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Abstract

The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite mission,
which was operational from spring 2009 to autumn 2013, was dedicated to determine the
static Earth gravity field on global scale in particular in the medium-wavelength range of
the gravity signal spectrum. The key component of the GOCE mission was the gradiometer
instrument, which enabled the measurement of the gravity gradient tensor, i.e. the second
order derivatives of the Earth’s gravitational potential. This thesis is dedicated to investigate
the applicability of the GOCE gradients for regional and local applications in geodesy and
geophysics.

The Least Squares Collocation method was chosen for gravity field computations. Its main
advantage is the capability to handle all types of quantities related to the gravity field, either
representing input observations or signals to be estimated. With the implemented approach
the corresponding covariances can be rotated to an arbitrary reference frame, which is of
great importance when dealing with GOCE gradients. The calculations in this work are
based on a consistent Remove-Compute-Restore concept, in which the systematic effects of
a global gravity potential model, topography, isostasy and the atmosphere are considered by
appropriate modeling.

Due to the specific mission and instrument design, the GOCE gravity gradients cannot be
used directly as observations. On the one hand, the measurements were taken in the gra-
diometer instrument frame and are only accurate enough for further use in a particular
frequency range. On the other hand, not all components of the gravity gradient tensor could
be determined with the same accuracy. In order to cope with these problems, appropri-
ate processing strategies have been developed, which include a combination of Wiener and
high-pass filters to reduce the colored noise of the GOCE observations. Besides the filtered
observations, also information on the remaining measurement errors are an important result
of this preprocessing step.

In a first application, the GOCE gradients are used in combination with terrestrial gravity
data for the determination of a geoid solution within the Austrian region. The comparison
with a gravity-only solution highlights the beneficial impact of including GOCE gradient
observations in particular in the medium-wavelength part of the gravity signal. A validation
with independent GPS/levelling observations from the Austrian Bundesamt für Eich- und
Vermessungswesen shows that the root mean square of the differences can be decreased from
5.5 cm to 4.6 cm by including GOCE gradient observations.

Moreover, an approach for the determination of the Moho surface with GOCE gradients based
on the Airy-Heiskanen isostatic concept has been developed as a second field of application.
Since the gradiometer instrument is not able to resolve the long-wavelength structures of the
gravity field, the residual Moho surface in the spectral range of spherical harmonic degrees
and orders 50 to approximately 250 has been estimated. Based on empirical values for a mean
Moho depth of 30 km and a constant crust-mantle density contrast of 350 kgm−3, residual
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Moho variations between −19.9 km and 13.5 km have been derived within the investigated
central European area. The results are validated with external regional and global Moho
models, which have been derived from seismic and gravimetric measurements. It can be
shown that the Moho model derived in this thesis is resolving more detailed structures in
terms of spatial resolution due to the dense and homogeneous data coverage of the GOCE
mission. Further comparisons with several local seismic studies reveal that the resulting
Moho features can be directly linked to geophysical and tectonic units.
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Kurzfassung

Die Gravity field and steady-state Ocean Circulation Explorer (GOCE) Satellitenmission
war von Frühling 2009 bis Herbst 2013 operationell und wurde für die Bestimmung der sta-
tischen Komponente des globalen Erdschwerefeldes, insbesondere im Bereich der mittleren
Wellenlängen des Gravitationssignalspektrums, konzipiert. Das Herzstück von GOCE war
das Gradiometerinstrument, das die Messung der zweiten Ableitungen des Gravitationspo-
tentials und somit des Schweregradiententensors ermöglichte. In dieser Arbeit wird die Ver-
wendbarkeit der GOCE Gradienten für regionale und lokale Anwendungen in der Geodäsie
und Geophysik untersucht.

Für die Schwerefeldberechnungen wurde die Methode der Kollokation nach kleinsten Quadra-
ten verwendet. Deren großer Vorteil ist die Möglichkeit, verschiedenste Schwerefeldgrößen zu
verarbeiten, sei es als Beobachtungen oder als zu schätzende Signale. Mit dem implementier-
ten Ansatz können die entsprechenden Kovarianzen in ein beliebiges Referenzsystem rotiert
werden, was im Fall von GOCE Gradienten vorteilhaft ist. Die Berechnungen in dieser Arbeit
basieren auf einem konsistenten Remove-Compute-Restore Konzept, in dem die systemati-
schen Einflüsse eines globalen Schwerefeldmodells, der Topographie, der Isostasie und der
Atmosphäre durch eine adäquate Modellierung berücksichtigt werden.

Aufgrund der Konzeption der Mission können die GOCE Schweregradienten nicht direkt als
Beobachtungen eingeführt werden. Zum einen wurden die Messungen im instrumentenspezi-
fischen Koordinatensystem aufgezeichnet und sind nur in einem eingeschränkten Frequenzbe-
reich mit ausreichender Genauigkeit verfügbar. Zum anderen wurden nicht alle Komponenten
des Gradiententensors mit derselben Genauigkeit gemessen. Aus diesen Gründen wurden ent-
sprechende Strategien zur Lösung dieser Problematiken entwickelt, wobei eine Kombination
aus Wiener- und Hochpassfiltern zur Reduktion des farbigen Rauschens der GOCE Beob-
achtungen angewendet wurde. Neben den gefilterten Beobachtungen selbst sind auch die
Informationen über die verbleibenden Messfehler wichtige Ergebnisse dieser Vorprozessie-
rung.

In einer ersten Anwendung wurden die GOCE Gradienten in Kombination mit terrestrischen
Schweremessungen zur Bestimmung einer Geoidlösung im österreichischen Gebiet verwendet.
Der Vergleich einer rein terrestrischen Lösung mit der Kombinationslösung zeigt den Mehr-
wert der Hinzunahme von GOCE Gradienten im Speziellen im mittelwelligen Bereich des
Schweresignals. Eine Validierung mit unabhängigen GPS/Nivellement Beobachtungen des
Bundesamts für Eich- und Vermessungswesen zeigt, dass das quadratische Mittel der Diffe-
renzen durch die zusätzlichen GOCE Beobachtungen von 5.5 cm auf 4.6 cm gesenkt werden
kann.

Als zweite Anwendung der GOCE Gradienten auf regionaler Ebene wurde ein Ansatz zur
Bestimmung der Moho Grenzfläche basierend auf dem Konzept der Isostasie nach Airy-
Heiskanen entwickelt. Da das Gradiometer die langwelligen Anteile des Schwerefeldes nicht
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auflösen kann, wurde eine residuale Moho geschätzt, die dem spektralen Bereich einer sphärisch-
harmonischen Reihenentwicklung von Grad und Ordnung 50 bis etwa 250 entspricht. Auf
Basis von empirischen Werten für eine mittlere Moho Tiefe von 30 km und einem konstanten
Dichtekontrast zwischen Erdkruste und -mantel von 350 kgm−3, welche im zentraleuropäi-
schen Untersuchungsgebiet gelten, wurden Variationen in der Moho zwischen −19.9 km und
13.5 km bestimmt. Die Ergebnisse wurden mit externen globalen und lokalen Moho Modellen
validiert, die aus seismischen und gravimetrischen Messungen abgeleitet wurden. Die Un-
tersuchungen zeigen, dass das berechnete Moho Modell detailliertere räumliche Strukturen
abbildet, was auf die dichte und homogene Datenüberdeckung der GOCE Mission zurück-
zuführen ist. Weitere Vergleiche mit mehreren lokalen seismischen Studien zeigen, dass die
resultierenden Moho Strukturen direkt mit geophysikalischen und tektonischen Einheiten in
Verbindung gebracht werden können.
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1 Introduction

The determination of the Earth’s gravity field is one of the main objectives in the field
of geodesy. Nowadays, a wide range of techniques for observing the gravity and related
quantities exists. However, the observables considerably differ in their information content
at different spectral scales of the gravity signal. Space techniques like satellite laser ranging
(SLR) are primarily used to determine the very long wavelength components of the gravity
signal, and the Gravity Recovery and Climate Experiment (GRACE) satellite mission in
particular contributes to the long wavelengths. On the other hand, the high frequency gravity
constituents can be covered with terrestrial gravity observations and the ultra-high frequency
signals are commonly accounted for by accurate topographic models. However, the spectral
coverage at the transition from long to short wavelengths has been underrepresented for a
long time.

With the advent of the Gravity field and steady-state Ocean Circulation Explorer (GOCE)
satellite mission, launched on the 17th of March 2009 by the European Space Agency (ESA),
a new gravity field observable has become available to the scientific user community. For the
first time, gravity gradients, representing the tensor of second order derivatives of the gravity
potential, could be measured in space by an exclusively designed gradiometer instrument.
These observations are superior to other gravity field measurements in particular in the
medium wavelengths of the gravity signal spectrum and thus have the ability to close the
existing gap. The scientific goal of the mission was the determination of the static component
of the Earth’s gravity field with an accuracy level of 1 to 2 cm in terms of geoid heights on
global scale with a spatial resolution of 100 km. This was achieved by estimating globally
best fitting gravity field solutions, which are parametrized as a series of spherical harmonics
coefficients, with complex workflows and methods.

This thesis is triggered by the initial question, if these measurements could also be exploited
for the purpose of gravity field determination on regional or local scale. Due to the dense
spatial coverage of GOCE gradients and the outstanding performance in the medium wave-
lengths, the use of gradients as in-situ observations poses an interesting field for correspond-
ing investigations. For such regional scale applications, Least Squares Collocation (LSC)
is a standard method for the computation of the Earth’s gravity field which, for instance,
is applied for the determination of the current official Austrian geoid solution. The major
advantage of LSC is its ability to combine various kinds of complementary gravity field sig-
nals, e.g. geoid undulations, gravity anomalies or also gravity gradients from GOCE and will
therefore also be the computation method applied in this thesis. However, the use of GOCE
gradients as direct observations in LSC is not straightforward due to several mission-specific
characteristics, which will be reviewed in detail in this work. This thesis proposes a set of nec-
essary tools and strategies to handle these difficulties. In this way, the range of applications
for GOCE gradients observations can be extended to regional scales.
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1 Introduction

In the beginning of this thesis, the necessary theoretical foundations are reviewed in chapter 2.
After an overview on the various reference frames and coordinate systems appearing within
this thesis, the basics of the potential theory are reflected with a focus on the expansion of
the Earth’s gravitational potential into a spherical harmonics series. The chapter ends with
the description of the Earth’s disturbing gravity field and the manifold gravity field quantities
that can be used for its representation.

In chapter 3, the concept of the LSC approach for the estimation of disturbing gravity
field quantities is introduced. The required steps for the application to GOCE gravity gra-
dients are shown. In particular, the necessary covariance propagations for second order
derivatives of the disturbing potential are derived. The implemented approach is indepen-
dent of the reference frame, which is of great importance when dealing with GOCE gradi-
ents.

Chapter 4 deals with the elements for a consistent Remove-Compute-Restore (RCR) method
within gravity field processing. The systematic influences of global Earth Gravity field Mod-
els (EGMs), the atmospheric and topographic masses and the isostatic compensation are
discussed and their proper consideration is proposed. Concerning the atmospheric effects,
an independent Atmospheric Density Model (ADM) has been developed within this chap-
ter.

The details of the GOCE mission are summarized in chapter 5. Besides a general overview
on the mission concept, the available observations and official data products which are of
interest for this thesis are introduced.

Using GOCE gravity gradients as in-situ observations requires appropriate preprocessing
steps and methodological developments, which are treated in chapter 6. At first, the signal
characteristics of the gradient time series are investigated. Afterwards, the applied filter pro-
cedure for noise reduction is discussed, which is followed by some investigations on the possible
strategies for introducing the GOCE observations into the LSC approach.

Two different fields of applications are described in chapter 7 and chapter 8. Within the
former, GOCE gradients are used in combination with terrestrial gravity data to determine
a new geoid solution for Austria. After a discussion of the current geoid solution, the used
data sets and preprocessing steps are described. The results of the geoid computations are
validated with independent GPS/levelling observations.

Furthermore, an approach for the determination of the Moho surface with GOCE gradients is
introduced in chapter 8. First, the Moho and its role within the Earth’s structure is defined.
Then, a concept for the derivation of the Moho depth using GOCE gradients in an LSC
procedure is proposed. Afterwards, the data and preprocessing is described and the results
of the Moho computations are shown. The estimated Moho depths are compared to external
models and their geophysical plausibility is investigated by a detailed validation with other
local Moho studies. The results and possible improvements are summarized at the end of
this chapter.

Finally, chapter 9 gives a summary of the investigations and results achieved within this
study, and the thesis is closed with an outlook on possible improvements and further devel-
opments.
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2 Theoretical background

This chapter has the purpose to provide the basic theoretical background for this thesis. As
there are various reference frames and systems involved, this will be the first issue to be
treated. Afterwards, a general overview on potential theory and the Earth’s gravity field
is given, leading to the definition of gravity field quantities used in these studies. In order
to keep the body of this work concise, selected topics may also be found in the appendices,
which will be referred to when required.

2.1 Reference frames and coordinate systems

This section gives an overview of the coordinate systems and reference frames as well as of
the transformations between the systems which are of relevance in this thesis. Following the
conventions, e.g. given in Seeber (1993), one should distinguish between the terms reference
system and reference frame. While the first term should be understood as the fundamental
theoretical definition including standards and models for its implementation, its actual real-
ization based on observations is commonly denoted as reference frame.

2.1.1 Global Cartesian coordinate systems and frames

Inertial Reference Frame (IRF) The Celestial Reference System (CRS) is a three-dimen-
sional space-fixed reference system with its origin coinciding with the solar barycenter. By
convention, the Z-axis of the Cartesian system is defined as the mean rotation axis of the
Earth at the standard epoch J2000.0, the X-axis is the intersection between the Earth’s
equatorial plane and the ecliptic plane pointing towards the vernal equinox, while the Y -axis
is complementing a right-handed coordinate system. Neglecting the minor accelerations of
the Earth while orbiting the sun, this system can be considered as an inertial reference system
and is therefore also denoted as Conventional Inertial System (CIS).

The International Earth Rotation and Reference System Service (IERS) establishes the Inter-
national Celestial Reference Frame (ICRF) as a realization, which is also used as a standard
for the GOCE mission as outlined in Gruber et al. (2010a). To be consistent with the
nomenclature of the GOCE standards, this type of reference frame will be abbreviated as
IRF throughout the thesis.

3



2 Theoretical background

Earth-fixed Reference Frame (ERF) The Conventional Terrestrial System (CTS) has its
origin in the Earth’s Center Of Mass (COM) with the Z-axis associated with the mean rota-
tion axis, which is defined by the Conventional Terrestrial Pole (CTP). TheX-axis is pointing
towards the Greenwich meridian, thus the CTS is co-rotating with the Earth.

A corresponding reference frame called International Terrestrial Reference Frame (ITRF) is
again provided by the IERS. GOCE data and products refer to the definitions given in Gruber
et al. (2010a) or in the IERS Conventions (2003) published by McCarthy and Petit (2004).
In the naming conventions of the GOCE products a data type EGG_TRF_2 can be found
(see section 5.4.1), which actually does not refer to the kind of reference frame introduced at
this place. In order to avoid confusion, the notation for this Earth-fixed terrestrial reference
frame will be ERF in the sequel.

The transformation between the space-fixed IRF and the Earth-fixed ERF is described in
detail again in Gruber et al. (2010a), McCarthy and Petit (2004) or in standard literature
like Seeber (1993). The transformation of an arbitrary vector x between the two frames can
be summarized by the consecutive rotations

xERF = RMRSRNRPRBxIRF (2.1)

where

RM . . . rotation matrix for polar motion,

RS . . . rotation matrix for Earth rotation (Greenwich apparent sidereal time GAST),

RN . . . rotation matrix for nutation,

RP . . . rotation matrix for precession,

RB . . . rotation matrix for frame bias.

Figure 2.1: Sketch of the global Cartesian reference frames IRF and ERF

During the GOCE mission lifetime an updated version of IERS Conventions (2010) was
published by Petit and Luzum (2010) with modified definitions for the computation of the
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2.1 Reference frames and coordinate systems

rotation matrices. Since GOCE standards still refer to the IERS Conventions (2003), this
older version is also used in this thesis.

2.1.2 Global ellipsoidal and spherical coordinates

For several reasons in geodesy it can be advantageous to represent a vector x = (x, y, z)T

to a distinct point P given in a Cartesian reference frame in terms of ellipsoidal coordinates
latitude ϕ, longitude λ and height above a reference ellipsoid h. The reference ellipsoid is
centered at the same origin as the Cartesian frame with the 0° longitude defined by the
Greenwich meridian and the semi-minor axis of the ellipsoid coinciding with the Z-axis of
the Cartesian frame. The geometry of the ellipsoid is determined by the semi-major and
semi-minor axis a, b, as indicated on the left of Figure 2.2.

Figure 2.2: Global ellipsoidal (left) and spherical (right) coordinate systems

The transformations between the two systems are given for instance in Hofmann-Wellenhof
and Moritz (2005) by x

y
z

 =

 (N + h) cosϕ cosλ
(N + h) cosϕ sinλ(

b2

a2N + h
)

sinϕ

⇔
 ϕ

λ
h

 =

 arctan z+e′2b sin3 θ
p−e2a cos3 θ

arctan y/x
p

cosϕ −N

 , (2.2)

with

N =
a2√

a2 cos2 ϕ+ b2 sin2 ϕ
,

p =
√
x2 + y2,

e2 = (a2 − b2)/a2,

e′2 = (a2 − b2)/b2,

θ =
za

pb
.

(2.3)
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2 Theoretical background

Using a reference sphere instead of a reference ellipsoid simplifies the equations to x
y
z

 =

 r cosϕ cosλ
r cosϕ sinλ
r sinϕ

⇔
 ϕ

λ
r

 =

 arctan

√
x2+y2

z
arctan y/x√
x2 + y2 + z2

 , (2.4)

where r is the geocentric radius, see Figure 2.2, right.

2.1.3 Local level systems

As a third type of coordinate system which is used in this thesis a local Cartesian system is
introduced. Its origin is defined by an arbitrary point O in space. For terrestrial applications
and measurements, local astronomical or local ellipsoidal systems are common. In the first
case, the Z-axis of the local system is defined by the tangent to the plumb line, that is the
direction of the gravity vector g, at the point where the system is centered (i.e. where the
measurements are taken). The X-axis is pointing North and Y to the East as shown on the
left of Figure 2.3. This choice of the triad defines a left-handed Cartesian system, which is
also commonly denoted as North-East-Up system.

The local ellipsoidal system only differs in the definition of the Z-axis, which is corresponding
to the ellipsoid normal in this case, which is sketched on the right of Figure 2.3. In case of
satellite applications, the origin of such a system is often defined by the satellite’s COM and
the Z-axis is parallel to the direction to the Earth’s center, radially pointing outwards. Due to
the orientation to the North direction, such systems will be denoted as Local North-Oriented
reference Frame (LNOF).

Figure 2.3: Astronomical (left) and ellipsoidal (right) local frames

A vector ∆x = (x, y, z)T of coordinate differences observed in the ellipsoidal LNOF can be
transformed to the global ERF by

∆xERF = RERFLNOF ∆xLNOF . (2.5)

The rotation matrix RERFLNOF can be derived by the projection of the axes of the LNOF onto
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2.2 Potential theory

those of the ERF, which results in

RERFLNOF =

− sinϕ cosλ − sinλ cosϕ cosλ
− sinϕ sinλ cosλ cosϕ sinλ

cosϕ 0 sinϕ

 , (2.6)

where ϕ is in this case defined by the angle between the local Z-axis and the globalXY -plane,
and λ is the angle between the meridian through the origin of the local system and the
Greenwich meridian. For the transformation of a vector given in an astronomical frame, the
astronomical coordinates Φ and Λ have to be used accordingly.

2.2 Potential theory

This section summarizes the fundamentals of potential theory which are of interest for this
thesis. For an extensive treatment of the theoretical background the reader is referred to, e.g.,
Heiskanen and Moritz (1967) or Torge (1989) and references therein.

Starting with Newton’s law of gravitation, the attracting force between two point masses
m1 and m2, located at the positions r1 and r2 with respect to an arbitrary origin, reads

F = Gm1 m2
(r2 − r1)

|r2 − r1|3
, (2.7)

where G = 6.673 84× 10−11 m3/kg s2 is the gravitational constant (Mohr et al., 2012). Each
attracting mass m1 defines a force field with the field strength f , the gravitational accelera-
tion, acting on another massm2 at an arbitrary distance (r2−r1) with

f = Gm1
(r2 − r1)

|r2 − r1|3
, (2.8)

with the resulting force

F = f m2 . (2.9)

Since gravity is a conservative force field, there exists a scalar function called gravitational
potential V , which is related to the gravitational acceleration vector by

f = ∇V =

(
∂V

∂x
,
∂V

∂y
,
∂V

∂z

)T
. (2.10)

The gravitational potential of a solid body can be expressed with the Newtonian volume
integral formula by

V = G

∫∫∫
Ω

1

l
ρ dΩ , (2.11)

where ρ is the density of the body and l = |r2− r1| is again the distance between a point P ,
at which the potential is evaluated, and the integration point Q associated with the body.
The integration is performed for the entire body volume Ω in a three-dimensional coordinate
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2 Theoretical background

system. If the Laplace operator 4 is applied to the potential, it can be shown that V satisfies
the Poisson’s equation

4V (x, y, z) =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
V = −4πGρ . (2.12)

If considered outside the attracting masses where the density ρ becomes zero, the Poisson’s
equation turns into the Laplace’s equation

4V = 0 , (2.13)

which is a fundamental property in particular in geodesy, since it implies that the gravitational
potential can be represented by harmonic functions.

2.2.1 Spherical harmonics

Due to the Earth’s, in first approximation, spherical shape, the spherical harmonic functions
are the most used harmonic functions to solve the Laplace equation of the Earth’s gravi-
tational field. For the derivation of spherical harmonics, the spherical coordinates radius
r, co-latitude θ = 90◦ − ϕ and geocentric longitude λ are introduced instead of Cartesian
coordinates. The conversion between the two systems is given by Eq. (2.4). The Laplace
equation (2.13) can then be formulated in spherical coordinates as

r2∂
2V

∂r2
+ 2r

∂V

∂r
+
∂2V

∂θ2
+ cot θ

∂V

∂θ
+

1

sin2 θ

∂2V

∂λ2
= 0 , (2.14)

and it can be shown that this differential equation is solved by two possible series expansions,
denoted as solid spherical harmonics

V (r, θ, λ) =
∞∑
n=0

rnYn(θ, λ) or V (r, θ, λ) =
∞∑
n=0

1

rn+1
Yn(θ, λ) , (2.15)

with the so-called Laplace’s surface spherical harmonics Yn which are defined as homogeneous
harmonic polynomials of degree n (integer numbers 0, 1, . . . ,∞) on the surface of a unit sphere
with radius r = 1. Once again, Yn(θ, λ) can be reformulated as a harmonic differential
equation in θ and λ, for which the solutions exist if

Yn(θ, λ) = Pnm(cos θ) cosmλ or Yn(θ, λ) = Pnm(cos θ) sinmλ . (2.16)

Here, Pnm(cos θ) is the Legendre function (cf. Appendix A.1) and m is defining the order
of the series expansion again in integer numbers 0, 1, . . . ,≤ n. Apart from the Legendre
function Pnm(cos θ), there exists another solution for Laplace’s differential equation, denoted
as Legendre function of the second kind Qnm(cos θ). For spherical harmonics expansions this
function is not practicable, since it produces singularities at the poles (co-latitudes θ = 0 or
π). However, they play an important role in ellipsoidal harmonics, which will not be treated
in this thesis. For more information on this subject, the reader is referred to Heiskanen and
Moritz (1967).
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2.2 Potential theory

The general solution for the Laplace surface spherical harmonics is the linear combination of
all possible solutions

Yn(θ, λ) =
n∑

m=0

[cnmPnm(cos θ) cosmλ+ snmPnm(cos θ) sinmλ] , (2.17)

where cnm and snm are arbitrary constants commonly denoted as spherical harmonics co-
efficients. Another common convention for the Laplace surface harmonics is to combine

Cnm(θ, λ) = Pnm(cos θ) cosmλ and Snm(θ, λ) = Pnm(cos θ) sinmλ , (2.18)

so Eq. (2.17) simplifies to

Yn(θ, λ) =
n∑

m=0

[cnm Cnm(θ, λ) + snm Snm(θ, λ)] . (2.19)

In an alternative way, each harmonic polynomial Yn(θ, λ) itself can be represented by a
linear combination of 2n+ 1 linearly independent basis polynomials Ynm(θ, λ) and arbitrary
coefficients anm

Yn(θ, λ) =
2n∑
m=0

anm Ynm(θ, λ) =
n∑

m=−n
anm Ynm(θ, λ) , (2.20)

which are related to Eq. (2.17) and Eq. (2.19) by

Ynm(θ, λ) =

{
Cnm(θ, λ) = Pnm(cos θ) cosmλ

Sn|m|(θ, λ) = Pn|m|(cos θ) sin |m|λ
, anm =

{
cnm . . . m = 0, . . . , n

sn|m| . . . m = −n, . . . ,−1
.

(2.21)

An essential property of the basis polynomials Ynm(θ, λ) is their orthogonality which implies
that integrating the product of two different kinds of Ynm(θ, λ) over the unit sphere σ is

∫∫
σ

Ynm(θ, λ)Yn′m′(θ, λ)dσ =


4π

(2− δ0m)(2n+ 1)

(n+ |m|)!
(n− |m|)!

. . . n = n′ ∧m = m′

0 . . . otherwise
, (2.22)

with

∫∫
σ

dσ =

2π∫
λ=0

π∫
θ=0

sin θ dθ dλ = 4π . (2.23)

Using these orthogonality relations, one can easily derive the unknown spherical harmonics
coefficients anm by multiplication of Eq. (2.20) with Ynm(θ, λ) and integrating the product
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2 Theoretical background

over the unit sphere σ, which leads to

anm =
(2− δ0m)(2n+ 1)

4π

(n− |m|)!
(n+ |m|)!

∫∫
σ

Yn(θ, λ)Ynm(θ, λ)dσ . (2.24)

For reasons of convenience, in geodesy the spherical harmonics are commonly normalized
in such a way that the average square of the so-called fully normalized surface spherical
harmonics basis functions Ȳnm(θ, λ) over the unit sphere is

1

4π

∫∫
σ

Ȳ 2
nm(θ, λ)dσ = 1 , (2.25)

with

Ȳnm(θ, λ) =

{
C̄nm(θ, λ) = P̄nm(cos θ) cosmλ

S̄n|m|(θ, λ) = P̄n|m|(cos θ) sin |m|λ
, (2.26)

using the fully normalized Legendre functions P̄nm (cf. Appendix A.1). This normalization
is also advantageous from a numerical perspective, since otherwise the unnormalized values
would soon become very large. The simple relation between the conventional spherical har-
monics coefficients anm of Eq. (2.24) and their corresponding fully normalized version ānm is

ānm =

√
1

(2− δ0m)(2n+ 1)

(n+ |m|)!
(n− |m|)!

anm . (2.27)

Combining the Laplace surface spherical harmonics of Eq. (2.17) and the solid spherical
harmonics of Eq. (2.15) we obtain the general solutions of the gravitational potential as fully
normalized spherical harmonics series

Vi(r, θ, λ) =
∞∑
n=0

rn
n∑

m=0

(c̄nm cosmλ+ s̄nm sinmλ) P̄nm(cos θ) ,

Ve(r, θ, λ) =

∞∑
n=0

1

rn+1

n∑
m=0

(c̄nm cosmλ+ s̄nm sinmλ) P̄nm(cos θ) ,

(2.28)

or in a more compact notation using the Laplace spherical harmonics of Eq. (2.20)

Vi(r, θ, λ) =
∞∑
n=0

rn
n∑

m=−n
ānm Ȳnm(θ, λ) ,

Ve(r, θ, λ) =

∞∑
n=0

1

rn+1

n∑
m=−n

ānm Ȳnm(θ, λ) .

(2.29)

The remarkable differences between Vi and Ve in the equations (2.28) or (2.29) are related to
the radial distance r of the position at which the potential is considered. If we again adopt
the simple case of a unit sphere with radius r = 1, we can instantly see that the series Vi
converges if r ≤ 1, thus the Laplace equation is satisfied inside the unit sphere. On the other
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2.2 Potential theory

hand, we obtain a convergent series for Ve if r ≥ 1, so Ve is harmonic in the exterior of the
unit sphere. In case of an arbitrary sphere with radius r = R the same differentiation of
internal potential Vi for r ≤ R and external potential Ve for r ≥ R can be made if we write

Vi(r, θ, λ) =

∞∑
n=0

( r
R

)n n∑
m=−n

ānm Ȳnm(θ, λ) ,

Ve(r, θ, λ) =
∞∑
n=0

(
R

r

)n+1 n∑
m=−n

ānm Ȳnm(θ, λ) .

(2.30)

2.2.2 The Earth’s gravitational potential in spherical
harmonics

The gravitational potential of the Earth is defined by the Newtonian volume integral Eq. (2.11)
for which the integration has to be performed for the entire Earth

V = G

∫∫∫
Ω

1

l
ρ dΩ .

In order to obtain a more convenient expression for the gravitational potential, one can
expand the reciprocal distance 1/l between evaluation point P (r, θ, λ) and integration point
Q(r′, θ′, λ′) in spherical coordinates into a series of Legendre polynomials

1

l
=

1

r

∞∑
n=0

(
r′

r

)n
Pn(cosψ) (2.31)

where ψ is the angle between the radial vectors of P and Q, also given by the spherical
distance on the unit sphere

cosψ = cos θ cos θ′ + sin θ sin θ′ cos (λ′ − λ) . (2.32)

Next, we can use the addition theorem of spherical harmonics (Hobson, 1931), which is

Pn(cosψ) =
1

2 n+ 1

n∑
m=−n

Ȳnm(P ) Ȳnm(Q) , (2.33)

and insert this in combination with Eq. (2.31) into Eq. (2.11) to obtain the integral formula
for the entire body volume Ω in dependence of the integration point Q

V (P ) = G

∫∫∫
Ω(Q)

1

r

∞∑
n=0

(
r′

r

)n 1

2 n+ 1

n∑
m=−n

Ȳnm(P ) Ȳnm(Q) ρ(Q) dΩ(Q) . (2.34)

Expanding with RM/RM , where R represents the mean Earth’s equatorial radius and M
is the Earth’s mass, and changing the order of summations and integrations leads to the
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definition of the gravitational potential for the exterior space

Ve(P ) =
GM

R

∞∑
n=0

(
R

r

)n+1 n∑
m=−n

 1

M(2 n+ 1)

∫∫∫
Ω(Q)

(
r′

R

)n
Ȳnm(Q) ρ(Q) dΩ(Q)

 Ȳnm(P ).

(2.35)

Defining the spherical harmonics coefficients for the exterior

āenm =
1

M(2 n+ 1)

∫∫∫
Ω(Q)

(
r′

R

)n
Ȳnm(Q) ρ(Q) dΩ(Q) , (2.36)

we arrive at the fully normalized spherical harmonics expansion of the gravitational potential
for the exterior space

Ve(P ) =
GM

R

∞∑
n=0

(
R

r

)n+1 n∑
m=−n

āenmȲnm(P ) . (2.37)

In the same manner, we can derive the gravitational potential for the interior space by

Vi(P ) =
GM

R

∞∑
n=0

( r
R

)n n∑
m=−n

āinmȲnm(P ) , (2.38)

with the spherical harmonics coefficients for the inner space

āinm =
1

M(2 n+ 1)

∫∫∫
Ω(Q)

(
R

r′

)n+1

Ȳnm(Q) ρ(Q) dΩ(Q) . (2.39)

12



2.3 The gravity field of the Earth

2.3 The gravity field of the Earth

The gravitational acceleration is the fundamental force which is acting on a unit mass located
on the Earth’s surface due to the gravitational attraction from the Earth’s mass. Since the
Earth is rotating, there exists also a centrifugal acceleration z which is influencing the point
mass, with its norm given by

z = ω2 d , (2.40)

where d denotes the radius of the circle of latitude given in an ERF by d =
√
x2 + y2 and ω

is the mean angular velocity of the Earth’s rotation. The associated centrifugal potential Φ
is then given by the analytic function

Φ =
1

2
ω2(x2 + y2) . (2.41)

The Earth’s gravity potential W is the sum of the gravitational potential V generated by the
Earth’s masses and the centrifugal potential Φ

W = V + Φ . (2.42)

The geometry of the gravity field can be described by surfaces which are defined by a uniform
gravity potential W , the so-called equipotential or level surfaces. One of these surfaces is
the geoid, which is the equipotential surface W = W0 = constant that coincides with the
physical surface of the mean ocean at rest and is virtually continued beneath the continents.
In geodetic sense, this is the most important level surface, as it serves as reference for the
definition of height systems. The gravity vector g is, analogously to the gravitational vector
in Eq. (2.10), the gradient of the gravity potential

g = ∇W =

(
∂W

∂x
,
∂W

∂y
,
∂W

∂z

)T
. (2.43)

The direction of g is perpendicular to the equipotential surface at a specific point and defines
also the direction of the plumb line, i.e. the vertical direction, at this point.

For this thesis, the Gravity Gradient Tensor (GGT) Wij , also called Eötvös tensor, is a
central gravity field quantity. It contains the second order derivatives of the gravity poten-
tial W , which are measured by the GOCE satellite mission (actually, the provided satellite
observation is not the gravity gradient tensor but the gravitational gradient tensor without
any centrifugal constituents, see section 5.2). The symmetric gravity gradient tensor is the
gradient of the gravity vector ∇g = ∇∇W given in the Cartesian coordinate system by

Wij =


∂2W
∂x2

∂2W
∂x∂y

∂2W
∂x∂z

∂2W
∂y∂x

∂2W
∂y2

∂2W
∂y∂z

∂2W
∂z∂x

∂2W
∂z∂y

∂2W
∂z2

 =

Wxx Wxy Wxz

Wxy Wyy Wyz

Wxz Wyz Vzz

 , (2.44)
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2.3.1 The normal gravity field

The gravity at two different points with the same geometrical distance to the Earth’s center is
varying due to the inhomogeneous mass distributions in the Earth’s interior. Consequently,
equipotential surfaces are not necessarily parallel and do not have a regular and smooth
geometrical shape. To overcome this, a level ellipsoid is introduced, which approximates the
geoid. This level ellipsoid represents a body which is associated with the so-called normal
potential

U = Vell + Φ , (2.45)

the sum of the gravitational potential Vell of the ellipsoid and the centrifugal potential Φ.
The normal potential is defined in such way that U0 = W0 = constant, i.e. the potential at
the ellipsoid surface equals the gravity potential of the geoid. The normal potential can be
expressed by closed formulas if described in ellipsoidal coordinates as shown in Heiskanen and
Moritz (1967). A more convenient representation is given as spherical harmonics expansion
of the normal gravitational potential for the exterior space

Vell =
GM

R

∞∑
n=0

(
R

r

)n+1

c2nP2n(cos θ) , (2.46)

which contains only even zonal terms c2n (m = 0) due to the rotational symmetry of the
ellipsoid and the symmetry with respect to the equator

c2n = (−1)n
3e2n

(2n+ 1)(2n+ 3)

[
1 +

2n

3

(
1− me′

3q0

)]
, (2.47)

with e, e′ given in Eq. (2.3) and the auxiliary terms

q0 =
1

2

[(
1 +

3

e′2

)
arctan e′ − 3

e′

]
,

m =
ω2a2b

GM
.

(2.48)

The centrifugal potential Φ, which is an integral part of the normal potential U , is not quoted
at this place for practical reasons, as we may see in the following section.

In analogy to the actual gravity g on the geoid, the normal gravity γ0 on the ellipsoid surface
can be defined as the gradient of the normal potential γ0 = ∇U0. A rigorous determina-
tion of the magnitude of γ0 is possible by evaluating the well known formula of Somigliana

γ0 =
a γa cos2 ϕ+ b γb sin2 ϕ√
a2 cos2 ϕ+ b2 sin2 ϕ

, (2.49)

with the normal gravity at the equator γa

γa =
GM

ab

(
1−m− m e′ q′0

6 q0

)
(2.50)
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and the normal gravity at the poles γb

γb =
GM

a2

(
1 +

m e′ q′0
3 q0

)
, (2.51)

where

q′0 = 3

(
1 +

1

e′2

)(
1− arctan e′

e′

)
− 1 . (2.52)

For a specific height h above the ellipsoid, one can obtain the normal gravity γh from a series
expansion of ∂γ/∂h leading to

γh = γ0

[
1− 2

a

(
1 + f +m− 2f sin2 ϕ

)
h+

3

a2
h2

]
, (2.53)

with the ellipsoid flattening

f =
a− b
a

.

The reference ellipsoid and physical parameters for the derivation of the normal potential in
this work are those corresponding to the Geodetic Reference System (GRS) 1980. The param-
eters and computational formulas can be found for instance in Moritz (1980b).

2.3.2 The disturbing potential and derived gravity field
quantities

With the introduction of the level ellipsoid and its physical parametrization, the actual
gravity field is linearized and split up into a first approximation represented by the normal
gravity field and a remaining and comparably small residual part. In terms of potential,
these deviations are denoted as the disturbing potential or anomalous potential T , indi-
cating the difference between the normal potential U and the actual gravity potential W

T = W − U . (2.54)

By building this difference we can see that the centrifugal part, which is the same in W and
U (see Eqs. 2.42 and 2.45), cancels and thus does not have to be considered. Therefore, the
disturbing potential T still satisfies the Laplace equation 4T = 0 outside the Earth’s masses,
so that it can also be expanded into a spherical harmonics series

T (r, θ, λ) =
∞∑
n=0

(
R

r

)n+1 n∑
m=−n

∆ānm Ȳnm(θ, λ) =
∞∑
n=0

(
R

r

)n+1

Tn(θ, λ), (2.55)

with the fully normalized residual coefficients ∆ānm, which are obtained by subtracting
the normal gravitational potential coefficients from those of the actual gravitational poten-
tial.
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If the mass of the reference ellipsoid is defined equally to the mass of the Earth, then the
zero degree term of the series vanishes. Furthermore, if the origin of the ellipsoid is co-
inciding with the Earth’s COM, also the first degree terms of the series are zero, so that

T (r, θ, λ) =

∞∑
n=2

(
R

r

)n+1

Tn(θ, λ). (2.56)

Looking at a specific point P0 on the equipotential surface geoid and its equivalent point
Q0 projected along the ellipsoid normal onto the level ellipsoid so that W0(P0) = U0(Q0),
the geometrical discrepancy between P0 and Q0 is denoted as the geoid height or geoid
undulation N , see Figure 2.4. It can be related to the disturbing potential T (P0) by the
formula of Bruns

N =
T (P0)

γ0
. (2.57)

Figure 2.4: Interrelation between potential surfaces and heights

The same relation can be defined for a point P which is located at the ellipsoidal height
h on the Earth’s surface. According to the theory of Molodensky (Hofmann-Wellenhof and
Moritz, 2005), for every surface point P with its gravity potential W (P ) one can find a
corresponding point Q at the ellipsoidal height h = H∗, also denoted as normal height, at
which the potential of the surface point equals the normal potential W (P ) = U(Q). This
imaginary surface is called the telluroid, and the distance between P and Q is denoted as
the height anomaly ζ. Hence, we can reconsider Bruns’ formula at the surface point P and
obtain

ζ =
T (P )

γQ
. (2.58)

In this way, the interrelation between normal heights H∗, orthometric heights H and ellip-
soidal heights h can be found by

h = N +H = ζ +H∗ . (2.59)
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If we compare the gravity vector and the normal gravity vector at the same point P , we
obtain the gravity disturbance vector

δg = g(P )− γ(P ) . (2.60)

Its magnitude is also found by the derivative of the disturbing potential with respect to the
height h along the ellipsoid normal

δg = −∂T
∂h

. (2.61)

The difference between the gravity vector g(P ) at point P and the vector of normal gravity
γ(Q) at point Q is defined as the gravity anomaly vector

∆g = g(P )− γ(Q) . (2.62)

Taking Bruns formula and the expression for the gravity disturbance in Eq. (2.61) into account
and assuming that the vertical derivatives ∂/∂h are more or less identical at P and Q, one
can derive the relation of disturbing potential and gravity anomaly

∆g = −∂T
∂h

+
1

γ0

∂γ

∂h
T , (2.63)

which is called the fundamental equation of physical geodesy.

