
Sarah Haas, BSc

Micro-Task Scheduling for Constraint-based Recommendation

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Computer Science

submitted to

Graz University of Technology

Univ.-Prof. Dipl.-Ing. Dr.techn. Alexander Felfernig

Institute of Software Technology

 Master of Science

Supervisor

Graz, September 2016

Abstract

Recommender systems play an important role for online services. As most Inter-
net sites such as Amazon.com or YouTube.com offer many items, it is hard for users
to find what they are searching for. Recommender systems try to suggest the best
matching items to users based on the available information about the users interests
and details about products. These systems are suitable for a wide variety of domains
such as movies, music or cars. Recommender systems assist people in dealing with
the huge amount of items, the complexity of the item assortment, and also help
people with a lack of knowledge in a specific domain to find an appropriate item.
Therefore, in a constraint-based recommender system each domain is described by
attributes that represent the properties of the available items in detail. These at-
tributes are used in the recommendation process to suggest suitable items to the
user. As each user behaves differently and has different interests, she will receive a
personalized set of recommendations. The constraint-based recommender developed
in this thesis relies on user input to be able to give the best possible suggestions
to users. This user input is collected in several ways. One possibility is that users
evaluate products. Evaluations in such systems can be time consuming as the users
are asked to evaluate several attributes of an item. Users choose the item they want
to evaluate and can evaluate one or more attributes. This task can be time consum-
ing and complex as users are confronted with all attributes regarding an item. The
evaluations are needed to enable the system to generate suggestions for items. As an
alternative way of collecting data, micro-tasks are introduced. Micro-tasks can be
solved in a time efficient fashion because users are only asked to declare information
about one specific item and attribute. The main advantage is that it takes just a few
seconds to solve a micro-task as just one attribute of an item should be evaluated.
In this case, the user cannot choose the item as it is automatically assigned. To
guarantee a high quality of the information gathered by micro-tasks, it is necessary
to find users who have a lot of knowledge in a recommender domain. Therefore, a
scheduling algorithm is introduced in this thesis which claims to solve the problem
of assigning micro-tasks to users who might be best suited to solve it.

Kurzbeschreibung

Empfehlungssyteme spielen eine wichtige Rolle auf Internet Seiten wie zum Beispiel
Amazon.com oder YouTube.com, die eine breite Palette an Produkten oder Dien-
stleistungen anbieten. Für Benutzer ist es meist sehr schwierig in dieser großen
Menge an Möglichkeiten, das für sie passende Produkt oder die passende Dien-
stleistung zu finden. Empfehlungssyteme unterstützen Benutzer dabei sich in dem
riesigen und oft sehr komplexen Sortiment zurechtzufinden sowie beim Finden der
passenden Produkte oder Leistungen. Diese Systeme sind auf verschiedeneste Arten
von Produktgruppen und anderen Leistungsgruppen anwendbar, beispielsweise für
die Empfehlung von Filmen, Musik oder Automobilen. Empfehlungssysteme un-
terstützen Benutzer, die wenig detailliertes Wissen über eine spezielle Produkt-
gruppe besitzen, ein für sie passendes Produkt zu finden. Aus diesem Grund besitzt
jede Produktgruppe eigene Attribute mit denen sich die Eigenschaften der Pro-
dukte in der jeweiligen Produktgruppe beschreiben lassen. Diese Attribute werden
im Empfehlungsprozess benutzt um passende Produkte zu finden. Da jeder Benutzer
unterschiedliche Verhaltensweisen und Interessen hat, bekommt er anhand dieser At-
tribute auf ihn zugeschnittene Empfehlungen. Um dem Benutzer die bestmöglichen
Produkte zu empfehlen, sind Daten nötig anhand derer entschieden werden kann,
ob ein Produkt für einen Benutzer passend wäre oder nicht. Diese Informationen
können auf verschiedene Weisen ins System eingepflegt werden. Eine sehr gängige
Art und Weise ist das Erstellen von Evaluierungen für bestimme Produkte, die der
Benutzer gekauft oder in Anspruch genommen hat. Evaluierungen bestehen aus
mehreren Fragen bezüglich des Produkts und Benutzer können eine oder mehrere
dieser Fragen beantworten. Der Benutzer wählt das zu evaluierende Produkt selbst
aus. Da eine Evaluierung allerdings relativ lang dauert, machen sich nicht viele Be-
nutzer die Mühe, Evaluierungen für Produkte zu erstellen. Um trotzdem genügend
Informationen zu bekommen wird hier das Konzept der ”Micro-Tasks” benutzt.
Jeder ”Micro-Task” besteht aus einer kurzen Fragen, die der Benutzer innerhalb
von weniger als einer Minute beantworte kann. Die Fragen werden automatisch
zugewiesen. Da diese Fragen sehr schnell gelöst werden können, tendieren Benutzer
eher dazu solche Fragen zu beantworten als langwierige Evaluierungen zu erstellen.
Das Schwierige ist nun Benutzer zu finden, die mit hoher Wahrscheinlichkeit die
richtige Anwort zu der Frage geben können. Es gilt daher Benutzer zu finden, die
sehr viel Wissen in einer bestimmten Produktgruppe besitzen. Um dies zu tun, wird
in dieser Arbeit ein Verteilungsalgorithmus entwickelt, welcher versucht für gegebene
Micro-Tasks, die Benutzer zu finden, welche am meisten Wissen über dieses Produkt
oder die Produktgruppe besitzen.

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis.

Date Signature

Contents

1 Introduction and Motivation 1

2 Related Work 3
2.1 Recommender Systems . 3

2.1.1 Collaborative Recommendation 4
2.1.2 Content-Based Recommendation 5
2.1.3 Knowledge-Based Recommendation 6
2.1.4 Hybrid Recommendation . 7

2.2 Human Computation . 8
2.3 Micro-Tasks . 9
2.4 Games . 11
2.5 Similarities and improvements to related work 12

3 Basic Recommendation Approach 13
3.1 Definitions . 13
3.2 Recommendation Approach . 20

3.2.1 Result Set . 20
3.2.2 Support of Item Attributes 21
3.2.3 Aggregated Support . 22
3.2.4 Utility Function . 23

4 PeopleViews System Description 26
4.1 PeopleViews Architecture . 26
4.2 User Interfaces . 29
4.3 Recommender Interfaces . 30
4.4 Item Interfaces . 33
4.5 Micro-Task Interfaces . 36
4.6 Recommendation Interfaces . 41
4.7 Game . 43

5 Micro-Task Scheduling Approach 47
5.1 TF-IDF . 48

5.1.1 TF . 48
5.1.2 IDF . 49

5.2 Extraction and Weighting of Keywords 49
5.2.1 Keyword Extraction for Items 49
5.2.2 Keyword Extraction for Users 51
5.2.3 Weighting of Item Keywords 52
5.2.4 Weighting of User Keywords 53
5.2.5 Extraction and Weighting of Recommender Keywords 55
5.2.6 Extraction and Weighting of Micro-Task Keywords 55

5.3 Agenda for Micro-Task Generation 55
5.4 Scheduling Approach . 61

5.4.1 Definitions . 61
5.4.2 Example . 65

6 Evaluation 75
6.1 Dataset . 75
6.2 Evaluation Approach . 78
6.3 Evaluation Results . 84

7 Limitations and Future Work 89
7.1 Limitations . 89

7.1.1 Technical Limitations . 89
7.1.2 Limitations of the Scheduling Algorithm 90

7.2 Limitations of the Evaluation . 90
7.3 Future Work . 90

8 Conclusion 92

1
Introduction and Motivation

Recommender systems are used to support users in finding suitable products within
a large amount of items. Recommenders, nowadays, are integrated in many online
services and utilized by users to make decisions such as which item to purchase or
which movie to watch.

