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Abstract

The continuous increase of emission legislation standards for heavy duty diesel en-
gines leads to a higher importance for exhaust gas after-treatment systems. The
leading concept meeting the emission standards for nitrogen oxides (NOx) is Selec-
tive Catalytic Reduction (SCR). However, further advanced concepts are required to
meet the current and future emission legislation. The aim of this thesis is to apply a
Model Predictive Control (MPC) to a SCR dosing system based on a copper-zeolite
catalyst and to compare this approach with a current PI model based control.
The first part of this work describes the basic principle of the SCR system, the
currently used control approach together with the SCR modeling and the MPC.
Thus, following steps include the development of a linear and nonlinear MPC algo-
rithm that is applied to the SCR system. Specifically the nonlinear MPC utilizes
two different implementations of a successive linerization (SLNMPC). Final tests of
the MPC approach contain a Non-Road Stationary Cycle (NRSC) and a Non-Road
Transient Cycle (NRTC), for further comparisons to a nonlinear PI-control.
The evaluation of the controller based on the loading of the catalyst showed in the
NRTC test case that the nonlinear MPC had a better tracking than the current
model based PI control approach with similar control activity, but higher computa-
tional costs. However, a better performance led only to small changes in emissions.
Therefore a SLNMPC based on the efficiency of NOx reduction (DeNOx) was also
considered with a limitation of the ammonia slip.
For transient test cases, the performance of SLNMPC strongly depends on the sam-
pling time of the re-linearization and the system order of the prediction model. Both,
a better approximation of the prediction model and a better control performance
lead to higher computational costs.

Deutsch
Die stetige Verschärfung von Abgasnormen für Dieselmotoren bei Nutzfahrzeugen
hat zu einer höheren Wertigkeit von Abgasnachbehandlungssystemen geführt. Das
führende Konzept zur Erfüllung der Abgasnormen für Stickoxside (NOx) ist die
Selektive Katalytische Reduktion (SCR). Um die Gesetzgebung für Emissionsstan-
dards zu erfüllen, ist der Einsatz modellbasierter Regelungen nötig. Das Ziel dieser
Arbeit ist es, eine Modell Prädiktive Regelung (MPR) auf ein SCR Dosiersystem,
basierend auf einem Kupfer-Zeolite Katalysator, anzuwenden und einen Vergleich
mit einer derzeitig eingesetzten modellbasierten Regelung anzustellen.
Im ersten Teil wird auf das Grundprinzip des SCR Systems, dem aktuellen Regelungs-
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ansatz, sowie auf das MPR Konzept eingangen. Danach wird eine lineare und
nichtlineare MPR für das SCR System entwickelt. Für den nichtlinearen MPR
Algorithmus wird die Methode der sukzessiven Linearisierung (SLNMPR) mit zwei
unterschiedlichen Implementierungsarten verwendet. Abschließend wird das MPR
Konzept an einem stationären (NRSC) und transienten (NRTC) Testzyklus simuliert
und mit einer nichtlinearen PI Regelung verglichen.
Die Auswertung der Regler basierend auf der Ladung des Katalysators zeigte im
transienten Test, dass die nichtlineare MPR eine bessere Nachführung an den Soll-
wert erreichte als der modellbasierte PI Regler bei ähnlicher Regleraktivität, dafür
aber höheren Rechenaufwand benötigte. Die bessere Performance der MPR be-
wirkte jedoch keine wesentliche Änderung der Abgaswerte für NOx. Deshalb wurde
zusätzlich eine SLNMPR basierend auf der Effizienz zur NOx Reduktion (DeNOx)
mit einer Beschränkung des Ammoniakschlupfes betrachtet.
Die Performance der SLNMPR hängt stark von der verwendeten Abtastrate für die
Linearisierung und der Systemordnung des prädiktiven Modells ab. Sowohl eine
bessere Approximation des prädiktiven Modells, als auch eine bessere Performance
des Reglers bedeuten einen höheren Rechenaufwand.
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Chemical Species

(NH2)2CO urea

CO carbon monoxide

CO2 carbon dioxide

H2O water

HC hydrocarbon

HNCO isocyanic acid

N2 nitrogen

NH3 ammonia

NO nitrogen oxide

NO2 nitrogen dioxide

NOx nitrogen oxide, sum of NO and NO2

O2 oxygen

PM particulate matter

Symbols

α Feed-ratio [−]
εg Open frontal area [−]
θ Ammonia surface coverage (loading) [−]
ΘNH3 Surface density [mol/m2]
∗
m Mass flow [g/s]
∗
n Molar flow [mol/s]
aR Reactive surface area [m2/m3]
c Molar concentration [mol/m3]
E Activation temperature of reaction [K]
K Frequency factor of reaction [var.]
M Molar weight [g/mol]
m Mass [kg]
n Number of CSTR cells [−]
p Pressure [Pa]
r Reaction rate [kmol/m2]
R Universal gas constant [J/(mol ·K)]
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12 1. Introduction

1. Introduction

1.1. Motivation

The combustion of an air-fuel mixture causes a high number of pollutants. The
main harmful exhaust gas components are nitrogen oxides (NOx), carbon monoxide
(CO), hydrocarbons (HC) and particulate matter (PM). Since the Compression
Ignition (CI) engines work with excess air during combustion, the related emissions
with highest priority are NOx and PM .
In combustion engines NOx mainly include nitrogen monoxide (NO) and nitrogen
dioxide (NO2). NO is colorless, odorless and it converts into NO2 in air. However,
NO2 is a red-brown, toxic and bad-smelling gas [13].
Due to the development of higher emission legislation standards over the last years
and the need for CI engines with less fuel consumption, reduction of nitrogen oxides
(NOx) in exhaust gases became more important in the development process of ve-
hicles.

Table 1.1 shows an overview of EU directives for heavy-duty diesel engines. The
continuous decrease of emission limits has led to higher importance for exhaust gas
after-treatment systems. These emission standards are valid for the European Sta-
tionary Cycle (ESC) and European Transient Cycle (ETC), which are based on real
road cycle measurements. Since EURO VI, a World Harmonized Stationary Cy-
cle (WHSC) and a Transient Cycle (WHTC) have been introduced to cover typical
worldwide driving conditions.

For the reduction of CI engine-out emissions, commonly used after-treatment sys-
tems are:

Diesel Oxidation Catalyst (DOC):
A DOC has several tasks. The main function of the DOC is the generation of NO2

by the oxidation of NO with O2. This reaction can run in both directions. However,
the DOC can only affect the speed of the reaction [5]. The oxidation of CO and
HC to carbon dioxide (CO2) and water (H2O) occurs above a certain temperature
limit and increases the exhaust gas temperature after the DOC [13]. Furthermore
PM emissions are reduced due to the oxidation of HC.
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EURO III EURO IV EURO V EURO VI
2000 2005 2008 2013

ESC,WHSC

NOx [g/kWh] 5.0 3.5 2.0 0.4
PM [g/kWh] 0.10 0.02 0.02 0.01
CO [g/kWh] 2.1 1.5 1.5 1.5
HC [g/kWh] 0.66 0.46 0,46 0.13
NH3 [ppm] 25 25 10

ETC,WHTC

NOx [g/kWh] 5.0 3.5 2.0 0.46
PM [g/kWh] 0.16 0.03 0.03 0.01
CO [g/kWh] 5.4 4,0 4,0 4,0
HC [g/kWh] 0.16
NH3 [ppm] 25 25 10

Table 1.1.: Overview of EU emission standards for heavy duty diesel engines [7]

Diesel Particulate Filter (DPF):
DPF are used to filter PM and soot. They can remove PM from the exhaust gas
with an efficiency over 95% [13]. A regeneration of DPF has to be done continuously
to avoid overloading the filter and back pressure.

Lean NOx Trap (LNT):
LNT, also referred to as NOx adsorber, is a system to reduce NOx from the exhaust
gas of CI engines. NOx is adsorbed discontinuously under lean engine operation.
Periodic NOx desorption and reduction is done under rich exhaust gas composition.
Durable NOx reduction is about 20 − 70% depending on the system configuration
and NOx storage is limited above 450◦C. Sulfur reduces the NOx storage capability,
therefore a desulfurization or a sulfur free fuel is required [6].

Selective Catalytic Reduction (SCR):
SCR is the leading concept for the reduction of NOx in exhaust gases. State of the
art SCR after-treatment systems reach a NOx reduction efficiency (DeNOx ratio)
above 80% [6]. A reactant, ammonia (NH3), is added to the exhausted gas where
it reduces NOx. Since not all of the injected NH3 reacts, a part is emitted. There-
fore, also NH3 emissions (slip) have been regulated since EURO IV in 2005. For a
detailed description of the SCR system the reader is referred to chapter 1.2.

New concepts use combinations of LNT-SCR or SCR catalysts coated onto DPF sys-
tems. The introduction of Real-World Driving Emissions (RDE), including portable
emission monitoring systems, will force the SCR system design and the demand for
advanced control [11].
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Control Strategies:
Open loop control strategies are able to achieve high SCR performances, but re-
quire large calibration effort. Due to the increasing DeNOx efficiency requirements
and the high costs for time consuming test bed measurements, model based and
closed loop control approaches for SCR systems are used to establish new strate-
gies for emission reduction [17]. In chapter 2, a current control strategy is presented.

