
Corina Kräuter, BSc

Pixel-wise quantification of myocardial perfusion indices from 
dynamic contrast-enhanced MRI

to achieve the university degree of

MASTER'S THESIS

                              Master's degree programme: Biomedical Engineering

submitted to

Graz University of Technology

Univ.-Prof. Dipl.-Ing. Dr.techn. Rudolf Stollberger

Institute of Medical Engineering

   Diplom-Ingenieurin

Supervisor

Second supervisor: Dipl.-Ing. Dr.techn. Gert Reiter 
Research and Development, Siemens Healthcare Diagnostics GmbH

Graz, October 2016



AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other 

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used. 

The text document uploaded to TUGRAZonline is identical to the present master‘s 

thesis dissertation.

Date Signature



Acknowledgments

First of all, I would like to thank Prof. Dr. Rudolf Stollberger for his guidance and

contribution to this thesis. Special thanks go to Dr. Gert Reiter and Dr. Ursula Reiter for

their unequaled support and advice, for sharing their knowledge about cardiac MRI and

for always being patient and highly motivated. I would also like to thank my parents for

their unconditional support and for believing in me. A final thank goes to my friends and

colleagues, especially Marc, Flo, Betti, Ines and Fanny, who have always been there for

me.

The project was supported by the funds of the Österreichische Nationalbank, Anniversary
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Abstract

Pixel-wise perfusion quantification from dynamic contrast-enhanced magnetic resonance imaging (DCE-

MRI) might allow detection and evaluation of myocardial perfusion deficits beyond visual analysis. However,

relationships between different quantification approaches were not thoroughly studied. The aim of this

thesis was to determine and compare semi-quantitative (up-slope, area under the curve and signal intensity

maximum) and quantitative (deconvolution using Fermi modeling, Tikhonov regularization with B-splines

and ARMA modeling) perfusion parameter maps from motion-corrected myocardial DCE-MRI data

acquired in patients with coronary heart disease under resting condition.

Visual analysis for subendocardial perfusion deficits revealed the best sensitivity (100%) and specificity

(100%) for signal intensity maximum maps. For no type of perfusion map dark rim artifacts were misinter-

preted as perfusion deficits. Whereas semi-quantitative and quantitative parameters demonstrated only

moderate correlations both pixel-based and patient-based, the correlations between different quantitative

perfusion maps were strong. However, mean myocardial perfusion values of 0.72 ± 0.13 (Fermi), 0.67 ±
0.10 (Tikhonov) and 0.84 ± 0.16 ml ·min−1 · g−1(ARMA) differed significantly.

Consequently, pixel-wise myocardial perfusion quantification is feasible with any of the studied approaches,

where practical aspects favor the deconvolution using Fermi modeling. Semi-quantitative parameters do

not completely reflect quantitative myocardial perfusion, but signal intensity maximum maps represent a

valuable tool for detection of perfusion deficits.

Key words: dynamic contrast-enhanced magnetic resonance imaging, myocardial perfusion, deconvolution,

signal intensity to concentration conversion, perfusion parameters

Kurzfassung

Pixelweise Perfusionsquantifizierung unter Verwendung von dynamischer kontrastmittelverstärkter Magne-

tresonanztomographie (DCE-MRI) könnte eine Feststellung und Beurteilung myokardialer Perfusions-

defizite über die visuelle Analyse hinaus ermöglichen. Die Beziehungen zwischen verschiedenen Quan-

tifizierungsmethoden wurde jedoch noch nicht gründlich untersucht. Das Ziel dieser Arbeit war es,

semi-quantitative (Anstiegssteilheit, Fläche unter der Kurve und Signalintensitätsmaximum) und quanti-

tative (Entfaltung mittels Fermi-Modell, Tikhonov Regularisierung mit B-Splines und ARMA-Modell)

Perfusionsparameter-Maps aus bewegungskorrigierten myokardialen Ruheperfusions-DCE-MRI Daten von

Patienten mit koronarer Herzkrankheit zu bestimmen und zu vergleichen.

Die visuelle Analyse subendokardialer Perfusionsdefizite ergab die beste Sensitivität (100%) und Spezifität

(100%) für die Signalintensitätsmaximum-Maps. In keiner Art von Perfusions-Maps wurden Dark Rim

Artefakte als Perfusionsdefizit missinterpretiert. Während semi-quantitative und quantitative Parameter

sowohl pixelbasiert als auch patientenbasiert nur mittelmäßige Korrelationen aufwiesen, waren die Korrela-

tionen zwischen den verschiedenen quantitativen Myokardperfusions-Maps stark. Allerdings unterschieden

sich die mittleren Myokardperfusionswerte von 0.72 ± 0.13 (Fermi), 0.67 ± 0.10 (Tikhonov) und 0.84 ±
0.16 ml ·min−1 · g−1(ARMA) signifikant.

Pixelweise Myokardperfusionsquantifizierung war demzufolge mit allen untersuchten Methoden möglich,

wobei die Entfaltung mittels Fermi-Modell aufgrund praktischer Aspekte zu bevorzugen ist. Semi-

quantitative Parameter spiegeln quantitative Myokardperfusion nicht vollkommen wider, Signalinten-

sitätsmaximum-Maps sind aber ein wertvolles Hilfsmittel zur Detektion von Perfusionsdefiziten.

Schlüsselwörter: dynamische kontrastmittelverstärkte Magnetresonanztomographie, Myokardperfusion,

Entfaltung, Umrechnung von Signalintensität auf Konzentration, Perfusionsparameter
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1 Introduction

Magnetic resonance imaging (MRI) has been applied for more than two decades for the

assessment of myocardial perfusion. Compared to the gold standard method positron

emission tomography (PET), it has the advantages of superior spatial resolution and absence

of ionizing radiation. While visual analysis of MR images acquired during the passage of

a contrast agent bolus through the heart is clinical routine, approaches to quantitative

evaluation of myocardial perfusion are still at the stage of active research. Heterogeneity

in quantification methodology as well as lack of studies with large patient populations

complicate the implementation into clinical practice. However, semi-quantitative and

quantitative perfusion studies have shown the potential to improve and enlarge diagnostic

capabilities of MRI in the evaluation of impaired myocardial perfusion.

This chapter first provides a short introduction to anatomy and (patho-)physiology of the

myocardium, followed by a description of dynamic contrast-enhanced magnetic resonance

imaging (DCE-MRI) of the heart. Then, the concepts and methods of semi-quantitative

and quantitative myocardial perfusion analysis are introduced and finally, the aim of this

thesis is stated.

1.1 The left ventricular myocardium and its perfusion

The left ventricular myocardium - hereafter referred to as myocardium - is the cardiac

muscle tissue lying between the interior single layer of endothelial cells, the endocardium,

and the outermost layer of the heart, the epicardium. The rhythmic contraction of the

1



1 Introduction

(a) (b)

Figure 1.1: Epicardial coronary arteries (a) and coronary system traversing the myocardium (b). Images

taken from [1] and [2], respectively.

cardiac muscle causes the transport of blood through the body and thereby ensures the

oxygen and nutritional supply of the body’s tissues. The heart muscle itself is supplied

with oxygenated blood by the large left and right epicardial coronary arteries, which

originate from the root of the aorta and divide into a system of branches that traverse

the myocardium (see Figure 1.1). Muscle fibers very close to the endocardium receive

blood also directly from the ventricular cavity via the tiny arterio-luminal vessels. Blood

flow through these auxiliary vascular channels account only for a small percentage of

myocardial blood supply and it has no significance when a large coronary artery gets

occluded [3]. The exchange of oxygen between blood and myocardial tissue occurs at the

level of the capillaries [4].

Blood flow per myocardial tissue mass is called myocardial perfusion. In a healthy heart, the

coronary blood flow and myocardial perfusion are adjusted by autoregulatory mechanisms

so that the delivery of oxygen matches the requirements of the myocardium at rest as

well as under stress conditions. The higher oxygen demand under stress conditions may

cause up to four to sixfold increases in myocardial perfusion in normal individuals [5].

The relative increase of myocardial stress perfusion with respect to rest perfusion is also

termed perfusion reserve.

In an ischemic heart, the blood supply to the muscle tissue is impaired. The vulnerability

for ischemia is especially high in the subendocardium of the thick-walled left ventricular

2



1 Introduction

myocardium [3, 5]. Insufficient supply of blood and oxygen even to small areas of the

myocardium may result in mechanical dysfunction, arrhythmia as well as cardiac cell

death and myocardial infarction [6]. A frequent cause for ischemia of the myocardium is

the presence of coronary heart disease, where typically the transport of blood through

the large epicardial coronary arteries is restricted by stenoses. Such stenoses do not cause

reduced myocardial perfusion under resting conditions as long as the trans-stenotic pressure

gradient can be compensated by a dilatation of the microvasculature. However, the ability

to respond to stress is reduced and at higher stress levels ischemia might result [4].

1.2 Dynamic contrast-enhanced magnetic resonance

imaging of the myocardium

1.2.1 Imaging principle

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of tissue visualizes

the passage of intravenously administered contrast agent (CA) by acquiring a time series of

MR images of the tissue of interest. As the contrast agent is transported with blood through

the vascular system of the tissue, resulting temporal signal intensity (SI) changes may allow

for the derivation of perfusion-related parameters of the tissue. In myocardial DCE-MRI

studies the focus lies on the first passage of contrast agent through the myocardium because

this is the phase where contrast enhancement is most sensitive to alterations in myocardial

blood flow [7]. Figure 1.2 shows selected images from a typical DCE series of a short-axis

slice of the heart. MR imaging starts in parallel with the intravenous bolus administration

of contrast agent. As the contrast agent needs some time to arrive at the heart, a few

baseline images without any contrast enhancement in the imaging slice are acquired. Then

the contrast agent passes through the right ventricular (RV) cavity and – via the lung –

to the left ventricular cavity (LV) in order to finally arrive in the myocardium. SI time

curves for a pixel in the LV and in the myocardium in Figure 1.2 indicate that CA appears

3



1 Introduction

as a bolus in the LV causing an increase of CA concentration in the myocardium. The

second peak of the LV SI time curve suggests already the presence of recirculating CA in

the LV.

It is common to evaluate myocardial DCE series purely visually based on regionally

different contrast enhancement in the myocardium during the first passage of contrast

agent. Locally reduced contrast agent enhancement is identified as regional perfusion deficit

(see Figure 1.3). When performing this type of visual analysis for myocardial DCE-MRI

under pharmacological stress and – for comparative reasons – resting conditions, high

diagnostic accuracy for the identification of relevant coronary artery stenoses in patients

with coronary heart disease has been shown [8]. Obvious disadvantages of the visual

analysis are, however, that neither diffuse alterations in myocardial perfusion can be

detected nor perfusion reserves can be specified.

1.2.2 Paramagnetic relaxation enhancement

Myocardial DCE-MRI is commonly performed using gadolinium-based contrast agents

(Gd-CA) [7]. There exist intravascular and extracellular Gd-CAs, the former remaining

to a very large extent in the vascular blood pool and the latter leaking from the blood

vessels into the interstitial space of the tissue without entering myocardial cells. In clinical

practice, however, extracellular Gd-CAs are almost exclusively chosen because of their

excellent safety profile and clinical approval [9]. The latter Gd-CAs are all available as

chelates dissolved in concentrations of 0.5 mmol/ml or 1.0 mmol/ml. They are typically

administered intravenously into the antecubital vein at high injection rate (3 - 7 ml/s),

directly followed by a saline solution flush aiming to achieve a tight bolus and sharp

increase of concentration in the (well-perfused) myocardium [7, 10, 11].

Gd-CAs are, due to gadolinium’s seven unpaired electrons, highly paramagnetic and shorten

the T1 and T2/T
∗
2 relaxation times of nearby water protons in tissue [9]. Myocardial DCE-

MRI employs especially the T1-shortening effect to generate higher signal intensities in

regions with higher Gd-CA concentration by acquisition of heavily T1-weighted images.

4



1 Introduction

Figure 1.2: Selected images from a DCE series of a the short axis slice of the heart illustrate the contrast

enhancement at the time point of intravenous contrast agent injection and at the time points

of contrast agent appearance in the right ventricular (RV) cavity, in the left ventricular (LV)

cavity and in the myocardium. The corresponding SI time curves extracted from single pixels of

LV and myocardial tissue (marked in the DCE images by a red and a blue cross, respectively)

indicate a sharp increase of contrast agent concentration in the LV which is followed by a

more slowly increasing contrast agent concentration in the myocardium that reaches a much

lower amplitude.

Figure 1.3: Selected images of a DCE series of a patient with subendocardial perfusion deficit. The

corresponding hypo-enhanced area of the myocardium is marked with white arrows.

5



1 Introduction

The precise relationship between T1 and contrast agent concentration [CA] in homogeneous

tissue is given by the following equation [7]:

1

T1
=

1

T1,0
+ r1 · [CA], (1.1)

where T1,0 is the T1 relaxation time constant in the absence of contrast agent and r1 is the

T1 relaxivity constant of the contrast agent. r1 depends on the specific contrast agent in use

and decreases at higher magnetic field strengths [12]. Furthermore, studies show that the T1

relaxivity is dependent on the temperature [13], the pH-value [14] and the macromolecular

content of the region [15]. In all approaches focusing on quantification of myocardial

perfusion from DCE-MRI, however, r1 is assumed to be a constant that is unchanged when

an extracellular contrast agent moves from the vascular into the interstitial space [7].

1.2.3 Myocardial DCE-MRI procedure

Acquisition of MR images for myocardial DCE-MRI should be fast because the heart

contracts and dilates continuously on the one hand and concentrations of Gd-CAs change

rapidly on the other hand (see Figure 1.2). Acquisition time per image or frame rate

(Tframe) is therefore usually chosen shorter than 200 ms [11]. Moreover, as the same

anatomical locations should be imaged during the passage of Gd-CA, consecutive images

are acquired electrocardiogram-(ECG)-gated which limits the temporal resolution of the

series of images to the duration of a heartbeat. Acquisition of more than one slice during

each RR-interval allows to cover the myocardium (see Figure 1.4). Usually a basal, a

mid-ventricular and an apical short-axis slice are acquired, which is supplemented by slices

in long-axis orientation if the heart rate allows [8, 10, 11]. The heart moves not only by

contraction and dilatation but also due to breathing maneuvers. This type of motion is

commonly suppressed by breath-holding. As the time from contrast agent application

to first and second pass of contrast agent is far too long for one breath-hold period,
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Figure 1.4: ECG-triggered acquisition of multiple slices during each RR-interval. Optionally a trigger

delay can be used to restrict imaging to diastolic cardiac phases with less cardiac motion.

Image modified from [11].

breath-holding is restricted to the first pass of CA through the LV and myocardium [10,

11].

1.2.4 Sequence technique for myocardial DCE-MRI

Myocardial DCE-MRI is most commonly accomplished using gradient echo (GRE) se-

quences [16]. Apart from allowing fast image acquisition, the sequence technique must

also allow T1-weighting to provide sufficient contrast between normally and hypo-perfused

regions. This can be achieved by applying a non-slice-selective 90◦ saturation recovery

(SR) preparation pulse and spoiling the transverse magnetization before each image acqui-

sition [16]. As depicted in Figure 1.5, the longitudinal magnetization recovers faster for a

myocardial region with high contrast agent concentration due to its shorter T1 relaxation

time. The time between saturation pulse and central k-space line of image readout (TI)

determines the contrast between normally and poorly perfused myocardium, which is

optimal where the two relaxation curves show the largest difference (case b in Figure 1.5).

In practice, however, the chosen TI value is shorter than optimal (as in case a in Figure 1.5)

to allow shorter frame rates [11].
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Figure 1.5: Longitudinal magnetization recovery in normally perfused (high [CA]) and hypo-perfused (low

[CA]) myocardium after application of a saturation pulse. Image taken from [16].