In this thesis, a constraint-based multi-domain recommender system was imple-
mented which tackles the problem of finding the best possible recommendations
for users. Furthermore, the acquisition of data to be able to generate the recom-
mendations is a main aspect of this thesis. Data acquisition is an essential part
of constraint-based recommender systems as they need information about items
to be able to provide appropriate recommendations. Multi-domain, in this case,
means that the system can deal with several recommender domains such as skiing
resorts, mobile phones or cities within the same system. Although, those recom-
mender domains have nothing in common, their different attributes can be modeled
in PeopleViews 1.

In contrast to approaches such as collaborative filtering, constraint-based recom-
menders can deal with very complex items. To add information to the system, it
is necessary that users evaluate items. For example, such information could be the
target audience of a skiing resort or the performance of a mobile phone. In order to
make data acquisition as efficient as possible, one of the goals of this thesis is to find
an appropriate way to acquire preference information regarding items. One possi-
bility to acquire information in PeopleViews are evaluations where users actively
select an item and answer one or multiple questions regarding the item’s attributes.

1 PeopleViews is a research project funded by the Austrian Research Promotion Agency under
the Bridge-1 program.

1

1 Introduction and Motivation

Another way of acquiring data are micro-tasks. Micro-tasks contain one single ques-
tion about a specific item’s attribute with one or more possible answers. These tasks
can be solved in a minimum of time which should encourage users to contribute to
the system. As the attributes of items can have different characteristics such as
single answer or multiple answers, different types of micro-tasks are proposed in this
thesis. Micro-tasks, in contrast to evaluations, are assigned to users by the system.
The differences between evaluations and micro-tasks will be described in detail in
Section 3.1. Thus, PeopleViews needs to find appropriate users which the system
assumes to be best suited to complete a specific micro-task. Best suited users are
users with properties such as having knowledge about the item or recommender do-
main, having answered many micro-tasks before, or having a low workload. Finding
such users leads to the main goal of the thesis which aims to solve the selection of
suitable users to solve micro-tasks. To deal with this issue, an approach is proposed
that claims to be able to find the best matching user for a micro-task based on the
user’s past interactions with the system.

This thesis is organized as follows: Chapter 2 contains a discussion of related
work in recommender systems, micro-tasks, and scheduling approaches. In Chap-
ter 3 the PeopleViews recommendation approach, as well as definitions of terms
and concepts used in this thesis are introduced. Furthermore, two example recom-
mender applications are constructed from scratch to be able to provide meaningful
examples throughout the thesis. Chapter 4 contains the description of all aspects
of the PeopleViews user interface, the description of a game with a purpose and
also the explanation of the technical realization of the user interface as well as the
PeopleViews server. Games with a purpose are used to gather information. In
this case, the goal is to answer questions regarding items of a chosen recommender
domain. Such games can be used to motivate people to contribute to the system.
The different types of micro-tasks will also be shown in Chapter 4. In Chapter 5, the
scheduling of micro-tasks is described. Furthermore, the extraction and weighting of
keywords extracted from data sources such as item descriptions are explained. The
keywords are needed to help in deciding if a user is capable of completing a specific
micro-task. The concept of an agenda and the construction of micro-tasks from
such an agenda are discussed. Agendas are provided by the PeopleViews Qual-
ity Assurance component and indicate which micro-tasks need to be generated in
order to acquire enough information about specific items to improve the recommen-
dation quality. The evaluation of the scheduling algorithm as well as the baseline
algorithms and the used data set are described in Chapter 6. Chapter 7 includes
a discussion of the limitations of the scheduling algorithm, the evaluation data set,
the evaluation itself, and also the technical limitations of the system. Furthermore,
open issues for future work are discussed. The thesis is concluded with Chapter 8.

2

2
Related Work

In this chapter, an overview of related work is provided. First, different kinds
of recommender systems will be discussed in Section 2.1. Section 2.2 analyzes the
related work in the context of human computation. Section 2.3, provides an overview
of approaches that explain the concept of micro-tasks. Section 2.4 covers aspects
regarding games with a purpose.

2.1 Recommender Systems

Resnick and Varian [1] state that users often have to make decisions without having
sufficient knowledge needed for taking the decision properly. They suggest to use
recommender systems to assist people in making good decisions and give a definition
of the term recommender systems.

In a typical recommender system, people provide recommendations as
inputs, which the system then aggregates and directs to appropriate re-
cipients. In some cases the primary transformation is in the aggregation;
in others, the system’s value lies in its ability to make good matches be-
tween the recommenders and those seeking recommendations.

The authors also state that recommender systems should assist and augment the
natural social process of relying on recommendations from other people by word of
mouth, reviews in newspapers, etc.

One recommender system was developed by Goldberg et al. [2], who introduced
Tapestry, a mail system which uses collaborative filtering to select relevant docu-
ments. As content-based filtering did not solve the problem of receiving unwanted

3

2 Related Work

mails properly, they proposed a collaborative filtering approach. Collaborative fil-
tering is implemented in terms of a collaboration between users who help others to
perform filtering by annotating documents they read.

In their paper, Felfernig and Burke [3] give an overview of current state-of-the-art
recommender systems. They categorize them into four different classes: collabo-
rative, content-based, knowledge-based, and hybrid recommendation approaches.
Generally, these categories are defined as follows:

� Collaborative recommendation: Recommends items that other users with sim-
ilar preferences liked in the past.

� Content-based recommendation: A user gets recommendations for items that
have commonalities to the items she preferred in the past.

� Knowledge-based recommendation: Recommendations are generated by rea-
soning about which items might be relevant for the user by using domain
knowledge (represented, e.g. in the form of constraints) and user requirements.

� Hybrid recommendation: Recommendation approaches are combined in such
a way that the weaknesses of one approach are compensated by the other one.

These four categories will be described in more detail in the next subsections.

2.1.1 Collaborative Recommendation

Breese et al. [4] analyze different algorithms for collaborative filtering. They also
give a definition of collaborative filtering.

The task in collaborative filtering is to predict the utility of items to a
particular user (the active user) based on a database of user votes from
a sample or population of other users (the user database).

They also distinguish between algorithms that always take the entire user database
to make predictions and algorithms which use the database once to learn models
which are later used to predict items. The results show that the first type of algo-
rithms is slower and needs more memory resources. The other type, however, needs
less memory but requires a learning phase.

Konstan et al. [5] applied collaborative filtering to Usenet news. This system
includes a newsgroup with hundreds of messages per day. Due to the huge amount
of information, they integrated collaborative filtering to recommend relevant articles
to user. Each user had to rate several articles before he could receive recommenda-
tions. This was considered a problem because many users did not want to make this

4

2 Related Work

contribution. This indicates that collaborative filtering has problems with cold-start
[6] where there is no or very little user data available.

In their paper, Sarwar et al. [7] introduce an item-based collaborative filtering
approach. Their approach avoids the bottleneck of traditional collaborative filtering
approaches which arises when searching for potential neighbors in a large set of
possible neighbors. To avoid this, they first explore the relations between items and
not between users. The results show that an item-item-based matching approach
achieves a better prediction quality than conventional user-user-based matching. A
very popular website which uses item-based collaborative filtering is Amazon.com.
Linden et al. [8] describe the approach and state that it can be used for efficient
marketing and also scales for a large retailer such as Amazon.com.

2.1.2 Content-Based Recommendation

Pazzani et al. [9] give a definition of content-based recommender systems as

[...] systems that recommend an item to a user based upon a description
of the item and a profile of the user’s interests.

The authors discuss different item representations from which the necessary in-
formation for recommending items can be extracted. They first describe a data
structure in a database, which already contains arbitrary items of a single domain
such as books. For each item, the item details are already stored in the database.
Item details, for example, are price or author of a book. As it is not always possi-
ble to get information in such a structured way, another approach described by the
authors tries to extract information from unstructured data. They use the TF*IDF
technique [10] for unstructured text to extract words and weight them. In their case,
item descriptions are a form of unstructured text.

TF*IDF is a technique that calculates the importance of a word in a collection
of documents. For each word a weighting value between 0 and 1 is calculated that
indicates if the word is more or less important in this collection of documents. The
weighting values for each word of an item description can be calculated with this
technique indicating the importance of a certain word of the description. TF*IDF
will be further described in Section 5.1 as it will be used in the task scheduling
approach introduced in this thesis to create a history of users’ interests stored in
so-called user profiles.

