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Abstract

Computersimulationen werden auf Grund der Komplexität von biologischen Systemen immer
öfter zu Forschungszwecken eingesetzt. Diese Arbeit stellt die ersten Schritte des BioDynaMo-
Projekts zur Entwicklung einer allgemeinen Plattform für biologische Simulationen vor. Das
Projekt wird am CERN gemeinsam mit der Universität in Newcastle (Großbritannien), Innopolis
Universität (Russland) und der staatlichen Universität Kasan (Russland) erarbeitet. Diese verteilte
Entwicklung stellt zusätzliche Herausforderungen dar und benötigt deshalb einen gründlichen
Entwicklungsprozess um eine hohe Softwarequalität zu erreichen. Der Ausgangspunkt von Bio-
DynaMo ist die Software Cortex3D, welche neuronale Entwicklung simuliert. Cortex3D ist
allerdings in der Programmiersprache Java geschrieben, welche nicht für Hochleistungsanwen-
dungen geeignet ist. Weiters ist die Architektur nicht flexibel genug um Simulationen in anderen
Bereichen durchzuführen. Um ambitionierte Forschungsfragen beantworten zu können wird eine
skalierbare und effiziente Implementierung benötigt. Deshalb wurde zuerst der Quellcode von
Java in C++ übersetzt und anschließend ein Prototyp entwickelt, der die verschiedenen Paral-
lelisierungsmöglichkeiten moderner Hardware nutzt.
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Abstract

To deal with the complexity of biological systems, researchers increasingly rely on computer
simulation. This thesis presents the early steps of the BioDynaMo project, which aims to build
a general platform for biological simulation. This project is developed at CERN together with
partners at Newcastle University (GBR), Innopolis University (RUS) and Kazan Federal University
(RUS). Distributed development poses additional challenges and requires a rigorous engineering
process to foster high quality of code. Best practices and development tools are presented in this
thesis. The starting point for BioDynaMo was a neural simulator called Cortex3D. This software is
written in Java, which is not suited for high-performance computing and is not flexible enough to
perform simulations in different areas, such as immunology or oncology. Addressing ambitious
research questions requires a scalable and efficient implementation. Consequently, the first step
was to translate the code base from Java to C++, followed by development of a ‘proof of principle’
to show how multiple levels of parallelism in today’s hardware can be fully utilized.
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To accomplish great things we
must dream as well as act.

ANATOLE FRANCE
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1. Introduction

Computer simulations have become an important tool in science to study systems too complex for
a purely analytical or experimental solution [7]. Computing models enable studying phenomena
with variable time scales. From processes inside a particle detector to the formation of galaxies.
Furthermore, it is possible to perform parameter sweeps, which means systematically running the
simulation with different input parameters, resulting in a cost-effective alternative to producing
large amounts of prototypes. Within the medical and life science domain, computer simulations
also facilitate research in areas that would not be possible from an ethical standpoint.

A prerequisite to using simulations is a proper understanding of the underlying process and
development of a mathematical model. Further challenges include verifying correctness of obtained
results and dealing with the computational complexity associated with large-scale simulations.
The importance of verification was shown in a recent paper about inflated false-positive rates
in functional magnetic resonance imaging (fMRI) studies [8]. The authors found a 15-year old
software bug in one of the most popular tools that could have an impact on thousands of research
papers. Moreover, the design of simulations became increasingly difficult due to the breakdown of
single processor core performance improvements around 2004 [9]. Thereafter, industry shifted to
more and more parallelism which increases software complexity.

Consequently, research teams engaging in biological simulations are facing big challenges. While
they have to stay on top of their fields in order to produce meaningful research results, increasing
knowledge in computer science is needed to build these systems. Furthermore, the scientific
environment has little incentive to put efforts into the development of a general-purpose simulation
tool. Hence, research labs often develop customized software for their research and spend a
considerable amount of time working on problems that have already been solved elsewhere.

1.1. BioDynaMo

To solve these issues, the BioDynaMo project was initiated. BioDynaMo stands for Biology
Dynamic Modeller. Its goal is to build a general-purpose platform for large-scale biological
simulations hiding the computational complexity associated with parallel and distributed computing
and promoting reproducibility of results from shared open access data [7].
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1.1. BioDynaMo

The following itemization gives more details:

• General-purpose
BioDynaMo must be designed in a flexible, generalizable way to run simulations from
different specialities with requirements that are possibly quite distinct. In neuroscientific
simulations neurons have long ranging connections which are absent in immunology models.
The longest axons can be found in the sciatic nerve which is composed out of fibers from
spinal segments L4 to S3, continuing on the back of the leg to reach, after its division, the
toes [10].

• Large-scale
Neuroscientists from the Newcastle University in UK estimated that in order to tackle com-
plex challenges, such as schizophrenia a simulation of the whole cortex, which corresponds
to 100m - 10bn neurons would be required. This would even exceed the capabilities of a
high-performance computing (HPC) cluster and could be a scenario for cloud resources,
federated clouds, or a hybrid HPC and cloud environment. The first step is to develop an
efficient implementation that fully utilizes parallelism on one node.

• Reproducibility
One of the core principles of science is the reproducibility of results; yet surprisingly, it is
sometimes difficult to recreate research findings. This does not necessarily mean that the
researcher acted in bad faith and withheld information. Sometimes information is omitted
because it seems too trivial. Consequently, a common platform could improve this situation
by providing a controlled environment where researchers can release their models, thus
enabling colleagues to easily validate their results.

BioDynaMo started as a code modernization project at CERN openlab together with Newcastle
University and Intel. Within the framework of CERN openlab, “CERN collaborates with leading
ICT companies and research institutes" resulting in a “unique public-private partnership that
accelerates the development of cutting edge solutions" [11]. Shortly after, two Russian universities
joined the consortium: Innopolis University and Kazan Federal University.

Code modernization was performed on Cx3D [12], a neurodevelopmental simulator developed at
ETH-Zurich and Uni Zurich. Figure 1 shows the simulation result of a cultured neural network.
It approximates cell bodies with spheres and neurites with a chain of cylinders. Cx3D is capable
of simulating mechanical interactions, extra- and intracellular diffusion as well as user defined
biological behaviour. Cx3D is written in Java, a programming language not suited for HPC
application, is single threaded, and is not flexible enough to simulate models from different
specialities, such as immunology or oncology.

2



1.2. Structure and Scope of the Thesis

Figure 1.: Simulation Outcome of a Cultured Neural Network. Excitatory neurons (grey) and one
inhibitory neuron (pink) are placed on random positions and begin to grow neurites.
“An attractive force between the cell elements induces a tendency to fasciculate". After
the growth stage has been completed, synapses are formed if an axon and dendrite are
in close proximity. [12]

1.2. Structure and Scope of the Thesis

Out of the many goals that the BioDynaMo consortium wants to achieve, this thesis will focus
on setting up a sustainable software development workflow and on different aspects of code
modernization. Code modernization subsumes a variety of activities. In this thesis I use the term
for efforts to port the application from Java to C++ and to change the applications architecture to
enable parallel execution and a more modular design. Figure 2 gives an overview about the main
contributions of this thesis to the BioDynaMo project.

This thesis is organized as follows. Chapter 2 discusses other simulation software packages.
Chapter 3 outlines the importance of sustainable software development, mentions problems in the
scientific domain and discusses best practices from literature and industry. Sustainable software
[13] is defined as code that is usable for the expected lifetime. The implementation section of
this chapter evaluates different combinations of project management tools and evaluates them
with regard to benefit, cost, risk and flexibility in the context of the BioDynaMo project. Several
development aspects are described in more depth before the chapter is concluded with a short
discussion and an outlook of future work.

Chapter 4 describes the whole porting process from Java to C++. It outlines differences between
these two languages and gives the reasons for the decision to select C++ as foundation for BioDy-
naMo. The design section explicates different porting strategies and discusses their advantages and

3



1.2. Structure and Scope of the Thesis

Sustainable
Development
Environment

Port from
Java to C++

Parallel,
Modular

Prototype

Figure 2.: Main Contributions of this Thesis to the BioDynaMo Project.

disadvantages. Based on this analysis one approach was selected and refined. The implementation
section describes this workflow in great depth. Finally, performance of the developed C++ version
is evaluated.

Chapter 5 explains the development of a modular and parallel prototype. It clarifies industries
shift to more and more parallelism together with the implementation in today’s hardware. This
chapter gives a more detailed introduction to vectorization, an extension to x86 instruction set
architecture (ISA) to execute the same operation on multiple data elements, and evaluates various
options to utilize this feature in an application. Furthermore, the chapter gives an overview of
different memory layout techniques which strongly influence vectorization. Parallelization is
discussed in Section 5.5.3 which contains an introduction to Amdahl’s law. Subsequently, the
importance of performance profiling is laid out in Section 5.4 introducing perf and Intel VTune
Amplifier XE.

The design section of Chapter 5 presents two different options to achieve a customizable design
and evaluates their strength and weaknesses. Furthermore, this section benchmarks the SIMD
library Vc against the linear algebra package Eigen and presents a vectorization architecture
used in the particle simulator GeantV. Moreover, the importance of a common task interface to
parallelize execution is emphasized. The final subsection unifies the considerations and introduces
the envisaged BiodynaMo package structure with a thin core and speciality specific extensions
(e.g. Neuroscience or Immunology) which can be customized by the biologists.

The implementation part, Section 5.6, takes a closer look at non trivial details. Template metapro-
gramming techniques such as type traits and conditional compilation as well as transformation of
conditional statements for vectorized code are explained. It presents results from an initial scaling
benchmark, points out performance issues and shows how these hotspots can be eliminated.

The last section in Chapter 5 shows several benchmarks and explains unanticipated results obtained
from different vector instruction sets.
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2. Related Simulation Software

This chapter gives an overview about different biological simulation packages. This overview
contains contents from discussions with Roman Bauer (Computational Neuroscientist at Newcastle
University UK) and Marco Manca (Medical Doctor and Senior Research Fellow at CERN Medical
Applications).

2.1. Cortex3D

The starting point for BioDynaMo was Cx3D [12]. Its main target is to study brain development,
by simulating physical processes, cell cycles and gene expression [12]. The simulator is also able to
form synapses, but they are not functional yet, since electrophysiology has not been implemented
yet. Biological behaviour is encoded as abstract heuristics without simulating chemical pathways.
To give an example, a scientist could define a high level rule that a cell moves into the direction of
the gradient of a certain chemical cue [12]. Application for other specialities is limited due to its
monolithic software architecture. Another disadvantage is the lack of parallel execution capability
and the programming language Java which is not very well suited for HPC applications.

Cx3D is divided into four layers: cell, biology, physical and spatial. Figure 3 shows this separation
together with the most important classes in (A), color coded by layer. The neuroscientists specifies
the behaviour of the cell and its elements using CellModule and LocalBiologyModule.
These act as the genetic code of the virtual neuron. C to F illustrates how this behaviour gets
replicated on cell division or neurite bifurcation. Figure 4 shows the dependency diagram of the
spatial organization layer in more detail. It is the most complex part and is mostly hidden from the
computational scientist. It calculates a Delaunay triangulation which defines neighboring relations
between cells and their elements. In 2D space a triangulation is a subdivision of space into triangles
(in 3D it is tetrahedrons). A Delaunay triangulation adds an additional constraint that has to be
fulfilled and leads to a result that maximizes the minimum angle of the triangulation [14]. Figure
4 shows the large number of dependencies between classes and high level of abstraction in the
design.

5



2.1. Cortex3D

Figure 3.: Architecture of Cx3D: (A) shows an overview of the most important classes. The
color shade corresponds to the different layers illustrated in (B): cell (white), biology
(purple), physics (pink) and spatial organization layer (green). (C-F) describes different
replication strategies of LocalBiologyModule or CellModule in the event of
cell division, neurite elongation and bifurcation. Figure taken from [12].
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2.2. Cortex3D parallel – Cx3Dp
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Figure 4.: Dependency Diagram Spatial Organization Layer of Cx3D

2.2. Cortex3D parallel – Cx3Dp

An attempt to increase computational potential of Cx3D has been made by Andreas Hauri who
developed a parallelized version of Cx3D called Cx3Dp [14]. In his dissertation he used the
simulator to model cortical lamination, i.e. the development of the outermost layer of the brain
associated with high level functions such as cognition and behaviour.

A schema of the architecture is shown in figure 5. The principles of the predecessor Cx3D (blue
box) remained largely unchanged. Separation into layers (biology, physics and spatial organization)
and representation of cell bodies and neurites using spheres and cylinders have been retained. The
biggest change was the replacement of the underlying spatial organization layer used to determine
neighbors of an object. Delaunay triangulation was replaced with an octree (figure 6). For a
scalable parallel execution it is important to keep overhead as small as possible. Communication
between execution units should therefore be kept at a minimum. Therefore, Delaunay triangulation
is not well suited because local changes can modify distant parts [14].

An octree is a data structure to partition 3D space. On each level a compartment is divided into
eight equal sized parts. A volume can be subdivided to adapt to a heterogeneous distribution of
elements in space, thus, keeping the number of elements in each leaf nearly constant. The transition
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to octrees requires also changes to the diffusion calculation, due to the close relationship between
these two components.

The ability to run the simulation in parallel requires management components to ensure consistency
of the model and to separate administrative tasks from simulation [14]. This distinction reduces
complexity for biologists. Figure 5 shows an overview about system maintenance components.
Simulation objects that cannot be divided are called particles. Each compute node maintains a
global particle list. In Cx3Dp there are three different particle types: soma, neurite segment and
diffusion volume. The scheduler divides the list of particles into work packages and adds them
to a queue [14]. Subsequently, the work manager assigns them to free workers threads [14]. The
parallelization framework also divides tasks into scientific and system maintenance which are
handled by complex workers and simple workers, respectively (figure 5) [14]. Load balancing
among mutliple compute nodes is achieved through assignment of subvolumes of the simulation
space [14]. Therefore, the load balancer will assign a larger subspace to more powerful servers.

For the agent-based approach a particle has data dependencies on its neighbors. In a distributed
setting, where particles are stored on different machines, this will require communication between
nodes to exchange information about the margin regions (figure 7). The required interface for data
transfer is provided in the communication framework component.

2.3. LAMMPS

The software project LAMMPS, which stands for Large-scale Atomic/Molecular Massively Parallel
Simulator, is a software to simulate molecular dynamics. The main range of application lies in
simulating metals, semiconductors, biomolecules or polymers [16]. Its functionality can also be
applied to objects with larger scales. Lykov et al. for example used it to simulate blood flow in
capillaries [17]. Although, LAMMPS is a mature, parallel, open source software package, which is
actively maintained, it is not possible to simulate morphological growth and biological behaviour
(e.g. gene expression).

