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Abstract

Building an effective representation of images is one of the most critical parts in high-level

computer vision applications like image classification or detection. The recent success of

deep learning underpins the importance of a good image representation. Convolutional

Neural Networks (CNNs) contribute to state-of-the-art image classification where multi-

layer architectures allow to extract features on different levels of abstraction. However,

such systems require tremendous amount of computational resources, which is an issue if

working memory or processing speed is limited.

The works of Coates et al . [20, 21] show, that also efficient single-layer architectures

enable high image classification performance, despite relying on unsupervised dictionary

learning. However, there are two main issues: (i) this approach is especially sensitive

to preprocessing parameters and (ii) still requires time-consuming convolutional feature

extraction. To overcome these issues, we propose patch-based representation learning

with Random Forests (RFs). This replaces the expensive convolutions by simple binary

splitting-tests, providing a fast and direct way to extract image features. In line with this,

we investigate two different representation learning approaches: Our first approach exploits

the unsupervised dictionary learning method of Coates et al . and trains a RF on raw

image patches. Experiments on MNIST-10 and CIFAR-10 show that the resulting image

representations are able to improve classification performance. Moreover, one experiment,

including training and testing, can be done within minutes on a multi-core CPU. Inspired

by the success of our first approach, we then replace the first convolutional layer of a

baseline CNN by a RF. Therefore we introduce an iterative end-to-end optimization for

MNIST-10 classification, which enables an improvement of 17% over the baseline CNN.
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Kurzfassung

Die effektive Erzeugung von Bildrepräsentationen ist einer der wichtigsten Arbeitsschritte

von High-level Computer Vision Anwendungen, wie Bildklassifizierung oder Detektion.

Jüngste Erfolge mit Deep-Learning unterstreichen die Bedeutung einer charakteristis-

chen Bildrepräsentation. Convolutional Neural Networks (CNNs) sind Stand der Technik

bezüglich Bildklassifizierung und ermöglichen durch einen mehrschichtigen Aufbau eine

Extraktion von Bildmerkmalen, auch Features genannt, über verschiedene Stufen der Ab-

strahierung. Solche Netzwerke benötigen jedoch oft eine große Anzahl an Convolutions

und sind daher mit einem sehr hohen Rechenaufwand verbunden, was zu Problemen führen

kann, wenn Arbeitsspeicher oder Rechengeschwindigkeit begrenzt sind.

Die Arbeiten von Coates u.a. [20, 21] zeigen, dass auch effiziente einschichtige Ar-

chitekturen hohe Bildklassifikationsraten ermöglichen, obwohl Unsupervised-Dictionary-

Learning Methoden verwendet werden. Bei diesem Ansatz gibt es jedoch zwei Kernprob-

leme: (i) es besteht hohe Empfindlichkeit gegenüber Preprocessing-Parametern und (ii)

es wird nach wie vor eine Faltungsextrahierung von Features durchgeführt. Mit dem Ein-

satz von Random Forests (RFs) lernen wir Patch-Repräsentationen und ersetzen somit

die Faltungsextrahierung durch einfache binäre Entscheidungen. Dadurch erhalten wir

eine effiziente und direkte Möglichkeit Features von rohen Bilddaten zu berechnen. In

diesem Zusammenhang untersuchen wir zwei verschiedene Repräsentations-Lernmethoden:

Unsere erste Methode nutzt den Unsupervised-Dictionary-Learning Ansatz von Coates

u.a. und trainiert einen RF auf rohen Bild-Patch Daten. Experimente auf MNIST-10

und CIFAR-10 zeigen, dass dadurch erzeugte Bildrepräsentationen die Bildklassifizierung

verbessern. Zusätzlich kann ein Experiment, das Training und Testen umfasst, innerhalb

weniger Minuten auf einer Multi-Core CPU durchgeführt werden. Durch den Erfolg dieser

ersten Methode inspiriert, ersetzen wir in weiterer Folge den ersten Convolutional-Layer

eines Ausgangsnetzwerkes durch einen RF. Dabei erreichen wir, mittels iterativer end-to-

end Optimierung, eine Steigerung von ca. 17% bei einer MNIST-10 Klassifikation.
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1
Introduction

Computer vision tries to analyze or interpret visual information which requires extract-

ing relevant image characteristics. The popular proverb “A picture is worth a thousand

words” states that images may contain a huge amount of “words” or information which

we also denote as image features. In computer vision, a process called feature extraction

is responsible to extract relevant feature information and to produce an image represen-

tation that ideally encodes the visual “essence” of an image. Hence, building an effective

representation of images is crucial for image understanding.

In the past, numerous works on image feature processing and encoding appeared

[18, 21, 36, 68]. Examples are successful hand-crafted feature descriptors such as the

keypoint-based SIFT-descriptor [58] or the HOG-descriptor [25] which encode image

gradient information. Various kinds of such manually designed image features are

commonly used and show good performance for specific tasks. Although extensive

research has been dedicated to hand-crafted features, more sophisticated methods

that use learned features or representations gained interest over the last few years

[19, 21, 22, 57]. Recent works show that learned representations prove to outperform

hand-crafted approaches for many tasks [4, 7, 17].

To learn image representations, machine learning approaches use unsupervised, super-

vised or semi-supervised methods. Since growing computational power allows to learn

highly complex feature hierarchies, especially deep learning systems gained popularity.

Nowadays, designing and employing hierarchical multi-layer architectures is an active re-

search area where Deep Neural Networks (DNNs) [19, 64, 76] show state-of-the-art results

for numerous computer vision applications.

Such multi-layer architectures usually use a hierarchy of convolutional layers, also

called Convolutional Neural Nets (CNNs) [57]. Each layer learns the values of multiple

convolution kernels that build feature maps or feature channels which are then processed

by the next layer. Hence, with increasing network depth, higher levels of abstraction are

learned which have shown to yield good generalization. This hierarchical concept has been

1
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2 Chapter 1. Introduction

inspired by biological processes like those discovered by Hubel and Wiesel [46, 47] in the

late 1950s. They investigated a cat brain and found two main types of cells within the

visual cortex. The hierarchical arrangement from so-called “simple cells” up to “complex

cells” has shown individual responses for specific visual stimuli of certain appearances

within a certain receptive field. As an example, simple cells in the first layers fired for low-

level features like edges or gradients, whereas complex cells in deeper layers got excited

by more abstract higher-level features, such as shapes or oriented motion. It seems, the

imitation of such a hierarchy fairly contributes to the success of deep neural architectures

in computer vision.

However, such deep learning approaches do not have benefits only. The training pro-

cedure of hierarchical and convolutional architectures is not trivial. First of all, a proper

network design is of great importance for success. This comes with tuning numerous criti-

cal parameters, such as the number of layers, the number of neurons, weight initialization,

learning rates etc., which is done manually. This is challenging for most applications and

a lot of experience is required. Further, a massive amount of data has to be provided to

train deep systems. Even more, all the data needs to be labeled to train supervised mod-

els [70]. As a consequence, preparing training data of sufficient size is usually expensive

and time-consuming. Convolutional architectures also require a vast number of weights or

parameters to be trained, at high computational cost, however, unsupervised pre-training

of network weights has shown to circumvent initialization and speed up training progress

[29]. In this context, parallel computing is essential for acceptable deep learning time

periods, though training still requires hours or even days for big and complex structures.

Also during test time, deep convolutional architectures need to perform a large

amount of convolutions. In practice, however, computational efficiency is especially

important, in particular for mobile applications. Many real-world applications require

real-time processing where costly operations are unfavorable. To circumvent the

mentioned disadvantages, developing more efficient systems is of special interest.

The works of Coates et al . [20, 22] show that also efficient single-layer architectures

enable relatively high image classification performances, although of being learned

without supervision. They apply patch-based dictionary learning by using a standardized

K-means clustering approach. Resulting centroids are then used as a dictionary of

filter kernels that describe certain image characteristics on patch-level. In order

to produce image representations, Coates et al . use this dictionary as a feature

extractor by computing the inner product between learned filter kernels and image

patches. Hence, image patches are represented as code-vectors, thus yielding feature

channels for the entire image. Note that this corresponds to convolutional feature

extraction, where a patch can be regarded as receptive field. After applying a simple

non-linear activation on each code-vector, and performing spatial feature pooling,

they obtain surprisingly well discriminative image representations, being competitive

with a 2-layer Convolutional Neural Network [53] on classifying CIFAR-10 images
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3

[52]). Remarkably they achieve this with linear classification (SVM). However,

state-of-the-art approaches [19, 40] that use deep networks fairly outperform the

single-layer architecture of Coates et al . Still, single-layer networks are of certain

interest since they can be learned in a more efficient way and do not need dozens

of layers for computation. Since Coates et al . use unsupervised learning, their

approach bears an important additional advantage for the case when labeled data is scarce.

To recap, the approach of Coates et al . shows two major advantages: The

unsupervised dictionary learning by simple K-means clustering on image-patches, and

the single-layer feature extraction. However, to achieve high classification accuracies

with such image representations, preprocessing parameters turned out to be critical.

Regarding dictionary learning and feature extraction, especially standardization and

whitening on patch-level have a great impact on the final classification performance.

Further, this method still requires relatively time-expensive convolutional feature

extraction.

To overcome above mentioned problems, we propose learning representations with

Random Forests (RFs) [15, 16, 45]. Inspired by the approach of Coates et al . [20], our

goal is to omit convolutional encoding by using an ensemble of independent binary

decision trees to infer patch representations. A RF provides a more efficient way to

obtain feature information, since we only have to traverse several decision trees whereby

each tree performs fast binary pixel tests. In addition, our method allows a direct

mapping of raw input patches to feature-space in a pixel-wise and patch-based fashion,

which efficiently yields image representations. Due to this, also data preprocessing

becomes obsolete at test time.

We evaluate patch-based representation learning with RF by investigating two different

training approaches in this thesis. In our first approach we exploit the dictionary learning

methods of Coates et al . [20, 21] where we either apply K-means clustering (KM) or Sparse

Coding (SC) [21, 67] on a pool of random image patches. As a result, patches are assigned

code-vectors that underlie the found dictionary. This code-vectors or patch-encodings are

regarded as pseudo-label information. Hence, we use this pool of raw and pseudo-labeled

patches to train our RF, enabling us to infer patch representations at test time.

Motivated by this approach, we examine a second, rather unconventional RF training

methods. Recent works on CNNs show state-of-the-art results in various computer vision

tasks [19, 53, 57], however, they suffer from high computational complexity. Many CNN

architectures carry out relatively time consuming convolutions in the first-layer where

filter kernels are usually large. Also a high number of filter kernels affects processing

time. This encourages us to answer the following question: Is it possible to improve

a CNN’s performance by replacing the first linear layer by a non-linear RF? Therefore,

we introduce a “hybrid” network which employs a RF as a first-layer feature extractor
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4 Chapter 1. Introduction

instead of performing a linear convolution. Therefore we propose to employ a RF in

the same way as in our first approach. However, since the hybrid network is optimized

iteratively in an end-to-end fashion, we additionally have to consider how to “update” a

non-differentiable RF. A solution to that is to iteratively add trees to the RF model, which

subsequently compensates the previous ensemble error (also known as Gradient Boosting

[34, 35]). This way, the RF and the remaining CNN layers are trained simultaneously,

that is, we are learning first-level representations with supervision.

1.1 Image Representations for Image Classification

As global task we perform image classification since it is one of the most prominent tasks

to evaluate image representations. Figure 1.1 illustrates a typical image classification

pipeline: After data preprocessing, image features are extracted by encoding relevant

information. Additional post-processing like spatial pooling yields more compact and

robust image representations [13] that ideally allow easy distinction of image categories.

Finally, a trained classifier infers an image class c from an unseen image representation f ,

by using the most likely category as final prediction (in Figure 1.1 this equals to the class

“bowling - indoor” c = 3).

bowling - indoor

classifier

input image

preprocessing feature extraction

post-processing

Figure 1.1: Overview of a typical image classification pipeline. An unseen image is classified
using the most plausible category.

In this thesis, we investigate two different representation learning approaches that

enable building image representations with RFs. Thus we omit otherwise necessary data

preprocessing during feature extraction.

1.2 Unsupervised Representation Learning

Our first approach is inspired by the work of Coates et al . [20] who apply patch-based

dictionary learning on random image patches. Hence we consider using two different dic-

tionary learning algorithms, K-means clustering (KM) and Sparse Coding (SC) [21, 67].

As a result we do not only obtain a dictionary of filter kernels but also generate patch
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1.2. Unsupervised Representation Learning 5

dictionary learning

Random Forest

input image

randomly sample

patches

unlabeled images
representation learning

pixel-wise patch encoding

post-processing
image

representation

training RF on

(pseudo-) labeled patches

feature-cube

Figure 1.2: Overview of unsupervised representation learning with a Random Forest. The
(pseudo-) label information of random patches is based on unsupervised dictionary learning, which
we use to train a Random Forest. The trained Random Forest (Φ) is then applied to encode raw
image-patches to feature-space RK in a pixel-wise manner, yielding K feature channels. After
post-processing we obtain a final feature vector f ∈ RF which represents the whole image.

pseudo-labels. More specifically, we learn code-vectors for image patches in an unsuper-

vised manner where the underlying dictionary could be used to sparsely reconstruct the

original image patches.

We use these random and pseudo-labeled patches as RF training data, which enables us

to learn a direct mapping relation Φ from raw input patches to a new patch representation

in feature-space. Figure 1.2 illustrates how we propose to train and apply a RF to produce

image representations.

To produce an image representation, we perform pixel-wise patch encoding across the

whole image. Unlike convolutional feature extraction with filter kernels, this method is

more efficient since we omit performing convolutions and take advantage of fast binary

decisions of a decision tree ensemble.

In more detail, each patch of size d = w×w× q (where a patch may have input chan-

nels q ≥ 1) is encoded to a K-dimensional vector by RF inference. Hence, all resulting

code-vectors of an image produce K feature channels, forming a “feature-cube” Z. After

we apply some post-processing (e.g spatial pooling), we obtain a final image representa-

tion by stacking all remaining features to a vector f ∈ RF . Therefore, resulting image

representations yield a classification error of 0.54% on the MNIST-10 dataset [56], using
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60000 train-images and 10000 test-images for non-linear classification, where we use 106

raw image patches of size 6 × 6 with K = 264, on which we train 57 trees. We achieve

this high performance within 12 minutes on multi-core systems, including unsupervised

representation learning, as well as classifier training and testing. Further we show that

our RF-based representations can improve experiments of the VLFeat Team [77] by simply

appending them to existing representations.

1.3 Hybrid Feature Learning

In contrast to the previous representation learning method, this approach is based on

a rather unconventional multi-layer architecture. We therefore propose to replace the

first convolutional layer of a CNN by a Random Forest which we denote as hybrid net-

work. Hence, the RF (again) encodes raw image patches in a pixel-wise fashion, and thus

efficiently extracts first-level features. However, this requires additional considerations

regarding network end-to-end optimization, since we have to train a RF and CNN layers

simultaneously.

prediction

error back-propagation

and update

Hybrid Network
labeled

training images
RF

convolutional

hidden layers

output layer

(classification)

classification loss

Figure 1.3: Overview of a hybrid network end-to-end optimization. A Random Forest is used
to extract first-level features whereas a subsequent CNN derives further feature-levels up to a
final class prediction. The resulting network error can be back-propagated up to the RF output.
Training a new decision tree on this RF output gradient allows to “update” the RF encoding.

In order to train a hybrid network, we iteratively back-propagate the output-error

through all layers, update the network weights and train the RF in a boosting-like pro-

cedure. The reason for this is that end-to-end optimization requires network layers to be

differentiable. If we replace the first layer by a RF, this RF-layer is not differentiable with

respect to its model parameters (like split-functions, thresholds, etc.). Thus, an “update”

of a RF in this sense is not viable. Instead, an ensemble of decision trees allows additive

modeling [35] throughout optimization. Therefore we back-propagate the network error

up to the RF output, where the RF output gradient is equal to so-called ensemble resid-

uals. During optimization, the goal is to compensate the RF error by training a new tree

on the previous ensemble residuals (Gradient Boosting [34]). Note that this corresponds

to supervised representation learning as we have to compute the network error (or loss)
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1.4. Synopsis 7

which relies on the given ground-truth information. Figure 1.3 illustrates how to optimize

such a hybrid network in an end-to-end fashion.

To prove our concept, we again examine network performances on image classification

and compare a baseline CNN with a hybrid version of it. Experiments on MNIST reveal,

that a first-layer RF with a training depth of 8 improves the network’s classification per-

formance by approximately 17%, where we achieve a classification error of 1.49%. We

explain this improvement by the non-linear nature of our RF which enables learning com-

binations of low-level features. Further we address different aspects on RF initialization

to ensure proper network excitation.

1.4 Synopsis

In Section 2 we discuss global preliminaries and give a brief overview of used learning

methods as well as related works on feature learning. Further we explain how to build

a RF and thus how to train and test binary decision trees in general. The RF feature

extraction is stated in Section 3 which is equal for both our approaches. In Section 4

we explain our first approach that employs unsupervised representation learning. We

examine the impact of various learning parameters as well as RF specific parameters on

overall classification performance at test time. Therefore we show various experiments

on popular benchmark datasets like MNIST or CIFAR. Our second approach is stated

in Section 5 and introduces a baseline CNN as well as a hybrid network. We evaluate

both networks on MNIST classification and examine how RF parameters affect the overall

network performance. Finally, the conclusion of our work is summarized in Section 6

where we also discuss ideas for future research.





2
Preliminaries and Related Work

In this section we address preliminaries, as well as related work including methods for

image feature extraction or encoding. Further we discuss existing representation learning

approaches where we disregard whether the actual application of the discussed works was

image classification.

In computer vision the goal is to analyze visual data, enabling systems to “under-

stand” images. Therefore, extracting descriptive image characteristics, also called image

features, is crucial [4, 11, 24, 73, 80]. Already plain pixel intensities hold certain infor-

mation although they belong to the lowest level of features. For example [59] addresses

a simple approach that just uses color-histograms for sufficient object tracking. Besides

that, more sophisticated methods use manually designed features which have been (and

still are) widely used for various computer vision tasks [11, 77].

Such popular hand-crafted representations encode low-level image information: As

an example, the HOG-descriptor [25] encodes oriented image-gradient information over

certain image regions to form orientation-histograms. Another commonly used feature

descriptor is known as SIFT [58], where local regions of an image are considered, again in-

volving gradient information. The strength of SIFT is its invariance to scale and rotation.

A global image descriptor which tries to capture entire scene characteristics is denoted

as GIST-descriptor, introduced in [5]. It uses spectral information by applying Gabor-

filtering which characterizes dominant spatial structures of an image. In contrast, Ojala

et.al. [66] introduce Local Binary Patterns (LBP) which are capable for encoding textu-

ral image information. Therefore, they regard a certain neighborhood-pattern around a

center-pixel where value comparisons are captured in a binary form. LBP outline powerful

features especially for classifying textures in image-data [66].

Note that these are just a few successful and widely used hand-crafted feature

concepts. This also encourages us to compare the discriminative power of common

hand-crafted features to our representations with respect to image classification accuracy.

9
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10 Chapter 2. Preliminaries and Related Work

The VLFeat-Team [77] examined image classification using multiple types of features or

descriptors that are concatenated to form an image representation. Their experiments on

different benchmark datasets show, that stacked representations allow higher classification

rates than if using single representations. Hence, each kind of representation may encode

different characteristics. Therefore, our idea is to enhance their classification pipeline by

appending our RF representations to their feature stack. We will show that this slightly

improves their results.

Even though extensive research had been dedicated to hand-crafted features, they often

cannot compete with recent methods which employ learned features [4]. Another drawback

of using multiple traditional feature encodings is that each of them may have numerous

parameters that have to be tuned. Chatfield et.al. [18] show how difficult it is to compare

feature encoding algorithms like the Kernel codebook encoding [36], Fisher encoding [68],

Super vector encoding [83] and many more. Quite a few properties and parameters for

each of these methods have to be chosen or tuned wisely to work well, as small variations

influence the final representation. This points out the complexity of advanced feature

encodings that try to gather data statistics. As a consequence, the interest on feature

learning or representation learning has grown over the last decade [20, 22, 41, 51].