The difference in the directions of the vectors are denoted as the deflections of the vertical, i.e.
the deflections of the plumb line defined by g(P ) from the ellipsoid normal defined by γ(Q).
Conventionally, the deflections of the vertical are represented by a North-South component
ξ and an East-West component η with

ξ = Φ− ϕ ,
η = (Λ− λ) cosϕ ,

(2.64)

the difference between astronomical coordinates Φ,Λ and ellipsoidal coordinates ϕ, λ. Like-
wise, the deflections can also be derived from the disturbing potential in a LNOF by

ξ =− 1

γ0

∂T

∂x
,

η =− 1

γ0

∂T

∂y
.

(2.65)

Furthermore, we can also derive the gradient tensor of the anomalous potential Tij in analogy
to Eq. (2.44) by

Tij =

Txx Txy Txz
Txy Tyy Tyz
Txz Tyz Tzz

 . (2.66)

17



2 Theoretical background

2.3.3 Derivatives of the disturbing potential

From Eq. (2.65) and Eq. (2.66) we can see that for certain derived quantities of the disturbing
potential we need the first and second order derivatives of the disturbing potential T in a
LNOF with respect the local Cartesian coordinates x, y, z. For the later use in the LSC ap-
proach, it will be necessary to represent these derivatives with respect to geocentric (spherical)
coordinates ϕ, λ, r, too. The corresponding relationships were derived by Tscherning (1976)
and are summarized here. For a more compact notation, the partial derivatives are denoted
as

Tn =
∂T

∂n
,

Tnn =
∂2T

∂n2
, with n = {x, y, z} or n = {ϕ, λ, r} .

(2.67)

For the first order derivatives of T with respect to the Cartesian coordinates expressed in
spherical coordinates we can write

Tx =
1

r
Tϕ , (2.68)

Ty =
1

r cosϕ
Tλ , (2.69)

and

Tz = Tr . (2.70)

The second order derivatives of the disturbing potential T , i.e. the components of the gradient
tensor, are given by

Txx =
1

r
Tr +

1

r2
Tϕϕ , (2.71)

Txy =
1

r2 cosϕ
Tϕλ +

tanϕ

r2 cosϕ
Tλ , (2.72)

Txz =
1

r
Trϕ −

1

r2
Tϕ , (2.73)

Tyy =
1

r
Tr −

tanϕ

r2
Tϕ +

1

r2 cos2 ϕ
Tλλ , (2.74)

Tyz =
1

r cosϕ
Trλ −

1

r2 cosϕ
Tλ , (2.75)
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2.3 The gravity field of the Earth

and

Tzz = Trr . (2.76)

2.3.4 Spherical approximation and linearization issues

The considerations made above assume that the reference surface for the normal gravity field
is an ellipsoid. In geodetic practice it is common to treat the reference ellipsoid as if it was
a sphere with a mean Earth radius R =

3
√
a2b which has the same volume as the ellipsoid in

order to facilitate the equations for quantities of the disturbing gravity field. In this way, we
can introduce the spherical approximation

∂

∂h
=

∂

∂r
and γ =

GM

R2
, (2.77)

so that

1

γ

∂γ

∂h
= − 2

R
, (2.78)

which results in the formula of the fundamental equation of physical geodesy in spherical
approximation

∆g = −∂T
∂r
− 2

R
T . (2.79)

Using Eq. (2.79), also ∆g can then be expanded into a spherical harmonics series

∆g(r, θ, λ) =
1

R

∞∑
n=0

(n− 1)

(
R

r

)n+1

Tn(θ, λ). (2.80)

With this approximation, an error in the order of the Earth’s flattening of 0.3% is accepted in
the formulas, which are then formally spherical expressions. However, the actual geometric
reference surface is still the ellipsoid Moritz (1980a). In the case of the geoid, which has a
global Root Mean Square (RMS) of approximately ±30m, this would lead to a corresponding
error of 0.09m. This is considerably higher than the nowadays desired geoid accuracy in the
order of a few centimeters or even less. From Bruns’ formula given in Eq. (2.57) we know
that the geoid height is a function of the disturbing potential T and the normal gravity γ0,
which is only depending on the latitude. The disturbing potential in turn represents the
second order element of the linearized gravity field, which is in first approximation described
by the normal potential of the reference ellipsoid according to the conventional gravity field
theory as shown in section 2.3.2.

With the advent of global Earth Gravity field Model (EGM) in the last decades, which were
substantially improved due to satellite based observations in particular in the last few years,
the first order approximation of the gravity field using the normal potential may be consid-
ered as a deprecated approach. According to several validation studies, e.g. Gruber (2009),
Gruber et al. (2011) or Ferreira et al. (2013), the differences between EGM-derived geoid
heights and GPS/levelling heights in different regions of the world show a RMS of 0.3m
for the long wavelength structures of the gravity field. We could now replace the normal
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2 Theoretical background

potential by such an EGM, which then leads to an improved first order approximation of
the actual gravity field. Assuming that the results of the validation studies are correct
and valid for the whole Earth and the entire spectrum, the remaining linearization error
due to the spherical approximation can be assessed with a RMS of roughly 1mm. Espe-
cially in the context of geoid determination these considerations will be important, since
they allow us to work with spherical approximation without introducing a significant loss of
accuracy.
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3 Least Squares Collocation

Least squares methods for the prediction and interpolation of gravity were introduced in
geodesy in the early 1960’s, with the one of the first appearances in literature given by
Moritz (1962). An overview on the least squares prediction method can also be found
in Heiskanen and Moritz (1967). The approach was enhanced and extended to the LSC
method by Krarup (1969). A fundamental treatment of these methods is summarized by
Moritz (1980a). This chapter gives an excerpt of this book reviewing the basics of the LSC
approach.

3.1 Least squares prediction and Least Squares
Collocation

Let l be a vector of observations l = (l1, l2, . . . , lq)
T and s be a vector of signals s =

(s1, s2, . . . , sp)
T of the same quantities as in l so that s is approximated by a linear com-

bination of the elements of l

ŝ = Hl . (3.1)

We assume that l and s are random quantities which have, in probabilistic sense, an ex-
pectation value (or mean value) E{l} = E{s} = 0, i.e. they are centered. Furthermore,
we can define the auto-covariance matrices for l and s and their cross-covariance matrix by

Cll = cov(l, l) = E{l lT }
Css = cov(s, s) = E{s sT }
Csl = cov(s, l) = E{s lT } .

(3.2)

The discrepancy between the approximated ŝ and true values of s is then the error vector ε

ε = ŝ− s (3.3)

with the corresponding error covariance matrix

Cεε = cov(ε, ε) = E{ε εT } = E{(ŝ− s) (ŝ− s)T } . (3.4)

We want to find the minimum error variances σ2
i of each of the estimated signals ŝi, which are

the trace values of the error covariance matrix Cεε. Therefore, we use Eq. (3.1) in Eq. (3.4)
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3 Least Squares Collocation

and obtain after some reordering and using the fact that Csl = CTls

Cεε = Css − Csl C−1
ll Cls︸ ︷︷ ︸

A

+
(
H − Csl C−1

ll

)
Cll

(
H − Csl C−1

ll

)T︸ ︷︷ ︸
B

. (3.5)

In this way we have expressed Cεε in such way that the left terms of Eq. (3.5), indicated by
the letter A, are independent of the choice of H and are thus the same for all linear estimates,
whereas the right term, summarized by the letter B, is varying with H. We now can minimize
Cεε if this right term is zero, which can be achieved by setting

H = Csl C
−1
ll , (3.6)

and relying on the fact that we consider regular and positive definite covariance matrices.
Consequently, the best, in terms of minimum variance, linear estimate for s from a set of
quantities l is given by

ŝ = Csl C−1
ll l , (3.7)

which is purely based on the statistical correlation between the quantities in l and s, given by
the cross- and auto-covariances in Csl and Cll. The definition of such a covariance function,
which is able to represent these correlations, will be the issue of the following section 3.2. The
corresponding error covariance matrix of the prediction is then given by

Cεε = Css − Csl C−1
ll Cls . (3.8)

This is the basic principle of least squares prediction.

In physical geodesy we have now the case that we want to predict quantities that are linear
functionals of the disturbing potential T from measurements which are themselves linear
functionals of T . This generalization of the least squares prediction problem is called Least
Squares Collocation. We define li as an observation at a distinct point Q, which represents a
functional of the disturbing potential

li = Li T (Q) , (3.9)

with the linear operator Li applied to T (Q). In vector notation we can summarize all
observations and functionals to l = (l1, l2, . . . , lq)

T and L = (L1, L2, . . . , Lq)
T and write

l = L T . (3.10)

Furthermore, we define an averaging operator M{·} instead of the expectation E{T}. In case
of the disturbing potential, M is homogeneous and isotropic and M{T} = 0 by requirement
(see section 3.2). We still have the expectation E{li} = M{li} = 0 and it is justified, due to
the commutative property of M and Li, to write M{li} = LiM{T} = 0. Therefore, we have
the same preconditions as for least squares prediction with the difference, that we have to
consider the application of the linear operators L in the derivation of the covariances in Cll.
Using the aforementioned properties, we get the covariance between the measurements li at
point P and lj at point Q (i, j = 1 . . . q) by

Cij = cov(li, lj) = M{LPi T (P ) LQj T (Q)} = LPi L
Q
j M{T (P ) T (Q)} , (3.11)
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3.1 Least squares prediction and Least Squares Collocation

with the covariance function of the disturbing potential, which is depending on the location
of the points P and Q

K(P,Q) = M{T (P ) T (Q)} , (3.12)

so that we obtain the single entries for the covariance matrix Cll

Cij = LPi L
Q
j K(P,Q) , (3.13)

which is equivalent to covariance propagation in classical sense. Note that LPi and LQj
indicate that the linear operators are evaluated at the corresponding points P and Q, where
the measurements took place. In analogy to the measurements, also the signals s to be
estimated can be linear functionals of the disturbing potential T at some point P and thus,
as in Eq. (3.10)

s = S T, with s = (s1, s2, . . . , sp)
T , and S = (S1, S2, . . . , Sp)

T . (3.14)

Again, the covariances of Csl between the signals sk at a point P and the measurements
li at a point Q have to be derived. This is achieved once more by covariance propagation

Cki = cov(sk, li) = SPk L
Q
i K(P,Q), k = 1, . . . p, i = 1, . . . q . (3.15)

Hence, we can use the least squares prediction formula of Eq. (3.7)

ŝ = Csl C−1
ll l , (3.16)

also for predicting an arbitrary gravity field quantity that is a linear functional of the dis-
turbing potential T , from whatever other gravity field quantities of the same field, if the
covariances are derived via a correct and consistent covariance propagation from a suitable
covariance function, which is describing the analytical structure of the anomalous field. There
are some remarkable properties of LSC:

• The data is reproducible, which means if the signals s to be estimated are the same as
the input observations l, then Csl = Cll and thus l̂ = CllC

−1
ll l = l.

• It is invariant with respect to (w.r.t.) linear transformation of the estimated signals.
It does not matter whether one estimates a distinct quantity and then transforms it to
another linear functional of T , or the linear functional is estimated directly.

• It is invariant w.r.t. linear transformation of the input data. If the input data l is
transformed to l′ = Al, then ŝ = Csl′ C

−1
l′l′ l
′ = CslC

−1
ll l.

Until now, only the case of error-free observations was considered. However, real measure-
ments will always be deteriorated by noise. We will assume that the measurements li are
composed of a true signal part ti = Li T which is affected by the random errors or white
noise ni

li = ti + ni . (3.17)

Under these circumstances, we have to reconsider the covariance matrices Csl and Cll once
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3 Least Squares Collocation

again. For Cll we can write

Cll = Ctt + Ctn + Cnt + Cnn , (3.18)

and it can be shown that Ctn = Cnt = 0 under the assumption that the noise n and the
signal component t are uncorrelated. Equivalently, the cross-covariance matrix Csl is given
by

Csl = Cst + Csn , (3.19)

and again s and n are uncorrelated, so that Csn = 0. Consequently, we obtain the basis
formula of LSC with noise

ŝ = Cst (Ctt + Cnn)−1 l , (3.20)

with the error-covariance matrix of the estimate

Cεε = Css − Cst (Ctt + Cnn)−1Cts . (3.21)

We can use Eq. (3.20) in a further step to estimate the signal part t of the observations l by

t̂ = Ctt (Ctt + Cnn)−1 l , (3.22)

which is nothing else than filtering out the noise from the observations. If we solve for l and
insert into Eq. (3.20) we arrive at

ŝ = Cst C−1
tt t̂ , (3.23)

which is the solution of the error-free collocation based on the filtered t̂. Hence, LSC is able to
filter the measurements l and predict the signals s based on the minimum variance principle
at once.

The most generalized form of this approach is LSC with parameters, which is given by

l = Ax+ s+ n (3.24)

and combines the methods of least squares adjustment, filtering and prediction in one uni-
fied approach. It splits up the measurement l into a (linearized) systematic part Ax with
the parameters x and the design matrix A relating x and l, and the random parts s, the
signal, and n, the noise. A detailed treatment of the general LSC approach can be found
in Moritz (1972) and Moritz (1980a). In this thesis, the systematic constituents Ax are not
estimated specifically but are assumed to be known (for instance by an a-priori global gravity
field model). The Least Squares Collocation approach is used here to predict gravity field
quantities from gravity measurements in the presence of noise according to the equations
(3.20) and (3.21) with special focus on the application of the gradient observation type of
the GOCE mission.
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3.2 Covariance functions and degree variances

3.2 Covariance functions and degree variances

In order to describe the statistical behaviour of the anomalous gravity field, covariance func-
tions of the gravity field quantities are introduced. In case of LSC, where quantities that
are linear functionals of the disturbing potential are estimated or serve as input data, the
covariance function of the disturbing potential T is essential, since all necessary covariances
between the functionals are derived from this covariance function by covariance propagation,
see section 3.1.

To obtain the covariance function of the disturbing potential, first a measure for the ex-
pectation value of T has to be defined (the consideration of the disturbing potential as a
stochastic process is extensively discussed in Moritz (1980a)). Hence, an average operator
M{·} is defined to give the expectation value in such way that M{T} = 0 on global scale
with

M{T} =
1

8π2

∫∫
σ

2π∫
α=0

T (θ, λ) dσ dα =
1

4π

∫∫
σ

T (θ, λ) dσ , (3.25)

where the integration is performed over the unit sphere σ as in Eq. (2.23) with θ and λ denot-
ing the spherical co-latitude and longitude, so this average is homogeneous. The integration
with respect to the azimuth α is introduced in order to obtain a covariance function of the
disturbing potential K(P,Q) between two points P (θ, λ) and Q(θ′, λ′)

M{T (P ) T (Q)} = K(P,Q) = K(ψ) =
1

8π2

∫∫
σ

2π∫
α=0

T (θ, λ) T (θ′, λ′) dσ dα , (3.26)

which is only depending on the spherical distance ψ between P and Q

cosψ = sinϕ sinϕ′ + cosϕ cosϕ′ cos (λ′ − λ) (3.27)

and not on the direction. Therefore, the average operator can be considered as isotropic.
According to Heiskanen and Moritz (1967), the covariance function K(ψ) can be expanded
into a spherical harmonics series of the form

K(ψ) =
∞∑
n=2

knPn(cosψ) . (3.28)

The coefficients kn can be obtained by

kn =
2n+ 1

2

π∫
ψ=0

K(ψ)Pn(cosψ) sinψ dψ . (3.29)

We can now insert Eq. (3.26) into Eq. (3.29) and, after some reordering, performing integra-
tions as outlined in Heiskanen and Moritz (1967) we get

kn =
1

4π

∫∫
σ

T (θ, λ) Tn(θ, λ) dσ , (3.30)

25



3 Least Squares Collocation

where Tn(θ, λ) are the Laplace’s surface spherical harmonics (refer to section 2.2.1 or compare
with Eq. (2.56)) of the disturbing potential. In analogy to Eq. (3.25) and inserting Eq. (2.56)
for T (θ, λ) into Eq. (3.30) , we arrive at

kn = M{
∞∑
n=2

Tn(θ, λ) Tn(θ, λ)} = M{Tn(θ, λ)2} . (3.31)

Recalling from Eq. (2.22) that the basis polynomials of the Laplace’s surface spherical har-
monics Tn(θ, λ) are orthogonal, we finally obtain for the coefficients kn

kn =

n∑
m=0

(
c̄2
nm + s̄2

nm

)
, (3.32)

which are called degree variances. They represent the variances of the Laplace’s surface
spherical harmonics of degree n. The degree variances can be interpreted as the power
spectral density of a function, in this case of the disturbing potential, and indicate the
energy content of the signal per frequency n. Note that the spherical harmonics coefficients
in Eq. (3.32) are fully normalized as given in Eq. (2.27), while the Legendre polynomials in
Eq. (3.28) are the conventional polynomials, see section A.1.

Until now, we have always considered a covariance function for points P and Q located on
the unit sphere σ. To derive a covariance function which is also valid outside the sphere,
we use the knowledge that the spherical harmonics expansion of the disturbing potential
is harmonic outside a sphere with radius R with (R/r)n+1 as given in Eq. (2.56). In the
context of LSC, this radius R is commonly also denoted as Bjerhammar radius RB of a
sphere completely enclosed by the Earth’s surface, which is a requirement to obtain a con-
vergent covariance function (Moritz, 1980a). Applying this information gives the spatial
covariance function of the disturbing potential for points P (r, θ, λ), Q(r′, θ′, λ′) outside the
sphere

K(r, r′, ψ) =

∞∑
n=2

(
R2

rr′

)n+1

kn Pn(cosψ) . (3.33)

In practice, the disturbing potential can not be determined by direct measurements. Hence,
the respective coefficients kn of the covariance function have to be determined from other
sources. One option is to use a global EGM, which implicitly provides the (in most cases fully
normalized) spherical harmonics coefficients c̄nm, s̄nm, from which the degree variances can
be computed according to Eq. (3.32). For more localized applications, it is common to derive
the coefficients from the covariance function of gravity anomalies ∆g, which are deduced
from terrestrial gravity measurements. In Eq. (2.79) we already found the linear operator
that transforms the disturbing potential into gravity anomalies, which is given by the factor
(n−1)/r. From Eq. (3.13) we know that we can derive the covariance of any gravity quantity
by covariance propagation applied to the covariance function of the disturbing potential.
Consequently, the covariance function for gravity anomalies C(P,Q) can be computed by

C(P,Q) =

∞∑
n=2

(n− 1)2

rr′

(
R2

rr′

)n+1

kn Pn(cosψ) . (3.34)
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With some reformulation, we can introduce the degree variances of the gravity anomalies cn
by

cn =

(
n− 1

R

)2

kn , (3.35)

so we finally have related the covariance function for gravity anomalies to the degree variances
of the disturbing potential kn and obtain

C(P,Q) =

∞∑
n=2

(
R2

rr′

)n+2

cn Pn(cosψ) . (3.36)

3.3 Covariance propagation for anomalous gravity
quantities

As shown in section 3.1 the LSC approach is based on the statistical correlations among the
signals s to be estimated and the observations l, which are assembled in the cross-covariance
matrix Csl, as well as on the correlations among the observations themselves represented
by the covariance matrix Cll. To retrieve the single entries of these matrices, a consistent
covariance propagation of the covariance function of the disturbing potential K(r, r′, ψ) (see
section 3.2) according to Eq. (3.13) has to be performed.

To illustrate the derivation of the covariances between functionals of the disturbing potential,
the covariance propagation for geoid heights, gravity anomalies and gravity gradients given
at points P and Q is shown. The coordinates with respect to P are denoted as x, y, z in a
LNOF with its Z-axis defined radially outwards, and ϕ, λ, r in their spherical representation.
For Q, they are denoted as x′, y′, z′ and ϕ′, λ′, r′. The linear operators LPi or LQj relating
the gravity quantities to the disturbing potential are already introduced in section 2.3.2 and
have to be applied to the covariance function accordingly following the rule of covariance
propagation. Hence, the covariance between two geoid heights N(P ) and N ′(Q) is given by

cov(N,N ′) =
1

γ0

(
1

γ′0
K

)
=

1

γ0γ′0
K . (3.37)

In the same way, the covariance between two gravity anomalies ∆g(P ) and ∆g′(Q) can be
derived with

cov(∆g,∆g′) =

(
− ∂

∂r
− 2

r

)(
−∂K
∂r′
− 2

r′
K

)
=

∂2K

∂r∂r′
+

2

r

∂K

∂r′
+

2

r′
∂K

∂r
+

4

rr′
K . (3.38)

The covariance between a gravity anomaly ∆g at P and a geoid height N at Q is calculated
by

cov(∆g,N ′) =

(
− ∂

∂r
− 2

r

)(
1

γ′0
K

)
=

1

γ′0

(
−∂K
∂r
− 2

r
K

)
. (3.39)
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The linear operators for anomalous gravity gradients were already shown in section 2.3.3.
Hence, the covariance between a geoid height N and a vertical gradient Tz′z′ is given by

cov(N,Tz′z′) =
1

γ0

∂2K

∂r′2
, (3.40)

or between a geoid height N and a Tx′x′ gradient by

cov(N,Tx′x′) =
1

γ0

(
1

r′
∂K

∂r′
+

1

r′2
∂2K

∂ϕ′2

)
. (3.41)

In the same way, for gravity anomalies and gradients we have for instance

cov(∆g, Tz′z′) =

(
− ∂

∂r
− 2

r

)
∂2K

∂r′2
= − ∂3K

∂r∂r′2
− 2

r

∂2K

∂r′2
, (3.42)

and

cov(∆g, Tx′x′) =

(
− ∂

∂r
− 2

r

)(
1

r′
∂K

∂r′
+

1

r′2
∂2K

∂ϕ′2

)
=

= − 1

r′
∂2K

∂r∂r′
− 1

r′2
∂3K

∂r∂ϕ′2
− 2

rr′
∂K

∂r′
− 2

rr′2
∂2K

∂ϕ′2
.

(3.43)

If the covariance between two vertical gradients Tzz and Tz′z′ has to be derived, the covariance
expression is still rather simple

cov(Tzz, Tz′z′) =

(
∂2

∂r2

)(
∂2K

∂r′2

)
=

∂4K

∂r2∂r′2
. (3.44)

The covariance between Txx and Tx′x′ is

cov(Txx, Tx′x′) =

(
1

r

∂

∂r
+

1

r2

∂2

∂ϕ2

)(
1

r′
∂K

∂r′
+

1

r′2
∂2K

∂ϕ′2

)
=

=
1

rr′
∂2K

∂r∂r′
+

1

r2r′
∂3K

∂ϕ2∂r′
+

1

rr′2
∂3K

∂r∂ϕ′2
+

1

r2r′2
∂4K

∂ϕ2∂ϕ′2
.

(3.45)

This derivation of covariance expressions can be performed for any other gravity gradient
and also other quantities in the same manner as shown above. For the sake of completeness,
the covariance expressions for quantities up to second order derivatives of the anomalous
potential are derived in Appendix A.3. Note that a change of quantities in P and Q implies
that the corresponding linear operators LPi and LQj have to be evaluated at the respective
other point LQi and LPj . This does not change composition of the covariance expressions,
but is simply obtained by changing all the corresponding variables from γ0, x, y, z, ϕ, λ, r to
γ′0, x

′, y′, z′, ϕ′, λ′, r′ and vice versa.
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3.4 Derivatives of the covariance function

As we have seen in the preceding section, the covariance propagation leads to expressions that
incorporate derivatives of the covariance function up to the order four. Starting with the gen-
eral three-dimensional case of the covariance function from Eq. (3.33)

K(P,Q) = K(r, r′, cosψ) =

∞∑
n=0

(
R2

rr′

)n+1

kn Pn(cosψ) ,

the radial derivatives with respect to r and r′ up to order four can be computed by (for
simplification we denote K(r, r′, cosψ) as K)

∂K

∂r
=
∞∑
n=0

−n+ 1

r

(
R2

rr′

)n+1

kn Pn(cosψ) , (3.46)

∂2K

∂r∂r′
=

∞∑
n=0

(n+ 1)2

rr′

(
R2

rr′

)n+1

kn Pn(cosψ) , (3.47)

∂2K

∂r2
=
∞∑
n=0

(n+ 1)(n+ 2)

r2

(
R2

rr′

)n+1

kn Pn(cosψ) , (3.48)

∂3K

∂r2∂r′
=

∞∑
n=0

−(n+ 1)2(n+ 2)

r2r′

(
R2

rr′

)n+1

kn Pn(cosψ) , (3.49)

and

∂4K

∂r2∂r′2
=
∞∑
n=0

(n+ 1)2(n+ 2)2

r2r′2

(
R2

rr′

)n+1

kn Pn(cosψ) . (3.50)

Basically, the radial derivatives are obtained by including an additional factor in the summa-
tion, which is depending on the degree of the expansion and the radii, for which the deriva-
tives are performed. Note that interchanging r and r′ in the differentiation only changes the
division of the factor from r to r′ and vice versa.

The derivatives with respect to the spherical coordinates ϕ, λ and ϕ′, λ′ are not that straight-
forward. They imply that we have to find the derivatives of the Legendre polynomials
Pn(cosψ), which are themselves a function of the cosine of the spherical distance ψ, as we
know from Eqs. (3.27) and (3.28). To solve this problem, we can apply the chain rule of dif-
ferentiation, which for example leads to a derivative with respect to ϕ

∂K

∂ϕ
=
∂K

∂t

∂t

∂ϕ
=
∞∑
n=0

(
R2

rr′

)n+1

kn
∂Pn(t)

∂t

∂t

∂ϕ
, (3.51)
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by introducing the substitution

t = cosψ . (3.52)

For higher order derivatives with respect to a horizontal coordinate, the product rule has to
be considered. Hence, a second order derivative has the form

∂2K

∂ϕ2
=
∂2K

∂t2

(
∂t

∂ϕ

)2

+
∂K

∂t

∂2t

∂ϕ2
=

=
∞∑
n=0

(
R2

rr′

)n+1

kn

[
∂2Pn(t)

∂t2

(
∂t

∂ϕ

)2

+
∂Pn(t)

∂t

∂2t

∂ϕ2

]
.

(3.53)

The further differentiations of the covariance function up to the fourth order are shown
in Appendix A.2. Essentially, what is needed to derive the higher order derivatives of
K(r, r′, cosψ) are the linear combinations of derivatives of K with respect to r, r′ and
t = cosψ and the derivatives of t = cosψ with respect to the spherical coordinates ϕ, λ
and ϕ′, λ′.

3.5 Analytic covariance models

In the previous section 3.2 it was already mentioned that the degree variances kn for the
covariance function of the disturbing potential T given in Eq. (3.33) can for instance be
obtained from the spherical harmonics coefficients of a global EGM. Although the EGM
represents the best fit of the gravity field on global scale, this is not necessarily true for
local or regional applications, where the statistics of the anomalous potential or of derived
quantities may be considerably different from the global average. Thus, on local scale it is
common to fit a Model Covariance Function (MCF) to an Empirical Covariance Function
(ECF) of actual measurements, e.g. terrestrial gravity anomalies, given in the area of interest.
In order to derive an ECF of a set of given discrete observations l(ϕ, λ) within a restricted
area, the observation pairs li, lj can be arranged in predefined distance classes k, so that the
spherical distance ψk−1 < ψij < ψk, see Knudsen (1987). The ECF can then be found by

ECF (k) =
1

Nk

Nk∑
i,j

lilj , (3.54)

whereNk denotes the number of observation pairs in the respective distance class k.

In practice, a local covariance function model is commonly represented by a Tscherning-Rapp
degree variance model, which was developed in a closed analytical form in Tscherning and
Rapp (1974). Within this thesis, the model of the form

K(r, r′, ψ) =
∞∑
n=2

(
R2
B

rr′

)n+1
A

(n− 1)(n− 2)(n+B)
Pn(cosψ) , (3.55)
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3.5 Analytic covariance models

is used, which describes the degree variances kn of the disturbing potential T by

kn =
A

(n− 1)(n− 2)(n+B)
. (3.56)

In this relation A is a constant value of the units [(m/s)4] in order to obtain the degree
variances in the corresponding potential units, while B is another constant integer variable.
These constants, A, B, and also the Bjerhammar radius RB can be estimated within a least
squares adjustment procedure, see again Knudsen (1987). If the purpose is to fit a covariance
model to an ECF based on gravity anomalies, we have consider the relation defined Eq. (3.34)
and obtain the respective MCF as

cov(∆g,∆g′) =

∞∑
n=2

RB
2n+2

(rr′)n+2

A(n− 1)

(n− 2)(n+B)
Pn(cosψ) , (3.57)

which represents the fundamental relationship between the covariances of gravity anomalies
and the parameters we are looking for.

In this study we will not only use terrestrial observations but also gravity gradient mea-
surements from the GOCE mission. Hence, a combined adjustment of the parameters to
fit both empirical covariance functions in a best possible way can be advantageous. For
this reason, the MCF for vertical gradients Tzz can be derived by considering Eq. (3.50)

cov(Tzz, Tz′z′) =

∞∑
n=2

(
R2
B

rr′

)n+1
(n+ 1)2(n+ 2)2

r2r′2
A

(n− 1)(n− 2)(n+B)
Pn(cosψ) . (3.58)

By linearization of Eqs. (3.57) and (3.58) with respect to A, B and RB it is then possible to
solve for these unknown parameters within a least squares adjustment. This will be applied
and further investigated in chapter 7.

In this thesis, we only consider stationary and isotropic covariance functions, see section 3.2.
This means, that we assume the gravity field to have a constant mean (globally, the ex-
pectation of the anomalous potential M{T} = 0), and furthermore that the covariance is
independent of the spatial position and direction. However, these assumptions are quite
often violated in reality. For instance, let us consider only a subset of the Earth’s surface,
which has regions of rough topography on the one hand, as well as regions of rather flat
terrain on the other hand. It is very likely that the covariance in the mountainous area is
not equal to the one in the flat terrain, so it is not stationary. Furthermore, the covariance
may be depending on the outline of the spatial characteristics, e.g. the direction of mountain
ridges or trenches, and thus it is not isotropic.

A review of various methods that deal with the non-stationarity problem in spatial data is
for instance given in Darbeheshti and Featherstone (2010). They suggest to use an approach
proposed in Darbeheshti and Featherstone (2009) for a non-stationary covariance modeling in
LSC, and show some first results and benefits when applied to a 2D-LSC prediction problem.
In the frame of the official GOCE processing using the so-called space-wise approach (see
section 5.4.3), strategies for anisotropic covariance modeling within this particular application
have successfully been developed (Migliaccio et al. (2011), Gatti et al. (2013)). In this thesis,
such a non-stationary and anisotropic covariance modeling is not considered. Instead, it is
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aimed at reducing the irregularities of the gravity field to the best possible extent within
a consistent RCR procedure, see chapter 4. In this way, homogeneous anomalous gravity
quantities should be obtained, which justify the use of covariance models as explained in the
beginning of this section.

3.6 The sum of a series of Legendre polynomials and its
derivatives

The covariance functions treated in this thesis can be understood as sums of a series of
Legendre polynomials with specific factors applied. There exists a recursive algorithm for the
computation of such Legendre polynomials sums which is also capable of calculating their
derivatives up to an arbitrary high order. It is proposed by Tscherning and Rapp (1974)
for the computation of a covariance function and uses the Clenshaw summation based on
Clenshaw (1955). Let

f(x) =

N∑
n=0

cnFn(x) , (3.59)

be a function in which Fn(x) satisfies a recurrence condition

Fn+1(x) + α(n, x)Fn(x) + β(n, x)Fn−1(x) = 0 , (3.60)

with α(n, x) and β(n, x) being arbitrary functions depending on n and (not necessarily) x.
By defining a recurrence quantity

bn(x) = cn − α(n, x)bn+1(x)− β(n, x)bn+2(x) , (3.61)

with bN+1 = bN+2 = 0, the sum can be derived by

f(x) =

N∑
n=0

cnFn(x) = b0(x)F0(x) + b1(x) [F1(x) + α0(x)F0(x)] . (3.62)

For LSC we have to consider a covariance function, which is, as shown previously, a sum of
Legendre polynomials of the form given in Eq. (3.33)

K(r, r′, cosψ) =
N∑
n=0

(
R2

rr′

)n+1

kn Pn(cosψ) .

We can substitute cosψ = t and combine the first two terms in the sum to a new factor

cn =

(
R2

rr′

)n+1

kn , (3.63)
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3.6 The sum of a series of Legendre polynomials and its derivatives

to get the notation

K(t) =
N∑
n=0

cn Pn(t) , (3.64)

which is of the same form as Eq. (3.59). Note that cn in this case should not be mistaken for
the degree variances of gravity anomalies as given in Eq. (3.35).

The Legendre polynomials can be recursively determined, e.g. by Bonnet’s recursion formula
(see Appendix A.3)

Pn+1(t)− 2n+ 1

n+ 1
t Pn(t) +

n

n+ 1
Pn−1(t) = 0 . (3.65)

Hence, using the analogy to Eq. (3.60), the Clenshaw algorithm can also be applied for
evaluating the covariance function by defining

en = −2n+ 1

n+ 1

fn =
n

n+ 1

. (3.66)

Note that en does not contain the variable t, which is intentionally excluded of this term for
the derivatives explained later in this section. So, the recurrence quantity bn is in this case
given as

bn = cn − en t bn+1 − fn+1 bn+2 = cn +
2n+ 1

n+ 1
t bn+1 −

n+ 1

n+ 2
bn+2 , (3.67)

and the sum in Eq. (3.62) is represented by

K(t) = b0(t)P0(t) + b1(t) [P1(t) + e0 t P0(t)] . (3.68)

Recalling that the Legendre Polynomials P0(t) = 1 and P1(t) = t, and inserting e0 = −1 in
Eq. (3.62), the sum of Legendre Polynomials for the covariance function finally simplifies to

K(t) =
N∑
n=0

cn Pn(t) = b0 . (3.69)

Most applications require the evaluation of the covariance function in a specific range between
degrees Nmin and Nmax

K =

Nmax∑
n=Nmin

(
R2

rr′

)n+1

kn Pn(cosψ) . (3.70)

As the recursion in Eq. (3.67) must be performed fully down to n = 0 to get the correct sum,
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the recursive algorithm has to be applied twice

bNmax
n . . .n = Nmax : −1 : 0 ,

bNmin−1
n . . .n = Nmin − 1 : −1 : 0 ,

(3.71)

and the sum is then defined as

K = bNmax
0 − bNmin−1

0 . (3.72)

Derivatives of the Legendre series covariance function

In this work the derivatives of the covariance function with respect to t = cosψ up to or-
der four are required. Using the Clenshaw algorithm, these derivatives can be computed quite
comfortably. The derivatives with respect to t according to Eq. (3.69) are

∂kK

∂tk
=
∂kb0
∂tk

= b0
k . (3.73)

Starting with Eq. (3.67)

bn = cn − en t bn+1 − fn+1 bn+2 ,

the derivatives are

b′n =− en bn+1 − en t b′n+1 − fn+1 b
′
n+2 =− en

(
bn+1 + t b′n+1

)
− fn+1 b

′
n+2 ,

b′′n =− en
(
b′n+1 + b′n+1 + t b′′n+1

)
− fn+1 b

′′
n+2 =− en

(
2b′n+1 + t b′′n+1

)
− fn+1 b

′′
n+2 ,

b′′′n =− en
(
2b′′n+1 + b′′n+1 + t b′′′n+1

)
− fn+1 b

′′′
n+2 =− en

(
3b′′n+1 + t b′′′n+1

)
− fn+1 b

′′′
n+2 ,

...
...

ending up with the general formula for the kth derivative

bkn = −en
(
k bk−1

n+1 + t bkn+1

)
− fn+1 b

k
n+2 . (3.74)

For radial derivatives of the covariance function the Legendre series is expanded by an addi-
tional factor, which is depending on the order of differentiation corresponding to Eqs. (3.46)
to (3.50). Hence, in the Clenshaw algorithm it is only necessary to introduce these factors
accordingly in Eq. (3.63) and the recursion to obtain the Legendre series and its derivatives
can be performed as explained above.
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3.7 Computation of covariances for second and lower order derivatives of the disturbing potential

3.7 Computation of covariances for second and lower order
derivatives of the disturbing potential

In this thesis, a very convenient approach is chosen to compute the covariances of derivatives
of the disturbing potential. Its methodology is introduced in this section. The approach
is based on the developments published by Tscherning (1993) and has two remarkable ad-
vantages. The first one is that all derivatives of the covariance function can be calculated
by simple combinations of basis functions, which will be introduced below. The second ad-
vantage is that all the derivatives are then given in a LNOF but can be easily rotated to
an arbitrary other Cartesian system, which will be necessary in case of gravity gradients as
observed by GOCE.

The derivatives of the covariance function K(r, r′, t = cosψ) in the most compact notation
are given by

Ckij = rnr′m
∂i

∂ti
∂jK(r, r′, t)

∂rnr′m
. . . n+m = j, i+ j ≤ 4, k =

{
1 if n = m = 1

0 else
, (3.75)

where i is the index describing the number of derivatives of the covariance function with
respect to t. The radial derivatives in r are indicated with n, while those in r′ are numerated
by m. Together, they describe the sum n+m = j of the radial derivatives with respect to r
and r′. In case of n = m = 1, i.e. one radial derivative in r and r′ an thus j = 2 according to
Eq. (3.47), this has to be treated differently from the conventional second order derivatives
in either r or r′, which also lead to j = 2 but have different factors in the derivation, see
Eq. (3.48). This is indicated by the additional index k. In case of dealing with gravity
gradients, the highest order of derivatives we need is four (maximum two at each point), so
the total sum of derivatives of the covariance function with respect to t and/or to r and r′ is
i+ j ≤ 4.

The derivatives of t = cosψ are also summarized in a compact variable tij . In this case, the
subscript i is denoting a derivative with respect to the local coordinates y, x at point P, while
the derivatives with respect to y′, x′ at point Q are indicated with subscript j. Hence, i = 1
or j = 1 means a derivative with respect to y or y′, while i = 2 or j = 2 means a derivative
with respect to x or x′ (note that t00 = t = cosψ)

ti0 = r
∂t

∂xi
,

t0j = r′
∂t

∂x′
j
,

tij = rr′
∂2t

∂xi∂x
′
j

. . .x = [y, x] , x′ =
[
y′, x′

]
, i = {1, 2}, j = {1, 2} .

(3.76)

Depending on the point for which the differentiation is performed, the derivative is multiplied
with the respective radius. Therefore, when applying the derivatives in spherical coordinates,
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the result is independent of the radii and the following relations hold:

t10 = r
∂t

∂y
= r

1

r cosϕ

∂t

∂λ
= cosϕ′ sin ∆λ ,

t20 = r
∂t

∂x
= r

1

r

∂t

∂ϕ
= cosϕ sinϕ′ − sinϕ cosϕ′ cos ∆λ ,

t01 = r′
∂t

∂y′
= r′

1

r′ cosϕ′
∂t

∂λ′
= − cosϕ sin ∆λ ,

t02 = r
∂t

∂x′
= r′

1

r′
∂t

∂ϕ′
= sinϕ cosϕ′ − cosϕ sinϕ′ cos ∆λ ,

t11 = rr′
∂2t

∂y∂y′
= . . . = cos ∆λ ,

t12 = rr′
∂2t

∂y∂x′
= . . . = − sinϕ′ sin ∆λ ,

t21 = rr′
∂2t

∂x∂y′
= . . . = sinϕ sin ∆λ ,

t22 = rr′
∂2t

∂x∂x′
= . . . = cosϕ cosϕ′ + sinϕ sinϕ′ cos ∆λ .