Pazzani et al. [9] also introduce user profiles which hold the user’s preferences
such as types of items she is interested in and also a history of the user’s interactions
with the system. They store keywords weighted using TF*IDF in the user profile.
This is similar to the user profile that will be used in this thesis.

They also list limitations such as the need for users to interact with the system
and the difficulty of finding enough users who contribute to the system. Further-
more, Pazzani et al. [9] match items based on the extracted keywords in the user

5

2 Related Work

profile and state that currently there are no techniques that create a ranking of the
recommended items.

The authors also discuss several techniques of recommendation algorithms such
as decision trees, nearest neighbor methods or probabilistic text classifiers to create
user profiles used for recommending items. They give an example of how to match
the weighted words in the user profile to items by summing up the weights of all
words from the user profile that match words of the item description. Furthermore,
Pazzani et al. [9] state that the quality of content-based recommendation strongly
relies on the quality and quantity of available information such as item descriptions.

Van Meteren and van Someren [11] use the relevance feedback method which is
similar to TF*IDF to generate a user profile. This method represents documents
and profiles as vectors. In their approach, the profile only consists of one vector
containing the topics of interest. The user profile vector is always updated after
a user read a document for a certain amount of time. The profile is updated by
applying a weighting factor to the previous profile vector plus adding a document
vector weighted by the relative importance of the document to the user. The docu-
ment vector represents the documents read by the user. For example, if a user read
several documents regarding the same topic, the topic is weighted higher in the user
profile vector.

Furthermore, the authors match the document vector and the user profile to gen-
erate recommendations. The results of the paper show that content-based filtering
approaches cannot predict the user’s future interest which would be possible with
collaborative filtering approaches. They state that it might be more effective to com-
bine collaborative and content-based filtering approaches to achieve better results.
However, the authors do not further elaborate on that idea.

2.1.3 Knowledge-Based Recommendation

Burke [12] defines knowledge-based recommendation as an approach that generates
a recommendation by reasoning about which products users might be interested
in. This is done by using knowledge about users and products. The author also
points out that knowledge-based recommendation avoids some of the drawbacks of
the other approaches. For example, the cold-start problem does not occur as this
approach does not rely on user ratings to generate recommendations.

Felfernig et al. [13] define knowledge-based recommendation as consisting of a rec-
ommendation task and a recommendation. The recommendation task is defined as a
constraint satisfaction problem [14]. It consists of a set of domain variables describ-
ing product properties, constraints describing user’s requirements, filter constraints,
and a constraint specifying the set of available products.

Recommendation itself is defined as follows: An assignment of variables is a rec-
ommendation if each of the individual assignments is consistent with the constraints

6

2 Related Work

of user requirements, filter constraints, and the constraints of the set of available
products.

For the system implemented in this thesis, a special form of knowledge-based
recommendation is used, namely constraint-based recommendation. Felfernig and
Burke [3] give the following definition:

In this paradigm recommendation is viewed as a process of constraint
satisfaction, some constraints come from users, other constraints come
from the product domain. Products that satisfy the constraints are good
recommendations.

Products that satisfy the constraints are suitable recommendations. They also
state that this kind of recommender system does not encounter a problem with cold
start and is also able to recommend products that are not used enough to generate
a meaningful history (for example, a reading history). Felfernig et al. [15] showed
that such recommender systems can be used in the financial sector too.

Felfernig et al. [16] recently wrote a paper regarding multi-domain recommender
systems using constraint-based recommendation and human computation. This
method can be used to host multiple recommender domains in one system. They
also show that users are willing to contribute to the system but don’t want to invest
a large amount of time. Felfernig et al. [17] discussed recommendation approaches
in the context of multi-domain recommender systems and furthermore, parts of the
PeopleViews user interface are described.

2.1.4 Hybrid Recommendation

Robin Burke [18] discusses hybrid recommendation approaches such as a combina-
tion of knowledge-based recommendation and collaborative filtering techniques. He
also gives a definition of hybrid recommendation approaches.

Hybrid recommender systems combine two or more recommendation
techniques to gain better performance with fewer of the drawbacks of any
individual one. Most commonly, collaborative filtering is combined with
some other technique in an attempt to avoid the ramp-up problem.

Burke, furthermore, discusses the advantages and disadvantages of different com-
binations of approaches. He states that some combinations are able to reduce or
even remove the disadvantages of a single approach. For example, when combining a
knowledge-based with a collaborative filtering approach the cold-start problem can
be mitigated.

7

2 Related Work

Burke [19] discusses hybrid web recommender systems. He addresses two-part hy-
brid recommender systems. It turns out that cascade hybrids are generating the best
results in terms of recommendation quality [20]. Such approaches create a hierarchi-
cal structure consisting of two stages as two different recommendation approaches
are used. If more recommendation approaches would be used, the structure would
consist of more stages. In the first stage, the items are preprocessed with a recom-
mendation approach such as knowledge-based recommendation that, for example,
removes items that will definitely not match. In the second stage, the items left
are ordered using some other recommendation technique, for example, collaborative
filtering.

Several researchers used hybrid approaches to implement applications. Albadvi
and Shahbazi [21] combined collaborative and content-based filtering approaches
to recommend items based on product category preferences of users. They track
the buying behavior and purchases of the user. They use the bought products to
filter possible items using collaborative filtering and then rank the remaining prod-
ucts using the product details with a content-based approach. Lekakos et al. [22]
also used a combination of collaborative and content-based filtering to recommend
movies. They use a similar approach as Albadvi and Shahbazi [21] used. First,
the movies a user watched where used to select possible movies using collaborative-
filtering. Afterwards, they rank the movies left with a content-based approach using
the movie descriptions to extract keywords and match the extracted keywords to
find appropriate movies.

2.2 Human Computation

Von Ahn [23] describes human computation problems as problems which can be
solved by humans easily but are hard to solve for computers.

By leveraging human abilities in a novel way, I solve large-scale com-
putational problems and collect data to teach computers basic human
talents.

As an example, he states that CAPTCHAs containing text snippets which were
used for digitalization of words contained in a book can be displayed in squiggly
characters. Digitalization of books is a hard task for computers because recognize
squiggly characters is very challenging for computers. CAPTCHAs are typically en-
tered by humans for whom this is an easy task. The concept is to distribute massive
computational problems to humans to solve it.

Quinn and Bederson [24] try to give a more formal definition of human compu-
tation problems based on the work of von Ahn’s doctoral thesis [25] which inspired
the term “human computation”.

8

2 Related Work

The problems fit the general paradigm of computation, and as such might
someday be solvable by computers. The human participation is directed
by the computational system or process.

The authors also state the difference between human computation and crowd-
sourcing, social computing, collective intelligence or data mining.

� Human computation: Using humans abilities to solve tasks that are hard for
computers but easy for humans.

� Crowdsourcing: Jobs usually done by traditional human workers are out-
sourced to a large group of members of the public.

� Social computing: Natural human behavior is mediated by technology. The
purpose is not to perform a computation.

� Data mining: Extraction of patterns from data using specific algorithms.

� Collective intelligence: Combination of the four previous concepts in which
groups of humans complete tasks collectively that appear to be intelligent.

Yuen et al. [26] provide a categorization of existing human computation sys-
tems. They differentiate between initiatory human computation, distributed human
computation, and social game-based human computation. Initiatory human com-
putation means to collect commonsense knowledge by letting users interact with
the system. Distributed human computation addresses the huge number of users on
the Internet who contribute to the system. Social game-based human computation
means to use social games to solve difficult AI problems with the help of users. Social
games are entertaining for users and while playing games they provide information
to the system in an enjoyable matter.

2.3 Micro-Tasks

In this section, existing research regarding the scheduling and distribution of micro-
tasks to users is discussed. In this thesis, micro-tasks are related to the context of
human computation, therefore, an overview of related work regarding this context
is given.

