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Introduction

Yves André, in his book “G-Functions and Geometry”[[And89], asks if a curve, which lies inside a
Shimura variety and contains infinitely many special points, is a Shimura subvariety. In 1998 he was
able to prove:

Theorem 0.0.1 (André’s Theorem[[And98]). Let C C A? be an algebraic curve such that C is neither a
vertical nor a horizontal line and suppose C contains infinitely many special points, then C is a modular
curve.

The notion of a Shimura variety is highly technical and we confine ourselves to mentioning that
the varieties involved in André’s theorem, i.e. A2, which parametrizes pairs of elliptic curves, modular
curves, which parametrize isogenies between elliptic curves with cyclic kernel, and (certain) vertical
and horizontal lines, are Shimura varieties. Moreover a point (ji, j2) € AZ s called special if each
coordinate is the j-invariant of a CM elliptic curve.

Both, CM elliptic curves (among elliptic curves) and modular curves (among spaces parametrizing
elliptic curves) are exceptional and in this sense André’s theorem is an instance of what Zannier calls an
unlikely intersection[[ZM12].

In the meantime, Frans Oort[Oorg7] extended the conjecture to arbitrary Shimura subvarieties (in-
stead of just curves) and since then significant progress has been made going in various directions,
among others:

* Bas Edixhoven, Bruno Klingler and Andrei Yafaev[EYos3; Yafo6; KY14] and others give proofs
conditional on the Generalized Riemann Hypothesis.

* Jonathan Pila[Pilog] and others use 0-minimal theory to give unconditional proofs. Recently,
using such methods, Jacob Tsimerman[[Tsirg] announced a proof for moduli spaces of princi-
pally polarized abelian varieties.

* Lars Kithne[K#h12] and independently Yuri Bilu, David Masser and Umberto Zannier[BMZ13]
show André’s theorem using transcendence theory and give effective variations of the theorem.

In 2014, Gisbert Wiisholz fixed a gap in Kithne’s argument and proves a fully effective version
of André’s theorem[Wiii4].

Like the proof of André, the proofs of Bilu, Masser, Zannier, Kithne and Wiistholz are splitinto two
parts corresponding to modular curves and vertical and horizontal lines respectively. Where André uses
Siegel’s (ineffective) class number estimate in the modular curve case, Bilu, Masser, Zannier, Kithne
and Wiistholz use Baker’s theory of linear forms in logarithms. I will follow their argument and use
Wiistholz’ presentation is my main reference.

In the vertical and horizontal line case, André, Bilu, Masser and Zannier use Masser’s (effective)
transcendence measure, whereas Kithne and Wiistholz use linear forms in elliptic logarithms. Unfor-
tunately, their methods are beyond my abilities and I will present the easier argument from Bilu, Masser
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and Zannier. The effectivity of parts of their argument, which the authors consider a “standard affair”,
is presented only in brief and I am unable to conclude full effectivity however an expert may very well
disagree with my assessment. I will prove, using a theorem of Bilu and Borichev[BB13], the effectivity
in some special cases.

In 2014 I was fortunate to attend lectures by Gisbert Wiistholz, which introduced me to this sub-
ject and spawned this thesis at the suggestion of my advisor Robert Tichy. I am particularly grateful to
them.

Before André’s theorem can be proved, Chapter jjdevelops elliptic curves from a minimalist approach
to varieties. Using the Riemann-Roch theorem, elliptic curves are shown to be isomorphic to curves
given by short Weierstrafy equations. An abelian group structure is placed on the underlying set of an
elliptic curve and the geometry of divisors is then used to show that this group structure coincides with
the geometric chord and tangent group law. Morphisms which respect this group law are studied and
finally the j-invariant is introduced and shown to be an invariant.

Chapter | develops the theory of complex tori in the style of the previous chapter, where Riemann
surfaces assume the role of smooth algebraic curves, complex tori are introduced as (group) quotients
of C and the topological properties of this quotient are used to study the meromorphic functions on
a torus. These meromorphic functions will satisfy an equation of an elliptic curve and the algebraic
J-invariant will give rise to an analytic pendant with rich properties.

In Chapter fj, the category of elliptic curves and the category of complex tori are shown to be equiva-
lent. Essential for this task is the unique Riemann surface structure on an elliptic curve, which uses the
implicit function theorem of Appendix [A]. Once the uniformization theorem is shown, the accessible
nature of complex tori is used to classify the endomorphism rings of elliptic curves and to single out
the class of CM elliptic curves.

In Chapter [, the Fourier expansion of the j-invariant is shown and where the j-invariant satisfies
a transformation law for SLp(Z), an analogue is introduced which satisfies a transformation law for
certain subgroups of SL2(Z). These subgroups turn out to be intimately connected with cyclic sub-
lattices, respectively isogenies of elliptic curves with cyclic kernel, and modular curves are shown to
parametrize these isogenies.

In Chapter fj, the height of a polynomial and an algebraic number is defined and used to show that
the number of algebraic numbers of bounded height and degree is finite. Moreover the relation be-
tween the height and the discriminant of the endomorphism ring of a CM elliptic curve is investigated.
The j-invariant is compared with the function (7)1 = e72™7 and their asymprotic similarity is ex-
plicitly measured. Lastly, the proof of André’s theorem is given and the effectivity of the argument is
discussed.



1. Elliptic Curves

This chapter will provide the basic tools from algebraic geometry used throughout this thesis. While
this thesis is about moduli spaces of complex elliptic curves, the fact that these can be defined over
algebraic extensions of Q is secondary to the goal of this thesis and hence the approach used here will
not be the one of schemes. Rather, a more concrete approach following Chapter 1 of Hartshorne’s
“Algebraic Geometry” [Har77] and Silverman’s “The Arithmetic of Elliptic Curves” [Silog] will be
used, where varieties will be given by sets of points inside either some affine n-space A" (= A"(C)) or
projective n-space P" (= P"(C)).

1.1. Varieties

Definition r.r.1. [Har77, p. 1] Let n > 1 be a natural number. The affine n-space A" is, as a set, C".
Sometimes it will be useful to consider A" with the topology of C", in which case we explicitly refer

to this topology as the complex topology.

Definition r.1.2. [Har77, p. 8ff] Let n > 1 be a natural number. The projective n-space P" is, as a set,

defined to be
Cn+1 _ {0}/ ~

where ~ is the equivalence relation
(X05 - s Xn) ~ (Y05 -+ oy yn) 1= A1 € C*: Vi € {0,...,n} : x; = Ay;.

The equivalence classes will be denoted by (xq : -+ : x,,). As before, the quotient topology will be
useful at times and is also called the complex topology.

Definition r.1.3. [Har77, p. 2ff] Let T C C[X1, ..., X,] be a set of polynomials. The zero set of T in
A" is defined as
U(T) = {x e A" |Vf €T f(x) = 0}.

Clearly, the zero set of T coincides with the zero set of (T') and since C[X7, . . ., X,] is Noetherian, the
ideal (T') has finitely many generators f71, ..., fy € (T) such that

U(T) =V(y) =V f1s-- - fN)) =O(f1,- .-, fn)-
For a subset V of A", the ideal of V is defined as

I(V) = {f €C[Xp,.... X,] [ Vx €V : f(x) = O}.
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Definition r.1.4. [Har77, p. off] A polynomial f € C[Xy, ..., X, is called homogencous of degree d if
every monomial in f has degree d. For (xq,...,x,) € (xg : -+ : x,) € P"and A € C¥, we evaluate

f(Axg, ..., Ax,) = /ldf(x(),...,xn).

While it makes no sense to evaluate a homogeneous polynomial on a projective point, the set of pro-
jective points on which f vanishes is well-defined. Let T' be a set of homogeneous polynomials in
C[Xos - - -, Xn], then the zero set of T in P" is defined as

U(T) = {x € P" | Vf €T : f(x) = 0}.

Anidealin C[Xy, .. ., X, is called homogeneous if it can be generated by a set of homogeneous polyno-
mials. As before, the zero set ‘U(T') coincides with ‘U((T")) and since C[Xj, . . ., X, is Noetherian, the
homogeneous ideal (T') has a finite generating set f1, . . . f, consisting of homogeneous polynomials,
such that

For a subset V of P, the ideal of V is defined as

I(V)=(f € C[Xy, ..., Xn] | fhomogeneous,Vx € V : f(x) = 0).

Definition + Proposition 1.1.5 (The Zariski Topology). Let {T; | i € I}, S, T either be a sets of poly-
nomials in C[X1, . . ., X,] or sets of homogeneous polynomials in C[Xj, . . ., X, ].

L U(Uier Ti) = Nier O(T7)
2. U(T) UU(S) = U(ST)

3. a) U(0) = A"and U(C[Xy, ..., Xn]) = @ (affine case)
b) U(0) = P" and U(X, . . ., Xn) = @ (projective case)

The zero sets on A" and P" are the closed sets of the Zariski topology. Unless otherwise mentioned,
the affine and projective n-space carry the Zariski topology.

Proof. [Hary7, Proposition 1.1., 2.1, p. 2,9] ]

Theorem 1.1.6 (Nullstellensitze). Let a be a (homogeneous) ideal, S and T be sets of (homogeneous)
polynomials and let V and W be subsets of A" (respectively P").

L IfT C S, thenU(T) 2 U(S). IfV € W, then I(V) 2 I(W).

2. 1(V(a)) = Vaand U(I(V)) = V, where V is the closure of V.

3. An algebraic set is irreducible if and only if its ideal is a prime ideal.
Proof. [Har77, Prop. 1.2., Cor. 1.4, Ex. 2.1, p. 3,4,11] [
Proposition 1.1.7. [Har77, p. 5, Proposition 1.s. ]

1. Any descending chain of algebraic sets in A" (respectively P") becomes stationary.
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2. Any algebraic set in A" (respectively P™) is a finite union of irreducible algebraic sets.

Proof. . Let X 2 X1 2 ... be a descending chain of algebraic sets, then 7(Xy) € /(X,) C ...isan
ascending chain of (homogeneous) ideals, which becomes stationary since C[ X7, . . ., X, (respectively
C[Xo, - . -, Xn]) is Noetherian. It follows that Xo = U(1(Xp)) 2 X1 = V(I(X1)) 2 ... becomes
stationary.

Bl. Let €2 be the set of algebraic sets which are not a finite union of irreducible algebraic sets and suppose
Qis notempty. By}, {2 contains a minimal element X which is notirreducible, since otherwise X = X
is a finite union of irreducible algebraic sets. Thus X = Y U Z, for Y and Z algebraic and by the
minimality of X, Y and Z are the union of some irreducible algebraic sets 11, ..., Y, and Z3, . . ., Z;.
Hence

X=YUZ=nuU..UhUuZju...UZ

is a finite union of irreducible algebraic sets. ]

Definition 1...8. [Har77, p. 3,10] An affine variety is an irreducible algebraic set inside some A". Open
subsets of affine varieties are called guasi-affine varieties. Similarly, an irreducible algebraic set inside
some P" is called projective variery and their open subsets are called guasi-projective varieties. A variety
is any or the former.

Definition r.1.9. [Har77, p. 4,10] Let X C A" be an affine variety, then the affine coordinate ring of X
is defined as
C[X] =C[Xy,..., Xn|/I(X).

Its quotient field, which exists since 7(X) is prime, is called the finction field of X. IfY C P™isa
projective variety, the homogenous coordinate ring of Y is defined as

ClY] =C[Xo, ..., Yn]/L(Y).
f

Given two homogeneous polynomials f, g € ClYp, ..., Y,] of equal degree d we can evaluate gata

projective point P € P" provided g(P) # 0, since
f(A¥o, ..., A%,) _ Af (Yo, ..., %)
(Yo, ... AY,)  Ag(Yo,....Y,)
and the function field of Y is defined as

C(y) = {g | f,g € C[Y] homogeneous of equal degree, g # O}.
The dimension of a variety is defined to be the transcendence degree over C of the function field of its
Zariski closure.

Definition r.r.1o. [Har77, p. 31] Let X = U(f1, ..., fr) be variety lying inside either A" or P". A
point P € X is called regular (or non-singular or smooth) if it is not a solution of the system

o,
0X;
wherei =1,...,kand j = 0,...,nin the projective caseand j = 1,.. ., nin the affine case. If every

point in X satisfies this property, the variety is called regular (or non-singular or smooth).
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Definition + Proposition r.r.i1. Let X and Y be varieties and assume that Y € A" is quasi-affine. An
n-tuple (f1, ..., fn) of rational functions on X is called a pre-rational map if the domain U on which
all f; are defined is dense and open in X and

VYPeU: (fi(P),...,fn(P)) €Y.

Two pre-rational maps (f1, . . ., fn)and (g1, . . ., gn) areequivalentif they coincide on the intersection
of their domains. An equivalence class of pre-rational maps is called a rational map and is written

(fieeesfn): X => Y.
IfY C P" is quasi-projective, we say that calla (n + 1)-tuple (fo, . . ., fn) a pre-rational map if the
domain U on which all f; are defined is dense and open in X and

YPeU: (fo(P):---: fu(P)) €Y.

Two pre-rational maps (fo, . . ., fn)and (go, . . ., gn) areequivalentif they coincide on the intersection
of their domains. An equivalence class of pre-rational maps is called a rational map and is written
(fo:--:fn): X—>Y.

A rational map ¢ is a regular morphism if ¢ is defined at every point in X. A regular morphism
¢: X — Yisanisomorphism if there exists a regular morphism ¢ : ¥ — X such that g oy andyy o ¢
are the identity maps on the respective varieties.

Proof. [Silog, p. 1ft] [ ]

Proposition r..12. Fori € {0,1,...,n} let U; be the quasi-projective variety P"* \ ‘U(X;), then

y { AT — Ui
PV Gyt Yisteeayn) b (ot yicn i L yin ot ya)
and
U; — A"
i (Xo: - Xim1: Xt Xip1: -0 X)) +— (i—?,...,x)"(—;l,xgl,...,?(—?)
are mutually inverse regular morphisms. The maps ; are called affine charts on P".
Proof. [Harz7, p. 10ft, 18, Prop. 2.2.,3.3.] ]

Proposition 1.1.13 (The Segre Embedding). Let m and n be natural numbers. The function

P x P" SN Pmn+m+n
e { (X0t xmh(Voi- tyn)  +—  (xiY)o<icmo<j<n

is injective. We identify P"* X P" with its image, which is a projective variety in prntmtn

Proof. [Har77, p. 13, Ex. 2.14.] [



1.2. Algebraic curves

Definition + Proposition r.1.14. A rationalmap ¢: X —— Y is called dominant if there exists an open
subset U C X such that ¢ [y is a morphism and ¢(U) C Y is dense. A dominant rational map
¢: X —— Y induces a morphism of C-algebras

. [ CyY) — CX)
S"'{f —  fogp

and the degree deg ¢ of ¢ is defined as [C(X) : ¢*C(Y)]. The degree of ¢ is 1 if and only if there exists
a dominant rational map ¢ : ¥ — — X such that ¢ o ¢/ and ¢ o ¢ are the identities (as rational maps)
on the respective varieties.

Proof. [Har77, p. 25ft, Theorem 4.4.] ]

Corollary r.r.15. Let X be avarietyand Y C X any open and dense subvariety, then C(X) = C(Y). In
particular if X is quasi-projective, C(X) is isomorphic to the function field of C(X N U;), where U; is
an affine chart on X.

Proof. SinceY is open and dense, the inclusion is a rational map of degree 1. [

1.2. Algebraic curves

Definition 1.2.1. An (algebraic) curve is a one-dimensional variety.

Proposition 1.2.2. [Silog, p. 19, Proposition 2.1] Let C be a curve, ¢: C —— P" a rational map and
P € C.If Pisaregular point, ¢ is regular at P and if C is regular, ¢ is a morphism.

