8537.36 143.52 5.7277 4.91E-17

Dioszegia 1A 3B 4 26 498 0 17824.43 143.52 6.7882 9.92E-17

Stereum 1B 3B 5 26 270 0 7852.10 143.52 5.6073 1.48E-16

Piptoporus 1A 3B 4 26 208 0 7599.56 143.52 5.5601 1.50E-16

Porotheleum 1B 3B 5 26 267 0 7752.76 143.52 5.5890 1.56E-16

Dioszegia 1B 3B 5 26 479 0 13795.07 143.52 6.4189 3.33E-16

Grandinia 1B 3B 5 26 249 0 7239.74 143.52 5.4904 3.51E-16

Blumeria 2A 3B 7 26 393 0 8194.10 143.52 5.6686 1.47E-15

Psathyrella 1B 3B 5 26 274 0 7952.27 143.52 5.6255 6.43E-14

Mycena 1B 3B 5 26 148 0 4368.67 143.52 4.7640 6.10E-13

Psathyrella 1A 3B 4 26 210 0 7671.25 143.52 5.5737 1.31E-12

Peniophora 1B 3B 5 26 138 0 4083.15 143.52 4.6669 1.55E-12

Ophiocordyceps 1A 2A 4 7 1665 0 59830.94 143.54 8.5339 1.04E-09

Amylostereum 1A 2A 4 7 1017 0 36251.41 143.54 7.8114 2.80E-09

Bjerkandera 1A 2A 4 7 911 0 32487.90 143.54 7.6534 2.80E-09

Pluteus 1A 2A 4 7 941 0 33553.04 143.54 7.6999 2.80E-09

Ophiocordyceps 1A 2B 4 6 1665 0 59830.94 143.71 8.5324 2.07E-08

Mensularia 1B 2A 5 7 1257 0 36310.56 143.54 7.8137 2.30E-08
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Table F.34.: The table presents the top 30 differentially abundant features determined by edgeR, based on the feature table obtained from

SnoWMAn’s BLAT pipeline, at the OTU level (classification confidence 80 %, "other" threshold 2 %). For each DA OTU level feature (TAX), the

contrast (G1, G2), the number of samples per contrast group, as well as the raw counts (rcG1, rcG2) and counts per million (cpm) normalized by

library size, per contrast group, are given. Additionally, statistical result parameters of edgeR, the logFC and the FDR, for each OTU and contrast

are included. In addition for each OTU, the BLAT classification result according to the available UNITE (release October 2013) annotation, is

added to the table.

TAX G1 G2 # G1 #G2 rc G1 rc G2 cpm G1 cpm G2 logFC FDR Phylum Class Order Familiy Genus Species

269 1A 3B 4 26 1947 2 60646.11 134.03 8.6638 4.09E-33 Basidiomycota; Agaricomycetes; Polyporales; Polyporaceae; Trametes; Trametes_gibbosa;

443 1A 3B 4 26 946 1 29530.40 129.28 7.6727 2.55E-32 Basidiomycota; Agaricomycetes; Russulales; Amylostereaceae; Amylostereum; Amylostereum_areolatum;

150 1A 3B 4 26 749 0 23406.72 124.50 7.3860 1.40E-31 Basidiomycota; Agaricomycetes; Agaricales; Pluteaceae; Pluteus; Pluteus_brunneidiscus;

477 1A 3B 4 26 658 0 20578.02 124.50 7.2003 9.74E-31 Basidiomycota; Exobasidiomycetes; Incertae sedis; Incertae sedis; Meira; Meira_sp_07F1061;

417 1A 3B 4 26 1646 2 51289.63 134.07 8.4219 9.74E-31 Ascomycota; Eurotiomycetes; Eurotiales; Trichocomaceae; Aspergillus; Aspergillus_sp_CCF_4264;

454 1A 3B 4 26 835 1 26080.00 129.26 7.4936 9.43E-30 Basidiomycota; Agaricomycetes; Polyporales; Meruliaceae; Bjerkandera; Bjerkandera_fumosa;

226 1B 3B 5 26 381 0 9539.63 124.50 6.0922 1.57E-29 Basidiomycota; Agaricomycetes; Hymenochaetales; Hymenochaetaceae; Mensularia; Mensularia_radiata;

435 1B 3B 5 26 907 0 22676.68 124.50 7.3402 1.80E-28 Basidiomycota; Agaricomycetes; Hymenochaetales; Hymenochaetaceae; Onnia; Onnia_tomentosa;

725 1B 3B 5 26 236 0 5856.52 124.50 5.3905 1.80E-28 Basidiomycota; Agaricomycetes; Russulales; Stereaceae; Stereum; Stereum_gausapatum;

842 2A 3B 7 26 4148 7 73926.59 158.06 8.7347 1.19E-27 Basidiomycota; Agaricomycetes; Agaricales; Mycenaceae; Mycena; Mycena_olida;

609 1B 3B 5 26 570 0 14238.26 124.50 6.6693 2.03E-27 Basidiomycota; Microbotryomycetes; Sporidiobolales; Incertae sedis; Sporobolomyces; Sporobolomyces_ruberrimus;

562 1B 3B 5 26 471 1 11501.89 129.26 6.3138 2.03E-26 Basidiomycota; Agaricomycetes; Polyporales; Meripilaceae; Rigidoporus; Rigidoporus_crocatus;

131 1B 3B 5 26 660 0 16472.84 124.50 6.8795 2.65E-26 Ascomycota; Sordariomycetes; Hypocreales; unidentified; unidentified; Hypocreales_sp_H4429;

850 1B 3B 5 26 499 0 12481.12 124.50 6.4795 2.65E-26 Basidiomycota; Tremellomycetes; Tremellales; unidentified; unidentified; Tremellales_sp;

22 2A 3B 7 26 2796 0 49871.41 124.50 8.4768 4.39E-26 Basidiomycota; Agaricomycetes; Agaricales; Marasmiaceae; Marasmiellus; Marasmiellus_palmivorus;

758 1B 3B 5 26 372 1 9109.81 129.26 5.9781 1.55E-25 Basidiomycota; Agaricomycetes; Polyporales; Fomitopsidaceae; Fomitopsis; Fomitopsis_pinicola;

489 1B 3B 5 26 342 0 8385.02 124.50 5.9070 3.09E-25 Basidiomycota; Agaricomycetes; Agaricales; Strophariaceae; Hypholoma; Hypholoma_sublateritium;

712 1A 3B 4 26 351 0 11035.04 124.50 6.3023 6.73E-25 Basidiomycota; Agaricomycetes; Agaricales; unidentified; unidentified; Agaricales_sp;

511 1B 3B 5 26 345 1 8619.22 129.26 5.8979 9.90E-25 unidentified; unidentified; unidentified; unidentified; unidentified; Fungi_sp;

831 1B 3B 5 26 1259 20 30950.42 219.89 7.0386 1.28E-24 Basidiomycota; Agaricomycetes; Russulales; Bondarzewiaceae; Heterobasidion; Heterobasidion_abietinum;

136 1B 3B 5 26 631 12 15368.48 181.55 6.2855 4.79E-24 Basidiomycota; Agaricomycetes; Agaricales; Strophariaceae; Hypholoma; Hypholoma_fasciculare;

475 1B 3B 5 26 222 7 5503.17 157.86 4.9920 4.79E-24 Basidiomycota; Agaricomycetes; Polyporales; Meruliaceae; Phlebia; Phlebia_rufa;

280 1A 3B 4 26 597 0 18681.86 124.50 7.0610 6.17E-23 Ascomycota; Eurotiomycetes; Eurotiales; Trichocomaceae; unidentified; uncultured_Penicillium;

116 1A 3B 4 26 443 2 13894.83 134.05 6.5390 6.17E-23 Ascomycota; Dothideomycetes; Pleosporales; Pleosporaceae; Epicoccum; Epicoccum_nigrum;

726 1A 3B 4 26 272 1 8579.36 129.29 5.8912 1.35E-22 Ascomycota; Dothideomycetes; Pleosporales; Incertae sedis; Phoma; Phoma_versabilis;

721 1B 3B 5 26 682 23 16882.76 234.29 6.0791 3.24E-22 Basidiomycota; Agaricomycetes; Agaricales; Schizophyllaceae; Schizophyllum; Schizophyllum_commune;

611 1B 3B 5 26 145 1 3638.73 129.28 4.6582 5.53E-22 Basidiomycota; Agaricomycetes; Polyporales; Meruliaceae; Steccherinum; Steccherinum_ochraceum;

252 1A 3B 4 26 208 0 6589.94 124.50 5.5599 7.73E-22 Basidiomycota; Agaricomycetes; Agaricales; Pluteaceae; Pluteus; Pluteus_cervinus;

494 1B 3B 5 26 318 0 8000.33 124.50 5.8388 1.39E-21 unidentified; unidentified; unidentified; unidentified; unidentified; fungal_sp_12S_1;

824 1B 3B 5 26 172 0 4301.86 124.50 4.9468 1.90E-21 Basidiomycota; Agaricomycetes; Russulales; Bondarzewiaceae; Heterobasidion; Heterobasidion_sp_Cui2;



Table F.35.: Summary of the BAL study BAL culture result. For each sample the culture result is

described by bacterial strains and respective germination number. Positive cultures, containing

pathogenic strains are highlighted by bold text.

Samplename Culture Patho Spezies BacCount

087-1A-NTS-0 NEG N Non 0

095-1A-NTS-0 POS N alpha haemolyt. Streptococcus 1.00E+01

097-1A-NTS-0 NEG N Non 0

098-1B-NTS-0 NEG N Non 0

099-1B-NTS-0 NEG N Non 0

100-1B-NTS-0 POS N alpha haemolyt. Streptococcus; nicht hoemolyt. Streptococcus 1.00E+05; 1.00E+05

101-1B-NTS-0 NEG N Non 0

102-1B-NTS-0 NEG N Non 0

103-1B-NTS-0 POS Y Pseudomonas aeruginosa 1.00E+05

104-1B-NTS-0 NEG N Non 0

105-1A-NTS-0 POS N alpha haemolyt. Streptococcus; nicht hoemolyt. Streptococcus 1.00E+03

106-1A-NTS-0 POS N Koagulase negative Staphylokokken 1.00E+02

107-1A-NTS-0 NEG N Non 0

108-1A-NTS-0 POS N alpha haemolyt. Streptococcus; Neisseria 1.00E+03; 1.0E+03

109-1A-NTS-0 POS N Koagulase negative Staphylokokken; Neisseria 100;10

201-2A-NTS-0 POS Y Candida boidinii; Candida dubliniensis; Klebsiella pneumoniae 1.00E+03; 1.00E+04

202-2A-NTS-0 POS N Koagulase negative Staphylokokken 1.00E+05

203-2A-NTS-0 POS N Koagulase negative Staphylokokken; Neisseria 1.00E+03; 1.00E+03

252-2B-NTS-0 NEG N Non 0

255-2B-NTS-0 POS Y Candida albicans; Schimmelpilz; Pseudomonas aeruginosa 1.00E+03; 1.00E+03; 1.00E+03

256-2B-NTS-0 NEG N Non 0

257-2B-NTS-0 NEG N Non 0

301-3B-VAP-0 POS N Candida albicans 1.00E+03

301-3B-VAP-1 POS N Candida albicans 1.00E+02

302-3B-VAP-0 POS N Candida albicans

302-3B-VAP-1 POS Y Pseudomonas aeruginosa 1.00E+06

303-3B-VAP-0 POS N Candida albicans 1.00E+03

303-3B-VAP-1 POS N Candida albicans 1.00E+01

304-3B-ASP-0 NEG N Non 0

304-3B-ASP-1 POS Y Escherichia coli 1.00E+06

305-3B-VAP-0 POS Y Staphylococcus aureus; Escherichia coli 1.00E+02; 1.00E+02

306-3B-VAP-0 POS N alpha haemolyt. Streptococcus; Neisseria

309-3B-VAP-0 POS N Candida albicans

310-3B-NAP-0 POS Y Escherichia coli 1.00E+02

312-3B-VAP-0 POS Y Staphylococcus aureus; Candida parapsilosis 1.00E+01

313-3B-NAP-0 POS Y Klebsiella sp; Enterobacter cloacae 1.00E+06; 1.00E+06

313-3B-VAP-1 POS Y Klebsiella pneumoniae 1.00E+01

314-3B-CAP-0 NEG N Non 0

318-3B-ASP-0 POS Y
Enterobacter cloacae; Staphylococcus aureus;

Candida albicans; Candida glabrata
1.00E+01; 1.00E+03; 1.00E+03; 1.00E+06

319-3B-VAP-0 POS N Candida albicans 1.00E+01

320-3B-ASP-0 POS Y Escherichia coli 1.00E+02

321-3B-NAP-0 NEG N Non 0

322-3B-NAP-0 NEG N Non 0

323-3B-VAP-0 POS N Candida albicans 1.00E+01

324-3B-ASP-0 NEG N Non 0

325-3B-VAP-0 POS Y Proteus mirabilis; Streptococcus viridans 0.00E+00

326-3B-VAP-0 POS N Candida albicans 1.00E+01

327-3B-ASP-0 POS Y Klebsiella oxytoca; Enterobacter cloacae 1.00E+05; 1.00E+05

328-3B-NAP-0 NEG N Non 0

401-2A-NTS-0 POS Y Escherichia coli; Candida albicans 1.00E+05; 1.00E+03

402-2A-NTS-0 POS N Koagulase negative Staphylokokken; Neisseria; Enterobacter 10000000; 10000000; 1.00E+5

403-2A-NTS-0 POS Y Klebsiella pneumoniae; Haemophilus influenzae; Corynebacterium 1.00E+06; 1.00E+05; 1.00E+06

405-2B-NTS-0 POS N Candida albicans; Staphylococcus aureus 1.00E+05; 1.00E+04

406-2A-NTS-0 POS Y Pseudomonas aeruginosa 1.00E+05

608-3B-ASP-0 NEG N Non 0

609-3B-ASP-0 POS Y Staphylococcus aureus 1.00E+04

610-2B-NTS-0 POS Y Streptococcus pneumoniae; Haemophilus influenzae 1.00E+06; 1.00E+06

612-3B-VAP-0 POS N Candida albicans 1.00E+02

233



Appendix F. Supplementary information BAL study

Table F.36.: Comparison result of the high-throughput classification vs traditional BAL cultures,

for fungal strains. All samples of the BAL study having either a positive or negative culturing

result are listed within this table. For each sample the number of observed amplicons for the

fungal reference species, Aspergillus robustus, Candida albicans, Candida dubliniensis, Candida

glabrata, and Candida parapsilosis, is presented.

Representative sequence and Accession number

Aspergillus robustus Candida albicans Candida dubliniensis Candida glabrata Candida parapsilosis

EF661435.1 AB437043.1 AJ865083.1 HE993757.1 FM172980.1

087-1A-NTS-0 9 0 0 0 0

095-1A-NTS-0 0 1 0 0 0

098-1B-NTS-0 9 23 1 0 0

100-1B-NTS-0 276 19 0 0 0

101-1B-NTS-0 0 0 10 0 0

103-1B-NTS-0 8 36 0 0 0

104-1B-NTS-0 17 0 0 0 0

105-1A-NTS-0 0 39 2 0 0

107-1A-NTS-0 2 6 0 0 0

201-2A-NTS-0 0 17 8638 0 0

202-2A-NTS-0 0 0 0 7 0

203-2A-NTS-0 1 7251 158 0 1

252-2B-NTS-0 0 5826 144 0 0

255-2B-NTS-0 0 8228 195 0 0

256-2B-NTS-0 0 8107 202 0 0

257-2B-NTS-0 0 1 0 0 0

301-3B-VAP-0 0 16093 220 0 6

302-3B-VAP-0 0 10805 195 0 0

302-3B-VAP-1 0 5036 67 0 0

303-3B-VAP-0 0 7168 122 0 0

303-3B-VAP-1 0 18638 214 0 0

304-3B-ASP-0 261 11376 110 0 0

304-3B-ASP-1 0 5891 90 2 0

305-3B-VAP-0 0 7 0 0 0

306-3B-VAP-0 6 89 2 0 0

309-3B-VAP-0 1 21969 262 0 0

313-3B-NAP-0 323 5 0 0 0

313-3B-VAP-1 0 3 0 0 0

318-3B-ASP-0 0 1293 13 1233 0

319-3B-VAP-0 0 15826 155 0 7

320-3B-ASP-0 0 155 21 0 0

322-3B-NAP-0 0 11903 149 0 0

323-3B-VAP-0 1 11443 125 0 2

324-3B-ASP-0 0 18318 198 3 1

325-3B-VAP-0 0 18 0 0 0

326-3B-VAP-0 0 8412 80 0 0

327-3B-ASP-0 142 797 0 0 0

328-3B-NAP-0 0 1219 10 14 0

401-2A-NTS-0 0 10035 190 0 1

402-2A-NTS-0 0 0 1 0 0

403-2A-NTS-0 0 492 1 0 0

405-2B-NTS-0 0 14623 332 0 13

406-2A-NTS-0 0 1530 32 0 0

608-3B-ASP-0 0 0 0 475 0

609-3B-ASP-0 0 2914 60 0 0

610-2B-NTS-0 0 14 0 0 0

612-3B-VAP-0 0 6867 3185 0 1
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Table F.37.: Comparison result of the high-throughput classification vs traditional BAL cultures,

for bacterial strains. All samples of the BAL study having either a positive or negative culturing

result are listed within this table. For each sample the number of observed amplicons for the

bacterial reference species, Corynebacterium, E.coli, Enterobacter cloacae,Enterococcus faecalis, and

Haemophilus influenzae, is presented.
Representative sequence and Accession number

Corynebacterium E.coli Enterobacter cloacae Enterococcus faecalis Haemophilus influenzae

HE983830.1 J01859.1 KF535159.1 FJ378663.2 AY613741.1

087-1A-NTS-0 49 447 64 95 0

095-1A-NTS-0 17 0 3 8 0

097-1A-NTS-0 1 108 22 111 67

098-1B-NTS-0 67 3 1 18 3

099-1B-NTS-0 0 1 0 11 0

100-1B-NTS-0 3 0 0 62 1

101-1B-NTS-0 62 1 0 2 0

102-1B-NTS-0 55 0 0 82 15

103-1B-NTS-0 46 2 0 56 0

104-1B-NTS-0 33 0 0 58 4

105-1A-NTS-0 1 11 0 16 0

106-1A-NTS-0 21 75 3 101 2

107-1A-NTS-0 25 20 0 177 84

108-1A-NTS-0 0 6 1 223 23

109-1A-NTS-0 0 5 4 12 91

201-2A-NTS-0 0 28 1 418 0

202-2A-NTS-0 6 0 0 54 4

203-2A-NTS-0 2 0 0 990 26

252-2B-NTS-0 1 1 0 3 2066

255-2B-NTS-0 1 0 0 19 4

256-2B-NTS-0 3 0 0 250 4

257-2B-NTS-0 8 6 0 105 2199

301-3B-VAP-0 28 0 0 1 0

301-3B-VAP-1 34 3 0 0 16

302-3B-VAP-0 0 0 0 0 0

302-3B-VAP-1 6 0 0 0 0

303-3B-VAP-0 0 0 0 205 0

303-3B-VAP-1 0 0 0 358 0

304-3B-ASP-0 2 6075 5 2 0

304-3B-ASP-1 118 13 1 65 0

305-3B-VAP-0 0 1 0 1248 0

306-3B-VAP-0 7 8 0 403 0

309-3B-VAP-0 17 8 3 39 0

310-3B-NAP-0 0 1 0 1044 1

312-3B-VAP-0 0 0 0 2 0

313-3B-NAP-0 0 2126 3 28 0

313-3B-VAP-1 0 22 0 324 0

314-3B-CAP-0 12 1 0 26 0

318-3B-ASP-0 0 0 0 9 0

319-3B-VAP-0 0 2 6 46 0

320-3B-ASP-0 2 4 0 11 1

321-3B-NAP-0 1 0 0 505 1

322-3B-NAP-0 0 34 0 15 0

323-3B-VAP-0 71 6 0 20 0

324-3B-ASP-0 39 0 0 1024 0

325-3B-VAP-0 0 0 0 39 8

326-3B-VAP-0 35 45 0 110 0

327-3B-ASP-0 0 0 0 0 1

328-3B-NAP-0 47 0 0 45 0

401-2A-NTS-0 1 9 0 5 573

402-2A-NTS-0 0 0 0 146 12

403-2A-NTS-0 1 1 0 38 573

405-2B-NTS-0 1 0 0 590 0

406-2A-NTS-0 0 0 0 5 0

608-3B-ASP-0 0 0 0 193 4

609-3B-ASP-0 0 0 0 59 0

610-2B-NTS-0 0 0 0 0 199

612-3B-VAP-0 16 0 0 0 0
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Table F.38.: Comparison result of the high-throughput classification vs traditional BAL cultures,

for bacterial strains. All samples of the BAL study having either a positive or negative culturing

result are listed within this table. For each sample the number of observed amplicons for the

bacterial reference species, Klebsiella oxytoca, Klebsiella pneumoniae, Neisseria sp. oral, Streptococcus

pneumoniae, and Proteus mirabilis, is presented.
Representative sequence and Accession number

Klebsiella oxytoca Klebsiella pneumoniae Neisseria sp. oral Streptococcus pneumoniae Proteus mirabilis

AB626120.1 KC990817.1 AY005028.1 GU326244.1 KF535110.1

087-1A-NTS-0 0 14 14 34 66

095-1A-NTS-0 1 19 27 24 41

097-1A-NTS-0 0 5 34 0 140

098-1B-NTS-0 0 7 22 19 16

099-1B-NTS-0 0 2 5 0 25

100-1B-NTS-0 0 0 6 153 2

101-1B-NTS-0 0 47 45 0 104

102-1B-NTS-0 0 64 40 0 81

103-1B-NTS-0 0 26 0 0 44

104-1B-NTS-0 0 5 13 0 79

105-1A-NTS-0 0 19 0 91 73

106-1A-NTS-0 0 6 0 78 71

107-1A-NTS-0 0 15 47 38 59

108-1A-NTS-0 0 6 37 64 6

109-1A-NTS-0 1 18 1 0 5

201-2A-NTS-0 7 488 0 33 0

202-2A-NTS-0 0 2 17 1 56

203-2A-NTS-0 0 0 1 70 0

252-2B-NTS-0 0 0 103 1509 1

255-2B-NTS-0 0 17 36 0 21

256-2B-NTS-0 0 1 2 99 0

257-2B-NTS-0 0 4 4 39 16

301-3B-VAP-0 0 19 60 48 93

301-3B-VAP-1 17 38 1 37 64

302-3B-VAP-0 0 0 0 0 0

302-3B-VAP-1 0 7 7 0 12

303-3B-VAP-0 0 0 0 0 0

303-3B-VAP-1 0 4 0 0 1

304-3B-ASP-0 1 0 1 0 0

304-3B-ASP-1 0 17 68 1 33

305-3B-VAP-0 0 0 0 194 0

306-3B-VAP-0 0 0 0 46 1

309-3B-VAP-0 2 2 33 1 23

310-3B-NAP-0 0 0 0 7 3

312-3B-VAP-0 0 1 0 0 0

313-3B-NAP-0 3 671 1 0 3

313-3B-VAP-1 0 241 114 0 126

314-3B-CAP-0 0 33 1 3902 17

318-3B-ASP-0 0 0 0 3 0

319-3B-VAP-0 0 15 150 0 95

320-3B-ASP-0 0 3 1 1 4700

321-3B-NAP-0 0 0 4 556 0

322-3B-NAP-0 0 7 46 0 1425

323-3B-VAP-0 0 14 58 0 125

324-3B-ASP-0 0 35 105 225 36

325-3B-VAP-0 0 0 1 10 3

326-3B-VAP-0 0 4 5 0 119

327-3B-ASP-0 0 0 4 10 3

328-3B-NAP-0 0 21 69 0 85

401-2A-NTS-0 0 0 1 2029 22

402-2A-NTS-0 0 9 43 31 0

403-2A-NTS-0 0 3 1 1 0

405-2B-NTS-0 0 1 4 1 3

406-2A-NTS-0 0 0 39 0 0

608-3B-ASP-0 0 0 1 101 9

609-3B-ASP-0 0 0 1 89 0

610-2B-NTS-0 0 0 2 2156 0

612-3B-VAP-0 0 16 42 22 37
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Table F.39.: Comparison result of the high-throughput classification vs traditional BAL cultures,

for bacterial strains. All samples of the BAL study having either a positive or negative culturing

result are listed within this table. For each sample the number of observed amplicons for the

bacterial reference species, Pseudomonas aeruginosa, Staphylococcus lugdunensi, Staphylococcus

aureus, Streptococcus mitis, and Streptococcus viridans, is presented.
Representative sequence and Accession number

Pseudomonas aeruginosa Staphylococcus lugdunensi Staphylococcus aureus Streptococcus mitis Streptococcus viridans

KJ156527.1 AY903258.1 DQ630753.1 NR_028664.1 AF076036.1

087-1A-NTS-0 543 6 0 89 74

095-1A-NTS-0 27 45 0 2171 42

097-1A-NTS-0 469 60 10 21 0

098-1B-NTS-0 14 115 0 32 19

099-1B-NTS-0 6 16 0 6 0

100-1B-NTS-0 1 0 0 1951 110

101-1B-NTS-0 113 127 183 9 0

102-1B-NTS-0 36 177 0 113 24

103-1B-NTS-0 1424 67 3 36 1

104-1B-NTS-0 32 85 0 0 0

105-1A-NTS-0 29 32 0 1168 80

106-1A-NTS-0 200 44 0 168 35

107-1A-NTS-0 96 138 25 790 28

108-1A-NTS-0 76 9 15 477 86

109-1A-NTS-0 132 65 109 58 21

201-2A-NTS-0 0 0 10 450 661

202-2A-NTS-0 5 32 1205 21 3775

203-2A-NTS-0 0 0 0 893 99

252-2B-NTS-0 7 6 1 48 0

255-2B-NTS-0 807 24 0 11 0

256-2B-NTS-0 2 0 0 1155 152

257-2B-NTS-0 8 18 0 1724 193

301-3B-VAP-0 28 74 0 28 0

301-3B-VAP-1 97 123 0 31 3

302-3B-VAP-0 5887 0 0 0 0

302-3B-VAP-1 4 9 19 3 27

303-3B-VAP-0 0 0 0 3 48

303-3B-VAP-1 30 16 39 8 58

304-3B-ASP-0 0 0 0 1 0

304-3B-ASP-1 45 158 131 26 0

305-3B-VAP-0 0 6 295 809 948

306-3B-VAP-0 1 0 1 802 54

309-3B-VAP-0 15 9 5 24 3119

310-3B-NAP-0 0 0 0 1947 11

312-3B-VAP-0 0 0 10 18 4992

313-3B-NAP-0 0 763 0 0 0

313-3B-VAP-1 59 127 0 28 0

314-3B-CAP-0 13 16 0 280 17

318-3B-ASP-0 1 1 3172 333 894

319-3B-VAP-0 32 65 4 35 13

320-3B-ASP-0 5 3 0 45 252

321-3B-NAP-0 1 1 0 1734 75

322-3B-NAP-0 27 112 1 0 81

323-3B-VAP-0 95 158 520 22 498

324-3B-ASP-0 68 48 1 179 173

325-3B-VAP-0 8 0 2 61 34

326-3B-VAP-0 76 86 0 143 52

327-3B-ASP-0 0 0 16 46 14

328-3B-NAP-0 42 116 35 0 0

401-2A-NTS-0 0 0 0 128 0

402-2A-NTS-0 8 24 12 363 1718

403-2A-NTS-0 2 0 0 54 2

405-2B-NTS-0 8 22 29 35 3137

406-2A-NTS-0 13 0 0 13 40

608-3B-ASP-0 0 4 0 1216 426

609-3B-ASP-0 0 1 4 138 191

610-2B-NTS-0 1 0 0 8 1

612-3B-VAP-0 6 33 40 0 0
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Mutational events as well as the selection of the optimal variant are essential steps in the evolution of living organisms.

