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Abstract

While CCTV systems are widely used for monitoring public spaces, the information provided
by the acoustic domain is often neglected. An acoustic event detection for general sounds can
detect security-relevant occurrences like people screaming for help, a gunshot or an explosion
by processing the audio signal captured from microphones.
In this thesis, acoustic event detection systems are introduced based on the theory of human
auditory perception. The techniques for audio signal pre-processing, feature extraction, ma-
chine learning and evaluation of the detection systems are explained. The combination and
parametrization of these is analyzed with the goal of high event detection rates and a low num-
ber of false alarms. Event detection systems found in literature are introduced. A sound library
collection is introduced providing training and test data.
In the last part, a system is proposed to detect security-relevant events in public spaces. Its
objective is to distinguish between a human scream, normal human voice, gunshot, explosion,
breakage of glass and the background sound. The feature set can be assembled of MFCCs,
MP7 features and Teager Energy Operator based features. Frame-wise evaluation is done with
suitable classification measures. Precision, recall, accuracy and the F1-score are computed for
each class. These measures are averaged for the whole system and the Acoustic Event Error
Rate is computed.
In the course of the experiments, the best system configuration in terms of classification perfor-
mance was found with the combined MP7+TEO feature set, maximum-margin GMMs with 128
components and a frame length of 200ms. This resulted in an F1-score of 0.74 and an Acoustic
Event Error Rate of 0.24.

Kurzfassung

Während Videokamerasysteme zur Überwachung von öffentlichen Plätzen bereits weit verbre-
itet im Einsatz sind, wird die akustische Domäne nachwievor selten dafür benutzt. Ein System
zur Detektion von allgemeinen Geräuschen kann sicherheitsrelevante Ereignisse wie Hilfeschreie,
Schüsse oder Explosionen aus Mikrofonsignalen erkennen.
In dieser Arbeit werden Systeme zur akustischen Detektion von allgemeinen Ereignissen basierend
auf der Theorie der auditorischen Wahrnehmung von Menschen erklärt. Techniken zur Vorverar-
beitung und Merkmalsextraktion, maschinellem Lernen und Evaluierung solcher Systeme werden
vorgestellt. Deren Kombination und Parametrierung mit dem Ziel von hohen Detektionsraten
bei möglichst kleiner Anzahl an Fehlalarmen wird analysiert.
Im letzten Teil wird ein System zur Detektion von sicherheitsrelevanten Ereignissen in öffentlichen
Bereichen vorgestellt. Es sollen menschliche Schreie, normale menschliche Stimme, Schüsse,
Explosionen, Glasbruch und das Hintergrundgeräusch voneinander unterschieden werden. Der
Merkmalsvektor kann aus MFCCs, MP7 und Merkmalen basierend auf den Teager Energy Oper-
ator aufgebaut werden. Das System wird mit Hilfe von passenden Klassifikationsmaßen Frame-
weise evaluiert. Precision, Recall, Accuracy und F1-score werden für jede Klasse berechnet.
Diese Maße werden gemittelt und mit der Acoustic Event Error Rate für das gesamte System
angegeben.
Während den Experimenten wurde die beste Systemkonfiguration in Bezug auf die Klassi-
fikationsperformance mit dem MP7+TEO Merkmalsvektor, Maximum-Margin GMMs mit 128
Komponenten und einer Framelänge von 200ms gefunden. Das System erreicht einen F1-score
von 0.74 und eine Acoustic Event Error Rate von 0.24.
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Acoustic Event Detection

1
Introduction

With the increasing need of surveillance and monitoring of human areas, closed circuit television
(CCTV) systems are very much accepted regardless of their impact on privacy. They are widely
installed and used on a continuous, 24/7 setting requiring humans to constantly monitor the
scenes happening. Studies [1] showed that in a typical CCTV installation only about 30% of all
relevant incidents have been detected. With the help of automated analysis of the audio and
video streams of the cameras, these mainly human issues are addressed and the overall detec-
tion rate is expected to rise [2]. The audio stream is usually only used to get more information
on a scene detected via video imaging, but acoustic event detection systems can lead to more
detections of relevant occurrences, faster response time and relieving the need of human staff.

The key components of an acoustic event detection system are a single or multiple micro-
phones, the subsequent analog-to-digital converter and a digital processing unit like a digital
signal processor (DSP), PC or embedded system which processes the audio data captured and
produces the detection result, as seen in Figure 1.1.

Figure 1.1: Basic acoustic event detection system components.

In the processing unit, digital signal processing and machine learning algorithms are used to
analyze the input audio data and process this information to an understandable output. The
acoustic detection of general sounds belongs to the field of computational auditory scene analysis
(CASA). Wang [3] defines CASA as ”the study of auditory scene analysis by computational
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1 Introduction

means”. It is derived from auditory scene analysis the human’s ability to perceptually analyze a
specific environment with the auditory system. The goal of CASA can be formulated as to design
a machine which achieves the same performance as a human in auditory scene analysis. There
are no restrictions in how to perform this task, e.g. it is not mandatory to fully reconstruct the
behavior of the human auditory system.

1.1 Scope of the Thesis

In the course of this work an acoustic event detection system for the detection of general sounds
is developed. A framework for acoustic event detection was setup in MATLAB for conducting
experiments and evaluations. The desired purpose of the system is to detect security-relevant
events in public spaces like streets, town centers, parking lots, train stations, etc.

Five events shall be classified and distinguished from the background class:

� Human Voice
Human activity can be detected by the presence of human voice. The detection system
can be used to monitor public spaces and report intrusions in restricted areas.

� Human Scream
In an emergency situation, people will scream and shout with highly agitated voice. Such
screams shall be detected, regardless of the actual words spoken to minimize context-
dependency and overcome language barriers.

� Gunshot
In case of a shooting, immediate intervention through authorities is required. The event
detection system should help to alert the responders and speed up the reaction time.

� Explosion
The rare event of an explosion, caused by mechanical failures or even terrorist attacks,
shall be detected to subsequently alert emergency responders.

� Breakage of Glass
It is very likely that a burglary begins with the breakage of glass. This sound can be
detected acoustically to trigger an alarm instead of using dedicated vibro-electric glass
break detectors.

� Background
The background class models the typical background sound of the system’s environment
when no event to be detected is present. The system should not trigger an alarm in this
case.

The system is designed for monophonic sound event detection (i.e. one event can be detected
per time instance) and uses one audio channel. A signal pre-processing chain is implemented
and the following feature extraction module supports MFCCs and some variants, MP7 temporal
and spectral features and another type of feature based on the Teager Energy Operator. For
classification, GMMs or SVMs can be used. Apart from traditional generative GMM parameter
learning, a discriminative learning framework for optimizing the conditional-log-likelihood or
the multi-class margin of the GMM is used first in this work for acoustic event detection. The
trained models are validated using k-fold cross validation. Frame-based evaluation is conducted
using class-wise computation of precision, recall, accuracy and the F1 score. The numbers are
also averaged for the whole system and the Acoustic Event Error Rate (AEER) is calculated.
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1.2 Outline of the Thesis

In this thesis, the main aspects of auditory scene analysis and computational auditory scene
analysis as well as their practical application and the derivation of acoustic event detection
systems are presented in Chapter 2. Commonly used processing components, requirements and
applicable techniques for acoustic event detection systems are introduced. Chapter 3 deals with
audio signal features relevant for acoustic event detection. They are presented with event ex-
amples given. Chapter 4 is about classification, machine learning algorithms and evaluation
of classifiers and event detection systems. In Chapter 5 the implementation of the system is
presented. A custom sound library collection containing test and training data of the event
classes described above is presented. Various experiments are conducted in a MATLAB simu-
lation environment with different feature sets, classifiers, parameters and learning algorithms.
The proposed system’s performance is evaluated with the metrics introduced.
In the end, conclusive remarks are stated as well as an outlook to further work and improvements.
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2
Fundamentals of Acoustic Event Detection

In this chapter the theoretical basics of acoustic event detections are explained. Based on the
human’s perceptive abilities it is explained which components are required to successfully detect
events from audio signals.

2.1 Auditory Scene Analysis

In this section the auditory scene analysis model introduced by Albert Bregman [4] is explained.
It describes the process how humans transform a sound mixture to meaningful occurrences.
According to the model, this is achieved by auditory grouping in time and frequency domain.

2.1.1 Auditory Streaming

The perceptual grouping process by the auditory system is called streaming. According to
Noorden [5] streaming depends on the difference between the frequencies of the individual tones
and the time between their onsets. If the time between the onsets and the frequency difference
is small, the occurrence is perceived as a single stream, otherwise the listener receives multiple
streams. It is also possible to switch between these two possible forms of organization. Figure 2.1
shows alternating tone sequences with small (A) and large (B) frequency gaps between the
high and low tones and the resulting perceptual organization in one or two streams, which are
indicated by the dashed lines.

Auditory masking effects also have to be considered. The loudness threshold of the audibility
of a certain sound may rise higher when another sound is present.
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Figure 2.1: Perceptual organization of alternating tone sequences [3].

2.1.2 Perceptual Organization and Mechanisms

According to Wang et al. [3], Bregman [4] and Shamma et al. [6] the human hearing perception
is organized by the following cues:

� Proximity in Frequency and Time
Perceptual grouping occurs when several acoustic components are in close neighborhood
in terms of frequency or time of occurrence. When the gap between their fundamental
frequencies or the time between the occurrences is small then the grouping into the same
stream is likely to occur.

� Periodicity
If the individual sounds are harmonically related, they will be perceived as a single stream.
For example, a musical chord is generally heard as one instance although it consists of
multiple tones. This can be seen in Figure 2.2(a) and (b).

� Continuous or Smooth Transition
When different and consecutive sound components form a continuous change of frequency
over time, it is likely that they are grouped together in one stream. This is also the case
if the changes are discontinuous but smooth. If they happen abrupt, the components
will appear in different streams because this variant of change is an indication for an-
other source. This kind of perceptual organization is also applicable for changes of pitch,
intensity, spatial location and spectral shape.

� Onset and Offset
The onset describes the beginning of a particular sound. An increase in energy, changes
in the spectral distribution of the energy or in the case of musical notes a change in pitch
can be the reason for an onset. The offset refers to the ending of a sound, the onset’s
properties described can be applied vice-versa. Grouping occurs when onset or, to a lesser
extent, offset times of components are similar, i.e. they start and respectively stop at the
same time.

� Amplitude and Frequency Modulation
If frequency components experience the same temporal modulation, they will be percep-
tually grouped. This is applicable for amplitude as well as for frequency modulation.

� Rhythm
Tones will also be grouped into one stream if they are rhythmically related. That means,

– 6 – October 11, 2016



2.2 Computational Auditory Scene Analysis

Figure 2.2: Principles and examples of auditory streaming [6].

if a rhythmic figure becomes repeated, the streaming is a kind of a sequential organization
cue.

� Common Spatial Location
If simultaneous sounds originate from the same location, the grouping is based on this com-
monality. Due to the fact that humans can separate sound sources even from a monaural
mix there is a tendency to disregard this form of grouping. Figure 2.2(c) shows a sound
with a right-centered source.

� Complex Sound Attributes
A sound can also have more complex attributes, like the sound of the vowel ’u’ in Fig-
ure 2.2(d). It incorporates the typical spectral structure of a vocal sound. Other tokens
may be the high diffusivity of sound in a large and reverberant hall or the sound of a large
choir singing in unison.

Apart from these low-level grouping cues the human auditory system also relies on high-level
grouping cues too [7]. These are basically the experiences a listener has got. Depending on
the language and culture amongst others the perception is likely to be different, leading to e.g.
perceptive restoration of missing phonemes.

2.2 Computational Auditory Scene Analysis

The goal of computational auditory scene analysis (CASA) [3] can be formulated as to design a
machine which achieves the same performance as a human in auditory scene analysis. There are
no restrictions in how to perform this task, it is not mandatory to reconstruct the behavior of
the human auditory system. Usually, one or more microphones are in use to record the scene.

Figure 2.3 shows the basic architecture of a CASA system. The first step is to peripherally
analyze the input signal resulting in a time-frequency representation of the time-domain signal.
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Figure 2.3: CASA system architecture [3].

Commonly the cochleagram is used, a representation of the auditory periphery which models
the characteristics of the auditory periphery. In contrast many CASA systems tend to perform
a time-frequency transform without auditory modeling using the short-time Fourier transform
and use auditory properties where applicable while the feature extraction process. There, e.g.
a Mel-scaled filter bank and/or logarithmic frequency spacing is used. Depending on the task
specific acoustic features are extracted from the input signal. The next step is to create mid-level
representations like segments, before attempting to organize the scene using grouping cues and
trained models of the source and background to result in separated source streams.

2.2.1 Applications of CASA

Apart from acoustic event detection systems, the CASA theory is applicable to a wide range of
speech- and sound-related research topics [3]:

� Automatic Speech and Speaker Recognition (ASR)
Many speech and speaker recognition systems suffer from the problem of degrading per-
formance when background noise or other interferring sounds in addition to the desired
speaker are present. From the CASA point of view, the relevant voice is only one sound
in a mixture which has to be dealt with. So far, such systems use source separation tech-
niques to preprocess the input signal and ideally receive only the speaker’s voice at the
recognition system’s input.

� Hearing Aids
The typical perceptual consequence of hearing impairment is the loss of sensitivity, which
results in an increased threshold level for understandability and a reduced dynamic range.
Other problems are reduced frequency selectivity, increased susceptibility to background
noise and impaired binaural capabilities [8]. Similar to an ASR system humans with
hearing difficulties have the problem of degraded understandability especially in noisy
conditions. Basic hearing aids only offer a fixed or manually tunable amount of amplifica-
tion but this is not enough for loud environments, where many speakers and other sound
sources are present.