Magnetization preparation is followed by a single-shot GRE readout sequence, typically

either fast low-angle shot (FLASH) or steady-state free precession (SSFP). FLASH spoils

the transverse magnetization that remains after data collection of each k-space line. SSFP,

on the other hand, refocuses the remaining transverse magnetization, which has the effect

that the remaining transverse magnetization is added to the newly excited magnetization

of the next phase encoding step. Because of this re-use of the transverse magnetization,

SSFP achieves at very short repetition times a higher signal-to-noise-ratio (SNR) than

FLASH [17].

A typical problem encountered in myocardial DCE-MRI is the dark rim artifact. It appears

as a dark band at the border between LV and myocardium after arrival of the contrast agent

in the LV [18]. This artifact can be very disturbing because it may mimic hypo-perfusion

in the subendocardial myocardium in visual analysis of a DCE series and has the potential

to cause erroneous perfusion parameters in quantitative analysis. A way to distinguish

the artifact from a real perfusion deficit is to visually inspect the appearance of the dark

subendocardial line over time since only the artifact disappears after peak enhancement

of the LV (see Figure 1.6). Other characteristics of the dark rim artifact are its most

prominent appearance perpendicular to the direction of lowest resolution (typically the

8
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Figure 1.6: Comparison of a dark rim artifact (top) and a real subendocardial perfusion deficit (bottom)

from two different patients. In contrast to the artifact, the real perfusion deficit persists also

after contrast bolus arrival in the myocardium. Image taken from [8].

phase encoding direction) and a significant SI drop under the baseline of the myocardial

region before contrast agent arrival [19]. The cause of the dark rim artifact is not yet fully

understood. However, factors that may contribute to its occurrence include

• gadolinium-induced susceptibility effects, causing intra-voxel dephasing at the suben-

docardial border [18, 20],

• low resolution, causing Gibbs ringing adjacent to strong edges in the image [21], and

• cardiac motion [22].

Consequently, improving spatial and temporal resolution may lead to artifact reduction. In

practice, this is optimized using parallel imaging [11]. Furthermore, it seems preferable to

choose FLASH readout instead of SSFP since the latter is more prone to the appearance

of the dark rim artifact [17, 23].

Two further aspects of DCE-MRI sequences possibly causing signal intensity variations

across the heart not related to contrast agent enhancing tissue should be mentioned: B1

inhomogeneity effects and inhomogeneous receive coil sensitivities across the heart.

In general, B1 inhomogeneity or inhomogeneous radio frequency (RF) excitation may

9
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become a noticeable issue if the wavelengths of the RF excitation in tissue reach body

dimensions and dielectric properties of the imaged anatomical region are highly hetero-

geneous. As wavelengths decrease with higher magnetic field strengths, relevance of the

problem increases with field strength. B1 inhomogeneities cause inhomogeneous flip angles

and flip angle variations over the LV in mid-ventricular short-axis orientation of up to

almost 50% at 3T were reported [24]. Flip angle variations for myocardial DCE-MRI

sequences may cause inhomogeneous signal either via the readout sequence or via the

saturation recovery preparation, the latter being considered as more relevant [7, 25].

Common solutions to optimize inhomogeneous saturation are the utilization of adiabatic

or composite saturation pulses, where both variants were shown to achieve satisfactory

results [26].

As the MR signal is received with phased-array receive coils, spatial inhomogeneous signal

intensities across the heart might also result from inhomogeneous surface coil sensitivity.

Whereas different procedures have been suggested to correct these inhomogeneities in

myocardial DCE-MRI, the most common approach is based on the acquisition of proton

density images prior to DCE-MRI measurements, using these images for estimation of

coil sensitivity and finally applying these estimates for signal correction in DCE-MRI

frames [27]. Current DCE-MRI sequence implementations include such proton-density

acquisitions as the first 1-2 images in the dynamic imaging scan, by leaving out the

magnetization preparation and using small flip angle acquisitions with all other parameters

unchanged for the image readout; the coil sensitivity correction based on the resulting

proton density images is performed during image reconstruction [7, 28].

1.2.5 Relationship between signal intensity and contrast agent

concentration

Signal intensities of SR-prepared gradient echo sequences depend non-linearly on contrast

agent concentration, with deviations from linearity towards signal saturation becoming

more distinct at higher concentrations [29]. This signal saturation effect would ultimately

10
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even lead to a decreasing signal intensity above a certain [CA]-level due to T ∗
2 effects [30].

Notably, the increase of contrast agent concentration in the myocardium depends, apart

from myocardial perfusion, on the arterial input of contrast agent. Consequently, approaches

of myocardial perfusion analysis beyond the scope of visual analysis will typically have to

consider the relationships between signal intensity in SR-prepared gradient echo sequences

and contrast agent concentration in myocardium and the LV blood pool, which is usually

considered the arterial input to myocardium due to its close vicinity to the myocardium

and its visibility on DCE images. As during the first pass contrast agent concentration is

higher in the LV blood pool compared to myocardium, signal saturation effects are more

prominent in the LV blood pool [7]. Different approaches have been suggested and applied

to facilitate the interpretation and recalculation of signal intensity changes in terms of

contrast agent concentration changes.

The simplest approach to solve the signal saturation problem is to apply low contrast agent

dosages (≤ 0.025mmol/kg body weight [31]) exploiting the almost linear dependency of SI

on [CA] at resulting concentration levels. However, using a low contrast agent dosage leads

to a low contrast-to-noise-ratio (CNR), especially in the myocardium. In order to avoid the

problem of low myocardial CNR while keeping almost linear dependency of SI on [CA], two

methods have been proposed to perform myocardial DCE-MRI at recommended CA doses

of 0.05-0.1 mmol/kg for visual perfusion analysis [10]. The dual bolus technique [32] applies

first a low-dosed bolus to stay in the linear range for the LV. In a second measurement, a

higher-dosed bolus is administered to maximize the CNR in the myocardium. The dual

sequence approach [33], on the other hand, applies one high-dose bolus and combines a

low-resolution image acquisition with short TI for LV blood pool assessment (exploiting

the short TI to stay in the linear range for the CA bolus in the LV) with high-resolution

imaging with longer TI for the assessment of the myocardial enhancement.

A more measurement-independent solution to the problem of transforming signal intensities

into concentrations is the recalculation based on either T1 phantom calibration curves [30]

or signal intensity models for the DCE-MRI sequence [34, 35]. In greater detail, for

retrospective SI to [CA] conversion it is sufficient to find the T1 values corresponding to

the measured SI values [34] since the contrast agent concentration can be determined from
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T1 using Equation (1.1) provided the pre-contrast T1,0 of the enhancing tissue is known.

The relationship between SI and T1 can be written as [34]:

SI = Ψf(T1), (1.2)

where Ψ denotes a scaling coefficient that depends on factors like system gain, receive coil

sensitivity or localization of the tissue and f(T1) is a function depending on the DCE-

MRI sequence [34]. Ψ can be estimated using the baseline signal S0 and the pre-contrast

T1,0 value of the investigated region [34]. T1,0 of LV blood pool and myocardium can be

measured from a T1 map acquired previous to DCE-MRI.

1.3 Perfusion quantification from myocardial DCE-MRI

Apart from purely visual analysis of myocardial DCE-MRI series it is possible to derive

quantitative parameters related to myocardial perfusion, which might allow deeper insights

into physiology and pathophysiology of myocardial perfusion and enlarge diagnostic

capabilities [4, 7, 36]. Within the quantification approaches one subdivides into semi-

quantitative analysis, where one aims to derive suitable SI time curve parameters which

should be related to myocardial perfusion, and quantitative analysis, where one tries to

quantify myocardial perfusion.

In principle, the analysis can be performed either region of interest (ROI) based or pixel-wise.

Even though first passage of contrast agent through LV and myocardium is typically imaged

under breath-hold, anatomical structures tend to move, which nevertheless necessitates

motion correction for the derivation of sensible SI time curves and renders pixel-wise

evaluation difficult. However, different motion correction algorithms for myocardial DCE-

MRI series have been developed [37] and approaches for pixel-wise perfusion quantification

have shown promising results [38, 39].
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1.3.1 Semi-quantitative analysis

In semi-quantitative perfusion analysis from myocardial DCE-MRI series, a set of param-

eters is calculated that characterizes the SI time curves resulting from the first passage

of contrast agent through the myocardium. Those parameters are expected to vary if

myocardial perfusion is altered. As myocardial perfusion depends on the arterial input as

well, the myocardial curve parameters are – for comparative reasons - frequently normalized

to corresponding parameters of the arterial input function (AIF) which is an arterial SI

time curve typically gained from the LV blood pool. The most common semi-quantitative

parameters are (see Figure 1.7):

• Signal intensity maximum (SIM): Maximum value of the SI time curve relative to

the baseline signal.

• Up-slope (US): The maximum slope of the SI time curve during the early phase of

contrast agent passage through the myocardium. The up-slope of the myocardial SI

time curve is usually normalized by the up-slope of the LV as measure of speed and

compactness of the contrast agent bolus [40].

• Time-to-peak (TTP): The time from contrast agent arrival until the peak signal

intensity is reached.

• Area under the curve (AUC): Area under the SI time curve from contrast agent

arrival to the time point of maximal SI.

• Myocardial perfusion reserve index (MPRI): The ratio of the normalized myocardial

up-slope at stress and at rest [41].

The expected advantage of a theoretically simple calculation of these parameters is in

practice confronted with the problem of disruptive changes in the SI time curve due

to noise and artifacts. This may result in an incorrect computation of for example the

baseline, the point of contrast agent arrival or the up-slope, which in turn would lead to

an erroneous estimation of subsequently calculated parameters [37].
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Figure 1.7: Typical semi-quantitative parameters describing the SI time curves extracted from LV (denoted

AIF) and myocardium. Image modified from [7].

1.3.2 Quantitative analysis

Quantification of myocardial perfusion from myocardial DCE series is usually based

on a system theory motivated convolutional relationship between the contrast agent

concentration in the arterial input and the contrast agent concentration in tissue. To

motivate this relationship the circulatory system of a tissue might be considered as a black

box with only one arterial inlet and one venous outlet [43] (see Figure 1.8 (a)). Applying

the principle of mass balance yields that the contrast agent concentration in the myocardial

capillary-tissue system (the black box) at any time, ctissue(t), is equal to the difference of

the contrast agent concentrations washed into and out of the system, multiplied by the

myocardial perfusion, or synonymously, myocardial blood flow (MBF ) [44]:

ctissue(t) = MBF · sg ·
∫ t

0

[cAIF (τ)− cout(τ)] dτ, (1.3)

where sg denotes the specific gravity of myocardial tissue (sg = 1.05g/ml [45]) and cAIF

and cout denote the contrast agent concentrations at inlet and outlet specified in units

of mmol/ml, respectively; ctissue is specified in units of mmol/ml of tissue and MBF in

units of ml ·min−1 · g−1. If the transport processes in the tissue system are assumed to be
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(a)

(b)

Figure 1.8: Schematic myocardial capillary-tissue system as a black box characterized by its impulse

response functions. The extracellular contrast agent, supplied by a constant myocardial blood

flow (MBF ), enters the system through the inlet and moves between intravascular plasma

space and extravascular extracellular space, but does not enter cells (a). The contrast agent

concentrations washed into and out of the system are denoted cAIF (t) and cout(t), respectively;

the contrast agent concentration inside the black box is represented by ctissue(t). If cAIF (t) is

assumed to be an impulse input δ(t), the impulse outflow response h(t) describes the probability

that a contrast agent molecule has left the system at time t (b). The impulse residue response

R(t), on the other hand, describes the probability that a contrast agent molecule remains in

the tissue system at time t. Images modified from [42].
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linear and time-invariant, cout(t) can be calculated as the convolution of cAIF (t) with the

transfer function of the system, h(t) [31]:

cout(t) =

∫ t

0

cAIF (τ)h(t− τ)dτ = cAIF (t) ∗ h(t). (1.4)

The transfer function h(t) can be interpreted as the probability density function of transit

times through the system [43]. Hence, it gives the probability that a contrast agent molecule

has left the system at time t if cAIF (t) is assumed to be a Dirac delta impulse (δ(t) = 1 if

t = 0, δ(t) = 0 if t 6= 0). As shown in Figure 1.8 (b), h(t) is equal to zero at t = 0 since the

contrast agent cannot instantly pass from inlet to outlet. The probability that a contrast

agent molecule remains in the tissue system at time t, R(t), can be calculated as:

R(t) = 1−
∫ t

0

h(τ)dτ. (1.5)

R(t) is called the impulse response function of the system. Using Equations (1.4) and (1.5),

Equation (1.3) can be rewritten to:

ctissue(t) = MBF · sg ·
∫ t

0

cAIF (τ)R(t− τ)dτ = cAIF (t) ∗RF (t) (1.6)

where RF (t) = MBF · sg · R(t) represents the myocardial perfusion-weighted impulse

response function of the system. That means the contrast agent concentration ctissue(t) in

the myocardium is a result of the convolution of the contrast agent concentration cAIF (t)

at inlet and the myocardial perfusion-weighted impulse response function RF (t) of the

system. Figure 1.9 illustrates this relationship.

From Equation (1.5) it can be seen that R(t) is a positive function with initial value equal

to one, (R(0) = 1). Consequently, myocardial perfusion can be derived from the myocardial

perfusion-weighted impulse response function at t = 0:

MBF =
RF (0)

sg
. (1.7)

Equations (1.6) and (1.7) form the basis of myocardial perfusion quantification from

myocardial DCE-MRI. MBF in a tissue region can be quantified if the concentration of

contrast agent in the myocardial tissue (ctissue(t)) and in the LV (cAIF (t)) can be determined,
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Figure 1.9: Illustration of the convolution operation using a general arterial input. a) The measured

arterial input curve can be represented as a train of Delta impulses with a uniform time

interval ∆t and different amplitudes. b) When entering the tissue system, each of the Delta

impulses produces an impulse response. The impulse response is characteristic of the system,

so all the impulse responses to the input train are the same, just that they are shifted in time

and scaled depending on the amplitude of the corresponding Delta impulse. c) The tissue

curve is the result of summing up all the time-shifted and differently scaled impulse responses

from b. This operation is equivalent the convolution operation in Equation (1.6). Image taken

from [7].
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assuming that the contrast agent concentration at inlet is adequately described by the one

in the LV. Hence, the first step is to deduce [CA] from the measured SI (see Section 1.2.5).

Then, one can approach to calculate RF (t) by deconvolving ctissue(t) and cAIF (t) and

determine the MBF from its initial (or maximal) value.

Deconvolution analysis for the determination of perfusion-related parameters can be di-

vided into model-based and model-independent methods. Model-based approaches describe

the myocardial perfusion-weighted impulse response function RF (t) with a model function

whose parameters are to be determined in a model-fitting process that satisfies Equa-

tion (1.6). Several model-based methods exist that make assumptions about the structure

and processes inside the myocardial black box, for example by dividing the circulatory

system of the myocardial tissue into functional compartments and describing how con-

trast agent concentrations in the compartments change as contrast agent molecules move

between them [46]. However, those methods simplify the myocardial circulatory system

to a high degree [7] and vulnerable assumptions are required to derive the mathematical

description of contrast agent transport processes [43]. To avoid those problems, other

model-based approaches do not explicitly investigate processes inside the black box, but

rather determine the impulse response function by specifying features like its shape or

a certain relation between the contrast agent concentration at the inlet and inside the

system.

Model-independent methods determine the impulse response by inversion of Equation (1.6)

in the time or Fourier domain without assuming a certain functional form of the impulse

response. This numerical deconvolution is considered an ’ill-posed’ problem because there

is no unique solution for RF (t) and small errors in the measured data can cause large

perturbations in the solution [47]. Therefore, the deconvolution can yield a mathematically

correct solution that yet makes no sense physiologically. Solving the deconvolution problem

can be approached by looking for an approximate solution that fulfills physiologically

meaningful side constraints. This means that prior knowledge about the solution RF (t)

has to be included in the calculation process. According to Jerosch et al., R(t) must be a

monotonically decaying function because after an initial Dirac delta input the contrast
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agent is washed out of the tissue system if there is no replenishment [47]. Additionally,

smoothness constraints can be added since for t > 0 no sudden jumps are expected in the

impulse response [7].