(3.77)

With these base functions all combinations of derivatives of the disturbing potential up to
second order degree given in Appendix A.3 can be derived and stored in a four-dimensional
matrix Dijmn with dim(D) = (4 × 4 × 4 × 4) and i, j,m, n = {0, 1, 2, 3}. In this notation,
index 0 means no derivative, 1 is a derivative w.r.t. y or y′, 2 stands for a derivative w.r.t.
x or x′ and finally index 3 is indicating a radial derivative w.r.t. r or r′. As an example, the
covariance between Txx and Tx′x′ from Eq. (3.45) will be D2222, and is composed of the base
functions

D2222 =
[
C1

02 − 2 t C11 +
(
t220 + t202

)
C21 + t C10 +

(
t2 + 2 (t222 − t220 − t202)

)
C20

+
(
4 t22 t20 t02 − t (t220 + t202)

)
C30 + t220 t

2
02 C40

]
/(r r′)2 ,

(3.78)

For this case, the chain- and product rule of differentiation was applied as shown in Ap-
pendix A.2 in Eq. (A.11) for ϕ and ϕ′ and the derivatives of t = cosψ were reordered and
combined by taking into account the rules for trigonometric identities. All other covariances
can be expressed in the same way by the following formulas:

One derivative in P or Q

Di000 = ti0 C10/r, . . . i = {1, 2} , (3.79)

D3000 = C01/r . (3.80)
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One derivative in P and Q

Di0j0 = [ti0 t0j C20 + tij C10] /(rr′), . . . i = {1, 2}, j = {1, 2} , (3.81)

Di030 = ti0 C11/(rr
′), . . . i = {1, 2} , (3.82)

D3030 = C1
02/(rr

′) . (3.83)

Two derivatives in P or Q

Dii00 =
[
C01 − t C10 + t2i0 C20

]
/(r2), . . . i = {1, 2} , (3.84)

D1200 = t10 t20 C20/(r
2) , (3.85)

Di300 = ti0 (C11 − C10) /(r2), . . . i = {1, 2} , (3.86)

D3300 = C02/(r
2) . (3.87)

Two derivatives in P and one derivative in Q or vice versa

Diij0 =
[
t0j
(
C11 − C10 − C20 t+ t2i0 C30

)
+ 2 tij ti0 C20

]
/(r2r′),

. . . i = {1, 2}, j = {1, 2} ,
(3.88)

Dii30 =
[
C1

02 + t2i0 C21 − t C11

]
/(r2r′), . . . i = {1, 2} , (3.89)

D12j0 = [(t10 t2j + t20 t1j)C20 + t20 t10 t0j C30] /(r2r′), . . . j = {1, 2} , (3.90)

D1230 = t10 t02 C21/(r
2r′) , (3.91)

Di3j0 = [tij (C11 − C10) + t0j ti0 (C21 − C20)] /(r2r′), . . . i = {1, 2}, j = {1, 2} , (3.92)

Di330 = ti0 C12/(r
2r′), . . . i = {1, 2} , (3.93)
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D33j0 = t0j C12/(r
2r′), . . . j = {1, 2} , (3.94)

D3330 = C03/(r
2r′) . (3.95)

Two derivatives in P and two derivatives in Q

Diijj =
[
C1

02 − 2 t C11 +
(
t2i0 + t20j

)
C21 + t C10 +

(
t2 + 2 (t2ij − t2i0 − t20j)

)
C20

+
(
4 tij ti0 t0j − t (t2i0 + t20j)

)
C30 + t2i0 t

2
0j C40

]
/(r r′)2,

. . . i = {1, 2}, j = {1, 2} ,
(3.96)

Diij3 = [t0j (C10 − C11 + C12) + (t t0j − 2 ti0 tij) (C20 − C21) +

+ t2i0 t0j (C31 − C30)
]
/(r r′)2, . . . i = {1, 2}, j = {1, 2} ,

(3.97)

D12jj =
[
t10 t20

(
C21 − 2 C20 − t C30 + t20j C40

)
+ 2 t1j t2j C20

+ 2 t0j (t20 t1j + t10 t2j)C30] /(r r′)2, . . . j = {1, 2} ,
(3.98)

D1212 = [(t11 t22 + t12 t21) C20 + (t10 t01 t22 + t20 t12 t01+

+ t21 t10 t02 + t20 t02 t11)C30 + t10 t20 t01 t02 C40] /(r r′)2 ,
(3.99)

D12j3 = [(t10 t2j + t1j t20) (C21 − C20) + t10 t20 t0j (C31 − C30)] /(r r′)2,

. . . j = {1, 2} ,
(3.100)

Di3j3 = [ti0 t0j (C22 − C21 + C20) + tij (C12 − C11 + C10)] /(r r′)2,

. . . i = {1, 2}, j = {1, 2} ,
(3.101)

D33jj =
[
t20j C22 − t C12 + C03

]
/(r r′)2, . . . j = {1, 2} , (3.102)

D3312 = t01 t02 C22/(r r
′)2 , (3.103)

D33j3 = t0j (C13 − C12) /(r r′)2, . . . j = {1, 2} , (3.104)

D3333 = C04/(r r
′)2 . (3.105)
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With the chosen notation it is straightforward to obtain the covariances if P and Q are
interchanged. In this case, the corresponding expression is derived by simply interchanging
the subscripts i, j and the radii r and r′.

Finally, for a demonstration of this approach, we can exemplarily calculate the covariance
between a gravity anomaly ∆g at point P and a gradient Tx′x′ at pointQ, see Equation (3.43),
simply by

cov(∆g, Tx′x′) = −D3022 −
2

r
D0022 . (3.106)

3.7.1 Rotating covariances to an arbitrary reference frame

As already mentioned in the introduction to section 3.7, the chosen approach has the ad-
vantage that covariances derived in this way can be rotated to an arbitrary reference frame.
Terrestrial gravity quantities are usually measured in a LNOF, which is in representation as
spherical coordinates also the basic computational reference frame for LSC.

However, as we will see in the following sections, the gravity gradients of the GOCE mission
are not observed in an LNOF, but in a rotated local reference frame. It would be possible
to rotate these observations into a LNOF as well, but due to the specific measurement
configuration, this is not an option in this case, see the remarks in section 6.1 or section 6.3.
Instead, it is possible to rotate the covariances related to the gradients based on the covariance
aggregation of the preceding section. A frame transformation can be achieved by tensor
rotation of the permutations of the covariance matrix of a specific derivative at a station Q

DQ
ij = RQ Dij(m,n)RTQ, m, n = 1 . . . 3 , (3.107)

and a consecutive tensor rotation of the permutations at the other station P

DP
mn = RP Dmn(i, j)RTP , i, j = 1 . . . 3 . (3.108)

In this sense, RQ stands for the rotation matrix from a LNOF at evaluation point Q to an
arbitrary other reference frame with its origin located at the same point, while RP is the
equivalent for the evaluation point P .

For a better understanding of this procedure, following explanations can be considered: For
instance, if one wants to compute the covariance between two vertical gradients at two
different orbit locations given in the reference frame where the measurements took place,
at first all covariances up to second order derivatives of the disturbing potential have to be
computed in the LNOF and arranged in the four-dimensional matrixD. Then, all covariances
with respect to point Q are rotated to the measurement frame following Eq. (3.107), and
consecutively the same is done for point P as given in Eq. (3.108). Afterwards, all covariances
are given in the respective measurement frames. Another scenario might be the computation
of the covariance between a gravity anomaly at location P given in LNOF and a gravity
gradient at Q in its specific measurement frame. In this case, again all covariances are
derived in the LNOF, however only those related to the gradient in Q are rotated to the
measurement frame.
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4 The Remove-Compute-Restore approach

According to the potential theory, the gravitational potential V given in Eq. (2.11) and conse-
quently also the disturbing potential T of Eq. (2.54) are harmonic and thus satisfy the Laplace
equation Eq. (2.13) only outside the attracting masses. The geoid, however, is per definition
coinciding with the equipotential surface of the mean ocean at rest and will therefore usually
be situated inside the attracting masses over land areas. Classical methods for geoid determi-
nation, for instance using Stokes’ formula (Hofmann-Wellenhof and Moritz, 2005), therefore
require that the masses above the geoid and thus the gravitational effects of these masses are
reduced from the observation data in some way.

A second aspect is, that any interpolation or prediction method only leads to reasonable
results, if the quantities used as input for the estimation of other unknown quantities are
sufficiently smooth. In the case of LSC it is necessary to have smooth gravity field functionals
in order to obtain a significant and representative statistical behaviour of the field in terms of
a suitable covariance function. In mountainous regions for example, the local gravity field will
be dominated by the gravitational effect of the topography, which causes undesirable high-
frequency variations in particular in terrestrial gravity observations. Hence, the reduction of
such influences will facilitate the interpolation and prediction process.

Furthermore, the reduction of systematic trends of the gravity field leads to a prerequisite
of the LSC method, namely that the expectation value of gravity field quantities (derived
from the disturbing potential T ) should be zero, see Section 3.2. In this sense, known
systematic effects of the gravity field should to be removed before the actual computations,
which results in residual observables. From these quantities, the desired residual gravity
quantities are estimated, and finally the systematic effects are reconsidered and thus restored
again. This procedure is commonly denoted as the Remove-Compute-Restore (RCR) concept
and is discussed in various literature, e.g. Hofmann-Wellenhof and Moritz (2005), Forsberg
and Tscherning (1997) or Moritz (1980a).

Within the RCR approach, different systematic effects on gravity observations are consid-
ered, which can influence the gravity data in different ways. These systematics are discussed
in the following sections. At the beginning, the long-wavelength effects based on a global
Earth Gravity field Model (EGM) will be discussed in section 4.1. Then, the effect of atmo-
spheric masses is investigated in section 4.2. Afterwards, the issue how to treat the impact
of topography is shown in section 4.3, and finally the topic of isostasy is discussed in sec-
tion 4.4.
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4 The Remove-Compute-Restore approach

4.1 Global gravity field models

In this thesis, the RCR will be of particular interest in chapter 7, where terrestrial gravity
observations together with GOCE gravity gradients are used to estimate a regional geoid
solution for Austria. Although the terrestrial gravity data is considered to be sensitive to
the short-scale variations of the gravity signal, while gravity gradients measured at satel-
lite altitude are observing in particular the medium wavelengths with high accuracy, both
quantities are point observations which theoretically incorporate the entire gravity signal
spectrum. However, due to their limited availability within a restricted area of interest for
such a regional application, the long wavelengths of the gravity signal can not be resolved
with sufficient accuracy.

Global EGMs are representing the Earth’s static gravity field in terms of its exterior potential
and are usually given as series of spherical harmonics coefficients truncated at a specific degree
Nmax. They are primarily derived from observations with a global data distribution and can
thus be considered to resolve the gravity signal accurately especially in the long- to medium-
wavelength spectral range. The EGMs can be classified into models that are based solely
on satellite data and models that are deduced from a combination of satellite and terrestrial
data. Since the year 2002, a series of dedicated gravity satellite missions and according grav-
ity field solutions began with the launch of the CHAllenging Minisatellite Payload (CHAMP)
mission (Reigber et al., 2002), which was followed by the GRACE project in 2002 (Tapley
et al., 2003). The last gravity mission launched into space was the GOCE satellite, which
is introduced in detail in chapter 5. Due to their individual measurement principles, these
missions are complementary in terms of accuracy within certain spectral bandwidths. Hence,
recent successful attempts to consistently combine all these missions were undertaken for
instance by the Gravity Observation COmbination (GOCO) consortium, which also includes
Satellite Laser Ranging (SLR) observations for the very long wavelength part of the gravity
signal (Goiginger et al., 2011). The current maximum spectral resolution of satellite-only
models is limited with Degree and Order (D/O) 280, which corresponds to a spatial reso-
lution of approximately 70 km, and was in particular achieved due to the gravity gradient
observations of the GOCE mission within the latest global GOCE_TIM_RL05 model (see
section 5.4.3). In this context it should be mentioned, that a significant signal content can
only be expected until D/O 254, where the signal-to-noise ratio reaches 1, while beyond the
signal is dominated by regularization (Brockmann et al., 2014).

Apart from satellite-only models, also combination models including other data sources ex-
ist. The most prominent and still widely used is the EGM2008 model (Pavlis et al., 2012),
which was published in 2008. Due to the inclusion of terrestrial data, airborne gravimetry
and ocean altimetry data, this model was developed complete to D/O 2159 and contains
additional coefficients up to D/O 2190 and thus resolves the gravity field with a spatial
resolution of 5′ × 5′. Although this model is still unrivaled with respect to the maximum
resolution, the long-wavelength constituents are determined more accurately by more recent
satellite-only models. The reason for that can be found due to the fact that EGM2008 in-
cludes long-wavelength information based on GRACE data according to the ITG-Grace03s
model (Mayer-Gürr, 2007), while for instance the latest GOCO05s model incorporates up-
dated data of the ITG-Grace2014s model (Mayer-Gürr et al., 2014) as well as SLR data
(Maier et al., 2014).
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4.1 Global gravity field models

In order to evaluate the characteristics of global EGMs, the signal degree variances can be
computed from the spherical harmonics coefficients according to Eq. (3.32). In this way, the
energy content of the gravity signal per spherical harmonic degree can be assessed. Similar
to the signal content itself, the degree variances of the formal coefficient errors, which are
usually also provided with an EGM, can be computed by

kσn =

n∑
m=0

(
σ2
c̄nm

+ σ2
s̄nm

)
. (4.1)

In Figure 4.1, the signal degree variances of EGM2008 are illustrated as solid blue line and
the corresponding error degree variances as dashed blue line in terms of geoid heights. The
formal errors indicate that the low degrees are dominated by GRACE contributions up to
D/O 90, where terrestrial data starts to have a beneficial impact. The degree variances of the
coefficient differences between EGM2008 and the latest GOCE_TIM_RL05 model are given
as green line, with the formal errors of the GOCE model depicted as dashed line in the same
color. The actual signal differences are larger than the formal errors of GOCE until D/O 230,
which means that the GOCE model can be considered to be more accurate in this spectral
range compared to EGM2008. The fact that the differences are also larger than the formal
EGM2008 errors lead to the conclusion that the accuracies of the terrestrial data sources in the
EGM2008 model are considerably overestimated. Finally, the same kinds of curves are shown
for the GOCO03s combination model in red. A look at the formal errors immediately shows
that this model has an improved accuracy compared to the GOCE-only model in particular
below D/O 110. Since the GOCE contribution in the GOCO03s model is according to an
earlier release GOCE_TIM_RL03 with substantially less data, the GOCE_TIM_RL05 is
superior to GOCO03s above D/O 110. The latest GOCO05s benefits from the additional
data of the GOCE_TIM_RL05, which can be verified by the corresponding formal errors
and signal differences given in orange. Since the GOCO05s model was officially released in
April 2015, just before the completion of this thesis, its predecessor GOCO03s is used for the
studies herein.
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dashed lines
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The essence of this investigation is, that global EGMs can resolve the long-wavelength con-
stituents of the gravity field signals considerably more accurately than terrestrial data. It
is therefore recommended to reduce the long-wavelength gravity effect from terrestrial data
by using an accurate EGM within the RCR procedure. In this way, a residual or anoma-
lous gravity quantity ∆g can be formed from the gravity observation g taken at the Earth’s
surface by

∆g = g − γegm , (4.2)

where γegm can be considered as an improved version of the normal gravity γ, i.e. it is better
approximating the actual gravity (see also the discussion in section 2.3.4). For a combination
of different gravity field observations, this reduction will have to be performed in a consistent
way for all measurement types, e.g. the long-wavelength effects have to be removed from
GOCE gradient observations in the same manner.

The final question is, up to which spherical harmonic D/O Nmax the long-wavelength sig-
nal should be removed from the gravity observables prior to the actual processing. This
primarily depends on the type of input data, or more specifically on the spectral signal
range of the data, where additional contributions can be expected and should therefore be
exploited for an improved gravity field determination. In this thesis, this will be discussed
in chapter 7, where the application of a regional geoid estimation for the Austrian area is
presented.

4.2 Atmospheric reduction

At the beginning, a closer look on the gravitational effects of the atmospheric masses on
gravity measurements is taken. In this work it is assumed that the atmosphere is static and
temporal variations are either already accounted for in some preprocessing steps or that they
can be neglected. When performing gravity reductions of terrestrial gravity measurements for
further gravity field determination processes, it has to be considered that the measurements
are taken on the Earth’s surface while the atmospheric masses are above the observation
point. Hence, the assumption of a mass-free exterior space and thus a harmonic potential
outside the Earth’s surface is violated for terrestrial observations. Conventionally, this is
accounted for by reducing the interior gravity effect due to the atmospheric potential to the
observed gravity on ground, see Moritz (1980a) or Sjöberg (1999). This corresponds to the
International Association of Geodesy (IAG) approach, which assumes a spherical layering of
the atmosphere without considering the variations due to the topography. Tabulated val-
ues for this gravity correction in dependence of the height of the observation station can
be found in Moritz (1980b). For a consistent RCR, one further aspect has to be consid-
ered.

Any gravity field determination process is performed on the basis of a linearized gravity field,
i.e. by building residual gravity quantities like gravity anomalies related to a disturbing
potential that is formed by means of a normal gravity potential or an empirically determined
EGM. Both, normal potential as well as an EGM, are including the atmospheric mass effect
for the exterior space. Hence, when the residual gravity field quantities at the Earth’s surface
are formed, the atmosphere is implicitly reduced as well, although we want to treat the
gravity observations in an atmosphere-free world. Therefore, the atmospheric effect should
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4.2 Atmospheric reduction

also be considered when the contribution of the normal or EGM potential is subtracted
from terrestrial gravity field observations. In this thesis, terrestrial and GOCE gradient
observations at satellite altitude will be combined with the aim to determine a regional geoid
(see chapter 7). In order to be consistent for all gravity observations, the atmosphere-free
assumption has to be pursued for the satellite measurements as well. In this case, all relevant
masses can be considered to be located below the observation points, so the exterior effect of
the atmospheric potential is of interest.

For this study, the atmospheric potential is developed in terms of a spherical harmonics se-
ries, which also incorporates the effect of the variable topography. With this advantageous
representation, it is possible to apply the atmospheric effect either directly in the spectral do-
main, or in the spatial domain for arbitrary gravity field quantities by an according spherical
harmonics synthesis. The atmospheric potential V a at an arbitrary point P can be expressed
with the Newtonian volume integral formula Eq. (2.11) by

V a(P ) = G

∫∫
σ

∫ ru

rt

ρa(rQ)
r2
Q

l
drQ dσ , (4.3)

where G is again the gravitational constant and l is the distance between computation point
P and integration point Q. In contrast to Eq. (2.11), in this case the atmospheric density ρa

is not assumed to be constant, but is depending on the radial distance rQ of the integration
point Q. The radial integration of the atmospheric masses has to be performed between the
topography rt and a specified upper limit of the atmosphere ru, while the areal integration
is done for the entire Earth’s surface σ.

According to potential theory as explained in section 2.2, the gravitational potential can also
be described in terms of spherical harmonics representation. Based on the location of the
computational point P we have to distinguish between two solutions of the Laplace equation,
one valid for the outer space rP > R, and another one valid in the inner space rP < R for
an arbitrary sphere with radius R, see Eq. (2.37) and Eq. (2.38). The solution for the outer
space reads as follows

V a
e (P ) =

GM

R

∞∑
n=0

(
R

rP

)n+1 n∑
m=−n

āa,enm Ȳnm(P ) , (4.4)

with the fully normalized exterior atmospheric potential coefficients āa,enm

āa,enm =
1

M(2n+ 1)

∫∫
σ

∫
rQ

(rQ
R

)n
ρa(rQ) r2

Q Ȳnm(Q) drQ dσ , (4.5)

while for the inner space

V a
i (P ) =

GM

R

∞∑
n=0

(rP
R

)n n∑
m=−n

āa,inm Ȳ (P ) , (4.6)
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with the interior potential coefficients āa,inm

āa,inm =
1

M(2n+ 1)

∫∫
σ

∫
rQ

(
R

rQ

)n+1

ρa(rQ) r2
Q Ȳ (Q) drQ dσ , (4.7)

is defined. As it was mentioned at the beginning of this section, both, the exterior and in-
terior potentials are important when dealing with the atmosphere. In most space geodetic
applications, where the observations are taken at satellite altitude, all relevant masses can be
considered to be located below the observation point, so the exterior solution is of interest.
However, in case of terrestrial observations also the interior solution is important. When
performing gravity reductions of terrestrial gravity measurements for further gravity field de-
termination processes, the measurement is taken on the Earth’s surface while the atmospheric
masses are above the observation point. Hence, the atmospheric effect of the interior solution
has to be considered. Since we assume a radial symmetric layering of the atmosphere, for
the interior potential mainly the deviations due to the topography will contribute to this
potential.

4.2.1 Atmospheric Density Models

The coefficients of the spherical harmonics representation of a potential are depending on
the radial integration of the density ρ. Considering the density of the atmosphere ρa, it is
not a constant as it is assumed, e.g., for topographic masses, but it is a quantity that rapidly
decreases with increasing height. Hence, for the derivation of the atmospheric potential,
a corresponding Atmospheric Density Model (ADM) depending on the height has to be
found.

U.S. Standard Atmosphere USSA76

The USSA76 can be considered as a widely used standard atmosphere and is a joint pub-
lication of the National Oceanic and Atmospheric Administration (NOAA), the National
Aeronautics and Space Administration (NASA) and the U.S. Air Force (NOAA et al., 1976).
This model is assumed to be valid for a period of moderate solar activity, while its prede-
cessor USSA62 was defined for a environment of high solar activity. It defines models for
pressure, temperature and density of the Earth’s atmosphere and describes an idealized and
static atmosphere from ground level to 1000 km. The ADM is based on the perfect gas law
assuming dry air and defines the total density ρa as a function of geopotential height H by

ρa(H) =
M P (H)

R∗ T (H)
, (4.8)

in which T (H) is the absolute temperature, P (H) is the total pressure, R∗ denotes the
universal gas constant with value of 8.314 32× 103 Nm/kmolK and M =28.9644 kg kmol−1

is the constant mean molecular weight of air.
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4.2 Atmospheric reduction

The relationship between geopotential heightH and geometric height h is given by

H =
R h

R+ h
, (4.9)

where R is the Earth’s radius. The model is segmented into eight layers with linear temper-
ature gradients Lb given in Table 4.1.

The temperature-height profile can then be determined for heights within a layer b according
to the layer-by-layer evaluation of

T (H) = Tb + Lb (H −Hb); ∀b = {0, 1, . . . , 6} ∧ Hb ≤ H < Hb+1 , (4.10)

where Tb is the temperature at the base of the corresponding layer with the initial standard
temperature at sea level T0 = 288.15K (=15 ◦C). Subsequently, the absolute pressure can be
derived by

P (H) =


Pb

(
Tb

T (H)

) g0 M

R∗ Lb . . . Lb 6= 0

Pb

(
−g0 M(H −Hb)

R∗ T (H)

)
. . . Lb = 0

, (4.11)

starting with the reference value for the absolute pressure at sea level, which is defined as P0 =
1013.25mbar. The quantity g0 = 9.806 65m/s2 represents the gravity at sea level assessed
for this standard model. The corresponding height profiles for temperature, pressure and
density are illustrated in Figure 4.2.

Table 4.1: Reference levels and linear temperature gradients of the temperature-height pro-
files from ground level to the beginning of the thermosphere at about 86 km
geometric height according to USSA76

Layer Geopotential Temperature gradient
height Hb [km] Lb [K km−1]

0 0 −6.5
1 11 0.0
2 20 1.0
3 32 2.8
4 47 0.0
5 51 −2.8
6 71 −2.0
7 84.852

The definitions of USSA76 would provide formulas for computations above 86 km height.
However, it can be assumed that the majority of the atmospheric masses are concentrated
within a certain layer close to the Earth’s surface. For instance, Lambeck (1988) states
that about 80% of the mass lies within the Troposphere with maximum heights between
12 to 15 km, while Ecker and Mittermayer (1969) expect 99% of the mass below 50 km.
So for this application, an atmospheric density model up to 86 km will be more than suffi-
cient.
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Figure 4.2: USSA76 height profiles for temperature, pressure and density

4.2.2 Review of existing atmospheric density models

Unfortunately, the USSA76 density model is not suitable for a vertical integration, which
has to be performed when deriving the atmospheric potential. Therefore, a simplified and
integrable ADM has to be found. To approximate the Earth’s atmosphere, several approaches
can be found in literature. Lambeck (1988) assumed a spherically layered exponential model

ρa(h) = ρ0 expα h , (4.12)

with h defined as height above sea level, ρ0 is the reference density at sea level and α is fixed as
constant value. Eshagh (2009) determined α = 1.3886× 10−4 considering ρ0 =1.2227 kg/m3

to get an appropriate fit to the USSA76 standard density.

Sjöberg (1998) proposed following spherically layered power model

ρa(h) = ρ0

(
R

R+ h

)ν
, (4.13)

where R is the Earth’s mean radius and ν = 930 is a constant factor which was re-fitted to
USSA76 by Eshagh and Sjöberg (2009). Novak (2000) introduced a polynomial function of
second order

ρa(h) = ρ0

(
1 + α h+ β h2

)
, (4.14)

with the density at sea level ρ0 =1.2227 kg/m−3, and the estimated coefficients α = −1.1436×
10−4 and β = 3.4057×10−9. He concludes that it fits the USSA76 with an accuray of 5×10−3

up to 9 km height. Eshagh and Sjöberg (2009) proposed to combine a polynomial model
according to Eq. (4.14) for elevations ≤10 km with the simple power model of Eq. (4.13) for
elevations from 10 km up to a certain maximum height Z, which leads to a density model of
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the form

ρa(h) =


ρ0

(
1 + α h+ β h2

)
. . . 0 ≤ h ≤ h0

ρa(h0)

(
R+ h0

R+ h

)ν′
. . . h0 ≤ h ≤ Z

, (4.15)

with the coefficients α = −7.6495×10−4, β = 2.2781×10−9 and ν ′ = 890 and the intermediate
reference level h0 = 10 km, at which ρa(h0) = 0.4127 kg/m3.

To get an overview of the different atmospheric density models from literature, the ADMs
were evaluated with a radius R = 6 378 137m and the according parameters provided. The
density profiles can be seen in Figure 4.3. The USSA76 standard density model is depicted
in black. Looking at the first 20 km height, the exponential model (orange curve) as well as
the power model (blue curve) are overestimating the decrease of density with height. The
combined model (green curve) is supposed to overcome this deficiencies, however with the
parameters provided, this model is underestimating the decay of density in the first 10 km.
While the exponential model and the combined model show a reasonable close fit at higher
altitudes, the power model implies lower densities in these heights compared to the reference
USSA76 model, which becomes obvious when looking at the logarithmic scale plot on the
right of Figure 4.3. However, this might not be too critical, as the densities are already very
small and below 0.1 kg/m3 for altitudes ≥20 km.
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Figure 4.3: Comparison of different atmospheric density models from literature in conven-
tional (left) and logarithmic scale (right)
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4.2.3 The ITSG atmospheric density model

Since none of the investigated models is approximating the USSA76 standard atmosphere
very well in particular in the most important lower altitudes, an own model, in the following
called ITSG model, is defined.

As the analytical vertical integration of the atmospheric density for the derivation of the
atmospheric potential is becoming quite complex for an exponential or polynomial model, a
combined power model is chosen. According to the layer structure of the USSA76, the power
model is split into one parametrization for altitudes h ≤ h0, and another one for heights
h0 ≤ h ≤ Z with h0 = 11 km and Z as maximum height of evaluation:

ρa(h) =


ρ0

(
R

R+ h

)ν
. . . 0 ≤ h ≤ h0

ρa(h0)

(
R+ h0

R+ h

)ν′
. . . h0 ≤ h ≤ Z

. (4.16)

The coeffcients ν = 680 and ν ′ = 932 are determined by a least squares adjustment to
fit the USSA76 model with ρ0 = 1.2250 kg/m3 and ρa(h0) = 0.3648 kg/m3 correspond-
ing to the values given by USSA76 for these heights and a mean Earth’s radius R =
6 378 137m.

In Figure 4.4 the comparison of the ITSG model with the models introduced in the previous
section is illustrated. In contrast to the other models, the new ITSG model (red curve) fits
the USSA76 reference very well particularly in the low altitudes.
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Figure 4.4: Comparison of the ITSG atmospheric density model with others in conventional
(left) and logarithmic scale (right)
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To assess the quality of the approximation, the differences of each model with respect to the
USSA76 and the corresponding relative errors are shown in Figure 4.5 in the left and right
plots, respectively. Obviously, the ITSG model performs best in terms of absolute deviation.
Regarding the relative errors with respect to USSA76, it is also preferable especially in the
most important low altitude range.
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Figure 4.5: Differences of the ADMs with respect to USSA76 (left) and relative errors (right)

Based on these investigations, the ITSG model is chosen for further application and used for
the derivation of the atmospheric potential in spherical harmonics representation.

4.2.4 Atmospheric potential based on the ITSG atmospheric density
model

Recalling the representation of the atmospheric gravitational potential in spherical harmonics
for the exterior space from Eq. (4.4) we have to derive the corresponding coefficients āa,enm as
given in Eq. (4.5)

āa,enm =
1

M(2n+ 1)

∫∫
σ

∫
rQ

(rQ
R

)n
ρa(rQ) r2

Q Ȳnm(Q) drQdσ ,

where ρa(rQ) is the atmospheric density in dependence of the radial distance rQ and R is the
mean Earth’s radius. In a first step we want to perform the analytical vertical integration of

rZ∫
rs

(rQ
R

)n
ρa(rQ) r2

Q drQ , (4.17)
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with the lower limit rs = R + h defined as the geocentric radius to the Earth’s surface and
some upper limit rZ = R+Z, both h and Z to be considered as heights above the reference
level. We therefore introduce the ITSG atmospheric density model of Eq. (4.16) which has
the form

ρa(rQ) = ρ0

(
R

rQ

)ν
, (4.18)

and insert this model into Eq. (4.17) to obtain the integral

ρ0

rZ∫
rs

(
rQ
R

)n( R

rQ

)ν
r2
Q drQ . (4.19)

Before going ahead, some considerations should be made. The spherical harmonics expansion
is defined in spherical approximation for a sphere with mean Earth’s radius R, but the points
considered are still referring to the ellipsoid. The ITSG atmospheric density model as given
in Eq. (4.16) is assuming a spherically layered atmosphere with a mean Earth’s radius R.
However, thinking of the Earth in a more realistic ellipsoidal shape, e.g. in case of the GRS80
ellipsoid, the differences between the semi-major axis at the equator and the semi-minor axis
at the poles reach a magnitude of about 21 km.

As the massive part of the Earth’s atmospheric masses are within the first 12 to 15 km, this
simplification might be critical. Sjöberg (2006) investigated the effect of the ellipsoidal lay-
ering by developing the atmospheric potential in ellipsoidal harmonics and found differences
in terms of geoid heights in the order of several centimeters. To avoid the more complicated
ellipsoidal harmonics, we account for this fact in a simple approximation by correcting the
spherical radius R to the more appropriate geocentric ellipsoidal radius R̄ = R −∆r, where
∆r is the difference between spherical radius and ellipsoidal radius. Hence, we can rewrite
Eq. (4.19) as

ρ0
R̄ν

Rn

rZ∫
rs

r
(2+n−ν)
Q drQ , (4.20)

and perform the integration

ρ0
R̄ν

Rn

(
r3+n−ν
Q

3 + n− ν

) ∣∣∣∣∣
R̄+Z

R̄+h

=
ρ0 R̄

ν

Rn (3 + n− ν)

[(
R̄+ Z

)3+n−ν −
(
R̄+ h

)3+n−ν
]
. (4.21)

By extracting R̄ from the terms in squared brackets and inserting R̄ = R + ∆r, this can be
further rearranged to

ρ0 R
3

3 + n− ν

(
R̄

R

)n+3
[(

1 +
Z

R̄

)n+3−ν
−
(

1 +
h

R̄

)n+3−ν
]
. (4.22)

Examining the first denominator in Eq. (4.22) we find 1/(3 + n − ν), thus a discontinuity
occurs in case that the spherical harmonic degree n = ν − 3. To consider this fact, we can
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insert ν = n+ 3 in Eq. (4.20) and get

ρ0
R̄n+3

Rn

rZ∫
rs

r−1
Q drQ , (4.23)

which can be analytically integrated to

ρ0
R̄n+3

Rn
ln(rQ)

∣∣∣∣R̄+Z

R̄+h

= ρ0 R
3

(
R̄

R

)n+3

ln

(
R̄+ Z

R̄+ h

)
. (4.24)

Finally, we can insert the integrals of Eq. (4.22) or Eq. (4.24) into Eq. (4.5), which leads us
to the atmospheric potential coefficients for the exterior space

āa,enm =


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Ȳnm(Q) dσ

. . . ∀ n ∈ N\{ν − 3}

ρ0 R
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R̄+ h
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σ

Ȳnm(Q) dσ . . . n = ν − 3

. (4.25)

Equivalently to the external potential we obtain the interior atmospheric potential given in
Eq. (4.6) by deriving the corresponding spherical harmonics coefficients āa,inm of Eq. (4.7)

āa,inm =
1

M(2n+ 1)

∫∫
σ

∫
rQ

(
R

rQ

)n+1

ρa(rQ) r2
Q Ȳnm(Q) drQdσ .

Again, first we do the vertical integration of the density model and radial quantities

ρ0

rZ∫
rs

(
R

rQ

)n+1( R̄

rQ

)ν
r2
Q drQ = ρ0

Rn+1 R̄ν

2− n− ν
r2−n−ν
Q

∣∣∣R̄+Z

R̄+h
, (4.26)

which can be rearranged to
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, (4.27)

and inserted into Eq. (4.7) to obtain the spherical harmonics coefficients for the interior
atmospheric potential

āa,inm =
ρ0 R

3

M (2n+ 1) (2− n− ν)

(
R̄

R

)2−n
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1 +
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)2−n−ν
−
(

1 +
h

R̄

)2−n−ν
] ∫∫

σ

Ȳnm(Q) dσ .
(4.28)
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In contrast to the coefficients for the exterior potential, we do not have to consider a special
case for the spherical harmonic degree n as for the ITSG ADM the factor ν will always be > 2
and hence the denominator 2−n− ν will not become zero in any case.

4.2.5 Effects on terrestrial and GOCE data

Finally, the effect of atmospheric masses on gravity observations used in this thesis is quan-
tified in this section. For this purpose, the exterior and interior atmospheric potential based
on the ITSG ADM is derived using the global GTOPO30 Digital Elevation Model (DEM).
Details on its data sources and compilation methods can be found in U.S. Geological Sur-
vey (2014). In order to diminish the computational efforts, the original spatial resolution
of 30

′′ × 30
′′ was generalized to 2

′ × 2
′ . The maximum spectral resolution for the spherical

harmonics expansion was defined with D/O 360.

First, the effects on the gravity as observed on the Earth’s surface is investigated. As men-
tioned in the beginning of section 4.2, we can discriminate two atmospheric effects within a
consistent RCR procedure. On the one hand, the reference gravity derived from an EGM
γegm (or the normal gravity γ), which is introduced to obtain a residual quantity, i.e. a grav-
ity anomaly ∆g at the surface, incorporates the effect of the exterior atmospheric potential
δgae . Hence, for a consistent removal of the atmospheric masses from the gravity observation
g, this effect has to be removed from the reference gravity γegm when building the surface
gravity anomaly

∆g = g − (γegm − δgae ) = g − γegm + δgae . (4.29)

On the other hand, the gravity observation is affected by the atmospheric masses above the
observation point, i.e. the interior effect of the atmospheric potential in terms of gravity δgai
has to be reduced in order to get an atmosphere-free observation quantity

∆g = g − γegm + δgae − δgai . (4.30)

In Figure 4.6 the global atmospheric effects on gravity observations at topographic heights
is illustrated. The exterior atmospheric effect in Figure 4.6a varies between 0.47mGal in the
high mountain areas like the Himalaya and 0.71mGal at sea level. In contrast, the interior
atmospheric effect, which is depicted in Figure 4.6b, only has an amplitude range from
−0.03mGal to 0.20mGal, since the interior potential is mainly representing the deviations
from a radial symmetric atmosphere layering due to topography. In a consistent remove step,
both effects have to be considered and add up to a total effect that globally varies between
0.27mGal and 0.74mGal, as shown in Figure 4.6c. Although the influence is not very large,
it can be favourable to consider the atmospheric effects in a consistent RCR procedure, since
a smoothing of the residual gravity signal can be expected.

At last, the atmospheric effect on GOCE gradient observations is evaluated at an assumed
mean satellite altitude of 250 km. Since all relevant atmospheric masses can be considered to
be located well below the satellite, we only have to deal with the external atmospheric poten-
tial. The corresponding influence on the vertical Vzz is illustrated in Figure 4.6d.

The amplitude of the atmospheric effect is in the range from −0.4mE to 2.5mE on global
scale, which might have a smoothing effect on the gradient data that should not be neglected
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4.2 Atmospheric reduction

(a) Exterior atmospheric effect δgae (b) Interior atmospheric effect δgai

(c) Combined atmospheric effect δgae − δgai (d) Atmospheric effect on Vzz gradient

Figure 4.6: Atmospheric effects based on the ITSG ADM: effects of the exterior, interior and
combined atmospheric potential on gravity observations at topographic heights
from the GTOPO30 DEM (a-c), effect on vertical Vzz gradients at an assumed
satellite altitude of 250 km (d)

within a consistent RCR approach. However, the major part will already be reduced when
removing the normal field (or an EGM), and the remaining effects due to the lateral variations
of the topography will be negligible (see chapter 7 or chapter 8).
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4.3 Topographic reduction

The high-frequency variations of the gravity signal are primarily induced by the gravita-
tional effects of the topographic masses. In case of LSC, such variations are undesirable,
since they make it difficult to perform a reliable interpolation or prediction, as already
discussed in the introduction to this present chapter 4. Hence, for any gravity field de-
termination it is favourable to reduce the short-wavelength signal due to the topography
prior to the actual estimation process. An overview of different methods for the reduc-
tion of terrain effects can for instance be found in Forsberg and Tscherning (1997) or in
Wild-Pfeiffer (2007).

Since the influence of topographic masses on a certain point on Earth’s surface decreases
with the distance, different approximation methods can be used to evaluate the gravitational
effect of the topography. In this thesis, the topographic mass effect is evaluated using the
well known prism formula if the mass prism is located within a certain close distance to the
evaluation point. For intermediate distances, such a mass prism can be approximated by a
mass line, while for far distance topographic masses an approximation with point masses is
sufficient (Wild-Pfeiffer, 2007). Using a sufficiently dense and accurate DEM and assuming
a constant density for the topographic masses, conventionally chosen with ρ =2670 kgm−3,
the topographic effect δgdem can then be reduced from the gravity observations, see also
Pock et al. (2014).