� Music Information Retrieval (MIR)
MIR is an interdisciplinary science with the purpose of retrieving information from music.
The research in music recommender systems was driven by businesses to help users of
digital music services to easily find music similar to the tracks in their individual collections
[9], [10]. Usually, automatic categorization of the collected tracks is performed before.
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Another research field of MIR is automatic music transcription [11], where special emphasis
is taken on polyphonic transcription of different, simultaneously played instruments [12].

� Audio Information Retrieval
To simplify the time-consuming process of data labeling of large audio collections, algo-
rithms can be used to automate this task. Recorded sounds from real-life scenes usually
consist of multiple, mixed sources, so the first step is to separate them. The actual in-
formation retrieval is then executed individually for each source stream. The result is a
polyphonic annotation of the scene captured by the recording.

� Auditory Scene Reconstruction
Based on the received sound mixture the underlying acoustic scene can be reconstructed.
The individual sources need to be separated and they have to be located in space. Systems
can be created to present the scene to the listener with the options of enabling or disabling
a specific source or displacing it.

2.3 Acoustic Event Detection Systems

In this section, acoustic event detection systems are introduced, which are derived from the
CASA system architecture presented in Section 2.2. The basic topology, components and tech-
niques are explained, as well as the requirements on audio data.

2.4 System Overview

Schuller [13] presents the typical architecture of an intelligent audio analysis system, which is
used for the acoustic detection and classification of general events. It is shown in Figure 2.4
and can operate in the training/adaption and the normal operation mode. The operations
indicated by the dashed lines are only in use during the system’s training/adaption phase.
The input of the system is the time-domain audio signal originating from an audio capture
device (microphone) in the operational phase or a selected instance from the audio database
during the training phase. The audio signal is subsequently preprocessed, apart from signal
conditioning these step might include de-noising, de-reverberation or source separation. After
that the low level descriptors (LLDs), also called the signal features (see Chapter 3) are extracted
to obtain a low-dimensional feature vector describing the current input signal with segment sizes
usually between 10 and 250ms. Due to the typical duration of an event individual frames are
combined into longer chunks. In many acoustic event detection systems the signal features are
hierarchically extracted, e.g. emotion detection systems at first verify the presence of human
voice with a specific feature set and only then extract special speech emotion features. Then
the feature vector can be reduced with e.g. principal components analysis (PCA) or linear
discriminant analysis (LDA) to reduce model complexity. In the classification step a label is
assigned to the signal instance. For improved accuracy the result can be fused with information
from other sources like a video event detection system and finally the result can be encoded in
a data format which is suited for integration of the detection result.
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Figure 2.4: Intelligent audio analysis system overview [13].

2.4.1 Audio Database and Live Audio Capture Requirements

The availability of adequately prepared audio data is crucial for training an acoustic event
detection system. There are also requirements on live audio capture during the normal operation
of the system.

Technical Requirements on Audio Data

Generally, a sample rate between 16kHz (used by Ntalampiras et al. [14] and [15] or Chan et
al. [16]) and CD quality with 44.1kHz (Clavel et al. [17]) is used, sharing a common 16bit
resolution. The usage of a high-quality microphone is also recommended. Its acoustic overload
point should be considered to be sufficient for the event detection system to avoid clipping. The
noise floor level should be as low as possible to be able to capture a high dynamic range and a
minimum amount of non-linearity should be introduced, i.e. a low THD value is favored. The
microphone preamplifier and analog-digital converter, as well as all parts of the microphone
input chain are required to comply with this demands. Recently, e.g. Giannoulis et al. [18] used
multi-microphone arrays for audio capture which can be useful for event localization, leading to
the requirement of multichannel capture and processing equipment with channels being identical,
synchronized and drift-free.

Requirements on Audio Databases

In [13] the following criteria for sound libraries to be used for an audio analysis task are presented:

� Quality
The audio data is expected to be realistic and adequate for the task. The capture conditions
should be ideal and intended as well as known data degradation can be helpful to result
in a robust system.

� Quantity
As many sound samples as possible are required to successfully train, test and verify
the event detection system. To achieve a high degree of generalization, sounds from many
different sources with high diversity are necessary. The event classes should be realistically
balanced and distributed.
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� Modelling
The data categorization must be reasonable for the task given and well-defined between
different models.

� Labelling
It should be unique, done by many labellers and come close to the ground truth (resulting
in the ’gold standard’ [19]).

� Release
For the release of the sound library, easy accessibility is useful. The documentation of the
recording and side conditions is mandatory.

2.4.2 Preprocessing

Apart from signal conditioning basic operations like level adaption or normalizations are usu-
ally applied. Typical preprocessing steps like denoising and dereverberation are commonly not
applied in acoustic event detection systems. Heittola et al. [20] use non-negative matrix fac-
torization (NMF) for separating individual sources in a multisource environment to deal with
simultaneously occurring events individually. Figure 2.5 illustrates the process of dividing a
mixture signal including several sources in separate signals, each of the resulting signals corre-
sponding to one source.

Figure 2.5: Source separation in multisource environments [20].

2.4.3 Feature Extraction, Selection and Reduction

The selection of a suitable feature set for the event to be detected has a huge impact on the
classification performance of the event detection system. Experiments with different feature sets
have been conducted and can be found in Section 5.7.1.

Especially in speech recognition Mel-frequency cepstral coefficients are widely used, e.g. re-
cently in [21]. Many acoustic event detection systems also use them, mainly based on the success
in speech recognition [22], [23], [24]. Selecting an appropriate feature set is crucial for high ac-
curacy of the event classification. It depends on the events to detect and their context, so there
is no optimal feature set for each detection task. Zhuang [25] found out that the extraction from
features apart from MFCCs results in 30% more accuracy in the event classification. In contrast,
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a comparison between MFCC and MPEG-7 feature sets [26] showed that MFCCs deliver better
results in their experiments. Other signal features like the linear prediction coefficients (LPC)
non-negative matrix factorization (NMF) based descriptors can also be used. For the task of
feature reduction popular techniques like the PCA, Independent Component Analysis (ICA) or
the LDA can be used [27], [28]. Lu [29] utilizes the PCA for dimensionality reduction in his
acoustic event detection problem.

2.4.4 Supervised Learning and Classification

Acoustic event detection systems which have to be trained initially are based on supervised
learning algorithms. Labeled training data as described above is required to make the system
able to correctly assign detected events to their corresponding classes. This is desirable for scene
analysis and reconstruction, where the specific event that has happened needs to be known.

As described earlier, an event detection system based on the supervised learning approach
operates in two different phases: the learning, training or adaption phase and the operational
or testing phase. At first the system’s model will be trained and adapted according a given set
of training and test data from the sound library as shown in Figure 2.6.

training/
test data

feature
extraction

feature
reduction

feature
selection

model
training

model
selection

classifier
evaluation

model
adaption

Figure 2.6: Training phase.

After successful selection of the trained system it can be used in practice to classify the sound
events. As shown in Figure 2.7, the same feature extraction and classification methods are used
as in the training phase. This mode is also used for model selection and the testing of the
classifier.

audio
signal

feature
extraction

classification
system
output

Figure 2.7: Operational phase.

Vuegen et al. [30] use a Gaussian Mixture Model (GMM, explained in Section 4.1) per event
category for classification, the same approach is followed by Vozarikova et al. [31]. To overcome
the limitations of generative model learning, SVMs can be used, e.g. Temko et al. [32]. In this
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thesis a discriminative learning approach for GMMs is investigated in Section 4.1.4 and Sec-
tion 5.7.2. Ellis [33] uses a multilayer perceptron neural network trained with back-propagation
for the detection of alarm sounds. Because audio events can have a specific temporal structure,
Hidden Markov Models (HMM) [34], [35] are used to exploit the temporal dependencies. Mesaros
et al. [22] use three-state left-to-right HMMs with 16 Gaussians per state for event detection in
selected real-world environments like office, street, restaurant, etc. Heittola et al. [23], [24] put
special emphasis on the modeling of the background scenery and developed a context-dependent
event detection system, where GMMs are used for context recognition and HMMs for the event
detection itself.

2.4.5 Unsupervised Learning and Classification

The unsupervised approach does not require labeled training data, but in contrast to classifi-
cation the objective of such a system is to group events and assign them to clusters. Which
event exactly happened will not be determined, but e.g. the rate of occurrence of events can be
determined to detect uncommon or unusual, seldomly happening events.

When using unsupervised learning algorithms, unlabeled data is used for training. The task
is to group the data and exploit any structure in the data, i.e. the algorithm has to find the
occurring classes by itself without prior knowledge. Schmalenstroeer et al. [36] compare two
approaches for unsupervised learning of acoustic events. A sequential dynamic time warping
algorithm is used versus k-means++ [37] clustering to classify audio events. Siddiqi et al. [38]
and Ramois et al. [39] developed an algorithm to automatically discover the states required for
training an HMM. It is shown that this unsupervised method has advantages over traditional
Baum-Welch parameter estimation. Zhou et al. [40] use the Bayesian information criterion
(BIC), Chua et al. [41] use compression and edit distance for unsupervised segmentation and
clustering of audio streams. Giannoulis et al. [42] developed an NMF-based acoustic event
detection baseline system where NMF decomposition is used to split unlabeled audio data in
classes.

2.4.6 Model Validation

The goal of model validation is to predict how a model will generalize on an unknown, indepen-
dent data set used in real-world application of the system. Due to the generally limited amount
of data available, special techniques are required to optimize the model [27]. Giannoulis et al.
[42] use the popular k-fold cross validation for model validation in their acoustic event detection
system. In practical, cross validation is widely used in the scientific community. Clavel et al. [17]
use the Bayesian Information Criterion (BIC) [27] for selecting the optimal model parameters
in addition to cross validation.

2.5 Extended System Topologies

Widely implemented basic acoustic event detection system usually use one layer of classification,
i.e. all classifiers are evaluated in parallel to obtain the most likely event. Ntalampiras et al. [14]
showed that a multi-stage detection topology increases the number of correctly detected events
as well as it reduces the false alarm probability. The system, shown in Fig. 2.8, distinguishes
between sounds produced by humans or other sound sources. If the sound is human, it will
be checked by a suitable voice activity detector if it is vocal. In this case, the vocal sound is
distinguished between screamed or normal voice. Atypical sounds will be treated separately by
GMMs.
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Figure 2.8: Multistage acoustic event detection system [14].

2.6 Fusion

The fusion of the information can be done after the final decision of the acoustic event detection
system, e.g. an audio event can be fused with a video event. E.g. a scream detected from the
audio signal will only be reported if human activity can be detected from the video stream to
avoid false alarms. Systems can also be fused at an earlier stage. Sadlier et al. [43] present an
SVM-based event detection system for field sports fusing at feature level with features extracted
from audio and video streams. Ye et al. [44] introduce bi-modal codewords for representing
combined audio-video features.

2.7 System Evaluation

The commonly known classification performance metrics like precision, recall, accuracy and
the Fβ score can be applied to the evaluation of an acoustic event detection system. For the
evaluation of the CLEAR 2007 challenge results [45], special measures for such systems have
been introduced an therefore been used in other challenges, like the 2013 IEEE AASP Challenge
on Detection and Classification of Acoustic Scenes and Events (DCASE). These measures are
explained in detail in Section 4.4.1. Based on them, metrics for polyphonic sound event detection
were defined [46] for the recent DCASE 2016 challenge.

2.8 Notation

In this section the basic notation in time and frequency domain is explained.

The Symbol s(n) denotes the digital audio signal at the time instant n with the corresponding
sampling frequency fs. After segmentation into frames the signal vector at frame index m is
written as sm consisting of Nm in samples. In total, M frames are available. The time difference
in samples between two successive frames is the hop size Nhop. Generally, bold letters denote
matrices or vectors.
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In frequency domain, corresponding uppercase letters are used for the spectrum. k is used as
the bin index and NFT is the length of the Fourier transform.

Some features are based on the short-term power spectral density estimation of overlapping
time frames. The first step is to multiply the samples of each overlapping time frame with a
window function w(n). Applying the DFT leads to the complex Fourier spectrum of the mth

frame

Sm(k) =

NFT−1∑
n=0

s(n+mNhop)w(n)e
−j 2πnk

NFT 0 ≤ m ≤M − 1; 0 ≤ k ≤ NFT − 1. (2.1)

According to Parseval’s theorem, the energy of a time frame can be expressed by the magnitude-
squared Fourier spectrum, i.e.

P̂m =
1

Ew

Nm−1∑
n=0

∣∣s(n+mNhop)w(n)
∣∣2 =

1

EwNFT

NFT−1∑
k=0

∣∣Sm(k)
∣∣2 , (2.2)

scaled by the window’s energy,

Ew =

Nm−1∑
n=0

∣∣w(n)
∣∣2 . (2.3)

Due to the fact that the Fourier spectrum is symmetric around the sampling frequency fs, it
is sufficient to only take the first half of it into account. Therefore, the power spectrum Pm(k)
of the mth frame is then defined as

Pm(k) =

 1
EwNFT

∣∣Sm(k)
∣∣2 for k = 0 and k = NFT

2

2
EwNFT

∣∣Sm(k)
∣∣2 for 0 < k < NFT

2

. (2.4)

The frequency resolution, i.e. the distance between two bins is given as

∆f =
fs
NFT

. (2.5)

Each bin index corresponds to a center frequency, this relation can be expressed by

f(k) = k ·∆f 0 ≤ k ≤ NFT

2
. (2.6)

The bin index which contains a frequency f is

k(f) =

[
f

∆f

]
0 ≤ f ≤ fs

2
, (2.7)

where [·] denotes the round-to-nearest integer operator.
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3
Audio Signal Features

This chapter presents audio signal features suitable for an acoustic event detection system.
The first section deals with selected features defined by the MPEG-7 standard. The most of
them were already known before standardization. For distinguishing vocal emotions the Teager
Energy Operator (TEO) is introduced, as well as the popular Mel-frequency Cepstral Coefficients
(MFCCs) including some variants to compensate the effects of unwanted noise.