Deconvolution approaches commonly applied for the determination of myocardial perfusion

from DCE-MRI series are

• Fermi function modeling,

• Tikhonov regularization with B-splines and

• ARMA modeling.

The first method is a model-fitting approach that constrains the impulse response to

take the shape of a Fermi function [31]. In the second method, the MBF is determined

by model-independent deconvolution. The impulse response is parametrized as a sum

of B-splines and the deconvolution is solved applying Tikhonov regularization [47]. The

autoregressive moving average (ARMA) approach is a linear algebraic technique that

assumes a linear differential relation between AIF and myocardial tissue curve [48]. All

three deconvolution methods will be described in detail in Chapter 2.

1.4 Aim of the thesis

Due to the lack of suitable motion correction algorithms, determination of quantitative

myocardial perfusion parameters has been limited to region-based analysis for a long time.

However, pixel-wise evaluation of myocardial perfusion parameters has the potential to

provide additional information about location and extent of perfusion deficits compared

to ROI-based evaluation or visual analysis of DCE-MRI series. Studies have shown that

pixel-wise determination of absolute myocardial perfusion in DCE-MRI data of patients is

feasible [39, 49, 50]. Moreover, for pixel-wise semi-quantitative analysis, automated frame-

works exist that include steps like image registration, denoising and semi-quantitative pa-
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rameter map generation [51–53]. However, the relationships of pixel-wise semi-quantitative

and quantitative myocardial perfusion analysis need to be evaluated, especially when

employing standard clinical imaging procedures and contrast agent dosages.

The aim of this thesis was to develop algorithms and prototype software for the pixel-wise

determination of

• SI-based semi-quantitative myocardial perfusion parameters,

• concentration-based semi-quantitative myocardial perfusion parameters, and

• quantitative myocardial perfusion by three different deconvolution approaches (Fermi

modeling, Tikhonov regularization with B-splines, ARMA modeling)

from motion-corrected myocardial DCE-MRI data and to compare the results for resting

perfusion studies in patients with coronary heart disease.

20



2 Methods

2.1 Study population

Cardiac MRI data sets of eleven patients with chronic coronary heart disease were evaluated

in this thesis. All data sets were acquired within the explorative study “Cardiac blood

flow patterns associated with regional and global left ventricular myocardial damage: an

explorative study by cardiac magnetic resonance” (EK-Nr. 25-096 ex 12/13) approved by

the local review board. All subjects gave written informed consent.

Data of three patients were excluded from comparative analysis of myocardial perfusion

parameters because of limited data quality (explained in more detail in the Discussion

section). Characteristics of the comparatively studied population of the remaining eight

patients (two female) were age = 65± 8 years, height = 172± 8 cm, weight = 83± 13 kg,

and heart rate = 68± 11 min−1.

2.2 MRI acquisition

Cardiac MRI acquisition was performed on a 3 T clinical MR scanner (Magnetom Skyra,

Siemens Healthcare, Erlangen, Germany) using a 18-channel body coil and 12 elements

of a 32-channel spine coil. Native T1 mapping and myocardial DCE-MRI under resting

conditions were performed within a comprehensive cardiac imaging protocol.
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An ECG-gated modified Look-Locker inversion recovery (MOLLI) sequence with single-

shot SSFP readout, motion correction and automatic T1 map generation [54, 55] was used

to acquire a mid-ventricular short-axis myocardial T1 map in end-systole. The MOLLI

scheme consisted of the acquisition of a total of eight images. Five images were acquired

after an initial non-slice selective inversion pulse at an inversion time of TI = 90 ms

to 4×RR + 90 ms, with RR denoting the cardiac interval. After a recovery phase of

five heartbeats, three further images were measured after a second non-slice selective

inversion pulse at TI = 170 ms to 2×RR + 170 ms. Protocol parameters of the SSFP

readout were repetition time TR = 2.7 ms, echo time TE = 1.1 ms, flip angle = 35◦, band-

width = 1085 Hz/pixel, field of view FOV = 307×360 mm2, voxel size = 2.1×1.4×8.0 mm3.

GRAPPA (generalized auto-calibrating partially parallel acquisition) with a parallel acqui-

sition factor of 2 and the separate measurement of gradient echo reference lines as well as

partial Fourier 7/8 reconstruction were employed to minimize acquisition time within each

cardiac interval.

Myocardial DCE-MRI was performed with the contrast agent Gadobutrol (Gadovist,

Bayer Schering Pharma, Germany) at a dose of 0.05 mmol/kg. The contrast agent was

administered into the right antecubital vein by means of a power injector (Medrad, Volkach,

Germany) at a rate of 4 ml/s, followed by a saline flush of 30 ml. Starting with contrast

agent administration its passage was imaged employing an ECG-gated single-shot SR

FLASH sequence in short-axis orientation for 70 heart beats; a breath-hold command

given during acquisition targeted a breath-hold period from the arrival of the bolus in the

left ventricle until its second pass.

The frame rate of the employed SR FLASH sequence was Tframe = 158.8 ms allowing

to image four to six slices per heart beat. Further protocol parameters were repetition

time TR = 2.2 ms, echo time TE = 1.1 ms, time between saturation and central k-

space line of image readout TI = 90 ms, flip angle = 12◦, bandwidth = 930 Hz/pixel,

field of view FOV = 330×360 mm2, voxel size = 2.7×1.9×8.0 mm3, matrix = 124×192,

GRAPPA with a parallel acquisition factor of 2 and separate measurement of gradient echo

reference lines. For B1-insensitive saturation a composite saturation pulse consisting of
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three consecutive radio frequency pulses and crusher gradients was employed [26]. Images

of the myocardial DCE-MRI scan within the first two heart beats were acquired without

applying magnetization preparation at a low flip angle of 5◦. The resulting (pre-contrast)

proton density weighted images were used to estimate the coil sensitivity of the receiver

coils. This estimation, together with a surface coil correction as well as a non-rigid motion

correction of every frame, was performed automatically during image reconstruction [52].

The resulting coil sensitivity-corrected and motion-corrected mid-ventricular short-axis

DCE series whose slice position coincided with the T1 map was used for myocardial

perfusion analysis.

2.3 Overview of the data processing pipeline

Figure 2.1 illustrates the data processing pipeline for the determination of pixel-wise

semi-quantitative and quantitative myocardial perfusion parameter maps from a motion

and coil sensitivity corrected short-axis DCE-MRI series of the heart. The pipeline was

implemented in Matlab (Mathworks Inc., Natick, USA) and computations were performed

on a notebook Acer Aspire VN7-592G-79U3 (Acer Group, Taipeh, Taiwan).

Preprocessing of the given data can be divided into:

• Automated heart bounding box extraction

• Selection of a ROI in the LV

• SI to [CA] conversion

• Specific steps for quantitative analysis:

– Manual segmentation of the myocardium

– Resampling of the [CA] time curves

– Motion correction quality map and outlier detection
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Figure 2.1: Data processing pipeline for determination of semi-quantitative and quantitative perfusion

parameters and generation of quantitative myocardial perfusion maps.
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• Specific step for semi-quantitative analysis: denoising with a

1. Principal component analysis (PCA) filter or

2. Savitzky-Golay filter

Preprocessing is followed by a pixel-wise calculation of perfusion-related parameters. In

semi-quantitative analysis, whole-heart parameter maps are calculated for both [CA]

and SI data. In quantitative analysis, parameters can sensibly only be calculated for a

myocardial ROI using [CA] time curves.

2.4 Preprocessing

2.4.1 Automated heart bounding box extraction

As a first step of preprocessing, the heart is automatically selected and extracted from

the thoracic images as the region of interest. This is done by exploiting the fact that

the right and left ventricle are the largest (substantially) enhancing areas in the image

series. The main reason for cropping the images is the reduction of computation time when

functions are applied on all pixels in the image, as done when calculating semi-quantitative

parameter maps.

Implementation: First of all, a temporal maximum intensity projection (MIP) and a

temporal minimum intensity projection (mIP) are calculated for every pixel, as suggested

by Hautvast et al. [56]:

MIPx,y = max
t
{Ix,y,t} (2.1)

mIPx,y = min
t
{Ix,y,t}, (2.2)

where Ix,y,t is the signal intensity at position (x,y) over time t. The mIP map gets subtracted

from the MIP map in order to black out bright regions that do not change their SI over time,

as for example fat tissue. The result is a difference image (Idiff ) as shown in Figure 2.2 (a).
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(a) (b) (c) (d)

Figure 2.2: Image processing steps for the extraction of a ROI containing the heart. a) Difference image

of MIP and mIP maps, b) binary image after applying a threshold, c) merged ventricles as

the biggest connected component resulting from morphological ’opening’ and ’closing’ and d)

bounding box containing the heart.

As a next step, all pixels inside a 30 pixel distance from each border of the difference image

are set to zero to exclude perturbing bright artifacts and facilitate the heart detection.

Since now the heart should be brightest area in the difference image, a threshold of

thr = 0.4 ·max{Idiff} is applied, which yields a binary image as in Figure 2.2 (b). Then,

the morphological operations ’opening’ and ’closing’ are applied using the functions imopen

and imclose, respectively. The ’opening’ is done using a small diamond-shaped structuring

element (radius r = 3 pixels) to remove noise and small objects. For the ’closing’ a large

diamond-shaped structuring element (r = 11 pixels) is applied to merge both ventricles

(see Figure 2.2 (c)). The last step is identifying the largest connected component in the

binary image using the function bwconncomp and generating a rectangular bounding box

in a certain distance to the border pixels to the object (15 pixels in the directions north,

east, south and 10 pixels in western direction). Figure 2.2 (d) shows the obtained heart

bounding box in red. At these coordinates the image series gets cropped to speed up

further analysis.

As imaging was started with contrast agent application and in the first images of the

DCE series steady state is not fully reached, from this point on, the first ten images of the

cropped image series are not loaded and used for analysis. There are enough baseline signal

measurement points before contrast agent arrival in the LV anyhow, while computation

time of point-wise operations can be further reduced.
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2.4.2 Segmentation

The ROI in the LV, which will be used to determine the AIF, is drawn by the user

in an image with good contrast between left-ventricular blood pool and myocardium.

The selection of this image from the DCE series is not critical because of the prominent

appearance of the left-ventricular blood pool throughout all first pass images.

Intuitively, the same approach could also be used for the segmentation of the my-

ocardium [57, 58]. However, looking for an image which exhibits a good contrast between

myocardium and its surrounding structures is more time consuming than for the LV and

also highly user-dependent. Consequently, the signal intensity maximum (SIM) map is

chosen as base image for segmentation of the myocardium (see comparison in Figure 2.3).

Implementation: The function roipoly is used for both selection of a ROI in the LV

as well as segmentation of the myocardium. The user is asked to draw the borders in a

way that pixels exhibiting partial volume effects are excluded. For a description of the

calculation of the SIM map the reader is referred to Section 2.5.1.

(a) (b)

Figure 2.3: Comparison of an image of the DCE series with good contrast (a) and the corresponding

signal intensity maximum map (b). The region of the myocardium as well as its borders are

better distinguishable in the signal intensity maximum map.
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2.4.3 Signal intensity to concentration conversion

The conversion from SI to [CA] is done using a signal intensity model for the employed

DCE-MRI sequence. For a saturation recovery FLASH sequence with linear ordering of

phase-encodings the signal intensity after half of all phase encoding steps (when reaching

the k-space center) is given by [31, 59]:

SI = Ψ

[(
1− e−TD·R1

)
·
(
e−R1·TR · cos(α)

)n−1
+
(
1− e−R1·TR

)
· 1−(e−R1·TR ·cos(α))

n−1

1−e−R1·TR ·cos(α)

]
, (2.3)

where Ψ is a scaling factor proportional to the equilibrium magnetization, TD the time

delay between the 90◦ pulse and the start of FLASH readout, R1 the T1 relaxation rate,

TR the repetition time per phase encoding, α the flip angle and n the number of phase

encodings between acquisition start and k-space center. TD is related to the time TI

between saturation pulse and central k-space line of image readout according to:

TD = TI − n · TR. (2.4)

Ψ can be estimated from the baseline signal S0 and the pre-contrast T1,0 determined from

a T1 map the according to [34]:

Ψ =
S0

f(T1,0)
. (2.5)

After calculating Ψ, the T1 values for each time frame of the DCE series are determined

with Equation (2.3) and then inserted into Equation (1.1) to calculate the corresponding

[CA] values.

Implementation: The AIF is determined as the mean SI curve of all pixels in the LV

ROI. The baseline signal S0 of each pixel is then estimated as the mean value of the SI

values measured before contrast agent arrival in the LV, meaning from t = 0 up to the

minimum point of the AIF. For a description of the minimum point detection the reader

is referred to Section 2.5.1.1. In order to estimate T1,0 of LV blood pool and myocardium,

the user is asked to draw with roipoly two respective ROIs in the T1 map acquired with
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Figure 2.4: Exemplary T1 map with ROIs in myocardium (white) and LV blood pool (red).

the MOLLI sequence (see example in Figure 2.4). The T1,0 values are calculated as the

mean values of all pixels in each ROI. Then, Ψ is estimated by inserting S0 and T1,0 into

Equation (2.5). For calculating T1 values from SI values the zero-finding algorithm fzero

is used, which requires rearranging Equation (2.3) to:

0 = f(T1)−
SI

Ψ
(2.6)

and using the protocol parameters TR = 2.2ms, TI = 90ms, α = 12◦, n = 31 as well as

TD = 21.18ms according to Equation (2.4). Finally, the [CA] values for every time point

are determined by inserting the T1 values into Equation (1.1) in the form:

[CA] =
1

r1

(
1

T1
− 1

T1,0

)
, (2.7)

where r1 = 5.0l/mmol · s for Gadovist in plasma at 37◦ at 3T [12].

2.4.4 Resampling for uniform time spacing

The ECG-gated image acquisition naturally leads to a non-uniform time spacing between

the images of the measured DCE series. This non-uniform temporal sampling is even more

pronounced for patients with arrhythmia or in case single ECG-triggers are missed. Since

the deconvolution approach requires signals with uniform time spacing, the [CA] time

curves are resampled using monotonic piecewise cubic interpolation [60], as suggested by
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Figure 2.5: Example of resampling myocardial and left-ventricular [CA] time curve using pchip.

Biglands et al. [57]. The sampling rate of the resulting uniformly sampled [CA] time curves

is chosen equal to the average heart rate of the respective patient [61].

Implementation: The time stamps of the DCE image frames are read out from the

respective DICOM file of each patient. Then, the function pchip (Piecewise Cubic Hermite

Interpolating Polynomial) is used for interpolation. This method has the advantage of

preserving the shape of the data, meaning that in the interpolated time curve there are

no oscillations between data points and extreme values stay the same. Figure 2.5 shows

an example of myocardial and left-ventricular [CA] time curves resampled with pchip.

The number of sampling points stays the same, but after interpolation they are uniformly

spaced.

2.4.5 Motion correction quality map and outlier detection

Quantitative perfusion analysis relies on the assumption that AIF and myocardial [CA] time

curve used for deconvolution are not distorted by artifacts or imperfect motion correction.

Unfortunately, pixel-wise analysis is especially vulnerable to those non-physiological
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deformations of the myocardial [CA] time curves. Therefore, a motion correction quality

map is generated which gives a measure of how much the shape of the [CA] time curve of

each pixel deviates from the expected shape of a myocardial signal curve. This is done by

fitting a sigmoid function to the [CA] time curve in the least squares sense and calculating

a normalized squared L2-norm of the residual. In order to detect heavily distorted [CA]

time curves and to exclude these outliers from quantitative analysis, an upper threshold

depending on the quality values in the myocardial ROI is set.