In order to meet current and future emission legislation, an advanced control concept
is investigated in this thesis. Model predictive control (MPC) offers new capabilities,
including prediction of future process behavior, optimization of the control action
and consideration of system constraints. Chapter 4 will show a method how a MPC
could be implemented for a SCR system.

1.2. SCR System

1.2.1. Basic Principle

In SCR systems, a solution with 32.5% urea in water, commercially called AdBlue,
is used as reducing agent to reduce the NOx concentration in the exhausted gas.
To describe to basic structure of the SCR system, it can be divided into two parts,
presented in figure 1.1. In the first part, AdBlue is injected into the tailpipe and
decomposes to ammonia. Then the reduction of NOx into nitrogen (N2) and water
(H2O) in the SCR catalyst is done in the second part.

Figure 1.1.: Basic structure of SCR catalyst [15]

The dominant chemical reactions in a SCR aftertreatment system are shown in fig-
ure 1.2. As already mentioned, the reducing agent ammonia has to be build out of
urea. First the injected AdBlue vaporizes in the tailpipe immediately. The melting
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urea ((NH2)2CO) particles decompose due to thermolysis into ammonia (NH3) and
isocyanic acid (HNCO). Furthermore the isocyanic acid in combination with water
(hydrolysis) is decomposed into NH3 and CO2. The combination of both reactions
show that with one molecule urea, two molecules ammonia are produced. It has to
be considered that the conversion of urea into ammonia can not take place under
the temperature of its melting point (132.7 - 135◦C) [8]. Hence, AdBlue should not
be injected below this temperature.

Figure 1.2.: Chemical Reactions in a SCR after-treatment system [6]

In the second part, the obtained ammonia deposits on the surface of the SCR cat-
alyst, which is called ammonia surface coverage or loading of the catalyst. The
reduction of the nitrogen oxides NO and NO2 by the ammonia surface coverage
leads to the desired products N2 and H2O. This SCR mechanism can be described
with three main reactions:

• Standard SCR Reaction:

4NO +O2 + 4NH3 → 4N2 + 6H2O (1.1)

• Fast SCR Reaction:

NO +NO2 + 2NH3 → 2N2 + 3H2O (1.2)
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• Slow SCR Reaction:

2NO2 +O2 + 4NH3 → 3N2 + 6H2O (1.3)

In the Standard SCR reaction 1.1 only NO is reduced. The ratio of NO2/NOx is
between 0−30% in the exhaust gas. Thus the fast SCR reaction 1.2 also takes place
until all NO2 is consumed. The remaining NO is converted by reaction 1.1 [14].
Reaction 1.2 reduces one mole NO and NO2 with one mole NH3 and is about ten
times faster than reaction 1.1. Therefore it is the preferred kinetic reaction. For the
promotion of the fast reaction, a DOC is used to form more NO2. If high NO2/NOx

ratios occur in the exhaust gas upstream of the SCR catalyst, the slow reaction 1.3
dominates. Hence a ratio of NO2/NOx > 50% is not desired as it cases the slowest
reaction.
Furthermore, if too much ammonia is injected or stored ammonia in the SCR cat-
alyst is released, NH3 emissions (slip) can occur downstream of the catalyst. To
reduce this effect, an ammonia slip catalyst (ASC) is applied [11].
For the control approach in this thesis, only the main SCR mechanism is considered.

Typcially, for SCR catalysts vanadia or zeolite based material is used. For the first
mobile large scale SCR applications (EURO IV), vanadia catalysts were used due
to the experience with stationary diesel engines. According to [11], vanadia-SCR
are the cheapest catalysts but with poor durability at high temperatures. Copper
zeolite based catalysts have the best low-temperature performance and therefore
copper zeolite is the preferred material for SCR applications. Iron zeolite has the
best high temperature performance, but a DOC is needed because of its bad behavior
at small NO2/NOx ratios.

1.2.2. Important System Values

An important system value of the SCR is the molar feed-ratio α. It is defined as
molar ratio between dosed NH3 and exhausted NOx upstream.

α =

∗
nNH3,us
∗
nNOx,us

(1.4)

With the relation xi =
∗
ni

∗
nEG

the feed-ratio can be rewritten as

α =
xNH3,us

xNOx,us
(1.5)

where xi is the amount of substance fraction and can be obtained from an engine-out
NOx model or a NOx sensor. The feedratio is used as main input for the following
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considerations of the SCR system. If ideal conditions are assumed (no NH3 slip,
oxidation or other side reactions), a value of α = 1 means a 100% reduction of NOx

for the standard SCR reaction.

In order to obtain the amount of injected ammonia, the massflow
∗
mNH3 upstream

of the SCR catalyst is calculated with

∗
nNH3,us = α · ∗nNOx,us (1.6)

and the relations

∗
nNOx,us =

∗
mEG

MAir

· xNOx,us (1.7)

∗
nNH3,us =

∗
mNH3

MNH3

(1.8)

where
∗
mEG,

∗
mNH3 are the massflows of the exhausted gas and injected NH3, and

MAir, MNH3 are the molar weights of air and NH3. By substitution the massflow
of injected ammonia

∗
mNH3 = α ·

∗
mEG

MAir

· xNOx,us ·MNH3 (1.9)

is obtained.

Figure 1.3 shows a scheme of all relevant input and output values of the SCR system,
as well as the considered internal states.

Figure 1.3.: SCR scheme of input, output values and internal states

The important internal states of the SCR catalyst are:

• Catalyst Temperature Tc: strongly effects SCR behavior, NH3 storage capa-
bility and DeNOx ratio of the catalyst
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• Ammonia surface coverage (loading) θNH3 : indicates the amount of stored
NH3 in the catalyst and thus NOx reduction efficiency and NH3 slip

• Amount of substance fraction x of the gas species NO,NO2, NH3, O2

Input values of the SCR catalyst are the upstream concentrations of the four gas

species NO,NO2, NH3, O2 as well as the massflow
∗
mEG, temperature TEG and pres-

sure pEG of the exhausted gas. Instead of the concentration xNH3,us, the feedratio α
can be used as input (see equation 1.5).

Important values for the evaluation of the SCR performance are the DeNOx ratio,
which is defined as

ηNOx =
xNOx,us − xNOx,ds

xNOx,us
, (1.10)

as well as the mole fraction xNOx,ds and the ammonia slip xNH3,ds downstream of
the catalyst.
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2. State of the Art

The control approach in this thesis is based on the currently used control strategy.
Therefore the state of the art is described in the following chapter.

2.1. Model Based Control Strategy

2.1.1. Control Structure

The model based control (MBC) concept of the SCR system is based on the control
of the ammonia surface coverage θNH3 (loading of the catalyst).

Figure 2.1 shows the stationary input/output behavior of the SCR system in one op-
erating point (OP). If α increases, which means more ammonia is injected upstream
of the catalyst, the amount of NOx,ds downstream decreases. Above an α around
one, the steady state loading of the catalyst starts to increase strongly, leading to an
increased NH3 slip. As both NOx,ds and NH3,ds are affected by the loading, θNH3

is the control variable in the MBC. For every desired stationary tradeoff between
NOx conversion and NH3 slip, an optimal feedratio α can be determined and hence
the setpoint for the loading.

For transient conditions, the optimal feedratio differs from its steady state value.
In this case the best performance is achieved by reaching the stationary ammonia
surface coverage level as fast and best as possible [8].

In figure 2.2, the complete MBC concept is depicted. The engine-out emission model
calculates necessary system values from measured sensor data from the exhausted
gas of the engine. The output values of the model describe the current operating
point of the SCR system. In the observer, a SCR model estimates the internal states
of the real SCR catalyst, because non of them are directly measurable. The current
value of the loading θNH3 is compared with its set-point. The demand of θNH3 is
calculated as follows. Stationary input/output behavior of the SCR system is simu-
lated and the desired tradeoff of NOx,ds and NH3,ds determines the optimal loading
θNH3 . This procedure is done for several operating points and through interpolation
a map can be constructed to cover the whole operation region, depicted in figure 2.3.
With increasing catalyst temperature Tc and space velocity vs the storage capability
of the SCR catalyst decreases.
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Figure 2.1.: Stationary SCR Input/Output behavior - OP7

Figure 2.2.: Model based control concept [6]
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Figure 2.3.: Example of a loading demand map

The loading controller calculates the demand for NH3,us, which is converted into
an injected AdBlue mass flow. As standard controller a PI with anti windup is
used. The setpoint trajectory depends on the current operating point conditions of
the system. Due to the changing system properties in different operating points,
the parameters of the PI-controller are also changing. Therefore, a set of OP´s
which describe the whole operating range are used to generate a map for the control
parameters.
Table 2.1 shows a list of 30 operating points that cover the operating range of a
considered heavy duty diesel engine.