Proof. Letyy = (fo : -+ : fu),t beauniformizing parameter at P and k = min;—q,___, vp(fi), then

(for-:fn)= (t_ka e t_kfn)
and hence ¢ is regular at P since vp (1% £;) > 0. [

Definition 1.2.3. [Silog, p. 27, 28] Let C be a smooth algebraic curve. The group of divisors DivC on
C is defined as the free abelian group generated by the set C. A divisor D € DivC is written as

D:anP

PeC

with np = 0 for almost all P € C. Further we let vp(D) = np and define the degree of D as
deg D = ¥ pec np. The subgroup DivC contains all divisors of degree 0. If f € C(C)* is a rational
function on C we define
(f) =D ve(F)P
PeC
and call it the principal divisor of f. Two divisors D and D’ are called equivalent if they difter by a
principal divisor, i.e. D = D’ + (f) for some f € C(C).
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Definition 1.2.4. [Silod, p. 30] Let C be a smooth algebraic curve. The C(C)-space of differentials
Q(C) is the space generated by the symbols {df | f € C(C)} modulo the relations

d(f +g)=df +dg
dfg = fdg + gdf
da =0,Ya € C.

Definition + Proposition 1.2.5. Let C be a smooth algebraic curve and w a differential on C. For every
point P € C there exists a rational function fp such that

w = fpdl,

where t is a uniformizing parameter at P. For almost all points we have vp(fp) = 0 and hence we can
define the divisor associated with w as

(w) = Z vp(fp)P.

PeC

the dimension of 2(C) as a C(C)-vector spaceis 1 and forall f € C(C) and all w € Q(C) the divisor
corresponding to fw is equal to (f) + (w).

Proof. [Silog, p. 31ft, Proposition 3.4., Remark 4.4.] ]

Definition + Proposition 1.2.6. Let C be a smooth algebraic curve and D a divisor on C. The Riemann-
Roch space of D

L(D)={feC(C)*|VYPeC:vp(f)=-vp(D)}uU{0}
is a finite-dimensional C-vector space.
Proof. [Silog, p. 34, Proposition s.2.] ]

Since (fw) = (f)+ (w) and the dimension of 2(C) is 1, all divisors corresponding to a differential

are equivalent and we define:

Definition 1.2.7. Let C be a smooth curve and w any non-zero differential on C. The dimension g of

L((w)) is called the genus of C.
Throughout the chapter a central tool is the Riemann-Roch theorem:

Theorem 1.2.8 (Riemann-Roch). Let C be a smooth algebraic curve with genus g, D a divisor and K
a divisor corresponding to a differential, then

dimc L(D) = degD + 1 — g + dimy L(K — D).
Moreover dimg L(K — D) = 0ifdegD > 2g — 1 and deg K = 2g — 2.

Proof. [Mirgs, p. 192, Theorem 3.11.] [
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1.3. Elliptic Curves

Definition r.3.1. [Silod, p. 9] A smooth projective curve E of genus 1 together with a point O € E is
called elliptic curve.

Proposition 1.3.2. [Silog, p. soff, Prop. 3.1.] Let E be an elliptic curve and O a point on E.

1. There exist rational functions x, y € C(E) and coefficients a1, as, as, a4, ag € C such that

yv2 + aixy + asy = x* + asx® + asx + as. (r1)

2. The rational map
[E -- U(F) c P?
1P —  x(P)iyP):1)

is a morphism of degree 1, where

F(X,Y,Z)=Y?>Z+a\XYZ + a3Y Z* — X3 - axX*Z — ayX Z° — a6 Z>.

Proof. [|. The Riemann-Roch theorem ensures that
dime L(n0O) = n,

forn > 1and dimc L(O) = 1. Thus there exist rational functions x € L(20) \ L(O)and y €
L(30) \ L(20) such that

L(0) = span-{1}
L(20) = span-{1, x}
L(30) = span-{L, x, y}
L(40) = span-{L, x, y, x?}
(50)

L(50) = span{1, x, y, x2, xy}.

The rational functions x* and y? both have a pole of order 6 at O, hence y? —x3hasa pole of order
at most 5 and is contained in Z(50). It follows that there exists a C-linear combination

y2 —-x3 = —aixy —asy + a2x2 + asx + ag.
Bl. Since E is a smooth curve, every rational map with domain E is a morphism. The degree deg ¢ is
equal to
[C(E) : ¢"C(U(F))] = [C(E) : C(x.y)]
and divides both [C(E) : C(x)] and [C(E) : C(y)]. These degrees are equal to the degrees of the pole
divisors (x)e = 20 and (y)e = 30, hence deg ¢ divides both 2 and 3 and must therefore be equal
to 1[Silog, p. 61, Corollary 3.1.1.]. ]
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An equation of the form (1) is said to be in in long Weierstrafs form. Since we only deal with elliptic
curves over the complex numbers it is possible to obtain a simpler model by first completing the square

on the left-hand-side, i.e.

aix +a aix +as\?2 (aix + as\?
y2+arxy +azy = y? + 24— 3y+( - 3) —( - 3)

2 2 2
aix +az\? (ajx +az\?
=) - ()
2 2
We obtain a new equation and an isomorphism
E N E’ - Y/QZ/ —_ X/3 4 bZXIZZ/ 4 b4X/Z/2 4 b6Z13
(X:Y:2Z2) + (X:Y—%:Z) '

A second simplification is given by a Tichirnbaus transformation

by \? b\ b
X -2 + by X =2 + by X -2 +bg = x"" + cyx” + cg,
3 3 3
which yields another isomorphism
El E/l

(XY 7)) +— (X'—%:Y’:Z’)'

If we were to consider elliptic curves over different fields than C, the above simplifications would still
be possible as long as 2 and 3 are invertible. The simplified equation

Y?Z = X3+ AXZ%? + BZ3

is called a short Weierstraf§ equation [Silog, p. 42ft]. As we have shown just now, every elliptic curve
has a model given by a short Weierstrafl equation. The question arises whether every curve given by a
short Weierstraf$ equation is an elliptic curve?

Proposition 1.3.3. [Silod, p. 59, Proposition 3.1.] Let E be the curve given by Y2Z = X3 + AXZ? +
BZ3, then the following are equivalent

1. Eisan elliptic curve
2. E is smooth
3. The discriminant A of x3 + Ax + Bis not 0.

Proof. | = pl. By definition.

= § Let F(X,Y,Z) = Y?Z-X3-AXZ?-BZ?and suppose X>+AX+B = (X —e1)(X—e2)?,
then the system of equations

7?2 2 i

OF
= -3X?-A =-2YZ — =Y?-2AXZ - 3322} (12)

{F(X’ .2) 5% aY EY/

IO
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has the solution (e : 0 : 1).
B = B Let (x0 : Yo : zo) be a singular point, that is, a solution of ([.2). If zg = 0, the other
coordinates are 0 as well, which is not a point in P? and we may assume that zo = 1. Solving the
system for A and B gives

A =-3x2and B = 2x}

and it follows that
4A3 4+ 27B% = 4(-3x3)® +27(2x3)? = 0,

which is just A.
Bl = [l The Riemann-Roch theorem ensures that the degree of any differential is equal to 2g — 2 and
it suffices to show for one differential w thatdegw = 0. Let e1, 3 and e3 be the zeros of x>+ Ax+B,
then the rational function x — e; hasa zero of order 2 at the point P; = (e; : 0 : 1) and a pole of order
2 at O. It follows that

X —e; = ti2’

where #; is a uniformizing parameter at P; and

where 10 is a uniformizing parameter at O. We can compute

Vpi(dx) =Vp; (d(x - e,-)) = Vpi(dl‘?) = Vpi(QIl'dl‘i) =1

and
1
vo(dx) =vo (xQd;) =vol(tgtdty) = vo(tg dto) = =3,
since 0 = d% = d2 - x%dx. It follows that deg((dx)) =3 —3 = Oand hence g = 1. [

Convention. From now on an elliptic curve is a curve of genus 1 given by a short Weierstraf$ equation.

With the previous Proposition we can now say that elliptic curves are parametrized by the points
(A, B) € A%\ {4A% +27B% # 0}.

Asitwill turn out, there exists a “smaller”, more canonical moduli space, which also parametrizes elliptic
curves and has the property that isomorphic curves correspond to the same point (which the above
space does not satisfy). Before we can construct this space, we need to know what a morphism of
elliptic curves is.

Definition 1.3.4. [Silog, p. 66] Let E and E” be elliptic curves. A morphism ¢: E — E’ is called
isogenty or morphism of elliptic curves, if (0) = O.

Lemmar3.s. Let ¢: E — E’ be a non-constant morphism of elliptic curves, then ¢ is surjective and
has finite degree.

II
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Proof. If ¢ is non-constant it induces a morphism of C-algebras

‘. { CE) — C(E)
R R A A Y
and a field extension C(E)/¢*C(E’). Since both C(E) and C(E”) have transcendence degree 1 and
are finitely generated (for example by the rational functions x and y in Proposition [.3.2)), the extension
C(E)/¢*C(E’) is finite and algebraic.

For P € E’, there exists a rational function f € L(20)\ L(O) by the Riemann-Roch theorem and
it follows that its inverse 1 has a single zero at P of order 2. The pull-back f~* o ¢ must have a zero,
since otherwise it would be constant, which is impossible by the injectivity of ¢*. Thus, if Q € Eisa
zero of 1 o ¢, then ¢(Q) is a zero of f~1, which is only possible if p(Q) = P.k [

Let us now introduce the group law of an elliptic curve. We will try to do this in a most economical
fashion, first by giving a bijection of an elliptic curve with a group constructed from itand then showing
that the induced group structure is given by a morphism.

Definition 1.3.6. [Silog, p. 28] The Picard group of divisors of degree 0 of a smooth algebraic curve E
is defined as
Pic’(E) = Div’(E)/(C(E)X).

Let ¢: E — E’ be amorphism, then the push-forward of divisors
[ Pid%E) —  Pid%(E)
Vol ZimPe — Xinip(Pr)

turns the Picard group into a functor from the category of smooth algebraic curves to the category of
abelian groups.

Proposition1.3.7. [Silog, p. 61ff, Prop. 3.4.d] Let E be an elliptic curve and O € E the pointatinfinity,

then
| E — Pic’(E)
®: {P —  P-0+ (C(E))

is a bijection.

Proof. First, note that deg(P — O) = 0 and hence @ is well-defined. For the injectivity, suppose there
exist points P and P’ such that

P-0+(f) =P -0+(f),
A

where f, f’ € C(E)*. Then P — P’ = (f/) and hence the rational function ]% has, if P # P’,a
single, simple zero P, which is impossible since L(P) = C. It follows that P = P’ and @ is injective.
Next, let D be a divisor of degree 0, then D + O has degree 1 and is equivalent to an effective divisor
of degree 1, i.e. a prime divisor P. In other words

D+ (C(E)*) =P -0 + (C(E))

and surjectivity follows. [ ]

“This argument is a variation of [Osg, p. 7, Theorem 6.1.]
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1.3. Elliptic Curves

This bijection endows the ser E with a group structure via

. { ExXE — E
L) — o (aP)+2(Q)
and
) E — E
. { P —  O(-0(P))

with the neutral element O. To show that u and ¢ are morphisms we need the notion of a hyperplane
divisor.

Definition 1.3.8. [Miros, p. 13sff] Let H C P? be a hyperplane given by a linear homogeneous poly-
nomial & € C[X,Y, Z]. For an elliptic curve E the hyperplane divisor (H N E) is defined via

0 iftP¢HNE
vp (g) where g is any linear homogeneous polynomial such that g(P) # 0

vp((H N E)) ={

Note that the valuation at a point P € H N E is well-defined since

o) =)= ) e ()= ()

Lemma1.3.9. [Silog, p. 63, Prop. 3.4.¢] Let E be an elliptic curve, then any two hyperplane divisors

on E are equivalent.

Proof. Let hand h’ be two linear homogeneous polynomials and denote by H and H’ the correspond-
ing hyperplanes. For P € E and g linear homogeneous polynomial with #(P) # 0, we compute

o (B) e () <o (2) o (2) < ey - .

Icfollows that (HNE) - (H' NE) = (ﬁ) [

Using hyperplane divisors we can construct the well-known geometric chord and tangent addition
of points on an elliptic curve E : Y 27 = X3 + AXZ + BZ3. First, let us compute the degree of one
(and hence of all) hyperplane divisors. Let H : ¥ = 0, then

HNE = {Py, Py, P3},

where %(Pi) is a root of x> + Ax + B, and we now know that every hyperplane intersects E in
exactly three points (counted with multiplicity). For the two points P and Q to be added, we define
the hyperplane H : h = 0 as the hyperplane spanned by P and Q if P # Q, or as the tangent
hyperplane at P if P = Q. In the latter case, we find the equation for & = aX + bY + cZ by requiring

h(P) =0
(P =a=SX(p)
) =b="SL(p)
(P =c=2Lp).

13



1. Elliptic Curves

Note that this will give the coefficients only up to a scaling factor but since U(aX + bY + ¢Z) =
V(AaX + AbY + AcZ), this does not change the resulting hyperplane H. Given the points P and Q
and the hyperplane H, we find a third point R of H N E. Let H’ be the hyperplane spanned by R and
O (again taking the tangent hyperplane if R = O) and denote by R* the third pointin H’ N E. Since
(HNE)~ (H NE),weobtain

P+QO+R~R+ R+ 0.
Eliminating R and subtracting 20 from both sides gives
(P-0)+(Q-0)~ (R -0),

respectively ®(P) + ®(Q) = ®(R*). Finally, since finding the third intersection point of H N E is
given by rational functions F, G and H, u and ¢ are a rational maps defined everywhere and therefore
morphisms([Silog, p. 63, Prop. 3.4.¢].

Now that the group law of elliptic curves is established we can say what this means for isogenies.

Proposition 1.3.10. [Silog, p. 71, Theorem 4.8.] Let ¢: E — E’ be an isogeny, then ¢ is a group
homomorphism.

Proof. Consider the commutative diagram

EL)E’
le -

Pic(E) —£ Pic’(E”)

where the vertical maps and ¢, are group homomorphisms and hence ¢ = O Lo, odisalsoa
group homomorphism. [

It follows that for two elliptic curves E and E’, the set Hom(E, E”) is an abelian group and the set
of endomorphisms End(E) = Hom(E, E) is a ring with composition as multiplication.[Silod, p. 67]

1.4. The j-invariant of an Elliptic Curve

We return to the problem of finding a moduli space for elliptic curves. Our earlier attempt at a param-
eter space A2\ {4A3 + 27B?} has the disadvantage that different points correspond to isomorphic
elliptic curves, e.g. (0, 1) and (0, 2). Here we use the j-invariant to construct the “best possible” mod-
uli space, in which every point corresponds to exactly one isomorphism class of elliptic curves.

Definition 1.4.1. Let E : Y?Z = X3 + AXZ? + BZ3 be an elliptic curve. The j-invariant of E is

defined as
4A3

i(E) = 1728——2
J(E) 443 | 27B2

Theorem 1.4.2. [Silog, p. 4sft, Prop. 1.4.]

1. Let E and E’ be elliptic curves, then E = E’ ifand only if j(E) = j(E’).

14



1.4. The j-invariant of an Elliptic Curve

2. Forevery jo € C there exists an elliptic curve Eg such that j(Ep) = jo.

Remark. More conceptually the theorem states that the map

. Ell/% N C
J‘{ E  — j(E)

is well-defined and bijective.