Implementation: First of all, SI to [CA] conversion and resampling with pchip is done

as described above for every investigated pixel. A pixel is thereby treated as a LV pixel if

the maximum of its SI time curve is ≥ 50% of the maximum of the AIF. lsqnonlin with

its default ’trust-region-reflective’ algorithm is used to fit the following function to every

[CA] time curve:

f(t) =
a

1 + e−b(t−c)
, (2.8)

where a, b and c are the shape parameters to be determined. The initial values are set so

that a equals the maximum value of the SIM map in the myocardial ROI (see Section 2.5.1),

b = 1 and c is equal to one third of the temporal duration of the whole curve. In order to

treat background pixels correctly, boundary constraints are included in the fitting process.

The lower boundaries of a, b and c are chosen as the minimum value of the SIM map in

the myocardial ROI, zero and the 10th time point, respectively. The only upper boundary

set is c equal to the 10th last time point of the [CA] time curve. lsqnonlin returns the

fitting parameters a, b and c as well as resnorm, the squared L2-norm of the residual. The

motion correction quality map is generated by normalizing resnorm of each pixel by the

maximum amplitude of the fitted curve of the respective pixel.

Outlier detection is performed by calculating the median of the quality map values in the

myocardial ROI and applying the threshold thr = 2 ·median. All quality values higher

than this threshold are identified as outliers and the corresponding pixels of the myocardial

ROI are excluded from deconvolution analysis.

31



2 Methods

2.4.6 Denoising for semi-quantitative analysis

Disruptive changes in the SI or [CA] time curves can have a significant influence on

the results of semi-quantitative analysis, especially in the pixel-wise approach. Therefore,

denoising is a crucial preprocessing step. In this thesis, two denoising methods are discussed

and compared, namely automated PCA filtering and application of a Savitzky-Golay

filter.

2.4.6.1 Automated principal component analysis filtering

Principal component analysis (PCA)1 transforms a data set of interrelated variables to a

set of uncorrelated variables which are called principal components. These components

describe the variation present in all the variables of the input data and are ordered in a

descending way, with the first component corresponding to the maximum variation [62].

When PCA is applied on DCE data, meaning on the temporal SI changes in individual

pixels of a ROI, the number of principal components m is equal to the number of image

frames of the series.

In this thesis, the singular value decomposition (SVD) is chosen for PCA calculation since

it is computationally efficient in determining the principal components [62]. The SVD of a

real m× n matrix A, where m ≥ n, is defined as follows [63, 64]:

A = UΣV T =
n∑
i=1

uiσiv
T
i , (2.9)

U = (u1, ...,un) ∈ Rm×n, V = (v1, ...,vn) ∈ Rn×n and Σ = diag(σ1, ..., σn) ∈ Rn×n,

where U and V have orthonormal columns (UTU = I, V TV = I) and Σ contains the

singular values σi ordered in a non-increasing way (σ1 ≥ ... ≥ σn ≥ 0) [63]. ui and vi

denote the left and right singular vectors of A, respectively. For PCA calculation it is very

convenient that V represents the matrix of principal components, Σ contains the square

1For the basics of principal component analysis the reader is referred to the literature [62].
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Figure 2.6: Dependency of the amount of information and noise in PCA transformed data on the principal

component number. If the back transformation is done with a reduced number of principal

components (k < m), noise can be reduced but also a part of the informative signal may be

lost. Image taken from [66].

root of the variances and U is the matrix of scaled versions of the individual transformed

observations (for details see [62, 65]).

The first few principal components represent the most informative part of the data, while

noise is assumed to be evenly distributed on all components [66] (see light and dark grey

areas in Figure 2.6). A reduction of noise in the data can be accomplished by using k < m

principal components for the back transformation. The smaller k, the higher the noise

reduction but also the higher the information loss (see Figure 2.6). The common problem is

therefore to determine the optimal cut-off value of components in order to maximize noise

reduction as well as information conservation [66]. In this thesis, the number of components

for the back transformation k is estimated by an automated approach introduced by Balvay

et al. [66], which uses the fraction of residual information (FRI) criterion [67].

The FRI method assumes that the residual signal, which is calculated by subtracting the

filtered from the original signal, is composed of an informative part and random noise (see

Figure 2.6). For a given k, the FRI in each pixel (FRIpk) can be calculated as [66]:

FRIpk =
‖ipk‖2

‖ipk + npk‖2
=
‖ipk‖2

‖rpk‖2
, (2.10)
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where ipk denotes the informative signal, npk random noise and rpk the residual signal. In

order to maximize the information in the filtered signal, the FRI has to be minimized.

Balvay et al. estimate ‖ipk‖2 by using the temporal autocorrelation function of the residual

signal (Crr(j)), which is defined as [67]:

Crr(j) =
1

N − |j|

N−j∑
i=1

r(ti)r(ti+j), (2.11)

where N is the number of samples of the signal r and j the time lag. Crr(j) can be considered

as the sum of the respective autocorrelations of informative and noise signal and the

intercorrelation between them [66]. Since the statistical expectation of the autocorrelation

of white noise is zero for j > 0, Crr(j) corresponds in theory to the autocorrelation of

the informative signal for j > 0 [67]. In order to estimate the contribution of ipk at j = 0,

Balvay et al. fit a second-order polynomial to Crr(j) for low values of j and extrapolate it

to zero. ‖ipk‖2 can then be determined as:

‖ipk‖2 = N · Prr(0), (2.12)

where Prr(0) is the fitted polynomial function at j = 0.

Calculating the FRI for every pixel in the ROI yields a FRI map and a corresponding FRI

histogram, which represents the global information loss [66]. Since not only the information

loss but also the uncertainty of the estimator contributes to the FRI distribution, it is

necessary to correct for the uncertainty of the estimator. This is done by comparing the

FRI distribution with a reference FRI distribution which corresponds to the uncertainty

of the estimator [66]. Balvay et al. generate the reference FRI distribution by replacing

the original signals with spatially independent Gaussian noise signals and calculating the

FRI map as described above.

In order to determine the optimal cut-off value of principal components, FRI and reference

FRI distribution are calculated for an increasing number of principal components, respec-

tively. For every component number, the histograms of FRI and reference FRI map are

compared by counting the number of occurrences L where the FRI distribution is higher

than the reference FRI distribution [66]. Those occurrences reflect the true information loss
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Figure 2.7: FRI map and histogram for an increasing number of principal components. In the first row

the orange histogram represents the reference FRI distribution, the blue histogram the data

FRI distribution. The second row shows the data FRI maps corresponding to the number of

principal components k used for back transformation. As k increases, information loss decreases.

At the optimal number of components, the data FRI histogram resembles the reference FRI

histogram and no anatomical structures can be identified in the FRI map. The percentage S

is used as a marker of this event. In this thesis, the optimal number of components is chosen

as the first one where S ≤ 15% (in this example at 9 principal components). It can be noticed

that for low values of principal components the FRI values of some pixels are higher than

one. This occurs if the noise peak of the autocorrelation at j = 0 is smaller than the peak

of the informative part of the signal, leading to an over-estimation of the FRI value by the

polynomial fit.

that does not arise from the uncertainty of the estimator. Hence, one needs to determine

the principal component number k for which L is minimized. Balvay et al. express the

number of occurrences as a percentage S of the total number of pixels in the FRI map.

This percentage decreases with increasing k until the optimum k is reached (see Figure 2.7).

Incrementing the number of principal components is stopped and therefore the optimal

k found when the percentage drops under a threshold value, which corresponds to the

accepted information loss [66].

When simulating Gaussian noise signals to determine the reference FRI distribution, one

has to choose a value for the noise standard deviation. In this thesis, the standard deviation

is estimated using the ’difference method’ [68], which evaluates the difference image of two
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subsequent images acquired with the same imaging parameters [69]. The noise standard

deviation can be estimated in a ROI of the difference image according to [68]:

σROI =

√
var(S1 − S2)|ROI

2
=
std(S1 − S2)|ROI√

2
, (2.13)

where S1 and S2 are the subsequent images. Since this equation bases on the assumption

of a Gaussian noise distribution in the evaluated region, the ROI must be placed in a

region with sufficiently high SNR [70].

Implementation: The noise standard deviation is determined using two subsequent

images of the original DCE series (before limiting it to the heart ROI)2 that correspond to

time points before contrast agent arrival in the right ventricle. The user is asked to draw

with roipoly three times one after the other a ROI in fat tissue, a region exhibiting high

SNR. The noise standard deviation is then calculated as the mean value of the standard

deviations determined for the three ROIs using Equation (2.13). The Gaussian noise signal

for the reference FRI distribution is generated with randn choosing the same dimensions

as the ones of the heart ROI image series and using the estimated standard deviation. As

another preparation step, pchip interpolation (see Section 2.4.4) is applied on the image

series to ensure uniform time spacing, which is required for autocorrelation calculation.

PCA is performed with the function pca, which uses by default the SVD algorithm. The

input data for pca has to be organized as a two-dimensional matrix P where the rows

correspond to the observations (pixels of each image in the time series) and the columns

correspond to the variables (time points):

P =


p1(t1) p1(t2) . . . p1(tN)

p2(t1) p2(t2) . . . p2(tN)
...

...
. . .

...

pM(t1) pM(t2) . . . pM(tN)

 , (2.14)

2The noise estimation is the only step in the data processing pipeline that re-uses the non-cropped

original images because regions in fat tissue are evaluated.
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where N is the total number of time frames and M the total number of pixels in each

image. After application of the pca function, the back transformation is performed with a

reduced number of principal components in order to reduce the noise in the data. The

estimation of the optimal number of principal components for back transformation is

done iteratively, starting at five components. In each iteration, the following steps are

performed:

• apply PCA filtering (transformation and back transformation) on the image data

series and reference noise series using the current number of principal components

to keep,

• calculate the respective residuals for image data series and reference noise series,

• calculate for both residuals the temporal autocorrelation in every pixel using xcorr

with maximum lags equal to 20 and scale option ’unbiased’,

• fit a second order polynomial to the values from j = 1 to j = 19 of each autocorrela-

tion function using polyfit and determine the value at j = 0 via extrapolation,

• calculate the FRI for every pixel using equation (2.10), which yields a data and

reference FRI map,

• determine the optimal histogram bin width applying the Freedman–Diaconis rule [71]

on the reference FRI map,

• calculate data and reference FRI histogram using histcounts,

• count the number of occurrences where the data FRI histogram is higher than the

reference FRI histogram and express it as a percentage S of all pixels in one FRI

map,

• if S ≤ 15%, end the loop and select the current number of principal components as

the optimal one; otherwise, increment the number of components and start the next

iteration.
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2.4.6.2 Savitzky-Golay filtering

The second option of denoising implemented in this thesis is applying a Savitzky-Golay

(SG) filter [72]. This smoothing filter bases on polynomial regression, which is performed

consecutively on a series of data points that are treated as equidistant [73]. For a single

data point the new value is determined by fitting a polynomial in the least-square sense to

all data points inside a symmetric window around the current data point. The window

length as well as the order of the polynomial is chosen by the user. After determination of

the new value for the current data point, the window slides one step to the right and the

fitting process restarts for this new data point. Different window lengths yield different

fitting results. Therefore, a suitable window length for every SI or [CA] time curve is

determined in this thesis by an adaptive filtering approach, while the order of the fitting

polynomial is kept fixed. Assuming that for a perfect fit the residual is equal to white

noise, the optimal window length in a certain range is determined by finding the window

length corresponding to the minimum absolute mean residual.

Implementation: The SI or [CA] time curves are first interpolated and up-sampled to

300 equidistant points using pchip. Increasing the apparent temporal resolution leads to

a better fit due to more data points while ensuring that the original curve shape is well

preserved. Savitzky-Golay filtering is done using the function sgolayfilt, which requires

the input parameters signal, window length and polynomial order. For all signal curves

third order polynomials are chosen. In contrast, for the window length a difference is made

between AIF and myocardial signal curve. Since the AIF is calculated as the mean signal

in the left-ventricular ROI, it is not distorted by noise. Therefore, the window length for

the AIF is chosen w = 5, which basically keeps the signal curve as it is. For the myocardial

signal curves, the window length is chosen by adaptive filtering. At this, sgolayfilt is

applied to the signal 15 times, starting at w = 0.25 · length(signal) and increasing the

window length by 6 sample points each round. For every filtered signal corresponding to a

certain window length the residual is calculated and the optimal window length is chosen

as the one that minimizes the absolute value of the mean residual.
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2.5 Perfusion quantification

2.5.1 Semi-quantitative analysis

2.5.1.1 Maximum and minimum detection

Detecting the maximum and minimum value of SI and [CA] curves is a crucial step since

those values are used in several other processing steps, like the SI to [CA] conversion

or the determination of semi-quantitative parameters. Since for the evaluated curves

maximum detection is less complicated than minimum detection, it is done first and then

the maximum is used as a landmark for minimum detection.

As can be inferred from Figure 1.2, the maximum detection of the AIF is straightforward.

Detecting the maximum in the myocardial signals, however, proves difficult since the curves

reach their maximum more slowly and exhibit only a gentle descent, if any. The sought-for

maximum of myocardial curves is the one at the end of the first contrast wash-in (see

Figure 1.7). The condition employed is that the maximum of the myocardial signal has

to be found before end of first pass of contrast agent, which is defined at the minimum

point of the valley after the maximum point of the AIF [57]. Furthermore, the detected

maximum has to be ≥ 80% of the global maximum value of the first pass limited curve to

avoid local maxima detection.

The minimum point is defined as the minimum before contrast wash-in. In order to

determine the minimum, the zero-crossings of the first derivative of the curve from t = 0

to the maximum point are detected and the corresponding local minima evaluated. The

sought-for minimum is chosen as the minimum closest to the maximum point which has a

value smaller than a certain percentage of the maximum value (60% for myocardial SI

curves, 10% for AIF SI curve and all [CA] curves). Additionally, it is ensured that the

sought-for minimum value cannot be smaller than the baseline, which is calculated as the

mean value from t = 0 to the site of the current evaluated local minimum point.
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Regarding the implementation it should be noted that for PCA filtered curves the function

gradient is used to determine the first derivate since it can work with non-uniform time

spacing. In case of Savitzky-Golay filtered curves, the diff function is applied.

2.5.1.2 Up-slope, AUC and SIM calculation

For determination of the up-slope parameter, the first derivative of the signal points

between the minimum and maximum point is calculated. In order to avoid spotting the

maximum slope too close to the minimum or maximum point, only the central points of

the temporal interval (30% in both directions around the central point between minimum

and maximum point) are evaluated to determine the maximum slope point. This point is

chosen as the center point for a three point linear fit to the signal curve in case of the AIF

or a five point linear fit in case of a myocardial signal, which is done with the function

polyfit. The up-slope is then determined as the slope of the fitted line.

The time-to-peak is determined as the temporal distance between minimum and maximum

point of the curve. The area under the curve is calculated using time-to-peak and the

function trapz. The signal intensity maximum is determined as the maximum of the

myocardial signal relative to its baseline, which is estimated as the mean of the values

measured before contrast agent arrival in the LV (from t = 0 up to the minimum point

of the AIF). To allow an inter-patient comparison, each semi-quantitative parameter is

normalized by the respective parameter calculated for the AIF.