3.1 MPEG-7 Audio Protocol Descriptors

MPEG-7 standardizes a lot of descriptive audio features. In [47] the MPEG-7 audio features are
presented, as well as [48] contains a complete documentation of MPEG-7 Audio and it also deals
with audio content indexing and retrieval aspects. The equations seen in this section are from
[47], unless marked differently. In the following sections, fundamental descriptors of MPEG-7
in time and spectral domain, as well as selected harmonicity features, are presented including
exemplary applications of the features on the test signals of popular event classes.

This section deals with these MPEG-7 audio features:

� Basic Descriptors

Audio Waveform (AW)

Audio Power (AP)

� Basic Spectral Descriptors

Audio Spectrum Centroid (ASC)

Audio Spectrum Spread (ASS)

Audio Spectrum Flatness (ASF)

� Audio Harmonicity Descriptors

Harmonic Ratio (HR)
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Upper Limit of Harmonicity (ULH)

Audio Fundamental Frequency (AFF)

3.1.1 Basic Descriptors

Audio Waveform (AW)

The AW feature is used to describe the waveform of the audio signal. It simply consists of two
values: the minimum and maximum value of one frame of the time signal s(n). The input signal
is therefore splitted in consecutive, non-overlapping frames, i.e. Nm = Nhop. Consider a vector

sm =
[
s(mNhop) s(1 +mNhop) · · · s(Nhop − 1 +mNhop)

]T
corresponding to the content of the m-th non-overlapping time frame. Then the audio waveform
can be defined as a two-element vector

AWm =

[
min(sm)

max(sm)

]
. (3.1)

Examples Figure 3.1 shows the AW feature of a scream, gunshot, glass break and explosion
sound. The input files have not been normalized. The amplitude of the scream is constantly
decreasing after the onset, while the others show a more or less distinctive peak.

Audio Power (AP)

AP represents the signal’s temporally smoothed energy of its non-overlapping frames, i.e.

APm =
1

Nhop

Nhop−1∑
n=0

∣∣s(n+mNhop)
∣∣2 0 ≤ m ≤M − 1. (3.2)

Examples Figure 3.2 shows AP examples of all classes. The scream in Figure 3.2(a) shows a
pretty much constant audio power with an onset, similar to the AW feature. The other classes
have one or more notable peaks.
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(a) (b)

(c) (d)

Figure 3.1: Audio waveform feature examples: (a) scream, (b) gunshot, (c) glass break, (d) explosion.
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(a) (b)

(c) (d)

Figure 3.2: Audio power feature examples: (a) scream, (b) gunshot, (c) glass break, (d) explosion.
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3.1.2 Basic Spectral Descriptors

Audio Spectrum Centroid (ASC)

The ASC is the center of gravity of the log-frequency weighted power spectrum of the input signal
sm. For reducing the weight of very low frequencies and/or preventing a zero DC component,
all power coefficients below 62.5Hz are summed into a single coefficient. That means, all bins
with an index less or equal than

Klow =

⌊
62.5

∆f

⌋
, (3.3)

where b·c denotes the floor operator.

According to this rule a new power spectrum P ′m(k′) is introduced,

P ′m(k′) =


Klow∑
k=0

Pm(k) if k′ = 0

Pm(k′ +Klow) for 1 ≤ k′ ≤ NFT /2−Klow

. (3.4)

The new center frequencies of the bins k′ are defined as

f ′(k′) =

{
32.25 for k′ = 0

f(k′ +Klow) for 1 ≤ k′ ≤ NFT /2−Klow

. (3.5)

The ASC of the mth frame is defined as

ASCm =

NFT /2−Klow∑
k′=0

[
ld
(
f ′(k′)
1000

)
P ′m(k′)

]
NFT /2−Klow∑

k′=0

P ′m(k′)

, (3.6)

where ld(·) denotes the logarithm based on 2, i.e. log2 (·).

The ASC indicates the domination of low or high frequencies in the audio signal. This infor-
mation is related to the sharpness. To better approximate the human perception, the frequency
scale used is logarithmically spaced. In literature, various other definitions of the spectral cen-
troid can be found [49].

Examples According to the ASC the scream in Figure 3.3(a) and the gunshot are dominated
by frequencies around 2 kHz leading to ASC values between zero and two. The sound of glass
breaking varies in its centroid in Figure 3.3(c) and the explosion in Figure 3.3(d) is dominated
by low frequencies as expected.

Audio Spectrum Spread (ASS)

The ASS is defined as the second spectral moment of the log-frequency power spectrum. In
other words, this is the root-mean-square deviation of the log-frequency power spectrum from
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(a) (b)

(c) (d)

Figure 3.3: Audio spectrum centroid feature (ASC) examples: (a) scream, (b) gunshot, (c) glass break, (d)
explosion.

its spectral centroid (ASC)

ASSm =

√√√√√√√√
NFT /2−Klow∑

k′=0

[
ld
(
f ′(k′)
1000

)
−ASCm

]2
P ′m(k′)

NFT /2−Klow∑
k′=0

P ′m(k′)

. (3.7)

The ASS provides information about the spectrum’s spread from its centroid. It can be used
to distinguish tonal from non-tonal, noise-like sounds.

Examples The scream in Figure 3.4(a) results in very low values of the ASS. It is indeed a
narrow-band sound, similar to the explosion’s values in Figure 3.4(d) which is dominated by
low frequencies, although they indicate a little more broadband spectrum. The ASS of the
breakage of glass in Figure 3.4(c) is constantly varying and the highest ASS value is reached by
the gunshot in Figure 3.4(b) because it is a broadband sound event.
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(a) (b)

(c) (d)

Figure 3.4: Audio spectrum spread feature examples: (a) scream, (b) gunshot, (c) glass break, (d) explosion.

Audio Spectrum Flatness (ASF)

The ASF quantifies the difference between the signal’s spectrum and a completely flat spectrum.
In other words, this is a measure for the similarity to white noise or the correlation of the signal.
The calculation of the ASF involves the following steps:

1. Calculation of the power spectrum Pm(k) of each non-overlapping 30ms long signal frame.

2. Partitioning of the spectrum in 1/4-octave-spaced log-frequency bands within the [flo; fhi]

frequency interval, i.e. flo = 2
1
4
η · 1 kHz and fhi = 2

1
4
B · flo.

η is related to the lower band edge frequency, the recommend minimum is η = −8, which
leads to 250 Hz. B equals the number of frequency bands and should be chosen in a way
that fhi is about the bandwidth of the signal and definitely not higher than fs/2.

3. Because the ASF features can be sensitive to sampling frequency variations, the bands
used in the calculation are made larger by 10 % so that they overlap by 5 % on the low
border fb,lo = 0.95 · flo · 2

1
4
(b−1), 1 ≤ b ≤ B, and high border fb,hi = 1.05 · fhi · 2

1
4
b,

1 ≤ b ≤ B.
The corresponding bin indices are Kb,lo = round

(
fb,lo/∆f

)
and Kb,hi = round

(
fb,hi/∆f

)
.
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4. For reducing computational costs and getting log-frequency spacing of the bands, a group-
ing procedure of Pm(k) in Pm,g(k

′) is defined:

� Bands with fhi < 1 kHz are taken as they are.

� Bands with fhi in the interval [1 kHz; 2 kHz] are grouped in pairs, two successive
values of Pm(k) are replaced by their average.

� Each group of bands between
[
2η kHz; 2η+1 kHz

]
with η ≥ 1 are replaced by their

arithmetic mean value.

� At the last group at the upper frequency bound: if not more than 50% of the coeffi-
cients required are available, the last group is simply ignored.

The new bands’ edge indices of this grouped power spectrum are K ′b,lo and K ′b,hi.

5. Finally, the ASF is calculated as

ASFm(b) =

K′b,hi−K
′
b,lo+1

√√√√ K′b,hi∏
k′=K′b,lo

Pm,g(k′)

1
K′b,hi−K

′
b,lo+1

K′b,hi∑
k′=K′b,lo

Pm,g(k′)

. (3.8)

6. To increase numeric precision, the logarithm can be applied to avoid very small numbers.
Then the ASF is calculated as

ASFm(b) =

exp

 1
K′b,hi−K

′
b,lo+1

K′b,hi∑
k′=K′b,lo

ln
(
Pm,g(k

′)
)

1
K′b,hi−K

′
b,lo+1

K′b,hi∑
k′=K′b,lo

Pm,g(k′)

. (3.9)

An ASF of one means that the signal is equal to white noise and zero is equal to a fully
correlated, sinusoidal signal.

Examples One can observe the typical harmonic structure of a human scream even in the
ASF feature in Figure 3.5(a). The frequency bands dominated by the human voice show values
close to zero, that means that they the signals are correlated, i.e. sinusoidal. The breakage of
glass in Figure 3.5(c) also shows a lot of correlation in contrary to the gunshot in Figure 3.5(b)
and the explosion in Figure 3.5(d). Table 3.1 shows the lower and upper frequency of each band.
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(a) (b)

(c) (d)

Figure 3.5: Audio spectrum flatness feature examples: (a) scream, (b) gunshot, (c) glass break, (d) explosion.
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band flo [Hz] fhi [Hz]

1 238 312

2 282 371

3 336 441

4 399 525

5 475 624

6 565 742

7 672 883

8 799 1050

9 950 1249

10 1130 1485

11 1344 1766

12 1598 2100

13 1900 2497

14 2259 2970

15 2687 3532

16 3195 4200

17 3800 4995

18 4519 5940

19 5374 7064

20 6391 8400

21 7600 9989

22 9038 11879

23 10748 14127

Table 3.1: Frequency ranges of the ASF bands.
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3.1.3 Audio Harmonicity

Harmonic Ratio (HR)

The basic principle of the HR feature is the estimation of the normalized autocorrelation function
Γm(l) of the mth frame of the input signal

Γm(l) =

Nm−1∑
n=0

sm(n)sm(n− l)√
Nm−1∑
n=0

sm(n)2
Nm−1∑
n=0

sm(n− l)2
m ≤ l ≤ L; 0 ≤ m ≤M − 1. (3.10)

The maximum lag L is proportional to the maximum fundamental period T0,max or, equiva-
lently, the minimum fundamental frequency f0,min, i.e.

L = T0,max · fs =
fs

f0,min
. (3.11)

In the MPEG-7 standard the HR is defined as

HR = max
m≤l≤Nhop

Γm(l), (3.12)

where the upper border is limited by Nhop, the time interval between two frames. The max-
imum lag will be found at the fundamental frequency of the input signal. A drawback of the
definition in Equation 3.12 is the fact that the zero-lag peak is often detected and will lead to
a HR close to one. The value of the HR basically ranges between zero at white noise input and
one for fully periodic signals.

Examples The scream in Figure 3.6(a) shows a HR close to one as expected from a vocalic
sound. The explosion also leads to high HR values in Figure 3.6(d). The breakage of glass and
the gunshot contain correlation and result in medium HR values shown in Figures 3.6(b) and
3.6(c).

Upper Limit of Harmonicity (ULH)

The ULH is the estimated frequency, above which the input signal no longer has any harmonic
structure. Basically it is the relation of the output and input power of a time-domain comb filter
tuned on the fundamental frequency of the signal [50]. The calculation requires the following
steps:

1. The signal is filtered by the optimal-gain comb filter

s̃m(n) = sm(n)−Gmsm(n− m̂) 0 ≤ n ≤ Nw − 1. (3.13)

m̂ is the lag which maximizes the autocorrelation function, i.e.

T0 = arg max
l

Γm(l) (3.14)
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(a) (b)

(c) (d)

Figure 3.6: Harmonic Ratio feature examples: (a) scream, (b) gunshot, (c) glass break, (d) explosion.

and optimal comb-filter gain is calculated as

Gm =

Nm−1∑
n=0

sm(n)sm(n− m̂)

Nm−1∑
n=0

sm(n)sm(n− m̂)2
. (3.15)

2. The power spectrum P ′m(k′) of the input signal and the power spectrum of P ′m,c(k
′) of the

filter output are calculated according Equation 3.4.

3. The power ratio

Rm(klim) =

NFT /2−Klow∑
k′=klim

P ′m,c(k
′)

NFT /2−Klow∑
k′=klim

P ′m(k′)

(3.16)
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is repeatedly calculated, while decrementing klim from kmax to the first frequency bin,
until the Rm falls below 0.5. This bin index is then named kulh and the corresponding
center frequency fulh of the bin indexed by kulh can be determined via Equation 3.5.

4. At last the ULH per frame can be calculated as

ULHm = ld

(
fulh
1000

)
. (3.17)

Similar as the HR, the ULH can be used to distinguish harmonic from non-harmonic sound,
like voiced and unvoiced speech.

Examples The female scream in Figure 3.7(a) results in ULH values above 1, corresponding
to a frequency of 2 kHz, which is realistic for a female voice. Similar to the HR feature, the
ULH also shows similar values for the explosion in Figure 3.7(d), in comparison to the scream.
The gunshot shows no harmonic structure at all according to Figure 3.7(b), while the breakage
of glass in Figure 3.7(c) is partly harmonic when the glass splinters are jingling after the impact
sound.

(a) (b)

(c) (d)

Figure 3.7: Upper limit of harmonicity examples: (a) scream, (b) gunshot, (c) glass break, (d) explosion.
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Audio Fundamental Frequency (AFF)

In the MPEG-7 standard a spectro-temporal autocorrelation (STA) approach is defined for the
estimation of the AFF [51]. The STA function is given as

ΓSTA(l) = βΓTA(l) + (1− β)ΓSA(l), (3.18)

where the temporal autocorrelation ΓTA(l) is given as

ΓTA(l) =

Nw−1∑
n=0

s(n)s(n− l)√
Nw−1∑
n=0

s(n)2
Nw−1∑
n=0

s(n− l)2
, (3.19)

omitting the frame index m. Using solely the temporal autocorrelation can result in detecting
the maximum lag at an integer multiple of a pitch candidate lag, e.g. 2l or 3l. The spectral
autocorrelation ΓSA(·) introduced in [52] is not susceptible to this multiplications, i.e.