Micro-tasks are defined by Sarasua et al. [27] as

[...] a problem is outsourced to a distributed group of people by split-
ting the problem space into smaller sub-problems, or tasks, that multiple
workers address independently [...]

9

2 Related Work

Schnitzer et al. [28] present a study that focuses on the evaluation of micro-worker
preferences in terms of recommendations of tasks in crowdsourcing platforms. The
result shows that most workers just want tasks that minimize the amount of time
and maximize the amount of money as it would be expected. But workers are also
very interested in simplicity and similarity to previously solved tasks. The paper
shows that in order to achieve results of higher quality, scheduling algorithms should
not only take into account the value for money when distributing tasks but also pref-
erences of the workers.

Ambati et al. [29] analyzed the work flow of users choosing random micro-tasks to
solve on Amazon Mechanical Turk 2. The interface of the Amazon Mechanical Turk
shows random tasks and does not adapt on behalf of a current worker’s preferences
and skills. The authors discovered that this representation is not optimal as not
every worker is able to solve every task. This leads to a low quality of the solved
tasks as less-skilled workers solve tasks to earn a high amount of money even if they
would need much better skills. On the other hand, better-skilled workers need to
search rather long to find appropriate tasks as also easy to solve tasks are shown
to them. To overcome this problem, Ambati et al. [29] proposed two methods for
building user preference models which can then be matched with the micro-tasks.
Both approaches rely on keywords which can be extracted from items. The interac-
tions of users are stored in a database and can later be used to generate keywords
and match them to keywords extracted from micro-tasks.

Hadano et al. [30] propose a method to solve the task assignment problem in
mobile crowdsourcing platforms. They use worker-task graphs and add time con-
straints to the graphs. Each task has a deadline to complete the task. Hadano et
al. analyzed the time workers invested in tasks to solve them in past periods. Using
this data, the authors then checked for all tasks if workers are available to solve
the tasks in time. When adding the time constraints a lot of connections between
workers and tasks are removed due to not being able to solve the task within time.
This leads to a remaining set of tasks which is recommended to a worker and also
to an increase of completed tasks per time unit in this system.

Rajan et al. [31] propose the system CrowdControl, which is used to control
the scheduling of large batches of tasks to workers. Instead of distributing all tasks
at once, the set of tasks is divided into small subsets which are assigned to workers
in several rounds. After every round, the performance of the workers, as well as the
fulfillment of the requirements (such as the minimum number of solved tasks in a
time unit) specified by the task creator, are checked. The performance in the pre-
vious round influences the setup of the next round. If, for example, workers where
able to solve very complex tasks, they will receive complex tasks again in the next

2 https://www.mturk.com/mturk/welcome

10

2 Related Work

round. On the other hand, if workers needed very long to solve the tasks, they will
get easier tasks that can be solved faster.

Wang [32] addresses the problem of task scheduling based on user satisfaction.
He states that most algorithms use the same satisfaction function for all users and
assume that each user has the same motivation to solve tasks. He proposes an ap-
proach where each user has its own satisfaction function and the overall satisfaction
can be computed from the satisfaction functions of the users. He uses a genetic
algorithm to improve the weighting parameters influencing the timing and budged
constraints used in the satisfaction function of the user. His study shows that the
overall user satisfaction increases with the algorithm he invented as the workers get
the amount of tasks they are willing to solve.

2.4 Games

The PeopleViews system contains a game with a purpose which is used to get fur-
ther information about users and products as well as to motivate users to contribute
to the system. Deterding et al. [33] address the usage of game-design elements in
non-gaming contexts and state that

The most recent phenomenon in this trajectory is ‘gamification’, an
umbrella term for the use of video game elements (rather than full-fledged
games) to improve user experience and user engagement in non-game
services and applications.

Zichermann and Cunningham [34] describe all aspects that need to be considered
regarding gamification in web applications. They point out that gamification is a
huge motivation factor for users to contribute to a system. They state that the
quality of data produced by games is very good because people try to maximize
their score. Furthermore, they show mechanisms such as badges and points users
can earn by playing which makes users really feel like playing a game rather than
just solving tasks.

Hamari et al. [35] examine if gamification actually works and which advantages it
has. They review existing empirical research in gamification to identify the impact
of gamification on different kinds of systems. The results show that gamification
actually has positive impacts on the frequency of system usage, but they also show
that it strongly depends on the context in which the gamification is implemented.
The studies showed that users where more motivated to use a system when games
where involved especially in the context of educational and learning systems. They
also showed that in systems such as e-commerce platforms it is challenging to add
gamification as in such systems users are more interested in maximizing their profit
than having fun.

11

2 Related Work

2.5 Similarities and improvements to related work

The recommender system PeopleViews is based on a constraint-based recommen-
dation approach. In contrast to other knowledge-based approaches PeopleViews
allows to freely add and configure arbitrary recommender domains.

The micro-task scheduling approach implemented in this thesis is based on a
content-based approach. In addition to item descriptions which are used by most
approaches also other factors such as excellence or workload of a user and several
other metrics which are described in detail in Section 5 influence the micro-task
scheduling.

The concept of human computation is applied in PeopleViews by introduc-
ing techniques and algorithms that aggregate user input which can then be used
to generate recommendations. The micro-task approach implemented in this thesis
increases the applicability of human computation in constraint-based recommenders.

Gamification and awarding points for interaction with the system such as adding
items is used to motivate users to contribute to the system. The game with a purpose
implemented in PeopleViews should motivate users to increase their knowledge
about the domains to maximize their highscore.

12

3
Basic Recommendation Approach

The system implemented within the scope of this thesis is based on constraint-
based recommendation. The general definition of a constraint-based recommender
was already given in Chapter 2. As this system should be able to deal with the
creation and maintenance of a large number of recommenders, the initial definition
of a constraint-based recommender needs to be adapted and extended. To provide a
better understanding of the concepts described in the following section, two example
recommenders will be constructed. These recommenders will be used throughout
the entire remaining thesis. Furthermore, the recommendation approach used by
the system to generate recommendations for users will be described in this chapter.

3.1 Definitions

User u ∈ U . A user u can contribute to the systems by solving micro tasks, playing
games, creating evaluations, etc. But as the system supports both, contribut-
ing and non-contributing users, a user u could also just use the recommender
to get recommendations. Contributing and non-contributing users are not dis-
tinguished by the system and treated in the same way. Each user is allowed to
add items to recommenders. In Table 3.1 an example of users in the system
is shown.

Recommender r ∈ R. A recommender is related to one specific domain. A rec-
ommender consists of name, description, image, the item attribute and user
attribute definitions. With these definitions it provides a skeleton for items

13

3 Basic Recommendation Approach

Username E-Mail

Mike mike@test.com

James james@test.com

Linda linda@test.com

Marry marry@test.com

Table 3.1: Examples of PeopleViews users.

that can be added to the recommender. Each recommender consists of sev-
eral items, each item added to the same recommender consist of the same
item attributes and user attributes. As mentioned before, the creator of the
recommender defines the item attributes (hard or objective facts about items)
and user attributes (soft or subjective facts about items) for the recommender.
Table 3.2 shows examples of recommenders.

Recommender Name Description

Mobile Phones Want to buy a new mobile phone? This recommender
will help you make a decision.

Skiing Resorts You like skiing or snowboarding? You love the winter and
the mountains? We help you find the perfect resort.

Table 3.2: Examples of recommenders in the system.

Item Attributes ia ∈ IA. These describe objective properties of items. Item at-
tributes are hard facts of an item such as the display size of a smart phone.
These attributes are of different type such as numerical, textual or predefined
values from which the item creator can choose. The type of each item at-
tribute is defined by the creator of the recommender. The domain values of
the item attributes are entered by the user who adds an item to the system;
the item attributes themselves are entered by the creator of the recommender.
Therefore, the possible item attributes are the same for each item in a specific
recommender, only the values are different. Each item attribute also needs an
order relation. In PeopleViews, the following order relations or similarity
metrics for numbers can be used: less is better(LIB), more is better(MIB),
nearer is better(NIB) or equal is better(EIB) [36]. The order relations of item
attributes are used in the recommendation process to allow the system to rank
items based on item attributes. The order relation for each item attribute is
defined by the creator of the recommender. For text input and predefined
answers (enumerations), only Exact match(EM) and Display only(DO) can
be chosen, only these two similarity measures can directly be applied to text.
Exact match is treated the same way as equal is better is. Display only means

14

3 Basic Recommendation Approach

that the item attribute is only shown to the user as information but cannot be
used to match with user-defined filter criteria. Table 3.3 gives some examples
of item attributes.

