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Abstract

Circulating tumor DNA (ctDNA) is mainly shed into the blood circulation by cells going

through apoptosis, a process during which DNA is fragmented by DNase digestion before

it is released. This fragmentation step is not random, since DNA bound to a histone

complex (i.e. the nucleosome) is preferentially protected from degradation. It is also

known that in a certain region before the transcription starts in a gene, nucleosomes are

actively removed from the DNA in order to facilitate transcription.

Here, this fact is used to deduce the expression of genes based on the relative under-

representation of fragments at the transcription start site in genes which are transcribed

to mRNA.

Whole-genome sequencing data of plasma of healthy controls is used to establish an

algorithm which predicts the expression status of genes based on Support Vector Machines.

These results are compared to previously published data of gene expression analyses of

circulating RNA.

In a next step, whole-genome sequencing of cell-free DNA from two patients with

metastasized breast cancer was performed to establish the applicability of this approach

to cancer samples.

Expressed genes differ greatly in their coverage profile around transcription start sites

in healthy controls. This signal can be exploited to infer the expression status of genes.

Moreover, this approach also works in plasma DNA from tumor patient, provided that

the fraction of tumor-derived DNA is high enough.

The analysis of gene expression from ctDNA could enhance the application of liquid

biopsies and may be used in various fields of medicine, apart from cancer.
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1. Introduction

Liquid biopsies, i.e. the analysis of circulating tumor cells (CTCs) and circulating tu-

mor DNA (ctDNA), are evolving to become promising tools to study characteristics of

the tumor genome non-invasively in patients with cancer from the peripheral blood. In

particular, ctDNA is intensively investigated as a biomarker in translational and clinical

research as it may reflect the tumor burden and may provide information on therapy

response and the development of therapy resistance.

1.1. Tumorgenetics

Cancer is a heterogeneous disease which can affect almost every organ in the human body.

It is now widely accepted that the transformation of a healthy cell to a tumor cell is due

to mutations in the cancer cell’s DNA which gives rise to certain characteristics that allow

the cancer cell to grow uncontrollably [1]. Many different types of mutations have been

described from single nucleotide substitutions to mutations affecting whole chromosomes

or even whole genome duplications.

Mutations in the cancer genome can be divided into driver and passenger mutations.

Driver mutations are directly affecting the cancer cell’s ability to grow whereas passenger

mutations have no positive effect on the tumorigenic capabilities [2].

To date, many genes have been found which recurrently harbor driver events and thus

may promote tumor growth. Usually, these genes fall in either of two classes [3]:

• Tumor suppressor genes

Tumor suppressor genes control the cell cycle in healthy cells. Only when they are

inactivated by mutation, tumor growth can circumvent this control mechanism.

Usually mutations in these genes destroy the protein function and are distributed

throughout the whole gene. RB1, for example, was the first identified tumor suppressor

8



1.2. TUMOR EVOLUTION 1. Introduction

gene [1, 3, 4].

• Oncogenes

Oncogenes usually do not have a known function in the cell cycle as long as they

are in their normal state. However, certain mutations can activate or amplify a

function of these genes which cause the cell to grow indefinitely [3, 5].

KRAS is an example of a well-studied oncogene [3].

The origin of mutations can be manifold:

• Exposure to mutagenic substances

• Inheritance of cancer-predisposing mutations

• Random errors due to non-perfect DNA replication

Understanding the role of cancer genetics becomes increasingly important as more and

more cancer therapies targeting molecular characteristics become available [6].

1.2. Tumor evolution

The genetic landscape of cancer is very complex. Several mutations are necessary to

transform a healthy cell to a tumor cell, however, when the tumor reaches a malignant

stage, it comprises a multitude of different cells comprising subclones of the overall tumor.

These are cells which originate from a single cell but differentiate (both genetically and

phenotypically) during the course of disease [3, 7]. Subclones may have a different set of

somatic mutations and are formed by a process termed ”tumor evolution”. This impedes

analysis of somatic mutations, but may also ultimately lead to a failure of a therapy

targeting a molecular feature which might not be present in every subclone[8]. To study

heterogeneity and clonal evolution of a tumor throughout therapy, the analysis of ctDNA

promises a significant advancement, since repeated sampling is a lot easier compared to

tissue biopsies [9].

1.3. Circulating tumor DNA

Cell-free DNA (cfDNA) is DNA circulating in the liquid parts of the peripheral blood

bound to histones in form of nucleosomes, which can be isolated by centrifugation of all

cellular parts and extraction of DNA from the plasma or serum [10, 11, 12]. Although

9



1.3. CIRCULATING TUMOR DNA 1. Introduction

most extracellular DNA in the plasma is present in the form of nucleosomes, at least some

of it may be present in membranous vesicles [13].

In cancer patients, a fraction of the cell-free DNA originates from tumor cells and may

be used to characterize the tumor genome non-invasively [11]. The presence of cell-free

DNA has been shown for the first time in 1948 by Mandel and Métais [14], while Leon

et al. were the first to identify changes in plasma of cancer patients [15] around 30 years

later.

The decreasing cost of sequencing in recent years has now opened up many new pos-

sibilities, including whole genome sequencing of ctDNA [16], high-resolution detection of

mutations in ctDNA [17] and methylation analyses [18].

1.3.1. cfDNA release

Although the analysis of cfDNA has been in wide use over the last years, very little is

known about the mechanisms of DNA release and the involved kinetics. Apoptosis and

necrosis have been identified as important contributors of cfDNA [10], however, also active

release of DNA by the cells into the circulation was postulated [19].

However, cell-free DNA is only released in very small quantities, which complicates

further downstream analyses [9].

1.3.2. Size

Apart from very low concentrations, another complication in the analysis of cfDNA is its

fragmentation. While there is agreement on the size of cfDNA in healthy patients [20],

many conflicting results were shown for ctDNA in patients with cancer [21]. While one

group showed that ctDNA is shorter than cfDNA and yields 10bp-periodic peaks below

the cfDNA modal peak of 166bp [22], results from the Institute of Human Genetics in

Graz show size distributions of multiples of 166bp in metastasized cancer patients (see

figure 1.1) [23].
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1.4. NUCLEOSOMES 1. Introduction

Figure 1.1: Size distribution of ctDNA in cancer patients occur in multiples of 166bp.
[Image taken from Heitzer et al. [9]].

It has been hypothesized that the particular size distribution comes from preferential

protection of DNA from nucleases via binding of nucleosomes [22]. This is supported by

an analysis of cell-free DNA which found cfDNA occurring in clusters along the genome

which correlate to nucleosomal arrays [24] (figure 1.2).

Figure 1.2: Circulating cell-free DNA is released by various cell types and is digested by
nucleases during apoptosis. DNA that is bound to nucleosomes is protected from digestion
and are thus more likely available for down-stream analyses.

1.4. Nucleosomes

1.4.1. Organization

Within the nucleus of each cell, DNA is packaged in order to reduce the space needed for

the large molecule to fit within the nuclear membrane. Packaging occurs hierarchically

in several orders. In a very early packaging step, 147bp of DNA is wrapped around

a protein complex, which consist of histone octamers [25], thus forming a nucleosome.

Between them, a stretch of DNA between 10 to 90bp long connects nucleosomes and is

known as linker DNA. Linker DNA is either bound by histone H1 or not bound to any

protein [25] (see figure 1.3). This first step of packaging DNA reduces space requirements

for DNA about 10,000-fold [26].
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1.4. NUCLEOSOMES 1. Introduction

Figure 1.3: DNA (turquoise) is wrapped around two histone octamers, connected by linker
sequence. [Image generated by Qutemol (v0.4.1) from PDB accession: 1zbb].

1.4.2. Sequence specificity

The positioning of nucleosomes along the genome is affected by the DNA sequence and

its ability to rotate around the histone octamer. Thus, sequences which do not favor such

rotational positions tend to inhibit binding of the nucleosome. Homopolymeric sequences

such as poly(dA:dT) sites tend to have inhibitory effect on nucleosome binding, whereas

10bp-periodic alternating dinucleotides of GC and (AA/TT/TA) strongly favor binding

of nucleosomes (see figure 1.4)[27].
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1.4. NUCLEOSOMES 1. Introduction

Figure 1.4: Periodic dinucleotides of GC as well as AA/TT/TA favor nucleosome binding
as these structures may provide enough bending to wrap around nucleosomes. [Image
taken from Struhl et al. [27]].

1.4.3. MNase-seq

In order to study nucleosome positioning along the genome, a common approach is to

digest chromatin using a nuclease derived from Micrococci termed micrococcal nuclease

(MNase). Here, DNA is digested unspecifically, however, DNA bound to nucleosomes is

protected from this process which allows preparation of every sequence initially bound to

nucleosomes. After treatment, DNA can be analyzed either via microarray analysis or via

next generation sequencing [26].

1.4.4. Nucleosome depleted region at transcription start sites

Transcription start sites (TSS) tend not to harbor a lot of nucleosomes, since AT-rich

promotor regions do not bend enough to wrap around the histone octamer [28]. More-

over, chromatin remodeling complexes maintain the nucleosome depleted region (NDR)

by sliding nucleosomes away in order to ensure accessibility of transcription factors and

Polymerase II [29, 30]. In addition, the first nucleosome after the transcription start (+1

nucleosome) is strongly positioned in vivo but not in vitro [27]. The strong position-

ing then decreases for the following nucleosomes and may be attributable to the strong

positioning of the first nucleosome and the restriction on linker length [27]. Adding ATP-

dependent nucleosome remodelers to cell-free extract of yeast enhances the nucleosome
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1.5. AIM OF THE THESIS 1. Introduction

depletion at promotors also in vitro to nearly the same way as it is observed in vivo [27].