If semi-quantitative parameters are calculated not only for myocardial pixels but for all

pixels in the whole heart ROI, one additional step is employed that detects if the current

pixel can be categorized as a myocardial or a LV pixel. This is necessary because the SI to

[CA] conversion algorithm as well as the algorithm for determination of semi-quantitative

parameters treat AIF and tissue curve differently. Categorizing a pixel as a LV pixel is

done by checking if the maximal value of the pixel’s corresponding signal curve is ≥ 50%

of the maximum value of the AIF.
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2.5.2 Quantitative analysis

2.5.2.1 Fermi function model constrained deconvolution

Fermi function modeling was introduced by Axel [74], who showed in computed tomo-

graphic (CT) brain perfusion studies that the expected shape of the impulse response

for an intravascular tracer is very similar to the one of a Fermi function [7]. The Fermi

representation of the impulse response is defined as [31]:

RF (t) = MBF · sg ·
[

1

e(t−τ0−τd)·k + 1

]
· θ (t− τd) , (2.15)

where RF (t) is the myocardial perfusion-weighted impulse response, MBF the myocardial

blood flow, sg the specific gravity of myocardial tissue and τ0 the width of the initial

plateau of the Fermi function before it decays with rate k. τd denotes the time delay

between contrast agent arrival in the LV and in the analyzed myocardial region. θ (t− τd)

is a unit step function that is 0 for t < τd and 1 for t ≥ τd.

Since the Fermi function approximates the impulse response for an intravascular contrast

agent, it is necessary to limit the signal curves obtained with an extracellular contrast agent

to the first pass, a phase where the differences between intravascular and extracellular

contrast agent are negligible [7]. Jerosch et al. [31] determine the parameters MBF , τ0

and k using a Marquardt-Levenberg non-linear least squares fitting algorithm [73] when

calculating equation (1.6). τd is thereby kept fixed at a user defined value. However, since

τd can differ between myocardial regions due to their different vascular properties, it is

treated as unknown in this thesis. In order to determine the correct τd for every pixel,

the Fermi parameters are fitted for a set of time shifts. τd is then determined as the time

shift corresponding to the impulse response that minimizes the squared L2-norm of the

residual of measured and fitted myocardial [CA] time curve. Finally, the myocardial blood

flow in units of ml ·min−1 · g−1 is calculated using the maximal amplitude value of the

myocardial perfusion-weighted impulse response, Rmax.
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Implementation: AIF and myocardial [CA] time curves are first limited to the first

pass as described in Section 2.5.1.1. For determining the parameters MBF , τ0 and k the

function lsqnonlin with its option ’levenberg-marquardt’ is used. The fitting function

is the convolution of the Fermi function with the AIF, calculated with the discrete version

of equation (1.6) [75]:

ctissue(ti) =
N∑
j=1

AijRFj. (2.16)

A is the convolution matrix constructed from the AIF [47]:

A =


cAIF (t1) 0 . . . 0

cAIF (t2) cAIF (t1) . . . 0
...

...
. . .

...

cAIF (tN) cAIF (tN−1) . . . cAIF (t1)

 ·∆t, A ∈ RN×N , (2.17)

where cAIF (ti), i = 1...N is the AIF value at a certain time point and N is the number of

samples. The starting values are chosen as MBF = 0.01
sg

, τ0 = 0.5 · length(first pass) and

k = 100 since they yield physiologically meaningful solutions. The output of lsqnonlin

includes the fitted Fermi function parameters as well as the squared L2-norm of the

residual. The fitting process is repeated for time shifts from τd = 0 ·∆t to τd = 15 ·∆t

and the correct one determined as the one that yields the minimal squared L2-norm of

the residual. The maximal amplitude value of the myocardial perfusion-weighted impulse

response corresponding to the determined τd is then used to calculate MBF according

to [49]:

MBF =
Rmax

∆t · sg
, (2.18)

where ∆t is the sampling interval equal to the mean heart rate of the patient and

sg = 1.05g/ml.
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2.5.2.2 Tikhonov regularization with B-splines

Jerosch et al. [47] proposed in 2002 to solve the problem of deconvolving AIF and tissue

curve by using a model-independent representation of the impulse response and applying

Tikhonov regularization [76]. In order to include smoothness and continuity constraints to

the solution of the impulse response, the authors represent RF (t) as a sum of piecewise

smooth B-spline components:

RF (ti) = sg ·
p∑
j=1

B
(k)
j (ti) · αj, αj ∈ R. (2.19)

In the equation above, B
(k)
j (ti) denotes the jth B-spline of order k, which is defined for a

sequence of distinct and non-decreasing numbers, the knots (ξ1 ≤ ξ2... ≤ ξp+k), as [77]:

for k = 1

B
(1)
j (t) =

1 if ξj ≤ t < ξj+1

0 otherwise

(2.20)

and for k ≥ 2

B
(k)
j (t) =


t−ξj

ξj+k−1−ξj
B

(k−1)
j (t) if ξj ≤ t < ξj+1

ξj+k−t
ξj+k−ξj+1

B
(k−1)
j+1 (t) if ξj+1 ≤ t < ξj+2.

(2.21)

Each function B
(k)
j (t) is positive definite and non-zero only at time points ti that lie inside

the interval ξj...ξj+k [47, 77]. αj in Equation (2.19) are the real-valued B-spline coefficients.

In order to generate a clamped B-spline curve, the knots are assigned to the so-called

break points in a way that the first k knots take the value of the first break point, each

interior knot corresponds to one break point and the last k knots take the value of the

last break point [77]. Including the B-spline representation of the impulse response, the

convolution in Equation (2.16) can be rewritten to [47]:

ctissue(ti) =

p∑
j=1

αj · sg ·
∫ ti

0

B
(k)
j (s) · cAIF (ti − s)ds

=

p∑
j=1

Di,j · αj ∼=
p∑
j=1

i−1∑
l=1

αj · sg ·B(k)
j (ul) · cAIF (ti − ul)∆t,

(2.22)
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where u is a dummy integration variable. The design matrix Di,j is introduced to express

the convolution of the B-splines with the AIF more compactly [47]:

Di,j = sg ·
∫ ti

0

B
(k)
j (u) · cAIF (ti − u)du, D ∈ RN×p. (2.23)

In order to find a solution for the vector of B-spline coefficients α, the deconvolution

problem can be recast into a linear least-squares problem [47, 77]:

min{‖D ·α− ctissue‖2;α ∈ Rp}. (2.24)

It can be shown that the matrix D is ill-conditioned [75], which might lead to large

disruptive oscillations in the solution [47]. Jerosch et al. [47] approach this problem by

adding a side constraint to the system of linear equations in order to regularize the solution,

as introduced by Tikhonov [76]:

min{‖D ·α− ctissue‖2 + λ2‖Lα‖2;α ∈ Rp}, (2.25)

where ‖Lα‖2 is termed the discrete smoothing norm [63]. L is typically the identity

matrix I or a discrete approximation of first- or second-order derivative operator. λ > 0

is a weighting factor which balances the minimization of the residual norm with the

minimization of the side constraint [47]. From Equation (2.25) it can be seen that the

solution for α is a trade-off between smoothing and goodness of fit [47]. In this thesis, L

is chosen to be a first-order difference operator to reduce oscillations in the amplitudes of

α, as suggested by Jerosch et al. [47].

By setting the first derivative of Equation (2.25) with respect to α to zero one arrives at

the normal equations [47]:

(DTD + λ2LTL)α = DTctissue ⇔ α = (DTD + λ2LTL)−1DTctissue. (2.26)

If L 6= I, the generalized singular value decomposition (GSVD) of the matrix pair (D,L)

can be used to find a solution for the B-spline coefficient vector α [63]. For the matrices

D ∈ RN×p and L ∈ Rr×p, where N ≥ p ≥ r, the GSVD is defined as [78]:

D = UΣX−1, L = VMX−1, (2.27)
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Σ =

Σr 0

0 Ip−r

 ,
(
Mr 0

)
,

where U ∈ RN×p and V ∈ Rr×r have orthonormal columns (UTU = Ip, V
TV = Ir)

and X ∈ Rp×p is a non-singular matrix. Σr = diag(σi) and Mr = diag(µi) are diagonal

r × r matrices whose diagonal entries are non-negative and ordered and normalized as

follows [79]:

0 ≤ σ1 ≤ ... ≤ σr ≤ 1, 1 ≥ µ1 ≥ ... ≥ µr ≥ 0,

σ2
i + µ2

i = 1, i = 1, ..., r.

The generalized singular values of (D,L) are defined as [78]:

γi =
σi
µi
, i = 1, ..., r. (2.28)

It can be shown that using the GSVD yields the following solution for the normal

equations [63]:

α =
s∑
i=1

(
γ2i

γ2i + λ2

)
· u

T
i ctissue
σi

vi +

p∑
i=s+1

(uTi ctissue)vi

=
s∑
i=1

fi ·
uTi ctissue

σi
vi +

p∑
i=s+1

(uTi ctissue)vi,

(2.29)

where s is the number of non-zero singular values and fi are the filter factors. For generalized

singular values γi much larger than λ, the filter factors are fi ≈ 1, and for γi < λ, fi ≈ γ2i
λ2

.

Since the largest perturbations in the ordinary least squares solution (Equation (2.24))

correspond to the smallest σi [78] and σi ≈ γi for σi << 1, the filter factors of Tikhonov

regularization can stabilize the solution if λ is chosen appropriately [47].

In order to determine a suitable value for the regularization parameter λ, the L-curve

approach is used [78]. The L-curve is a log-log plot of the regularized solution norm ‖Lαλ‖

versus the corresponding residual norm ‖D ·αλ−ctissue‖ [79]. As can be seen in Figure 2.8,

the curve is typically L-shaped, consisting of a vertical part, a corner and a horizontal

part. The vertical part of the L-curve represents the solutions where small changes of λ
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Figure 2.8: Generic form of the L-curve, where A corresponds to D, x to α and b to ctissue. A higher

weighting parameter λ favors the minimization of ‖Lαλ‖, which means more filtering and a

smoother result. A smaller λ leads to less filtering and a better goodness of fit. Image taken

from [79].

cause a drastic variation in ‖Lαλ‖ and therefore in the smoothness of the solution. The

horizontal part, on the other hand, corresponds to solutions where ‖D ·αλ − ctissue‖ and

therefore the goodness of fit is very sensitive to changes in the regularization parameter.

As a consequence, the λ corresponding to the solution at the corner of the L-curve is

considered the optimal regularization parameter, which achieves a small residual and

solution norm [78]. After determination of the optimal λ and the corresponding B-spline

coefficients αi, the impulse response RF (ti) can be calculated using Equation (2.19).

As explained for the Fermi function approach, when calculating the MBF it is necessary

to address the time shift τd between contrast agent arrival in the LV and the myocardium.

In their later work, Jerosch et al. [75] proposed a method to determine τd when model-

independent deconvolution is used. This method is based on the authors’ observation that

the maximum value of the impulse response Rmax stays approximately the same when the

AIF is shifted in the direction of increasing time until the foot of the AIF passes by the

foot of the tissue curve. For larger time shifts Rmax increases significantly (see Figure 2.9).

Jerosch et al. show with simulations that the time shift corresponding to the point where
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Rmax increases significantly can be considered the correct one. The authors also determine

the MBF from the maximum amplitude of the impulse response rather than its initial

amplitude value, which can be seen as a generalization of the convolutional relation where

the input function is not directly measured at the inlet of the ROI [75].

Implementation: First of all, AIF and myocardial tissue curve are both divided by the

same scaling factor which is equal to the area under the curve of the whole AIF, calculated

using the function trapz. This normalization is done because it facilitates the comparison

of the norms necessary for L-curve determination [47]. The impulse response is composed

of fourth-degree B-spline polynomials with 15 equally spaced break points, as suggested

by Jerosch et al. [47]. For creating the knot sequence with edge knots of multiplicity k

the function augknt is used. Then the B-splines B
(k)
j (ti) are generated by the function

bspline basis and the design matrix Di,j is calculated according to Equation (2.23).

For the determination of the B-spline coefficients αi functions of the ’Regularization Tools’

library by Hansen [79] are used. First, the first-order difference operator L is generated

with get l. Then, the GSVD is calculated using cgsvd and the optimal value for the

regularization parameter λ is determined with the function l curve. In order to favor

smooth results, an upper threshold for the regularized solution norm ‖Lαλ‖ is introduced

that is set to thr = 10−2.5, below which the corner of the L-curve is found by the function

l corner. After determining a suitable λ, the Tikhonov regularized solution for αi is

calculated with tikhonov and then inserted into Equation (2.19) to determine RF (ti).

The impulse response is calculated for time shifts from τd = 0 ·∆t to τd = 15 ·∆t, as done

in the Fermi approach. Note that here the AIF is shifted in the direction of increasing

time, which means that AIF and myocardial tissure curve need to be shortened by one

time step after every round (the tissue curve at the first sampling point and the AIF at

the last one). The maximum value of each impulse response corresponding to a certain

time shift is saved into a vector, considering Rmax as a function of τd. The correct time

shift is determined as the point of the maximum curvature of Rmax(τd), which is done

by calculating the maximum of the second derivative of the function using diff. The

corresponding MBF is then calculated according to Equation (2.18).
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(a)

(b)

(c)

Figure 2.9: Exemplary impulse responses determined with model-independent deconvolution for different

time shifts between AIF and myocardial curve. In (a) the AIF, shifted in the direction of

increasing time, and the myocardial curve used for deconvolution are shown in red and blue,

respectively. The corresponding determined myocardial perfusion-weighted impulse responses

(expressed in units of ml·min−1 ·g−1) are plotted in (b). The graph in (c) shows the dependency

of the myocardial blood flow estimate on the time shift τd. Note that MBF stays approximately

constant until the foot of the AIF passes by the foot of the myocardial curve. In this example,

τd = 4∆t is determined as the correct time shift.
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2.5.2.3 ARMA model

The autoregressive moving average (ARMA)3 approach allows parametric modeling of a

dynamic system without any direct curve fitting [82]. It was introduced for myocardial

perfusion quantification by Neyran et al. [48] in 2002. The ARMA model relates the

discrete time samples of AIF (cAIF (ti)) and myocardial tissue curve (ctissue(ti)) according

to [82]:

ctissue(ti) =

Q∑
k=0

bkcAIF (ti−k)−
L∑

m=1

amctissue(ti−m), (2.30)

where bk (k = 0...Q) and am (m = 1...L) are constants and L and Q are the auto-regressive

(AR) and moving average (MA) order, respectively. This equation states that the value of

the system output at any time, ctissue(ti), can be predicted when knowing the L previous

values of the observed output and Q previous values of the observed input [83]. The

coefficients bk and am can be determined as the least squares solution of Equation (2.30),

which is given in matrix form as [82]:


cAIF (t1) 0 . . . 0 0 . . . 0

cAIF (t2) cAIF (t1) . . . 0 ctissue(t1) . . . 0
...

... . . .
...

... . . .
...

cAIF (tN) cAIF (tN−1) . . . cAIF (tN−Q) ctissue(tN−1) . . . ctissue(tN−L)

 ·



b0
...

bQ

−a1
...

−aL


=


ctissue(t1)

ctissue(t2)
...

ctissue(tN)

 ,

(2.31)

where cAIF (ti) and ctissue(ti) are assumed to be zero for i ≤ 0 [82]. In order to determine

the impulse response of the modeled system, the z-transform [84] can be applied on

Equation (2.30): [
1 +

L∑
m=1

amz
−m

]
Ctissue(z) =

Q∑
k=0

bkz
−kCAIF (z). (2.32)

3It would be more accurate to refer to the model in use as a description with linear constant coefficient

difference equations (LCCDE) [80] since ARMA models describe stochastic processes [81] and in this

thesis deterministic signals are studied. However, in the myocardial DCE-MRI literature ARMA is the

commonly used term, which is why it is also used in this thesis.
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By rearranging Equation (2.32) the z-transform of the impulse response can be obtained

as:

R(z) =
Ctissue(z)

CAIF (z)
=

∑Q
k=0 bkz

−k

1 +
∑L

m=1 amz
−m

. (2.33)

Consequently, the inverse z-transform of R(z) yields the myocardial perfusion-weighted

impulse response RF (ti) of the system. The MBF is then obtained from the maximum

value of RF (ti), while the correct time shift is determined in the same way as in the Fermi

function approach (see Section 2.5.2.1).

Since the ARMA model corresponds to an infinite impulse response (IIR) system, RF (ti)

can get close to but never equal to zero [48]. Neyran et al. therefore point out to choose

small values for Q and L in order to reduce the degrees of freedom and to stabilize the

deconvolution process [48].