2.1.2. SCR Model

The most sophisticated part of the MBC strategy is the SCR catalyst model. Since
this model is also used for the model predictive approach in chapter 4, it is described
in greater detail now.

According to [8] and AVL internal research, a plug flow reactor (PFR) would be
a proper reactor model for the SCR catalyst. However, a PFR model is based on
partial differential equations for the mass balance and is therefore not suitable for
a model based control approach embedded in an engine control unit (ECU). Alter-
natively, the PFR can be approximated using a cascade of continuous stirred tank
reactors (CSTR). A schematic of the CSTR cascade is shown in figure 2.4. Here,
the SCR model is split into cells, in which each cell represents a CSTR model. Due
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OP n M
∗

mEG xNO,us xNO2,us TEG Tamb pEG xO2,us

no. 1/min Nm kg/h ppm ppm ◦C ◦C hPa ppm

1 1200 60 320 131 12 168 25 970 183724
2 1200 110 327 162 40 193 25 970 176066
3 1200 161 335 191 92 219 25 970 168996
4 1200 211 344 221 156 242 25 970 161986
5 1200 260 348 216 247 281 25 970 163815
6 1200 353 370 246 331 335 25 970 143167
7 1200 463 398 361 347 385 25 970 127605
8 1200 597 424 609 298 439 25 970 132106
9 1200 802 499 1008 247 487 25 970 95065
10 1200 1122 605 1603 172 542 25 970 74853
11 1500 92 414 136 28 197 25 970 176625
12 1500 138 424 153 65 221 25 970 170390
13 1500 184 439 173 105 246 25 970 164668
14 1500 225 451 196 141 265 25 970 159809
15 1500 277 470 211 187 293 25 970 160628
16 1500 369 505 245 240 333 25 970 152255
17 1500 482 555 310 259 380 25 970 144211
18 1500 686 652 545 244 435 25 970 128452
19 1500 1154 922 951 198 495 25 970 116289
20 1500 1471 1064 1419 202 523 25 970 107806
21 2100 17 616 75 7 187 25 970 183186
22 2100 78 638 116 25 214 25 970 176762
23 2100 136 668 139 52 240 25 970 171590
24 2100 197 696 161 90 273 25 970 167378
25 2100 264 749 193 119 295 25 970 163992
26 2100 445 903 255 177 355 25 970 148788
27 2100 695 1172 375 192 398 25 970 139047
28 2100 929 1318 517 179 443 25 970 122716
29 2100 1113 1413 711 160 485 25 970 118121
30 2100 1208 1457 812 121 521 25 970 115241

Table 2.1.: Measured operating points
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to the mixing properties of an ideal CSTR, the output conditions of one cell are the
input conditions of the following cell.

Figure 2.4.: SCR model approach [15]

Additional assumptions and simplifications lead to the entire catalytic converter
model of the SCR System. The following model was developed under AVL internal
research and published in [8]:

d

dt
cNO,k =

n

Vc · εg
·

∗
mEG ·R
pEG ·MEG

(Tc,k−1 · cNO,k−1 − Tc,k · cNO,k)

+ aR(−4 · rstd,k − 2 · rfst,k − rNO,g,k)

d

dt
cNO2,k =

n

Vc · εg
·

∗
mEG ·R
pEG ·MEG

(Tc,k−1 · cNO2,k−1 − Tc,k · cNO2,k)

+ aR(−2 · rfst,k − 6 · rslw,k + rNO,g,k)

d

dt
cNH3,k =

n

Vc · εg
·

∗
mEG ·R
pEG ·MEG

(Tc,k−1 · cNH3,k−1 − Tc,k · cNH3,k)

+ aR(−rad,k + rde,k − 4 · rox,g,k)

d

dt
cO2,k =

n

Vc · εg
·

∗
mEG ·R
pEG ·MEG

(Tc,k−1 · cO2,k−1 − Tc,k · cO2,k)

+ aR(−0.5 · rNO,g,k)
d

dt
θNH3,k =

1

ΘNH3

(rad,k − rde,k − 4 · rstd,k − 4 · rfst,k − 8 · rslw,k − 4 · rox,k)

d

dt
Tc,k =

n

mc · cp,c
(
∗

mEG · cp,EG(Tc,k−1 − Tc,k) + αc · ac(Tamb − Tc,k))

(2.1)

where ci is the molar concentration of each gas species (NO,NO2,NH3,O2) and ri
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are the reaction rates with following relations:

rad = Kad · e−
Ead
Tc · cNH3(1− θNH3)

rde = Kde · e−
Ede(1−ε·θNH3)

Tc · θNH3

rstd = Kstd · e−
Estd
Tc · cNO · θcrit(1− e−

θNH3
θcrit )

rfst = Kfst · e−
Efst
Tc · cNO · cNO2 · θcrit(1− e−

θNH3
θcrit )

rslw = Kslw · e−
Eslw
Tc · cNO2 · θcrit(1− e−

θNH3
θcrit )

rox = Kox · e−
Eox
Tc · θNH3

rox,g = Kox,g · e−
Eox,g
Tc · cNH3

rNO,I = KNO,I · TANO,Ic e−
ENO,I
Tc · (cNO · c0.5O2 −

cNO2

Kequ(Tc)
) · (1− θNH3)

rNO,II = −KNO,II · TANO,IIc e−
ENO,II
Tc · (cNO2 −Kequ(Tc) · cNO · c0.5O2) · (1− θNH3)

rNO,g =

{
rNO,I for (cNO · c0.5O2 − cNO2

Kequ(Tc)
) ≥ 0

rNO,II for (cNO · c0.5O2 − cNO2

Kequ(Tc)
) < 0

(2.2)

Equations (2.1), a set of highly nonlinear coupled differential equations, describe
the behavior of the SCR catalyst. Index k indicates the set of ordinary differential
equations (ODE) for one CSTR cell. For n cells, n · 6 equations describe the whole
SCR model. In each CSTR cell, material balance, heat balance and SCR reaction
kinetics are considered. As formulated in the equations (2.2), the following reactions
are taken into account:

• Adsorption and desorption of NH3 on the surface of the SCR catalyst

• Slow, standard and fast SCR reaction mechanism

• Oxidation of NH3 on the catalyst surface and in the gas phase

• Oxidation of NOx

For a better approximation ofNOx oxidation in the model, the reaction rate equation
of rNO,I and rNO,II are adjusted with a nonlinear loading term

rNO,I = KNO,I · TANO,Ic e−
ENO,I
Tc · (cNO · c0.5O2 −

cNO2

Kequ(Tc)
) · (1− θNH3)

aθaNH3

rNO,II = −KNO,II · TANO,IIc e−
ENO,II
Tc · (cNO2 −Kequ(Tc) · cNO · c0.5O2) · (1− θNH3)

aθaNH3

(2.3)
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where for both equations the equilibrium constant Kequ is calculated as

Kequ =

√( pEG
R · Tc

)−1
· e(−9.259+

6848
Tc

+0.2791 Tc
1000
−0.02245( Tc

1000
)2−0.4139·ln( Tc

1000
)) (2.4)

Under the assumption that parameter KNO,I equals

KNO,I =
KNO,II

Kequ

(2.5)

reaction rate rNO,I and rNO,II are the same. Therefore, only rNO,I is used as NOx

oxidation term rNO,g for further considerations.

The relation between the molar concentration ci in [mol/m3] used in the SCR model
and the mole fraction xi in [ppm] from chapter 1.2.2 of a gas species can be obtained
using the ideal gas formula in a rearranged form.

n

V︸︷︷︸
c

=
p

R · T
(2.6)

From the formulation xi = ci
c

follows

ci

[mol
m3

]
=

p[pa]

T [K] ·R[ J
molK

]
xi

[mol
mol

]
(2.7)

For the implementation of the SCR model in the model based control strategy, the
continuous equations are discretized with the Backward-Euler Method and linearized
in some parts.
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3. MPC

The following chapter describes how model predictive controller basically work and
how they are realized in a state space model. At the end, a linear and nonlinear
approach is presented.

3.1. Basic Principle

Model predictive control (MPC) describes a control method, in which a model, based
on a process system, is used to obtain future control action by minimizing a cost
function. Basically, the MPC can be split into three parts:

• prediction model to predict process output at future time instants

• control algorithm to minimize a cost function and obtain future control action

• receding horizon to use past measurements at each time step for the calculation
of N future values

The different MPC strategies differ only in the used model and cost function. This
concept offers different properties over other control methods [4]:

+ easy tuning

+ usable for different process dynamics, including plants with high complexity,
time delay or non-minimum phase

+ easy handling of multivariable case (MIMO systems)

+ systematic implementation of constraints

+ extremely useful if future reference trajectory is known

- high computation time, especially when dealing with constraints and online
adaptions

- appropriate model for prediction required
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Figure 3.1.: Basic MPC strategy [3]

In figure 3.1 the basic MPC strategy is presented. At each time instant future
outputs yt+k for a finite horizon of N steps are calculated using a process model.
These future outputs depend on past inputs, past outputs and on future control
variables ut+k. The set of future control variables is determined by solving an optimal
control problem based on a certain cost function to keep the process output as close
as possible to a reference trajectory r(t) with minimal control action. Due to the
receding horizon concept, only the first future control signal ut+1 is sent to the
process. At the next time instant t+1, new process measurements are available and
the future process behavior is calculated again for N steps. The main advantage of
the repeated online optimization is the obtained feedback. A general scheme of a
MPC controller is shown in figure 3.2.