1.4.5. Nucleosomes at transcription factor binding sites

Furthermore, transcription factor binding sites seem to be depleted of nucleosomes in

vivo, although a high occupancy of these sites was predicted in vitro [31].

1.5. Aim of the thesis

The aim of this thesis is to explore whether it is possible to predict the gene expression of a

tumor, based on coverage differences in sequencing data due to the pattern of nucleosomal

binding on the plasma DNA.

To this end the following aspects will be investigated in particular:

• Confirm the nucleosome association of cfDNA in healthy samples

• Analyze coverage differences around transcription start sites between expressed and

unexpressed genes

• Select features to predict expression of every gene

• Validation of gene expression prediction

• Explore whether gene expression prediction can be performed in tumor samples

14



2. Methods

2.1. Data sets

Several data sets were used for the subsequent analyses

2.1.1. Pool of cfDNA samples (n=179)

A set of 179 cell-free DNA samples (cancer patients and non-cancer controls) which have

been analyzed using paired-end low-coverage whole-genome sequencing were used to ex-

plore differences in fragment size between nuclear DNA and mitochondrial DNA.

2.1.2. cfDNA samples of non-cancer controls (n=104)

Cell-free DNA samples of 104 non-cancer controls which were subjected to single-end

low-coverage whole-genome sequencing were used to deduce coverage differences in the

transcription start region and to setup and validate the gene expression prediction.

2.1.3. cfRNA data of non-pregnant women (n=4)

Raw cfRNA sequencing data of 4 non-pregnant women were downloaded from the Se-

quence Read Archive (SRA) [32] (Accessions: SRR1296080, SRR1296081, SRR1296082

nad SRR1296083). This data were generated by Koh et al. [33].

In addition microarray (Affymetrix Human Gene 1.0 ST Array) data of the same

samples were downloaded from the Gene Expression Omnibus (GEO) [34]. This datasets

contained precomputed Robust multi-array average (RMA) values for 48 samples, 4 of

which were from non-pregnant women (GSM1370906, GSM1370907, GSM1370908 and

GSM1370909). Data of non Ref-Seq transcripts was discarded and RMA values for all

four samples were averaged.
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2.2. PLASMA DNA PREPARATION 2. Methods

2.1.4. MNase-seq data of GM12878

Results of MNase-seq analyses from the cell-line GM12878 were downloaded as BigWig

files from the UCSC Genome Browser [35].

2.1.5. ctDNA of breast cancer samples

Plasma DNA of two patients with metastasized breast cancer were used for testing the ap-

plicability on tumor-derived DNA. Samples have been isolated and prepared as described

below by members of the Institute of Human Genetics.

2.1.6. RNA-seq of primary tumors

In order to compare gene expression predictions from plasma DNA of breast cancer pa-

tients, RNA-seq was performed on the primary tumor tissues of both breast cancer pa-

tients. This was done at the Institute of Pathology.

2.1.7. Functional enrichment of Top100 genes

Functional enrichment analysis on the Top100 genes from chromosome 1q (for B7) and

gained regions of chromosome 8 (for B13) was performed using DAVID [36]. Gene ontology

terms [37] and pathways from the KEGG [38], Biocarta [39] and Reactome [40] database

were annotated.

2.2. Plasma DNA preparation

Plasma DNA was prepared using the QIAamp DNA Blood Mini Kit (Qiagen, Hilden,

Germany) as previously described [23]. Samples selected for sequencing library construc-

tion were analyzed on the Bioanalyzer instrument (Agilent Technologies, Santa Clara,

CA, USA) to observe the plasma DNA size distribution. DNA preparation was done by

members of the Institute of Human Genetics.

2.3. Plasma DNA sequencing

Shotgun libraries of plasma DNA and tumor DNA were prepared using the TruSeq DNA

Nano library preparation kit by Illumina (Illumina, San Diego, CA, USA) with a starting

amount of 5- 10ng according to the protocol [41]. However, due to the low DNA input,
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2.4. ANALYSIS ENVIRONMENT 2. Methods

we increased the amount of PCR cycles to 25. Furthermore, the fragmentation step was

omitted due to the degradation of plasma DNA. Libraries were sequenced on the Illumina

MiSeq and NextSeq sequencers by members of the Institute of Human Genetics.

2.4. Analysis environment

The following analysis tools are used:

• GNU make (4.1)

• R (2.14.1)

– library e1071 (1.6-7)

• R (3.2.3)

– library MASS (7.3-45)

• Python (2.7.3)

– library sys

– library argparse

– library subprocess

– library numpy

– library scipy

– library os.path

– library multiprocessing

• Java (2.7.3)

• zcat

• samtools (v.0.1.18)

• picard (1.128)

• bwa (0.7.4-r385)

• tophat (2.3.7)

• cufflinks (2)

• VarScan2 (2.2)

Details of the code used to produce the results can be found at GitHub [42].
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2.5. NUCLEOSOMAL ASSOCIATION 2. Methods

2.5. Nucleosomal association

2.5.1. Fragment size at mitochondrial genome

Insert size of 179 low-coverage whole-genome plasma sequencing datasets were aligned

to the human hg19 genome using bwa backtracking (version 0.7.4 [43]), since second

reads are about 35bp. A SAM file was generated using the sampe command provided by

bwa and converted to BAM files [44]. Individual BAM files were merged subsequently.

Mitochondrial reads were extracted by samtools view with the region filtering option

[45] and subsequently, insert sizes were calculated using Picard’s CollectInsertSizeMetrics

function [46].

In order to get reads from the nuclear genome, the merged BAM file was downsampled

using Picard’s DownsampleSam function [46] and only a fraction of 0.0002 of all the reads

were kept to produce a comparable amount of samples for insert-size calculation. Hits

to the mitochondrial genome were discarded and insert sizes were again calculated using

Picard [46].

Insert size distributions were then plotted in R.

2.5.2. Read trimming

In order to get a cleaner signal of nucleosome-associated region with the cell-free DNA,

reads were trimmed to 60bp, starting from base 53 to base 113. This was done, since

cell-free DNA has a size modus at 166bp, thus base 53-113 should represent the center of

the molecule and the region most likely be bound to nucleosomes (see figure 2.1). Read

trimming was done using fastx trimmer tool provided by the FASTX toolkit [47].

2.5.3. Alignment

Trimmed reads of the control samples were aligned to the human hg19 genome using bwa

[43]. PCR duplicates were marked using samtool’s rmdup function [45] and merged to

produce a single BAM file containing all individual control BAM files.

2.5.4. Coverage at nucleosome array

From the merged control BAM files, WIG files containing coverage information in the

region with ordered nucleosome arrays [48] were generated by a wrapper script which
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nucleosome associated DNALinker Linker

sequencing read (150bp)

147bp 0-20bp0-20bp

central 60bp
53bp 37bp

Figure 2.1: Reads were trimmed to 60bp (from base 53 to base 113) in order to only include
the most central portion of a (hypothetical) 166bp cfDNA fragment, which should be the
portion with the highest association to nucleosomes.

uses the bam to wiggle.py script provided by Brad Chapman via GitHub [49].

Wiggle files were loaded into the UCSC Genome Browser and MNase-Seq results of

GM12878 from the ENCODE project [50] were visualized together with coverage data

from merged control cfDNA.

2.5.5. Correlation at nucleosome array

Based on the wiggle files, Pearson’s and Spearman’s correlation coefficients were calcu-

lated between the merged controls and the MNase-Seq results from GM12878 from the

ENCODE project in R [51].

2.6. Coverage profile at transcription start sites

The coverage of transcription start sites (TSS) was extracted from the trimmed and

aligned single-end reads with the samtools depth [45] command and was normalized by

the mean coverage of the regions from -3000 to -1000 bp from TSS and 1000 to 3000 bp,

respectively. This is done to compare for copy number differences and to normalize for the

variable total read input. Normalized coverage values were then averaged and confidence

regions were calculated to check for the variability of the signal. Averaging was done on

the following gene sets:

• Housekeeping genes

• Unexpressed genes in FANTOM5

• 1000 highest and lowest expressed genes from cfRNA studies

19



2.7. GENE EXPRESSION PREDICTION 2. Methods

2.6.1. Housekeeping genes

Housekeeping genes as defined by Eisenberg and Levanon [52] were used to calculate a

normalized TSS profile.

2.6.2. FANTOM5

The FANTOM5 project, which catalogs gene expression for a diverse set of tissues, was

used to derive genes unexpressed in all tissues [53]. To this end, raw data was downloaded

from the EBI expression atlas [54] and genes were searched which were expressed <0.1

FPKM in all of 56 tissues.

2.6.3. cfRNA gene expression microarrays

The 1000 highest and lowest expressed genes were extracted from preanalyzed gene-

expression microarray data (Affymetrix Human Gene 1.o ST Array) of circulating cell

free RNA [33] of four non-pregnant women. RMA values were averaged and ranked and

only genes which code for mRNAs in RefSeq were used for subsequent analyses.

2.6.4. cfRNA RNA-seq analysis

FastQ files of the four non-pregnant women were downloaded from the SRA, aligned to

the human genome using Tophat (v2.3.7) [55] and FPKM were calculated using cufflinks2

[56].