Proof. |l LetE : Y?Z = X3+AXZ?+BZ3andE’ : Y?Z' = X3+ A’X'Z"*+ B’ Z"3 elliptic curves
andlet ¢: E — E’ be an isomorphism, then ¢ restricted to the 2-torsion points is an isomorphism

: E[2] —  E[2
Q0'{(6,~:():1) — (ef:0:1) °

where e1, €5 and e3 are the roots of x> + Ax + B and similarly €], e5, and e are the roots of X3+
A’x" 4+ B’. The function
* X/ ’
oz

hasazeroat (¢; : 0 : 1) and a pole at O, each of order 2 and hence

(X)X
v \z |~z

Yy Y
¥ I ,qu
for some A, u € C*. It follows that

2 3 2 3
Y’ X’ X’ Y 5 (X X
0=¢(0)=¢'[|=] - [Z=] A= -B|=12|=| -23|Z| 4= -F

and we compare this with the defining equation of E to obtain 1A” = WA, B’ = p’Band 23 = 1°
and hence

and similarly

6

1A% 4k A3 4A3
(E') = 1728 ————— = 1728 1728 —— = j(E).
JE) 1A% + 27B” 1EAS {27, oz B

Now, suppose that j(E) = j(E’) # 0,1728, then algebraic manipulation of the equation j(E) =
J(E’) yields

A B?

A3 B2 (13)
and we choose u € C* such that A = u*A’ and B = u®B’. If j(E) = j(E’) = 0, we choose u € C*
such that B = uSB’ and finally, if j(E) = j(E’) = 1728, we choose u € C* such that A = u*A’.
Then

E — E’
(X:Y:Z) +— (%:%:Z)

u

I



1. Elliptic Curves

is an isomorphism of E and E’.
Bl If jo € C\ {0, 1728}, the curve

Jo X724 Jo 3

Ey:Y?Z=x3-—2" —_— 7
0 48(jo — 1728) 864(jo — 1728)

has j-invariant jo and is also defined over Q(jg). If jo € {0, 1728} curves Eg : Y?Z = X3 + Z3 and
Eo:Y?Z = X3 4 X Z? have j-invariant 0 and 1728, respectively. ]
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2. Complex Tori

The goal of this chapter is to establish a theory parallel to the theory of elliptic curves, where the role
of smooth algebraic curves is assumed by Riemann surfaces, elliptic curves correspond to complex tori
and we prove the corresponding results:

1. The isogenies between complex tori form abelian groups (Proposition and the following
discussion),

2. The field of meromorphic functions on a complex torus (Proposition [.3.2)),
3. The j-invariant of a complex torus/lattice is an invariant (Theorem [.4.2)).

Where we used the purely algebraic Riemann-Roch theorem before, the approach of this chapter only
requires a little topology and facts from complex analysis and while I make some omissions, these are
minor technicalities.

2.1. Riemann Surfaces
Definition 2.1.1. [Mirgs, p. 1] Let X be a topological space and U € X open. A homeomorphism
p: U -V,

where V is an open subset of C, is called a chart. Two charts ¢: U — Vand ¢’: U" — V' are
compatible if either U N U’ = @ or the transition function

o lipUNU") - ¢'(UNU)
is holomorphic. Note that this relation is symmetric by the inverse function theorem.

Convention. Phrases like “Let X be a topological space and ¢: U — V a chart (on X)” carry the
implied meaning that U € X and V C C are open.

Definition 2.1.2. [Mirgg, p. 3ff] Let X be a topological space. A set of pairwise compatible charts
A={pi: Uy > V;|iel}iscalled atlasif X = |J;¢; U;.

Two atlases A and A" are comparible if all charts in A4 are compatible with all charts in <4". Equiv-
alently, 4 and A" are compatible if .4 U 4" is an atlas on X. Using Zorn’s lemma, there exists for
every atlas .4 a unique maximal atlas A such that all atlases compatible with A4 are contained in A.

Definition 2.1.3. [Mirgs, p. 4, Definition 1.18.] A topological space X together with an atlas 4 is called
Riemann surface if X is connected, Hausdorff and has a countable basis.

17



2. Complex Tori

Example. [Mirod, p. 4, Example 1.19.] The affine line C with atlas comprising the chartid: C — Cis
a Riemann surface.

Definition 2.1.4. [Mirod, p. 38, Definition 3.1.] Let X and Y be Riemann surfaces and x € X. A
function F': X — Y is called holomorphic at x if there exist charts : U — Vand ¢’: U’ — V' with
x € Uand F(x) € U’ such that

¢’ oFoplipUn fHU)) >V

is holomorphic at ¢(x). The function F is called morphism (of Riemann surfaces) if it is holomorphic
atevery pointin X.

Remark. [Miros, p. 39, Lemma 3.3.a., Lemma 3.5.b.] Since the transition functions between charts are
by definition holomorphic, a function F is holomorphic at x € X with respect to ¢ and ¢’ if and only
if it is holomorphic with respect to any other charts (at x and f(x)).

Moreover, the identity map and the composition of two morphisms are again morphisms and hence
Riemann surfaces with morphisms form a category RS.

Proposition 2.1.5. Let F': X — Y be a bijective morphism, then F 1Y 5> Xisalsoa morphism.
Proof. [Mirgs, p. 40, Proposition 3.9.] [ ]

Definition 2.1.6. [Mirod, p. 39, Example 3.4.] Let X be a Riemann surface. A morphism f: X — C
is called holomorphic function (on X ). Concretely, f is a function such that for every chart ¢: U — V
on X, the composition f o ¢~ : V — Cis holomorphic.

Lemma 2.1.7. Let X be a compact Riemann surface and f: X — C a holomorphic function, then f
is constant.

Proof. [Mirgs, p. 29, Proposition 1.37.] ]

Definition 2.1.8. [Mirgs, p. 42] Let X be a Riemann surface. A function f: X — C U {oo} is called
meromorphic at x € X if there exists an open neighbourhood U of x such that f Iy= %, where g and
h are holomorphic functions with 2 # 0. The function f is called meromorphic if it is meromorphic
at every point of X.

Immediately we see that holomorphic functions are meromorphic and that the set of meromorphic
functions on a Riemann surface X form a field denoted A4 (X). A morphism F: X — Y of Riemann
surfaces induces a morphism of fields

o MY) — M(X)
F'{ f — foF

We will pursue this further when we investigate elliptic functions.

18



2.2. Complex Tori

2.2. Complex Tori

Definition 2.2.1. A subgroup Zw1 + Zwy € Cis called a lartice it {w1, w2} is an R-basis of C. For a
lattice A the quotient group C/A endowed with the complex topology is called a complex rorus.

Lemmaz.2.2. [Mirgs, p. 9] Let A bealattice. The space C/A is connected, HausdorfF, hasa countable
basis and the quotient map 7: C — C/A is a covering.

Proof. In order to see that C/A is connected, suppose C/A = U U U; with Uy and U, pairwise
disjoint and open. Then the preimages 71 (Up) and 771 (U} ) are open and disjoint and cover C, which
is impossible. For the Hausdorff property, let z + A # z’ + A be two pointson C/A, thenz ¢ 2’ + A
and since A C C is discrete, z is also not a limit point of z + A. It follows that there exists an & > 0
such that B;(z) N Bs(z' + w) = @ forall w € A and the images of B (z) and any B (2" + w)
separate z + A and z” + A in C/A. Finally, the countable-basis-property follows immediately from
the quotient map 7: C — C/A being an open map.
Let 6 = ming+wenlw — w’| be the length of the shortest lattice vector and let z € C. The set

{Bs(z+w)|weh)

consists of pairwise disjoint open balls, each of which is homeomorphic to B s (z) + A € C/Avian.

Since 7 is open and surjective, every pointin C/A has such an evenly covered open neighbourhood. =

Proposition 2.2.3. [Mirgs, p. 9] Let A be a lattice. The space C/A can be equipped uniquely with a
Riemann surface structure such that the quotient map 7: C — C/A is a morphism.

Proof. We define charts on C/A for all evenly covered open subsets U € C/A as
¢p: U — U ,

where U is any sheet above U. The transition functions for different U and sheets U are translations
and hence these are compatible and form an atlas. Let now z € C, U an evenly covered neighbourhood
of 1(z) and U the sheet above U containing z, then

pomoidt=id: U - U

is holomorphic atid(z) = z and hence 7 is a morphism.
Finally, suppose there exists another atlas <4 on C/A such that 7: C — C/A is a morphism. Let
U be a sheet above U, then
n:U—-U

is a bijective morphism and hence its inverse ¢ : U — U is compatible with 4 and it follows that .4
itself is compatible with the atlas constructed above. |

Definition 2.2.4. Let C/A’ be another complex torus. A morphism ¢: C/A — C/A’, which maps
0+ Ato 0+ A, is called isogeny.

Remark. Clearly the identity and the composition of two isogenies are isogenies. It follows that the

complex tori together with isogenies form a subcategory of the category of Riemann surfaces called
Tori.
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2. Complex Tori

Theorem 2.2.5. [Silog, p. 171ff, Theorem 4.1.] Let ¢ : C/A — C/A’ be an isogeny, then there exists a
unique holomorphic function ¢(z) = @z, where @ € C such thatwA € A’, and

0 »A——>C—"25C/A —0
. )
lA ln, l‘o (2.1)
0 » N —— C—>5C/N —0

is a commutative diagram of abelian groups.

Proof. The existence of the lift ¢ follows from Lemma [B.0.4, where ¢ is locally given by the composi-

tion of a chart, ¢ and the projection. All of these are morphisms and hence ¢ is also a morphism.
Letw € A, then ¢(z + w) — ¢(z) € A’ forall z € C. Since ¢(z + w) — ¢(z) is a holomorphic

function with discrete image, it must be constant and its derivative (with respect to z) satisfies

o' (z+w)-¢'(z) =0.

In other words, ¢’(z) is a holomorphic A-invariant function and sup,_ .|¢(z)| is already assumed in
the closure of
F={xw1+yws | x,y €[0,1)}

and hence ¢’(z) is constant by Liouville’s theorem [Silog, p. 161, Proposition 2.1.]. It follows that ¢
is a linear polynomial in z and since ¢(0) = 0, it has the form ¢(z) = az for some @ € C. Since
mar 0 @(A) = 0, the image ¢(A) = @A is contained in A" . [

Corollary 2.2.6. [Silog, p. r71ff, Theorem 4.1.] There is an isomorphism of abelian groups

5 { Homt,i(C/A,C/A) — {aeC| gl/A cC A}

) ) — %

Proof. The existence and injectivity of this map follows immediately from Theorem p.2.4. To show
that @ is surjective, let @ € Csuch that@A C A’, U be an evenly covered open subset of C/A and U a
sheet above. The restriction 7: U — U of the quotient map is an isomorphism of Riemann surfaces
and hence the map (z + A — @z + A’)ison U given by mps o (z = @z) o 77! and thus a morphism
of Riemann surfaces. Finally, let ¢, : C/A — C/A’ be isogenies. Then the holomorphic function

o tY -0y

has its image lying inside the discrete set A" and therefore must be constant. Since 0 is mapped to 0,
the function is equal to 0 and the homomorphism property follows. [

Corollary 2.2.7. [Silod, p. 173, Corollary 4.1.1.] Let ¢: C/A — C/A’ be an isogeny, then the kernel
ker ¢ is isomorphic to the cokernel coker ¢ [ 4. In particular ¢ is an isomorphism if A = ®(¢)A’ and
we call two lattices homothetic if there exists an @ € C* such that A = aA’.

Proof. Apply the snake lemma to (p.1). ]
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2.3. Elliptic Functions

2.3. Elliptic Functions

For a torus C/ A we will now determine the field of meromorphic functions 4 (C/A). Note that the
morphism of fields
M(C/A) — M(C)
f —  fon

maps the meromorphic functions on a torus isomorphically to
C(A):={feM(C)|VzeCVw e A: f(z+w) = f(2)}
and such functions are called elliptic functions (with respect to A).

Definition 2.3.1. [Silod], p. 165] Let A be a lattice, then the Weierstrafl p-function is defined (formally,
for now) as

p(z;A) = Z% + Z ((Z_;w)2 - %) . (2.2)

0#weA

In order to show that g is a meromorphic function we need the following lemma:

Lemma 2.3.2. [Silog, p. 165, 178, Theorem 3.1.a., Exercise 6.2.] Let A be a lattice and s a real number
greater than 2, then

converges absolutely.

Proof. We split G into two parts

G, = Z w?®

0#weA

T Y
0£weA 0zweA
lw|<1 lw|>1

and note that the former has only finitely many terms. For the latter we let » € N and consider the
annulus A, = {z € C|r < |z] <r + 1}, then

(9]

D=3 > |w|‘Ssi > (23)

0#weA r=1weA,NA r=1weA,NA
lw|>1

Let N, be the number of lattice points in A, and let 6 = ming,zerenlw — w’| be the length of the
shortest lattice vector in A. For every lattice pointin A, we putaball of radius p = min{2, 1} around
it. These balls may extend beyond A, but they certainly lie inside the larger annulus {z € C | r — 1 <
|z| < r 4+ 2} and hence the area of all balls can be estimated as

N.p*rn < (r42)%n-(r-1)?2r=6rn—3n
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2. Complex Tori

and consequently N, < 6 =r - p— We may use this to further estimate (p.3) as follows

2 2 LN G Y 0
r=1lweA,NA r=1 p r=1 p r=1

Both sums converge since s > 2. ]

Corollary 2.3.3. Let A be alattice and 2k + 1 an odd natural number, then Gog4+1 = 0.

Proof. All summands come as pairs w™ kD) =2+ and since the summands can be rearranged,
it follows that Gog41 = 0. [ ]

Theorem 2.3.4. [[Cox8d, p. 200ff, Theorem 10.1.] Let A be a lattice. The series
1
A
0#weA

defines an even elliptic function with respect to A and has a pole of order 2 at every lattice point.
Proof. Let{) € C\ A beacompactsetand R = 2 max;cq|z|, then

= 3 (5] 3 (o)

weA weN
lw|<R lw|>R

where the first sum is a finite sum. For the second sum we rearrange the absolute value of a summand

1 1| [P =(z-w)?| | zQ2w-2)
(z-w)? w?| | w¥(z-w)? | |w(z-w)?|
and use the triangle inequality to obtain
d20-2) | _ @l +1z) __ld3lel ;10
W (z-w)?| 7 l@?|(lol = 12)? 7 |w?(3|w])? lw]?’

since for z € £, |z| < %R < %le. The sum
> =
3
0weA |w|

converges by Lemma p:3.2 and hence ¢(z; A) converges absolutely and uniformly on every compact
2 € C\ A by the Weierstrafs M-test.

Since p converges absolutely, interchanging z + —z in the definition does not change the function,
hence @ is even. In order to show that g is elliptic, consider its derivative, which can be computed

=20, TTop (24)

termwise as
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2.3. Elliptic Functions

Similarly to before, this sum is absolutely and uniformly convergent on compact subsets of C \ A and
hence holomorphic on C \ A. Substituting z = z + w for some wy € A does not change the series,
hence ¢’(z; A) is an elliptic function. For wg € A consider the derivative

(9(z+wo; A) = 9(z3A)) = 9'(z + wo; A) = 9’ (25 A),

which is 0 since ¢ is elliptic and hence p(z + wo; A) — p(z; A) = ¢ € C. Specializing z to — 52 gives
wo wo
e
c=9(-3 Y\ 73

since @ is even. It follows that p(z+wo; A) = 9(z; A) and hence g is elliptic. Lastly, by the definition
of p(z; A), it has a pole of order 2 at 0 and hence at every lattice point. ]

Corollary 2.3.5. [Cox89, p. 202, 216, Exercise 10.2.] Let A be a lattice. The derivative of the Weierstraf§
g function is an odd, elliptic function with poles of order three at every lattice point.