LAMMPS’ architecture is illustrated in figure 8. Class names written with a blue font are core
classes with global visibility [18]. Classes written in red are parent classes that define a common
interface [18]. To ease access to core classes, every class except LAMMPS itself, derives from
Pointer [18]. Similar to Cx3Dp, LAMMPS calculates neighbors (class Neighbor), divides
space into subvolumes (class Domain), and transmits margin regions to neighboring compute
nodes (class Comm) [18]. Data transmission is performed with message passing interface (MPI).

Simulation elements are approximated as point mass. Possible variations are: atom, group of
atoms, or larger particles [19]. Calculation of inter-particle forces are decisive for a molecular
simulator and account for about 80% of total CPU time [19]. Class Force calculates a variety of
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2.3. LAMMPS

Figure 5.: Architecture of Cx3Dp: Clear distinction between simulation model (within blue box)
and maintenance components. Each part fulfils a certain function. Interactions between
components are illustrated with arrows. Figure taken from [14].

Figure 6.: Octree: Data structure to divide space. The number of children is fixed to eight. Leafs
are not required to have the same depth. Figure taken from [15] used under CC-BY-SA
3.0.
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2.3. LAMMPS

Figure 7.: Margin Management: The properties of a cell in the next time step depends on all its
neighbors. If calculation is distributed among several compute nodes, neighbors might
be stored on two different machines. Therefore, the runtime environment has to transfer
these margin regions. Figure taken from [14].

interactions including non-bonded pair wise, bonded, and long-range Coloumbic forces [18]. In
order to save computing time a cut-off for short-range forces can be defined. This introduces an
error, but can be a reasonable trade off. Consequently, the list of fixed-radius near neighbors must
be calculated. LAMMPS avoids calculating neighbors in every time step using Verlet lists (figure
9), thus improving simulation runtime even further [19]. This method calculates two separate lists
every N time steps. One list contains particles within the selected cut-off distance and another one
with elements in a buffer zone, called “skin region". Time steps that recalculate the Verlet lists only
take the inner region into account [19]. For the remaining iterations, also the buffer region must be
considered [19]. The skin region and number of iterations N must be chosen such that [20]:

rm− rcut > N‖vmax‖∆t

Therefore, particles which are not in the Verlet list cannot reach the inner circle within N time
steps. LAMMPS rebuilds the list if any atom moves more than half the skin region [19].

The simulator offers two different options to calculate the next time step (class Update): time
integrators or energy minimizers [18]. Logic to customize the time step calculation are added as
specialization of class Fix and stored inside class Modify [18].
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Figure 8.: LAMMPS Class Structure: Classes written in blue are core classes with global visibility.
Class names with red font are parent classes and define a common interface. Figure
taken from [18].

Figure 9.: Verlet Lists: Data structure in molecular dynamics to avoid calculation of neighbors in
each time step. In addition to neighbors within distance rcut , elements in the skin region
are stored. The width of the blue buffer zone and recalculation time must be chosen
in a way that outside particles moving with vmax cannot reach the inner circle. Figure
taken from [20].
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2.4. Others

NETMORPH was built to generate large scale neural networks with realistic neural morphologies
[21]. The framework models, elongation, branching and turning of neurites in a stochastic
manner resulting in 3D structures which were validated against in vivo and in vitro data from
neuromorpho.org [21, 22]. This is similar to the functionality of Cx3D. However, NETMORPH,
does not simulate cell proliferation or gene expression. The simulator is released under an open
source license. Its latest release dates back to 2011.

CellModeller is a framework developed at the University of Cambridge to simulate multi-cellular
systems [23]. This software package is written in Python, but leverages GPUs using PyOpenCL
interface. It is possible to simulate populations of more than 100,000 cells and has been used to
better understand biofilms [24].

iDynoMiCS is another Java representative. Similar to CellModeller, iDynoMiCS targets microbial
communities. It is not parallelized and therefore not suitable for large scale models.

Biocellion, the outcome of a collaboration between the Pacific Northwest National Laboratory
and the Institute for Systems Biology, followed a similar approach to BioDynaMo with respect to
liberating biologists from dealing with intricacies of parallel and distributed computing [25]. It
follows a discrete agent based approach. Parallelism is achieved using Intel TBB (threading builing
blocks) for shared memory environments and MPI to communicate among different processes or
nodes.

NEST is one of the leading simulators for electrical activity in neuronal networks and is capable
of simulating large scale models [26]. It has been mentioned in more than 40 peer reviewed
publications in 2015 alone. However, NEST does not offer realistic morphology or other physical
processes apart from electrical activity.

A successful commercial physics simulator is COMSOL. It is capable to simulate electrical,
mechanical, chemical and flow processes [27]. However, COMSOL is using a mesh-based
approach. For our intended use case where the number of objects fluctuates (cell mitosis /
apoptosis) and where objects move continuously this is not very well suited. Also Cx3D used a
Delaunay triangulation, but this was replaced in Cx3Dp, because it hinders parallelization [14].

With exception of COMSOL, none of the introduced systems, was built to run on a cloud envi-
ronment and are therefore not prepared to run simulations in a failure prone setting. Furthermore,
many of the introduced frameworks cover only the requirements of a specific subgroup. Thus,
these software packages find little application in other fields of computational biology.
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Lastly, the Human Brain Project (HBP) aims at simulating a human brain from ion channels all
the way up to cognitive behaviour. In 2015, Markram et al. published results of reconstruction
and simulation of the somatosensory cortex of juvenile rat [28]. To simulate spontaneous activity
they adapted the NEURON simulator to run on supercomputers [28]. Nonetheless, HBP uses a
static model which is in contrast to the developmental approach BioDynaMo is following. Hence,
BioDynaMo is complementary and does not compete with HBP.
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3. Sustainable Software Development

Code that is usable for the expected lifetime is defined as sustainable software [13]. Therefore,
this term is closely related to software quality. Quality is characterised by consortium for IT
software quality (CISQ) with four attributes: reliability, efficiency, security and maintainability
[29]. Reproducibility of results is an important aspect in science and must therefore be added to
this list.

Software quality and maintainability are of paramount importance for any long term and especially
large scale project. Software industry has come a long way since developers exchanged code by
sending patches by e-mails. It has never been easier to develop software in a distributed team
than it is now. There are modern code repositories, testing frameworks, continues integration (CI)
servers, build tools, issue trackers and project management tools. Success of agile development
techniques such as Scrum and Extreme Programming has facilitated development of these tools.

Beck [30] describes a software project based on four variables: cost, time, quality and scope. He
claims that external forces choose three of those values while the remaining one can be influenced
by the development team. Due to the environment, software that is developed in the scientific
domain has to cope with issues that do not exist in industry.

The situation for PhD students based on Becks’ model will be examined in this paragraph. Cost
is a constant. Usually, there are no further funds to hire additional software engineers that assist
development. Typically, time cannot be influenced as well since submission deadlines are set by
conferences. However, there is some leeway for submission of the dissertation. The most important
assignment for a doctoral student is producing high impact research results. Consequently, the
focus will lie on scope at the expense of software quality. An important factor for an academic
career are publications and citations. Therefore, in a system with many doctoral students and few
tenure and full professor positions one should not expect that huge effort is put into producing high
quality software. If the developed software is not in a state where it can be used by others it will
soon end up unmaintained. Consequently, if a piece of code is not updated it will soon be hard to
build and execute it.

Heroux [13] is stating that “just desiring improved quality is not sufficient". He suggests that
external forces like funding agencies, publishers and employers should “raise their expectations
for software quality". If software quality metrics are part of the evaluation process to receive a
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research grant or play a role if a paper will get accepted than behaviour will likely change.

Another fact that should not be neglected is that many researchers that develop software do not
have a formal background in computer science, but come from engineering, physics or life science.
They usually learn software development best practices on the job. This underlines the importance
to set up a solid development process for BioDynaMo to guide new project members.

3.1. Best Practices

Before a team starts to write code it should define or adopt a language style guide, a contract
which defines best practices and stylistic rules. Ideally, code developed by two different persons is
undistinguishable. In this regard it reduces the number of freedoms for the developer. The C++11
standard for example allows following class names: (i) can be composed out of characters that fall
into certain ranges of the ISO 10646 encoding (e.g. letter, digits, underscores) (ii) must not start
with a digit (iii) must not be a reserved keyword e.g. public, const, volatile, ....
More details can be found in chapter 2.11 of the C++11 standard [31]. Therefore, the following
class name will be accepted by the compiler: mY_clAs5Name. One possible rule in the style
guide could restrict class identifiers to CamelCase (e.g. MyClassName). Code is more often read
than written. Consequently, Google’s style guide optimizes for the reader [32]. An example [32]
is the “All parameters passed by reference must be labeled const." rule, which is equivalent to
“Parameters must not be passed as non-const reference". Code Listing 3.1 demonstrates how the
required address-of operator makes it explicit that foo can be modified inside DoSmth without
knowing the function definition.

Listing 3.1: Googles no non-const Reference Rule

1 class Foo { ... };
2

3 void DoSmth(Foo* foo) {
4 // modify foo
5 }
6

7 int main() {
8 Foo foo;
9 DoSmth(&foo);

10 }
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Figure 10.: Connection between Different Software Development Practices in Extreme Program-
ming. Figure taken from [30].

Ideally, a style guide has associated tools to assist the developer comply with these rules. Also, they
make code reviewer’s life easier and can be used to enforce adherence. This can be achieved by
using a check before code is added to the repository (also referred to as a precommit hook). These
tools have different complexity. Whitespace rules or checks for include guards can be performed
with simple string operations. On the other hand, the appearance of variable or function names can
only be reliably asserted if the tool has access to compiler information i.e. abstract syntax tree [33].

One of the cornerstones of agile development is automated tests. Even if a team develops code in a
more traditional methodology, automated tests are essential for code quality. Although, they do
not guarantee an error-free product, using this technique is associated with a number of benefits
[30, 34]:

• Early discovery of bugs

• Increased trust into code

• More modular design

• Living documentation

• Foundation for other techniques like CI

The earlier software errors are detected the easier it is to fix them. Furthermore, their impact (e.g.
on research results) is limited. Developers will trust code more which is backed by automated
tests and will not fear that they unknowingly introduced bugs [30]. This enables code refactorings,
since engineers are not afraid of editing complex code that was written by someone else [30].
In test-driven development (TDD), unit tests are written before the actual functionality is imple-
mented. This leads to a more modular design and reduces complexity, because it is easier testable.
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Furthermore, testing code is a kind of living documentation. While API documentation can get out
of synchronization because people forgot to update it, this cannot happen for test cases (they would
not compile or pass). Other techniques like CI or short releases rely on the existence of automated
tests. Figure 10 shows the central role in extreme programming. Lastly, testing manually is simply
not a viable option taking the complexity and size of a usual application into account.

Continues integration takes testing one step further. It automatically executes the test suite on
a dedicated server and reports if the tests also pass on a different machine — possibly using
different operating systems and various compilers. This is important for portability and reports
additional errors. If the developer forgot to add a source file to the code repository, for example,
the application will compile locally, but will fail on the CI build. CI and automated tests together
ensure that the repositories’ master branch always works. This enables short releases, because it is
not required to “go through a lengthy test cycle" [30].

Refactoring refers to code changes to improve or simplify the design without changing behaviour.
Restructuring long methods or removing code duplication is important to reduce technical debt
[35]. Thus, improving maintainability or flexibility of the code base. Refactoring can lead to many
code changes across the whole application. Automated tests give the required confidence that the
applications behaviour indeed did not change after the procedure has been finished.

Communication between project members in a distributed environment is certainly a key challenge.
We are using a mix of synchronous, asynchronous, low and high bandwidth channels to coordinate
our efforts. For the open source project OpenMRS, Burke Mamlin wrote an association which
communication channel should be used in a certain situation [36]. Asynchronous tools (e.g.
mailing list) can be used to speak to the community. Low bandwidth real time conversations
(instant messaging (IM)) are suitable for brief discussions that require immediate feedback. Finally,
high bandwidth applications like Skype or Google Hangouts are an ideal tool for presentations
among a subgroup or more detailed discussions.
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3.2. Implementation for BioDynaMo

This chapter describes the evaluation and selection of project management tools, more detailed
development aspects and discusses open points and future work.

3.2.1. Selection of Project Management Tools

To decide which combination of tools we want to use, we started by listing common options for
each category (Table 1). In a second step, we analysed combinations of these setups which we call
software stacks (Table 2).

OpenMRS is a medical record system built to improve health care in developing countries. It has
been adopted by many hospitals and ambulances around the world [37]. Not only the users of the
software, but also the developers work from different continents. Therefore tools for distributed
development, effective communication and documentation are required. OpenMRS counts on
the Atlassian software products for CI, project management, issue tracking and documentation.
Atlassian is one of the leading vendors covering the whole development process and is used by
more than 50.000 companies according to their website [38]. Hence, it is a mature software,
provides enterprise-grade support and offers a large ecosystem of plugins. Unfortunately, it has a
proprietary license, but open source projects that fulfil a number of criteria, can use their products
for free. However, people reported that the software is bloated and complicated [39].

With more than 38 million hosted repositories Github is the Facebook of software development. In
contrast to Atlassian which is fully configurable to ones needs, Github convinces with simplicity.
Moreover, it minimizes the barrier for contribution since a large number of developers is already
accustomed with their platform and workflow. Furthermore, its success has attracted many other
companies to seamlessly integrate with their services. CI service Travis [40], for example, can be
configured with a few lines of code for a standard application (code example 3.2.

Listing 3.2: Travis-CI Configuration for a Java Maven Project

1 language: java
2 jdk:
3 - oraclejdk8

Tuleap is a relatively young open source project that develops a one stop shop for application
lifescyle management [41]. It integrates a number of successful software projects like Git, Gerrit
and Jenkins and supplements it with a home grown project management software. Their focus is to
integrate all these solutions and connect developers, product owners, DevOps, project managers
and customers [41]. The project is backed by the company Enalean. Among their clients are
companies like Orange, Airbus and Renault. [42].
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The individual software stack gives freedom to choose software tools independently of other
categories. Therefore, it can be tailored to the projects needs. Table 2 shows a substitutional
combination of applications. On the downside, this leads to problems with integration and higher
maintenance effort. For instance, single sign-on, to connect all those tools must be added by the
adopting team.

Table 3 shows the final evaluation score on four dimensions. The following enumeration gives
more details:

• Benefit:
The benefits for each of the options has been evaluated under the current situation of
BioDynaMo. At the moment the number of developers is still small. Hence, Github’s
simplicity still meets all demands. Tuleap and the individual solution do not integrate with
communication tools like Slack or Gitter and therefore do not reach full score. While the
individual stack meets all demands for each separate tool, it will not reach the full potential,
because they are not well integrated with each other.

• Cost:
Github has the least total cost of ownership (TCO) - it is free for public projects and does
not require complicated setup. CERN has already a license for Atlassian products and a
team which manages its installation. Therefore, BioDynaMo only has to configure it. Tuelap
has a cloud offering, but they do not offer a free plan for open source projects. Therefore, we
would need to pay a monthly fee or install it on premise and perform maintenance ourselves.