Implementation: As suggested by Batchelor et al. [80], the model orders are chosen as

Q = 0 and L = 2. The coefficients bk and am are determined from Equation (2.31) using

lsqlin. Then, they are given as an input to the function impz which directly returns

RF (ti). In order to determine the correct time shift τd, RF (ti) and the squared L2-norm of

the residual of measured and fitted myocardial curve are calculated for time shifts from

τd = 0 ·∆t to τd = 15 ·∆t. The correct time shift and the corresponding impulse response

are chosen as the ones that minimize the squared L2-norm of the residual. As the last step,

the MBF is calculated according to Equation (2.18).

2.6 Analysis of quantitative perfusion maps

The semi-quantitative parameter maps of SI and [CA] data (normalized US, AUC and

SIM) as well as the MBF maps (Fermi modeling, Tikhonov regularization with B-splines

and ARMA modeling) of each patient were analyzed visually and quantitatively. Quan-

titative pixel-wise analysis was supplemented by calculating the global mean values of

perfusion parameters of all pixels in the myocardial ROI. An exemplary segmentation of
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Figure 2.10: Segmentation of the myocardium (white) and the ROI in the LV blood pool (red).

the myocardium and the ROI in the LV blood pool are shown in Figure 2.10 (performed

on SIM maps, as described in Section 2.5.1).

Visual analysis was carried out by two experienced observers of myocardial DCE-MRI. The

ground truth for presence of perfusion deficits and/or dark rim artifacts was determined by

visual evaluation of each patient’s DCE series (together with late enhancement (LE) images

indicating necrotic myocardial areas). This evaluation yielded subendocardial perfusion

deficits for three of the eight compared patients. Furthermore, dark rim artifacts were

present in the DCE series of three patients. Areas of reduced values of myocardial perfusion

parameters were interpreted as perfusion deficits on quantitative perfusion maps. For

the visual analysis of MBF maps the latter were overlaid on a gray-scale SIM map for

better orientation and calculation was performed for a dilated ROI including areas around

the myocardium (see Figure 2.11). When the region of perfusion deficits on quantitative

perfusion maps coincided with (or was included in) the region found for the ground truth,

the perfusion deficit was interpreted as true perfusion deficit else as false perfusion deficit.

2.7 Phantom experiment

A phantom experiment was carried out in order to validate the approach of SI to [CA]

conversion used in this thesis. The phantom consisted of 16 glass bottles filled with

Gadovist-doped water of different concentrations (see Figure 2.12). The contrast agent
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(a) Fermi (b) Tikhonov (c) ARMA

(d) Fermi, dilated ROI (e) Tikhonov, dilated ROI (f) ARMA, dilated ROI

Figure 2.11: MBF maps determined with Fermi modeling, Tikhonov regularization with B-splines and

ARMA modeling for the myocardial ROI as well as a dilated version of it. The MBF maps

are overlaid on a gray-scale SIM map for better orientation.

concentration ranged from 0 to 5 mmol/l (see Table 2.1). For the measurements the

bottles were placed into a water bath in the isocenter of the scanner. MRI acquisition was

performed using the same sequences and settings as described in Section 2.2. Mean SI in

the DCE series as well as mean T1 value from the MOLLI measurement were determined

in each of the bottles.

The goal of the experiment was to calculate the approximated contrast agent concentrations

˜[CA] using Equation (2.3) and Equation (1.1) to compare the results with the ground

truth [CA] values. The scaling factor Ψ of the signal model was estimated according

to Equation (2.5) using the measured SI and T1 value of pure water. The T1 relaxivity

constant of Gadovist in water, r1, was estimated by inserting the ground truth [CA] values

and the respective measured T1 values into Equation (1.1) and calculating the mean value

of all obtained r1 values.
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Table 2.1: Contrast agent concentrations in the different bottles of the phantom.

bottle nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

[CA] (mmol/l) 0 0.01 0.2 0.3 0.4 0.5 0.7 0.9 1.2 1.5 2 2.5 3 3.5 4 5

Figure 2.12: Phantom consisting of 16 glass bottles filled with Gadovist-doped water of different concen-

trations.

2.8 Statistical analysis

Statistical analysis was performed using the programs MedCalc (MedCalc Software, Ostend,

Belgium) and Matlab (Mathworks Inc., Natick, USA). Mean values are generally specified

together with standard deviations (SD). A significance level of 0.05 was employed for

statistical tests.

The relationship between calculated contrast agent concentrations ˜[CA] and ground truth

contrast agent concentrations [CA] in the phantom experiment to validate the SI to [CA]

conversion was determined by linear regression. Coefficient of determination (R2) and 95%

confidence intervals for intercept and slope were used to check the compatibility with the

identity relationship.

The visual agreement of perfusion deficits found in any type of quantitative perfusion

maps compared to the ground truth for presence of perfusion deficits from corresponding

dynamic DCE-MRI series was specified as sensitivity and specificity together with their 95%

confidence intervals. Relationships between semi-quantitative and quantitative perfusion

parameters were analyzed by means of correlation and linear regression analysis. Linear

regression equations and coefficients of determination were calculated for global mean
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values, pixel-wise for every patient as well as for all pixels of all compared patients.

Moreover, global quantitative myocardial perfusion determined with Fermi modeling, with

Tikhonov regularization with B-splines and with ARMA modeling were compared by

paired t-test (without multiple comparison correction).
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3.1 Phantom experiment

The signal intensity measured at increasing contrast agent concentrations of the phantom

is shown in Figure 3.1. The relation between SI and [CA] is approximately linear for low

dosages of contrast agent and non-linear at higher dosages.

The estimation of the T1 relaxivity constant of Gadovist in water at approximately 19◦C

yielded r1 = 3.98l/mmol · s. The resulting relation between the ground truth concentration

[CA] and the concentration ˜[CA] derived via the signal intensity model is plotted in

Figure 3.2. The high coefficient of determination (R2 = 0.988) and the regression equation

(y = 0.997x− 0.089 with 95% confidence intervals [0.93, 1.06] and [−0.23, 0.05] for slope

and intercept, respectively) suggest the validity of the SI to [CA] conversion approach.

3.2 Denoising for semi-quantitative analysis

PCA denoising and Savitzky-Golay filtering were applied on raw SI time curves to in-

vestigate the behaviour of each method and decide for one of them for further use in

semi-quantitative analysis.
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Figure 3.1: Measured phantom signal intensity as a function of contrast agent concentration. The red

curve fitted to the measurement points emphasizes the non-linear relation between SI and

[CA]. The blue dashed line represents the extrapolation of the linear relation between SI and

[CA] at low contrast agent dosage.

Figure 3.2: Relationship between ground truth concentration [CA] and the concentration ˜[CA] derived

via the signal intensity model.
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Figure 3.3: Direct comparison of the results of SI time curve denoising with PCA and Savitzky-Golay

filter. The black crosses mark the detected minimum and maximum point of the denoised

curves.

3.2.1 Automated PCA filter

The automated determination of the optimal number of principal components using a

threshold of S ≤ 15% worked for 10 of the 11 patients. For the remaining patient the

principal component number at the lowest reached value of S was chosen as the optimal one

(at S = 18%). The mean computation time for determination of the principal component

number was 40.5± 4.5s. After determination of the optimal principal component number,

the PCA filter processing time for denoising of the whole heart ROI of one patient was on

average 0.075± 0.003s.

3.2.2 Savitzky-Golay filter

The mean computation time of applying the adaptive SG filter on the whole heart ROI of

one patient was 54.1± 7.7s.

3.2.3 Comparison of denoising methods

PCA denoising and Savitzky-Golay filtering were compared qualitatively by evaluating

denoised SI time curves and calculating semi-quantitative parameter maps with the
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denoised data obtained with both methods. Figure 3.3 shows a direct comparison of the

results of applying both methods to a typical raw myocardial SI time curve. Both denoised

curves closely resemble each other, especially in the part used for determination of the

semi-quantitative parameters (between minimum and maximum point). The first two

rows in Figure 3.4 illustrate maps of the semi-quantitative parameters up-slope, area

under the curve and signal intensity maximum calculated for SI time data which had been

denoised with each method, respectively. The difference maps obtained by subtracting the

semi-quantitative parameter maps of SG filtered data from the respective maps of PCA

filtered data are depicted in the third row in Figure 3.4. The difference in the myocardial

region is very small for all three parameters. For all further calculations in semi-quantitative

analysis PCA denoising was employed because of its higher computational efficiency.

3.3 Semi-quantitative analysis of SI data

The average computation time for the determination of the semi-quantitative parameters

US, AUC and SIM for one signal curve was 7.88·10−4s. Typical semi-quantitative parameter

maps are shown in the first row in Figure 3.4. Notably a (true) perfusion deficit is visualized

at the inferior wall of the left ventricle. Sensitivity and specificity for the detection of

perfusion deficits were highest for the SIM maps (see Table 3.1). Dark rim artifacts were

never mistaken for a perfusion deficit in any of the semi-quantitative perfusion maps.

Normalized global US, AUC and SIM values are specified in Table 3.2 and show only small

variation between patients.

3.4 Semi-quantitative analysis of [CA] data

The mean value of the measured pre-contrast T1,0 values used for signal intensity to

concentration conversion was 1962.0± 50.2ms for the LV blood pool and 1242.5± 73.5ms

for the myocardium.
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US PCA AUC PCA SIM PCA

US SG AUC SG SIM SG

US difference map AUC difference map SIM difference map

Figure 3.4: Comparison of maps of the semi-quantitative parameters US, AUC and SIM. The first two

rows show the semi-quantitative parameter maps obtained from PCA and Savitzky-Golay

filtered data, respectively. The third row depicts the difference maps calculated by subtracting

the respective maps in the second row from the ones in the first row.
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Table 3.1: Specificity, sensitivity and corresponding 95% confidence intervals for visual detection of

perfusion deficits in semi-quantitative parameter maps of SI data.

parameter sensitivity specificity

US SI 67 [9, 99] 100 [48, 100]

AUC SI 100 [29, 100] 80 [28, 100]

SIM SI 100 [29, 100] 100 [48, 100]

Table 3.2: Mean, standard deviation and range of the normalized global mean values of the SI semi-

quantitative parameters of all patients.

parameter mean ± SD range

US SI 0.077 ± 0.008 [0.064, 0.087]

AUC SI 0.283 ± 0.075 [0.165, 0.367]

SIM SI 0.145 ± 0.019 [0.115, 0.170]

3.4.1 Visual analysis and global indices

Figure 3.5 shows typical semi-quantitative parameter maps of [CA] data of the same

patient as in Figure 3.4. Whereas specificity for the detection of perfusion deficits was

100% for all types of semi-quantitative parameter maps, sensitivity was smaller than 100%

for all variants (see Table 3.3). Similar as in the SI case, dark rim artifacts were never

mistaken for a perfusion deficit in any of the semi-quantitative perfusion maps.

Normalized global US [CA], AUC [CA] and SIM [CA] values are specified in Table 3.4

and show compared to the SI case higher variation between patients.
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US AUC SIM

Figure 3.5: Typical semi-quantitative parameter maps of [CA] data.

Table 3.3: Specificity, sensitivity and corresponding 95% confidence intervals for visual detection of

perfusion deficits in semi-quantitative parameter maps of [CA] data.

parameter sensitivity specificity

US [CA] 67 [9, 99] 100 [48, 100]

AUC [CA] 33 [1, 91] 100 [48, 100]

SIM [CA] 67 [9, 99] 100 [48, 100]

3.4.2 Correlation between semi-quantitative parameters of SI and

[CA] data

The correlations between corresponding normalized SI and [CA] semi-quantitative param-

eters are summarized in Table 3.5. The correlation was worst for US. Moreover, R2 of

pixel-wise correlation varied substantially between patients.

Figure 3.6 shows the scatter plot and regression line of all patients’ normalized global mean

values of corresponding SI and [CA] semi-quantitative parameters. Figure 3.7 illustrates the

scatter plot and regression line of the SI and [CA] semi-quantitative parameters calculated

for all myocardial pixels of all patients.
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Table 3.4: Mean, standard deviation and range of the normalized global mean values of the [CA] semi-

quantitative parameters of all patients.

parameter mean ± SD range

US [CA] 0.057 ± 0.013 [0.034, 0.072]

AUC [CA] 0.239 ± 0.070 [0.140, 0.331]

SIM [CA] 0.111 ± 0.026 [0.066, 0.134]

Table 3.5: Correlation between respective SI and [CA] semi-quantitative parameters. R2 all patients =

mean and standard deviation of the R2 values of all patients; R2 global means = R2 of the

global mean values of all patients; R2 all pixels = R2 of all myocardial pixels of all patients.

parameter R2 all patients R2 global means R2 all pixels

mean ± SD

US 0.374 ± 0.179 0.496 0.360

AUC 0.434 ± 0.254 0.735 0.584

SIM 0.422 ± 0.253 0.735 0.558

(a) US (b) AUC (c) SIM

Figure 3.6: Scatter plot, regression line and R2 of normalized global mean values of SI and [CA] semi-

quantitative parameters of all patients.
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(a) US

(b) AUC

(c) SIM

Figure 3.7: Scatter plot, regression line and R2 of normalized SI and [CA] semi-quantitative parameters

of all myocardial pixels of all patients. The contributions of each patient (p1 to p8) are color

coded and respective regression lines are indicated.
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3.5 Quantitative analysis

3.5.1 Typical single pixel results

The average computation time of deconvolving one signal curve with the AIF was 0.106s for

Fermi modeling, 0.388s for Tikhonov regularization with B-splines and 0.064s for ARMA

modeling. Typical impulse responses obtained by application of the three deconvolution

methods on the [CA] signal curve of a single myocardial pixel are illustrated in Figure 3.8

(a) to (c). The impulse response of Fermi modeling is the only one starting at its maximum

value and declining to zero. Impulse responses obtained with Tikhonov regularization with

B-splines typically show no or only a slight ascent in the beginning and a plateau when

the minimum of the impulse response is reached. ARMA impulse responses exhibit an

initial steep ascent followed by an approximate exponential decay. Figure 3.8 (d) shows

the myocardial curve fit resulting from convolving each impulse response ((a) to (c)) with

the AIF. Due to its restriction to first pass, the Fermi fit curve is shorter than the other

two. In the given example, the time shift determined with Tikhonov regularization was

τd = 1 ·∆t, while both Fermi and ARMA modeling yielded τd = 2 ·∆t.

3.5.2 Visual analysis and global indices

Figure 2.11 shows typical MBF maps determined with Fermi modeling (a), Tikhonov

regularization with B-splines (b) and ARMA modeling (c) together with the dilated

ROI versions (d)-(f) used for visual analysis. The sensitivity and specificity of the visual

detection of perfusion deficits in the MBF maps with dilated myocardial ROI are given

in Table 3.6. MBF maps determined with Fermi modeling were most accurate, but no

method reached 100% sensitivity. As in the case of semi-quantitative perfusion maps, in

no case a dark rim artifact led to a visual perfusion defect in the MBF maps.
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(a) Fermi impulse response (b) Tikhonov impulse response (c) ARMA impulse response

(d) Myocardial curve fit obtained by convolution of each impulse response with the AIF.

Figure 3.8: Typical impulse responses and myocardial curve fits obtained with Fermi modeling, Tikhonov

regularization with B-splines and ARMA modeling.

Table 3.6: Specificity, sensitivity and corresponding 95% confidence intervals for visual detection of

perfusion deficits in MBF maps determined with Fermi modeling, Tikhonov regularization with

B-splines and ARMA modeling.

method sensitivity specificity

Fermi 67 [9, 99] 100 [48, 100]

Tikhonov 67 [9, 99] 80 [28, 100]

ARMA 67 [9, 99] 40 [5, 85]

Global MBF values determined with the three deconvolution methods differed signif-

icantly (see Figure 3.9 (a)).