Before we further discuss representation learning approaches, a general overview of

relevant machine learning algorithms is given in the next section.

2.1 Overview of Learning Methods

Computer Vision generally involves various machine learning algorithms. However, the

two approaches in this work only differ by two main machine learning concepts, supervised

learning and unsupervised learning [62]:

Supervised learning always requires label information which can also be seen as having

a “teacher” telling the ground-truth. In contrast, data without any label information is fed

to unsupervised learning methods. In this case, one aims on searching patterns, structures

or groups of data points to encode or represent them in a new “label”-space.

Considering our first approach, we make use of unsupervised dictionary learning on

random patches. Hence, we do not use any label-information. This also means that we

learn our patch encoding scheme without supervision, although training a Random Forest

technically belongs to supervised learning.

Our second approach strictly uses ground-truth labels of images to determine a loss,

which is used to optimize a multi-layer architecture. Hence, supervised end-to-end opti-

mization allows to learn features within network layers, which also applies to training a

first-layer Random Forest.
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2.2 Related Work on Representation Learning

In the last few years, many works on representation learning appeared, utilizing different

machine learning concepts [21, 43, 65, 67].Particularly worth mentioning is the review on

representation learning of Bengio et al . [7] who compare a variety of approaches in this

field of research.

Nowadays, state-of-the-art image recognition is generally achieved by deep learning ar-

chitectures [19, 57, 75, 76] that use multiple layers, thus enabling to learn representations

on different levels of abstraction. The vast majority of these successful networks are based

on convolutional layers, where in-between spatial pooling layers are used to reduce dimen-

sionality and induce scale invariance. Although each layer may have a linear activation,

the deep hierarchical structure is the key to learn high-level features.

Examples of success using deep learning networks can be seen in the work of Ciresan

et al . [19]. They introduce a committee of several Deep Neural Networks (DNNs) forming

a highly complex ensemble model. In addition, each DNN is trained independently using

differently transformed input images which tremendously enhances the variety of training

data (data augmentation), facilitating high generalization. Hence, their DNN committee

shows state-of-the-art results on various popular benchmark datasets, e.g. they achieve a

classification-error of only 0.23% on the MNIST dataset [56]. This low error-rate can be

explained by the ensemble strength of using several independently trained DNNs.

However, a drawback of such multi-layered architectures is the massive amount of

required network weights that have to be initialized and optimized. To speed up network

training, unsupervised learning methods exist that allow to pre-train network layers [29],

e.g. by using dictionary learning approaches [20, 67] or auto-encoders [44].

Vincent et al . [79] show that auto-encoders are capable of extracting robust features,

that even can be used for multi-layer initialization if stacked. Memisevic et.al. [61] also

applied auto-encoders which facilitate learning image transformations. They train on

pairs of transformed images and force hidden weights to encode affine transformations or

artificial motion, illustrated in Figure 2.1. According to this, also within-image structures

and correlations are learned by only using image-patches.

Concerning patch-based representation learning, Agarwal and Triggs [1] discuss the

following drawback: If one learns a dictionary on image patches, only local appearances

are captured. Thus, Agarwal and Triggs introduce a method that is capable to encode

co-occurrence statistics at larger scale. By describing features in a multilevel structure

using different patch-sizes, they iteratively gather local features and represent them

in a more global scale. Finally they observe an increasingly abstract description

of image feature content which shows to improve performance for many classification tasks.

Another unsupervised approach is to learn mid-level discriminative patches, proposed

by Singh et al . [73]. They learn a set of discriminative patches at arbitrary scale, which
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12 Chapter 2. Preliminaries and Related Work

Figure 2.1: Examples of filters learned on image transformations by auto-encoders [61]: Trans-
lations (left), affine (middle) and motion discontinuities (right).

capture the characteristic image content with respect to the object class. For this, they

only use the HOG descriptor [25] as input feature data.

Zhang et al . [82] propose to enhance patch-based representation learning by only

focusing on salient patches that contain most relevant information. Instead of using

random or dense image patches, they employ a saliency guided sampling strategy. Hence,

to find salient patches they use color information and position of neighboring patches by

following a dissimilarity rule. Based on the resulting set of salient patches they learn a

sparse auto-encoder [44, 79] in an unsupervised fashion. Resulting representations show

to improve image classification results over [58] features.

Whether for pre-training layers of deep belief nets [29, 43] or for representation learning

in general, patch-based dictionary learning approaches like K-means clustering or Sparse

Coding (SC) [21, 67] have gained significant attention. Their simplicity as well as the

fast feature extraction capability are main advantages over complex architectures. Al-

though Sparse Coding prove to yield better dictionaries than K-means [21], the required

training time for high-dimensional problems may become impracticable. Instead, dictio-

nary learning with K-means clustering is faster and thus competitive to SC. Coates et

al . analyzed such single-layer architectures and show to achieve surprisingly good image

classification results [20, 22]. The above mentioned patch-based dictionary learning al-

gorithms use random image patches [65]. To extract features, patches are encoded by a

simple inner product with the learned dictionary filter kernels which finally yields image

feature channels. A following non-linear thresholding on patch encodings discards weak

features and yields more sparse representations. To obtain final image representations,

Coates et al . additionally perform spatial pooling (see Section 2.3) within the feature

channels. Although they evaluate their representations on linear classification, they show

to even outperform a 2-layered Convolutional Deep Belief Network [53].

However, Coates and Ng state in [22] that it is not trivial to get such a single-layer

architecture to work well. Especially preprocessing steps like normalization and whitening
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(a) K-means (with and without whitening)

(b) Sparse Autoencoder (with and without whitening)

Figure 2.2: Visualization of learned dictionaries on CIFAR patches [20].

[48] of patch data appears to be critical, since they directly use the found dictionary of

filters during feature extraction. Examples of found dictionaries can be seen in Figure 2.2

(Coates et al . [20]), where they visualize the influence of whitening. Also proper post-

processing of patch encodings as well as spatial pooling is of great importance. Hence,

their good performance may primarily come from wisely chosen parameters across the

whole classification pipeline and high dimensional (overcomplete) representations.

To recap, the single-layer architecture proposed by Coates et al . is highly sensitive

to data preprocessing and extracts features by convolving the input image with

learned dictionary filters. In this sense, large filters or large dictionaries have negative

properties regarding processing time during feature extraction. In contrast, our

approach uses a RF to directly infer patch representations from raw input data.

Therefore we provide a more efficient way to produce image representations (see Section 3).

Mossmann, Triggs and Jurie [63] also use Random Forests for feature extraction. They

introduce Extremely Randomized Clustering Forests (ERCF) for bag-of-features image

classification. Their idea is to directly use a ERCF as a visual dictionary whereby its

output is a final bag-of-features description of an image. Therefore, randomly sampled

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()



14 Chapter 2. Preliminaries and Related Work

Figure 2.3: An illustration of obtained probability maps for the label ‘bike’ using ERCF [63]. Four
different images (top) with corresponding probabilities shown for bikes as brightness (bottom).

image patches at arbitrary position and scale are encoded to a local descriptor-vector

form. The underlying image label is used as patch label information. Based on this, a

ERCF is trained, separating the descriptor-data. At testing time, they feed descriptors of

densely sampled image patches to each tree and only use the resulting ensemble leafnode-

index, neglecting the actual leafnode histogram. Therefore they accumulate over all forest

leafnode indices to produce an index-histogram. By using this representations they obtain

probability maps for certain categories, e.g. as shown for the label ‘bike’ in Figure 2.3.

Notice several differences to our approach: Instead of using raw pixels as input data

they use feature-descriptor data which requires computation beforehand. Further, the

ERCF does not utilize the leafnode histograms but accumulates the corresponding leafnode

indices to form an index-histogram.

The related work of Shotton et al . [72] introduces Semantic Texton Forests (STFs) for

image classification and segmentation. Similar to our approach, they train an ensemble of

random decision trees on raw image patches. During training, powerful texton codebooks

are learned and semantic textons are implicitly clustered by a tree. This is exploited during

feature extraction as they concatenate all histograms of all traversed ensemble nodes. They

found that this representations give poor but still surprisingly good image classification

rates regarding pixel-level classification only [72]. However, they also form more powerful

features by additionally involving image region statistics of resulting semantic textons.

Hence, they also compute a region-prior by averaging across all STF leafnode distributions

within an image region. By learning with supervision, this allows to infer certain low-

level semantics. Shotton et al . further show that the histograms and region-priors are

complementary, and that hierarchical concatenation works better than if concatenating

only terminal leafnode histograms. In contrast to their work, our first methods follows an

unsupervised representation learning approach as we train a RF on random pseudo-labeled

patches. Therefore our RF enables to infer patch encodings from raw pixel information

by computing the average leafnode histogram of the ensemble.

Reference:

 ()

Reference:

 ()

Reference:

 ()



2.3. Feature Pooling 15

2.3 Feature Pooling

At next we discuss spatial feature pooling, which usually improves the discriminative

power of final image representations [13].

Today, spatial feature pooling is a common method among modern image recognition

approaches and usually have a big impact on final performance. Effects are increased

invariance to image transformations (like translation) and decreased representation

dimensionality. Also the influence of noise and clutter in feature-space is damped.

Pooling can also be described as gathering spatial statistics over image regions or

patches. This reminds of the discoveries of Hubel and Wiesel [46, 47] where complex cells

of the human vision implicitly perform pooling among overlapping receptive fields.

Before discussing different pooling operations let us first look at the principle of spatial

pooling which is shown in Figure 2.4. Assuming that we have K feature-channels, we

perform pooling within each channel over a spatial grid e.g. of size 2-by-2. Then, a

certain pooling operation yields 2 × 2 values for each channel. Depending on the cell-

size and stride, this may massively reduce the overall dimensionality of the final image

representation.

Figure 2.4: Spatial pooling of feature channels using a 2-by-2 grid. An activation function (e.g.
max-pooling, avg-pooling or summation) is applied on each cell which reduces dimensionality and
induces invariance.

Different pooling operations exist where the most common are max-pooling, avg-

pooling or summation. Max-pooling is widely used and selects the maximum cell-value.

This is equal to passing the most activated features and dropping all less important ones,

including noise. Due to spatial cells, a maximum value may also vary its relative position

in a certain range without affecting the final result. Thus, final representations show less

sensitivity to image transformations such as translation or rotation. Further, max-pooling

proved to work well for sparse features that have low probability of being active [13].

Another widely used pooling operation is a summation over pooling cells. In this case

all features are involved, however, this may also include undesired noisy features or outliers

which may counteract the discriminative power of representations.

Avg-pooling computes the mean value within pooling cells. This sometimes improves

performance over max-pooling but it is rarely the case [13].
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Figure 2.5: Visualization of pooling-weights applying different learning strategies and regulariza-
tions. Results are shown for varying datasets and dictionary-sizes. Brighter regions denote larger
weights. Top row shows fixed pooling cells. [60]

A theoretical analysis of common pooling operations has been done by Boureau et al .

[13]. One conclusion of this work is that the choice of a proper pooling operation highly

depends on the actual application as well as on the preferred step-size (stride). Many

works exist addressing these problems [11–13, 36].

Due to the fact that spatial pooling has big impact on the output, also undesired

effects may occur. An unfavorable characteristic of pooled features is discovered in the

work of Jia et al . [51]. They discuss possible redundancy within representations after

spatial pooling is applied on feature channels. Therefore they refer to the method of

Coates et al . [20] who apply patch-based K-means clustering to learn a dictionary of filter

kernels. This often yields several Gabor-like filters at same orientation, which only differ

in small translations. Such small differences cause quite similar patch encodings, and if

we now apply spatial pooling, these differences are lost resulting in redundant data within

final image representations. Hence, Jia et al . propose to find better filters by learning

a larger dictionary beforehand. They compute covariances between filters and perform

feature selection [33] to finally obtain a dictionary of original size but with less correlated

filters. However, concerning our approach we do not use the learned dictionary but use

the underlying patch code-vectors to train our RF. Thus, during feature extraction our RF

encodes image patches where the actual output is not directly dependent on the learned

filter kernels.

Another interesting approach was published by Malinwosky and Fritz [60]. Instead

of using fixed pooling regions, they learn smooth pooling regions, where examples are

illustrated in Figure 2.5 [60]. They introduce pooling weights over feature channels and

learn them simultaneously with classifier parameters. Using standard gradient descent,

they achieve improved results compared to Coates et al . [20], especially for small dictionary

sizes. They show that variable and smooth pooling regions are able to adapt to salient
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areas in feature-space, emphasizing relevant subregions. However, in this work we follow

Coates et al . and use fixed pooling regions by using summation-pooling as well as max-

pooling, where the best choice depends on input data and the actual architecture.

2.4 Image Classification

As overall goal in this work we perform image classification on several popular image

datasets. That is, we aim for correctly classifying unseen images using a trained classifier

model. This allows to evaluate the discriminative power of obtained representations by

examining resulting classification accuracies. However, to train a classifier, we first need

suitable training-data that ideally provides the most discriminative characteristics of

images.

Assuming a feature extractor that maps an image I ∈ RH×W×q to a feature vector

f ∈ RF , the goal is to setup a global dataset in feature-space. Note that in this context a

feature vector denotes an image representation.

A given dataset I of raw images is usually split into a training-set Itrain and a test-set

Itest, where each subset contains a certain number of samplesNtrain andNtest, respectively.

Encoding all raw images of I = {In}N1 gives a new dataset F = {fn}N1 , where a “data

sample” is defined as image or representation with its label cn:

In = (In, cn) (2.1)

fn = (fn, cn) (2.2)

In this sense only image data is mapped to feature-space while the ground-truth label

information cn ∈ {1, . . . , C} is inherited. This further allows to train a classifier-model

with supervision on the training-set Ftrain. We introduce a classifier ζ that enables dis-

tinction between unseen samples. Thus, we aim at correctly predicting the ground-truth

class cn of test images, based on the extracted feature vector (ζ(fn) = ĉn). Therefore

the resulting image classification performance depends on the classifier model and the

extracted image representation quality. However, in this work we put the main focus on

obtaining powerful image representations fn instead of optimizing classifier training.

Hence, we fix classifier training parameters and only examine the final classification results.

If a classifier ζ has to predict more than two categories (C > 2) it is denoted as

multiclass problem. There exist several algorithms who naturally handle multiclass tasks,

like neural networks [3], k-Nearest Neighbor algorithms [2] or decision trees [16].

However, considering our first approach we decompose this multiclass problem into

binary classification problems [10]. Hence, a decomposed multiclass problem uses an en-

semble of binary classifiers which may be trained in a one-versus-all fashion. The drawback
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of this kind of learning is that each one-vs-all-classifier sees a different and unbalanced sam-

ple distribution which may affect final prediction accuracy [8]. Nonetheless, we follow this

popular approach since it is more efficient and we more or less disregard the classifier

model. Thus we define ζ as multiclass classifier that employs one-versus-all binary clas-

sifiers Hc. Each of these binary classifiers returns a specific class-score where the final

prediction is regarded as the most plausible category ĉ:

ζ(fn) = argmax
c

Hc(fn) = ĉn

∣∣∣
c∈1...C, fn∈Ftest

(2.3)

For image classification we consider using two different models. The well known dis-

criminative and linear SVM [10] basically fits a hyper-plane into feature-space that sepa-

rates the training samples into two disjoint groups. Therefore, the optimization algorithm

maximizes the margin on specific samples, called Support Vectors. This can be done very

efficiently since this can be formulated as a convex optimization problem.

As second classifier we employ a non-linear classification-forest. It is trained by Adap-

tive Boosting (adaBoost) [32, 35, 42], which is an ensemble-learning method that adap-

tively trains the set of decision trees. This approach applies stage-wise additive modeling

[35] of ‘weak’ trees which results in better RF performance. In addition to that, each

training-sample is iteratively weighted, according to their contribution to the overall per-

formance. Thus, we are able to distinguish between hard and easy samples, which allows

us to emphasize them individually during training.

2.5 Random Forests

This section addresses training and testing an ensemble of decision trees, also known

as Random Forest (RF) [15, 16]. In general RFs proved to be applicable for various

tasks and are easy to implement. They provide fast training and testing by simple

data-thresholding. Due to their good generalization, RFs rank among the most successful

machine learning algorithms, since typical applications are multi-class prediction [9],

regression [16] or data clustering [63]. A big advantage is the capability for massive

parallelization in training and testing, because individual trees are independent [27].

However, due to the recent success of multi-layered deep learning architectures, RFs

are loosing some popularity. Nonetheless, they are still powerful predictors when

computational resources are critical or efficient processing is essential.

The RF model belongs to Ensemble Learning [27] and exploits the strength of multiple

“weak” estimators. That is, a trained RF consists out of several randomly trained and

independent identically distributed binary decision trees. Due to randomized training,

each individual tree may differ from others and therefore behave differently. As all tree

responses are gathered during test-time, this enables producing a more robust global

prediction that outperforms the individual tree estimations.
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2.5. Random Forests 19

To ensure optimal ensemble performance, certain conditions have to be met: (i) each

weak estimator has to have at least better accuracy than random guessing on unseen sam-

ples and (ii) an ensemble should hold sufficient diversity. With respect to RFs, condition

(ii) is true for a certain degree of randomness within decision trees. Related to this, sev-

eral training approaches exist like Bagging [14] or Boosting [35]. Bagging requires to train

an individual estimator on a random subset1 (Bootstrapping) which may be of smaller

size. Hence, each estimator sees a different training data distribution which implicitly

injects randomness and de-correlates weak estimators. Benefits are reduced over-fitting

characteristics and a more robust ensemble prediction [14].

Boosting, assigns a confidence weight to each weak estimator according to its

estimation-strength on the entire training-set. The final prediction takes these individual

weightings into account and thus global accuracy is improved [35].

Basically above mentioned ensemble training approaches can be combined or applied

in different ways. In this work we consider using Bootstrapping to get differing training-

subsets per tree. Further we also subsample data in each split-node to ensure additional

tree diversity [71]. The next sections address the training as well as the testing procedure

of a RF in more detail.

2.5.1 Training a Random Forest

A RF can either be trained in a supervised [9, 14, 16] or in an unsupervised manner [63].

The latter case requires label information and stores certain label statistics in terminal

leafnodes. Label-information may either be in vector or scalar form, however, regarding

our approaches we assume label-vectors per training sample.

Given a labeled training-set Strain = {(xm, lm)}M1 where M denotes the number of

training-samples, each sample x ∈ Rd is of length d and has a label-vector l ∈ RK of

length K. During training a tree, we recursively split all training-samples assigned to a

node into two subsets (binary decision) until a termination criterion is met. In that regard

label vectors are used to evaluate the split.

At the beginning, the root-node splits the entire training-set Strain and produces two

child-nodes with disjoint subsets. Henceforth, we denote Si as the actual node-subset of

node i which has to be split into two further subsets SLi and SRi assigned to either the left

child-node or the right child-node, respectively. This is illustrated in Figure 2.6. Hence,

we define Si = SLi ∪ SRi and ∅ = SLi ∩ SRi as subset constraints. Following this, all nodes

are recursively separating their samples and finally form a decision tree which is defined

by split-nodes and leafnodes.

The recursive training continues until we either reach a maximum tree depth2 or we

come below a predefined number of minimum subset samples required for further splitting.

If a node of a tree t is set as leafnode j, the label vectors of the leafnode-samples are

1In case of Bagging a subset is sampled with replacement.
2A maximum tree-depth limits the total number of possible leaf-nodes.
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Figure 2.6: Training a decision tree; we split a node-subset and produce two child-nodes.

accumulated, producing a leafnode-distribution or histogram p
(t)
j (k|x) over K bins, where

k ∈ K.