• Risk:
For the OpenMRS stack risk is minimal. Even in case Atlassian discontinues their free open
source license, it would not increase the projects cost due to CERN’s license. Given the
adoption rate and size it is very unlikely that they will go out of business. The same holds
true for Github, where free access for public repositories is an essential part of their business
plan in order to attract millions of developers. There are tools to export data e.g. to Atlassian,
in case that Github’s features do not longer fulfil all requirements. Tuleap on the other side
is a rather new player on this market. Therefore, this is associated with higher risk. Lastly,
the discontinuation of one product which is part of the individual stack would require to
migrate to another tool.

• Flexibility:
This is clearly the strength of the individual software stack. Tools can be replaced individ-
ually based on changing requirements. Atlassian offers many plugins and configuration
possibilities, while Github can be used as is, but integrates with many services.
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Category Options
Code Repository Github, Gitlab, Atlassian BitBucket, Google Code, Tuleap, ...
Project Management Tool Atlassian JIRA, Redmine, Tuleap, ...
and Issue Tracker
Continues Integration Jenkins, Travis-CI, Atlassian Bamboo, Gitlab, ...
Code Review Gerrit, Github, Gitlab, ...
Documentation MediaWiki, Atlassian Confluence, DokuWiki, TWiki, ...
Mailing List CERN e-groups, Mailman, Google Groups, FreeList, ...
IM IRC, Gitter, Slack, ...
Conference Calls Jitsi, uberconference, Skype, Google Hangouts, ...

Table 1.: Development Tools: Available Options

Category OpenMRS Github Tuleap Individual
Code Repository Github Github Git Github
Project Management Atlassian JIRA Github Issues Tuleap Redmine
and Issue Tracker
Continues Integration Atlassian Bamboo Travis-CI Jenkins Travis-CI
Code Review Github Github Gerrit Gerrit
Documentation Atlassian Confluence Github Wiki phpWiki MediaWiki
Communication Discourse External Mailman Discourse

Table 2.: Software Stack Comparison

OpenMRS Stack Github Tuleap Individual Stack
Benefit
Cost
Risk
Flexibility

Table 3.: Software Stack Evaluation (white circle: 0%, black circle: 100%)
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As a result, we agreed on using the “Github Stack" as long as it fulfills our requirements. For
communication we use CERN’s e-groups as mailing list, a Slack channel and Skype. This setup
does not lead to additional costs or maintenance effort.

3.2.2. Development Details

At the beginning of the project we have decided to adopt Google’s C++ style guide with minor
modifications. It was selected because it comes bundled with a ready to use code formatting
definition for eclipse and cpplint, a tool that checks source code if it complies with the rules. We
loosened the restriction on maximum line length and on allowed C++11 headers. Conventions
and information which is not part of a language standard has been put into the “BioDynaMo
Developers Guide" (see appendix). It introduces newcomers to the project, its members and vision.
Furthermore, it mentions our Git workflow, conventions for commit messages, how to set-up
the development environment and walks through the development steps from selecting an issue
towards merging into master.

We use CMake to build C++ code. It abstracts platform and compiler specific details and can be
used to locate required libraries and headers [43]. With about 200 lines of code (LOC) it is possible
to detect all required dependencies, build a shared library, a test executable, demo applications,
Doxygen API documentation, create a coverage report and check for memory leaks – for two
operating systems (Ubuntu, OSX) and different compilers (g++ and clang).

Option Default Value Description
test on build a test executable

precondition for valgrind and coverage
valgrind on enable memory checks
coverage off creates a make target to generate a HTML report indicating

which parts of the code are covered by automatic tests
(Figure 11)

Table 4.: CMake Options [5]
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In our implementation we define three options (see Table 4). Based on those flags CMake generates
the following make targets [5]:

• make test: execute all tests

• make check: execute all tests and show test output on failure

• make clean: clean all targets including external projects

• make bdmclean: only clean libbiodynamo and runBiodynamoTests targets

• make testbdmclean: only clean runBiodynamoTests target

• make doc: generate Doxygen documentation in directory build/doc. It contains a html
and latex version. To view the html version open html/index.html in the browser.

• make coverage: create coverage report in build/coverage

First, testing verifies that all test cases pass and performs a memory leak check on the same
executable afterwards (make check). This is important since C++ does not have a garbage
collector and memory must be freed by the developer. This can be the source for many issues
and is therefore analysed. This is done by the tool valgrind which instruments the code and thus
increases runtime up to a factor of 50 based on own measurements. Therefore, some long running
tests are disabled for valgrind to reach reasonable execution times. Besides memory leak checks,
valgrind also reports usage of uninitialized memory, invalid frees and more [44]. If the option
coverage is switched on, an additional make target is created that will produce a report which
shows the code lines that have been executed by one of these tests. It can serve as code metric
indicating which classes need more testing (Figure 11).
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The development workflow is organized as follows:

1. Select a task from the issue tracker

2. Make changes in a feature branch or separate fork

3. Execute code formatter and checker

4. Run test suite and make sure all tests pass

5. Check if code changes have sufficient code coverage and are well documented

6. Commit

7. Send pull request

8. Code Review

9. Merge into master branch

3.2.3. Discussion and Future Work

Although we have established a solid development environment which fosters best practices, there
is still work to do and decisions to be made.

Google’s style guide does not distinguish between members and static members of a class. We
are currently discussing whether to introduce a prefix for static data members. Furthermore, I
have mentioned that we relaxed the maximum line length to 120 characters. It seems that an 80
character limit is outdated in the era of widescreen displays. However, it improves productivity if
editors can be displayed side by side. Astonishingly, there are many discussions on the internet
about this question [45]. People claim that long lines are more difficult to read and probably try
to perform too many instructions. Someone also pointed out that code is also displayed in other
applications than the editor: diff tools, bug tracker or code review tools and should therefore be
kept short [45].

Closely related to style guide are code formatter and checker. So far we have been using Eclipse
code formatter, but recently came across clang-format. Performing a few tests showed superior
performance compared to Eclipse and we will therefore switch soon. An example can be seen in
the code listing below. Also clang-format has a built in definition of Google’s style guide.
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(a) Overview

(b) Source Code View

Figure 11.: Sample Code Coverage Report
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Figure 12.: Review Example for Visualization Pull Request.
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Listing 3.3: Diff between Eclipse Formatter and clang-format
1 std::array<double, 3> PhysicalSphere::transformCoordinatesLocalToGlobal(const std::array<double, 3>& pos) const {
2 - std::array<double, 3> glob { pos[0] * x_axis_[0] + pos[1] * y_axis_[0] + pos[2] * z_axis_[0], pos[0] *

↪→ x_axis_[1]
3 - + pos[1] * y_axis_[1] + pos[2] * z_axis_[1], pos[0] * x_axis_[2] + pos[1] * y_axis_[2] + pos[2] *

↪→ z_axis_[2] };
4 + std::array<double, 3> glob{pos[0] * x_axis_[0] + pos[1] * y_axis_[0] + pos[2] * z_axis_[0],
5 + pos[0] * x_axis_[1] + pos[1] * y_axis_[1] + pos[2] * z_axis_[1],
6 + pos[0] * x_axis_[2] + pos[1] * y_axis_[2] + pos[2] * z_axis_[2]};
7 return Matrix::add(glob, mass_location_);
8 }

Our code checker cpplint does not verify naming conventions for classes, methods or variables,
because it does not have access to compiler information. In order to improve the review process
and make sure that style guide errors do not arrive at the repository, a more advanced tool should
be added to complement cpplint. At CERN, the static analysis suite [46] has been built for this
purpose. It is a wrapper around clang compiler and runs in parallel to compilation [46].
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C++ is superior compared to Java for the application in high-performance computing. Java code
runs in a virtual machine, thus adding additional overhead. Just in time (JIT) compilation that
takes Java bytecode as input and generates native machine code improves this situation.

Java and C++ have been designed with different goals in mind. In Java, every member function
in a class is virtual in contrast to C++ where the developer has to explicitly add this keyword
to the function declaration. A virtual function is not bound at compile time, but dynamically
during runtime. This requires a virtual function table (vtable) that contains information which
implementation should be executed. This design decision has two implications: (i) calling a
virtual function requires an additional jump to the vtable which is not cache friendly and (ii)
virtual functions cannot be inlined. Another major difference is the C++ feature called template
meta-programming. This part of C++ is executed at compile time and in itself Turing-complete.

Also, the ecosystem that has been built around a language was part of the decision to opt for
C++. Tools, libraries and runtimes like OpenMP, CUDA, OpenCL, MPI, Vc, Intel TBB, and many
more are predominantly built for Fortran, C, or C++. Although, Java bindings for several of these
add-ons exist, they are not very common.

The following two sections indicate the influence of different C++ programming styles on perfor-
mance and reveal considerable differences.

Performance Impact of Virtual Functions

Virtual functions enable polymorphism, but their use has a negative impact on performance. How
substantial this degeneration can be shows code Listing 4.1. It calculates the dot product of 512
pairs of two dimensional vectors and repeats this a million times. Execution on A takes 2.5s for
VirtualVector and 1.0s for Vector. The example was chosen as it is close to the use case in
BioDynaMo where an operation iterates over a set of elements (e.g. cells) and performs certain
operations. Nevertheless, it should be noted that performance degradation depends on the actual
application. In this example there is no work done inside the function bodies, therefore, overhead
is significant. To compile the non-virtual vector version omit the -DVIRTUAL flag from line 1.
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4. Port from Java to C++

Listing 4.1: Performance Evaluation of Virtual Function Calls

1 // g++ --std=c++11 virtual_functions.cc -o virtual_functions -O2 -DVIRTUAL
2 #include <iostream>
3

4 struct VirtualVector {
5 int x, y;
6 VirtualVector() : x{1}, y{1} {}
7 virtual int GetX() const { return x; }
8 virtual int GetY() const { return y; }
9 };

10

11 struct Vector {
12 int x, y;
13 Vector() : x{1}, y{1} {}
14 int GetX() const { return x; }
15 int GetY() const { return y; }
16 };
17

18 int main() {
19 const size_t N = 2 << 10;
20 #ifdef VIRTUAL
21 VirtualVector v[N];
22 #else
23 Vector v[N];
24 #endif
25 double sum = 0;
26 for (int i = 0; i < 1e6; i++) {
27 for (size_t j = 0; j < N; j += 2) {
28 sum += v[j].GetX() * v[j + 1].GetX() + v[j].GetY() + v[j + 1].GetY();
29 }
30 }
31 std::cout << sum << std::endl;
32 }

C++ Template Metaprogramming Example

Code example 4.2 shows the benefits of template metaprogramming by means of Fibonacci se-
quence calculation. Function Fibonacci will be evaluated at compile time while
FibonacciNaive is calculated at runtime. Executing line 28 is immediate and equivalent
to the code line std::cout << 20365011074 << std::endl; – the result of the cal-
culation. The result can be found in the assembly code generated by the compiler. To see the
assembly output add the -S flag for g++. The dynamic calculation on line 29 takes about 34s. Hint:
The dynamic Fibonacci version can be sped up tremendously by using dynamic programming
(O(n) instead of O(2n)). Due to simplicity of this example the naive implementation was shown.
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4.1. Design

Listing 4.2: Template Metaprogramming Example

1 // compile with: g++ Fibonacci_tmp.cc -o Fibonacci_tmp -O3
2

3 #include <iostream>
4

5 template <long N>
6 long Fibonacci() {
7 return Fibonacci<N - 1>() + Fibonacci<N - 2>();
8 }
9

10 template <>
11 long Fibonacci<0>() {
12 return 1;
13 }
14

15 template <>
16 long Fibonacci<1>() {
17 return 1;
18 }
19

20 long FibonacciNaive(long n) {
21 if (n <= 1)
22 return 1;
23 else
24 return FibonacciNaive(n - 1) + FibonacciNaive(n - 2);
25 }
26

27 int main() {
28 std::cout << Fibonacci<50>() << std::endl;
29 std::cout << FibonacciNaive(50) << std::endl;
30 return 0;
31 }

4.1. Design

Our porting approach has been strongly influenced by the fact that Cortex3D did not have automated
tests. This was a major challenge since we had to ensure that the ported C++ version produces the
same results as the original Java simulator. Porting will inevitably introduce bugs. It is crucial that
mistakes are detected as early as possible. Finding the reason(s) for numerical differences in 15k
LOC is a veritable nightmare for a developer. Consequently, this scenario must be prevented. This
requirement translates into a workflow where a small piece of code is translated and immediately
validated. Once correctness has been verified, the developer proceeds with the next part. There
are two options to perform validation: write unit tests for every single class, or test the whole
simulator.

The highly interdependent architecture of the spatial organization layer (Figure 4) would re-
quire many code changes to separate components. This would be necessary to test individual
functions. Furthermore, option number one requires a very detailed understanding of the whole
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4.1. Design

implementation to select test cases that cover a meaningful part of the input space.

In contrast, testing the whole simulator is a lot easier. The only obligatory code changes are adding
serialization to objects that contain simulation state. After this has been completed, existing demo
simulations can be transformed into test cases and executed on the original Java application. The
results are persisted to disk and form the target simulation state which must also be obtained from
the new C++ version. The most important requirements for serialization of the simulation state are
as follows: [1]

• Serialization should not contain implementation details e.g. which specific data structure
was used, or the state of a lock.

• It must be possible to generate the serialization in Java and C++ with the same result.

The issue with testing the whole simulator, is that executing the tests is only possible once all code
has been ported, thus invalidating one of our specifications. This can be mitigated by creating an
executable Java / C++ hybrid and gradually replacing Java code with its C++ representation. Hence,
a prerequisite for the proposed approach is two-way communication between these two languages.
Java must be able to call functionality implemented in C++ and vice versa. Java contains Java
native interface (JNI), a low level mechanism that is able to perform this task for C code. Figure 13
visualizes the just described porting workflow and will be explained in greater depth in Section 4.2.

After examination of the advantages and disadvantages of the two options, we decided to opt
for the second choice. The decisive reason was that it also ensures that the interaction of many
components produces the original results, something that unit tests on its own cannot warrant.
Furthermore, we expected a higher development speed due to the aforementioned reasons.

Even in the iterative porting workflow that translates one class in each step, debugging tools are
required because some classes are more than 1000 LOC long.
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





Java
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C++

Step 1

Pick a Java class with 
few dependencies

Step 2

Refactor remaining Java
application

Step 3

Translate Java 
code into C++

Step 4

Write code to enable 
communication between
Java and C++
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Run automated tests

Figure 13.: Iterative Porting Workflow: Java classes are translated to C++ one at a time. Selecting
a class with few dependencies reduces development and runtime overhead. The
remaining Java application must be refactored to use a common interface of this class.
This allows switching between native and Java implementation which is important
for debugging purposes. After the class has been translated to C++, code has to be
added to enable communication between languages. The last step is to execute the
automated tests. If they pass, the next Java class will be ported.
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4.2. Implementation

4.2. Implementation

4.2.1. Obtaining Simulation Target Values

As described in the design part, we transformed existing tutorial simulations and two simulations
from [12] into test cases. They cover the most important features like mechanical interactions,
extra- and intracellular diffusion, creation of synapses and definition of custom behaviour. Based
on the requirements from Chapter 4.1 we decided to develop a custom solution to serialize class
members to JSON format and further to obtain target values of the simulation outcome. Listing
4.3 shows this process for class PhysicalNode. More advanced techniques that automatically
serialize classes did not comply with above rules. To perform the JSON comparison we used the
library Gson. A common base class BaseSimulationTest was created which sets up the
environment, runs the test, asserts the result and tracks performance . This makes it very easy to
transform a tutorial simulation. The only thing that must be done is replacing one line of code:
changing the function signature of main to public void simulate() [1].