Item Attribute Input Type Enumeration Order Recommender
Answers Relation

OS enumeration {Blackberry, EIB Mobile Phones
iOS, Android,

Windows}
Release Date text DO Mobile Phones

Display Size number EIB Mobile Phones

Memory number MIB Mobile Phones

Price number LIB Mobile Phones

Family friendly enumeration {Yes, No} EM Skiing Resorts

Sledging enumeration {Yes, No} EM Skiing Resorts

Cross-country enumeration {Yes, No} EM Skiing Resorts
skiing

Kilometers of number MIB Skiing Resorts
slopes

Types of lift text DO Skiing Resorts
facilities

Table 3.3: Examples of item attributes for the mobile phones and skiiing resorts recommenders
can be seen. The different input types and similarity measures are shown as well.

User Attributes ua ∈ UA. In contrast to item attributes, user attributes are sub-
ject to the users opinion. They can be seen as soft facts about items, such
as the usability of a smart phone. For instance, user u1 could consider the
usability for smart phone Samsung Galaxy S7 as very good, whereas user u2

could consider it as moderate. The answers to the user attributes are given
by users who evaluate an already existing item. So neither the item creator
nor the creator of the recommender enter those values but evaluating users
do. Another difference to item attributes is that the answers of user attributes
are predefined. The evaluating user has to choose one or more possible an-
swers and cannot enter it as, for example, textual input. These answers are
called user attribute values uav ∈ UAV . For instance, the usability of a smart
phone may have the following possible user attribute values: very good, good,
moderate, bad and very bad. There are two different types of user attributes:
single-answer and multi-answer. An example of a multi-answer attribute is, for
example, the target audience for a skiing resort with the user attribute values
family, recreational athlete, top-class athlete or snowboarder. There it makes

15

3 Basic Recommendation Approach

sense to choose more than one user attribute value as the skiing resort might
have more than one possible target audience. The user attributes as well as the
user attribute values are defined by the creator of the recommender. Examples
of user attributes and user attribute values are shown in Table 3.4. For each
user attribute, a question which is asked to users who evaluate an existing
item needs to be specified as well. Because of space limitations, this text is
omitted in the examples shown in Table 3.4.

User Attribute User Attribute Values Choice Type Recommender

Performance {poor, acceptable, single Mobile Phones

good, excellent}
Value for money {keeps value, looses value single Mobile Phones

slightly, looses value fast}
Battery life for {photo, gaming, multiple Mobile Phones

different usages browsing, telephoning}
Design {valuable, moderate, poor} single Mobile Phones

Price level {expensive, moderate, cheap} single Skiing Resorts

Experience level { high, moderate, low } single Skiing Resorts
needed

Quality of lift {new, average, old} single Skiing Resorts
facilities

Target audience {family, recreational athlete, multiple Skiing Resorts

top-class athlete }
snowboarder }

Quality of ski {good, moderate, bad} single Skiing Resorts
lodges

Table 3.4: Examples of user attributes and corresponding user attribute values for mobile
phone and skiing resort recommenders.

Item i ∈ I. Items are the entities which get recommended by the recommender sys-
tem. Items consist of name, description, image, tags, item attributes, and the
recommender they belong to. When creating a new item, the values of the
item attributes are added by the creator of the item. After creation, each item
can be evaluated by users. Users specify how well they think the item supports
certain user attribute values (see support). In the Tables 3.5 and 3.6 examples
of items in both recommenders from Table 3.2 can be seen. To keep the tables
simpler, the item descriptions and tags are omitted.

16

3 Basic Recommendation Approach

Item Name OS Release Date Display Memory Price

Size (in GB)

Samsung Galaxy S7 Android February 2016 5,1 32 588

Apple iPhone 6S iOS September 2015 4,7 16 610

Sony Xperia M5 Android December 2015 5,0 16 307

Table 3.5: Example items of the recommender Mobile Phones.

Item Name Family Sledging Cross-country Kilometers types of
Friendly skiing of slopes lift facilities

Kitzbühel Yes Yes Yes 173 cableway,
chair lift,
drag lift

Schladming Yes No Yes 123 cableway,
chair lift,
drag lift

Obertauern Yes Yes Yes 100 cableway,
chair lift,
drag lift

Table 3.6: Example items of the recommender Skiing Resorts.

Support Suav ∈ S. The support is needed when an item is evaluated. It defines how
well the different user attribute values for each user attribute are supported.
The support is a percentage value between −1 and 100%. −1 indicates that
the user has no knowledge about the support for this specific user attribute
value. If the user chooses −1, the system will not use the support specified for
this user attribute value when calculating recommendations. The percentage
value assigned by users to item-user attribute value combinations allows the
system to distinguish how strongly this user attribute value is supported by
the evaluated item. For instance, the support for the user attribute usability
for the item Samsung Galaxy S7 could be 70% for being very good whereas
for the item Apple iPhone 6S it could be 90%. This means that both smart
phones have very good usability, but the Apple iPhone 6S is still better than
the Samsung Galaxy S7 when it comes to usability. The support can entered
by an evaluating user for each user attribute and at least one user attribute
value. The support is needed in the calculation of the recommendation of
items to a user. For each item-user attribute value combination, there exists
exactly one support value. The Tables 3.7 and 3.8 contain the evaluations of
different items from different users. The cells contain the support and user
attribute value the user defined for a certain user attribute.

17

3 Basic Recommendation Approach

User Item Performance Value for Battery life for Design
money different usages

Mike Samsung acceptable looses gaming (80%) valuable

Galaxy S7 (80%) slightly browsing (75%) (80%)

(60%) photo (70%)

James Samsung very good looses photo (70%) moderate

Galaxy S7 (75%) slightly gaming (85%) (90%)

(80%)

Linda Apple very good keeps value photo (80%) valuable

iPhone 6S (90%) (70%) browsing (75%) (80%)

James Sony acceptable looses fast telephoning (80%) moderate

Xperia M5 (60%) (60%) browsing (70%) (70%)

Marry Sony very good looses browsing (85%) valuable

Xperia M5 (75%) slightly photo (75%) (90%)

(80%)

Mike Apple excellent looses gaming (80%) moderate

iPhone 6S (80%) slightly browsing (70%) (80%)

(75%) photo (60%)

Table 3.7: Example evaluations of items of the recommender Mobile Phones. The support is
given as a percentage value in brackets.

Requirements REQuav, REQia ∈ REQ. Requirements define a set of user attribute
values and item attribute values selected by the user. The user specifies those
criteria to get recommendations. The recommendation algorithm then tries
to find the best matching items for the specified criteria. There is a difference
between requirements for user attribute values REQuav and item attribute
values REQia as the support for those is calculated differently which will be
shown in Section 3.2.

User Profile pu ∈ PU . A user profile consists of weighted keywords. Those key-
words are extracted by analyzing the user’s interactions with the system. A
detailed description of the keyword extraction will be given in Chapter 5. The
keywords are later used to match users and items of micro-tasks when schedul-
ing the micro-tasks. Examples of user profiles will be given in Chapter 5, as
the keyword extraction is shown.

Item Profile pi ∈ PI. An item profile is similar to a user profile, but only consists
of weighted keywords that were extracted from the item description and item
tags. Item profiles are also used to match users and items of micro-tasks when
micro-tasks are scheduled. How the extraction and weighting are done, will be
described in detail in Chapter 5 and also example item profiles will be shown.