2.7. Gene expression prediction

2.7.1. Feature extraction

Two parameters were used for the identification/prediction of genes into an expressed and

unexpressed subset.

• The coverage between TSS-1000bp and TSS+1000bp (2K-TSS coverage)

• The coverage between TSS-150bp and TSS+50bp (NDR coverage)

For every TSS in RefSeq, parameters were extracted and divided by the relative copy

number of that region identified in the copy number alteration (CNA) analysis step.
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2.7.2. Kernel density estimation

In order to see whether both coverage signals combined yield a signal which can distinguish

expressed from unexpressed genes, multivariate Kernel Density Estimation (KDE) [57] was

performed on the coverage signals of the Top 1000 and the Bottom1000 genes respectively.

To this end, the kde2d function provided by the MASS package was used in R.

2.7.3. Machine learning

In order to predict the expression status of individual genes, we used Support Vector

Machines (SVM). To this end, an implementation of SVM provided by the e1071 package

within R was used. As a training set for expressed genes, we used a random subset of

300 housekeeping genes out of 3,804 housekeeping genes which are expressed uniformly

in multiple tissues and for unexpressed genes a random subset of 300 genes out of 670

reported to be unexpressed in most tissues by the FANTOM5 project [53]. Every gene

not used as training data was predicted. Random subset selection and prediction was

repeated a 1,000 times and prediction status for each TSS was recorded. We considered

a gene to be expressed when the prediction consent of all the iterations was higher than

75%.

2.7.4. Classification validation

We conducted detailed analyses of sensitivity, specificity, accuracy, precision, and F1-

score for different groups of genes, such as Top 100, Top 1000 and Top 5000 genes (i.e.

the 100, 1,000, and 5,000, respectively, most highly expressed genes).

sensitivity =
true positive

true positive+ false negative
(2.1)

specificity =
true negative

true negative+ false positive
(2.2)

accuracy =
true positive+ true negative

total number of genes
(2.3)

F1 − score =
2 ∗ true positive

2 ∗ true positive+ false positive+ false negative
(2.4)
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In order to perform these analyses also for the full set of expressed genes, different

FPKMs were considered as threshold to distinguish between transcribed and unexpressed

genes because low- abundance transcripts might not represent active transcripts but rather

technical or biological noise. First, a FPKM threshold of 1 was used, as several previous

studies had used such a value as a fixed threshold. Second, a FPKM value of 0.44 was

used as a reliable and robust threshold between active and background gene expression,

which was established in a recent study based on large-scale studies such as the ENCODE

project [58] (table 3.1).

2.7.5. In-silico dilution simulation

Dilution simulations to test the reliability of the prediction at varying tumor fractions

were performed. To this end, the distribution of the 2K-TSS and the NDR coverage pa-

rameters of the 1000 least expressed were modeled as a normal distribution with mean and

standard deviation calculated from the two parameters from the aforementioned genes.

Subsequently, random numbers from these distributions were added to the parameters of

the Top 1000 expressed genes at varying proportions (denoted below as λ ) to simulate

a dilution of the signal (Top 1000 genes) with background noise (Bottom 1000 genes)

having mean µ and standard deviation σ. Prediction accuracy was measured for every

dilution.

2K − TSS(λ) = 2K − TSS ∗ λ+ (λ− 1) ∗N2K−TSS(µBottom1000, σBottom1000) (2.5)

NDR(λ) = NDR ∗ λ+ (λ− 1) ∗NNDR(µBottom1000, σBottom1000) (2.6)

2.7.6. Quantitative analysis

In order to test whether the 2K-TSS and the NDR coverage contain quantitative infor-

mation about gene expression, we annotated every TSS from the merged controls with

the FPKM values of the respective genes from the aforementioned plasma RNA-seq ex-

periments [33]. FPKM values were ranked and percentiles of the ranks were calculated.

Subsequently, data from the 2K-TSS and NDR coverage parameters were binned and
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average percentile of every (integer) bin was calculated. Bins containing 10 TSSs or less

were discarded.

2.7.7. Linear Model

By employing multiple regression analysis, a more detailed quantitative prediction was

investigated. To this end, a linear model was fitted by using the glm function in R and

specifying 2K-TSS and NDR coverage as predictors and the FPKM percentile as response

variable.

2.8. Tumor samples

2.8.1. Single nucleotide variant (SNV) identification

Paired-end reads of both plasma samples from two breast cancer patients were aligned to

the human (hg19) genome using bwa [43]. PCR duplicates were removed using samtools

rmdup function and a pileup file of every position in the genome was created using mpileup

function also provided by samtools [45]. Variant calls were generated using VarScan 2 (ver-

sion 2.2) using standard parameters (minimum coverage: 8, minimum reads supporting

variant: 2, minimum variation frequency, 1%, minimum average quality 15 and p-value

threshold 0.99) [59].

2.8.2. SNV filtering

SNVs were filtered to identify possible driver mutations of the tumor. Moreover, germline

mutations are also in the initial call set, since no germline DNA was available for com-

parison. In a first step SNVs are annotated using annovar [60], which adds information

from several databases to the identified SNP calls. The first filtering step removes every

mutation outside of protein coding sequences, since these mutations are hard to interpret.

Subsequently, synonymous SNVs are removed as well as SNVs with a high allele frequency

(>1%) in a healthy population (as determined by the 1000genomes project [61], ExAc

database 2 [62] and the Exome sequencing project [63]). In a last step, SNVs are removed

which lie within segmental duplications, since these are enriched for artifacts.
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2.8.3. Copy number alteration analysis

Raw (single-end) reads of the two breast cancer samples and the merged controls were

aligned to the human hg19 genome using Burrows-Wheeler aligner (bwa) [43] where the

pseudo-autosomal region of the Y-chromosome was masked. PCR duplicates were re-

moved and reads were counted in 50,000 genome bins, each containing the same amount

of mappable positions (approximately 56kbp). Raw read counts were normalized by the

median bin count and GC correction was done using LOWESS smoothing. Furthermore,

corrected read counts were normalized by mean bin counts of cfDNA samples of 10 non-

cancer controls and segmented using both CBS and GLAD (which partition the raw copy

number data into segments of similar copy number) provided by the CGHweb framework

[64].

2.8.4. Insert size estimation

Fragment lengths were calculated by making use of the paired-end sequencing approach.

Both ends of a fragment are aligned to the genome and the distance between the align-

ments are calculated. Paired-end reads were aligned (simultaneously) using bwa mem

[43]. After PCR duplicate removal with samtools [45], insert sizes were calculated using

Picard (version 1.128) [46]. For region-specific insert size calculations, parts of the aligned

BAM files were extracted using samtools view and insert size calculation again performed

using Picard.

Insert size distribution was estimated using Kernel Density Estimation (KDE), calcu-

lated by using R’s density function on a random sample of 100,000 insert sizes from the

respective chromosomal region. Confidence intervals were obtained by repeated sampling

(n=1000) of the insert sizes.

2.8.5. Focal amplifications

From the segmented copy number data, focal amplifications were identified based on

certain evaluation criteria [65]:

• Segment should be <20 Mbp

• Log2-ratio of the segment must be >0.2

• Segment should contain at least one but not more than 100 genes

24



2.8. TUMOR SAMPLES 2. Methods

• Log2-ratio of the segment must >0.2 higher than average log2-ratio of neighboring

20 Mb if it contains a known tumor gene

• Log2-ratio of the segment must >0.58 (corresponds to 3 copies) higher than average

log2-ratio of neighboring 20 Mb if it contains a known tumor gene

• Segment should not contain segmental duplications in >50% of its size

• Segment should not overlap with known entries in DGVar

2.8.6. Tumor fraction estimation

The tumor fraction of the two breast cancer samples was estimated by applying ABSO-

LUTE [66] to the segmented log2-ratios obtained by the copy number alteration (CNA)

analysis. ABSOLUTE takes the copy number information obtained in the prior step and

compares this to a database of known cancer karyotypes and tries to find the best fit

using maximum likelihood. Plausible karyotypes can be selected and ABSOLUTE can

calculate the ploidy, purity and subclonality of a tumor sample. The detailed workflow

can be seen in figure 2.2.

2.8.7. Isoform discrimination

Expressed isoforms were determined by calculating the distance of the two parameters

between the TSS in the merged control data and the tumor patient after normalizing

both parameters in both data sets. TSSs which lead to higher expression in the tumor

should decrease in both the 2K-TSS and the NDR coverage when compared to the same

TSS in control data.
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Figure 2.2: ABSOLUTE estimates the tumor fraction by comparing known tumor kary-
otypes to the distribution of copy numbers within a sample. In addition ABSOLUTE may
use mutated allele fractions of somatic SNPs to further enhance the estimation. [Image
taken from [66]].
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3. Results

3.1. Nucleosome association of cfDNA

In order to get further evidence that cell-free DNA is associated with nucleosomes, two

analyses were done:

• Comparing fragment sizes of mitochondrial DNA and nuclear cell-free DNA

• Compare coverage signal of non-cancer cfDNA controls to MNase-seq data

3.1.1. Fragment size

Since mitochondrial DNA is not packaged in the same way as nuclear DNA, insert sizes

of paired-end reads (as a proxy to cfDNA fragment size) mapping to the mitochondrial

genome should be different than that of reads mapping to the nuclear genome. Hence, we

used paired-end sequencing data of 179 plasma cfDNA samples (of both healthy individ-

uals and patients with cancer) and measured the insert sizes (see figure 3.1).
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Figure 3.1: Comparing insert sizes of nuclear and mitochondrial DNA from paired-end
sequences from 179 individuals. Insert sizes of fragments mapping to the nuclear genome
have a distinct pattern with a mode around 166bp, while the length distribution of mito-
chondrial fragments appears to be wider distributed.