The result of performance tracking for IntracellularDiffusion can be observed in Figure
14. For each test the system logged execution times of the last commit. This should not be seen
as a very accurate measurement since they are not normalized. Therefore, different development
hardware or simply different utilization of the machine leads to different wall clock time mea-
surements. Initially this functionality was added to assert that performance improves with each
commit. BaseSimulationTest was designed to fail a test if the runtime was higher than the
last commit including some margin. Looking again at Figure 14 it clearly shows that we had to
change this very quickly. The assert was removed, but logging execution times remained active.
Spikes in the plot are closely related to the overhead due to interlanguage communication between
Java and C++. Performance degraded if there was a pair of classes which communicated intensively
with each other and were implemented in different languages. One measurement was even ten
times slower than at the beginning. After all classes were available on the native side the spike
disappeared.

4.2.2. Iterative Porting Workflow

In the design part we evaluated different options and decided to select a workflow that tests the
whole simulator and replaces Java classes step by step. This approach is illustrated in Figure 13
and will be described in more depth in this chapter.

The process starts by selecting a Java class with few dependencies. The less interactions the
currently ported class (CPC) has the easier becomes the whole process. In general, interactions
mean method calls between CPC and the remaining Java application with all method calls crossing

32



4.2. Implementation

Listing 4.3: Code Sample Demonstrating JSON String Generation

1 @Override
2 public StringBuilder simStateToJson(StringBuilder sb) {
3 sb.append("{");
4

5 SimStateSerializationUtil.keyValue(sb, "ID", ID);
6 SimStateSerializationUtil.keyValue(sb, "idCounter",
7 idCounter.get());
8 ...
9 SimStateSerializationUtil.keyValue(sb, "soNode", soNode);

10

11 SimStateSerializationUtil.removeLastChar(sb);
12 sb.append("}");
13 return sb;
14 }

Figure 14.: IntracallularDiffusion Performance Monitoring

the language border. Hence, transformation rules for all parameter and return types have to be
created and special code has to be be inserted for each Java class that the native implementation
has to communicate. Furthermore, runtime overhead will be substantial as it can be observed in the
spikes of Figure 14. Therefore, I strongly recommend to start with a class that minimizes all these
negative effects. Taking the spatial organization layer (Figure 4) as an example, class Rational is
a very good starting point opposed to Tetrahedron or SpaceNode. Additionally, Rational
has the rare benefit that it does not call methods of other classes, thus, minimizing the required
development overhead even further.

I want to explain the next steps by means of a simple example. Figure 15 shows an application
composed of three classes A, B and C. For the first iteration we chose to port class A. Our next
task is to “refactor the remaining Java application". This includes extracting an interface for A,
replacing all types of A with its interface in the remaining application (class B and C) and creating
a factory that creates new instances of A. The first two tasks can be performed semi-automatically
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(b) Architectural Changes after Porting Class A

Figure 15.: Porting Example

with modern development environments like Eclipse or Jetbrains IntelliJ. The factory will become
important for debugging to quickly switch between Java and native implementation. Debugging is
described in more detail in Chapter 4.2.5. Although not present in the overview, this would be a
good time to execute all tests, especially if many classes have been affected by replacements. If
they pass, I would also recommend to commit this intermediary result. Step three is the actual core
assignment: translating the Java code to C++ (class ANative). Methods of B that are called from
A must also be declared in C++, but do not require an implementation. Afterwards, code must be
written to enable communication between languages. In UML diagram 15b this corresponds to
classes AProxy, BProxy and the package Connector (see Chapter 4.2.3). Lastly, we execute
all tests using native version of A and commit our changes if they produce the correct result.

4.2.3. Connecting Java and C++

At the beginning of Chapter 4 it was mentioned that Java provides JNI to connect both languages.
However, JNI is considered low level and it would be very beneficial if Connector and proxy
classes (Figure 15b) could be generated automatically from the declaration of ANative.

Fortunately, a tool called SWIG [47] exists, which connects native code with many high level
languages including Java. It can be seen as a compiler that takes C++ header files and SWIG
customizations as input and generates a couple of Java and C++ files. It is used in production, the
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4.2. Implementation

most prominent project that uses SWIG is probably Tensorflow — Google’s distributed machine
learning framework [48]. In retrospective it was a good decision to use this tool since the generated
C++ code alone exceeded 35k LOC. However, during the whole process we also encountered its
limitations, but always found a workaround.

Now I would like to examine the tool SWIG in more depth by explaining Figure 16. The labels
in parenthesis draw the connection to the class diagram in Figure 15. Generated Java files have
a yellow background while C++ output is blue. Contrary to the class diagram the names are all
the same (A). Distinction is possible, because they all belong to different packages / namespaces.
SWIG is organized around modules. The developer defines a set of classes that are bundled
together. Modules from BioDynaMo are similar to the four layer architecture, but biology and
cell have been merged. For every input class or struct SWIG generates a proxy with the same
method signature as the original Java implementation. Therefore, they can both implement the
same interface (AInterface) and become easily exchangeable. A standard proxy has only one
data member, the pointer to the native object that gets created when the proxy is constructed. It
is also possible to create a proxy if the pointer already exists. The method bodies of the proxy
functions forward the call to the related static native function declaration in moduleJNI.java.
They prepend the pointer of the native object as additional parameter. Due to the specified native
keyword this function does not require a definition. The virtual machine now looks for a method
with the following name to execute [49]: Java_{mangled fully-qualified class

name}_{mangled method name}. Mangling of method name can be observed in Figure
16: The underscore of A_foo in moduleJNI.java got replaced with _1 in the native source
file.

Once the runtime found this method, execution continues in C/C++. The generated method casts
the pointer passed as long to A* and lastly calls the native user defined function foo. The
described procedure is visualized in the sequence diagram in Figure 17: “Calling Native Code
from Java". The subcomponent Connector from the class diagram consists of four components:
moduleJNI.java, module.java, moduleJAVA_wrap.h and cxx. The generated file
module.java which has not been explained yet can be used to hold custom Java code, but is
empty by default.

For the opposite calling direction let us assume that ANative needs to call methods from B

which are still implemented in Java. In our terminology we call B a Java-defined class (JDC)
— A would be a native-defined class (NDC). The developer needs to declare only the methods
that are called by A and leave the body empty as it will never get executed ( BNativeStub).
Afterwards, B needs to be defined as JDC for SWIG. Hence, SWIG will subclass BNativeStub.
Therefore, any call from ANative to BNativeStubwill end up in the generated sub class called
SwigDirector_BNativeStub which in turn contains code to call a static method inside
moduleJNI.java. It prepends the corresponding Java proxy object as additional parameter
which allows moduleJNI.java to forward the call to BProxy. Since B has been updated to
subclass BProxy the call ends up at the intended destination due to polymorphism.
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

SWIG

class A {
 ...
 virtual void foo(int i);
};

a.h (ANative)

SWIG customizations



public class moduleJNI {
  public final static native long A_foo(

long jarg1, A jarg1_, int jarg2);
  ...
}

moduleJNI.java (Connector – Java part 1/2)

SWIGEXPORT jlong JNICALL 
Java_package_moduleJNI_A_1foo(JNIEnv *jenv,
   jclass jcls, jlong jarg1, jobject jarg1_, 
   int jarg2) {
  ...
  return jresult;
}

moduleJAVA_wrap.{h, cxx} (Connector – C++ part)

public class A {
 ...
 public void foo(int i){

...
 }
}

A.java (AProxy)

public class module {
  ...
}

module.java (Connector - Java part 2/2)

Figure 16.: Schema of the Tool SWIG: Based on the native header file and SWIG customizations,
SWIG generates a set of Java and C++ source files. On the Java side a thin proxy is
created, a file that contains native method declarations, and a file (module.java)
which is empty by default, but can be used to inject custom code. On the native side
two files are generated that contain methods called by JNI which forward the call to
the actual implementation.

In a more complex example where a JDC is passed as an argument, this solution does not suffice
(e.g. jdc->equalTo(other_jdc)). For parameters SWIG uses the pointer of other_jdc
passed as long instead of the Java proxy object. Therefore, on the Java side, we need an
association that returns the Java object given the pointer. This is implemented using a HashMap.
After construction of the Java object B, which in turn creates an instance of BNativeStub this
key-value pair is added to the map.

The complexity of these call sequences increases for class hierarchies (Figure 18). All dis-
played classes are implemented in Java. The initial situation is shown within the left rectangle.
PhysicalObject subclasses PhysicalNode and is derived by PhysicalSphere. Let us
assume that PhysicalNode has already been ported while PhysicalObject is a JDC. Once
we finish porting of PhysicalObject it is possible to switch to the native implementation,
thus, removing it from the class hierarchy. Finding bugs, requires quickly switching between
native and Java implementation and turning on debugging output. Doing so for the Java version
requires another type of call hierarchy (fourth column). Therefore, a mechanism is needed which
rewires the classes based on SWIG’s configuration. The implemented solution adds an empty
nested class called PhysicalSphereBase inside module.java. PhysicalSphere is
changed to subclass it. This base class is controlled by SWIG and can be modified to extend
the required parent. Beside increased complexity, changing the class hierarchy has another nega-
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Figure 17.: Sequence Diagrams to Call Native Code from Java and Vice Versa.
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tive aspect. A call inside PhysicalSphere to super might end up at the wrong destination.
Unfortunately, SWIG does not allow to insert arbitray code into a proxies’ method body. There-
fore the only solution left is to add additional functions that redirect to the correct destination.
An example of this can be seen in code Listing 4.5 on line 18 – 21 and 29 – 32. It adds the
function superSuperSimStateToJson. Consequently, all calls in NeuriteElement to
super.simStateToJson(...) must be changed to superSuperSimStateToJson.

It should be noted that although PhysicalNode has already been ported it is not strictly a NDC,
but also needs attributes from a JDC due to the fact that it is subclassed by a JDC.

Using thin proxies on the Java side that are created and destroyed frequently, breaks code which
assumes that the identity of an object stays the same over its lifetime (e.g. a == b). Even
if they both point to the same C++ object the comparison will fail if the proxy objects are
different. As mitigation, all these comparisons should be replaced with java.util.Objects
.equals(a, b) and the proxies’ equals method must be implemented accordingly. This
is also of great importance for Collection classes like Vector and HashMap which assume a
correct implementation to function properly.

SWIG customizations

The last component from SWIG’s schema which has not been described yet is “SWIG customiza-
tions". They are used to influence code generation and are clearly separated from C++ source files.
Explaining all its aspects would go beyond the scope of this chapter. Therefore, I would like to
point the interested reader to SWIG’s documentation [47]. Especially the chapters: Introduction,
SWIG Basics, Typemaps and Java Support [1]. In general it gives the developer many possibilities
to alter the output of the compilation process and is essential for the following tasks:

• Type and value transformation

• Special code needed for JDC’s and NDC’s

• Code to automatically load the native library on startup

Files containing SWIG code have the file extension *.i. It is possible to define macros which are
processed by SWIG’s preprocessor and helps to avoid code duplication. Code Listing 4.4 shows
parts of the module definition for the biology module. Line 1 defines the module and switches the
director feature on which is required for cross language polymorphism. Line 3 and 4 include SWIG
files that contain macro definitions and a central definition if a class should run in native or Java
mode and whether debugging is turned on. Line 6 to 18 will be added verbatim to the generated
C++ files and are necessary to tell SWIG for which classes it should generate code. General code
modifications and dependant modules are defined between line 20 and 38. All adaptations for a
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Figure 18.: Dynamic Class Hierarchy: Class hierarchy depends on the configuration of the class.
Therefore, a mechanism is required, that allows SWIG to rewire the inheritance path

specific class are collected in a separate file which keeps the module code clean and readable. An
example for NeuriteElement is shown in code example 4.5.

Line 5 – 24 define partial macro applications by fixing the value of a number of arguments.
Therefore, these macros are easier to use. Customizations are applied from line 40 onwards.
They issue the required code changes to use NeuriteElement inside a C++11 shared pointer,
array and list. Furthermore, they add imports to the generated proxy class and make sure that it
implements the NeuriteElement interface. Lastly, based on the configuration it alters the code
to run the native or Java version (line 41 – 44).