18

3 Basic Recommendation Approach

User Item Price Experience Quality Target Quality
level level of lift audience of ski

needed facilities lodges

Marry Kitzbühel exp. moderate average rec. athlete good

(80%) (90%) (70%) (70%) (70%)
snowboarder

(80%)

James Kitzbühel mod. high new top. athlete moderate

(90%) (75%) (80%) (70%) (80%)
rec. athlete

(70%)

James Schladming mod. moderate new rec. athlete good

(80%) (75%) (70%) (80%) (80%)
rec. family

(90%)

Linda Schladming mod. low average snowboarder good

(70%) (70%) (90%) (80%) (90%)
family

(80%)

Marry Obertauern cheap moderate new rec. athlete moderate

(70%) (65%) (80%) (70%) (75%)
family

(65%)

Table 3.8: Example evaluations of items of the recommender Skiing Resorts. The support is
given as a percentage value in brackets.

Micro-Task mt ∈MT . Micro-tasks are used to acquire supports for item - user
attribute value combinations, similar to evaluations. The differences between
those two concepts are:

� When evaluating an item, users self-initiated select which item to eval-
uate, micro-tasks get assigned to users by the system and ask them to
specify supports for an automatically chosen item.

� Evaluations allow users to specify supports for all defined user attribute
values, whereas micro-tasks ask users to specify the support for an au-
tomatically selected user attribute value or at most for all user attribute
values of a single user attribute.

� Evaluating an item might seem more complex and requires more time
than answering a single micro-task. However, by evaluating an item,
of course more information can be specified than by computing a single
micro-task.

19

3 Basic Recommendation Approach

Each user gets several micro-tasks assigned which she should solve. The pur-
pose of a micro-task is to acquire support values of user attribute values for
different items. As already stated in Chapter 2, users do not want to invest a
lot of time into maintaining a recommenders knowledge base [16].

There are different micro-task types in the system as there are different types
of user attributes. The purposes and different types of micro-tasks will be
further described in Chapter 4. The assignment of micro-tasks to users is,
among other things, based on the user profiles and the item profiles and will
be discussed in detail in Chapter 5. The generation of micro-tasks will also be
described in Chapter 5.

3.2 Recommendation Approach

One main functionality of PeopleViews is the generation of recommendations
for users. In this section, the PeopleViews recommendation approach will be
presented.

3.2.1 Result Set

Equation 3.1 gives the final result set RS, which represents the items that are shown
to the user as a recommendation based on the user’s chosen requirements. The
requirements are the filter criteria provided by the user. REQuav = ∅ and REQia =
∅ indicate that for these user attribute values and item attributes no requirements
were defined by the user. For example, a user could define the requirements shown in
Table 3.9 to get recommendations from the Skiing Resorts recommender. Table 3.10
shows the result set for the criteria given in Table 3.9.

Type Requirement Value

User Attribute Price Level moderate

User Attribute Target Audience family, snowboarder

Item Attribute Family friendly Yes

Item Attribute Kilometers of slopes 120

Table 3.9: Example of requirements a user could define for Skiing Resorts.

RS ={i | ∀uav ∈ REQuav : supportΣ(i, uav) > 0 ∨REQuav = ∅} ∩
{i | ∀ia ∈ REQia : supportΣ(i, ia) > 0 ∨REQia = ∅}

(3.1)

20

3 Basic Recommendation Approach

Item

Kitzbühel

Obertauern

Schladming

Table 3.10: Result set RS for the requirements given in Table 3.9.

3.2.2 Support of Item Attributes

The previously mentioned similarity measure NIB, MIB, LIB where defined by Mc-
Sherry [36]. EIB is not mentioned in this paper as it is just a special case of NIB.
The following equation shows the computation of the support for an item attribute
of a specific item for different similarity measures:

supportΣ(i, ia, iav) =



[iav = val(i, ia)] EIB

1− |iav−val(i,ia)|
max(I,ia)−min(I,ia)

NIB

val(i,ia)−min(I,ia)
max(I,ia)−min(I,ia)

MIB

max(I,ia)−val(i,ia)
max(I,ia)−min(I,ia)

LIB

(3.2)

For the example requirements in Table 3.9, the item attributes Family Friendly
and Kilometers of slopes were selected. The computation of the support for both
will be shown in the next equations. To do so, the corresponding similarity measure
equation for each item attribute needs to be chosen. The calculated supports for
the items can be seen in Table 3.11.

For the item attribute Family Friendly, the similarity measure is Exact Match(EM)
which is treated as equal is better(EIB) as already stated in Section 3.1. The support
for the EIB measure can only take two values, either 100% or 0% as can easily be
seen in Equation 3.2. The required value can either be equal to the one given in the
item or not. As an example for Family Friendly and Kitzbühel is calculated in the
following equation:

supportΣ(Kitzbühel, FamilyFriendly, Y es) = 100% (3.3)

For the item attribute Kilometers of Slopes(KoS), the similarity measure is more
is better(MIB). To calculate the support, we need to find the largest and smallest
value for Kilometers of Slopes in the recommender Skiing Resorts. The largest value
max(I,KoS) is 173 from item Kitzbühel and the smallest value min(I,KoS) is 100
from the item Obertauern. As an example, the support for item Schladming(Schl)

21

3 Basic Recommendation Approach

is calculated as follows:

supportΣ(Schl,KoS, 123) =
val(Schl,KoS)−min(Schl,KoS)

max(Schl,KoS)−min(Schl,KoS)

=
123− 100

173− 100
= 0.315 = 31.5%

(3.4)

3.2.3 Aggregated Support

Equation 3.5 shows how the aggregated support for a user attribute value is calcu-
lated. The aggregated support is the support calculated for a specific user attribute
value based on the supports given by users when they answered a micro-task regard-
ing this user attribute or when they evaluated the user attribute of the item. The
aggregated support is needed to sum up the suggestions by the community about
this user attribute value. The aggregated support is calculated by summing up the
support for the user attribute values of all users who evaluated the item and then
related to the total number of evaluations of the corresponding user attribute. This
is shown in Equation 3.6.

supportΣ(i, ua, uav) =

∑
u∈U

s(i, u, uav)

Ns(i, ua)
(3.5)

As mentioned above, Ns(i, ua) is the number of evaluations for a specific user
attribute. The reason why this count is used to normalize the aggregated support
and not just the number of evaluations for that specific user attribute value, is
explained with a simple example. If, for example, for the item Kitzbühel for the
user attribute Price level in Skiing Resorts, the user attribute value expensive was
only evaluated once with a support of 100% and the user attribute value moderate
was evaluated four times (all four specified a support of 80%) expensive would
be considered as the better fitting user attribute value. But when using the total
number of evaluations of a given user attribute as a normalization factor, the number
of evaluations for a user attribute value influences the aggregated support for this
user attribute value. For this example, expensive would result in an aggregated
support of 100%/5=20%, whereas for moderate the aggregated support would be
80%*4/5 = 64%.

Ns(i, ua) =
∑
u∈U

[∃uav ∈ ua ∧ s(u, i, uav) 6= NULL] (3.6)

The following equations will show an example of the computation of the aggre-
gated support for the item Schladming(Schl) and the user attribute Target Audi-

22

3 Basic Recommendation Approach

ence(TA). As this user attribute has several user attribute values, the aggregated
support for each user attribute value needs to be calculated. First, the number of
evaluations for the user attribute Target Audience is counted and then the aggre-
gated support for the user attribute value recreational athlete(RA):

Ns(Schl, TA) =
∑
u∈U

[∃uav ∈ TA ∧ s(u, Schl, uav) 6= NULL] = 2 (3.7)

supportΣ(Schl, TA,RA) =

∑
u∈U

s(Schl, u, RA)

Ns(Schl, RA)
=

80%

2
= 40% (3.8)

Now, the calculation of the aggregated support for the user attribute value fam-
ily(FM) is done:

supportΣ(Sch, TA, FM) =

∑
u∈U

s(Sch, u, FM)

Ns(Sch, FM)
=

90% + 80%

2
= 85% (3.9)

Finally, the aggregated support for the user attribute value snowboarder(SB) is:

supportΣ(Sch, TA, SB) =

∑
u∈U

s(Sch, u, SB)

Ns(Sch, SB)
=

80%

2
= 40% (3.10)

When looking at the resulting values, the above mentioned relation between the
actual support value and the number of evaluations for a specific user attribute
value can be seen. The aggregate support for family is much higher than for snow-
boarder even if the support values for the different evaluations is similar. As there
are two evaluations for family and only one for snowboarder, family gets a higher
aggregated support as more users evaluated it. When just the average would have
been calculated, the information about the number of evaluations would have been
gone.