65



3 Results

(a) (b)

Figure 3.9: Mean and standard deviation of the global mean MBF values of all patients determined with

Fermi modeling, Tikhonov regularization with B-splines and ARMA modeling (a) without

and (b) with outlier suppression (OS). The standard deviation is indicated with error bars.

p-values refer to paired t-test. (Outlier suppression, see Section 3.5.6)

3.5.3 Correlation between MBF and semi-quantitative parameters of

SI data

Table 3.7 shows the correlations between MBF and normalized SI semi-quantitative

parameters for the global mean values of all patients and for all myocardial pixels of all

patients. Furthermore, mean and standard deviation of all patients’ R2 values are given.

In general, pixel-wise correlations were only moderate. Similar to the correlations between

semi-quantitative SI and [CA] parameters, correlation were worst for US. Figure 3.10

illustrates the scatter plots and regression lines of the combinations of MBF method and

semi-quantitative parameter that yielded the lowest and highest R2 taking the mean value

of each row in columns 3 and 4 in Table 3.7.
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(a) MBF Tikhonov vs. US SI (b) MBF Tikhonov vs. SIM SI

(c) MBF Tikhonov vs. US SI (d) MBF Tikhonov vs. SIM SI

Figure 3.10: Exemplary scatter plots, regression lines and R2 describing the relation between semi-

quantitative parameters of SI data and MBF results of different deconvolution methods for

global mean values ((a) and (b)) and for all myocardial pixels of all patients ((c) and (d)).

The contributions of each patient (p1 to p8) are color coded and supported by respective

regression lines.
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Table 3.7: Correlation between SI semi-quantitative parameters and MBF determined with Fermi modeling,

Tikhonov regularization with B-splines and ARMA modeling. R2 all patients = mean and

standard deviation of the R2 values of all patients; R2 global means = R2 of the global mean

values of all patients; R2 all pixels = R2 of all myocardial pixels of all patients.

parameter R2 all patients R2 global means R2 all pixels

mean ± SD

MBF Fermi vs. US SI 0.068 ± 0.071 0.325 0.080

MBF Fermi vs. AUC SI 0.200 ± 0.131 0.584 0.317

MBF Fermi vs. SIM SI 0.395 ± 0.229 0.718 0.491

MBF Tikhonov vs. US SI 0.067 ± 0.076 0.171 0.061

MBF Tikhonov vs. AUC SI 0.198 ± 0.126 0.712 0.364

MBF Tikhonov vs. SIM SI 0.375 ± 0.215 0.873 0.531

MBF ARMA vs. US SI 0.208 ± 0.114 0.493 0.204

MBF ARMA vs. AUC SI 0.066 ± 0.034 0.414 0.178

MBF ARMA vs. SIM SI 0.295 ± 0.146 0.583 0.379

3.5.4 Correlation between MBF and semi-quantitative parameters of

[CA] data

Table 3.8 presents the correlations between MBF and normalized [CA] semi-quantitative

parameters for the global mean values of all patients and for all myocardial pixels of all

patients. Furthermore, mean and standard deviation of all patients’ R2 values are given. In

contrast to the correlations with semi-quantitative parameters determined from SI curves,

correlations were substantially stronger. Interestingly, there was neither a semi-quantitative

parameter nor a deconvolution method showing overall stronger correlations than the

others. Figure 3.11 illustrates the scatter plots and regression lines of the combinations

of MBF method and semi-quantitative parameter that yielded the lowest and highest R2

taking the mean value of each row in columns 3 and 4 in Table 3.8.
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(a) MBF ARMA vs. AUC [CA] (b) MBF Tikhonov vs. SIM [CA]

(c) MBF ARMA vs. AUC [CA] (d) MBF Tikhonov vs. SIM [CA]

Figure 3.11: Exemplary scatter plots, regression lines and R2 describing the relation between semi-

quantitative parameters of [CA] data and MBF results of different deconvolution methods

for global mean values ((a) and (b)) and for all myocardial pixels of all patients ((c) and (d)).

The contributions of each patient (p1 to p8) are color coded and respective regression lines

are indicated.
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Table 3.8: Correlation between [CA] semi-quantitative parameters and MBF determined with Fermi

modeling, Tikhonov regularization with B-splines and ARMA modeling. R2 all patients = mean

and standard deviation of the R2 values of all patients; R2 global means = R2 of the global

mean values of all patients; R2 all pixels = R2 of all myocardial pixels of all patients.

parameter R2 all patients R2 global means R2 all pixels

mean ± SD

MBF Fermi vs. US [CA] 0.618 ± 0.087 0.729 0.635

MBF Fermi vs. AUC [CA] 0.577 ± 0.187 0.888 0.660

MBF Fermi vs. SIM [CA] 0.899 ± 0.082 0.860 0.846

MBF Tikhonov vs. US [CA] 0.589 ± 0.077 0.591 0.584

MBF Tikhonov vs. AUC [CA] 0.554 ± 0.194 0.898 0.662

MBF Tikhonov vs. SIM [CA] 0.855 ± 0.077 0.890 0.843

MBF ARMA vs. US [CA] 0.769 ± 0.129 0.737 0.729

MBF ARMA vs. AUC [CA] 0.351 ± 0.186 0.645 0.433

MBF ARMA vs. SIM [CA] 0.668 ± 0.120 0.769 0.686

3.5.5 Correlation between MBF methods

In Table 3.9 the correlations between the MBF results obtained with the three deconvolution

methods are presented for the global mean MBF values, the MBF values of all myocardial

pixels of all patients and as mean and standard deviation of all patients’ R2 values.

Whereas MBF determined with Fermi modeling and Tikhonov regularization with B-

splines correlated excellently, correlation of both variants with MBF from ARMA modeling

was notably smaller. The first row in Figure 3.12 shows the scatter plots and regression

lines of all patients’ global mean MBF values determined with Fermi modeling, Tikhonov

regularization with B-splines and ARMA modeling. The first column in Figure 3.13

illustrates the scatter plots and regression lines of the MBF calculated with the three

methods for all myocardial pixels of all patients. Obvious outlier pixels are striking in the

scatter plots including MBF values determined by deconvolution with ARMA modeling.
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Table 3.9: Correlation between MBF results obtained with Fermi modeling, Tikhonov regularization with

B-splines and ARMA modeling without and with outlier suppression. R2 all patients = mean

and standard deviation of the R2 values of all patients; R2 global means = R2 of the global

mean values of all patients; R2 all pixels = R2 of all myocardial pixels of all patients; OS =

outlier suppressed dataset.

methods R2 all patients R2 global means R2 all pixels

mean ± SD

Fermi vs. Tikhonov 0.943 ± 0.009 0.858 0.910

Fermi vs. ARMA 0.757 ± 0.143 0.736 0.734

Tikhonov vs. ARMA 0.704 ± 0.125 0.715 0.694

Fermi vs. Tikhonov (OS) 0.946 ± 0.011 0.878 0.917

Fermi vs. ARMA (OS) 0.783 ± 0.083 0.781 0.794

Tikhonov vs. ARMA (OS) 0.741 ± 0.067 0.758 0.762

(a) Fermi vs. Tikhonov (b) Fermi vs. ARMA (c) Tikhonov vs. ARMA

(d) Fermi vs. Tikhonov (OS) (e) Fermi vs. ARMA (OS) (f) Tikhonov vs. ARMA (OS)

Figure 3.12: Scatter plots, regression lines and coefficients of determination R2 of all patients’ global mean

MBF estimates. OS denotes the outlier-suppressed dataset (see Section 3.5.6).
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(a) Fermi vs. Tikhonov (b) Fermi vs. Tikhonov (OS)

(c) Fermi vs. ARMA (d) Fermi vs. ARMA (OS)

(e) Tikhonov vs. ARMA (f) Tikhonov vs. ARMA (OS)

Figure 3.13: Scatter plots, regression lines and coefficients of determination R2 of MBF values of all

myocardial pixels of all patients without and with outlier suppression (OS). The contributions

of each patient (p1 to p8) are color coded and respective regression lines are indicated.

(Outlier suppression, see Section 3.5.6)
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(a) quality map (b) quality map, myocardial ROI (c) detected outliers

Figure 3.14: Typical motion correction quality map and result of outlier detection.

(a) t = 16.4s (b) t = 19.8s (c) t = 39.5s

Figure 3.15: Selected images at different time points of the DCE series corresponding to the quality map

in Figure 3.14. The red line marks the position of the upper edge of the myocardium during

first pass and emphasizes the myocardial displacement after first pass.

3.5.6 Motion correction quality map and outlier detection

The average time for determination of one pixel in the motion correction quality map

was 0.075s. Figure 3.14 shows a typical quality map for the whole heart ROI (a) and the

myocardial ROI (b) as well as the result of the outlier detection (c). Selected images of

the corresponding DCE series are illustrated in Figure 3.15. During contrast agent arrival

in the LV (a) and the myocardium (b) the upper edge of the myocardium is at the same

position marked by the red line. After first pass (c), the upper edge has moved down two

pixels. In this region the pixels of the quality map in Figure 3.14 (b) show a high deviation

from the other myocardial pixels, which led to their classification as outliers.
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The algorithm detected 8.4% of all myocardial pixels of all patients as outliers. The global

mean MBF values and the correlations between the MBF methods were determined a

second time for the outlier-suppressed (OS) myocardial ROI of all patients. The mean

and the standard deviation of the global mean MBF values of all patients determined

with the three deconvolution methods were modified minimally, but mostly in the case of

MBF determined by deconvolution with ARMA modeling. Differences remained significant

(see Figure 3.9 (b)). Outlier suppression altered correlations (see Table 3.9) as well as

scatter plots together with regression lines (see Figures 3.12 and 3.13) primarily in case of

involvement of MBF determined by deconvolution with ARMA modeling.
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The aim of this thesis was to determine and compare pixel-wise semi-quantitative and

quantitative perfusion parameters from motion-corrected myocardial DCE-MRI data

acquired in patients with coronary heart disease under resting condition. It was shown

that myocardial perfusion parameter maps present information about perfusion deficits

in a clear manner, which is a key advantage over visual evaluation of a whole DCE

series. Moreover, parameter maps showed to be insensitive to the dark rim artifact, which

may result in a decrease of the number of false positives in diagnosing perfusion deficits

employing parameter maps. However, pixel-wise analysis is sensitive to noise and artifacts

and therefore effective denoising methods and/or appropriate regularization techniques

are required for calculation of perfusion parameter maps.

4.1 Deconvolution analysis

Method comparison Pixel-wise quantification of myocardial blood flow was feasible with

all three deconvolution methods (Fermi modeling, Tikhonov regularization with B-splines,

ARMA modeling). However, the p-values in Figure 3.9 (a) show a statistically significant

difference in the results of MBF estimation of each method. Nevertheless, for all three

deconvolution methods the obtained global mean MBF values are in the range of MBF

estimates reported by other myocardial DCE-MRI studies at rest (0.51ml ·min−1 · g−1

to 1.03ml ·min−1 · g−1) [39, 50, 85–88]. ARMA modeling yielded the highest mean MBF

value and Tikhonov regularization a slightly lower one than Fermi modeling. The higher
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ARMA mean MBF value fits well to the results of Neyran et al. [48], who reported for

the ARMA method an overestimation of the MBF for values below 1ml · min−1 · g−1

in pixel-wise analysis of DCE data of an explanted pig heart. Zarinabad et al. [49] also

observed an overestimation of the MBF by the ARMA approach in the whole range of

1 to 5ml ·min−1 · g−1, investigated using a hardware perfusion phantom and pixel-wise

evaluation. Fermi modeling and Tikhonov regularization have been shown to provide

similar MBF estimates at rest in ROI-based [88] as well as pixel-wise [50] analysis. This

is also suggested by the high R2 values obtained when correlating both methods (see

Table 3.9 and Figure 3.12 and 3.13). The correlation of each method with ARMA was

notably lower, which partly arose from outliers, visible in the scatter plots of all myocardial

pixels of all patients in Figure 3.13. Employing outlier suppression, the correlation between

ARMA and each of the other methods was improved.

Fermi modeling Fermi modeling, the most widely applied deconvolution method in

absolute quantification of myocardial perfusion [50], is straightforward to implement, fast

compared to other deconvolution methods and only requires to specify the starting values of

the nonlinear fitting process. It has been validated against PET [50] and microspheres [32,

89] and been shown to be robust against noise even in pixel-wise evaluation [49]. Moreover,

Zarinabad et al. [49] reported in experiments with simulated data and their hardware

perfusion phantom that Fermi modeling was approximating the myocardial blood flow well

for low MBF values (< 1ml ·min−1 · g−1). However, in that study the absolute error of the

Fermi method was high at higher MBF values [49]. This may arise from the disadvantage

that the fixed impulse response shape assumption may not be appropriate [50]. One feature

of the Fermi method different from the other two methods that should be pointed out is

the restriction of the signal curves to first pass for extracellular contrast agents [7]. The

limitation to first pass has the remarkable advantage that the function is fitted only to the

part of the [CA] time curve that had been acquired during breath hold and is therefore

most unlikely to show distortions due to motion. However, this statement goes along with

the assumption that the end of first pass can be accurately determined. If specified, most

authors define the end of first pass of AIF and tissue curve as the valley point after the
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first peak of the AIF [57, 88], which might not necessarily coincide with the end of first

pass in the myocardium. In this thesis, one patient was excluded from statistical analysis

because of this reason; the maximum of the myocardial signal curve was not reached at

chosen end of first pass (see Section 4.5). Nevertheless, Fermi modeling can be considered

a robust method for perfusion quantification at rest.

Tikhonov regularization with B-splines Tikhonov regularization with B-splines is the

most involved method to implement and also several times slower than the other two

regarding computation time (see Section 3.5.1), which results from the determination of

the optimal regularization parameter for the signal curve of every single pixel. If specified,

the optimal regularization parameter is usually determined using the L-curve criterion

in ROI-based analysis [47, 75, 90]. In pixel-wise analysis, however, choosing the point of

the L-curve with maximum curvature led to under-regularized impulse responses with

strong oscillations. Therefore, an upper threshold for the regularized solution norm of

‖Lαλ‖ ≤ 10−2.5 was introduced, similarly as suggested by Sourbron et al. [91]. This ad-hoc

solution has the disadvantage that it may work for a certain set of data, but that it cannot

be considered generally applicable.

Like Fermi modeling, Tikhonov regularization with B-splines has also been validated

against microspheres [47, 89] and PET [50]. Simulation results and experiments with a

hardware perfusion phantom indicated that Tikhonov regularization is compared with

Fermi modeling, ARMA modeling and exponential basis deconvolution [92] most sensitive

to noise and showing the highest absolute error [49]. Unfortunately, the authors of that

study did not specify exactly how they determined the regularization parameter.

A distinct advantage of Tikhonov regularization over other deconvolution methods is

that the estimate of the myocardial blood flow as maximum of the impulse response is

almost independent of the determined time shift τd as long as the foot of the AIF precedes

or coincides with the foot of the tissue curve [75]. Therefore, if only the MBF value is

of interest, a fixed time delay of τd = 0 would still yield accurate MBF estimates (see

Figure 2.9). Fermi modeling, in contrast, has been shown to be sensitive to the determined

τd [93]. Jerosch et al. [47] mentioned as further advantage of Tikhonov regularization
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that it is not necessary to restrict the signal curves to first pass. However, single pixel

evaluation showed that taking the whole signal curves makes this method sensitive to

motion artifacts, which are most probable after first pass due to the irregular breathing

pattern of patients after breath-hold. One could suggest to restrict the signal curves to

first pass as done for Fermi modeling, which has been shown in ROI-based analysis not

to alter the result of Tikhonov regularization significantly [88]. However, this approach

worked indeed for the majority of pixels but failed in some to produce a physiologically

meaningful impulse response. To sum it up, Tikhonov regularization with B-splines has the

potential to provide accurate myocardial perfusion estimates, but it is highly dependent on

the quality of motion correction and the development of a generally applicable procedure

for determination of the optimal regularization parameter per pixel is necessary.