Lemma 2.3.6. Let f be an elliptic function with respect to a lattice A, then

1. If f is holomorphic, it is constant.

2. Yier Res; (f) = Yzervz(f) =0.

3. If f is non-constant, it has at least 2 poles in /' (counted with multiplicity).

Proof. [Silog, p. 1624F, Theorem 2.2., Corollary 2.3.] ]
Theorem2.3.7. [Husod4, p. 172ff, Theorem 3.3] Let A be alattice, then C(A) = C(p(z; A), 9’(z; A)).

Proof. Since p(z; A) and ¢’(z; A) are elliptic functions only one inclusion has to be shown. Let f be
an elliptic function, then
f@)+f(=2) | f(z) - f(=2)

f(z) = 5 + 5

is a decomposition into an even and an odd elliptic function. Moreover if f(z) is an odd elliptic func-
tion, f(z)9’(z; A) is even and it suffices to show that every even elliptic function is in C(p(z; A)).
Suppose now that f(z) is an even elliptic function, then v (f) = 2m and hence f(z)p(z; A)" isan

even elliptic function holomorphic and non-zero at every pointin A.
The poles and zeros of f(z)9(z; A)™ in F come in pairs w, w’ such that w + w’ € A since f is
even. If w # w’ mod A, we multiply f(z)p(z; A)™ with a factor

fu(2) = (p(z; A) = p(w; A))"=)

such that v, (f(2) fw(2)) = ver (f(2) fw(z)) = 0. f w = @’ mod A, the order of f(z)p(z; A)™
atw = w’ is even and we multiply f(z)p(z; A)™ with

ful2) = (9(z: A) - p(w; A)) 5",

Similarly, the product f(z)9(z; A)™ fu(2) is holomorphic and non-zero at w and it follows that

@9 ™ | fol2)

is a holomorphic elliptic function and thus constant by Lemma p..3.4. ]
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2. Complex Tori

Lemma 2.3.8. [Cox89, p. 202ff, Lemma 10.3.] Let A be a lattice. The Laurent expansion of (z; A)
near 0 is

1 o "
= —2 Z 27’l+1 G2n+2(A) 2 .

Proof. For |z] sufficiently small we may insert the Taylor expansion
1 1 - "
_ - _ = 1)—=>
((z—w)2 wz) Y;(”+ )wn+2

into the definition of p(z; A), i.e.

1 - "
pah) =5+ ) Y t)—
weA\{0} n=1

1
=3 Z (2 + 1)Gonya(A) 22",

where we used that Go44(A) = 0 by Corollary p:3:3. [ ]

Proposition 2.3.9. [Cox8¢, p. 200ff, Theorem 10.1.] Let A be a lattice. The Weierstrafl ¢ function and
its derivative @’ satisfy the algebraic relation

0’ (z30)% = 4p(z; A)® — g2(A)p(z; A) — g3 (A), (2.5)
where g2(A) = 60G4(A) and g3(A) = 140Gg(A).

Proof. We compute the derivatives of p(z; A) and 9’(z; A) using Lemma p3.§ as

1 [Se]
=5+ Z 20+ 1)Gap 7™

and

o (z; A Z (2 4 1)(21)Gap 2™

Let f(z) = 9'(z;A)? — 4p(z; A) + 60G49(z; A) + 140Gg and consider the Laurent expansions
4  24Gy

(A = o - 254 - 8065 + 0(?)
1 9G
o(z;A)? = 5t Z4—|—15GG+O( )

1
pzh) = 5+ 0(z%),

then f(z) = 0+ O(z?) is a holomorphic elliptic function and hence constant by Lemma p-3.9. More-
over f(0) = 0 and the claim follows. [

24



2.4. The j-invariant of a Lattice

Corollary 2.3.10. [[Cox8d, p. 207, Lemma10.12.] Let k > 2, then Gox € C[Gy4, Gg].

Proof. We take the differential equation in (p-§) and differentiate again to obtain

g2(A)
R

0" (z;A) = 69(z; A)? -

The Laurent expansions of ¢(z; A) and its derivatives yield the recursion

n-2
(2n+3)(n—2)(2n+ 1)Gopt2 =3 Z(?i +1)(2(n-1-i)+ 1)G2i+2G2(n_1_,~)+2.
i=1

[ ]
Corollary 2.3.11. [Silog, p. 170, Prop. 3.6.a] Let A = Zw; + Zws be a lattice, then the discriminant
A(A) = gQ(A)3 - 27g3(A)2
of the polynomial 4X3 — g2 (A)X — g3(A) is not 0.

Proof. Letwsz = w1 + w2, then fori = 1,2, 3 we have

(3= (5= (5)=

7 wi 2 13
0=gp (?A) 24@(7 ) —8280( ) g3.

Consider the elliptic function h;(z) = ¢(z; A) ( ) By the above argument /; has a zero of

and hence

order 2 at % and since @ has a single pole of order 2 1n31de F it follows that there are no other zeros
inside F and thus o w: o
w(3) =0 (Fe8)-0(5i4) 20
"\ ) =¥\ 2 )7

fori # j. ]

2.4. The j-invariant of a Lattice

Here we wish to prove the an analogue of Theorem for complex tori, respectively lattices. The
invariant, which is also called j-invariant, is constructed by means of the j-invariant of an elliptic curve
and the differential equation in (p.d). The transformation properties of g2 and g3 will make this j-
invariant not only a function of lattices but rather on the upper half-plane

h={reC|Im7 >0},

where it is holomorphic and also satisfies a similar transformation property, which is used to show that
this j-invariant is indeed an invariant.
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2. Complex Tori
Definition + Proposition 2.4.1. [Ser73, p. 78ff, Theorem 1. & 2.] The upper half-plane ) is acted on
by SLy(Z) via Mébius transformations
SLa2(Z) x b — b
GEEI
The set

1 1
FZ{TE[)|—§SRCTSO,lTl21}U{T€b|0<R€T<§,|T|>1}

is called the fundamental region and is a system of coset representatives of SLa(Z)\b.
Proof. Lett € hand let
a b
v = (C d) € SLo (Z),

Imt
let+d|*"
we define 7/ = T"yt, where

then Imyt = Since ¢ and d are integers, we may choose y such that Im y 7 is maximized and

W:Gﬂem@

with n such that—% <Ret’"=Reyr+n< % If |7’] < 1, then

0 1 1
Im ((_1 O) T) =Im (—;) > 1,
which contradicts the maximality of Im y7 and it follows that 7’ € F.
Suppose now that there exist 7,7" € Fanday € SLy(Z) such that 7" = yr. Without loss of

generality, we may assume that [c7 + d| < 1, if not, we simply replace 7, 7" and y with 7/, 7 and y_l.
Since |7| = 1 it follows that |¢| < 1 and we consider the three cases:

_(£1 b
Y=lo =1

and it follows that 7 = 7 + b. Due to the restriction on the real parts of 7 and 7/, both must

* ¢ =0.Thend = £1,

coincide.

* ¢ = 1. Then d must be one of {0, —1,1}. If d = 1, then |t + d| = 1, which is only possible
of T = % Since dety = 1 it follows that a — b = 1 and hence
at+b ar+a-1 1

P T I

VT =

Again, due to the restriction on the real parts of 7 and a + 7 it follows that
(0 -1
[
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2.4. The j-invariant of a Lattice

and T = yT.

If d = 0, then |7| = 1 and since dety = 1 it follows that b = —1, whence

at -1 1
VT = =a——
T T
Since |7| = |—%| = 1 it follows that either & = 0 and then T = i ora = 1 and then
T = —1+T\@ In either case it follows that 7 = 7.
* ¢ = —1. We can invoke the previous case by replacing y with —y.

Corollary 2.4.2. [Ser73, p. 78fF, Theorem 1. & 2.] The group SLa(Z) is generated by the matrices

11 0 1
T = (0 1) and § = (_1 O)'
Proof. Clearly, the determinants of S and T are 1 and hence (S, 7T) C SLy(Z). In the previous proof
we have shown that for every 7 € b, the orbit (S, )7 contains an element of F and if 7" = y7 with
7,7 € F,theny € (S,T). Letnowy € SLg(Z)andlet 7 € F\ {i, %}, then there exists a
v’ € (S, T) such that
YvyreF
and it follows that T = y"y7 and therefore y"y € (S, T), respectively y € (S, T). ]

Lemma2.4.3. [Ser73, p. 83, Proposition 4.] For 7 € b, let G4(7) = G4(A;) and Gg(7) = Gg(A7),
then G4(7) and Gg(7) converge absolutely and uniformly in F and satisfy for

y = (‘CZ Z) € SLy(Z)

the transformation law Go; (y7) = (¢t + d)*Go; (7). Further, the limit lim;_,c Go; (7) exists and is
equal to 2£(4) respectively 2(6).

Proof. We have already shown that Go; converges absolutely in Lemma 3.2 and hence it defines a
function on b. We proceed by showing that for 7 € F, G9; is uniformly convergent and hence defines
aholomorphic function. Using the series definition of G2; we then obtain the transformation property
and from this the holomorphicity on all of . Finally, using the uniform convergence, we compute the
value at infinity. Let T € F, then

2

Im+nt|?> = m? + 2mnRet + n?|71?> > m?> —mn +n® = |m—np|2,

where p = #ﬁ It follows that

Gl < 3 g s Y e = D

2i 2i°
et mm Im—npl . Im+npl
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2. Complex Tori

where the last equality comes from the absolute convergence of G; (p) and hence G;(7) is uniformly
convergent in ' by the Weierstrafy M-test. Let

Y= (i 2) € SLy(Z)

and T € F, then

Gai(yt) = Z/ ;21 = (cT+ d)QiZI (

at+b
mn (m —+ nCT+d)

1
md + nb + t(mc + na))*’

The map m, n — md + nb, mc + na permutes the indices since y is invertible and the transformation
property follows from the absolute convergence of Gg;. The uniform convergence implies

. - 1 r 1
Tlg}go Gai(1) = Tlgfgo (m + n7)% = Z m2i
m,n m

= 20(2i).

Definition 2.4.4. [Ser73, p. 89] Let A be a lattice and let Ej : Y?Z = X3 - %XZQ - %Z3 be the
corresponding elliptic curve. The j-invariant of A is defined as

g2(N)?

S = JUER) = 1728 R — 2mge(A

Since g;(AA) = 172 g;(A), the j-invariant is constant on homothety-classes and hence we may define,

fort eb, j(r) =j(Ar).

Theorem 2.4.5. [[Cox89, p. 206ft, Theorem 10.9., p. 221ff, Theorem 11.2.] The j-invariant is an invari-
ant of homothety-classes of lattices and for every jo € C there exists a lattice A such that j(A) = jo.

Proof. Suppose j(A) = j(A’) for two lattices A and A’ then, just like in the algebraic case in Theo-
rem [.4.2, we obtain .
gi(A') = A7 gi(A) = gi(AA)
for some A € C. With Corollary it follows that
P(z;A') = p(z; A7)

and since A" is the set of poles of p(z; A”) and AA is the set of poles of p(z; AA) it follows that A’ =
AA.

For the surjectivity, we first mention that j(7) is the quotient of holomorphic functions with the
denominator A(7) = ga(7)3 — 27g3(7)? # 0 and thus j is holomorphic on b and the image j(b)
is open. In order to show that the image is closed, we let (j(7k))x>0 be a sequence in C converging
tow € C. Due to the SLy(Z) invariance of j, we may assume that 74 € F and if there exists a
subsequence (7 )with Im 7 unbounded, it follows that (j (%)) converges to co. Thus the elements
of the sequence (7x) lie inside a compact set and hence there exists a convergent subsequence (14~) —
7* and by continuity j(7*) = w and hence j(b) is closed. As the only non-empty open and closed
subset of Cis C, j is surjective. [
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3. Analytic = Algebraic

In this chapter the different notions of elliptic curves and complex tori are merged. More precisely, it
will be shown that the category of elliptic curves with isogenies is equivalent to the category of complex
tori with isogenies. With the more accessible complex tori, we can determine the endomorphism rings
of elliptic curves and define an exceptional class, so called CM curves, among the elliptic curves. In the
second part, the endomorphism rings of these curves will be investigated further.

3.1. Uniformization

In order to show the advertised equivalence of categories, we equip elliptic curves with a unique Rie-
mann surface structure using the implicit function theorem [A.02.

Theorem 3.1.1. [Mirgs, p. 16, Proposition 3.6.] Let E C P? be a smooth projective curve. Then there
exists a unique Riemann surface structure on E such that regular functions on Zariski-open subsets
are holomorphic.

Lemma 3.1.2. [Mirgg, p. 11, 15] Let E be an open and connected subset of a smooth curve given by
F(X,Y,Z) = 0 C P2 then E can be equipped with a unique Riemann surface structure such that
regular functions on Zariski-open subsets are holomorphic.

Proof. Equipped with the complex topology E inherits the Hausdorff and second-countability prop-
erties from P2. The construction of the charts at a point P depends on which affine chart P lies and
we describe the process only for points of the shape P = (x : y : 1). For points of different shape, the
process works similarly. If g_]; (P) # 0, then the implicit function theorem provides a holomor-
phic function f: V — U such that

Up:=ENVxUx{1}={(z: f(z):1) | z€e V}

and we define the chart 9o: Up — V;(z : f(z) : 1) — z. If 32(P) # 0, we obtain the chart
w1: Uy = V’;(g(w) : w: 1) > w. Suppose that Uy N U; # @, then the transition function

wo(UonU)) —  ¢1(UpnUy)
z = w=f(z)

is holomorphic. Verifying the compatibility for different charts works similarly. Let Uz, be a Zariski-
open subset of E, f: Uz, — Caregular functionand ¢: U C Uz, — V achart, then

fopl:VoC

is holomorphic, since ¢ is holomorphic and f is locally given by a quotient of polynomials, regular on
Uz, Finally, since the coordinate projections are regular functions on affine charts, these projections
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3. Analytic = Algebraic

restricted to sufficiently small open sets are holomorphic, bijective and therefore charts compatible
with every Riemann surface structure on E with the property that regular functions are holomorphic.
It follows that there is exactly one Riemann surface structure on E which makes regular function holo-
morphic. |

Proof. [Osd, p. 7, Theorem 6.1.] It remains to show that every smooth projective curve is connected.
Suppose E is the disjoint union of Eg and E1 with Eq connected. Since Ey is both open and closed in
E, it is a compact Riemann surface using the above lemma. For a point P € E; consider the divisor
nP. By the Riemann-Roch theorem

dimnP=n+1-g>0

for n > 0 and hence there exists a rational function f, which is regular everywhere but P. In partic-
ular f is regular on Eq and hence defines a holomorphic function on Ep. By the maximum modulus
principle f is constant on Eg with value ¢ and therefore the non-constant rational function f — ¢ has
infinitely many zeros, which is impossible. [

Earlier, we have already shown how to obtain an elliptic curve from a lattice and we now show that
this association is surjective.

Lemma3.1.3. [Cox89, p. 224, Corollary 11.7.] Let E: Y?Z = X? + AXZ + BZ3be an elliptic curve,

then there exists a unique lattice A such that A = —# and B = —#. In other words

o ZE8 ) e

forall z € C.