3.2. State Space Notation

A common description for process systems in control theory is the state-space for-
mulation. In discrete time, difference equations describe a state-space model as
follows [9]:

xk+1 = Axk + buk

yk = cTxk
(3.1)
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Figure 3.2.: Basic structure of MPC controller

With the n-dimensional state vector x at time instant k and k + 1, input uk and
ouput yk. In the SISO case uk and yk are scalars, A is a matrix and b and c are
vectors. If the state space model is extended to the MIMO case, uk and yk become
vectors and A,b and c are matrices. For the following descriptions, only the SISO
case is considered.

As a next step, the linear discrete state space model (3.1) has to be used to obtain
a prediction model, which calculates future output values over a defined horizon N.
One method describes the future output vector yk+i

→

1 as a function of the current

state vector xk, past input uk−1 and unknown future control action increments ∆uk
→

,

using the relation uk = uk−1 + ∆uk and the discrete model [10]. It starts with an
iteration of the difference equation

xk+1 = Axk + buk

xk+2 = Axk+1 + buk+1

...

xk+np = Axk+np−1 + buk+nc−1

yk+np = cTxk+np

(3.2)

1An arrow denotes the prediction of a system variable
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and ends up using trivial matrix-vector formulation in

yk+i
→

=


cTA
cTA2

...
cTAnp

xk +


cTb

cT (A + I)b
...

cT (Anp−1 + Anp−2 + ..+ A + I)b

uk−1

+


cTb 0 · · · 0

cT (A + I)b cTb · · · 0
...

...
...

...
cT (Anp−1 + ..+ I)b cT (Anp−2 + ..+ I)b · · · cT (Anp−nc + ..+ I)b

∆uk
→

(3.3)

with

yk+i
→

=


yk+1

yk+2
...

yk+np

 , ∆uk
→

=


∆uk

∆uk+1
...

∆uk+nc−1

 .
The length of the future output vector yk+i

→
is determined by the prediction horizon

np, the length of the future control action increments ∆uk
→

by the control horizon

nc. If the state vector xk is not measurable, a state observer is needed. A matrix
notation is given by:

yk+i
→

= Fxk + Guk−1 + H∆uk
→

(3.4)

Then the control sequence ∆uk
→

is calculated by minimizing a cost function. There

are several types of objective functions used for MPC, a common form is used in
[10],

J = (yk+i
→
− rk+i

→
)TQ(yk+i

→
− rk+i

→
) + (∆uk

→
)TR∆uk

→
(3.5)

where rk+i
→

represents the future trajectory of the setpoint for the prediction length

np. The aim of such a function is that the future output sequence yk+i
→

should follow

a reference signal in a defined horizon and the control effort ∆uk
→

should be penal-

ized. The prediction horizon length np defines the region where the error of setpoint
and future output is penalized. The control horizon nc always holds nc ≤ np and
defines the number of future increments ∆u, which are the optimized variables of
the cost function. Q and R are symmetric weighting matrices and indicate how
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strong the terms of the cost function are penalized.

The objective function of equation 3.5 offers four tuning parameters (degrees of
freedom):

• prediction horizon np: the shorter the length, the faster the reaction of the
controller

• nc: should be as small as possible, because it indicates the amount of opti-
mization variables. A higher number leads to a better optimization

• Q and R matrices: normally, diagonal matrices are used for easier tuning.
The Q matrix penalizes the future output error, the R matrix penalizes the
increments of control action. In the SISO case the Q/R ratio can be used for
tuning if Q has equal entries and R has equal entries. A higher Q/R ratio
means a faster controller with higher changes in control action.

The substitution of the future output equation (3.4) into the cost function leads to
the future control sequence by minimizing the cost function. If no constraints are
considered and the cost function is in a quadratic form, then an analytical solution
exists to calculate the future control sequence. If both horizons become infinity and
there are no constraints, the MPC controller becomes a linear quadratic regulator
(LQR) [4]. Otherwise, an iterative method of optimization is needed. For a quadratic
cost function with linear inequality constraints, the optimization becomes a standard
quadratic programming problem. A standard formulation is expressed in [16]

min
x

J =
1

2
xTHx + bTx s.t. Mx ≤ d (3.6)

with decision variable x and matrices and vectors H,b,M,d.
Typically, two kinds of constraints are implemented. Concerning the control variable
uk or the output yk and state variable xk.
Constraints on the amplitude of the control variable uk are the most common ones.
The transformation of

umin ≤ uk ≤ umax (3.7)

into linear inequalities is based on the decision variable ∆uk and expressed as set of
equations at future samples. For the SISO case (3.7) is extended to:

umin ≤ uk = uk−1 + ∆uk ≤ umax

umin ≤ uk+1 = uk−1 + ∆uk + ∆uk+1 ≤ umax
...

umin ≤ uk+nc−1 = uk−1 + ∆uk + · · ·+ ∆uk+nc−1 ≤ umax

(3.8)
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Equation (3.7) expressed by two inequalities

−uk ≤ −umin
uk ≤ umax

(3.9)

leads to the matrix form [
−M
M

]
∆uk
→
≤
[
−umin + luk−1
umax − luk−1

]
(3.10)

with

M =


1 0 · · · · · · 0
1 1 0 · · · 0
...

...
. . .

...
...

...
. . . 0

1 1 · · · · · · 1

 , l =


1
1
...
...
1

 ,umin =


umin
umin

...

...
umin

 and umax =


umax
umax

...

...
umax

 .

M is a (nc x nc) coefficient matrix and l, umin and umax are (nc x 1) vectors. Then
the form of (3.10) is equivalent to the inequality in (3.6). For the implementation
of output and state variable constraints, see [4],[10].

3.3. Linear and Nonlinear MPC

3.3.1. Linear MPC

Linear MPC (LMPC) in general means that a linear prediction model is used for
the prediction. The linear model can be obtained by linearizing nonlinear process
model equations, by linear approximation using step responses or by input/output
measurements.

In this thesis, a given nonlinear physical model,

ẋ = f(x, u) (3.11)

y = g(x, u) (3.12)

with an n-dimensional state vector x = [x1 x2 · · · xn]T , will be linearized.
Taylor series expansion is a common method for linearizing nonlinear differential
equation and is defined for two scalar variables in [2] as

f(x, u) =
∞∑

s,t=0

1

s!t!

∂s+t

∂xs∂ut
f(x0, u0)(x− x0)s(u− u0)t (3.13)
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where x0 and u0 are scalar points for the approximation and f (k)(x0, u0) are the
function derivatives at x0, u0.

Generally, the Taylor series is calculated at an equilibrium of the system. To calcu-
late the equilibrium, for example the output y can be chosen as point of lineariza-
tion. Then the equilibrium of state vector xe and input ue are determined by setting
dx
dt

= 0.

0 = f(xe, ue)

ye = g(xe, ue)
(3.14)

A linear model is obtained if higher order terms of the Taylor series are neglected.
The system variables u, x and y can also be interpreted as sum of equilibrium point
and deviation of this point

u = ue + δu

x = xe + δx

y = ye + δy

(3.15)

Now the linear system is described using (3.13) and (3.15).

dx

dt
=
dxe
dt︸︷︷︸
=0

+
d(δx)

dt
= f(xe, ue)︸ ︷︷ ︸

=0

+
∂f

∂x

∣∣∣
xe,ue︸ ︷︷ ︸

Ac

(x− xe) +
∂f

∂u

∣∣∣
xe,ue︸ ︷︷ ︸

bc

(u− ue) + · · · (3.16)

y = ye + δy = g(xe, ue) +
∂g

∂x

∣∣∣
xe,ue︸ ︷︷ ︸

cT

(x− xe) +
∂g

∂u

∣∣∣
xe,ue︸ ︷︷ ︸
d

(u− ue) + · · · (3.17)

If only linear terms are considered, the linear model is obtained as

d(δx)

dt
= Acδx + bcδu (3.18)

δy = cT δx (3.19)

with d = 0, because output y does not directly depend on the input u. For the
implementation into the MPC algorithm, the linear model has to be discretized. A
way to transform the matrix Ac and vector bc of the continuous system into the
discrete form is presented in [9]:

Starting from the general solution of a time-continuous system at time t = Td:

x(Td) = eAcTdx0 +

∫ Td

0

eAc(Td−τ)bcu(τ)dτ (3.20)
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the discrete matrix A can be defined as

A = eAcTd . (3.21)

For a piecewise equidistant constant input function

u(τ) = uconst for 0 ≤ t < Td

the discrete vector b is

b =

∫ Td

0

eAcτbcdτ (3.22)

and if Ac is invertible

b = A−1c [eAcTd − I]bc (3.23)

is valid. Then the future output sequence yk+i
→

can be calculated for the linear system

with equation (3.3). However, the prediction model of the MPC only describes the
deviation from the equilibrium. Therefore back-calculation to u, x and y has to be
done with equations (3.15).