ARMA modeling ARMA modeling with low auto-regressive and moving-average order

is faster than other deconvolution methods [94] and has provided promising results in pixel-

wise perfusion quantification [49, 95]. In greater detail, Zarinabad et al. obtained in their

method comparison study [49] with ARMA modeling and exponential basis deconvolution

the most accurate MBF estimates for simulated data as well as the hardware perfusion

phantom. It is plausible that these two methods yield similar results since it has been

shown that ARMA modeling can be considered as a generalization of the exponential basis

deconvolution in the sense that it also implicitly models the impulse response as a sum

of exponential functions just with a different approach to determine the exponents [80].

ARMA modeling is sensitive to the choice of auto-regressive (L) and moving-average order

(Q) [95] and methods exist to determine the optimal ones [96]. In this thesis, the highest

combination of orders yielding smooth impulse responses (Q = 0 and L = 2) was chosen.

Figure 3.8 (c) shows that the ARMA impulse response does not fulfill the assumption of a

monotonically decaying function, which might be an indication that the ARMA model is

not completely appropriate.

Comparing the bar diagrams of the global mean MBF values with and without outlier

suppression (see Figure 3.9) suggests that ARMA modeling is the method most sensitive

to imperfect motion correction. The same can be deduced from a comparison of the
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scatter plots of all myocardial pixels of all patients with and without outlier suppression in

Figure 3.13. As with Tikhonov regularization, restricting the [CA] time curves to first pass

led to physiologically not meaningful impulse responses in some pixels. With the given

data the promising results reported by Zarinabad et al. [49, 95] could not be reproduced,

which can be explained by the sensitivity of the method to distortions in myocardial [CA]

time curves.

One general aspect that should be mentioned is that deliberately no denoising has been

applied on the [CA] time curves used for deconvolution in order to evaluate the performance

of the deconvolution methods on raw signals and not alter the results by choice of a certain

denoising method. This differs from the study by Zarinabad et al. [49] who applied spatial

and temporal filtering previous to pixel-wise deconvolution analysis. Furthermore, Biglands

et al. [57, 97] suggested to perform up-sampling on the interpolated [CA] time curves. In

this thesis, however, it was of interest to compare the deconvolution methods applied on

signals with a natural sampling rate equal to the mean heart rate rather than comparing

the effects of different sampling resolutions.

4.2 Semi-quantitative analysis

Denoising Denoising is an essential preprocessing step for pixel-wise determination of

semi-quantitative perfusion parameters. A qualitative comparison between Savitzky-Golay

filtering and PCA denoising yielded very similar results for both methods (see Figure 3.3

and 3.4). However, PCA exhibited two distinct advantages that led to the decision to

choose PCA over Savitzky-Golay filtering. First, PCA uses the original data points, so

the data is not altered by interpolation and up-sampling as necessary for Savitzky-Golay

filtering. The low number of data points also results in less computation time of point-wise

operations in semi-quantitative analysis. Second, once the optimal principal component

number has been determined, PCA is extremely fast. Even including the time for optimal

principal component number determination, PCA was faster than adaptive Savitzky-Golay
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filtering for the denoising of the whole heart ROI.

A point of criticism of the chosen method is that arbitrary thresholds need to be set for

subsequent automated determination of the optimal principal component number. First of

all, the percentage S corresponding to the accepted information loss needs to be specified.

As mentioned before, the threshold value had to be increased for one of the eleven patients

since the threshold fixed for the other patients was not reached. A reason for this behavior

could be that the previously determined heart ROI was not optimal in the sense that, apart

from the tissue of interest, additional structures were included in the ROI, which may have

influenced the result of the global filtering process [66]. Also Kim et al. [98], who applied

automated PCA filtering on DCE computed tomography (CT) images, pointed out that

for different clinical settings different threshold values may be appropriate. Consequently,

further investigations are necessary to determine the optimal threshold value for every

patient. A second issue of automated determination of the optimal principal component

number using the FRI criterion concerns that there is no published information about a

general rule for the choice of the maximum lag of the autocorrelation function and the

upper boundary for the second order polynomial fit. In this thesis, the chosen maximum

lag was oriented towards the default value of the Matlab autocorrelation function and the

upper bound was chosen to be one point shorter than the maximum lag. To sum it up,

the determination of the optimal principal component number using the FRI criterion

requires development of decision rules for the choice of threshold values in order to be

fully automated and generally applicable.

Semi-quantitative parameters Semi-quantitative parameters are usually calculated

exclusively for SI time curves. However, the parameters are only determined correctly if

a linear relationship between signal intensity and contrast agent concentration can be

assumed [99]. Since for the applied contrast agent dosage of 0.05mmol/kg body weight

signal saturation can be expected for the AIF as well as myocardial tissue curve [29, 100], SI

to [CA] conversion was performed also for semi-quantitative analysis. In order to investigate

the influence of the SI to [CA] conversion, semi-quantitative parameters were determined

for SI and [CA] data. Relating SI and [CA] semi-quantitative parameters in scatter plots
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of all myocardial pixels of all patients (see Figure 3.7) indicated a non-linear relationship,

which explains the rather low linear correlation values of SI and [CA] semi-quantitative

parameters and the high variation of R2 values among patients (see Table 3.5). The scatter

plots of normalized global mean values of SI and [CA] semi-quantitative parameters of all

patients in Figure 3.6 and the corresponding R2 values suggest that the normalization of

the parameters area under the curve and signal intensity maximum works well.

The correlations between SI semi-quantitative parameters and MBF estimates determined

with Fermi modeling, Tikhonov regularization and ARMA modeling, respectively, have

shown to be only moderate and especially low for the up-slope parameter (see Table 3.7).

Correlating [CA] semi-quantitative parameters with the MBF values determined with the

three deconvolution methods yielded heterogeneous results (see Table 3.8). Fermi modeling

and Tikhonov regularization showed a high correlation with the parameter signal intensity

maximum, while ARMA modeling had the highest correlation with the up-slope parameter.

However, taking into account all three deconvolution methods, the highest correlation

was obtained with signal intensity maximum. The lower correlation of the deconvolution

methods with the up-slope might be surprising since this parameter is considered the most

reliable semi-quantitative parameter for evaluation of myocardial perfusion [101]. However,

studies indicate that the up-slope is only superior if the ratio of up-slope values under

stress and at rest (myocardial perfusion reserve index, MPRI) is used [99, 102, 103].

4.3 Visual analysis

Visual analysis yielded high sensitivities and specificities for the detection of subendocardial

perfusion deficits in semi-quantitative parameter maps of SI data (see Table 3.1). In contrast,

for semi-quantitative parameter maps of [CA] data high specificity but only moderate

sensitivity could be achieved (see Table 3.3). A reason for the lower sensitivity of detection

of perfusion deficits in [CA] semi-quantitative parameter maps may be that they are more

noisy, showing a higher standard deviation relative to the mean value in the myocardial

ROI than obtained for SI semi-quantitative parameter maps. It can be assumed that this
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(a) (b) (c)

Figure 4.1: Exemplary sigmoid function fit to a typical (a) and distorted ((b) and (c)) myocardial [CA]

time curves of the same patient. Imperfect motion correction manifests in sudden jumps in

the signal typically before contrast agent arrival in the myocardium (b) and right after end of

breath-hold ((b) and (c)).

additional noise is introduced by the SI to [CA] conversion algorithm. Visual analysis of

MBF maps yielded the same moderate sensitivity for all three deconvolution methods, but

very different specificity values. The low specificity of ARMA modeling results from its

instable behavior at border pixels between myocardium and LV. Taking into account all

types of parameter maps, signal intensity maximum of SI data performed best. Combining

this finding with the high correlation with the MBF suggests that signal intensity maximum

can be considered a robust parameter for evaluation of myocardial perfusion at rest.

4.4 Outlier detection

A quality map was calculated to identify [CA] time curves distorted due to imperfect

motion correction of the DCE series. Figure 4.1 contrasts the fit of the sigmoid function of

the quality map algorithm to a myocardial signal for which the motion correction produced

a satisfying result (a) with the fit to two signals that were detected as outliers ((b) and (c)).

The phases where the motion correction algorithm showed the highest potential to produce

unsatisfying results were shortly before contrast agent arrival in the myocardium and right

after first pass. This can be explained by the observation that patients typically breath in

a bit deeper before breath hold and show an irregular breathing pattern right afterwards,
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which causes strong displacements of the heart in the raw (not motion-corrected) DCE

series.

Including outlier suppression in the determination of myocardial blood flow did not change

the global mean MBF values significantly (p-values were 0.547, 0.826 and 0.059 for Fermi

modeling, Tikhonov regularization and ARMA modeling, respectively). However, R2 values

of all method comparisons increased, especially the ones with ARMA modeling. The reason

for ARMA modeling appearing most sensitive to imperfect motion correction may be that

it simply reflects the linear differential relation between given AIF and myocardial signal,

which makes the ARMA approach vulnerable to heavily distorted signal curves.

It should be pointed out that the quality map approach cannot distinguish between

signal distortions due to motion or other sources like partial volume effects. However,

it was referred to as motion correction quality map since imperfect motion correction

appeared to be the major reason for distorted signals inside the segmented myocardial ROI

(which already excludes border pixels to the LV and structures outside the myocardium).

Furthermore, outlier detection using a median-derived threshold based on the assumption

that motion correction worked well for the majority of the pixels in the myocardial

ROI. Finally, the sigmoid fit function obviously cannot model the shape of each type of

myocardial tissue curve since depending on the patient the myocardial signal may show an

increase or decrease in amplitude after the first pass. However, that only few parameters

need to be fitted makes this approach very robust. Moreover, outlier detection in the

myocardial ROI works with relative quality values, which allows to spot heavily distorted

signals because they do not deviate from the sigmoid curve in the same pattern as the

other myocardial signals in the ROI.

4.5 Limitations

The obtained estimates of absolute myocardial blood flow could not be compared with

results of the gold standard method PET since the group of patients did not undergo

PET examinations. Also, examinations under pharmacological stress were not feasible.
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(a) (b) (c)

Figure 4.2: Arterial input function (AIF) and exemplary myocardial tissue curve of each patient excluded

from comparative analysis. For the first patient, the maximum of the tissue curve was reached

after the detected end of first pass (a). The second patient had a sampling gap in the up-slope

phase of the AIF (b) and the third patient exhibited generally heavily distorted signals (c).

Furthermore, the sample size of patients was very small. Three of the eleven patients

were excluded from comparative analysis due to characteristics of their SI time curves.

The first excluded patient exhibited myocardial tissue curves which reached their max-

imum value after the automatically determined end of first pass (see Figure 4.2 (a)).

As mentioned before, this was a substantial problem for deconvolution with the Fermi

method, but also the algorithm for determination of the semi-quantitative parameters

failed in this case since it also only evaluates the first pass restricted signal. Consequently,

the commonly applied determination of end of first pass at the valley point of the AIF

should be revised. The second excluded patient had a sampling gap resulting from a

missed ECG trigger exactly at the up-slope part of the AIF (see Figure 4.2 (b)). This

was a particular problem for the algorithm calculating the up-slope which determined

a probably too steep up-slope for the AIF. A solution to this problem may be fitting a

gamma variate function to the AIF. For the deconvolution methods the sensitivity to

single sampling gaps is assumed to be small since they are applied on the entire (or first

pass restricted) signal curve. The third patient was excluded due to heavily distorted

myocardial SI time curves, whose maximum was not reached before the detected end of

first pass (see Figure 4.2 (c)). Also the AIF exhibited a very uncommon shape. The devi-

ation of the expected curve shapes may have been caused by this patient’s atrial fibrillation.
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Regarding the visual analysis of semi-quantitative parameter and MBF maps it should be

mentioned that the windowing was not optimized. Furthermore, applying a 2D smoothing

filter on the maps may have increased the visibility of perfusion deficits, especially in the

semi-quantitative parameter maps of [CA] data and the MBF maps.

The success of semi-quantitative and quantitative perfusion analysis depends fundamentally

on the quality of preceding image registration. Moreover, segmentation has a crucial

influence on the statistical analysis of the values inside the defined region. The DCE data

was registered by an in-line program of the MR Scanner directly after image acquisition.

Standard instead of advanced settings were chosen to save computation time. Segmentation

was done manually by a moderately experienced user. Therefore, it cannot be ruled out

that occasionally signals from outside the myocardium were included in the myocardial

ROI.

Several limitations concern the estimation of contrast agent concentration from signal

intensity. First, the same constant flip angle was assumed for every pixel because the

acquisition of B1 maps of the heart for B1 inhomogeneity correction was not feasible

in the clinical setting. Second, the MOLLI sequence is known to underestimate the T1

value [104], but still was chosen due to its robustness and high precision [104]. An anyway

probably more significant limitation in T1 determination was the estimation of the pre-

contrast myocardial T1 value from a single ROI in the T1 map. A sector-wise estimation

of T1 values would have been desirable, but was not feasible due to issues regarding

resolution and partial volume effects in the T1 maps. Further investigations will be needed

to evaluate the influence of varying myocardial T1 values on perfusion quantification. Third,

employing Equation (1.1), fast water exchange [105] and the same T1 relaxivity constant

were assumed for the left ventricular blood pool and the myocardium. The fast exchange

assumption may hold for whole blood, but may be inappropriate for myocardial tissue,

whose water exchange might rather be described using the slow or intermediate exchange

condition [105]. However, if and under which conditions water exchange influences the

analysis of myocardial DCE-MRI using extracellular contrast agents is controversial [106,

107] and still a topic of ongoing research.
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4.6 Conclusion

Pixel-wise quantification of myocardial blood flow was feasible with all three deconvolution

methods (Fermi modeling, Tikhonov regularization with B-splines, ARMA modeling).

Methodological differences led to significantly different global mean MBF estimates for

each approach. However, the correlations between the results of the different deconvo-

lution methods (especially Fermi modeling and Tikhonov regularization with B-splines)

were strong. Considering practical aspects, Fermi modeling appeared to be the prefer-

able deconvolution method due to its robustness and computational efficiency. Tikhonov

regularization with B-splines was the slowest method and requires a refinement of the

determination of the optimal regularization parameter in order to be generally applicable

in pixel-wise analysis. ARMA modeling has shown to be sensitive to signal distortions due

to imperfect motion correction.

Determination of pixel-wise semi-quantitative parameters turned out to be less trivial than

often stated in the literature. Sophisticated denoising methods and minimum/maximum

detection are necessary to cope with all kinds of physiologic and pathologic signal shapes.

Assuming MBF estimates describe myocardial perfusion accurately, the comparison with

semi-quantitative parameters of [CA] data indicated that certain semi-quantitative pa-

rameters may not be appropriate descriptors of myocardial perfusion. Only the parameter

signal intensity maximum showed high correlations with MBF estimates. The comparison

of MBF estimates and semi-quantitative parameters of SI data showed that there is no

strong correlation between them. Consequently, semi-quantitative parameters determined

for data acquired in a standard clinical setting cannot be used as an estimator for absolute

myocardial perfusion.

Pixel-wise quantitative perfusion maps have shown to be insensitive to the dark rim artifact

and to clearly display information about location and transmurality of perfusion deficits.

For pure visual analysis, maps of SI semi-quantitative parameters are preferable - especially

the signal intensity maximum map - due to their low noise level. It can be concluded that

visual analysis of pixel-wise quantitative perfusion maps has the potential to replace visual
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analysis of DCE series in the future.

Retrospective conversion from signal intensity to contrast agent concentration using a

signal model allows for standard clinical imaging procedures and contrast agent dosages

recommended by clinical guidelines. However, for more accurate estimates of contrast agent

concentration several aspects need to be improved, especially the estimation of myocardial

pre-contrast T1 values from T1 maps.

Further research is needed to evaluate the behavior of the semi-quantitative and quantita-

tive methods when they are applied on myocardial DCE-MRI data acquired in patients

under stress condition.
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