Proof. First, suppose that j(E) € {0, 1728}. In either case, one of the coefficients A or B is 0 and we
can take the lattices AZ[p], respectively AZ[i], where A is chosen such that A = —% if j(E) =
1728, 0r B = —&242D ¢ j(p) — o,

Now, suppose j(E) ¢ {0, 1728}, then, by Theorem and Theorem p..4.4, there exists a lattice
A’ such that j(E) = j(A’). Let A € Csuch that A = —w, then

3 2
1=(_@)3=(_Q)2 (<t @)

and hence B = i%. If it has the wrong sign, the lattice iAA” satisfies g2 (iAA”) = g2(AA’) and
g3(i/lA’) = —g3(/lA’). ]

The next theorem is the first part of the uniformization of elliptic curves and relates the objects of
the respective categories.
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3.1. Uniformization

Theorem 3.1.4. [Huso4, p. 176, Theorem 4.3] Let C/A be a complex torus and E the corresponding
elliptic curve, then
C/A — Ep
S T RN (g)(z;A):Mz;A):l)

is an isomorphism of Riemann surfaces and abelian groups.
p group

Proof. The charts on C/A are given by mapping an evenly covered open subset to a sheet above in C,
and the charts on E are given by the coordinate projections. It follows that for z ¢ A, the holomor-
phicity of p(z; A) and ¢’(z; A) imply that exp, is a morphism on (C \ A)/A. Since Ej lies in the
projective space P?, we may multiply exp , with m, whence

plzsd) o 2 )

P (zA) " 9'(zA)

extends exp , to a morphism on C/A and in particular it follows thatexp, (0 +A) = (0: 1: 0).

Let (x : y : 1) € Ejy, then the elliptic function p(z; A) — x has exactly two zeros z; and z2 in
the fundamental region F by Lemma with 9’(z1; A) = —9’(z2; A) = £y. It follows that there
exists exactly one z € F such thatexp, (z + A) = (x : y : 1) and further

z+Ar—>(2

expy(—z+A)=(x:-y:1)=—expy(z+A). (3.1)

As shown before, exp, (0+A) = (0 : 1 : 0) and since this is the only point of E at infinity, the map
exp, is bijective.

For the homomorphism property consider points P, Q, R € E such that P4+ Q = R. In Chapter|f
we have shown that P, Q, —R span a hyperplane H : X + uY + vZ and for f(z) = ¢(z;A) +
ug’(z; A) + v it follows that f(z) = Oifand onlyifexp, (z + A) € {P, Q, —R}. But the sum of the
zeros of an elliptic function inside the fundamental domain F lies in A by Lemma and with (B.1)

we obtain

epr(expx1 (P)+ expxl(Q)) =R=P+Q= epr(exp/_\l(P)) + epr(expxl(Q)).

With the uniformization map exp ,, we can relate the arrows:

Theorem 3.1.5. [Silod, p. 171ff, Theorem 4.1.] Let exp, : C/A — E and exp,,: C/A" — E’ be
uniformizations of elliptic curves, then

Homgy (E, E’) —>  Homr,;(C/A,C/A)
@ —> expl_\} O © expy
exp,, oY o expx1 — 4

is an isomorphism of abelian groups.
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3. Analytic = Algebraic

Proof. Both types of isogenies are surjective and map the identity to the identity, thus it remains to
show that a regular morphism becomes a morphism of Riemann surfaces, vice versa.
Let ¢: E — E’ be a non-zero isogeny, then ¢ is given by

(X:Y:2Z) - (F(X,Y,Z): G(X,Y,Z) : H(X,Y,Z)),

where F, G and H are rational functions which can be chosen to be regular at a point P € E by
Proposition [.2.2. By construction, there exist charts f: U — V near Pand g: U’ — V' near ¢(P)
given by coordinate projections and hence g o ¢ o f s given by a regular and hence holomorphic
function.
Conversely, anon-zeroisogeny ¢ : C/A — C/A’isgivenby ¢ (z+A) = @z+A’ by Theorem
with @ € C* such that @A € A”. Thusexp,, oy o exp ! is given by
' (z4) plaz; A)
2 2

01

(P(Z;A) : : 1) > (@(QZ;A’) :

and since A € A’ it follows for all w € A that
pla(z +w);A') = plaz + a:) ;A) = plaz; A)
e !’

and hence p(az; A’) is an elliptic function with respect to A and thus a rational function in p(z; A)
and ¢’ (z; A) by Theorem p-3.7. The same holds for p’(@z; A) and henceexp,,, oy oexp! isarational
map and a morphism by Proposition f.2.2. [

3.2. Endomorphisms

With the uniformization theorem at hand, the endomorphism ring of an elliptic curve E is isomorphic
to

{a e C|aA C A},

where A is the corresponding lattice. We start with a rough classification of these rings into two classes.

Lemma 3.2.1. [Silog, p. 176, Theorem s.5.] Let A = Zw1 + Zws ~ A; be alattice, then End Ey
is either isomorphic to Z or to an order 0 in an imaginary quadratic extension K /Q, in which case

K = Q(1).

Proof. Clearly End E contains a copy of the integers, since nA & A for n > 1. Thus, suppose there
existsan @ € C \ Zsuch that A C A, i.e.

awsy = aws + bwq

awy = cwy + dwy
fora, b, c,d € Z. Dividing these two equations yields

atr+b
ct+d
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3.2. Endomorphisms

and thus 7 satisfies ct? + (d — a)T — b = 0. Since T € } it must be imaginary quadratic and if we
divide w2 = aws + bw1 by w1 we obtain

at=ar+b

andhence @ € Q(7). Lastly, @ inducesalinear map A + @A and is therefore a root of the characteristic
polynomial of this map, i.c.

0=a?

—tr(a)a + deta = a® - (a + d)a + ad — be.
It follows that @ is integral and 0 = {@ € Q(7) | @A C A} isan order. ]

Definition 3.2.2. An elliptic curve E is said to have complex multiplication, respectively E is called a
CM curve, it its endomorphism ring is larger than the integers.

Next, we wish to classify these orders further in terms of the discriminant and relate it to the dis-
criminant of (the minimal polynomial of) 7.

Theorem3.2.3. [[Cox89, p. 103, 117, Exercise 5.7.] Let K = Q(\/E ) be an imaginary quadratic extension
of Q with d a squarefree negative integer. Further, let

4d ifd=2,3 mod 4
Ag =
d ifd=1 mod 4

and
0 ifAx =0 mod4
OAx — . >
1 ifAx =1 mod4
then
0 =Z + ZWAg
where wa, = M, and Ak is the discriminant of og .

Proof. Itis easy to see that wa . is integral, hence it suffices to show that foru, v € Qand u + vwa
contained in ok it follows thatu, v € Z. Suppose first thatd =1 mod 4, then

(u+vwag) — (u+vwa,) =vVd € og

and v2d € Z. As d is squareftee it follows that v € Zand thusu = (u + vwa, ) — vwa, as well.
Suppose now that d = 2,3 mod 4 and recall that the norm and trace

N(u + vVd) = u® —=v?d, Tr(u + vVd) = 2u

are both integers. It follows that 4u? — 4v2%d € 47 and 4v3d € 7Z. Since d is squarefree we obtain
2v € Z and the congruence

(2u)? = (2v)?d =0 mod 4.

We have that d = 2,3 mod 4 and every integral square is congruent to either 0 or 1 modulo 4, thus
2u and 2v must be congruent to 0 modulo 4 and hence u, v € Z.
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3. Analytic = Algebraic

Finally, we can compute the discriminant

2 .
1 wa 9 4d ifd=2,3 mod 4
d =l = - = = Ag.

* ((1 “)AK)) (@ax - war) {d ifd=1 mod4 K

Proposition 3.2.4. [HK13, p. u8ff, Theorem s.1.7.] Let o € og be any order, then there exists a unique
natural number f, called the conductor of f, such that

0 =72+ foxk =Z+Zfwa,
andA(D) :szK-

Proof. Since Z-submodules of free Z-modules are again free and since o is strictly larger than Z it follows
that 0 = Z + Zw and there exist integers e, f such thatw = e + fwa, . Without loss of generality
we may assume that f* € N, then the index of 0 in 0k is given by

1 e
salfy 7))=7
and thus fwa, € 0. We now have a tower of orders og 2 0 2 Z + Zfwa . with
(oK :0) = (ok 1 Z+ Zfway) = f

and hence o = Z + Z fwa, and its discriminant is

A(p) = det((i j:zi’{)) = f2Ak.

Now that we can describe every order simply by its conductor, we can give another description more
reminiscent of Theorem using its discriminant.

Corollary 3.2.5. [HK13, p. u8ff, Theorem 5.1.7.] Let oA be an order of discriminant A and let

0A+\/Z

WA = 7

where

0 ifA=0 mod?2
UA: b
1 ifA=1 mod?2

then oA = Z + ZwA.
Proof. Let f be the conductor of o, then A = f2Ag and

wol(0 28] - o -

It follows that Z + Zwa is the unique order of conductor f. ]
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3.2. Endomorphisms

Proposition 3.2.6. [HKi3, p. 120ff, Theorem s.3.1.] Let 7 € F be an imaginary quadratic algebraic

number, aX? + bX + ¢ € Z[X] its primitive, integral minimal polynomial and A = b% — dac its

discriminant. Then oA is the endomorphism ring of Ay = Z 4 Zt and A+ is an invertible, fractional

OA-ideal.

Proof. Using the previous corollary, we can write oA as Z + Zwa with wa = #, where
or=A=b>-dac=b*=b mod 2.

First, we will show that oa is contained in End A,, that s

AN =Z + Zwa + Zt + ZwaTt C Ay,

thus we only need

0'A+\/Z_0'A+b—b+\/Z_a'A+b+a—b+\/Z€

@AT T 2 2 2a Ao
and
oa+ VA -b+VA oan—b
= =-—c+ Tel,.
2 2 2
It follows that A; is a oo-module and we have furthermore
aMiA; = Za + Zat + ZaT + ZatT
- A -b - VA
=Za+7Z b—;\/_JrZ b 2\/_+Zc
-b A
:Za+Zb—|—Zc+Z+T\/_
-b A
=7+ Z—’_—\/_,
2
where the last equality comes from the primitivity of the minimal polynomial, i.e. (a,b,¢) = 1.

Moreover b = oA mod 2 and hence the latter is equal to 0. Finally, we obtain
EndA; = op End Ay = aA A; End A, = aAA; = oa.
]

Corollary 3.2.7. [[Cox8, p. 212, Corollary 10.20.] Let 0 be an order in K, then there exists a bijection

{o-CM elliptic curves}/ = —  Cl(»)
E= A, —  [Af]

Proof. For an 0-CM curve E with corresponding lattice A, the normalized lattice A+ is an invertible
o-ideal and gives rise to a class in Cl(0). Clearly, if [A;] = [Ay/], there existsa A € Quoto such that
A; = AA; but then the curves corresponding to A; and A are isomorphic and hence the map is
injective and well-defined. For [a] € Cl(0), the fractional ideal a is a lattice and hence there exists an
elliptic curve E = C/a with complex multiplication by o. ]

The finiteness of the class number of an order o implies that the number of isomorphism classes of
elliptic curves with complex multiplication by o is finite. Later we will introduce beights and reproof
this.
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4. Modular Everything

The previous chapters showed that the j-invariant classifies isomorphism classes, respectively homoth-
ety classes, of elliptic curves, complex tori and lattices and that the moduli space of these objects is Al
The goal of this chapter is to construct moduli spaces, again algebraic curves, of more general objects,
namely two elliptic curves E and E’ with anisogeny ¢ : E — E’ such thatker ¢is cyclic. The approach
is reminiscent of what we did before: Construct fwo functions which map the upper half-plane to A2
and show that the image is a curve and that every point corresponds uniquely to an “isomorphism class
of isogenies”. In order to construct this map, we first have to investigate the j-invariant a bit more and
then introduce an analogue for certain subgroups of SLa(Z). As a bonus, we easily get the algebraicity
of the j-invariant of a CM curve.

4.1. More on the j-invariant

Here, we introduce a class functions which behave like the j-invariant and show that all such functions
are rational functions in j. While we’re at it, more properties of the j-invariant needed for the proof

of Theorem are shown.

Definition 4.1.1. [Serz3, p. 8off, Definition 2., 3., 4.] Let k be an integer. A weakly modular function
of weight k is a meromorphic function f: h — C U {co} such that

atr+b
ct+d

v(‘; 2) eSLg(Z):f( ): (ct +d)* £ (7).

Since f(7 4+ 1) = f(7), every weakly modular function has a Fourier expansion

[

fr)= ), ana()'s g(r) =

n=-—oo

and f is called modular function (of weight k) or f is meromorphic at the cusps it a, = 0 for almost all
n < 0. Ifall a,, = O for all negative indices f is called a modular form (of weight k) or f is holomorphic

at the cusps. A modular form which is 0 at the cusps, i.e. the coefficient ag is 0, is called a cusp form.

Remark. A pedestrian argument shows that modular forms form agraded C-algebra M. = €5, ., Mk,
where My denotes the C-vector space of modular forms of weight k. Furthermore, M, contains the
graded ideal S, = P ez Sk> where S denotes the C-vector space of cusp forms of weight k. Lastly,
the set of modular functions of weight 0 form a field.

Lemma 4.1.2. [Ser73, p. 92, Proposition 8.] The functions G4, G¢ and A are modular forms of weight
4,6 and 12 respectively.
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4. Modular Everything

Proof. The holomorphicity on I and the transformation property were already shown in Lemma
and it remains to verify that the Fourier expansions have the desired form. We use the identities

7TCOt7TT __+Z(T—i—m T—m)

and ()11 oni
q(T) + : mi . . n
mteot(nT) = pi———— =7 — =mi—2mi Y q(7)",

0 -1 " T T4 2

both of which hold for all 7 € }). Equating them and differentiating 2k times gives

1 2771
Z(m—i—T)2 2k—1'Z m*q

mezZ

Setting 7 = nt and summing over n > 1 gives

27n _ wm
ZZ (m + nt)? ZZ 2k — 1) g ()

n>1mez n>1m>1

22,?’_1,22012“

m>1d|m
(27i)?
2k _ 1 :g:‘TQk 1
Since the left-hand-side remains the same after replacing n by —n, summing over n # 0 gives

2(2mi)% "
Z Z (m + nt)? - 2k - 1)! ;0'21(_1(m)q(‘r) )

n#0 mez (

Adding 3,0 2 —5x to both sides shows that G4 and G¢ are modular forms. Tracing through the defi-
nition, it can be seen that g2(7)3, g3(7)? and g2(7)3 — 27g3(7)? are modular forms of weight 12. m

Theorem 4.1.3 (Jacobi). The identity
A(r) = 2m)2q(0) | (1 - ()

n>1
holds forall T € .
Proof. [Ser73, p. 9sff, Theorem 6.] ]

Theorem 4.1.4. [[Cox8, p. 225, Theorem 11.8.] The j-invariant is a modular function of weight 0. Its
Fourier expansion

e)= 3, enale)” = -+ 744+ 0(g(r))

n>-1

has non-negative, integral coefficients.
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4.1. More on the j-invariant

Proof. By definition the j-invariant is the quotient of two modular forms of weight 12, with the de-
nominator nowhere 0 by Lemma p.3.11, and hence it is a modular function of weight 0. With the
Fourier expansions of g2(7) and A(7) we find

(1207 + 20(27)* 351 Ua(n)qf(ﬂ")3

(27)12g(7) [Tns1(1 - q(7)")**
(14240 %51 o3(n)g(r)")’

q(7) [nz1(1 - g(r)")*

1
= m + 744 + O(q(7)).

Since [1,51(1 — ¢(7)")** € Z[q(7)]*, the Fourier expansion of j has integral coefficients and since
(1-g(r)")t=1+q(r)"+0(q(r)*")and 1 + 240 3,51 o3(n)q(7)" have non-negative coeffi-

cients, the coeflicients of j-invariant are non-negative as well. ]

Jj(r)=1728

Theorem 4.1.5. The order of vanishing of f(7) = j(7) — j(o) is 1 unless o € SLa(Z)i, where the
orderis 2, or o= € SLy(Z) %, where the order is 3.