However, for a consistent RCR procedure it has to be considered that usually the long-
wavelength effects of the gravity field are reduced by means of a global EGM, see section 4.1.
Since an EGM incorporates all mass effects including those of the topography, a reduc-
tion of both, terrain effects and an EGM, would lead to a double consideration of the long
wavelengths of the topographic gravity effect. To overcome this, the gravity effect of the
topography

V t(P ) = G

∫∫
σ

∫ ru

rl

ρ
r2
Q

l
drQdσ (4.31)

can be expanded into an according spherical harmonics series of the exterior topographic
potential V t of the form as given in Eq. (2.37). Similar to the atmospheric potential derived
in section 4.2, corresponding fully normalized topographic potential coefficients ātnm can be
derived by

ātnm =
1

M(2n+ 1)

∫∫
σ

∫
rQ

(rQ
R

)n
ρ r2

Q Ȳnm(Q) drQ dσ . (4.32)

The integration limits with respect to rQ are given in this case by the radial distances to the
lower bound rl of the vertical mass column of a given DEM, i.e. the geoid level, and by the
radial distance to the upper bound ru, which is defined by the topographic height. Hence,
the potential coefficients are finally obtained by

ātnm =
ρ

M(2n+ 1)(n+ 3)

(ru − rl)n+3

Rn

∫∫
σ

Ȳnm(Q) dσ . (4.33)
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In this way, the long-wavelength topographic effect δgt,shc which is incorporated in the ref-
erence gravity γegm of the EGM can be accounted for already in the spectral domain of
the spherical harmonics expansion. The consistent consideration of the topographic mass
effect from a gravity observation at the Earth’s surface within a RCR approach can then be
achieved by

∆g = g − (γegm − δgt,shc)− δgdem = g − γegm + δgt,shc − δgdem . (4.34)

The expansion limit of δgt,shc has to be conform with the maximum degree Nmax of the
EGM. Investigations on the effect of the terrain reduction will be performed in more detail
within the application for a regional geoid determination in chapter 7.

4.4 Isostasy

If we consider the crust as a homogeneous layer, one could assume that the reduction of
topographic masses as suggested in the previous section would lead to decorrelated gravity
observations. However, this is not the case in reality, which was already observed in the 18th

century during the famous surveying campaign of the meridian arc in Peru lead by Pierre
Bouguer (Lambeck, 1988). He noticed that his measurements of deflections of the vertical
were significantly smaller than those expected from calculating the topographic attraction of
the Andes Mountains. An equivalent phenomenon was also observed later in the 19th century
by George Everest when surveying the Himalayan part of Northern India. These findings led
to the conclusion that the effect of the topographic masses must be compensated to a certain
extent in the Earth’s interior, which was (and is) explained by introducing the concept of
isostasy. According to this theory, there exists a certain level of compensation at which the
equilibrium condition∫ h

D
ρ dr = const (4.35)

holds, meaning that the radial integration of the density ρ from the compensation depth D
to the topographic height h is constant at the level of compensation.

For geodetic purposes different isostatic models have been developed, which are generally very
simplified but nevertheless appropriate approaches considering the reduction of systematic ef-
fects within a remove-compute-restore scheme. The most prominent types of isostatic models,
which are also described in standard literature like Hofmann-Wellenhof and Moritz (2005),
Torge (1989) or Lambeck (1988), are introduced in the sequel.

4.4.1 Pratt-Hayford isostatic model

The Pratt-Hayford model is based on a constant compensation depth D, which is assumed
to be in the order of around 100 km with respect to sea level, as indicated in Figure 4.7a.
The masses above the compensation level are arranged in vertical columns. To each of these
columns a certain density value is assigned, so they all have equal mass. Below the compensa-
tion depth, a uniform and homogeneous density distribution is assumed. For instance, in case

57



4 The Remove-Compute-Restore approach

of the absence of topography (h = 0), the according density value of this column is commonly
introduced as ρ0 =2670 kgm−3, the standard crustal density. The general isostatic condition
for a certain column ci with height hi above sea level is then given by

ρci (D + hi) = ρ0 D , (4.36)

while over ocean areas

ρci (D − di) + ρw di = ρ0 D , (4.37)

where di stands for the depth of the ocean of the corresponding column and ρw =1027 kgm−3

is the standard density of sea water.

(a) Pratt-Hayford isostatic model (b) Airy-Heiskanen isostatic model

(c) Vening Meinesz isostatic model

Figure 4.7: Isostatic models according to Pratt-Hayford, Airy-Heiskanen and Vening Meinesz
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4.4.2 Airy-Heiskanen isostatic model

In the isostatic concept according to Airy-Heiskanen a different approach is pursued. Here,
the topographic load consists of material of constant density ρc =2670 kgm−3, which is set-
tled above a considerably denser material, which commonly equals the mean mantle density
ρm =3270 kgm−3. To achieve the isostatic equilibrium condition, the model is assumed to
behave similar to an iceberg, i.e. the crustal material comprising the topography is floating
on the mantle. Hence, the higher the elevation of the topography is, the deeper the crust
sinks into the mantle, which is illustrated in Figure 4.7b. Thus, isostatic equilibrium be-
tween penetration depth ti with respect to an assumed mean crustal thickness D and the
topographic height hi for a certain column ci over land is found by

∆ρ ti = ρc hi , (4.38)

with the density contrast between mantle and crust ∆ρ = ρm − ρc. For ocean areas the
relation is given by

∆ρ ti = (ρc − ρw) di , (4.39)

where again di is the depth of the ocean and ρw =1027 kgm−3 is the standard density of sea
water.

4.4.3 Vening Meinesz isostatic model

The Airy-Heiskanen as well as the Pratt-Hayford concept are strictly local approaches, which
assume that the topographic masses only affect the vertical column underneath. However,
in reality a surface load will more likely have a regional influence than the simplified local-
ized characteristics. The Vening Meinesz model is a based on a modified Airy-Heiskanen
approach that considers the crust to be elastic, which is regionally bending due to the to-
pographic masses, see Figure 4.7c. In geophysical sense, this Vening Meinesz model is more
realistic, however it is much more complex than, e.g., the Airy-Heiskanen concept. A general
formulation of this model can be found in Moritz (1990a). The derivation of the bending
curve of the crust is given for instance in Abd-Elmotaal (1993). He also shows that the Ven-
ing Meinesz model can be sufficiently approximated by smoothing an Airy-Heiskanen model.
For geodetic purposes, the latter one is mostly considered as sufficient and therefore will also
be used in this thesis.

4.4.4 Isostatic reduction

The isostatic effect on gravity observations based on the Airy-Heiskanen model

V iso(P ) = G

∫∫
σ

∫ ru

rl

∆ρ
r2
Q

l
drQdσ (4.40)

can be expanded into an isostatic potential V iso in terms of a spherical harmonics series very
similar to the topographic potential in section 4.3, with the corresponding fully normalized
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isostatic potential coefficients āisonm

āisonm =
∆ρ

M(2n+ 1)(n+ 3)

(ru − rl)n+3

Rn

∫∫
σ

Ȳnm(Q) dσ . (4.41)

In comparison to the topographic potential, there are some differences concerning the density
assumptions and the integration limits. In this case, we want to obtain the gravitational effect
of the variations of the crust-mantle boundary which are deviating from a homogeneous
mass distribution with uniform density. Hence, instead of the standard rock density of
ρ0 =2670 kgm−3, the constant density contrast ∆ρ between crust and mantle is introduced.
The upper limit ru for the integration of a specific mass column i is represented by the radius
of the mean crustal thickness D, while the radius of the lower limit rl is defined by the
penetration depth ti w.r.t. to D, see Figure 4.7b. The penetration depth ti over land can be
found by rearranging Eq. (4.38) to

ti =
ρc
∆ρ

hi , (4.42)

and for ocean areas Eq. (4.39) to

ti =
ρc − ρw

∆ρ
di . (4.43)

The reduction of the isostatic effect on any gravity observation can then be performed in the
spatial domain by an spherical harmonics synthesis of Eq. (4.40) into the desired quantity.
Again, within a consistent RCR process the removal of the long-wavelength gravity signals
by means of a global EGM up to a maximum truncation limit of D/O N egm

max already implies
that the long-wavelength influences of the isostatic effect are removed as well. Thus, the
isostatic effect only has to be considered from N egm

max + 1 to the maximum resolution of the
isostatic potential model. For a terrestrial gravity observation, the reduction of the isostatic
effect δgiso can in this sense be written as

∆g = g − γegm − δgiso . (4.44)

For further details on the influence of isostatic effect on gravity observations, the reader is re-
ferred to the application for a regional geoid determination in chapter 7.
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The Living Planet Programme of the ESA is based on two branches of Earth observation con-
cepts (ESA, 2014). The Earth Watch element comprises the operational data collection and
delivery for instance from meteorological satellite missions like Meteosat or MetOp. The sec-
ond element is the Earth Explorer category, which are dedicated scientific research missions to
investigate specific aspects of the Earth’s composition, environment and climate. The GOCE
is the first core mission chosen to be launched by ESA (ESA, 1999) with the aim to recover
the static gravity field of the Earth. As this thesis has its focus on the scientific exploitation
of the data observed by the GOCE satellite, this chapter is summarizing the key aspects
of this mission. A detailed overview can also be found, e.g., in Drinkwater et al. (2003),
Drinkwater et al. (2007) or van der Meijde et al. (2015).

5.1 Mission objectives and design

The GOCE mission was launched on March 17th in 2009 from the Plesetsk Cosmodrome in
Russia. The satellite was injected into a sun-synchronous orbit with an inclination of 96.7° at
279 km height. After a commissioning phase, GOCE started its nominal science operations
end of October 2009 at an altitude of 255 km orbiting the Earth in approximately 90 minutes.
The expected mission lifetime was initially defined with 20 months. However, due to the low
solar activity during the measurement period, the satellite could be kept in space until late
2013, when GOCE stopped measuring in science mode on the 21st of October. During its
last operational phase, GOCE had been lowered for further 30 km to an orbital height of
about 224 km. The mission finally reentered the atmosphere on the 11th of November 2013
and remaining parts of it fell into the ocean between the Falkland Islands and the South
American mainland.

The goal of the mission is the determination of the global static gravity field and its reference
equipotential surface, the geoid, with outstanding high spatial resolution and accuracy. As
the Earth’s gravity field is the fundamental physical force for dynamic processes in the Earth’s
interior and on its surface, a variety of scientific applications benefit from a precise knowledge
of the gravity field.

In geodesy, for instance, a precise geoid is the key to the global unification of height sys-
tems and enables the transformation from geometric heights gained from GPS measurements
to orthometric heights (Rummel, 2012; Gerlach and Rummel, 2013). In oceanography, the
combination of the static gravity field and the mean sea surface observed by satellite al-
timetry makes it possible to derive the mean dynamic ocean topography and consecutively
the geostrophic ocean currents (Knudsen et al., 2011; Albertella et al., 2014). As a last
field of applications to be mentioned here, the knowledge in solid earth physics is improving
from a precise gravity field (Marotta, 2003). GOCE measurements are delivering valuable
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information about density anomalies in the Earth’s interior, and can be used as bound-
ary values to determine Earth’s lithosphere and upper-mantle structures, see for instance
Basuyau et al. (2013) or Bouman et al. (2015). In particular, GOCE gravity gradients are
also used for the derivation of the crust-mantle boundary, the so-called Mohorovičić dis-
continuity, which is also an application investigated in this thesis. Hence, a more detailed
treatment on this issue can be found in chapter 8.

GOCE was designed in order to fulfil the demands of the scientific communities. The initial
requirements on the mission were the determination of the gravity field with an accuracy
of 1mGal, or in terms of geoid heights of 1 to 2 cm, at a spatial resolution of 100 km half-
wavelength (Drinkwater et al., 2003). To achieve this, GOCE flew at an extraordinary low
average altitude of 255 km. At these heights the non-gravitational forces, in particular air
drag and solar radiation pressure, acting on a satellite would force the satellite down back
to Earth within a few days. Therefore, the GOCE satellite (Figure 5.1) was equipped with a
so-called Drag-Free and Attitude Control System (DFACS).

Figure 5.1: The GOCE satellite and its instrumentation (©ESA)

This device consisted of magnetic torquers to realign the spacecraft with respect to the
Earth’s magnetic field, three star trackers to provide information about the orientation and
angular rate of the spacecraft, as well as of an ion thruster assembly which compensated the
non-gravitational accelerations in along-track direction.

The core instrument of GOCE was the Electrostatic Gravity Gradiometer (EGG), which is
shown in Figure 5.2a. The gradiometer instrument was designed to measure the medium
to short wavelengths of the gravity field with high precision. To complement the EGG
observations with information about the long wavelength gravity signals, GOCE had a GPS
device onboard, which was used as Satellite-to-Satellite Tracking Instrument (SSTI) for the
determination of the satellite’s position and velocity. Together, all devices form the concept
of Satellite Gravity Gradiometry (SGG) in combination with Satellite-to-Satellite Tracking
in high-low mode (SST-hl).
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5.2 GOCE Satellite Gravity Gradiometry

GOCE is the first satellite mission that realized the principle of gravity gradiometry in space.
An extensive treatment on SGG can be found in the fundamental work of Rummel (1986),
while more compact reviews are given for instance in Rummel et al. (2011), Hofmann-
Wellenhof and Moritz (2005) or Stummer et al. (2012). The aim of SGG is to observe
the gravity gradient tensor M (also called Marussi tensor)

M =


∂2V
∂x2

∂2V
∂x∂y

∂2V
∂x∂z

∂2V
∂y∂x

∂2V
∂y2

∂2V
∂y∂z

∂2V
∂z∂x

∂2V
∂z∂y

∂2V
∂z2

 =

Vxx Vxy Vxz
Vxy Vyy Vyz
Vxz Vyz Vzz

 , (5.1)

which represents the second order derivatives of the gravitational potential V in an arbitrary
Cartesian coordinate system (x, y, z). The basic properties of the tensor are its symmetry
and, according to Eq. (2.13), the fact that it is trace-free. The Marussi tensor can be re-
trieved from the measurements taken by the EGG. The gradiometer instrument consists of
six accelerometers arranged pairwise on three orthogonal axes, which are mounted with a
baseline of 0.5m as illustrated in Figure 5.2b (Cesare, 2008). The axes define the instrumen-
tal reference frame, commonly denoted as the Gradiometer Reference Frame (GRF), which
is centered almost perfectly at the satellite’s COM. The X-axis of the GRF is pointing ap-
proximately in the satellite’s flight direction, the Z-axis radially downwards and the Y-axis
complementing an orthogonal system (Gruber et al., 2010a).

(a) Gradiometer instrument model (excluding
harness), ©ESA

(b) Arrangement of the six accelerometers in the
instrument frame GRF with the less sensitive
axes as dashed arrows, ©Cesare (2008)

Figure 5.2: The GOCE gradiometer instrument

The actual acceleration observations of each accelerometer do not only contain the accel-
eration due to the Earth’s gravitational field but include also centrifugal accelerations due
to the satellite’s rotation, Euler accelerations due to the satellite’s angular accelerations
and finally residual non-conservative accelerations which are not fully compensated by the
DFACS. Hence, each accelerometer measurement ai can be described as shown for instance
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in Stummer et al. (2012) by

ai = −(M − Ω2 − Ω̇)ri + d , (5.2)

where ri is the distance between the accelerometer and the satellite’s COM, Ω2ri is the
centrifugal and Ω̇ri is the Euler term (note that in this notation lower case letters should
be understood as vectors, while upper case letters are matrices). The uncompensated non-
gravitational accelerations acting on the COM are represented by the vector d. Since every
accelerometer is exposed to the same non-conservative accelerations d, it is possible to sepa-
rate this term by building the so-called common mode accelerations ac for each accelerometer
pair ij = 14, 25 and 36 (see Figure 5.2b)

ac,ij =
ai + aj

2
≈ d , (5.3)

since ri + rj ≈ 0. This information can then be used for the drag compensation of the
satellite. On the other hand, a further linear combination of accelerations can be formed,
which are known as differential mode accelerations ad

ad,ij =
ai − aj

2
= −1

2
(M − Ω2 − Ω̇)(ri − rj) , (5.4)

which have the advantage that the disturbing non-conservative accelerations cancel out. As
the geometry of the gradiometer system (and thus ri and rj) is accurately known, the
gravity gradients can be recovered from the differential mode accelerations. By introducing
the quantity

Γ = M + Ω2 + Ω̇ , (5.5)

the Marussi tensor can be found with

M =
1

2
(Γ + ΓT )− Ω2 , (5.6)

because the angular velocities and angular accelerations composing Ω and Ω̇ can be recon-
structed from the combination of star sensor and gradiometer measurements. For a detailed
step by step derivation of the individual tensor components see Stummer et al. (2012). The
quite straightforward derivations of the GGT summarized until now are made under the as-
sumption that we deal with a perfect gradiometer instrument. In the case of GOCE, this is
not true in reality and two particular aspects have to be considered.

Due to their specific design (for details, see Cesare, 2008; Floberghagen et al., 2011), each
accelerometer has two ultra-sensitive axes and one less sensitive direction, which are indicated
in Figure 5.2b by solid and dashed arrows. As a consequence, it is not possible to resolve
every gravity gradient of the Marussi tensor with the same precision, which is also illustrated
in Figure 6.2. Due to the accelerometer arrangement, the tensor elements of the trace Vxx,
Vyy and Vzz (which can be assumed to contain most of the gravity information), as well as
Vxz can be obtained with highest precision. The off-diagonal elements Vxy and Vyz can only
be determined with minor quality of about factor 100 to 1000 worse than the others (Müller,
2003; Rummel et al., 2011). Furthermore, the accelerometers are manufactured in order to
maximize the measurement accuracy in a certain frequency range, the so-called Measurement
Bandwidth (MBW), which is defined from 5 to 100mHz. This was resulting from GOCE
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feasibility studies on the optimum configuration of SGG and SST-hl in order to meet the
goals of the mission (Cesare, 2008). The corresponding requirement for the noise level of the
trace of the GGT was defined by 11mE/

√
Hz between 20 and 100mHz, with allowance to

reach 100mE/
√
Hz at the lower end of the MBW. Below the MBW the errors increase with

1/f , with f being the frequency. In the time domain this behaviour corresponds to the drift
of the gradiometer instrument. These two characteristics, the disparate measurement quality
of the tensor elements and the superimposed errors, need special attention when using GOCE
gravity gradients and will be discussed further in chapter 6.

5.3 GOCE reference frames

In addition to the conventional reference frames, which have already been introduced in
section 2.1, three further mission-specific types of reference frames can be distinguished and
are introduced below.

Local Orbital Reference Frame (LORF) The LORF has its origin in the actual COM of
the satellite and is defined with the X-axis coinciding with the instantaneous direction of
the orbital velocity vector v. The Y -axis is defined to be normal to the plane given by v
and the vector r from the Earth’s center to the origin, i.e. it is pointing in the direction of
the orbital angular momentum vector n = r × v. The Z-axis complements a right-handed
system, so it is almost radially pointing outward. The LORF is illustrated as green triad in
Figure 5.3.

Figure 5.3: Different GOCE-related reference frames: GRF in red, LORF in green and LNOF
in blue
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Gradiometer Reference Frame (GRF) As mentioned in section 5.2, the axes of the ac-
celerometer pairs define the instrumental reference frame GRF, which is centered at the
satellite’s COM. The accelerometer arrangement and the definition of the corresponding
gradiometer axis is outlined in Figure 5.2b. The X-axis is formed by the accelerometer
pair A4-A1, the Y -axis by A5-A2 and the Z-axis is pointing from A6 to A3. The triad is
forming a right-handed Cartesian system, shown in Figure 5.3 in red. The X-axis of the GRF
is kept parallel to the X-axis of the LORF as good as possible, which is controlled by the
magnetic torquers. Thus, the Y - and Z-axis of the GRF are approximately pointing in the
opposite direction of their equivalents in the LORF. The remaining misalignments between
the two frames may reach several degrees (Pail, 2005).

Local North-Oriented reference Frame (LNOF) Similar to the LORF, the origin of this
reference frame is at the COM of the satellite. The Z-axis is defined as the vector from the
Earth’s center to the origin radially pointing outwards. The Y -axis is parallel to the normal
vector of the meridional plane through the GOCE COM pointing East, while the X-axis is
complementing the triad to a left-handed Cartesian system pointing to the North direction
given in blue in Figure 5.3. Note that the official GOCE standard definition for this frame
is a right-handed North-West-Up frame (Gruber et al., 2010b). In order to be consistent to
the conventional definition of local level system (see section 2.1.3), the LNOF in our case is
introduced as a left-handed North-East-Up frame.

5.4 GOCE data processing and products

The data processing of the GOCE mission on ground is performed in three consecutive
steps under the supervision of ESA. The Level 0 data contains the raw GOCE science
payload instruments time series as well as their housekeeping and ancillary data. The
scientific data processing to convert the raw data to so-called Level 1b data given in en-
gineering units is performed by the Payload Data Segment (PDS), which is described in
Frommknecht et al. (2011). A detailed overview on this products and its data formats can
also be found in ESA (2006). The main tasks are to produce calibrated, corrected and geo-
located EGG and SSTI observations as well as attitude information for the transformation
from the GRF to the IRF.

Since the performance of the derivation of the gravity gradients did not meet the pre-launch
expectations of the mission, the processing strategy for EGG and star tracker measure-
ments has been revised and the gradiometer Level 1b processing scheme has been updated
according to Stummer et al. (2012). These Level 1b data serve as input for the final cat-
egory of data released by ESA, the Level 2 data which are the dedicated end user prod-
ucts.

The computations are performed within the High-level Processing Facility (HPF), a sci-
entific data analysis and processing system distributed over ten participating institutions
(Rummel et al., 2004). Level 2 data include for instance the final gradient observation time
series, precise orbits, auxiliary data and ultimately the gravity field solutions in terms of
spherical harmonics expansions and their accuracy information in terms of full variance-
covariance matrices, see Table 5.1. The data can be accessed either via the ESA online client
service EOLI-SA (http://earth.esa.int/EOLi/EOLi.html) or the GOCE virtual online
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archive (http://eo-virtual-archive1.esa.int/Index.html). The processing strategies
for Level 2 products as well as the corresponding data descriptions and user guidelines are
summarized in Gruber et al. (2010b).

Table 5.1: Selected GOCE Level 2 products overview

Product Description

Gravity gradients
EGG_NOM_2 Level 2 gravity gradients in GRF
EGG_TRF_2 Level 2 gravity gradients in LNOF

Orbits
EGG_PSO_2 Precise science orbits

Gravity fields
EGM_GOC_2 Final GOCE gravity field model
EGM_GVC_2 Variance-covariance matrix of the final gravity field model
SST_AUX_2 Time variable gravity field due to non-tidal mass variations

In the subsequent sections, the Level 2 data that are essential for the investigations in this
thesis are described.

5.4.1 Gravity gradients

Since GOCE gravity gradients serve as fundamental observation type in this thesis, the
corresponding Level 2 data products are introduced in more detail. The gravity gradients
processing in the frame of HPF is described in detail in Bouman et al. (2009, 2011). Basi-
cally, two different versions are available, the EGG_NOM_2 and the EGG_TRF_2 data
sets.

The EGG_NOM_2 products are provided in daily files in the instrumental frame GRF with
a sampling rate of approximately 1 s and are time-tagged according to GPS time. These
gradients are corrected for both, tidal and non-tidal temporal gravity field variations, which
are summarized in Table 5.2 (Gruber et al., 2010a).

Table 5.2: Temporal gravity field corrections and models applied to GOCE gravity gradients

Source Type Model/conventions

tidal Direct tides JPL DE405 ephemeris
Solid Earth tides IERS conventions 2003
Ocean tides FES2004
Pole tides IERS conventions 2003

non-tidal Atmosphere and Ocean variability ECMWF, OMCT
Residual seasonal mass variations (hydrology) GFZ RL04 GRACE fields

The magnitude of the temporal corrections for gravity gradients at orbit height can be con-
sidered to be below the actual noise level of the gradiometer (Abrikosov et al., 2006; Bouman
et al., 2009). However, applying the corrections should improve the stochastic behaviour of
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5 The GOCE mission

the gradient data and guarantees consistency with the GOCE SSTI data, which are corrected
for the same effects (Bock et al., 2011), and are therefore applied to the gradients. The single
tidal corrections and the combined non-tidal effects are also provided in the data files, hence
the user is able to decide whether to work with gradients corrected for the temporal variations
or not.

During the processing step, the gradient data is subject to an outlier detection (Bouman,
2004; Bouman et al., 2009). Furthermore, a calibration and validation of the GOCE gravity
gradients with respect to external data is performed with the purpose to calculate calibration
parameters (scale factors) and to check if these should be applied. Depending on these results,
specific flags for each component of the gradient tensor are given in the data files (see Gruber
et al., 2010b). A description of these flags is given in Table 5.3.

Table 5.3: Data flags in the EGG_NOM_2 data products and their description

Flag Description
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0 Level 1b data provided - - - -

1 Temporal corrections applied and
validation with external data x - - -

2 As 1 and calibration applied x - - x

3 As 1, outlier suspected, fill-in value
interpolated, (calibration applied) x x x (x)

4 As 1, outlier suspected, but no fill-in
value, (calibration applied) x x - (x)

5 Level 1b data gap, fill-in value
interpolated (as Flag 3) x (-) x (-)

6 Level 1b data gap, no fill-in value
(gap > 5 s) (-) (-) - (-)

-...not applicable, (-)...no data, x...applied, (x)...applied if necessary

The nominal case is flag 1, which indicates that gradients from the Level 1b processing
are corrected for time variable gravity effects and validated with external data. During the
evolvement of the Level 2 processing with real data, the HPF decided not to provide fill-in
values anymore after November 2010. Furthermore, due to the good performance of the in-
flight calibration of the gradiometer, the external calibration results are not applied to the
gradient data (see again Gruber et al., 2010b). Hence, the remaining flags that actually incur
in the data files are restricted to flags 1, 4 (an outlier with no fill-in value provided) and 6 (a
data gap with no fill-in value provided).

Besides the aforementioned information, the EGG_NOM_2 data files include error estimates
from an HPF internal error model for all GGT components as well as the quaternions for the
rotation from the GRF to the IRF.

The second available gradient data set is denoted as EGG_TRF_2, which are externally
calibrated gravity gradients rotated to the LNOF as defined in Gruber et al. (2010b). Due
to the large errors in the Vxy and Vyz tensor components and the 1/f error increase below
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the MBW of all gradients (see section 5.2, last paragraph), a frame transformation would
lead to leakage of these errors into the MBW and would deteriorate all gradients which
nominally could be measured with high precision. For this reasons, Vxy and Vyz are completely
replaced in the GRF with values computed from an EGM (the GOCE time-wise solution,
see section 5.4.3), while the long wavelengths of the signal are also replaced by the model for
every other gradient type.

This procedure is described in Fuchs and Bouman (2011) or Bouman et al. (2011). The
ensuing rotation of the tensor to the LNOF implies that signal from the EGM is mapped
into the gradients, so that the relative model content in the rotated gravity gradients for
instance amounts up to 2% for Vzz and over 35% for Vyy (Fuchs and Bouman, 2011). Hence,
a gravity field determination based on these rotated GOCE gravity gradients would be biased
towards the EGM model used for the replacement, which is not desirable. As proposed by
Gruber et al. (2007), Gruber et al. (2010b) or Fuchs and Bouman (2011) the EGG_TRF_2
products should therefore only be used for geophysical or oceanographic applications or in-
terpretations and not for gravity field determination purposes.

5.4.2 Orbits

The orbit positions of the GOCE satellite are provided within the SST_PSO_2 precise
science orbit files. They include an unconstrained kinematic orbit solution with 1 s sampling
and a reduced-dynamic orbit solution with a sampling rate of 10 s, both given in the ERF. A
detailed insight in the orbit determination in the frame of HPF is given in Bock et al. (2011)
and references therein. Additionally, the rotation matrices for the transformation between
ERF and IRF in terms of quaternions can be found in the data files.

5.4.3 Gravity field models

The ultimate products of the HPF processing chain are the global gravity field models in terms
of coefficients of a spherical harmonics expansion representing the static part of the gravity
field signal as well as their full variance-covariance information. There are three different
methods implemented to generate these EGMs, which pursue complementary approaches for
the gravity field computation, the so-called DIRect approach (DIR), the SPace-Wise approach
(SPW) and the TIMe-wise approach (TIM). An overview of the processing strategies can be
found in Pail et al. (2011).

While the SPW is based on a multi-step collocation procedure, DIR and TIM solve large
normal equation systems in order to estimate spherical harmonics coefficients. The most
important distinctive feature between DIR and TIM is the fact that the former uses external
gravity field information from GRACE and SLR observations in combination with GOCE
data, while the TIM solution can be considered as a ’GOCE-only’ solution. This model is,
apart from applying Kaula regularization, solely derived from GOCE data. Kaula regular-
ization was introduced for zonal and near-zonal coefficients, which otherwise could only be
determined insufficiently due to the polar gap, as well as for the highest degrees in order to im-
prove the signal-to-noise ratio in this spectral range (Pail et al., 2011).

During the mission lifetime, several releases of models with increasing amount of incorporated
GOCE data have been published. The last official release based on the SPW approach
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was in November 2014 (release 4), while the DIR and TIM working groups published the
final models (release 5) including all data of the whole GOCE mission in June 2014. The
models can be accessed either via the official ESA online portals EO-LISA and GOCE virtual
archive (see section 5.4), or the International Center for Global Earth Models (ICGEM)
website http://icgem.gfz-potsdam.de/ICGEM/. The full variance-covariance matrices are
only provided through the GOCE virtual archive.
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6 Using real GOCE gravity gradients as
point-wise observations

Within this thesis, GOCE gradients are aimed to be used as in-situ observations in a LSC
procedure over a spatially restricted area. However, the optimum use of this data for local
and regional applications poses additional scientific and methodological problems, which have
two main causes that were already mentioned in section 5.2.

On the one hand, the gradiometer instrument was designed in such way, that the maximum
accuracy of the measurements can be expected in the frequency range from 5 to 100mHz, de-
noted as the Measurement Bandwidth (MBW). Nevertheless, the gradients are superimposed
by measurement errors throughout the whole spectrum, which have particular characteristics
depending on the frequency range under consideration. The properties of the gradient signals
and their corresponding errors will be investigated in section 6.1. The spectral overlap of
actual signal and noise make it necessary to preprocess and filter the gradient observations
properly, prior to their use as direct observations within a computational process. This will
be treated in section 6.2.

Furthermore, the measurement frame GRF describing the actual orientation of the instru-
mental axes of the gradiometer in orbit, does not coincide with an ideal frame such as the
Local Orbital Reference Frame (LORF), which would be the favourable frame to perform
the noise reduction (see section 6.2). The deviation between these two frames can amount to
several degrees (Pail, 2005; Fuchs and Bouman, 2011). If the gradient tensor were rotated,
the inaccurate gradient components would degrade all other measurements as well. Moreover,
such a rotation would also cause leakage of the 1/f low-frequency error into the MBW, as
documented by Bouman (2007). Therefore, different methodological concepts are developed
and investigated in section 6.3.

6.1 Signal and noise characteristics

According to the pre-launch mission performance requirements (Cesare, 2008), the measure-
ment errors of the gradient tensor trace, which represents the remaining noise after evalu-
ating the Laplace condition in the exterior space Vxx + Vyy + Vzz = 0 (see also Eq. (2.13)),
should have white noise behaviour between 20 to 100mHz with a maximum magnitude of
11mE/

√
Hz (1mE=1× 10−12 ms−2). Towards the lower end of the MBW, the allowed error

budget is increasing to 18mE/
√
Hz at 10mHz, reaching 100mE/

√
Hz at the edge frequency

of 5mHz. Below and above the MBW the noise is increasing systematically with 1/f re-
spectively f2, with f being the frequency. For a single GGT main diagonal component (and
the off-diagonal Vxz gradient), the limiting white noise level therefore was expected to be
between 5 and 8mE/

√
Hz.
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6 Using real GOCE gravity gradients as point-wise observations

To illustrate this, the square roots of the Power Spectral Density (PSD) of a set of gravity
gradients along a real GOCE orbit for November 2009, which were simulated from the GOCE
TIM RL05 gravity field model to full D/O 280 in the GRF, are computed and plotted against
the required error of the precisely measured GGT components in Figure 6.1. All PSD compu-
tations in this thesis are performed according to the method proposed by Welch (1967) using
a Kaiser window function. For a description of the PSD, its computation and investigations
concerning the choice of the window function, see Appendix B.2.
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Figure 6.1: Square root of PSDs of the main diagonal GGT components for November 2009,
simulated values from GOCE_TIM_RL05 to D/O 280 in the GRF; noise of
GGT trace according to the performance requirements as black solid line; MBW
from 5 to 100mHz indicated with black dashed lines

Figure 6.1 shows that the signal content of Vxx and Vzz (blue and red curves) within the
MBW is above the noise level from 5 to 35mHz, while the Vyy component (green curve)
has a generally lower signal content reaching the noise level already at around 25mHz. As
mentioned beforehand, below the MBW the gradiometer degrades with decreasing frequency
1/f , which is comparable to a drift of the gradiometer (Rummel et al., 2011). Addition-
ally, orbital and satellite attitude motions are modulated onto the gradiometer measure-
ments. This causes further periodic effects that are visible in the noise spectrum at the
frequency of one cycle per revolution (cpr) and multiples of it, which is clearly visible from
Figure 6.2.

The second problem we have to face is the fact that the components of the gravity gradient
tensor can not be measured with the same accuracy due to the specific orientation of the
individual accelerometers composing the gradiometer assembly, see section 5.2. To obtain a
realistic estimate for the noise of each GGT component, the differences between the actual
time series and the reference signals simulated from the GOCE_TIM_RL05 model at the
same orbit positions are computed in the GRF. The corresponding square root PSDs of
the residuals are shown in Figure 6.2. In Figure 6.2a the main diagonal GGT components
Vxx (blue curve), Vyy (green curve) and Vzz (red curve) are plotted together with the GGT
trace error given by the gray dashed line and the pre-launch requirement shown as solid
black line. The noise level of Vxx and Vyy within the frequency range from 20 to 100mHz
is around 10mE/

√
Hz. The noise of the Vzz component does not reach this value but is

with about 20mE/
√
Hz twice as high. This causes the error of the GGT trace to be at
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a level of more than 20mE/
√
Hz, which is considerably above the initial requirements of

11mE/
√
Hz. The reason for this fact is not fully understood until now. Some first successful

attempts to improve the situation were already performed, which resulted in a complete
reprocessing in the Level-1b processing chain as reported, e.g., in Stummer et al. (2012) or
Siemes et al. (2012). Although the expectations are not fully met in the frequency range
where the highest precision was anticipated, the noise towards the lower end of the MBW is
well below the requirements. Hence, the gradiometer performs better than originally specified
in the low-frequency range.

While the error in the Vxz is comparable to Vzz, the noise level in the MBW for the Vxy
and Vyz gradients is obviously up to 100 times higher than those of the well determined
components as highlighted in Figure 6.2b. This is in accordance with the pre-launch expec-
tations.
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Figure 6.2: Square root PSDs of the GGT noise estimated from the difference between
EGG_NOM_2 observations and GOCE_TIM_RL05 model for November 2009

6.1.1 Outlier handling

As described in section 5.4.1, the EGG_NOM_2 data are already preprocessed to a certain
extent, i.e. temporal corrections are applied and the gradients are validated. Depending
on these results, flags are provided for each gradient component indicating the status of the
data, see Table 5.3. Besides the nominal case Flag 1, also potential outliers are indicated
with Flag 4 and data gaps are marked with Flag 6.

In the subsequent filter process, such outlier and data gaps can have negative impacts on the
filter results. Transforming the data time series into the frequency domain, the erroneous
data or gaps will imply a frequency behaviour which is actually not present in the data. In
order to avoid this, outliers and data gaps are interpolated using spline interpolation. A
minimum distance of ten epochs between two consecutive outliers is introduced as threshold.
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6 Using real GOCE gravity gradients as point-wise observations

If the amount of samples is lower, the outliers are concatenated and the whole time span is
interpolated using the nine epochs before the first and after the last outlier that should be in-
terpolated. The result of this procedure is exemplarily shown in Figure 6.3 for a set of outliers
in the Vxx gravity gradient time series on the 13th of November 2009.
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Figure 6.3: Original time series of Vxx gradients in blue, values flagged as outlier in red and
interpolated signal in green

6.1.2 Bias and drifts

The gradient time series as provided in the EGG_NOM_2 product is compared to a reference
signal simulated from the latest GOCE_TIM_RL05 gravity field model in Figure 6.4. The
corresponding time series for each GGT component is shown for November 2009. Large
offsets between actual measurements (blue curves) and reference signal (orange curves) can
be seen, which are in the range of about −28 390E to 554E.

Besides these biases, a further comparison of the centered time series, i.e. the time series
subtracted by its mean value over the whole period under consideration, reveals some long
term drifts, which is indicated in Figure 6.5. These drifts are clearly visible especially in the
Vyy, Vxy and Vyz components, but are also present in all other gradient time series. This
behaviour is for instance also reported by Visser (2011), and can be attributed to the drift
behaviour of the accelerometers.

To reduce the biases and drifts from the original gradient time series a polynomial of order two
is fitted to the data for each month, which is then removed from the observations. The corre-
sponding time series are again illustrated for a period in November 2009 in Figure 6.6. The
trend and bias free gradients now fit visually well to their centered simulated equivalents. This
procedure is not adequate for the Vxy component, where still large deviations between reduced
actual observations and the centered simulated gradients are obvious.

In fact, within each time series, there are still some long-wavelength oscillations and sudden
jumps (not shown here), which would make it necessary to estimate biases and trends for
selected periods within one month separately. However, in the present study this fact does not
bother us since the long wavelengths of the gradient signals below the MBW will be filtered
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Figure 6.4: Original EGG_NOM_2 gravity gradient time series for November 2009 in blue,
simulated values from GOCE_TIM_RL05 in orange

Figure 6.5: Centered EGG_NOM_2 gravity gradient time series for November 2009 in blue,
centered simulated values from GOCE_TIM_RL05 in orange; time span from
13.11.2009 19:06:08 to 18.11.2009 10:12:48
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6 Using real GOCE gravity gradients as point-wise observations

out in the sequel. The simple trend and bias reduction is nevertheless performed, in order
to obtain time series which are close to stationarity, which is a prerequisite for the following
filter procedure. As the Vxy as well as the Vyz gradients can not be retrieved by GOCE with
sufficient accuracy, they will not be used as observations in this thesis.

Figure 6.6: EGG_NOM_2 gravity gradient time series for November 2009 reduced
by a polynomial of order two in blue, centered simulated values from
GOCE_TIM_RL05 in orange; time span from 13.11.2009 19:06:08 to 18.11.2009
10:12:48

6.2 Noise reduction and filtering

Since this section is dedicated to the subject of filtering GOCE data, a brief introduction
into the nomenclature and description of digital filters is given at the beginning. The basic
theory of digital signal processing can also be found in standard literature like Oppenheim
and Schafer (1975) or Koch and Schmidt (1994). In the case of GOCE we have to deal with
gradient time series, the input signal x(t), which we want modify in some way to reduce or
remove undesired effects, so we get an output signal y(t). The operation or algorithm which
performs this transformation is denoted as system or filter S, which is applied to an input
signal

x(t)
S−→ y(t) . (6.1)
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In this study we assume the system S to be linear

x1(t)
S−→ y1(t), x2(t)

S−→ y2(t) =⇒ a x1(t) + b x2(t)
S−→ a y1(t) + b y2(t) , (6.2)

and time-invariant w.r.t. any arbitrary time shift τ

x(t)
S−→ y(t) =⇒ x(t+ τ)

S−→ y(t+ τ) . (6.3)

Systems with these properties are commonly denoted as Linear Time-Invariant (LTI) systems
in literature. Every LTI system can be described by the so-called impulse response h(t), which
is the response or output of a system invoked by a unit impulse that is represented by the
Dirac function in the continuous case

δ(t) =

{
∞ . . . t = 0

0 . . . t 6= 0
, (6.4)

which is satisfying the condition

∞∫
−∞

δ(t)dt = 1 . (6.5)

In this way one can determine

δ(t)
S−→ h(t) , (6.6)

where h(t) is also denoted as filter function or system function. The application of a fil-
ter function h(t) to an input signal x(t) in the time domain corresponds to a convolution

y(t) = x(t) ? h(t) =

∞∫
−∞

x(τ) h(t− τ) dτ , (6.7)

or alternatively to a multiplication in the frequency domain

Y (η) = X(η)H(η) , (6.8)

where Y (η), X(η) and H(η) are the Fourier transforms F [y(t)], F [x(t)] and F [h(t)] according
to Appendix B.1, and η denotes the frequency. H(η) is furthermore denoted as the frequency
response of an LTI system, which can be described by its amplitude response |H(η)| and phase
response ∠H(η) (Oppenheim and Schafer, 1999)

H(η) = |H(η)| ei∠H(η) , (6.9)

with i denoting the imaginary unit. The amplitude response |H(η)| indicates the system’s
ability to amplify or attenuate the magnitude of a specific frequency of the input signal.
Furthermore, the phase response ∠H(η) describes how the system is modifying the phase
of a particular frequency of the input signal. According to the characteristics of the phase
response, systems can be classified into zero-phase, linear phase and non-linear phase response
filters. In the first case there is no phase shift between input and output signal. If the system
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is a linear phase filter the phase shift is a linear function of the frequency, which leads to an
output signal that is shifted by a constant factor compared to the input signal. In contrast,
there exist filters with a non-linear phase response, i.e. the frequencies of the input signal are
subject to individual phase shifts, which lead to phase distortions in the output signal. In
the case of filtering GOCE gravity gradients, any modification of the phase, i.e. a phase shift
of the time series, must be avoided since otherwise the correct geolocation of the measured
gradient signal would be lost. An according zero-phase filtering can be achieved by the
forward-backward filtering procedure (Gustafsson, 1996), which is implemented in standard
software packages like MATLAB.