The same principle is used in laboratory to extend the natural biodiversity to obtain better catalysts for applications in

biomanufacturing or for improved biopharmaceuticals. Furthermore, single mutation in genes of drug-metabolizing

enzymes can also result in dramatic changes in pharmacokinetics. These changes are a major cause of patient-specific

drug responses and are, therefore, the molecular basis for personalized medicine. MuteinDB systematically links

laboratory-generated enzyme variants (muteins) and natural isoforms with their biochemical properties including kinetic

data of catalyzed reactions. Detailed information about kinetic characteristics of muteins is available in a systematic way

and searchable for known mutations and catalyzed reactions as well as their substrates and known products. MuteinDB is

broadly applicable to any known protein and their variants and makes mutagenesis and biochemical data searchable and

comparable in a simple and easy-to-use manner. For the import of new mutein data, a simple, standardized, spreadsheet-

based data format has been defined. To demonstrate the broad applicability of the MuteinDB, first data sets have been

incorporated for selected cytochrome P450 enzymes as well as for nitrilases and peroxidases.

Database URL: http://www.MuteinDB.org
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Introduction

One of nature’s fundamental mechanisms to create genetic

diversity in living organisms is the creation of mutants,

which, in turn, leads to evolution. Mutational events and

selection of the optimal variant are essential to obtain a

better catalyst. In human medicine, enzyme polymorphisms

arising from evolutionary events have been identified since

the 1960s (1). Physicians recognized that patients with the

same disease responded differently to drugs, according to

which allelic variant their genomes were carrying. This

opened the road to what is nowadays called ‘personalized

medicine’ (2). Additionally, industry desires to artificially

improve enzymes through mutation and selection. To this

end, efficient protein engineering tools to create tailor-

made enzyme variants, named ‘muteins’, have been de-

veloped over the past decades (3). Muteins generated

either by rational design or by directed or designed evolu-

tion were adapted to the needs of industrial processes or

for completely new applications.

Increasing interest in personalized medicine and in

tailor-made enzymes in the fast-growing biocatalysis indus-

try has led to an exponential increase of literature about

muteins and their influence on enzymes’ kinetic properties.
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In a plethora of examples, the artificial substitution of one

or more amino acids in a polypeptide resulted in a signifi-

cant increase or decrease of stability, turnover rate or sub-

strate specificity for the enzyme (4). Even new reactions or

activities on molecules that were not substrates for the nat-

ural parental enzyme can be caused by just a few or every

single mutation. For example, esterases could be changed

to hydroxynitrile lyases and epoxide hydrolases (5,6).

Papain, a protease, was modified to an enzyme with

efficient nitrile hydratase activity (7). Furthermore, the

fatty acid hydroxylase CYP102A1 and the camphor hydro-

xylase CYP101 were redesigned to efficient alkane hydro-

xylases (8–10). By a single mutation, the broadly applied

lipase CalB was modified to perform aldol additions and

epoxidations (11). More recently, a transaminase showing

almost no activity for a commercially interesting substrate

was mutated to a highly active and selective catalyst

enabling a new efficient industrial process for sitagliptin

production (12).

Information about specific proteins and their muteins

are widely spread in the literature. Many studies only

describe single mutation and its effects without comparison

to already known muteins. Possible additive effects of

single amino acid changes are scarcely described or used.

Even after a thorough and time-consuming literature

search, researchers face the problem of assembling and

presenting the data in an easy understandable and

comprehensive way. Essential information may be lost

such as details about potentially cooperative mutations or

reactions one would not expect in certain protein families.

Therefore, a web-accessible database combining available

knowledge about a specific enzyme and its muteins in

a single place are highly desirable. Such a database

would allow researchers to access relevant information

about their protein of interest in a fast and easy way

and accelerate the engineering of new and improved

variants.

Existing, comprehensive enzyme engineering databases

such as CYPED are mainly focused on enzyme sequences

and their structures (13). Only a few databases go beyond

that and contain, to some extent, information about

muteins and their properties. The most recently published

database introducing mutein information is SuperCYP (14),

which exclusively addresses human cytochrome P450s.

Another example is SPROUTS (15), which provides details

on the influence of point mutations on protein stability.

The Protherm database (16) contains experimental thermo-

dynamic data, and BRENDA (17), a well-known enzyme

databases, includes only a small section about muteins.

Finally, the Protein Mutant Database (18) includes refer-

ences to mutant proteins from the literature. However,

none of these databases provides kinetic characteristics of

muteins and allows a fast, systematic and user-friendly way

to search for known mutations and catalyzed reactions of

interest. All these databases focus on enzymes and provide

information about their variants from the view of the pro-

tein. Additionally, none of the existing databases is search-

able by substrate or product molecule structures allowing

comparison of muteins with respect to their catalytic

properties.

In this article, we present the novel database MuteinDB

(http://www.MuteinDB.org). It is a user-friendly graphically

appealing database devoted to provide easy access to de-

tailed information on naturally occurring and laboratory-

evolved muteins as well as on the influence of mutations on

kinetics of catalyzed reactions, including inhibition. It

allows to search for the best biocatalyst for a given sub-

strate, reaction or product simply by substrate name,

Chemical Abstracts Service (CAS) number or molecule struc-

ture. In addition, a structure search tool offers the possibil-

ity to predict muteins which most likely accept a new

substrate, if no enzyme/substrate properties were described

so far.

MuteinDB overview

The MuteinDB is a platform to collect, catalog, and store

experimentally derived data about muteins from publicly

available sources as well as data directly submitted by the

scientists. Additionally, it allows flexible searches by reac-

tion type, molecular (sub) structures, substrate, product or

mutein name. MuteinDB provides details on catalyzed re-

actions, kinetic data (activity, kinetic resolution) and experi-

mental conditions used for data generation as well as for

possible substrates or products consumed or produced by a

reaction of choice including relevant scientific publication

or patent information. Furthermore, it is possible to screen

all enzyme variants for known interactions with specific in-

hibitors. Substrate, product and inhibitor data are linked to

CAS and/or CID number (PubChem) as a unique identifier

for unambiguous reference. The use of these distinct iden-

tification numbers allows even to extract information

about (comparative) stereo- or enantioselectivity of individ-

ual muteins. Furthermore, once the user has identified a

mutein of interest, information about its sequence, the

employed expression hosts, cofactors, cosubstrates, and

coproteins can be directly shown. In the sequence view,

all mutations of a specific mutein are highlighted and

liked to other muteins with known mutations of the same

position. Additionally, the wild type sequence including all

known amino acid exchanges which are again linked to

muteins containing the modified position is illustrated for

all muteins.

For first-time users, a comprehensive frequently asked

question (FAQ) section and in-depth tutorial movies are

provided. The key features are described in more detail

below.

.............................................................................................................................................................................................................................................................................................
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Search options

In contrast to other databases, MuteinDB allows users not

only to query for muteins and mutations but also for sub-

strates, products, or inhibitors, using the corresponding

name or CAS number as well as catalyzed reaction types.

The database also provides means to easily and efficiently

search the data (e.g. by allowing to enter wildcards in the

values) and display it in a clear, tabular form.

Structural search

Another important difference to other existing databases is

the fully integrated (sub) structure search tool. It allows

searching for substances with a similar structure by drawing

an arbitrary chemical structure in the JME Molecule Editor

(19). The database will provide all possible hits related to

the drawn structure, and the user can navigate amongst

them to refine the search. Based on knowledge about

mutein/substrate combinations and their specific products,

this for the first time also allows predictions of other pos-

sible substrates and products for known muteins which

were not experimentally evaluated so far.

Individual features of MuteinDB

MuteinDB uses a mutein-based classification. A unique ID is

assigned to each mutein and is linked to the reference

source, the catalyzed reaction and the corresponding

wild type protein. This mutein-centric approach allows

more flexible and specific searches compared to the pub-

lication-based classification of the Protein Mutant Database

(18) or the reaction based classification of BRENDA (17).

Each reaction and publication reference can be independ-

ently surveyed, which is especially important when amino

acid changes result in new functionalities. An example for

such a case is the lipase CALB that was modified to a C–C

bond forming enzyme for aldol additions (11).

Basic information about underlying wild type protein

sequences, structures and source organism as well as com-

pound structures, their respective references and reactions

are retrieved from the public databases GenBank, PDB,

UniProt, PubChem, PubMed, CrossRef, and KEGG (20–24).

Wherever third party data is presented, it is linked to the

corresponding database entry.

Standardized format for data
collection and import

The recent introduction of experimental high-throughput

techniques required the development of standardized for-

mats for data from biological experiments. They facilitate

exchange of data, their storage in publicly accessible repo-

sitories, increase experimental transparency and allow re-

production of bioinformatic analyses from publications. For

example, such formats are available for DNA-microarray

experiments (25), proteomics studies (26), and data deriving

from qPCR experiments (27). Most of them are XML based,

which can be difficult to create and manipulate. Therefore,

simpler, spreadsheet-based formats have been introduced

which are more accessible for the individual researcher.

A prominent representative is the MAGE-TAB format for

45 DNA-microarray experiments (28).

Here, we propose a standardized spreadsheet-based

data exchange format for muteins and related experimen-

tal kinetic data. The MuteinDB import spreadsheet com-

prises seven sections for each entry: (i) basic data;

(ii) signal sequences; (iii) pH conditions; (iv) temperature

conditions; (v) storage stability; (vi) reaction data and

(vii) activity data. The basic data section includes the

enzyme’s name, the GenBank protein ID and the PDB ID

(if available). Additionally, the corresponding wild-type

name and the sequence mutations are illustrated for

muteins. The reaction section contains the substrate and

the product of the reaction (both with CAS number and

name), the enzyme classification (EC) number of the reac-

tion and the reaction type. The activity section can cover

one of following types: conversion activity, enatiomeric

excess or inhibition. All three types are followed by the

corresponding kinetic values and the experimental condi-

tions. The provided standards for kinetic data necessitate a

minimum quality of biochemical protein data (e.g enzyme

activity provided in mmol product made by mmol enzyme

per minute).

A detailed description of the fields along with guidelines

for data collection and a template spreadsheet are avail-

able on the MuteinDB homepage. Standardized entry of

data into the spreadsheet is ensured by drop-down lists

for fields with a defined value set. Drop-down lists can be

extended if new values for a field are required.

For data import, the files are checked for data consist-

ency according to the guidelines and compared with the

already existing mutein data to prevent duplicate entries

(Figure 1). A detailed report on the import is provided,

allowing focused modification of the data to adjust it con-

forming to the guidelines. Upon successful import, the data

is reviewed by an expert team at Graz University of

Technology and feedback is provided to the submitter.

After all inconsistencies are resolved, the new content is

publicly released. New data can be submitted any time

and is made available immediately after the review.

MuteinDB structure and
implementation

The MuteinDB is implemented using Java, an object-

oriented and platform-independent programming lan-

guage. The application is based on a 3-tier architecture

with an Oracle database as the persistence tier, an

.............................................................................................................................................................................................................................................................................................
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application server (JBoss) as the middle tier and a WEB

interface as the client tier. Business logic is implemented

using Enterprise JavaBeans 3. The web interface depends

on JavaServer Faces 2, Asynchronous JavaScript and XML

and JBoss Seam. The relational database schema has been

designed to accommodate controlled vocabularies in form

of a data dictionary. Attributes with a defined value set are

linked to data dictionary entries to facilitate standardized

content in the database.

For substructure search (5), the JME Molecule Editor (19)

and the Chemistry Development Kid (CDK)—an open-

source Java library—are used.

Use of MuteinDB

The MuteinDB was developed as a user-friendly and

intuitive resource of mutein-related properties for scientists

in the fields of biology, biotechnology, organic chemistry

and pharmaceutical sciences. The top information bar

offers ‘FAQs’ where users will find helpful information.

Furthermore, first-time users will find tutorial movies

explaining the database usage and the different

MuteinDB sections.

The simplest search option ‘Search by Substrate’ is dir-

ectly accessible via the home screen. The left side naviga-

tion bar gives access to further querying options.

Search options

(i) Substrate: enables the user to search for muteins

that convert a certain substrate of interest.

(ii) Reaction: enables the user to search for specific re-

actions by entering a molecule name or a CAS

number for the substrate and/or the product

(including single enantiomers)

(iii) Structure: enables the user to draw chemical struc-

tures to search for similar or exact (sub) structure

matches in either one or all of the molecule cate-

gories (substrate, product and/or inhibitor).

(iv) Inhibitor: enables the user to search for inhibitors of

muteins and wild-type enzymes by entering a mol-

ecule name or a CAS number.

Figure 1. Schematic diagram of database structure. MuteinDB structure can be divided into two major parts. Firstly, the data
collection and import structure within MuteinDB, illustrated on the left. Detailed guidelines structure and specify the correct and
unified data collection as well as the data import. The standardized excel data import template guarantees data quality and
consistency. During the automated data import from the data import excel sheet, metadata from third party databases such as
PubMed, PubChem, GenBank and CrossRef are retrieved and added. The data import procedure ends either with a summary
including imported muteins, molecules, reactions, activities or with a detailed error report. Secondly, stored public mutein data
can be easily retrieved via various search mechanisms. For example, chemical structures can be used for identifying molecules of
interest and their catalyzed reactions. Results are presented in tabular listings with links to third party databases or to detailed
information contained in MuteinDB.

.............................................................................................................................................................................................................................................................................................
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(v) Mutation: enables the user to search for muteins

containing mutations at a certain position.

(vi) Wild type: enables the user to browse all muteins

and their reactions for a defined wild-type enzyme.

(vii) Mutein: enables the user to search for all relevant

reactions for a defined mutein name.

To keep the additional querying options simple and flex-

ible, further refinements of the query can, but do not have

to, be specified or selected. For example, the search can be

restricted amongst others to the reaction type, the under-

lying wild type protein, or to a specific organism.

All text fields are equipped with ‘suggest input’. While

typing a box will appear and provide suggestions one can

choose from. Furthermore, selected fields allow ‘wildcard

search’ with ‘*’ as a placeholder.

Example workflow

The ability to search for exact or similar structures is one of

the unique main features of the MuteinDB. Therefore, we

will describe this search type in more detail and use it as

example to demonstrate the ability of MuteinDB for valu-

able data retrieval (Figure 2).

Selecting ‘Search by Structure’ will open the JME

Molecule Editor Applet (19) and allows the user to draw

an arbitrary chemical structure (Figure 2A). After submit-

ting the search, results will be presented as a table listing

all molecules containing the drawn structure (Figure 2B).

The ‘structure result’ page proposes several related sub-

strates, products and inhibitors with similar structures to

the drawn molecule structure. In all result views, moving

the cursor over a molecule name will show its chemical

structure. Additionally, each molecule name is linked to

PubChem (22). This also facilitates the search if the CAS

number or the exact molecule name is unknown or if dif-

ferent trivial names of the molecule are commonly used.

One or several molecules can be selected via checkboxes

and can be used for a subsequent search by substrate/prod-

uct or inhibitor. The results are shown again in tabular form

listing all muteins that convert the selected substrates or

produce the selected products or are inhibited by the

chosen inhibitors.

Selecting ‘testosterone’ from the list for a subsequent

search reveals several muteins that are able to convert

this steroid (Figure 2C). This supports predictions about pos-

sible transformations of testosterone derivatives where

no experimental data is available so far. Hits from such

searches are preferred muteins for experimental evaluation.

Information about the catalyzed reactions such as sub-

strate, product and reaction type are presented in the ‘sub-

strate view’ (Figure 2D). A link to KEGG reaction (29) is

provided when a corresponding entry exists. As the kinetic

data are one of the most important pieces of information

stored in the database, kinetic parameters such as Km and

kcat are given. Furthermore, enantiomeric access and

E-values are provided if available. The view can be custo-

mized using ‘edit display settings’.

As multiple publications may have reported the same

reaction for a given mutein, the one stating the highest

activity is shown in the main result screen. By using the

expand button the data from the other reports are also

shown. Clicking on the mutein name will bring up the

‘mutein view’ where detailed information about the

mutein and the reaction are provided.

In the ‘substrate section’, several mouse-over buttons

(Figure 2D) give further information about the catalyzed

reaction. ‘C’ shows comments on the reaction, ‘W’ gives

activity data of the underlying wild-type reference, ‘R’

shows information about reaction conditions and analysis

and ‘L’ provides detailed information about the corres-

ponding literature. The PubMed ID or the digital object

identifier (DOI, http://crossref.org) of the publications are

given and directly linked to PubMed or to the webpage

associated with the digital object identifier, respectively.

Additionally, the EC number is provided and linked to the

comprehensive enzyme database BRENDA (Figure 2F–H).

The ‘sequence section’ shows the mutein sequence

aligned with its corresponding wild-type sequence

(Figure 2E). In the mutein sequence, the mutations are

highlighted in violet. The sequence can be downloaded as

FASTA format. The amino acids of the wild-type sequence

highlighted in blue mark the positions of known mutations.

These positions are linked to the ‘enzyme mutation view’.

In this view, all muteins that contain a mutation at this

position are listed. Via the mutein name it is possible to

navigate to the mutation view of the corresponding

mutein.

Another highlight of the MuteinDB is the ability to select

two or more muteins, which convert the substrate of inter-

est or form the product of interest, for comparison in side

by side view. In the ‘compare view’ the kinetic data of the

catalyzed reaction as well as information about the muta-

tions, expression system and involved cofactors and

coproteins are displayed.

Inhibitors have a special status and may have been

reported in the ‘structure result’ page for the inhibitor

search. The results are shown in tabular form (Figure 3)

listing muteins that are inhibited by the chemical com-

pound. Instead of kinetic data, the inhibitor constant Ki

or the IC50 value are provided. Additionally, the underlying

reaction used to determine the inhibitor constant is shown.

As the same inhibitor measurements can be found in

different publications, only the one with the highest inhib-

ition constant is shown as the main result. Via the expand

button, the data of the other literature sources is shown.

The mutein name is again linked to the ‘mutein view’,

where detailed information on the mutein and the inhib-

ition reaction are provided.
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Figure 2. MuteinDB structure search, its results and the capabilities of the MuteinDB webinterface. (A) The MuteinDB (sub)
structure search uses the JME editor, which allows users to draw arbitrary molecular structures. (B) The user-drawn structure is
used as seed for the following database search and shown on top of the structure search result table. In this table all molecules,
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Results and conclusions

MuteinDB is a comprehensive and carefully curated data-

base for specific muteins and their kinetic data of catalyzed

reactions including inhibition. It provides in-depth informa-

tion on mutein properties combined with flexible search

capabilities. The MuteinDB has been designed to be

broadly applicable to proteins and their muteins from any

enzyme class including those with no known catalytic func-

tion. We demonstrated this by entering data sets of several

enzymes and their variants of different enzyme classes.

Presently, the understanding of the structure–function

relationship of proteins is still limited. Scientists are trying

to tackle the problem from different perspectives (from

medicine and pharmacokinetics, to structural biology or

applied biocatalysis) and are, therefore, interested in how

mutations can influence catalytic properties.

By means of MuteinDB a user can find enzymes

that catalyze a particular reaction not only in expected

enzyme classes but also in others [e.g. a C–C bond forming

mutein derived from a hydrolase (30)]. This feature helps to

identify potential starting points for further enzyme engin-

eering. Moreover, medical scientists can get information

about the influence of mutations on the drug metabolism

and the in vivo activation. This helps to predict a patient’s

personal response to certain administered drugs. In addition,

the implemented structure search for substrates, products

and inhibitors allows the prediction of structure scaffolds

that could be accepted by muteins. This might provide help-

ful information for the development of new biocatalysts

and, most probably, will facilitate drug metabolite predic-

tion in pharmaceutical research and development.

At present MuteinDB contains several thousand

reactions (Table 1) for muteins of different enzyme

Figure 2. Continued
substrates, products or inhibitors which contain the query structure are presented. A selection of these molecules can be used for
a subsequent ‘Search by Reaction’. (C) All wild type enzymes and muteins which catalyze the selected molecules are shown.
(D) For each row of the tabular result, further information can be obtained via the mutein or wild type name. The detailed
information is organized in four main categories: (i) basic data; (ii) properties; (iii) substrate and (iv) sequence. (E) The ‘Sequence’
tab of the selected mutein allows to explore the sequence of the mutein as well as the wild type sequence. Known mutations are
highlighted and linked to the corresponding entries of MuteinDB. (F) Information in the ‘Substrate’ tab is linked to third party
databases. For example, (F) molecules are linked to PubChem, (H) EC-Numbers to Brenda and (G) literature to PubMed or to its
DOI location. For muteins, experimental settings and wild type activity values are available from the ‘Substrate’ tab.

Figure 3. Result display of the MuteinDB web-interface for testosterone as a substrate. Information within the result listing for
each mutein is by default grouped into catalyzed reaction and kinetic data. Reaction information comprises the reaction type as
well as the catalyzed substrate and product. Molecules are directly linked to their corresponding PubChem entry. Additionally,
the molecule structure can be displayed by moving over the compound’s name. Important kinetic parameters such as K value,
activity value including its unit as well as the relative activity in (%) are directly available in the result view. All presented
information and further links for each mutein or wild type is directly linked by its name.
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classes. It is the largest collection of kinetic data of

muteins compiled in a single database. To demonstrate

the general applicability of the database, different types

of enzymes from different origins have been searched

in literature and imported into MuteinDB. Data were

collected by searching SciFinder (www.cas.org) and

PubMed (21) abstracts for specific keywords. Detailed

data from texts, tables and figures were manually ex-

tracted from the matching full-text publications and

were curated by a team of scientists, who enriched the

published information with first-hand kinetic data wher-

ever possible.