Proof. [Cox8d, p. 221ff, Theorem 11.2.] [ ]

Theorem 4.1.6. [Cox84, p. 2261, Theorem 11.9.] The field of modular functionsis C(j(7)). Moreover
the subring of modular functions holomorphic on b is C[j(7)] and the subring of modular functions
holomorphicon b U {eo} is C.

Proof. Let () be a modular function holomorphic on h U {co}. We will show that f(h U {co}) is
compact, whence the maximum modulus principle shows that f is constant. Thus, let (j(7k) )k >0 bea
sequencein f(hU{co}) and by the SLo(Z)-invariance of f we may assume that 7 € F. If there exists
asubsequence (7~ ) x>0 such that Im 7+ — oo, then f(73+) — f(o0) isa convergent subsequence in
the image. If the imaginary parts are bounded by some B, the elements of the sequence are contained
in the compact set Fn{r | Imt < B} and hence there exist a convergent subsequences (Tg+ k>0
and f (7 )k >0-

Suppose now that f(7) is a modular function holomorphic on b, then the Fourier expansion of f
has finitely many terms in negative powers of ¢(7) and hence there exists a polynomial A(X) € C[X]
such that f(7) — A(j(7)) is a modular function holomorphic on h U {0} and thus constant.

Finally, suppose f(7) is any modular function, then, since f(7) is meromorphic, the number of
poles of f inside F is finite and hence

@ |1 @ =iaye?
T €eF

Vo (f)<0

is modular and holomorphic in ) and hence a polynomial in j (7). [
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4. Modular Everything

4.2. Cyclic Sublattices and Congruence Subgroups

As before, instead of working with cyclic isogenies of elliptic curves directly, we use lattices. The cyclic
isogenies of elliptic curves correspond to sublattices A” C A, such that A /A’ is cyclic. These sublattices
will be classified in terms of matrices and closely related subgroups of SL(Z) are introduced.

Theorem 4.2.1 (Smith Normal Form). Let ¥ be an integral matrix, then there exist transformation
matrices 17, 7" € SLa(Z) such that

’r_ d2 0

with dy | do. Furthermore d is, up to sign, the greatest common divisor of all 1 X 1-minors (i.e. the
entries of y) and d is, up to sign, the greatest common divisor of all 2 X 2-minors (i.e. dety).

Proof. [Roto3, p. 688, Theorem 9.58., p. 691, Theorem 9.64.] ]

Lemma 4.2.2. [Roso4, p. 28, Lemma1.5.4.] Let N > 1 be an integer and

y = (g a(_)l) € SLy(Z/NZ).

Then there exists a matrix I' € SLy(Z) such thatT' =y mod N.

Proof. Write y as the product

A B [ I [ [ e

andlet A, A’ € Zsuchthat A=a mod Nand A’ = a~! mod N. Then

“ o 3 b 0 ) e

is a lift of . u

Corollary 4.2.3. Let N > 1 be an integer, then

[ SLy(Z) —  SLy(Z/NZ)
. r — I' mod N

is a surjective group homomorphism.

Proof. The residue map is a ring homomorphism and thus 7 is a homomorphism of groups. Let y be
amatrix in SLp(Z/NZ) and A any matrix in Matax2(Z) such that A =y mod N. Then there exist
matrices 77, 7" € SL(Z) such that n An’ is a Smith normal form. By the previous lemma, 71y (A) lifts
toI" € SLy(Z) and hence 7T~ € SLy(Z) isalift of .1 [

"Taken from M. Brandenburg’s comment in [bd]
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4.2. Cyclic Sublattices and Congruence Subgroups

Definition 4.2.4. [Kob84, p. 99ff] Let N > 1 be an integer. The kernel I'(N) of 7y is called the prin-
cipal congruence subgroup of level N. Any subgroup of SLa(Z) containing a I'(N) is called congruence
subgroup. The group SL(Z) is also denoted by I'(1). Clearly, congruence subgroups have finite index
in SL(Z).

Example. [Kob84, p. 9off] Let N > 1 be an integer, then

To(N) = {(i‘ Z) €SLy(Z) [c=0 mod N}

is a congruence subgroup.

Proposition 4.2.5. Let N > 1 be an integer and denote by MY(N') the set of matrices with Smith
normal form diag(N, 1), then there is a bijection

VL) —  TI\M(W)
oy o Ty )y (4

Proof. First, let us note that I'(1) diag(N, 1)I'o(N) = I'(1) diag(N, 1) since

(1) (1(‘)’ O)I’O(N)an(](\)/ (1’) (;C Z):”(Z ]\Cflb) (zg (1))61“(1) (](\); (1))

ry 55 )= (5 5o 1) e ( oy

Let I'g(N)y # I'o(N)y’ be two cosets and assume I'(1) diag(N, 1)y = I'(1) diag(N, 1)y’, then

there exist 77, 7" € I'(1) such that
N 0\ (N 0,

-1
N 0O 71 N 0O -1
The lower left entry of the matrix diag(N, 1)y’y~! diag(N, 1)~ can only be integral if the matrix

¥’y Hiesin To(N), thatis To(N)y = To(N)y’, which is impossible. Let T'(1)o- € T'(1)\M¥¢(N),
then there exist matrices 77, 77" € SLa(Z) such that yon’ = diag(N, 1) and it follows that

and

respectively

I(1)o = (1) (%’ (1)) Pl =T(1) (lg 0) To(N)p".
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4. Modular Everything

Lemma 4.2.6. [Milo6, p. 203, Lemma 4.15.] Let N > 1 be an integer and let
a b
— CyC
y=(0 ) emw,

then there exists a representative o € I'(1)7y such that

o — a b
—\o &)
witha’ > 0,d’ > 0,0 < b’ < d’ and ged(a’, b, d’) = 1.

Proof. Supposea # 0and ¢ # Oandletc = ag + r, |r| < |a| be the division with remainder, then

1 0\fa b\ ([a b
—-q 1)\c d] \r x|
Now, multiplying with S, we switch the rows (and change signs) and repeat until the lower left entry is
0. If the signs on the diagonal entries are wrong, we can multiply with § 2= _Jand multiplying with

a matrix of the form 79, we can ensure that 0 < b’ < d’. Finally, the restriction on ged(a’, b, d")
follows from the Smith normal forms of y and o~ being the same. [ ]

Definition 4.2.7. [Cox89, p. 235] Let A be a latticeand N > 1 be an integer. A sublattice A" C A is
called cyclic of index N if A /A’ is a cyclic group of order N.

Proposition 4.2.8. [Cox89, p. 235, Lemma 11.24.] Let A” € A be lattices, then A’ is a cyclic sublattice
of index N if and only if there exists a matrix & € M9(N) such that A’ = o A. In particular, if
A = A, then A’ is homothetic to A, .

Proof. Follows from the Smith normal form. ]

Definition 4.2.9. [Cox89, p. 237] Let R be a commutative Z-algebra. An element @ € R is called
primitive if there existsno f € Randnon € Z-1 such thata = np.

Lemma 4.2.10. [Cox8d, p. 237, Corollary 11.27] Let o be an order in the imaginary quadratic field K,
A an invertible o-ideal and @ € 0. Then @A C A is a cyclic sublattice of index N () if and only if @ is

()

primitive.

Proof. Let A = Zw1 + Zwo and let

be the matrix representing @, then (A : @A) = |dety| = |[N(a)|. The ring o is by construction
isomorphic to a matrix ring End A and thus « is primitive in o if and only if the corresponding vy is
primitive in End A, which holds if and only if ged(a, b, ¢, d) = 1. n
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4.3. Modular Curves

4.3. Modular Curves

Earlier modular forms and functions were introduced as certain well-behaved functions satisfying a
transformation property under SL2(Z). We now extend the notion of a modular function of weight
0 to the subgroups I'g(N) € SL2(Z) and as for the j-invariant we construct the field of all such
functions. In doing so, the modular curves will appear as the vanishing set of the minimal polynomials
of j(NT) over C(j(7)).

Definition 4.3.1. [Cox89, p. 225] Let N > 1 be an integer. A modular function (of weight 0) and level
I'g(N) is a meromorphic function f: h — C U {oo} such that

v (j Z) € To(N) : f(y7) = f(7)

and

V(Ccl 2) €SLe(Z) : f(yr) = Z anq(T)%

nxngp

(by that we mean f(7y7) hasa Fourier expansion with finitely many terms in negative powers of ¢(7) ~ ).
Clearly, the modular functions of weight 0 introduced earlier have level I'(1) = SLa(Z).

Lemma 4.3.2. [Cox89, p. 226ff, Theorem 11.9.] Let N > 1 be an integer. The functions j(7) and
J(NT) are modular functions of weight 0 and level I'g(N).

Proof. Eatlierit was shown that j(7) is modular with level SLp(Z), hence itis also modular with weight
F() (N ) Let

(5 Y ern

then (NT) + b
a(Nt)+ bN a bN
(N =j|l————| =7 Nt|=j(NT7).
J(NyT) J( c(NT) T d ) ]((C d) T) J(NT)
By Lemma [4.2.G, the SLa(Z) orbit of y € MY(N) contains an element
_fa b
7o 4
witha > 0,d > 0and (a,b,d) = 1. With such a representative we may compute the Fourier
expansion
at + b\" b\" n b\" aZn
T () = o o) it = B8] s
n>-1 ¢ n>-1 ¢ n>-1 ¢
and hence j(NT) is modular of level I'g(N). [

Lemma 4.3.3. Lety,y’ € SLa(Z). If To(N)y # To(N)y’, then j(Nyt) # j(Ny'T).
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4. Modular Everything

Proof. By Propositionf.2.§I'(1) diag(N, 1)I'g(N)y # I'(1) diag(N, 1)I'g(N )y’ and by Theorem b4
J(Nyt) # j(NyT'). "

Lemma 4.3.4. [Cox89, p. 220ff] Let {y1, ..., ¥, } be a set of right-coset representatives of I'g(N) in
SLs(Z), then

r

(X, 1) = | |(X - j(Nyir) (42)

i=1

is a polynomial in C[X, j(7)].

Proof. We will show that the coefficients (as a polynomial in X) are modular functions with respect to
I'(1), holomorphic on b, and hence polynomials in j(7) by Theorem [.1.§. By Proposition |.2.3, the
value of j(Nyt) depends only on the class I'g (N )y and by the previous lemma, the map j(Ny;7) -
J(Nyiyt) permutes the factors in (f.2)) and it follows that forall y € I'(1)

ONE (X, yT) = OF(X, 7).

Since the coefficients are polynomials in modular functions of level I'g(N), their Fourier expansions

have only finitely many terms in negative powers of () ~ and hence they are modular of level I'(1).
Finally, the functions j(Ny;T) are holomorphic on ) and hence ®3°(X, 7) € C[X, j(7)]. [

The polynomial ®x(X,Y) € C[X,Y] such that ®n (X, j(7)) = P*(X, 1) is called the N-th
modular polynomial and the curve Yo(N) = U(®y) € A? is called the N-th modular curve.

Lemma 4.3.5. [Milod, p. 184ff, Theorem 2.3.] The N-th modular polynomial ® 5 (X, Y) is irreducible
forall N > 1.

Proof. By definition ®n (j(N7), j(7)) = Oand thus j(N7)isalgebraicover C(j(7)). Let f(X, j(7)) €
C(j(7))[X] be the minimal polynomial of j(NT) over C(j(7)). For 7y a right-coset representative of
Lo(N)I'(1) we evaluate f(j(N7), j(7)) = 0 at y7 and obtain

0= f(j(Ny7),j(y7)) = f(I(NyT), j(7)),

since j(yT) = j(7), which shows that every root of @5 (X, j(7)) is also a root of f(X, j(7)). With
Lemma4.3.3 we have that the roots of @ x (X, j (7)) are distinct and hence @ (X, j (7)) is the minimal
polynomial of j(Nt) over C(j(7)). [

Lemma 4.3.6. [[Cox8¢, p. 231, Theorem 11.18.] The N-th modular polynomial ®x (X,Y) has integral
coefficients forall N > 1.

Proof. Let
On(X, (7)) = fr(D)X" + ...+ fo(7),

then the coefficients f;(7) are symmetric polynomials in j(N7y;T), where y; are the coset representa-
tives of I'g(N)\SL2(Z) and hence f;(7) € Z[¢{n]((g(T) v )). Let w be an automorphism in the Galois
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2~

group of Q({n)/Qacting on Q(¢n ) ((g(7)

)) via the coefficients, then

(72'1

7(j(Ny;0) = 7(j(er)) = > ear (¢8P") q(1)

n>-1

a2n
= Z Cngjli]aan(T) N,

n>-1

where m({n) = ¢X, with ged(k, N) = 1. Setting b’ = kb and working backwards yields

Z Cn{]?]bIHQ(T)T =]J d

n>-1

a’n aT‘i‘b/ . ,
( )—J(N?’ 7).

Note that ged(a, b’,d) = 1 since ged(N, k) = 1. In other words, 7 permutes the j(Nvy;7) and
hence fixes the coefficients f;(7), which then must be contained in Z((g(7))). By construction there
exist polynomials A; (X) such that f;(7) = A;(j(7)) and since the coefficients of f(7) and j(7) are
integral, so are the coefficients of A and it follows that & € Z[X,Y]. [

Theorem 4.3.7. [Cox89, p. 226ff, Theorem 11.9.] The field of modular functions with respect to
Io(N)isequal to C(j (1), j(NT)).

Proof. As shown eatlier, the functions j(7) and j(NT) are both modular with respect to I'g(N). For
f (1) amodular with respect to I'o(N) we define

G(X,1) = > flno) [ [(X - i(wy7) (43)
i=1

J#i

and lety € I'(1), then y; = y;y permutes the summands in (.3), hence G(X, y7t) = G(X, 1) and
similarly to the proof of Lemma it follows that G(X, 7) € C(j(7))[X]. Moreover we have that

[Towm =iy = 228 Giwve). (o))

J#1 oX
and thus | P .
G(j(N7), 1) = f(1) 5~ (/(N7), j(1)).
As @ was shown to be irreducible, a(;}% (J(NT),j(1)) # 0and f(7) can be expressed as a quotient
of polynomials in j(7) and j(NT). [

Theorem 4.3.8. [Cox89, p. 235, Theorem 1.23.] Let N > 1 be an integer. The N-th modular curve
Yo(N) parametrizes pairs of homothety classes of lattices (A’C*, AC*), where A’ C A is a cyclic sub-
lattice of index N.

Proof. Let (x,y) be a point in ¥j(NV ), then, there exists, up to homothety, a lattice A7 such that y =
J () since the j-invariant s surjective. By construction x is equal to some j(NyT), wherey € SLa(Z),
and since diag(N, 1)y € M9¢(N),

(N 0

0 1) /yAT g AT
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is a cyclic sublattice of index N.
Conversely, for any pairs of lattices A’, A with A” C A a cyclic sublattice of index N, there exists a
matrix

a b
_ cyc
o= (c d) € M9°(N),

such that A” = o A. The Smith normal form of this matrix is then
, (N O
9N =0 1)

Multiplying with "~ we obtain no = diag(N, 1)n’~! and thus

’ _ _ N O —1
A—O’A—UO'A—(O 1)77 A

and it follows that j(A’) = j(Nn’~'7), where A ~ A, and hence the homothety classes of A’ and A
define a unique point on ¥ (N). ]

Corollary 4.3.9. The modular curve ¥y (N) parametrizes isogenies of elliptic curves of degree N with
cyclic kernel.