In reality, the continuous signal x(t) will be sampled by a sequence of discrete Dirac impulses
with a particular sampling interval ∆t to obtain a discrete signal x(k)

x(k) = x(t)

∞∑
k=−∞

δ(t− k∆t) . (6.10)

Hence, a discrete filter process can be described by the discrete convolution in the time
domain

y(n) =
∞∑
−∞

x(k) h(n− k) . (6.11)

An important class of LTI systems are those, for which the relation between input x(n)
and output y(n) can be formulated in terms of a linear difference equation of the form

y(n) =

nb∑
i=0

bi x(k − i)︸ ︷︷ ︸
moving average

−
na∑
j=1

aj y(n− j)︸ ︷︷ ︸
auto regressive

. (6.12)

where ai are bi are constant filter coefficients and na and nb define the filter order. In the
case that na = 0, the remaining left term on the right side of Eq. (6.12) represents a moving
average (MA) filter. Such a filter is also denoted as non-recursive, because it is independent
of the past filter outputs y(n − j). If nb = 0, the remaining right term is called auto-
regressive (AR) filter, which is due to its dependence on the past filter outputs also denoted
a recursive filter. In combination, both filter types form a so-called auto-regressive moving
average (ARMA) filter.

A further classification of LTI filters can be found by the characteristics of the according
impulse response. Since the impulse response of MA filters has finite length, this type is
also denoted as finite impulse response (FIR) filter. In the case of AR or general of ARMA
the impulse response is of infinite duration, so these filters are also called infinite impulse
response (IIR) filters.
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6.2 Noise reduction and filtering

6.2.1 Noise reduction using a Wiener filter approach

As we have seen in section 6.1, the gradiometer has a good performance only in the MBW,
while below and above it is significantly worse. Especially the large long-wavelength errors
lead to highly correlated observations along the orbit. In order to reduce this noise, a filtering
step is introduced according to the Wiener filter theory (Papoulis, 1984). Such a filter is also
applied within the SPW concept of GOCE HPF WP 7000 (Albertella et al., 2004; Migliaccio
et al., 2004). This method assumes that a gravity gradient time series l consists of signal
component t and a noise component n, which both are considered to be stationary signals
(see Appendix B.2)

l = t+ n . (6.13)

Assuming that both, signal t and noise n are known, their Fourier transforms can be derived

Ft = F [t] and Fn = F [n] , (6.14)

where F [·] denotes the Fourier transform.

If t and n are centered, the covariance functions of signal and noise can be found by

Ctt = E{t tT } and Cnn = E{n nT } , (6.15)

with E{·} representing the expectation operator, which was already introduced in Eq. (3.2).

The Fourier transforms of the autocovariance functions are equivalent to the PSD of the
signal under consideration

St = F [Ctt] and Sn = F [Cnn] . (6.16)

For further details on autocorrelation, autocovariance and PSD refer to Appendix B.2 and
B.3.

According to the Wiener filter theory, the filterW in the spectral domain can then be defined
as

W = F [w] =
St

St + Sn
, (6.17)

where w is the filter representation in the time domain. This definition guarantees an opti-
mum filter solution in the sense of a minimum remaining error according to the least squares
principle. As already mentioned in the previous section, the filtering of the time series can
either be performed in the time domain as a convolution

t̂ = w ? l , (6.18)

or alternatively in the spectral domain by multiplication of the corresponding Fourier trans-
forms

T̂ = F [t̂] = W · F [l] . (6.19)
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6 Using real GOCE gravity gradients as point-wise observations

The filter error e of the estimate t̂ with respect to the (in fact unknown) true signal t, is
given by

Se = St −W · St . (6.20)

Hence a corresponding error covariance function can be derived according to

Cee = F−1 [Se] = F−1

[
StSn
St + Sn

]
, (6.21)

where F−1[·] is the inverse Fourier transform, see Appendix B.1. This is true since the
Fourier transform of a signals’ autocovariance function, e.g. Cee, equals the PSD of the
signal itself. With this step a consistent stochastic modeling of the error structure of the
filtered signal is achieved, which is of great importance for a successful performance of the
LSC processing.

For the application of such a Wiener filter to the real GOCE GGT observations, the key ques-
tion is how to define the Wiener filter W . We have seen in Eq. (6.17) that the filter is based
on the assumption that we know the noise-free signal t as well as the noise n itself. In reality,
both pieces of information are a-priori unknown (otherwise filtering would not be necessary).
Therefore, the noise-free signal t and the noise n have to be approximated. In the GOCE
case, we can do so by simulating the GGT reference time series from the GOCE_TIM_RL05
model. This model is representing the best fit to the actual gravity field on global scale, which
is estimated within a least squares procedure. Since the model is calculated solely from GOCE
data, one can assume that gradients derived from this model represent the true noise-free
gradient observations t globally in the best possible way. Consequently, also the measurement
errors derived from the difference of real and simulated GGT observations can be considered
as a realistic approximation of the actual noise n.

The Wiener filter process is exemplarily investigated for the gradient time series of Novem-
ber 2009 in the sequel. The real signal was preprocessed according to section 6.1.1 and
section 6.1.2, i.e. outliers are interpolated and the time series is centered and de-trended.
Next, the noise is approximated by the difference between real observations and a reference
signal simulated from the GOCE_TIM_RL05 model with full resolution up to D/O 280. In
Figure 6.7a the square root PSD of the resulting noise is shown as red line.

Due to the poor capability of the GOCE mission to resolve the low-frequency spectrum of
the gravity signal, it was decided to a-priori reduce the long-wavelength signal constituents
from the measured signal for the current study. Therefore, the signal constituents up to D/O
49 obtained from the reference model are subtracted. The effective spectral signal content
in the measurements can therefore be assumed to start at D/O 50. The square root PSD
of the corresponding reduced real signal is illustrated in Figure 6.7a as blue line, while the
simulated reference signal based on the GOCE model from D/O 0 to 280 is shown in orange.
The MBW from 5 to 100mHz due to the gradiometer instrument design is again indicated
by black dashed lines.

To facilitate interpretations, the spectral lines corresponding to D/O 50 and 280 are il-
lustrated as grey dashed lines. According to Fuchs and Bouman (2011), a spherical har-
monic D/O can be approximately represented in the frequency domain via the relation
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6.2 Noise reduction and filtering

η =
D/O
Tr

, (6.22)

where η is the frequency and Tr = 5383s is the approximated orbit revolution time of the
GOCE satellite. As one can see from Figure 6.7a, the noise of the Vzz gradient is influ-
encing the whole spectrum, with a considerable noise level within the MBW in the order of
20mE/

√
Hz and the tendency to increase towards both ends of the spectrum.
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Figure 6.7: Square root PSDs of the Vzz gradient time series for November 2009 before (a)
and after Wiener filtering (b); trend (polynomial order 2) and long-wavelengths
(GOCE_TIM_RL05 D/O 0-49) are a-priori reduced; Wiener filter amplitude
response in the frequency domain (c)

In the next step, the Wiener filter is set up in the frequency domain according to Eq. (6.17)
and applied to the real signal. Since the Wiener filter is based on the ratio between signal
and noise, those frequencies where the noise power is high will be filtered out, while those
where the signal power is high will pass the filter. This is essentially shown in the amplitude
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6 Using real GOCE gravity gradients as point-wise observations

response of the filter in Figure 6.7c. The PSD of the resulting filtered time series is illustrated
in Figure 6.7b as green line. Compared to the real time series (blue line), the noise could
obviously be reduced to a large extent in particular outside the MBW and the spectral signal
content is very close to that of the reference signal from D/O 50 to 280, indicated in orange.
The difference between the reference signal and the filtered signal depicted by the violet
curve again demonstrates the characteristics of the Wiener filter, i.e. the frequencies with
high noise power are largely filtered out.

In order to verify the filter result in the time domain, a subset of the filtered time series
(green line) is opposed to the reference signal (orange line) for the time span 09:00:00 to
11:46:40 (10000 seconds) on 02.11.2009 in Figure 6.8. Their differences are illustrated as red
line. As already indicated in the spectral domain (Figure 6.7b) the filtered Vzz gradients are
in good correspondence with the GOCE_TIM_RL05 reference signal.
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Figure 6.8: Time series of GOCE_TIM_RL05 reference signal, Wiener filtered signal and
residual differences (a); autocovariance function of filter error Cee after Wiener
filtering (b)

However, apart from the expected high-frequency variations, also some conspicuous long-
wavelength deviations are clearly visible in the residuals. This is also confirmed by the
autocovariance function of the filter error Cee, which can be derived according to Eq. (6.21)
and is shown for this filtering example in Figure 6.8b. The variance of the remaining noise
after Wiener filtering amounts to Cee(0)=72.6mE2 and the correlation length, at which
Cee = Cee(0)/2, is 320 s.

To find an explanation for this behaviour, we once again return to Figure 6.7b. In the spectral
domain, we can identify noticeable deviations between reference signal and filtered signal at
the upper end of the spectrum between the frequencies according to spherical harmonic
D/O 200 to 280. These differences can be explained by the increasing signal-to-noise ratio
at the higher frequencies, which causes a stronger filtering. However, the differences are
comparably small in amplitude and will only produce high-frequency deviations in the time
domain.

Besides these deviations, we can also identify considerable differences below the MBW, in
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6.2 Noise reduction and filtering

particular at the frequencies that are multiples of one cpr of the GOCE orbit, see also
section 6.1 and Figure 6.2. This is the origin of the long-wavelength differences between the
reference signal and the filtered signal. A possible way to eliminate these long-wavelength
errors would be a consecutive high-pass filtering of the already Wiener filtered gradient signal.
This step can be justified for two reasons. As already mentioned, the gradients are of poor
quality outside the MBW, so filtering is frequently applied to cut off the undesired frequencies,
which is done for instance in Visser (2011) or Fuchs and Bouman (2011). Furthermore, for
gravity field determination with LSC it is common practice to remove the long-wavelengths
from the observations within a RCR procedure, see also chapter 4. Hence, in the next section
a high-pass filter is applied in order to cope with the remaining long-wavelength structures
that are still influencing the Wiener filtered signal.

6.2.2 High-pass filtering for low-frequency error reduction

The design of a digital filter is depending on various factors, which influence the filter result
in different ways. Thus, at the beginning the characteristics of the filter have to be defined in
order to get the desired result. In the present case, the digital filter to be used shall be a high-
pass filter, i.e. only signal contents above a certain threshold frequency should pass, while
signal contents below should be removed. Since this ideal case of a filter can not be realized
due to the finite length of the filter, particular specifications and tolerance limits have to be
defined in advance, see also Oppenheim and Schafer (1975). In this way, the spectral band is
divided in different frequency sectors, which is outlined in Figure 6.9.

Figure 6.9: Filter specifications and tolerance limits for filter design

The range where signal contents should be suppressed is limited by the frequency ηs and is
denoted as the stopband, while ηp indicates the start of the range where signal contents are
preserved, the passband. As the digital filter can not perform like a step function, ηs and
ηp can not be equal, which leads to a transition band where the filter function is allowed to
ascend. Furthermore, the truncation of the filter to a finite length can lead to variations of
the filter function in the pass- and stopband, which are limited by the passband ripple δp
and the stopband attenuation δs.

Some investigative studies like Visser (2011) or Fuchs and Bouman (2011) use a Butterworth
filter for high- or lowpass filtering of GOCE time series. However, as outlined in Polgár et al.
(2012), there are several other filter types that could be used for filtering GOCE data. Hence,
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6 Using real GOCE gravity gradients as point-wise observations

at first different filters are investigated w.r.t. their applicability for the present purpose of
high-pass filtering GOCE gradients.

Butterworth, Chebychev I, Chebychev II and Elliptic filters are chosen for this study, since
they represent standard IIR filters that can be implemented and modified in order to meet
the user requirements quite comfortably. These IIR filter types and functions are described in
detail in Oppenheim and Schafer (1975). According to the example of the previous section we
want to preserve the information content of the gradient signal that is higher than spherical
harmonic D/O 50, which corresponds to a passband frequency of about ηp =9.3mHz in
the frequency domain. We exemplarily choose ηs =8.3mHz for the stopband frequency,
which corresponds to D/O 45. The tolerances for δp and δp are commonly expressed in
the units Decibel [dB], which is a logarithmic function δ = 20 log10(Ai/Ao) of the ratio
between the input amplitude Ai and output amplitude Ao. Following this convention, for
the passband ripple we use δp=1 dB and for the stopband attenuation δp=−10 dB. To verify
the characteristics of the different IIR filters based on these specifications, their amplitude
responses in the frequency domain are shown in Figure 6.10.

0 0.005 0.01 0.015 0.02
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

η [Hz]

|H
(η

)|
 [

d
B

]

 

 

η
p

η
s

Butterworth
Chebychev I
Chebychev II
Elliptic (Cauer)

Figure 6.10: Amplitude response of different IIR filters according to the a-priori specifica-
tions ηp =9.3mHz, ηs =8.3mHz, δp=1 dB and δp=−10 dB

The filter response of the Butterworth filter is illustrated by the red line and shows its
monotonic behaviour. The Chebychev I filter shown in green is defined in a way that it
is monotonic in the stopband, but is allowed to oscillate in the passband. The opposite
behaviour is true for a Chebychev II filter given as blue line, which has ripples in the stopband
and is monotonic in the passband. The last filter used in these considerations is the Elliptic
filter depicted in orange, which has ripples in the passband as well as in the stopband. Due
to the restrictive definition of a monotonic curve, a Butterworth filter has the drawback that
it needs a comparably high filter order of 17 (see Eq. (6.12)), i.e. a high number of filter
coefficients is required to meet the specifications of this example. Since Chebychev I and II
filters are allowed to have ripples in the pass- or stopband, they can be designed with a lower
filter order of 6. The Elliptic filter can oscillate in both, passband and stopband, thus its
approximation is possible with a filter order of 3.
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6.2 Noise reduction and filtering

Looking at the transition band between ηs and ηp, which are indicated in Figure 6.10 as
black dashed lines, it can be seen that the Elliptic filter has the steepest slope, which means
a rather abrupt jump from the stopband to the passband. In contrast, the Butterworth filter
is not able to perform this transition that rapidly. An important aspect of the filter can
also be investigated by looking at the ability to preserve the signal content at the beginning
of the passband, i.e. at frequencies that are higher but close to the passband frequency ηp.
Here, one can verify that the Butterworth filter still has a comparably long transition from
ηp =9.3mHz to about 10.1mHz, where it finally reaches its desired passband magnitude of 1.
In contrast, the Chebychev II filter is preserving this magnitude better towards ηp, with the
limitation that the filter in the transition band takes longer to decay towards the stopband
compared to the other filters. The filters which are allowed to have ripples in the passband,
the Chebychev I and Elliptic filter, reach the passband magnitude 1 earlier, but have the
disadvantage of a varying filter function in the passband.

The effect of applying the different filters to a Vzz reference signal, which is simulated from
GOCE_TIM_RL05 from D/O 50 to 280, is shown in in terms of the square root PSDs in
Figure 6.11. The PSD of the input signal is outlined in each plot as grey line in order to
facilitate comparisons. Again, the transition band between ηs and ηp is indicated with black
dashed lines in the plots and the colors are assigned to the filters according to Figure 6.10.
Basically, the characteristics of the filter response functions of Figure 6.10 concerning their
behaviour in the transition band can also be seen here. Furthermore, the main drawback of
the Chebychev I and Elliptic filters shown in the right plots of Figure 6.11 can clearly be
asserted. The variations due to the ripples in the passband of the filter functions are directly
mapped into the filtered signal, which then also exhibit variations in the according spectral
band, which are not present in the original reference signal. Thus, Chebychev I and Elliptic
filters are not appropriate for the purpose of filtering GOCE gradients, since they corrupt
the signal in the passband.
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Figure 6.11: Square root PSDs of filter results from applying different IIR filters to a Vzz
reference signal simulated from GOCE_TIM_RL05 from D/O 50 to 280
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6 Using real GOCE gravity gradients as point-wise observations

For the Butterworth and Chebychev II filter we can see that the signal content in the passband
above ηp is preserved, except at the transition zones close to passband frequency. While the
Butterworth filter is monotonically decreasing towards the lower frequencies in the stopband,
the Chebychev II filter shows the expected ripples also in the PSD of the filtered signal. In the
current example, these variations exhibit amplitudes of up to 90mE and will imply according
low frequency variations of the filtered signal also in the time domain, which is definitely not
desired. Hence, for this example the Butterworth filter seems to be most appropriate for
our needs. However, the specifications assumed for the example above will not be strict
enough for a real application to GOCE gradients, since valuable signal content will be lost
at frequencies close to ηp, where the Butterworth filter needs comparably long to reach the
ideal filter function magnitude of 1, as already mentioned previously.

To circumvent this, the transition band can be defined more rigorously, e.g. with a stopband
frequency of ηs =9.1mHz, which corresponds to D/O 49. However, in this case the Butter-
worth filter requires a filter order of 606 and furthermore looses its stability, which can be
seen in the corresponding filter response illustrated in Figure 6.12a as red line. Alternatively,
a Chebychev II filter can be designed with a stricter specification of the stopband attenuation
δp=−80 dB in order to diminish the influence of the stopband ripples on the filtered signal,
which leads to a filter order of 65. The filter response is again represented in Figure 6.12a
as blue line, which still shows a stable behaviour despite the more rigorous specifications.
The PSDs of the input reference signal (grey line) as well as that of the filtered signal using
the Chebychev II filter (blue line) are shown in Figure 6.12b. With this filter definition, the
signal content of the input signal can be preserved to a large extent also close to the pass-
band frequency ηp. Due to the restrictive choice of the stopband attenuation δs, the influence
of the stopband ripples on the filtered signal can be reduced to an insignificant amplitude.
Hence, the Chebychev II filter is chosen for the high-pass filtering of the GOCE gradient
data.
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Figure 6.12: Amplitude response of Butterworth and Chebychev II filters according to the
specifications ηp =9.3mHz, ηs =9.1mHz, δp=−80 dB (a); square root PSDs of
signal filtered with Chebychev II filter (b)

Finally, we have to consider the fact that with the application of the high-pass filter, the
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6.2 Noise reduction and filtering

signal content is suppressed below D/O 50. Hence, one could expect that if the filter is
applied to a noise free signal which is simulated from D/O 50 to 280, basically the same
signal should be obtained. The corresponding signals in the time domain for a subset of
5000 s are exemplarily shown in Figure 6.13a, where the reference signal is depicted in grey
and the filtered time series in blue. Obviously, both signals exhibit significant differences
which are outlined in green. Although the input signal is simulated only from D/O 50, this
does not imply that the signal content below this threshold is zero, which can also verified for
instance in Figure 6.12b. This difference can be considered as cutoff error due to the high-pass
filter, which is shown in the spectral domain in Figure 6.13b in green.
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Figure 6.13: Cutoff error due to high-pass filtering

Thus, referring to the initial purpose of applying a high-pass filter, which is to reduce the
remaining long-wavelength errors in the Wiener filtered signal, we have to correct for this
cutoff error. This can be achieved by high-pass filtering the a-priori Wiener filtered gradient
time series and readding the cutoff error from the reference signal in order to restore the
signal content in the low-frequency range.
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6 Using real GOCE gravity gradients as point-wise observations

6.2.3 Summary of the combined filter strategy

The filter procedure applied in this thesis is once again summarized and its workflow is also
illustrated in Figure 6.14. In the initial situation we have a measured gradient time series
which is corrupted by colored noise throughout the whole measurement spectrum. In a first
step, existing trends and biases are reduced from the time series according to section 6.1.2.
Furthermore, since the GOCE gradiometer has a low performance in particular in the low-
frequency spectrum, the corresponding signal constituents are also a-priori reduced using
a reference signal computed from a global EGM, for instance the GOCE_TIM_RL05 or
GOCO03s. This is also justified, since the low-frequency components will be removed within
a RCR procedure for gravity field determination. A realistic estimate for the colored noise
in the measurements can be obtained by building the residuals between real signal and
reference signal, see Figure 6.7a. With this information it is possible to set up a Wiener
filter as described in section 6.2.1, which reduces much of the colored noise, as shown in
Figure 6.7b.

Figure 6.14: Workflow for the combined filter procedure

After the Wiener filtering, the time series is still deteriorated by long-wavelength errors,
which is illustrated in Figure 6.8a and is discussed there. Thus, a high-pass filter is intro-
duced according to section 6.2.2. This filter is applied to the a-priori Wiener filtered time
series as well as to the reference signal from an EGM to retrieve a cutoff error, which is
introduced due to the suppression of the signal content below the passband frequency, see
Figure 6.13. The final preprocessed gradient time series is obtained by accounting for this
cutoff error.
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6.2 Noise reduction and filtering

The square root PSD of the preprocessed signal is illustrated in Figure 6.15a as green line.
Obviously, the filtered signal is now consistent with the reference signal (orange line) in the
low-frequency spectrum. Compared to the original time series given in blue, the colored
noise could be reduced to a large extent. In a last step, the difference between this time
series and the reference signal can be calculated, see Figure 6.15b. These residuals can then
be used to obtain a realistic estimate for the noise-covariance function of the remaining
measurement errors after the filter procedure according to Appendix B.3. The resulting
covariance function is illustrated in Figure 6.15c. In contrast to Figure 6.8b, the variance of
the remaining noise after the filter procedure in this example can be decreased from 72.6mE2

to 7.9mE2 and the correlation length of the error covariance function from about 320 s to
10 s. Thus, with the introduced filter approach it is possible to reduce the correlations of
the gradient observations as well as the measurement errors of the gradiometer instrument
significantly.
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Figure 6.15: Square root PSDs of the Vzz gradient time series for November 2009 after filter
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6.3 Strategies for using GOCE gravity gradients in Least
Squares Collocation

As addressed in the introduction to chapter 6, the low-accuracy gradient tensor compo-
nents Vxy and Vyz make it impossible to rotate the gradient observations measured in GRF
to another reference frame without having a negative impact on the accuracy of the well-
determined gradient types. This fact was already investigated and reported several times,
for instance by Müller (2003), Bouman (2007) or Fuchs and Bouman (2011). For LSC this
implies that the corresponding covariances, which are usually computed in a LNOF, have to
be rotated to the GRF instead, which can be performed as outlined in section 3.7.1. Though,
there is a theoretical restriction imprinted by the filtering processing steps introduced in
section 6.2. The observed gravitational gradients in the GRF cannot be considered as a
signal that is stationary in time due to the varying attitude of the satellite w.r.t. the LORF.
However, in case of the Wiener filter theory, stationarity is a theoretical precondition, which
is fulfilled in LORF, as explained in Albertella et al. (2004).

As a consequence, different solution strategies can be considered. The first one is to neglect
this theoretical requirement of stationarity and to set the GRF as computational reference
frame. This implies that the cross- and autocovariance matrix entries of Csl and Cll related
to gravity gradient observations in the LSC concept of Eq. (3.20), which are derived from a
suitable covariance function in the LNOF, have to be rotated to the GRF. Furthermore, the
Wiener filtering step is directly applied to the gradient time series in GRF. With the assump-
tion that the GGT components are uncorrelated amongst each other, the error covariance
function of the filtered signal given by Eq. (6.21) can be used to set up the corresponding
noise-covariance matrix Cnn for LSC in the GRF. A process chart for this first strategy is
depicted in Figure 6.16a.

The second approach, which is outlined in Figure 6.16b, is to replace the critical gradients
Vxy and Vyz with external information, i.e. the two components are derived from a gravity
model in the GRF, and consecutively the whole GGT is rotated to the LORF. Fuchs and
Bouman (2011) extensively investigated the impact of such a replacement of Vxy and Vyz
in the GRF and the consecutive rotation to other reference frames. They stated that the
relative model content of the gradients rotated to the LORF is approximately 3 to 4% for
Vxx, Vxz and Vzz. For Vyy the model content is with about 9% the largest compared to the
other components. However, this impact may be less dramatic since the signal strength of
Vyy is lower in the MBW compared to Vxx or Vzz, see Figure 6.1. Nevertheless, with this
approach we implicitly introduce a dependency on a-priori gravity field information in terms
of an EGM. Such an EGM can be considered as best fitting model in global sense, but might
mask some regional features due to the global smoothing. Since the current study aims to
use the gravity gradients as direct point-wise observations in order to retain as much of the
in-situ gravity signal as possible, this fact poses the main drawback of this strategy which
we have to accept for the moment.

In order to reach the highest consistency with the actual values of Vxy and Vyz, an EGM based
on GOCE observations can be considered to be favourable for deriving the model values. After
the replacement, the GGT is rotated from the GRF to the LORF, where the Wiener filter can
be applied in strict sense. Since now the LORF serves as computational frame, the covariances
related to gradients have to be rotated to LORF as well in the already described manner
in section 3.7.1. However, also this strategy bears some further complications, because due
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6.3 Strategies for using GOCE gravity gradients in Least Squares Collocation

to the rotation of gradients from the GRF to the LORF, the assumption of uncorrelated
gradient observations is not fulfilled anymore and thus the simple block-diagonal structure
of the noise-covariance matrix Cnn in the GRF is lost.

(a) Strategy 1 (b) Strategy 2

Figure 6.16: Solution strategies for handling GOCE observations given in the GRF within
LSC

Therefore, a consistent covariance propagation of the noise-covariance matrix Cnn from the
GRF to the LORF is necessary as well. This again requires the knowledge of the stochastics
of the observed gradients in GRF as well as of the replaced gradient components which are
derived from the gravity model. Considering the latter, a covariance propagation of the EGM
errors for Vxy and Vyz has to be performed. In principle, the same algorithm that is used
for the derivation of the covariances Cll or Csl of the LSC process as shown in Eq. (3.33)
can be applied. Instead of using the degree variances kn of the spherical harmonics coeffi-
cients themselves, which can be calculated following Eq. (3.32), the degree variances of the
coefficients standard deviations are introduced according to Eq. (4.1)

kσn =
n∑

m=0

(
σ2
c̄nm

+ σ2
s̄nm

)
,

which are usually also provided in the EGM file. However, this kind of covariance propa-
gation is only justified, if it is assumed that the spherical harmonic coefficients of the EGM
are uncorrelated. In case of the global gravity models like EGM96 or EGM2008, accuracy
measures are only provided as standard deviations for the coefficients, hence the uncorrelat-
edness of the coefficients has to be assumed in either case. With the new gravity models

91



6 Using real GOCE gravity gradients as point-wise observations

from the GOCE mission, a complete covariance information of the whole set of spherical har-
monic coefficients is available. Thus the covariance propagation using this simplified method
is deprecated and a complete covariance propagation would be possible. Despite that, for
the following investigations about which of the proposed strategies is preferable, the simpli-
fied covariance propagation method with uncorrelated model coefficients is assumed to be
sufficient.

For the remaining actual measured GGT components which are measured in the GRF, pre-
liminary information on the error characteristics can be derived from the difference between
simulated noise free reference values from an EGM and the real signals, which is already
shown in section 6.2.1. With the resulting error covariance functions of the residuals, the
error covariance matrix Cnn can then be set up in the GRF and finally rotated to the LORF.
As a consequence, the noise covariances of the gradients are now correlated and a consistent
stochastic modeling of the error structure is obtained. As last step in this second strategy, the
cross- and autocovariance matrices Csl and Cll are set up in the LNOF using the covariance
function and again, equivalent to strategy 1, the entries related to the gradient observations
have to be rotated to the LORF.

For both strategies, we need the corresponding rotation matrices, from the LNOF either to
the GRF (strategy 1) or to the LORF (strategy 2). The EGG_NOM_2 product includes the
quaternions from the GRF to the IRF for each observation point, from which the respective
rotation matrix RIRFGRF can be deduced (see Appendix C.1). To obtain the rotation between
GRF and LNOF, we have to apply two further rotations, the first one from the IRF to the
ERF and finally the rotation from the ERF to the LNOF

RLNOFGRF = RLNOFERF RERFIRF R
IRF
GRF . (6.23)

While the derivation of the first rotation matrix RERFIRF was shown in section 2.1.1, the inverse
of the latter one is basically already introduced in Eq. (2.6). Similar to Eq. (6.23), the rotation
from the LNOF to the LORF can be obtained by

RLNOFLORF = RLNOFERF RERFIRF R
IRF
LORF . (6.24)

The rotation matrix RIRFLORF is found with

RIRFLORF = (v̂, n̂, v̂ × n̂) , (6.25)

where v̂ is the normalized instantaneous orbital velocity vector and n̂ is the normalized
angular momentum vector according to the definition of the LORF in section 5.3, both
given in the IRF. For the noise covariance propagation in strategy 2 we furthermore need
the rotation matrix RLORFGRF , which is simply given by multiplication of Eq. (6.23) with the
inverse of Eq. (6.24)

RLORFGRF = RLORFLNOF R
LNOF
GRF . (6.26)

A simple experiment in the test area of the Novaya Zemlya island is performed in the sequel,
which should give an indication if there is a significant difference between the two strategies.
For this reason, geoid heights are estimated solely from GOCE gradient data of the main
diagonal tensor components Vxx, Vyy and Vzz of November 2009. The noise-free reference
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6.3 Strategies for using GOCE gravity gradients in Least Squares Collocation

signals are simulated from EGM2008 and are used to reduce the long-wavelength signal up
to D/O 49.

Following strategy 1, the time series are then filtered in the GRF according to section 6.2.
For the derivation of the covariance matrices Cll or Csl for the collocation process, degree
variances of EGM2008 are used. The noise covariance matrix Cnn is set up in the GRF
using the error covariance functions from the filter procedure. Following the second solution
strategy, the real Vxy and Vyz measured in the GRF are replaced by simulated observations
from the EGM2008 from D/O 50 to 250. Subsequently, the gradients are rotated to the
LORF where the Wiener filtering is applied. In contrast to strategy 1 the noise covariance
matrix Cnn has to be rotated from GRF to LORF as well, i.e. it has to be set up in GRF with
a-priori stochastic information of the gradient errors. In case of real data this is obtained
from difference between actual signal and reference signal, while for simulated observations,
a covariance propagation of EGM2008 is performed.

The LSC results of the residual geoid heights corresponding to spherical harmonic D/O 50
to 250 are visualized for strategy 1 in Figure 6.17a and for strategy 2 in Figure 6.17b. In the
top rows the estimated geoid height values are shown, while in the bottom rows the spatial
distribution of the formal standard deviations is illustrated. The statistics of the results are
summarized in Table 6.1.
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(a) Residual geoid heights in [m] (top) and
standard deviations in [cm] (bottom) from
strategy 1
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Figure 6.17: Comparison of strategy 1 (left) and strategy 2 (right) for geoid height compu-
tations using Vxx, Vyy and Vzz from November 2009
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6 Using real GOCE gravity gradients as point-wise observations

Furthermore, the difference between the geoid height solutions from both strategies is shown
in Figure 6.18. The maximum differences are in the order of ±4 cm, while the RMS of the dif-
ferences amounts 1.6 cm. Comparing the standard deviations, we can observe the same range
of values, from a minimum of 10.8 cm in the central region to a maximum of about 21.5 cm at
the borders of the area. Close to the test area margins, the accuracy is typically decreasing
due to edge effects caused by the lack of observations outside the region. However, the highest
formal accuracy that is achievable with solely GOCE gradients is around 11 cm. This is still
almost three times higher than the maximum differences of the estimated geoid heights and
therefore the deviations have to be considered as insignificant.

Table 6.1: Comparison of solution strategies, values given in [cm]

Strategy 1 Strategy 2 Difference

Geoid height min −169.6 −167.9 −4.1
max 348.0 350.6 3.8
rms 1.6

Standard min 10.8 10.8
deviation max 21.6 21.5

Based on this investigation, both solution strategies lead to equivalent results. As we have
seen, strategy 2 requires several additional computational steps like the simulation of model
gradients for Vxy and Vyz, rotations and covariance propagation from the GRF to the LORF.
This causes a tremendously higher effort, which does not improve the results significantly
compared to strategy 1. In this sense, the unfulfilled requirement of stationarity in the GRF
is not considered to be a critical factor during the filter procedure and subsequently in the
gravity field determination. Therefore, the processing strategy 1 is regarded as sufficient for
gravity field computations in this thesis.

(min=−4.12507, max=3.82186, mean=−0.214822, rms=1.59657)
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Figure 6.18: Geoid height differences between strategy 1 and 2 in [cm]
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7 Application I: Computation of an
Austrian geoid

In Austria, geoid modeling is a long established field of research. Sünkel et al. (1987) com-
puted the first astrogeodetic geoid solely based on deflections of the vertical data using the
LSC approach. A decade later, as a considerable amount of gravity measurements was avail-
able, Kühtreiber (1998) computed the first gravimetric geoid solution. Kühtreiber (2002)
provided the first combined solution with deflections of the vertical and gravity anomalies.
This solution was also based on the commonly used LSC technique, and combined the dif-
ferent spectral bands of the two gravity field quantities. Despite the good quality of this
solution, it was still affected by local variations and long-wavelength error structures. Fur-
ther attempts towards an improved Austrian geoid were carried out by Abd-Elmotaal and
Kühtreiber (2003), who introduced an adaption of the Remove-Restore technique for the
geoid computation.

In 2007, an Austrian geoid solution was derived by Pail et al. (2008), which is still representing
the official geoid provided by the Bundesamt für Eich- und Vermessungswesen (BEV). By
combining heterogeneous data in the LSC approach, the precision of the Austrian geoid could
be improved to sub-decimeter level. Nevertheless, the unconstrained Austrian geoid solution
shows trends in terms of long-wavelength errors when compared to GPS/levelling points,
which are measured by the BEV in the Austrian height system. In order to be consistent to
these GPS/levelling points, the present official solution was heavily weighted towards these
points, which will be discussed in more detail in section 7.1.

A further attempt towards an improved geoid solution was performed by Kühtreiber et al. (2011),
who used updated and extended data and verified alternative processing strategies. Although
improvements could be achieved, the discrepancies between this geoid and the GPS/levelling
points provided by the BEV still remained. Thus, the BEV did not adopt this solution but
continues with the Austrian geoid derived in 2007.

With the project ’Geoid for Austria - Regional gravity FIELD improved’ (GARFIELD) a cur-
rent initiative for the generation of a new high-quality gravity field solution for the Austrian
region has been initialized in 2012. The aim is to overcome the inconsistencies between previ-
ous geoid solutions and geoid heights from GPS/levelling campaigns. The computation of an
Austrian geoid based on LSC as it is performed in this chapter is one of the key components
of the project. In this context, GOCE gradients shall be used together with complementary
gravity data sources, which have to be treated consistently within a RCR procedure. The
according steps towards a new geoid are presented in the following.

In section 7.1 the official Austrian geoid solution is discussed in more detail and the current
drawbacks are outlined. The data sets used for the geoid estimates in this thesis are described
in section 7.2. The computational steps for the derivation of the geoid as well as the resulting
solution is presented in section 7.3. The new geoid is validated and compared to the official
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GPS/levelling observations in section 7.4. The chapter closes in section 7.5 with a summary
and a discussion on possible further improvements.

7.1 The current Austrian geoid solution

The computation of the official Austrian geoid is based on the LSC method in combination
with the RCR approach, see Pail et al. (2008). For this geoid solution a subset of 14001
gravity stations in and around Austria had been chosen. Although the original data set
contains considerably more observations, numerical case studies concerning different input
data distributions lead to the conclusion that a spatially homogeneous arrangement with an
average distance of about 4 km between the stations is beneficial. Furthermore, an existing
data set of deflections of the vertical was introduced in the LSC process. Since there were
some inconsistencies between a purely astrogeodetic and a gravimetric geoid solution due to
a poor data distribution, also some new measurements of deflections of the vertical have been
performed in the South-East of Austria. With this complement a total number of 672 stations
was included in the Austrian Geoid 2007 solution. An additional observation type was
introduced by 170 GPS/levelling observations provided by the BEV. The spatial distribution
of the described terrestrial data types can be seen in Figure 7.1a.

To model the long-wavelength components within the RCR concept, the global GRACE
satellite-only gravity field model EIGEN-GL04S up to spherical harmonic degree and order
70 was chosen. In order to reduce the topographic-isostatic gravity effects, a uniform high-
resolution DEM of about 44m × 49m was used. For the topographic-isostatic reduction the
Airy-Heiskanen model with a standard density of 2670 kgm−3 was applied.

(a) Terrestrial data: gravity anomalies
(grey), deflections of the vertical (green)
and GPS/levelling observations (red)

(b) Differences between gravimetric geoid and
GPS/levelling heights in [m] adopted from Pail
et al. (2007)

Figure 7.1: Terrestrial gravity data used for the official Austrian geoid solution (a), and
differences between gravimetric geoid and GPS/levelling heights (b)

The comparison of a gravimetric solution solely based on the 14001 gravity observations with
the GPS/levelling geoid heights revealed considerable differences with a long-wavelength
structure of up to 2m, shown in Figure 7.1b. These systematic trends were accredited
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to datum inconsistencies, distortions in the orthometric height system, systematic GPS er-
rors or neglected correction terms for the transformation of height anomalies from the long-
wavelength EGM to geoid heights, see Pail et al. (2007, 2008). In order to account for these
trends, a correction surface in terms of a polynomial of order 3 was fitted to the difference
between estimated gravimetric geoid heights and GPS/levelling geoid heights. This correc-
tion term was reduced from the GPS/levelling observations before the combined prediction,
and restored to the predicted geoid heights afterwards.

During several case studies it turned out, that the choice of the weight that is given to the
GPS/levelling observations was essential for the geoid solution. Giving the geoid height ob-
servations a relatively high weight of 1mm, the deviations between predicted and observed
geoid heights were small with a standard deviation of less than 6mm. Degrading the observa-
tion accuracy to 10mm lead to higher deviations with a standard deviation of about 30mm.
However, the opposite behaviour could be observed when predicting gravity anomalies with
LSC and comparing them with the original data. This indicated some further inconsistencies
between the GPS/levelling and gravimetric measurements. In a final step, individual weights
for each GPS/levelling observation were introduced by using the geoid height residuals from
the case study with 1mm measurement accuracy. Thus, those GPS/levelling stations with
expected lower accuracy were down-weighted, while the nearby gravity field measurements
gained a higher relative weight. This weighted solution was chosen to form the official new
Austrian Geoid 2007, which is illustrated in Figure 7.2. The accuracy of the solution is
specified in the range of about 2 to 3 cm, however in some bordering regions, drastically
worse accuracies have to be expected due to sparse data distribution in the neighbouring
countries.

