
Tiago Filipe Teixeira dos Santos MSc

Early Classification of Time Series and
Deep Learning

MASTER’S THESIS
to achieve the university degree of

Diplom-Ingenieur
Master’s degree programme: Computer Science

submitted to
Graz University of Technology

Supervisor
Dipl.-Ing. Dr.techn. Roman Kern

Know-Center
Institut für Wissenstechnologien

Graz, July 2016



This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template


Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
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Abstract

This thesis aims to shed light on the early classification of time series
problem, by deriving the trade-off between classification accuracy and time
series length for a number of different time series types and classification
algorithms. Previous research on early classification of time series focused
on keeping classification accuracy of reduced time series roughly at the level
of the complete ones. Furthermore, that research work does not employ
cutting-edge approaches like Deep Learning. This work fills that research
gap by computing trade-off curves on classification ”earlyness” vs. accuracy
and by empirically comparing algorithm performance in that context, with
a focus on the comparison of Deep Learning with classical approaches.

Such early classification trade-off curves are calculated for univariate and
multivariate time series and the following algorithms: 1-Nearest Neighbor
search with both the Euclidean and Frobenius distance, 1-Nearest Neighbor
search with forecasts from ARIMA and linear models, and Deep Learning.

The results obtained indicate that early classification is feasible in all types
of time series considered. The derived tradeoff curves all share the common
trait of slowly decreasing at first, and featuring sharp drops as time series
lengths become exceedingly short. Results showed Deep Learning models
were able to maintain higher classification accuracies for larger time series
length reductions than other algorithms. However, their long run-times,
coupled with complexity in parameter configuration, implies that faster,
albeit less accurate, baseline algorithms like 1-Nearest Neighbor search may
still be a sensible choice on a case-by-case basis.

This thesis draws its motivation from areas like predictive maintenance,
where the early classification of multivariate time series data may boost
performance of early warning systems, for example in manufacturing pro-
cesses.
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1 Introduction

This chapter’s purpose is to introduce the reader to this thesis’ main topic,
early classification of time series. It starts by naming reasons that make this
problem an interesting choice for a thesis, in the motivation section. Then,
the research questions guiding this work are presented, finally followed by
the presentation of the structure of this thesis in the section outline.

1.1 Motivation

Time series are general mathematical constructs, which describe a sequence
of data indexed and ordered by time. This general definition, while being
not too abstract to grasp, already gives a sense of the vast number of
applications such a concept might have in practice. These range from the
analysis of financial markets, perhaps modeled as the development of some
stock indices over time, forecasting the weather, a setting where a large
number of time series of several indicators like temperature, humidity or
atmospheric pressure need to be somehow combined, understanding music
or sound, where the search for fundamental frequencies in a temporal series
of pitches might be of interest, to even computing a rocket’s trajectory
as it soars through the skies. In short, the use of time series, as a tool to
understand and model a very large variety of processes evolving over time,
is ubiquitous.

As a concrete motivating example for the more specific task at this thesis’
hand, take, for instance, a manufacturing process. In modern manufactur-
ing processes, machines are put to use to carry out many of the assembly
operations humans used to perform manually decades (or centuries) ago.
Picture therefore a manufacturing process with a high degree of automation,
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1 Introduction

such that humans are no longer required to be active in the factory floor,
but they instead monitor the progress of the machines in the assembly
line and ensure that it goes as intended and conforms to certain quality
standards. How do factory workers monitor the progress of the machines
and are alerted to any issue in the process? The answer is machine sensors,
spread throughout the factory’s assembly line, which collect data on the
machines and on each manufacturing step and report that data. Thus, it is
the factory workers’ job not only to monitor this data, but to react to it in
case some manufacturing step needs immediate attention, for instance in
case of an unexpected problem. In such a scenario, where an unexpected
problem might occur, it is expected that the maintainer has a timely reaction
to sensory data reflecting that issue. A timely, or maybe as-soon-as-possible,
reaction in such cases may for example save a production batch, that would
otherwise have to be scrapped, or perhaps even economize the often costly
maintenance expenses for a given machine, whose sensory data might show
that some component in it is malfunctioning and the sooner that flaw gets
eradicated the better. A real life example of the benefits of early detection of
such events or outliers in sensor data would be that of satellite or probe tra-
jectory corrections. Space missions like the Mars Climate Orbiter by NASA
and the Jet Propulsion Laboratory have gone awry in the past, not least
due to a failure by the mission monitoring to heed early warning systems
(Laboratory, (2010)). Such failures entail not only very heavy financial losses,
but also cost years or perhaps decades of work.

The data provided by the sensors in the examples above may be modeled as
a time series, or perhaps a (large) number of them. Then, to detect events,
such as a malfunctioning component in the time series data, as soon as
possible, or to provide early warnings from the sensory data, one wishes
to be able to tell if said event is happening in the time series data as early
as possible, which is equivalent to just using a certain window of the time
series, with as little observations as possible. However, in the same early
warning setting, one also wishes to detect that irregularity as accurately as
possible. These are in general conflicting objectives, since, intuitively, more
observations lead to a better informed, i.e. more accurate, decision basis
in a warning system, but, naturally, having more observations of the time
series means waiting longer to make a possibly time-critical decision. The
question then becomes, what is the trade-off between both aspects?
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1.2 Research Questions

This thesis’ main topic concerns exactly that: to apply machine learning
methods to help make early decisions in such cases, for data modeled as
time series. In the machine learning context, this is often discussed as time
series classification, more specifically early time series classification. The
existing literature on this proposes a series of approaches for attacking
this problem, but they do not empirically explore the tradeoff between
time series length and classification accuracy to derive the so-called early
classification tradeoff curve, and they also do not comparatively analyze
classic time series classification approaches with more modern techniques
like Deep Learning models for that.

Thus, it is the aim of this thesis to tackle this research gap by addressing
the following research questions.

1.2 Research Questions

As previously described, it is the objective of this thesis to investigate early
classification of time series, and in particular the tradeoff in classification
accuracy vs. ”earlyness” one incurs when classifying time series before a
full sequence is observed. Specifically, this thesis contributes to research in
this area by setting out to answer the following research questions:

1. Which types of series allow for early time series classification?
2. What is the trade-off curve between classification accuracy and time series

length?
3. Which classification algorithms are more appropriate for the early time series

classification task? In particular, how do Deep Learning methods perform in
this matter and how do they compare with other classification algorithms?

1.3 Outline

In the next chapter, numbered 2, the current state of the art is presented and
the research gap within it, which this thesis aims to bridge, is identified.
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1 Introduction

Then, in chapter 3, the methods employed by this thesis to tackle the
research questions are formally introduced. The chapter starts with a math-
ematical formalization of the problem setting surrounding time series, time
series classification, early time series classification and algorithms therefore.
Thereafter, implementation details are provided for the realization of that
theory.

The results chapter (4) then ensues, beginning with an exposition of the
three different time series datasets examined by this thesis. Graphical and
numerical reports on the results achieved with the proposed early time
series classification approaches and those datasets round up this chapter.

Chapter 5 is the evaluation chapter, in which interpretations are proposed
and conclusions are drawn from those obtained results and the research
questions can begin to be answered.

Finally, chapter 6 concludes this thesis with a summary reflection on the
progress it achieved and a discussion of promising avenues of future re-
search work in the area of early classification of time series.
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2 Literature Review

This literature review is structured as follows. A brief overview on defini-
tions of time series and time series types to be considered by this thesis
serves as an introduction to the literature on this topic. Then, literature on
general algorithms for time series classification is presented. The application
of deep learning algorithms for time series classification is awarded a sepa-
rate section. Finally, early time series classification literature is reviewed.

2.1 Time Series Definitions and Types

Brockwell and Davis, (2013) define a time series as a series of observations xt,
with each observation x corresponding to a specific time t. They distinguish
between continuous and discrete time series. The latter refers, according to
the authors, to time series with a discrete set of observations, and the former
to time series of continuously recorded observations over some time interval
like T0 = [0, 1]. This thesis focuses on discrete time series.

Another distinguishing feature of time series regards the observations xt. xt
may be defined as a singular value, in which case the time series is called
a ”univariate time series”. If xt represents an n-dimensional vector, then
the time series is termed ”multivariate time series”. Both single variable
and multivariate time series will be analyzed. The observation values are
assumed to be defined in R and respectively in Rn.

Time series can be seen in a large number of different contexts, such as
economic forecasting, stock market analysis or inventory analysis, to name
a few of the applications mentioned for example by NIST/SEMATECH,
(2013). Many other examples and applications of time series theory will be
covered in more detail later.
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2 Literature Review

Time series repositories contain samples of such time series for analysis
purposes. These provide the data sources for the practical part of this
work. The UCR Time Series Classification Archive by Chen et al., (2015)
includes not only a set of labeled univariate time series for classification,
but also benchmarks for classifiers. Many papers addressing time series
classification used this time series repository and its benchmarks as a data
source and as a baseline, as will be seen later. One of the datasets cleaned
and summarized in the collection by Chen et al., (2015) is the Auslan
dataset, which was originally prepared by M. W. Kadous, (2002). This data
set of multivariate time series consists of samples of Auslan (Australian
Sign Language) signs, and it is also referenced by a number of time series
classification papers. The third and last time series data set analyzed here is
also composed of multivariate time series. This dataset, named Snackbox,
shows data captured by sensors installed at a room with a box with snacks.
The Snackbox dataset represents sensory data captured in a realistic context,
where data measurements arrive in real-time. These measurements have
been annotated to allow for time series classification on different levels.

2.2 Time Series Classification

Time series classification refers to the process of assigning a label, or class,
to a time series. There is a very large number of approaches to address
the problem of time series classification. Thus, the following review of the
literature on time series classification does not aim to be exhaustive, but
to give an overview of common as well as cutting edge approaches and
theory.

The definition given by Skiena, (1998) of the Nearest Neighbor Search prob-
lem in the field of computational geometry is applied here to the machine
learning context: In a supervised classification setting, which assumes a
train set of labeled samples, the 1-Nearest Neighbor algorithm takes a new,
unlabeled instance and assigns to it the label of the nearest neighbor from
that train set, according to a certain measure of distance in R. The 1-Nearest
Neighbor classifier is used by Chen et al., (2015), Yang and Shahabi, (2007)
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2.2 Time Series Classification

and Wei and E. Keogh, (2006), among many others, to classify both uni-
variate as well as multivariate time series. To name a few of the distance
measures used with the 1-Nearest Neighbor algorithm, these papers respec-
tively use the Euclidean distance and dynamic time warping for univariate
time series, as well as the Frobenius distance for multivariate time series.

Chen et al., (2015) uses the 1-Nearest Neighbor algorithm with the Eu-
clidean distance as a baseline for comparison with dynamic time warping
with different warping windows, since the latter generally outperforms the
Euclidean distance as concluded by the authors.

On the other hand, Yang and Shahabi, (2007) optimize the k-Nearest Neigh-
bors search (incl. 1-Nearest Neighbor) for multivariate time series with an
extension of the Frobenius distance termed ”Eros”. ”Eros” applies the Frobe-
nius distance to the singular value decomposition of the covariance matrices
of 2 different multivariate time series in matrix-form. This helps with get-
ting both matrices to have equal dimensions to compute the Frobenius
distance, as well to capture the importance of the covariances of columns
of the multivariate time series matrices, i.e. of the variables within the time
series.

Yang and Shahabi, (2007) and Chen et al., (2015) are not the only papers
making use of Nearest Neighbor search as an integral part of a classification
process. The paper Wei and E. Keogh, (2006) aims to improve the 1-Nearest
Neighbor’s performance in a binary classification setting where few labeled
data is available. The approach proposed by the authors involves reinforcing
the 1-Nearest Neighbor classifier’s performance on the unlabeled set by
iteratively adding instances classified with high confidence to the train set,
until some stopping criterion is achieved. The reason for using 1-Nearest
Neighbor as the underlying algorithm, according to Wei and E. Keogh,
(2006), is that it is hard to beat its accuracy, its performance converges to
that of more complex classifiers for longer series, it is simple to implement,
it does not require configuration in the form of parameters and it generalizes
to Rn, for example with the Frobenius distance.

Many other approaches have been proposed to improve the strong perfor-
mance and benefits of the 1-Nearest Neighbor algorithm outlined above.
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2 Literature Review

Take for example Mohammed Waleed Kadous, (1999). That paper describes
an architecture that, given raw data as multivariate time series, extracts
events, clusters them and combines them back again with globally computed
features on the raw data to produce train data for learning classification
rules. Its implementation, called ”TClass”, uses k-means clustering and the
naive Bayes learner for the steps previously described. According to the
author, this approach leads not only to improved classification accuracy, but
also higher understandability of the features used for classification.