Proof. Letp: E — E’ bean isogeny, then

0 > A > C > E > 0
0 > A’ > C > £’ >0

is a commutative diagram of abelian groups with the middle vertical arrow an isomorphism and the
cokernel A /A’ is isomorphic to the kernel ker ¢ by the snake lemma. [

Corollary 4.3.10. [Cox89, p. 237, Theorem 11.1.] Let E be an elliptic curve with complex multiplication
by o, then j(E) is algebraic.

Proof. Let A be a lattice corresponding to the elliptic curve E and let o = Z + Z fwa, then fwa is
primitive. Furtherlet N = |[N(fwa)l, then

0=On(j(fwal),j(A) = En(j(A),j(A)),
since fwag A ~ Aand thus j(E) = j(A) is algebraic. [

Theorem 4.3.11 (Class field theory of imaginary quadratic fields). The absolute Galois group Gg acts

transitively on {j(E) | End E = o}. In particularif 7 = %Z, there exists an automorphism 7
such that

J(0)" =)
Proof. [Cox84, p. 220ft, Theorem 11.1.] [



5. The Theorem of André

We now present the proof of André’s Theorem following the paper [BMZ13] by Bilu, Masser and
Zannier, borrowing many details from Wiistholz [Wiir4]. The “modular curve-case in both papers
is more or less identical, whereas in the “line”-case Wiistholz performs a difficult (read: too difficult for
me) calculation to arrive at a linear form in two elliptic logarithms, and Bilu, Masser and Zannier (and
already André) use the transcendence measure of Masser fairly effortlessly. However, their omission to
detail the effectivity of this step leaves a bitter taste and we use a theorem of Eisenstein, specifically a
version by Bilu and Borichev [BB13], to give explicit bounds and constants where possible. Alas, this
argument depends on the ability to compute the inverse function of j and an ineftective gap remains.

In order to clarify the presentation, we will first give the proof without spending any thought on
effectivity and use continuity arguments to ensure the existence of the relevant bounds and constants.

5.1. Ingredients

Definition s.r.1. [Bak7s, p. 2, p. 70] Let f be a polynomial in C[X1, .. ., X,]. The (naive) beight of f
is defined as
H(f) = max |fi,. il

i1y.e0in

where f;,...;. is the coefficient of X't -+ X in f. Fora € Qand f € Z[X] its primitive minimal
polynomial we define the (naive) height of @ as H(a) = H(f).

Corollary s.1.2. The set of algebraic numbers with bounded height and bounded degree is finite.

Proof. The set of integral polynomials with bounded degree and bounded coefhicients is finite. ]

Theorem s.1.3 (Gelfond’s Lemma). Let f(X) = fi1(X)--- f-(X) be a factorization of a complex
polynomial, then

H(f1)- - H(fy) < e*TH(f).
In particular, if f € Z[X] and @ € Q with f(a) = 0, then H(a) < e%8/ H(f).

Proof. [Bakzd, p. 122ff, Lemma 2.] ]

Lemma s...4. Let @ € Q with integral, primitive minimal polynomial f(X) = Yo fiX' e Z[X]
and let p € Q%, then
H(pa) < H(p)"H(a).

Proof. Let = be the reduced fraction of p, then
f(X)=r"f (fx) = fus" X"+ fuas" X 4 4 fy € Z]X]
r

is the integral, primitive minimal polynomial of pa and thus H(pa) < H(p)"H (). [
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5. The Theorem of André

Lemma s.r.5. Let 7 and 7" be imaginary quadratic numbers with primitive, integral minimal polyno-
mials aX? 4+ bX +cand a’ X%+ b’'X + ¢’ respectively, then

H(t+7') < 10e* max{H(7), H(7")}*.

Proof. We compute an integral, primitive polynomial f(Z) with deg f = 4and f(7 + ') = Oin
SAGE [Devig]:

var('a,b,c,ap,bp,cp')
R.<X,Y,Z>=PolynomialRing(Frac(QQ[a,b,c,ap,bp,cp]), order="lex")
I=R.ideal ([a*X~2+b*X+c,ap*Y 2+bp*Y+cp,Z-X-Y])
GB=I.groebner_basis()

£(Z)=(a*xap) "2*GB[-1]

The coefficients of f(Z) are homogeneous polynomials in a, b, ¢, a’, b’, ¢’ of degree 4 with at most
10 terms. Since T and 7’ need not be algebraically independent, we use Gelfond’s inequality, which

increases the constant factor by e*. [
Lemmas.1.6. Lett = —b+VA be imaginary quadratic with integral, primitive minimal polynomial
5-1.6. = "4 ginary q gral, p poly

aX? + bX + c. Further suppose 7 € F, then H(7) < 2|A|.
Proof. If T € F,then |Re7| = |% < %and V;—am > \/73 and it follows that
VIA]

1b| < lal £ —.

V3

The norm N(7) is equal to ¢ and we estimate

b2 —VA 1 5
= =|———|< = Al < =+/|A].
lel = IN(7)] 12| S 4-1— Al < 1 Al
Combining the estimates for |al, || and |c| we obtain the crude estimate H(7) < 2|Al. n

Corollary s.1.7. Let 71, T2 be imaginary quadratic and let p be a rational number, then
H(2(t2 - p11)) < 320" H(p)" max{|A1], [As]}".
Lemmas.1.8. Let F(X,Y) € C[X,Y]and letu € C, then
H(F(X,Y +u)) < (2lul)sT deg(F)?H(F).
Proof. The coefficient of X'Y/ in F(X,Y + u) is

degy F

k »
2 fi,j( .)uk !
k=j J

and we estimate crudely

degy F

> fl-,j(f)u"-" < Y il 2lul)*F < (2ul)*e " deg(F)?H(F).
k=j

i,j
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Note that there are different notions of height functions, e.g. the Wil beight, which makes estimat-
ing the height of sums and products of algebraic numbers more natural. We stick with the naive height
because it is easy to compute and the transcendence results used in the proof, due to Baker [Bak75] and
Masser [ZM12]], both use naive heights:

Theorem s.1.9. Fix a branch for log and let ag, a1, Bo € @X with

A > max{H (ag), H(a1)},
B > max{H (fy), 2},
d > max{deg @y, deg @1, deg So}.

Let
A= ,80 log g — logaq,

then there exists an effectively computable constant Cy depending on A and d, such thateither A = 0
or|A| > B™s.

Proof. [Bakzd, p. 31, Theorem 3.1.] ]
Baker’s theorem appears in an exponential version and we need the following lemma:

Lemma s..10. Let z € Cwith |e* — 1] < %, then |z] < 2]|e* - 1].

Proof. Since |e* — 1| < 1, we estimate with the Taylor expansion of the logarithm

< IJCI"< 1_2Z 1
_Z . _|x|22—n_ le? —1].

n>1 n>0

-1 n+1xn

Z( )n

n>1

|z| = [log(1 + x)| =

Corollary s.r.1r. With notation as above. If |a'€0 aIl -1 < %, then either

1
a7t —1]> -BC»
| Oal | 2 ’

-1 _
oragoa1 =1.

Theorem s.r.12. Let o € C with j(0) € Qand let 7 € Q be imaginary quadratic. Then there exists
an effectively computable constant Cy depending on o, such that either 7 = o or

log|t — 0| > —~Cy(1 + (log H(7))*).
Proof. [ZM1d, p. 143ft, Appendix E] ]

Next, we will investigate the similarity of the functions j(7) and ¢(7)~! for large Im 7 and give
explicit bounds for their difference.
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Lemma s.1.13. [Wiii4, Lemma 2.1, Corollary 2.1.] Let 7 € F and suppose Im 7 > 10g217:28, then

1-1728¢™#1m7 < |j(1)q(7)]| < 1+ 172827 1m7

. log 3456
andifIm7 > Og

we further have 3 < |j(7)q(7)| < 2.

log 3456

o . We

Proof. The latter inequalities follow from the first since |1728¢ ™27 1m7| < % forImt >
use the Fourier expansion of j(7) and the triangle inequalities to obtain

1=]a(x) Y ena(@)"|| < i(D)a(D) < 1+]a(r) > cna(r)"]-

n>0 n>0

—2nImT <e

Since |g(7)| = e 27 for Im T > 1, we can estimate

)q(T) Z qu(T)n| < o~ 2mImT Z Cne—27rn _ e—27rIm‘r(j(i) _ eQn) < 1728e—27r1m‘r, (5.1)

n>0 n>0

log 1728 .

which gives the upper bound. If Im 7 > it follows that (f.3) is less than or equal to 1 and hence
the outer absolute value in the lower bound can be omitted, i.e.

)1_|Q(T)chq || > ]_—|q chq | >1—1728¢ —27rIm‘r

n>0 n>0
|
In the proof we also have to relate j (7)™ and g(7)”, for p € Qx, which takes a bit more effort.
Lemma s.r.14. [Wii4, Proposition 2.1.] Let p € R and suppose Im 7 > 2‘0“;&, then
J(0)* = q(r)” = q(1)P9(q(7))
with [#(g(7))| < 3456¢% .
Proof. We write j(T)q(T) as
J(@)q(r) =1+q(r) Y eaq(r)" =1+ q(7)¢(q(7)) = 1 + x (5:2)

n>0

log 345

and note that, by Lemmaf.1.13, | x| is bounded by 5 ifIm7 > 0 We compute the p-th power of

J(T)q(7) as

m+1 . m\"

P log(1+x) _ Z 12_7(2 (—I)Tx> = 1+xz 'Z—T(Z %) =1+xy(x) (53)

n>0 m>1 n>1 m>0
and we bound ¥ (x) by
" x| (2p)" 2
< L m P
o= (B ] < S (D) < -
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5.1. Ingredients

thus |xy (x)| < %ifImT > w. We now invert (5.3) to obtain
N 1 xip(x)
o L S
IO = T T+ x(x)

respectively

L+ xy(x)
and we estimate
Sl Do) o WO,
1+ xy(x) L= |xy(x)]
n
Corollary s.r.15. [Wiil4, Lemma2.s.] Let 7, 72 € F,y € Cand ¢, p € R, with
2p + log 3456 + plog 4 + logly|
Imt >
2rp
and suppose that the inequalities
J(m)Pj(r) "y =11 < ce ZrpImT (5.4)
and
lg(1) P q(2)| < 4°]y| (5-5)

hold. We may then replace j(—) with g(—) ™! in (54 to obtain
(1) Pq(m)y ™t — 1] < /e~ 2rmin{lp}Imry
at the cost of the worse constant
¢’ = 2Pc + 13824e + 3456¢”

Proof. We write |q(11)q(12)y™ — 1] as

’

'CI(T2) - yq(11)°

— ‘1(72)1 —yj(t)? = j(r) " + q(12) + vj(r1) P —yq(11)°
yq(T)P

yq(r)P

which we bound using the triangle inequality by

‘j(TQ)_l -vj(n)?* ‘j(TQ)_l + gq(m) ™! ‘j(Tl)_ —q(11)’
yq(t1)P yq(t1)P q(r1)P '
1 11 111

For the first absolute value we have

I=1j(t)q(r)™1j () j(m)Py = 1] < Pce 2P ImT

51



5. The Theorem of André

by Lemma f.1.13. For the second absolute value we use (5.§) and Lemma with p = 1 to obtain

3456¢|q(12)?|

I <
lyq(T1)”|

< 13824e|q ().

. . . +log 3456
Note that since we have (f.9), 72 fulfills the requirements of the both Lemmas, i.e. Im 72 > p+ as

2p+log 3456+p log 4+logly|
2P

soonasImm; >

. Finally, we bound the last absolute value using Lemma
again to obtain
111 < 3456€”|q(11)|

and the desired inequality follows. n

5.2. The Proof

Definition s.2.1. A point (x,y) € AZis called special if there exist 71, T2 € D), each imaginary quadratic,
such that x = j(11) and y = j(72).

Let C = U(F) C A? be an algebraic curve with F(X,Y) € Q[X, Y]. We embed A? into P* x P!

and denote by? the Zariski closure of C in P! x P1. We are interested in C at infinity, that s, the points
in

C N (P! x {00} U {0} x P!)
and we note that (o0, 00) € C if (0,0) is a root of Xd8x Fydegy F (%, %), (x,00) € Cif (x,0)isa
root of Y&y F 7 (X, %) and similarly (oo, y) € E’if(O, y) isaroot of Ydsx F (%, Y). In particular,
if Cisnotaline, C N P! x {co} and C N {0} x P! are always non-empty.
Theorem s.2.2. [Ando8; BMZi3; Wiirg] Let C € A2 be a curve defined by F(X,Y) € @[X, Y] and

—b1+\/A_1)’j(—b2+‘/A_2)) cc

i) = (1 (1o »
a special point.
1. If (00, 0) € C and |A1] > |As], then there exists a constant Buodular such that

|A1 | < Bmodular

or (j(71), j(72)) lies on some modular curve ¥p(N) with N < deg(F)?.

2. If (0o, j(0r)) € Cand |A1| > |As|, then there exists a constant Bjy,e such that
|A1| < Bline
or (j(11), j(12)) lies on the line A' x {j(c)}.

Analogous statements hold if [A1| < [As].
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s5.2. The Proof

In the proofs of both cases we replace P = (j(11), j(12)) € C with
P" e C7,

where 71 € G is chosen such that j(11)" = j(oa,) if [A1] > |Az] and j(12)" = j(oa,) if
|Ag| > |Aq]. Thisisjustified since modular curves are defined over Z and are geometrically irreducible
and the Galois conjugate of a line is still a line.