3.1.2. MNase-seq comparison

Chromosome 12 harbors a region close to the centromere, where 400 nucleosomes are

found in an ordered array [48]. The coverage signal from cfDNA of 104 controls resembles

the coverage enrichment signal from MNase-seq results produced in the ENCODE project

(see figure 3.2).

Signals for the whole region (hg19: chr21:34,484,733-34,560,733) show a high correla-

tion (Pearson correlation coefficient: 0.709, Spearman correlation coefficient: 0.708) (see

figure 3.3).
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Figure 3.2: The coverage signal of cfDNA fragments resembles the signal enrichment
from MNase-seq studies on the cell line GM12878 in a region of ordered nucleosomes on
chromosome 12.
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Figure 3.3: The coverage signal of cfDNA fragments correlates well to the signal enrich-
ment from MNase-seq studies on the cell line GM12878.

3.2. Coverage at transcription start sites

Since transcription start sites of expressed genes should not be bound to nucleosomes

to facilitate access of the transcription machinery, the coverage in that region should be

lower in cfDNA. This has already been demonstrated in MNase-seq data [30]. Here, we

used cfDNA sequencing data from 104 non-cancer controls to verify this observation.

29



3.2. COVERAGE AT TRANSCRIPTION START SITES 3. Results

3.2.1. Housekeeping genes

Since housekeeping genes should be expressed in every tissue, the coverage profile around

the transcription start should give clues whether a nucleosome depleted region can be

identified in cfDNA the same way as in MNase-seq experiments [30].

Indeed, the coverage signals drops around the TSS and on both sides and a repetitive

pattern on both the 5’ and the 3’ end are visible (see figure 3.4).
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Figure 3.4: The coverage profile around transcription starts of housekeeping genes [52] in
comparison to genes which are unexpressed in all tissues (as determined in the FANTOM5
project [53]) shows a distinct pattern of well-positioned nucleosomes in the former but
not the latter. Vertical black lines denote recurrent nucleosome dyads, deduced from the
peak in the coverage signal.

3.2.2. Cell-free RNA

To further confirm this effect, cell-free RNA (cfRNA) microarray analyses were obtained

from four healthy (non-pregnant) women [33] and a coverage profile around the TSS was

calculated for the 1000 highest (Top1000) and lowest expressed genes (Bottom1000) (see

figure 3.5. This was also done for MNase-seq results from the ENCODE project to verify

the nucleosome association (see figure 3.6).
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Figure 3.5: The coverage profile around transcription starts of the 1000 highest and lowest
expressed genes [33] in 104 healthy individuals. Shaded areas represent 95% confidence
intervals.
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Figure 3.6: The coverage profile around transcription starts of the 1000 highest and
lowest expressed genes [33] in the GM12878 MNase-seq dataset. Shaded areas represent
95% confidence intervals.

RNA-seq data were also available from the same four individuals. In a subsequent anal-

ysis, the TSS profile for gene subsets at varying FPKMs was analyzed and the strongest

signal was seen in genes with the highest gene expression (figure 3.7).
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Figure 3.7: The coverage profile around transcription starts depends on the expression as
measured by RNA-seq [33].

3.3. Prediction of expression status

As a next step, features were identified in order to distinguish between expressed and

unexpressed genes for every single gene. It seems that not only the coverage directly

around the transcription start seems to be lower for expressed genes, but also the coverage

in a 2,000bp window around the TSS seems to be smaller. Thus, both, the 2,000bp window

around the TSS (subsequently called ”2K-TSS coverage”) and a smaller region around

the TSS (-150bp to 50bp from TSS; subsequently called ”NDR coverage”) were chosen

as features. This leads to a reduction in complexity for subsequent analyses, since only 2

parameters (instead of 2,000) need to be analyzed

3.3.1. Feature testing

The distribution of the features for the 1000 highest and lowest expressed genes seem

to discriminate well expressed from unexpressed genes. However, the distinction is more

pronounced in the 2K-TSS Coverage than in the NDR coverage (figure 3.8).
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Figure 3.8: Histograms of distribution of the two features (2K-TSS coverage and NDR
coverage) separates the highest 1000 expressed genes (displayed in red) from the lowest
expressed genes (displayed in green) in cfRNA [33].

Also, multivariate distribution analysis by kernel density estimation results in two

distinct peaks with high density (figure 3.9) in the merged control samples. Peaks most

likely represent the Top 1000 genes (bottom left) and Bottom 1000 genes (top right). The

distribution of the two features in two dimensions of every gene (not just the Top and

Bottom 1000) yields a dense point cloud 3.10.
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Figure 3.9: Kernel density estimation of the two features used to predict expressed genes
from the 1000 highest and lowest expressed genes [33].
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Figure 3.10: Scatter plot of the two features for every transcription start site. Top1000
and Bottom1000 genes are marked in red and green, respectively. All other genes are
plotted in gray.

3.3.2. Machine learning

To predict the expression status of single TSSs, we applied machine learning on the two

features. A random subset of 300 housekeeping genes [52] and 300 genes unexpressed in

FANTOM5 dataset [53] was used to train support vector machines for 1000 iterations (each

with a different random gene subset). Expression status was predicted when prediction

consent was >75% in all 1000 iterations.

3.3.3. Accuracy

We again used the cfRNA dataset by [33] to test the accuracy of the expression status

prediction. Of the Top 100 and Bottom 100 expressed genes, 91% were predicted correctly,
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while the accuracy dropped a little when using the Top 1000 and Bottom 1000 expressed

genes (83%) (figure 3.11). Detailed performance characteristics are displayed in table 3.1.
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Figure 3.11: Prediction of Top100/Bottom100 and Top1000/Bottom1000 genes showed
accuracies of 0.91 and 0.83, respectively.

Table 3.1: Performance characteristics of the expression prediction algorithm using various
test sets.

Test set Sensitivity Specificity Accuracy Precision F1-score
Top100 0.91 0.91 0.91 0.94 0.92
Top1000 0.81 0.86 0.83 0.88 0.84
Top5000 0.78 0.73 0.76 0.77 0.77
All (FPKM:1) 0.72 0.68 0.70 0.72 0.72
All (FPKM: 0.44) 0.69 0.72 0.71 0.79 0.74

3.3.4. In-silico dilution series

In cancer patients, cell-free DNA is a mixture of cfDNA from hematopoietic cells and

from tumor tissue. In-silico dilution series were performed to identify a minimum signal

fraction, which can still be used to infer the expression status. To this end, the distribution

of both features for the Bottom 1000 genes was modeled as Gaussian distributions and

random numbers of these distributions were added to the feature data of the Top 1000

genes at varying degrees (figure A.1).

Subsequently, for every dilution between one and 100%, accuracy of the expression

prediction was measured. At a dilution of 75% the accuracy was still 70% (figure 3.12).
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Figure 3.12: Prediction of diluted feature sets showed an accuracy of 70% at a dilution of
75%, however, accuracy declined rapidly in higher dilutions.

3.4. Quantitative relationships

3.4.1. Correlation analysis

The TSS profiles of genes with varying FPKM content (as measured by data from Koh

et al.[33]) suggest a relationship between gene expression and both coverage values (i.e.

NDR coverage and 2K-TSS coverage). To further elucidate this relationship, correlation

analyses were performed independently on both coverage parameters. While no significant

correlation was found between the parameters and the direct FPKM values, a significant

correlation was found with the FPKM percentiles (Pearson correlation coefficients: 2K-

TSS coverage: -0.356, p<2.2x10-16, NDR coverage: -0.327, p<2.2x10-16, see figure 3.13).
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Figure 3.13: Correlation analyses of FPKM percentiles as measured by data from Koh et
al.[33] and 2K-TSS coverage and NDR coverage, respectively, show a statistically signifi-
cant) negative correlation

3.4.2. Semi-quantitative analysis

For semiquantitative analyses, genes were ranked by gene expression and split into deciles.

Next, means of both, 2K-TSS and NDR coverage were plotted for every decile next to

the raw data. Although variation is very high, on average, the relationship between gene

expression and coverage is obvious (see figure 3.14).
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Figure 3.14: Means of coverage parameters from genes grouped into deciles based on
their expression show a quantitative relationship between gene expression and promotor
coverage.

3.4.3. Binned data

To further confirm this relationship we group every TSS into bins according to their

location on the scatter plot. The scatter plot was divided in 30x30 fields and FPKM

percentiles for every gene in the respective field was averaged. While this initially looked

noisy (figure 3.15, left panel), after removing fields where 10 or less data points were

available, the quantitative relationship is very clear (figure 3.15, right panel).
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Figure 3.15: When genes are grouped into bins on the scatter plot and their FPKM
percentiles averaged the quantitative relationship becomes clear. After removing bins
with 10 or less data points this relationship is even more pronounced.