Other comprehensible features used in time series classification are so-called
”literals”: simple statistics, like averages, computed over intervals of the
time series. Both Juan J Rodriguez, J. J. R. Guez, and Carlos J Alonso, (2002)
as well as Juan Jose Rodriguez, Carlos J Alonso, and Maestro, (2005) apply
AdaBoost (Freund, Schapire, and Abe, (1999)) on those literals. AdaBoost
is an algorithm which linearly combines many such simple classifiers to
one better performing classifier. The paper Juan J Rodriguez, J. J. R. Guez,
and Carlos J Alonso, (2002) uses adaboosted literals to cope with variable
length time series and perform early classification, as will be seen in more
detail later in this literature review. In Juan Jose Rodriguez, Carlos J Alonso,
and Maestro, (2005), the same authors aim to improve previous results by
considering more complex literal combinations to generate new features.
They then apply, on that set of new features, support vector machines, both
linear as well as with the Gaussian kernel, to achieve performance gains
over the results outlined by other papers using 1- and k-Nearest Neighbors,
on the previously mentioned Auslan data set, among others.

Another approach regarding feature extraction concerns shapelets. Shapelets
are sub-sequences of the time series that allow for classification basing on
local, phase-independent similarity in shape (Hills et al., (2014)). They aim to
maximally represent the class of a time series. Hills et al., (2014), Lines et al.,
(2012) and Ye and E. Keogh, (2009) use shapelets to derive easy-to-interpret
features, while also experimentally improving accuracy of the 1-Nearest
Neighbor algorithm with the dynamic time warping distance (in some of
the datasets of Chen et al., (2015)).

Both the shapelet as well as the time series forest approaches are designed
for univariate time series. One further approach that considers multivariate
time series, by Banko and Abonyi, (2012), combines the dynamic time

8



2.3 Deep Learning for Time Series

warping distance with principal component analysis to create the ”CBDTW”
(correlation based dynamic time warping) measure. That similarity measure
is computed by first segmenting an unclassified time series using principal
component analysis, mapping the segments to the real numbers using a cost
function and then applying the dynamic time warping distance to compare
the unclassified time series to the train set of previously segmented time
series. This approach thus leverages correlation effects to accurately describe
time series classes.

All of the papers mentioned before use either the datasets of Chen et al.,
(2015) or the multivariate time series data set of M. W. Kadous, (2002) or both.
This makes benchmarks and comparisons between them feasible, effectively
addressing concerns mentioned by E. Keogh and Kasetty, (2003).

The importance of hidden correlations in time series data, as highlighted by
the paper mentioned last, is one of the factors motivating the application of
deep learning for time series classification.

2.3 Deep Learning for Time Series

Recently, deep learning has also been applied to the time series classification
problem. This section starts with a review of literature on deep learning in
general and then addresses state-of-the-art deep learning approaches for
time series classification.

To cite Schmidhuber, (2015), quote, ”A standard neural network (NN) con-
sists of many simple, connected processors called neurons, each producing
a sequence of real-valued activations”. There are input neurons, which get
activated from the environment, and other neurons, for example hidden
or output neurons, which, according to the same author, quote, ”get acti-
vated through weighted connections from previously active neurons”. The
assignment of weights for the connections controls the output of the neural
network. In this context, the process of tuning weights to attain certain
output is termed learning. The neurons are typically grouped into layers
called input, output or hidden (i.e. those between input and output) layers.
Each layer transforms, often non-linearly, the aggregate activation of the
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previous layer and propagates that to further layers. Deep learning consists
of assigning weights (in the context described above) across multiple such
layers of often non-linear transformations.

As a part of artificial intelligence, deep learning techniques are currently
experiencing both numerous practical applications as well as various re-
search developments. Bengio, (2009) and Deng and Yu, (2014) outline, in
their reviews of deep learning methods and architectures, many of the
types of deep learning models and their purposes. A few examples of deep
neural network architectures used in supervised learning settings include
multi-layer neural networks as explained above and convolutional neural
networks.

The latter consists of a deep neural network, especially designed for com-
puter vision tasks. As described by LeCun et al., (1998), convolutional neural
networks have unique properties like ”sparse connectivity”, which means
that each layer is associated with just one region of an input image, i.e. the
so-called ”receptive fields”, and ”shared weights”, which refers to each layer
having the same set of weights (but with different receptive fields). There
are also several deep neural network architectures designed to work in an
unsupervised context, such as Restricted Boltzmann Machines, a type of
stochastic artificial neural network, Deep Belief Networks, which consist of
multiple learning layers (like Restricted Boltzmann Machines) which are
trained greedily per layer, or Autoencoders, a type of feed forward network
designed to replicate its input.

Deep learning architectures like the ones described above have been applied
to successfully address problems like speech recognition (G. Hinton et al.,
(2012)), image classification (Taigman et al., (2014)) or even beating profes-
sional Go players (Silver et al., (2016)). Besides the very promising practical
results achieved in those areas, the author Bengio, (2009) mentions the ability
deep architectures have to succinctly represent functions as opposed to very
large shallow architectures, as the main theoretical advantage of deep learn-
ing. Furthermore, the broad availability of open-source software frameworks
for deep learning eases the deployment of distributed, performant, complex
and state-of-the-art deep neural network models. Notable examples thereof
are Theano (Bergstra et al., (2010)), Torch (Ronan Collobert et al., (2016)),
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2.3 Deep Learning for Time Series

Google’s TensorFlow (Martin Abadi et al., (2015)) and Microsoft’s CNTK
(Amit Agarwal et al., (2014)).

Yet another prominent application of deep learning architectures lies in
time series classification. The literature on this topic is reviewed next. One
of the first references on multivariate time series classification with neural
networks is Chakraborty et al., (1992). That paper proposes a feedforward
neural network for predicting flour prices for a number of geographical
locations. That neural network’s predictions outperform those by an autore-
gressive moving average model on the root mean squared error measure.
However, this paper does not employ deep neural nets since it makes use of
only one input layer, one hidden layer and one output layer.

The work by Ahmed et al., (2010) also suggests that neural networks may
bring performance improvements to time series forecasting. In their em-
pirical study, the authors directly compare machine learning methods like
support vector regression, k-Nearest Neighbor regression and multilayer
perceptron to assess their performance as time series forecasting algorithms.
The authors conclude that the multilayer perceptron is among the more
accurate methods for that task. A multilayer perceptron is a simple neural
network consisting of just one hidden layer (and, of course, input and output
layers), so, like before, this paper also does not address the use of deep
neural networks.

In Busseti, Osband, and Wong, (2012) however, several deep neural networks
are trained and analyzed for the task of energy demand load forecasting.
A deep recurrent neural network of 2 hidden layers and delivered the best
performance in terms of root mean squared error of predicted values. The
authors also stress the importance of feature selection and engineering to
fully tap neural networks’ power to fit highly non-linear models. To that end,
both domain knowledge as well as, among other transformations, principal
component analysis proved useful in achieving the best possible results.

Feature selection and engineering as part of the application of deep neural
networks to time series data is also one of the topics of Langkvist, Karlsson,
and Loutfi, (2014). That work addresses the use of deep neural networks
to derive, from raw data, relevant features for time series modeling in an
unsupervised setting.
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Finally, Batres-Estrada, (2015) proposes a complex model, consisting of
a deep belief network coupled to a multilayer perceptron, to compose
portfolios of stocks. In that work, the deep neural network’s input are
carefully selected stock value time indexes, which reflects the role domain
knowledge plays in the architecture of complex deep neural networks. The
deep neural network delivered promising results and performed better in
comparison with, among others, a logistic regression network.

After dealing with the literature on time series classification, both with
general as well as with deep learning algorithms, work on early time series
classification will be reviewed next.

2.4 Early Time Series Classification

Xing, Pei, and Philip, (2009), Parrish et al., (2013) and Dachraoui, Bondu,
and Cornuejols, (2015) all agree on the basic early classification definition:
It is the problem of trying to come to a classification decision with as little
observations of a time series as possible, while sacrificing classification
accuracy as little as possible.

A different interpretation of the early classification problem is provided by
Petitjean et al., (2014), which tackles the computational performance side of
time series classification. This paper improves both the time and resource
complexity of 1-Nearest Neighbor with the dynamic time warping distance
by creating nearest ”centroid” classifiers that are both faster and at least as
accurate as nearest neighbor algorithms. This interpretation of early time
series classification is not, however, the focus of this thesis.

Again, all of the papers mentioned below use either the datasets of Chen
et al., (2015) or the multivariate time series data set of M. W. Kadous, (2002)
or both, which is once again helpful for benchmarking and comparing the
approaches (E. Keogh and Kasetty, (2003)).

One of the first works on the topic of early classification, as defined over
time series length, was written by Juan J Rodriguez, J. J. R. Guez, and Carlos
J Alonso, (2002). The authors start with literals, which are, as mentioned
before, simple indicators or statistics, for example if a time series is going
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up or down over a previously defined interval. These base literals are then
combined with an AdaBoost.MH, a version of the prominent ensemble
classifier created by Freund, Schapire, and Abe, (1999), which can cope with
multivariate time series with variable length. Since their approach can work
with time series of variable length, if a partial time series is used as input to
their ensemble classifier, some of the literals, though not all, will still be able
to output a classification response. Using the fact that the ensemble classifier
is just a linear combination of those literals, the authors omit literals with
unknown values to still reach a classification decision on a partial sample
of the time series, thus performing early classification. Their experimental
evaluation of classification performance on an early version of the dataset by
Chen et al., (2015) reveals that early classification may be a promising future
research avenue, for example by tuning the AdaBoost learning process to
address early classification.

After Juan J Rodriguez, J. J. R. Guez, and Carlos J Alonso, (2002), many other
authors addressed and further formalized the early classification problem.
With Xing, Pei, Dong, et al., (2008), Xing, Pei, and Philip, (2009) and Xing,
Pei, Philip, and Wang, (2011), that group of authors advanced research on
early classification of time series from a number of different perspectives.

The paper Xing, Pei, Dong, et al., (2008) presents a first approach dedicated
to early classification basing on both sequential rules mining and sequential
decision trees. The focus of this paper is, however, sequences, which are
time series taking values from a finite set (like an alphabet). A more general
context, which would be, like in this thesis, time series taking values in R,
is considered in the following papers.

Further, more prominent early classification approaches by mostly the same
authors include ”Early Time Series Classification”, developed as early as
Xing, Pei, and Philip, (2009) and described in further detail in Xing, Pei, and
Philip, (2012). The author stipulates desirable, additional characteristics for
early classifiers in general. These are the ”seriality” of early classifiers, i.e.
the invariance of the classification decision once a certain length of the time
series has been observed, and that its accuracy when classifying the reduced
time series is retained (or at least does not drop too much) with respect
to classification on the time series with full length. These properties guide
the authors’ derivation of the Early Time Series Classification framework.
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That framework builds upon the 1-Nearest Neighbor algorithm and intro-
duces concepts like minimum prediction length and a clustering algorithm.
Those concepts together enable smart grouping of time series in a train set
according to common prefixes between those time series for early, serial and
reliable classification. That framework outperforms not only weaker early
classifiers such as 1-Nearest Neighbor fixed, which refers to the application
of the 1-Nearest Neighbor on a time series with a fixed reduced length, but
also even the 1-Nearest Neighbor algorithm with the full length time series,
on some cases.

The problem of finding appropriate features for early time series classifica-
tion is the main topic of Xing, Pei, Philip, and Wang, (2011), the last paper
by those authors on early classification.

More recently, Parrish et al., (2013) proposed a probabilistic framework using
quadratic discriminants and support vector machines for performing early
classification. That paper’s key concept is the reliability of the classification
decision, i.e. the degree of confidence with which one can say that the
current incomplete data is sufficient to come to the same classification
as the complete data (with high probability). That framework allows for
classification as soon as a reliability threshold is met. The results achieved
by that framework compare favorably against the previously mentioned
1-Nearest Neighbor fixed and Early Classification of Time Series methods,
both on classification accuracy and earliness.

The latest development in the theoretical treatment of early time series
classification seems to be the paper by Mori et al., (2016). The authors
employ a method called ”Early classification framework for time series
based on class discriminativeness and reliability of predictions”, in short
”ECDIRE”, to classify bird songs early and also beat the results achieved
by Xing, Pei, and Philip, (2009) and Parrish et al., (2013) on the same
data sets used by those papers. ”ECDIRE” is a probabilistic classification
framework that is organized into 4 steps. The first step, termed by the
authors ”Analysis of the discriminativeness of the classes”, aims to derive
a set of time series timestamps which enable good discrimination of time
series classes early. This step begins with the definition of a set of early
time series timestamps as a percentage of total time series length. Then,
a variation of a Gaussian Process classifier, which in turn is a Bayesian
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probabilistic classifier, is trained with cross-folding on each of the time
series reduced by the previously defined percentages. Early timestamps are
thus identified as those which still maintain an accuracy above the reduced
time series length (in percentage) times the accuracy (also in percentage)
attained with the same classifier on the full length time series. In a second
step, thresholds for classification reliability are defined as a, quote, ”distance
in terms of differences in class probabilities of the winning class and the
next most probable class” per time series and class. This improves reliability
by avoiding uncertain predictions and thus also classification timestamps,
which might be too early to distinguish certain classes from each other.
Finally, the actual probabilistic classifiers are trained on the full training
set with the early timestamps computed in step 1 (as well as with the full
time series length, as a fallback solution if no early timestamp was found in
some particular case).