Modular Case. |Wiig] Let (j(11), j(12)) € C withty = %Xl
F be the reciprocal of F, that is

and |A1| > |As|. Further, let

F(X,Y) = Xx%exFyder F (l, l),
X'y

and hence F(0,0) = 0and H(F) = H(F). The local parametrization theorem provides a

Puiseux series

n ¢ k+1
Y(x) = Z anx¢ = apxe +x ¢ © (x%) (5.6)
n>1
with max{k, e} < deg F and convergence radius c1. In particular it follows that (X , Y(;:)) is a root

of G(X,Y) = X ™F(X, XXY), where m € Ny is chosen to be the largest integer such that G(X, Y)
is a polynomial, and thus G(0,ax) = 0 and ax is algebraic with degree bounded by (deg F )2 and
height bounded by eldesF)* g (F) by virtue of Gelfond’s Lemma. We restrict the convergence radius
to ¢z = 5, thereby ensuring that ©(z) is holomorphic in B, (0) and thus [©(1)] < c3.
Inserting x = j(71)7%, Y (x) = j(72) 7! into (5:9) yields
k+1

J@) T = aj(n) 7+ j(n) e O (j(n)7¢)

which we rearrange as

k 1 1

j(m)i(m)ealt =1 = j(n) 0 (j(r1)"*) (5.7)

and . ) )

j(r)lj(m)e = ak +j(11) 7¢O (j(r)7*).
Forboth we choose Im 71 sufficiently large, use the upper bound for |©(#)| and combine with Lemma
to obtain

. 1. kK _ 1
lj(r2)Vi(r)cart = 1] < cslg(m)e]

and . 1
la(z2)q(t1)"< | < 4% ag].
Lemma now shows that

2nlm7y

_k _ _
lg(2)q(t1) ca;! = 1] < cae™ e
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5. The Theorem of André

. log c4+log 2
andif Im 7 > % Corollary shows that

2n 1
—Cglog B < log(2c¢4) — Tmn

or2(1g — f‘l‘l) log(—1) —logax = 0. Since we have assumed that [A1]| > A3, Corollary f.1.7 shows
that B is bounded by c5]| Ay |* and after some algebraic manipulation we end up with an inequality of
the form

|A1] < clog|Ay| + ¢,

with ¢ > 0, which eventually becomes inconsistent for |A1] large enough. If so (—1)2(”_%71) =
ax € Q, which is, by the theorem of Gelfond-Schneider [Bak7s, p. 11, Theorem 2.4.], impossible
unless 2 (T2 - %7'1) = 0 and then

k (k O)
=T 1,
e e

and hence (j(11), j(12)) € Yo(ke). [

Line Case. [BMZi3] Let (o0, j(0)) € C, (ji(r1), j(72)) € C and assume again that 77 =
and [A1]| > |Ag|. Unlike before, we introduce a partial reciprocal polynomial

oa; VA,
2

N 1
F(X,Y) = Xdex 'R (y’ Y),

which satisfies F(0, j(0)) = 0, H(F) = H(F) and degy (F) = degy (F). As before, the local
parametrization theorem provides a convergent Puiseux series

Y(x)=j(o)+ Z anxe

n>1

with convergence radius c1, which is used to obtain the inequality
. . )
j(12) = j(0)] < cpe™ 2P (58)

for Im 11 sufficiently large. Let
1 ifo # i Y3

2
k=12 ifo=i
O ]
3 ifo= ';
then, by Theorem .14, the function
()=o)
¢(TQ) - (T2 _ O-)K ’

is holomorphic and non-zero in a closed disk B, (07) and hence there exists a constant ¢3 > 0 such that
|¢(2)] > c3, respectively
lj(2) = j()] = ezl — o[ (5.9)
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Combining (5.8) and (5.d) yields

kloglmy —o| < logc—2 —2npIm Ty,
c3

which we combine with Masser’s transcendence measure f.1.12, Lemma and the assumption that
|A1] > |As] to obtain

—kCp (1 + (log2 + log|Aq|)*) < log? —p|lAq]
3

or g = 0. As before, if |Aq] is sufficiently large, the inequality becomes inconsistent and then
(1), j(72)) € Al x {j(o)}. .
Proof of p.o.1. By definition C contains infinitely many special, hence algebraic, points and is therefore
defined over Q. As shown in Corollary the number of singular moduli j (_l’%ﬁ) with |A]
bounded is finite and Theorem implies that all but finitely many special points lie on finitely many

vertical or horizontal lines, or finitely many modular curves. Since C is assumed to be irreducible, of
pure dimension 1 and not equal to a vertical or horizontal line, it must be a modular curve. u

5.3. Effectivity

We will now sketch how to make the previous proof partially effective. Our main tool for this task is a
theorem of Bilu and Borichev:

Theorem s.3.1 (Bilu-Borichev). Let F(X,Y) € Q[X, Y] be irreducible and
o= 1
U(X) =) a X< e Q((X¥))
k>«

a formal Puiseux series satisfying F(X, U(X)) = 0. Further, let Ay (F) be the normalized discrimi-
nant of F(X,Y) € C[X][Y] such that the coefficient of the smallest power of X in Ay (F) is 1. Then
lax| < A’Ag_LgJ

forall k > k, with A’ = 3H(F) and A = max{2H (Ay(F)), (6H(F))dsr (F)},
Proof. [BB13, Theorem 6.3.] ]

In the proof we used convergent Puiseux W (x) series at a point xo with convergence radius given
by the distance between x( and the nearest branch point. All branch points can be computed by, for
example, computing a Grébner basis of the polynomial system

9
(F(X,Y), a—l;(x, Y)}.

However, the theorem of Bilu and Borichev already provides explicit lower bounds for the convergence
radius, so we might just as well take these. In (§.g), instead of using continuity, the theorem of Bilu-

6 (x7)| < D1 AA%xE

n>k+1

Borichev allows us to estimate

55



5. The Theorem of André

and for x < 5 we obtain with a geometric series argument the upper bound 2A. The same argument
is used for the upper bound in the “line” case and we do not repeat it.

For the lower bound in (f.9) we construct an auxiliary polynomial G(X, Y) in several steps. First,
let F(X,Y) be the partial reciprocal with F (0, j(c)) = 0, then define

F(X,Y) = F(X,Y + j())

and hence F(0, j (o) — j(12)) = 0and the height of F can be estimated using Lemma f..§ in terms
of H(F') and |j(2)|, which can be effectively bounded using (5-§). Finally, we define

|
G(X,Y)=Ydsr | (X,?),

such that
G(0, (j(r2) = j(o)™) =0
and we may use the theorem of Bilu-Borichev for this polynomial and obtain
[j(r2) —j(o)l 2 c3

for |j(71)| > c4. Asin the proof, we require r be a non-zero radius around o such that ¢(72) # 0 for

72 € B,(0) \ {o}. By the maximum modulus principle, the minimum of |¢(72)| is assumed at the
boundary and hence

Jj(r2) = j(o)
(g —o)*

j(r2) = j(o)

= min (T2 — O')K

|To—o|=r

min

L. . 3
o i 2 —elilm2) —jlo)l = 2,

respectively
. . e3 K
lj(72) = j(o)l 2 pril il

The missing piece of the puzzle is the radius r, which depends of course on o. If, for example, o is
close to i, then —% is also close to i and r must be small enough to exclude —% since otherwise the
assumption that the minimum of
’j(Tz) —j(o)
(19 — o)«

is assumed at the boundary of B, (") and is bounded by an effective constant, is no longer true.
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A. Local Parametrizations of Algebraic
Curves

Convention. All algebraic curves are assumed to be plane curves. While the results presented here hold
in general, this restriction simplifies a few definitions.

Let C: F(X,Y) = 0 C A? be an affine algebraic curve and P a point on C. We are seeking a local
parametrization at P, that is, a(n ideally) holomorphic function ¢ : B;(0) — C such that

CN(B:(0)xU) ={(z,¢(z)) | z€ B=(0)},

where U C Cis open.

° 4.—.7A1

P 0O R

Figure A.1.: The singular curve Y2 = X? 4+ X2 and the coordinate projection

As can be seen in Figure [, the number of preimages of a point xo € Al is equal to the number of
distinct roots of f(x,Y) € C[Y]. If this polynomial has multiple roots, the point xg is called a branch
point (with respect to x) and its preimages corresponding to the multiple roots are called ramification
points (with respect to x). Clearly, yo is a multiple root of f(xo,Y) if and only if g—)f,(xo, o) = 0
and it follows that a singular point Q € C is a ramification point for both coordinate projections x
and y and a non-singular point is unramified with respect to at least one coordinate projection. In
this sense, finding a local parametrizations at a singular points is entirely subsumed by finding local
parametrizations at ramified points.

We begin with the unramified case, for which the Implicit Function Theorem will give a holomor-
phic local parametrization.

Lemma A.o.1. [FSog, p. 270] Let C € C a closed, non-intersecting loop in positive orientation and

D the domain bounded by C. Moreover let f: D — C U {c0} be a meromorphicand g: D — Ca
holomorphic function. Then

_ 2% Cg(z)f’(Z)

f(z) dz = ZOZ;B g(z0)vz, (f)-
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A. Local Parametrizations of Algebraic Curves

In particular, if f is holomorphic on D and g = 1, respectively g(z) = z, the integral I counts the
zeros of f in D, respectively [ is the sum of all zeros in D.

Proof. Tt suffices to check this for a single zero or pole in D, as the general case~then follows from the
residue theorem. Thus let zg in D, then f(z) = (z — z0)"0) f(z), with f(z) holomorphic and
non-zero on D. Elementary manipulation shows that

f'(z) _ vz (f) i f’(Z)

f(2) 2=z f(2)

where the latter fraction is holomorphic on D and hence

L PO, )
- 2mi Cg(z) f(2) de = 2mi Cg(z)z—Zo

dz = g(20)vz (f)

by the residue theorem. [ ]

Theorem A.o.2 (Implicit Function Theorem). [Forgg, p. s2ff, Lemma 8.7.] Let F(X,Y) be a poly-
nomial in C[X, Y] and let 0 be a simple zero of F(0,Y). Then there exists a real number € > 0 and a
holomorphic function ¢ such that ¢(0) = 0 and

F(x, ¢(x)) =0,
for all x with |x| < &.

Proof. The function F: C> — C is continuous, hence there exists a radius 7 > 0 such that F(0,Y)
has a single zero inside {y € C | |y| < r} and no zeros on the boundary {y € C | |y| = r}. Again,
by the continuity of F, there exists a radius 7” > 0 such that

F(x,y) #0,Y(x,y) € {(x,y) € C? | |xl <7’ |yl =r} =: Q.

Consequently the function

9 (x,y)

F(x,y)

is analytic in € and the integral

oF
n(x) = L/ —W(X’y) dy
2mi ly|=r’ F(x,y)

defines a function n(x) which counts the number of zeros of F(x,Y) with |[Y| < r by Lemma [K.o.
As this function is analytic, locally constant and satisfies n(0) = 1, it follows that n(x) = 1 forall x
with |x| < 7’ and hence, by the same reasoning as before, the analytic function

OF
1 / oy (%, ¥)
o(x) = — y o —=-dy
(*) 270 Jiyi=r " F(x,y)

satisfies ¢(0) = 0 and F(x, ¢(x)) = O for x| < r’. [
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If the covering is ramified, the implicit function theorem is no longer applicable and we have to
extend the notion of a local parametrization.

Definition A.o0.3. Let z be an indeterminate, ¢ € N and ng € Z. A series

flz)= Z anze

nzngp

is called a formal Puiseux series. It is convergent (with convergence radius r) if f(z¢) is a convergent
Laurent series (with convergence radius r<). A convergent Puiseux series is not a function but for a

1. . .
choice of £« it can be evaluated like a convergent powerseries.

Theorem A.o.4. [FSo9, p. 49sff, Theorem VIL7] Let F(X, Y) € C[X, Y| beirreducible with F(0,0) =
0, then there exists a natural number e < deg, F, a radius r > 0 and a holomorphic function

U: B,(0) — Csuch that
F(z%,V(z)) =F (z,\II (zé)) =0.

The radius 7 can be chosen as the distance between 0 and the nearest root of F(0,Y).

Proof. Consider F as polynomial in Y, that is
F(X,Y) = fu(X)Y" + fara(X)Y" + ..+ fo(X) € C[X][Y]

and denoteby Ay (F)(X) € C[X]itsdiscriminant. Since F isirreducible, Ay (F)(X) is notidentically
0 and more precisely Ay (F)(xg) = 0 if and only if there exists a yg € C such that

oF
F(x0,Y0) = -7 (x0,y0) = 0,

oY
or, in other words, xq is a branch point of the covering x: U(F) — Al. Letr > 0 be the distance
between 0 and the nearest branch point, then Ay (F)(x1) # 0 for all x; with 0 < |x;| < r and for
such an x1, the polynomial F(x1,Y’) has n pairwise distinct roots y1, . . ., Yn.
Using the implicit function theorem we find analytic functions

Yi,..., Y Bo(xy) = AL

which satisfy ¥;(x1) = y; and F(&,Yi(€)) = O for [x; — &| < &. As this works for all x; with
0 < |x1] < r, the functions ¥; can be analytically continued to Y;: B2 (0) — Al. Note that these
functions need not be single-valued and we define 7(¥;) the function obtained by analytically contin-
uing ¥; counter clock-wise around the origin (see Figure [A.2]) and then restricting it back to a neigh-
bourhood of x7. As this function satisfies F (£, 7(Y;)(£)) = 0 and the process is reversible, it follows
that 77 is a permutation of 11, . . ., ¥,.
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Figure A.2.: Continuing the local parametrizations around the branch point

By the continuity of polynomial roots, we may pick a function Y;(€) such that limg 0 % (£) = 0.

Then there exists a minimal ¢ € N such that 7¢(Y;) = ¥; and we define
©(£) = Y (£°),

whichis holomorphicfor0 < |£]¢ < rand satisfies F(£¢, ®(£)) = 0. Lastly, we havelimg_,o ®(¢) =
0 and hence ® can be analytically continued to B, (0) by Morera’s theorem [FSod, p. 743, B.6.]. =
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B. Covering spaces

Definition B.o.1. [Hato2, p. s6] Let p: X — X be a continuous function. An open subset U of X
is called evenly covered, if p! (U) is a disjoint union of open subsets, called sheers, of X, each homeo-
morphic to U via p.

The map p is called a covering (map), or X is said to be a covering space of X, if every x € X is
contained in an evenly covered open neighbourhood.

Definition B.o.2. [Hato2], p. 25] Let X be a topological space. A path in X is a continuous function
f:10,1] = X. For two paths f, g: [0, 1] —» X with f(1) = g(0), the concatenation f . g is defined
as

f(21) if0<r<3

f-g(t)Z{g(Q(l_t)) ifl<r<1’

By abuse of notation we will sometimes call any continuous function f: [a, b] — X, witha < b € R,
apath in X and for another path g: [b, ¢] = X with b < cand f(b) = g(b), we let

ft) ifa<t<b
g(t) ifb<r<c
be the concatenation.

LemmaB.o.3. [Pathlifting][Hato2}, p.29ff, Theorem1.7] Let p: X-X b~e acovering, f: [0,1] —
apathand X € p~1(f(0)). Then there exists a unique path f: [0,1] = X such that

X

f A
, p
0.1 — 5 x

commutes and f(0) = .

Proof. Suppose first that f([0, 1]) is contained in an evenly covered open set U C X Let U be the
unique sheet above U with x € U and let p be the restriction of pto U. Then f = p~lo f: [0,1] — X
is a path with f F(0) = Xand p o f = f. Moreover it is the unique path with these properties since p
is a homeomorphism.

The general case follows from the previous by splitting the path f into finitely many subpaths, each
of which has its image inside an evenly covered set, lifting them and gluing the lifts together.

The image ([0, 1]) € X is compact and since X has a cover by evenly covered open subsets, there
exists a finite partition

O=tg<t1i < - - <th1<tp,=1
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and evenly covered open subsets Uy, . . ., Uy, such that [t;_1, ;] € U;. Denote by f;_1 ; the restriction
of f to [ti—1,;,t;]. By the previous case fy,1 lifts to a unique path f~0,1: [0,11] — X with fg,l(()) =
Xand p o fo,l = f. Replacing x with f~0,1(t1), we obtain a unique lift f~1,2: [t1,12] — X with
fr2(t1) = fo.1(t1). Repeating this process we obtain the unique path

for which f(0) = fandpo f = f. [

Lemma B.o.4. [Hatod, p. 61ff, Proposition 1.33, 1.34] Let p: C — X and g: C — Y be covering
maps and F: X — Y asurjective, continuous function such that F(p(0)) = ¢(0). Then there exists
a unique continuous lift F: C — C such that

Q
@

—

p q

F
AN

e
h<

commutes and F(0) = 0.

Proof. Letz € Cand f;: [0, 1] —» Capathwith f;(0) = 0and f;(1) = z. Then Fopo f, isapath
in ¥, which lifts, by Lemma B-6.3, to a unique path £, : [0, 1] — Csuch that f,(0) = 0 and we define
F(z) = f.(1). To see that this is well-defined, let g : [0, 1] — C be another path with g(0) = 0 and
g(1) = z. Then

gt [0,1] > C
isapathwithg ™. f,(0) = g 1. fz(1) =0andg™!. f; (%) = z. Thepathh = Fopo(g7t. f;)
lifts toa path iz [0,1] — Cwith 2 () = f2(1) = (1) = F(z).
Next, we want to give a local description of F. Let U € X and U’ C Y be evenly covered with

F(U) C U’. Moreoverlet p: U — U and §: U’ — U’ be sheets above. Let zo, z1 € U and let f be
a path such that f(0) =0, f (%) = zp and f(1) = z1. Further suppose that f ([%, 1]) is contained

in U. By the construction of the path lift

F(z1) =g "o Fop(z1)

forall z; € U. It follows that F is locally given by continuous functions and hence is continuous
itself. [
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