3.2.4 Utility Function

For the ranking of the items in the result set, a utility function is used. Equation 3.11
defines the used utility function. To compute the ranking of the items, all supports
for each requirement value are summed up and weighted with the factors w(uav)
and w(ia). Those weights can either be learned by machine learning algorithms
(such as genetic algorithm [37]) or specified by the user. The weighting factors for

23

3 Basic Recommendation Approach

the examples in this thesis are set to 1. The utility function values do not have a
unit. After calculating the utility for all items in the result set, the items are ranked
by the value of the utility function from highest to lowest. Table 3.11 gives the
supports for each attribute and item and the corresponding utility values based on
the given requirements. The item Schladming(Schl) has the highest utility value for
the given requirements and is therefore ranked as first item in the result set.

utility(item,REQ) =
∑

uav∈REQ

supportΣ(i, uav)× w(uav)

+
∑

ia∈REQ

supportΣ(i, ia)× w(ia)
(3.11)

Item Price Target Family Kilometers Utility
Level Audience Friendly of Slopes Value

(=Yes) (=123)

Kitzbühel exp.(40%) rec. athlete(70%) 100% 100% 285

mod.(45%) top. athlete(35%)

snowboarder(40%)

Schladming mod.(75%) rec. athlete(40%) 100% 31.5% 331.5

family(85%)

snowboarder(40%)

Obertauern cheap(70%) rec. athlete(70%) 100% 0% 165

family(65%)

Table 3.11: Support values for all items in the result set. Based on the requirements in Ta-
ble 3.9, the utility function was calculated for all three items. For Price Level and
Target Audience the aggregated support for each evaluated user attribute value is
shown. Family Friendly and Kilometers of Slopes show the support for the item
attributes. The value of item Obertauern for Kilometers of Slopes is lower than
the specified requirement of 120 km, therefore the support is 0.

As an example, the computation of the utility function for the item Schladming

24

3 Basic Recommendation Approach

is shown. The weighting factors w(uav) and w(ia) are set to 1 for simplification.

utility(Schl, REQ) =
∑

uav∈REQ

supportΣ(Schl, uav)× 1

+
∑

ia∈REQ

supportΣ(Schl, ia)× 1

= supportΣ(Schl,moderate)× 1

+ supportΣ(Schl, family)× 1

+ supportΣ(Schl, snowboarder)× 1

+ supportΣ(Schl, FamilyFriendly, Y es)× 1

+ supportΣ(Schl,KilometersofSlopes, 120)× 1

= (75 + 85 + 40)× 1 + (100 + 31.5)× 1

= 200× 1 + 131.5× 1 = 331.5

(3.12)

Table 3.11 shows the calculated utility values for all three items. Now the items
can be ranked according to the utility values. The final ranking of the items can
be seen in Table 3.12 where the item fitting the requirements best is Schladming
because it has the highest utility value.

Rank Item

1 Schladming

2 Kitzbühel

3 Obertauern

Table 3.12: Final ranking of the items after calculating the utility values for each item.

25

4
PeopleViews System Description

In this chapter, the technical aspects and structures as well as the PeopleViews
user interface will be discussed in detail. First of all, the used architecture will be
presented. Furthermore, the different interfaces of the system will be shown and
different types of micro-tasks and their usage will be described. The game included
in PeopleViews will be explained.

4.1 PeopleViews Architecture

Figure 4.1: Overview of the PeopleViews architecture. The decoupling of user interface and
server can be seen.

26

4 PeopleViews System Description

Figure 4.1 shows an overview of the PeopleViews system architecture. The
two blocks Quality Assurance and Recommendation were implemented in two other
master’s thesis.

In principle, the Quality Assurance component analyzes the data generated us-
ing micro-tasks or evaluations. Furthermore, it keeps track of newly added items.
For example, if a new item Leogang in the recommender Skiing Resorts would be
added, it is necessary to collect support values regarding the user attribute values for
the item to appear in recommendations (with no provided supports all aggregated
support values are zero, which means that the item does not appear in recommenda-
tions). To initiate the collection of support values, the Quality Assurance component
provides information to the micro-task scheduling algorithm regarding the items and
user attribute values that need to be processed by users utilizing micro-tasks.

The Recommendation component calculates recommendations according to the
requirements specified by the user. To rank the items accordingly, it aggregates the
supports specified by users through micro-tasks, evaluations, and games. The basic
functionality of the Recommendation component was already described in Section 3.

The PeopleViews system is using RESTful web services [38]. Requests to the
server are done via HTTPS but instead of calling functions on the server, REST uses
resources. Resources have to be unique for each website or service that needs to be
called and are identified via the unique URL of the resource. The resource can have
any file format such as XML, PNG, or MP3. To perform operations on one of the
resources, the URL and the HTTP method need to be sent to the server. For exam-
ple, one can send a GET request for the URL https://peopleviews.com/addItem,
which would display the interface for adding a new item in the user’s browser. One
main advantage of RESTful services is that it can run on any server. This guaran-
tees a high scalability of RESTful services.

The server was implemented using Java and the additional library Spark [39] for
Machine Learning and Genetic Algorithms to implement the recommendation algo-
rithms as those rely on such techniques.

On the server, a database is used to store the data sent by the client. The appli-
cation uses Hibernate [40] which uses Java classes and maps them directly to tables
in the database. Therefore, no additional mapping or wrapper for the classes to
store them in a database are needed.

To build the web application itself, the Spring Framework [41] was used. This
framework is perfectly suitable to create RESTful web services using the MVC ar-
chitecture (Model-View-Control).

To perform session handling, Redis [42] was used. Redis is a server which can
be used as a database as well, but as it just holds the whole data in the memory

27

4 PeopleViews System Description

it is not suitable to be used as a data storage for a longer time. Session handling,
however, is a perfect application for this system.

The user interface was implemented in HTML5 and JavaScript. The client sends
every request using asynchronous HTTPS requests via JavaScript. The previously
described RESTful resources are used in this case. Bootstrap [43] was used as a
framework for the user interface creation. It contains many components such as
tables or buttons which can be used when creating user interfaces and was initially
developed by Twitter. The JavaScript library jQuery [44] was used in addition to
bootstrap. The library offers components which support the developer in imple-
menting features such as asynchronous requests, data handling, or binding data
objects to UI components.

28

4 PeopleViews System Description

4.2 User Interfaces

In Figure 4.2, the home screen after logging in can be seen. The menu on the left
contains all necessary options to interact with the recommender. In the middle of
the screen, the recently most popular recommenders are shown.

The lower part of Figure 4.2 shows a table of the recommenders the user is most
active in. Activity in a recommender includes, for example, adding or evaluating
items. The table also contains the PV Points of each recommender. These are the
PeopleViews Points the logged in user already achieved in the recommender.
PeopleViews Points are used to motivate people to interact with the system.
Table 4.1 shows how many points a user gets for which action:

Action PV Points

Create Recommender 50
Create Item 10

Evaluate Item 2

Solve Micro-Task 1

Play Game 2

Table 4.1: PeopleViews Points a user gets for a specific action.

On the lower right side of Figure 4.2, the current rank and the history of the users
rank depending on the sum over all PeopleViews Points of all recommenders
can be seen. This graph is also used to motivate users to interact more with the
system to gain more PeopleViews Points and achieve a higher rank.