4.2.4. Build Setup

Chapter 4.2.3 introduced SWIG as a precompilation step that generates Java and C++ files. The
schema in Figure 19 outlines the resulting build process. Before the porting process has been started,
Cx3D has been transformed into a Maven project. Maven is a Java build tool and dependency
manager [1]. A very convenient feature is dependency management. Libraries are defined inside
configuration file (pom.xml). Maven downloads the requested files and automatically adds it to
the class path. It follows the principle “convention over configuration". Hence, the folder structure
in every Maven project looks the same (see Figure 20a).
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Listing 4.4: SWIG Module File

1 %module(directors="1") biology
2

3 %include "util.i"
4 %include "config.i"
5

6 %{
7 #include <memory>
8 #include "color.h"
9 #include "local_biology/abstract_local_biology_module.h"

10 #include "local_biology/cell_element.h"
11 ...
12 using namespace cx3d::local_biology;
13 using namespace cx3d::cells;
14 using cx3d::physics::PhysicalObject;
15 using cx3d::physics::PhysicalSphere;
16 using cx3d::physics::PhysicalCylinder;
17 using cx3d::Color;
18 %}
19

20 // import depending modules
21 %import "cx3d.i"
22

23 // transparently load native library - convenient for user
24 %include "load_library.i"
25 JAVA_LOAD_NATIVE_LIBRARY(cx3d_biology);
26

27 // typemap definitions, code modifications / additions
28 %include "primitives.i"
29 %double_stdarray_array_marshalling(biology, 2);
30 %double_stdarray_array_marshalling(biology, 3);
31 %include "color_typemap.i"
32 %color(biology);
33 %pragma(java) jniclassimports="import ini.cx3d.swig.NativeStringBuilder;
34 import ini.cx3d.swig.biology.CellElement;
35 import ini.cx3d.swig.biology.LocalBiologyModule;
36 import ini.cx3d.swig.physics.PhysicalObject;
37 import ini.cx3d.swig.physics.PhysicalSphere;
38 import ini.cx3d.swig.physics.PhysicalCylinder;"
39

40 // class modifications
41 %include "class_customization/local_biology/cell_element.i"
42 %include "class_customization/local_biology/local_biology_module.i"
43 ...
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Listing 4.5: NeuriteElement Class Customizations

1 %include "util.i"
2 %include "cx3d_shared_ptr.i"
3 %include "std_list_typemap.i"
4 %include "std_array_typemap.i"
5

6 %define %NeuriteElement_cx3d_shared_ptr()
7 %cx3d_shared_ptr(NeuriteElement,
8 ini/cx3d/localBiology/interfaces/NeuriteElement,
9 cx3d::local_biology::NeuriteElement);

10 %enddef
11

12 %define %NeuriteElement_java()
13 %java_defined_class_add(cx3d::local_biology::NeuriteElement,
14 NeuriteElement,
15 NeuriteElement,
16 ini.cx3d.localBiology.interfaces.NeuriteElement,
17 ini/cx3d/localBiology/interfaces/NeuriteElement,
18 public NativeStringBuilder superSuperSimStateToJson(
19 NativeStringBuilder sb) {
20 return super.simStateToJson(sb);
21 });
22 %enddef
23

24 %define %NeuriteElement_native()
25 %native_defined_class(cx3d::local_biology::NeuriteElement,
26 NeuriteElement,
27 ini.cx3d.localBiology.interfaces.NeuriteElement,
28 NeuriteElement,
29 public NativeStringBuilder superSuperSimStateToJson(
30 NativeStringBuilder sb) {
31 return super.simStateToJson(sb);
32 });
33 %enddef
34

35 ...
36

37 /**
38 * apply customizations
39 */
40 %NeuriteElement_cx3d_shared_ptr();
41 #ifdef NEURITEELEMENT_NATIVE
42 %NeuriteElement_native();
43 #else
44 %NeuriteElement_java();
45 #endif
46 %NeuriteElement_stdlist();
47 %typemap(javaimports) cx3d::local_biology::NeuriteElement %{
48 import ini.cx3d.swig.NativeStringBuilder;
49 import ini.cx3d.swig.biology.LocalBiologyModule;
50 import ini.cx3d.swig.physics.PhysicalObject;
51 import ini.cx3d.swig.physics.PhysicalCylinder;
52 %}
53 %typemap(javainterfaces) cx3d::local_biology::NeuriteElement
54 "ini.cx3d.localBiology.interfaces.NeuriteElement"
55 %NeuriteElement_array(biology, 2);
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Listing 4.6: Common Maven Commands [1]

1 # remove all build artefacts
2 mvn clean
3 # compile project
4 mvn compile
5 # compile project and run unit tests
6 mvn test
7 # compile project and run a specific test
8 mvn -Dtest=IntracellularDiffusionTest test

The non trivial build steps (Figure 19) were integrated into Maven. As a result, the standard build
commands from code Listing 4.6 can be used to build the whole hybrid simulator. On the native
side, cmake build system was used to detect and execute SWIG and to compile the native shared
libraries. For debugging purposes two cmake derivatives were created to build the system without
SWIG (cmake_wo_swig) and to compile a native only application (cmake_standalone).

Native source files and SWIG customizations were integrated into the existing src folder struc-
ture: src/main/cpp. SWIG generated files are stored in src/main/cpp/java/ini/

cx3d/swig/. The final shared library is stored in directory src/main/resources. The
same structure applies also for the test branch.

4.2.5. Debugging

Although classes are ported incrementally, number of code changes during one iteration can still be
substantial for important classes. Inevitably, errors will be introduced. The debugging frameworks
helps the developer to fix issues as quickly as possible. First I want to give an overview about types
of errors and their mitigation measures taken from [1]:

• Java cannot load the native library or crashes while creating the first object
Test constructing this object on the C++ side in a main method and use
cmake_standalone to compile it. The implementation of a method or constructor
might be missing.

• JVM failure
The generated file hs_err_pid*.log provides more information. It points to the function
causing the issue. If the issue is in the glue code, try to fix it there directly and compile using
cmake_wo_swig. After it has been fixed, integrate it into the SWIG code generation
process.

• Simulation outcome is different or throws Exception
Use debugging framework to identify the issue.
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The hardest to find issues are simulation results that differ from the target. Tracking down the point
in time when simulations started to diverge requires tools, because often the first difference occurs
after thousands of method calls between the languages. The idea is to log all relevant information
and compare the Java and C++ output to find the first difference. Hence, the feature to quickly
switch between native and Java implementation is of utter importance. In Figure 21 this approach
has successfully revealed a bug in the C++ equals method which returned a wrong result.

A generic solution that does not miss any disparity needs to log the following data [1]:

• All method calls with parameters

• Inner state before method call

• Inner state after method call

• Method return value

• (All calls to other objects from within the CPC with parameter and inner state)

If the first four bullet points are implemented, the last requirement can be achieved by turning on
debugging output for all classes that are called by CPC [1].

The first version of the debugging framework was using dynamic Java proxies to perform this
logging. The clear advantage lies in the fact that it is a generic solution that uses Java reflection
mechanism to wrap and intercept arbitrary objects. Unfortunately, this solution had to be replaced,
because it could not capture C++ to C++ calls, did not capture nested method calls and was lost
sometimes during execution if the wrapped object called a method and passed itself (using this)
as argument. Similar to the serialization of the simulation state, the second release of the debugging
tools used a custom implementation. A debugging subclass is generated that produces the required
outputs and forwards the call to the implementation. Listing 4.7 shows one example. Fortunately,
modern integrated development environments (IDEs) are able to create most of it automatically.
Post processing to eliminate errors in the generated code, was done manually.

Listing 4.7: Debug Output Generation Example [1]

1 bool isInsideSphere(const std::array<double, 3>& point) override {
2 logCall(point);
3 auto ret = Tetrahedron<T>::isInsideSphere(point);
4 logReturn(ret);
5 return ret;
6 }
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Figure 21.: Error Detection with Debugging Framework: A wrong return value of method
equals, indicated by a difference in debugging output, leads to a diverging simulation
state.

Usage and Limitations

The subsequent code example demonstrates the usage of the debugging framework under the
assumption that IntracellularDiffusionTest fails

Listing 4.8: Debugging Framework Usage [1]

1 mvn -Dtest=IntracellularDiffusionTest test | grep DBG >java
2 # change implementation in config.i and rerun
3 mvn -Dtest=IntracellularDiffusionTest test | grep DBG >cpp
4 # find first difference
5 debugging_solution/find_first_diff.sh java cpp

The files java and cpp are usually to large to process in a diff tool. Therefore find_first_
diff.sh splits them up into pages of 100k lines.

One of the big issues with this setup is noise due to false positives. Sometimes, language differences
lead to distinct outputs although the result is correct (Figure 22). Furthermore, switching between
native and Java implementation is usually limited to the CPC, but this was never an issue.

4.2.6. Numerical Instabilities

Simulations run for many hundreds of iterations. Even small rounding differences affecting only
the least significant digit can amplify to an extend that validation of simulation correctness is
not possible any more. Using simple JSON comparisons it is infeasible to distinguish rounding
differences from actual software errors. In one of those tests (SomaClusteringTest), these
differences where as large as a factor of two compared to the target value. The problem is that the
IEEE 754-2008 standard for binary floating-point arithmetic only recommends correct rounding
for transcendental and algebraic functions (ex, sin(x), log(x), ...) [50].
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Listing 4.9: Original Java Version

1 double[][] positions = new double[][] {
2 adjacentNodes[0].getPosition(),
3 adjacentNodes[1].getPosition(),
4 adjacentNodes[2].getPosition(),
5 adjacentNodes[3].getPosition() };
6

Listing 4.10: Ported C++ Code

1 for (size_t i = 0; i < adjacent_nodes_.size(); i++) {
2 positions[i] = adjacent_nodes_[i]->getPosition();
3 }
4

Figure 22.: Spurious Debugging Differences [1]: Variation in debugging output although Java and
C++ version are equivalent. This is caused by different execution order.

In a discussion with Roman Bauer he pointed out that if these small differences have such a huge
impact on the final result, than the underlying biological model is not plausible. However, our test
cases are simple demonstration simulations that do not lay claim of biological relevance.

LHC@home project had similar issues and published their findings [51]. They are using a library
called crlibm which stands for correct rounding math library. Adopting this library solved this
issue, but increased runtime.

4.3. Evaluation

After porting has been finished a benchmark between the new C++ version and original Java
application was performed. The results can be found in Figure 23. The term “unoptimized" in
the title of the plot refers to the state of the C++ version after porting. The application is almost
a one to one copy of the Java version. It is still single threaded, does not support vectorization
and its architecture has not been optimized yet. Most of the tests run about 1.6 times faster. The
figure clearly indicates two outliers, one in each direction. DividingCell simulation runs 4.8
times faster, but SomaRandomWalkModule improved only by a factor of 1.1x. This results
were obtained on environment A with five repetitions for each measurement.

46



4.3. Evaluation

Figure 23.: Benchmark between Unoptimized C++ and Java

An investigation about the underlying cause of the outliers showed that speedup strongly depends
on how much time is spent within the spatial organization layer. The C++ version of the highly
abstract architecture (Figure 4) runs slower than the Java equivalent. It seems that this is related to
the use of shared and weak pointers which are required by the given design. Experiments with
different simulation runtimes (approximately one, two and four minutes for each test) showed that
speedups are stable proving that runtime complexity remained unchanged. We did not analyse this
in more depth, because we already knew that this part of the application has to be replaced, since
Delaunay triangulation is not well suited for parallel and distributed environments (Chapter 2.2).
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Although, porting has been finished successfully, the current C++ version of BioDynaMo does not
fully utilize capabilities of modern hardware. Therefore, it is not yet possible to simulate ambitious
models of e.g. epilepsy. Besides, parallelism, a second goal is to create a more flexible architecture
that allows scientists to easily modify simulation objects. This chapter explains how to reach these
goals.

Since 2004, industry has shifted to more and more parallelism to deliver exponential performance
gains in new processor generations [9]. Before this transition, the main performance indicator of a
processor was its clock speed since it increases the number of instructions executed over time. To
harvest the gains of a new processor generation an application did not require any code changes.

Patt Yale described computer science as a series of layers to transform a problem defined in
natural language into movements of electrons (problem → algorithm → program → ISA →
microarchitecture→ circuits→ electrons) [52]. Applications could exploit performance gains,
since changes to increase the frequency were hidden below an unchanged ISA.

From a software developer’s perspective an ideal situation, but unfortunately this era is over. Chip
manufacturers reached physical limitations because higher clock speed correlates with higher
power consumption and heat generation. Therefore, processor vendors have shifted to more and
more parallelism to push the performance envelope while frequency almost remained unchanged.
This had a tremendous impact on software engineering, since hardware changes are exposed to
software. Code changes are required to tap the unused potential. Benefits of code modernization
efforts are shown in Schema 24. Time t0 marks the transition from frequency to parallel driven
performance. Parallelized applications remain on the peak performance line while others only
benefit marginally. Let us assume that we invest in code modernization at point t1. Usually, the
graph is read in a vertical manner. Once refactoring has been finished performance increases by
∆p with the benefit of fully exploiting future performance gains. Furthermore, on the horizontal
time line, this means that suddenly the application is as performant as it would have been after
many new processor generations t2.

48



5.1. Vectorization

       

   
  

  

t
0

t
1 t

2

TIME

PERFORMANCE

∆t

∆p

≈

Figure 24.: Benefits of Investing in Code Modernization

Figure 25 shows the latest result after being already a decade into this transition. It is a die picture
of the recently released Xeon Phi Knights Landing coprocessor. It is equipped with up to 72 cores
with four threads each and AVX-512 vector instructions [53].

Parallelism is integrated on many different levels. Some are transparent to the application while
others require an “enabled" program (Figure 26). Usually compute nodes in a data center are
equipped with more than one processor. Each of them has a number of physical cores and
hardware threads. Chip vendors replicate a number of registers in order to let these threads run
concurrently. This can lead to performance improvements since many processors are superscalar.
This means, that each physical core accepts more than one instruction per cycle. The current Intel
Skylake architecture features seven execution units, each accepting a subset of the instructions
[54]. Therefore, cycles per instruction (CPI) can be smaller than one. Instruction pipelining is
used to increase parallelism inside an execution unit by separating different phases (i.e. fetch,
decode, execute). The goal is to complete one instruction per cycle even if a single instruction
would take multiple cycles. The last two techniques are called instruction level parallelism. They
can be performed from a serial stream of instructions and are therefore transparent to software.
Vectorizations are instructions that perform one operation on more than one operand at the same
time. Due to the hierarchical structure of those elements, performance gains are multiplicative.

5.1. Vectorization

Vector instructions and registers have been added to processors as a means of fine grained data
parallelism. In Flynn’s taxonomy of parallel machines vector instruction belong to the single
instruction multiple data (SIMD) group [55]. Depending on the length of the registers, one
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Figure 25.: Die Picture of the Xeon Phi Coprocessor with 72 cores [2].

Figure 26.: Different Levels of Parallelism in Today’s Modern Hardware (taken from [4]).
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Figure 27.: Principle of Vector Instructions

operation can be executed on 16 single precision floating point values at the same time (AVX512).
This is visualized in Figure 27. SIMD extensions continuously evolved from MMX with eight 64
bit wide registers that only supported integers to AVX512 with 32 512 bit wide registers [4].

There are many different ways to utilize these capabilities [3]:

• Auto vectorization

• Compiler pragmas

• SIMD library

• Compiler intrinsics

• Inline assembly

Figure 28 gives a short code example for each of these options. Due to portability and programma-
bility using compiler intrinsics or inline assembly is not a viable option. The advanced vector
instruction (AVX) extension alone has 292 instructions [56] which the programmer would have to
cope with. Even if the team completes an application using one of the two options, it will only run
on AVX enabled hardware. It will not run on systems with streaming SIMD extension (SSE) only
and will not be ready for future standards. Lastly, code readability will suffer due to the verbose
programming style. However, analysis for the LHCb experiment at CERN showed that intrinsics
outperforms auto vectorization by a factor of 1.2x [57]. The most promising solution seems to
be auto vectorization: gain benefits while delegating heavy lifting to the compiler. Together with
explicit compiler annotations 28b it shares the disadvantage that the results will be highly compiler
dependant. Although it can give good results, the process of generating vector code based on a
scalar implementation is fragile. In example 28a the compiler has to check if [4]:
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5.1. Vectorization

• N, a, b and c are loop invariant

• c is aliased with a or b

• N is large enough

• Elements are contiguous in memory→ is i incremented in unit stride?

• Vector code is expected to be faster on the given platform (based on heuristics)

During these checks the compiler has to take a conservative standpoint and has to assume the worst
case if no definitive decision can be made. As a mitigation, the compiler can insert a dynamic
check to defer decision towards runtime (e.g. if it is save to execute the vectorized version), but this
introduces a small overhead [58]. The most common obstacles in auto vectorization are [4, 59]:

• Mixed data types

• Data dependencies (aliasing and overlaps)

• Non contiguous memory access

• Memory alignment

• Exceptions in loop body

• Program flow statements (conditionals, loops)

Annotations are a way for the developer to convey additional information to the compiler to
obtain better results. #pragma ifdep tells the compiler that memory regions do not overlap,
the keyword restrict added to pointer definitions conveys that they are pointing to different
memory regions and _declspec(align(16, 8)) ensures correct memory alignment [4].