CYP2D6 and CYP3A4 are human liver enzymes and

known to be involved in drug metabolism. Both enzymes

have been chosen as primary data sets due to their pro-

nounced polymorphism and high importance for human

drug and xenobiotic metabolism. We selected CYP102A1

(BM-3) from Bacillus megaterium as a prokaryotic represen-

tative. This protein is one of the most mutated and inves-

tigated proteins known.

To import the data, we used the standardized spread-

sheet-based import file format described previously. It con-

tains all attributes necessary to describe a mutein and its

properties.

In order to augment the database content, data col-

lection is on-going. To make the database as compre-

hensive and up-to-date as possible, we are addressing

the research community with a request to aid us in

the collection of kinetic data sets for enzymes of differ-

ent type and origin. We appreciate any contribution to

the database both updates to existing data and new

kinetic data sets.

Future directions

In the course of integrating new data sets, the MuteinDB

will be adapted, and the guidelines for data collection will be

adjusted. Feedback from end users and data collectors will

ensure a continued focus on a user-friendly development.

The collection of data sets was carried out as part of the

OXYGREEN (www.oxygreen.org) project, a research collab-

oration funded by the European Commission Seventh

Framework Programme (EU FP7), and will be continued to

do so. MuteinDB will be used and extended in the context

of BIONEXGEN, a recently funded EU project. To ensure

continuation of data collection and curation of the data-

base, MuteinDB will be integrated into future projects.

A downloadable version of the MuteinDB is in prepar-

ation. It will be provided for companies or universities that

would like to store their own data in-house. The data can

be integrated into the public online database on request.

The download will be available in exchange for new mutein

data sets or for a fee for database curation and data

collection.
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Abstract: The analysis of the huge amount of generated se-
quence data as well as pyrosequencing noise and chimeric
sequences originating from PCR amplification pose a con-
siderable challenge to the individual researcher in doing
microbiome studies. The unbiased knowledge about mi-
crobial community composition and -structure as well as
the interactions with the human host microbiome can give
important insights into its role in human health and dis-
ease. Here we introduce SnoWMAn, the high-throughput
microbiome analysis pipeline and additionally investigate
the effects of sequencing noise on non denoised and data
denoised using two different approaches.

Keywords: Next Generation Sequencing, Community Com-
position Analysis, Denoising, OTU inflation

Introduction

The overall goal of human microbiome studies is to repre-
sent complex community composition within a certain habi-
tat of interest and compare it under different conditions, be-
tween time points or patients. To characterize and classify
complex microbial communities gained directly from en-
vironmental samples, a certain variable region of the com-
monly shared 16S rRNA marker gene is directly amplified
and sequenced. Before generated sequences can be clas-
sified into operational taxonomic units (OTUs) some pre-
processing and filtering steps should be applied to guaran-
tee unbiased community composition representation. Espe-
cially when working with pyrosequencing data, noise orig-
inating from longer homopolymer stretches (> 4 bps) can
lead to an increase in OTUs called OTU inflation. Besides
sequencing noise perceived diversity can be increased by
chimeric 16S amplification products which were formed
out of two or more sequence templates during polymerase
chain reaction (PCR). During further analysis these hybrid
products can be falsely interpreted as novel organisms, thus
inflating apparent diversity and finally lead to false con-
clusions. The general microbiome data analysis workflow
is illustrated in Fig. 1, where for each step a variety of
tools and approaches are available. To simplify microbiome
analysis from preprocessing over OTU picking to the fi-
nal statistical analysis and visualization of the result, we
developed the web-based analysis pipeline SnoWMAn. It
addresses shortcomings of existing tools, such as number

Figure 1: General mi-
crobiome analysis work-
flow (steps donated with
a dashed arrow can be
omitted).

of sequences which can be analysed, reproducibility and
usability. Additionally, SnoWMAn is unique in covering
the complete analysis workflow, offering different analysis
pipelines and reference databases as well as capabilities for
statistical analysis and visualization.

Methods

To demonstrate the capabilities of SnoWMAn and to show
the effects of pyrosequencing noise we reviewed a previous
study on changes in the gut microbiome during diarrhea [1]
by denoising the data with Acacia [2] and the mothur [3]
implementation of AmpliconNoise respectively. Further-
more, contaminating sequences originating from the host
genome as well as potential chimeric sequences had been
removed from the amplified sequences by a BLAST ap-
proach and uchime respectively. OTUs were built using the
Ribosomoal Database Project (RDP)-Pyrosequencing ap-
proach using the Infernal alignment v1.1 [4] and a maximal
cluster similarity of 6 and similarity steps of 1 %. Addition-
ally, quality filtering based on given quality values per base,
number of Ns (discard sequences containing Ns) and length
(discard sequences < 150 bp) was applied. Final taxonomic
classification was done by the RDP classifier 2.4 [5].

Results

In addition to the RDP pipeline used here, SnoWMAn users
can chose according to the field of application and their
study design between two reference based OTU picking
pipelines (BLAT, JGast) and three de novo OTU picking
pipelines (mothur, RDP, UCLUST). Depending on the se-
lected pipeline various preprocessing- and pipeline param-
eters such as the applied reference database, the classifica-
tion model and the clustering settings can be specified. To
minimize analysis time as well as to improve result qual-
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Table 1: Number of sequences and OTUs at a cluster similarity of 0.03, without denoising as well as denoised by Acacia
and the mothur re-implementation of AmpliconNoise. Contaminating sequences as well as potential chimeric sequences
have been also removed prior to analysis.

sample contam. no denoising AmpliconNoise Acacia
raw OTUs noise chimera ok OTUs noise chimera ok OTUs

Feces 4 327439 3755 23810 443 301099 1939 23282 7469 296684 2295
Mucosa 3558 187773 3077 25570 2526 158291 1628 25712 1609 156913 1980

ity it is possible to filter sequences according their length,
maximal mount of unidentified bases, or mean sequence
quality thresholds. The newly introduced Acacia denois-
ing tool was integrated into SnoWMAn and can be used on
demand for identification and removal of noisy sequences.
Not only that it was shown to be about 2000x faster than ex-
isting tools, additionally, our comparison results in modest
difference between the mothur re-implementation of Am-
pliconNoise and Acacia (see Tab. 1). In respect to chimeric
sequences SnoWMAn integrates mothur’s uchime for op-
tional chimera detection and removal. After all necessary
and optional parameters are specified the numerical inten-
sive analysis task is automatically started. Once the calcu-
lation is finished SnoWMAn offers various capabilities for
statistical analysis and result visualization such as rarefac-
tion curves for microbial diversity estimation and illustra-
tion of species richness (alpha diversity). Species turnover
or beta diversity can be calculated and visualized using
heatmaps. Comparison of individual microbiomes can be
done by the integrated principal component analysis (PCA).
Barcharts or piecharts can be used to represent the number
of sequences for each sample and give an overview of se-
quence yields. Additionally, cumulative and endpoint depth
of the taxonomic classification can be graphically illus-
trated. Line plots can be used to reveal sample composition
at a specific taxonomic rank to point out compositional mir-
cobiome changes over time. Data can be presented in rela-
tive or absolute scale for all chart types. All the generated
data can be easily exported either as Excel file or as figures
in PNG or SVG format. The comparison of the effects of se-
quencing noise on community diversity results in enormous
OTU-inflation when comparing the number of OTUs result-
ing from denoised vs. non denoised pyrosequencing data,
see Tab. 1. Surprisingly, the number of potential chimerias
varies depending on the denoising approach, especially for
fecal samples. Moreover, the number of OTUs varies more
than expected between AmpliconNoise and Acacia.

Discussion

Here we introduced SnoWMAn as a comprehensive system
for high-throughput analysis of microbial community se-
quencing data as well as the effects of two different denois-
ing approaches. SnoWMAn covers the whole microbiome
analysis workflow and offers the two most common analy-
sis approaches in one single pipeline. The user-friendly and
intuitive web-interface makes it a convenient resource not
only for classification and characterization but also for sta-

tistical analysis, visualization and reusing or sharing of the
analysis result. Furthermore, the newly integrated denois-
ing and chimara filtering tools satisfy latest findings towards
sequencing noise. Although different denoising approaches
showed modest variation of noisy sequences the effect on
the number of chimeric sequences needs further investiga-
tions. The modular design of SnoWMAn allows simpli-
fied extension of the classification tools to other genes than
the 16S rRNA by providing appropriate reference databases
and alignment models.
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Abstract

Campylobacter fetus are important animal and human pathogens and the two major subspecies differ strikingly in
pathogenicity. C. fetus subsp. venerealis is highly niche-adapted, mainly infecting the genital tract of cattle. C. fetus subsp.
fetus has a wider host-range, colonizing the genital- and intestinal-tract of animals and humans. We report the complete
genomic sequence of C. fetus subsp. venerealis 84-112 and comparisons to the genome of C. fetus subsp. fetus 82-40.
Functional analysis of genes predicted to be involved in C. fetus virulence was performed. The two subspecies are highly
syntenic with 92% sequence identity but C. fetus subsp. venerealis has a larger genome and an extra-chromosomal element.
Aside from apparent gene transfer agents and hypothetical proteins, the unique genes in both subspecies comprise two
known functional groups: lipopolysaccharide production, and type IV secretion machineries. Analyses of lipopolysaccharide-
biosynthesis genes in C. fetus isolates showed linkage to particular pathotypes, and mutational inactivation demonstrated
their roles in regulating virulence and host range. The comparative analysis presented here broadens knowledge of the
genomic basis of C. fetus pathogenesis and host specificity. It further highlights the importance of surface-exposed
structures to C. fetus pathogenicity and demonstrates how evolutionary forces optimize the fitness and host-adaptation of
these pathogens.
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Introduction

The e-proteobacterial genus Campylobacter comprises bacteria

with a high degree of niche adaptation and host tropism [1]. The

species colonize mucosal surfaces and are animal and human

pathogens [2]. The genomes of Campylobacter spp. are not large

(<1.5 Mbp) and show characteristics of genome decay typical for

niche-adapted bacteria [3]. These features make Campylobacter

species ideal model systems to study genetic contributions to niche

specificity and virulence by comparative genome analysis [3].

Multi locus sequence typing (MLST) has shown that the two C.

fetus subspecies, C. fetus subsp. fetus and C. fetus subsp. venerealis, have

a clonal population structure [4] and differentiation of the taxa is

only partially successful [5]. Both subspecies are important

veterinary pathogens causing abortions and infertility in ruminants

[6]. C. fetus subsp. venerealis is a bovine-adapted ‘‘clone’’ [7] causing

venereal infections and epidemic abortion in cattle. Statutory

preclusion of C. fetus subsp. venerealis infection underscores the

importance of this veterinary pathogen [8], but human infections

are rare [6]. In contrast the generalist subspecies, C. fetus subsp.

fetus, colonizes the intestinal and the genital-tract of multiple hosts

including sheep, cattle, birds and humans. It is an emerging

human pathogen, leading to invasive infections and even death

[9,10]. Most bacteremic illnesses caused by Campylobacter are due to

C. fetus [9,11].

C. fetus displays two major (O-antigen based) sero-types, A and

B, and a rare variant AB [12]. The sero-types correlate with the

type of surface array protein (Sap) expressed by the bacterium [13]

and differ in their lipopolysaccharide (LPS) composition [12,14].

The Sap-layer (S-layer) creates a paracrystalline proteinaceous

cover enabling C. fetus to resist serum bactericidal activity, and by

phase variation to overcome immune recognition [11,15,16].

Sero-type A strains expressing SapA are more frequently isolated

from human blood than sero-type B strains expressing SapB. The
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cattle-adapted C. fetus subsp. venerealis is exclusively sero2/sap-type

A (type A). Four different Campylobacter clades were identified using

MLST [4] and represent the genotypes (I) C. fetus subsp. venerealis

type A, (II) C. fetus subsp. fetus type A or (III) type B and (IV) reptile

C. fetus type A. The reptilian clade diverges most substantially from

the other three closely related genotypes.

The evolutionary interplay between microbial pathogens and

their hosts is a continual process of adaptation, manifested by

genomic variation of host adaptation factors, and by the gain and

loss of genes via horizontal gene transfer (HGT). The underlying

hypothesis for this study was that genome reduction and

acquisition of relatively few novel genes has enabled C. fetus to

adopt distinct subspecies-specific lifestyles. To evaluate this, we

performed comparative genetic analyses of C. fetus subsp. venerealis

(type A) and C. fetus subsp. fetus (type A), and we compared regions

of the two type A strains to type B and reptile C. fetus strains. To

gain initial insights into the transcriptional organization of C. fetus,

differential RNA-sequencing (dRNA-seq) was performed with the

sequenced strains of both subspecies. The analyses revealed many

of the molecular details involved in (sub)speciation and virulence

of C. fetus and explain the strikingly different host tropism and

clinical manifestations of these pathogens.

Results

Comparative Genomics of C. fetus Subspecies
The genome of the bovine strain C. fetus subsp. venerealis 84-112

(type A) was sequenced generating 216.8 Mbp sequence data

(<112-fold coverage). This strain harbors a single circular

chromosome 1.93 Mbp in size with GC-content of 33.3% and a

circular extra-chromosomal element of 61,141 bp with GC-

content of 31.5%. Until now, the only other closed C. fetus

genome publicly available was the human isolate C. fetus subsp.

fetus 82-40 (type A). That 1.77 Mbp genome also has GC-content

of 33.3%. Analysis of the two genomes revealed that they are

highly syntenic with 92.9% overall sequence identity. The

homologous regions exhibit 99.8% DNA identity. 180 kbp were

unique for strain 84-112 and 35 kbp of unique sequences were

identified in strain 82-40. Including the 73 extra-chromosomal

element open reading frames (orfs), strain 84-112 harbors 204

unique orfs. Nearly all represent putative type IV secretion system

(T4SS) components, transposons, or hypothetical proteins (File
S4). The 25 orfs unique for strain 82-40 encode putative CRISPR

associated (Cas)-proteins, LPS-biosynthetic enzymes, or hypothet-

ical proteins (File S4). General genomic characteristics are

summarized in Table 1.

Comparative genome plots clearly illustrate that the unique

DNA stretches are located in distinct genomic regions (termed

variation regions, VR) scattered across the syntenic genomic core

(Figure 1). C. fetus subsp. venerealis 84-112 harbors 5 VRs and C.

fetus subsp. fetus 82-40 harbors 3 VRs (Figure 1, Table S1 in
File S5). All of these regions have features indicative of horizontal
acquisition including a shift in %GC-content compared to the core

genome, the presence of mobility-related genes (e.g. prophages,

transposases) or proximity to tRNA genes, presumably marking

their insertion sites into the chromosomal backbone. Two of the

VRs of strain 84-112, Venerealis Genomic Island (VGI) I and VGI

II, have no counterpart in strain 82-40. Two other VRs are shared

between the two subspecies. VGI III of strain 84-112 corresponds

to the position of Fetus Genomic Island (FGI) I of strain 82-40.

The position of VGI IV corresponds to FGI II. The respective

regions of variation are not identical between the two subspecies,

but are highly similar, suggesting a common origin. Notably, the

VRs of strain 84-112 carry additional blocks of genes, which are

predominantly prophage-related. The extra insertions appear to

interrupt functional gene modules, thus VGI III can be divided

into three subsections designated VGI IIIA-1, VGI IIIA-2, and

VGI IIIB (see below, Figure 2C, Table S1 in File S5). In strain

84-112, phage-related genes or transposases flank the VGIs.

Similar genes are absent in strain 82-40 except for one area on

FGI II containing prophage-like features (see below, Figure 2E).
One VR region (Figure 1, Figure S1) that co-localizes in the

genomes of both subspecies was designated as the Venerealis- or

Fetus Subspecies Definition Region (VSDR/FSDR). These

regions are marked by comparatively low GC-content (30.7%

and 29.4%, respectively). They contain genes putatively involved

in surface carbohydrate metabolism as analyzed below and

differentiate the two subspecies.

Metabolic reconstruction based on the genome data and

comparative analyses of metabolic pathways using RAST and

SEED revealed only two differences between the genomes. C. fetus

subsp. fetus 82-40 harbors two orfs putatively involved in thiamin

(vitamin B1) biosynthesis, namely a phosphomethylpyrimidine

kinase (EC 2.7.4.7) and the thiamin biosynthesis protein ThiC

(peg.404), which are absent from the genome of C. fetus subsp.

venerealis 84-112. ThiC does not appear to be specific for C. fetus

subsp. fetus, however, since a thiC homolog is also present in the

unfinished genome of C. fetus subsp. venerealis NCTC 10354. Also

no other obvious differences in respiration systems, nutrient

transporters and catabolic or anabolic pathways were identified.

Whether more subtle genetic differences, like insertions, point

mutations or variation in transcriptional control, which might

influence metabolism, contribute to the different biology of C. fetus

subspecies remains to be elucidated.

In summary, comparative genomics revealed that the two C.

fetus subspecies are highly syntenic, but the chromosome of C. fetus

subsp. venerealis 84-112 is about 9% larger. The genomic VRs

distinguishing the two subspecies are located within a small

number of hot-spots, displaying features typical for horizontally

acquired DNA.

VGI I and II Contain T4SS-related Genes, Prophage- and
Plasmid-like Features
We previously identified and characterized a pathogenicity

island (PAI) in C. fetus subsp. venerealis that was absent in all 45 C.

fetus subsp. fetus isolates tested [17]. The PAI contained a full set of

virB/virD4 genes prototypical for a T4SS (for review see [18]). The

T4SS of strains ATCC 19438 and 84-112 mediate conjugative

DNA transfer as well as host interaction [17,19]. This PAI is

located in VGI I of strain 84-112 (Figure 2A). VGI I also harbors

the putative prophage I encompassing a region of 33.7 kb

(position: 1,266,041 to 1,299,761) with 47 orfs and a GC-content

of 35.4%.

The gene organization of VGI II is less consistent, but with

conserved functional modules (Figure 2B). Although T4SS-

related genes are present, the system lacks virB5 and virB6 and may

be non-functional (see below, and Figure S3). Under laboratory

conditions, we did not detect transcription of these genes (data not

shown). The gene for transposase ISHa1152 suggests a putative

integration site for VGI.

FGI I and VGI III Contain the Sap-locus
The sap-locus of C. fetus is present in both subspecies and

represents the best-characterized C. fetus virulence attributes

[11,15,16]. In C. fetus subsp. fetus 82-40 the sap genes are located

on FGI I close to a tRNA and putative ABC-transporter genes

(Figure 3). In C. fetus subsp. venerealis 84-112, the comparable

region of VGI III is highly similar to FGI I. However, a block of

C. fetus - Subspecification and Virulence
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Table 1. C. fetus genome attributes, including the extra-chromosomal element.

Attributes Cff Cfv Cfv

strain 82-40 strain 84-112 ICE_84-112

*Genome size (bp) 1,773,615 1,926,886 61,141

*GC-content % 33.31 33.34 31.54

*coding DNA sequence (# of orfs) 1,769 1,992 73

*rRNA genes 6 6 –

*tRNA genes 43 43 –

Genomic Islands 2 (FGI I–II) 4 (VGI I–IV) –

T4SS loci

tra-like gene cluster 0 0 1

vir-like gene cluster 0 2 1

Flexible gene pool

Integrase XERCD family 1 1 0

Integrases/recombinases 1 2 0

Insertion Elements (# of copies) 0 ISHa1152 (2) ISHa1152 (3)

0 ISC1904 (3) 0

Prophage-like gene clusters 1 3 0

CRISPR

Spacers (# of copies) 21 (1) 24 (1) 0

26 (1)

cas-genes cas1-6 0 0

*according to RAST annotation.
doi:10.1371/journal.pone.0085491.t001

Figure 1. Genome comparisons of C. fetus subspecies. Plots were generated using C. fetus subsp. venerealis 84-112 (Cfv) as a reference (A) or C.
fetus subsp. fetus 82-40 (Cff) (B). Inside tracks represent GC-content (ring 1) and GC-skew (ring 2). Cff is shown in blue and Cfv in red. Variation regions
(VR) relative to the reference genome are indicated in orange/yellow and named according to the corresponding Genomic Island (GI) or the
subspecies definition region (SDR). (V) and (F) in the feature names designate the subspecies venerealis and fetus, respectively. Important genes or
features are indicated in parenthesis. Positions of selected mobility genes are indicated.
doi:10.1371/journal.pone.0085491.g001
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phage-related genes and a series of genes for hypothetical proteins

indicate the presence of another prophage (Figure 2C, Figure 3)
apparently leading to rearrangement and separation of the sap

genes that may affect S-layer variation of C. fetus subsp. venerealis

84-112. The transcriptome analysis indicates that the insertion of

prophage III did not lead to inactivation or truncation of

sapAb8_612 (Figure 4). As in VGI I, the ISHa1152 transposase

gene was detected, putatively marking a site for extra-chromo-

somal DNA insertion.

FGI II and VGI IV Contain CRISPR Loci
We identified CRISPR-repeats on the genomes of both C. fetus

subspecies (Figure S1). In C. fetus subsp. venerealis 84-112, a single

locus (nt 684,618 to 686,228) (Cfv_CRISPR) displays the typical

features of a CRISPR-array with 30-bp direct repeats (DR),

separated by 21 different spacers. No cas-homologues were

identified. Two CRISPR-arrays (nt 655,350 to 656,762 and nt

674,442 to 676,187) were identified in C. fetus subsp. fetus 82-40

(Cff_CRISPR_1 and Cff_CRISPR_2), but only Cff_CRISPR_2 is

in close proximity to cas-gene homologues. The DRs and the

leader sequence are identical in both subspecies. Some spacers are

shared between Cfv_CRISPR and Cff_CRISPR_1, but

Cff_CRISPR_2 has no homology to Cfv_CRISPR and

Cff_CRISPR_1. Sequences homologous to the spacers of the

CRISPR loci were not detected in public DNA databases, thus

their putative DNA targets remain unknown.

Since Cas1 is a hallmark of dynamic CRISPR arrays, we

screened 102 C. fetus strains for its presence. Cas1 was detected in

19 (47.5%) of 40 subsp. fetus subsp. fetus isolates but was absent in

all 62 subsp. venerealis isolates (Odd ratio = 110, 95% CI: 6.3 to

1,897, p = 0.0012). In strain 84-112 another prophage-like gene

cluster (prophage IV) is present instead of the cas-genes and the

second CRISPR array (Figure 2D, Figure S1). Interestingly,
type B strains are more likely to carry the cas1 gene (14 of 15)

compared to type A strains (5 of 24) (Odd ratio = 53.2, 95% CI:

5.6 to 507.4; p = 0.0006) (Table S6 in File S5).

Figure 2. Comparative overview of Genomic Islands (GIs). (A) VGI I (PAI) with the T4SS and putative prohage I, (B) VGI II with a vir-gene cluster
and plasmid-related genes, (C) VGI III containing the surface array protein cluster and prohage III, (D) VGI IV containing the CRISPR-array and
prophage IV and (E) FGI II with prophage-related genes (prophage II) and the CRISPR-cluster (array and cas-genes). The GI borders to genes shared
between the subspecies (grey) are indicated with nucleotide position. Gene clusters are colored as follows: phage-related genes (orange), plasmid
related genes (green), integrases and transposases (blue), T4SS (red), effector proteins (yellow), surface array proteins (purple), cas-genes (lavender),
tRNAs (green boxes); Each x represents a hypothetical protein and their numbers in tandem are indicated above.
doi:10.1371/journal.pone.0085491.g002
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The Extra-chromosomal Element of C. fetus subsp.
Venerealis 84-112 Displays Features Typical for
Integrative Conjugative Elements (ICE)
The extra-chromosomal element was designated as ICE_84-112

and is the first ICE described in C. fetus (physical map Figure S2;
annotation details in File S3). Conjugative transfer (tra) and other

genes of apparent plasmid origin were identified but autonomous

replication features were lacking. The T4SS locus, termed

ICE_trb/tra, most likely is involved in horizontal self-transfer,

based on its close relation to the broadly disseminated RP4-like

systems. Several phage-related genes and transposases, including

the ISHa1152 transposase, could aid chromosomal integration

and excision of the ICE (Figure 1A, Figure 2BC). A region with

structural homology to the PAI of VGI I was identified on

ICE_84-112 (termed ICE_vir). ICE_84-112 also encodes proteins

with a domain called filamentation-induced by cyclic AMP (Fic).

This domain is similarly present in Fic1 and Fic2 expressed by the

PAI of VGI I [17,19]. We screened our C. fetus collection for the

presence of ICE_84-112 using the ICE specific genes fic3 and fic4

as PCR targets. Of 62 C. fetus subsp. venerealis strains, 7 harbored

the ICE-related genes (Table S6 in File S5). The target genes

fic3 and fic4 were not detected in any of the 40 C. fetus subsp. fetus

strains tested. Transcriptome analysis showed expression of the

majority of genes on ICE_84-112.