3.3.2. Nonlinear MPC

In some applications a MPC with linear prediction model is not accurate enough for
controlling a process, especially when the system is highly nonlinear or the operating
point changes in a wide area.
Therefore a nonlinear MPC (NMPC) concept has to be used. Typical NMPC meth-
ods are MPC using successive linearization (SLNMPC), nonlinear models with se-
quential quadratic programming or neuronal net-based models [10]. Due to the fact
that a parametrized physical model exists, the focus of this thesis will be on the
NMPC using successive linearization.

Using SLNMPC means that a re-linerization of a nonlinear prediction model is done
in every or a defined time step. Thus, the optimization problem is reduced to a
quadratic program. The properties of this concept are according to [1]

• adaptive prediction model and controller, which can be used for time variant
systems

• better approximation of highly nonlinear plants or systems with wide operating
range than LMPC

• nonlinear control method, but quadratic optimization problem
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– optimal solution is guaranteed

– less computational costs than in other nonlinear MPC methods

In the following, two methods are described for the implementation of successive
linearization.

Method 1 (M1):
Use the current output yk as equilibrium ye and calculate the equilibrium of state
vector xe and input ue of the nonlinear system. Then linearize around xe and ue
(same structure as in LMPC, chapter 3.3.1). Problems might occur for higher order
systems, because the equilibrium has to be computed numerically.

Method 2 (M2):
Linearize around the measured state vector xk and current input uk−1. It has to
be considered that the offset f(xk, uk−1) does not disappear in M2. Therefore, the
linearized model has to be written in a new form

dx

dt
= f(xk, uk−1) +

∂f

∂x

∣∣∣
xk,uk−1︸ ︷︷ ︸
Ac

(x− xk) +
∂f

∂u

∣∣∣
xk,uk−1︸ ︷︷ ︸
bc

(u− uk−1) (3.24)

y = g(xk, uk−1) +
∂g

∂x

∣∣∣
xk,uk−1︸ ︷︷ ︸
cT

(x− xk) (3.25)

with x∗ = x− xk and u∗ = u− uk−1.
A way to deal with the initial condition fo = f(xk, uk−1) is described in [1]. The
input vector bc is augmented by a further column with fo, which is corresponding
to a second constant input.

dx

dt

∗
= Acx

∗ +
[
bc f0

] [u∗
1

]
(3.26)

Then the linear model is discretized,

x∗k+1 = Ax∗k +
[
b Γ0

] [u∗k
1

]
y∗k = cTx∗k

(3.27)

where A, b and Γ0 are the discrete forms of Ac, bc and f0 (see equations 3.21
and 3.23).

Afterwards, the discrete model is rearranged in a form with one input.

x∗k+1 = Ax∗k + bu∗k + Γ0

y∗k = cTx∗k
(3.28)
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The real output yk is obtained from yk = y∗k + g(xk, uk−1).
Then the structure of the future output vector yk+i

→
changes slightly compared to

the standard MPC formulation in equation (3.3).

yk+i
→

=


cTA
cTA2

...
cTAnp

x∗k +


cTb

cT (A + I)b
...

cT (Anp−1 + Anp−2 + ..+ A + I)b

u∗k−1

+


cTb 0 · · · 0

cT (A + I)b cTb · · · 0
...

...
...

...
cT (Anp−1 + ..+ I)b cT (Anp−2 + ..+ I)b · · · cT (Anp−nc + ..+ I)b

∆u∗k
→

+


cTΓ0 + g(xk, uk−1)

cT (A + I)Γ0 + g(xk, uk−1)
...

cT (Anp−1 + Anp−2 + ..+ A + I)Γ0 + g(xk, uk−1)


(3.29)

with u∗k = uk−1 + ∆u∗k. In this notation, the output prediction yk+i
→

is a real value.
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4. MPC Based Approach for SCR
Control

After discussing the theory of the SCR system and the principle of MPC, a model
predictive control concept based on the current control approach for the SCR is
investigated in this chapter.

4.1. Objectives

The objective of the control approach is to design an MPC concept for an existing
SCR system model. Figure 4.1 shows the structure of the MPC strategy, which is
based on the MBC control concept in chapter 2 and has to be implemented as a
controller in MATLAB Simulink. For the evaluation of the MPC strategy, the SCR
model of the observer is used as plant model for the SCR system.

Figure 4.1.: MPC strategy for the SCR system
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4.2. Investigation of the Continuous SCR Model

As already discussed in chapter 3, the design of an MPC requires a prediction model.
The idea is to use the continuous description of the SCR system in equation (2.1)
and (2.2) and linearize them to obtain a linear prediction model. In a first step, the
continuous nonlinear SCR model has to be built up.

In order to reduce the complexity of the continuous model, only four of the six differ-
ential equations for one cell are considered. The states for the catalyst temperature
Tc and the concentration of oxygen cO2 are set constant, because their influence over
the prediction horizon is considered negligible. This assumption will be confirmed
later. The reduced continuous model equations for one CSTR cell are

d

dt
cNO,k =

n

Vc · εg
·
∗
mEG ·R
pEG ·MEG

(Tc,k−1 · cNO,k−1 − Tc,k · cNO,k)

+ aR(−4 · rstd,k − 2 · rfst,k − rNO,g,k)

d

dt
cNO2,k =

n

Vc · εg
·
∗
mEG ·R
pEG ·MEG

(Tc,k−1 · cNO2,k−1 − Tc,k · cNO2,k)

+ aR(−2 · rfst,k − 6 · rslw,k + rNO,g,k)

d

dt
cNH3,k =

n

Vc · εg
·
∗
mEG ·R
pEG ·MEG

(Tc,k−1 · cNH3,k−1 − Tc,k · cNH3,k)

+ aR(−rad,k + rde,k − 4 · rox,g,k)
d

dt
θNH3,k =

1

ΘNH3

(rad,k − rde,k − rstd,k − 4 · rfst,k − 8 · rslw,k − 4 · rox,k)

(4.1)

with the same reaction rates as in equations (2.2) and (2.3) and the assumption
rNO,g,k = rNO,I,k.

Now the continuous model can be implemented in MATLAB Simulink. For simpli-
fication, the following reactions in the SCR system are not considered:

• standard and slow SCR reactions: rstd, rslw

• oxidation of NH3 in the gas phase: rox,g

In order to verify if the modeling of the continuous system is correct, it is compared
to the discrete SCR plant. The comparison of the continuous and discrete model is
shown with 1 cell in figure 4.2 and with 15 cells in figure 4.3 for input jumps of the
feed-ratio α in one operating point (OP7 from table 2.1). In both cases only minor
deviations occur.
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Figure 4.2.: Comparison of continuous and discrete model for 1 cell.
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Figure 4.3.: Comparison of continuous and discrete model for 15 cell.



4.2. Investigation of the Continuous SCR Model 39

Before the continuous model can be used for further investigations, the assumption
of constant Tc and cO2 over the prediction horizon has to be proofed. Figure 4.4
shows the SCR model behavior with 15 cells if 5 times more or 0.2 times less O2

than in the normal operating point (OP7) is available. These values represent the
amounts of cO2 in the whole operating range. One can see that changes of cO2 from
minimal to maximal operating range only lead to small deviations of NO, NO2, NH3

concentrations and loading time courses. The reason for that is the lean operating
mode of the engine, which leads to excess of air in every operating point.
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Figure 4.4.: Comparison of deviations of cO2 values from OP7 for the continuous
SCR model with 15 cells

Since the temperature of the catalyst changes very slowly, its influence over the pre-
diction horizon should be small. Figure 4.5 depicts the mean catalyst temperature
for a transient test. In this case, a maximum change of the temperature ∆Tc = 2K

s
is

measured. If a prediction time Tp = 3s is assumed for the MPC, a maximum change
of 6K can occur during prediction. Figure 4.6 depicts the SCR model behavior with
15 cells for changes in Tc at OP7. Here, the deviations are also small.

Continuous SCR model simulations also contain tests with a different number of cells
to define the appropriate system order. Specifically a comparison of the SCR model
simulation results based on 2, 6, 8 and 15 cells is depicted in figure 4.7. Internal
research of AVL showed that 8 to 15 cells are necessary for a good approximation
of the SCR system.
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Figure 4.5.: Mean catalyst temperature Tc of a transient test case
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Figure 4.6.: Comparison of deviations of Tc values from OP7 for the continuous SCR
model with 15 cells
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Figure 4.7.: Comparison of different number of cells for the continuous SCR model

4.3. Linear MPC for SCR Control

4.3.1. Simulation of 1 Cell SCR Model

After the investigation of the continuous model, a simple linear MPC algorithm is
tested at the beginning. For the first tests, an SCR model with 1 cell is considered.