ΓSA(l) = ΓSA(kl) =

Kmax−1∑
k=0

S(k)S(k − kl)√
Kmax−1∑
k=0

S(k)2
Kmax−1∑
k=0

S(k − kl)2
. (3.20)

The time lag l is converted to the corresponding bin index using

kl =

[
1

l ·∆f

]
, 0 ≤ k ≤ Kmax − 1, (3.21)

[·] denotes the round-to-nearest operator. The fundamental period is estimated from the
spectro-temporal autocorrelation function in Equation 3.18 as

T0 = arg max
l

[
ΓSTA(l)

]
, (3.22)

leading to the fundamental frequency

AFF = f0 =
1

T0
. (3.23)

The MPEG-7 standard requires additional parameters to complete the AFF descriptor, e.g.
frequency limits and detection confidence measures. These are not used in this project.

Examples As expected, a reasonable fundamental frequency is detected for the scream in
Figure 3.8(a). There is also some tonality in the breakage of glass and meaningful frequencies
are detected in Figure 3.8(c). An explosion usually leads to a low fundamental frequency,
the algorithm unfortunately detected much higher frequencies as expected in Figure 3.8(d). A
gunshot has no fundamental frequency although the algorithm detected one for the duration of
two frames in Figure 3.8(b).
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(a) (b)

(c) (d)

Figure 3.8: Audio fundamental frequency examples: (a) scream, (b) gunshot, (c) glass break, (d) explosion.

3.2 Teager Energy Operator

Speech emotion changes are the result of a change in the vocal tract parameters. To exploit those
differences in a signal feature, the Teager Energy Operator (TEO) is used. Kaiser introduced
the common form of this nonlinear operator in [53] as

Ψc{s(t)} =

[
d

dt
s(t)

]2
− s(t)

[
d2

dt2

]
s(t) =

[
ṡ(t)

]2 − s(t)s̈(t). (3.24)

This equation can be explained as the difference between the squared first derivative of the
input signal and the input signal times the second derivative of the input signal.
To distinguish between normal speech and speech under stress, like screamed or highly agitated
speech, the critical band (CB) based TEO autocorrelation envelope (TEO-CB-Auto-Env) feature
by Zhou [54] is used. The processing blocks are shown in Figure 3.9.

The TEO-CB-Auto-Env feature is calculated as follows:

1. The input signal is filtered in 16 critical bands using a Gabor bandpass filter bank. The
low and high frequency (flo and fhi) as well as the center frequency fc and the width of
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Figure 3.9: Overview of the TEO-CB-Auto-Env calculation [54].

each band are shown in Table 3.2.

band flo fc fhi bandwidth

# Hz

1 100 150 200 100

2 200 250 300 100

3 300 350 400 100

4 400 450 510 110

5 510 570 630 120

6 630 700 770 140

7 770 840 920 150

8 920 1000 1080 160

9 1080 1170 1270 190

10 1270 1370 1480 210

11 1480 1600 1720 240

12 1720 1850 2000 280

13 2000 2150 2320 320

14 2320 2500 2700 380

15 2700 2900 3150 450

16 3150 3400 3700 550

Table 3.2: Critical bands of the Gabor bandpass filter bank.

The Gabor filter’s impulse and frequency responses are defined as [55]

h(t) = e−a
2t2 · cos(2πfct) (3.25)

and

H(f) =

√
π

2a

[
e−

π2(f−fc)2

a2 + e−
π2(f+fc)

2

a2

]
, (3.26)

where a is the bandwidth and fc the center frequency of the corresponding band. The
discrete form of the Gabor filter can be derived by sampling its continous impulse response
version, with T = 1/fs,

h(n) = e−a
2(nT )2 cos

(
2πfc
fs

n

)
. (3.27)

The filter is tuned on the specific critical band by simply choosing a and fc according
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Table 3.2. All following operations are then performed individually for each band.

2. In the next step the Teager-Energy Operator is applied. Its discrete form introduced in
[56] can be written as

Ψ{s(n)} = s(n)2 − s(n− 1)s(n+ 1). (3.28)

3. If the input signal is not already arriving in frames of adequate size, segmentation in frames
of 25ms with 50% overlap has to be applied.

4. The normalized autocorrelation of the energy-estimated signal is calculated.

5. The area under the autocorrelation envelope is calculated and normalized by N/2.

6. Finally, the TEO-CB-Auto-Env feature is available as a vector with 16 entries.

Examples Figure 3.10(a) shows the TEO-CB-Auto-Env feature for a female scream. Its value
is continuously high in value as expected for a scream, especially at the higher frequency bands.
All other classes show a very different TEO-CB-Auto-Env feature. It’s much lower in value as
to be seen in Figures 3.10(b), 3.10(c) and 3.10(d).

(a) (b)

(c) (d)

Figure 3.10: TEO-CB-Auto-Env feature examples: (a) scream, (b) gunshot, (c) glass break, (d) explosion.
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3.3 Mel-frequency cepstral coefficients

Mel-frequency cepstral coefficients (MFCCs) are widely used in speech recognition. They repre-
sent the information contained in speech signals very well. By speaker-independently modeling
the vocal tract parameters, especially the formants are reflected very well. The calculation and
application of the MFCCs is widely documented [57], [58]. Figure 3.11 shows the steps involved.

time domain
signal

windowing DFT
Mel

filter bank
log DCT MFCCs

deltas dMFCCs

Figure 3.11: MFCC extraction process.

The MFCCs are calculated as follows:

1. Windowing and DFT transform of the time domain signal into the spectral domain.

2. Based on the mth spectrum of the input signal, the mel-spectrum is calculated as

MFm(r) =
1

Ar

Ur∑
k=Lr

∣∣Vr(k)Sm(k)
∣∣2 (3.29)

with the normalization factor

Ar =

Ur∑
k=Lr

∣∣Vr(k)
∣∣2 (3.30)

and Vr(k) being the triangular-shaped frequency response of the rth mel filter for the DFT
indices [Lr;Ur].

3. The ith MFCC coefficient is calculated by application of the Discrete Cosine Transform
(DCT) on the logarithm of MFm, i.e.

cm(i) =
1

R

R∑
r=1

log(MFm) cos

[
2π

R

(
r +

1

2

)
i

]
(3.31)

with the typical values of R = 24 and the coefficient index i running from 1 to 13.
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Examples The scream in Figure 3.12(a) shows the typical MFCC structure of a vocalic sound.
Each of the other sounds can be differentiated via the 13 coefficients. The other examples are
dominated by the lower coefficients. The explosion contains all frequency components and results
in a high-valued first coefficient as seen in Figure 3.12(d).

(a) (b)

(c) (d)

Figure 3.12: MFCC feature examples: (a) scream, (b) gunshot, (c) glass break, (d) explosion.

3.3.1 Delta- and Delta-Delta-MFCCs

To take into account the temporal changes of the signal, the delta and delta-delta MFCCs are
commonly added to the feature vector. According to [48] they are defined as

∆cm(i) = −cm−2(i)−
1

2
cm−1(i) +

1

2
cm+1(i) + cm+2(i) (3.32)

and

∆∆cm(i) = cm−2(i)−
1

2
cm−1(i)− cm(i)− 1

2
cm+1(i) + cm+2(i). (3.33)
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Examples The ∆MFCCs of the scream show the typical attack-sustain-decay (ADSR) enve-
lope of a vocalic utterance. One can observe from Figure 3.13(a) that during the sustain phase
almost all of the coefficients remain more or less constant in value, while they clearly change
at the beginning and the end of the event. The ∆-coefficients of the gunshot, Figure 3.13(b),
and the breakage of glass, Figure 3.13(c), show that a smaller amount of them changes at the
beginning and the end, so most of them evolve over time. The ∆MFCCs of the explosion
in Figure 3.13(d) show that during the impact the lower numbered coefficients increase and
immediately decrease in value.

(a) (b)

(c) (d)

Figure 3.13: ∆ MFCC feature examples: (a) scream, (b) gunshot, (c) glass break, (d) explosion.

3.3.2 Root Cepstral Coefficients

To reduce the influence of noise, the Root Cepstral Coefficients (RCCs) [59] can be used. They
have been successfully applied in speech recognition. The calculation is very similar to the
traditional MFCCs, instead of Equation 3.31 the following one is applied

cm(i)RCC =
1

R

R∑
r=1

|MFm|root · cos

[
2π

R

(
r +

1

2

)
i

]
, (3.34)
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where 0.2 ≤ root ≤ 0.25 is used to calculate the RCCs.

Examples Because of the fact that the sound event samples are noise-free, the RCCs deliver
the same results as the MFCCs, disregarding different scaling factors. Noise-like sounds like
the gunshot in Fig 3.14(b) show a tendency to get more zero-coefficients, like the explosion in
Figure 3.14(d).

(a) (b)

(c) (d)

Figure 3.14: RCC feature examples: (a) scream, (b) gunshot, (c) glass break, (d) explosion.

3.3.3 Cepstral Mean Normalization

Another way of compensating noise in the MFCCs is the method of cepstral mean normalization
(CMN) [60], [61]. The mean of all coefficients of an event will be subtracted from each coefficient,
i.e.

c̃m(i) = cm(i)− 1

M

M∑
m′=1

cm′(i). (3.35)

October 11, 2016 – 37 –



3 Audio Signal Features

Examples Due to the fact that the normalization has been applied within one audio file only,
the resulting cepstral-mean normalized MFCCs in Figures 3.15(a) to 3.15(d) resemble the ∆-
MFCCs very much. The application of the normalization is more useful over a longer period of
time, covering more utterances.

(a) (b)

(c) (d)

Figure 3.15: Cepstral-mean normalized MFCC feature examples: (a) scream, (b) gunshot, (c) glass break,
(d) explosion.
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4
Machine Learning

For the classification tasks several classifiers will be used. The training phase is considered as
supervised learning, the system is in knowledge of the class labels of each sample. In this chapter,
Gaussian Mixture Models (GMMs) and apart from the traditional generative parameter learning
paradigm, two discriminative learning algorithms are presented. As an alternative to the GMMs,
Support Vector Machines (SVMs) are introduced. The chapter concludes with model selection
techniques and classifier evaluation methods.

4.1 Gaussian Mixture Models

A Gaussian Mixture Model (GMM) [27] is defined as a superposition of K Gaussian densities

p(x) =

K∑
k=1

πkN (x|µk,Σk). (4.1)

Each kth multivariate Gaussian density N (x|µk,Σk) has its own mean vector and covariance
matrix. This densities are called components of the GMM. πk is called the mixing coefficient or
the responsibility of the kth component and

K∑
k=1

πk = 1, 0 ≤ πk ≤ 1. (4.2)

To obtain the likelihood that an input vector x is generated by the GMM, the log-likelihood

October 11, 2016 – 39 –



4 Machine Learning

function

ln
(
p(x|π,µ,Σ)

)
= ln

 K∑
k=1

πkN (x|µk,Σk)

 , (4.3)

can be used. The log-likelihood of an input data set X of N samples {x1, ...,xN} is

ln
(
p(X|π,µ,Σ)

)
=

N∑
n=1

ln

 K∑
k=1

πkN (xn|µk,Σk)

 . (4.4)

There is no closed form solution available to determine the the maximum likelihood param-
eters π, µ and Σ. To set up the parameters (i.e. training) π, µ and Σ of the GMM, the
EM-Algorithm is usually used. The covariance matrix Σk is often assumed to be a diagonal ma-
trix. This reduces the computational costs and the GMM is still able to model the covariances,
if enough components are available [62].

The k-means algorithm is often used to initialize the EM algorithm for learning GMMs. For
this reason it is introduced below.

4.1.1 k-means Algorithm

In general, the k-means Algorithm [27] is used to cluster a data set given. It can be used
to initialize the centers (µk) of the components of a Gaussian Mixture Model. An objective
function1 is defined as

J =

N∑
n=1

K∑
k=1

rnk‖xn − µk‖2 , (4.5)

where ‖xn − µk‖2 is the euclidean distance between xn and µk.
The indicator function

rnk =

1 if k = arg minj
∥∥xn − µj

∥∥2
0 otherwise

, (4.6)

assigns a certain data point xn to the cluster k. By setting the derivative of the objective
function with respect to µk to zero, the solution for µk is

µk =

∑N
n=1 rnkxn∑N
n=1 rnk

. (4.7)

The k-means algorithm stops to iterate if the cumulative distance J between the data points
and the assigned centers has converged or the pre-defined maximum number of iterations has
exceeded.

1 it may also be called cost function
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4.1.2 Expectation-Maximization Algorithm

The expectation-maximization (EM) [27] algorithm is an iterative procedure for the purpose of
finding a maximum likelihood of a statistical model, where no closed-form solution is available
to obtain its parameters. The algorithm consists of the initialization, the E- and M-step:

1. Initialize the means µ (possibly done by the k-means algorithm), covariances Σ and mixing
coefficients π.

2. Evaluate the initial log-likelihood using equation 4.4.

3. E-step: Compute N ×K responsibilities γ(znk), i.e.

γ(znk) =
πkN (xn|µk,Σk)
K∑
j=1

πjN (xn|µj ,Σj)

. (4.8)

4. M-step: Re-estimation of the parameters using the current responsibilities γ(znk) leads to
the new values

µnew
k =

1

Nk

N∑
n=1

γ(znk)xn, (4.9)

Σnew
k =

1

Nk

N∑
n=1

γ(znk)(xn − µnew
k )(xn − µnew

k )T , (4.10)

and

πnewk =
Nk

N
, (4.11)

where

Nk =
N∑
n=1

γ(znk). (4.12)

5. Evaluate the log-likelihood according Equation 4.4 and check for convergence until the con-
vergence criterion is met. If not, start again from the E-step assigning the new parameter
estimates, i.e. πk = πnewk , µk = µnew

k and Σk = Σnew
k for k = 1, ...,K.