SLi = {m ∈ {1, . . . ,MSi} | Γi(xm) < τi} (2.4)

SRi = Si \ SLi (2.5)

Split-Functions: During training, the goal is to split the dataset Si of a current

split-node i according to a random split-function Γi, and a random threshold τi, where we

refer to Equations 2.4 and 2.5. Typical examples for these split-functions are e.g. using

only a single variable Γi(x) = xa, a pair-wise comparison of two variables Γi(x) = xa−xb,
or advanced functions e.g. region based split-functions that use Wavelets [80], where

xa, xb ∈ x and a, b ∈ {1, . . . , d}.

To determine a good split we evaluate a few threshold-and-split-function pairs and

choose the best performing setting as final node-split. Because we evaluate just a few tests,

this ensures randomized training which reduces tree correlation within the ensemble. This

further allows better generalization of the whole Random Forest model. As mentioned,

we also consider applying Bagging [14] which contributes to this effect. Hence, for each

tree we provide a Bootstrapped training-set S(t)
train which is of the same size as the original

training-set. In addition to that, we perform per-node sub-sampling where only a small

subset of split-node training samples is considered for split-evaluation [71]. This massively

speeds up tree training and again injects randomness.

In contrast, e.g. Extremely Randomized Trees [37] do not require any split evaluation

during training since split-functions and thresholds are set totally random.
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Split Evaluation: We randomly draw
√
d split-functions Γ (e.g. for Γi(x) = xa we

choose
√
d variables of an input vector), and test each one on nth random thresholds.

Thus, we have to evaluate
√
d ×nth splits by using a certain score. Therefore we compute

an information-gain I which measures the quality of a split. Recall that an ideal split

separates the node data to two disjoint subsets with respect to label information and thus

maximizes the information gain. Assuming that we have a child subset Sh with label

vectors l ∈ RK , we regard each of the K elements as a discrete class or category. We then

compute the information gain I for each split using the entropy within each of the two

subsets, by following

I = H(S)−
∑

h∈{L,R}

|Sh|
|S|

H(Sh), (2.6)

where the Shannon entropy is defined as H(S) = −
∑K

k=1 p(k) log(p(k)) with p(k) being

the occurring normalized class-frequency. In fact, the lower the entropy, the higher the

information gain of the underlying split, causing final leafnode-histograms to be distributed

more differently. However, in terms of efficiency we consider using the Gini impurity or

Gini index G(S) instead of H(S), which is defined by,

G(S) =
K∑
k=1

p(k)(1− p(k)). (2.7)

This way we approximate the Shannon entropy H(S) which allows us to directly use the

occurring class-frequencies p(k) without the need for computing the logarithm. Hence, the

information gain can be computed more efficiently. Note that regarding split performance,

the difference to the entropy is negligible [16].

As we reach a leafnode during training, the final label-statistics of all assigned leafnode

samples are gathered and stored in histogram form according to

l ∈ RK , lk =
1

M

M∑
m=1

lmk ∀k ∈ {1, . . . ,K} (2.8)

where we compute the average vector l of all subset label-vectors lm ∈ {lm1, . . . lmK} of

length K. This corresponds to the distribution p
(t)
j (k|x) = l

(t)
j which we also denote as

leafnode histogram, where a leafnode j(t) belongs to a tree t.

In regard to the whole ensemble, a RF with T trees learns
∑T

t=1 n
(t)
j leafnode

histograms where n
(t)
j is the total number of learned leafnodes within a single tree t.

2.5.2 Testing a Random Forest

In general, testing a sample x on a RF can be done very efficiently as we only have to

traverse T trees. The meaning of the final output depends on the underlying training data
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Figure 2.7: A sample is passed through a binary decision tree until a leafnode is reached. The
tree returns an estimation pj(k|x) which we also denote as leafnode histogram.

which was used in training phase. During test-time each tree passes a sample according to

its split-functions and thresholds to reach a certain leafnode j, which contains a histogram

pj(k|x). As mentioned in the previous section, this histogram relies on the accumulated

label-statistics of samples assigned to leafnode j during training. Figure 2.7 visualizes a

sample-passthrough within a tree until a leafnode is reached. This way, each tree assigns

a histogram to an input sample x where all T tree estimations are averaged to produce

an ensemble prediction z:

z =
1

T

T∑
t=1

p
(t)
j (k|x) (2.9)

If the RF is trained as a classifier, the output z equals a distribution over K categories,

where the final prediction is the most likely category ĉ = argmaxk zk.

However, this thesis primarily applies a RF as a feature extractor and therefore the

purpose of an unaffected output z has important significance for ongoing data-processing.

As stated in Section 3, we directly use the RF output as feature-data or more specifically

as a patch representation.



3
Feature Extraction with Random Forests

The goal of this work is to investigate the feature extraction capability of a Random Forest

model, which enables us to produce well discriminative image representations. This also

means that the underlying RF training is of great importance. Considering that we address

two different patch-based representation learning approaches in this work, the kind of label

information that is used for RF training varies, which yields different RF output. For a

comprehensible explanation of our RF-based feature extraction, we briefly explain the

underlying meaning of the used label information.

Our first approach is based on unsupervised representation learning. In this case we

apply patch-based dictionary learning that assigns sparse label vectors to image patches

which we use as RF training data (for further explanation we refer to Sections 4.1.2

and 4.1.3). In contrast, our second approach uses label vectors that contain gradient

information instead of being sparsely populated (for more detail we refer to Section 5.2.1).

Hence, both learning approaches provide image patches for RF training where the

underlying label information enables to learn a mapping function, however, the meaning

of RF inference is different.

Assuming that we already trained a patch-based RF, we aim at producing a discrim-

inative image representation. We propose to do this in a pixel-wise manner, whereby

such a RF allows to directly encode raw input image-patches. In more detail, we perform

a non-linear and fast mapping of an image-patch x ∈ Rd to a code-vector z ∈ RK in

feature-space:

Φ(x) : Rd 7→ RK (3.1)

In this sense, Φ is the mapping function of the RF. We therefore specify that an image-

patch of size w×w×q is available in vector form x ∈ Rd, where d = q ·w2 and q denotes the

number of input feature-channels, e.g. specific color-spaces or gradient maps. Note that

commonly K � d which results in a so-called overcomplete representation. Related to this,
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Figure 3.1: Visualization of pixel-wise feature extraction with a RF. Here, an already trained RF
is applied. Each patch is traversed through the trees, passing several split-nodes which perform
pixel tests according to a split-function Γ and a threshold τ . For each patch-location the RF returns
an average histogram vector z ∈ RK where K corresponds to the patch representation length. As a
result, we obtain a feature cube Z for the whole input image, where planes in depth show resulting
feature channels. xa or xb are elements (pixels) in a patch vector x where a, b ∈ {1, . . . , d}.

[22] show that overcomplete representations are especially suitable for linear classification.

Regarding feature extraction on entire images, Figure 3.1 illustrates how we propose

to apply a patch-based RF. Therefore we aim at encoding image patches to produce a

final image representation, which is similar to a bag-of-features model [24, 74]. Different

patch sampling strategies exist, where recent studies show that dense sampling generally

outperforms sparse sampling [65]. Hence, we consider applying the dense sampling strategy

in terms of pixel-wise patch encoding (with stride = 1). In contrast to convolutional

feature extraction, we just have to sample all required patches of an image and feed them

to our RF. More specifically, each patch is passed through an ensemble of binary decision

trees where each tree performs several pixel tests on input data. Therefore, a split-node i

uses a certain split-function Γi and a corresponding threshold τi to assign a patch either

to the left or to the right child node. If input patches are standardized beforehand,

single pixel tests (Γ
(1)
i = xa) may suffice to learn patch statistics. To enable appropriate

decisions on unstandardized input patches, it is useful to perform at least pixel-pair tests

(Γ
(2)
i = xa − xb) that allow learning within-patch pixel dependencies. Note, the indices

a, b describe actual elements of the patch vector x = {x1, x2, . . . , xd}, which correspond

to certain within-patch pixels. Finally, the patch sample reaches a leafnode within each

tree, where we average over all leafnode histograms, following Equation 2.9. Thus, the

RF outputs an encoding of the patch sample. Applied on an entire image I ∈ RH×W we

obtain K dimensional patch encodings which yields a “feature-cube” Z. In this context

we regard Z having K feature channels or image representations. The mapping relation,

pixel-wise RF-mapping: I ∈ RH×W×ch 7→ Z ∈ R(H−w+1)×(W−w+1)×K , (3.2)

Reference:

 ()

Reference:

 ()

Reference:

 ()



3.1. Time Complexity Comparison 25

shows that the spatial height and width of such feature channels decrease compared to

the input image, where w × w is the spatial image patch size. For illustration, Figure 3.2

shows some natural images of the STL-10 dataset [20] and examples of corresponding

feature channels.

However, the following limitations have to be considered: In fact, a high number of

feature channels K results in a very high dimensional image representation, which may

become inconvenient for further processing. Hence, memory could be exceeded for a large

image training-set during training a classifier model. To reduce dimensionality one may set

a bigger stride during patch-based feature extraction on images. This speeds up extraction

time as we have to encode fewer patches but usually decreases discriminative power of the

final representation. In addition, spatial pooling over a certain grid across each feature

channel (see Section 2.3) massively reduces data dimensionality and usually yields more

powerful representations.

3.1 Time Complexity Comparison

In terms of time consumption, convolutional approaches and RF-based feature extraction

behave differently. Let us assume q is the number of input feature channels and the input is

of spatial size H×W . Further, we assume that we have K convolutional filters with spatial

size w×w. Hence, we get a spatial output size of (H−w+1)×(W −w+1) = H̃×W̃ . The

resulting time-complexity of a convolutional feature extraction (one layer) is then given

by

O(q · w2 ·K · H̃ · W̃ ). (3.3)

In contrast, if we perform pixel-wise patch-based feature extraction with a RF by using the

same spatial dimensions and settings as mentioned above, we get a total time complexity

of

O
(
H̃ · W̃ · T ·D

)
, (3.4)

where we assume T binary decision trees at a maximum depth of D. Recall that the total

number of image patches depends on the patch-size w. Instead, the input dimensionality

does not affect the theoretical time cost during testing because binary decisions are only

made for input data, yielding fixed sized K-dimensional leafnode-histograms which can be

obtained by lookup tables.

As seen, theoretical time complexity is reduced over convolutional approaches, espe-

cially for small RFs, big filters (w) or high numbers of input/output feature channels

(q,K). Besides that, also optimizations exist that reduces time-complexity of convolu-

tional processes in CNNs [23]. However, in this thesis we mainly focus on representation

quality instead of examining efficiency.
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(a) (b)

(c) (d)

Figure 3.2: Examples of feature channels extracted from natural images. Figures (a) and (c)
show rgb input images where (b) and (d) visualize corresponding feature maps, respectively. Input
images are part of the STL-10 dataset.
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3.2 Implementation

We basically use the same implementation of our Random Forest for both proposed rep-

resentation learning approaches. However, some RF training attributes vary.

On the one hand, we train a RF on pseudo-labeled patches using unsupervised dictio-

nary learning (see Section 4). Here we examine two dictionary learning methods, K-means

clustering (KM) and Sparse Coding (SC), which yield different patch-label information in

terms of code-vectors. For KM we use one-hot encoding whereas SC outputs sparse code-

vectors with positive or negative values. We assume these code-vectors as pseudo-label

vectors where each vector element denotes a feature. Since we regard features as “classes”,

we train our RF as a classification forest (see Section 2.5.1). Therefore we apply the fol-

lowing split properties: in each split-node j we apply sub-sampling [71] and select 100

samples with replacement. Further we draw d/2 split-functions where d denotes the input

vector dimensionality which equals the number of input pixels per patch. For each split-

function we evaluate nτ = 5 thresholds. Finally, a split is defined by the split-function

and threshold that shows best split properties (Equation 2.6).

On the other hand, our second approach (see Section 5) employs our RF

implementation to do regression. In this context patch label-vectors describe gradients

with negative and positive elements at any index. However, we still consider each

vector element as a feature. The RF of this approach uses the following settings: we

again apply sub-sampling within a split-node [71] and randomly choose 100 samples

with replacement. But in contrast to the previous approach, we only perform d/3

split-functions with nτ = 3 tests, which in this case speeds up the iterative training

process of a larger tree ensemble.

As seen, in both approaches patch label-vectors with positive and negative values can

appear. Thus, the split-evaluation during RF training uses absolute vector values to

compute an information gain using the Gini-index as stated in Equation 2.7. Hence, also

negative vector entries contribute to split-decisions. Nonetheless, we produce leafnode

histogram vectors regarding positive and negative values, allowing the RF to output

negative and positive features. This is especially important if training on SC-based

label-vectors or on gradients (error-residuals), which is similar to regression.

Note that all above mentioned settings are found empirically by making a tradeoff

between efficient training and accuracy.

By reasons of efficiency, we implement the Random Forest in C++ using parallel com-

puting utilities (OpenMP library). Because our frameworks are implemented in Matlab

7.12.0 2011a, our RF implementation is build as a MEX-function which allows Matlab

to access C++ executables.
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4
Unsupervised Representation Learning

In this section we investigate our first approach which addresses unsupervised representa-

tion learning with Random Forests (RFs). Inspired by the works of Coates et al . [20–22],

we apply the following strategy to learn representations: First of all we exploit patch-based

dictionary learning, which yields pseudo-label information in terms of patch code-vectors,

to train a RF. This way, we learn an encoding scheme from raw image data to a new

feature-space. To finally produce an image representation, we follow the procedure stated

in Section 3 and encode all patches of an input image. Dependent on the actual applica-

tion, additional post-processing on patch-encodings, like non-linear activation or spatial

pooling, further improves the discriminative power of image representations. A pipeline

overview concerning feature learning and extraction is illustrated in Figure 4.1.

To evaluate the RF-based representation quality, we consider performing image

classification on common benchmark datasets and examine the impact of various

parameters on overall classification performance.

The next section introduces preliminaries that explain unsupervised dictionary learning

and how to train a RF as feature extractor.

4.1 Preliminaries

To train a RF for pixel-wise patch encoding, we at first need to generate proper RF

training-data. Hence, we have to build a pool of image patches and assign label infor-

mation. Since we apply unsupervised dictionary learning, we denote the resulting label

information as pseudo label information. Note that the quality of this pseudo-labeled

training set has great influence on RF inference. Figure 4.2 shows an overview of this

process, using MNIST-10 images [56] as an example.

By randomly sampling raw image patches from a given input image-set I = {In}Nn=1,

we create a pool of M patches where we represent each patch in vector form x ∈ Rd. We

introduce a patch-pool X ∈ RM×d where a patch of size w×w× q = d has q input feature

29
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standardize data

unlabeled images

*

representation learning

dictionary

learning
train Random Forest

whitening

randomly sample

patches

image

representation

filter kernels

(dictionary)

labels for patches

patch-based

Random Forest

pixel-wise encoding

of image patches

spatial

feature pooling
standardize data

(encoding activation)

pool-of-patches

*

image

*...raw data

*

Figure 4.1: Proposed pipeline overview for unsupervised representation learning: (top) exploiting
patch-based dictionary learning for RF training; (bottom) producing an image representation using
patch-based RF inference and post-processing. *The raw data may have arbitrary input feature
channels.

channels. Notice, that an image In ∈ RH×W×q may have an arbitrary number of input

feature-channels (q ≥ 1), such as rgb-images with q = 3 color-channels. Also gradient

information like gradient-magnitude maps or oriented gradient maps are possible input

feature channels.

The next step is to assign a pseudo-label vector vm to each patch by using dictionary

learning. Therefore we consider using two different dictionary learning methods, a modified

version of K-means clustering (Section 4.1.2) and sparse coding (Section 4.1.3). However,

to find good dictionaries, Coates et al . [20, 21] show that preprocessing on X is a critical

step.
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dictionary learning

raw image data

Figure 4.2: Dictionary learning on MNIST assigns pseudo label information to image patches.

4.1.1 Preprocessing for Dictionary Learning

Since we follow the dictionary learning methods of Coates et al . [20, 21], we also have to

consider applying data preprocessing. Therefore best results are obtained if patches are

standardized and whitened in advance.

Standardization: Due to the fact that brightness and contrast vary between raw patch-

samples, it is useful to apply standardization. Therefore we follow Coates et al . and

standardize all patches by subtracting the mean of their intensities. Further, we also divide

by the intensity standard deviation. This is very important as it increases the significance

and quality of the found dictionary. The following equation shows the standardization

term, where xm are unstandardized raw patch-vectors and β is an additional constant to

avoid dividing by zero:

x̃m =
xm −mean(xm)√

var(xm) + β
(4.1)

Assuming that d is the dimensionality of a patch-vector xm, the mean() operator com-

putes the mean value 1
d

∑d
i=1 xm,i and the var() operator denotes the variance of a patch

1
d

∑d
i=1(xm,i −mean(xm))2.

As a result, we get a standardized patch-pool X̃. However, if we apply dictionary

learning on this standardized data we still get dictionaries of insufficient quality. For

explanation we look at a simple K-means clustering approach. We denote dictionary

elements as filters in vector-form d(k) ∈ Rd and define a dictionary D ∈ RK×d. On
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natural image patches for instance, Coates et al . [22] find a dictionary of filters which are

illustrated in Figure 4.3a. As it can be seen, the found centroids represent low-frequency

edge-like features. However, Coates et al . show that this leads to poor performance,

although of canceling out influence of contrast and brightness. An explanation for this

are correlations between nearby neighboring pixels and due to this, K-means clustering

tends to seek more correlated centroids instead of more evenly distributed ones. A 2D

toy example of this problem is shown in Figure 4.3b (Coates et al . [22]): On the left

we see unwhitened and correlated data, whereas on the right whitening rescales the data

and removes correlation [48]. Resulting centroids in Figure 4.3a are based on unwhitened

data. In contrast, if dictionary learning uses standardized and whitened data, one obtains

sharper filters that describes higher spatial frequencies, as seen in Figure 4.3c.

(a) (b) (c)

Figure 4.3: How whitening affects dictionary learning using K-means on natural image-patches
(Coates et al . [22]): (a) centroids learned from images-patches without whitening. (b) A 2D toy
example illustrating the effect of whitening on K-means clustering. Left: unwhitened and more
correlated data where found centroids tend to be biased. Right: whitened data, yielding more
orthogonal centroids. (c) centroids learned from whitened image-patches.

Whitening: To decorrelate patch-data and to equalize all sample variances we apply

the Zero-phase Component Analysis (ZCA) [6], also called ZCA whitening. Therefore we

use the standardized patches x̃m ∈ Rd in X̃ ∈ RM×d and perform the eigendecomposition

on its covariance matrix C = X̃>X̃ (size d × d), such that C = VEV>, where V ∈
Rd×d represents the eigenvectors as column vectors, and E ∈ Rd×d denotes the diagonal

matrix of the corresponding eigenvalues. To finally perform ZCA whitening, we apply the

transformation matrix Tzca ∈ Rd×d according to:

Tzca = V(E + Iεzca)
− 1

2 V>, (4.2)

Xzca = X̃ Tzca, (4.3)

where I denotes the identity matrix which is of the same size as E. The constant εzca
which is added to the eigenvalues has to be chosen with care. Lower values will amplify

higher frequencies as well as undesired noise. However, its optimal value depends on the

input data range and has to be found by hand, which denotes a drawback.
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Tpca = E−
1
2 V> (4.4)

Note that the ZCA whitening is very similar to the PCA whitening which uses the trans-

formation matrix Tpca stated in Equation 4.4. In general, if data is whitened it will stay

whitened, even after applying arbitrary data rotation. Comparing both transformation

matrices, we see that the only difference is an additional rotation by V for Tzca (neglecting

the factor εzca). Thus, this additional rotation does not affect our resulting dictionary.

The reason why we still prefer ZCA whitening instead of PCA whitening is, that image

characteristics are preserved which allows us to visualize learned filters (from dictionary

learning) as recognizable images [52]. During experiments, this facilitates examining dic-

tionary learning effects.