In order to obtain a state space model, the state vector x, input u and output y are
defined as

x = [x1 x2 x3 x4]
T = [cNO cNO2 cNH3 θNH3]

T

u = α

y = x4

(4.2)

where y equals the loading of the catalyst for one CSTR cell.

The differential equations for 1 cell can be rewritten with a state space notation as
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follows:

d

dt
x1 = k1 ·

∗
mEG

pEG
(TEG · cNO,us − Tc · x1) + aR(−4kstd · x1 · θcrit(1− e−

x4
θcrit )

− 2kfst · x1x2 · θcrit(1− e−
x4
θcrit )− kNO,I · (x1 · c0.5O2 −

x2
Kequ

) · (1− x4)axa4)

d

dt
x2 = k1 ·

∗
mEG

pEG
(TEG · cNO2,us − Tc · x2) + aR(−2kfst · x1x2 · θcrit(1− e−

x4
θcrit )

− 6kslw · x2 · θcrit(1− e−
x4
θcrit ) + kNO,I · (x1 · c0.5O2 −

x2
Kequ

) · (1− x4)axa4)

d

dt
x3 = k1 ·

∗
mEG

pEG
(TEG · cNH3,us − Tc · x3)

+ aR(−kad · x3(1− x4) + kde · x4 − 4kox,g · x3)
d

dt
x4 =

1

ΘNH3

(kad · x3(1− x4)− kde · x4 − 4kstd · x1 · θcrit(1− e−
x4
θcrit )

− 4 · kfst · x1x2 · θcrit(1− e−
x4
θcrit )− 8 · kslw · cNO2,ds · θcrit(1− e−

x4
θcrit )− 4 · kox · x4)

(4.3)

With constants

k1 =
n

Vc · εg
· R

MEG

kstd = Kstd · e−
Estd
Tc

kfst = Kfst · e−
Efst
Tc

kslw = Kslw · e−
Eslw
Tc

kad = Kad · e−
Ead
Tc

kde = Kde · e−
Ede
Tc

kox = Kox · e−
Eox
Tc

kox,g = Kox,g · e−
Eox,g
Tc

kNO,I = KNO,I · TANO,Ic · e−
ENO,I
Tc

(4.4)

The input u can be introduced by replacing the concentration cNH3,us with

cNH3,us = (cNO,us + cNO2,us) · α (4.5)

since relation (1.5) is also valid for concentrations ci of the same gas species.
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As a next step, a linear MPC controller is tested on the discrete ECU SCR model.
For the prediction model, a linearization of equation (4.3) has to be derived. There-
fore the nonlinear system (4.3) can be interpreted as vector-valued function dx

dt
=

f(x, u). As described in chapter 3.3.1, calculating the Jacobian matrices of f(x, u)
and g(x, u)

∂f

∂x
=


∂f1
dx1

· · · ∂f1
dxn

...
. . .

...
∂fm
∂x1

· · · ∂fm
dxn

 , ∂f

du
=


∂f1
du
...

∂fm
du

 , ∂g
dx

=
[
∂g
∂x1

· · · ∂g
∂xn

]
(4.6)

lead to the matrix Ac and vectors bc and cT of the linear continuous model if the
equilibrium points are set in.

Ac =
∂f

∂x

∣∣∣
xe,ue

,bc =
∂f

∂u

∣∣∣
xe,ue

, cT =
∂g

∂x

∣∣∣
xe,ue

(4.7)

The explicit structure of Ac, bc and cT for one CSTR cell is attached in Ap-
pendix A.1. A transformation of the continuous prediction model into a discrete
form is obtained using equations (3.21) and (3.23).

The general block diagram of the loading control strategy for the SCR model is
depicted in figure 4.8. Internal states of the SCR system are used for the future
predictions in the MPC. The current operating point and thus the upstream values of
the exhausted gas are depending from the chosen test cycle. The setpoint trajectory
of NH3 storage (loading) is determined by the catalyst temperature Tc and massflow

of the exhausted gas
∗
mEG.

The SCR catalyst can be wasted if too much xNH3,us is injected upstream. There-
fore, the control variable α is limited to α = [0.2, 1.5], where the lower limit is used
to avoid damaging of the catalyst. The implementation of constraints in the MPC
is described in chapter 3.2.

Figure 4.9 depicts the simulation of a simple MPC implementation, using only one
linear prediction model, linearized about an equilibrium (ye = 0.015) near the desired
loading set-point of OP7. The default sample time of the discrete SCR model is
Ts = 0.02s. Since the computational effort increases strongly for a MPC with
increasing Ts, it is set to Ts = 0.1s for a start. Then the prediction horizon np should
be chosen such that the closed loop dynamic is catched. The following parameters
are chosen:

Ts = 0.1s

np = 30

nc = 9

Tp = np · Ts = 3s



44 4. MPC Based Approach for SCR Control

discrete SCR Model

OP inputs

alpha [−]

output concentrations x [ppm]

cell concentrations c [mol/m3]

NH3 storage [−]

Tc [K]

Test Cycle − upstream values

OP values

NH3 Storage Demand

Mf_Exh [kg/s]

Tc [K]

NH3 storage setpoint [−]

MPC

Tc [−]

NH3 storage [−]

cell concentration c [mol/m 3̂]

NH3 storage setpoint [−]

OP inputs

alpha [−]

Data storage

x_Nox_ds [ppm]

x_Nh3_ds [ppm]

theta [−]

alpha [−]

setpoint theta [−]

Figure 4.8.: Block diagram of principle control structure for the SCR model

with a prediction time of Tp = 3s. Because no integral action is included into the
controller, the steady-state value of the loading is not unbiased. However, due to
the weighting of the cost function, the error can be reduced by increasing the ratio
of Q/R. The quadratic program is solved using the quadprog routine of MATLAB.

4.3.2. Simulation of 15 Cell SCR Model

As already mentioned, about 8 to 15 cells are necessary for a good approximation
of the SCR model. In case of a n-cell SCR model, the state vector x, input u and
output y are defined as

x = [x1 x2 x3 x4 · · · x4n−3 x4n−2 x4n−1 x4n]T

= [cNO,1 cNO2,1 cNH3,1 θNH3,1 · · · cNO,n cNO2,n cNH3,n θNH3,n]T

u = α

y =

n∑
i=1

x4i

n

(4.8)

where y equals the mean value of the loading for n cells of the SCR model.

To obtain a linear MPC for a n-cell SCR model, the Jacobian matrix (A.3) is aug-
mented by (n − 1) rows and columns. Due to the cascaded structure of the SCR
model, from the second to the last cell a systematic relation occurs. Therefore, the



4.3. Linear MPC for SCR Control 45

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

Time [s]

Lo
ad

in
g 

[−
]

a)

 

 

MPC 1 lin., Q/R=1e2
MPC 1 lin., Q/R=1e3
MPC 1 lin., Q/R=1e4
setpoint

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

Time [s]

al
ph

a 
[−

]

b)

 

 

MPC 1 lin., Q/R=1e2
MPC 1 lin., Q/R=1e3
MPC 1 lin., Q/R=1e4

Figure 4.9.: Simulation of linear MPC for discrete SCR model with 1 cell. Different
Q/R ratios, Ts = 0.1s, np/nc = 30/9. a) control output, b) control
action.
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derivation of the Jacobian is straight forward. The explicit structure of Ac, bc and
cT for a 15 cell SCR model is attached in Appendix A.2.

In order to obtain the linear prediction model from the Jacobian matrix, the equi-
librium of the nonlinear system has to be calculated. Due to the complexity and
the high order of the system, an analytical computation of the equilibrium is not
possible. Instead, the zeros of the continuous equations (2.1) have to be found by
solving the system of nonlinear equations numerically. In this thesis the MATLAB
routine fsolve is used.

Figure 4.10 depicts the simulation of the linear MPC for the 15 cell SCR model,
where the linear prediction model is linearized about the equilibrium ye = 0.015
near the desired loading set-point of OP7. The behavior of the controlled system is
similar to the case with one 1 cell using the same sample time and horizons.
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Figure 4.10.: Simulation of linear MPC for discrete SCR model with 15 cells. Differ-
ent Q/R ratios, Ts = 0.1s, np/nc = 30/9. a) control output, b) control
action.

The linear MPC for setpoint jumps in one operating point shows a good perfor-
mance for the 15 cell SCR model. In practice, the SCR system moves from one OP
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to another, where the desired setpoint of the loading is depending on the current

massflow of the exhausted gas
∗
mEG and the temperature in the catalyst Tc.

Figure 4.11 and 4.12 show the simulation of the linear MPC for OP jumps (OP
7-5-7 and OP 7-9-7). It can be seen that the linear MPC (linearized in OP7) has a
significant loss of performance in OP9.
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Figure 4.11.: Simulation of linear MPC for discrete SCR model with 15 cells and
OP jumps 7-5-7. Different Q/R ratios, Ts = 0.1s, np/nc = 30/9. a)
control output, b) control action.
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Figure 4.12.: Simulation of linear MPC for discrete SCR model with 15 cells and
OP jumps 7-9-7. Different Q/R ratios, Ts = 0.1s, np/nc = 30/9. a)
control output, b) control action.