ICE_84-112 may replicate extra-chromosomally via a con-

jugative transfer replication mode, as proposed for other ICEs

[20,21], since the obligatory features including a putative IncPnic-

site, an origin of transfer-binding protein, a relaxase, a helicase and a

nicking-endonuclease were identified (Figure S2). According to

the classification of Barcillán-Barica et al. [22], the putative

ICE_84-112 (CDS peg.24) relaxase belongs to the MPBP1 group

(clade MOBP11) of relaxases, displaying the typical conserved

sequence motifs. Most of the MPBP1 group of relaxases are linked

to conjugative plasmids. Lee et al. [20] demonstrated that the

chromosomally encoded Bacillus subtilis helicase PcrA associates

with ICEBs1 during replication. ICEBs1 is defective for replication

in pcrA-mutant strains and pcrA is necessary for ICEBs1 conjuga-

tion. PcrA orthologs, which could be recruited for replication and

conjugation, are present in both C. fetus subspecies (84-112 CDS

peg.56 & peg.1280 and 82-40 CDS peg.690 & peg.934).

dRNA-seq Identified Transcriptional Start Sites and the
Typical Promoter Structure for Campylobacterales in
Both Subspecies
Transcriptional start sites (TSS) annotation, performed com-

putationally, allowed classification of TSS according to their

location relative to the surrounding orfs. The analysis revealed a

variety of transcripts with TSS located upstream and internal to

their respective orf but also included antisense transcripts. Many

TSS were simultaneously assigned to more than one category

(Figure S5).

Sequences upstream of the annotated TSS were used to define

C. fetus promoter motifs. C. fetus subsp. venerealis has more orfs than

C. fetus subsp. fetus and we identified 797 promoter sequences in

strain 84-112 and 575 promoter sequences in strain 82-40, with an

extended Pribnow box (tgnTAtaAT) as the 210 motif in both

subspecies. Consistent with other Campylobacterales [23,24] the

typical bacterial 235 motif is replaced by a periodic AT-rich

signal upstream of position 214 (Figure 4AB). This also is

evident in the sap-locus located on genomic islands VGI III and

FGI I. The intragenic promoter region between sapC (component

of the Sap-transporter) and a respective sap-homologue is 100%

conserved between the subspecies and only the sap-homolog

directly downstream of the promoter is transcribed (Figure 4C).

Figure 3. Schematic representation and structural comparison of VGI III and FGI I (sap region). MAUVE was used to compare the VRs of
both subspecies for visualization of rearrangements and insertions. Regions free of rearrangements are indicated by colored colinear blocks. White
color within these blocks indicates insertions or non-homologous regions. Important orfs are colored and labeled. S-layer genes (purple) were
identified in both C. fetus strains. The sap-promoter is indicated. In C. fetus subsp. venerealis 84-112, the sap genes were disrupted by an inserted
prophage (orange). White boxes are mainly hypothetical proteins. Detailed annotation information can be found in File S1. Genes are labeled with
RAST-peg numbers and the inset table lists homologous sap genes of the subspecies.
doi:10.1371/journal.pone.0085491.g003
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C. fetus subsp. Venerealis 84-112 Harbors T4SS-related
Loci
C. fetus subsp. venerealis 84-112 harbors four regions showing

homology to T4SS genes (Figure S3). Two are on the

chromosome within VGI I (PAI) and II (Figure 2AB) and two

are located on ICE_84-112 (Figure S2) annotated as ICE_trb/tra

and ICE_vir. The ICE_trb/tra region differs from the other T4SS

and shares homology to IncP plasmid RP4. For the ICE_vir

region, blast searches and phylogenetic analyses using VirB4 and

VirB11 [25] identified the PAI T4SS (Table S2 in File S5) and
an as yet uncharacterized T4SS of Campylobacter hominis as their

Figure 4. C. fetus promoter sequence and transcriptional organization of the sap-locus. Promoter consensus sequence for (A) C. fetus
subsp. venerealis 84-112 (Cfv) and (B) C. fetus subsp. fetus 82-40 (Cff). The promoter motif is defined by an extended Pribnow box (tgnTAtaAT) at the
210 position. The235 motif is replaced by a periodic AT-rich signal upstream of position214 (dotted line). (C) Transcriptional organization of Cfv VG
III (top) and Cff FGI I (bottom), identical sap-promoter sequence of Cfv and Cff (middle).
doi:10.1371/journal.pone.0085491.g004
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closest neighbor. The vir-genes located on VGI II did not share

high homology with the vir-genes present on either VGI I or

ICE_84-112. Instead the closest relative is a putative T4SS present

in C. rectus RM3267, indicating a different origin. Finally,

transcriptome analysis indicated that the VGI III T4SS compo-

nents are not transcribed under laboratory conditions, whereas

expression of the PAI T4SS (VGI I), ICE_vir and ICE_trb/tra was

detected (data not shown, and [17]).

Genes Involved in LPS-biosynthesis Distinguish C. fetus
Sero2/Sap-types
The subspecies definition regions contain unique genes puta-

tively involved in LPS-biosynthesis. Although inserted at the same

chromosomal position in both subspecies (Figure 1AB) the

islands display only limited similarity (Figure S4). One obvious

difference was that VSDR encodes a putative maltose O-

acetyltransferase (mat1) (cd04647) and FSDR a putative UDP-

galactopyranose mutase (glf) (EC 5.4.99.9) (Figure S4). Remark-

able is the low GC-content of the VSDR and FSDR of 30.7% and

29.4%, respectively (Table S1 in File S5) and the absence of

tRNA or apparent mobility genes.

Acetyltransferases generally catalyze the CoA-dependent acet-

ylation of the 6-hydroxyl group of sugar substrates. Maltose O-

acetyltransferases exclusively acetylate maltose and glucose. C. fetus

type A LPS contains 74.5% mannose as well as 6.5% D-glucose

[26] and thus may serve as a substrate for Mat1. UDP-

galactopyranose mutase (glf) drives the conversion of the ring

form of galactose from pyranose to furanose. The latter isomer is

specifically found in glycoconjugates (including LPS) of various

prokaryotic and eukaryotic pathogens, and is essential for their

physiology and virulence [27,28]. To assess conservation of the

subspecies-specific regions, a panel of 102 geographically and

phenotypically diverse strains of C. fetus subspecies was screened

for the presence or absence of mat1 and glf. Of 62 subsp. venerealis

isolates (all type A), 58 (93.5%) were positive for mat1 and all were

negative for glf. In contrast, only 16 (40%) of 40 subsp. fetus strains

harbor mat1 but 25 (62.5%) were positive for glf. The 16 subsp. fetus

strains positive for mat1 were all type B, whereas 24 of the 25 glf

positive strains were type A (Table S3, Table S6 in File S5).
The single exception, C. fetus subsp. fetus isolate F9, which was

positive for both mat1 and glf, belongs to the rare group of type AB

strains.

Our previous application of RDA (representational difference

analysis) to C. fetus revealed that another LPS-biosynthesis gene

(wcbK) encoding a putative GDP-mannose 4,6-dehydratase was

exclusively present in C. fetus subsp. fetus strains [17]. In strain

ATCC 27374 (type B), wcbK is flanked 39 by wbbC, encoding a

putative glycosyltransferase, and 59 by a sap gene (data not shown).

This region corresponds to FGI I in strain 82-40, which lacks

wcbK. WcbK catalyzes the first step in the biosynthesis of GDP-D-

rhamnose and GDP-L-fucose, and is involved in capsular

polysaccharide or LPS-biosynthesis in bacteria such as Helicobacter

pylori [29] and C. jejuni [30]. A PCR screen of the C. fetus panel

confirmed that wcbK was not present in any of the C. fetus subsp.

venerealis isolates but was exclusively detected in the 16 C. fetus

subsp. fetus isolates, which were also positive for mat1. All of the

wcbk+ mat1+ strains were type B. Thus, C. fetus subsp. fetus either

carried glf alone in type A strains or mat1 in combination with wcbK

in type B strains. C. fetus subsp. venerealis (type A) only carries mat1.

C. fetus subsp. fetus strain F9 scored positively for mat1, wcbK and glf.

Another phylotype of C. fetus is represented by reptile C. fetus

strains, which are type A, and may represent the ancestral C. fetus

type [4,31]. We screened four reptile isolates, which were all

positive for mat1 but lacked glf, wcbK, virD4 and fic1-4 (Table S4
in File S5).

Finally, another enzyme of the LPS-biosynthetic pathway UDP-

glucose 4-epimerase (GalE, EC 5.1.3.2) catalyzes the reversible

conversion of UDP-glucose to UDP-galactose and is known to

contribute to C. jejuni virulence [32]. Southern-blot and PCR

screens of our collection showed that all 102 C. fetus isolates studied

carried galE.

wcbK is Involved in LPS-biosynthesis and Accordingly
should have an Impact on Acid Resistance and Serum
Sensitivity in C. fetus subsp. Fetus Type B Strains
Type A strains are resistant to complement-mediated killing

since C3b binding to the bacterial cell surface is inhibited by the

presence of the S-layer [33,34]. It is not known why type B strains

are sensitive to non-immune serum [12], despite the presence of

the surface array protein. We hypothesized that wcbK might be

linked to the susceptibility of type B strains by generating O-

specific side chains where the C3b binding site is not covered by

the S-layer. To test this, we first screened C. fetus subsp. fetus type A

and B strains with known serum resistance phenotypes for wcbK

and glf (Table S5 in File S5). As hypothesized, wcbK was

exclusively found in type B strains and correlated with serum

susceptibility, whereas glf only was present in type A strains and

correlated with serum resistance. Next we generated a non-polar

wcbK mutant (K19) of C. fetus subsp. fetus ATCC 27374 (type B)

that was deficient in LPS-production (Figure 5A). In Vibrio cholerae

mutant strains it has been shown that providing genes in trans only

partially restored LPS-production compared to wild type levels

[35]. In our experiments, providing wcbK in trans also partially

complemented LPS-production. Due to antibiotic selection

throughout the experiment we can exclude the loss of the

complementation vector. We next compared serum-susceptibility

of mutant and wild type strains (Figure 5BC). As expected, C.
fetus subsp. fetus ATCC 27374 did not survive serum treatment

(log10 kill 2.2360.06) whereas the isogenic wcbK mutant strain K19

had markedly increased serum-resistance (log10 kill 0.8660.05).

The phenotype was partially complemented (log10 kill 1.2360.10)

by providing wcbK in trans. The serum resistant strain 82-40 (type

A) was used as a control (log10 kill 0.2760.01).

Type A and type B C. fetus strains differ in the carbohydrate

composition of their LPS [12,26]. The O-antigen of type A strain

has a higher molecular weight (Figure 5A) than that of type B

strains. C. fetus strains 84-112, 82-40 and ATCC 27374 are similar

in their resistance to acid (Figure 5 and results not shown). In H.

pylori GDP-mannose 4,6-dehydratase (encoded by wbcJ) is

important for the expression of O-antigen and for the bacterium

to survive the acidic milieu of the stomach [29]. We hypothesized

that the loss of LPS in the wcbK deficient C. fetus strain might result

in increased acid sensitivity. Indeed, when incubated at low pH the

wild type strain (ATCC 27374) survived significantly better than

the wcbK mutant; this acid-sensitive phenotype was partially

complemented by providing wcbK in trans (Figure 5CD).

In summary, wcbK is important for LPS-biosynthesis and SapB

binding. Activity of this enzyme attenuates survival of the

pathogen in blood, and also can provide effective protection from

stomach acid en route to colonization of the intestinal niche.

Discussion

e-Proteobacteria including Campylobacter and its close relative

Helicobacter show evidence of genome reduction indicated by small

genome size (<1.5 to 2.5 Mbp) and the nearly complete absence

of non-coding DNA. These features are typical for adaptation to a
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specific colonization niche and both species display strong host

preference (‘‘tropism’’) [36,37]. Among Campylobacters, C. fetus

subspecies are an exceptional model system to study the molecular

basis of pathogen-host adaptation since, despite a highly clonal

structure, they display strikingly dissimilar host preferences and

tissue tropism. To investigate the genetic basis underlying the

distinct pathogenicity of C. fetus subspecies, we performed whole

genome comparisons and transcriptome analyses of C. fetus

subspecies, focusing on identifying differences that contribute to

host and tissue tropism. We propose that the additional genome

Figure 5. WcbK is important for LPS-biosynthesis, attenuates survival in blood, and promotes acid resistance. (A) SDS-PAGE pattern of
purified LPS after silver staining. Samples were isolated from C. fetus. subsp. fetus (Cff) 82-40 (lane 1), Cff ATCC 27374 (type B) (lane 2), wcbK mutant
K19 (wcbK::Km) (lane 3) and K19 [pSW2] (wcbK in trans) (lane 4); C. fetus subsp. venerealis (Cfv) ATCC 19438 (lane 5) and Cfv 84-112 (lane 6). (B) Cff
serum resistance assays. Strains were incubated either with EMEM (-), heat-inactivated (I) or active (A) human serum and colony forming units (CFU)
were counted. Results shown are for Cff ATCC 27374, K19 and K19 [pWS2]. Cff 82-40 served as a type A comparator. (C) Same as in (B) but for better
visualization, CFU/ml obtained after treatment with active serum are displayed separately. **p,0.002 (D) Acid resistance assays. Cff were incubated in
PBS pH range 7.3 to 3.4, plated and CFU determined. Survival after exposure to different pH of the wild type, K19 and K19 [pSW2] was compared. (E)
For better visualization, CFU/ml for the three strains after treatment with pH 3.4 were plotted separately. **p,0.003.
doi:10.1371/journal.pone.0085491.g005
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content of C. fetus subsp. venerealis was horizontally acquired

(Table S1 in File S5). The observation that genes shared

between the subspecies are nearly 100% identical on the

nucleotide level supports the hypothesis that HGT and not

mutation or genetic drift is the predominant factor in the evolution

of C. fetus.

To gain insights to the genetic plasticity of C. fetus genomes, and

particularly whether the identified variation regions are conserved

we compared the VGI – IV of C. fetus subsp. venerealis 84-112 to the

draft genome sequences of C. fetus subsp. venerealis NCTC 10354

(ATCC 19438) [38], C. fetus subsp. venerealis Azul-94 [39] and C.

fetus subsp. venerealis biovar Intermedius INTA 99/541 [40]. We

identified homologous sequences in all three strains with over 90%

homology on the nucleotide level. These results indicate that the

GIs are at least partially present in other venerealis strains. However,

given that many of the remaining contig boundaries are located in

the variable regions, to be able to perform more detailed analysis

the draft genomes will need to be closed and the sequences

verified.

We focus in the current study on the description of genomic

regions and genes unique to each subspecies. Genome compar-

isons of C. fetus subspecies reported previously using the draft

sequences of C. fetus subsp. venerealis strains [39,41] focused mainly

on the description of shared putative virulence factors or the

identification of putative targets for diagnostics. Many of the genes

putatively involved in adherence, invasion, motility, secretion and

toxin production identified by Ali et al. [41] and Moolhuijzen et al.

[39] were also present in strain 84-112 (File S1). Homologs to the

antibiotic resistance gene cluster identified within a homologous

genomic island in C. fetus subsp. fetus IMD 523-06 [42] were not

present in C. fetus subsp. venerealis ATCC and 84-112.

Metabolic differences between C. fetus subspecies such as glycine

tolerance, H2S production and selenite reduction have tradition-

ally been used to discriminate the subspecies and are therefore

intriguing features linked to niche adaptation. Nonetheless,

metabolic modeling of the two genomes revealed no apparent

subspecies differences, except a possible difference in thiamin

(vitamin B1) biosynthesis. The overall metabolic capacity seems to

be similar in both subspecies, consistent with our model that the

described horizontally acquired genetic elements account for the

different biology of C. fetus subspecies. However, it is important to

note that subtle genetic differences, like point mutations, can

inactivate genes or disrupt metabolic pathways. Therefore,

nutrient utilization by the C. fetus subspecies remains an important

priority for detailed study.

The extra-chromosomal element ICE_84-112 was identified.

ICEs are plasmid-like self-transmissible mobile genetic elements,

dependent on phages or transposons for inserting and excising

from chromosomes, but carry their own transfer genes (tra-genes)

for lateral transmission to other host cells. Notably the full

repertoire of plasmid replication genes is typically absent. Some

ICE replicate autonomously if they adopt a rolling-circle-like

mechanism mediated by replication- or single-strand DNA

transfer initiation factors [20,21]. In Bacillus subtilis helicase PcrA

associates with ICEBs1 during replication [20]. Candidate PcrA

orthologs are present in both C. fetus subspecies (84-112 CDS

peg.56 & peg.1280 (File S1) and 82-40 CDS peg.690 & peg.934

(File S2)). The surveyed fic3 and fic4 genes suggest that the

distribution of ICE_84-112 is quite narrow. In that case important

virulence-associated characteristics are unlikely to be carried by

the element, but it may be a vehicle of interspecies gene exchange.

C. fetus subsp. fetus 82-40 mostly lacks phage- and plasmid-

related genes and this might be due to the presence of an active

CRISPR cluster, protecting from invasion of foreign DNA.

Although there are six core cas-genes, cas1 may be of central

importance in the acquisition of new spacers (for review see [43]).

In contrast to C. fetus subsp. venerealis 84-112, we identified two

CRISPR-arrays in strain 82-40. Since Cff_CRISPR_2 showed

prototypical architecture, i.e., cas-genes and an AT-rich leader

sequence followed by the DRs and the spacers, this CRISPR array

may be functional. The presence of cas-genes in C. fetus subsp. fetus

highlights another important subspecies difference. The occur-

rence of CRISPRs is linked to natural competence of bacteria

[44]. That C. fetus subsp. fetus type B strains more frequently

harbor putative functional CRISPRs than type A strains might

have stabilized the type B phylotype and may explain why the type

A clade later diverged [4] (Figure 6). All of the C. fetus strains that

we and others have thus far tested are not naturally competent

(unpublished data, [45,46]) thus a possible connection between the

presence of CRISPRs and natural competence of C. fetus

subspecies remains unresolved.

The most important genetic differences between the subspecies

are cell surface structures including the S-layer and LPS. The

distribution of these genes across a panel of diverse C. fetus isolates

indicates linkage to particular pathotypes. The distinct distribution

patterns detected for wcbK, mat1, and glf among type A and B

strains support the following model (Figure 6). wcbK and glf are

subsp. fetus-specific genes that have been acquired more recently

than mat1 and galE, which represent ‘‘ancient’’ constituents of the C.

fetus genome. These loci are similar in reptile C. fetus and C. fetus

subsp. venerealis but MLST reveals that variation has emerged and

that type B strains separated from type A prior to the division of C.

fetus subsp. fetus and C. fetus subsp. venerealis [4]. We showed that

type B strains maintained mat1 and galE but diversification of

phylotypes led to acquisition of wcbK by C. fetus subsp. fetus type B.

C. fetus subsp. venerealis also maintained mat1 and galE, but type A

C. fetus subsp. fetus, the invasive pathotype often found in human

infections, have lost mat1 and acquired glf. Extended analysis of C.

fetus evolution will require analysis of more geographically and

phenotypically diverse isolates. Moreover, analysis of the newly

proposed subspecies/biovar intermedius [7] may provide a

missing link in the subspecies divergence.

Little is known how C. fetus interacts with the host immunity, but

LPS and the S-layer are important for TLR4-mediated recogni-

tion [47,48]. The S-layer producing C. rectus induces TLR4

expression in the mouse placenta [49]. To avoid dysregulated

inflammatory responses to LPS, the intestinal epithelium as well as

placental tissue normally express no or low levels of TLR4

[48,50,51]. Low density of TLR4 may allow C. fetus to overcome

the hosts’ immune response and subsequently invade the host cells.

Type A and type B C. fetus strains are different in their LPS

composition and S-layer proteins [12,26]. The activity of WcbK

and the putative functions of mat1 and glf are linked to the S-layer.

C. fetus subsp, venerealis strains (wcbk2/glf2/mat1+) and C. fetus

subsp. fetus type A strains (wcbK2/glf+/mat1-) are serum resistant,

whereas C. fetus subsp. fetus type B strains (wcbK+/glf2/mat1+) are
serum sensitive. We showed that wcbK is essential for LPS-

biosynthesis in C. fetus subsp. fetus type B strains and that loss of

wcbK leads to increased serum resistance. This data indicates that

WcbK generated side chains are important for serum sensitivity.

We propose that similar to wcbK, the products of mat1 and glf of C.

fetus might be involved in LPS-biosynthesis by generating different

O-antigen side chains, potentially influencing complement and

antibody binding, acid resistance and TLR-4 recognition.

The bacterial transcriptome provides an additional reference to

study genome composition as well as regulation of virulence. In the

initial profile of C. fetus gene transcription, the characteristic e-
proteobacterial promoter signature was identified. We confirmed
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that the promoter region is 100% conserved between the

subspecies, and that one sap gene is predominantly transcribed

under laboratory conditions. This finding is intriguing since

recombination and therefore exchange of sap-homologs occurs

frequently in this region to enable phase variation of the pathogen

[11]. It has been proposed that the sap-region belongs to the

ancestral part of the C. fetus core genome and not a PAI [52]. That

the region is shared between both subspecies confirms ancient

presence of a horizontally acquired element. Based on the

significance of the S-layer for immune evasion [11,15,16], the

genome insertion can be considered as a classical PAI. To date,

animal models of C. fetus infection are not readily available. Future

analyses at the transcriptiome level should investigate C. fetus under

in vitro conditions resembling their colonization niche or route of

infection.

Whole-genome comparisons of related pathogens of distinct

characteristics, such as those described in the presented work, lay

the foundation for additional mutational, functional, and animal

studies that will ultimately help elucidate the mechanisms

underlying the emergence of new pathogens. This study broadens

knowledge of the genomic basis of C. fetus pathogenesis and host

specificity. The most interesting differences in the genetic

repertoire of the subspecies relate to cell surface structures

including the S-layer and LPS and distribution of these genes is

associated with certain pathotypes. This emphasizes the impor-

tance of surface-exposed structures to C. fetus pathogenicity and

demonstrates how evolutionary forces optimize the fitness and host

adaptation of these pathogens. The presence of genes like glf is

particularly interesting as the gene product is a promising drug

target, as proposed for Leishmania [53], and relevant since glf is

connected to type A strains, which are more often isolated from

human blood. In any event, wcbK and glf are excellent candidates

applicable for reliable subspecies differentiation.

Experimental Procedures

Bacterial Strains
Campylobacter and E. coli strains were grown as described [45].

Antibiotic selection applied concentrations of 100 mg ml21

ampicillin, 75 mg ml21 nalidixic acid, or kanamycin and

chloramphenicol at 25 mg ml21. Bacterial strains are listed in

Table S6 and Table S7 in File S5. Only C. fetus strains typed

definitively to the subspecies level were tested in PCR screens

(n = 102). Subspecies were identified biochemically as described

[17].

Gene Detection
Oligonucleotides are listed in Table S8 in File S5. PCR

amplification for surveying gene prevalence used chromosomal

DNA and the following primer pairs 1/2 for wcbK, 3/4 for glf and

5/6 for mat1. The sap-type was determined with primers 7/8 and

9/10, as described [54]. Southern blots were hybridized with

radiolabeled DNA probes as described [17]. Probes for galE and

cas1 were generated with primer pair 11/12 and 13/14 from

chromosomal DNA of C. fetus subsp. fetus ATCC 27374,

respectively. The same primers were used for PCR-screening for

galE and cas1. fic3 and fic4 were amplified with primer pairs 15/16

and 17/18, respectively.

Genome Sequencing, Assembly and Annotation
A standard whole genome shot-gun and a 3-kb paired-end

library were generated according to the manufacturer’s recom-

mendations (Roche Diagnostics, Vienna, Austria) using 5 mg
chromosomal DNA. For each library, high-throughput pyrose-

quencing was performed on a Genome Sequencer FLX system

(Roche) producing 145 Mb and 62.2 Mb sequence data, respec-

tively. Read assembly applied the Newbler assembly software,

Figure 6. Phylogeny, niche specificity and virulence of C. fetus subspecies. MLST tree showing the phylogeny of C. fetus, with original scale
as reported [4]. Reptile C. fetus represent a distinct clade harboringmat1 and galE. Diversification of C. fetus subsp. fetus (Cff) type B happened prior to
the diversification of Cff type A and C. fetus subsp. venerealis (Cfv) type A strains. Cff type B strains harbor galE, mat1 and wcbK. The latter gene
provides protection from acid, and this genotype is associated with animal hosts. Cfv type A represents the bovine clone harboring mat1 and galE
which is also prone to HGT. Cff type A have lost mat1 but acquired glf correlating with serum resistance in Cff.
doi:10.1371/journal.pone.0085491.g006
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version 2.6 (Roche) and resulted in 89 contigs and 11 scaffolds.