Figure 7.2: The official Austrian geoid solution

In this way, a geoid solution was generated which is heavily constrained towards the geoid
heights from the GPS/levelling observations. This corresponds to the needs of the BEV who
require a geoidal surface which can be used for the transformation of GPS heights into the
orthometric heights in the Austrian height system. However, with this approach the physical
meaning of the geoid, i.e. a surface of equal potential, is violated and the official geoid
solution is rather representing a transformation surface than an actual geoid. In the present
thesis, these discrepancies shall be avoided.
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7.2 Data and models for geoid computation

For the appropriate consideration of high-frequency gravity effects induced by the topo-
graphic masses within a consistent RCR procedure, a dense DEM is necessary which will be
introduced in section 7.2.1. The terrestrial input data for the geoid prediction is described
in section 7.2.2, while the incorporated GOCE gradient data is explained in section 7.2.3.
Furthermore, the GPS/levelling data from the BEV is introduced in section 7.2.4. This data
set will only be used for validation purposes, see section 7.4.

7.2.1 Digital Elevation Model

The DEM used for this geoid determination is given in a uniform resolution of 1◦/2560 in
longitude and 1◦/1536 in latitude, which corresponds to approximately 44m × 49m. It is
available in the geographical extent between 5◦ to 22◦ East and 43◦ to 53◦ North. The
compilation of this DEM originates from a photogrammetrically determined terrain model
(Graf, 1996; Franzen and Mandelburger, 2003), which refers to the Austrian orthometric
height system MGI. During the last Austrian geoid computation campaigns at the Institute of
Geodesy, see Kühtreiber (2002), Pail et al. (2008) and Kühtreiber et al. (2011), the model was
continuously updated and improved. In particular, additional data sets from neighbouring
countries like Switzerland, Slovenia or Italy have been consistently included. In absence of
other data, height information of the Shuttle Radar Topography Mission (SRTM) has been
used to close the gaps (Pail et al., 2008). The average accuracy of the height model within
Austria is in the range from 2 to 5m. For the use in this thesis, the DEM heights and
coordinates are transformed to the GRS80 ellipsoid.

7.2.2 Gravity data

In the Austrian territory a data set of 49345 gravity observations is available, which is pro-
vided for the use in this thesis by Norbert Kühtreiber and Christian Pock from the Institute
of Geodesy via personal communication. The Austrian gravity reference frame is defined
by 42 highly accurate reference gravity observations from absolute gravimetry serviced by
the Austrian BEV. The majority of the observations was measured with a relative gravime-
ter w.r.t. the reference frame in various measurement campaigns of different institutions,
e.g the BEV, the Institute of Geophysics of the Mining University Leoben or the Austrian
Mineral Oil Administration OMV, see Pock et al. (2014). They can be roughly categorized
according to different measurement instruments and measurement periods, dating back to
the 1950’s, which is indicated in Figure 7.3a. Outside of the Austrian borders, subsets of
national gravity observations from neighbouring countries are available. In total, a terrestrial
gravity data set of 74649 observations with inhomogeneous data distribution can be used for
this thesis.

The accuracy of the Austrian data set is specified with 0.3mGal in the worst case, which
turned out to be rather unrealistic during the data processing for the former gravity field
solutions. For most of the data from neighbouring states, accuracy information are not
available. Based on numerical investigations, an empirically determined standard deviation
of 1mGal was chosen for all gravity observations for instance in the official Austrian geoid

98



7.2 Data and models for geoid computation

solution. Due to the lack of further information, this value will also be adopted in this current
study.

(a) Complete gravity data set (b) Reduced gravity data set

Figure 7.3: Terrestrial gravity data: Complete available data set of 74649 gravity points for
Austria and neighbouring countries (a); reduced data set of 30015 gravity points
thinned out with radius 1 km within Austria and 2 km for other countries (b)

To avoid clustered observations, which can lead to instabilities in LSC (Pail et al., 2008),
and to reduce the computational effort for the LSC procedure, the data set is thinned out
with a radius of 1 km within Austria and 2 km for other countries. This results in 30015
gravity observations that are used for the present computations. Their spatial distribution
is illustrated in Figure 7.3b.

7.2.3 GOCE gradients data

Three months of EGG_NOM_2 gradient data given in the GRF from November to December
2009 and May 2010 were selected. This choice has been made due to the limited computing
capacity of the implemented LSC approach, but should guarantee still a reasonable spatial
distribution of gradient data within the investigated area.

According to the investigations in chapter 6, the data has to be preprocessed in order to
reduce the measurement noise. The necessary realistic noise estimate for the filter process is
derived by using the GOCE_TIM_RL05 global gravity field model as a reference. Since the
long-wavelength gravity signals can not adequately be observed by the gradiometer instru-
ment, the corresponding signal constituents are a-priori reduced from the measurements. For
this step, the GOCO03s satellite-only model is used, which can be considered to be highly
accurate in the low-frequency range according to Figure 4.1. For the current geoid compu-
tation, we want to preserve the superior gravity information of the GOCE gradients, which
is the case from approximately D/O 110, see again Figure 4.1. On the other hand, essential
parts of the long-wavelength gravity signal should be removed within a RCR procedure in
order to reduce the systematic trends from the signal, as described in chapter 4. Thus, in
this study a threshold of D/O 120 was chosen as a tradeoff for the reduction of the long
wavelengths.
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(a) Noise covariance functions of Vxx (red), Vyy
(blue) and Vzz (green) for November 2009

(b) 4182 gradient observation points over the ex-
tended Austrian region

Figure 7.4: Noise covariance function of the main diagonal gradient tensor components after
preprocessing for November 2009 (left) and data distribution of EGG_NOM_2
gradient data with 5 s sampling for geoid prediction (right)

After the preprocessing steps, the autocovariance function of the remaining filter error in the
gradient time series can be estimated as proposed in section 6.2.3. The corresponding noise
covariance functions are illustrated in Figure 7.4a for the main diagonal components of the
gradient tensor Vxx, Vyy and Vzz, which will be used for the setup of the noise covariance
matrix within the geoid estimation. The variance of the error in the Vzz component is
approximately 1.7mE2, and is lower for the Vxx gradient with 0.6mE2 and for the Vyy gradient
with 0.1mE2. This can be attributed to the fact that the Vzz component has the highest signal
amplitude, while it is considerably lower for Vxx or Vyy (see Figure 6.1).

Finally, the gradient data was reduced from the initial sampling rate of 1 s to 5 s and cut
out for the region between 5◦ to 22◦ East and 43◦ to 53◦ North, which leads to the data
distribution as shown in Figure 7.4b. Hence, for the presented geoid solution an input
dataset of 4182 observation stations for each of the three gradient tensor components is used,
which results in 12546 observations in total.

7.2.4 GPS/levelling data

For this study, 192 GPS/levelling observations are provided by the BEV. On the one hand,
this data incorporates highly precise ellipsoidal height h measurements from GPS obser-
vations from GPS permanent stations and measurement campaigns that are forming the
Austrian reference frame (AREF). This is linked to the European Terrestrial Reference Sys-
tem at epoch 1989 ETRS89 (BEV, 2013). The accuracy of these GPS heights is specified
with 1 cm or less.

On the other hand, the BEV has determined orthometric heights H for these points with
precise spirit levelling. Thus, at the given points absolute geoid heights N can be deter-
mined by evaluating N = h − H. The corresponding absolute geoid heights with respect
to the GRS80 ellipsoid are illustrated in Figure 7.5. The accuracy of these GPS/levelling
points is depending on the GPS measurements as well as on the levelling and the corre-
sponding gravity measurements. According to the specifications of BEV, it is assumed to
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be in the order of a few centimeters. However, revisions for specific points of the data base
that were performed in the last years revealed considerable inconsistencies. Although these
shortcomings were corrected, there might be still some further inconsistencies in the data
set.

Figure 7.5: Absolute geoid heights with respect to the GRS80 ellipsoid from GPS/levelling
provided by the BEV

In contrast to the official Austrian geoid solution, this data will not be used as an input
observation type for the geoid prediction in this thesis. Instead, the GPS/levelling geoid
heights will be used for the validation of the estimated geoid. In this way it is possible to
obtain a measure for the consistency of the predicted geoid and the geoid heights determined
by the BEV.

7.3 Geoid computation

7.3.1 Application of the Remove-Compute-Restore
approach

Before the actual geoid computation with the LSC method can be performed, known sys-
tematic effects have to be reduced from all input data consistently according to the RCR
approach, which was already discussed in detail in chapter 4. For the reduction of the
long-wavelength component, the GOCO03s global gravity field model was chosen, since it
represents one of the most accurate satellite-only models available. In this investigation the
aim is to use GOCE gravity gradients as direct observations. Although the spherical har-
monics series of GOCO03s could be used until D/O 250, only the long-wavelength signal up
to D/O 120 will be reduced from both, terrestrial gravity and GOCE gradients consistently.
In this way, the expected valuable medium-wavelength signal content of the gradients can be
exploited.

Furthermore, the high-frequency gravity signals induced by the topographic masses are re-
duced with the prism formula, see the explanations in section 4.3. The height information
is deduced from the DEM as described in section 7.2.1, and the calculations were done with
the standard density value ρ =2670 kgm−3. The gravity effect on terrestrial gravity data
located on the topography is illustrated in Figure 7.6a. To account for the long-wavelength
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effect of the topography which is already included in the GOCO03s, the topographic masses
are transformed into a topographic potential represented by a spherical harmonics series ex-
pansion up to D/O 360. The corresponding topographic gravity signal up to D/O 120 which
has to be corrected in the terrestrial data is shown in Figure 7.6b.

(a) Topographic effect on gravity observations
calculated with the prism formula

(b) Long-wavelength correction up to D/O 120 on
gravity observations

(c) Topographic effect on GOCE vertical gradi-
ents from D/O 121 to 360

(d) Topographic effect on GOCE vertical gradi-
ents from D/O 361 to 720

Figure 7.6: Topographic mass effects on terrestrial gravity data located on the topography
and on GOCE vertical gradients at altitude 250 km above the study area

For the reduction of the GOCE gravity gradients, the use of the series expansion is sufficient,
since the high-frequency signal content due to the topography is significantly attenuated at
the satellite altitude. This can be verified in Figure 7.6c and Figure 7.6d, where the signal
content from D/O 121 to 360 and D/O 361 to 720 is illustrated for the vertical gradient at
an assumed orbit altitude of 250 km. Obviously, the signal amplitude level for wavelengths
shorter than D/O 360 is in the order of 10 micro-Eötvös or less, which is well below the
measurement accuracy of the gradiometer instrument. Thus, a reduction of the topographic
influences from the gradient observations up to D/O 360 is sufficient.

102



7.3 Geoid computation

Besides the topographic effect, also the effect of the isostatic compensation is considered,
see section 4.4.4. Again, the DEM is utilized in order to develop a spherical harmonics
series of the isostatic potential according to the Airy-Heiskanen concept. The crustal density
was chosen with ρ =2670 kgm−3, while the density contrast between crust and mantle was
set to ∆ρ =350 kgm−3, which is based on realistic values for the central European region
adopted from other studies (see also section 8.4). Although the DEM is given in much finer
resolution, the expansion is truncated at D/O 720, which corresponds to a spatial resolution
of approximately 30 km. On the one hand, this choice is considered to be justified because the
isostatic effect on terrestrial gravity signals becomes relatively small (< 1mGal) for higher
orders, which was investigated in a study not shown at this place. At GOCE satellite altitude,
the influence becomes even smaller. On the other hand, a highly variable isostatic signal is
also rather unrealistic in reality due to the flexural rigidity of the crust, which is discussed
in section 4.4.3.

(a) Isostatic effect on gravity observations from D/O 121 to
720

(b) Isostatic effect on GOCE vertical gradients
from D/O 121 to 360

(c) Isostatic effect on GOCE vertical gradients
from D/O 361 to 720

Figure 7.7: Isostatic effects on terrestrial gravity data located on the topography and on
GOCE vertical gradients at altitude 250 km above the study area

Within the remove step, the isostatic effect is only reduced from the gravity observations
for D/O 121 onwards, since the long-wavelength effects are already removed by GOCO03s.

103



7 Application I: Computation of an Austrian geoid

In Figure 7.7a the influence of the isostatic effect on gravity observations located on the
topography from D/O 121 to 720 is visualized. Furthermore, the effect on vertical gradients
at an altitude of 250 km is illustrated in Figure 7.7b for the spectral range between D/O 121
to 360. Again, higher order influences are only in the range of some micro-Eötvös, see
Figure 7.7c, so they have been neglected in the reduction.

Finally, the effect of the atmosphere is accounted for in the gravity reduction. In order to be
consistent with the previous procedures, the atmospheric potential for exterior and interior
space was calculated in the same manner as described in section 4.2. The maximum spectral
resolution was defined with D/O 360. In the reduction step we have to discriminate between
gradients and terrestrial gravity data. In case of the gradient data, the observations are taken
outside the atmospheric masses, which would require the removal of the signal of the exterior
potential. However, the GOCO03s model already incorporates the atmospheric masses, so
the reduction is implicitly done when subtracting the EGM constituents from the gradient
signal. Although GOCO03s is only considered up to D/O 120 in this study, higher frequency
atmospheric signals are insignificant at an amplitude level of some micro-Eötvös, which is
shown in Figure 7.8b, and can therefore be neglected.

(a) Combined atmospheric effect on terrestrial
gravity observations

(b) Atmospheric effect on GOCE vertical gradi-
ents from D/O 121 to 360

Figure 7.8: Combined atmospheric effects on terrestrial gravity data located on the topog-
raphy (a) and residual signal from D/O 121 to 360 on GOCE vertical gradients
at altitude 250 km above the study area (b)

In contrast, to get atmosphere-free observations on the Earth’s surface, we have to correct
for the exterior and interior potential as it is explained in section 4.2.5. The combined effect
on gravity observations situated on the topography is illustrated in Figure 7.8a. The gravity
variations due to the atmosphere are comparably small and range from 0.48 to 0.72mGal
but nevertheless are applied within the RCR procedure.

For the complete remove procedure for the reduction of gravity observations g, we can com-
bine all effects and obtain

∆g = g −
(
γegm − δgt,shc − δgae

)
− δgdem − δgiso − δgai , (7.1)
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where γegm is the gravity obtained from the GOCO03s spherical harmonics model evaluated
to D/O 120, which is corrected for the long-wavelength signal of the topographic masses and
exterior atmospheric masses up to D/O 120 by δgt,shc and δgae . Furthermore, the topographic
effect δgdem is considered by evaluating the prism formula, δgiso is the isostatic compensa-
tion effect from D/O 121 to 720, and finally δgai represents the removal of the atmosphere
corresponding to the interior atmospheric potential.

In Figure 7.9, the reduction steps of the RCR procedure are illustrated, which are applied to
the 30015 gravity observations that are used for the geoid computation. The corresponding
statistics of the residual values, i.e. the anomalies ∆g, are summarized in Table 7.1. In the
first step, the anomalies resulting from the reduction by the GOCO03s gravity are shown
in Figure 7.9a. The values range from −201.5 to 143.3mGal, with a considerable mean of
−21.8mGal and a variability of 47.2mGal. As expected, the remaining variations show a
high correlation with topography.

(a) Reduction of GOCO03s to D/O 120 (b) Reduction of topographic effect

(c) Reduction of isostatic effect (d) Reduction of atmospheric effect

Figure 7.9: Terrestrial gravity data reduction in consecutive steps

By applying the topographic reduction as well as the long-wavelength correction for topog-
raphy −δgdem + δgt,shc, the high-frequency correlations can be decreased considerably. The
remaining anomalies are depicted in Figure 7.9b and range from to −69.7 to 53.8mGal with a
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RMS of only 17.3mGal, while the mean can be reduced down to−1.4mGal.

Table 7.1: Statistics of the gravity anomaly data set after applying the consecutive reduction
steps

[mGal] GOCO03s Topography Isostasy Atmosphere

min −201.5 −69.7 −59.3 −58.5
max 143.3 53.8 43.8 44.8
mean −21.8 −1.4 −2.5 −1.5
rms 47.2 17.3 15.9 15.8

A further improvement in terms of decreasing variability of the residual anomalies can be
achieved by considering the isostatic compensation −δgiso, as shown in Figure 7.9c. After
this reduction, the extreme values amount −59.3mGal and 43.8mGal and the RMS can be
lowered to 15.9mGal. The mean value changing from −1.4mGal to −2.5mGal and might be
an indication that the applied isostatic model is slightly overcompensating the topographic
influence. However, this is not considered to have a critical impact, since the effect will be
compensated within the restore step.

Finally, the atmospheric corrections −δgai + δgae are applied in Figure 7.9d. As we have seen
already in Figure 7.8a this influence will be small. The amplitude of the anomalies is on
average risen by 1mGal, so the mean value of the remaining gravity residuals is −1.5mGal.
The minimum and maximum values are −58.5mGal and 44.8mGal and the variability of the
data is slightly decreased to 15.8mGal, which can be attributed to the proper consideration
of the topography in the atmospheric potential.

The reduction steps for the GOCE gradient data are exemplarily illustrated for the Vzz
vertical gradient in Figure 7.10. The gradients are already reduced by the GOCO03s long-
wavelength components during the preprocessing. The resulting values are visualized in
Figure 7.10a and range from −46.1 to 44.3mE with a RMS of 11.2mE and a mean value of
0.1mE, see Table 7.2.

Table 7.2: Statistics of the vertical gradient data set after applying the consecutive reduction
steps

[mE] GOCO03s Topography Isostasy

min −46.1 −32.3 −28.9
max 44.3 38.1 32.9
mean 0.1 −0.6 −0.2
rms 11.2 8.7 7.7

Reducing the effect of the topographic masses from the gradients at satellite altitude leads
to a variability of 8.7mE with a maximum and minimum value of 38.1mE and −32.3mE,
respectively. Finally, the gradients can be further reduced by the isostatic effect, which
decreases the amplitude range down to −28.9 to 32.9mE with a RMS of 7.7mE. Thus,
the reduction steps lead to significantly smoothed input data. The remaining mean value is
−0.2mE, hence the input gradient field is almost perfectly centered.
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(a) Reduction of GOCO03s to D/O 120

(b) Reduction of topographic effect (c) Reduction of isostatic effect

Figure 7.10: Gradient data reduction in consecutive steps shown for the Vzz component

The consistently reduced gravity anomaly and gravity gradient input data can then be used
for the derivation of an Empirical Covariance Function (ECF) and for the estimation of
a Model Covariance Function (MCF), which will be treated in section 7.3.2. With this
information, the residual geoid heights corresponding to the residual disturbing potential
field represented by the input data can be estimated within the LSC procedure. After that,
it is necessary to restore the preliminary reduced gravity signal constituents in terms of geoid
heights in the same consistent manner as it was done in the remove step. This is achieved
by reversing the reductions according to Eq. (7.1)

N = NLSC +
(
N egm − δN t,shc − δNa

e

)
+ δNdem + δN iso + δNa

i , (7.2)

where all components are expressed as geoid heights. The corresponding contributions to the
geoid height constituents that have to be restored are illustrated in Figure 7.11.

The majority of the restored geoid signal in the range from 43.5 to 50.5m can be attributed
to the signal N egm of the GOCO03s model up to D/O 120. The long-wavelength signal
structure can clearly by seen in Figure 7.11a. Furthermore, the topographic mass effect is
depicted in Figure 7.11b. Since the long-wavelength signals of the topography are already
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included in the GOCO03s, here only the effect δNdem − δN t,shc has to be considered. The
additional high-frequency contributions to the geoid heights are in the order of approximately
±2.5 m.

(a) Restoration of GOCO03s to D/O 120 (b) Restoration of topographic effect

(c) Restoration of isostatic effect (d) Restoration of atmospheric effect

Figure 7.11: Contributions of the a-priori reduced gravity signals in terms of geoid heights
for the restore process

The topographic signal is partly compensated due to isostasy. Similarly to the topographic
mass effect, only the signal content which is not covered by the EGM has to be accounted
for. Therefore, the residual isostatic gravity signal δN iso from D/O 121 to 720 is shown in
Figure 7.11c, which reaches amplitudes of roughly ±1 m. Finally, the combined atmospheric
effect δNa

i − δNa
e is restored. While −δNa

e stands for the correction of the atmospheric
masses included in the GOCO03s, the actual restoration of the atmosphere is indicated by
the contribution of the interior atmospheric potential expressed in geoid heights δNa

i . This
effect is very small with amplitude variations from −0.5 cm to −0.3 cm. The corresponding
signal is illustrated in Figure 7.11d and shows the expected correlation with the topography.
Despite the small influence, the restoration of the atmosphere causes an average shift of
approximately −0.4 cm and thus will be considered in the restore step.
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7.3.2 Covariance function estimation

In order to obtain the necessary auto- and crosscovariance matrices between the observations
and the gravity signals which should be estimated with the LSC method, one has to find a
suitable statistical description in terms of a covariance function of the underlying residual
disturbing potential field, see section 3.1 and section 3.2. In this work, a Tscherning-Rapp
degree variance model as introduced in Eq. (3.55) is used to compute the degree variances
kn

kn =
A

(n− 1)(n− 2)(n+B)
,

for the basic Model Covariance Function (MCF) of the disturbing potential T given in
Eq. (3.33)

K(r, r′, ψ) =

∞∑
n=2

(
R2

rr′

)n+1

kn Pn(cosψ) .

In order to account for the errors of the GOCO03s model, which has been reduced from the
gravity signals up to D/O 120 in the previous section 7.3.1, we can write

K(r, r′, ψ) =
120∑
n=2

(
R2

rr′

)n+1

kσn Pn(cosψ) +

Nmax∑
n=121

(
R2

rr′

)n+1

kn Pn(cosψ) , (7.3)

where kσn are degree variances of the formal GOCO03s coefficient errors, which can be ob-
tained by Eq. (4.1). Although a full covariance information for this EGM would be available,
the correlations between the spherical harmonics coefficients are neglected in Eq. (7.3) for
simplification. Furthermore, the implemented approach for the determination of covariances
as introduced in section 3.7 does not use closed analytic covariance expressions. Thus, the
series expansion can not be calculated to infinity but has to be truncated at a certain max-
imum degree Nmax. To reduce the computational effort for the evaluation of the Legendre
series, for the current study a limit of Nmax =2160 will be used. The corresponding MCFs
for gravity anomalies ∆g and the vertical gradients Vzz can be derived from the covariance
function of the disturbing potential in Eq. (3.33) by means of covariance propagation and
have already been introduced in Eqs. (3.57) and (3.58).

Since two input data types, terrestrial gravity anomalies and GOCE gravity gradients reduced
by systematic effects, are going to be used for the geoid estimation, the covariance function
should reflect the statistics of both input data sets. Therefore, the three constants of the
degree variance model A, B, and Bjerhammar radius RB of the MCF are simultaneously
estimated by fitting the MCFs to the actual empirical covariance functions (ECFs) of both
data sets within a least squares adjustment. It should be noted that only the vertical gradient
Vzz is used for this adjustment, because the derivation of the corresponding MCF is quite
straightforward, whereas this would be much more extensive for other gradient types, see for
instance section 3.4.

In order to get an estimate for the effect of the GOCO03s errors, the left term on the right
side of Eq. (7.3) is evaluated for gravity anomalies. The resulting error covariance function
is illustrated in Figure 7.12. Due to the high accuracy of the satellite model in the long
wavelengths, the GOCO03s errors only contribute to the combined covariance function in
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Eq. (7.3) in the order of 10−3 mGal. Therefore, this effect is neglected in the estimation of
the MCF.
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Figure 7.12: Covariance function of the GOCO03s coefficient errors up to D/O 120

The ECFs are determined according to Eq. (3.54) by subdividing the observation pairs in
100 distance classes, which results in a class width of approximately 7.2 km for the gravity
anomaly data set and 16.3 km for the gravity gradients. The ECF of the gravity anomaly
data set is illustrated in the left column of Figure 7.13 in blue. It has an empirical vari-
ance Ce∆g(0) =246.0mGal and a correlation length De

C∆g/2
, at which Ce∆g = Ce∆g(0)/2, of

34.5 km (green cross). The ECF of the vertical gradient data is shown in the right column of
Figure 7.13 again in blue. The variance CeVzz(0) =62.1mE and the corresponding correlation
length De

CVzz/2
=69.1 km.

In an initial adjustment step the three parameters A, B, and RB are iteratively estimated
and the resulting MCFs are visualized in Figure 7.13a for gravity anomalies on the left and
for vertical gradients on the right, both indicated by red lines. The estimated parameters
and the corresponding errors in terms of standard deviations are summarized in Table 7.3 in
the first row.

Table 7.3: Estimated parameters of the Tscherning-Rapp degree variance model and vari-
ances of the resulting MCF

Step Parameter Standard deviation MCF Variance

A RB B σA σRB
σB Cm

∆g(0) Cm
Vzz

(0)

[(m/s)4] [m] [(m/s)4] [m] [mGal2] [mE2]

A1 273186 6364893 -104.7 21995 384 2.4 244.2 61.8
A2 296408 6364400 -103 1464 - - 243.4 61.3
A3 299493 6364400 -103 - - - 246.0 61.9

The Bjerhammar radius RB is estimated with 6364893±384 m, which is below the minimum
radial distance of the terrestrial observations of approximately 6 366 027m and thus guaran-
tees the covariance function to converge. The dimensionless parameter B was determined
with −104.7±2.4, which is also below the critical Nmin = 121. The parameter A is a constant
scaling factor given in potential units [(m/s)4] and was adjusted to 273186 ± 21995 (m/s)4.
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7.3 Geoid computation

The fitted MCF corresponding to these parameters is represented in Figure 7.13a for gravity
anomalies on the left and for vertical gradients on the right by red curves. The variance of
the MCF in terms of gravity anomalies is Cm∆g(0) =244.2mGal and the correlation length
amounts Dm

C∆g/2
=32.4 km, which is already close to the values Ce∆g(0) =246.0mGal and

De
C∆g/2

=34.5 km of the ECF. The match of MCF and ECF curves is very good, in particular
within the first 90 km, where the significant correlations between the gravity signals can be
expected. Similarly, the MCF of vertical gravity gradient is corresponding to the progres-
sion of the ECF to a high extent, and the model variance CmVzz(0) =61.8mE is close to the
empirical CeVzz(0) =62.1mE.
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(a) Initial adjustment of the model parameters A, B and RB
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(b) Final fit with a scaled parameter A

Figure 7.13: Covariance function estimation: ECFs (blue lines) and fitted MCFs (red lines)
for gravity anomalies on the left and vertical gradients on the right

In the next step, the parameter B is empirically fixed to the integer value −103 and the Bjer-
hammar radius is set to RB = 6364400 m. The remaining parameter A is again determined
by least squares adjustment to a value of 296408±1464 (m/s)4, also shown in the second line
of Table 7.3. In this way, the correlation length of the MCF for the gravity anomalies can be
improved to Dm

C∆g/2
=33.2 km. However the variances for ∆g and Vzz are slightly decreasing

to Cm∆g(0) =243.4mGal and CmVzz(0) =61.3mE.

To circumvent this misfit between ECF and MCF variances, the parameter A is finally
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scaled by the quotient CeVzz(0)/CmVzz(0) = 1.010408, which leads to A = 299493 (m/s)4.
Hence, the MCF variances are Cm∆g(0) =246.0mGal and CmVzz(0) =61.9mE, and correspond
to those of the ECF. The resulting MCF curves for gravity anomalies and vertical gradients
are outlined in Figure 7.13b. The final values of the parameters for the Tscherning-Rapp
MCF are summarized in the last line of Table 7.3. The corresponding MCF is used for the
calculation of the auto- and crosscovariance matrices in the geoid estimation with LSC, which
is done in the next section 7.3.3.

7.3.3 Results of the geoid computation

The gravity and gradient data sets, which have been reduced by systematic effects within the
RCR procedure in the preceding section 7.3.1, are used to derive three different estimates
of residual geoid heights. The MCF, which was adjusted to fit the statistics of the reduced
gravity and vertical gradient data in the previous section 7.3.2, is the basis for the setup
of auto- and crosscovariance matrices Ctt and Cst for the LSC process. The residual geoid
heights are estimated on a grid with a spacing of 0.05◦×0.05◦ which is covering the Austrian
territory and slightly extended across the borders.

For the first solution, the 30015 reduced gravity measurements have been introduced as input
data for the computations. All observations were weighted with the unified standard deviation
of 1mGal, which is chosen corresponding to former studies. The estimated residual geoid
heights are illustrated in Figure 7.14a and the formal standard deviations of this estimate are
given in Figure 7.14b. The residual geoid signal is in the range from −1.592m to 1.035m,
while the accuracy derived from the LSC procedure is in the order of 2mm to 4mm in the
central Austrian region and increasing to 3.5 cm towards the borders. This effect mainly has
to be attributed to the geometrical distribution of the input data.

(a) Estimates of residual geoid heights (b) Standard deviations

Figure 7.14: Residual geoid heights solution based on 30015 terrestrial gravity observations
(a) and corresponding standard deviations (b)

Furthermore, a solution which is solely based on GOCE gravity gradients is processed. The
residual geoid heights are derived from 4182 observation stations, which are distributed over
an extended area as shown in Figure 7.4b. At each of these stations, the main diagonal
components Vxx, Vyy and Vzz of the GGT are used for the geoid determination, hence 12546
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observations are introduced in total. The resulting residual geoid heights and their accuracy
information are shown in Figure 7.15a and Figure 7.15b, respectively. The formal errors of
this estimate reveal that with GOCE gradients used as in-situ observations at orbit altitude,
the geoid can be determined with a standard deviation in the order of 10 cm. This is mainly
caused by the downward continuation from orbit altitude to geoid level, which amplifies not
only the gravity signals but also the measurement noise. However, due to the extended
area of available input data, the error structure is rather homogeneous within the Austrian
territory.

(a) Estimates of residual geoid heights (b) Standard deviations

Figure 7.15: Residual geoid heights solution based on 12546 GOCE gradient measurements
at 4182 observation sites (a) and corresponding standard deviations (b)

The derived residual geoid heights vary between −1.478m to 1.108m, and the main spatial
features are in correspondence with those of the gravity-only solution of Figure 7.14a. How-
ever, the gradient solution does not resolve the residual geoid signal with the same detailed
spatial resolution. This had to be expected, since the gradiometer instrument at orbit alti-
tude is not that sensitive to localized gravity signals compared to the terrestrial data. On
the other hand, the terrestrial data is lacking medium- to long-wavelength information due
to the limited extent of available data. Hence, the terrestrial gravity data and the GOCE
gradient data can complement each other.

Therefore, a combined solution using both data sets is finally generated. The result is
shown in Figure 7.16a with geoid height variations between −1.717m and 1.015m. The
obtained standard deviations for the combined solution are now in the order of 3mm through-
out the whole area and show the benefit of the inclusion of GOCE gradient data, see
Figure 7.16b.

To verify the contribution of the gradient data in comparison to the gravity-only solution, the
difference between the combined and the gravity-only solution is illustrated in Figure 7.17a.
The additional GOCE data is influencing the geoid estimate in particular in the western
and south-western parts of Austria, where the data distribution of the terrestrial gravity
data is not as dense as it is in the East, see Figure 7.3b. This is mainly induced by the
topographic situation within Austria. Furthermore, the contributions of GOCE data are es-
pecially affecting the not so well determined border regions. In general, the spatial structures
reveal that the influence of the gradient observations is appearing in particular at medium
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spatial scales, where the GOCE data was expected to contain additional valuable gravity
signals.

(a) Estimates of residual geoid heights (b) Standard deviations

Figure 7.16: Residual geoid heights solution based on the combination of terrestrial gravity
observations and GOCE gradient measurements (a) and corresponding standard
deviations (b)

In order to obtain the final absolute geoid heights, the signal constituents that were reduced
from the gravity observations beforehand have to be restored, see section 7.3.1. Hence,
the effects according to Figure 7.11 are readded to the residual geoid heights which were
derived from the combined estimate. The final absolute geoid height values are presented
in Figure 7.17b and have an amplitude range from 42.443m to 51.990m. The formal errors
of the geoid estimate from LSC mainly reflect the distribution of the input data and their
relative weighting according to the introduced accuracy information. For a verification of
the actual quality of the geoid solution, a validation of the results with independent data is
necessary, which is treated in the following section.

(a) (b)

Figure 7.17: Differences between the combined and the gravity-only solution indicating the
influence of the additional GOCE data (a); absolute geoid heights from the
combined solution after the restore step (b)
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7.4 Validation of the Austrian geoid solution

In this section, the calculated geoid heights are validated in order to obtain a measure for the
achieved quality. On the one hand, the solutions can be compared to the official Austrian
geoid which was derived in 2007, see section 7.1. On the other hand, the results can be
validated with the GPS/levelling data set provided by the BEV, which represents independent
geoid heights.

The official Austrian geoid solution was derived from gravity and deflections of the verti-
cal data as well as from geoid height observations of 170 GPS/levelling measurements. In
order to generate a geoid which is in accordance with the orthometric height system in
Austria, this geoid was heavily weighted towards the GPS/levelling observations, which was
discussed in detail in section 7.1. As a consequence, this solution lost its physical meaning
and thus shows inconsistencies in comparison with gravimetric geoids. Since the time of the
generation of the official solution, the GPS/levelling data set was extended to 192 stations
and several points that were used for the geoid computation have been revised and cor-
rected for gross measurement errors. Thus, the official solution will not be conform to these
GPS/levelling geoid heights anymore. In order to verify the differences, geoid heights for the
updated GPS/levelling data set were interpolated from the official Austrian geoid solution
grid, which was shown in Figure 7.2. The grid is given in a resolution 1.5′ × 2.5′, which is
approximately corresponding to a grid spacing of 3 km×3 km. The differences between the
interpolated geoid heights and those of the updated GPS/levelling data set are illustrated in
Figure 7.18.

Figure 7.18: Differences between the updated GPS/levelling data set and the official Aus-
trian geoid solution

The maximum variations of the geoid height differences range from −6.4 cm to 7.5 cm with
an RMS of 2.2 cm. This investigation leads to two conclusions. On the one hand, it high-
lights the shortcomings of the official geoid solution, i.e. due to its strong dependency on
the GPS/levelling measurements, a change in this data set would require a complete adjust-
ment of the geoid surface. Therefore, a comparison between the official solution and the
solution derived in this thesis will not lead to a conclusion about the quality of the presented
geoid estimate. On the other hand, this verification indicates that the specified accuracy for
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the official solution of approximately 3 cm is comparable with the RMS of the differences
in Figure 7.18, but the actual deviations might be considerably higher. Furthermore, al-
though some gross errors are corrected, there may be still some further inconsistencies in the
GPS/levelling data set, which has to be kept in mind for the following validation with the
geoid that is derived in this thesis.

At first, the geoid heights of the gravity-only solution are compared with the GPS/levelling
data and illustrated in Figure 7.19a. The statistics of the differences are summarized in
Table 7.4. The amplitudes of the differences range from −16.1 cm to 11.4 cm and have a RMS
value of 5.5 cm. Looking at the spatial distribution of the deviations, a pronounced negative
trend (i.e. the estimated geoid heights are smaller than those from GPS/levelling) can be
found in particular in the alpine high-mountain areas of western and south-western Austria, as
well as in the North-East. On the other hand, clear positive trends are obvious in North-South
direction at the longitude of about 15.5◦ East, and in the far West.

(a) Differences to the gravity-only solution, bias
35.1 cm removed

(b) Differences to combined solution based on
gravity and GOCE gradient data, bias
37.8 cm removed

Figure 7.19: Differences between geoid heights from 192 GPS/levelling observations within
Austria and geoid heights from the gravity-only solution (a) and the combined
solution (b)

Table 7.4: Statistics of the differences between geoid heights from the gravity-only as well
as the combined solution and geoid heights from 192 GPS/levelling observations
within Austria given in [cm]

Solution min max bias rms

gravity-only −16.1 11.4 −35.1 5.5
combined −13.2 10.8 −37.8 4.6

The differences between the estimated geoid heights and GPS/levelling observations reveal an
offset of−35 cm, which has already been removed in this plot. As stated in Pavlis et al. (2012),
the bias between the GPS/levelling observations and a gravimetric geoid represents the com-
bined effect of mainly two possible sources. On the one hand, there can be an offset in the
realization of the vertical levelling datum and the gravimetric geoid. On the other hand, the
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ellipsoid that fits the gravimetric geoid in the best possible way, i.e. the geoid variations
w.r.t. to this ellipsoid have a global average of zero, might differ from the ellipsoid which
is used for the calculation of the ellipsoidal GPS heights. For the EGM2008 gravity model
Pavlis et al. (2012) found a difference between the semi-major axis of the best-fitting ellipsoid
and that of the WGS84 ellipsoid of −41 cm, which is a global value.

The difference to the bias which is present in the comparison between the geoid solutions
and the GPS/levelling points from the BEV may have several reasons. The presented geoid
solution is a regional fit to the gravity observations given in a restricted area, therefore
the best-fitting ellipsoid can be different from that of the EGM2008. Furthermore, the
GPS/levelling observations of the BEV are connected to the European Vertical Reference
System 2000 (EVRS2000), which is defined as a zero-tide system as far as the treatment of the
permanent tide is concerned (Ihde et al., 2008). However, its realization EVRF2000 is based
on the United Levelling Network (UELN) 95/98, and has to be considered as a mixed-tide
system, since the treatment of the permanent tide in the incorporated national levelling data
sets is widely unknown. It is assumed that the majority of the observations were provided
in the mean-tide system. On the other hand, the presented geoid solution is calculated
w.r.t. GOCO03s, which is given in the tide-free system. Hence, these inconsistencies in the
datum definitions also contribute to the differences between geoid heights and GPS/levelling
observations.

In Figure 7.19b the differences between the combined solution and the GPS/levelling points
are presented. The deviations are now between a minimum of −13.2 cm and a maximum
of 10.8 cm, see Table 7.4. Compared to the gravity-only solution, this is a considerably
lower bandwidth indicating the beneficial impact of the additional GOCE gradients data.
This is also confirmed by the decreased RMS of 4.6 cm. The advantageous influence of the
gravity gradients is especially visible in the western and south-western parts of Austria,
where the pronounced negative trend could be diminished. Furthermore, also the positive
differences in the far West could be decreased. In the East and North of Austria, the GOCE
observations obviously do not influence the situation very much, which could be expected from
the comparison between gravity-only and combined solution in Figure 7.17a. Nevertheless,
the overall positive impact of including the GOCE gravity gradients could be proven in this
example.

In general, the remaining irregularities seem to be correlated with the topographic situation in
Austria. From this, one might infer that these inconsistencies are induced by an insufficient
topographic reduction. A probable source for these errors can be found in the geological
structures of the topography. For this reason, the geological map for Austria is shown in
Figure 7.20, which should highlight the variety of the geological features without giving a
detailed explanation about their composition.

However, it is obvious that different geological structures result in different densities of
the corresponding rock materials, which is in conflict with the assumption of the con-
stant rock density of ρ =2670 kgm−3 that was used for the reduction of the topographic
masses. In reality, the density can be expected to vary from about 2000 kgm−3 for the
sedimentary basins at the eastern border of Austria (light yellow areas in Figure 7.20) to
2900 kgm−3 for some mountainous regions in southern and western Austria (orange areas in
Figure 7.20).
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Figure 7.20: Geological map of Austria (©Geological Survey Austria)

Thus, the proper consideration of the density variations will improve in particular the consis-
tency of the terrestrial data after the topographic reduction. Due to the signal attenuation
at the orbital height of the GOCE satellite and its limited ability to resolve gravity signals
at small spatial scales, the impact on the gradient observations is expected to be less pro-
nounced but nevertheless may lead to improvements. For a consistent topographic reduction
that accounts for the geological setting, a detailed map of density variations for the whole
area where data are available has to be at hand. This is not the case at the current stage of
this thesis, so this issue poses a possibility for future investigations.