SIMD libraries like Vc [60] or UMESIMD [61] have been developed due to the shortcomings
of the so far described vector solutions. They provide an easy to use interface which hides the
complexity of many different vector extensions across compilers, have overloaded operators to use
them like primitives and are well tested.

52



5.2. Memory Layout

5.2. Memory Layout

Referring back to the vectorization analysis, data elements have to be contiguous in memory to
benefit from vector instructions. Otherwise data elements cannot be loaded into the register with
one instruction. In most cases however, data members in object oriented applications are laid out in
the so called array of structures (AOS) format (Listing 5.1). Consequently, an operation that should
be carried out only on values of x cannot be vectorized, because they are separated in memory. This
can be remedied by using structure of arrays (SOA), but is less cache friendly. Therefore, array of
structure of arrays (AOSOA) should combine the advantages of the aforementioned options.

5.3. Parallelization

While vectorization applies one instruction to multiple data elements, multi and many-core proces-
sors are able to execute multiple (different) instructions on multiple data streams MIMD [55] and
are thus more flexible. Problems can be categorized by how well they are parallelizable:

• Embarassingly parallel:
no communication between sub tasks required (e.g. event reconstruction in high-energy
physics (HEP))

• Parallelizable / (tightly) coupled
requires communication between subtasks (e.g. BioDynaMo)

• Not Parallelizable
calculation of the Fibonacci series (see code Listing 4.2)

BioDyanMo falls into the second category. It follows an agent based approach where objects
can only interact with its local environment [12, 14]. Hence, if the simulation volume is split
among two different threads, cores, processors, or nodes, communication in neighboring regions is
required.

After it has been clarified in which category the problem falls and thus if it makes sense to
continue, it is helpful to evaluate the achievable speed-up. Therefore, I want to introduce Amdahl’s
law (Figure 29) which describes the maximum obtainable improvement. It is calculated with

1
S+ P

N
= 1

(1−P)+ P
N

, where P refers to the parallel portion of the code, S the serial part and N to the
number of parallel execution units. Serial portions are introduced through synchronisation like
locks or barriers. Consequently, if 10% of the application is serial, maximum speedup is limited to
a factor of 10.
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1 const size_t N = 8;
2 float a[N], b[N], c[N];
3 for (int i = 0; i < N; i++) {
4 c[i] = a[i] + b[i]
5 }

(a) Auto Vectorization

1 const size_t N = 8;
2 float a[N], b[N], c[N];
3 #pragma omp simd
4 #pragma ivdep
5 for (int i = 0; i < N; i++) {
6 c[i] = a[i] + b[i]
7 }

(b) Compiler Pragmas

1 float_v a, b, c;
2 c = a + b;

(c) SIMD Library

1 __m256 a, b, c;
2 c = _mm256_add_ps(a, b)

(d) Compiler Intrinsics

1 __asm {
2 vmovaps ymm0, a
3 vmovaps ymm1, b
4 vaddps ymm2, ymm0, ymm1
5 vmovaps c, ymm2
6 }

(e) Inline Assembly

Figure 28.: Different Vectorization Techniques [3, 4]

Figure 29.: Amdahl’s law illustrates the maximum achievable speed-up based on the serial part of
the application. Figure taken from [62] used under CC-BY-SA 3.0.
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Listing 5.1: Different Data Layouts (AOS SOA AOSOA)

1 // AOS - Array of Structures
2 struct Point {
3 float x, y, z;
4 };
5

6 Point points[64]; // allocate 64 points
7 float x_11 = points[11].x; // single element access
8

9 --------------------------------------------------------------------------------
10 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | ..
11 --------------------------------------------------------------------------------
12 | x0 | y0 | z0 | x1 | y1 | z1 | x2 | y2 | z2 | x3 | y3 | z3 | x4 | y4 | z4 | ..
13 --------------------------------------------------------------------------------
14

15 // SOA - Structure of Arrays
16 struct Point {
17 float x[64], y[64], z[64];
18 };
19

20 Point points; // allocate 64 points
21 float x_11 = points.x[11]; // single element access
22

23 --------------------------------------------------------------------------------
24 | 0 | 1 | 2 | .. | 63 | 64 | 65 | 66 | .. | 127 | 128 | 129 | 130 | 131 | ..
25 --------------------------------------------------------------------------------
26 | x0 | x1 | x2 | .. | x63 | y0 | y1 | y2 | .. | y63 | z0 | z1 | z2 | z4 | ..
27 --------------------------------------------------------------------------------
28

29

30 // AOSOA - Array of Structure of Arrays
31 struct Point {
32 float x[8], y[8], z[8];
33 };
34

35 Point points[8]; // allocate 64 points
36 float x_11 = points[1].x[3]; // single element access
37

38 --------------------------------------------------------------------------------
39 | 0 | 1 | .. | 7 | 8 | 9 | .. | 15 | 16 | 17 | .. | 23 | 24 | 25 | 26 | ..
40 --------------------------------------------------------------------------------
41 | x0 | x1 | .. | x7 | y0 | y1 | .. | y7 | z0 | z1 | .. | z7 | x8 | x9 | x10 | ..
42 --------------------------------------------------------------------------------
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Parallel computing within the same address space is possible using multiple threads. A common
low level implementation is pthreads (POSIX threads) which is implemented in most operating
systems. Other tools like OpenMP or Intel TBB build upon this thin operating system (OS) wrapper
and provide more functionality. OpenMP for example provides compiler annotations to parallelize
a for loop. Intels template library offers a parallel_for construct which executes a provided
lambda function in parallel.

Listing 5.2: OpenMP and Intel TBB Example

1 // OpenMP example
2 #pragma omp parallel for
3 for (size_t i = 0; i < N; i++) {
4 DoSmthUseful(i);
5 }
6 // TBB example
7 tbb::parallel_for(0, N, 1, [=](int i) {
8 DoSmthUseful(i);
9 });

5.4. Performance Profiling

Given the complexity of today’s computer systems, understanding runtime dynamics of an applica-
tion is crucial for optimization and parallel computing to answer the following questions:

• Which methods have the highest execution time?

• What are the performance bottlenecks?

• (How) can they be eliminated?

Performance depends on many aspects in the application itself and the underlying microarchitecture.
Therefore, a developer relies on measurements to gain insights about the most important problems.
Below is a non exhaustive enumeration of these manifold issues:

• Unnecessary copies of objects

• Unnecessary heap allocations

• Last level cache misses

• Branch mispredictions

• False sharing in multi-threaded applications

56



5.4. Performance Profiling

• High load latency

• Synchronisation (e.g. locks)

• Many AVX - SSE transitions

Performance data can be obtained through code instrumentation and sampling. The former solution
can record detailed metrics, but slows down the application significantly (up to a factor of 100 [4]).
On the other hand, event based sampling generates a statistical approximation. It periodically takes
a snapshot of the execution state (stacks, registers) to calculate application metrics and to associate
hardware events obtained from performance monitoring unit (PMU). This approach is possible
without modifying the binary. Moreover, hardware counter do not add execution overhead and can
measure a large variety of events — e.g. number of last level cache misses, number of stores. The
number of available hardware performance counters varies, but most modern systems provide at
least four [4]. A common tool to acquire performance data is perf (performance analysis tools
for Linux). Code Listing 5.3 demonstrates its usage.

Listing 5.3: perf Usage

1 # list available hardware events
2 perf list
3 # measure fraction of last level cache misses
4 # outputs only counter values
5 perf stat -e LLC-load-misses,LLC-loads ./binary
6 # to see which code parts caused them, record samples with
7 perf record -e LLC-load-misses,LLC-loads ./binary
8 # and browse the results
9 perf report

One commercial tool is Intel VTune Amplifier XE [63] which is part of Intel’s Parallel Studio.
It follows the same sampling approach to avoid impact on execution, but offers more powerful
functionality and reporting features. One of their predefined analysis types is “general exploration".
It uses hardware counter multiplexing to record more than 60 performance events and aggregates
them into a one page summary [64] (Figure 30).

Furthermore, it provides analysis types for hotspots, memory accesses, locks and waits, and lets
the user define custom ones. This is very useful to quickly test assumptions. In one case I wanted
to see whether transitions between AVX and the older standard SSE are the cause for performance
issues. Within five minutes it was possible to setup a new test type and obtain results.
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Figure 30.: Example Summary of VTune’s General Exploration Analysis. VTune uses multiplex-
ing to record about 60 different performance counters [64]. These measurements are
aggregated into the displayed metrics.
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Figure 31.: Initial Simulation Situation (left), Cell Neighbors (right)

5.5. Design

Going back to the beginning of Chapter 5, our requirements for the new system are efficient
utilization of multi level parallelism and a more generalizable architecture which allows scientists
to quickly add their modifications.

Quick iterations are crucial to quickly converge on an efficient design with high initial uncertainty.
Therefore, I decided to develop a separated proof of principle prototype. The remaining functional-
ity will be transferred after early defects in the architecture have been eliminated. The simulation
which should be carried out by the simplified simulator takes a three dimensional grid of cells as
input, grows each cell and displaces them based on the mechanical forces that are exerted by its
neighbors. The initial simulation state and a visualization of a cell’s neighbors are shown in Figure
31. Therefore, the whole simulation translates into three main tasks: find neighbors, grow cells,
calculate displacement.

While the old four layer architecture (Figure 3) which separates cells, biology, physics and spatial
organization is a good choice for didactic reasons it adds unnecessary complexity and runtime
overhead. Therefore, I removed this distinction and put the required data members in one object.

5.5.1. Flexibility

The desired workflow from the biologists point of view is as follows:

1. Select simulation entities (e.g. neuron, glia, plasma cell)

2. Select operations (physical interactions or biological behaviour)

3. Define initial state and parameters

4. Run simulation
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Neuroscience ExtensionCore

Compute Engine
Simulation Entities

Physical Processes

Biological Behavior

Neuron Glia Neurite
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Figure 32.: Envisaged Package Structure for BioDynaMo: The core package contains the dis-
tributed compute engine and simulation components that are shared across all domains.
Domain specific functionality is combined and forms an extension. For a specific
simulation, the scientists can use/modify classes from core and various extensions or
add completely new components.

In future, it is our goal to separate BioDynaMo into packages (Figure 32). The core will contain
the compute engine as well as simulation entities, physical processes, and biological behaviour
which are shared among all specialities. Functionality which is specific to a field will be released
as an extension. Computational scientists can use them as is or adapt them to their needs. The
neuroscience package would probably contain object definitions for neurons and glia, electrical
activity as additional physical interaction and predefined biological behaviours like a neurite’s
growth cone.

Adding data members or functions to Objects can be done at compile or runtime. Code Listing
5.4 explores the option of runtime modifications. Class Type is templated with the type of the
parameter. It inherits from BaseType to have a common interface which allows that different
Type templates can be stored in the same container. The object which should be modified needs
two: a static one which holds a template for each data member with its default value and a
non static version for each instance of Object. Usage is shown in function main. Firstly, an
instance for each data type is created and optionally a default value specified. Then they are
added to Object by invoking its static AddAttribute function. These types are now stored in
s_attributes_. Once an instance of Object is created, all types inside s_attributes_
are copied to attributes_ (line 26-30). They can now be retrieved from the outside application
using the Get method specifying the parameter id as attribute and the type as template parameter.

Alternatively, data members and functions can be added at compile time. Listing 5.5 shows a
sample implementation. As previously explained, it divides functionality, into core, a neuroscience

60



5.5. Design

extension, and customizations. Core defines class BaseCell. The Neuroscience package adds an
additional object Neurite and adds it as member to a templated parent class by means of class
Neuron. For the actual simulation, the biologist decides to add an additional data member foo_.
Therefore, she writes class NeuronExtension (line 40). The function coreOp demonstrates
that customized objects can be passed to predefined functionality. Its parameter cell is templated.
Hence, the compiler will accept all objects as long as they have a function GetPosition.
This can be seen as a form of compile time duck-typing. This solution uses variadic template
parameters, a feature added in C++11, to solve the construction problem. The subclasses remove
their parameters and forward the remaining ones to the parent. Also types of data members can
be templated which makes it possible to modify them as well and inject them into the owner (see
function main). Default template parameters and typedefs ensure that code remains readable.

Now let us compare the two options. For the dynamic solution we expect a performance penalty
imposed by the detour via the container. To quantify it I carried out a performance benchmark.
It retrieved a member of type double a million times and added it to a running sum. Baseline is
a class with a private double member and a get function. Compiling with -O0 indeed decreased
performance by a factor of four. However, from -O1 onwards there is no difference in obtaining
the data member. This example was deliberately written with performance in mind. It uses a
fixed size array and a short as data member id. Although, readability and flexibility suffers
as a result, the compiler is able to optimize the extra function calls out. Out of curiosity, I have
also benchmarked a modification which uses a unordered_map with a string as key instead
of an array. This analysis showed that runtime is 20 times slower even with -O3. All these
tests were carried out on A. Although, obtaining data members performed on par with a classic
implementation one big disadvantage remains. Each data member for each object is allocated
on the heap. This would lead to a huge overhead if many objects are created. The compile time
solution not only avoids this overhead, but is also superior in terms of readability, flexibility and
robustness. The templated Get method requires specification of the data member type, currently
using a magic number as id. Furthermore, how to add a method (Object::AddMethod) has
not been explored. Applications are more likely to break because each constructor has to ensure
that s_attributes_ is copied accordingly. The compiler will not issue an error if this part is
missing. Consequently, the clear recommendation is to use the compile time solution shown in
code Listing 5.5.
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Listing 5.4: Add Data Members at Runtime

1 struct BaseType {
2 virtual ~BaseType() {}
3 virtual BaseType* Clone() {}
4 };
5

6 template <class T>
7 class Type : public BaseType {
8 T data_;
9

10 public:
11 virtual ~Type() {}
12 BaseType* Clone() override {
13 auto other = new Type<T>();
14 other->data_ = data_;
15 return other;
16 }
17 void Set(const T& data) { data_ = data; }
18 const T& Get() const { return data_; }
19 };
20

21 class Object {
22 static std::array<BaseType*, 3> s_attributes_;
23 std::array<BaseType*, 3> attributes_;
24

25 public:
26 static void AddAttribute(short id, BaseType* type) { s_attributes_[id] = type; }
27 Object() {
28 for (size_t i = 0; i < s_attributes_.size(); i++) {
29 attributes_[i] = s_attributes_[i]->Clone();
30 }
31 }
32 virtual ~Object() {
33 for (size_t i = 0; i < s_attributes_.size(); i++) {
34 delete attributes_[i];
35 }
36 }
37 template <typename T>
38 const T& Get(short id) {
39 auto base_type = attributes_[id];
40 return static_cast<Type<T>*>(base_type)->Get();
41 }
42 };
43