The algorithm finds only local optima. Therefore, many runs can be necessary until a good
parameter estimate is found.
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4.1.3 Bayesian Classifier

Based on Bayes’ rule the Bayesian classifier is able to determine the class posterior probability

p(c|x) =
p(x|c)p(c)

Nc∑
c′=1

p(x|c′)p(c′)
, (4.13)

of a data sample x [27], [63], where c is the random variable of the class. It is a measure of
the probability that x originates from c ∈ {1, ..., Nc} where Nc is the number of classes in the
classification task. The class prior p(c) is an estimate of the probability that any instance from
randomly sampled data originates from c. The denominator is usually omitted because it only
scales the result. The most likely class label ĉ can be predicted using the maximum-aposteriori
(MAP) estimate using

ĉ = arg max
1≤c≤C

p(c|x) = arg max
1≤c≤C

p(x|c)p(c). (4.14)

In this case, the term p(x|c) is modeled by the GMM for a particular class c, i.e. p(x|c) =
p(x|πc,µc,Σc).

4.1.4 Discriminative Learning Algorithms for GMMs

After the generative training methods for GMMs two algorithms for discriminative parameter
learning are presented [63]. It is proposed to either optimize the conditional likelihood or max-
imize the margin. Both methods are based on the Extended Baum-Welch (EBW) algorithm,
which executes an iterative parameter update similar to the EM algorithm.

Conditional-Likelihood GMMs

The goal of this learning algorithm is to to optimize the conditional likelihood, because a good
conditional likelihood leads to good classification performance. As the objective function of the
GMM the conditional log likelihood [63] is used

CLL(X|π,µ,Σ) = log

 N∏
n=1

p(cn|xn)

 . (4.15)

The Extended Baum-Welch (EBW) algorithm is used and with the help of partial derivatives
of the CLL and a discrete approximation of the Gaussian distribution (because the EBW has
been formulated for discrete probability distributions), re-estimation formulas for the means,
diagonal covariances and component weights can be stated.

Maximum-Margin GMMs

Furthermore, GMMs optimizing the multi-class margin of a sample n have been introduced.
The multi-class margin [64] is given as

dn(π,µ,Σ) = min
c6=cn

p(cn,xn|π,µ,Σ)

p(c,xn|π,µ,Σ)
=

p(cn,xn|π,µ,Σ)

maxc 6=cn p(c,xn|π,µ,Σ)
. (4.16)
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The sample n is correctly classified if dn(π,µ,Σ) > 1. With approximations and relaxing the
constraints to a soft margin problem, similar as in Section 4.1.4 the EBW is used to iteratively
re-estimate the parameters of the GMMs.

4.2 Support Vector Machines

Considering a binary classification problem, an observation/pattern instance x is defined to be
either in the class with the label y = 1 or not in the class labeled with y = −1. This assignment
can be formalized as [65]

(x1, y1), ..., (xN , yN ) ∈ X× {±1}, (4.17)

where X is a non-empty set containing all observations. This assignment is done to simplify
the mathematical handling of the problem. To be able to separate the positive and negative
observation, a hyperplane in a dot product space H is defined by a normal vector w and a scalar
bias b as

〈w,x〉+ b = 0,w ∈ H,x ∈ R, (4.18)

with the decision function

f(x) = sgn(〈w,x〉+ b). (4.19)

If the learning problem is linearly separable, a unique optimal hyperplane exists. The margin
between any data point and the hyperplane is maximized by solving the objective function

arg min
w∈H,b∈R

τ(w) =
1

2
‖w‖2, (4.20)

under the inequality constraints

yn(〈w,xn〉+ b) ≥ 1, n = 1, ..., N. (4.21)

Commonly, the data is not linearly separable and the hyperplane can not be constructed
without violating the constraints in Equation 4.21. Using slack variables ξn ≥ 0, n = 1, ..., N
the constraints relax to

yn(〈w,xn〉+ b) ≥ 1− ζn, n = 1, ..., N. (4.22)

By executing

arg min
w∈H,b∈R

τ(w) =
1

2
‖w‖2 + C

N∑
n=1

ξn, (4.23)

a soft margin classifier is obtained, where the constant C > 0 can be used to setup the trade-off
between minimizing the training error and maximizing the classification margin. This is called a
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dual optimization problem. With the use of Lagrange multipliers and the Karush-Kuhn-Tucker
(KKT) conditions the dual problem can be stated as

arg max
α∈Rη

N∑
n=1

αn −
1

2

N∑
n=1

N∑
m=1

αnαmynym 〈xn,xm〉, (4.24)

resulting in the hyperplane decision function (or classification rule)

f(x) = sgn

 N∑
n=1

ynαn 〈x,xn〉+ b

 . (4.25)

As seen in Figure 4.1 the classification problem cannot be solved linearly in the input space, al-
though transforming it into a higher dimensional feature space using the transformation function
Φ(x) enables linear solving of the classification problem.

Figure 4.1: Principle of SVM [65].

Because the data points are only included via their dot product, the dot product 〈xn,xn′〉
in the input space can simply be replaced by the dot product in the higher-dimensional feature
space

〈
Φ(xn),Φ(xn′)

〉
. Instead of performing computationally exhaustive transformations the

so-called kernel-trick can be applied. A kernel function is defined as

K(xn,xn′) =
〈
Φ(xn),Φ(xn′)

〉
. (4.26)

The optimal kernel function is data-dependent and can only be found empirically [13]. The
most commonly used kernel functions are:

� Polynomial kernel function with the polynomial order p:

Kp(xn,xn′) = (〈xn,xn′〉+ 1)p. (4.27)

� Gaussian kernel i.e. radial basis function (RBF) with the standard deviation σ of the
Gaussian:

Kσ(xn,xn′) = e
‖xn−xn′‖

2

2σ2 . (4.28)
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� Sigmoid kernel function with k being the amplification and θ the offset:

K(k,θ)(xn,xn′) = tanh
(
k 〈xn,xn′〉+ θ

)
. (4.29)

Further information on pattern recognition with SVMs can be found in e.g. Duda [66].

4.3 Model Selection with k-fold Cross Validation

Especially when using the maximum-likelihood approach, relying solely on the classification
performance of the training data set can be dangerous because of overfitting [27]. If a lot of data
is available during system development, an extra set of data apart from training and test sets
should be used. With the help of this so-called validation set, the performance of the model can
be evaluated with data independent from the training phase to optimize the model parameters.
Because this optimization process is usually iterative, overfitting can still be an issue. So, the
final evaluation of the model should happen with the test data set to get the most accurate
results.

In many cases, including acoustic event detection, the available data is rare. With the help of
the cross-validation technique the amount of data to be used can be maximized, while having a
reliable estimate on the classification performance. The dataset is divided into k subsets, where
k− 1 sets are used for training and a single one for validation. This process is repeated k times,
resulting in having each of the k subsets used exactly once for validation. This process is shown
in Figure 4.2 for k = 4. In each iteration (or so-called fold) k − 1 subsets are used for training
and one (shown in red) for validation.

Figure 4.2: k-fold cross validation technique [27].

The major drawback of k-fold cross validation is the increased number of training runs, in the
example shown above five runs are now required instead of one. This could dramatically slow
down the model training and selection process.

4.4 Classifier Evaluation

After classification has been done, there are four different types of results possible for binary
classification problems. These cases can be seen in the so-called confusion matrix in Figure 4.3.
On the horizontal axis the result of the classifier is entered (positive or negative). The vertical
axis is marked with the actual result, based on the ground truth or the gold standard reference.

This delivers four possible results:
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Figure 4.3: Confusion matrix, based on [67].

� True Positive (TP)
The classifier correctly identifies the event in accordance with the reference.

� True Negative (TN)
The classifier correctly rejects the sample, the reference does not indicate an event either.

� False Positive (FP)
The classifier identifies the sample as a relevant event but the reference does not. This is
called a false alarm.

� False Negative (FN)
The classifier rejects the sample, although the reference indicates an event. This is called
a miss.

4.4.1 Classification Performance Measures

Much better conclusions can be drawn from the following performance metrics used to evaluate
the classifiers [68]:

Precision

The precision reaches its highest value of 1 if no false alarms occur, it decreases in case of many
false positive detections, i.e.

Precision =
TP

TP + FP
. (4.30)

Recall

Recall is an indication for missed detections, it gets low when many test candidates have been
left out and reaches its maximum when all events are detected, i.e.

Recall =
TP

TP + FN
. (4.31)
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Accuracy

The accuracy combines both the false alarm rate and the missed detection rate and is therefore
a metric for the overall performance of the classifier, i.e.

Accuracy =
TP + TN

TP + TN + FP + FN
. (4.32)

F-score

An alternative measure of the accuracy is the F-score. Its general form is given as

Fβ =
(1 + β2) · Precision ·Recall
β2 · Precision+Recall

,∀β ∈ R : β > 0. (4.33)

With Equation 4.30 and 4.31 the F-score can be stated for the different classifier outcomes

Fβ =
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FP
. (4.34)

β is used to set the importance of recall in relation to precision, leading to the fact that the
F-score weights the accuracy so that recall is β times more important than precision. Commonly
the F1 score is used, with β = 1, which results in the harmonic mean of precision and recall

F1 =
2 · Precision ·Recall
Precision+Recall

. (4.35)

Acoustic Event Error Rate

In coarse of the CLEAR challenge [45] the Acoustic Event Error Rate (AEER) was defined as
an evaluation criteria specifically for an acoustic event detection system. Three types of errors
are introduced:

1. Deletion
An event was not detected at all (missed event).

2. Insertion
An event was detected although it didn’t really occur (extra event).

3. Substitution
An event was detected but not the correct one.

The AEER is defined as

AEER =
D + I + S

Nr
, (4.36)

where Nr is the total number of events in the reference and D, I and S the number of deletions,
insertions and substitutions. This error rate is similar to the word error rate in ASR and can
get larger than 1.
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5
Implementation and Results

In this chapter the detection scenario for the acoustic event detection system is explained. The
sounds to be detected are introduced and described in time and frequency domain. A suitable
sound library collection containing occurrences of all events is presented. The proposed system
is introduced and its components are explained. The MATLAB simulation model of the system
is presented and the implementation is explained in detail. The experiments conducted are
documented, evaluated and interpreted.

5.1 Event Classes and Audio Data Set

In this acoustic event detection system, five classes of audio events are defined which shall be
classified and distinguished from the background sound. In this section the characteristics of
the sounds are explained.

� Scream

A screamed utterance typically lasts between one and two seconds. After a short attack
period the amplitude remains constantly high until the ending of the scream. In the
spectrum the typical formant structure of human voice, in this case a female voice, can be
seen.
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(a) (b)

Figure 5.1: Female scream: (a) time domain, (b) frequency domain.

� Gunshot

A gunshot is basically a very short event, lasting only some decades of milliseconds. Due
to the high energy of a shot the event is often prolonged by reverberation. The spectrum
of a gun shot is tending to be white but will be colored by the influence of the gun in use.

(a) (b)

Figure 5.2: Gunshot: (a) time domain, (b) frequency domain.

� Breakage of glass

The breakage of glass usually takes about half a second, depending on the size of the
window smashed. During the first 500ms all frequencies in the spectrum show noteable
amplitude due to the impact, afterwards only the sound of the broken glass is heard.
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(a) (b)

Figure 5.3: Glass breaking: (a) time domain, (b) frequency domain.

� Explosion

An explosion is a similar event to a gunshot. In contrary, it lasts longer and takes at least
some seconds. In the spectral domain it is dominated by frequencies around 100 Hz.

(a) (b)

Figure 5.4: Explosion: (a) time domain, (b) frequency domain.

� Vocal (human voice)

Vocal sounds contain all utterances emitted by humans. This can be with (e.g. a word)
or without (e.g. a scream) phonetic context. The example in Figure 5.5 shows a woman
speaking the words ’oh yes it was’. The four syllables are clearly identifiable in the time
domain signal, as well as the typical frequency shaping of the vocal tract can be seen in
the frequency domain.
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(a) (b)

Figure 5.5: Vocal: (a) time domain, (b) frequency domain.

� Background

Background sounds are usually very diverse and differ with the environment. Generally,
background sound or noise is broadband, low and constant in amplitude. In Figure 5.6 a
typical airport terminal background sound is shown. Footsteps and the sound of people
talking in the distance can be heard.

(a) (b)

Figure 5.6: Background: (a) time domain, (b) frequency domain.

The sound libraries available for training and testing the event detection system are listed in
Table 5.1. The files were individually selected from different libraries to improve the generaliza-
tion of the resulting model, assigned to the corresponding classes and annotated if necessary to
ensure high quality data.

Table 5.2 gives an overview of the number of recordings in use for each class and the actual
frequency of occurrence of each event. Usually, audio files originating from such libraries contain
only one event, but all audio files were checked manually for proper labeling and re-annotated
if necessary.
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Name Type CDs Recordings

Sound Ideas

Series 6000 General general 40 3294

BBC Sound Effects Library general 60 2224

Lucas Film Sound Library movie 6 420

Dimension Sound Effects Library general 10 985

Series 6000 Extension VII general 10 930

Sony Pictures Sound Effects Library movie 10 2308

The Network Sound Effects Library general 120 9679

Universal Studio Sound Effects Library movie 5 484

Warner Brothers Sound Effects movie 5 490

Others

Audio Pro Sound Effects Library by Yannick Chevalier general 5 136

Sound Effects Bible general 8 1669

Valentino Production Sound Effects Library movie 50 3803

TIMIT [69] speech n/a 6300

Table 5.1: Sound effect libraries in use.

scream gunshot glass break explosion vocal background

recordings 123 83 128 105 42 16

duration (mm:ss) 24:19 9:10 27:01 28:59 34:11 62:24

Table 5.2: Library file statistics.