A further element of uncertainty is the applied isostatic compensation effect, which is also
based on the assumption of a uniform density of the topographic masses. Here, the consider-
ation of the density variations below the Earth’s surface will also lead to a different picture.
Futhermore, a correct treatment of the isostatic effect would require the knowledge of the
crustal thickness, which is represented by the Moho surface (see Section 8.1). In combina-
tion with a three-dimensional density model, this information can be used to derive a more
realistic influence of the compensating masses.
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7.5 Summary and conclusions of the geoid
estimation

In this chapter the influence of the inclusion of GOCE gravity gradients on a regional geoid
estimation for the Austrian territory using the LSC approach is investigated. The current offi-
cial geoid solution, which is provided by the Austrian BEV, shows considerable distortions be-
tween a purely gravimetric geoid and the geoid heights from the official precise GPS/levelling
observations derived by the BEV. To overcome these inconsistencies, at that time the remain-
ing differences were adjusted by the introduction of a regression polynomial surface and a
subsequent geoid estimate that was heavily constrained towards the GPS/levelling points.
Consequently, the official geoid solution does not represent a geophysically meaningful sur-
face of equal potential. The new geoid solution presented in this chapter is aimed to avoid
these irregularities.

The solution derived in this thesis is based on the combination of 30015 terrestrial gravity
measurements, which are available within Austria and for adjacent areas of neighbouring
countries, and three months of GOCE gravity gradient data. The colored noise that is
deteriorating the GOCE observations is removed by the preprocessing and filter strategy as
proposed earlier in this thesis. To reduce the computational effort and to obtain a more
homogeneous data distribution, the gradients data was reduced to a sampling rate of 5 s and
cut out for the region between 5◦ to 22◦ East and 43◦ to 53◦ North, which leads to 4182
observation sites at which the main diagonal components of the GGT are used for the geoid
estimation.

In order to obtain a smooth input data set, which is a prerequisite for a successful geoid
estimation with the LSC method, the systematic effects of a global EGM, the topography,
the isostatic compensation and the atmosphere are considered for both data types within
a consistent RCR procedure. The long-wavelength effects are removed using the GOCO03s
satellite-only EGM up to D/O 120. This choice is made, since the GOCE observations are
expected to contribute in particular in the medium spectral range of the gravity signal start-
ing approximately at this threshold. Furthermore, the high-frequency gravity effects on the
terrestrial gravity observations induced by the topographic masses are accounted for by using
a dense DEM with the standard crustal density ρ =2670 kgm−3. To avoid a double considera-
tion of the long-wavelength topographic signal that is included in the GOCO03s, a correction
in terms of a spherical harmonics expansion of the topographic potential up to D/O 120 is
applied. For GOCE gradients it is sufficient to consider the topographic signal up to D/O 360
due to the signal attenuation at the orbit height of the satellite.

Additionally, the gravitational potential of the isostatic compensation effect is developed in
a spherical harmonics series up to D/O 720 on the basis of the DEM and a constant density
contrast, which is assumed to be ∆ρ =350 kgm−3. While the isostatic effect is removed
from the terrestrial observations from D/O 121 to 720, it is shown that the influence of
degrees higher than 360 is negligible at GOCE satellite altitude. Finally, the influence of
atmosphere is reduced using the atmospheric density model that was derived within this
thesis. The atmosphere is already implicitly removed from the gradient measurements by
reducing the GOCO03s contribution. In case of terrestrial data, a consistent reduction is
achieved by accounting for the fact that the observations are located within the atmospheric
masses.
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Due to the consistent reduction steps, the value range of the terrestrial gravity data could be
significantly reduced. While the variability of the anomalies in terms of a RMS is 47.2mGal
after the removal of the long-wavelengths of the GOCO03s model, the finally obtained RMS
amounts to 15.8mGal after the complete reduction. Similarly, the RMS value of the GOCE
gradients observations is decreased from 11.2mE to 7.7mE.

For the statistical description of the correlation between observations and estimated gravity
signals, which is the basis of the LSC approach, a MCF using a Tscherning-Rapp degree vari-
ance model is fitted to the ECFs of both, reduced terrestrial anomalies and GOCE gradients,
simultaneously in a least squares adjustment procedure.

Residual geoid heights are estimated from solely terrestrial data, gradients data and finally a
combination of both data sets in order to verify the influence of the GOCE data. As expected,
the terrestrial data can resolve the high frequencies of the geoid signal. The accuracy of the
solution is increasing from 3mm in the central areas towards 3.5 cm at the Austrian borders
due to the limited availability of data. In contrast, the gradients-only solution is dominated
by long- to medium-wavelength geoid signals, which is corresponding to the sensitivity of the
gradiometer instrument at orbit height. The estimated formal errors are in the order of 10 cm,
which can be attributed to the downward continuation problem, but have a homogeneous
structure due to the extended area of available input data. Finally, the joint solution combines
the signal content of terrestrial and satellite data, where the latter especially contributes to
the medium-wavelength constituents. With this combination, the formal errors from the
LSC estimate are decreased to 3mm also at the Austrian border regions. In order to obtain
absolute geoid height values, the preliminary removed systematic influences are then restored
consistently.

To assess the quality of the gravity-only and the combined geoid solutions, a comparison
with the official GPS/levelling values is performed. The RMS of the differences between
gravity-only and GPS/levelling geoid heights is 5.5 cm. Including GOCE data, this can be
decreased to 4.6 cm for the combined solution. It could be shown, that the GOCE gradients
have a positive impact in particular in the mountainous regions as well as at the border
areas, where the distribution of terrestrial input data is less dense and the topographic
situation is more challenging than in other well-surveyed areas. The improvements due to
GOCE gradients are occuring in the expected medium-wavelength geoid signal range. In
contrast to the official Austrian geoid solution, the geoid derived herein is representing an
unconstrained equipotential surface with a high consistency to the independent GPS/levelling
observations.

Still, there are several issues that can improve the geoid determination in further investiga-
tions. First, the assumed constant and uniform density of the topography is a hypothesis
which is not in agreement with the actual situation. Therefore, the use of a density model
could improve the topographic reduction within the RCR procedure. Likewise, the consid-
eration of the isostatic effect would be more realistic, if a 3D density model and the actual
Moho surface was used for the derivation of the isostatic potential that is applied for the
reduction.

Furthermore, the currently used LSC approach has some limitations. At the moment, the
implementation is designed for a single processor architecture. Since the size of the au-
tocovariance matrix of the observations is increasing quadratic with the number of input
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observations, the amount of the data that can be used in LSC is limited by the size of avail-
able computer memory. Hence, for the presented investigations only subsets of the actually
available data, terrestrial as well as GOCE gradients, have been used. This situation could
be improved by a redesign using parallel processing strategies. Besides that, for the calcu-
lation of the covariances the summation of a Legendre series has to be performed, which
is theoretically defined to infinity. Other LSC software packages use closed analytical for-
mulas for covariance computations that are derived for particular degree variance models,
see Tscherning and Rapp (1974). This is not the case for the approach implemented in this
thesis, which leads to the drawback that the summation has to be truncated at a certain
degree. However, due to the avoidance of the analytic expressions, the current approach is
rather independent of the choice of the covariance or degree variance model, which facilitates
the adjustment of a MCF to the ECF of the input data.

Finally, a more realistic weighting of the input observations is an open problem. In the case
of GOCE gradients, the error information from the preprocessing procedure is considered
to deliver a realistic assessment of the actual accuracy. However, the terrestrial gravity
data is introduced with a uniform measurement accuracy. This is not very likely the case
in reality. Nevertheless, this was accepted in these investigations due to the lack of other
information.

Concluding, the investigations have shown that the regional geoid determination benefits
from the use of GOCE gravity gradients as in-situ observations. Compared to a solution
purely derived from terrestrial gravity data, the combined geoid estimate is improving in the
medium-wavelengths of the gravity signal, which cannot be resolved properly solely from ter-
restrial data given in a restricted area. The presented geoid is consistent to the GPS/levelling
observations to a large extent, which can be further improved by dissolving the discussed lim-
itations.
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8 Application II: Moho estimation in
central Europe

The determination of the geoid as shown in the preceding chapter can be considered as
the classical application of LSC in physical geodesy. This thesis also aims at identifying
a different field of application, for which LSC can be utilized with a special focus on the
exploitation of GOCE gradient data. The determination of the Mohorovičić discontinuity,
commonly abbreviated as Moho, is such a special application which can be expected to
benefit from the medium-wavelength gravity information exclusively provided by the GOCE
mission. This chapter describes the determination of the Moho applying LSC with GOCE
gradients.

First, a general introduction about the structure of the Earth’s interior, the Moho and its
relation to the concept of isostasy is provided in section 8.1. Afterwards, the formalism for
estimating the Moho with LSC is derived in section 8.2. Furthermore, the used data and
the computation of the Moho are described in the consecutive sections 8.3 and 8.4. Finally,
in section 8.5 the results of this approach are validated with independent Moho models
and the chapter closes with a summary and a discussion of the approach and its results in
section 8.6.

8.1 The Earth’s structure, the Mohorovičić discontinuity and
the link to Isostasy

As introduction for this current chapter, a general overview on the structure of the Earth’s
interior is provided, which is necessary for the definition of the Mohorovičić discontinuity. A
standard model for the average Earth structure called Preliminary Reference Earth Model
(PREM) was developed by Dziewonski and Anderson (1981) which includes elastic proper-
ties, densities, pressure, gravity and other geophysical quantities. Further information on
the Earth’s interior can be found for instance in Fowler (2004), Lambeck (1988) or also
Torge (1989).

Basically, the composition of the Earth can, in a very simplified way, be considered as a
system of spherical layers, which can be classified either by their chemical or their mechanical
properties. Following the definition according to the mechanical, in particular their rheologic,
properties the Earth is composed (from the surface to the geocenter) by the rigid lithosphere
with an average depth of about 100 km, the ductile asthenosphere down to about 400 km,
and the mesospheric mantle. This layer is passing on to the fluid outer core at about 2900 km
depth, which is denoted as the Gutenberg discontinuity, and finally a solid inner core from
approximately 5100 km to the Earth’s center is forming the nucleus of the Earth. On the other
hand, the classification according the chemical composition of the layers leads to the division
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into the crust with an average thickness of 35 km, the upper mantle going down to 670 km,
the lower mantle with 2900 km depth, an outer core and the inner core.

Figure 8.1: Schematic illustration of the radial structure of the Earth’s interior (not to scale)
according to Fowler (2004). Approximated depth declarations are given in [km]

As indicated in the schematic Figure 8.1, the two different classifications are partly over-
lapping and may need some further explanations. The lithosphere is the outermost rigid
layer, which comprises the Earth’s crust (oceanic or continental) and the uppermost part
of the mantle. This shell is not continuous but is splitted into the so-called lithospheric or
tectonic plates, which are moving on top of the asthenosphere according to plate tectonics
theory. Looking at the main geological constituents of the different layers, the continental
crust is mainly formed by granitic rock, the oceanic crust by basaltic rock, and the solid
upper mantle is composed by peridotite. This material is predominant in the whole mantle,
thus it is also forming the asthenosphere, but in contrast to the solid upper mantle in a
ductile condition.

As mentioned at the beginning, all these classifications of different spherical layers are only
a very rough approximation. In reality, the boundaries between the layers are varying con-
siderably, for instance due to geodynamical processes like mantle convection or subduction
of tectonic plates and the inherent mass transports and redistributions. The assumption of
abrupt changes from one layer to another is also not always realistic, instead various inter-
mediate transition zones exist. Furthermore, the classification can not only be performed
by means of rheologic or chemical properties, but also, for instance, based on seismic ve-
locities, elastic moduli or temperature. An extensive treatment of all of these geophysical
topics is beyond of the scope of this thesis, thus the reader is referred to Fowler (2004) or
Lambeck (1988) for more detailed information. In this work we will primarily restrict our
interest to the lithospheric part of the Earth.

The most effective and widely used geophysical technique to probe the Earth’s interior is
the method of seismology, which is the study of the propagation of elastic waves through
the Earth. These observations are based on the fact that the propagation characteristics of
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seismic waves are depending on the density, bulk modulus and shear modulus of the material
which they are travelling through.

In general one can distinguish between two kinds of elastic waves provoked by an earthquake
or an explosion, the body waves and the surface waves. According to their names, body waves
propagate through the Earth’s body and can again be classified in P-waves or S-waves. Since
body waves behave similar to electromagnetic light waves, they are reflected or refracted
at a border of changing media according to Snell’s law. P-waves, also denoted as primary
or pressure waves, are longitudinal waves that have the highest travel speed. They behave
similar to a sound wave and thus the motion of the material they are travelling through is
in the same direction as the one of the wave propagation itself. The S-waves, alternatively
also secondary or shear waves, are transversal waves and invoke a vibration of the passed
medium perpendicular to the direction of wave propagation. In contrast to P-waves, these
S-waves can only travel through elastic media, so for instance they do not propagate through
the fluid outer core.

The second major group of waves are the surface waves, which only appear at the surface or in
near-surface layers of the Earth. In general they are slower than body waves, but their signals
can reach higher amplitudes. Surface waves can be further discriminated into Rayleigh and
Love waves, which are described in more detail in Fowler (2004). Besides body and surface
waves, the free oscillations of the entire Earth are completing the seismic spectrum at very
long periods, which was for instance of great importance to prove the solidness of the inner
core (Woodhouse and Deuss, 2007).

A distinct feature in the structure of the Earth’s interior, which can be determined by seismic
refraction and reflection experiments, is the surface that is indicating the transition from the
crustal to the upper mantle layer. This surface is denoted as the Mohorovičić discontinu-
ity, which is named after the Croatian geophysicist Andrija Mohorovičić (1857-1936). He
discovered the discontinuity in 1910, when studying the seismograms of an earthquake that
occurred near Zagreb in 1909. He recognized that some seismic waves did not arrive at the
expected time and therefore expected them to be diffracted at some specific border. The
main reason for this can be found in a sudden increase of density. The rock of continental
crust has an average density of roughly 2700 kgm−3, the oceanic crust’s density is approxi-
mately 2900 kgm−3, while the mean density of the upper mantle is considerably higher with
3300 kgm−3. Considering the velocity of a P-wave, this leads to an average propagation
speed of 6.5 km s−1 in the crust, while at the top of upper mantle such a wave is travelling
with 8.1 km s−1 on average. Hence, by investigating the wave propagation paths and travel
times of seismic waves, the depth of the Moho can be inferred.

Although the seismic exploration approach can reliably deliver Moho depth information,
it has strong limitations regarding the spatial resolution. The measurement campaigns to
obtain seismic profiles are elaborate and cost-intensive and thus the availability of seismic
observations is often restricted. Hence, the generation of regional or even global Moho maps
is often based on a very limited number of seismic data, and the lack of information is
compensated by interpolation between the available profiles. Thus, on a more local scale
these Moho depths may be quite unrealistic, in particular in areas without adequate seismic
data.

Apart from the seismic approach, evidence of the Moho can also be found by gravimetric-
isostatic methods using gravity data. In section 4.4 we have already discussed the concept of
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Figure 8.2: The Airy-Heiskanen isostatic concept and the Moho

isostasy, which was introduced to explain systematic inconsistencies of geodetic observations
when compared to the expectations if one assumes a homogeneously layered Earth’s interior.
In particular in the Airy-Heiskanen model (but also in the Vening Meinesz concept) a varying
border between a lighter crust and a denser mantle has been introduced, which actually can
be interpreted as the Moho discontinuity, as shown in Figure 8.2. This concept will be the
basis for the derivation of the LSC approach for the determination of the Moho from GOCE
gradient data in the following sections.

8.2 A Least Squares Collocation approach for Moho
estimation

The derivation of subsurface density structures from gravity measurements is a typical ill-
posed inverse problem in geophysics or physical geodesy (Hofmann-Wellenhof and Moritz,
2005), and it leads to a non-unique solution. Two different ways to solve this problem are
common: forward and inverse modeling methods. In case of forward modeling approaches,
the interior density distributions and layers are preliminary assumed in an a-priori model,
from which the resulting gravity effect is computed. After comparison with actual observation
data, the density model is iteratively modified until synthetic and measured values match
(Ebbing et al., 2001).

The second class of approaches is the direct inversion of gravimetric data, which in its
simplest version is based on a two-layer model with a constant density contrast and a
mean Moho depth, which serve as boundary conditions to circumvent the non-uniqueness
of the inverse gravimetric problem. The solution in the Fourier domain using planar ap-
proximation is known as Parker-Oldenburg algorithm and is used in various studies, like
Prasanna et al. (2013), Steffen et al. (2011), or Shin et al. (2007). Based on the Vening
Meinesz isostatic concept, Moritz (1990b) formulated the derivation of Moho depths from
isostatic gravity anomaly data in global spherical approximation. This approach was further
developed by Sjöberg (2009), solving the inverse problem by means of integral equations.
This approach was applied and refined in several studies, for instance in Bagherbandi and
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Sjöberg (2011) or Bagherbandi and Tenzer (2013). Bagherbandi (2011) investigated its appli-
cation to Moho estimation with GOCE-type SGG data on regional basis for Scandinavia and
Iran. An alternative approach for the derivation of the global Moho based on the inversion of
GOCE data and a preliminary seismic model CRUST2.0 (Bassin et al., 2000) using spectral
Wiener methods was introduced by Reguzzoni et al. (2013), with a regional application given
in Sampietro et al. (2014). Recently, Barzaghi and Biagi (2014) published some first results
of a closed loop simulation of a collocation approach in planar approximation. This method
was investigated for a regional area and combined simulated terrestrial gravity anomalies and
seismic depths.

In this thesis, a different approach using the GOCE SGG data in the spatial domain utilizing
the LSC method is developed. Similar to most of the studies mentioned above, this concept is
based on the simplified two-layer isostatic model of the Airy-Heiskanen type (Figure 8.2), with
the hydrostatic equilibrium relation over continental areas, which was already introduced in
Eq. (4.38)

∆ρ ti = ρc hi ,

which is relating the topographic load of a mass column with height hi to the depth ti, the
measure of how deep the crust is sinking into the mantle material as a consequence of the load.
Implicitly, there are already two basic assumptions included in Eq. (4.38), which are the re-
quirement to obtain a unique solution of the following inversion procedure. First, we consider
the densities of the crustal material ρc above the separating Moho surface as well as the mantle
material ρm below the Moho to be constant. Consequently, the density contrast ∆ρ = ρm−ρc
is also a fixed value. Second, we interpret the depths ti as variations with respect to some
mean crustal thickness D, which is again an a-priori assumption.

Using this isostatic concept, we can furthermore set up the following hypothesis: Since we
assume that there is, apart from the lateral variations due to the Moho, a homogeneous
density distribution in the Earth’s interior, the external gravity field is only varying due
to the changing topographic masses and the corresponding isostatic compensation. As the
GOCE observations take place in the exterior space at about 250 km height, we could also
consider the underlying atmospheric masses, although this contribution will be only of minor
importance. If we then reduce the gravitational effects of topographic and atmospheric masses
from the gravity observations, we obtain a residual gravity field which should only reflect the
remaining isostatic compensation effect and thus provide the information about the Moho
variations.

Next, let us imagine that this residual gravity field can also be interpreted as the result of
the residual potential of a single surface layer according to Heiskanen and Moritz (1967)

T = G

∫∫
S

ρs
l

dS (8.1)

in which ρs is the surface layer density, G the gravitational constant, l is the distance, and S
a distinct closed surface of thickness zero. The surface layer density is therefore a quantity
with the unit [kgm−2], i.e. mass per area. If we choose the surface S to coincide with the
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mean Moho at depth D, then the relation

∆ρ ti = ρs , (8.2)

can be formulated, from which finally the Moho depth variations can be derived by a simple
division of surface layer density by constant density contrast

ti =
ρs
∆ρ

. (8.3)

The integral Eq. (8.1) of the residual (or disturbing) potential T can be solved in spherical
approximation as shown in Heiskanen and Moritz (1967), leading to

T =
2R

3
(2πGρs −∆g) . (8.4)

The substitution of the gravity anomaly ∆g with its equivalent in spherical approximation of
a sphere with radius R given by the fundamental equation of physical geodesy (Eq. (2.79))
leads to

T =
2R

3

(
2πGρs +

∂T

∂r
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+
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R
T

)
, (8.5)

from which we can solve for the surface layer density ρs and get

ρs = − 1

4πG

(
2
∂T

∂r

∣∣∣∣
r=R

+
T

R

)
. (8.6)

This is the linear operator relating the surface layer density to the disturbing potential.

8.2.1 Covariance propagation of surface layer density and other gravity
quantities

With the relationship given in Eq. (8.6) it is now possible to perform the covariance propaga-
tions according to Eq. (3.13), which lead to the necessary expressions for the covariances be-
tween surface layer density quantities and other gravity quantities. In the sequel, some of the
covariance expressions are derived in the same fashion as in section 3.3. Additionally, the for-
mulas according to the method introduced in section 3.7 are provided.

The covariance between the surface layer density ρs at a point P and a geoid height N in
point Q can be described by

cov(ρs, N
′) = − 1

4πG

(
2
∂

∂r
+

1

r

)
K

γ′0
≡ − 1

4πG γ′0

(
2D3000 +

D0000

r

)
, (8.7)

with K representing the covariance function, γ0 is the normal gravity at Q and D is the
matrix containing all covariances up to the second order derivatives of the disturbing potential
according to section 3.7.
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If we are interested in the covariance between the surface layer density in P and a gravity
anomaly ∆g in Q, the following derivation is necessary:

cov(ρs,∆g
′) = − 1

4πG
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1
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The covariance between two surface layer densities, one in point P and the other in Q, is
given by
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In order to compute the covariance between surface layer density at point P and a vertical
gradient Tz′z′ in point Q one has to implement the relation

cov(ρs, Tz′z′) = − 1
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Similarly, the covariance between surface layer density in P and the gradient in East direction
in point Q is given by

cov(ρs, Ty′y′) ≡ −
1

4πG

(
2D3011 +
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r

)
, (8.11)

and the covariance related to gradient in North direction by

cov(ρs, Tx′x′) ≡ −
1

4πG

(
2D3022 +

D0022

r

)
. (8.12)

Hence, the generalized formulation for covariances between surface layer densities and gravity
gradients can be written as

cov(ρs, Tij) ≡ −
1

4πG

(
2D30ij +

D00ij

r

)
, . . . i = {1, 2, 3}, j = {1, 2, 3} , (8.13)

where the indices i, j = 1, 2, 3 indicate a derivative with respect to y′, x′, z′. In the case that
P and Q are interchanged, the corresponding expression can be derived by interchanging the
subscripts nm with ij in Dnmij as well as the radii r and r′.
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8.3 Data and models for Moho computation

In order to obtain Moho depth estimates from GOCE gravity gradients based on the pre-
viously proposed LSC approach, it is necessary to reduce the gravitational effects of the
topography and atmosphere from the observations. As explained in section 8.2, in this way
the Moho can be related to the variations of the residual gravity field expressed as surface
layer densities. The topographic and atmospheric models are introduced in section 8.3.1,
with an investigation on the necessary degree of reduction. The GOCE data used for this
study is briefly described in section 8.3.2. As test area, the central European region between
5◦ to 22◦ East and 42◦ to 52◦ North is selected for these investigations. Thus it includes
the Austrian country as well as its surrounding regions. With this choice, some interesting
geophysical and tectonic features in Europe are expected to be revealed, which are discussed
in detail in section 8.5.

8.3.1 Topographic and atmospheric effects

First, the effect of the atmospheric masses on the GOCE gradients observations is investi-
gated. For this reason, the ITSG atmospheric potential model derived in section 4.2, which
is based on the global GTOPO height data set, is used to estimate the impact on Vzz vertical
gradients at a mean altitude of 250 km. As one can see from Figure 8.3a, the total impact
from spherical harmonic D/O 0 to 360 leads to variations of 1 to 2mE. However, during
the preprocessing of the gradient observations, the long-wavelength constituents will already
be reduced up to a specified 4̊9, see section 8.3.2. The remaining atmospheric effect from
D/O 50 to 360 is illustrated in Figure 8.3b. Obviously, the amplitude is varying in a very
small range of about ±0.2mE, which is well below the remaining measurement noise after the
filtering of the gradient observations. For this reason, the effect of the atmospheric masses
does not necessarily have to be considered in this study and is therefore neglected in the
sequel.

For the reduction of the topographic mass effect the Rock-Water-Ice (RWI) model is used in
this study. This potential model was developed by Grombein et al. (2014) and is published
in terms of a spherical harmonics series representation up to D/O 1800. Based on the
DTM2006.0 digital terrain model, the Earth’s topography is classified in rock, water and ice
mass layers with individual density values. From these data the global topographic potential
model RWI_TOPO_2012 is derived by means of forward modeling using tesseroid bodies
(Grombein et al., 2013) and then transformed into spherical harmonics coefficients. Apart
from the topographic potential model, also an isostatic as well as a combined topographic-
isostatic model is provided. The underlying isostatic concept is based on a modified Airy-
Heiskanen approach incorporating preliminary Moho depth and crust-mantle density contrast
information from the CRUST2.0 model (Bassin et al., 2000). For the current application,
only the topographic potential model is of interest, since we want to preserve the information
on isostatic effects in the GOCE gradient data. All models can be accessed via the ICGEM
website http://icgem.gfz-potsdam.de/ICGEM/. To verify the impact of the topography on
the gravity gradients at orbital height, the vertical gradients Vzz in the LNOF are evaluated
from the RWI model at a mean altitude of 250 km for different spherical degree ranges starting
at the chosen D/O 50.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.3: Simulated vertical gradients Vzz at mean altitude 250 km in the LNOF based
on: the ITSG atmospheric potential model from D/O 0 to 360 (a) and D/O 50
to 360 (b); the GOCE_TIM_RL05 model from D/O 50 to 280 (c); the RWI
topographic potential model from D/O 50 to 280 (d), D/O 281 to 360 (e) and
D/O 361 to 1800 (f)
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The results are illustrated in Figure 8.3d to Figure 8.3f. For a comparison with the gravity
signal that can be expected at such heights, the vertical gradients are also computed from the
GOCE_TIM_RL05 model between D/O 50 and the maximum available D/O 280 and shown
in Figure 8.3c. The comparison of Figure 8.3c and Figure 8.3d highlights that the expected
gravity signal is actually smaller than the topographic signal, since the topography is iso-
statically compensated to a considerable extent. Evaluating the topographic effect at GOCE
altitude in the spectral range D/O 281 to 360, the signal content drops to around ±0.15mE,
shown in Figure 8.3e. The signal amplitude is further decreasing to some micro-Eötvös in the
range between D/O 361 to 1800, see Figure 8.3f, which confirms that the GOCE measurement
system is not sensitive for higher frequency topographic signals at satellite altitude. Since
the remaining measurement noise after the filtering of the real gradient observations can be
expected to be in the order of a few milli-Eötvös, a reduction of the topographic mass effect
from D/O 50 up to 360 can be considered as sufficient for our purposes.

8.3.2 GOCE gradient data

The GOCE EGG_NOM_2 products are used for the derivation of Moho depths in this the-
sis, which are given in the GRF, see section 5.4.1. To reduce the noise, filtering methods as
described in section 6.2 are applied. Due to the measurement configuration, the GOCE gra-
diometer instrument is only able to deliver precise observations from frequencies between 5
to 100mHz (see section 5.2 or chapter 6). According to Eq. (6.22) this can be approximately
converted into a spherical harmonic degree range from D/O 27 to 540. One of the key ques-
tions therefore is, to which D/O the long-wavelength information of gradient data should be
reduced. Torge (1989) states that variations in the mantle structure effects the gravity field
up to D/O 30, while lithospheric influences dominate from D/O 30 to 180, and shorter wave-
length effects origin merely from crustal inhomogeneities. Lambeck (1988) mentioned that
gravity anomalies predicted from convections in the asthenosphere could have wavelengths in
the order of 500 km and longer, which corresponds to D/O 40. Kuhn and Featherstone (2006)
expect that differences between their synthetic Earth gravity model and observed gravity are
stemming from unmodeled mantle effects between D/O 10 and 100.

Based on this background information, for this study the choice to use gravity gradients
from D/O 50 onwards is made. In this way, it should be guaranteed that the Moho depths
calculated herein are the result of the isostatic compensation process of crust and mantle,
and that possible influences of anomalies deeper in the Earth’s interior are reduced as much
as possible. Hence, the gradient data can be expected to contain gravity information between
the spectral range according to D/O 50 and 280, which is the highest resolvable frequency
according to the latest GOCE_TIM_RL05 global gravity field model based on solely GOCE
data (Pail et al., 2011). In the spatial domain, this corresponds to resolvable wavelengths
between 70 to 400 km. However, the reduction of the long-wavelength signal also implies,
that the Moho depths derived from this inversion do not result in absolute values. Instead,
they are also restricted to the corresponding spectral signal content from D/O 50 to 280,
which requires the restoration of the missing signal from other sources, see the discussions in
section 8.4 or section 8.6.

Six months of gradient data, from November to December 2009 and April to June 2010,
were selected to be the basis for the Moho inversion. This choice was made in order to
keep the computational efforts manageable, but still assuring a good data coverage in the
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study area. Due to some hardware problems of the GOCE satellite in February and March
2010, these two months were intentionally not considered. After a preprocessing phase, the
topographic effect based on the RWI topographic potential model (see previous section) has
been reduced from the gradients in the GRF from D/O 50 to 360. Furthermore, the main
diagonal components of the gradient tensor Vxx, Vyy and Vzz at a sampling rate of 5 s have
been selected as observations in the investigation area. This results in an input dataset of
8294 observation stations for each of the three gradient tensor components, as illustrated in
Figure 8.4, which leads to 24882 observations in total.

Figure 8.4: Six months of GOCE gravity gradient input data for Moho inversion reduced
by gravity effects from the RWI topographic potential model. Vxx (left), Vyy
(middle) and Vzz (right) gradient tensor components in the GRF (signal content
below D/O 50 removed)

8.4 Moho computation and results

For the inversion of the GOCE gradient data into Moho depths, two basic assumptions have
to be made in order to obtain a unique solution as discussed in section 8.2. On the one hand,
the problem is defined in a way that we can calculate Moho variations w.r.t. to an a-priori
chosen mean Moho depth D. On the other hand, we assume a constant density contrast ∆ρ
between crust and mantle for the final conversion of the estimated surface density values ρs
into Moho depth variations. Frequently used global average values, which can be found, e.g.,
in Hofmann-Wellenhof and Moritz (2005), are 30 km for the reference Moho depth D and
600 kgm−3 for the density contrast ∆ρ.

In this study, we concentrate on the central European region between 5◦ to 22◦ East and
42◦ to 52◦ North, so realistic values for D and ∆ρ might be different from the global av-
erages. Ebbing et al. (2001) proposed to use 350 kgm−3 and 30 km for gravity inversion
processes in the Eastern Alps region in order to be consistent to seismic profile observations
made within the research project TRANSALP. In Simeoni and Brückl (2009) similar values
of 300 kgm−3 and 33 km were used for studying the gravity effect of the upper crust on
the Moho discontinuity in the Eastern Alps and surrounding regions. In an earlier study
investigating the crustal thickness in the Swiss Alps, Kahle et al. (1976) found an average
density contrast of 330 kgm−3 which was derived from a seismic Moho varying between 30
to 58 km. Based on this information, the values to be used in the current study are defined
as D=30 km for the mean Moho depth and ∆ρ=350 kgm−3 for the average constant density
contrast.
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The surface layer densities ρs are estimated on a 1/8◦×1/8◦ grid at the assumed mean Moho
depth D=30 km. The calculation of these estimates with the LSC method is performed
according to the solution strategy 1 as proposed in section 6.3. For the modeling of the
covariances between the gradient observations and the surface layer density signals to be
estimated, a covariance function equivalent to Eq. (3.33) for D/O 50 to 280 was used with a
Bjerhammar radius set to R=6333 km. The corresponding degree variances kn were derived
as shown in Eq. (3.32), using the spherical harmonic coefficients differences between the
GOCE_TIM_RL05 global gravity field model and the RWI topographic potential model.
The stochastic behaviour of the remaining measurement noise is accounted for by introducing
the error-covariance function that was obtained during the gradient data preprocessing and
filtering, see chapter 6. The resulting surface layer densities are finally converted to Moho
depth variations using the previously defined constant density contrast ∆ρ=350 kgm−3. In
Figure 8.5, the Moho depth variations w.r.t. to the mean depth of D=30 km are shown on
the left.

Figure 8.5: Moho depths (left) and standard deviations (right) estimated in the spectral
range from D/O 50 to 280 based on the LSC approach

The resulting signal shows a high degree of correlation with the main topographic structures
in the investigated area. Since this study is based on the Airy-Heiskanen isostatic concept,
which directly relates the topography to the penetration depth of the crust into the mantle,
this is the expected outcome. Nevertheless, the revealed Moho signal is not only due to the
topographic load, but can also be associated to other geophysical phenomena. Since this
will be investigated in detail in section 8.5, further interpretations will not be given at this
place.

The amplitude of the estimated Moho variations in Figure 8.5 ranges from −19.9 km to
13.5 km, which would imply a Moho depth of 10.1 km to 43.5 km. However, these calculations
do not contain the long-wavelength signal content below D/O 50 due to the reasons mentioned
already in section 8.3.2, so an essential amount of signal is not included in these values. A
restoration of this signal content could theoretically be performed using an accurate global
gravity field model. This option is intentionally not considered in this study, since it bears a
potential risk to introduce disturbing gravity signals, for instance due to mantle anomalies,
which would have to be accounted for prior to the Moho inversion.
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Finally, the error estimates obtained from the LSC process is illustrated in Figure 8.5 on
the right. The estimated standard deviations lie between 0.3 km in the central parts of the
study area and 0.4 km at the borders, where the usual edge effects of the LSC prediction
methods occur. Again, these values must not be seen as absolute values due to the missing
long-wavelength information, but are only valid for the estimate in the spectral range between
D/O 50 to 280.

A critical factor in the Moho inversion process is the choice of the a-priori assumptions for the
mean Moho depth D and the constant density contrast ∆ρ. As mentioned in the beginning of
this section, these parameters initially have been set to D=30 km and ∆ρ=350 kgm−3 based
on empirical values from previous geophysical studies. In order to investigate the impact
of these assumptions, an additional numerical study is performed with different values used
for these constant parameters. In this way, the variations of the estimated Moho depths in
dependence of the a-priori assumptions can be assessed. The first scenario is based on the
constant mean Moho depth D=30 km but uses different density contrasts of ∆ρ=330 kgm−3

and ∆ρ=370 kgm−3, respectively. In the second scenario, the density contrast is set to
∆ρ=350 kgm−3, however the mean Moho depth is chosen to be D=29 km and D=31 km.
The resulting differences w.r.t. the Moho estimate with the initial values as illustrated in
Figure 8.5 are shown in Figure 8.6. The statistics of the corresponding Moho estimates
from D/O 50 to 280 are summarized in the second column of Table 8.1. Additionally, the
differences of the amplitude ranges between the Moho results of the empirical assumptions
and the four case studies are quoted in the third column.

Table 8.1: Statistics of Moho depth estimates in the spectral range from D/O 50 to 280 with
different assumptions for D and ∆ρ, and differences w.r.t. the result based on
the a-priori empirical values

Parameters Statistics Differences
D ∆ρ min max rms min max

[km] [kgm−3] [km] [km]

30 350 -19.9 13.5 3.9

30 330 -21.1 14.3 4.2 −1.2 0.8
370 -18.8 12.7 3.7 1.1 −0.7

29 350 -19.4 13.1 3.8 0.5 −0.4
31 -20.4 13.8 4.0 −0.5 0.4

The comparison shows, that a decrease in the assumed density contrast by 20 kgm−3 leads
to an amplification of the resulting residual Moho depth in dependence of the amplitude of
the estimated surface density, see Figure 8.6a. The amplification amounts to −1.2 km w.r.t.
the initial minimum value of −19.9 km and further 0.8 km for the maximum residual Moho
depth of 13.5 km. In contrast, an increased density contrast of 370 kgm−3 implies a damping
of the Moho amplitudes by 1.1 km and −0.7 km in the extreme values, which is illustrated in
Figure 8.6b.

If the density contrast for the Moho inversion remains the same compared to the initial as-
sumptions, but the mean Moho depth for the evaluation of the surface density is changed
from D=30 km to D=29 km, the Moho signal is again attenuated, see Figure 8.6c. The
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initial minimum value is increased from −19.9 km to −19.4 km, while the maximum am-
plitude is reduced from 13.5 km to 13.1 km. The inverse behaviour can be observed, if the
evaluation depth is lowered to D=31 km. This leads to a gain in the Moho signal ampli-
tudes as depicted in Figure 8.6d, with an amplification of the extreme values in the order of
0.5 km.

(a) D=30 km, ∆ρ=330 kgm−3 (b) D=30 km, ∆ρ=370 kgm−3

(c) D=29 km, ∆ρ=350 kgm−3 (d) D=31 km, ∆ρ=350 kgm−3

Figure 8.6: Differences between the Moho estimate with D=30 km and ∆ρ=350 kgm−3 and
Moho estimates based on different assumptions for D and ∆ρ in the spectral
range from D/O 50 to 280

Summarizing, the investigation shows that the assumptions for the density contrast ∆ρ and
the mean Moho depth D have to be chosen carefully, as they directly influence the result
of the surface density estimation and the consecutive Moho inversion. In the region under
investigation, an uncertainty of ±20 kgm−3 in the choice of ∆ρ results in variations of the
Moho in the order of ±1.2 km. A different assumption of the mean Moho depth by ±1 km
would affect the Moho result approximately by ±0.5 km. As already stated, for the selected
European region ∆ρ and D are chosen according to realistic empirical values from seismic
studies. The justification of the a-priori values will be verified by a thorough validation of
the obtained Moho results with external models in the next section.
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8.5 Validation and interpretation of the Moho estimates with
other sources

The results obtained in the previous section show reasonable features and amplitudes of the
Moho estimates within the spectral range from D/O 50 to 280. However, an evidence about
correctness and soundness of the results can only be achieved by validation with other data
sources. In this section, the estimated Moho is verified by a comparison with three different
independent external Moho models, which are publicly available and cover the investigated
region. Two models are primarily based on seismic data sets, while the other model is also
estimated from GOCE data with some seismic information used as background input. The
models are summarized in the following section 8.5.1. In the beginning of section 8.5.2, the
different models are first compared with regard to their signal characteristics and statistics.
Their distinct features will then be analyzed considering the geological and tectonic setting
in the investigated region. Finally, the Moho of selected areas will also be compared with
the results of recent other studies.

8.5.1 External Moho models

The GEMMA1.0 model

Figure 8.7: GEMMA1.0 Moho depths (left) and estimated standard deviations (right)

The GEMMA1.0 global crustal model is developed within the ESA-funded project GOCE
Exploitation for Moho Modeling and Applications (GEMMA). A first release was described
in Reguzzoni et al. (2013), while the latest and currently available updated model is discussed
in Reguzzoni and Sampietro (2014). A local study in the Himalayan region was performed
by Sampietro et al. (2014). This GEMMA1.0 model is based on a gravimetric inversion
algorithm of GOCE data and incorporates also a-priori information of the crustal structures
and seismic features.

The inversion uses the concept of Wiener deconvolution in the spectral domain and re-
solves the Moho up to spherical harmonic D/O 210 (Reguzzoni et al., 2013). The grav-
itational potential as well as radial GOCE gradients grids, which are derived within the
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GOCE space-wise approach of the HPF processing chain (see section 5.4.3), serve as in-
put observations in order to deduce the residual Moho variations with respect to a mean
reference depth. The final Moho depths are obtained by an iterative procedure of Moho
inversion and re-estimation of constraining parameters like mean Moho depth or radially
varying crustal density (Reguzzoni and Sampietro, 2014). The global Moho map is publicly
available through the web page http://gocedata.como.polimi.it as 0.5◦ × 0.5◦ ASCII
grid and is illustrated in the left plot of Figure 8.7. The GEMMA1.0 Moho model is also
accompanied by corresponding error estimates in terms of standard deviations, which are
estimated from the combined effect of the a-priori Moho model and the GOCE data errors
(Reguzzoni et al., 2013). The global standard deviation for this model is found with 1.7 km,
with maximum amplitudes reaching up to 10 km, see Figure 8.7 on the right. These large
values can be found in particular at tectonic plate boundaries or for example in the Andes or
Himalayan region, and are ascribed to an insufficient modeling of actual density anomalies
in these areas.