The paper Mori et al., (2016) was not the only one to apply early classification
techniques to address a real-world data sets and problems. Examples thereof
include, but are not limited to, the following papers. Ghalwash, Ramljak,
and Obradovic, (2012) compose a hidden Markov model with a support
vector machine to create an early classifier, which performed well on a
medical domain dataset containing gene expression values for a number
of multiple sclerosis patients, for which not much data was available. The
work by Hatami and Chira, (2013) introduces a classifier with a reject
option, which allows the classifier to abstain from a classification decision
if it is not clear-cut, weighing in that with the cost of making further
observations. Their classifier with the reject option is general enough to
allow for different classification algorithms, like a support vector machine
or k-Nearest Neighbors, to be used. This early classifier was used in the
classification of odors, serving as the basis for a performant electronic
nose.

2.5 Summary

In this chapter, literature on time series definitions, its classification, in
particular with deep neural networks, and early classification techniques
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were reviewed. In conclusion, there is a very large number of both theoretical
as well as practical work to classify time series, and, in particular, classify
time series early. In particular, this body of work presents not only theoretical
results and frameworks to use for different types of time series and data
sets, but it also provides results to benchmark against.

However, to the best of the knowledge of the author of this thesis, research
on the application of deep learning for early time series classification seems
to be missing. The next sections will present how this work thus makes use
of many of the theoretical constructs presented above to fill that research
gap.
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The chapter ”Methods” will cover all three of the research questions guiding
this thesis starting from a theoretical point of view and following it up from
a practical one.

The section 3.1.1 explains which types of series are going to be used for early
time series classification. Research question number 2, which asks for the
derivation of a trade-off curve between time series length and classification
accuracy, is formally addressed in 3.1.5 and from a practical standpoint
in 3.2.1 too. The third research topic regards a comparison of classification
algorithms for the problem of early classification. This is the subject of the
sections on classification algorithms, named 3.1.2, 3.1.3 and 3.1.4 in the
theory part, and 3.2.1 in the implementation part. The Methods chapter
is rounded up with a brief overview of the software technology stacks
employed by this thesis.

3.1 Time Series Concepts and Theory

Firstly, formal definitions relevant for both time series and time series
classification are introduced.

3.1.1 General Definitions

Time Series Basics

A time series is an ordered sequence of pairs (t, x(t)), where t represents a
timestamp and x(t) represents the value the time series takes at timestamp
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t. This sequence is ordered by the timestamp t ascendingly. Typically, if a
time series has length L, then it has L such ordered pairs. Mathematically:

Definition 1 (Time Series). A univariate time series ts can be defined as:

ts = {(t, x(t)) : t ∈N, x(t) ∈ R}, with x : N→ R

Multivariate time series ts of dimension n can be defined as

ts = {(t, x(t)) : t ∈N, x(t) ∈ Rn}, with x : N→ Rn

A time series ts has length Lts ⇐⇒ |ts| = Lts.

The shorter notation ts[1, Lts] is also used to denote the values the time series ts
takes in timestamps 1 through Lts.

Thus, this thesis discusses only discrete time series, i.e. those with a count-
able set of observations.

The theoretical elaboration above is, in general, sufficient for the problem of
time series classification. However, in the context of time series modeling
and especially forecasting, the property ”stationarity” of a time series is
relevant. Below, the criteria for weak stationarity of time series are given,
up to small changes, as formulated by Shumway and Stoffer, (2013). Note
that, like those authors, this thesis henceforth refers to ”weakly stationary”
time series simply as ”stationary” time series.

Definition 2 (Weakly Stationary Time Series). Consider a probabilistic con-
text, where a time series is described by the marginal probability distribution Ft of
a collection of random variables indexed by time t ∈ 1, . . . , n. Let ft represent the
derivative of Ft, i.e. the corresponding marginal density function. In such a context,
a weakly stationary time series xt is one that fulfills the following 2 conditions:

• xt’s mean value function, µt = E(xt) =
∫ +∞
−∞ x ft(x) dx (provided it exists),

is constant and does not depend on time t
• xt’s autocovariance function, γ(s, t) = cov(xs, xt) = E[(xs− µs)(xt− µt)],

depends on s and t only through their difference |s− t|.

This property will be useful in the study of time series models, which
address the problem of time series forecasting.
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Time Series Models and Forecasting

This section presents two commonly used models for predicting time series
behavior. The reason for introducing here them concerns early classification:
Whenever reduced time series need to be classified, one idea is to predict
the time series’ missing tail and to use that prediction, plus the reduced time
series, as a comparison basis with a full-length train set. A more elaborated
discussion of this idea will be presented later on.

The first class of time series models presented here is ”ARIMA”, which
is short for ”Autoregressive Integrated Moving Average” and comprises
stationary time series. The following definition and the accompanying
explanations can be found in Shumway and Stoffer, (2013), R. J. Hyndman
and Athanasopoulos, (2014) and Nau, (2016a).

Definition 3 (Autoregressive Integrated Moving Average Models ARIMA(p,
d, q)). ARIMA(p, d, q)-type models for a general time series xt are represented by
the following general equation:

xt = α1xt−1 + α2xt−2 + . . . + αpxt−p + εt + β1εt−1 + . . . + βqεt−q,

with αi, βi ∈ R

These models are thus are auto-regressive. This means that the dependent variable
xt is modeled, on the one hand, as a function of p of its lags.

On the other hand, for the modeling of xt, the model also considers q lags of its
forecast errors εi. This part of the model is the so-called ”moving average” part.

Finally, the d parameter of this time series model references the order of differencing
applied. The process of differencing is the discrete analog of derivation. It is, for
example for d = 1, defined as xt = xt − xt−1. Differencing up to a certain order is
commonly done to make a time series xt stationary and to then apply the ARIMA
model to the differenced time series.

One common extension of the ARIMA(p, d, q) model is the seasonal ARIMA model,
denoted as ARIMA(p, d, q)(P, D, Q). The (P, D, Q) tuple of parameters refers to
the parameters (p, d, q) as defined above, but for the seasonal component of a time
series.
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In general, there are a number of rules-of-thumb and guidelines to help choose
parameters, configure and validate ARIMA models. This thesis will not discuss
these in detail and instead point to the references mentioned prior to this definition,
as well as to Nau, (2016b).

Another popular and efficient theoretical construct for building time series
models are linear regressions. Again, the work by Shumway and Stoffer,
(2013) and R. J. Hyndman and Athanasopoulos, (2014) is quoted below:

Definition 4 (Linear Regression). Linear regression models for a general time
series xt have the following equation:

xt = β1zt1 + β2zt2 + . . . + βqztq + wt

In the previous equation, the dependent variable xt is regarded as a linear combi-
nation of q predictor, independent, time series. The regression coefficients βi are
unknown and {wt} is a random noise process.

Given n samples of the zt variables and using matrix notation, where β′ =
(β1, . . . , βq)T is a transposed column vector of the regression coefficients and
zt = (zt1, . . . , ztq) the analogous for the independent variables, the estimators for
the betai can be obtained via least squares minimization, i.e. as a solution to the
following equation:

min
n

∑
t=1

w2
t = min

n

∑
t=1

(xt − β′zt)
2

This general equation allows one to model linear trends and seasonality effects,
among others.

Having established basic time series theory and these two time series models,
the next chapter deals with time series classification theory.
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3.1.2 Time Series Classification Definitions

Time series classification is the task of assigning a label to a time series.

A supervised classification settings is considered here: A set of time series
and their respective labels, which make up the train set, is given.

In this setting, the objective becomes to build a classifier which predicts the
label of a new instance, i.e. a new time series not included in the train set,
as accurately as possible.

Classifier accuracy is the ratio of time series with correctly predicted classes
divided by the total number of time series. In general, classifier accuracy
is computed from a test set, a set of labeled time series not used in the
classifier build process.

Mathematically, with some of the following formulae being adapted from
Xing, Pei, and Philip, (2009):

Definition 5 (Time Series Classification). Let T′ = {(ts, lts) : ts is time series∧
lts is label of ts} be a time series test set, L = {l(ts) : ts ∈ T′} be the set of labels
of time series in T′, l : T′ → L be a function that outputs the label of a time series,
and TS any set of time series. Then, the time series classification task is defined as
follows:

Find a classifier C : TS→ L s.t.

max
C∈C

Accuracy(C, T′) = max
C∈C

|{C(t′) = l(t′) : t′ ∈ T′}|
|T′| .

This thesis employs the classifier’s accuracy as a measure of the quality
of the classifier’s predictions, since it is used in time series classification
literature in general, as seen before. Note that this definition does not impose
a fixed length for the time series.

3.1.3 Classification Algorithms - 1-Nearest Neighbor

This section begins with the formal definition of 1-Nearest Neighbor search,
which is followed by the definition of the distances used with it.
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Given a train set of time series and an unclassified time series, the 1-Nearest
Neighbor algorithm assigns to it the label of the nearest neighbor from the
train set. The nearest neighbor therefore depends on the definition of a
metric to measure closeness or distance, as the mathematical formulation
shows:

Definition 6 (1-Nearest Neighbor). Let T be a train set of time series, l : T′ →
L be a function that outputs the label of any time series, d : Rn ×Rn → R a
distance metric and tnew an unclassified time series. Then, the 1-Nearest Neighbor
classifies tnew as follows:

1NN(tnew) = lk ⇐⇒ min
ts∈T

d(ts, tnew) = tsk ∧ l(tsk) = lk

The 1-Nearest Neighbor algorithm has linear time complexity in the size of the train
set: O(|T|).

The following two definitions feature two commonly used distance metrics
for the 1-Nearest Neighbor algorithm. The first, used for the classification of
univariate time series, is the Euclidean distance (Eric Weisstein, (2016a)):

Definition 7 (Euclidean distance). Given two univariate time series tsx =
{(t, x(t)) : t ∈N, x(t) ∈ R} and tsy = {(t, y(t)) : t ∈N, y(t) ∈ R}, both with
length equal to L, the euclidean distance dEuc between them is given by:

dEuc(tsx, tsy) =

√√√√ L

∑
i=1

(x(i)− y(i))2

The second distance measure, Frobenius norm, is employed in the classifica-
tion of multivariate time series (Eric Weisstein, (2016b)):

Definition 8 (Frobenius norm). Let tsx = {(t, x(t)) : t ∈N, x(t) ∈ Rn} and
tsy = {(t, y(t)) : t ∈ N, y(t) ∈ Rn} be two multivariate time series, both with
length equal to L. Let X, Y ∈ RL×n be matrix representations of, respectively, tsx
and tsy. The rows of the matrices represent the temporal indexes of the time series,
and its columns correspond to the n-dimensional time series values at the timestamp
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of a row’s index. For example, X(i, j) = x(i)[j] stands for tsx’s value at timestamp
i on the j-th dimension. Then, dFrob is defined as:

dFrob(tsx, tsy) =

√√√√ L

∑
i=1

n

∑
j=1
|X(i, j)−Y(i, j)|2

3.1.4 Classification Algorithms - Deep Learning

This section begins with basic deep learning definitions and then addresses
how deep learning can be applied in the context of time series classifica-
tion.

Deep Learning Definitions

As mentioned in the literature review, deep learning models consist of
multi-layered neural networks. This theory section will not dive into every
single mathematical derivations and detail of deep learning theory, but
rather give an overview of its theoretical constructs found in this thesis.

The most granular unit of a deep learning structure is a neuron. A neuron
is fully described by its input xi, input weights wi, transfer function ∑ and
activation function f . The figure 3.1 by Candel A. et al., (2016) depicts a
neuron and its components:

Figure 3.1: Diagram of a neuron and its components
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A mathematical formulation for the neuron is given by the following:

Definition 9 (Neuron). With i ∈ {1, . . . , n}, let xi ∈ R represent a set of inputs.
Then, a neuron is a construct equipped with:

• wi ∈ R, a set of input weights
• b ∈ R, a bias input unit weight associated with a constant input unit with

the value 1. The bias represents the neuron’s activation threshold.
• ∑, a transfer function that combines inputs with input weights. It can take

many forms, but this thesis assumes it to be a dot product of the inputs with
the input weights: ∑n

i=1 wixi + b.
• f , an activation function that forms the neuron’s output. It is typically a

non-linear function, which maps the transfer function’s output to R. There
are a number of different formulas and variations of this function, with the
most common of them being (according to Batres-Estrada, (2015)):

– Sigmoid function: f : R → [0, 1], f (α) = 1
1+e−kα with k ∈]0, 1]

– Rectifier function: f : R → R+, f (α) = log(1 + e1+α), which can
also be linear, as in f (α) = max(0, α)

Neurons are grouped into layers. These are formed by a set of neurons,
which take the same set of inputs and feed their activations forward to the
next layer. It is such a chaining of layers of neurons that composes a neural
network. The following diagram, adapted from Candel A. et al., (2016),
visualizes this description of a simplified neural network:

Figure 3.2: Diagram of a neural network
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As figure 3.2 shows, neural networks are composed of three types of layers:
an input layer, multiple hidden layers and an output layer. The input layer
represents the input to the network, which gets transformed in the hidden
layers. The end result of those transformations is shown in the output layer.
Each neuron of a layer feeds its activation to all neurons of the following
layer. Deep neural networks are, in general, those with a large number of
hidden layers.