4.4. Nonlinear MPC for SCR Control of 15 Cells

A better performance in different operating points can be achieved if the prediction
model of the MPC is calculated for each time step. This method is called successive
linearization (SL) and is described in detail in chapter 3.3.2.
For SL using method 1 (M1), in principle the same algorithm has to be implemented
as in the linear MPC case discussed before. The main difference is that the numer-
ical calculation of the equilibrium is done for each time step or after a defined time
interval and therefore the linear prediction model has to be computed online as well.
As a result, the execution time increases. For a better performance of M1, it is
essential to use the calculated equilibrium for each time step as starting point for
the next numerical computation.
Alternatively, a second implementation of the SL is considered. Method 2 (M2)
avoids the numerical computation of the equilibrium, because the nonlinear system
is linearized around the current states. Additionally, an offset has to be added in
this case.

Figure 4.11 and 4.12 show the comparison of the linear MPC with the nonlinear
MPC using SL M1 and M2 for different OP jumps (OP 7-5-7 and OP 7-9-7). The
nonlinear MPC shows a better tracking of the loading especially in high temperature
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operating points (OP9). The performance of both SL methods is quite similar.
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5. Stationary and Transient Test
Cycles

In the European Union standardized test cycles for emission certifications of auto-
motive applications and non-road mobile engines are defined. These tests include
several driving conditions, for instance cold/hot starting, frequent accelerations and
decelerations, changes of load, etc [12]. In order to make a realistic test in the oper-
ating range of a diesel engine, measurement data for non-road mobile diesel engines
are used to test the MPC approach for the SCR system. The main input data of the
so called Non-road Steady Cycle (NRSC) in parallel with the Non-road Transient
Cycle (NRTC) are depicted in figure 5.1 and 5.2. The most important aspect with
respect to these tests is, that the two dominant operating point values massflow
∗
mEG and temperature TEG of the exhausted gas are correlated.

5.1. Loading Control

5.1.1. NRSC Test

The following simulations include stationary test cycles with the two SLNMPC meth-
ods M1 and M2. A comparison with the standard MBC approach using a nonlinear
PI controller will show the performance of the different strategies.

Figure 5.3 depicts the simulation of the NRSC test and the comparison of the non-
linear SLMPC M1, M2 and a PI control approach. The parameter Ts, np, nc are set
as in the investigations before, the Q/R ratio is 105.
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Figure 5.1.: NRSC test cycle input sequences
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Figure 5.3.: Simulation of the NRSC test cycle for SLMPC M1,M2, and PI approach
comparison, discrete SCR model with 15 cells. Q/R = 105, Ts = 0.1s,
np/nc = 30/9. a) control output, b) control action.
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The NRSC test is evaluated by calculating the integral absolute error (IAE) and
integral squared error (ISE) of the loading as well as the integrated control action
(ICA) of the feed-ratio α. Table 5.1 presents the result for the different controller.
The evaluation is considered in a time interval of [80s,2500s] due to the tempera-
ture initialization of the SCR model and a better benchmarking. All three concepts
show similar performance for the stationary test. The PI has a slightly better error
tracking due to the integral action but higher control activity. A higher choice of
the Q/R-ratio reduces the error of the MPC.

IAE ISE ICA

MPC SL M1
Q/R = 104 3.45 0.0429 1619.4

MPC SL M2 3.42 0.0405 1619.9
MPC SL M1

Q/R = 105 3.09 0.0405 1620.1
MPC SL M2 3.01 0.0403 1620.2

PI control 3.01 0.0408 1624.2

Table 5.1.: Calculated values of IAE, ISE and ICA of different control approaches
for NRSC test cycle. Ts = 0.1s, np/nc = 30/9

Figure 5.4 depicts the performance of the control concepts with respect to the emis-
sions downstream of the catalyst. One can see that the demand map for the loading
setpoint is calibrated to reach very low NH3 slip but thus higher NOx emissions
occur with low DeNOx ratios.
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Figure 5.4.: Simulation of the NRSC test cycle for SLMPC M1,M2, and PI approach
comparison, discrete SCR model with 15 cells. Q/R = 105, Ts = 0.1s,
np/nc = 30/9. a) DeNOx, b) NOx,ds c) NH3 slip.



5.1. Loading Control 57

5.1.2. NRTC Test

The transient behavior of the nonlinear MPC using SL with M1 and M2 is evaluated
in this part.

Figure 5.5 shows the simulation of the NRTC test cycle and the comparison of the
nonlinear SLMPC M1, M2 and a PI control approach. The parameter Ts, np, nc are
set as in the investigations before, the Q/R ratio is 104.
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Figure 5.5.: Simulation of the NRTC test cycle for SLMPC M1,M2, and PI approach
comparison, discrete SCR model with 15 cells. Q/R = 104, Ts = 0.1s,
np/nc = 30/9. a) control output, b) control action.

In table 5.2 the evaluation of the NRTC test is presented. The parameter are the
same as in the NRSC test. The time interval [150,1240s] is defined for the evalua-
tion. Compared to the NRSC test, the SLNMPC shows a much better performance
than the PI controller for transient conditions, especially when the ratio of Q/R is
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increased.

IAE ISE ICA

MPC SL M1
Q/R = 104 1.8310 0.0181 938.97

MPC SL M2 1.7905 0.0181 942.88
MPC SL M1

Q/R = 105 1.6552 0.0173 941.67
MPC SL M2 1.6686 0.0175 944.91

PI control 1.8801 0.0181 948.05

Table 5.2.: Calculated values of IAE, ISE and ICA of different control approaches
for NRTC test cycle. Ts = 0.1s, np/nc = 30/9

In the time interval [370,390s] of the presented NRTC test, the SLNMPC M1 shows
an unusual behavior, depicted in figure 5.6. The reason for these peaks in alpha are
problems in the numerical computation of the equilibrium in M1. Strongly changing
transient conditions from one time step to another lead to a starting point for the
iteration, which is too far away to reach a reasonable solution with the implemented
algorithm. Reducing the sample time or filtering the transient OP values can solve
this problem.
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Figure 5.6.: SLMPC M1 problem in simulation of the NRTC test cycle
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As a next step, the NRTC test shows how a change in the control horizon can affect
the performance of the SLNMPC. In order to find an appropriate control horizon nc,
the SLNMPC M2 is tested for the NRTC with different horizon nc = [3, 6, 9, 12, 15].
Figure 5.7 depicts the results for the IAE and computational time of the quadprog
algorithm in MATLAB as a function of the control horizon. The IAE can be reduced
by up to 5% with increasing nc values while ISE and ICA keep almost constant. A
control horizon nc = 9 seams to be a good choice. To reduce the computational time
of the quadratic program, even smaller nc values are suitable.
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Figure 5.7.: IAE error and computational time of quadprog algorithm of SLNMPC
M2 as a function of nc for NRTC test

Another aspect that has to be considered is the ratio between sample time Ts of the
MPC and re-linearization time Tlin of the prediction model. Therefore, the SLN-
MPC M2 is evaluated for several ratios in table 5.3. It can be seen that already a
small increase in the re-linearization time has an influence on the performance due
to the transient operating conditions.

Figure 5.8 depicts the performance of the control concepts with respect to the ex-
haust gas after-treatment. Although the SLNMPC M2 controller has a superior
tracking of the loading compared to the PI-controller, both concepts show similar
NOx and NH3 emissions. Hence, changes near the setpoint of loading have not a big
influence on the emissions for this setpoint trajectory, which means that reducing
the tracking error becomes less important than expected.
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Ts/Tlin IAE ISE ICA

0.1s/1s 1.7564 0.0177 943.4
0.1s/0.5s 1.7116 0.0176 943.6
0.1s/0.1s 1.6686 0.0175 944.9
0.08s/0.4s 1.6644 0.0174 944.7
0.08s/0.08s 1.6290 0.0172 945.8

Table 5.3.: Calculated values of IAE, ISE and ICA of SLNMPC M2 for NRTC test
and varying sample/re-linearization time. Q/R = 105, np/nc = 30/9
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Figure 5.8.: Simulation of NRTC test for SLMPC M2 and PI approach comparison,
discrete SCR model with 15 cells. Q/R = 105, Ts = 0.1s, np/nc = 30/9.
a) DeNOx, b) NOx,ds c) NH3 slip.
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Table 5.4 presents the corresponding mass of injected NH3,us upstream and the
emissions NH3,ds and NOx,ds downstream of the catalyst for NRTC test conditions
depicted in figure 5.8. Both concepts show similar emission quantities.

mNH3,us[g] mNH3,ds[g] mNOx,ds[g]

MPC SL M2 75.008 0.0819 24.476
PI control 74.948 0.0775 24.387

Table 5.4.: Calculated mass of NOx and NH3 of different control approaches for
NRTC test cycle

5.2. Efficiency Control

As seen before, the control of loading needs a lot of effort to determine the setpoint
for the desired emission goals. In order to directly affect the emissions with the
MPC, the DeNOx ratio (1.10) of the SCR model is set as output instead of the
loading. For this control strategy, the cT matrix of the linear model changes to

cT = − 1

cNOus + cNO2,us

[
0 0 0 0 · · · 1 1 0 0

]
(5.1)

where cT has the same size as in the loading control.