As mentioned, after preprocessing, we consider applying two different dictionary learn-

ing methods, sparse coding and K-means clustering, which both assign pseudo-label infor-

mation to our required patches. For simple notation we henceforth denote the preprocessed

patch-pool X̃zca as X̃.

4.1.2 K-means Clustering

At first we want to discuss an optimized version of K-means clustering that uses damped

centroid updates. The goal is to obtain a dictionary and group patches that share similar

characteristics, forming one of K centroids. We also term resulting centroids as the filter

kernels of the dictionary. The number of centroids can be arbitrary and as we discuss

below, this also controls the final representation dimensionality.

To find a dictionary D ∈ RK×d of K d-dimensional filters, we randomly initialize

centroids based on a Normal-distribution and normalize them to unit length. This fits the

scale of the already preprocessed input data X̃ ∈ RM×d and allows to find more orthogonal

centroids [22]. The main objective of this modified K-means is to minimize the squared

distance between an input patch x̃m and its reconstruction smD>, with respect to the

dictionary D and the code-vector sm ∈ R1×K :

min
D,s

∑
m

∥∥∥smD> − x̃m

∥∥∥2

2
(4.5)

Hence, the emerging code-vector represents the input patch-vector according to the cen-

troids in D. However, the optimization has to satisfy two constraints: first, each sm is

forced to have at most one non-zero entry by

‖sm‖0 ≤ 1, ∀m, (4.6)

and second, each centroid d(k) ∈ R1×d within a dictionary has to have unit length∥∥∥d(k)
∥∥∥

2
= 1,∀k. (4.7)
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Algorithm 1, stated below, shows the standardized K-means Dictionary Learning, following

the works of Coates et al . [20, 22]. Note that S ∈ RM×K represents all code-vectors as a

matrix. Applying this algorithm yields very sparse code-vectors sm that represent a patch

Algorithm 1 Standardized K-means Dictionary Learning

Require: Dictionary size K
Require: Preprocessed patch-pool X̃ ∈ RM×d
Require: Randomly initialized dictionary D ∈ RK×d
1: while not converged do
2:

s(k)
m =

{
d(k)x̃>m if k = argmaxl |d(l)x̃>m|,
0 otherwise.

(4.8)

3: D← S>X̃ + D
4: d(k) ← d(k)/

∥∥d(k)
∥∥

2
∀k

5: end while
6: lm = argmaxk s

(k)
m ∀m

7: return Dictionary D and labels l

by only indicating the distance to the closest centroid (Equation 4.8). With respect to

general clustering approaches this is also known as hard-assignment.

Before we explain how to use these code-vectors for RF training, the next section

addresses sparse coding which is similar to K-means.

4.1.3 Sparse Coding

Compared to K-means based dictionary learning, sparse coding [67] optimizes the same

type of objective but uses a different constraint for the complexity of our code-vector

sm ∈ RK . The L1-penalized sparse coding formulation,

min
D,s

∑
m

‖smD− x̃m‖22 + λ ‖sm‖1 (4.9)

considers an additional penalty term λ ‖sm‖1 which forces the code vector to be sparse

according to λ. Again, a row-vector of D is represented as filter d(k) and is normalized to

unit length: ∥∥∥d(k)
∥∥∥

2
= 1,∀k (4.10)

In contrast to the K-means constraint (‖sm‖0 ≤ 1,∀m), the code-vector sm is now

allowed to have more than one non-zero entry which includes positive and negative

values. This provides a more accurate reconstruction of x̃m while still ensuring sparsity.

The drawback of this method is that we solve the objective using the coordinate descent

algorithm [81], which requires way more training time than K-means clustering. Due to

this, we primarily use K-means for dictionary learning in our experiments, as it allows
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to learn larger dictionaries and thus larger code-vectors without massively increasing

processing time.

Now that we have learned patch code-vectors or patch representations, we exploit this

pseudo-label data and train a RF.

4.2 Training a Random Forest as Feature Extractor

As discussed in previous sections we employ two different dictionary learning (DL) ap-

proaches to obtain patch code-vectors. The next step is to train the RF as a feature

extractor. For this we assume code-vectors to be assigned to raw image patches which we

use as training data. This yields a RF which is applicable to encode raw input data.

We define X = {xm,vm}Mm=1 as our training-set. Further, the characteristics of cor-

responding pseudo-label vectors vm ∈ RK depend on the underlying DL: If we apply

K-means clustering (KM) a code-vector s
(KM)
m with one non-zero entry emerges. This

value describes the distance to the closest dictionary element (filter) and represents a kind

of voting (see Equation 4.8). However, this weighting can be neglected as each patch only

belongs to one dictionary element. Hence, we use a so-called “one-hot encoding” scheme

for our patch pseudo-label vector and thus assign a 1 at the position of the non-zero entry

in s
(KM)
m :

vm,k =

{
1 if sm,k > 0,

0 otherwise.
(4.11)

where k ∈ {1, . . . ,K} is the (pseudo-class) index.

In contrast, for DL with Sparse Coding (SC) we obtain a code-vector s
(SC)
m that is

sparsely populated with positive or negative values. Due to this, the code-vector votes for

more than one dictionary element. Thus we assume it as pseudo-label vector vm without

modification.

To train a RF we follow the procedure introduced in Section 3.2 and perform node-

sub-sampling [71] with 100 samples. Per node we evaluate d/2 split-functions with nτ = 5

thresholds, where d is the input patch dimensionality. Further we apply Bagging [14]

where a bootstrapped subset is of the same size as the training-set but is sampled with

replacement. Note that this configuration is found empirically where we accept a tradeoff

between efficiency and accuracy.

At next we state how post-processing of patch encodings can improve the

discriminative power of the final image representation [21]. Hence, we introduce the term

post-processing which includes a feature activation function and spatial pooling. Recall

that a patch-encoding is also denoted as feature vector.
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Activation of Patch Encodings: Ideally, the trained RF is supposed to produce the

same encodings of raw patches as it would be the case if we directly apply the learned

dictionary on preprocessed patches, which would be the same as convolutional feature

extraction. Depending on the underlying dictionary learning method, which is either KM

or SC, we thus get different RF-based features. To enhance the discriminative power of

final image representations we may follow Coates et al . and additionally “activate” patch-

encodings which especially improves the performance of single-layer systems [20–22]. Note

that the choice of a proper activation function depends on the global dataset as well as on

the application.

Assuming that Φ(x) encodes an input-patch x to a feature vector, where Φ() stands for

the mapping function of our trained RF, we consider using three different modes to activate

features: (i) we directly use the raw RF-output Φ(x) as patch encoding z without using an

activation, (ii) we apply soft-thresholding by using the mean-value of Φ(x) or (iii) we split

the positive and negative components of Φ(x) into separated features (polarity-splitting)

which doubles the size of the patch representation z:

z :=


Φ(x) (i) no post-encoding

max(Φ(x)−mean(Φ(x)), 0) (ii) soft-threshold activation (mean)

{max(0,Φ(x)),−min(0,Φ(x))} (iii) polarity splitting

(4.12)

In case of polarity splitting (iii), the following classifier is allowed to weight negative and

positive values differently. This has shown to improve performance for sparse features [21].

Soft-threshold activation (ii), however, only passes features voting above average, which

induces a slight competition between features. In our experiments we choose different

modes for different datasets which we determine empirically, e.g. it turned out that soft-

thresholding especially improves performance on rgb-patches which is equal to the findings

of Coates et al .

To recap, the choice whether an additional activation is useful or not depends on

the application and the characteristics of the raw RF-output (influence of the underlying

dictionary learning). Further, we also apply spatial pooling on the (activated) feature

channels.

4.3 Experiments and Results

In all experiments in this section the goal is to investigate the quality of RF-based image

representations by applying image classification. Therefore we apply our RF on raw im-

ages, including the test-set and training-set of a given image dataset. Hence, we represent

an input image In ∈ RH×W×q in feature-space fn ∈ RF , where we refer to the definitions
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stated in Equations 2.1 and 2.2. If all images are represented, we perform image classi-

fication and train a classifier model on the labeled training data, which is a supervised

learning process. Further, we examine the classification accuracy or classification error on

the unseen test-set which enables us to evaluate the discriminative power of our extracted

representations. Note, as we evaluate random processes we perform several runs (number

of runs varies for individual experiments) and track the mean performance.

Overview: The first experiment in Section 4.3.1 shows a proof of concept of our feature

extraction framework by classifying gray-valued MNIST-10 images [56]. We compare

the representation quality of our RF-based features to others, like those of Coates et al .

[20, 22], HOG features [31] or concatenated raw image pixel values with image gradient

maps.

We further investigate different RF-parameters or pipeline-parameters and show their

impact on the resulting representation quality in Section 4.3.2, again using MNIST-10

images. We also evaluate and discuss differences of both dictionary learning approaches,

Sparse Coding and K-means clustering. Due to the many pipeline hyper-parameters, we

additionally apply a meta-learning approach in Section 4.3.4.

In Section 4.3.3 we try to replicate the results of Coates et al . [20] with our own frame-

work and evaluate parameters on the more challenging CIFAR-10 dataset [52]. Hence, we

directly compare our feature extraction to the method of Coates et al . which both use the

same learned dictionary.

Additional experiments in Section 4.3.5 examine how different training-set sizes affect

the classification performance. This includes training our RF as well as training a global

classifier. Therefore we use the STL-10 dataset [20].

Finally we also add our RF-based representations to an existing image classification

pipeline, which was introduced by the VLFeat team [77]. Experiments are shown for

CALTECH-101 images [30] and SCENE-67 images [69].

Fixed Parameters: For reasons of simplicity, we fix classifier hyper-parameters for all

our experiments. For the linear L2-SVM we set the regularization parameter λ = 100, as

it is proposed in [22]. If not otherwise stated, our non-linear adaBoost classifier is built

out of 256 boosted decision trees, using a maximum tree-depth of 4.

Regarding RF-based representation learning on patch-level we consider using two dif-

ferent split-functions. For MNIST images we perform single-pixel tests only, as images

are already provided standardized (they are gray-valued without brightness variance).

For any other datasets with rgb-images we use pixel-pair tests to capture within-patch

characteristics.
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4.3.1 Proof of Concept on MNIST-10

The MNIST-10 dataset [56] was introduced by Yann LeCun and Corinna Cortes (Courant

Institute, NYU) and consists out of 70000 handwritten digits in total, where each image

is gray-valued at a size of 28-by-28 pixels with range 0 to 255. This traditional benchmark

dataset is widely used for image classification evaluation and ranks among the “simpler”

datasets, as it requires comparably less memory. However, fairly high intraclass variance

due to rotations or affine distortions of digits, is still challenging. The dataset comes with

a train-set Itrain of 60000 images, and a test-set Itest including 10000 images. Because

the MNIST-dataset describes decimal digits, the label-space lies within 0 to 9, which

defines C = 10 global ground-truth categories. Figure 4.4 shows some random examples

of MNIST-10 images.

Figure 4.4: Examples of MNIST images [56].

To prove the feature extraction capability of a RF, we first examine a baseline experi-

ment. Table 4.1 shows baseline training parameters of our RF as well as post-processing

parameters. Note that post-processing parameters were found empirically. Further, we

address unsupervised representation learning with RFs on MNIST-10 and compare our

representations to existing ones.

Representation Learning: At first, we build a pool-of-patches of size M = 106 by

randomly sampling over all training images (In) ∈ Itrain1. For this we just use plain gray-

valued image pixels and rescale them to range [0, 1]. After patch standardization with

εZCA = 1, β = 1, we obtain patch labels by applying K-means clustering [20] (running 10

iterations) where we learn K = 36 filter kernels. Note that this small dictionary size is

1Note, due to unsupervised training we neglect the provided ground-truth labels cn.
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baseline RF parameters

patch-size 6-by-6

patch-pool size M = 106

number of trees T = 20

maximum tree depth 16

minimum leafnode-samples 100

post processing

extraction stride 1

encoding activation none

pooling grid-size 4-by-4

pooling operation max

Table 4.1: Baseline setting for representation learning on MNIST.

contrary to the findings of Coates et al . [20] who achieve best results with largest dictio-

naries, however, in this experiment we therefore obtain lower dimensional representations

that allow fair comparison to other types of features with similar length.

Examples of learned filters using MNIST patches are shown in Figure 4.5. As seen, we

get edge-like filters at certain spatial frequencies and different orientations. Notice, that

due to the small dictionary size K = 36 the algorithm is not really able to output more

complex filters that may group curved edge-like appearances. According to Table 4.1 we

train a RF and follow the training procedure described in Section 4.2. Because MNIST

images already provide standardized data (all images have equal data range) it is sufficient

to use the simplest kind of split-function, the single-pixel test (Γ(x) = xd).

Feature Extraction: To produce an image representation we apply our trained RF in

a pixel-wise manner by sliding over an input image In ∈ R28×28 using a window size of

6-by-6 pixels. This results in a feature-cube with 36 feature channels, each of spatial size

23-by-23. In regard to the found filters shown in Figure 4.5, we illustrate corresponding

RF responses for four different input digit images in Figure 4.6. We observe that most

of the feature channels describe edge-like information, shifted in various ways at different

orientations, further, also response to homogeneous regions appears. As expected, this

result underlies the characteristics of the found filters during dictionary learning.

Representation Comparison: To evaluate the representational power we perform im-

age classification. We track 10 runs where for each run we again extract random patches

and learn a new dictionary. Hence, this also yields a new RF for each run.

After encoding each image-patch, we apply spatial max-pooling over a grid of size

4-by-4 which captures cells of size 6-by-6. Thus, we obtain an image representation f

which spans 4× 4× 36 = 576 dimensions.
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Figure 4.5: Visualization of a found dictionary of size K = 36 on MNIST patches using K-means
clustering [20]; filters are sorted by filter-variance.

As mentioned we aim at comparing the discriminative power of our representations

to others. Therefore we evaluate four different types of feature representations (f
(i)
n , cn)

where i denotes the different feature data. We evaluate the same classification pipeline

for each of them.

The feature extraction method of Coates et al . [20] directly uses the found dictionary

to obtain representations. Hence, to produce patch representations we simply compute

the inner product between dictionary filters and preprocessed image-patches, which

actually is a convolutional feature extraction. Note that their method requires

standardized and whitened input data, because this suits the scale of the standardized

filters obtained by the optimized K-means clustering. Resulting patch-encodings are then

activated by soft-thresholding using the patch mean-value (thus they name it “K-means

triangle-activation”). To allow fair comparison, we assume the same pooling parameters

as well as the same found dictionary to train our RF. Equal to our approach, this yields

image representations of length 576.

Further we employ low-level image characteristics as feature information.

Therefore we consider concatenating three types of feature-channels: (i) raw

pixel values, (ii) the gradient magnitudes of the 2D image and (iii) eight oriented

gradient channels, where we use the binning {0, π8 ,
π
4 ,

3π
8 ,

π
2 ,

5π
8 ,

3π
4 ,

7π
8 }. This results

in 10 feature channels of size 28 × 28, which we compute using the toolbox of

Piotr Dollar2[28] for Matlab. For fair comparison we apply spatial pooling

over a pooling-grid of 8-by-8, where sum-pooling turned out to work best. Result-

ing features are stacked to one representation vector, spanning 8×8×10 = 640 dimensions.

Finally, we also test a widely used hand-crafted feature-descriptor, the HOG-descriptor.

Again, we use the toolbox of Piotr Dollar [28] which provides the fhog function that

efficiently computes HOG-features based on the work of Felzenszwalb et al . [31]. We set

a HOG cell-size of 4-by-4 and compute 9 gradient orientations. It internally focuses on

2Piotr’s Image & Video toolbox 3.23 c©2013 Piotr Dollar
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Figure 4.6: An illustration of K = 36 RF-based feature channels for several MNIST digits: From
top to bottom we show resulting feature channels for digit “0”,“3”,“5” and “9”. To the right, the
corresponding input images are shown.
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Figure 4.7: Image classification results on MNIST, a comparison of representations. RF de-
notes RF-based image representations; KM-tri denotes triangle K-means representations [20]; PxG
states a concatenation of raw pixels, gradient magnitudes and oriented gradients; FHOG describes
histograms of oriented gradients. Markers show classification errors of individual runs.

mean error in % feature dimensions SVM adaBoost ensemble

pxl+gradM+gradH 640 1.840 0.930

FHOG 512 1.5700 0.920

K-means tri [20] 576 1.446± 0.037 0.744± 0.038

RF 576 1.419± 0.061 0.685± 0.054

Table 4.2: Image classification results on MNIST, a comparison of representations. Mean classi-
fication error and standard deviation in %.

2 contrast-sensitive features and one contrast-insensitive feature for each orientation. In

addition to that, also four texture features are computed. As a result we get 32 features

for each cell that are clipped at a value of 0.2. Thus, an image representation is of length

512.

If we look at the classification results in Figure 4.7 and in Table 4.2, we see that our

RF representations outperforms all other tested representations. Notice, although the

pseudo-label information of the patches is based on the same learned dictionary as for

the triangle K-means, our representations seem to be more discriminative. An additional

benefit is that the RF directly encodes raw patch-data without any preprocessing of input

image patches. In contrast to the findings of Coates et al . who achieve best results for

very large dictionaries, we apply a very small dictionary size (K = 36) in this experiment.

The reason for this is that we focus on producing similar image representation lengths for

all four methods, allowing a fair comparison.
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The next experiments evaluate our RF-based image representations using larger dic-

tionaries where we further investigate the influence of RF parameters or representation

learning parameters.

4.3.2 Experiments on MNIST-10 - Evaluation of Parameters

The goal of the following experiments is to examine the impact of different parameters

on the final representation quality. In the first part we investigate RF related parameters

whereas in the second part we examine the influence of different dictionary sizes and

patch-sizes. Further we compare two unsupervised dictionary learning methods, K-means

(KM) and sparse coding (SC). We again use the MNIST-10 dataset and perform image

classification using the non-linear adaBoost classifier, as it showed best classification rates

in our previous proof-of-concept experiment (on MNIST data). If not otherwise stated we

use the MNIST baseline parameters stated in Table 4.1.

Evaluation of RF Parameters: At first we examine the influence of RF parameters

on image classification. To learn features we apply KM clustering or SC and use a fixed

dictionary size of K = 100 for both methods. However, empirical trials showed that best

results are achieved by using the raw RF output for KM dictionary learning, and the

polarity splitting activation if dictionaries are learned with SC (for more detail the reader

is referred to Section 4.2). Note that if we apply polarity splitting, our final representation

length is of doubled size. Thus, with a pooling-grid of size 4-by-4, we get 4×4×K features

for KM and 4× 4× 2K for SC.

Further we fix the following dictionary learning hyper-parameters: For preprocessing

we use εZCA = 1, β = 1 for KM, and εZCA = 0.1, β = 1 for SC, which were empir-

ically found to yield best performances. Both dictionary learning methods perform 10

optimization iterations, where the SC L1-penalization parameter λ is set to 1.

Examples of learned dictionaries for both algorithms are illustrated in Figure 4.8

where it can be seen that resulting dictionary filter kernels look quite different. We

evaluate the RF max-depth ∈ {1, 4, 7, 10, 13, 16, 20, 30,∞} and vary the total number

of trained decision trees for each max-depth using T ∈ {1, 3, 10, 32, 100}. For training

our RF, we additionally consider using either 100 or 10 minimum leafnode samples (mls)

that contribute to the terminal leafnode statistics.

Figures 4.9a to 4.9e show achieved results for each RF size T , drawn over the maximum

allowed tree-depth. As performance measurement we show the mean classification-error

over 5 runs per parameter-setting.

As expected, if we increase the number of trees the ensemble prediction strength of

our RF improves and obviously yields better features. Notice, that also a single tree

provides surprisingly well feature extraction where we get a minimum mean-error rate of

0.726% using a maximum tree depth of 16 with SC-based feature learning.
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(a) (b)

Figure 4.8: Visualization of found dictionaries on 6-by-6 MNIST patches, using K = 100. (a)
dictionary learned by K-mean; (b) dictionary learned by sparse coding; both sorted by filter-
variance.