It was possible to get many libraries containing general, everyday sounds. Due to discretion
reasons, expressions of horror, like screams, are often omitted in common effect libraries. This
problem was addressed in [70]. The same problem occurs with events that rarely happen in real
life recordings but are security-relevant, like the gunshot, explosion or glass break events. Data
sets provided for acoustic event detection challenges like DCASE 2013 [42] or DCASE 2016 [71]
are recorded in everyday situations. They cover e.g. offices, different public places like train
stations, streets, etc. without those security-relevant events. It was found that sound effect
libraries used in the movie industry do contain the required material and because of that the
pool of audio data also includes such collections.

5.2 System Topology

For the following experiments, two acoustic event detection system topologies have been evalu-
ated. They differ in their classifiers. The first system in Figure 5.7 is based on GMMs. Each
event class and the background sound is modeled by one GMM. The most likely class is then
predicted with the help of the maximum-aposteriori estimation presented in Section 4.1.3. The
second system developed in Figure 5.8 replaces the GMMs by SVMs. They are deployed for
one-to-many operation, i.e. the SVM of each class to be detected uses the data of the actual
event class as the positive data and the data of all other events as well as the background sounds
as negative data. Hence, every SVM classifier independently delivers a binary result that states
if the specific event has been detected or not.
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Figure 5.7: GMM-based AED system fed with test data.
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Figure 5.8: SVM-based AED system fed with test data.
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5.3 Preprocessing and Feature Extraction

Figure 5.9 shows a block diagram of the processing chain in use. If an input audio signal
consists of more than one channel, it is converted to a mono signal by either dropping the excess
channels or by performing a mono-downmix. If the sample rates of the input file and the event
detection system mismatch, a resampler adjusts the sampling rate of the input accordingly. The
input signal is then normalized and segmented into frames according to a given frame length
and overlap parameter. After dropping silent frames below a threshold, the preprocessed time
domain signal is available for block-wise feature extraction.

audio
signal

multichannel
to mono

resampling
signal

normalization

segmentation
in frames

silence
detection

preprocessed
time domain sig.

STFT

MP7-
AP & AW

preprocessed
frequency domain sig.

MP7
spectral

MFCCs

∆MFCCs

RCCs

TEO-CB-
Auto-Env

Figure 5.9: Feature extraction with preprocessing.

The MP7 basic descriptors Audio Waveform and Audio Power are extracted directly from
the preprocessed time domain signal. All other features in use are based on the power spec-
trum, i.e. the short-term Fourier transform is applied resulting in the preprocessed frequency
domain signal. Then the MP7 Basic Spectral Descriptors Audio Spectrum Centroid, Spread and
Flatness and the Audio Harmonicity Descriptors Harmonic Ratio, Upper Limit of Harmonicity
and Audio Fundamental Frequency, the MFCCs with the ∆MFCCs, the RCCs and the Teager
Energy Operator critical band based auto-envelope are calculated.

The feature vector is individually specified for each class to be able to select the proper feature
set for each event to be detected. Ntalampiras [14] recommends feature sets for the classification
of the same events as defined in this work. These are presented in Table 5.3.
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class features

scream MFCCs, ∆MFCCs, TEO-CB-Auto-Env, HR

gunshot MFCCs, ∆MFCCs

glassbreak MFCCs, ∆MFCCs, ASC

explosion MFCCs, ∆MFCCs

Table 5.3: Features of the event classes.

5.4 Model Training

The event detection system is designed to be used with two different models: GMMs and SVMs.
For GMM training, a generative and a discriminative approach can be evaluated. The SVMs are
used for one-to-many classification with a kernel function. The feature set is manually defined
depending on the experiment, the selection is based on the recommendations in Table 5.3.

5.4.1 Generative GMM Training

For generative GMM training, the feature vectors of the training data are split into subsets,
each subset representing one class to be detected or the background sound. As the first training
step the k-means algorithm is executed to initialize the centers of the diagonal GMMs, followed
by the Expectation-Maximization (EM) algorithm to estimate all parameters of the model. The
training process in Figure 5.10 has to be repeated for each class as well as the background.

feature vectors of
specific event or

background

manual
feature

selection

k-means
EM

learning

GMM of
specific event

Figure 5.10: GMM training with generative algorithm.

For Nc different event classes to be detected, this procedure results in Nc + 1 trained GMMs
which can be used for classification in the event detection system.

5.4.2 Discriminative GMM Training

When using discriminative algorithms, the feature vectors of all classes including the background
are supplied to the algorithm. The CLL or max-margin optimization algorithm is used for
discriminative GMM training. Class labels are also supplied to assign a feature vector to the
class it belongs.
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Figure 5.11: GMM training with discriminative algorithms.

The discriminative training shown in Figure 5.11 results in Nc + 1 GMMs of all classes after
the algorithm completed its run.

5.4.3 SVM Training

For training an SVM for one-to-many classification, the training algorithm needs to be supplied
with the feature vector of the specific event to be detected with this particular SVM and the
feature vectors of all other classes in the detection scenario as illustrated in Figure 5.12. Each
SVM corresponding to an event class has to be trained individually, so the algortihm runs Nc

times.

feature vectors of
specific event

manual
feature

selection

manual
feature

selection

feature vectors of all
other events/background

SVM
training
learning

SVM of
specific event

Figure 5.12: SVM training.

This results in Nc SVMs.

5.5 Classification and System Evaluation

The classification with the use of GMMs is performed with the maximum-aposteriori estimate
as shown in Figure 5.7. The SVMs independently deliver results as illustrated in Figure 5.8.
For evaluation, the number of true positives, true negatives, false positives and false negatives,
explained in Section 4.4, are counted per frame for each class individually. Based on these
numbers the measures precision, recall and accuracy are calculated (cf. Section 4.4.1). For
better comparability with a single measure only, the F1-score was computed, which is also
widely used in acoustic event detection related publications and challenges. The performance of
the system as a whole is obtained by macro-averaging [72] the class-wise measures which puts
equal weight on each class. Additionally, the AEER of the system is computed.
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5.6 MATLAB Implementation

A MATLAB framework has been implemented to perform all tasks of the Acoustic Event Detec-
tion scenario. It is modularly built to independently perform feature extraction, model training
and evaluation of the classification. An initialization script aedinit was written to set all paths
for the environment. For each of the three steps a run script was created:

1. Preprocessing and feature extraction: runfeatureextraction.m

2. Model learning and classification: runtraining.m

3. Event detection system evaluation: runevaluation.m

Each script depends on the output of its predecessor. All output data is organized in cells
and structs which can easily be stored and loaded.

Each of the blocks represents an independently runnable module to efficiently conduct the
experiments. Every module save its output in a MAT file. The feature extraction module processes
the audio data input and stores the extracted signal features by class in a structured way.
The actual learning algorithm runs within the model training module. Finally, the system’s
classification metrics are calculated in the evaluation module. In the next sections these modules
are explained in detail.

5.6.1 Feature Extraction Module

The whole signal preprocessing and feature extraction processes are encapsulated in this module.
As inputs the audio file database and a parameter set are given. The processing chain is
implemented according to the block diagram in Figure 5.9. Variable parameters and options
are defined via the FEO (Feature Extractor Options) struct. These parameters, crucial to be
consistent over various feature extraction runs, are summarized in Table 5.4.

parameter name value

sample rate 32 kHz

frame length varies between 30 and 200 ms

overlap [%] 75%

silence threshold [%] 10%

# MFCC coefficients 13

# Mel bands for MFCCs 36

MFCC cepstral mean subtraction on

normalization on

Table 5.4: Feature extractor options.

The script shown in Listing A.1 in the Appendix uses the files per class from the manually pre-
generated file lists. A feature structure is calculated for each file and stored in a vector of such
structs. For this process the getFeatureStruct function is used. It performs the preprocessing
steps necessary as well as the actual feature extraction:

1. Load the audio data as floating point from the WAV file with audioread.

2. Convert multi-channel, in many cases stereo files, to mono by summing all channels and
divide the data by the number of channels.

3. Normalize the audio data to plus/minus one.
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4. Segment the audio data in frames according to the frame length and overlap parameters.

5. Remove ”silent” frames, i.e. those with an energy below a specified percentage of the
average energy of the whole file via silent threshold parameter.

6. Calculate the signal features based on the preprocessed block-wise time domain signal
(MP7-AP and -AW).

7. Perform the short-time Fourier transform after applying the Hanning window.

8. Calculate the MP7 spectral features, the MFCCs and ∆MFCCs, RCCs and the TEO-CB-
Auto-Env features.

These steps are visible in this order after global error handling in Listing A.2 in the Appendix.
All features are pre-computed using frame lengths [30; 60; 100; 150; 200] ms.

The whole set of extracted features can be stored by simply saving the FS struct using MAT-
LAB’s save command. Each class is corresponds to a cell with each cell containing the vector of
feature structs described above. To access e.g. the feature set of the third file of the scream class
use FS.scream{3}. Note that in the learning phase the feature set can be selected individually
for each class.

5.6.2 Model Training Module

The training module is used to abstract the underlying class model and training algorithms.
Via the class model template CMT the options for the training run can be set. The settings differ
between the usage of GMMs and SVMs. Table 5.5 shows the setup for GMM training. The data
ratio is a common parameter for all methods. A data ratio of 0.8 means that the data available
for each class is linearly split in a way that the first 80% of the corresponding events is used for
training and the remaining 20% is designated as test data during the evaluation phase.

parameter name value

data ratio 0.8

type dgmm ml, nl or my

# components 64, 128, or 256

kmeans max. iterations 100

EM max. iterations 1000

features feature set in use

Table 5.5: Generative GMM training options.

GMMs with k-means/EM algorithm or CLL and MM optimization can be used. There are
three implementations available, the gmdistribution class out of MATLAB’s Statistics and Ma-
chine Learning Toolbox (ml), the Netlab Toolbox Implementation (nl) [73] and a self-developed
version (my). All generative GMM experiments have been conducted with gmdistribution.

Alternatively, the GMMs can be trained discriminativly with the MATLAB framework pub-
lished by Pernkopf et al. [63]. The parameters for the conditional-likelihood and the max-margin
optimization algorithms are given in Table 5.6.

The usage of SVMs backed by svmtrain class out of MATLAB’s Statistics and Machine
Learning Toolbox is also possible. libsvm [74] could be used as an alternative.

All training methods, except for the CL and Max-Margin algorithm, are handled by the
runtraining script in Listing A.3 and the cmTrain function in Listing A.4 in the Appendix.
After successful training the class models are stored in MAT files for further processing in the
evaluation module.
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parameter name value

data ratio 0.8

# components 64, 128, or 256

features feature set in use

EM max. iterations 1000

CLL max. iterations 500

max-margin max. iterations 500

components 128

updatePrior 1

CL optimization parameter

F1 7

max-margin optimization parameters

F2 15

η 5

σ 0.45

Table 5.6: Discriminative GMM training options.

parameter name value

data ratio 0.8

type svm

max. iterations 100000

kernel function radial (RBF)

σ 1.0

features feature set in use

Table 5.7: SVM training options.

5.6.3 Evaluation Module

In the evaluation module the testing of the model with the use of the remaining data designated
for testing takes place. The classification results are then used to calculate the performance
metrics. They can be used to derive optimizations or iteratively find better models with model
selection techniques like cross-validation. The final results can be exported for further use and
be stored in MAT files.

5.7 Experiments

With the acoustic event detection system described in the previous sections various experiments
have been conducted. The first set of experiments deals with a GMM-based classifier. Parame-
ters of the system and the classifier were varied. Tests have been done with different number of
components of the GMM and frame lengths as well as three different feature sets.

5.7.1 Classification Results with Generative GMMs

In this section a generatively trained GMM has been used for all experiments. The models were
validated using 4-fold cross validation.
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Varying the Number of Components

In this experiment, the number of components of the GMMs in use has been varied. If the
number of components is increased, better fitting of the model to the training data is expected,
but over-fitting is more likely to occur. Table 5.8 shows the setup of this experiment.

parameter setting

# GMM components 64, 128 or 256

frame length 200ms

feature set MFCCs, ∆MFCCs, MP7, TEO-CB-Auto-Env

Table 5.8: Setup for the components variation experiment.

The accuracy tends to increase when increasing the components of the GMM. This can be
observed in Table 5.9. The actual precision and recall results vary between the classes.

scream gunshot glassbreak explosion vocal

# preci. recall accur. preci. recall accur. preci. recall accur. preci. recall accur. preci. recall accur.

64 88.05 58.54 95.13 21.16 31.67 92.12 32.76 82.75 94.24 32.09 89.36 77.67 73.10 32.41 81.65

128 85.89 63.11 95.35 20.25 26.67 92.45 32.18 75.98 94.34 33.10 88.82 78.69 73.24 33.21 81.78

256 85.31 64.95 95.45 23.44 23.81 93.49 31.35 71.72 94.30 33.36 87.71 79.05 72.64 34.42 81.87

Table 5.9: Class-wise classification metrics of the components variation experiment.

In terms of F1-score scream, Table 5.10 shows that the scream, explosion and vocal class
perform best with 256 components, whereas gunshot and glassbreak deliver the best score with
the use of 64 components. Considering the system’s average, the best score is reached with 256
components.

F1 score

# scream gunshot glassbreak explosion vocal ∅
64 70.33 25.37 46.93 47.22 44.91 46.95

128 72.76 23.02 45.21 48.23 45.70 46.98

256 73.75 23.62 43.63 48.34 46.71 47.21

Table 5.10: F1 scores of the components variation experiment.