The ESC model

In 2009, Grad et al. (2009) compiled the first Moho depth map covering the whole European
plate, which was a joint project of a dedicated European Seismological Comission (ESC)
working group and will therefore be called ESC model. Prior to this date, only rough global
models of 5◦ × 5◦ or 2◦ × 2◦ resolution were available for the continental-wide perspective
of the Moho structure. The ESC model is a compilation of numerous seismic data sets and
different local and regional Moho maps based on seismic and/or gravimetric observations.
The ESC Moho depth map was generated by building 10× 10 km block averages out of the
various data, and finally was low-pass filtered with 100 km half wavelength. The final map
is available online via http://www.seismo.helsinki.fi/mohomap/ and is also provided in
ASCII format in the range between −41◦ to 71◦ East and 27◦ to 87◦ North with a resolution
of 0.1◦ × 0.1◦, which is shown in Figure 8.8a. Additionally, the ESC Moho map comes along
with uncertainty estimates illustrated in Figure 8.8b, which are depending on the type of
the data source and are specified between 3 to 6 km. In particular regions, the standard
deviations exceed this range and can even reach 10 km.

The EPcrust model

One further regional Moho model publicly available is the EPcrust model. It was published
by Molinari and Morelli (2011) and covers the region between −40◦ to 70◦ East and 20◦ to 90◦

North with a grid size of 0.5◦×0.5◦. The EPcrust model is a crustal model for the European
plate, which distinguishes between a sediment layer as well as an upper and a lower crustal
layer. For each layer, the density values are provided together with seismic P- and S-wave
velocities and depth information at each grid point. Besides these quantities, topography, ice
layer thickness and Moho depth can be extracted from the model, which is available online via
http://bo.ingv.it/eurorem/EPcrust. Similar to the ESC model, EPcrust is a compilation
of several sources, which are homogenized in terms of a consistent spatial resolution of 0.1◦×
0.1◦. As such it also incorporates the ESC model and can therefore be regarded as its
successor. The final values are derived by forming a weighted mean of the available data for
each grid point and a consecutive Gaussian filtering with 60 km half-wavelength resolution.
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(a) ESC Moho depths (b) ESC Moho uncertainties

(c) EPcrust Moho depths (d) Difference between ESC and EPcrust Moho
depths

Figure 8.8: The ESC Moho depths (a), ESC Moho uncertainties (b), EPcrust Moho depths
(c) and differences between both models (d)

The distributed 0.5◦ × 0.5◦ Moho depth map is illustrated in Figure 8.8c. In contrast to the
ESC model, no accuracy information is provided. Instead, the variability of the Moho from
different data sources is discussed in Molinari and Morelli (2011), which can be in the order
of 10 km. In order to assess the consistency of the Moho models, the difference between ESC
and EPcrust is illustrated in Figure 8.8d for the region between −20◦ to 40◦ East and 35◦ to
70◦ North. The deviations between the two models can amount up to 12 km and highlight
that the currently available models have large discrepancies.

139



8 Application II: Moho estimation in central Europe

8.5.2 Validation and interpretation

A direct comparison between the Moho calculated herein and the external models can not be
performed straightforward for mainly two reasons. First, as we have seen in the previous sec-
tion 8.5.1, the external models have varying spatial and also spectral resolutions. Second, the
GOCE gradient data used for the present computations were reduced by the long-wavelength
constituents of the gravity signal up to D/O 49, see section 8.3.2. Therefore, the three ex-
ternal Moho maps were converted in corresponding sets of spherical harmonic coefficients up
to D/O 360 by spherical harmonic analysis. This corresponds to the spatial resolution of
0.5◦ × 0.5◦, with which the GEMMA1.0 and EPcrust models are provided. Although the
ESC model is nominally available with a considerable higher resolution of 0.1◦ × 0.1◦, the
expected spectral signal content due to the 100 km low-pass filtering is only in the order
of D/O 200. Hence, a spherical harmonics decomposition to D/O 360 will be sufficient to
preserve the model signal content.

For a better visual comparison, the estimated Moho depth variations w.r.t. to the mean Moho
depth D =30 km are once more shown in Figure 8.9a and will be denoted as ITSG model
in the sequel. The Moho depths of the external models GEMMA1.0, ESC and EPcrust
are also recomputed as residuals against the average depth D =30 km in Figure 8.9b to
Figure 8.9d. During the spherical harmonics synthesis, the long-wavelength signal content
below D/O 50 is omitted in order to achieve consistency with the ITSG Moho variations.
In this context is has to be emphasized that this validation is not aiming at the analysis of
absolute Moho depths, but it is only valid for the Moho signal constituents between D/O 50
and the according maximum resolution of the models. This fact does not necessarily have to
be regarded as a drawback. Instead, more regional features of the Moho variations can be
observed and even be linked to geophysical and tectonic features more easily, as we will see
in the following interpretations.

The first visual comparison between the ITSGMoho model and the other models in Figure 8.9
reveals that ITSG model obviously resolves the Moho signal at slightly finer spatial scales.
This can be explained by the different techniques and input data for the generation of the
Moho maps. The presented estimation is based on GOCE gradient data, which we assume to
contain potential gravity signals up to D/O 280. A significant signal content until D/O 254,
where the signal to noise ratio reaches 1, is proven within the computation of the latest
global GOCE_TIM_RL05 model (Brockmann et al., 2014). Hence, the effective spatial
resolution at which significant signals can be expected will approximately be between 70 km
80 km.

According to the processing strategy as described in Reguzzoni et al. (2013), the GEMMA1.0
model resolves the Moho up to D/O 210, which is equivalent to 95 km half wavelength. As
mentioned in the previous paragraph, the ESC model is not able to reflect variations of the
Moho at smaller spectral scales than D/O 200 (∼100 km) due to spatial averaging. Compared
to ESC, the EPcrust model does include some more data sources with nominally higher
spatial resolution. However, their laborious retracement was not performed in detail in this
thesis. Since the additional data in EPcrust is also based on mainly seismic profiles and
point observations, which are then combined by forming a weighted mean of all sources, it is
assumed that the resulting signal content is not significantly different from the one in ESC.
Looking at the signal in Figure 8.9c and Figure 8.9d confirms that the spatial variability is
similar in the investigated region. Furthermore, the difference plot in Figure 8.8d does not
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(a) ITSG (b) GEMMA1.0

(c) ESC (d) EPcrust

Figure 8.9: Comparison of Moho depth models given as variations w.r.t. the mean Moho
depth D =30 km from D/O 50 onwards: ITSG model (a) with subset areas
indicated by white boxes A, B and C for localized comparisons with results
from Wagner et al. (2012), Molinari et al. (2012) and Stipčević et al. (2011);
GEMMA1.0 model (b); ESC model (c); EPcrust model (d)

show considerable high frequency deviations between the models. Thus, also the EPcrust
Moho model provides a smoothed and a little bit less detailed picture of the Moho variations
compared to the ITSG model.

The statistics of the Moho variations of each model are summarized in Table 8.2. The
maximum Moho depth of the ITSG model with regard to the reference depth of 30 km is in
the order of 13.5 km and located in the central Alps at the Swiss border. Although this value
is consistent with the maximum depths of the other models, these can be found at different
locations. The GEMMA1.0 model has its maximum in the Dinarides, while the maximum
of the ESC model is found in the southern Alps and the EPcrust model has its deepest
residual Moho beneath Corsica. Hence, the models deviate considerably in this context. The
minimum of the ITSG model is located in the Ligurian Sea and amounts to −19.9 km, which
is similar to that of the GEMMA1.0 model. In contrast, the two seismic models show minima
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of only −12.6 km and −13.6 km, respectively. However, the location of these extreme values
is similar in all models and can be found in the Ligurian Sea. The spatial variability in terms
of RMS values is comparable for all models and lies within 3.5 km and 5.1 km. Nevertheless,
a comparison only based on these statistics does not lead to a meaningful conclusion about
the reliability of the results.

Table 8.2: Statistics of Moho models from D/O 50 onwards (values in km)

Model min max rms

ITSG -19.9 13.5 3.9
GEMMA1.0 -19.1 13.7 5.1
ESC -13.6 13.9 4.0
EPcrust -12.6 13.1 3.5

Thus, we want to focus on the spatial characteristics of the different models. In order to
validate if the results are meaningful and to verify which of the models might be more
reliable in certain regions, the Moho has to be investigated by considering the geophysical
and tectonic setting of the region under investigation. In Figure 8.10 the topographic and
bathymetric relief based on the ETOPO1 data set (Amante and Eakins, 2010) is shown for
central and South-Eastern Europe as well as for parts of the Mediterranean Sea including
the Italian peninsula. In this area, three important tectonic units are located: the European
plate, the Ligurian plate and the Adriatic plate. The European plate border in the South is
approximately coinciding with the French coastline, then it is following the Alpine arc along
the so-called Periadriatic Line until it reaches the Italian/Slovenian border, from where it
continues to the South-East close to the Adriatic coastline. The Ligurian plate is located
South of the European plate, with its Eastern border coinciding roughly with the Apennine
mountains on the Italian peninsula. Finally, the Adriatic microplate is jammed between the
Ligurian and the European plate, covering the areas of the Adriatic Sea, the Po plain as well
as the Eastern half of the Italian peninsula.

The plate boundaries are schematically outlined in Figure 8.10 as red dashed lines and are
drawn according to the illustrations in Wagner et al. (2012), Di Stefano et al. (2011) and
Ustaszewski et al. (2010). Driven by tectonic movements of the African plate in northward
direction, the European, Ligurian and Adriatic plates are undergoing tectonic processes like
lithospheric subduction and crustal faulting. This caused the formation of the main mountain
chains like the Alps, Apennines or Dinarides at the collision zones of the plates, which
are likely to result in a thickening of the crust in these areas according to the isostatic
theory.

Furthermore, the illustrated region is ruled by particular subduction characteristics, which
are for instance shown in Wagner et al. (2012). On the one hand, the European plate is
subducting under the Adriatic plate and the Ligurian plate at its Southern borders. On the
other hand, the Adriatic plate is dipping beneath the Ligurian plate at the common bound-
ary. Hence, at these plate boundaries the rather instantaneous changes in the crust can also
be expected to lead to pronounced changes in the Moho depths. The actual classification
of geological structures and subdivisions of different faulting zones in Figure 8.10 is much
more complex in reality, and would need more specific explanations on more localized scales.
Therefore, the reader is referred to literature like Schmid et al. (1989), Meletti et al. (2000),
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Dal Piaz et al. (2003), Lombardi et al. (2008), Ustaszewski et al. (2010), or Carminati and
Doglioni (2012). For the purposes of this current study, we want to limit the classifications of
tectonic and geological units to the simplified extent given in Figure 8.10.

Figure 8.10: A topographic map of central Europe and the Mediterranean Sea based on the
ETOPO1 data set (Amante and Eakins, 2010) with some of the main tectonic
features based on Wagner et al. (2012), Di Stefano et al. (2011) and Ustaszewski
et al. (2010)

At a first glance, the majority of the most pronounced spatial features of the Moho depth
variations can be found in each of the models illustrated in Figure 8.9. For instance, clear
positive signals are indicating a thicker crust beneath the European Alps, the Apennine
Mountains on the Italian peninsula, the Dinarides East of the Adriatic Sea, the Carpathian
Mountains at the border between Slovakia and Poland, or for instance beneath the island of
Corsica. Likewise, a thinner crust can be found in each model in parts of the Mediterranean
and Adriatic Seas or the Po plain between the Alps and the Apennines. However, when
looking at more regional features, several differences between the models can be identified
even if the according standard deviations in the order of several kilometres of the model
estimates are taken into consideration. Hence, more detailed discussions are performed for
selected subsets of the Moho maps.

The first geophysically interesting area that is analyzed is indicated in Figure 8.9a by the
solid rectangular box denoted with letter A. This local region is also chosen in recent studies
from Wagner et al. (2012) and Lombardi et al. (2008), who derived a 3D crustal model and
Moho maps from seismic data. The corresponding Moho estimate of Wagner et al. (2012) is
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illustrated for comparison in Figure 8.11a.

(a) Wagner et al. (2012) (b) Molinari and Morelli (2011) (c) Stipčević et al. (2011)

Figure 8.11: Local scale Moho estimates from three different recent studies based on seismic
observations

It shows a distinct outline of the deep Moho in the subduction zones of the European/Adriatic
plates, the Periadriatic Line, and Adriatic/Ligurian plates with a less pronounced Moho depth
in the area where all three plates collide. The Adriatic Moho between the subduction zones
is considerably lower with distinct minima at about 12◦E/45.5◦N and in the area that is
indicated in Figure 8.11a as the Ivrea body. These regional features can also be identified
very well in the ITSG Moho map, thus this can be considered as an indication of the reliability
of the achieved results. In this context, the remarkable match of the abrupt Moho change at
the Southern Alps boundary with the Peridadriatic Line is pointed out. Concerning the other
models, the ESC model is showing similar features, while GEMMA1.0 and EPcrust Mohos do
not resolve these characteristics in detail. North of the Alpine arc, the crust in Figure 8.11a
is thinning towards the Molasse Basin (see Figure 8.10), which is a sedimentary basin formed
during the evolution of the Alps. The GEMMA1.0, ESC and EPcrust models also show a
pronounced shallow Moho in this area, while the ITSGMoho does not reveal this basin clearly.
The reason may be found by the fact that the sedimentary layers, which have a considerably
lower density of on average 2400 kgm−3 compared to the assumed standard crustal density
of 2700 kgm−3, are not considered adequately within this study. Hence, the preliminary
assumed constant density contrast for the Moho inversion from gravity observations does
not reflect the actual situation properly. In reality, the average crustal density is lower than
assumed in the current Moho inversion approach, which consequently leads to a systematic
overestimation of the Moho depth in such basin areas.

A similar behaviour can also be observed when looking at the selected area B in Figure 8.9a
(outlined as dotted box), which comprises the Pannonian basin, see Figure 8.10. Here, the
three external Moho models show the distinct feature of the basin. This is also confirmed by
a more recent local seismic study performed by Molinari et al. (2012) for Eastern Europe,
which is illustrated in Figure 8.11b. The ITSG model does not explicitly reveal a thinner
crust for the Pannonian basin, which is an indication that unmodeled sedimentary layers are
a major limitation of the simplified approach proposed in this thesis.

Finally, as a last example the localized area including the Dinarides mountain chain is se-
lected as validation area, which is marked in Figure 8.9a by a dashed box denoted with the
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letter C. This region was also aim of a study published by Stipčević et al. (2011) who focused
on the determination of the crustal structure beneath the Dinarides. The resulting Moho es-
timate is depicted in Figure 8.11c and in general shows a deep crustal structure ranging from
South-East to North-West, while the Moho in the North-East (Pannonian basin) and South-
West (Adriatic Sea) is considerable shallower. In the Dinarides area, Stipčević et al. (2011)
revealed two eye-catching maxima of the Moho depth, centered at about 18◦E/42.5◦N and
16.5◦E/44◦N. A comparison of these findings with the GEMMA1.0, ESC and EPcrust models
of Figure 8.9 shows that the general structures can be noticed therein as well, however the
two maxima are not that evident due to the lower resolution of these models. In contrast, the
ITSG model draws a clear picture of these local features, which are comparable to those in
Stipčević et al. (2011), while the Pannonian basin structure is underrepresented, as already
mentioned in the preceding paragraph.

8.6 Summary and conclusions of the Moho
estimation

In this chapter an approach for the estimation of the Mohorovičić (Moho) surface based
on the LSC method has been proposed. First, the Moho discontinuity has been defined as
the surface that separates the crustal layer from the upper mantle layer, which together are
forming the Earth’s lithosphere. This was then related to the concept of isostasy according
to Airy-Heiskanen, a simple two-layer model which assumes that a lighter crust is floating
on a dense mantle material. By pinning the density contrast between crust and mantle to a
fixed value, the penetration depth of the crust into the mantle w.r.t. a mean Moho depth
can classically be derived from the topographic heights. The presented approach assumes
that the removal of the effect of the topography from the gravitational potential leads to a
residual gravity field that mainly reflects the state of isostatic compensation. This in turn
can be expressed as the disturbing potential of a theoretical surface layer coinciding with
the mean Moho depth surface. By introducing the quantity of surface layer density, the
Moho variations can then be inverted from the disturbing potential. Based on this theory,
the covariance expressions for surface layer densities and other gravity field quantities are
derived for the LSC approach.

Since GOCE gradient data are of minor quality especially in the spectral range below 5mHz,
it was decided to use data only above spherical harmonic D/O 50. With this choice it
should also be guaranteed that the effects of possible long-wavelength density anomalies in
the interior of the Earth are reduced as much as possible. Six months of EGG_NOM_2
gradient data were preprocessed according to the strategy proposed earlier in this work, i.e.,
at first the gradients have been Wiener filtered and consecutively high-pass filtered in the
GRF in order to reduce colored noise and long-wavelength signals. The central European
region between 5◦ to 22◦ East and 42◦ to 52◦ North, covering Austria and the surrounding
areas, has been selected for the current investigations.

The RWI_TOPO_2012 topographic model has been used to remove the topographic grav-
itational effect from the measurements. It has been shown, that a reduction of the topo-
graphic signal up to D/O 360 is sufficient to cover most of the significant signal at GOCE
orbit heights. Since the effect of atmospheric masses above D/O 50 is below the remaining
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measurement noise of the gradient observations after the preprocessing steps, the atmo-
spheric effect is not considered in this study. The computation of surface layer density values
from GOCE gradient observations with the LSC method was done using a covariance func-
tion that is based on the signal degree variances derived from the GOCE_TIM_RL05 and
RWI_TOPO_2012 models. For the final Moho inversion, a mean Moho depth of D=30 km
and a constant density contrast of ∆ρ=350 kgm−3 have been chosen as constraints for the
investigated area according to literature studies. The resulting Moho estimates (called ITSG
Moho model) in the investigated region show Moho depth variations between −19.9 km and
13.5 km (rms=3.9 km) for the spectral range from D/O 50 to an effective spectral resolution
approximately between D/O 250 and 280.

The results are compared with three external and publicly available regional and global
Moho models. While the ESC and EPcrust models are mainly based on seismic observations,
the GEMMA1.0 is a global model also based on GOCE data. In order to achieve a fair
comparison w.r.t. the ITSG Moho, the signal content lower than D/O 50 has been removed
from the external models. The amplitudes of the ITSG Moho are comparable to those from
GEMMA1.0, while the seismic models show less pronounced minima in the order of about
−13 km. Concerning the spatial characteristics of the Moho signal, the general structures
like those inferred from the main mountain chains, e.g., the Alps, Apennines or Dinarides,
are visible in all models. However, the ITSG estimates show a more detailed view in terms
of spatial resolution.

The soundness of these features is verified with recent seismic studies on a more localized
scale. For this reason, three specific validation areas have been selected, which are comprising
some prominent geophysical and tectonic characteristics. In this way, a very good agreement
of the ITSG Moho estimates with the local seismic studies in the subduction zones in the
Western and Central Alps or at the Adriatic coast could be identified. The three external
Moho models do not draw such a clear picture due to a lack of spatial resolution. The
limitations of the presented study are evident in particular in sedimentary basin areas like
the Molasse or Pannonian basins, where the effect of unmodeled sedimentary layers leads to
systematic overestimation of the Moho depth.

It could be shown that the novel approach of using GOCE gravity gradient observations as
direct observations for the estimation of the Moho surface within the LSC method leads to
promising results. In terms of spatial resolution, the ITSG Moho is resolving more detailed
structures compared to other regional Moho models. In this case, on the one hand the ITSG
model clearly benefits from the dense observation distribution which is possible due to the
global data coverage of the GOCE mission. On the other hand, the GOCE gravity gradients
are able to recover the gravity signal with high accuracy in particular in the spectral range
where also Moho variations can be expected to occur. Thus, it is possible to overcome the
main limiting factor of seismic approaches on regional scale like the ESC or EPcrust models,
which usually do not have access to spatially comprehensive databases. For this reason, in
such models areas with a sparse data distribution are commonly filled by means of interpo-
lation methods, which can lead to misinterpretations of the actual devolution of the Moho.
Although the GEMMA1.0 model is also based on GOCE data, its purpose is to represent a
global Moho map. As such, it currently does not take advantage of the entire available signal
spectrum, which can be expected to exceed the spectral resolution of D/O 210, the current
limit of GEMMA1.0. The comparison with localized studies showed, that ITSG Moho struc-
tures are in a very good agreement with such detailed investigations and that the resulting
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Moho features can be directly linked to geophysical and tectonic units. Thus, the proposed
approach is a possible candidate for supra-regional analysis of the crust-mantle boundary
based on a consistent database and a uniform processing strategy.

Nevertheless, there are still a couple of aspects of the approach that need to be improved
in future works. For instance, the presented method is currently not capable to resolve the
absolute Moho depths, since the long-wavelength constituents of the gravity signals used for
the inversion are neglected due to the specific signal characteristics of the GOCE gradients.
This is not necessarily a drawback during the processing, because in this way also possible
undesirable influences like mantle anomalies or other disturbances in the Earth’s interior can
be avoided. Basically, it would be possible to recover the low-frequency signal of the Moho
also from accurate global gravity field models like the GOCE or GOCO models, however
the mentioned disturbances would be fully introduced as errors in the resulting absolute
Moho depth estimates. To overcome this, a respective model of the mantle structures would
be essential, with which it could be possible to correct for the corresponding disturbing
gravitational effects.

Furthermore, it is also only a rather hypothetical assumption that the density contrast applied
in the Moho inversion is constant throughout a whole region under investigation. In reality,
also the lower crust and the mantle are heterogeneous compositions of various materials with
densities different from the assumed constant values like the global averages of 2670 kgm−3

or 3270 kgm−3. Within the current investigations, this was roughly accounted for by using a
more realistic but still constant density contrast based on the information from other sources.
However, from more detailed knowledge of deep density structures of crust and also mantle
it would be possible to derive a laterally varying density contrast, which could improve the
Moho estimation.

Concerning the reduction of the gravitational effect of the topographic masses prior to the
Moho inversion, a global model that is based on constant density values for rock, water and
ice masses is used herein. In general, this can be considered as a good assumption, which
leads to reasonable results like in the current study. However, a reduction considering a
more realistic density model for the topography above sea level may produce even better
results. Furthermore, the proper consideration of crustal density variations below sea level,
in particular due to sedimentary layers, can avoid a defective Moho inversion, as it is the case
in this study for basins with a considerable content of sedimental deposit. Besides the already
mentioned deficiencies, the concept of the proposed approach will fail in regions where the
assumption of a layered structure of crust and mantle is not valid. One can for instance
think of divergent plate boundaries like the mid-oceanic ridge in the Atlantic Ocean, where
upwelling mantle material is constantly forming new lithosphere. Similarly, this method will
be of limited applicability also in volcanic areas.

Although there are still several issues that have been disregarded so far, the developed method
for Moho determination is competitive with other Moho models already at this stage. The
advantages as well as the disadvantages have been discussed extensively, and it could be
shown that the approach is capable of revealing meaningful structures of the crust-mantle
boundary. In this way, the ITSG Moho inversion method can be considered as a valuable
tool for future geophysical applications.
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According to the initial purpose of the GOCE mission, the gravity gradient observations
of the onboard gradiometer instrument, which represent the second order derivatives of the
Earth’s gravitational potential, are primarily used to derive the Earth’s gravity potential on
global scale with least squares adjustment procedures. Within this thesis, the gradients are
exploited as in-situ observations for regional scale applications using the LSC method, which
is commonly applied for regional gravity field determination.

Due to several mission-specific characteristics, the introduction of the GOCE gradients into
the LSC approach bears some problems. More specifically, the gradiometer instrument is
designed in a way that not every component of the gravity gradient tensor could be de-
termined with the same precision. Since the measurements are taken in the gradiometer
reference frame, it is not possible to perform any rotation of the gradient tensor without
spoiling the observations. To circumvent this, a collocation approach was implemented that
is independent of the reference frame. In this way it is possible to rotate the covariances,
which are describing the statistical correlations of the observations that form the basis of
LSC, while the observations can be used unchanged in their instrument-specific measure-
ment frame.

Furthermore, the measurements are deteriorated by colored noise, which is influencing in
particular the low- and high-frequency measurement spectrum and leads to highly correlated
observations. To reduce the influence of the noise, a preprocessing strategy has been de-
veloped, which is composed of a Wiener filter approach and a consecutive application of a
high-pass filter. The Wiener filter decreases the colored noise in the sense of a minimum filter
error according to the least squares principle. The remaining long-wavelength distortions are
corrected with a Chebychev II high-pass filter. Apart from the filtered observations, also
the information of the remaining measurement errors after the preprocessing is an essential
result, which can be used for an adequate stochastic modeling of the error characteristics in
LSC.

The RCR concept was revised in the context of LSC for regional scale applications. Con-
cerning an intended combination of GOCE gradients with other data sources, e.g. terrestrial
gravity data, a consistent RCR approach is inevitable. Based on the investigations of cur-
rently available global EGMs, it can be argued that GOCE gradients contain superior gravity
field signals above spherical harmonic D/O 110. For a combination with terrestrial data it
is therefore favourable to reduce the longer wavelengths by means of an accurate EGM. The
treatment of systematic effects induced by the topographic masses and the isostatic com-
pensation effect as well as the influence of the atmospheric masses was investigated. For a
consistent consideration of the atmospheric potential, a corresponding atmospheric density
model has been derived.

In a first application, the preprocessed main diagonal components of the GOCE gradient ten-
sor were used to estimate a regional geoid for Austria in combination with terrestrial gravity
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observations. To reduce the long-wavelength constituents from the observations within the
RCR procedure, the GOCO03s model up to D/O 120 was used. Furthermore, the topographic
and isostatic effects were consistently reduced from both data sets on the basis of a DEM
that is available for an extended area. The effect of the atmosphere is implicitly removed
from gradients at orbit altitude due to the reduction of the signal from the EGM, which
incorporates the atmospheric masses. In case of the terrestrial data, a consistent reduction
was achieved by accounting for the fact that the observations are taken within the attracting
masses. Although this contribution is small, it should be applied for reasons of consistency.
In order to describe the statistical behaviour of the resulting smoothed gravity anomalies and
gradients, a MCF was fitted simultaneously to the ECFs of anomalies and vertical gradients
using an adapted Tscherning-Rapp degree variance model.

Residual geoid heights were estimated from each data set separately, as well as from their
combined use. It could be shown, that the GOCE gradients significantly contribute to the
combined solution in particular in the expected medium-wavelength range of the gravity
signal and thus can complement a terrestrial gravity-only solution. The gravity-only and
combined solutions were validated with independent GPS/levelling observations. With the
inclusion of gradient data, the average deviation could be decreased from 5.5 cm to 4.6 cm.
In contrast to the current official Austrian geoid solution, which is heavily constrained
towards GPS/levelling observations, the presented geoid is a consistent equipotential sur-
face.

As a second application, the determination of the Moho surface in central Europe using
GOCE gravity gradients was introduced, which poses a new field of application of the LSC
approach. The method was developed on the basis of the Airy-Heiskanen isostatic concept
and assumes that the removal of the topographic effect from the gravitational potential leads
to a residual potential, whose variations are reflecting the state of isostatic compensation.
In this sense, a global topographic potential model was used to reduce the topographic
signal from the preprocessed GOCE gradient observations. Since GOCE gradients can not
resolve the long-wavelength signals of the gravity signal, they have been used for the Moho
inversion in the spectral range between D/O 50 to 280. Although the disregarded long-
wavelength signal could theoretically be restored for instance from a global accurate EGM,
this step was intentionally not performed in order to avoid possible disturbances from deep
Earth structures like mantle anomalies. The resulting residual Moho was compared with
external regional and global models based on seismic and gravity observations in the same
spectral range. It was shown, that the presented solution can resolve localized geophysically
meaningful features in more detail. This could be confirmed by a validation with local seismic
Moho studies.

The successful utilization of GOCE gravity gradients for regional applications was demon-
strated in this thesis. However, for both examples, regional geoid determination and Moho
estimation, further improvements are possible in particular in terms of more realistic back-
ground models. Concerning the geoid determination, the modeling of topographic and iso-
static effects within the consistent RCR procedure could be enhanced by the introduction of
a density model and a model of absolute Moho depths. Likewise, also the Moho estimation
would benefit from the detailed knowledge of the density structures within the topography.
With further information about anomalies in the mantle structure, it would also be possible
to safely restore the neglected long-wavelength signal constituents in order to obtain absolute
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Moho depths. Besides modeling issues, the main limitation of the LSC approach is the com-
putational effort, since the size of the covariance matrix of the observations that has to be
inverted is increasing quadratic with the number of input observations. Hence, for the pre-
sented investigations only subsets of the actually available data have been used. This situation
could be improved by a redesign using parallel processing strategies.
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Appendix A

A.1 Associated Legendre functions and
polynomials

The Legendre function is defined as a solution of Legendre’s differential equation and reads

Pnm(t) =
1

2n n!

(
1− t2

)m/2 dn+m

dtn+m
(t2 − 1)n , (A.1)

with the integers n defining the degree and m the order of the Legendre function. For m 6= 0
this function is also called associated Legendre function. In case of m = 0, the Legendre
function reduces to

Pn0(t) = Pn(t) =
1

2n n!

dn(t2 − 1)n

dtn
, (A.2)

which are the Legendre polynomials of degree n given in terms of the Rodrigues formula.
Alternatively, the Legendre polynomials can be evaluated recursively by Bonnet’s recursion
formula

Pn+1(t) =
2n+ 1

n+ 1
t Pn(t)− n

n+ 1
Pn−1(t) . (A.3)

By inserting Eq. (A.2) into Eq. (A.1), the Legendre function can also be represented by
Legendre polynomials as

Pnm(t) =
(
1− t2

)m/2 dmPn(t)

dtm
. (A.4)

The fully normalized Legendre functions can be derived by

P̄nm(t) =

√
(2− δ0m)(2n+ 1)

(n−m)!

(n+m)!
Pnm(t) . (A.5)
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Appendix A

A.2 Applying the chain- and product rule of
differentiation

The covariance function K is a function of the radii r, r′ and of t = cosψ, where the latter
is in turn depending on the coordinates ϕ, λ and ϕ′, λ′. The derivatives with respect to
ϕ, λ, ϕ′ or λ′ up to order four by applying the chain- and product rule of differentiation

∂K

∂λ
=
∂K

∂t

∂t

∂λ
, (A.6)

∂2K

∂λ2
=
∂2K

∂t2

(
∂t

∂λ

)2

+
∂K

∂t

∂2t

∂λ2
, (A.7)

∂2K

∂λ∂λ′
=
∂2K

∂t2
∂t

∂λ

∂t

∂λ′
+
∂K

∂t

∂2t

∂λ∂λ′
, (A.8)

∂3K

∂λ2∂λ′
=
∂3K

∂t3

(
∂t

∂λ

)2 ∂t

∂λ′
+ 2

∂2K
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∂t

∂λ
+
∂2K

∂t2
∂2t
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∂t
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+
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, (A.9)
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(A.12)

Note that the differentiations are valid for λ or ϕ in the same manner, if the variables are
consistently interchanged in the corresponding equations.
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A.3 Covariance expressions for quantities up to second order derivatives of the anomalous potential

A.3 Covariance expressions for quantities up to second order
derivatives of the anomalous potential

First order derivatives in P

cov(Ty, T ) =
1

r cosϕ

∂K

∂λ

cov(Tx, T ) =
1

r

∂K

∂ϕ

cov(Tz, T ) =
∂K
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For first order derivatives inQ interchange coordinates with r′, ϕ′ and λ′.

First order derivatives in P and Q

cov(Ty, Ty′) =
1

r cosϕ

∂

∂λ

(
1

r′ cosϕ′
∂K

∂λ′

)
=

1

rr′ cosϕ cosϕ′
∂2K

∂λ∂λ′

cov(Ty, Tx′) =
1

r cosϕ

∂

∂λ

(
1

r′
∂K

∂ϕ′

)
=

1

rr′ cosϕ

∂2K

∂λ∂ϕ′

cov(Ty, Tz′) =
1

r cosϕ

∂

∂λ

(
∂K

∂r′

)
=

1

r′ cosϕ

∂2K

∂λ∂r′

cov(Tx, Tx′) =
1

r

∂

∂ϕ

(
1

r′
∂K

∂ϕ′

)
=

1

rr′
∂2K

∂ϕ∂ϕ′

cov(Tx, Tz′) =
1

r

∂

∂ϕ

(
∂K

∂r′

)
=

1

r

∂2K

∂ϕ∂r′

cov(Tz, Tz′) =
∂2K

∂r∂r′

Second order derivatives in P
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cov(Tzz, T ) =
∂2K

∂r2

For second order derivatives inQ interchange coordinates with r′, ϕ′ and λ′.

Second order derivatives in P and first order derivatives in Q

cov(Tyy, Ty′) =

(
1

r

∂

∂r
− tanϕ

r2

∂
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Second order derivatives in P and Q
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B.1 Fourier Transform and Discrete Fourier
Transform

The frequency domain representation of a continuous function or signal x(t) given in the time
domain is defined as the Fourier transform

X(η) = F [x(t)] =

∞∫
−∞

x(t) e−i2πηt dt , (B.1)

with η denoting the frequency. In the opposite direction, the time domain equivalent of the
frequency domain representationX(η) is found by the inverse Fourier transform

x(t) = F−1[X(η)] =

∞∫
−∞

X(η) e2πηt dη . (B.2)

In practice a signal is not given in a continuous version, but is sampled with a distinct
sampling interval ∆t to obtain a discrete signal x(n). Furthermore, only a restricted interval
with a given maximum amount of samples N can be observed in reality. The corresponding
equivalent to the continuous case is the discrete Fourier transform

X(k) = F [x(n)] =

N−1∑
n=0

x(n) e−i2πnk/N , k = 0, . . . N − 1 , (B.3)

and vice versa the inverse discrete Fourier transform

x(n) = F−1[X(k)] =
1

N

N−1∑
k=0

X(k) ei2πnk/N , n = 0, . . . N − 1 . (B.4)

B.2 Statistic moments of stochastic processes

We can consider a time series x(t), i.e. a set of real valued numbers x in dependence of t,
as a realization of a stochastic process X (t). It is assumed that this stochastic process is
stationary, so shifting X (t) by an arbitrary time τ to X (t+ τ) does not change the statistics
of the process (Koch and Schmidt, 1994). Furthermore, we assume X (t) to be ergodic, which
means that the statistics of this process can be derived from one single realization x(t). In
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this way, the mean representing the first order statistic moment of this stochastic process is
given by its expectation value

µX = E{X (t)} , (B.5)

while the second order statistic moment, the autocorrelation, is defined by

RXX = E{X (t) X (t+ τ)} = RXX(τ) , (B.6)

which is only depending on the time shift τ . The crosscorrelation between two stochastic
processes X (t) and Y(t) is given by

RXY = E{X (t) Y(t+ τ)} = RXY (τ) . (B.7)

The according autocovariance is found by

CXX = E{(X (t)− µx) (X (t+ τ)− µx)} = RXX(τ)− µ2
X , (B.8)

and the crosscovariance by

CXY = E{(X (t)− µx) (Y(t+ τ)− µY )} = RXY (τ)− µXµY . (B.9)

B.3 Power Spectral Density

For a given time series x(t) the corresponding autocorrelation Rxx(τ) can be derived by

Rxx(τ) =

∞∫
−∞

x(t) x(t+ τ) dτ . (B.10)

The power spectrum S(η) is defined as the Fourier transform of the autocorrelation Rxx(τ)

S(η) = F [Rxx(τ)] =

∞∫
−∞

Rxx(τ) e−i2πητ dτ , (B.11)

and thus can also be written as

S(η) = |X(η)|2 . (B.12)

Inversely, the autocorrelation Rxx(τ) is the inverse Fourier transform of the power spectrum
S(η)

Rxx(τ) = F−1[S(η)] . (B.13)

If the time series x(t) is centered, i.e. its mean µx = 0, the autocorrelation Rxx(τ) is
replaced by the autocovariance Cxx(τ), which can be related to the power spectrum accord-
ingly.
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B.3 Power Spectral Density

If we reconsider Eq. (B.10) for the case τ = 0, we obtain

Rxx(0) =

∞∫
−∞

|x(t)|2 dt , (B.14)

which represents the total power or energy of the signal x(t). This in turn can be written in
terms of the Fourier transform X(η)

Rxx(0) =

∞∫
−∞

|X(η)|2 dη , (B.15)

which is called the Parseval theorem and states that the signal power in the time domain
equals the energy in the frequency domain. Thus, the power spectrum or PSD describes the
signal’s energy distribution with frequency.

Since the PSD is actually defined for an infinite time series, a discrete and time limited esti-
mate can be determined according to Oppenheim and Schafer (1975)

Ŝ(k) =
1

N

∣∣∣∣∣
N−1∑
n=0

x(n) e−i2πnk/N

∣∣∣∣∣
2

, (B.16)

which is called periodogram. As a matter of fact, the variance of the periodogram is increasing
with an increasing number of samplesN (Oppenheim and Schafer, 1975), Therefore, the use of
averaged modified periodograms according to Welch (1967) for the estimation of the PSD can
facilitate interpretations. This method divides the discrete time series x(n) into K = N/M
segments with M samples per section, which may be overlapping. To each of the segments,
a window function w(n) is applied, so K modified periodograms

Ŝi(k) =
1

MU

∣∣∣∣∣
M−1∑
n=0

xi(n) w(n) e−i2πnk/N

∣∣∣∣∣
2

i = 1, . . .K, (B.17)

are generated, with

U =
1

M

M−1∑
n=0

w2(n) . (B.18)

The final PSD estimate is then obtained by averaging theK modified periodograms

Ŝ(k) =
1

K

K∑
i=1

Ŝi(k). (B.19)

In this way, a smoothed PSD estimate can be achieved, which corresponds to a loss in
frequency resolution due to the limitation of the sample size from N to M (Oppenheim and
Schafer, 1975). In Figure B.1b the PSD estimates of a simulated GOCE time series from
D/O 50 to 280 based on the periodogram and using Welch’s method with different window
functions, illustrated in Figure B.1a, are shown. The PSD estimated by the periodogram is
given in grey and shows a high variability, which makes it difficult to discriminate the energy
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Appendix B

content at different frequencies. The variance of the PSDs can be decreased by applying
Welch’s method with window functions like the Boxcar function (red), Hanning window
(green) or a Kaiser window (blue). Details on the definitions of these windows can be found
in Oppenheim and Schafer (1975). Depending on the weighting due to the window function,
different degrees of smoothing and thus frequency resolution can be achieved. Since PSDs
used in this study are primarily used for interpretation purposes, Welch’s method applying
a Kaiser window is used for estimating the PSDs in this thesis.
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Figure B.1: Window functions and their application to a GOCE-type time series
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Appendix C

C.1 From quaternions to rotation matrices

Quaternions are commonly used to describe frame rotations in the three-dimensional Eu-
clidean space. The following formulations will only provide the equations how to obtain a
rotation matrix from a corresponding quaternion. A detailed description on this issue can be
found for instance in Gruber et al. (2010b) or Stummer (2013).

A quaternion q is defined as a hypercomplex number consisting of Euler symmetric parameters

q = q4 + iq1 + jq2 + kq3 , (C.1)

in which the element q4 represents the real or scalar part of the quaternion depending on
the Euler angle of a three-dimensional rotation, while the complex parts q1, q2 and q3 are
furthermore associated with the components of the rotation axis vector, around which the
frame rotation is performed. The corresponding rotation matrix R can then be derived from
the quadrupel q by

R =

q2
1 − q2

2 − q2
3 + q2

4 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q2q2 − q3q4) −q2

1 + q2
2 − q2

3 + q2
4 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) −q2
1 − q2

2 + q2
3 + q2

4

 . (C.2)
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