If we examine results using RFs with 100 mls, we see increasing classification

performance up to a max-depth of 16 for nearly all ensemble sizes. However, beyond

this max-depth it seems that results show fluctuations, where we observe a more or

less constant standard deviation of 0.04% for almost all errors. Hence, we conclude

that beyond this point representation quality does not further improve, although more

pixel-tests are performed on image patches. Even more, some mean errors increase with

max-depths beyond 16 which can be explained by slight overfitting.

Looking at the results which use RFs with 10 mls, we recognize higher overfitting

characteristics, in particular for fewer trees. This is reasonable as if we only train e.g.

one decision tree, ensemble advantages stay out. Regarding fewer mls, decision trees

are enabled to perform more splits, resulting in a significantly higher number of final

leafnodes, which contributes to overfitting. In this case, limited memory did not allow

us to train deeper RFs. As expected, a higher number of trees shows to yield better

generalization which counteracts overfitting especially for 10 mls.

Regarding experiments with 100 mls and max-depth =∞, we did not exceed memory

as depth was limited by the minimum number of leafnode samples which turned out to

allow tree depths of about 50.

If we use ensembles of simple stumps (depth = 1), we achieve mean-error rates

below 1 % for T ≥ 32. Hence, our experiments show that it suffices to apply at least 32

binary decisions on each raw image patch to obtain representations for acceptable image

classification on MNIST.
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Figure 4.9: RF parameter sweep of maximum tree-depth and number of trees T . Figures (a) to
(e) show mean classification errors over 5 runs for different number of trees. The rough standard
deviation for almost all settings is 0.04%. During RF training we use either 100 or 10 minimum
leafnode samples (mls) for computing leafnode statistics. SC and Kmeans denote the dictionary
learning methods, sparse coding and K-means clustering, both learning K = 100 filters.
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Comparing the two dictionary learning approaches, we see that SC facilitates

to extract slightly better RF-based representations. However, remember that we

additionally have to apply an activation (polarity splitting) on the raw RF-output.

Otherwise we empirically found that performance decreases. Also note that SC is way

slower than KM, where we refer to Section 4.1.3 for further information.

The best results in this parameter sweep showed a minimum mean classification

error of 0.54% (mls50) and 0.57% (mls100) for KM dictionary learning, and 0.56%

(mls100) for SC dictionary learning, all using a RF size of T = 100. As expected,

using different minimum leafnode samples has a significant impact on the final

number of RF leafnodes. If we allow at least 50 leafnode samples, RFs with 100

trees and max-depth of 16 learn about 1.4 million leafnodes in total whereas with

100 mls, RFs learn 0.9 million leafnodes. Hence, there is a big difference with

respect to memory consumption, although we only achieve a slight improvement for 50 mls.

If we compare above results to the proof-of-concept experiment in Table 4.2 (which

only involved dictionaries of size K = 36), we see that K does, of course, affect the dis-

criminative power of extracted image representations. Therefore we are further interested

in examining the impact of the dictionary size and of the input patch-size on the final

image classification performance.

Evaluation of Representation Learning Parameters: In this part we fix the

RF-parameters according to the baseline settings (T = 20 at depth 16) and evaluate

different patch-sizes w ∈ {2, 4, 6, 8, 10, 12}, whereas for each patch-size we vary the

dictionary size K ∈ {10, 32, 100, 316, 512}. Note: Due to limited computational

resources we do not investigate larger dictionaries (e.g. Coates et al . [20, 22] showed best

performances for K = 4000). Again we employ KM and SC for dictionary learning,

however, in contrast to KM the SC optimization algorithm restricts complexity in

dictionary learning, preventing us from learning large dictionaries due to extremely

long runtimes. For each parameter-setting we evaluate 3 runs and examine the mean

classification-error.

In Figure 4.10 we illustrate examples of found dictionaries at different patch-sizes for

K = 100 filters, regarding KM clustering and SC, respectively. We observe that larger

filters capture details of larger scale, like curves or even circular shapes, whereas small

filters have limited representational power. Classification results for different patch-sizes

are shown in the following Figures 4.11a to 4.11f.

As expected, if we increase the dictionary size K we basically improve image

classification, except for representations based on small patch-sizes. In these cases
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(a) (b)

(c) (d)

Figure 4.10: Visualization of found dictionaries (K = 100) using different patch-sizes of MNIST
images. (a) KM-based filters at size 4-by-4; (b) KM-based filters at size 12-by-12; (c) SC-based
filters at size 4-by-4; (d) SC-based filters at size 12-by-12. Dictionaries are sorted by filter-variance.

we even observe error increase for K > 100. This is explainable by the limited

representational power of smaller filters for large dictionaries, which is also the reason

why SC optimization failed for a quite small patch-size of 2-by-2.

However, if we set K = 10, we still achieve surprisingly low classification errors,

especially if we apply SC for dictionary learning. Hence we confirm the findings of Coates

et al . in [21] that show superior behavior of SC over KM with respect to representational

power.

Regarding the effect of the patch-size we consider a size of 6-by-6 as the most suitable

for MNIST image feature extraction, where the lowest mean classification error of about

0.57% emerged at using K = 512. Note that we only used 20 trees with a max-depth of

16. Thus we conclude, that in addition to the RF structure, also a proper patch-size and

large dictionaries are critical for optimal performances.
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Figure 4.11: Parameter sweep over dictionary size K at different patch-sizes. Figures (a) to (f)
show mean classification errors over 5 runs for different patch-sizes. The rough standard deviation
for almost all settings is 0.04%. The plots are drawn over varying dictionary size K with cubic
interpolation. SC denotes Sparse Coding. RF parameters are fixed, using T = 20 trees at a
maximum depth of 16.
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Beside extensive research on MNIST images, the next section addresses experiments

using more challenging data in terms of real world rgb-images at low resolution.

4.3.3 Experiments on CIFAR-10

In this experiment we perform image classification on CIFAR-10 images [52] and compare

performances of our RF-based representations to the proposed method of Coates et al .

[20, 22]. Further we also investigate feature extraction time efficiency of both methods.

The CIFAR dataset consists out of 60000 rgb-images of size 32-by-32 that show 10

different real-world categories (airplane, automobile, bird, cat, deer, dog, frog, horse, ship,

truck). Each category has 5000 train-images and 1000 test-images, resulting in 50000

training samples and 10000 test samples in total. The challenge of this dataset are the

low-resolution real-world objects which are quite hard to distinguish. As it was found

by Karpathy3, even humans only achieve a recognition accuracy of about 94%. Random

examples of the CIFAR-10 images are illustrated in Figure 4.12.

Figure 4.12: Examples of CIFAR images [52].

The main focus of this experiment lies on comparing our representations to the “K-

means triangle” (KM-Tri) features of Coates et.al., who primarily evaluate on CIFAR

images. Thus, we use the same pipeline-parameter settings for both approaches during

evaluation, which includes the type of classifier as well as the same found dictionary by

KM. Regarding dictionary learning, we vary the dictionary size K = {100, 200, 400, 800}
and the whitening parameter εzca = {0.1, 0.01}. We also investigate the effect of two

different RF architectures and split-functions.

3Karpathy, Andrej. Lessons Learned from Manually Classifying CIFAR-10. 2011.
http://karpathy.github.io/2011/04/27/manually-classifying-cifar10/ (accessed October, 2016)
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Parameters RF DRF

patch-size 6-by-6 6-by-6

patch-pool size M = 106 M = 3 · 106

number of trees T = 50 T = 10

maximum tree depth 16 ∞
minimum leafnode-samples 100 1000

split-function
single pixel,
pixel pair

pixel pair

preprocessing
raw,

standardized
raw

post processing

extraction stride 1

encoding activation threshold

pooling grid-size 2-by-2

pooling operation sum

Table 4.3: Parameter settings of RF-based feature extraction on CIFAR images.

As seen in Table 4.3, we employ a typical RF with 50 trees at max-depth 16, and

a deep RF (DRF) with 10 trees where final tree depth is only limited by the minimum

number of leafnode-samples (mls). We set mls = 1000 as this allows us to train the DRF

on more image-patches, however, this also causes learning quite unbalanced trees which is

the reason why we choose infinite depth. As a result, tree depths around 75 appear and

approximately 70000 total leafnodes are learned. Notice, that in contrast to our feature

extraction on MNIST, we additionally apply a threshold encoding activation which we

empirically found to yield best results. Further, this encoding activation is also used

during the KM-Tri feature extraction.

We randomly sample raw 6-by-6 image patches and rescale their range from [0, 255] to

[0, 1]. After patch preprocessing, we apply K-means clustering with 10 iterations to learn a

dictionary and to obtain pseudo-label information. The reason why we omit sparse coding

in this experiment is the otherwise too high optimization complexity. Because we have

a large number of patches with R6×6×3 = R108 dimensions, SC would require quite high

processing runtime compared to KM, at least on our machine.

Figures 4.13 and 4.14 show found dictionaries of size 100 or 800, respectively, where

we also vary the whitening parameter εZCA. As seen, larger dictionaries produce more

diverse filters, also with respect to color information. Similar to MNIST dictionaries,

emerging filters describe edge-like information including different spatial frequencies.

Additionally, emerging Gabor-filters vary in scale and some also include mixed colors.

As stated in Section 4.1.1, the whitening parameter εzca controls the “sharpness” of

dictionary filters which also affects the resulting patch pseudo-label information.
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(a) (b)

Figure 4.13: Visualization of a learned dictionaries of size 100 using 6-by-6 CIFAR patches. (a)
Dictionary learning with εZCA = 0.1; (b) Dictionary learning with εZCA = 0.01, both sorted by
filter variance.

(a) (b)

Figure 4.14: Visualization of a learned dictionaries of size 800 using 6-by-6 CIFAR patches. (a)
Dictionary learning with εZCA = 0.1; (b) Dictionary learning with εZCA = 0.01, both sorted by
filter variance.

In this experiment we examine the classification mean accuracy on the test-set over

3 runs. We train two different types of classifiers, a non-linear adaBoost classifier and a

linear L2-SVM (for more details see Sections 2.4). In regard to the adaBoost classifier,

we consider training with two different settings: We train 256 trees of depth 4 which we

denote as setting 1, and we train 512 trees, denoted as setting 2.

Figure 4.15 compares achieved results of both classifiers, using the preprocessing pa-

rameters εZCA = {0.1, 0.01}, β = 1 for dictionary learning. As seen, our RF-based repre-

sentations do not outperform KM-Tri representations even though they are based on the

same dictionaries. We especially observe this for linear classification. An explanation may



52 Chapter 4. Unsupervised Representation Learning

100 200 400 800

58

60

62

64

66

68

70

72
CIFAR − Comparison to Coates et al. − adaBoost Classifier, eps = 0.1

K

m
e
a
n
 t
e
s
t 
a
c
c
u
ra

c
y
 i
n
 %

 

 

(1) KM−Tri

(1) RFsp, std

(1) RFsp, raw

(1) RFpp, raw

(1) DRFpp, raw

(2) KM−Tri

(2) DRFpp, raw

(a)

100 200 400 800

58

60

62

64

66

68

70

72
CIFAR − Comparison to Coates et al. − L2−SVM, eps = 0.1

K

m
e
a
n
 t
e
s
t 
a
c
c
u
ra

c
y
 i
n
 %

 

 

KM−Tri

RFsp, std

RFsp, raw

RFpp, raw

DRFpp, raw

(b)

100 200 400 800

58

60

62

64

66

68

70

72

74

CIFAR − Comparison to Coates et al. − adaBoost Classifier, eps = 0.01

K

m
e
a
n
 t
e
s
t 
a
c
c
u
ra

c
y
 i
n
 %

 

 

(1) KM−Tri

(1) RFsp, std

(1) RFsp, raw

(1) RFpp, raw

(1) DRFpp, raw

(2) KM−Tri

(2) DRFpp, raw

(c)

100 200 400 800

58

60

62

64

66

68

70

72

74

CIFAR − Comparison to Coates et al. − L2−SVM, eps = 0.01

K

m
e
a
n
 t
e
s
t 
a
c
c
u
ra

c
y
 i
n
 %

 

 

KM−Tri

RFsp, std

RFsp, raw

RFpp, raw

DRFpp, raw

(d)

Figure 4.15: Performance comparison over K on CIFAR. For dictionary learning we use εZCA =
{0.1, 0.01} (notice the different scaling). Classification mean accuracy on the test-set over 3 runs is
drawn over dictionary size K: (RFsp) RF with single-pixel tests; (RFpp) RF with pixel-pair tests;
(DRFpp) Deep RF with pixel-pair tests; (KM-Tri) K-means triangle representations; ‘raw’ denotes
raw input patches, ‘std’ denotes standardized input patches. Note KM-Tri uses standardized and
whitened input patches. (a)(c) Results with non-linear adaBoost classification, (1) 256 trees and
(2) 512 trees; (b)(d) Results with linear L2-SVM classification.

be the well optimized parameters of the entire KM-Tri pipeline that is proposed by Coates

et al . [20]. However, if we compare performances over different εZCA we recognize that

KM-Tri representations are extremely sensitive to preprocessing parameters, whereas our

RF feature extractor shows to be less affected. This can be seen in more detail in Figure

4.16 where we plot the results over the preprocessing parameter εZCA for K = 800. A

reason for this is that we do not directly employ the actual dictionary, but the resulting

pseudo-label information for RF training, causing our RF-based feature extraction to be

more independent on preprocessed dictionary learning. Hence we confirm the findings of

Reference:
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Figure 4.16: Classification performance comparison for different values of the preprocessing
parameter εZCA on CIFAR, using dictionaries of size K = 800: (RFpp) RF with pixel-pair tests;
(DRFpp) Deep RF with pixel-pair tests; (KM-Tri) K-means triangle representations; ‘raw’ denotes
raw input patches. Note KM-Tri uses standardized and whitened input patches. (a) Results with
non-linear adaBoost classification, (1) 256 trees and (2) 512 trees; (b) Results with linear L2-SVM
classification.

Coates et al ., that preprocessing is crucial for their method.

If we take a closer look at the results in Figure 4.15 with non-linear adaBoost

classification using 256 trees (setting 1), we do not improve over the linear SVM. However,

if our adaBoost forest trains 512 trees (setting 2), performances are increased. This

behavior indicates an insufficient model complexity of our non-linear adaBoost classi-

fier which may prevent exhausting the potential of high dimensional image representations.

If we compare the different RF settings, we see that single-pixel tests on standardized

input data (RFsp, std) performs quite well. That is, we train and test the RF on stan-

dardized patches. However, we primarily aim at extracting features from raw image data.

As expected, some patch characteristics, such as edge information, can not be properly

learned by our RF if we just use single-pixel tests on raw input patches (RFsp, raw). In

this case, two random patches with similar edge-like content may vary in e.g. brightness

but causing the RF to output different encodings. Thus we apply pixel-pair split-functions

that allow to capture raw patch characteristics (RFpp, raw).

Furthermore we also test a deeper RF, denoted as DRF, but with less trees. Again we

train on raw patch data. As it turned out, although we only use 10 deep trees, classification

performances are nearly equal to our other RFs who are built out of 50 trees.

Regarding time efficiency, Figure 4.17 shows a comparison of both methods over K.

Therefore we use the time measurement tool of Matlab which unfortunately has flaws if

measured time periods are below one second. Thus we evaluate 1000 images and use the
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Figure 4.17: Time efficiency comparison of feature extraction methods on CIFAR. Average
processing time per image in ms. (a) with post-processing, including threshold-encoding and
feature pooling; (b) without post-processing.

CIFAR-10 classification SVM adaBoost, 256 trees adaBoost, 512 trees

Dictionary size K 100 800 100 800 100 800

RFsp, std 59.28 68.25 65.72 68.28 - -
RFsp, raw 57.71 65.88 63.90 65.54 - -
RFpp, raw 58.84 68.06 65.08 67.38 - -
DRFpp, raw 58.53 68.50 65.33 68.26 66.75 70.22

KM-Tri, std, whitened 65.08 74.54 67.22 71.30 68.65 73.24

Table 4.4: Image classification results on CIFAR. Achieved mean accuracies are shown for RF-
based representations and KM-Tri representations, using different dictionary sizes.

median time period and regard the average time consumption over 3 runs.

If we examine the extraction time without any post-processing, that is, we only

produce image patch encodings or feature channels, we recognize independency on

K for RF-based extraction. As expected, extraction time increases with K for

KM-Tri. However, in case of including time consumption for threshold encoding and

feature pooling, post-processing seems to be fairly time consuming with respect to K.

Nevertheless, our method still outperforms convolutional feature extraction regarding

processing time.

To recap, best achieved classification performances on CIFAR are shown in Table

4.4. As seen, we did not reach performances of KM-Tri representations which we explain

by the extremely well tuned pipeline of Coates et al . [20]. Nonetheless we prove, that

our feature extraction can be done more efficiently by using raw data, which denotes a

major advantage over convolutional extraction. Moreover, our method is less sensitive to

Reference:
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preprocessing during dictionary learning. Note that Coates et al . achieve best results with

K = 4000, however, due to memory limitations we do not test for dictionary sizes beyond

800.

4.3.4 Learning Hyper-Parameters

As we have seen in previous experiments, it is still quite challenging to find optimal

parameters or hyper-parameters by hand, regarding a whole classification pipeline. Hence,

we are motivated to determine how we could learn them. Therefore we propose to apply

a meta-learning approach, to seek an optimal global pipeline parameter setting. However,

before we introduce our experiment, we briefly explain evolutionary learning.

Evolutionary learning: Algorithms based on evolutionary learning are used to find

parameters or hyper-parameters of global learning problems. A certain parameter-setting

is defined as individual within a set of individuals, denoted as population. Further, each

individual outputs an error or “fitness” at testing-time which is equal to the performance

of the sub-task. Evaluating a whole population may show good or bad individuals where

the best performing ones may be chosen to form a new generation. A well-known concept

for evolutionary learning are genetic algorithms [39]. The key is to evolve individuals (or

“genomes”) that show best performances on a given problem. Ideally, such algorithms

converge to the global optimum which is usually hard to determine with common learning

methods. Regarding our experiment, we consider using the following genetic learning

approach:

At first, we randomly draw individuals over a pre-defined parameter-space S to form

a population. That is, we produce a random set of pipeline parameter-settings which

we denote as the first generation of individuals. Further we evaluate each individual,

which means in this context to evaluate an end-to-end classification pipeline on MNIST-

10 images. This yields an error or score for each individual. Then, the best ones of this

generation are chosen by a predefined criterion to reproduce themselves forming the next

generation. During reproduction random mutations may occur which ensures visiting new

areas in parameter space. Thus, with advanced generations we get more improved individ-

uals. A pseudo-code explanation of our genetic algorithm we employ in this experiment is

stated in Algorithm 2.

We define a parameter-space S which spans over multiple discrete dimensions that

describe all possible discrete states. As mentioned our goal is to learn an optimal constel-

lation or “tuple” of parameters, which denotes an individual. Table 4.5 shows the possible

range for pipeline parameters in this experiment.

Given this parameter-space the resulting image representation may span 32 to 10800

dimensions, which only depends on K and the selected pooling size. In fact, the patch-

size only affects discriminative characteristics of patch-representations with respect to

scale before spatial pooling is applied. For dictionary learning we consider using K-means

Reference:

 ()
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Algorithm 2 A Genetic Algorithm to learn parameter-settings

Require: Define parameter-space S ∈ RD where D = number of genes.a

Require: Initialize population uniformly drawn over parameter-space P0 ∼ U(S).
Require: Define probability for mutating an individual pind.
Require: Define probability for the single gene mutation pmut of an individual.
Require: Set maximum number of generations G.
1: Evaluate fitness R0 of initial population P0.
2: for g = 1→ G do
3: Select survivors from fitness Rg−1: Psurvivors ← select(Pg−1). b

4: Crossover individuals until population-size is restored Pg ← crossover(Psurvivors).
5: for k = 1→ population-size do
6: Consider current individual Ik ∈ Pg for mutation according to probability pind.
7: if mutate Ik then
8: Mutate each gene of Ik according to probability pmut: Ik ← mutate(Ik).
9: Update population Pg.