In the context of machine learning, neural networks are trained to transform
certain input into desired output, i.e. to get an instance as input and output
its class. For a neural network, training means optimally adjusting input
weights of each of a neural network’s layers, in order to minimize output
error, i.e. classification error. Deep learning is the term used for training a
deep neural network.

These notions are formalized by the deep learning definitions below:

Definition 10 (Deep Learning). Let a deep learning construct be described by
the following:

1. Deep neural network, with layers of neurons given as

a) A matrix of neuron input weights W ∈ RM ×RN where M is the
maximum number of neurons over all layers (so the number of neurons
per layer does not have to be the same for all layers) and N is the number
of layers

b) A vector of biases B ∈ RN

c) Activation function f

2. Train set T of classified instances with n elements
3. Loss function L, a measure of the distance of the deep neural network output

on an instance, the output oj and its true or target value tj. It can have a
number of different formats, such as:

• L(W, B) = 1
2 ∑n

j=1 (tj − oj)
2, the mean squared error

• L(W, B) = −∑n
j=1 ∑y∈O(log(oy,j) ∗ ty,j + log(1− oy,j) ∗ (1− ty,j)),

the cross entropy function, where O is the output layer

The objective in deep learning is to minimize the loss function L(W, B) by searching
for an optimal set of weights for both W and B.
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The objective to minimize the loss function guides the deep learning pro-
cess to train the deep neural network. It can be achieved by a number of
different search algorithms, most prominently stochastic gradient descent
with backpropagation. A brief description of this algorithm follows.

Starting from randomized weight and bias matrices W and B, the algorithm
iteratively picks a random instance i of a train set T. Then, for that instance,
it updates weights in the direction of the steepest gradient descent as
follows:

wjk = wjk + α
∂L(W, B|i)

∂wjk
, ∀wjk ∈W

bjk = bjk + α
∂L(W, B|i)

∂bjk
, ∀bjk ∈ B

α is a parameter termed learning rate. It determines the size of the weight
update and can be optimized via algorithms such as AdaDelta.

This process is repeated until some pre-defined convergence criterion is
reached. It is combined with backpropagation, a process which uses the
weights updates obtained via stochastic gradient descent to update the
weights of a deep neural network one layer at a time. Each complete iteration
through this process and the whole train set T is termed an epoch.

This optimization process may, in general, lead to overfitting train data. To
counter this issue, a technique called regularization is applied. It consists
of slightly modifying the loss function L(W, B) as follows (as mentioned in
Candel A. et al., (2016)):

L′(W, B) = L(W, B) + λ1R1(W, B) + λ2R2(W, B)

Again citing from Candel A. et al., (2016), R1(W, B) is defined as the sum of
all l1 norms (i.e. the absolute value of one parameter minus the other) for
the weights and biases in the network. R2(W, B) represents the square root
of the sum of squares of all the weights and biases in the network. Both λ1
and λ2 are very small constants, in the order of 10−5. According to LISA lab,
(2016), the effect of these two regularization functions is the improvement
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of generalization: Both the regularization summands smooth the network
weights by penalizing large values and thus decreasing non-linearity, over
the complete neural network. It is, in some sense, a variation of Occam’s
razor principle, which allows one to find the ”simplest” (least non-linear)
solution that still fits the training data.

Deep Learning in Time Series Classification

After having established the deep learning theory for classification, this
section addresses the use of deep learning in the time series classification
context.

The challenge to the application of deep learning to time series classification
is two-fold:

1. The choice of input features to the deep neural network
2. The configuration of the deep neural network

While deep learning approaches in general face the second challenge to
varying degrees, the first challenge is specific to the time series domain and,
in the literature, it is addressed depending on the context and application.

One example thereof is given by Busseti, Osband, and Wong, (2012). In
course of energy demand forecasting, the authors encode periodicity and
geographical features into hand-made features into their deep neural net-
works.

In another example, for the prediction of stock returns with deep learning,
Batres-Estrada, (2015) uses, quote, ”The input to our model is a matrix with
33 variables or features. These features are the t-2 through t-13 monthly log
returns and the 20 daily log-returns for each stock at month t.”

Therefore, both feature selection as well as parameter configuration for time
series classification with deep learning will be addressed in the Implemen-
tation section later on.
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3.1.5 Early Classification

Preliminaries

Early time series classification refers to time series classification using a
fraction of total time series length.

As seen in the literature review, there are many approaches to reduce time
series length while maintaining classification accuracy as high as possible.
However, since one of the objectives of this thesis is to derive a trade-
off curve for accuracy vs. time series length when performing early time
series classification, the requirement on maintaining accuracy is relaxed.
In general, time series classification accuracy decreases with decreasing
time series length, since less and less time series values are available for
classification. Therefore, to derive that accuracy-length trade-off curve, time
series are firstly classified using their full length. Then, the time series length
is successively reduced by a fixed percentage, until classification accuracy
drops below a pre-defined threshold.

Definition

This approach is formalized by the following definitions, which, again, use
notation partially borrowed from Xing, Pei, and Philip, (2009):

Definition 11 (Early Time Series Classification). Consider the same assump-
tions of Definition 5. Additionally, let Lts denote the length of a time series ts ∈ T′

and T′p be the set of prefixes of time series in T′ obtained by reducing Lts of each
ts ∈ T by r ∈]0, 1[. Mathematically:

tsp is the prefix of length p < Lts of ts ⇐⇒ p = Lts ∗ (1− r) ∧ tsp = ts[1, p],

T′p = {tsp : ts ∈ T ∧ tsp = ts[1, p]}.

The early time series classification task is defined as the time series classification
task on the set T′p.
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Algorithm

The tradeoff curve mentioned above can be derived with the following
algorithm:

Algorithm 1 Early Time Series Classification - Tradeoff Curve Derivation

Input: Train set of time series T
Test set of time series T′

Minimal classification accuracy threshold mcat ∈]0, 1]
Time series reduction stepsize r ∈]0, 1]
Classifier Algorithm CA

Output: Tradeoff Curve TCCA :]0, 1[→ [mcat, 1]
1: currentAccuracy← 1
2: currentLength← 1
3: tradeo f f CurveSet← {}
4: currentTrainSet← T
5: currentTestSet← T′

6: while currentAccuracy ≥ mcat ∧ currentLength > 0 do
7: currentTrainSet← {ts[1, ceiling(Lts ∗ currentLength)] : ts ∈ T}
8: currentTestSet← {ts[1, ceiling(Lts ∗ currentLength)] : ts ∈ T′}
9: currentClassi f ier ← trainClassi f ier(CA, currentTrainSet)

10: currentAccuracy← testClassi f ier(currentClassi f ier, currentTestSet)
11: tradeo f f CurveSet←

tradeo f f CurveSet ∪ {(currentLength, currentAccuracy)}
12: currentLength← currentLength− r
13: end while
14: return interpolatePointsO f (tradeo f f CurveSet)

Note that, in steps 7 and 8, it may be the case that Lts ∗ currentLength 6∈ N .
The function ”ceiling” rounds the result of that multiplication to the next
largest natural number.

This thesis proposes an alternative for step 12 simply called step 12’: One can
also perform the length reduction step of the algorithm, step number 12, by
multiplying ”currentLength” with ”reductionStep”, instead of performing
subtractions. For small reduction step sizes, this has the effect of more
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rapidly reducing ”currentLength” while it is still large (i.e. very close to
1), and gradually reduce it by smaller steps each time. This in turn leads
to more sampling points towards the end of the tradeoff curve, making
it smoother around critical length values where accuracy may (or may
not) drop below the minimal classification accuracy threshold with each
step. On the other hand, for large reduction step sizes, this alternative for
time series length reduction leads to more sampling points around the
beginning of the tradeoff curve and gradually less and less points, as the
length decreases. This means that the step 12’ variation is also useful in
cases where classification accuracy drops very rapidly with time series
length, since it would also capture larger critical length values (which are,
again, occasions where classification accuracy may drop below the minimal
classification accuracy threshold with each step).

Step 14 of the algorithm above refers to any interpolation function, defined
over [0, 1] × [0, 1], for the accuracy vs. time series length tradeoff points
obtained by the algorithm.

This algorithm’s complexity entirely depends on the classification algo-
rithm’s complexity. The complexity of the former is merely the result of
the multiplication of the complexity of the latter by some constant k, which
represents the number of time series length reduction steps. It holds that

• k ≤ 1/r,
• k = 1/r ⇐⇒ ∀currentLength>0 currentAccuracy ≥ mcat.

This, which results from the algorithm also taking time series length as part
of its stopping criterion, guarantees it will eventually halt.

This approach is similar to the 1-Nearest Neighbor fixed approach of Xing,
Pei, and Philip, (2009), as described in the literature review. The main
similarity lies in the repetition of the time series lengths reduction until
some classification accuracy threshold is met or undercut. However, both
1-Nearest Neighbor fixed as well as the Early Classification of Time Series
framework proposed by those authors do not deal neither with time series
of varying lengths, nor with multivariate time series.

This approach may also be compared to Parrish et al., (2013) and Mori et al.,
(2016). Both feature early time series classification in a probabilistic setting,
and Mori et al., (2016) also makes use of a set of previously defined time
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series length percentages for early classification, similarly to the reduction
step input parameter of the algorithm proposed above. However, none of
the above mentioned approaches aims to derive a classification accuracy vs.
time series length tradeoff curve. Furthermore, both of them are designed
for a specific classification algorithm.

Therefore, this thesis stresses again the fact that the early classification
algorithm described above is independent of the classification algorithm.

This thesis proposes, however, a variation for the early classification tradeoff
curve derivation algorithm specific to the 1-Nearest Neighbor search on
time series with reduced length. Given a reduced time series, this variation
consists in:

1. Forecasting the missing tail of the time series with the aforementioned
ARIMA or linear models

2. Appending that forecast of the missing values to the time series with
unknown label

3. Searching for the 1-Nearest Neighbor of that enhanced time series in
the train set of unreduced time series, i.e. those with full length

This strategy is proposed as a means to mitigate the information loss con-
tracted in time series length reduction at each step of early classification.

Having presented the algorithm-agnostic early classification tradeoff curve
derivation, its implementation, with the different classification algorithms
outlined above, is the topic of the following chapter.

3.2 Implementation

This contents of this section revolve around the practical implementation of
the theory outlined previously. It starts with some finer details regarding
the algorithm implementations, and continues with a brief description of
software frameworks employed.
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3.2.1 Algorithm implementation details

Some finer points on the configuration of the time series classification and
of the early time series tradeoff curve derivation algorithms are discussed
here.

General Notes on the Implementation of Time Series Classification

In a supervised machine learning context, which is the case of every single
algorithm presented and used by this thesis, there is a train and a test set.
Nevertheless, not all datasets are already made available with separate train
and test sets, which implies that either a split or cross-validation of different
split sizes must be computed for datasets without such a split.

A choice for a split of the whole data in 60% train data and 40% test data
was made for the 2 latter datasets. The reasons behind this decision are
two-layered: Firstly, the widely-cited UCR datasets average a 45% train-
to-test ratio, so this provides an anchor value and a starting point for
benchmarking this thesis’ results with those obtained by literature using
UCR, which typically does not apply cross-validation (perhaps with the
notable exception of Mori et al., (2016)). Secondly, train-to-test ratios like
80/20, 70/30 or 60/40 are very commonly used in literature, when not
enough data is available for cross-validation. The choice fell on the train-to-
test dataset with the next smallest ratio of train samples, the 60% train-to-test
dataset split.

Note that the elements contained in each of split datasets are randomized
before each run of the (early) classification algorithms.

In an unrelated topic, which is nevertheless valid for all time series classi-
fication algorithms considered in this thesis, the issue of comparing train
and test time series of different lengths is also mentioned here. In general,
that issue affects both the 1-Nearest Neighbor search and Deep Learning.
The issue is that both the Euclidean distance as well as the Frobenius dis-
tance respectively assume input that is equally dimensioned. Distances of
unequally dimensioned input are otherwise undefined. The analogue goes
for Deep Learning.
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There are a number of approaches to deal with this issue, and this thesis
evaluated two of the most common ones: Either compare only the minimum
of the dimensions both elements share, i.e. reduce the longer series to the
length of the shortest, or fill up the shorter one with zeroes and compare
that modified one with the longer one, i.e. enhance the shorter one with
zeroes to match the length of the longest. This thesis employed the latter
approach. The main reason behind this is that the tail of zeroes in the
shorter series will lead to larger distances in those portions of the time
series. Length then becomes, to some extent, also an indicator for time series
(dis-)similarity. Thus, the choice of filling the shorter time series with zeroes
will tend to penalize time series strongly differing in length. In this case
of enhancing the shorter time series with zeroes, this difference in lengths
is being implicitly encoded in the time series comparison with whichever
algorithm. This implicitness of differing time series lengths gets lost if both
time series get reduced to the length of the shorter one, and time series
length information is a crucial factor in the context of early classification.