Figure 5.9 and 5.10 show the DeNOx control with SLNMPC M2 compared to the
PI approach with loading as output for a NRSC test. The desired setpoint is set to
90% NOx reduction. In order to reach a constant DeNOx ratio on a high level, in
some OP a much higher loading is needed. Thus more NH3 has to be injected and
more NH3 slip occurs in these operating regions.

Figure 5.11 and 5.12 show the DeNOx control with SLNMPC M2 compared to the
PI approach with loading as output for a NRTC test. The desired setpoint is set
to 98% NOx reduction. Compared to the loading control approach a higher control
activity and loading of the catalyst can be seen. The setpoint of the loading control
is defined to produce minor NH3 slip. However, this results in a drop of the DeNOx

efficiency in some operating regions.
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Figure 5.11.: Comparison of DeNOx control with SLNMPC M2 and loading control
with nonlinear PI control for NRTC test. Q/R = 102, Ts = 0.1s,
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Figure 5.12.: Comparison of DeNOx control with SLNMPC M2 and loading control
with nonlinear PI control for NRTC test. Q/R = 102, Ts = 0.1s,
np/nc = 30/9. a) DeNOx ratio, b) NOx,ds c) NH3 slip
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The main problem of this approach is that in some OP, high amounts of ammonia
are injected (overdosing) to reach the desired DeNOx ratio. Due to an ammonia
slip catalyst, which converts the NH3 slip downstream of the catalyst into NOx,
and the restriction of NH3 in the emission legislation, the NH3 slip has to be lim-
ited. Practically, the MPC offers a systematic implementation of constraints in state
variables.
It can be seen that controlling the DeNOx ratio leads to a higher rate of change
in the control action. However, the primary goal to reduce NOx emissions can be
better achieved without the demand for setpoint maps of the loading. If the NH3

slip is too high, a constraint of the state variable can be implemented into the MPC.

Figure 5.13 depicts the comparison of a MPC with and without a constraint of
NH3 downstream to 5ppm for a NRTC test. The limitation on the NH3 leads to a
decrease in the DeNOx efficiency. Thus, a tradeoff between the choice of DeNOx

setpoint and NH3 slip has to be found in this approach.
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Figure 5.13.: Comparison of DeNOx control of SLNMPC M2 with and without NH3

slip constraint
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6. Conclusion and Outlook

6.1. Conclusion

Due to the strongly nonlinear SCR system and its wide operating range, a linear
MPC algorithm was not accurate enough to control the loading of the catalyst.
Therefore a nonlinear MPC, called SLNMPC, was introduced as this concept uses a
re-linearized linear prediction model with quadratic optimization algorithm, which
reduces the computational costs compared to other nonlinear MPC.
SLNMPC M1 is the more intuitive approach compared to M2, because an equi-
librium is used for the linearization of the SCR model. However, due to the cell
structure of the continuous SCR model with up to 15 cells, numerical computation
of the equilibrium led to problems in transient tests. The starting point for the de-
termination of the equilibriums was the most critical point in this concept. Hence,
SLNMPC M2 using the current states from the SCR model for linearization was the
preferred method. Both M1 and M2 showed similar performance, but M2 has less
computational costs.

Generally speaking, the performance of the SLNMPC mainly depends on the com-
putational effort, especially in the transient test case. The smaller the sample time
Ts and re-linearization time Tlin of the MPC, the higher are the computational costs
and the better is its performance. The increase of the control horizon nc up to nc = 9
and thus the number of decision variables has also an influence on the tracking per-
formance. Compared to the nonlinear PI control approach, up to 13% less IAE was
achieved in the NRTC test of the loading control concept. In the stationary test
cycle, no significant difference in performance of the controller could be seen. The
main reason for that is that in this case, the MPC operates with less active con-
straints. Furthermore, the PI-controller has no offset because of the integral action.
With a higher weighting of the Q/R ratio in the cost function, the offset error of the
MPC can be reduced. As it turned out, a better tracking of the loading than in the
nonlinear PI control approach has only small affect to the NOx and NH3 emissions.
The main reason for that is the calculation of the demand map for the loading,
which is derived from stationary points of the input/output behavior in figure 2.1.
Due to the flat curve in the considered operating points, only small changes in the
emissions occur.
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Controlling the DeNOx ratio has the advantage to directly influence the emissions
downstream the SCR catalyst. A high setpoint for the efficiency leads to an over-
dosing of the SCR with high NH3 slip. The MPC structure with state variable
constraint can be used to limit the NH3 downstream. Since the efficiency decreases
with a stronger NH3 limitation, a tradeoff between the desired DeNOx rate and
NH3 slip has to be found. The DeNOx control shows higher dynamics than the
loading control, which led to more control activity.
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6.2. Outlook

The MPC offers many possibilities for further investigations. If future trajectories
of setpoint or temperature are known, the performance of the MPC could be further
improved. The consideration of oxygen and temperature dependency in the predic-
tion model would improve its accuracy, but the effect on computational time has to
be observed.
Therefore the reduction of the execution time of the MPC is also a topic for fu-
ture investigations. The computational time of the quadratic program could be
minimized using other algorithms, such as Hildreth´s program or parallel quadratic
programming. Instead of the online calculation of the prediction model, switching
between linear models from defined operating points would be an alternative.
As mentioned before, the SLNMPC would be more effective and less computational
expensive if the number of cells and thus the system order of the prediction model
could be reduced. Therefore, changing the calibration of the SCR model to obtain
an equivalent approximation of the system with less cells would be an interesting
point. The effects of the MPC performance with less cells on a real SCR plant is
another point.

Since controlling the kinetic part of the SCR system requires a very complex mod-
eling with highly nonlinear equations, the consideration of the thermal part of the
SCR system could be an alternative way. Therefore, a prediction model has to
forecast the future trajectory of the catalyst temperature. The injection of NH3 is
based on the loading again, which depends on the temperature.
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A. Appendix

A.1. Jacobian Matrices of one CSTR cell

The matrices Ac,bc and cT for a 1 cell continuous linear SCR model and the loading
as output are defined as:

bc =


0
0

k1
∗
mEG
pEG

(TEG(cNO,us + cNO2,us))

0

 (A.1)

cT =
[
0 0 0 1

]
(A.2)
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pEG

Tc + aR(−2kfstx1,eθcrit(1 − e
−
x4,e
θcrit ) −

kNO,I
Kequ

(1 − x4,e)
ax4,e

a)

0 0

1
Θmax

(−4kfstx2,eθcrit(1 − e
−
x4,e
θcrit ) 1

Θmax
(−4kfstx1,eθcrit(1 − e

−
x4,e
θcrit )

0 aR(−2kfstx1,ex2,ee
−
x4,e
θcrit − kNO,I (x1,ec

0.5
O2

−
x2,e
Kequ

)(−a(1 − x4,e)
a−1x4,e

a + a(1 − x4,e)
a(x4,e)

a−1)

0 aR(−2kfstx1,ex2,ee
−
x4,e
θcrit + kNO,I (x1,ec

0.5
O2

−
x2,e
Kequ

)(−a(1 − x4,e)
a−1x4,e

a + a(1 − x4,e)
a(x4,e)

a−1)

−k1

∗
mEG
pEG

Tc + aR(−kad + kadx4,e − 4kox,g) aR(kadx4,e + kde)

1
Θmax

(kad − kadx4,e)
1

Θmax
(−kadx3,e − kde − 4kfstx1,ex2,ee

−
x4,e
θcrit − 4kox)



(A.3)

The standard and slow SCR reactions are not considered in this linearization.
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A.2. Jacobian Matrices of n CSTR cells

Matrix Ac1 is defined as Jacobian matrix (A.3) of the first CSTR cell. For the fol-
lowing cells, Ac2, ..,Acn have the same form as Ac1, but with their corresponding
equilibriums. For example, matrix Acn uses x4(n−1)+1,e to x4(n−1)+4,e, where n is the
cell number.

The matrices Ac,bc and cT for n cells are then defined as:

Ac(4n x 4n) =



Ac1 0 0 0 · · · 0
A−1 Ac2 0 0 · · · 0
0 A−1 Ac3 0 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 A−1 Acn−1 0
0 · · · 0 0 A−1 Acn


(A.4)

bc(1 x 4n) =



0
0

k1
∗
mEG
pEG

(TEG(cNO,us + cNO2,us))

0
...
0


(A.5)

cT(4n x 1) =
1

n

[
0 0 0 1 · · · 0 0 0 1

]
(A.6)

with

A−1 =


k1

∗
mEG
pEG

Tc 0 0 0

0 k1
∗
mEG
pEG

Tc 0 0

0 0 k1
∗
mEG
pEG

Tc 0

0 0 0 0

 ,0 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


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