3.4.4. Multiple regression

Ideally, this relationship could be directly exploited to predict the percentile of any TSS

analyzed. To see whether this would be possible, a two-dimensional linear model was fitted

to the data (figure 3.16). While F-statistics for the model were statistically significant

(p<2.2 x 10-16), the model had a standard deviation of 26.88 percentiles and only 13.3%

of the variance of the data could be modelled via the regression model (multiple R2).
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Figure 3.16: A linear model was fitted to the data in order to predict the FPKM percentile
from the coverage data. The plane depicts prediction based on the multiple regression
model.

3.5. Pattern correlation

Since expressed genes leave a very distinct coverage pattern around transcription start

sites (figure 3.4), a possible alternative for expression prediction could be the correlation

of the coverage pattern of a single gene to the pattern obtained from housekeeping genes.

As a model for expressed genes, the mean of the coverage pattern of housekeeping genes

[52] were used. Pearson correlation values for the Top1000 genes were slightly above 0

(Mean Pearson correlation coefficient Top1000 genes: 0.0055, Bottom1000 genes: -0.0032)

but the distributions of Top1000 and Bottom1000 genes overlap greatly when looking at

the whole 1000bp around the TSS (figure 3.17).
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Figure 3.17: Using Pearson correlation to mean coverage values of housekeeping genes
no difference was found between Top1000 (red) and Bottom1000 genes (green) when
comparing the whole 1,000bp around the transcription start. Overlaps in histogram are
shown in dark green.

Correlation analysis is improved a lot when the analysis is focused at the central

200bp around the transcription start. While correlation coefficients vary a lot more,

the difference between Top1000 and Bottom1000 genes is markedly more pronounced

(figure 3.18, Mean Pearson correlation coefficient Top1000 genes: 0.285, Bottom1000

genes: 0.040).
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Figure 3.18: Using Pearson correlation the difference in mean correlation coefficients is
more pronounced when focusing on the central 200bp around the transcription start.
Overlaps in histogram are shown in dark green.

3.6. Tumor samples

In order to investigate whether transcription status can be derived from plasma samples of

patients with cancer, we sequenced two samples of patients with metastatic breast cancer
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(B7 and B13) at high coverage (411 and 455 mio. reads, respectively). Additionally, the

transcriptome of the primary tumors was sequenced using the Ion Proton, in order to

compare expression predictions to actual data.

3.6.1. Single-nucleotide variants (SNVs)

Since we generated a total coverage of approximately 20-23, single-nucleotide variants of

both plasma samples were analyzed. Since the coverage is rather low, only somatic mu-

tations with high frequency should be detected alongside germline sequence variations.

In sample B7 1 approximately 5 mio. SNVs were identified whereas in sample B13 1,

roughly 4 mio. variants were found. By filtering putative unimportant or germline vari-

ations and focusing on variants already seen in the cosmic database, 118 and 85 variants

remain, respectively (see table 3.2).

Table 3.2: Results of single variant analyses from whole-genome sequencing. Initial variant
calls are reduced in various steps to identify possible artifacts or germline variants. AF
denotes allele frequency of healthy individuals.

Sample Total SNVs Exonic SNVs No synonymous AF <1% No SegDup Cosmic
B7 1 4,972,013 43,088 25,771 16,072 3,562 118
B13 1 4,026,013 28,934 17,198 9,926 2,547 85

3.6.2. Copy number variants

Copy number alterations were analyzed using read-depth analyses of 50,000 genomic bins.

Copy number alterations of varying size were identified. The most prominent copy number

alterations are a high-level gain on chromosome arm 1q and a focal amplification of a

region containing the CCND1 gene in B7 and high-level focal amplifications of regions

containing FGFR1 and ERBB2 in B13 (figure 3.19). CNA profiles were also generated

for DNA obtained from tissue biopsies of the respective primary tumors and correlation

analysis showed high concordance in CNA levels for the respective samples. (see figure

A.2).
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Figure 3.19: Copy number analysis reveals substantial copy number variation along the
genome for breast cancer samples B7 and B13.

3.6.3. Focal amplifications

A recurrent type of somatic copy number alterations are amplifications of small regions

(focal) which can reach high copy numbers. Often, tumor driver genes reside within these

focal events and are amplified to very high copy numbers [67]. Here, focal events of plasma

samples of both B7 and B13 were analyzed in order to check for possible amplified tumor

driver genes.

3.6.4. Insert size

Via sequencing of both ends from a fragment, the initial fragment lengths can be recon-

structed. By analyzing insert sizes on gained regions (chr1q in B7 and chr8q in B13),

lost regions (chr11q in B7 and chr13q in B13) and copy number neutral regions (chr15

for both samples), size distributions of DNA from hematopoietic origin can be compared

to DNA from the tumor. Fragments from gained regions should be enriched for tumor

DNA while fragments of lost regions should be relatively enriched for normal (non-tumor

derived) DNA. Fragment lengths of the different regions look distinct for the different

regions in B7 (figure 3.20), but not for B13 (figure 3.21). In sample B7, fragment length

analysis suggests that tumor-derived DNA has a larger portion of dinucleosomal-peaks,

since dinucleosomal peak is higher for fragments from chromosome 1q, which should be

enriched for tumor DNA.
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Figure 3.20: Fragment lengths of cfDNA fragments of sample B7. Fragment lengths
from gained regions (1q, red) look different than fragment lengths from lost regions (11q,
blue). Fragment lengths from copy number neutral regions (15, green) are between both
distributions. Shaded areas represent 95% confidence intervals.
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Figure 3.21: Fragment lengths of cfDNA fragments of sample B13. Fragment lengths
from gained regions (8q, red) look very similar to fragment lengths from lost regions
(13q, blue) and copy number neutral regions (15, green). Shaded areas represent 95%
confidence intervals.

3.6.5. TSS profile

Since housekeeping genes should be expressed in every tissue, a coverage profile of the

housekeeping genes versus unexpressed genes from the FANTOM5 project were estab-

lished for both, B7 and B13 (see figure 3.22). The signal of housekeeping genes and un-

expressed genes resembles the patterns derived from non-cancer controls and thus again

indicate the nucleosome occupancy difference between expressed and unexpressed genes.
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Figure 3.22: The coverage profile around transcription starts of housekeeping genes [52] in
comparison to genes which are unexpressed in all tissues (as determined in the FANTOM5
project [53]) shows a distinct pattern in both breast cancer patients.

3.6.6. Tumor fraction

Cell-free DNA in a tumor patient is always a mixture of DNA from the tumor (ctDNA)

and DNA from hematopoietic cells. In early disease stages, the fraction of tumor-derived

DNA can be very low while it usually is higher in advanced/metastatic disease stages.

ABSOLUTE [66] was used for tumor fraction estimation from copy number segments.

This analysis compares copy number ratios to model karyotypes by maximum likelihood

and can then estimate the contaminating normal fraction. Here, B7 was estimated to

have a tumor fraction of 45%, while B13 was estimated to have a higher tumor fraction

of 72% (see figure 3.23).
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Figure 3.23: Tumor fraction estimation by ABSOLUTE from sample B7 (left) and B13
(right). Numbers in green and purple, respectively, denote absolute copy numbers esti-
mated to derive the tumor fraction.

3.6.7. Relative tumor fraction

By in-silico dilution a minimum tumor fraction of 75% was established in order to still clas-

sify genes as expressed or unexpressed at 70% accuracy. Since both breast cancer samples

do not reach this level throughout the genome, we focused on regions with copy number

gains. These regions should represent higher tumor fractions, due to the contribution of

more copies than the healthy cells.

The relative tumor fraction thus depends on the copy number ratio and the overall

tumor fraction.

The true copy number of a region (cpi) can be calculated from the log2-ratio of this

region lri and the overall tumor fraction (tf).

cpi =
2 ∗ 2lri − 2(1 − tf)

tf
(3.1)

Subsequently, the relative tumor fraction rtfi can be calculated:

rtfi =
tf ∗ cpi

tf ∗ cpi + (1 − tf) ∗ 2
(3.2)

Using these equations, the relative tumor fraction of every (genome-wide) tumor frac-

tion and a respective copy number ratio can be calculated (see figure 3.24).
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Figure 3.24: For every possible (genome-wide) tumor fraction and a wide range of copy
number log2-ratios a relative tumor fraction is depicted. The black line indicates a relative
tumor fraction of 75%.

3.6.8. Tumor RNA-Seq

In order to evaluate gene expression predictions, RNA-Seq from the primary tumor ma-

terial was done for both patients. Since in-silico dilution showed that a relative tumor

fraction of >75% was needed for the gene expression prediction to work, the Top100 ex-

pressed genes in regions with high relative tumor fraction were extracted (chromosome

1q for patient B7 and gained regions on chromosome 8 for patient B13, respectively).

In B7 these genes showed an enrichment in gene ontology hits, which were associated

with nucleosome formation, while no significant enrichment for any gene ontology term

was found for the Top100 genes of patient B13.

For pathway enrichment, the Top100 genes of patient B7 showed a significant en-

richment of the telomere maintenance pathway, while the Top100 genes of B13 showed

significant enrichments in pathways connected to protein biosynthesis.

3.6.9. Expression prediction in tumor samples

Focal amplifications:
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Since focal amplifications can reach high copy numbers, expression prediction should

be feasible in these regions even if the (genome-wide) tumor fraction of a sample is low.