1-Nearest Neighbor for Time Series Classification

The implementation of the 1-Nearest Neighbor search for both univariate
and multivariate time series very closely follows the theory presented in 3.1.3
and therefore dispenses further elaboration.

The variation of the early classification tradeoff curve derivation algorithm,
with 1-Nearest Neighbor search and time series forecasts, employed the
time series forecast models presented in 3.1.1, which are the ARIMA and
linear models.

Deep Learning for Time Series Classification

As mentioned previously, the first thing to be covered here will be the selec-
tion of time series features to be fed as input for deep learning models.

In short, the time series features used for deep learning are simply the
complete time series values.
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In the case of an univariate time series ts = {(t, x(t)) : t ∈ {1, . . . , n}, x(t) ∈
R}, with x : N → R, the deep learning model takes as input nodes the
values ∀t=1,...,nx(t).

As far as multivariate time series are concerned, consider ts = {(t, x(t)) :
t ∈ {1, . . . , n}, x(t) ∈ Rm}, with x : N→ Rm. Then, the input nodes of the
deep learning model become ∀t=1,...,n∀k=1,...,mxk(t), i.e., a given input node
represents the value of the time series at time t, for dimension k. Therefore,
the cardinality of the input nodes is equal to n×m.

Note that the deep neural network, in the context of classification, outputs
instance classes. In particular, this means that the deep neural networks
used here always have an output layer of cardinality equal to the number
of number of classes in a dataset. As described by Mnih and G. E. Hinton,
(2009), this is achieved with the use of a softmax layer as the output layer, a
layer which outputs class probabilities for the deep neural network’s input.
It normalizes the previous layer’s vector output to real values in the interval
[0, 1], by exponentiating each value and dividing that by the sum over all
exponentiated values.

The second thing to be addressed here is the configuration and choice
of parameters for the deep learning model. The choice of deep learning
models involves a lot of degrees of freedom, such as the number of hidden
layers, the neurons’ activation function or the loss function to be optimized.
The parameters available for configuration were all explained in the deep
learning theory section, numbered 3.1.4, with the following exception, which
is more of a practical nature than specific to deep learning theory, hence
it being mentioned here. For the small datasets, a class balancing step
was used. Class balancing is a term employed to refer to the process of
over-sampling underrepresented classes in the training phase of the deep
learning model. This proved to be invaluable to up the performance of
the deep learning model in cases where the number of samples with a
certain class was simply both absolutely as well as relatively too low for the
algorithm. More details on this will follow in the result presentation and
discussion sections later on.

To make these parameter choices for the deep learning models, an extensive
grid search, which consists of successively testing different parameter config-
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urations, was performed. The resulting parameter values will be presented
alongside the results.

Early Classification Tradeoff Curve Derivation

The early classification tradeoff curve derivation algorithm, described in 3.1.5,
takes train and test sets, a classification algorithm, the minimal classification
accuracy threshold and a time series reduction step size as input parame-
ters.

The algorithms considered for the early classification tradeoff curve deriva-
tion are all of the above mentioned, which are in summary:

• Univariate time series:

– 1-Nearest Neighbor search with the Euclidean distance on the
reduced time series and on the reduced time series plus the
forecasts provided by ARIMA and the linear models as well

– Deep learning

• Multivariate time series:

– 1-Nearest Neighbor search with the Frobenius distance
– Deep learning

The minimal classification accuracy threshold used was 60%.

As far as the reduction step parameter is concerned, the values {0.01, 0.05, 0.1, 0.25, 0.5}
were used in experimentation. However, both alternatives proposed for step
12 were used, with the reduction step values being set at {0.5, 0.9}. The
exact value was chosen depending on the dataset at hand and will therefore
be presented along with the results.

The interpolation of the points obtained with the early classification tradeoff
curve derivation algorithm is a simple linear interpolation, where each point
is connected with the following one via a line segment.
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3.2.2 Frameworks

Some of the considered datasets were processed with the R language and
environment for statistical computing by R Core Team, (2015)1. Others, on
the other hand, were processed with the Java software stack2.

The R software stack was chosen due to R’s powerful primitives for ma-
nipulating time series data and also due to its rich package ecosystem. In
particular, the deep learning package H2O, developed by Aiello et al., (2016),
was chosen for deep learning-related tasks, due to its tight integration with
the R programming environment, and the time series modeling and forecast-
ing package by R. Hyndman, (2016), which provides a simple interface for
creating and automatically deriving linear and ARIMA models, and using
them for forecasts in early classification as previously described. Finally,
the package ”class” by Venables and Ripley, (2002) was used for 1-Nearest
Neighbor search with the Euclidean distance.

The reason for using Java software for certain other datasets lies in the
Java API that came with them. The integration with such datasets is thus
simpler, despite the deep learning library H2O by Candel A. et al., (2016)3

not having a Java API. That issue was overcome with the use of H2O’s REST
API, accessed via simple HTTP requests. For the latter, the library OkHttp
of Square, (2016)4 was used.

All the implementation, experiments and result derivation were conducted
using a laptop with an ”Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz”
processor and 4GB main memory.

1The R version used by this thesis is 3.2.3.
2The Java version used by this thesis is ”openjdk 1.8.0 91”.
3The h2o version used by this thesis for deep learning with the snackbox dataset was

3.8.0.6. Refer to Aiello et al., (2016) for more information on the h2o R package.
4This thesis used the 3.2.0 version of the OkHttp library.
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3.3 Summary

In this chapter, the research questions guiding this thesis on the early
classification approach were successively addressed, namely which time
series it works on, what the tradeoff between length and accuracy is and
which algorithms, in particular deep learning, perform best at it.

To that end, first, the theory behind univariate and multivariate time series
was covered. Then, different classification algorithms for both types of time
series were outlined, and an algorithm for performing early time series
classification was presented. This algorithm also focuses on comparing
the performance of different time series classification algorithms regarding
the early time series classification task, by benchmarking their accuracy at
reduced time series lengths. This section concluded with the description of
the implementation of all that theory, for time series datasets with varying
characteristics to be presented in section 4.1.

After having covered these topics, it is time to assess the algorithms’ perfor-
mance and then evaluate the results.

37





4 Results

In the search for time series and algorithms adequate for early classification,
theory and implementation details around the derivation of a tradeoff curve
for time series length vs. accuracy was proposed for different time series
classification algorithms. This chapter presents the results of the proposed
approach, for three different datasets, namely UCR, Auslan and Snackbox,
and the algorithms 1-Nearest Neighbor with the Euclidean distance, its
variation with forecasts provided by linear models and ARIMA, 1-Nearest
Neighbor with the Frobenius distance and Deep Learning. The datasets are
presented first. Then, results on the univariate time series datasets follow,
and this section concludes with the results on the multivariate time series
datasets Auslan and Snackbox.

4.1 Datasets

To address the research question which types time series allow for early classifi-
cation, this thesis considers three different sets of time series, with each of
them having differing characteristics. The datasets’ general properties are
summarized here:

Dataset Time series type Classes Samples
UCR1 Univariate [2, 60] [40, 16637]
Auslan Multivariate 95 2565
Snackbox Multivariate 5 60

Table 4.1: Dataset overview
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One of the research questions guiding this thesis is to assess the types of
time series where early time series classification is feasible. Hence the choice
of the datasets listed in table 4.1: These should represent both univariate
as well as multivariate time series, synthetical and clean as well as real-
world and noisier time series, and, finally, the datasets used here should be
representative of those often used in early time series classification literature,
to allow for result comparison.

A more detailed presentation of each of the datasets follows.

4.1.1 UCR

The UCR time series classification archive by Chen et al., (2015), referenced
throughout this thesis simply as UCR, is a repository of univariate time
series. The datasets therein are very commonly used for benchmarking
machine learning approaches on time series, as evidenced by the works
of Xing, Pei, and Philip, (2012), Parrish et al., (2013) or Mori et al., (2016),
to cite a few papers in the time series (early) classification research area
alone.

This time series repository consists of 85 different time series datasets,
each with a varying amount of labeled time series samples, number of
classes and time series lengths. The common aspects they all share are
that all of them are univariate (in accordance with this thesis’ definition of
univariate time series), feature separate train and test sets, have equidistant
observations, have the same length (within a dataset), are cleaned and z-
normalized, i.e. normalized to have mean zero and standard deviation of 1,
and are available in a simple comma-delimited file format. The time series
themselves are very varied in nature: They consist of synthetic time series
generated randomly, of curves consisting of a single cylinder or bell or
funnel, of electrocardiography measurements, or even of sensor data from
movement generated while pointing a gun, to name a few examples.

In general, these time series encode some natural or random process in a
short, cleaned and contrived format, and thus reflect only such types of

1Since UCR is actually a repository of time series datasets, the statistics are given as
intervals, ranging from UCR’s smallest datasets to its largest ones.

40



4.1 Datasets

series. While the repository does offer a high measure of variety on such
time series and is thus used in time series classification benchmarks quite
often, the repository’s authors and maintainers admittedly recognize its
limitations as models of real-world problems, which is reinforced by Hu,
Chen, and E. J. Keogh, (2013).

4.1.2 Auslan

Auslan is short for Australian sign language. The next figure, taken from
M. W. Kadous, (2002), features an example of such a sign:

Figure 4.1: Example of a sign in the Australian sign language (Auslan)

The Auslan dataset is comprised of samples of Auslan signs, which, quote,
”were captured from a native signer with high precision position trackers
and instrumented gloves”, as the author of the dataset, M. W. Kadous,
(2002), puts it in his PhD thesis.

The dataset contains 27 examples of each of 95 different such signs, for a total
of 2565 captured samples. Those samples each contain sign movements as
measured by 11 different variables per hand, for a total of 22 measurements
per frame. These variables are, per hand, the (x, y, z) position, roll, pitch,
yaw and a finger bend measure for each of the fingers. The signs average
about 57 frames in length. There are no missing values in the multivariate
time series, as each frame or time stamp of the time series features all 22

variable values, and they are zero if no measurement is performed in a
given frame. This dataset also features equidistant observations, where the
distance between them is a frame.
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This dataset is very often used in the early time series classification literature,
for example by Juan J Rodriguez, J. J. R. Guez, and Carlos J Alonso, (2002) or
Xing, Pei, and E. Keogh, (2010). For the purposes of this thesis’ first research
question, the one regarding the conditions which need to be in place to
allow for early time series classification), this dataset is, firstly, a source of
multivariate time series, and secondly, it is regarded as representative of a
real-world problem, which includes noisy data.

4.1.3 Snackbox

The Snackbox dataset contains both some sensor measurement raw data, as
well as the result of processing and structuring that raw data.

In the offices of Know-Center, (2016), there is a storage room with a box with
snacks. Within that snackbox is a coin deposit, where people taking snacks
are expected to provide payment. The figure 4.2 depicts the snackbox:

Figure 4.2: Screenshot of the snackbox and its sensors

In general, the money in the coin deposit represents a lower financial value
than that of the snacks missing in the snackbox. To understand this discrep-
ancy better, the snackbox room was equipped with sensors like microphones,
ambient light sensors, motion detectors and thermometers from TinkerForge,
(2016). The raw data of the snackbox dataset thus corresponds to the capture
of those sensors’ raw data over a period of time.
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That raw data was then structured, with the purpose of performing machine
learning on it.

Firstly, the raw data, modeled as multivariate time series, was sectioned into
windows representing around a second worth of measurements. Then, 300

features in the form of descriptive statistics, like different types of means,
standard deviations or skewness and kurtosis coefficients, were computed
for each of the sensors, for each of the previously mentioned windows.
These windows of features are then called observations.

Via a number of machine learning approaches, whose descriptions are out-
of-scope for the purposes of this thesis, a sequence of observations are
grouped into so-called phases, and phases are then themselves grouped into
sequences called scenarios. Phases describe events related to the acquisition
of snackbox snacks. There are 5 different phases:

1. ”default”: Nothing of note is happening
2. ”Entry”: Someone enters the snackbox room
3. ”Rustling”: A snack is taken from the snackbox
4. ”CoinToss”: A coin is deposited
5. ”Exit”: Someone exits the snackbox room

Each of those phases may have a different number of observations.

Scenarios describe a logical sequence of phases such as ”Entry”, followed by
”Rustling”, then ”CoinToss” and finally ”Exit”. There are a total of 4 types
of scenarios and they thus distinguish between 4 types of activity measured
in the room, including the distinction between phase sequences where a
snack was taken and a coin was deposited for it or not.