One scaffold represented the circular extra-chromosomal element

and the remaining 10 were grouped into 3 super-scaffolds (SSc)

using the information from the 3 kbp mate-pair library and the

contig-graph generated by the Newbler assembler. Additionally,

PCR and Sanger sequencing was used to determine the

orientation and order of contigs and the SSc. Gaps in the extra-

chromosomal element and the chromosome were closed in silico

with a custom R script [55] and with PCR. Homopolymer

uncertainties from the 454-reads were corrected through mapping

of the Illumina reads derived from the C. fetus subsp. venerealis 84-

112 RNA to the draft sequence using CLC Genomics Workbench

5.5 (CLC Bio; Arhus, Denmark). The resulting consensus

sequences and C. fetus subsp. fetus strain 82-40 were annotated

and compared with Rapid Annotations using Subsystem Tech-

nology version 4.0 (RAST) [56]. Annotation tables for each strain

and the extra-chromosomal element are presented in Files S1–
S3.

Differential RNA-sequencing
Library preparation for dRNA-seq was performed as reported

[23]. In brief, RNA was isolated from bacterial cells grown on

CBA plates for 24 h. To construct differential cDNA library pairs,

aliquots of extracted RNA from each strain was treated with

Terminator-59-phosphate-dependent exonuclease (TEX; Epicen-

tre) to deplete processed RNAs (denoted TEX+) in addition to

untreated RNA (denoted TEX-). Construction of cDNA libraries

was performed by vertis Biotechnology AG (Munich, Germany).

Libraries were sequenced using cluster amplification with the

TruSeq PE Cluster Kit v.5 on a cluster station. Each library was

sequenced on a single HiSeq 2000 lane using TruSeq SBS 36

Cycle Kits v.5 (Illumina, San Diego, CA) and a 91 bp single-end

protocol. Sequencing image files were processed with the

Sequencing Control Software (SCS) Real Time Analysis (RTA)

v2.6 and CASAVA v.1.7 (Illumina). Reads were mapped to the

reference genomes using the CLC Genomics workbench (CLC

Bio) with default settings. Information on transcriptional start site

(TSS) and promoter annotation can be found in the supplement.

Lipopolysaccharide Analysis
C. fetus strains were grown for 24 h and resuspended in buffer

(10% glycerine, 20% SDS, 5% b-mercaptoethanol, 62.5 mM Tris-

HCl pH 6.8, bromophenol blue) for lysis at 100uC for 10 min.

Proteinase K solution was added to 6 mg/ml and samples were

incubated overnight at 55uC. LPS-preparations were electropho-

retically on 15% polyacrylamide gels (running buffer: 86 mM

glycine, 3,5 mM SDS and 25 mM Tris pH 8). Gels were fixed

overnight (25% isopropanol, 7% acetic acid) under gentle shaking.

LPS was oxidized with 100 ml fixative containing 4 mmol NaIO4

for 10 min. After three washing steps with H2O for 30 min each,

the gels were stained (19 mM NaOH, 1.35% NH3, 20 mM

AgNO3) for 10 min, then washed three times with H2O and

immersed in developer (240 mM Na2CO3, preheated to 60uC,
before addition of 30 ml 40% formaldehyde). The reaction was

stopped with 50 mM EDTA (pH 8) for 1 h.

Serum and Acid Resistance Testing
Susceptibility of C. fetus strains to human serum was assessed as

described [57]. All tests were performed in triplicate. Briefly, C.

fetus was streaked on CBA plates 24 h prior to the assay and cell

count was adjusted to 16107 bacteria/ml, based on optical density

in EMEM medium. The actual cell count was determined by

plating serial dilutions. Heat-inactivated- (56uC for 30 min), or

active- (thawed on ice) pooled human serum was added to the

bacteria to a 10% final concentration and incubated for 1 h at

37uC. Surviving cells were counted on CBA plates after 48 h

growth. For the acid resistance assays, C. fetus cells were harvested

as described above, centrifuged, resuspended in PBS with different

pH values and incubated at 37uC for 30 min. Cells were washed in

PBS (pH 7.3) before the number of surviving bacteria was

determined by plating serial dilutions.

Nucleotide Sequence Accession Numbers
The genome sequence of C. fetus subsp. venerealis 84-112

including the ICE element (ICE_84-112) has been deposited in

EMBL Nucleotide Archive under accession numbers (HG004426

and HG004427). The genome of C. fetus subsp. fetus 82-40 used for

comparative analyses has the GenBank accession number

CP000487.1. dRNAseq data can be accessed via the EMBL-EBI

short read archive under the accession number ERP002581.

Supporting Information

Figure S1 Comparative maps of CRISPR-related geno-
mic islands. (A) C. fetus subsp. venerealis 84-112 VGI IV harbors

the direct repeats with spacers (CRISPR) but lacks CRISPR-

associated (cas)-genes. Prophage-related genes (putative prophage

IV) were identified (orange) adjacent to a region identical to C. fetus

subsp. fetus 82-40 Downstream of these regions the core-genome

continues with a chromosomal rearrangement between the two

subspecies on the 3-prime end (striped boxes). A sequence region

shared between the subspecies was identified (blue box). (B) C. fetus
subsp. fetus 82-40 FGI I carries two regions of direct repeats and

spacers. cas-genes precede the second CRISPR-array resulting in a

putatively functional CRISPR-system. One region with a

prophage-like structure (orange) was identified.

(TIF)

Figure S2 Physical map of the extra-chromosomal
element ICE_84-112. Shown is the GC-content (circle 1),

GC-skew (circle 2) and open reading frames (circle 3). The tra-

region (red) comprises genes putatively involved in conjugative

transfer of the ICE. The vir-region (orange) shows putative T4SS

genes with homology to the chromosomal PAI on VGI I. Genes

possibly involved in autonomous replication of the ICE are named

individually and labeled (green and red). Genes of predicted

plasmid origin (green); phage genes and transposons (blue);

putative effector proteins or toxin-antitoxin system (yellow);

hypothetical proteins (grey).

(TIF)

Figure S3 Schematic representation of the apparent
T4SS identified in C. fetus subsp. venerealis 84-112. (A,
B, C) Represent loci with homology to virB/virD4-genes. (A) The
PAI T4SS is functional in virulence and conjugative DNA transfer

[1,2]. (B) ICE_vir displays a similar gene organization to VGI I

but protein homologies are not strikingly high. virD4 is truncated

compared to the functional PAI homologue. (C) A partial set of

vir-genes. (D) ICE_trb/tra genes share homology to plasmid RP4

and are putatively involved in the conjugative transfer of ICE_84-

112. Homologous genes (vir, tra) are indicated by color.

(TIF)

Figure S4 Comparative map of C. fetus subspecies
variation regions VSDR and FSDR. (A) C. fetus subsp.

venerealis 84-112 VSDR and (B) C. fetus subsp. fetus 82-40 FSDR.

MAUVE was used to compare the regions to visualize rearrange-

ments and insertions. Regions free of rearrangements are indicated

by colored colinear blocks. White regions within these blocks

symbolize insertions or non-homologous regions. Important open

C. fetus - Subspecification and Virulence
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reading frames are colored and/or labeled accordingly. Genes

unique to the subspecies, mat1 and glf, are highlighted in pink.

(TIF)

Figure S5 Venn diagram of annotated TSS. (A) C. fetus

subsp. venerealis 84-112 and (B) C. fetus subsp. fetus 82-40. TSS were

categorized according to the genomic context into five classes:

primary (TSS having the most cDNAs within <500 bp upstream

of annotated mRNA start codons), secondary (TSS associated with

the same gene but with fewer cDNAs), internal (TSS within an

annotated gene on the same strand), antisense (TSS situated inside

or within <100 bp of the coding region of a gene encoded on the

opposite strand), or orphan (TSS without annotated genes in

proximity) [3]. Numbers in parentheses indicate the TSS, which

associate with only one orf.

(TIF)

File S1.

(XLSX)

File S2.

(XLSX)

File S3.

(XLSX)

File S4.

(XLSX)

File S5.

(DOC)
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Introduction

The intestine is one of the most diverse

and complex bacterial habitats of the

human body, harboring ,1,000 bacterial

phylotypes [1]. Recent studies have asso-

ciated the human intestinal microbiome

(i.e., the collective genomes of all intestinal

microbial habitants [2]) with health and

disease states, suggesting that metage-

nomic analysis of the intestinal micro-

biome could be exploited as a novel

diagnostic, prophylactic, or therapeutic

strategy in multiple medical specialties.

For example, the identification and quan-

tification of opportunistic pathogens in the

intestinal microbiome may facilitate risk

stratification in immunocompromised pa-

tients, such as in critically ill, HIV-infected

or immunosuppressed (e.g., organ trans-

plant recipients or individuals with

autoimmune disease) patients. Also, the

correction of intestinal dysbiosis, the

pathologic imbalance of the gut microbi-

ota, may inhibit the development and/or

delay the progression of autoimmune

diseases [3,4], metabolic disorders [5],

and cancer [6]. The propagation of a

healthy intestinal microbiota has even

been shown to reduce toxicity and in-

crease effectiveness of cancer therapies in

rats [7]. In addition, standard analysis of

the human intestinal microbiome in pa-

tients may enable the rapid identification

of novel emerging infectious pathogens in

fecal specimens, for example, in the case

of an outbreak of Shiga-toxigenic Esche-

richia coli [8].

Our understanding of the human intes-

tinal microbiome in health and disease has

been revolutionized by the development

of next generation sequencing and its

application to metagenomics, which is

the term generally used to summarize

culture-independent technologies that al-

low the characterization of a microbiome

[2]. These methods allow for the largely

unbiased characterization of complex mi-

crobial communities at high resolution,

including the detection of novel and

uncultivable bacteria, viruses, archaea,

and small eukaryotic organisms, even in

compartments previously considered to be

sterile, such as the urinary bladder [9].

The European MetaHIT project (http://

www.metahit.eu) and the US National

Institutes of Health Human Microbiome

Project (http://www.hmpdacc.org) have
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Summary Points

N Multiple infectious, autoimmune, metabolic, and neoplastic diseases have been
associated with changes in the intestinal microbiome, although a cause–effect
relationship is often difficult to establish.

N Here we discuss the problems, applications, and visionary requirements for the
integration of microbiome analysis into clinical routine diagnostics.

N Metagenomics is increasingly used for the culture-independent and largely
unbiased characterization of complex bacterial habitats at high resolution. The
versatility and decreasing costs of metagenomics make this technology an
interesting tool for clinical diagnostics.

N Methodological shortcomings still impede the application of metagenomics in
clinical diagnostics.

N Integration of metagenomics into clinical medicine requires accepted and
validated strategies for (1) translation into clinical action items; (2) sample
collection, preparation, and testing; and (3) data analysis and interpretation. We
highlight tasks that are of high priority from a clinical perspective for the useful
medical application of metagenomics.
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set new standards for the in-depth meta-

genomic characterization of the healthy

human microbiota (microorganisms living

inside and on humans) from different body

habitats [2].

Optimizing patient outcome according

to metagenomic information depends on

the quality of the available information,

options for translation of this information

into clinical action, and the effectiveness

of communication. Translation of meta-

genomic knowledge into clinical practice

is impeded by several limitations. For

example, vast amounts of information

are generated by metagenomics, which

has to be assorted, interpreted, and

communicated to clinicians in a compre-

hensible format. Most clinical studies

have focused on characterizing the hu-

man microbiota by its taxonomic com-

position using 16S rRNA–based bacterial

surveys, although similar biological func-

tions may be exerted by unrelated taxa

[10]. Establishing a cause–effect relation-

ship or using microbiome profiles as

surrogate markers for diseases is accord-

ingly difficult.

Priorities for the Application of
Metagenomics in Clinical
Medicine

Strategies still remain to be defined

for (1) translation into clinical action

items with impact on patient outcome;

(2) sample collection, preparation, and

testing; and (3) data analysis, interpre-

tation, and communication. Here, we

highlight the tasks that are of high

priority from a clinical perspective for

the useful application of metagenomics

in clinical medicine.

Priority 1: Integration of
Metagenomic Information with
Other Clinical and Laboratory
Sources of Evidence for
Translation into Targeted
Therapy

Metagenomic information has been

associated with specific disorders in several

studies. For example, clinical observations

have long suggested that the intestinal

microbiome plays a critical role in the

pathogenesis of inflammatory bowel dis-

ease (IBD) (Crohn disease and ulcerative

colitis): (1) inflammation in Crohn disease

disappears if the involved bowel segment is

excluded from the fecal stream and recurs

after re-anastomosis with reexposure to

intestinal contents [11]; (2) IBD responds

at least partially to antimicrobials [12] and

some probiotics (live bacteria or yeast

preparations) [13]; (3) some studies have

shown for IBD a decreased bacterial

diversity and a shift from anti-inflamma-

tory commensals to pro-inflammatory

pathogens (dysbiosis)—particularly to an

overrepresentation of proteobacteria and

to a reduction in Faecalibacterium prausnitzii

and other beneficial butyrate-producing

bacteria [14–16].

While current evidence strongly sug-

gests that the pathogenesis of IBD could be

linked to the intestinal microbiota, impor-

tant clinical questions remain unanswered.

So far, study results analyzing microbiome

changes in IBD patients were not con-

trolled for potential confounders such as

mucosal inflammation per se [17,18],

accelerated intestinal transit due to diar-

rhea [19], or medications used for IBD

treatment, for example, antibiotics and

immunosuppressants [20,21]. In addition,

evidence from animal models still has to be

confirmed in human clinical medicine,

such as the anti-inflammatory properties

of F. prausnitzii in chronic intestinal

inflammation [22]. Results from clinical

studies are sometimes incongruous—initial

studies of patients with ulcerative colitis

showed a marked benefit from fecal

microbiota transplantation (FMT) [23],

but other small studies could not confirm

this observation [24]. Another study

showed that FMT could correct the

proposed features of the dysbiotic intesti-

nal microbiota in IBD, such as the

increased abundance of proteobacteria,

but did not result in significant clinical

improvement [24].

Hence, metagenomics approaches have

to fulfill several clinical prerequisites to

have a significant impact on diagnostic,

prophylactic, and therapeutic strategies. A

cause–effect relationship between a de-

fined disorder and intestinal microbiome

profile has to be established beyond doubt.

A clear distinction between intestinal

microbiome profiles of disorders (e.g.,

IBD versus other causes of intestinal

inflammation) on the basis of metage-

nomic information would greatly facilitate

diagnostic strategies. Identification of sig-

nificant confounders of metagenomic in-

formation (inflammation, concomitant

therapy, diet, etc.) may also help in

devising novel prophylactic strategies.

Well-directed strategies for the targeted

therapy of disorders of the intestinal

microbiome have to be developed, and

existing ones optimized (e.g., selection of

FMT donors according to a target micro-

biome). For this purpose, longitudinal

studies with well-defined intervention and

control groups as well as adequate follow-

up periods are warranted. Metagenomic

information on longitudinal changes in the

intestinal microbiome needs to be com-

bined with other clinical and laboratory

sources of evidence for translation into

targeted therapies.

Priority 2: Standardization of
Diagnostic Procedures in
Sample Collection, Preparation,
and Testing

Accurate sample collection, prepara-

tion, and analysis are of paramount

importance for the characterization of

the intestinal microbiome in health and

disease. Collection of stool samples; col-

lection of gastric, intestinal, or biliary fluid;

and endoscopic mucosal biopsies are

routine clinical procedures. Next genera-

tion sequencing already allows character-

ization of the microbial composition of a

sample (e.g., by 16S rRNA gene region

analysis) and of its genetic and functional

potential (reviewed in [25,26]).

Nevertheless, the choice of sample,

sampling procedure, and analytical

workflow greatly influences the results

and thus the clinical utility of metage-

nomic characterization. Microbiota com-

positions fluctuate in response to dietary

and sanitary habits, age, genotype, sex,

ethnicity, and use of antibiotic and other

medications [27–29]. Sample contami-

nation from other anatomic regions (e.g.,

from oropharynx to stomach) is difficult

to avoid with currently available endo-

scopic tools [30]. The clinically most

significant anatomic locations in relation

to a specific intestinal disorder still have

to be defined (e.g., fecal sample versus

endoscopic biopsy, or sampling of lesions

versus surrounding, unaffected mucosa

in IBD). Finally, differences in sample

preparation, DNA isolation, metage-

nomic approaches, number of reads

analyzed, and sequencing instrument

used have a large impact on the final

results [27].

Standardization of workflows in meta-

genomic studies is therefore urgently

needed. Sampling methods have to be

developed to avoid carryover contamina-

tions. Standards must to be adapted and

optimized to specific human cohorts and

diseases for a meaningful interpretation of

metagenomic information.

Priority 3: Automation of Data
Analysis, Interpretation, and
Communication

Analysis and statistical interpretation

of the data in a reproducible form

are also vital for the translation of
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metagenomics information into clinical

action items [31]. Basically, sequence

reads from the sampled DNA are clus-

tered into operational taxonomic units,

which are taxonomically classified and

compiled into a list of relative operation-

al taxonomic unit abundances for each

sample (reviewed in [32]). Next, the

whole-community composition can be

statistically evaluated and categorized

for clinical purposes according to func-

tion, prevalence, absence, or alternation

of particular bacterial groups. These

groups of interest can range from broad

taxonomic classes to specific bacterial

families or species, such as the two phyla

Firmicutes and Bacteroidetes, whose

ratio has relevance to obesity [33];

members of the phylum Proteobacteria,

whose abundance has been associated

with intestinal disease states such as IBD

[18]; Clostridia species that induce anti-

inflammatory regulatory T-cells [34]; or

tumor-inducing Fusobacterium nucleatum

[35].

Currently, the introduction of metage-

nomic tools into clinical practice is facing

major technical as well as biological

obstacles: (1) long analysis times, (2)

evolving definitions of reference microbi-

ota, (3) missing standards of analysis

methods, algorithms, and databases, (4)

lack of well-defined physiological ranges,

and (5) missing evidence for cause–effect

relationships.

From a technical perspective, a max-

imum level of automation would facili-

tate the digest of metagenomic data into

clinically meaningful information. Anal-

ysis speed is highly dependent on the

number of collectively analyzed samples,

and the methods and tools used. Filter-

ing and quality improvement steps may

require several days, even on medium-

sized computing clusters. Hence, rapid

data analysis needs a reference micro-

biome as a reliable standard with which

to compare individual samples, reduc-

tion of analysis complexity, and, ulti-

mately, integration of analysis algo-

rithms and desktop sequencers into a

single package. Furthermore, for mean-

ingful interpretation and communica-

tion, results of statistical evaluations

should be generated and digested into

clinically relevant bits automatically in

the same sequencing unit, and commu-

nicated as an analysis report to the

physician within a few hours. A crucial

biological point is the definition of

physiological ranges of gut microbiota

parameters, which are highly variable

between ethnic groups, geographic loca-

tions, and different diets [36]. For the

definition of reference values, represen-

tative samples from the local healthy

population have to be analyzed for the

relative abundance of taxonomic groups

or ratios between groups, combined with

relevant clinical data (see the Human

Microbiome Project and the American

Food Project [http://humanfoodproject.

com]). This information would also

provide the basis for establishing

cause–effect relationships. Finally, refer-

ence values have to be updated contin-

uously and integrated into analysis

algorithms for effective translation of

evolving insight into intestinal microbi-

ota into clinical practice.

Outlook

The establishment of characteristic and

thoroughly validated signatures of the

intestinal microbiome allows the develop-

ment of new prophylactic, therapeutic, and

prognostic strategies for beneficial and

targeted modification of the patient’s intes-

tinal microbiome. Most metagenomic tools

required for addressing these important

questions are already available, standard

operating tools are under development (see

the Human Microbiome Project), and

insight into the human microbiome is

evolving rapidly (Box 1). Modern, high-

resolution, and high-throughput analysis of

complex bacterial communities in clinical

samples has the potential to revolutionize

clinical practice. As a prerequisite, target

conditions must be specified, conclusively

linked with characteristic signatures of the

intestinal microbiome, and thoroughly

validated. In addition, sample collection,

preparation, testing, analysis, and result

interpretation must be standardized and

widely automated, and costs per sample

and turnaround times significantly reduced.

The integration of metagenomic analysis

into clinical diagnostics will very likely open

whole new avenues to the treatment

of intestinal as well as extra-intestinal

diseases.
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Box 1. Five Key Papers on the Translation of Metagenomics into
Clinical Practice

1. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, et al. (2010) A human
gut microbial gene catalogue established by metagenomic sequenc-
ing. Nature 464: 59–65. This study reports a large-scale approach to
characterizing the functionality of the intestinal microbiota by cataloging
human gut microbial genes, which is a prerequisite for defining health and
disease states in terms of the microbiome.

2. Human Microbiome Project Consortium (2012) Structure, function
and diversity of the healthy human microbiome. Nature 486: 207–214.
This project is a trendsetting approach to establishing comprehensive
metagenomic datasets of (healthy) body habitats as reference datasets and to
lay the foundation for the translation of metagenomic research into diagnostic
applications.

3. Kump PK, Gröchenig HP, Lackner S, Trajanoski S, Reicht G, et al. (2013)
Alteration of intestinal dysbiosis by fecal microbiota transplantation
does not induce remission in patients with chronic active ulcerative
colitis. Inflamm Bowel Dis 19: 2155–2165. This was one of the first
attempts not only to use FMT but also to characterize the procedure and the
outcome by metagenomics.

4. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology:
human gut microbes associated with obesity. Nature 444: 1022–1023.
This study links the metagenomics pattern of the human intestinal microbiome
to a clinical disorder and is therefore of importance for therapeutic approaches.

5. Navas-Molina JA, Peralta-Sánchez JM, González A, McMurdie PJ,
Vázquez-Baeza Y, et al. (2013) Advancing our understanding of the
human microbiome using QIIME. Methods Enzymol 531: 371–444. This
study describes one of the common interactive analysis tools for microbiome
analysis currently used by many researchers, which might be used in the future
for standardizing data analysis.

PLOS Medicine | www.plosmedicine.org 3 April 2014 | Volume 11 | Issue 4 | e1001627



References

1. Human Microbiome Project Consortium (2012)

A framework for human microbiome research.

Nature 486: 215–221.

2. Turnbaugh PJ, Ley RE, Hamady M, Fraser-

Liggett CM, Knight R, et al. (2007) The human

microbiome project. Nature 449: 804–810.

3. Sellitto M, Bai G, Serena G, Fricke WF, Sturgeon

C, et al. (2012) Proof of concept of microbiome-

metabolome analysis and delayed gluten exposure

on celiac disease autoimmunity in genetically at-

risk infants. PLoS ONE 7: e33387.

4. Sjoberg V, Sandstrom O, Hedberg M, Hammar-

strom S, Hernell O, et al. (2013) Intestinal T-cell

responses in celiac disease—impact of celiac

disease associated bacteria. PLoS ONE 8:

e53414.

5. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal

WZ, et al. (2012) Inflammasome-mediated dys-

biosis regulates progression of NAFLD and

obesity. Nature 482: 179–185.

6. Sobhani I, Tap J, Roudot-Thoraval F, Roperch

JP, Letulle S, et al. (2011) Microbial dysbiosis in

colorectal cancer (CRC) patients. PLoS ONE 6:

e16393.

7. Lin XB, Dieleman LA, Ketabi A, Bibova I,

Sawyer MB, et al. (2012) Irinotecan (CPT-11)

chemotherapy alters intestinal microbiota in

tumour bearing rats. PLoS ONE 7: e39764.

8. Loman NJ, Constantinidou C, Christner M,

Rohde H, Chan JZ, et al. (2013) A culture-

independent sequence-based metagenomics ap-

proach to the investigation of an outbreak of

Shiga-toxigenic Escherichia coli O104:H4. JAMA

309: 1502–1510.

9. Wolfe AJ, Toh E, Shibata N, Rong R, Kenton K,

et al. (2012) Evidence of uncultivated bacteria in

the adult female bladder. J Clin Microbiol 50:

1376–1383.

10. Eckburg PB, Bik EM, Bernstein CN, Purdom E,

Dethlefsen L, et al. (2005) Diversity of the human

intestinal microbial flora. Science 308: 1635–

1638.

11. Rutgeerts P, Goboes K, Peeters M, Hiele M,

Penninckx F, et al. (1991) Effect of faecal stream

diversion on recurrence of Crohn’s disease in the

neoterminal ileum. Lancet 338: 771–774.

12. Khan KJ, Dubinsky MC, Ford AC, Ullman TA,

Talley NJ, et al. (2011) Efficacy of immunosup-

pressive therapy for inflammatory bowel disease:

a systematic review and meta-analysis.

Am J Gastroenterol 106: 630–642.

13. Kruis W, Fric P, Pokrotnieks J, Lukas M, Fixa B,

et al. (2004) Maintaining remission of ulcerative
colitis with the probiotic Escherichia coli Nissle

1917 is as effective as with standard mesalazine.
Gut 53: 1617–1623.

14. Lepage P, Hasler R, Spehlmann ME, Rehman A,

Zvirbliene A, et al. (2011) Twin study indicates
loss of interaction between microbiota and

mucosa of patients with ulcerative colitis. Gastro-
enterology 141: 227–236.