In B7, a region on chromosome 11, harboring CCND1 was focally amplified which is a

common alteration in breast cancer [67]. B13 harbors several focal amplifications including

an alteration of ERBB2 on chromosome 17 as well as an amplification on chromosome 8

which contains the FGFR1 gene. Gene expression was predicted and the FPKMs of the

genes (obtained by RNA-seq of the primary tumor) were analyzed and compared. Genes

which were predicted to be expressed had statistically significant higher expression values

than genes predicted to be unexpressed 3.25.
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Figure 3.25: FPKMs for genes predicted to be expressed or not expressed in focal amplifi-
cations of 11q13.3 (15 TSS in 15 genes including CCND1 ; n expressed = 8; n unexpressed
= 7) in B7 (left) and in both 8p11 (39 TSSs in 31 genes including FGFR1 ) and 17q12
(59 TSSs in 46 genes including ERBB2 ) (right) in B13 (n expressed = 87; n unexpressed
=11). Blue dots represent genes located in the amplicons. Outliers including CCND1
(FPKM of 50 in B7) and ERBB2 (FPKM of 15 in B13) are not shown due to scaling.
The differences were statistically highly significant (One-sided Mann Whitney U tests;
B7: mean expressed : 9.7 FPKM, sd expressed : 17.0, mean unexpressed : 0.7 FPKM, sd
unexpressed : 0.8, p=0.003 ; B13: mean expressed : 5.7 FPKM, sd expressed : 9.7, mean
unexpressed : 1.5 FPKM; sd unexpressed : 1.8, p=0.001 ).

Top100 genes in amplifications:

Subsequently, the Top100 genes of amplified regions were analyzed. These regions

included the amplification of chromosome 1q in sample B7 and chromosome 8q plus an

additional region on the short arm of chromosome 8 which includes the FGFR1 gene.

Expression data of genes within these regions were ranked and the expression prediction

49



3.6. TUMOR SAMPLES 3. Results

status recorded, The correct prediction was achieved in 86.1% (B7) and 88.1%, respec-

tively.

When looking at the Top100 expressed genes in all gained regions of B13 (i.e. log2-

ratio >0.2), still 78% were correctly classified as expressed.

Isoform specific prediction:

Since every transcription start site is predicted independently, isoforms from the same

gene coming from distinct TSSs might differ in their coverage profile. As a starting point

ERBB2 was analyzed in B13, which harbors an amplification containing this gene. Due

to the amplification, most of the DNA in this region should originate from tumor cells.

There are obvious differences when comparing the averaged profile of both isoforms of

this gene to healthy controls (figure 3.26).
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Figure 3.26: The coverage profile of ERBB2 looks differently for B13 and healthy controls.
Especially at the actual transcription start, coverage of B13 drops dramatically, thus likely
representing the nucleosome depleted region. Both signals show a reduced coverage 250bp
before the TSS. Since there is no gene within that range of either of the two TSS, this
might constitute a site with very low nucleosome affinity.

For the detection of isoform specific expression and deduction, the difference between

merged healthy controls and the tumor samples were calculated for every TSS and for

both parameters. Overexpressed genes or isoforms should deviate more in the negative

direction and no change is expected for genes with normal expression. Differences of

both parameters were subsequently combined to a euclidean distance. These distances

were calculated for both isoforms of ERBB2 and interestingly one isoform (NM 004448)

deviated a lot more from the healthy controls than the other (NM 001005862) (figure

3.27). This was confirmed by RNA-seq, where isoform NM 004448 had 11.4 FPKM,

while isoform NM 001005862 was expressed at 4.4 FPKM. The same approach was used

to analyze 9 isoforms of FGFR1 coming from two distinct TSSs. Distance analysis also
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correctly identified the TSS giving rise to the isoforms with higher expression (TSS1: 3

isoforms, FPKM sum: 6.5; TSS2: 6 isoforms: FPKM sum 3.0).
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Figure 3.27: Calculating euclidean distances from the normalized data of healthy con-
trols to the respective TSS in tumor samples suggests that isoform NM 004448 is higher
expressed than isoform NM 001005862. This was confirmed by RNA-seq

The analysis was then extended to every gene in the focal amplifications of samples

B7 and B13. Of 93 genes in those amplification, 8 genes had more than 1 TSS which

gave rise to isoforms with at least 2 FPKM difference (including ERBB2 and FGFR1 ).

The TSS leading to the higher expression of isoforms was correctly predicted in 7 of these

genes (figure 3.3).
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Table 3.3: Distances between healthy controls and tumor samples B7 and B13 were
calculated for 8 genes which have several TSSs which give rise to isoforms having a FPKM
difference of at least 2. The TSS leading to higher expression had larger distances in 7 of
the 8 genes.

Sample Gene TSS Isoforms FPKM Distance

B13

DDHD2
chr8:38089008 2 4.85 0.21
chr8:38089470 1 0.01 0.09

GRB7

chr17:37894161 1 2.95 1.26
chr17:37894575 1 1.59 0.91
chr17:37895023 1 1.33 0.84
chr17:37896219 1 0.14 0.63

PPP1R1B
chr17:37784750 2 9.24 0.69
chr17:37783176 1 3.77 0.89

GSDMB
chr17:38074903 3 4.27 0.58
chr17:38073793 1 <0.01 0.30

ANK1
chr8:41522804 3 4.93 0.44
chr8:41655140 4 0.35 0.11
chr8:41754280 1 0.01 0.17

ERBB2
chr17:37856230 1 11.37 1.07
chr17:37844336 1 4.43 0.58

FGFR1
chr8:38325363 3 6.53 0.62
chr8:38326352 6 3.02 0.36

B7 ANO1
chr11:69924407 1 2.06 0.24
chr11:69931515 1 0.06 0.06
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4. Discussion

The aim of this thesis was to deduce gene expression from plasma DNA by applying

coverage analysis to a set of non-cancer controls at the transcription start site of genes,

known to be universally expressed and comparing them to genes which are universally

unexpressed. In a later step, the approach was applied to plasma DNA samples from

tumor patients to see whether this can be used to infer functional information about the

primary tumor.

4.1. Nucleosome association of plasma DNA

In a first step, the association of ctDNA to histone proteins in the form of nucleosomes

was investigated. To this end, fragment lengths of molecules from mitochondrial DNA

were compared to the lengths of molecules from nuclear DNA (see figure 3.1). Since

mitochondrial DNA packaging works differently than packaging of nuclear DNA [68],

fragment lengths after in vivo DNA digestion are expected to differ. Indeed, fragment

lengths of nuclear DNA show a distinct mode at approximately 166bp which is consistent

with the length of DNA wrapped around a histone-octamer (147bp) plus additional bases

from the linker region. Conversely, mitochondrial DNA fragments exhibit a vastly different

pattern which shows a broader distribution of fragment lengths and no bimodal structure.

This finding is consistent with previous reports [24].

Moreover, association of ctDNA with histone proteins was shown by analyzing coverage

peaks in a region, which has been described to contain a well-ordered array of preferential

nucleosome formation on chromosome 12 [48]. Here, sequencing coverage (as a proxy to

the representation of fragments in the circulation) of cell-free DNA in a set of non-cancer

controls was compared to the sequencing coverage obtained from MNase-seq experiments

from the cell line GM12878 (see figure 3.2). A high correlation of both signals in this

region confirms the putative association of cell-free DNA to nucleosomes.
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These analyses suggest that cell-free DNA indeed is associated with histone proteins

in the form of nucleosomes (i.e. DNA wrapped around an octamer of histone proteins),

which is in line with prior reports [9, 10, 24].

4.2. Coverage analysis at transcription start

In a next step, sequencing data of 104 non-cancer controls was merged and the mean

coverage signal of 3,509 housekeeping genes was compared to the mean coverage signal of

670 genes reported to be unexpressed in all tissues according to the FANTOM5 database

[52, 53]. While expressed genes show a lower overall coverage in a region 2,000bp around

the transcription start site, they also show a pronounced drop in the coverage signal in

a region approximately starting from -150bp before the transcription start to 50bp after

the transcription start. This is in line with reports of results from MNase-seq studies,

which also showed a lower representation of reads at the transcription start site until

approximately 1,000bp into the gene body [30]. MNase-seq should yield comparable

results to the sequencing of plasma DNA, since DNA is also preferentially digested in

linker regions between nucleosomes than DNA that is bound to histones. However, in

MNase-seq, this is done in vitro, while DNA digestion happens in vivo in plasma DNA.

Moreover, the coverage pattern around the transcription start site shows a wave-like

pattern from the transcription start itself, extending in both directions. This might be

due to the restricted possibilities of nucleosome formation, since active processes maintain

the nucleosome depleted region [29]. As nucleosome formation occurs preferably in regions

having a specific sequence composition [25], possible nucleosome forming sites are limited

[30].

The analysis of coverage profiles of genes reported to be highly expressed in cfRNA

compared to genes which are expressed at low levels showed large differences in the TSS

region [33]. Moreover, grouping genes from the cfRNA analysis into several subgroups,

the profile seems to depend on the expression level of the respective genes, with highly

expressed genes showing a more pronounced drop in average coverage.

Taken together, the data show a distinct pattern in the coverage profile of expressed

genes when compared to unexpressed genes and thus coverage information might be suf-

ficient to detect gene expression.

While there is evidence that points to preferential DNA digestion by DNase [30], there
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might be alternative explanations for the depletion of DNA from the NDR region in the

cell-free DNA. Although this DNA might not be present in the liquid compartment of

the blood circulation, it might still be present in different compartments, e.g. exosomes

[69]. However, due to the similarity of the coverage patterns of in vitro digested DNA

(MNase-seq of GM12878, see figure 3.6) and cfDNA (see figure 3.5), preferential digestion

seems to be the more parsimonious explanation.