There are a total of 20 different scenarios, which contained a combined
total of 60 phases. The 60 phases, or sequences of observations, which are,
again, features from a window of the original raw time series, compose
the snackbox dataset’s multivariate time series used in this thesis for early
classification. 3 of the 5 different phase types, namely ”Entry”, ”Exit” and
”Rustling”, have 15 samples each. The phases ”CoinToss” and ”default”
however, respectively feature only 10 and 5 samples. Therefore, the latter
two classes are underrepresented.
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This dataset of multivariate time series represents a real-world problem, in
a more complex and also realistic sense than the Auslan dataset. The reason
for that directly relates with the cleaning and processing required of the raw,
uncleaned and often missing sensor data and its grouping and structuring
it into observations, phases and scenarios.

4.2 Results per Dataset

4.2.1 Univariate Time Series

The univariate time series datasets presented here all stem from the UCR
time series repository by Chen et al., (2015). As mentioned previously
in 2.2 and 4.1, this time series repository builds the most widely used
corpus of time series datasets used in the time series classification context. It
consists of 85 sets of different time series, each containing a varying number
of both training and testing samples.

This thesis processed all 85 time series datasets in UCR. The results pre-
sented here were averaged over all datasets, but details on the performance
obtained on each individual dataset can be inspected in the code repository
annexed to this thesis.
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UCR

Early classification tradeoff curves, averaged over all datasets in the UCR
time series repository, are depicted, for four different algorithms, in the
figures below.

(a) full curves (b) tail of the curves

Figure 4.3: The plot on the left shows the ’classification accuracy vs. time series length’
tradeoff curves for each of the classification algorithms applied to the UCR time
series dataset. These curves represent averages of the tradeoff curves, computed
over all datasets in the UCR repository per classification algorithm. The curves
are the result of interpolating points (time series length, classification accuracy)
gathered with 50% reductions of time series lengths, i.e. at 100%, 50%, 25%,
... of the original time series length. These reductions are repeated for a given
algorithm until its classification accuracy drops below the minimal classification
accuracy threshold (mcat) set beforehand, in this case 0.6. The plot on the right
depicts the tail of the curves seen on the left.

Figure 4.3 shows 2 views of the same curves, with the left one showing the
full early classification tradeoff curves for a number of algorithms. The right
one shows the tail of the same curves.

The reduction step length used to produce these interpolated curves was
0.5, since classification accuracy only really becomes close to the minimal
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classification accuracy threshold (mcat) of 60% around time series lengths
of about 6% of the original time series full length. In this application of
the Early Classification Tradeoff Curve Derivation algorithm, the step 12’
variation of the reduction in time series length was used.

The algorithms employed for the derivation of the early classification trade-
off curves shown above were the following:

• 1-Nearest Neighbor search with the Euclidean distance in a number of
variations mentioned below. See detailed definitions of the following
algorithms in 3.1.3 and 3.2.1.

– 1-Nearest Neighbor search with Euclidean distance, without any
further modifications

– 1-Nearest Neighbor search with Euclidean distance, with time
series forecasts provided by linear models2 for reduced time
series.

– 1-Nearest Neighbor search with Euclidean distance, with time
series forecasts provided by ARIMA2 for reduced time series.

• Deep learning with the following customized parameters, obtained
via experimentation and grid search over the listed parameters, results
in the model described below. Refer to section 3.1.4 for details on each
parameter and refer to 3.2.1 for details on the input configuration.

– Activation function: Rectifier
– Number of hidden layers: 3

– Neurons per hidden layer: 200

– Loss function: CrossEntropy
– Epochs: 100

– Assumed distribution of the instance classes: Multinomial
– Number of folds in cross-validation of train set: 5

3

Note that the Deep Learning model above was the same for all of the 85

UCR time series datasets.

2The resulting linear and ARIMA models and their parameters are also available as
part of this thesis’ annexed code repository.

3
5 cross-validation folds were used on every UCR dataset except for ”OliveOil”, which

only employed 3 folds due to the dataset’s small size.
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Table 4.2 shows the exact values depicted in the figure 4.3 and the time it
took to train and classify each round of reduced time series in the UCR
repository datasets:

Time series
length (%)

Algorithm
1-NN Euc 1-NN Euc 1-NN Euc Deep Learning

(Euclidean) Linear Model Arima Custom
100% Avg. Accuracy 0.7953 0.79534 0.79534 0.8122

Time (s) 2.428 2.4284 2.4284 123.63
50% Avg. Accuracy 0.7852 0.7191 0.6721 0.7866

Time (s) 0.60 13.03 523.27 120.80
25% Avg. Accuracy 0.7572 0.6549 0.6706 0.7650

Time (s) 0.24 7.05 32.97 96.73
12.5% Avg. Accuracy 0.7410 0.6131 0.6648 0.7448

Time (s) 0.08 8.78 34.41 92.41
6.25% Avg. Accuracy 0.7113 0.6131 0.6838 0.7334

Time (s) 0.05 8.74 12.44 80.84
3.125% Avg. Accuracy 0.6947 0.6131 0.6838 0.7140

Time (s) 0.03 4.28 8.83 74.92

Table 4.2: UCR early classification performance overview

4At 100% time series length, there is no reduced portion left to forecast using a linear
model or ARIMA, so the listed accuracy and time simply corresponds to that of the
1-Nearest Neighbor search with the Euclidean distance.
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Table 4.3 shows the number of datasets where the 1-Nearest Neighbor search
with the Euclidean distance outperformed Deep Learning and vice-versa,
again for the same minimal classification accuracy threshold of 0.6:

Time series
length (%)

Algorithm with higher accuracy (count)
1-NN Euc Deep Learning

(Euclidean) Custom
100% 20 39
50% 20 34
25% 16 30

12.5% 14 21
6.25% 6 21
3.125% 3 17

Table 4.3: UCR early classification - direct comparison of 1-NN Euclidean with Deep
Learning

4.2.2 Multivariate Time Series

As mentioned in 4.1, both multivariate datasets considered here are com-
prised of sensor data type measurements. The first one, Auslan, has less
measurements per time series timestamp, but more classes and more sam-
ples per class. The Snackbox dataset includes a total of 300 measurements
per time series timestamp, but only features 5 classes and an average of 12

samples per class, with two of those 5 classes being significantly underrep-
resented.

In the following sections showing the obtained results, the effect those
dataset characteristics have on early classification can be observed.
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Auslan

The early classification tradeoff curve for this dataset is depicted, for three
different algorithms, in the figures below.

(a) full curves (b) tail of the curves

Figure 4.4: The plot on the left shows the ’classification accuracy vs. time series length’
tradeoff curves for each of the classification algorithms applied to the Auslan
time series dataset. The curves are the result of interpolating points (time series
length, classification accuracy) gathered with 50% reductions of time series
lengths, i.e. at 100%, 50%, 25%, ... of the original time series length. These
reductions are repeated for a given algorithm until its classification accuracy
drops below the minimal classification accuracy threshold (mcat) set beforehand,
in this case 0.6. The plot on the right depicts the tail of the curves seen on the
left.

Figure 4.4 shows two views of the same curves, with the left one showing
the full early classification tradeoff curves for a number of algorithms on
the Auslan dataset. The right one shows the tail of the same curves.

The reduction step length used to produce these interpolated curves was
0.5, since classification accuracy only really becomes close to the minimal
classification accuracy threshold (mcat) of 60% around time series lengths
of about 6% of the original time series full length. In this application of
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the Early Classification Tradeoff Curve Derivation algorithm, the step 12’
variation of the reduction in time series length was used.

The algorithms employed for the derivation of the early classification trade-
off curves shown above were the following:

• 1-Nearest Neighbor with the Frobenius distance: See its definition in
3.1.3.
• Deep learning with standard parameters, as derived and computed

by Aiello et al., (2016), results in the model described below. Refer to
section 3.1.4 for details on each parameter and refer to 3.2.1 for details
on the input configuration.

– Activation function: Rectifier
– Number of hidden layers: 2

– Neurons per hidden layer: 200

– Loss function: CrossEntropy
– Epochs: 10 (on average)
– Assumed distribution of the instance classes: Multinomial

• Deep learning with the following customized model, obtained via
experimentation and grid search over the listed parameters:

– Activation function: Rectifier
– Number of hidden layers: 3

– Neurons per hidden layer: 200

– Loss function: CrossEntropy
– Epochs: 100

– Assumed distribution of the instance classes: Multinomial
– Number of folds in cross-validation of train set: 5
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Table 4.4 shows the exact values depicted in the figure 4.4 and the time it
took to train and classify each round of reduced time series in the Auslan
dataset:

Time series
length (%)

Algorithm
1-NN Deep Learning Deep Learning

Frobenius Standard Custom
100% Accuracy 0.6337 0.8179 0.9284

Time (s) 2034.62 58.74 752.53
50% Accuracy 0.7989 0.8253 0.9263

Time (s) 1938.95 47.05 564.09
25% Accuracy 0.8621 0.8368 0.9547

Time (s) 1893.74 29.56 631.96
12.5% Accuracy 0.7937 0.8989 0.9779

Time (s) 1869.85 19.96 849.64
6.25% Accuracy 0.6811 0.7853 0.9295

Time (s) 1871.06 14.61 676.83
3.125% Accuracy - 0.64 0.8305

Time (s) - 11.03 579.15
1.5625% Accuracy - - 0.6516

Time (s) - - 530.12

Table 4.4: Auslan early classification performance overview
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Snackbox

The early classification tradeoff curve for this dataset is depicted, for three
different algorithms, in the figures below. Note that these graphics represent
average classification accuracies, computed over a set of 50 iterations of
the early classification tradeoff curve derivation algorithm on the Snack-
box dataset. Individual iteration results are available on the annex of this
thesis.

(a) full curves (b) tail of the curves

Figure 4.5: The plot on the left shows the ’classification accuracy vs. time series length’
tradeoff curves for each of the classification algorithms applied to the Snackbox
time series dataset. These curves represent averages of the tradeoff curves, com-
puted over 50 iterations of algorithm 1 on the Snackbox dataset, per classification
algorithm. The curves are the result of interpolating points (time series length,
classification accuracy) gathered with 95% reductions of time series lengths, i.e.
at 100%, 95%, 90.25%, ... of the original time series length. These reductions are
repeated for a given algorithm until its classification accuracy drops below the
minimal classification accuracy threshold (mcat) set beforehand, in this case 0.6.
The plot on the right depicts the tail of the curves seen on the left.

Figure 4.5 shows 2 views of the same curves, with the left one showing the
full early classification tradeoff curves for a number of algorithms on the
Snackbox dataset. The right one shows the tail of the same curves.
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The reduction step length used to produce these interpolated curves was
0.95, since, algorithms applied on this dataset suffer from rapid classification
accuracy drops with relatively small reductions in time series length. In this
dataset, the algorithms reach the minimal classification accuracy threshold
of 60% already at around time series lengths of about 40% of the original
time series full length. In this application of the Early Classification Tradeoff
Curve Derivation algorithm, the step 12’ variation of the reduction in time
series length was used.

The algorithms employed for the derivation of the early classification trade-
off curves shown above were the following:

• 1-Nearest Neighbor with the Frobenius distance: See its definition in
3.1.3.
• Deep learning with the following customized model, obtained via

experimentation and grid search over the listed parameters (refer
to 3.1.4 and 3.2.1 for more information on each parameter and input
configuration):

– Activation function: Rectifier
– Number of hidden layers: 7

– Neurons per hidden layer: 70

– Loss function: CrossEntropy
– Epochs: 10 (on average)
– Class balancing: True
– λ1: 10−4
– λ2: 10−4
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Table 4.5 shows the exact values depicted in the figure 4.5 and the time
it took to train and classify each round of reduced time series in the 50

iterations of the early classification tradeoff curve derivation algorithm over
the Snackbox dataset:

Time series
length (%)

Algorithm
1-NN Deep Learning

Frobenius Custom
100% Avg. Accuracy 0.808 0.6801

Time (s) 1.16 77.24
95% Avg. Accuracy 0.839 0.6964

Time (s) 1.12 73.48
90.25% Avg. Accuracy 0.8618 0.7119

Time (s) 0.42 79.27
81.45% Avg. Accuracy 0.8598 0.7349

Time (s) 0.4 89.94
66.34% Avg. Accuracy 0.8518 0.6591

Time (s) 0.37 91.57
44.01% Avg. Accuracy 0.8492 0.677

Time (s) 0.32 94.88
19.37% Avg. Accuracy 0.8542 0.6616

Time (s) 0.28 108.24
3.752% Avg. Accuracy 0.631 -

Time (s) 0.24 -

Table 4.5: Snackbox early classification performance overview
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Table 4.6 shows the number of early classification algorithm iterations where
the 1-Nearest Neighbor search with the Frobenius distance outperformed
Deep Learning and vice-versa, again for the same minimal classification
accuracy threshold of 0.6:

Time series
length (%)

Algorithm with higher accuracy (count)
1-NN Frob Deep Learning
(Frobenius) Custom

100% 48 2
95% 42 5

90.25% 35 6
81.45% 30 7
66.34% 26 4
44.01% 21 3
19.37% 17 2
3.752% 1 -

Table 4.6: Snackbox early classification - direct comparison of 1-NN Euclidean with Deep
Learning

4.3 Summary

This chapter presented the early time series classification results achieved on
3 different datasets of different types, for a number of time series classifica-
tion algorithms. The data sets presented in this chapter, namely UCR, Auslan
and Snackbox, include both theoretical as well as real world examples. The
UCR dataset contains a total of 85 univariate time series, whereas the Aus-
lan and Snackbox both comprise only multivariate time series. The results
obtained on those data sets consist of graphical representations of the early
classification tradeoff curves of the 1-Nearest Neighbor searches and Deep
Learning for each of the datasets considered. Overall performance overview
of those algorithms are complemented by a zoomed-in view of the curves’
tails, which represent the critical region where classification accuracy drops
below the pre-defined mininmal classification accuracy threshold. The data
underlying those plots was also shown in tabular form. These results serve
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as the empirical basis for the evaluation of the research questions guiding
this thesis. The discussion thereof and, in particular, also the limitations of
these results, will be addressed and discussed in the next chapter.
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Having presented the overall results in the previous chapter, this chapter
aims to make sense of them and draw conclusions to help answer the
research questions guiding this thesis. While this thesis claims to have
answered those, it does not claim its results do not have its limitations, so
those will addressed here as well. This chapter’s structure follows that of the
results chapter: The discussion starts with the UCR univariate time series
datasets and continues with the multivariate ones, with the discussion of
Auslan being followed by that of the Snackbox dataset. Finally, a reflection
on the limitations of this work rounds up this chapter.