15. Manichanh C, Borruel N, Casellas F, Guarner F

(2012) The gut microbiota in IBD. Nat Rev
Gastroenterol Hepatol 9: 599–608.

16. Sokol H, Pigneur B, Watterlot L, Lakhdari O,
Bermudez-Humaran LG, et al. (2008) Faecali-

bacterium prausnitzii is an anti-inflammatory
commensal bacterium identified by gut microbi-

ota analysis of Crohn disease patients. Proc Natl

Acad Sci U S A 105: 16731–16736.
17. Gill N, Ferreira RB, Antunes LC, Willing BP,

Sekirov I, et al. (2012) Neutrophil elastase alters
the murine gut microbiota resulting in enhanced

Salmonella colonization. PLoS ONE 7: e49646.

18. Lupp C, Robertson ML, Wickham ME, Sekirov
I, Champion OL, et al. (2007) Host-mediated

inflammation disrupts the intestinal microbiota
and promotes the overgrowth of Enterobacteria-

ceae. Cell Host Microbe 2: 119–129.
19. Gorkiewicz G, Thallinger GG, Trajanoski S,

Lackner S, Stocker G, et al. (2013) Alterations in

the colonic microbiota in response to osmotic
diarrhea. PLoS ONE 8: e55817.

20. Dethlefsen L, Relman DA (2011) Incomplete
recovery and individualized responses of the

human distal gut microbiota to repeated antibi-

otic perturbation. Proc Natl Acad Sci U S A 108
(Suppl 1): 4554–4561.

21. Morgan XC, Tickle TL, Sokol H, Gevers D,
Devaney KL, et al. (2012) Dysfunction of the

intestinal microbiome in inflammatory bowel
disease and treatment. Genome Biol 13: R79.

22. Carlsson AH, Yakymenko O, Olivier I, Hakans-

son F, Postma E, et al. (2013) Faecalibacterium
prausnitzii supernatant improves intestinal barrier

function in mice DSS colitis. Scand J Gastroenterol
48: 1136–1144.

23. de Vrieze J (2013) Medical research. The promise

of poop. Science 341: 954–957.
24. Kump PK, Grochenig HP, Lackner S, Trajanoski

S, Reicht G, et al. (2013) Alteration of intestinal
dysbiosis by fecal microbiota transplantation does

not induce remission in patients with chronic

active ulcerative colitis. Inflamm Bowel Dis 19:

2155–2165.
25. Loman NJ, Constantinidou C, Chan JZ, Hala-

chev M, Sergeant M, et al. (2012) High-
throughput bacterial genome sequencing: an

embarrassment of choice, a world of opportunity.

Nat Rev Microbiol 10: 599–606.
26. Soergel DA, Dey N, Knight R, Brenner SE (2012)

Selection of primers for optimal taxonomic
classification of environmental 16S rRNA gene

sequences. ISME J 6: 1440–1444.

27. Muegge BD, Kuczynski J, Knights D, Clemente
JC, Gonzalez A, et al. (2011) Diet drives

convergence in gut microbiome functions across
mammalian phylogeny and within humans.

Science 332: 970–974.
28. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan

AE, et al. (2013) Gut microbiota from twins

discordant for obesity modulate metabolism in
mice. Science 341: 1241214.

29. Turnbaugh PJ, Quince C, Faith JJ, McHardy
AC, Yatsunenko T, et al. (2010) Organismal,

genetic, and transcriptional variation in the

deeply sequenced gut microbiomes of identical
twins. Proc Natl Acad Sci U S A 107: 7503–7508.

30. Yang I, Nell S, Suerbaum S (2013) Survival in
hostile territory: the microbiota of the stomach.

FEMS Microbiol Rev 37: 736–761.
31. Fricke WF, Rasko DA (2014) Bacterial genome

sequencing in the clinic: bioinformatic challenges

and solutions. Nat Rev Genet 15: 49–55.
32. Kuczynski J, Lauber CL, Walters WA, Parfrey

LW, Clemente JC, et al. (2011) Experimental and
analytical tools for studying the human micro-

biome. Nat Rev Genet 13: 47–58.

33. Ley RE, Turnbaugh PJ, Klein S, Gordon JI
(2006) Microbial ecology: human gut microbes

associated with obesity. Nature 444: 1022–1023.
34. Atarashi K, Tanoue T, Oshima K, Suda W,

Nagano Y, et al. (2013) Treg induction by a
rationally selected mixture of Clostridia strains

from the human microbiota. Nature 500: 232–

236.
35. Kostic AD, Chun E, Robertson L, Glickman JN,

Gallini CA, et al. (2013) Fusobacterium nucle-
atum potentiates intestinal tumorigenesis and

modulates the tumor-immune microenvironment.

Cell Host Microbe 14: 207–215.
36. Lozupone CA, Stombaugh JI, Gordon JI, Jansson

JK, Knight R (2012) Diversity, stability and
resilience of the human gut microbiota. Nature

489: 220–230.

PLOS Medicine | www.plosmedicine.org 4 April 2014 | Volume 11 | Issue 4 | e1001627





Improving ITS sequence data for identification of plant
pathogenic fungi

R. Henrik Nilsson & Kevin D. Hyde & Julia Pawłowska & Martin Ryberg & Leho Tedersoo &

Anders Bjørnsgard Aas & Siti A. Alias & Artur Alves & Cajsa Lisa Anderson & Alexandre Antonelli &
A. Elizabeth Arnold & Barbara Bahnmann & Mohammad Bahram & Johan Bengtsson-Palme &

Anna Berlin & Sara Branco & Putarak Chomnunti & Asha Dissanayake & Rein Drenkhan &

Hanna Friberg & Tobias Guldberg Frøslev & Bettina Halwachs & Martin Hartmann & Beatrice Henricot &
Ruvishika Jayawardena & Ari Jumpponen & Håvard Kauserud & Sonja Koskela & Tomasz Kulik &

Kare Liimatainen & Björn D. Lindahl & Daniel Lindner & Jian-Kui Liu & Sajeewa Maharachchikumbura &

Dimuthu Manamgoda & Svante Martinsson & Maria Alice Neves & Tuula Niskanen & Stephan Nylinder &

Olinto Liparini Pereira & Danilo Batista Pinho & Teresita M. Porter & Valentin Queloz & Taavi Riit &
Marisol Sánchez-García & Filipe de Sousa & Emil Stefańczyk & Mariusz Tadych & Susumu Takamatsu &

Qing Tian & Dhanushka Udayanga & Martin Unterseher & Zheng Wang & Saowanee Wikee & Jiye Yan &

Ellen Larsson & Karl-Henrik Larsson & Urmas Kõljalg & Kessy Abarenkov

Received: 28 March 2014 /Accepted: 18 April 2014
# Mushroom Research Foundation 2014

Summary Plant pathogenic fungi are a large and di-
verse assemblage of eukaryotes with substantial impacts
on natural ecosystems and human endeavours. These
taxa often have complex and poorly understood life
cycles, lack observable, discriminatory morphological
characters, and may not be amenable to in vitro cultur-
ing. As a result, species identification is frequently
difficult. Molecular (DNA sequence) data have emerged
as crucial information for the taxonomic identification
of plant pathogenic fungi, with the nuclear ribosomal

internal transcribed spacer (ITS) region being the most
popular marker. However, international nucleotide se-
quence databases are accumulating numerous sequences
of compromised or low-resolution taxonomic annota-
tions and substandard technical quality, making their
use in the molecular identification of plant pathogenic
fungi problematic. Here we report on a concerted effort
to identify high-quality reference sequences for various
plant pathogenic fungi and to re-annotate incorrectly or
insufficiently annotated public ITS sequences from these
fungal lineages. A third objective was to enrich the
sequences with geographical and ecological metadata.
The results – a total of 31,954 changes – are incorpo-
rated in and made available through the UNITE data-
base for molecular identification of fungi (http://unite.ut.ee),
including standalone FASTA files of sequence data for
local BLAST searches, use in the next-generation se-
quencing analysis platforms QIIME and mothur, and
related applications. The present initiative is just a be-
ginning to cover the wide spectrum of plant pathogenic
fungi, and we invite all researchers with pertinent ex-
pertise to join the annotation effort.
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ITS . Taxonomy . Annotation
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Introduction

Plant pathogenic fungi are a large assemblage distributed across
the fungal tree of life (Stajich et al. 2009). They share a nutri-
tional strategy that adversely affects their plant hosts, sometimes
in ways that have negative repercussions for human activities.
Precise knowledge of the identity of the causal agent(s) of any
given plant disease is the first step toward meaningful counter-
measures and disease surveillance (Rossman and Palm-
Hernández 2008; Kowalski and Holdenrieder 2009; Fisher
et al. 2012). In addition, recent reports of emerging plant path-
ogens and their cross-kingdom infections to animals and immu-
nocompromised humans accentuate the need for accurate and
quick identification in potential outbreaks (Cunha et al. 2013;
Gauthier andKeller 2013; Samerpitak et al. 2014). However, it is
not always easy to identify plant pathogenic fungi to the species
level, as they often lack discriminatory morphological characters
or cultivable life stages (Kang et al. 2010; Udayanga et al. 2012).
Molecular (DNA sequence) data have emerged as a key resource
in the identification of plant pathogenic fungi and carry the
benefit that all fungi, regardless of life stage, morphological
plasticity, and degree of cultivability, can be analyzed (Shenoy
et al. 2007; Sharma et al. 2013). As a result, recent years have
seen substantial progress towards a comprehensive understand-
ing of phytopathogenic fungi in terms of taxonomy, systematics,
and ecology (Dean et al. 2012;Maharachchikumbura et al. 2012;
Manamgoda et al. 2012; Woudenberg et al. 2013).

DNA data, however, are not a panacea for species identifi-
cation. On the contrary, taxonomically and technically com-
promised DNA sequences are common in the international
nucleotide sequence databases (Bidartondo et al. 2008; Kang
et al. 2010). This makes their use as reference data for molec-
ular species identification difficult, particularly because many
users of newly generated sequence data may not be in a
position to assess whether a proposed taxonomic affiliation
is reliable. As a consequence, errors and mistakes propagate
over time as users adopt incorrect species names and
ecological properties retrieved from sequence similarity
searches (Ko Ko et al. 2011; Nilsson et al. 2012). This
is especially problematic for phytopathogens, where even
closely related species may differ dramatically in terms of
pathogenicity, host preference, and effective countermea-
sures (e.g., Barnes et al. 2004; Queloz et al. 2011).
Although end users do have options to propose changes
in the data and metadata in the public sequence databases,
few users take action when they encounter compromised
sequences (Pennisi 2008; Nilsson et al. 2012).

Molecular identification of fungi usually relies, at least in
the first attempts, on sequencing the nuclear ribosomal inter-
nal transcribed spacer (ITS) region, the formal fungal barcode
(Schoch et al. 2012). The largest database tailored for fungal
ITS sequences is UNITE (http://unite.ut.ee; Abarenkov et al.
2010a). UNITE mirrors and curates the International
Nucleotide Sequence Database Collaboration (INSDC:
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GenBank, ENA, and DDBJ; Nakamura et al. 2013) for fungal
ITS sequences and offers extensive capacities for analysis and
third-party annotation of sequences to its users. It has been the
subject of several annotation efforts (Tedersoo et al. 2011;
Bengtsson-Palme et al. 2013; Kõljalg et al. 2013), but these
have in part been biased towards basidiomycetes and mycor-
rhizal fungi. A similar effort for plant pathogenic fungi was
initiated at the symposium “Classical and molecular ap-
proaches in plant pathogen taxonomy” (10–11 September
2013, Warsaw). In addition to several of the symposium
participants, other experts on various fungal lineages known
to harbour plant pathogens were invited as contributors
through personal networking, email, and ResearchGate
(http://www.researchgate.net/). Several experts on epiphytic
and endophytic fungi also participated in the effort; while
these fungi may not be plant pathogenic, they are often
isolated alongside, or mistaken for, plant pathogenic fungi
(Unterseher et al. 2013). Moreover, many fungi showing
pathogenicity in certain plants represent common endophytes
in other host plants (Delaye et al. 2013). This paper reports on
the outcome of the annotation effort.

Materials and methods

Using third-party sequence annotation facilities provided by
the PlutoF workbench (http://plutof.ut.ee, Abarenkov et al.
2010b), the participants examined fungal lineages and
ecological groups of their respective expertise in UNITE for
four parameters: (i) selection of representative sequences for
species, (ii) improvement of taxonomic annotations, (iii)

addition of ecological metadata (chiefly host and country of
collection), and (iv) compromised sequence data.

(i) Selection of representative sequences for species

UNITE clusters all public fungal ITS sequences to approxi-
mately the genus/subgenus level. A second round of cluster-
ing inside each such cluster seeks to produce molecular oper-
ational taxonomic units at approximately the species level;
these are called species hypotheses (SHs; Fig. 1; Kõljalg
et al. 2013). The species hypotheses are open for view-
ing and querying (http://unite.ut.ee/SearchPages.php)
through uniform resource identifiers (URIs) such as
“http://unite.ut.ee/sh/SH158651.06FU”. As a proxy for
the species hypothesis, a representative sequence is
chosen automatically from the most common sequence type
in the species hypothesis. Through these representative
sequences, UNITE assigns a unique, stable name of the
accession number type – SH158651.06FU in its shortest
form for the example above – to all species hypotheses to
provide a means for unambiguous reference to species-level
lineages even in the absence of formal Latin names. The
representative sequences are also used for non-redundant
BLAST databases for molecular identification in several
next-generation sequencing analysis pipelines. Depending
on the algorithm, including all available fungal ITS sequences
in the reference database slows down sequence similarity
searches significantly, and the use of downsized, non-
redundant databases with only one sequence per taxon of
interest is a common solution. The representative sequences
of UNITE fulfill these criteria, since they comprise a single
sequence from all fungal species hypotheses recovered to date

Fig. 1 A screenshot from the web-based PlutoF sequence management
environment showing a Nectriaceae cluster, with the individual species
hypotheses at different similarity levels indicated by the coloured vertical
bars. Country of collection and host/interacting taxa are specified together
with taxonomic re-annotations. Sequences from type material are indi-
cated. For species hypotheses where no user has designated a reference

sequence, the clustering program chooses a sequence from the most
common sequence type to represent that species hypothesis (shown in
green font). The species hypotheses are mirrored by GenBank through a
LinkOut function, making it possible to go from a BLAST search in
GenBank to the corresponding species hypothesis in UNITE through a
single click
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through ITS sequences by the scientific community. However,
there are situations where one would like to influence which
sequence is chosen to represent a species hypothesis. In ideal
cases, the type specimen or an ex-type culture has been
sequenced. Such “type sequences” form the best possible
proxy for the species hypothesis, as long as they are suffi-
ciently long and of high technical quality.

To increase the proportion of plant pathology-related fun-
gal taxa represented by sequences from types, we scanned the
27 largest journals in plant pathology (and 12 mycological
journals known for an inclination towards plant pathology or
fungi otherwise associatedwith plants) for descriptions of new
(or typifications of existing) plant pathogenic or plant-
associated species of fungi (Supplementary Item 1). For all
descriptions where an ITS sequence was generated from the
type specimen/ex-type culture by the original authors, we
examined the sequence in the corresponding UNITE cluster
for read quality and length. All type sequences deemed to be
of high technical quality and sufficient length were designated
as reference sequences for their respective species hypothesis.

(ii) Correction of taxonomic affiliations

Taxonomic misidentifications are rife in the public nucleotide
sequence databases. Similarly, more than half of all public
fungal ITS sequences are not annotated to the level of species,
and most of these carry little or no taxonomic annotation save,
e.g., “Uncultured fungus” (cf. Hibbett et al. 2011). This makes
molecular identification difficult and can lead to an incorrect
name or no name at all, even when full (e.g., Colletotrichum
melonis) or partial (e.g., Colletotrichum sp. or Glomerellales)
naming would have been possible. Clearly it is important to
avoid the common mistake of over-estimating taxonomic cer-
tainty based solely on BLAST searches, which often yield
many top hits with similar quality scores and can obscure
sister-level relationships to the taxa represented in the top
matches. BLAST results may also differ over time according
to database content, and differ markedly when, e.g., the full ITS
vs. partial ITS sequences or ITS sequences with non-trivial
lengths of the ribosomal small and/or large subunits for the
same strain are submitted to searches (U’Ren et al. 2009).
Indeed, a substantive portion of misidentified sequences in
public databases appear to have resulted from spurious appli-
cations of taxonomic names to sterile mycelia, environmental
samples, or otherwise unknown strains, often being studied by
non-taxonomists. However, careful evaluation of database
matches can provide additional information about taxonomic
placement that can be applied judiciously by experts to better
serve the scientific community. In addition, sequences without
taxonomic annotations (e.g., “Uncultured fungus”) are often
unfairly disregarded in phylogenetic studies (Nilsson et al.
2011). Another reason to improve the taxonomic annotation
of public ITS sequences is therefore to highlight their existence

and availability for use in phylogenetic and systematic studies.
Such enhanced taxon sampling carries many advantages (Heath
et al. 2008). We scanned our fungal lineages of expertise in
UNITE to make sure the sequences carried the most accurate
name possible, viz. the full species name for fully identi-
fied sequences, and the genus, family, order, class, or
phylum name for sequences that could not be fully
assigned.

(iii) Addition of geographical and ecological metadata

Although DNA sequences form the core of molecular identi-
fication of fungi, additional data are often needed for final,
informed decisions on the taxonomic affiliation of newly
generated sequences. For plant pathogenic fungi, the identity
of the host and the geographical origin of the sequences are
often critical information (Britton and Liebhold 2013). Yet
these metadata are usually not included with sequence data in
public sequence databases; Tedersoo et al. (2011) showed, for
instance, that a modest 43 % of the public fungal ITS se-
quences were annotated with the country of origin. To the
same effect, Ryberg et al. (2009) found that host of collection
was reported for less than 25 % of all public fungal ITS
sequences (although not all fungi necessarily have a host).
We made sure that the sequences of our core expertise were as
richly annotated as possible in UNITE through recursions to
the original publications.

(iv) Technical quality of sequences

Detecting sequences of substandard quality in public data-
bases is difficult because sequence chromatograms or other
original data are not present for verification of nucleotide
identity, and sequencing technologies have different error
rates and types of errors (e.g., 454 pyrosequencing vs.
Sanger sequencing). Standards also differ among researchers
and computer programs with regard to quality thresholds and
what is deemed acceptable for individual nucleotides or
whole-sequence reads. The extent to which sequence depos-
itors take measures to ensure that their sequence data are of
satisfactory integrity also seems to differ markedly. To dis-
criminate with full certainty among publicly deposited se-
quences of high and substandard quality is simply not possible
in all situations (Nilsson et al. 2012). To remove all sequences
that are putatively substandard is certain to lead to many
instances of false-positive removals (i.e., removal of authentic
albeit poorly known biodiversity), and in this study we settled
for removing entries we could prove were compromised. We
evaluated sequence quality on the basis of length, evidence of
chimera formations or poor read quality, and mislabelling of
the genetic marker that the data represent.
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Results

The participants implemented a total of 31,954 changes,
including 5,135 taxonomic re-annotations, 25,028 specifi-
cations of geographical and ecological metadata, 1,368
designations of reference sequences, and 401 exclusions
of substandard sequences, distributed over some 48 fungal
orders. The results were incorporated in UNITE for all its
users. In addition, they are made publicly available
through the UNITE release of all public fungal ITS se-
quences (http://unite.ut.ee/repository.php) for use in, e.g.,
local sequence similarity searches and sequence processing
pipelines such as QIIME (Caporaso et al. 2010; Bates
et al. 2013), mothur (Schloss et al. 2009), SCATA
(http://scata.mykopat.slu.se/), CREST (Lanzén et al. 2012),
and other downstream applications. UNITE also serves
as one of the data providers for BLAST (Altschul et al.
1997) searches in the EUBOLD fungal barcoding database
(http://www.cbs.knaw.nl/eubold/).

(i) Selection of representative sequences for species

The extraction of sequences from type material from the
literature resulted in 965 designations of reference se-
quences (for as many species hypotheses and a total of
194 genera of fungi; Table 1). We also designated 403

additional reference sequences based on our expertise;
174 of these stemmed from type material and 229 were
from other authentic material. The latter cases involved
fungal taxa of our core expertise where we knew the
type material was missing or too old for DNA sequenc-
ing and where we knew that the selected sequences
were as close to the type as possible in terms of
morphology, country, and/or substrate of collection. A
total of 202 genera were designated with at least one
reference sequence.

(ii) Correction of taxonomic affiliations

The process of verifying taxonomic names given to sequences
resulted in a total of 5,135 changes (Table 1), notably for the
orders Hypocreales (459 changes), Glomerellales (404 chang-
es), and Botryospheriales (393 changes). In addition, 22 ITS
sequences were found to stem from kingdoms other than
Fungi and were re-annotated accordingly.

(iii) Addition of geographical and ecological metadata

Our effort to complement the sequences with metadata
from the literature resulted in a total of 14,478 specifi-
cations of host and 10,550 specifications of country of
origin (Table 1).

Table 1 Summary of the changes made in the UNITE database. The 15 orders that saw the largest number of changes are specified separately; all other
lineages are amalgamated into the “Others” category

Order Taxonomic re-annotations Country Host Reference sequences Count

Hypocreales 459 3,751 2,960 118 (116) 7,288

Pleosporales 129 860 4,344 76 (76) 5,409

Capnodiales 200 960 1,696 181 (181) 3,037

Diaporthales 79 1,374 855 28 (28) 2,336

Glomerellales 404 814 824 148 (148) 2,190

Botryosphaeriales 393 428 626 70 (67) 1,517

Mucorales 90 630 631 87 (63) 1,438

Eurotiales 420 411 226 168 (168) 1,225

Xylariales 90 225 823 19 (19) 1,157

Helotiales 333 301 290 108 (46) 1,032

Chaetothyriales 22 121 521 17 (17) 681

Puccinales 134 313 194 9 (1) 650

Agaricales 442 31 8 21 (21) 502

Pezizales 297 0 97 1 (1) 395

Erysiphales 143 55 66 129 (4) 393

Others 1,500 276 317 188 (183) 2,281

Taxonomic re-annotations = The number of taxonomic (re)annotations implemented. Country = The number of specifications of country of
collection. A total of 94 different countries were added. Host = The number of host specifications added in the system. Reference sequences =
The number of reference sequences designated through manual inspection (of which sequences from type material are indicated in parentheses).
Count = Total number of changes
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(iv) Technical quality of sequences

We detected a total of 363 sequences of substandard tech-
nical quality. These were marked as compromised, which
precludes them from being used in molecular identification
procedures while still keeping them open to direct searches
in the system. This included 84 cases of chimeric se-
quences and 279 cases of low read quality. Another 38
sequences were annotated as ITS sequences by their
submitters but were found to represent other genes and
markers (notably the ribosomal small and large subunits)
and were re-annotated accordingly.

Discussion

Fungal pathogens of agricultural, silvicultural, horticultural, and
wild plants can compromise ecosystem health and cause con-
siderable economic loss globally. Correct identification of these
fungi and subsequent understanding of their biology and ecol-
ogy are key elements in protecting their host plants (Rossman
and Palm-Hernández 2008). However, identification of plant
pathogenic fungi to the species level is relevant to more than just
studies of plant pathology. Because of the ease and moderate
cost at which large amounts of sequence data can be generated,
fungi and fungal communities are now being studied by an
increasing number of non-mycologists, notably soil biologists,
molecular ecologists, and researchers in the medical sciences
(e.g., Ghannoum et al. 2010; La Duc et al. 2012; Pautasso
2013). Phytopathogenic fungi also occur in these substrates
and ecosystems in various life stages, including sterile mycelia,
resting stages, and propagules. Although some plant pathogenic
fungi have been studied in great detail, the biology of the
majority of phytopathogenic fungi remains poorly known.
Therefore, information stemming from non-mycological or
non-pathological research efforts may increase our understand-
ing of these taxa. As a consequence, it is important that all
researchers, regardless of expertise and extent of mycological
knowledge, can obtain reliable estimates of the taxonomic iden-
tity of plant pathogenic – and all other – fungi in whatever form
they are recovered.

Molecular identification of plant pathogenic fungi can be
challenging due to differing sequence and annotation qual-
ity of the available reference sequences. We have gone
through a large number of plant pathogenic fungal groups
within our collective expertise. A total of 31,954 changes in
48 fungal orders were implemented in UNITE for these
groups (Table 1). However, not all plant pathogenic line-
ages of fungi – or, indeed, even the groups covered by the
present effort – are satisfactorily resolved in UNITE. In
addition, new sequences (of both known and unknown
species) are continuously generated and deposited in the
INSDC by the scientific community, such that a limited

group of people can never stay abreast of the data deposi-
tion. A community effort is clearly required. UNITE offers
third-party annotation capacities to all its registered users.
Registration is free, and contributions from all relevant
scientific communities are most welcome. Even small edits –
such as designating a reference sequence for a single
species hypothesis, correcting and improving a handful
of taxonomic annotations, or adding metadata that can be
used for comparative studies (Supplementary Item 2) –
will improve the database significantly and may be of
substantial importance to other researchers. Going
through the alignments and metadata for one’s fungi of
expertise in the web-based system is furthermore a good
way to visualize and explore patterns in the data and
identify new research questions.