44 int main() {
45 // add data members to class Object
46 Type<std::array<double, 3> > position;
47 position.Set({1, 2, 3});
48 Type<Foo> foo;
49 Object::AddAttribute(0, &position);
50 Object::AddAttribute(1, &foo);
51

52 // use object
53 Object o;
54 std::cout << o.Get<std::array<double, 3> >(0)[1] << std::endl; // 2
55 o.Get<Foo>(1).Bar(); // foobar
56 }
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Listing 5.5: Modify and Add Data Members at Compile Time

1 // core library only defines minimal cell
2 class BaseCell {
3 std::array<double, 3> position_;
4

5 public:
6 explicit BaseCell(const std::array<double, 3>& pos) : position_(pos) {}
7 BaseCell() : position_{0, 0, 0} {}
8 const std::array<double, 3>& GetPosition() const { return position_; }
9 };

10

11 template <typename Cell>
12 void CoreOp(Cell* cell) {
13 std::cout << cell->GetPosition()[2] << std::endl;
14 }
15

16 // -----------------------------------------------------------------------------
17 // libraries for specific specialities add functionality - e.g. Neuroscience
18 class Neurite {};
19

20 // adds Neurites to BaseCell
21 template <typename Base, typename TNeurite = Neurite>
22 class Neuron : public Base {
23 std::vector<TNeurite> neurites_;
24

25 public:
26 template <class... A>
27 explicit Neuron(const std::vector<TNeurite>& neurites, const A&... a)
28 : neurites_{neurites}, Base(a...) {}
29 Neuron() = default;
30 const std::vector<TNeurite>& GetNeurites() const { return neurites_; }
31 };
32

33 // -----------------------------------------------------------------------------
34 // code written by life scientists using package core and Neuroscience extension
35 template <typename Base>
36 class NeuronExtension : public Base {
37 double foo_ = 3.14;
38

39 public:
40 template <class... A>
41 explicit NeuronExtension(double foo, const A&... a) : foo_{foo}, Base(a...) {}
42 NeuronExtension() = default;
43 double GetFoo() const { return foo_; }
44 };
45

46 template <typename Cell>
47 void CustomOp(const Cell& cell) {
48 std::cout << cell->GetNeurites().size() << "-" << cell->GetFoo() << std::endl;
49 }
50

51 int main() {
52 typedef NeuronExtension<Neuron<BaseCell>> CustomNeuron;
53 // note: also Neurites can be modified and then inserted into Neuron
54 // typedef NeuriteExtension<Neurite> CustomNeurite;
55 // typedef NeuronExtension<Neuron<BaseCell, CustomNeurite>> CustomNeuron;
56 CustomNeuron cell2(1.2, std::vector<Neurite>{Neurite()},
57 std::array<double, 3>{1, 2, 3});
58 CoreOp(&cell2); // prints: 3
59 CustomOp(&cell2); // prints: 1-1.2
60 }
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5.5.2. Vectorization

Another option to facilitate vector hardware which has not been part of the analysis presented earlier
in the chapter is the software package Eigen [65]. It is a full linear algebra package with explicit
vectorization (currently for SSE and ARM NEON) which offers much more than SIMD libraries.
Google added the Tensor module to Eigen which is the cornerstone for Tensorflow. To evaluate
if it is useful for BioDynaMo I implemented a simplified version of force calculation between
spheres (without conditionals) in Vc and Eigen and run a benchmark. For Eigen I implemented
three different versions: One using variable size two dimensional tensors (heap allocated matrix),
fixed size two dimensional tensors (stack allocated matrix) and finally fixed size one dimensional
tensors (stack allocated vector). Figure 33 shows the arithmetic mean out of five executions on
A for each of those setups for SSE and AVX. The y-axis is using a logarithmic scale due to the
poor performance of tensor options. The reason behind the long runtime of variable size tensors
is heap allocations. For SSE performance is on par between the vector tensor version and Vc for
optimization flags larger than one. All implementations use single precision floating point values.
For AVX tests I initialized fixed size tensors with size eight. Results for all Eigen implementations
were much worse than the scalar version, while Vc gives better performance compared to SSE.
According to Eigen’s website there is currently no AVX implementation.

Based on the obtained results and earlier analysis about vectorization, we decided to use pure
SIMD libraries which abstract the complexity of different vector extensions, are well tested and
give reliable results across compilers. Using the library Vc a class can be defined in a SOA way:

1 struct Sphere {
2 Vc::double_v diameter_;
3 };

The number of elements inside double_v depends on the available hardware (e.g. two for SSE
and four for AVX). If Sphere is stored inside a container with contiguous memory (e.g. array or
vector), it turns into an AOSOA memory layout.

VecGeom [66] is a subpackage of the detector simulation software GeantV. It introduces an
additional abstraction to exchange different SIMD libraries. They refer to them as different
backends. BioDynaMo has adopted this idea. The following code example shows a minimal
Backend definition in BioDynaMo:

1 struct VcBackend {
2 typedef Vc::double_v;
3 static const size_t kVecLen = Vc::double_v::Size;
4 }
5

6 template <typename Backend>
7 struct Sphere {
8 typename Backend::double_v diameter_;
9 };

10

11 Sphere<VcBackend> sphere;
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Figure 33.: Benchmark Results Comparing Different Force Calculation Implementations.
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5.5.3. Parallelization

The requirement to execute user-defined physical processes and biological behaviour requires
a uniform interface such that the compute engine can process them. This becomes even more
important once BioDynaMo has grown to a mature software which has a distributed runtime and is
able to execute operations on heterogeneous hardware. In this scenario the runtime has to answer
many questions to make an efficient scheduling decision.

• Which device class is most optimal?

• How much memory will be required?

• How large are the input parameters?

A common interface helps to gather metadata although implementation is unknown. The explicit
definition of tasks or operations can be found in Intel TBB (Task class), Tensorflow (Op) or Java’s
Runnable interface.

5.5.4. Unification

The design in class diagram 34 has been distilled from all considerations so far. The main
components are:

• Simulation Objects have an associated backend are stored inside containers and passed to
operations as parameters.

• Backend is the abstraction to use different kind of vectorization libraries. Also contains a
ScalarBackend which will be described in more detail in Section 5.6.

• Containers store simulation objects based on a vector template. They contain functionality
to transition between scalar and vector representation.

• Operations contain the implementation for physical processes and biological behaviour
under a uniform interface.

• Classes in package benchmark are used to obtain and output runtime data for post processing.
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Figure 34.: Class Diagram Proof of Principle
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5.6. Implementation

In this chapter I will present a selection of interesting aspects in the implementation of the proof of
principle.

Although, simulation objects are predominantly processed in vector mode, sometimes it is necessary
to access a single element. This involves for example gathering neighbors for a cell which are
spread among different vectors. This can be done by defining a scalar backend. The principle
of backends has already been shown in code sample 5.5.2. Container daosoa, which stands
for dynamic AOSOA, is a specialized to hold classes with backends. It adds value by providing
methods that ease the transition between scalar and vector. Therefore, it is possible to append
get and set both of these types. Consequently, daosoa needs two different implementations for
push_back: one for vector value types and one for scalars. Using template metaprogramming
we need a type trait is_scalar to decide which of the two versions should be compiled
for a certain type combination. Type traits allow to retrieve type characteristics at compile
time. C++11 already defines many of them in header <type_traits> (e.g. is_array,
is_move_constructible). Here the implementation for is_scalar:

1 template <typename T>
2 struct is_scalar {
3 static const bool value = false;
4 };
5

6 template <template <typename> class SimulationObject>
7 struct is_scalar<SimulationObject<ScalarBackend> > {
8 static const bool value = true;
9 };

First, we define a templated structure which has a static boolean member set to false. In a partial
template specialization, we define the case for the scalar backend where value should be set to
true. Thereby, we have to use a template template parameter since ScalarBackend is itself a
template parameter for its enclosing type. The alternative would be a definition like this:

1 template <>
2 struct is_scalar<Cell<ScalarBackend> > {
3 static const bool value = true;
4 };

This is using the concrete type of simulation object Cell. Consequently, if we would add a
different simulation object, we would need to define is_scalar again—otherwise, it would give
the wrong result. This is very error-prone and should therefore be avoided. Now that the desired
type trait exists we can use it in daosoa.

1 template <typename T1>
2 typename std::enable_if<is_scalar<T1>::value &&
3 !std::is_same<value_type, T1>::value>::type
4 push_back(const T1& value) { ... }
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5.6. Implementation

This code example shows one of the two implementations for push_back. It only gets compiled
if T1 is scalar and the class template value_type and T1 are not the same. The underlying
mechanism is based on SFINAE (substitution failure is not an error). If a failure occurs during
template argument substitution the compiler removes this entity from the candidate set and does
not throw an error [31]. Let us dissect this example. Line two and three define the return type of
push_back. Simplified, the statement looks like this:

1 typename std::enable_if<expression>::type

type is only defined if expression evaluates to true. Hence, if expression is false it leads
to a substitution error and is removed. The keyword typename is required, because type is not
a static variable name, but a type definition. As mentioned above type traits are needed to evaluate
the expression at compile time.

Working with vector types is straight forward. They overload all math operators and can therefore
be used in the same way as primitives. Special attention must be given to conditionals. Remember,
that SIMD instructions always apply the same operation to multiple data elements. Therefore,
conditionals require code changes. In Vc comparison operators are implemented in a way to return
a bit mask. This allows evaluation of an if-expression for multiple elements.

1 Vc::float_v x((const float[]){1, 2, 3, 4}); // assumes vector size of 4
2 auto x_lt_3 = x < 3; // [1, 1, 0, 0]

Vc also has an API that generalizes the ternary operator to vectors.
1 double result = boolean_expression ? true_value : false_value; // ternary operator
2 // equivalent to
3 if (boolean_expression)
4 result = true_value;
5 else
6 result = false_value;
7

8 // for vectors
9 Vc::double_v result = Vc::iif(bit_mask, true_value_v, false_value_v);

If the operation inside the conditional has a neutral element (e.g. zero for addition), then a
conditional can be transformed as follows:

1 // original scalar code
2 if (x > 9)
3 a += 3.14;
4

5 // vector version - assuming vector length of 4
6 auto float_v summand = 3.14; // [3.14, 3.14, 3.14, 3.14]
7 auto x_gt_9 = x > 9; // based on x - let us assume [1, 0, 0, 1]
8 summand.setZeroInverted(x_gt_9); // [3.14, 0, 0, 3.14]
9 a_v += summand;

More complex situation could require that both branches are evaluated and merged in the end using
Vc::iff. This of course adds an overhead. Another problem is early exits from a function.
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1 // scalar version
2 if (x)
3 return 0.0f;
4 expensiveCalculation();
5 ...
6

7 // vector version
8 if (x.isFull()) // early exit is only possible if x is 1 for all elements
9 return float_v(0);

10 expensiveCalculation();

The more elements in a vector, the less likely it is that all would exit early. In general, functions
with many branches are hard to handle with vectorized code.

Adding multithread support is easy due to the designed architecture (Figure 34). Operations iterate
over all cells and are independant of each other for one discrete time step. Therefore, it is sufficient
to add a OpenMP pragma above the main for loop of an operation:

1 template <typename daosoa>
2 Vc_ALWAYS_INLINE void Compute(daosoa* cells) const {
3 #pragma omp parallel for
4 for (size_t i = 0; i < cells->vectors(); i++) {
5 ...
6 }
7 }

After a first version of the proof of principle prototype had been finished, I carried out a scaling
analysis (Figure 35) on a Lenovo Thinkpad X1 Carbon with an Intel i7-5500U processor. More
details can be found in appendix A. The CPU features two physical cores with two hardware
threads each. The “Find Neighbor" operation is only partially multi-threaded and only added
for completeness. The parallel part only accounts for about a quarter of the total runtime of this
operation. Consequently, maximum speedup is 1.33 according to Amdahl. For this prototype I
have used the library nanoflann to perform a fixed-radius near neighbor search. Another team
is working on a parallel version. The behaviour of the remaining two operations (cell growth
and displacement) looks promising, but looking at the raw data in Figure 35 it is striking that
calculating the displacement of cells based on collisions is very time consuming. Further analysis,
using Intel VTune unveiled a number of hotspots in the code base (Figure 36a). Astonishingly, the
most time consuming function is random number generation. Furthermore, the top down function
view (Figure 36b showed that obtaining neighbors accounts for 45% total CPU time. The actual
calculation of mechanical forces and the resulting movement of cells is almost negligible in this
listing. The runtime of GetNeighbors is particularly alarming, because it does not calculate
the neighbors, but takes the predetermined Cell identifiers and returns a copy.
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Threads Cell Growth [ms] Displacement [ms] Find Neighbors [ms] Setup [ms]
1 69 1653 4044 68
2 42 901 3368 68
3 37 1030 3487 68
4 29 813 3260 68

Figure 35.: Initial Scaling Analysis on A
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(a) Hotspots

(b) Top-Down View

Figure 36.: Intel VTune Advanced Hostpots Analysis
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Figure 37.: Speedup Due to Improvements in GetNeighbors

The following changes were made to improve runtime:

• Avoid unnecessary random number generation

• Add missing & to function parameter

• Add CopyTo method to copy data members from one vector into another - originally, this
was done with an intermediate scalar object

• Use vector’s reserve method instead of resize - to avoid pushing back an empty cell -
saves one copy constructor invocation

• Remove all heap allocations by using fixed size arrays

In one of the standard test cases with about two million cells, a missing reference for a function
parameter can impact performance negatively. In this case it lead to two million unnecessary heap
allocations. The last bullet point to remove heap allocations would crash the program in case there
are more neighbors than slots. This is of course not acceptable. This measure should only reveal
the performance penalty of dynamic containers. Furthermore, the negative aspect can be avoided.
Inspired by Google Tensorflow, the neighbor array will be replaced with an inline vector. The
first N elements, specified as template parameter, are stored on the stack. Only if additional data
elements should be appended, heap space will be allocated. Based on these changes I achieved a
speedup of around 5.5x (Figure 37).

Profiling has been a great help to identify these issues. To get more targeted results, VTune offers
an API to pause and resume data taking in certain sections and is able to annotate tasks. Therefore,
I have added the class VTuneOpWrapper. Annotations can be seen in Figure 38.
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Figure 38.: Annotations Created Using VTuneOpWrapper. These annotations, for example,
make it easier to analyse the CPU utilization of certain parts of the application.

5.7. Evaluation

After improvements have been applied, I ran the scaling benchmark again and obtained better
results. Runtime does not improve after the number of physical cores is exceeded, because the
processor’s floating point unit is already saturated. A comparison between AVX and SSE only
showed modest improvements. Intuitively, one would expect a maximum speedup of 2x, due to the
doubled register length. Let us investigate why we are not achieving better results and if this is a
reasonable assumption.