5.1 Observations per Dataset

The reason for discussing the results obtained per dataset separately instead
of overarching, general observations covering all datasets directly relates
to its limited comparability between datasets. As will be seen below, while
there are commonalities between them, the number of unique aspects to each
of them justified the separation of observations made drawn per dataset.

5.1.1 Univariate Time Series

UCR

Figure 4.3 plots the classification accuracies for the full and reduced time
series lengths, obtained per algorithm and averaged over all time series
datasets of the UCR repository. The characteristics of the early classifi-
cation tradeoff curves derived for the univariate time series of the UCR
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dataset seem, graphically, to be quite clear: In general, the curves seem
to feature an overall decreasing trend. Classification accuracy, irrespective
of the classification algorithm, drops steadily with decreasing time series
lengths. The ”1-Nearest Neighbor search with forecasts by ARIMA models”
appears to be, however, the sole exception to this downwards trend, but
this apparent exception will be explained later. The Deep Learning model
edges out 1-Nearest Neighbor search in classification accuracy throughout
all time series lengths. The performance gap seems to be larger along both
the beginning and the tail of the early classification tradeoff curves. The
algorithms 1-Nearest Neighbor with forecasts by linear and ARIMA models
are completely dominated by the other two classification approaches, with
the linear models being more accurate for the larger time series lengths and
the ARIMA models outperforming the linear ones as time series lengths get
shorter and shorter. Although all algorithms classify, with accuracy above
the minimal classification accuracy threshold (mcat) of 60%, some UCR
dataset of reduced time series measuring 3.125% in length, no algorithm
maintains an accuracy above that mcat for even shorter time series lengths,
for all of the UCR time series datasets.

A closer look in table 4.2, which lists the exact accuracies (averaged over
the UCR datasets) and timings of each of the classification algorithms, for
the full and each of the reduced time series lengths, allows for deeper
insights into the results obtained in the UCR datasets. The graphically
apparent dominance of the Deep Learning algorithm with respect to 1-
Nearest Neighbor search with the Euclidean distance translates to a maximal
difference in average accuracy between them of only about 2% for the time
series lengths 100%, 6.25% and 3.125%. All other differences in accuracy are
around 1% or even less. Given the constant Deep Learning model over all
85 datasets, it is interesting to observe that it still, in general, performs quite
well. This thesis attributes that fact to the comparatively large size of the
deep neural network used here, which covers the complexity contained in
the relatively short time series of the UCR dataset. Table 4.2 also confirms
the significant performance gap between those two classification methods
and the 1-Nearest Neighbor search with the Euclidean distance and forecasts
provided by linear models and ARIMA, since the latter have lower average
classification accuracies throughout all time series lengths, and mostly by
a margin of at least 2%. The poor performance of the 1-Nearest Neighbor
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algorithms enhanced by forecasts by linear models and ARIMA is rooted at
the structure of the time series themselves. These two time series models are
geared towards time series with trend and seasonality components. ARIMA
in particular assumes stationarity of the time series. However, the time
series in the UCR dataset are, in general, not stationary and do not have
seasonality or trend components. The UCR time series are aimed towards
classification and not forecasting tasks, hence the poor forecasts by these
models, which end up penalizing classification accuracy of the 1-Nearest
Neighbor search. Table 4.2 shows, however, one of the weaknesses of the
Deep Learning: its slowness in training and classifying the time series. It
pales in comparison with the run-times of all the other algorithms, since, in
the worst case, it is 3 orders of magnitude larger than that of the 1-Nearest
Neighbor search with the Euclidean distance. It takes, on average, still over
a minute to train and test a Deep Learning model even on time series
with their length reduced to 3.125% of the original length. The 1-Nearest
Neighbor search algorithms with the linear model forecast method runs on
average in around 10 seconds, while the ARIMA ones take about 30 seconds,
with the notable exception of the run-time for the time series length of
50%. This high average value is very strongly skewed by a couple of outlier
time series datasets, where the automated model fitting and estimation by
R. Hyndman, (2016) take a very long time. This is, again, related to the
unexpected time series, from the perspective of both the ARIMA and linear
models. For these datasets, the classification accuracy achieved with this
method barely tops the minimal classification accuracy threshold, so the
other average accuracies and times of this classification algorithm are more
representative of its actual performance.

In general, the fact that, for time series lengths shorter than 12.5%, there were
at most 3 out of 85 datasets where the classifications algorithms using linear
models and ARIMA still perform above the minimal classification accuracy
threshold explains a lot. It is the main reason for the rather surprising uptake
in average classification accuracy towards the end of the early classification
tradeoff curve of the classifier with ARIMA and also the constant tail of the
classifier with linear models.

Since these two algorithms never perform better, on average, than the
simple 1-Nearest Neighbor search with the Euclidean distance and the Deep
Learning models, focus is directed towards the latter algorithms with a table
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listing the number of UCR datasets where Deep Learning outperformed
the 1-Nearest Neighbor and vice-versa (see table 4.3). This table aims to
complement the view on the results provided by table 4.2, whose averages
hide some insights into the results obtained. The table shows that, even
though Deep Learning did not have a significantly higher average accuracy
than the 1-Nearest Neighbor search with the Euclidean distance, the latter
achieved higher classification accuracy than the former on a higher amount
of UCR datasets for all reduced time series lengths. This is another indicator
for the comparatively solid results achieved by Deep Learning, besides
the small improvements in average classification accuracy over the simple
1-Nearest Neighbor classifier with the Euclidean distance.

To conclude the discussion of the results on the UCR time series repository,
the Deep Learning methods show potential in keeping up with the perfor-
mances of both the 1-Nearest Neighbor search with the Euclidean distance
and perhaps even with 1-Nearest Neighbor search with dynamic time warp-
ing, as referenced in Chen et al., (2015). Note, however, that, while 1-Nearest
Neighbor search with the Euclidean distance cannot be further improved,
different and dataset-specific parameter choices for the Deep Learning mod-
els may lead to even better results. This is, however, also a downside of the
latter method, since model configuration may become very complex and
hyperparameter optimization a never ending task. Furthermore, the very
long run-times may also deter one from choosing a Deep Learning model
over the very performant (in the speed aspect) 1-Nearest Neighbor search. In
general, for these two algorithms, early classification of the UCR time series
seems feasible, if a drop in average accuracy of up to 10% is an acceptable
loss for the benefit of outputting a time series classification decision with
only a fraction of e.g. 3% of total time series length. The results obtained
with the variations of the 1-Nearest Neighbor with forecasts provided linear
models and ARIMA are, especially in comparison with the other algorithms,
rather unsatisfactory, since they are dominated both in terms of average
accuracy as well as in the average train and classification run times. This is
a consequence of the composition of the time series themselves, which is
not appropriate for these forecasting algorithms.
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5.1.2 Multivariate Time Series

Auslan

In the dataset of multivariate time series ”Auslan”, the figure 4.4 plots
the classification accuracies for the full and reduced time series lengths,
obtained for a typical run of the algorithms 1-Nearest Neighbor search
with the Frobenius matrix norm and two different Deep Learning models,
with the reason for the latter being addressed later on. The tradeoff curves
pictured there exhibit a peculiar behavior, in the sense that classification
accuracy seems to increase with reducing time series length, up to a cer-
tain point, for all algorithms. This is counter-intuitive to the notion that
classification accuracy decreases with shorter time series lengths. This is
justified by the fact that many of the Auslan signs time series share a high
degree of similarity between them in their end portions. Time series length
reductions cut those tails many Auslan signs have in common, improving
overall distinction of the Auslan signs time series and thus leading to higher
classification accuracy overall. With this dataset, Deep Learning methods
quite clearly outperform the Frobenius 1-Nearest Neighbor algorithm, both
in classification accuracy as well as in terms of the time series length reduc-
tions achieved before dropping below the minimal classification accuracy
threshold. As far as the Deep Learning algorithms go, the model specifically
tailored to the Auslan dataset performs a larger amount of time series length
reductions while staying above the minimal classification accuracy threshold
and also features higher classification accuracy at each such step, when
compared to the standard, out-of-the-box Deep Learning model estimated
by the Aiello et al., (2016) framework.

The table 4.4 corroborates these findings. In terms of both classification
performance and time series reductions achieved, the tailored Deep Learn-
ing method appears to be the best of the three classification algorithms
considered here, followed by the standard Deep Learning model and, last
but not least, the Frobenius 1-Nearest Neighbor search. Note, however, the
run-times of each of the algorithms. In this aspect, one can observe a reversal
of the previous ranking, with the standard Deep Learning method being
an order of magnitude faster than the tailored Deep Learning model. The
latter took at least around 9.6 minutes to complete a classification task,
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which the former solved in about 11 seconds. Although this version of
the 1-Nearest Neighbor search was by far the slowest, the truth is not as
clear-cut as the results may seem to indicate. This poor performance relates
to the concrete implementation of the 1-Nearest Neighbor search using
the Frobenius norm. It was done directly in the programming language
R, which can be notoriously slow for such tasks. Incidentally, this is the
reason why package developers like Venables and Ripley, (2002) resort to
implementing algorithms like the 1-Nearest Neighbor with the Euclidean
distance in the C programming language (Kernighan and Ritchie, (2006)),
which led to its high performance in the UCR datasets. A more efficient
implementation of the Frobenius 1-Nearest Neighbor is employed in the
Snackbox dataset, where it achieves the type of run-times one observed
in the UCR dataset. Therefore, this thesis refrains from drawing further
conclusions from the 1-Nearest Neighbor run-time in this case.

Note, also, that the tradeoff curves discussed here base on a single run of the
early classification tradeoff curve derivation algorithm. No further iterations
were necessary for this dataset, due to the overall stability of its results: It
always resulted in the same relation of the algorithms to one other, similar
accuracy levels and reduced time series lengths.

To sum the discussion of the results obtained for Auslan, the following
conclusions are drawn. Early classification seems to especially practicable
on this multivariate time series dataset, since classification accuracies of
around 80% can be achieved with as little as 3.125% observations of an
average Auslan sign (time series) length. Deep Learning seems to be here,
again, a viable alternative to the baseline 1-Nearest Neighbor search with
the Frobenius distance. Due to the tailored Deep Learning algorithm’s
comparatively long training and classifying times, the slightly less accurate,
but significantly faster standard Deep Learning model seems to be an
attractive alternative, since, on top of that, it also allows for relatively high
accuracies of around 80% at about 6.25% of the full time series length.