For the whole system, Table 5.11 shows that precision and recall are lowest for 64 components,
but the accuracy and AEER are the best with the maximum number of components in this
experiment.

overall scores

# precision recall accuracy AEER

64 49.43 58.95 88.16 90.30

128 48.93 57.56 88.52 87.51

256 49.22 56.52 88.83 85.53

Table 5.11: Overall classification metrics of the components variation experiment.

Varying the Frame Length

In the following experiment the frame length of the segmented input audio signal has been varied
in steps between 60 and 200ms. Frequency resolution is increased while temporal resolution is
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reduced when using higher frame lengths. This could be of advantage or disadvantage for certain
classifiers. Table 5.12 shows the parameters used in this setup.

parameter setting

# GMM components 128

frame length 60, 100, 150, 200ms

feature set MFCCs, ∆MFCCs, MP7, TEO-CB-Auto-Env

Table 5.12: Setup for the frame length variation experiment.

The results in Table 5.13 vary between the classes. The voice-based classes scream and vocal
deliver the best results with the shortest frame length of 60ms. Gunshot and glass break can be
detected best with shorter frame lengths but their precision increases with longer lengths. For
the explosion the best recall is found with the longest frame length, but precision and accuracy
are best with the shortest frame length.

scream gunshot glassbreak explosion vocal

# preci. recall accur. preci. recall accur. preci. recall accur. preci. recall accur. preci. recall accur.

60 89.85 67.62 96.18 10.94 29.56 88.25 30.93 82.81 94.07 47.95 80.48 88.09 79.89 34.20 82.88

100 88.15 67.83 96.03 13.54 27.72 90.20 31.24 79.53 94.18 40.22 84.05 84.26 79.46 33.72 82.72

150 85.92 63.99 95.47 15.86 25.09 91.47 31.45 77.06 94.20 35.30 86.46 80.78 76.36 33.07 82.20

200 87.05 61.88 95.34 21.06 26.90 92.64 31.16 76.31 94.09 32.96 88.49 78.60 73.54 34.17 81.97

Table 5.13: Class-wise classification metrics of the frame length variation experiment.

All averaged metrics in Table 5.14 clearly show that in this system the best results can be
achieved with the lowest frame length of 60ms.

overall scores

precision recall accuracy AEER

60 51.91 58.93 89.90 72.44

100 50.52 58.57 89.48 78.25

150 48.98 57.13 88.82 84.33

200 49.15 57.55 88.53 87.47

Table 5.14: Overall classification metrics of the frame length variation experiment.

The F1-scores in Table 5.15 are highest for all but the gunshot class when using a frame length
of 60ms. The trend to worse results with increasing frame length is observable for all classes,
except the gunshot class follows the opposite direction. Its results get better when decreasing the
frame length. One reason for this contradictory behavior could be the fact that many features
are based on the short-term Fourier spectrum and the frequency resolution could be too low to
capture the gunshot.

F1 score

scream gunshot glassbreak explosion vocal ∅
60 77.16 15.97 45.04 60.09 47.90 49.23

100 76.67 18.19 44.86 54.41 47.34 48.29

150 73.35 19.44 44.67 50.13 46.15 46.75

200 72.34 23.62 44.25 48.03 46.66 46.98

Table 5.15: F1 scores of the GMM/frame lengths experiment.
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Varying the Feature Sets

Three different feature sets have been evaluated in this experiment. The parameters can be
seen in Table 5.16. As previously described (cf. Section 2.4.3) the selection of the feature set is
crucial and different classes may require different features.

parameter setting

# GMM components 128

frame length 200ms

feature set
MFCCs, ∆MFCCs, MP7, TEO-CB-Auto-Env

MFCCs and ∆MFCCs
MP7 and TEO-CB-Auto-Env

Table 5.16: Setup for the feature sets variation experiment.

The results in Table 5.17 show the best classification metrics of all classes for the MP7+TEO
feature set. The MFCC+∆MFCC and the combined feature set deliver lower numbers in terms
of performance compared to the MP7+TEO feature set.

scream gunshot glassbreak explosion vocal

FS preci. recall accur. preci. recall accur. preci. recall accur. preci. recall accur. preci. recall accur.

all 87.05 61.88 95.34 21.06 26.90 92.64 31.16 76.31 94.09 32.96 88.49 78.60 73.54 34.17 81.97

MFCCs 60.00 50.22 91.80 10.72 16.11 90.77 6.12 19.43 88.35 37.36 67.04 83.75 51.89 27.00 77.37

MP7 96.72 68.33 96.65 29.49 36.35 93.63 30.74 89.63 93.47 48.26 58.05 88.36 77.57 94.46 92.41

Table 5.17: Class-wise classification metrics of the feature sets variation experiment.

The overall results in Table 5.18 also confirm the MP7+TEO feature set.

overall scores

FS precision recall accuracy AEER

all 49.15 57.55 88.53 87.47

MFCCs 33.22 35.96 86.41 101.80

MP7 56.56 69.36 92.90 49.22

Table 5.18: F1 scores of the feature sets variation experiment.

Table 5.19 shows the F1-scores, where the same results can be interpreted as with the basic
classification metrics.

F1 score

FS scream gunshot glassbreak explosion vocal ∅
all 72.34 23.62 44.25 48.03 46.66 46.98

MFCCs 54.68 12.87 9.30 47.98 35.52 32.07

MP7 80.08 32.56 45.78 52.71 85.18 59.26

Table 5.19: F1 scores of the feature sets variation experiment.

5.7.2 GMM Generative vs. Discriminative Training

In this experiment different learning algorithms for the GMMs have been compared. The gener-
ative approach using the EM algorithm as well as the conditional-log-likelihood and max-margin
optimization have been used. The setup of the experiment is shown in Table 5.20.
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parameter setting

# GMM components 128

frame length 200ms

feature set MP7, TEO-CB-Auto-Env

algorithm
generative

conditional-likelihood
maximum-margin

Table 5.20: Setup for the generative vs. discriminative training experiment.

Table 5.21 shows the results of the three different learning strategies. From experiments
on synthetic data in [63] it is expected that the Maximum-Margin GMM delivers the best
performance, followed by the Conditional-Likelihood GMM and the generatively trained GMM.
The experiments with real-life acoustic data underlines this trends but there are exceptions for
the individual classes.

scream gunshot glassbreak explosion vocal

# preci. recall accur. preci. recall accur. preci. recall accur. preci. recall accur. preci. recall accur.

EM 96.72 68.33 96.65 29.49 36.35 93.63 30.74 89.63 93.47 48.26 58.05 88.36 77.57 94.46 92.41

CL 95.28 92.23 98.78 60.69 32.22 96.25 55.59 79.26 97.41 85.93 77.10 96.03 87.59 80.90 92.94

MM 93.98 92.64 98.69 62.94 33.97 96.36 58.43 77.18 97.61 86.61 75.39 95.95 86.17 83.36 93.07

Table 5.21: Class-wise classification metrics of the generative vs. discriminative training experiment.

Considering the system-wide metrics in Table 5.22, the training methods are ranked as ex-
pected. The MM-GMM delivers the best results, followed by the CLL-GMM and the generatively
trained GMM.

overall scores

# precision recall accuracy AEER

EM 56.56 69.36 92.90 49.22

CL 77.02 72.34 96.28 24.23

MM 77.62 72.51 96.34 23.66

Table 5.22: Overall classification metrics of the generative vs. discriminative training experiment.

Based on the F1-score in Table 5.23 gunshot and glassbreak work best with a max-margin
optimized GMM. The difference in the score between conditional-likelihood and max-margin
optimized GMMs is generally slim over all classes. Scream and gunshot deliver the best results
witl CL GMMs, the exception is the vocal class which could be modeled best with an EM-trained
GMM.

F1 score

# scream gunshot glassbreak explosion vocal ∅
EM 80.08 32.56 45.78 52.71 85.18 59.26

CL 93.73 42.09 65.35 81.28 84.11 73.31

MM 93.30 44.12 66.51 80.61 84.74 73.86

Table 5.23: F1 scores of the generative vs. discriminative training experiment.
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5.7.3 SVM vs. GMM

In the following experiments GMMs and SVMs are compared. The frame length was fixed to
200ms and a GMM with 128 components was used. The two different feature sets were used.
Because traditional SVMs can only be used for binary classification problems, they were trained
in a one-versus-all fashion. That means, the positive samples contain the samples belonging to
the class to be detected by that particular SVM and the negative data was composed by samples
from all other classes and background sounds. It was expected that the discriminative nature of
SVMs brings advantages in terms of classification performance. The classification metrics are
only given class-wise because the system treats each class independently. A system-wide AEER
is also not available in this case.

The SVM training and testing has been done with svmtrain and accordingly svmclassify

from MATLAB’s Statistics and Machine Learning Toolbox [74]. Radial basis functions have
been used and the iterations were limited to 106. The CPU and RAM requirements for SVM
training and testing were enormous. One training fold took more than four hours, therefore the
experiment runs were limited.

MFCC + ∆MFCC Features

Table 5.24 shows the results for the MFCC feature set. The SVM classifiers delivers much better
results than the GMM except for the explosion class.

scream gunshot glassbreak explosion vocal

# preci. recall accur. preci. recall accur. preci. recall accur. preci. recall accur. preci. recall accur.

GMM 60.00 50.22 91.80 10.72 16.11 90.77 6.12 19.43 88.35 37.36 67.04 83.75 51.89 27.00 77.37

SVM 96.72 68.33 96.65 29.49 36.35 93.63 30.74 89.63 93.47 48.26 58.05 88.36 77.57 94.46 92.41

Table 5.24: Class-wise classification metrics of the SVM vs. GMM with MFCC feature set experiment.

The F1-scores in Table 5.25 show a big improvement when using SVMs for the scream, gunshot,
glassbreak and vocal event. The explosion’s score is also better but the difference is not large.
The given average is not valid for a system as such, because in this topology each SVM operates
on its own.

F1 score

scream gunshot glassbreak explosion vocal ∅
GMM 54.68 12.87 9.30 47.98 35.52 32.07

SVM 80.08 32.56 45.78 52.71 85.18 59.26

Table 5.25: F1 scores of the SVM vs. GMM with MFCC feature set experiment.

MP7 + TEO-CB-Auto-Env Features

When using the MP7 + TEO-CB-Auto-Env features the results in Table 5.26 show that the
GMM can outperform the SVM classifier more often in terms of precision and recall. The
overall accuracy is always best with the SVM classifiers.

scream gunshot glassbreak explosion vocal

# preci. recall accur. preci. recall accur. preci. recall accur. preci. recall accur. preci. recall accur.

GMM 96.72 68.33 96.65 29.49 36.35 93.63 30.74 89.63 93.47 48.26 58.05 88.36 77.57 94.46 92.41

SVM 96.18 72.18 96.98 61.73 19.84 96.09 56.63 55.46 97.32 76.87 72.99 94.53 91.01 75.81 92.69

Table 5.26: Class-wise classification metrics of the SVM vs. GMM with MP7 feature set experiment.

– 66 – October 11, 2016



5.7 Experiments

Table 5.27 shows that in terms of F1 score a well-trained GMM can be better than an SVM-
based system, this is the case for the gunshot and vocal class.

F1 score

scream gunshot glassbreak explosion vocal ∅
GMM 80.08 32.56 45.78 52.71 85.18 59.26

SVM 82.47 30.03 56.04 74.88 82.71 65.23

Table 5.27: F1 scores of the SVM vs. GMM with MP7 feature set experiment.

It is very likely that the proposed one-to-many classification scheme is not suited very well
for this task, e.g. a binary tree based scheme could perform better. Dedicated multi-class SVMs
will also be more reasonable for this task.

5.7.4 Summary of the Results

Table 5.28 summarizes the F1-scores for all experiments conducted in this work. The overall best
scores are achieved with conditional-likelihood and max-margin optimized GMMs for all events
but the vocal/human sound. SVMs with one-to-many classification were unable to outperform
well-optimized GMMs.

F1 score

scream gunshot glassbreak explosion vocal ∅
GMM 60ms 77.16 15.97 45.04 60.09 47.90 49.23

GMM 100ms 76.67 18.19 44.86 54.41 47.34 48.29

GMM 150ms 73.35 19.44 44.67 50.13 46.15 46.75

GMM 200ms 72.34 23.62 44.25 48.03 46.66 46.98

GMM 64K 70.33 25.37 46.93 47.22 44.91 46.95

GMM 128K 72.76 23.02 45.21 48.23 45.70 46.98

GMM 256K 73.75 23.62 43.63 48.34 46.71 47.21

GMM MFCC 54.68 12.87 9.30 47.98 35.52 32.07

GMM MP7 80.08 32.56 45.78 52.71 85.18 59.26

GMM CL 93.73 42.09 65.35 81.28 84.11 73.31

GMM MM 93.30 44.12 66.51 80.61 84.74 73.86

SVM MFCC 80.08 32.56 45.78 52.71 85.18 59.26

SVM MP7 82.47 30.03 56.04 74.88 82.71 65.23

Table 5.28: F1 scores of all experiments conducted.
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6
Conclusion

In this thesis the theoretical and practical aspects of the acoustic detection of general events
were discussed. The concept of human auditory scene analysis was explained, leading to compu-
tational auditory scene analysis, where the human’s auditory abilities are going to be transferred
to a machine. Based on this findings an acoustic event detection system can be derived. Various
systems, requirements and topologies were explained with special focus on audio signal feature
extraction in Chapter 3 and machine learning algorithms in Chapter 4. This work concludes
with the implementation of an acoustic event detection system. Its parts and parameters were
explained and experiments with MATLAB were conducted. It was shown that the choice of
features, parameters and classifiers has a direct influence on the classification performance. For
most of the experiments GMMs were used for classification. All GMM-related experiments
showed different results for the event classes, except for the feature set and learning algorithm
variation. When examining different frame lengths, a tendency to getting better results with
shorter values was observed. The optimal number of components is obviously highly dependent
of the event type to be detected. Some event classes are modeled better with a lower number
of components while others perform better with a higher number. Basically, the results are
similar to other work published using similar feature selection and classifiers. The MP7+TEO
feature set was consistently delivering the best metrics for all event classes. The MFCC feature
set performed the worst and the combination of the MFCC and MP7+TEO feature set was the
second best. The classification results are not getting better just by increasing the length of
the feature vector. As seen in this experiment, adding the wrong features was degrading the
performance of the system. When evaluating discriminative learning algorithms for GMMs, the
classification results improved significantly. Combining a good learning algorithm with the best
feature set of the previous experiment, a medium number of components and a fairly large frame
length lead to the best performance over all experiments with the Max-Margin GMM, followed
by the CLL-GMM.