4.3. Gene expression prediction

Since coverage profiles of expressed and unexpressed genes differed, features were selected

in order to predict the expression status of each gene in the set of non-cancer controls.

To this end, two features were tested:

• The mean coverage of the region from 1,000bp before the TSS to 1,000bp after the

TSS (2K-TSS coverage)

• The mean coverage of the region from 150bp before the TSS to 50bp after the TSS

(NDR coverage)

Both features were tested on the 1,000 highest and lowest expressed gene from cfRNA

as reported by Koh et al. [33]. While the 2K-TSS coverage parameter showed a clearer

separation, both features showed a large difference between the two gene sets (see figure

3.8). When analyzing both features together for the 1,000 highest and lowest expressed

genes, the distribution of the data points shows a bimodal structure, with the Top 1000

genes having a lower signal in both, 2K-TSS and NDR coverage.

Next, a support vector machines (SVM) based prediction analysis was done, which

used housekeeping genes (n=3,509) and genes shown to be unexpressed (n=670) in order

to learn the distribution of the two coverage parameters. The prediction step was then

evaluated against several gene sets in order to investigate the sensitivity and specificity of

the approach. The sensitivity and specificity decreases with more genes being added to

the test set, however, even for the 5,000 highest and lowest expressed genes, a sensitivity

of 0.78 and a specificity of 0.73 was detected.
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4.4. In-silico dilution

Since plasma DNA in a tumor patient is a mixture of healthy DNA and tumor-derived

DNA, in-silico dilution was performed to see which tumor DNA fraction could still be

used for gene expression prediction. To this end, data of the Top 1000 genes was mixed

with random noise at varying degrees and sensitivity for all the dilutions was measured.

At a dilution if 75%, the sensitivity was still 70% (see figure 3.12). While a total tumor

fraction of 75% might only be available in patients with very late-stage metastasized

cancer, regions having copy-number alterations might still be amenable to this approach,

since here genomic regions are relatively enriched for tumor DNA.

4.5. Quantitative analysis

As the analysis of the coverage profile of genes split into subgroups suggested that the

profile might allow a more nuanced quantitative inference of gene expression, this aspect

was investigated further. Correlation analysis of the two features (2K-TSS coverage and

NDR-coverage, respectively) to FPKM percentiles showed a good correlation (see figure

3.13, and furthermore grouping genes into deciles (based on the expression values obtained

from Koh et al. [33]) showed expression dependent mean values for the two features (see

figure 3.14).

Moreover, after binning genes into groups, depending on their location on the 2D-

scatterplot and calculating mean gene expression values per bin, a quantitative relation-

ship between the two coverage parameters and gene expression was noted.

However, the signal seems to be too noisy for predicting actual gene expression values

per gene. This was shown by applying a multiple regression model on the data. While

the F-statistics of this model were highly significant only 13% of the variation could be

explained by gene expression, while the remaining 87% of the variation is due to noise.

These analyses suggest, that while some quantitative relationships between coverage

and gene expression can be found, the coverage signal described above cannot be used to

predict actual gene expression for a single gene in it’s current state. A more detailed anal-

ysis and a more nuanced prediction of gene expression might be available by sequencing

data with higher coverage. Also, sequencing a set of cell-free DNA of non-cancer control,

each with high coverage, might lead to a more detailed quantitative result of expression
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prediction, since this would allow to get a glimpse on biological variation of the coverage

profile on a per-gene basis.

4.6. Pattern correlation

Since the (averaged) coverage pattern of housekeeping genes around the transcription

start is very distinct from the pattern of unexpressed genes (see figure 3.4) an additional

method of gene expression prediction was investigated based on pattern correlation. Here,

the mean coverage pattern of housekeeping genes was compared to the coverage pattern

of the 1,000 highest and 1,000 lowest expressed genes (as determined by Koh et al. [33])

using correlation analysis.

Calculating the correlation in the whole 2,000bp window, the 1,000 highest expressed

genes show only a marginally higher correlation coefficient. This might be due to the fact

that the pattern is more stringent in the small region directly at the transcription start,

since nucleosome positioning is more restricted here [30]. Moving further away from the

nucleosome depleted region, nucleosome positioning may occur at several different places.

Hence, using only the central 200bp around the TSS for correlation calculation the sig-

nal is improved and the 1,000 highest expressed genes show higher correlation coefficients.

However, correlation coefficients vary a lot and both gene sets cannot be separated as well

as in the two coverage features used for the actual gene prediction. The high variation in

correlation coefficients may be explained by the restricted size of the region. In a small

genomic region, a single 60bp sequence has more effect on the correlation than a single

sequence in a larger genomic region.

4.7. Tumor samples

To investigate, whether this approach can be used to inform about gene expression in

ctDNA samples, plasma DNA of two metastasized breast cancer patients were analyzed.

These samples exhibited a wide array of copy number alterations throughout the genome

(see figure 3.19) and thus represented samples with a high tumor fraction. In fact, the

total tumor fraction was estimated to be 45% and 72% for B7 and B13, respectively.

While these tumor fractions are relatively high, tumor fractions of up to 90% have been

reported already [10].
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4.7.1. Single Nucleotide Variants

Single nucleotide variants were identified directly from plasma, however, since no corre-

sponding germline DNA was available in order to detect possible somatic mutations, the

analyses described here may be of limited use. Furthermore, the relatively low sequenc-

ing coverage does not allow for an accurate detection of variants with low mutant allele

frequency, which might be expected due to the presence of non-cancer derived DNA in

the blood circulation.

4.7.2. Copy Number Alterations

Extensive copy number alterations were identified in both plasma DNA samples. The

plasma DNA of patient B7 shows a high-level amplification of the region around the gene

CCND1, which is a common alteration in breast cancer tumors, as well as a approximately

6 copies of the long arm of chromosome 1, according to the ABSOLUTE algorithm [66].

Patient B13 harbors even more alterations, including a potentially druggable amplifi-

cation of the ERBB2 gene on chromosome 17 and a very high copy number of the long arm

of chromosome 8, which includes the oncogene MYC. Furthermore, a focal amplification

of the FGFR1 gene was detected on the short arm of chromosome 8.

Copy number alterations were also analyzed for the respective primary tumors of

both patients and generally resembled the plasma DNA copy number profiles. While the

amount of tumor DNA in patient B7 seems to be similar to the amount of tumor DNA

in the primary tumor samples, patient B13 seems to have a higher tumor fraction in the

plasma than in the primary tumor.

4.7.3. Tumor RNA-seq

By RNA-seq the gene expression of the respective primary tumors was analyzed in order

to compare those with gene expression predictions later on.

Since gene expression prediction is only possible in regions which show copy number

gains, the Top100 genes of gained regions in both patients were extracted (chromosome

1q for patient B7 and gained regions of chromosome 8 in patient B13, respectively).

Functional enrichment of these highly expressed genes showed enrichments for nucleosome

formation and telomere maintenance in patient B7, which might explain the high tumor

fraction of 45% in the peripheral blood of this patient.
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In patient B13 no significant functional enrichment was found in the gene ontology

terms, however, enriched pathways included processes that regulate protein biosynthesis

and gene expression and thus might represent the active state and a high level of protein

synthesis in these tumor cells.

4.7.4. Fragment length analysis

Through paired-end sequencing, it is possible to calculate the fragment length of the

initial fragments which were used to create the library. While there is agreement on

the modal structure of the fragment length distribution with the main mode around

166bp [20], some conflicting reports were published about the fragment length deviation

of tumor-derived DNA in the plasma [22, 23]. Here, insert sizes of plasma DNA from

both cancer patients were analyzed, and fragment length distribution of regions which

should be enriched for tumor-derived DNA (i.e. regions harboring copy number gains)

were compared to fragment length distributions of regions which should be enriched for

non-tumor derived DNA (i.e. regions harboring copy number losses) and regions with no

copy number alteration which is. This represents an analogous approach to an analysis

which has been previously reported [21].

In patient B13 no difference in the fragment length distributions between these regions

were identified. This can be explained in two ways: Either the tumor fraction and the non-

tumor derived fraction of the plasma-DNA share the same fragment length characteristics,

or there might be virtually no non-tumor derived DNA in the peripheral blood, since these

fragments are expected to show a different size distribution [21].

Conversely, fragment length distributions of plasma DNA fragments differ in patient

B7 in the different regions. Regions enriched with tumor DNA show a higher propor-

tion of di-nucleosomal fragments than regions enriched for non-tumor derived DNA. This

indicates that the kinetics of DNA digestion might differ, depending on the source of

DNA.

Interestingly, no fragments smaller than 166bp were identified, although this has been

reported [22]. This might be attributable to differences in the sequencing library prepa-

ration, which includes size selection steps in order to ensure proper sequencing.
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4.7.5. Coverage profile at TSS

Since housekeeping genes should be expressed regardless of the tissue, the coverage pattern

of housekeeping genes and genes known to be unexpressed were analyzed for both plasma

DNA samples from tumor samples (see figure 3.22). This coverage pattern resembles those

from non-cancer controls and thus suggests that DNA fragments in these samples are also

associated to nucleosomes. Hence these samples should be amenable to gene expression

prediction.