10: end if
11: end for
12: Evaluate actual generation: Rg ← eval(Pg).
13: Check if termination criterion is met, otherwise continue.
14: end for
15: return best individual Ibest of last population.

aNote that R is not restricted to continuous spaces here, it may also denote discrete spaces.
bFor select() we consider using the “elitism” principle, which selects the best ne individuals to survive.

parameters parameter-space S
# RF trees T = {1, 2, 3, . . . , 99, 100}

maximum RF tree depth {2, 3, 4, . . . , 9, 10}
# of learned filters K = {8, 16, . . . , 300}, step-size 16

patch-size w = {2, 4, . . . , 14}, step-size 2

spatial max-pooling grid cell-size {2-by-2, 4-by-4, 6-by-6}
K-means whitening parameter εZCA = {1, 0.1, 0.01, 0.001}

encoding activation {’raw’, ’pn’, ’threshold’}

Table 4.5: Defined parameter space S for parameter learning.

clustering, as it is way faster than Sparse Coding.

Assuming our first generation, the initial population P0 contains 20 random individ-

uals. The mutation probability, which decides whether an individual mutates, is set to

pind = 0.3 and the following single-gene mutation probability is set to pmut = 0.3. Follow-

ing Algorithm 2, we consider choosing the best 10 individuals as survivors and thus for

reproduction. We evaluate 30 generations and record the iterative evolutionary progress

of the population mean-error and its standard deviation, as well as the minimum error of
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Figure 4.18: Evolution of pipeline performances during a hyper-parameter meta-learning ap-
proach, see Algorithm 2. Classification error on 10000 MNIST-10 test images, using 10000 training
images only.

each generation (which equals the best individual). If we talk about an error we denote

the classification-error on the 10000 test-images. As classifier we use the adaBoost tree

ensemble. Note that we only use 10000 training images here, as this reduces the total run-

time of our genetic learning algorithm. In Figure 4.18 we plot the evolutionary learning

progress over 30 generations.

As seen, the learning curve shows some random fluctuations that are caused by random

mutations. Still, generations improve on average during learning. The best population

mean-performance occurs at the 26-th generation where we achieve a mean-error of 1.288%

over 20 individuals. The best overall individual performance emerges in the last generation

where we attain an error-rate of 1.13%, whereby the following genes or parameters evolved:

T = 57,max. depth = 10,K = 264, patch-size = 6 × 6,pooling-grid = 2 × 2, εZCA =

1,RF encoding = ’raw’. Notice, in contrast to our previous experiments on MNIST, we

get a pooling-grid of size 2-by-2. As expected the algorithm yields a maximum tree depth

of 10 which denotes the upper limit of the depth parameter space. Note that we did

not allow the algorithm to larger tree depths since this would reasonably increase genetic

learning time. Though, deeper trees usually improve performance.

Finally, we train our classification pipeline according to this “optimal” parameter set-

ting but consider using the full training-set with 60000 images. In this case we achieve

a mean classification error of 0.62% over 3 runs on the test-set. Further we increase the

maximum tree depth to 16 which yields an improvement of the mean error to 0.54%.
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To recap, hyper-parameters of an entire image classification pipeline can be learned

automatically by applying evolutionary learning. Thus, although we introduce additional

hyper-parameters with our RF, tedious parameter tuning by hand could be avoided.

4.3.5 Miscellaneous Experiments

In this section we address additional experiments on image classification using RF-based

representations.

Augmenting Training Images for Classification: At first, we investigate the influ-

ence of the image training-set size with respect to global image classification. We evaluate

on the MNIST-10 dataset which provides Ntrain = 60000 training images by default. To

augment this dataset we apply affine image transformations on given training images.

Hence, we produce new digit images that slightly vary in rotation, shear and scale.

For representation learning we use the MNIST baseline setting stated in Table 4.1,

but train T = 32 trees at max-depth 10. Note that we also involve augmented training

data for representation learning with respect to image-patch sampling. However, we still

use 106 patches for dictionary learning where we learn K = 100 filters. All other param-

eters are considered to be fixed. The results in Table 4.6 show that data augmentation

Ntrain 30 · 103 60 · 103 180 · 103 360 · 103 600 · 103

mean classification-error in %: 0.81 0.67 0.59 0.54 0.55

Table 4.6: Impact of training-set size on image classification using MNIST images. For Ntrain >
60000 we augment the train-set by affine image transformations.

improves image classification, which was expected as this primarily facilitates learning

better classifier models.

Effect of Training Images on Representation Learning: At next, we examine

the influence of underlying image data that is used for representation learning. In this

experiment we distinguish between two image training-sets, one for training our RF, and

one for training a global classifier. Previous experiments always use the same images for

both training procedures. Hence, we are encouraged to investigate the impact of different

image training-sets on representation learning.

In the following experiment we perform image classification on STL-10 images [20],

which are similar to CIFAR images but contain real-world object images at higher res-

olution (96-by-96 pixels). Further, this dataset provides three image-sets: 5000 labeled

training images, 8000 labeled test images and an additional training-set of 100000 unla-

beled images. This large set of unlabeled images is actually meant for evaluating unsuper-

vised representation learning methods. Again, the goal is to classify 10 image categories

where we train a classifier on the given default training-set only. The test-set is used for

evaluation.

Reference:
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Figure 4.19: Visualization of a learned dictionary of size 400, learned from STL image patches.
RGB filters sorted by variance.

RF parameter setting

patch-size 8-by-8

patch-pool size M = 3 · 106

number of trees T = 10

maximum tree depth ∞
minimum leafnode-samples 1000

post processing

extraction stride 1

encoding activation threshold

pooling grid-size 4-by-4

pooling operation sum

Table 4.7: Parameter setting of RF-based representation learning for STL image classification.

Due to higher image resolution we sample image patches of size 8-by-8 and apply

preprocessing using εzca = 0.01 and β = 1. An example of a dictionary of size K = 400

obtained by K-means clustering is shown in Figure 4.19. To train and apply our RF we

use parameters stated in Table 4.7. Note that the post-processing setting is determined

empirically.

Table 4.8 shows achieved image classification results over 3 runs for different classifiers

and dictionary sizes, where we employ an adaBoost forest with 512 trees and a L2-SVM.

Further we compare our RF-based representations to KM-Tri representations of Coates et
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STL-10 classification KM-Tri Random Forest

Dictionary sizes K = 400 K = 800 K = 400 K = 800

train-images, SVM 62.97 63.03 57.35 59.71
train&test-images, SVM 62.82 63.35 57.33 59.34
ul-set-images, SVM 62.80 63.03 57.65 59.45

training-images, adaBoost 69.27 69.88 67.17 66.80
train&test-images, adaBoost 69.28 69.26 67.11 67.52
ul-set-images, adaBoost 69.33 69.63 67.16 67.16

Table 4.8: Image classification results on STL images, using different datasets for representa-
tion learning. Two kinds of classifiers are trained on 5000 training-images and tested on 8000
test-images, showing the mean classification accuracy over 3 runs. For representation learning
(random patch sampling) we use: the 8000 training images (train-images); the training and testing
images (train&test-images); the set of 100000 unlabeled images (ul-set-images). We compare our
representations with KM-Tri of Coates et al . [20].

al . [20]. For both, we consider using different training-sets of images for representation

learning: Images of the train-set, images of the test-set and train-set, and the unlabeled

image-set, all provided by default.

As it turned out, the distribution of training images that are used to learn representa-

tions in terms of dictionary learning, has no significant impact on the final discriminative

power of representations. However, we observe a slight influence in the case of non-linear

classification (adaBoost) for K = 800 where using the train&test images for RF feature

learning yields a better result. This may be caused by the sampling of test-patches that are

used for dictionary learning as well as for training our RF. Some test-patches are already

seen and learned by the RF, which thus may affect the feature extraction on the test-set

in a positive way. If we compare performance over dictionary size, we especially examine

improvement for linear classification if we double the dictionary. Regarding non-linear

classification, higher dimensional representations do not improve performances, still we

achieve better results over linear classification.

Finally we conclude that our RF-based representations do not reach performances of

KM-Tri representations which we also observe in previous experiments on CIFAR images

(we refer to Section 4.3.3).

Adding RF representations to existing Experiments: We further investigate if

our RF representation are able to extract additional information for existing image clas-

sification pipelines. Therefore we rerun proposed experiments of the VLFeat team [77]

and append our image representations to their feature vectors. Therefore we train our

RF on STL image-patches according to parameters in Table 4.7, but use an extraction

stride of 8. We choose this stride because otherwise patch-based feature extraction of

“higher-resolution” images would require increased processing time.

The existing experiments apply image classification on the CALTECH-101 dataset
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[30] and the SCENE-67 dataset [69]. The CALTECH dataset contains 101 categories

of real-world rgb-pictures that may slightly vary in size. About 40 to 800 images per

category are provided, which denotes an unbalanced dataset. However, 30 random images

per category are used for classifier training. The SCENE dataset contains 67 categories of

indoor scenes and provides at least 100 images per class. This dataset has a total of 15620

images, again of varying size. Recall that we train our RF on STL rgb patches of size

8-by-8 where we neglect scale with respect to low-level features for high-resolution4 images.

The VLFeat team [77] uses SIFT [58] as basic features (for further details it is referred

to the work of the VLFeat team). Further, they apply the following feature encodings: (1)

Bag-of-visual-words (bovw) use 4096 vector quantized visual words, (2) Fisher vector en-

codings (fv) [68] use 256 visual words Gaussian-Mixture-Model, and (3) Vector of Locally

Aggregated Descriptors (vlad) [50] use 256 vector-quantized visual words. The augmen-

tation label (aug) denotes that additional spatial information is encoded by appending

coordinates to the representations. [77]

Optionally, we append our RF representations (rf) to their feature vectors. We apply

K-means for dictionary learning (with patch-preprocessing parameters εzca = 0.01, β =

1) and learn K = 400 filters. With 4-by-4 spatial pooling we therefore produce image

representations of length 6400. Table 4.9 shows achieved results with or without appending

our RF-based representations. We show the mean average precision (mAP and 11-point-

mAP) and the mean classification accuracy for several experiments.

Datasets Caltech-101 Scene-67

Measures mean Accuracy mAP mAP11 mean Accuracy mAP mAP11

bovw-aug 76.26 77.43 77.15 48.99 48.17 50.16
bovw-aug-rf 76.11 77.60 77.39 50.27 49.85 51.83

fv-aug 75.96 77.41 77.16 58.27 59.89 60.60
fv-aug-rf 75.37 77.49 77.20 58.65 60.90 61.72

vlad-aug 79.75 81.27 80.94 52.20 53.83 55.22
vlad-aug-rf 79.10 81.40 80.93 54.32 54.81 56.04

Table 4.9: Adding RF-based features to existing experiments of the VLFeat toolbox [77]. The
affix rf denotes appended RF-based image representations.

As seen, by adding our RF-based representations we gain some performance improve-

ment. The mean classification accuracies increase for the SCENE dataset, but slightly

decrease for the CALTECH dataset. However, the mAP results generally improve on

both test-sets, though classifying 100 categories seems to be more challenging. Recall that

we use a quite large stride of 8 during feature extraction, which also equals the patch-size.

Future experiments could use smaller strides (and thus encode overlapping patches) which

may result in further improvement.

4In this context, high resolution images are approximately of size 100× 100.
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4.4 Discussion

In previous experiments we evaluate our RF-based feature extraction approach on different

datasets and examined how representation quality is affected. At first we introduce a

proof-of-concept setup that allows us to compare different image representation on image

classification. Considering that we use similar image representation dimensionality for

all extraction methods, we show that our RF is capable to produce well discriminative

representations in the case of using MNIST images.

In general, the resulting representation quality is influenced by dictionary learning

parameters and RF parameters. Through extensive experiments on the MNIST dataset

we find that a high number of decision trees and a proper patch-size is critical. Further,

larger dictionaries are able to describe a larger variety of features, however, this may

exceed working memory.

In regard to dictionary learning we either apply K-means clustering (KM) or Sparse

Coding (SC). Our experiments prove that SC facilitates learning better dictionaries over

KM and thus provides more qualitative RF training-data but at higher computational cost.

This equals the findings of [21, 22]. However, depending on available hardware resources

SC limits the range of possible dictionary sizes. Hence, we choose to apply the simpler

KM for most of our experiments.

Table 4.10 gives an overview of different image classification approaches using the

MNIST dataset. As seen, compared to existing works that also employ complex deep

CNN structures, our approach shows competitive performances although being a simple

feed-forward single-layer system. We achieve a best overall performance on MNIST test

images with an classification error of 0.54%. Such low errors occur at three experiments:

(i) By using learned pipeline settings which we obtain by genetic learning, (ii) if we use a

RF with 100 trees and 50 mls (we refer to the experiment in Section 4.3.2) or (iii) if we

augment training data by affine image distortions and training only 32 trees. Note that

for case (ii) and (iii) we learn dictionaries of size 100. Considering how we achieve the

result in case (i), we conclude that it is possible to successfully learn hyper-parameters of

an entire pipeline by employing meta-learning approaches.

As seen, our method is competitive to multi-layer CNNs, although we only use single-

layer representations that are learned in an unsupervised fashion. Further, training data

augmentation is not explicitly necessary to achieve good classification results. Also in

terms of computational efficiency, our framework reveals quite low runtimes, although we

do not focus on extremely efficient implementations (we refer to Section 3.2 for further

details). To get an error of 0.54 % on MNIST-10 our framework requires about 10 minutes,

which includes time consumption of our representation learning procedure, and of training

and testing a global image classifier. The underlying system uses a Intel R© Xeon R© processor

with 24 cores at 3.07 GHz, where during feature extraction 8 cores were busy.

Regarding image classification on more challenging datasets like CIFAR or STL, our

approach does not reach the performances of Coates et al . [20], however, we still achieve
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Image classification method on MNIST-10
Preprocessing
or Distortions

Test
Error (%)

RF(20 trees, K = 36, KM))+SVM - 1.42

RF(20 trees, K = 36, KM)+adaBoost - 0.68

RF(32 stumps, K = 100, KM))+adaBoost - 1.01

RF(100 stumps, K = 100, SC)+adaBoost - 0.75

RF(100 trees, K = 100, KM)+adaBoost - 0.57

RF(20 trees, K = 512, KM)+adaBoost - 0.57

RF(100 trees, K = 100, SC)+adaBoost - 0.55

RF(32 trees, K = 100, KM)+adaBoost affine distortions 0.54

RF(GAa: 57 trees, K = 264, KM)+adaBoost - 0.54

Trainable Feature Extractor+SVM [55] - 0.83

Trainable Feature Extractor+SVM [55] elastic distortions 0.56

Trainable Feature Extractor+SVM [55] affine distortions 0.54

Virtual SVM,deg-9 polynomial, 2pixel-jittered [26] deskewing 0.56

CNN (LeNet-5) [56] - 0.95

CNN (LeNet-5) [56] distortions 0.8

Large CNN, unsup. pretraining [49] - 0.53

Committee of 35 CNNs [19]
width-normalization,

elastic distortions
0.23

Table 4.10: Comparison of image classification methods on MNIST data. Performance is stated
as mean classification error on the test-set. Preprocessing and distortions are related to training
data. Hence, some approaches augment training data by additional image distortions to increase
the training-set.

aGenetic Algorithm result; see Algorithm 2

satisfying results despite we extract features from raw image data which is an additional

advantage. Importantly, we show that our proposed method is, in contrast to the method

of Coates et al ., less sensitive to preprocessing parameters for dictionary learning. Further,

we also examine time efficiency with respect to feature extraction. Experiments reveal,

that the time consumption of the RF inference is almost independent on the learned rep-

resentation dimensionality. However, to obtain well discriminative image representations,

post-processing of encoded data is critical. Thus, we find that the time consumption for

post-processing is still an issue in our approach. To recap, compared to the classification

results of Coates et al ., our method yields a slight performance decrease, which is accept-

able as our approach is able to produce image representations from raw input data in a

more efficient way.

Another experiment reveals that if we add our representations to existing image clas-

sification experiments, we observe a slight improvement. We successfully show this for

experiments of the VLFeat Team [77]. Thus we conclude that our RF is capable to ex-

tract additional feature information although of being based on unsupervised learning.
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5
Hybrid Feature Learning

As discussed in our previous approach in Section 4, we successfully show that Random

Forests (RFs) are capable for patch-based representation learning. Since this enables

efficient pixel-wise feature extraction, we propose to employ a RF (again) as a first-layer

feature extractor within a Convolutional Neural Network (CNN). We denote this as

a multi-layered hybrid architecture and aim at applying an end-to-end optimization

on image classification which includes simultaneous training of a RF and of CNN

layer-weights in a supervised fashion.

Nowadays, multi-layered convolutional architectures show state-of-the-art

performances on various computer vision tasks. However, apart from the challenge

of manually designing such networks, this also comes with high computational effort

during training and testing the system. Especially the first convolutional layers often

perform expensive convolutions due to relatively high input image resolutions or large

filter kernels. To reduce computational cost we therefore propose to replace the first

convolutional layer of a CNN by a RF, which enables a non-linear and fast first-level

feature extraction. Note that feature extraction with RFs works the same way as for our

previously introduced approach, where explanations are stated in Section 3. However,

optimizing such a hybrid pipeline requires different considerations towards training the

RF model.

During end-to-end optimization, we back-propagate the error of the network

output-layer until we reach the RF-output (feature channels). In fact, “updating”

a RF in terms of updating weights or parameters as it is usually done for

traditional CNN structures is not possible. Thus, the goal is to compensate the

RF-output error-gradient and to update the ensemble model instead. Therefore we

iteratively train at least one new tree on appearing error-residuals, which is also

known as Gradient Boosting [34, 35]. With increasing number of iterations, the RF

grows and strengthens its capability to extract first-level features for the following network.
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Section 5.1 introduces preliminaries and explain general optimization of CNN networks.

The used network architectures are stated in Section 5.2. Experiments are shown in Section

5.3 followed by a discussion in Section 5.4.

5.1 Preliminaries

At first we briefly introduce some basics and explain common types of layers that are

used in CNN structures. Further we explain related terms with respect to end-to-end

optimization.

5.1.1 Layers of Convolutional Networks

The purpose of each network layer is to map input data to a new representation at its

output. By subsequently stacking several layers for image classification, we obtain abstract

representations that ideally allow to infer correct categorization from given input images.

However, due to the variety of possible network structures, it is not trivial to find optimal

architectures. Typical CNN layers are: Convolutional Layer (conv), Pooling Layer (pool),

Rectified Linear Unit (ReLU) and Fully-Connected Layer (fc). Each of them performs

different input-output mappings and is able to handle 3D data volumes which we also

denote as feature channels.

Input Layer: A raw input image of size H ×W × q is denoted as input layer and is

fed to the first layer of the network. In typical networks a convolutional layer extracts

first-level features and produces a higher number of feature channels than given by an

input image. Thus, we have to mind the resulting size of the first layer output if input

images have high resolution.

Convolutional Layer: This kind of layer computes features by convolving a local region

(receptive field) of an input volume with the weights of a neuron. Resulting output-

values of one neuron correspond to one output value. However, if each neuron would use

individual weights, computational resources may not suffice. We therefore assume weight

sharing (or also called parameter sharing). This way, neurons that correspond to the same

output feature map share the same weights, which is equal to using a filter kernel for

convolutional feature extraction.