Computationally, cell growth is very lightweight. A considerable part in is not vectorized, because
Vc does not offer a vector version for cubic roots yet. However, an issue has already been filed
and it seems someone is already working on it [67]. Therefore, our implementation has to use a
for loop to iterate over the vector elements. For displacement calculation the situation is more
difficult. Let us start by evaluating the maximum speedup that we can expect. The majority of cells
in the three dimensional grid have six neighbors. Hence, we need three vectors for SSE versus
two for AVX to store them. Therefore, speedup is already limited to a factor of 1.5x. Furthermore,
force calculation accounts only for about 50% of wall clock time. The rest is spent on gathering
neighbors. However, the absolute number of neighbors does not change. Hence, AVX will not
improve this part. The following equation shows the maximum speedup for our sample simulation
(Amdahl’s law):

max speedup =
runtime for SSE
runtime for AVX

=
neighbors+ forces
neighbors+ forces

1.5

=
1

0.5+ 0.5
1.5

= 1.2 (5.1)

This means, we still do not have an explanation for the missing 10%. Further analysis revealed
that corresponding instructions between SSE and AVX have different latency on Intel i7-5500U
(see Table 5). Reciprocal throughput is defined as “average number of core clock cycles per
instruction for a series of independent instructions of the same kind in the same thread" [6]. For
these instructions, although vector length doubled for AVX, increased latency cancels out the
improvements.

To test if the analysis was correct, I modified the code and executed the benchmark again (Figure
40). I removed the non vector cubic root in cell growth, replaced the division operator with an
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(b) SSE vs AVX (512 cells)

Figure 39.: Analysis on an Intel i7-5500U CPU with two Physical Cores

Instruction Vector ISA Latency Reciprocal Throughput
DIVPS SSE 10-14 4-5
VDIVPS AVX 17 10
DIVPD SSE 10-14 8
VDIVPD AVX 19-23 16
SQRTPD SSE 15-16 8-14
VSQRTPD AVX 27-29 16-28

Table 5.: SSE and AVX Instruction Comparison for Intel Broadwell Architecture [6]
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Figure 40.: Hypothetical Scenario to Compare SSE and AVX (512 cells)

1 movapd -16(%rax), %xmm0
2 cmplepd %xmm7, %xmm0
3 andpd %xmm6, %xmm0
4 mulpd %xmm5, %xmm0
5 addpd (%rax), %xmm0
6 movapd %xmm0, %xmm1
7 cmpltpd %xmm3, %xmm1
8 movapd %xmm1, %xmm2
9 andnpd %xmm0, %xmm1

10 andpd %xmm3, %xmm2
11 movapd %xmm1, %xmm0
12 orpd %xmm2, %xmm0
13 movaps %xmm0, (%rax)
14 mulpd %xmm4, %xmm0
15 movaps %xmm0, -16(%rax)

(a) SSE

1 vmovapd -32(%rax), %ymm0
2 vcmppd $2, .LC56(%rip), %ymm0, %ymm0
3 vandpd .LC57(%rip), %ymm0, %ymm0
4 vmulpd .LC25(%rip), %ymm0, %ymm0
5 vaddpd (%rax), %ymm0, %ymm0
6 vcmppd $1, .LC58(%rip), %ymm0, %ymm1
7 vblendvpd %ymm1, .LC58(%rip), %ymm0, %ymm0
8 vmovapd %ymm0, (%rax)
9 vmulpd .LC59(%rip), %ymm0, %ymm0

10 vmovapd %ymm0, -32(%rax)

(b) AVX

Figure 41.: Cell Growth Assembly Code

addition which has the same latency on Intel Broadwell architecture for SSE and AVX and removed
square root calculations. Of course the simulation yields wrong results after these changes, but
this is to test whether there are further issues in the design. This time we get much better results.
Displacement reaches the estimated maximum and execution for cell growth is 2.3 times faster.
A speedup exceeding a factor of two is certainly suspicious. Hence, I performed an investigation
to see if this result is plausible. Analysing the generated assembly code for SSE and AVX, we
see twice as much moves for SSE. This is due the new three operand form that preserves register
values. Furthermore, line 8 to 12 on SSE is done in one instruction in AVX ( vblendvpd).
Based on these results, a speedup of 2.3x seems logical.

Finally, I executed the benchmark with more than 160 million cells (512 cells per dimension) on
an a server with eight physical cores with four threads each (Intel Xeon E5-2690) and 64GB of
memory — more details in A. This test consumes 20.8GB of main memory. After yielding good
results up to the number of phyiscal cores, speedup saturates as expected.
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Figure 42.: Benchmark of ∼160M Cells on Intel Xeon E5-2690
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6. Conclusion and Future Work

This thesis presented the first steps to build a large-scale platform for biological computer simu-
lation. It emphasized the importance of a rigorous development environment to foster high code
quality, demonstrated how to successfully port an application from Java to C++ and introduced a
parallelized proof of principle prototype.

Chapter 3 is devoted to development best practices and explored reasons that hinder sustainable
software development. Furthermore, we have compared different software stacks against each
other to select a combination that fits our requirements and presented the process implementation
for BioDynaMo. Working with this setup has shown that some modifications will be necessary in
the future. This includes adjustments of the coding style guide, using a superior code formatter
and lint tool, adding a git commit hook to enforce checks and automatically upload documentation
to the projects website.

The chapter about porting the application from Java to C++ outlined benefits of a native implemen-
tation and introduced an iterative porting workflow. Although, development of intermediate Java /
C++ hybrid added a significant overhead, it ensured that errors can be revealed quickly.

The last part of this thesis explained how to utilize multiple levels of parallelism in today’s
modern hardware. A proof of principle has been developed that simulates cell growth of a
three dimensional grid and displaces cells according to mechanical forces. Benchmarks have
shown good scaling behaviour across physical cores and speed-ups based on utilization of vector
instructions. Further benchmarks need to be executed on the latest processors and a backend for
GPU’s should be evaluated. Increasing complexity of the simulation should stress the design and
reveal possible issues. Another important step is to replace neighbor calculations with a more
optimal implementation.

Once these tasks have been completed, the next big milestone is to execute on many compute
nodes. We are especially targeting a hybrid HPC on cloud environment. Simulating e.g. the entire
cortex to better understand neurodevelopmental diseases exceeds the capabilities of some clusters.
Therefore, compute resources should be extended with cloud infrastructure. Another reason behind
targeting HPC on cloud is democratization of computational resources, since not every research
team has access to a supercomputer.
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6. Conclusion and Future Work

Although, cloud computing is very successful due to on-demand, elastic resources, its disadvantages
have limited widespread adoption in scientific computing. Especially, high network latency limit
scalability for tightly coupled compute intensive applications. Furthermore, cloud data centres
are built using commodity hardware. Consequently, failures become a norm not the exception.
Therefore, further research is required to compensate for these drawbacks.
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A. Environment

Lenovo Thinkpad X1 Carbon

CPU Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz
Physical Cores 2
Logical Cores 4
Cache 4 MB
Memory 8 GB
OS Ubuntu 15.10
g++ version 5.2.1
Vc version commit 6c46d143f77e67881b93f8bd0998e38a201ebe82
CMake version 3.2.2

Server

CPU Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz
Physical Cores 8
Logical Cores 32
Cache 20 MB
Memory 64 GB
OS Scientific Linux CERN SLC release 6.8
g++ version 5.2.0
Vc version commit 32fa97314429f055a8f8c4a5b53cf7d3555ea8a7
CMake version 3.6.1
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BioDynaMo Developers Guide

by Lukas Breitwieser ­ CC BY­SA 4.0

Welcome to BioDynaMo!

A very warm welcome to BioDynaMo and thank you for your interest! This guide will help you get started. It
introduces you to the project, the community and our software development approach. It was inspired by the
OpenMRS Developers Guide as well as conventions and best practices used in the software industry.

Who Should Read This Guide?

The target audience for this document is anyone who wants to build, contribute or learn more about
BioDynaMo. Everyone has a different background, you might be new to C++ programming, simulation
software or software development in general. This doesn't mean you cannot be a valuable contributer! This
guide will help you fill in the blanks.

We did our best to be as concise as possible. If you make it to the end of this guide you will…

understand the vision of BioDynaMo
understand the basic architecture of BioDynaMo
have a working development environment
know the workflow to contribute code
know where to ask for help

Feedback

This guide is an evolving resource. If you have difficulties in some steps and feel that parts could be described
better or any other kind of comment please reach out to lukas.johannes.breitwieser _at_ cern.ch.
Thank you for your feedback!

98% Finished Projects

In the open source world sometimes it happens that people work on a feature for weeks or month and leave
after it has been finished for 98%. Although this 2% don't look like a big issue, usually that means that all your
work doesn't make it into the production code. Normally, other developers are busy and don't have the time to
dive into your work and find the pieces that are missing or not working yet. This situation would be a waste of
your precious time. We bet that it is way more satisfying if your contribution makes it into production and will be
used by scientists around the world.

For a contribution to be considered 100% complete, it must (be)

comply to our coding guidelines,
unit tested,



well documented
include a demo / screencast in certain cases.

Therefore, we want to encourage you to reserve enough time in the end where you don't code. We do our best
to support you!

Project

What is it?
Our vision
Why simulation software?
Who is involved?

BioDynaMo is a developmental biological tissue simulation software. More precisely, it is possible to grow
sophisticated structures emerging from simple rules. This rules represent the genetic code of our virtual cell.
Simulation software has established itself as another pillar of science. The possibility to carry out virtual
experiments has many advantages. It is possible to get results quickly, more cost efficient and enables testing
a vast amount of parameters.

CERN openlab brought together partners from academia and industry:

Newcastle University, UK
Innopolis University
Kazan Federal University
Intel

Together we strive to create the leading simulation software for biological developmental processes.

Community

Our Team is spread across the world. Therefore we need tools that enable us to efficiently communicate and
collaborate.

Communication

Mailing List ­ community discussion that everybody sees = speak to the community ­ biodynamo­dev,
biodynamo­talk
Development Chat on Slack ­ real time communication
Skype calls ­ discussions for subgroup ­ presentations
Gitbooks ­ Documentation

Architecture

to be added soon

Start Contributing



Code Quality

At BioDynaMo we are aiming to develop a high quality software product. The following practices help us to
achieve this goal:

C++ Style Guide
Doxygen Documentation
Git Conventions
Test driven development (TDD)
Continues Integration (CI)

A coding standard is a set of guidelines and best practices which improve readability and maintainability of a
code base. Code is more often read than rewritten. Therefore it is important that a developer quickly
understands a piece of code even if it was written by someone else. A coding standard helps to achieve that.
We are using the Google C++ Style Guide

Doxygen is used to generate documentation from comments in the source code.

TDD and CI are two practices from agile development. Test Driven Development is a special way of using unit
tests. A unit test is a piece of code that tests a certain functionality of our application. If we make some
changes in the code and at the end all unit tests pass, we most likely did not break something. This increases
confidence in the code and reduces the fear to "touch" others code. Continues Integration takes all this
automated tests and executes them on every change to the code repository. We are using Travis­CI

More information:

Git Conventions

Git Workflow:
We are following the Git Workflow proposed by Vincent Driessen in his blog post: A successful Git branching
model with the modification that his develop branch is our master branch and his master branch will be
replaced with release

Git Commit Message Guide:
Taken from a great blog post from Chris Beams

1. Separate subject from body with a blank line
2. Capitalize the subject line
3. Do not end the subject line with a period
4. Use the imperative mood in the subject line
5. Use the body to explain what and why vs. how
6. Limit the subject line to 50 characters
7. Wrap the body at 72 characters

Summarize changes in around 50 characters or less

More detailed explanatory text, if necessary. Wrap it to about 72 
characters or so. In some contexts, the first line is treated as the 



subject of the commit and the rest of the text as the body. The
blank line separating the summary from the body is critical (unless 
you omit the body entirely); various tools like ̀log̀, ̀shortlog̀ 
and ̀rebasè can get confused if you run the two together. 

Explain the problem that this commit is solving. Focus on why you 
are making this change as opposed to how (the code explains that). 
Are there side effects or other unintuitive consequenses of this 
change? Here's the place to explain them. 

Further paragraphs come after blank lines.

 - Bullet points are okay, too 

 - Typically a hyphen or asterisk is used for the bullet, preceded 
   by a single space, with blank lines in between, but conventions 
   vary here 

If you use an issue tracker, put references to them at the bottom, 
like this: 

Resolves: #123
See also: #456, #789 

Use git commit without the -m switch to write a commit body.

Master Branch
Each commit of the master branch should pass the CI build. Therefore all development should be carried out
in a feature/hotfix branch. Once development has been finished and the build passes, it can be merged back
into master.

Merging should always be done without fast­forwarding to preserve history

git merge --no-ff 

Branch Name Convention
Name the branch after the ticket you are working on (e.g. 123).

Setting­Up the Development Environment ­ Ubuntu

This section will help you to set­up the development environment. Please also have a look at README.md
which contains the most up to date information.

1. Install prerequisites

sudo apt-get install git g++ cmake valgrind doxygen 



This command installs git code repository client, g++ compiler, cmake build tool, valgrind a tool to
debug and profile programs and doxygen used to generate documentation from source code comments.

wget https://root.cern.ch/download/root_v6.06.04.Linux-ubuntu14-x86_64-
gcc4.8.tar.gz 2> /dev/null 
tar zxf root_v6.06.04.Linux-ubuntu14-x86_64-gcc4.8.tar.gz > /dev/null 
cd root
. bin/thisroot.sh   

Download, unzip and set environment variables for ROOT

2. Set­up git

git config --global user.name "Awesome Developer"
git config --global user.email awesome.developer@example.com 

3. Get the code

git clone https://github.com/BioDynaMo/biodynamo.git 
cd biodynamo 

4. Compile it

mkdir build && cd build 
cmake .. 
make 

5. Execute all tests (this step will take ~30 min)

make check 

Most of the time is spent on valgrind which tests if BioDynaMo is leaking memory. If you are only interested
if the unit tests produce the required results run:

./runBiodynamoTests 

But: before you commit you must run make check!

Development Workflow

Finally, we are ready to get some work done!

1. Go to "Issues" and select a ticket that you want to work on and assign it to yourself

Let's assume it is 123

2. Checkout your master branch



git checkout master 

3. Get latest version of master

git pull --rebase origin master 

4. Create the feature branch

git checkout -b 123 

5. Make your changes
6. Get updates from the remote master branch that have been added in the meantime

git pull --rebase origin master 

7. Run the tests

make check 

8. Commit (have a look at the commit message convention)

git add -i 
git commit 

9. Push your changes or go back to point 5

git push origin 123 

10. If Travis­CI reports a passing build it is ready to be merged into master. Therefore ping me on our dev
chat.

Checklist:

Sign up for the biodynamo-dev@cern.ch mailing list
Request membership for our git repository
Bookmark the development chat on Slack
Introduce yourself ­ short bio and picture
Participate in discussions
Start contributing on introductory tickets
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