Many of the corrections brought about by the present effort
would have been unnecessary if the original sequence authors
had taken the time to examine and annotate their sequences
properly prior to submission. Lack of time and awareness of
these issues are the presumed culprits. Guidelines on how
to process newly generated sequences in a way to estab-
lish their integrity and maximize their usefulness to the
scientific community are given in Seifert and Rossman
(2010), Nilsson et al. (2012), Hyde et al. (2013), and
Robbertse et al. (2014). In addition, to facilitate future
assessments of sequence quality and other pursuits, we
urge sequence depositors in INSDC to archive chromato-
grams and other relevant data in UNITE or in other
resources that support long-term data storage and avail-
ability. The present initiative will contribute to more accu-
rate molecular identification of plant pathogenic fungi for
three sets of users: UNITE users, anyone using the
~350,000-sequence downloadable FASTA file of the
UNITE/INSDC fungal ITS sequences (http://unite.ut.ee/
repository.php) for local BLAST searches or similar, and
researchers using any of the major next-generation se-
quencing analysis pipelines or the EUBOLD database to
process newly generated fungal ITS datasets. In addition,
following the data sharing history between UNITE and the
INSDC, the results were made available to the INSDC to
reach the widest possible audience. Fungal barcoding is in
a state of constant development, but it should be clear that
collaboration and data sharing among resources are neces-
sary for the future development of the field. Mycology
struggles for funding in competition with fields that are
often deemed larger or more fashionable, and we simply
cannot afford public fungal DNA sequences to remain in a
suboptimal state. On the contrary, we hope mycologists
will work together to make fungal sequence data as richly
annotated and as easily interpreted as possible because,
after all, many of the end users of those data will not be
mycologists. The present study is a small step in that
direction, and we hope that others will follow.
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Abstract

The human microbiome plays an important role in health and disease, but

the structure of the bacterial communities and their interaction with the

human body are still poorly understood. The recent introduction of next-

generation sequencing technologies allows for the first time an unbiased

and in-depth characterization of a microbiome based on the sequence of

certain marker genes. However, analysis of the huge amount of sequence

data generated in microbiome studies poses a considerable challenge to

the individual researcher. Here we provide an overview of the steps

involved in the characterization and comparison of complex microbial

communities starting with sequence preprocessing on to taxonomic clas-

sification ending in statistical evaluation and visualization of the analysis

results. A selection of different tools and techniques of each working

step is introduced and discussed. Additionally, different sequencing

approaches ahead of the bioinformatics analysis are considered. Further-

more, the application of microbiome analysis in medical research is

shown by selected medical studies.

The chapter is addressed to microbial ecologists or medical researchers

without or little bioinformatics background as well as to bioinformatics

scientists who are interested in the overall microbiome workflow, and its

tools and techniques.

3.1 Introduction

Humans inhabit an earth dominated by microor-

ganisms. This is illustrated by the fact that the

number of microorganisms exceeds the number

of human beings by a factor of 1021 (Kyrpides

2009). Humans are not just surrounded by micro-

organisms, but microorganisms also live on and

inside the human body. The relationship with

these microbes colonizing different body habitats
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is mostly beneficial to our health. For reasons

which are still poorly understood, this mutualistic

(“commensal”) relationship sometimes switches

into a pathogenic one (Avila et al. 2009).

Commensal bacteria occupy niches, which can

then not be inhabited by pathogenic strains (“col-

onization resistance”). However, under certain

environmental triggers (e.g., antibiotic treatment)

the mutualistic balance is disturbed, commensal

bacteria are depleted, and certain pathogenic taxa

can proliferate and subsequently harm the body.

Metagenomics enables the culture-independent

study of the whole genetic information of complex

microbial communities, providing information

about structure, function, and interactions of the

microbial community with its habitat (Eisen

2007). Comprehensive metagenomic studies have

been made possible on one hand by the recent

introduction of high-throughput molecular tech-

nologies, such as cheaper and faster sequencing

techniques developed by Roche (Margulies et al.

2005), Illumina (Bentley et al. 2008), or Life Tech-

nologies (McKernan et al. 2009), and on the other

hand by the parallel evolving sequence analysis

tools such as RDP (Cole et al. 2009), FastUniFrac

(Hamady et al. 2010), SnoWMAn (Stocker et al.

2011), and mothur (Schloss et al. 2009).

These tools and technologies are able to char-

acterize microbial communities at high resolu-

tion even in bacterium-dense environments such

as the mammalian gastrointestinal tract (GI). The

human GI microbiota is a focus of recent

research not only because it is home to the largest

microbial community within individuals but also

because of its effects on the host especially the

host’s metabolism and immune system. Recent

investigations showed a central role of the gut

microbiota related to nutrition and many gastro-

intestinal diseases ranging from inflammations to

cancer (Garrett et al. 2010).

The 16S ribosomal RNA (rRNA) gene plays a

key role in the culture-independent characteriza-

tion of a microbial community. According to its

structure formed by alternating variable and

highly conserved regions, the 16S rRNA serves

as an evolutional chronometer allowing for

the identification and differentiation of eubacterial

and archaeal taxa (Tringe and Hugenholtz 2008).

The characterization of human microbiomes

under different conditions will help to answer a

variety of questions, such as how are microbial

communities formed and how do they regener-

ate? What are the mechanisms that regulate

microbial composition? Which microbes are

involved in health and disease? To what extent

do microbial communities differ between unre-

lated healthy individuals? Is there a core micro-

biome in a habitat shared among all humans?

How does microbial composition vary over

time, between environments or body habitats?

How can microbial composition be manipulated

in respect to medical treatment?

Since the majority of microorganisms cannot

be grown in laboratory (Streit and Schmitz 2004),

most of these questions would remain unsolved

without the application of next generation

sequencing technologies for the characterization.

3.2 Human Microbial Diversity

The microbiome is defined as the total number of

microbial genomes in a defined environment

(National Research Council 2007).

Microorganisms colonize our body surface as

well as surfaces inside our body. The vast major-

ity of microbes is found in the human GI tract

(Gill et al. 2006). Microbial cells in the human GI

tract outnumber human cells by a factor of 10

(Kyrpides 2009). Human physiology, health, and

disease cannot be entirely understood by the sole

analysis of human genes and their products. Also

the microbial counterparts scare essential in this

regard. Therefore, a metagenomic analysis of the

human microbiome was initiated to unravel our

so-called “second genome” (Qin et al. 2010).

Humans are considered as superorganisms com-

posed of human and microbial cells (Gill et al.

2006). To understand the mutualistic relationship

between humans and their associated microbes as

well as to create a framework for future research,

the National Institutes of Health (NIH) funded

the Human Microbiome Project (HMP, http://

hmpdacc.org/, Turnbaugh et al. 2007). The aim

of the HMP is to characterize microbial commu-

nities found at multiple human body sites and to
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look for correlations between changes in the

microbiome and human health. In the beginning

this project focused on the sequencing of refer-

ence genomes (Nelson et al. 2010) of human

associated microbes to provide the basis for

subsequent metagenomic and functional studies

(Turnbaugh et al. 2007).

TheMetaHIT project (http://www.metahit.eu/),

which is funded by the European Commission,

chose the GI tract for detailed investigation. The

prime objective of this project is to demonstrate

associations between the bacterial genes of the

human GI microbiome with human health and

disease. The MetaHIT program is particularly

focused on inflammatory bowel disease (IBD, a

chronic gut inflammation) and obesity, which both

become more and more prevalent in Europe.

Besides the publication of the first human gut

metagenome (Qin et al. 2010) the project recently

described the identification of three main micro-

bial community types, so-called enterotypes, of the

human GI tract (Arumugam et al. 2011). The

enterotypes represent the 3 robust clusters built of

39 stool samples from 4 countries. Each of the

three types is dominated by Bacteroides, Prevo-

tella, or Ruminococcus. Based on correlation ana-

lyses of the genera in the respective enterotypes, it

is evident that these enterotypes were formed due

to preferred community composition. Interest-

ingly, abundant molecular functions encoded by

the metagenome do not correlate with abundant

species. This finding underscores earlier reports

stating that the functionality of the human GI

microbiome is represented by the presence or

absence of genes and gene families, and not on a

taxonomic level. Thus, different microbial com-

munity structures can fulfill the same functionality

(Tschop et al. 2009).

Obesity is related to a variety of comorbidities

including type II diabetes and cardiovascular

diseases (Ahima 2011). GI bacteria are highly

proficient in the degradation of complex polysac-

charides providing short-chain fatty acids, the

end product of bacterial fermentation to the

gut (Gill et al. 2006). About 10 % of our daily

calorie intake originates from this process. By

studying feces samples from lean and obese

mice as well as from humans, it was shown

that the composition of the GI microbiota

influences the body weight (Turnbaugh et al.

2006; Ley et al. 2006). In these investigations

obese humans showed a higher proportion of

Firmicutes compared to Bacteroidetes in their

GI tract than lean individuals. Furthermore, this

proportion decreases during weight loss over a

period of several months reaching levels compa-

rable to lean individuals (Ley et al. 2006). By

using germ-free mice the investigators showed

that transplantation of an obesity-related micro-

biome leads to a significantly increased weight

gain in these animals compared to transplanta-

tion of a lean-associated microbiota (Turnbaugh

et al. 2006). These experiments highlight that

specific manipulation of the gut microbiota is

an interesting rationale to combat obesity (Bajzer

and Seeley 2006).

Like the GI microbiome the vaginal microbiota

is very dynamic, and individual attributes such as

ethnicity, age, methods of birth control, sexual

activity, personal care, and environmental condi-

tions influence the vaginal microbiota (Wilson

2005). Although recent studies focused on the

vaginal microbiome, its role in women’s health

and disease is still poorly understood (Ravel et al.

2010). These recent studies suggest that there is

not a single core vaginal microbiome prevalent,

but several microbial types, which are correlated

with the ethnic background of the women (Zhou

et al. 2007). Disturbance of the “normal” vaginal

microbiota by the increase of opportunistic patho-

gens leads to a frequent disease called bacterial

vaginosis (BV, Thies et al. 2007). To under-

stand the development of BV, it is important to

consider the whole vaginal community, as even

less abundant taxa can be important to counteract

colonization with opportunistic pathogens (Thies

et al. 2007).

One of the largest human microbial habitats is

represented by the skin with an area of about

1.8 m2. But skin represents not a uniform micro-

bial habitat, and it is divided into different niches

displaying different levels of pH, moisture, tem-

perature, and also different structures such as hair

and sebaceous or apocrine glands (Gill et al.

2006; Turnbaugh and Maurice 2011; Grice and

Segre 2011). Like the GI microbiota the skin

microbiota is a dynamic microbial community,

and disturbed microbiota structures in skin
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diseases were observed (Gao et al. 2007, 2010;

Cogen et al. 2008). Moreover, a high level of

intra- and interpersonal variations in the commu-

nity structures were noted (Costello et al. 2009).

A physiological skin microbiota (e.g., containing

lactic acid bacteria) is a safeguard against poten-

tial harmful microbes, and this fact can be

exploited by therapeutic strategies in case of

skin diseases (Grice and Segre 2011).

Investigation of the oral microbiome was

initiated already in 1708 by Antonie van Leeu-

wenhoek (Parker 1965). Hundreds of years later

methods and possibilities evolved, but many

questions about the human oral microbiota

remained unresolved. Recent studies revealed

the existence of a common oral microbial

composition across unrelated healthy indivi-

duals, and also identified highly complex

patterns of individual niches colonized by

different communities in the oral cavity (Zaura

et al. 2009; Bik et al. 2010). Although the

oral cavity harbors a variety of microorganisms,

only six bacterial phyla, Firmicutes, Actino-

bacteria, Proteobacteria, Bacteroidetes, Fuso-
bacteria, and TM7, are considered dominant

with relative abundances ranging from 1 % to

36 % (Aas et al. 2005).

3.3 The Barcode of Life

Sequencing variable regions of 16S rRNA genes

(16S rDNA) is widely used to characterize com-

plex microbial communities (Venter et al. 2004).

The benefit of this genetic marker is based on the

fact that it is present in all eubacteria and

archaea, and it consists of conserved and variable

regions. Variable regions are subjected to muta-

tion during evolution and can therefore serve as

an evolutionary clock specific to the respective

taxon. Conserved regions are often important for

ribosome function (i.e., translation), and muta-

tions in these regions can rarely be propagated to

the offspring. As such mutations affect the bacte-

rial cell heavily, these regions remain unchanged

(Patel 2001).

The 16S rRNA gene comprises nine variable

regions which separate regions of high conservation

(Neefs et al. 1993). The variable regions can be

amplified using universal or group-specific

primers (Lane et al. 1985). Quality of the classi-

fication results after sequencing the amplicons

highly depends on the quality of the sequenced

reads. Therefore, it is necessary to minimize any

kind of amplification bias. Wang and Qian

(2009) studied the impact of 16S rDNA primer

choice onto the resulting taxonomic classifi-

cation. They found that the taxon coverage varies

between 80 % and 98 % depending on the used

primers. Furthermore, it was also confirmed that

the majority of primers is specific for a certain

range of bacterial phyla and cannot be applied for

amplification of all bacteria in a microbial sam-

ple (Wang and Qian 2009). Additionally, the

choice of the variable region and the used

sequencing technology influence the classifica-

tion accuracy (Hamp et al. 2009). With the objec-

tive to assign as many reads as possible to a

certain taxonomic level, the V4/V5 region of

the 16S gene is recommended, as its use exhibits

the highest accuracy regardless from the used

sequencing technology (Claesson et al. 2010).

In contrast the V3/V4 region showed the worst

classification efficiency (Liu et al. 2008).

3.4 Sequencing

The methods introduced in 1977 by Sanger et al.

(1977) and by Maxam and Gilbert (1992) paved

the way for a new area in DNA sequencing.

The automated Sanger sequencing, later consid-

ered as “first-generation sequencing” (Metzker

2005), was the state-of-the-art sequencing tech-

nique over the last four decades. Although this

technology still has the advantage of long

read lengths (>800 bp) and high accuracy

(>99.999 %), it has been largely replaced by

newer methods. These methods, so-called

“next-generation sequencing” (NGS) techniques,

can be further grouped into “second-” and “third-
generation techniques” (Pareek et al. 2011). One

major advantage of NGS over Sanger sequencing

is the ability to produce enormous amount of data

in a single run within a short period of time at

low costs. Moreover, NGS enables sequence
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determination from amplified single DNA frag-

ments without cloning (Ansorge 2009). Different

kinds of NGS techniques can be distinguished

either by template preparations, chemistry,

detection approaches, and base calling methods

(Metzker 2010). These differences result in ben-

efits and disadvantages of each of the different

techniques, which are discussed below. The

group of second-generation sequencing methods

comprises three different systems.

First, the 454 Genome Sequencer FLX instru-

ment (Margulies et al. 2005) is based on the

detection of luminescence created during conver-

sion of pyrophosphate. It comprises four major

working steps: (1) ligation of adapters to DNA

fragments; (2) emulsion polymerase chain reac-

tion (PCR, amplification); (3) distribution of

beads among a picotiter plate; and (4) pyrose-

quencing (Voelkerding et al. 2009). With the

current chemistry (FLX Titanium+) read lengths

of 700 bp can be achieved. A single run produces

up to 900Mb at a raw accuracy of 99.5 % (Pareek

et al. 2011).

Second, the Illumina (Solexa) Genome Ana-
lyzer (Bentley et al. 2008) relies on sequencing

by synthesis. It consists of three major working

steps: (1) library preparation; (2) cluster genera-

tion; and (3) sequencing. Illumina produces short

reads with a length between 36 and 150 bp. The

total throughput of a run adds up to 300–600 Gb

at a raw accuracy of more than 98.5 % (Pareek

et al. 2011).

Third, the Life Technologies SOLiD system
(McKernan et al. 2009) is based on the principle

of sequence ligation. It comprises six major work-

ing steps: (1) library preparation; (2) emulsion

PCR and bead enrichment; (3) bead deposition

onto a glass slide; (4) sequencing by ligation;

(5) primer reset; and (6) exaction of call chemis-

try. The SOLiD system produces reads with a

length between 35 and 100 bp. During a single

run a total throughput of up to 180 Gb can be

achieved at a raw accuracy of 99.94 % (Pareek

et al. 2011).

Since the taxonomic classification of 16S

rDNA fragments is influenced by sequence

length, the read lengths of the different sequencing

technologies have to be considered. Reads

produced by Illumina and SOLiD are much shorter

(~100 bp) than the 454 reads (~700 bp). Former

technologies provide in turn a much higher cover-

age per sample or allow for analysis of signifi-

cantly more samples in a single run. This can

help to investigate rare species of the microbial

community. The short reads on the other hand can

lead to misclassifications, especially among taxa

with high sequence homology. Furthermore, the

increased error rate of shorter reads results in a loss

of taxonomic depth. In contrast, 454 runs provide a

lower coverage per sample but its longer reads can

be classified down to genus or even species level

(Hamady and Knight 2009; Claesson et al. 2010).

Short read lengths negatively influence diversity

measures and taxonomic classification. Claesson

et al. (2010) argue that pyrosequencing errors can

be neglected because of their little influence on the

taxonomic classification and diversity measures. In

contrast, tools and techniques for reducing these

errors (“denoising”) become more and more state

of the art in analyzing pyrosequenced data (Quince

et al. 2009; Reeder and Knight 2010).

To allow sequencing of multiple samples in a

single run, primers can be labeled with unique

tags before PCR amplification. This so-called bar-

coding technique enables sequencing of multiple

samples within a single sequencing run. The num-

ber of samples which can be sequenced in parallel

is limited by the length of the used barcode. This

kind ofmultiplexing decreases sequencing time as

well as costs per sample. Furthermore, it over-

comes sequence loss in splitting a single plate

into multiple areas (Hamady et al. 2008).

The choice of which sequencing platform to

use is influenced by a variety of parameters, such

as reagent costs, processing time, error rates, or

read lengths. The challenge is to find a platform

which is able to deliver best results under a

certain level of tolerance. Glenn (2011) pointed

out the lack of a standard for sequencing plat-

forms and the resulting difficulties in comparing

platform specifications. All currently available

platforms have their advantages and disadvan-

tages concerning costs and error rates (Glenn

2011). Illumina shows the broadest utility at low-

est cost per reads and low error rates, whereas

454 yields the highest classification accuracy in
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consequence of its longer read length. However,

shorter reads are more prone to classification

errors.

3.5 Microbiome Analysis Workflow

The major question in microbiome projects is to

figure out “what’s in the mix.” To characterize

and classify complex microbial communities, a

marker gene, in general a certain variable region

of the 16S rRNA gene, is amplified from DNA,

which is directly extracted from the environmen-

tal sample followed by sequencing of the ampli-

cons. This results in thousands of sequences for a

given sample which originate from hundreds of

different species. To facilitate the analysis, the

individual sequences are assigned to operational

taxonomic units (OTUs). These OTUs represent

a specific taxonomic group at a particular phylo-

genetic level, commonly genus or species. Each

OTU consists of a taxonomic classification and

an abundance, which is the number of sequence

reads comprising the OTU.

A variety of tools have been developed to ana-

lyze microbiome samples. They can be divided

into two main groups based on the approach to

assign sequences to OTUs: OTUs can be either

generated by unsupervised clustering of the

sequences (Fig. 3.1a); or OTUs can be formed by

comparative classification using a reference data-

base (Fig. 3.1b) (Ghodsi et al. 2011).

OTU formation by unsupervised clustering

comprises the following core working steps:

(1) preprocessing (sample splitting, trimming,

quality filtering, chimera removal); (2) multiple

sequence alignment; (3) calculation of sequence

distances; (4) clustering of sequences into OTUs;

(5) dereplication (selection of a representative

sequence for each OTU); (6) classification of

each of the representative sequences either by

similarity search against a reference database or

with a classifier; and (7) statistical analysis and

visualization.

OTU formation by comparative classifica-

tion comprises three major working steps:

(1) preprocessing (sample splitting, trimming,

quality filtering, chimera removal); (2) similar-

ity search against a reference database; and (3)

statistical analysis and visualization.

Although both approaches generate OTUs, the

key difference is the homogeneity of an OTU.

Sequences in cluster-based OTUs have a prede-

fined maximum distance (sequence dissimilarity),

Fig. 3.1 Microbiome

analysis workflow:

(a) working steps in case of
unsupervised clustering;

(b) comparative

classification
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whereas the sequence distance in OTUs formed

by comparative classification depends on the dis-

tance to the reference sequence.

The following sections will guide through the

microbiome working steps including preproces-

sing of the samples, visualization, and statistical

analysis of the results.

3.5.1 Preprocessing

The major goal of preprocessing sequence data

is to improve the quality of the downstream

analysis.

Sample splitting is included during preproces-
sing. In this step barcodes and primers are sepa-

rated from sequences. The barcodes serve as

identifiers for a particular sample in the sequenc-

ing run. At the beginning of the analysis, the user

has to specify the barcodes as well as the primer

sequence, so that they can be used during the

preprocessing step. Barcodes are separated from

the sequences either strictly by their sequence or

by using different kinds of error correction meth-

ods (Hamady et al. 2008).

Filtering of the sequences based on certain

criteria is widely used. The most important

approach is to discard sequences depending on

their length. Sequences markedly longer than the

average tend to be chimeric, whereas very short

sequences (~20 bp) lead to misalignments. Addi-

tionally sequences can be filtered using quality

scores, the amount of ambiguous bases (number

of Ns), multiplicity, or the sequence complexity.

At the 50 or 30 end of a sequence, artifacts such
as poly-A/T tails or adapters, primers might have

been ligated to the sequence. Sequence trimming

to a certain length or according to a quality score

can help to get rid of these artifacts (Schmieder

and Edwards 2011).

Denoising combines methods and techniques

for treating and eliminating different kinds of

sequencing noise. Depending on the used sequen-

cing technique, artificial sequence differences

(noise) decrease sequencing quality, and thus

the downstream analysis. Sequencing noise

caused by pyrosequencing results for example in

an overestimated number of OTUs, the so-called

OTU inflation (Kunin et al. 2010). The major

source of pyrosequencing noise is caused by

uncertainties in the base calling of long homopol-

ymer stretches (Quince et al. 2009). Additionally,

PCR errors occurring during the amplification

process have to be considered, since they increase

the per-base sequencing error rate. Tools such as

PyroNoise (Quince et al. 2009),Denoiser (Reeder

and Knight 2010), or AmpliconNoise (Quince

et al. 2011) can be applied during preprocessing

to control sequencing errors and PCR single base

substitutions.

Chimera removal: Chimeras, which result

from a combination of two or more sequence

templates amplified during PCR, have to be con-

sidered since they distort diversity truth (Quince

et al. 2009). Thus, quality of the PCR has to be

taken into account and parameters such as cycle

number, extension time, used primers, and poly-

merase type have to be considered as they directly

influence PCR quality (Quince et al. 2011). The

impact of chimeras can be very critical in partic-

ular when they occur at high frequencies. Tools

such as Bellerophon (Huber et al. 2004), Ccode
(Gonzalez et al. 2005), Pintail (Ashelford et al.

2005), Chimera Slayer (Ashelford et al. 2005),

UCHIME (Edgar et al. 2011), or Perseus (Quince
et al. 2011) support the detection and often also

the removal of chimeric sequences.

Apart from more accurate OTU estimations,

denoising and chimera checking resulting in

fewer sequences for downstream analysis which

in turn reduces processing time. The core step of

microbiome analysis is represented by the taxo-

nomic classification of the 16S rDNA sequences.

The following sections highlight a selection of

tools and techniques for each of the two major

approaches (OTU generation by clustering and

OTU generation by comparative classification).

3.5.2 OTU Generation by Clustering

OTU generation by clustering comprises three

major working steps: Before OTUs can be

defined the sequences have to be aligned in

order to compensate for differences in length.

Subsequently, the second step is OTU generation
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by distance calculation followed by clustering.

Finally, the classification of OTUs is performed

by assigning a single representative selected

from each previously created cluster to its phylo-

genetic group. Basic principles of this approach

as well as tools and techniques are discussed in

the following sections.

3.5.2.1 Sequence Alignment
Aligning sequences is a prerequisite for the

subsequent OTU generation where distances (i.

e., the percentage of base changes) between

sequences are calculated. Since sequences have

different lengths, they have to be aligned prior

to distance calculation. Therefore, either multiple

sequence alignments (MSAs) of all target

sequences or pair-wise alignments are created.

Tools such as Phylip (Felsenstein 1989),

MUSCLE (Edgar 2004), NAST (DeSantis et al.