With a given convolution stride (step-size between spatial regions) and without certain

border-handling one gets a reduced size for the output volume. The actual number of

weights defined by a convolutional layer depends on the filter-size w × w, the number of

input-channels Q and the number of output-channels K. Then, a resulting weight matrix

of such a layer spans w × w ×Q×K +K dimensions, including a shared bias.
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Pooling Layer: As seen, the size of feature volumes in-between convolutional layers

may increase extensively. To circumvent this problem it is usual to apply spatial pooling

which is discussed in Section 2.3. The dimensionality reduction of feature channels enables

more efficient processing on following layers and additionally induces invariance to image

transformations. Hence, a whole network becomes more robust while memory consump-

tion is reduced. Again, the resulting downsampled output volume dimensions depend on

the pooling-window size and its stride, but note that the number of feature channels is

preserved.

Rectified Linear Unit: The ReLU simply thresholds the input data and only passes

values above zero. This rectifying linear activation is mathematically formulated as f(x) =

max(0, x) where x is a single input value. Hence, if the network is initialized randomly at

zero-mean, the next layer sees sparse features as only half of the neurons may be activated.

It has shown that this allows more efficient training for multi-layered structures [38].

Fully-Connected Layer: Classical neural networks use fully-connected layers where

each input neuron is connected to each output neuron. Of course, this is only practicable

for simple problems as it would easily exceed working memory concerning image data.

CNNs for image processing usually use such fully connected neurons in the last few layers.

Softmax Activation: Concerning image classification, we append a softmax activation

layer at the end of our CNN. That is, for K possible category outputs, we produce a

distribution p(k|x) = y of length K, following Equation 5.1. An input value xk ∈ x

corresponds to the k-th output value of the previous layer. The final class prediction is

defined by ĉ = argmaxk p(k|x).

yk =
exp(xk)
K∑
j=1

exp(xj)

(5.1)

Normalization Layer: Various normalization methods on intermediate feature chan-

nels have been discussed [49], some trying to imitate inhibition of biological neurons.

However, in practice it turned out that they do not really contribute additional improve-

ment to modern network architectures [54]. On the other hand, if we consider using a

RF in a hybrid network, normalization on the output ensures a fixed value range for the

remaining CNN layers. Hence, we apply Local Response Normalization (LRN) [49] by

following

yijk =
xijk√

1 +
∑K

q=1 x
2
ijq

, (5.2)

where xij corresponds to the RF-output vector at location (i, j).
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5.1.2 End-to-end Optimization

To train our proposed networks we consider applying an end-to-end optimization which

uses error back-propagation and gradient descent. Therefore we aim at iteratively

learning the entire pipeline, which in case of our hybrid network also includes a RF.

At first, we briefly look at how to optimize weights of a classical multi-layer CNN in general.

Given L layers with individual weights wl, training data x is passed through the

network up to the final output-layer (in this example a Softmax-layer), producing an

output yL. We introduce a general layer-function fl(xl; wl) = yl, where its output may

be the input of a following layer xl+1 = yl. A mathematical feed-forward formulation of

L subsequent layers is shown in the following equation:

fnet(x) = fL(fL−1(. . . f2(f1(x; w1); w2) . . . ; wL−1); wL) = yL. (5.3)

During optimization the network output yL enables to compute a loss and to back-

propagate its gradient through all of the layers. The network-weights are then updated

by a gradient descent algorithm. Note that computing the network loss requires labeled

training data. Thus we denote this end-to-end optimization as supervised learning process.

Loss Function

Each optimization iteration during training requires to determine the actual network error.

Therefore we apply a defined loss-function L(y, t), which uses a target vector t (ground-

truth information). That is, we either consider using the log-loss,

Llog

(
yL, t

)
= −

K∑
k=1

tk log(yL,k), (5.4)

or using the squared-error-loss,

Lse

(
yL, t

)
=

1

2

K∑
k=1

(tk − yL,k)2, (5.5)

where yL is the final softmax-output of the network. The target vector is defined to be

one-hot encoded by holding a 1 at the index k = c which equals the ground-truth class c of

a training image. Note, t is of equal size as yL. If not otherwise stated, we define the L-th

network layer as the final softmax-layer and apply the loss function on its softmax-output

yL.

Given a batch of M training samples we then compute a batch-loss by,

z =
1

M

M∑
m=1

L
(
y

(m)
L , t(m)

)
, z ∈ R. (5.6)
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Gradient Descent

Given a network loss, the goal is to minimize a global error-function E(y, t; Θ) with

respect to network weights which we denote as Θ. The gradient descent algorithm enables

an iterative update of Θ by following the negative gradient of the error-function, using a

learning-rate α. The general gradient descent update formulation is defined by:

Θ(i+1) = Θ(i) − α∇ΘE(y, t; Θ)
∣∣∣
Θ=Θ(i)

(5.7)

This way we minimize the error-function as well as the network loss, and converge to the

optimal setting Θ∗ which is defined by,

Θ∗ = argmin
Θ

E(y, t; Θ). (5.8)

Assuming a network has L layers and a loss-function L(yL, t), we introduce an error-

function,

E(y(j), t(j); wl)
∣∣∣
j∈{1,...,M}

=
1

M

M∑
m=1

L
(
y(m), t(m)

)
+
λ

2
‖wl‖2 , (5.9)

which additionally penalizes high weight values in terms of regularization. This causes

so-called weight decay and ensures a convex error-function, where λ is the decay-rate or

shrink-rate.

We apply stochastic gradient descent with momentum where the stochastic

behavior comes from using mini-batches, as this requires less working memory during

training. Therefore we use mini-batches of M samples (random subset of training-set)

which yields fluctuating loss. To further smooth the gradient update we introduce a

momentum term u with momentum µ. The following update equations show how to

iteratively compute momentum terms as well as the gradient descent update with respect

to the weights of layer l, where α is the learning-rate:

momentum term: u
(i+1)
l = µ u

(i)
l +∇wl

E(y, t; Θ) (5.10)

u
(i+1)
l = µ u

(i)
l +

1

M

M∑
m=1

∂L
(
y(m), t(m)

)
∂wl

+ λ w
(i)
l (5.11)

gradient descent: w
(i+1)
l = w

(i)
l − α u

(i+1)
l (5.12)

At next we discuss how to obtain a “gradient” (or more correct partial derivative) of our

loss-function ∂L/∂wl.
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Error Back-Propagation

To update the entire network we have to back-propagate the “gradient” of the network

output-error with respect to each individual network weight within all layers. In regard to

the nested formulation of a network-function fnet in Equation 5.3 and a loss z according

to Equation 5.6, we apply the chain rule to formally obtain the derivatives by,

∂L
∂wl

=
∂z

∂fnet

∂fnet
∂wl

=
∂L(fL)

∂yL

∂fL
∂xL

∂fL−1

∂xL−1
· · · ∂fl+1

∂xl+1

∂fl
∂wl

(5.13)

=
∂z

∂yL

∂yL
∂xL

∂yL−1

∂xL−1
· · · ∂yl+1

∂xl+1

∂yl
∂wl

(5.14)

=
∂z

∂yL

∂yL
∂xL

∂xL
∂xL−1

· · · ∂xl+2

∂xl+1

∂xl+1

∂wl
. (5.15)

Note that although e.g. x may represent a data volume, we slightly abuse notations and

assume each representation as vector-form.

However, instead of computing all network derivatives for each layer once again, from

the loss back to a layer fl, it is more efficient to subsequently back-propagate the output-

derivative of layer l + 1. Therefore we introduce,

gl = L(fL(fL−1(. . . fl+1(fl(·)) . . . )), t) (5.16)

which denotes the function of the remaining network from layer l to the last layer L, includ-

ing the loss-function for simpler notation. Hence, regarding layer l, we back-propagate the

output-derivative of gl+1 and compute the actual layer derivatives with respect to input

xl and weights wl:

∂gl
∂wl

=
∂gl+1

∂xl+1

∂fl
∂wl

(5.17)

∂gl
∂xl

=
∂gl+1

∂xl+1

∂fl
∂xl

(5.18)

As a result, we obtain derivatives of the actual layer l with respect to the following layers.

Now we use ∂gl/∂wl to update the layers weights by applying gradient descent, and

∂gl/∂xl as output-derivative for the next layer l − 1. This iterative back-propagation

of derivatives actually circumvents an expensive computation of very high-dimensional

Jacobian matrices.
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5.2 A Hybrid Network

Before we introduce our hybrid network architecture and a baseline CNN, we address the

RF training procedure with respect to the supervised end-to-end optimization.

5.2.1 Functional Gradient Descent and Gradient Boosting

Regarding our hybrid network, error back-propagation stops at the output of the first layer

which is a non-derivable function fRF , a Random Forest. Thus, we have to consider using

an alternative optimization for this “layer”, in particular the functional gradient descent.

As mentioned, our non-linear RF in the first layer (f1 = fRF = yRF ) does not have

“weights” wRF and thus is not derivable as no derivative ∂g1/∂wRF exists. To bypass

this optimization problem we consider using the functional gradient and apply Gradient

Boosting [34].

Thus, to update the first layer RF we basically perform gradient descent (see Equation

5.7), however, instead of computing a derivative of fRF with respect to concrete parame-

ters, we just use the derivative of the remaining network with respect to our function fRF .

That is, we apply functional gradient descent and just use the derivative,

∇fRF
L(y, t) =

∂g2

∂fRF
(5.19)

=
∂g2

∂yRF
(5.20)

=
∂g2

∂x2

∣∣∣
fRF =f1=x2

(5.21)

where g2 is a nested function of all subsequent layers (see Equation 5.16), starting at

the second layer. As seen, this “functional gradient” is simply obtained by computing

the derivative ∂g2/∂x2 of the previous layer with respect to its input. This equals the

derivative on g2 with respect to our function fRF , which also describes RF-output residuals.

Further, we update our RF by adding a new tree h to the ensemble model fRF , which

is trained on these residuals. Ideally, the new tree compensates the previous ensemble

error and improves the RF feature extraction performance. By using a learning-rate γ we

minimize the loss, yielding the update equations,

f
(i+1)
RF (x)← f

(i)
RF (x) + argmin

h
g2

(
f

(i)
RF (x) + h(x)

)
(5.22)

f
(i+1)
RF ← f

(i)
RF − γi

∂g2

∂fRF
(5.23)
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where fRF is defined by an ensemble of weighted (δt) decision trees:

fRF (x) =
1

T

T∑
t=1

δtht(x) = yRF . (5.24)

As seen, we apply functional gradient descent by updating the RF-model using stagewise

additive modeling [35], stated in Equation 5.22. In regard to decision tree ensembles,

this is also known as Gradient Boosting [34]. Therefore, we iteratively train a new tree

h on the previous ensemble prediction error, which also equals the back-propagated

derivative ∂g2/∂fRF . Note that this consecutive error-fitting minimizes the internal

squared-error-loss with respect to RF Gradient Boosting. During end-to-end optimization

of the network, this allows to adapt the mapping behavior of the RF simultaneously with

the remaining CNN layer weights. Though, this undesirably increases ensemble size with

learning progress.

During training a new tree we follow the procedure introduced in Section 3.2. We per-

form split-node sub-sampling [71] which yields 100 samples, and draw d/3 split-functions

with nτ = 3 thresholds, where d denotes the input patch dimensionality. This configu-

ration is fixed for all following experiments and is found empirically, showing a tradeoff

between accuracy and efficiency with respect to decision trees with a maximum depth of

8.

5.2.2 Hybrid Network vs. Baseline Network

We first introduce a baseline CNN that is designed for classifying gray-valued MNIST-10

images [56]. Thus, our input layer is defined by 28-by-28 pixels. Further we propose to

replace the first linear conv-layer by a non-linear RF model, which results in a RF-CNN

architecture that we denote as hybrid network. The goal of following experiments is to

investigate and compare image classification performance of both systems and to examine

the influence of RF features.

Baseline CNN: Figure 5.1 visualizes a proposed baseline network which is assembled

by different types of layers. The first layer convolves the image with 128 filters of size 6-by-

6 and produces a 128 feature channels of size 24×24×128 (no border-replacement). Then

we apply normalization following Equation 5.2 which ensures fair comparison between this

network and the hybrid version of it. Following this, we perform simple thresholding using

a ReLU and apply spatial max-pooling using a cell-size of 4-by-4 and a stride of 3, which

reduces the spatial dimensions to 7 × 7 × 128. Further on we perform 64 convolutions

per feature map which outputs a feature vector of length 64. After a ReLU layer, two

subsequent fc-layers encode the previous feature-vector to a vector of length 32 and 10,

respectively. Finally, a softmax-function activates the “raw” network output and produces
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input image [28x28x1]

[24x24x128] [24x24x128]

[7x7x128]

CONV@6x6x1x128 Normalization

& ReLU

POOL@4x4

stride3

[64] [64]

[10] [10]

CONV@7x7x128x64

ReLU

FC@64x32

FC@32x10

Softmax

[32]

Figure 5.1: Illustration of a baseline CNN for image classification.

input image [28x28x1]

[24x24x128] [24x24x128]

[7x7x128]

[64] [64]

[10] [10]

RF@6x6x1->128 Normalization

& ReLU

POOL@4x4

stride3

CONV@7x7x128x64

ReLU

FC@64x32

FC@32x10

Softmax

[32]

Figure 5.2: Illustration of a hybrid network for image classification. A substituted RF directly
maps raw image-patches to vector representations and thus extracts first-level features.

a distribution over C = 10 categories, where we refer to Equation 5.1. Note that better

network designs exist [19], however, the main focus of this work is not designing optimal

network architectures.

Hybrid Network: Since we aim at improving our baseline CNN, we propose to replace

the first convolutional layer by a RF. To preserve dimensionality on the first-layer output,

RF-parameters have to be set accordingly. This includes using a patch-size of 6-by-6 and

regarding 128 output feature channels, that is, trained leafnode-histograms are of length

128. As viewed in Figure 5.2, first-level features are computed by a RF that directly

maps raw image-patches to feature-vectors. Because we apply a RF in a pixel-wise and

patch-based manner (using a stride of 1), we obtain an output volume of size 24×24×128.
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During end-to-end optimization we iteratively add trees to the ensemble which affects the

quality of those output feature channels for future iterations. Also note that with learning

progress, the output of a RF may vary in range that may not fit to the weights of the

following network layers. This requires additional normalization of the RF-output before

we apply the ReLU, which is the reason why we also use normalization in our baseline CNN.

The detailed network setups are shown in Table 5.1, which correspond to the network

illustrations in Figures 5.1 and 5.2, respectively.

Baseline CNN Hybrid Network

f1 CONV@6x6x1x128 RF@6x6x1 7→ 128

f2 Normalization (Equation 5.2)

f3 ReLU

f4 POOL@4x4 stride3

f5 CONV@7x7x128x64

f6 ReLU

f7 FC@64x32

f8 FC@32x10

f9 Softmax

Table 5.1: Layer setups of the baseline network and the hybrid network.

5.3 Experiments and Results

For evaluation we again perform image classification on MNIST images. We examine

the performance of the baseline CNN and compare it to our hybrid network that uses

RF-based feature extraction in the first-layer.

We implement our framework in Matlab using the MatConvNet toolbox of Vedaldi

and Lenc [78], which was published by the VLfeat team [77]. This toolbox provides

Nvidia R© CUDA R© optimized implementation, including common types of CNN layers,

and allows to setup and train CNN architectures in Matlab. As stated in Section

3.2, our Random Forest is implemented in C++ by providing MEX-functionality for

Matlab. Thus, we can access the extern MEX-executables as Matlab-functions.

However, integrating our RF implementation in a Matlab MatConvNet model exposes

the following drawback: As our RF implementation efficiently handles data matrices

where each image-patch is processed as data-vector, we have to transform our “feature

volumes” (that describe a certain number of feature channels) of a CNN-layer to matrix

form and back. Unfortunately, this inconvenient data transformations in Matlab

involves significant processing overhead that prevents fair runtime comparisons between

our baseline CNN and the hybrid version. Hence, we regard our experiments as a proof
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of concept where we primarily investigate the hybrid network optimization compared to

the baseline network.

Due to limited memory of our GPU1 we choose using the memory efficient MNIST

image dataset, which provides a test-set of size 10000 and a training-set of size 60000.

Before optimization, we additionally introduce a validation-set V of size 10000, which we

randomly sample from the given default training-set. The remaining 50000 training images

are defined as the actual training-set Itrain, for both pipelines. For fair comparison we train

our baseline CNN and the hybrid network using the same validation-sets and training-sets.

Initialization: Regarding our baseline network, we initialize weights according to a

normal distribution. Concerning the hybrid network, we also have to initialize the RF

to forward data and to enable network excitation. Therefore we can either pre-train the

RF, or initialize the RF randomly. To pre-train the RF we follow our first approach in

this thesis and exploit the patch-based dictionary learning concept in Section 4. However,

in case of random initialization we have to consider the RF output value range which

is not trivial. To enable random excitation, we “train” the RF on image-patches using

random label-vectors. This way the RF might learn occasional or spurious distributions

that affect leafnode-statistics. Further, if leafnodes only gather a few random vectors,

random outliers get more relevance which causes undesired bias. To overcome this, we

assume leafnodes to hold at least 10000 samples which is quite unconventional. Since the

average of an increasing number of random values converges to zero, we make a tradeoff

between suppressing occasional distributions or unwanted bias, and enabling useful random

excitation of the subsequent network.

For each iteration during training we sample mini-batches of M = 500 images. In

case of updating the RF we ensure that a new decision tree “sees” enough training

patches. We choose to train only one tree every 10-th iteration which we denote as RF

update-period. Otherwise we could also train two or more trees per update, however,

this would result in a larger final RF which is undesirable in terms of efficiency.

Note that each iteration sees a different training-data distribution due to mini-batches,

which causes stochastic training.

5.3.1 Optimization with Squared-Error-Loss

Our first experiment uses the squared-error-loss for optimization, which is stated in

Equation 5.5. We train the two architectures, using the parameter settings in Table 5.2.

Note, the end-to-end optimization of the CNN-layers follows the update Equations 5.11

and 5.12 where we use weight decay and momentum.

As mentioned above, each training iteration uses a batch of 500 training images.

1We employ a NvidiaR© GeForce GTX 480 with 1536 MB GDDR5 and Compute Capability 2.0
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parameters CNN

learning-rate α = 0.1

momentum µ = 0.9

shrink-rate λ = 0.002

weight initialization wl ∼ N (0, σ = 0.1)

training-set size 50000

validation-set size 10000

test-data size 10000

parameters RF

initial number of trees T0 = 1

maximum tree depth 8

initial number of training images 5 · 104

initial random label-vectors lm ∼ N (0, σ = 0.1)

residual learning-rate γ = 500

update period every 10-th iteration

Table 5.2: Parameters of baseline CNN and hybrid network for MNIST classification using
squared-error-loss.

Because our training-set is of size 50000, one training epoch performs 100 iterations.

We optimize over 20 epochs and update the first layer RF at every 10-th iteration by

adding one new tree, which finally yields an ensemble of 201 decision trees2. We choose

this setting because of the otherwise undesirable growth of the RF during training

progress. Figure 5.3 shows an example of training error progress for one run over 20

epochs, including both pipeline architectures. We plot the mean classification error

of the validation-batch (100 samples) and the training-batch (500 samples), averaged

over the previous epoch. Every 10 epochs we evaluate the test-set error on the 10000

unseen test images, which is marked for the baseline and for the hybrid network,

by ’+’ or ’x’ respectively. Additionally, we illustrate the absolute sum of occurring

residuals at each RF-update and rescale them, such that the highest occurring sum de-

fines the scale (100%). The training loss of this run is plotted over 20 epochs in Figure 5.4.