4.7.6. Gene expression prediction in tumor samples

In-silico dilution of the 1,000 highest and lowest expressed genes suggests that a signal

reduction to 75% may still allow prediction of expressed genes. Hence, only regions which

exhibited copy-number gains were used for gene prediction. This included genes in focal

amplification (as defined in a previous report [65]), as well as broader regions with copy

number gains (i.e. chromosome 1q for patient B7 and gained regions of chromosome 8 in

patient B13).

Gene expression prediction of genes in focally amplified regions were compared to

gene expression values obtained from RNA-Seq of the respective primary tumors. Here,

FPKMs of genes predicted to be expressed were significantly higher than genes predicted

to be unexpressed.

In a further step, the top 100 expressed genes (as measured by RNA-seq of the primary

tumors) in regions with copy number gains were extracted and their expression status

predicted from the coverage pattern in the plasma DNA. 86.1% of the genes were predicted

to be expressed in B7 and 88.1% of these genes were predicted to be expressed in B13.

These analyses suggest that in certain regions of the tumor genome, gene expression

can be predicted from plasma DNA alone. However, plasma DNA must exhibit a certain

tumor fraction in order to ensure that the coverage signal can be used to predict expression

status. If the total tumor fraction is less than 75%, regions with copy number gains can

be used, since those may show a larger relative tumor fraction.

4.7.7. Prediction of isoform specific expression differences

Many genes in the human genome give rise to several mRNA transcripts which in turn

can code for different proteins. While many isoforms of the same gene share the same
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transcript start, some isoforms use alternative starts.

Here, genes in regions exhibiting copy number gains were identified which have multiple

transcription starts. In B13, eight genes were identified and in B7 only one gene have

multiple TSS. When calculating distances in both features (i.e. 2K-TSS coverage and

NDR coverage), transcription starts which give rise to transcripts with higher expression

deviated a lot more from non-cancer control data than transcription starts which give rise

to less expressed transcripts.

While these analyses are based on very few genes, it indicates that more active isoforms

of genes might be predicted from coverage parameters as long as they use a different

transcription start.

4.8. Limitations

Through detection of coverage differences at transcription starts, the data shown here

suggests that inferences about gene expression may be possible directly from cell-free

DNA analyses. However, in practice there might be limitations to this approach.

A large tumor fraction is needed, since cfDNA fragments from non-cancer cells create

a background noise that clouds the signal. Here, only genomic regions exhibiting copy

number gains were used in order to overcome this issue, but cancers without copy number

alterations might not be amenable to this approach. Also, cfDNA samples of cancer

patients in earlier stages which usually show lower overall tumor fractions are possibly

not within reach of this method. Furthermore, some types of cancer consistently spread

less DNA into the periphery (e.g. brain and renal cancers) [70].

Moreover, some biological processes may also lead to a lower representation of frag-

ments from the NDR, although not leading to an increased expression. For example, RNA

polymerases may bind to the promotor region (thus requiring nucleosomes to be depleted

in this region), although they do not elongate a mRNA molecule [71, 72].

4.9. Context

While statical information (e.g. somatic point mutations, copy number alterations) about

a tumors genome has been amenable to analysis from ctDNA for some time [9], the

inference of expressed genes from read-depth analyses may allow for functional analyses

of liquid biopsies.
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The coverage signal caused by nucleosome occupancy has already been used before

to inform about tissue-of-origin of cancers [73] and while this group also touches upon

expression specific differences in their signals, the study presented here greatly expands

about the inference of expression and the correlation to nucleosome occupancy.

Another study tried to discern between housekeeping genes and tissue-specific genes

[74] based on exome enrichment data of 3 cfDNA samples. While they show some differ-

ences between ubiquitously expressed genes and tissue specific genes, the number of genes

analyzed was very small. Exome enrichment data does not seem suitable for this analysis

since the most important region (the region immediately before transcription start) is not

sequenced. Also, their analysis only works for genes with a large first exon (so that it

contains at least 3 nucleosomes).

4.10. Outlook

As there are great interests in non-invasive tumor monitoring, the approach described

here adds an additional layer of information which might be accessed by the analysis of

ctDNA.

However, generating 400 million reads per sample is still financially challenging and

thus there are still obstacles to overcome to implement a useful application that benefits

patients and informs the treating physician using this approach.

One way of improving the signal strength might be to enrich for promotor region

of either every gene, or interesting subsets of genes in order to have high sequencing

coverage in those regions. This may substantially decrease sequencing costs, however, it

also introduces a potential bias, due to preferential hybridization of certain regions and

additional PCR cycles needed to create a library that can be sequenced.

In addition, cell-free DNA from other sources might also give additional information

about tumors.

Previous studies showed analyses from cell-free DNA from other body fluids including

urine, stool, cerebro-spinal fluid, stool and pleural fluid [75]. Provided the DNA derived

from these fluids are also associated to nucleosomes, there might be some more possibilities

to infer gene expression.

Recently, DNA found in exosomal structures (i.e. small extracellular vesicles con-

taining different molecules) attracted attention as possible biomarkers, especially since
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the membranous particle might be a means of horizontal gene transfer between cells [69].

This might be an especially rewarding topic for future research, since oncogenic transfor-

mation of susceptible cells due to transfection-like uptake of cfDNA has been proposed

[76].
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5. Conclusion

This study suggests that nucleosomes have a great influence on the coverage pattern

produced when sequencing cell-free DNA in plasma and that this information can be

exploited to infer the expression status of gene. This seems to hold true even for data

from plasma DNA of cancer patients, where cell-free DNA is a mixture of DNA from the

cancer and healthy tissue.

Thus, the study presented here, is, to the best of knowledge, the first general approach

to infer expression from nucleosome occupancy and might pave the way for novel biological

applications.

Especially metastasized cancer seems to be a suitable target since ctDNA fractions are

generally high and should thus be amenable for these analyses. Apart from what has been

shown here, several different scenarios may be exploited: Metastasized cancer genomes are

variable due to tumor evolution and selection caused by treatment [8]. Here, information

about gene expression may elucidate resistance mechanisms or general mechanisms about

tumor evolution.

Apart from cancer, other types of disease also lead to increased cfDNA release including

myocardial infarction [77], brain injuries and aging [78]. Since the cfDNA from other

tissues are practically indistinguishable from blood cell derived cfDNA, only total amount

of cfDNA were analyzed in several studies.

In summary, the coverage signal caused by nucleosome occupancy can be exploited

to make inferences about the expression of genes and isoforms. This expands the use

of circulating cell-free DNA and may elucidate basic mechanisms of gene regulation and

expression variation in cancer and other diseases.
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Figure A.1: Scatter plot of the two features for every transcription start site at dilutions
of 100%, 90%, 80%, 75%, 70% and 60%.
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Table A.1: Significant functional enrichment hits of the Top100 genes on gained genomic
regions of both breast cancer patients to gene ontology terms [37]. CC corresponds to
Gene Ontology: Cellular Compartment, BP corresponds to Gene Ontology: Biological
Process. No significant hit was found for the Top100 genes of patient B13.

Sample Category Term P-value corrected P-value
B7 1 CC nucleosome 2.0x10 -5 3.4x10 -3

B7 1 CC protein DNA complex 9.2x10 -5 7.8x10 -3

B7 1 BP nucleosome organization 1.6x10 -4 1.9x10 -2

B7 1 BP protein-DNA complex assembly 1.5x10 -4 2.2x10 -2

B7 1 BP chromatin assembly 1.2x10 -4 2.3x10 -2

B7 1 BP DNA packaging 4.6x10 -5 2.7x10 -2

B7 1 BP nucleosome assembly 1.0x10 -5 2.9x10 -2

Table A.2: Significant functional enrichment hits of the Top100 genes on gained genomic
regions of both breast cancer patients to pathways as defined by KEGG [38], Biocarta
[39] and Reactome [40] databases.

Sample Database Term P-value corrected P-value
B7 1 KEGG Systemic lupus erythematosus 6.7x10 -5 3.9x10 -3

B7 1 Reactome Telomere Maintenance 4.6x10 -4 1.3x10 -2

B13 1 Reactome Gene expression 3.9x10 -4 6.7x10 -3

B13 1 Reactome Metabolism of proteins 3.2x10 -4 1.1x10 -2

B13 1 Reactome 3’-UTR mediated translational regulation 1.9x10 -3 2.1x10 -2

75



A. Appendix

Tumor

Lo
g
2

-r
a
ti

o
s

0

1

2

-1

-2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 202122

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 202122

Lo
g
2

-r
a
ti

o
s

0

1

2

-1

-2

Tumor

Lo
g
2

-r
a
ti

o
s

0

2

-1

-2

1

Plasma

Plasma

Lo
g
2

-r
a
ti

o
s

0

2

-1

-2

1

B13 Plasma Log2-ratio

B
1

3
 T

u
m

o
r 

Lo
g

2
-r

a
ti

o

B7 Plasma Log2-ratio

B
7

 T
u

m
o
r 

Lo
g

2
-r

a
ti

o

0 1-1-2

0

1

-1

-2

2

3

-3

-4

0

1

-1

2

0 1-1-2 2 3-3

B7

B13

Figure A.2: Read-depth analysis of cfDNA and tissue biopsies of B7 and B13 shows copy
number alterations throughout the genome, including focal amplifications of CCND1 (B7;
chromosome 11) and FGFR1 (chromosome 8p) and ERBB2 (chromosome 17). CNAs
obtained from plasma and tissue biopsies correlate well for both samples.
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