Replacing the generatively trained GMMs with SVMs results in better average classification
results. The results vary between the classes and depend on the feature set in use. The MFCC
feature set delivered much better results when used with SVMs instead of GMMs. It is very
likely that the proposed usage of the one-to-many scheme is not the best for this task. Due
to limited computational resources no special optimization has been done for improving the
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performance with SVMs. The optimal model could not have been found and over-fitting cannot
be ruled out. The discriminatively trained GMMs still deliver higher classification rates in this
system.

Precision and recall are commonly used metrics for the performance of a classifier. The F1-
score combines them into a single measure, giving equal weight on precision and recall. The
averaging method chosen has an impact on the value of these metrics. In this evaluation the
metrics are calculated class-wise and are then averaged to equally weight the classes because
of the imbalance of events in the audio data available as seen in Table 5.2. Accuracy has to
be interpreted with care if a lot more background frames to be rejected by the classifiers than
events to be detected are contained in test data, which is often the case. A high number of
correctly rejected frames (i.e. true negatives) in contrary to a small number of true positives
increase the accuracy value and reduce the information on detecting true positives is mostly
lost. The purpose-designed AEER does not take correctly detected events into account but is a
relation between wrongly detected or missed events and the ground truth number of events to
be detected.

It is also very difficult to predict the generalization of the resulting models. They are highly
dependent on the audio data used for training and validation. A huge sound library containing
all event classes with a high degree of diversity, i.e. different situation, speakers, countries, etc.
to rule out any over-fitting of the model. Cross-validation has been used to validate the model
and reasonable classification rates were the result.

From a practical point of view, these classification metrics used during the experiments do
not have much relevance in an operational situation. There is no guarantee that the correct
model for the individual situation was selected. Data available for training is always limited, the
ground truth over days, weeks or months of audio data is commonly not available for further
processing, so the metrics cannot be calculated for a real-life situation. An operator in e.g.
control room expects an event detection system to be supportive, i.e. the number of false alarms
must be as low as possible to not be distracted from normal operation. On the other hand,
relevant events must be detected immediately. If an event is missed, it is lost and usually there
is no count of false negatives. To summarize, an event detection system has to prove itself in
everyday use in the environment it has been designed for.

6.1 Outlook

The proposed acoustic event detection system was developed with real-time operation in mind.
Practical field tests in a real environment would give a better understanding of how classification
metrics can be transferred to an operational system and an insight of the system’s quality. Block-
processing is already implemented, an interface to live audio capture and performance tests in
real-time mode are to be done.

To improve the detection results, more extensive model selection and the extension to a
multi-stage detection system, e.g. pre-distinguishing of vocalic and non-vocalic sound events
for better scream detection, should be considered. More computational resources would enable
faster and therefore more training runs to calculate the optimal model. In the proceedings [71]
of the recently held Detection and Classification of Acoustic Scenes and Events 2016 Workshop
(DCASE2016) new trends in acoustic event detection are shown. Multichannel systems have
become more popular, as well as Deep Neural Networks (DNNs). Convolutional Neural Nets
(CNNs) and Recurrent Neural Nets (RNNs) with Long-Short-Term Memories (LSTMs) are now
used. GMMs and HMMs are still utilized and perform well, especially in fused classification
systems with DNNs, RNNs and LSTMs. Random decision trees are also capable of detecting
events, no big changes are seen in the feature sets.

An alternative approach for increasing the detection rates and lowering the number of false
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alarms is the fusion of detection systems operating in different domains, e.g. acoustic, video,
motion, etc. for reaching higher detection rates while lowering the number of false alarms.
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A
Listings

1 % runfeaturextraction

2 % script performing step 1 of the aeds

3
4 clear all

5 close all

6 clc

7
8 aedinit

9
10 framesizes = [30 60 100 150] * 1e-3;

11
12 FEO.ovlp_pc = 0.75;

13 FEO.fs = 16000;

14 FEO.silence_pc = 0.1;

15 FEO.normalize = 1;

16 FEO.mfcc_ncoeff = 13;

17 FEO.mfcc_melbands = 36;

18 FEO.mfcc_cms = 1; % cepstral mean subtraction

19
20 scream_files = readFilelist(’lib/scream_files.txt’);

21 glassbreak_files = readFilelist(’lib/glassbreak_files.txt’);

22 gunshot_files = readFilelist(’lib/gunshot_files.txt’);

23 explosion_files = readFilelist(’lib/explosion_files.txt’);

24 vocal_files = readFilelist(’lib/vocal_files.txt’);

25 background_files = readFilelist(’lib/background_files.txt’);

26
27 for framesize = framesizes

28
29 FEO.framelen = framesize;

30
31
32 FS(1).features = getFeatureStruct(FEO ,scream_files);

33 FS(1).name = ’scream ’;

34
35 FS(2).features = getFeatureStruct(FEO ,gunshot_files);

36 FS(2).name = ’gunshot ’;

37
38 FS(3).features = getFeatureStruct(FEO ,glassbreak_files);

39 FS(3).name = ’glassbreak ’;

40
41 FS(4).features = getFeatureStruct(FEO ,explosion_files);

42 FS(4).name = ’explosion ’;

43
44 FS(5).features = getFeatureStruct(FEO ,vocal_files);

45 FS(5).name = ’vocal ’;

46
47 FS(6).features = getFeatureStruct(FEO ,background_files);

48 FS(6).name = ’background ’;

49
50 save([’FS’ num2str(framesize *1000) ’ms.mat’], ’FS’, ’FEO’, ’-v7.3’);

51
52 end

Listing A.1: feature extraction run script
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1 % extract features from file into feature struct

2 % AEDS project

3 % m.peitler

4
5 function FS = getFeatureStruct(FEO ,file)

6
7 if iscell(file)

8 for f=1: length(file)

9 try

10 FS{f} = getFS(FEO ,file{f});

11 catch err

12 FS{f}.error = err;

13 clog(1,[’#### -> error occurred while feature extraction! ’ err.message ]);

14 end

15 end

16 else

17 FS = getFS(FEO ,file);

18 end

19
20 end

21
22 function FS = getFS(FEO ,file)

23
24 clog(3,[’calculating feature struct for ’ file]);

25 tic;

26 FS.file = file;

27 [FS.x,FS.file_fs] = audioread(FS.file);

28
29 % preprocessing

30 FS = multich2mono(FEO ,FS);

31 FS = audioResampler(FEO ,FS);

32 FS = audioNorm(FEO ,FS);

33 FS = audioSegmenting(FEO ,FS);

34 FS = removeSilentFrames(FEO ,FS);

35 FS = stft(FEO ,FS);

36
37 % feature extraction

38 FS = mp7_awf(FEO ,FS);

39 FS = mp7_ap(FEO ,FS);

40 FS = mp7_asf(FEO ,FS);

41 FS = mp7_asc_ass(FEO ,FS);

42 FS = mp7_hr(FEO ,FS);

43 FS = mp7_ulh(FEO ,FS);

44 % FS = mp7_aff(FEO ,FS);

45
46 FS = mfccs(FEO ,FS);

47 FS = dMFCCs(FEO ,FS);

48 FS = rootCepstrumCoeffs(FEO ,FS);

49
50 FS = teo_cb_auto_env(FEO ,FS);

51
52 FS.feTime = toc;

53
54 end

Listing A.2: feature extraction script

1 % runtraining

2 % aeds project , m.peitler

3
4 CMT.tratio = 0.8;

5
6 CMT.type = ’dgmm_ml ’;

7 CMT.K = 128;

8 CMT.kmeans_maxiter = 100;

9 CMT.em_maxiter = 1000;

10
11 % framesizes_ms = [60 100 150];

12 framesizes_ms = [200];

13
14 CMT.featureset.mfcc = {’MFCC’, ’dMFCC’};

15 CMT.featureset.mp7 = {’AWF’,’AP’,’ASC’,’ASS’,’HR’,’ULH’,’tcbae’ };

16 CMT.featureset.all = {’MFCC’,’dMFCC’,’AWF’,’AP’,’ASC’,’ASS’,’HR’,’ULH’,’tcbae’};

17 CMT.features = CMT.featureset.mfcc;

18 % CMT.features = {’AWF ’,’AP ’,’ASC ’,’ASS ’,’HR’,’ULH ’,’tcbae ’};

19 for frmsz = framesizes_ms

20 clear FS

21 clear CM

22 load([’FS’ num2str(frmsz) ’ms.mat’])

23
24 for k = 1: length(FS)

25 [fv ,CMT.Ni] = getFeatureVector(FS(k).features ,CMT.features);

26 [train ,~] = dataSplitting(fv ,CMT.tratio);

27
28 CM(k) = cmTrain(CMT ,train);

29
30 end

31
32 save([’cm_all_ ’ num2str(frmsz) ’.mat’], ’CM’, ’CMT’)

33
34 end

35
36
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37 CMT.features = CMT.featureset.mp7;

38 CMT.K = 128;

39
40 load FS200ms

41 clear CM

42
43 for k = 1: length(FS)

44 [fv ,CMT.Ni] = getFeatureVector(FS(k).features ,CMT.features);

45 [train ,~] = dataSplitting(fv ,CMT.tratio);

46
47 CM(k) = cmTrain(CMT ,train);

48
49 end

50 save(’cm_mp7_200.mat’,’CM’,’CMT’);

51
52 break

53
54 %%

55 CMT.name = ’scream ’;

56
57 CMT.features = {’MFCC’,’dMFCC’,’tcbae ’,’HR’};

58
59 [scream_fv ,CMT.Ni] = getFeatureVector(FS{1}. features ,CMT.features);

60 [scream_train ,scream_test] = dataSplitting(scream_fv ,tratio);

61 clear scream_fv

62
63 CM(1) = cmTrain(CMT ,scream_train);

64 %%

65 CMT.name = ’gunshot ’;

66 CMT.features = {’MFCC’,’dMFCC’};

67 [gunshot_fv ,CMT.Ni] = getFeatureVector(FS.gunshot ,CMT.features);

68 [gunshot_train ,gunshot_test] = dataSplitting(gunshot_fv ,tratio);

69 clear gunshot_fv

70
71 % CM(2) = cmTrain(CMT ,gunshot_train);

72 %%

73 CMT.K = 256;

74 CMT.name = ’glassbreak ’;

75 CMT.features = {’MFCC’,’dMFCC’,’ASC’};

76 [glassbreak_fv ,CMT.Ni] = getFeatureVector(FS.glassbreak ,CMT.features);

77 [glassbreak_train ,glassbreak_test] = dataSplitting(glassbreak_fv ,tratio);

78 clear glassbreak_fv

79
80 % CM(3) = cmTrain(CMT ,glassbreak_train);

81
82 %%

83 CMT.name = ’explosion ’;

84 CMT.features = {’MFCC’,’dMFCC’};

85
86 [explosion_fv ,CMT.Ni] = getFeatureVector(FS.explosion ,CMT.features);

87 [explosion_train ,explosion_test] = dataSplitting(explosion_fv ,tratio);

88 clear explosion_fv

89
90 % CM(4) = cmTrain(CMT ,explosion_train);

Listing A.3: model training run script

1 % AEDS project

2 % class model training

3 % m.peitler , 12/13

4
5 function [CM] = cmTrain(CM,data ,groups)

6
7 [CM.D,CM.N] = size(data);

8
9 switch CM.type

10
11 case ’diagGMM_nl ’

12
13 % diagonal GMM of netlab toolbox

14 % k-means init followed by em

15
16 CM.g = gmm(CM.D,CM.K,’diag’);

17 options = foptions;

18 options (1) = 1; % display errors

19 options (9) = 1; % check gradient calcs.

20 options (14) = CM.kmeans_maxiter;

21 CM.g = gmminit(CM.g,data.’,options);

22 disp(’k-means completed ’)

23
24 options = foptions;

25 options (1) = 1; % display errors

26 options (5) = 1; % cov checking

27 options (9) = 1; % check gradient calcs.

28 options (14) = CM.em_maxiter;

29 options (3) = 1e-6;

30
31 [CM.g,CM.ret ,CM.errlog] = gmmem(CM.g, data ’, options);

32
33 case ’dgmm_ml ’

34 options = statset(’Display ’,’iter’,’MaxIter ’,CM.kmeans_maxiter);

35 [idx] = kmeans(data.’,CM.K,’Options ’,options);

36
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37 options = statset(’Display ’,’iter’,’MaxIter ’,CM.em_maxiter);

38 CM.g = gmdistribution.fit(data.’,CM.K,’Start’,idx ,’CovType ’,’diagonal ’,’Regularize ’ ,1,...

39 ’Options ’,options);

40
41 case ’svm’

42 opt = statset(’Display ’,’iter’,’MaxIter ’ ,50000);

43 CM.SVM = svmtrain(data.’,groups ,’Kernel_Function ’,’rbf’,’options ’,opt);

44 end

45
46 end

Listing A.4: class model training script
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