If we compare the training progress of our baseline CNN to the hybrid version, we see

that we improve overall network performance by employing a RF as a first-level feature

extractor. In this case we also produce slightly higher overfitting which can be seen by

the increased gap between our validation and training error. An explanation would be the

growing complexity of our RF-model. Regarding the first two epochs, we see a delayed

optimization of the hybrid network compared to the baseline. Since we update our RF

every 10-th iteration, RF-output residuals are growing in the early stage which is caused

by the faster learning speed of the remaining network. Nonetheless, the RF prediction

2Note that we initialize one tree before starting optimization.
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CNN validation mean−error (100)

CNN training mean−error (500)

HYBRID validation mean−error (100)

HYBRID training mean−error (500)

CNN Test error

HYBRID test error

absolute sum of residuals (RF−layer)

Figure 5.3: Example training error progress of both pipeline architectures, using squared-error-
loss. The RF is trained with 10000 mls and depth 8. We plot the batch classification error averaged
over 1 epoch (100 iterations). Blue curves and black ’+’ show learning progress of the baseline
network. Red or orange curves and magenta markers show learning progress of the corresponding
hybrid network. The magenta lines show the absolute sum of emerging residuals on the RF-output,
scaled to the maximum occurring sum as 100%. (best viewed in color)
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Figure 5.4: Example training loss progress of both pipeline architectures, using squared-error-loss
(Equation 5.5). This plot corresponds to results in Figure 5.3
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improves over time and residuals decrease. The loss of both networks settles at a certain

level. The hybrid network, however, reaches a lower loss-level and thus yields improved

classification performance.

In Table 5.3 we compare final results for different maximum tree depths. It states

average errors over 3 runs regarding the mean batch-performances of the last epoch. Also

we evaluate a pre-trained RF (starting with one tree) that exploits patch-based dictionary

learning as proposed in our first approach in Section 4. As seen, we decrease the training

error for all cases, however, network overfitting increases with tree depth. The lowest

average test-error of 1.49% is obtained by using a pre-trained RF with depth 8, where we

improve the baseline test-error by approximately 17%.

Baseline Hybrid Network
CNN RF, depth 8 RF, depth 8 RF, depth 6 RF, depth 3

initialization pre-trained random random random

train-error 1.85% 1.21% 1.24% 1.34% 1.77%

val-error 1.92% 1.7% 1.7% 1.67% 1.9%

test-error 1.8% 1.49% 1.51% 1.57% 1.98%

loss 0.01968 0.01442 0.01476 0.01562 0.01931

Table 5.3: Average final mean-performances after 20 epochs, over 3 runs by using squared-error
loss (‘val’ denotes validation). RFs are trained with depths 8, 6 and 3.

Overfitting: The hybrid networks above use RFs with 10000 minimum leafnode samples

(mls), still we observe slight overfitting. Thus, the next experiment shows how our hybrid

network behaves if we allow a RF with 100 mls at training depth 8. Figures 5.5 and

5.6 plot an example of obtained learning curves over 20 epochs. In this case we observe

increased overfitting by our hybrid network compared to previous runs. This is reasonable

as we induce higher bias which counteracts generalization during training. As a result

we get an average training batch error of 0.72% and an average validation batch error

of 1.92%. However, classification performance on the test-set does not decrease over the

baseline CNN as we still achieve an average test-error of 1.77% for our hybrid network

where the baseline network yields 1.8%.

Let us further examine and compare visualizations of occurring first-layer features

after 20 epochs. In Figure 5.7 we illustrate examples of 128 feature channels for random

input images, that are produced by the first conv-layer f1 of the baseline network. The

corresponding learned layer weights are shown in Figure 5.8 where we observe typical

Edge-like or Gabor-like filters as first-level features.

In contrast, Figure 5.10 illustrates examples of RF-based feature channels from our

hybrid network. In this case filters or weights do not exist and thus we only are able

to investigate the RF output. As seen, although we randomly initialize the RF we learn

specific features. At first sight it seems that we produce similar output as it is the case for
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Figure 5.5: Example training error progress with overfitting, using squared-error-loss. The RF
is trained with 100 mls and depth 8. We plot the batch classification error averaged over 1 epoch
(100 iterations). Blue curves and black ’+’ show learning progress of the baseline network. Red or
orange curves and magenta markers show learning progress of the corresponding hybrid network.
The magenta lines show the absolute sum of emerging residuals on the RF-output, scaled to the
maximum occurring sum as 100%. (best viewed in color)
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Figure 5.6: Example training loss progress with overfitting, using squared-error-loss (Equation
5.5). This plot corresponds to results in Figure 5.5
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Layer 1 − Output

−1.2696 | 0.914 −> −0.78559 | 0.67465

Layer 3 − ReLU Output

0 | 0.67465

Layer 1 − Output

−1.2696 | 0.914 −> −0.78559 | 0.67465

Layer 3 − ReLU Output

0 | 0.67465

Figure 5.7: Examples of first-layer features and ReLU output of the baseline CNN for digit ‘0’ and
‘4’. Bottom values denote minimum and maximum activation, the arrow indicates normalization.
Left: Corresponding input images.

convolutional feature extraction with edge-like filters. A closer look reveals that some RF-

based feature channels are not only activated by edges, oriented gradients or homogeneous

regions, but also by combinations of such. These interesting characteristics are reasonable

due to the non-linear nature of a RF-based feature extractor. However, in comparison with

convolutional responses we observe that the RF outputs more noisy features. Explanations

are the limited number of trees that yield slight quantization effects and thus incomplete

residual compensation. Note that we obtain 201 decision trees after 20 epochs as we

update our RF model at every 10-th iteration.

Layer 5 weights: Learned weights (or filters) of the convolutional layer f5 are shown in

Figure 5.9 for both architectures. If we compare both networks, we recognize that the f5-

layer weights of our hybrid CNN slightly incorporate more noise, especially regarding e.g.

input channel 3. This relies on the previous RF output that also shows some noise. Also

some totally random filters occur for both networks which is explainable by the following

ReLU layer, preventing to properly learn some of the filters.
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L1 weights, input−ch 1

−0.12161 | 0.13177

Figure 5.8: Examples of first-layer weights of the baseline CNN, learned after 20 epochs. Bottom
numbers show the value range.

L5 weights, input−ch 1 L5 weights, input−ch 2 L5 weights, input−ch 3

−0.054745 | 0.050096

L5 weights, input−ch 4 L5 weights, input−ch 5

L5 weights, input−ch 1 L5 weights, input−ch 2 L5 weights, input−ch 3

−0.043997 | 0.060875

L5 weights, input−ch 4 L5 weights, input−ch 5

Figure 5.9: Examples of fifth-layer weights with respect to five input channels. Values at the
bottom denote minimum and maximum activation of all weights. Top: Baseline network; Bottom:
Hybrid network.

5.3.2 Optimization with Log-Loss

Our second experiment applies the same networks as above, but uses the Log-loss (Equa-

tion 5.4) to compute and back-propagate the gradient. However, this loss yields derivatives

of different range which requires to set other learning rates and parameters, stated in Table

5.4. Comparing these parameters to the previous experiment where we use the squared-

error-loss, we see major differences especially regarding learning-rates. This comes from

the logarithmic nature of the log-loss which produces increased derivative magnitudes.

We again investigate both network architectures, the baseline network and the hybrid
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Layer 1 - RF Output

−1.6059 | 1.6585 −> −0.84887 | 0.85637

Layer 3 − ReLU Output

0 | 0.85637

Layer 1 − RF Output

−1.5766 | 1.6163 −> −0.84446 | 0.8504

Layer 3 − ReLU Output

0 | 0.8504

Layer 1 − RF Output

−1.5766 | 1.6163 −> −0.84446 | 0.8504

Layer 3 − ReLU Output

0 | 0.8504

Figure 5.10: Examples of first-layer features and ReLU output of the hybrid network for digit
‘0’,‘4’ and ‘5’. Bottom values denote minimum and maximum activation, the arrow indicates
normalization. Left: Corresponding input image.

network, which both are illustrated in Figures 5.1 and 5.2 respectively. An example

of a learning progress over 20 epochs is shown in Figures 5.11 and 5.12, showing the

learning curve and loss respectively. We use the same setup as in our previous experiment:

Training-batches of 500 samples and validation-batches of 100 samples, where batch-errors

are averaged over 100 iterations or 1 epoch. Final results after 20 epochs are compared in
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parameters CNN

learning-rate α = 10−4

momentum µ = 0.95

shrink-rate λ = 0.3

weight initialization wl ∼ N (0, σ = 0.1)

training-data size 50000

validation-data size 10000

test-data size 10000

parameters RF

initial number of trees T0 = 1

maximum tree depth 8

initial number of training samples 5 · 104

initial random label-vectors vm ∼ N (0, σ = 0.1)

residual learning-rate γ = 0.1

update period every 10-th iteration

Table 5.4: Parameters of baseline CNN and hybrid network for MNIST classification using log-
loss.

Baseline CNN Hybrid Network
RF, depth 8

train-error 1.98% 1.98%

validation-error 2.08% 2.26%

test-error 1.88% 2.14%

loss 0.08421 0.09064

Table 5.5: Average final mean-performances after 20 epochs, over 3 runs by using log-loss. RFs
are initialized randomly.

Table 5.5 where we average over 3 runs.

As seen, our hybrid network does not show improved performance over the baseline

network after optimizing for 20 epochs, although using the same architectures as stated

in the previous experiment. Besides the possibility of improperly chosen parameters or

learning-rates, we explain this by the underlying log-loss function. The logarithmic be-

havior of the log-loss causes a fast decrease of error gradients with training progress. This

can also be seen in Figure 5.11 where we observe that magnitudes of the RF output resid-

uals decrease really fast. Hence we conclude that the RF is not able to learn sufficient

patch-based mapping, since very small residuals prevent learning effective trees and thus

ongoing adaption. To sum up, the logarithmic behavior of this loss affects optimization of

our additive RF model.



84 Chapter 5. Hybrid Feature Learning

0 2 4 6 8 10 12 14 16 18 20
0

1

2

100| 3

50| 4

0| 5

6

7

8

9

10

Epochs

R
F

−
la

y
e
r 

S
u
m

 o
f 
R

e
s
id

u
a
ls

 (
%

)
C

la
s
s
if
ic

a
ti
o
n
 E

rr
o
r 

(%
)

Training Progress of Networks − average over 1 Epoch

 

 

CNN validation mean−error (100)

CNN training mean−error (500)

HYBRID validation mean−error (100)

HYBRID training mean−error (500)

CNN Test error

HYBRID test error

absolute sum of residuals (RF−layer)

Figure 5.11: Example training error progress of both pipeline architectures, using log-loss. The
RF is trained with 10000 mls and depth 8. We plot the batch classification error averaged over 1
epoch (100 iterations). Blue curves and black ’+’ show learning progress of the baseline network.
Red or orange curves and magenta markers show learning progress of the corresponding hybrid
network. The magenta lines show the absolute sum of emerging residuals on the RF-output, scaled
to the maximum occurring sum as 100%. (best viewed in color)
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Figure 5.12: Example training loss progress of both pipeline architectures, using log-loss (Equa-
tion 5.4). This plot corresponds to results in Figure 5.11
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5.4 Discussion

The idea of replacing the first convolutional layer of an existing CNN by a

Random Forest is unconventional. Hence, the goal is to examine if overall image

classification can be improved by this modification. Common convolutional layers

of classical CNNs perform linear mapping of inputs, however, a RF is able to

extract features in a non-linear way. Thus, previous experiments show that a RF

as first-layer feature extractor enables improved performance under certain circumstances.

At first we have to admit that our baseline CNN does not perform very well on MNIST

classification. For instance, compared to the simple LeNet-5 CNN-architecture of LeCun et

al . [56] which shows a test-error of 0.95%, our baseline CNN only achieves approximately

1.8% although of having way more network weights. We explain this performance gap

by two major differences: On the one hand LeCun et al . use enlarged input images of

32-by-32 pixels, whereas our approach uses the given 28-by-28 sized images. Because

digits are provided within a centered region of 20-by-20 pixels by default, their border

enlargement allows to capture potential distinctive features at the digit boundary, since

features can appear in the whole area within a patch (or receptive field). However, we

use the given default input image size for all experiments in this thesis, as this allows

fair comparison between both of our feature learning approaches. On the other hand, the

LeNet-5 architecture uses subsampling layers with trainable neighborhood-coefficients and

sigmoid activation, whereas our networks merely perform fixed spatial pooling.

Apart from that we do not focus on state-of-the-art network performance but intend

to examine the impact of a first layer RF on global image classification.

To recap our experiments, several settings are critical for certain improvement with

hybrid architectures. At first, one has to care about the RF initialization, especially

concerning random initialization. As we train a decision tree on random label-vectors,

a leafnode averages over them. For a high number of samples the resulting histogram

vector converges to zero-mean values which may cause too low network excitation; if we

only allow a few samples per leafnode, we may force learning spurious distributions or

unwanted bias. Thus, we make a tradeoff by using at least 10000 samples per leafnode.

Experiments show that if we allow 100 samples per leafnode, we induce higher bias which

counteracts generalization. This leads to overfitting but does not decrease performance

compared to the baseline network. Further we observe that random initialization and RF

pre-training yield quite similar network performances after training 20 epochs.

Regarding RF optimization, a larger tree depth allows to perform more splits and

thus enables more informative leafnode-histograms. With learning progress, we add an

increasing number of leafnode-histograms which also causes an increasing output value

range. This affects the feed-forward behavior of the following (remaining) CNN since

network weights are optimized with regularization. To prevent divergence and to ensure
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fair comparison we additionally apply normalization on the first-layer output, for both

network architectures.

In addition, learning-rates or update rules have to be chosen wisely. We empirically

found that a RF update period of 10 iterations is adequate in regard to the growing tree

ensemble. Note that updating with every iteration would yield a quite large RF which

slows down feature extraction. Hence, tuning a hybrid network gets more challenging as

many more hyper-parameters have to be found.

Furthermore, we conclude that selecting the right loss-function mainly contributes to

certain success with our proposed hybrid network. As we directly update the RF according

to its previous error residuals, this consecutive error-fitting equals minimizing an internal

ensemble loss. If we train and add a new tree, we follow the negative gradient of the en-

semble model and thus minimize the internal squared error. This optimization is conform

with the global squared-error-loss examined in Section 5.3.1, which explains why us-

ing the log-loss in our last experiment fails to improve performance with a hybrid network.

We achieve a best performance improvement of approximately 17% over the baseline

network, where we obtain a mean test-error of 1.5% on MNIST. Therefore we apply a

first layer RF with a maximum depth of 8 and optimize the hybrid network using the

squared-error-loss. Unfortunately, the limited memory of our system prevented us from

answering the question, how many additional network layers we saved with our hybrid

network, which could be addressed in future studies.
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Conclusion

Random Forests (RFs) count among the most popular machine learning algorithms as they

can be parallelized easily and have good generalization characteristics. Their applicability

for regression as well as classification proved to be useful for various computer vision

tasks, however, their popularity suffered in the last few years since Convolutional Neural

Networks (CNNs) yield quite outperforming results. Still, this thesis addresses patch-based

representation learning with RFs, since an efficient computation of image representations

is highly beneficial, especially if hardware resources are limited. A major advantage of our

method is the direct feature extraction on raw patch data. Although of extracting low-level

features only, experiments on image classification showed relatively high accuracies.

In this work we introduced two different representation learning approaches, using

unsupervised and supervised learning algorithms.

Our first approach was inspired by the works of Coates et al . [20] and introduces a novel

method of learning representations whereby we exploit unsupervised dictionary learning on

image patches to train a RF as a feature extractor. Therefore we examined the influence of

two different dictionary learning algorithms, standardized K-means clustering and sparse

coding [67]. As expected, K-means clustering turned out to be way more time efficient

over sparse coding, however, dictionaries learned or representations learned with sparse

coding showed to be more effective, especially regarding small dictionaries.

Both methods use standardized and whitened patch data and assign pseudo-label in-

formation in terms of code-vectors. In this context, experiments revealed that patch

preprocessing during dictionary learning is critical for the convolutional feature extraction

of Coates et al ., but has less influence on our method, if at all. Since we trained a RF

on the raw patches and their corresponding code-vectors, the resulting feature extractor

does not require any patch preprocessing during feature extraction. We showed that this

enables a direct encoding from raw pixels and thus being more efficient over convolutional

approaches. In addition, we followed Coates et al . and performed spatial feature pooling

on resulting feature channels which proved to yield powerful image representations with

87
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respect to image classification.

Experiments were shown for different image datasets, including gray-valued images and

rgb-images. We achieved classification errors of about 0.54% on MNIST-10, a classification

accuracy of 70.22% on CIFAR-10 and 67.52% on STL-10. These results are obtained by

non-linear classification with an adaptive boosted forest, but also linear classification by

employing a SVM showed good performance. As it turned out, our approach did not

reach classification accuracies of Coates et al . regarding rgb-images. We explain this

by their extremely well tuned pipeline where especially preprocessing parameters showed

to be critical for success. In contrast, our approach proved to be almost independent

to preprocessing parameters and enabled more efficient feature extraction, which makes

a slight performance decrease acceptable. Additionally, our RF-based patch mapping

showed to be independent on the number of feature channels with respect to time efficiency.

However, to produce well discriminative image representations our method still requires

post-processing, which revealed processing time dependency on the number of feature

channels. Addressing this issue could be a subject of future research.

Due to the many hyper-parameters of our method, we also applied a meta-learning

algorithm to learn some of them, which is based on genetic learning. This way we suc-

cessfully showed that it is possible to learn entire pipeline configurations.

Furthermore we were able to improve performances of existing image classification

pipelines of the VLFeat team [77]. Thus, we conclude that our single-layer representations

reveal additional distinctive feature information.

As second approach we introduced a so-called hybrid network to learn low-level fea-

tures. Therefor we proposed training a CNN architecture for image classification, but

instead of using a convolutional layer we applied a RF as a first-level feature extrac-

tor. Again we employed the RF in a pixel-wise and patch-based manner, yielding feature

channels for the subsequent network. Since our hybrid network required end-to-end opti-

mization using error back-propagation, we updated the RF model by iteratively training

a new tree on its error residuals or output derivatives. Hence, the RF feature extraction

capability improved with optimization progress. As a result we observed a performance

improvement of approximately 17% compared to the baseline CNN. However, this also

comes with tuning additional parameters, like choosing a proper RF learning rate, update

period or tree depth. Additionally, we found that an appropriate network loss-function

is critical if using a RF in the first layer. Experiments indicated that a hybrid network

optimization using the squared-error loss yield highest improvement over the baseline net-

work.

In addition, RF initialization was not trivial as the network across all layers requires

initial excitation. We examined two different methods: RF pre-training according to our

first approach or random initialization. For the second case, we trained a decision tree

on random image patches with random label-vectors whereby we allowed at least 104

leafnode samples for gathering leafnode statistics. It turned out that otherwise random
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and spurious distributions could be learned which induce undesired bias during feature

extraction. For instance, if we used a minimum of 100 leafnode samples we observed to

learn higher bias which counteracts generalization and results in overfitting. Finally we

conclude that replacing the first convolutional layer of a CNN by a patch-based RF

can improve the network’s overall performance but requires to find additional learning

configurations.

All in all, our experiments showed that several RF parameters, such as the number of

decision trees or the training depth, have to be chosen wisely. Also the number of output

feature channels or the patch-size highly affect the final representation quality.

RF-based representations proved to have many advantages over convolutional feature

extraction. A RF not only provides a very efficient way to obtain a feature extractor, but

also allows to effectively compute representations by directly using raw input data. Even

a forest of 32 stumps (depth = 1) yielded representations that allow a classification error

below 1% on MNIST-10 test images. Considering such a highly effective feature extractor,

especially mobile applications could be accelerated where in particular field-programmable

gate arrays (FPGAs) could contribute to tremendously high efficiency.

Besides that, future work could investigate how to exploit our unsupervised

representation learning approach to learn higher-level features. One opportunity would

be to concatenate our proposed single-layer approach by applying dictionary learning on

first-level feature channels.

The proposed classification pipelines exhibit many parameters that affect the overall

performance; testing them all goes beyond the scope of our work. Thus, Future ex-

periments on representation learning with RFs could examine how more sophisticated

split-functions improve the representation quality. In this context it would also be inter-

esting to learn linear leafnode models during RF training, which could result in further

improvement.

Also, limited computational resources like working memory restricted us to investigate

further interesting configurations, like using very large dictionaries or very large forests,

which could be addressed in future research.
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