2006a), or Infernal (Nawrocki et al. 2009) are

commonly used for sequence alignments. The

major difference between these tools is the

amount of structure information used for identi-

fication of the putative targets (Schloss 2009;

Huse et al. 2010). In contrast to traditional

sequence alignment tools, Infernal builds sec-

ondary structure profiles of the 16S rDNA

sequences, which are then used to create new

structure based MSAs (Nawrocki et al. 2009).

The secondary structure of a sequence provides

powerful information for sequence alignments,

because it directs the accurate alignment of con-

served sequence regions. Furthermore, user-

defined parameters such as gap and extension

penalties do not distort the alignment. This

allows a more intuitive handling of sequencing

errors and overcomes problems with aligning

short partial sequences.

3.5.2.2 Clustering
The clustering step generates OTUs without

taking phylogenetic information into account,

as sequences are grouped according to their dis-

tances (similarities) only. Clusters/OTUs are

formed according to furthest, average or nearest

neighbor metrics. Examples for commonly used

clustering tools are Phylip (Felsenstein 1989),

DOTUR (Schloss and Handelsman 2005),

quickdist (Sogin et al. 2006), CD-HIT (Li and

Godzik 2006), mothur (Schloss et al. 2009),

UCLUST (Edgar 2010), or DNACLUST (Ghodsi

et al. 2011).

UCLUST is based on USEARCH and allows

efficient and accurate clustering of high-throughput

biological sequences. USEARCH uses a heuristic,

which allows fast identification of a single or a few

good hits out of all possible homologous

sequences. According to the clustering method,

the outcome is highly influenced by the sequence

order. Sequences can be either sorted by their

length or according to their abundance. In the latter

case sequences have to be matched according to

their prefix to keep track of misalignments of short

sequences (Sun et al. 2012). UCLUST was shown

to be faster and to produce highly similar clusters

compared to CD-HIT (Li and Godzik 2006), but in

recent studies it was outperformed byDNACLUST

(Ghodsi et al. 2011).

DNACLUST represents a fast and accurate

clustering tool, which is tailored toward cluster-

ing highly similar 16S rRNA sequences. Cluster-

ing is based on a greedy clustering strategy, a

k-mer-based filtering algorithm, and a novel

sequence alignment technique, which results in

significantly increased speed and accuracy com-

pared to existing tools (Ghodsi et al. 2011). To

define the cluster size threshold, a radius is used

to calculate the area of the cluster. Elements

within an area are therefore defined as members

of a particular cluster. DNACLUST provides

MSA, k-mer filtering, and clustering with a few

simple commands.

3.5.2.3 Taxonomic Classification of OTUs
In contrast to the comparative classification

approach (described below), sequences are first

grouped into OTUs using unsupervised cluster-

ing. After the grouping, information is gained

about the number of different OTUs, the abun-

dance of an OTU, and sequences assigned to a

particular OTU. For each of the OTUs, a repre-

sentative sequence is selected, usually the longest

one to improve classification accuracy. Subse-

quently, this sequence is used for taxonomic clas-

sification either by the alignment to a reference

database or by classification via the RDP
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classifier (Wang et al. 2007). The Bayesian clas-

sifier, which uses a secondary 16S rRNA model

to confer accurate alignment of sequences, is part

of the Ribosomal Database Project (Cole et al.

2009) and is currently trained with 16S rRNA

sequences classified according to Bergy’s Taxo-
nomic Outline of Prokaryotes (Gascoyne et al.

2004) for 16S rRNA bacterial and archaeal

sequences.

3.5.3 OTU Generation by Comparative
Classification

Compared to the previous approach, the order of

the analysis steps is reverted. First, sequences are

assigned to a taxon, which is then the basis for

OTU generation.

The basic idea of this approach is to classify

each sequence based on its similarity to known,

well-annotated reference sequences. Different

taxonomic classification schemes for eubacteria

and archaea exist. The widely used GreenGenes

database (DeSantis et al. 2006b), combines the

Pace (Pace 1997), Hugenholz (Hugenholtz and

Pace 1996), Ludwig (Amann et al. 1995), RDP

(Cole et al. 2009), and the NCBI taxonomy

(Sayers et al. 2011). The most similar sequence

in the reference database can be determined by

using local alignment search tools such as

BLAST (Altschul et al. 1990) or BLAT (Kent

2002). As the latter significantly improved the

accuracy of the search and also proved to be

~500 times faster than the traditional BLAST, it

is commonly used in microbiome characteriza-

tion and classification. The taxonomic classifica-

tion of the most similar reference sequence is

then assigned to the query sequence. Finally,

OTUs are formed by pooling sequences with

the same taxonomic classification.

An example for such an approach is JGAST

(Hamp et al. 2009). The implementation of

JGAST is based on the principles of “nearest

neighbor” algorithms and can be seen as

an improved Global Alignment for Sequence
Taxonomy method (GAST, Huse et al. 2008).

The query sequence is mapped to full-length

sequences in an unaligned reference database.

The classification result of the highest scoring

sequence is then assigned to the query sequence

(Hamp et al. 2009). Again the GreenGenes data-

base is often used as reference database.

3.5.4 Statistical Analysis and
Visualization

The measurement of microbial diversity is a key

method in understanding community organiza-

tion and activity. Diversity depicts the amount

of taxa or lineages in a sample with a given

sample size, i.e., the number of different taxa

within a respective sample (Whittaker 1972).

There are twomajor approaches for diversity mea-

sures; a-diversity measures the diversity within a

community or an ecosystem at a certain time point

whereas b-diversity or species turnover is a com-

parative measure of diversity between different

communities or the same community over differ-

ent conditions (Whittaker 1972).

3.5.4.1 a-Diversity
As a measurement of diversity within a single

community or ecosystem, it plays an important

role in comparison of different communities.

a-diversity can be either qualitative or quantitative.
Qualitative a-diversity is also called species

richness (Lozupone and Knight 2008) and refers

to the number of species in a sample (Whittaker

1972). In contrast qualitative species-based

a-diversity only represents presence or absence

of certain taxa within a microbial community

(Lozupone and Knight 2008). To define the quali-

tative a-diversity, the Chao index (Chao 1984) or

the ACE index (Chazdon et al. 1998) is often used.

Quantitative a-diversity is also known as rich-
ness and/or as evenness. In contrast to qualitative

diversity measures it also accounts for the abun-

dance of each taxon, i.e., evenness is high if each

taxon is equally abundant in a community. Quan-

titative a-diversity is usually represented by the

Shannon (Shannon and Weaver 1963) or Simp-

son (Simpson 1949) indices.

a-diversity measurements can be distin-

guished into species-based and divergence-

based measures. In species-based methods
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relations between different phylotypes within a

sample are not considered. In contrast diver-

gence-based methods characterize a community

as more diverse, if its individuals differ greatly

from each other (Lozupone and Knight 2008).

Depending on whether qualitative- or quantita-

tive measures are used, Phylogenetic Diversity

(Faith 1992) or Theta (Martin 2002) can be cal-

culated.

3.5.4.2 Rarefaction Analysis
In the context of diversity measurement of a single

community also a rarefaction analysis can be

applied. Rarefaction curves (Fig. 3.2) illustrate

the number of species or OTUs observed as a

function of the number of individuals (sequences)

sampled (Wooley et al. 2010). Thus, rarefaction

analysis reveals how many phylotypes are in a

sample (richness) and how many individuals

have to be sampled to reach saturation of the

analysis. In microbiome analysis this relates to

the sequencing depth (the number of sequences)

obtained from a sample. Figure 3.2 shows three

typical rarefaction curves: (1) the solid black

curve demonstrates the best case: the curve

shows a steep increase at the beginning and flat-

tens with increasing number of individuals sam-

pled. Here most or all species or OTUs have been

sampled and further sampling would not increase

the number of species or OTUs. (2) The dashed

curve shows also the steep increase at first, but

does not saturate. This means that each newly

analyzed sample or an increased sequencing

depth would lead to more species or more

OTUs. (3) The very steep increase of the gray

curve indicates a species-rich habitat. The current

number of individuals sampled only covers a

small fraction of the given diversity and additional

sequencing is necessary to characterize the com-

munity (Wooley et al. 2010).

In addition to checking the sampling depth, a

rarefaction analysis facilitates the comparison of

samples with different sample size, by comparing

the number of OTUs or species at a specific

number of sequences in a sample. This is in

general the number of sequences in the smallest

sample.

3.5.4.3 b-Diversity
b-Diversity describes the degree of variation

between microbial communities according to the

number of different species, and their abundance

in a habitat across space and/or time or envir-

onmental condition, i.e., how many taxa or

lineages are shared among samples/along a gradi-

ent (Koleff et al. 2003). Species-based appro-

aches can be used to observe a microbial

environment during different disease stages. It

reveals changes in composition and diversity of

a microbiome in course of a disease compared

to healthy state. Additionally, species-based

b-diversity measures allow evaluating whether

the same environment in different ecosystems

(i.e., the same body site of different individuals)

share a similar or equal microbial composition

(Noguez et al. 2005).

As with a-diversity, qualitative and quantita-

tive indices of b-diversity can be discriminated.

S€orensen (Soerensen 1948), Bray–Curties (Bray

and Curtis 1957), and Jaccard (Jaccard 1901)

indices are often calculated to get a qualitative

measure. For quantitative diversity index calcu-

lations, the S€orensen quantitative index (Chao

et al. 2006) or Morisita-Horn (Magurran 2004)

measure are widely applied. Due to limitations

within species-based b-diversity calculations, the
divergence-based approach is preferred. The

underlying principle of the divergence-based

measure is that similarity/dissimilarity of the

Fig. 3.2 Rarefaction curves. Solid black, ideal case,

nearly all species/OTUs have been sampled. Dashed
black, more sampling is needed; the habitat has not been

sufficiently sampled. Solid gray, indicates a species rich

habitat; the current number of individuals sampled only

covers a small fraction of the species in the habitat
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different taxa within a microbial cohort is taken

into account. To calculate qualitative and quanti-

tative divergence-based measures, Unweighted
UniFrac (Lozupone and Knight 2005) or Taxo-

nomic Similarity (Izsak and Price 2001), and

Weighted UniFrac (Lozupone et al. 2007),

FST (Martin 2002), or DPCoA (Pavoine et al.

2004) are used respectively (Lozupone and

Knight 2008).

In measuring a- as well as b-diversity,
divergence-based methods are more accepted

than species-based techniques. In addition,

divergence-based methods can resolve the phy-

logenetic membership of a given OTU even

when exact matches to reference sequences are

not available. Furthermore, these dramatic differ-

ences often directly correlate with phenotypic

similarities, which represent fundamental fea-

tures (Lozupone and Knight 2008).

3.5.4.4 Visualization
Rapid interpretation of the results can be facili-

tated by different types of diagrams visualizing a

single sample or multiple samples.

Simple barcharts (Fig. 3.3a), piecharts, or

line plots can be used for visualizing sequence

distribution and composition of a sample at a

particular taxonomic rank. They enable easy

and fast comparison of differences in microbial

composition and in abundance between different

samples. Furthermore, line plots are a powerful

tool to illustrate changes in microbial composi-

tion over time.

Heatmaps (Fig. 3.4a) are the best way to illus-
trate two-dimensional data. The degree of corre-

lation of each x-value to its corresponding

y-value is represented by a certain color. Heat-

maps are often used for graphical representation

of b-diversity measures. In this particular case

the heatmap results in an upper triangular matrix

with the same categories on x- and y-axis. As a

consequence of the cross-correlation, the leading

diagonal represents identity. Typically, heatmaps

are used to visualize differences in microbial

community compositions between healthy and

diseased states or between states in the course

of a disease. Furthermore, heatmaps are suitable

to illustrate the relative abundance of each OTU

between different samples.

Rank abundance plots (Fig. 3.3b) illustrate the

species abundance of a certain habitat. Naturally

occurring microbial communities are typically

composed of a small number of high abundant

phylotypes representing the majority of cells in a

community and a vast amount of low abundant or

rare phylotypes. This so-called long-tailed distri-

bution of phylotypes together with incomplete

sampling leads to an insufficient detection of

rare taxa. It has to be noted that rare taxa could

play major roles in the ecology of the microbial

community; for instance they could serve as a

“seed bank” for species whose numbers increase

under certain conditions that favor their growth

and may therefore be important for community

function (Lennon and Jones 2011). Abundance

ranks of the OTUs are plotted on the x-axis,

starting with the highest rank of 1. The y-axis
represents the logarithm of the species abun-

dance. This kind of graphical representation

allows visualizing richness and evenness of

microbial communities. Richness is simply

represented by the number of ranked species.

Evenness can be determined according to the

trend of the rank abundance curve. Low evenness

is indicated by a steep gradient, since high rank-

ing species are more abundant than low ranked

species. In contrast, a flat slope means high even-

ness, because all ranked species are equally

abundant (Magurran 2004).

Principal component analysis (PCA) scatter

plots are used to visualize groupings within the

data according to two principal components

(two-dimensional PCA, Jolliffe 2002). Through

a microbial community analysis the composition

of individual microbiomes can be visually com-

pared to PCA scatter plots. In this particular case

abundance values of taxonomic groups are used

for the PCA.

Venn diagrams (Fig. 3.4b, Venn 1880) repre-

sent logical relations of different cohorts as

overlapping circles. These circles contain all

species of a particular microbial community.

Overlapping areas of different circles represent
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shared species among microbial communities.

This is a simple way of comparing the composi-

tion of different microbial communities.

Cytoscape networks (Shannon et al. 2003)

allow visualizing species co-occurrence networks

of different microbial communities (Qin et al.

2010; Arumugam et al. 2011). This kind of

graphical illustration enables a clear visuali-

zation of similar community structures among a

variety of habitats or ecosystems.

Fig. 3.3 Visualization of a-diversity: Data provided by

Costello et al. (2009) have been analyzed using SnoW-

MAn’s integrated RDP pipeline. Samples from four dif-

ferent body sites (F11Aptl: left armpit; F11Ewxl: earwax;
F11Fcsp: stool; F11Forl: left forearm) of one female

individual have been selected for visualization. (a) The
relative sequence distribution at phylum level at a classi-

fication confidence threshold of 80 % is illustrated as a

barchart. Each bar comprises all phyla of particular sam-

ple colored individually. The height of a phylum relates

to the relative abundance of all OTUs assigned to that

specific phylum. The microbial composition of the armpit

and the forearm is similar with regard to prevalent phy-

lotypes. Moreover, the earwax sample can be treated as a

skin sample and shows two prevalent phyla which are also

present in forearm and armpit. As expected, the microbial

compositions of the armpit and the stool have not very

much in common. (b) The rank abundance plot illustrates
that species richness is very similar for three of the four

samples and significantly lower for the ear wax sample.

The steep gradient of the slope in the rank abundance plot

indicates low evenness for all four samples
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3.6 Web-Based Pipelines for
Microbiome Sequence Analysis

In the following sections, three selected web-based

analysis pipelines are described. These pipelines

simplify microbiome data analysis considerably

and cover the analysis steps aforementioned to a

certain extent. As web-based analysis pipelines do

not require any installation on the user’s computer,

they can be readily used. Furthermore, intuitive

web interfaces allow analysis from any computer

with an Internet connection and without detailed

knowledge about underlying programming techni-

ques and methods. Users can so start immediately

with data analysis. Some of the web-based analysis

Fig. 3.4 Visualization of b-diversity: Data provided by

Costello et al. (2009) have been analyzed using SnoW-

MAn’s integrated RDP pipeline. Samples from four dif-

ferent body sites (F11Aptl: left armpit; F11Ewxl: earwax;
F11Fcsp: stool; F11Forl: left forearm) of one female

individual have been selected for statistical visualization.

(a) A heatmap illustrates sample similarity based on the

Bray–Curtis distance (Bray and Curtis 1957). For easier

interpretability the similarity (1-distance) is shown. The

microbial composition of the armpit and the forearm

samples are quite similar. In contrast, the stool and the

armpit or the stool and the earwax microbiomes are very

different, showing a similarity of zero. (b) A Venn dia-

gram shows the relative phylotype (OTU) overlap

between the four samples. From a total number of 609

distinct phylotypes in the samples, the vast majority

(86.54 %) is unique to a specific sample. Moreover, no

OTU is shared among all samples, caused by the distinc-

tive composition of the stool sample
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pipelines also allow data storage and organization.

In contrast, limitations to the maximum amount of

sequence data, account space, or reproducibility

have to be considered. Data analysis consists in

general of four steps: (1) upload of sequence data

to the web platform; (2) selection of analysis para-

meters and initiation of the analysis; (3) visualiza-

tion of the results; and (4) download of the results

for further analysis.

3.6.1 RDP Pyrosequencing Pipeline

The RDP Pyrosequencing Pipeline (http://pyro.

cme.msu.edu/, Cole et al. 2009) provides a col-

lection of tools for the analysis of 16S pyrose-

quence data. The pipeline is organized in three

tiers: The first tier comprises tools for the initial

processing like trimming, sorting, or quality fil-

tering. The second tier, the so-called core tools,

includes the calculation logic such as alignment,

clustering, and dereplication as well as the clas-

sification of OTUs with the RDP classifier. At the

top tier specialized tools for rarefaction analysis,

library comparison, ecological metrics, and data

export utilities for multiple output formats are

combined. Each step in the analysis workflow

has to be addressed, configured, and executed

separately, and requires the download of inter-

mediate results as well as their upload for the

next analysis step. E-mail notifications inform

the user when a job is completed. Analysis

results can then be used for further processing

within the pipeline as well as exported as com-

mon file formats for further analysis with statis-

tical and ecological packages like EstimateS

(Colwell 1997), R (R Core Team 2012), or

Spade (Chao A and Shen T-J, 2010).

The RDP Pyrosequencing pipeline can ana-

lyze studies with up to 350,000 raw sequences,

but the input to the RDP classifier is limited to

100,000 sequences.

3.6.2 SnoWMAn

SnoWMAn, the Straightforward Novel Webinter-

face for Microbiome Analysis (http://SnoWMAn.

genome.tugraz.at, Stocker et al. 2011), covers the

entire microbiome analysis workflow from

sequence preprocessing to the visualization of

the results. A typical microbial community analy-

sis with SnoWMAn comprises three simple steps:

first, the sequence and metadata are uploaded to a

data repository. Second, the user can chose

between five currently available analysis pipelines

and define the respective parameters. Finally, the

user can perform statistical analysis and visualiza-

tion on the results.

An intuitive and user-friendly web interface

guides the user through the analysis. Data can be

uploaded into the repository as a compressed

archive or as single files. Files containing

sequence data need to be submitted in FASTA

format and can be accompanied by their respec-

tive quality files. Metadata files are plain text

files and comprise primer- and sample descrip-

tion files. The sample description file keeps infor-

mation about sample barcodes, sample names,

and sample grouping. The latter information is

important for subsequent statistical analysis and

visualization. Data files are organized in the

repository of the user allowing the analysis of a

data set with multiple pipelines and parameter

settings. Additionally, data files and analysis

results can be shared with other SnoWMAn

users working on the same study.

Currently, five different pipelines are sup-

ported: BLAT (Kent 2002) and JGAST (Hamp

et al. 2009) can be chosen for OTU generation

by comparative classification. mothur (Schloss

et al. 2009), RDP (Cole et al. 2009), and

UCLUST (Edgar 2010) are available for OTU

formation by clustering. According to the chosen

analysis pipeline a set of preprocessing or pipe-

line parameters are available. For example, the

user can define the reference databases used for

comparative classification or alignment. This

gives the user control over the database used

and allows for the reproduction of analysis

results at a later time.

Based on the amount of sequences in the data

set and on the selected pipeline, the calculation

time varies considerably. Current analysis status

and time estimation are available via the web inter-

face. If an e-mail address was provided, the user is

notified when the analysis has been completed.
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For statistical analysis and visualization, vari-

ous possibilities are offered depending on the

selected samples. a-Diversity and b-diversity
measures or rarefaction curves can be calculated

for samples. Comparison of individual samples is

offered by PCA. Additionally, different chart

types (i.e., barchart, piechart, line plot) can be

chosen to illustrate the number of sequences in

the samples, the taxonomic composition of sam-

ples, or the rank abundance relationship of a given

sample. OTU overlap of different samples can be

easily compared using integrated Venn diagrams.

Analysis results are summarized and illu-

strated in user-friendly tables. Furthermore,

results of distance calculation, clustering, and

taxonomic classification can be exported for fur-

ther statistical analysis. All generated graphical

illustrations can be downloaded in either PNG or

SVG format or as an Excel sheet containing the

data used to generate the chart.

SnoWMAn imposes no restrictions on the

number of sequences or number of samples

which can be analyzed with a single run.

3.6.3 FastUniFrac

FastUniFrac (http://bmf2.colorado.edu/fastuni-

frac/, Hamady et al. 2010) can be assigned

neither to the category of comparative classifica-

tion nor to the unsupervised clustering techni-

ques within the analysis of complex microbial

communities. FastUniFrac is the web-based

version of UniFrac (bmf.colorado.edu/unifrac/,

Lozupone and Knight 2005) and represents a

phylogenetic method for computing differences

between microbial communities. The main prin-

ciple is the measurement of the pair-wise dis-

tances between communities based on the

lineages these communities contain. These dis-

tances are used to build a phylogenetic tree con-

taining all taxa found either in one or in both

communities. Branches of the tree are either

shared or unshared, depending whether on the

taxa it holds belong to one or both communities.

Consequently, two similar communities would

share much of the branch length. In contrast,

distinct communities would be represented by a

highly branched tree which contains barely any

shared branches (Lozupone and Knight 2005;

Lozupone et al. 2006).

FastUniFrac allows investigating the microbial

community composition. In particular, samples,

which have been added to the phylogenetic tree,

differ significantly in microbial composition.

Additionally, the impact of environmental factors

can be determined as well as if the sample size

was sufficient for reliable investigation. Finally,

clear and easy graphical illustration of differences

between samples is provided by FastUniFrac.

However, data analysis with the FastUniFrac

web version is limited to 50,000 sequences and

100 samples.

3.7 Command Line-Based
Pipelines for Microbiome
Sequence Analysis

In contrast to web-based pipelines, command

line-based pipelines do not offer a graphical

user interface and have to be run from a com-

mand shell. They often require complex installa-

tion and are therefore not available for users

without a bioinformatics background. Hardware

requirements are quite demanding, especially for

large studies. Additionally, reference databases

have to be downloaded and updated regularly

and stored within the local network to be avail-

able for the analysis.

Nevertheless, command line tools have sev-

eral advantages. They can be integrated into

individualized analysis workflows and sequence

data does not have to be transferred to external

servers, as well as the analysis results are directly

available in the local network.

In the next sections two commonly used com-

mand line-based analysis tools (mothur, Schloss

et al. 2009; QIIME, Caporaso et al. 2010) are

introduced and discussed.

3.7.1 mothur

mothur (http://www.mothur.org/, Schloss et al.

2009) was designed as a platform for microbial
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ecologists to support their needs to analyze 16S

rRNA gene sequences. The platform combines

preprocessing methods, alignment tools, pair-

wise distance calculation, clustering sequences

into OTUs, and analysis strategies for distance

matrices like a- and b-diversity measures as well

as rarefaction. Moreover, visualization plots such

as Venn diagrams, heatmaps, and dendograms

can be created. The included techniques and

algorithms have been mostly modified and

extended to overcome limitations including num-

ber of sequences allowed or calculation time.

mothur is a powerful, free, open source, and

platform-independent command line tool. Due to

its large development and user community, exist-

ing features are continuously improved as well as

new tools are integrated into the platform

(Schloss et al. 2009).

3.7.2 QIIME

QIIME (pronounced “chime”, http://qiime.sour-

ceforge.net/, Caporaso et al. 2010) is a pipeline

designed for the analysis of high-throughput

microbial community sequence data. It combines

many third party tools such as options for library

demultiplexing and quality filtering as well as

techniques for denoising. Different clustering

tools can be selected for grouping sequences to

OTUs. Tools including MUSCLE or Infernal are

provided for sequence alignment. Chart types

such as piecharts and histograms can be selected

for visualization of the sample composition.

Additionally, rarefaction and diversity measures

can be calculated using different metrics and they

can also be graphically illustrated.

QIIME is a free, open source analysis pipe-

line, which can be used either locally or in the

“Cloud” as part of the CloVR Cloud Computing

Research Project (http://clovr.org/, Angiuoli

et al. 2011).

Conclusion

In this chapter we reviewed bioinformatics

tools and techniques which are commonly

used for characterization and classification of

complexmicrobial communities. Furthermore,

the entire workflow of a microbiome analysis

was introduced and challenges of each step

were discussed. Although the focus was on

the analysis possibilities, their tools and tech-

niques as well as practical examples of com-

plexmicrobial communities of the human body

were shown.

We conclude that the rapid progress in

sequencing technologies and the continuous

increasing amount of sequences they produce

pose a challenge to bioinformatics analysis

tools to keep up with these fast developments.
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