Snackbox

The multivariate time series dataset ”Snackbox”, the smallest of the three
analyzed in this thesis, is associated with the early classification tradeoff
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curves featured in the plot numbered 4.5. In contrast to the Auslan dataset
early classification tradeoff curves, the tradeoff curves shown in that figure
contain classification accuracy averages, which were computed over a set
of 50 iterations of the early classification algorithm of section 3.1.5, for a
reason to be explained in detail further down in this section. In a, at least to
a certain extent, similar fashion to the Auslan dataset, the early classification
tradeoff curves exhibited here display improvements with time series length
reduction up until a certain point is reached, then either stay relatively
constant on that level or navigate around it, and finally conclude with a
sharp drop in classification accuracy with time series lengths under 10%.
Again, the initial counter-intuitive increase in classification accuracy can be
traced back to a common tail of the Snackbox phases to be classified, which,
when cut off, improves overall classification accuracy for both algorithms.
The ups and downs for time series lengths in the interval 90% until 40%
are direct byproducts of the structure of the Snackbox dataset instances,
which consist of time windows of observations of the multivariate time
series. Time windows in which some discriminating event occurs are crucial
for both classifiers to separate phases from each other, and these are often
interspersed by time windows where nothing of note occurs. Therefore,
with the successive reductions in time series length, sometimes some of
those more relevant time windows remain, but sometimes they are cut off
and in the latter cases, classifiers make classification decisions on less clear-
cut cases, thus resulting in a decline in the average classification accuracy.
Finally, the sharp drop on classification accuracy ensues at around 3% for
the 1-Nearest Neighbor search with the Frobenius matrix norm, and already
at 19% of total time series length for the Deep Learning algorithm. On
that note, in the Snackbox dataset, the roles seem to be reverted: The Deep
Learning model is no longer, in contrast to before, either at least on par
if not obviously better than the competing algorithms, but it seems to be
significantly underperforming the 1-Nearest Neighbor with the Frobenius
matrix norm. This dominance is apparent both as far as overall average
accuracy, as well as the number of time series lengths reductions possible for
the while minimal classification accuracy threshold of 60%, are concerned.
One reason for this behavior could, of course, be parameter choice for the
Deep Learning model. However, an extensive grid search was performed, so
this thesis attributes the poor performance of the Deep Learning model in
the Snackbox dataset mainly to the following two factors. The first of them
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is the model size itself. Since a phase is composed of several windows of
observations, with each observation itself consisting of 300 features, a phase
fed as input to the deep learning model can have up to around 10700 input
nodes (recall that this thesis’ deep learning models for multivariate time
series, described in 3.2.1, ”flatten” the multivariate time series, represented
as an n× m matrix, to a vector with nm entries). Depending on the size
and number of the ensuing hidden layers in the deep neural network, this
leads to millions of weights to be optimized. At this point, such a large
model suffers from both a software and hardware constraints, since the
deep learning framework H2O cannot handle that many parameters to be
optimized and, even if it could, hardware restrictions, particularly in RAM,
become an issue. The second factor driving the performance of the Deep
Learning model on Snackbox is the low dataset cardinality in terms of
its available samples (and not each sample’s dimensionality, the topic of
the previous sentences). The Snackbox dataset consists of solely 60 phase
instances, with each phase class having between 5 and 15 elements. These
need to be divided up in a train and test set, thus reducing the sample
to train the Deep Learning model with even further. Since Deep Learning
models require, in general, a lot of data to really shine, this significantly
hampers its results on the Snackbox dataset. The effect the lack of data
available has can be observed in the configuration of the Deep Learning
model. If one leaves out the ”balance classes” parameter, which oversamples
underrepresented phases to compensate for the lack of data on those, then
average classification plummets, and it is often not higher than the minimal
classification accuracy threshold, even at full time series length. Therefore,
this leads to the belief that the low average classification accuracy of Deep
Learning stems, at least to a certain extent, from the lack of data.

In fact, the Deep Learning model obtained here proved to be quite unstable,
showing high volatility in classification accuracy. This volatility depended on
the samples, which got randomly assigned to the train set in each iteration
of the training process required for each of the reduced time series lengths.
Hence, the early classification curve derivation algorithm was looped over
50 times, and each such iteration’s results were averaged and then presented
here, to ensure that the results are representative. The table 4.5, accompa-
nying the figure 4.5, shows the detailed average classification accuracies
and run-times for each of the reduced time series lengths. Although the
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table reinforces the conclusions drawn previously, it is remarkable that the
1-Nearest Neighbor search with the Frobenius matrix norm consistently
reaches average classification accuracies upwards of 80%, even for time
series lengths as short as around 19% of the original length. As far as the
run-time is concerned, the Deep Learning train and test times are bested by
around an order of magnitude. Interesting to note here is also the fact that
the run-time of the Deep Learning early classification seems to increase with
decreasing time series length, which is counter-intuitive and was not the
case in any of the datasets and iterations before. This is, as far as it could be
investigated, a consequence of hardware constraints and the RAM gradually
becoming full as previous results did not yet get garbage collected by the
Java Virtual Machine.

The summary table 4.6, shows the number of iterations where the Frobenius
1-Nearest Neighbor search dominated Deep Learning in terms of the clas-
sification accuracy, per reduced time series length. It represents one final
evidence piece that the former really is no match for the latter, as far as
the early classification of this dataset is concerned. This is the case despite
punctual cases like those of the time series lengths 90.25% and 81.45%,
where, due to certain phase observations without high informational value
being cut out and them impacting the volatile Deep Learning model ”more
strongly” than the Frobenius 1-Nearest Neighbor, the ratio of iterations
where Deep Learning outperforms Frobenius 1-Nearest Neighbor briefly
rises, before dropping again for good.

To conclude, for the Snackbox set of multivariate time series, early classi-
fication seems to be possible and interesting with the use of the 1-Nearest
Neighbor search with the Frobenius matrix norm, for a reduction of time
series length of up to 19% of the original length, is on average even beneficial
to the average classification accuracy on this dataset. The application of
Deep Learning methods seems to be inadequate for the early classification
of this dataset of multivariate time series, due to both its small sample size
as well as high cardinality inputs.
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5.2 Limitations

Limitations pertaining to each of the algorithm applications to the early
classification problem, such as the issue with the 1-Nearest Neighbor with
ARIMA or linear model forecasts for non-stationary time series, or the
underwhelming performance of the Deep Learning model in the Snackbox
multivariate time series dataset with its low cardinality of train data cou-
pled with high dimensionality, were discussed at length in the paragraphs
above.

Therefore, the following addresses other, overarching limitations. Firstly,
the Deep Learning models for the UCR datasets could be made tailored to
each of the UCR time series datasets itself, instead of the current ”one-size-
fits-all” approach. While it still proves to be effective and accurate in early
classification, due to its relatively large size in comparison to the UCR time
series themselves, this could always be improved with a deeper grid search
or perhaps more tailored feature selection to feed to the Deep Learning
model, in particular by using certain windows or shapelets of the UCR
time series as input. This approach is followed by Chen et al., (2015) in
its computations of optimal dynamic time warping distances per dataset.
Dynamic time warping delivers better performances than the Euclidean
distance, due to its ability to factor in events in the time series relevant for
its classification starting sooner (or later) in a given time window. Since
usage of this tailored approach improves classification accuracy overall, the
fact an overarching Deep Learning model was used here may hurt it in
comparison.

Unfortunately, the results provided here cannot be directly compared to
those obtained in the paper Juan J. Rodriguez and Carlos J. Alonso, (2002),
due to its usage of an older version of the Auslan dataset, or to the nature of
the empirical early classification results presented here per dataset strongly
differing from Xing, Pei, and Philip, (2012) or Parrish et al., (2013). The
reason for the lack of comparison possibilities with the latter lies in their
focus being different than that of this thesis: Those papers present algo-
rithms that smartly reduce time series length, while maintaining a series of
properties desirable in a classification setting, such as stability or reliability
of the classification decision. This thesis proposes an empirical approach for
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assessing the applicability and performance of a given time series classifica-
tion algorithm in an early classification context, focusing on the comparison
of classification algorithms used for that task with each other, and without
forcing and engineering them to maintain reliability and accuracy on par
with that of classification using full time series length.

Finally, although this thesis employed a wide variety of time series datasets,
including both univariate and multivariate time series data, cleaned and
raw data, data used in (time series classification) literature and sensory data
used for internal purposes, one can always broaden the number and variety
of the datasets used in some aspect or the other.

5.3 Summary

In this chapter, the results obtained per dataset were discussed at length.
In general, early classification and the derivation of early classification
curves, defined as the tradeoff between accuracy and time series length,
seems to be feasible for the three different time series datasets and the
multiple algorithms considered here. Deep Learning seems to boast higher
classification accuracy other algorithms, even if only by a slight margin, but
only if used in a context, where certain conditions are met. In short, Deep
Learning requires a lot of data and is not the best alternative if run-time
is of the essence. Both of these aspects might realistically be relevant for
the task of early classification of time series, since it arises, in practice, in
contexts where not a lot of data is available (yet) and some classification
decision needs to be made fast regardless. In such cases, the use of the
1-Nearest Neighbor can be recommended for use in the early time series
classification task of both univariate as well as multivariate time series,
due to its overall good performance on both accuracy vs. reduced time
series length and low computational resources and run-time required for
it. Enhancing reduced time series with classical time series forecasting
methods, like linear models or ARIMA, does not seem to help in the early
classification task. The results obtained here are limited by the configuration
possibilities of the Deep Learning models themselves, which can be literally
endless, lack comparison potential with literature on this topic due to it
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following significantly different approaches than this thesis, and perhaps
also by the choice of the time series datasets themselves, which can always
encompass a wider variety of time series datasets and thus become more
representative.
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Basing time series classification decisions on reduced time series is a chal-
lenging problem. This thesis helps navigate through issues commonly aris-
ing when tackling that problem in a number of ways. Firstly, time series
appropriate for early time series classification are identified. Then, an al-
gorithmic recipe for deriving an accuracy vs. time series length trade-off
curve is proposed. Finally, that algorithm was applied, in an experiment
designed to understand which classification algorithms work best in this
context. This chapter sums up the approach employed and results obtained
in the search for answers to the research questions.

6.1 Review

A review of state-of-the-art literature on early time series classification
revealed a research gap in the topic of early classification of multivariate
time series, on the explicit derivation of an accuracy vs. time series length
trade-off curve and on the application of deep learning algorithms to this
problem. This thesis then set out to establish a theoretical framework to
formalize time series mathematical representations and forecast models,
classification algorithms, in particular deep learning, and the early time
series classification trade-off curve derivation algorithm. Having established
that theory and addressed its practical implementation, the results were
computed with both univariate as well as multivariate time series datasets.
All conclusions drawn on those results were interpreted in the context of
the datasets the algorithms were applied to. In general, early classification
was possible for all of them, with significantly reduced time series lengths
still bringing fairly high accuracies, at least in comparison with the minimal
classification accuracy threshold, a lower bound for classification accuracy

69



6 Conclusion

on reduced time series. The derived early classification trade-off curves
reinforce this idea and allow for comparisons between the classification
algorithms themselves used in this thesis. While Deep Learning showed, in
general, a lot of potential, having better average performances for univariate
time series and notably better performances with one of the multivariate
time series datasets. However, it boasted rather low accuracies at even high
time series lengths for the other multivariate time series dataset. The latter
issues mainly revolved around the scarcity of the data available in that
dataset, but Deep Learning also had, in comparison with other algorithms,
significantly higher train and test run-times. The 1-Nearest Neighbor search
consistently performed well throughout all datasets and was fast too, so it
stood the tests this thesis put it through and empirically and comparatively
established itself as a very viable algorithm in the context of early time series
classification. Its variations with ARIMA and linear models were, on the
other hand, quite poor, due to the UCR univariate time series being geared
towards classification and not forecasting approaches, and thus not being
stationary and not featuring common aspects, like trends or seasonality
effects, these forecasting models thrive off of.

6.2 Future Work

This thesis leaves open a number of possible paths for further research work
in this area. A few thoughts and ideas on this follow next.

As mentioned before, the classical time series forecasting methods ARIMA
and linear models, used to forecast missing time series portions in early
classification, assumed the type of characteristics the univariate datasets
partially did not have, but other types of models could be applied here,
like Kalman filters, which can be robust to non-stationary and, in general,
more irregular time series. Entirely different models used in forecasting
and even other methods to study time series may be also of interest in
this context, such as shapelets or (fast) Fourier transforms, which could
provide better indications which critical time series lengths influence the
early classification trade-off curve the most.
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Seeing as Deep Learning is such a complex approach, which needs a lot of
data to perform at acceptable levels, a couple of ideas to improve it would
be to engineer and tailor time series features to be fed to it, thus reducing
input dimensionality, while capturing as much of the information contained
in the reduced time series as possible. This may require specific domain
knowledge specific to the time series dataset at hand, but, perhaps, other
approaches like Xing, Pei, and Philip, (2012)’s or maybe even Mori et al.,
(2016)’s could be adapted to help Deep Learning models learn main class
distinguishing features at reduced lengths.

One final idea, which might find application in real-world early classification
problems might be online learning: Imbuing the general early classification
approach presented here with the possibility to learn, adjust and enhance
its performance on continuously incoming data seems a very promising
idea.

6.3 Summary

This thesis set out to answer three research questions on early time series
classification, and obtained some promising answers on those, as empirical
results on which time series allow for early classification, trade-off curves
therefore and algorithm comparisons were presented. However, constrained
by the scope of this work, some avenues of future work on this problem,
basing on the approaches presented here, were proposed and left for the
reader to further investigate on, such as the testing of more advanced time
series classification approaches or feature engineering for Deep Learning.
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