29

4 PeopleViews System Description

Figure 4.2: The home screen after logging in to PeopleViews. The lower left corner contains
a list of recommenders the user is most active in. the lower right corner shows
the current rank and rank histroy of the user. The list on the left side shows the
navigatio of PeopleViews.

4.3 Recommender Interfaces

As the interfaces for adding and editing a recommender are almost equal, only one
of the two will be described here. Due to the size of the interface it is split into three
parts to make it easier to describe. Figure 4.3 shows the first part of the interface
when adding a recommender to the system.

Examples of the interface when adding item attributes can be seen in Figure 4.4.
The item attributes shown in that screenshot were taken from the example recom-
mender defined in Table 3.3. The first attribute (Cross-Country Skiing) was defined
as having the input type Enumeration and two different choices (Yes, No). Fur-
thermore, the similarity measure Exact Match was chosen here. The definitions of
all similarity measures was given in Section 3.2.2. Compared to the second item
attribute, an additional input field is displayed to enter the choices for the enumer-
ation.

The second item attribute (Kilometers of Slopes) shows the interface for an at-
tribute with input type Number and a similarity measure of More is better (MIB).

30

4 PeopleViews System Description

Figure 4.3: User interface for adding basic recommender information. The same screen is
used for editing a recommender.

Figure 4.4: The interface for adding item attributes to the recommender. Item attribut name,
type, similarity measure and question asked to the user who creates an item need
to be specified.

31

4 PeopleViews System Description

In Figure 4.5, the third and last part of the interface for creating or editing a
recommender can be seen. This part shows the interface for adding a user attribute
to the system. The attribute name is used in the recommendation screen later
to restrict the list of recommendations. The question is displayed to users when
they evaluate an item from the recommender. With the button Add answer on the
bottom of the interface a user can add as many user attribute values as she needs.
The check box (Allow multiple answers) in the lower right area has an impact on
the evaluation. If this check box is checked, evaluating users are allowed to enter
supports for more than one user attribute value of the user attribute. When the box
is not checked, users can only evaluate one user attribute value for this question.
This option also influences the micro-tasks. If a user attribute is marked to allow
multiple answers the generated micro-task is different to one generated for a single
answer user attribute. The different micro-tasks created depending on this check
box will be described in detail in Section 4.5.

Figure 4.5: Adding a user attribute to a recommender. Attribute name, question asked to
users which evalute the attribute and possible answers need to be specified here.
Furthermore, users need to define if multiple answers for this user attribute are
allowed.

The interface in Figure 4.6 shows the screen where the creator (owner) of a rec-
ommender can add experts to the recommender. Table 4.2 lists the actions each
type of user is allowed to take in PeopleViews.

32

4 PeopleViews System Description

Figure 4.6: Interface for adding or deleting experts. The owner (creator) of the recommender
can also give owner rights to an expert or remove experts.

User Type Allowed Actions

Anonymous user Get recommendations, view items, compare items

Logged-in User Same as anonymous user plus adding items, editing
items the user created, evaluating all existing items,

answering micro-tasks, adding recommenders (user becomes

owner of that recommender)

Expert Same as logged-in user plus edit all recommenders
where the user is expert in

Owner Same as logged-in user plus adding experts to own
recommenders, upgrading existing experts to owners,

downgrading existing owners to experts, removing experts,
editing own recommenders

Table 4.2: List of actions users can take depeding on their user type.

4.4 Item Interfaces

As the interfaces for adding and editing an item are almost identical, only one of
them will be shown here. Figure 4.8 shows the interface when editing an item.
The item attributes need to be entered by the user who creates or edits the item
(privileges of different types of user can be seen in Table 4.2). Furthermore, the
description, tags, picture and photo need to be added. In the lower part of the

33

4 PeopleViews System Description

screen a check box is shown. This check box can be unchecked to prevent the item
from being published. This can be used if, for example, the user does not have all
needed information yet to create the item. If the user unchecked this check box,
the item cannot be seen by other users. Later when the user is able to add the
previously missing information, she can edit the item and check the check box to
make the item visible to all other users.

The interface in Figure 4.7 shows the evaluation screen for an item. Users can
specify supports for every user attribute and corresponding user attribute values
defined in the corresponding recommender. When evaluating the item name, image
and description are shown.

Figure 4.7: Interface when evaluating an item. Item name, image and description are shown.
Supports for the user attribute values of each user attribut can be specified.

34

4 PeopleViews System Description

Figure 4.8: Interface for adding or editing an item. Textual information such as item name,
description, tags and link need to be added. Furthermore, the item attributes need
to be specified.

35

4 PeopleViews System Description

4.5 Micro-Task Interfaces

There are six types of micro-tasks currently implemented in PeopleViews. To
distinguish between them they are referenced to as micro-task type X or micro-task
of type X or type X micro-tasks, where X is the number. Each type is designed
to gather a different kind of information depending, for example, on the previously
mentioned check box that allows multiple answers. In this section, the different types
will be explained in detail. The selection criteria for each type will be discussed in
Section 5.3.

Micro-tasks of type 1 as shown in Figure 4.9 evaluate the support for exactly one
user attribute value of a specific user attribute of an item. These micro-tasks are
used, for example, if the users, who already evaluated the user attribute value did
not agree on a similar support value for the user attribute value. For example, two
users entered a high support around 90% and two other users entered a low support
around 10%. To be sure which support is correct, more data is needed and therefore,
this kind of micro-task is distributed. The detection of such items and attributes is
done by the quality assurance component of PeopleViews which is discussed in a
master’s thesis by Michael Schwarz.

Figure 4.9: Example for a type 1 micro-task. The user needs to specify the support for the
user attribute value of one user attribute for a specific item.

In Figure 4.10, a micro-task of type 2 can be seen. The user needs to choose the
better suiting item and enter the support for the user attribute value of the chosen
item. This type is similar to type 1 but in this case two items are shown to the
user. Both items and the user attribute are selected based on the same criteria as
for micro-tasks of type 1. By allowing the user to select one of two items instead of
showing one fixed item the possibility of a user having knowledge about one item is
doubled.

36

4 PeopleViews System Description

Figure 4.10: Example micro-task of type 2. The user has to choose one item and estimate the
support for the given user attribute value.

Figure 4.11 represents a micro task of type 3. This micro task is generated for all
user attributes where the Allow multiple answers check box was not checked when
creating the user attribute. The user needs to choose one user attribute value and
then enter the support for the chosen user attribute value.

Figure 4.12 shows a micro-task of type 4 which is needed if a user attribute is
allowed to have multiple answers. This micro-task is used to get support values for
one or more user attribute values of a specific user attribute for a specific item. This
is used when there are very few evaluations for this user attribute-item combination
in the system and the confidence in the support would be very low.

37

4 PeopleViews System Description

Figure 4.11: Example of a micro task of type 3. The user has to choose one single user attibute
value and specify the support for the chosen one.

Figure 4.12: Example micro-task of type 4. The user can estimate the support for one or more
user attribute values.

38

4 PeopleViews System Description

Figure 4.13 displays a micro-task of type 5 which is actually a form of CAPTCHA.
Those micro-tasks are used to determine whether a user is human or not. As people
implement malicious software, named bots, that automatically interact with web
sites it is important to be able to distinguish between human and non-human users.
As data created by bots is not reliable, it is important to be sure that the user who,
for example, creates a new evaluation is actually a human. CAPTCHAs of this
kind are very hard for computers to solve but easy for humans as the recognition of
items in a picture is very hard for computers but very easy for humans. To express
the percentage of users being human, a human score is introduced by the quality
assurance component. Each user gets human score points when interacting with
PeopleViews. Interactions such as correctly answering CAPTCHAs are awarded
with human score points. The sum of human score points is weighted with the
human score of the users having the highest human scores so that the human score
ranges between 0 and 1.The computation of the human score is given in equation 4.1.

HS = min

1,

(∑
p∈points

p

)
·

∑
u∈topuser

HS(u)

|topuser|

 (4.1)

Figure 4.13: Example of a micro-task of type 5. The user has to choose the image realted to
the given recommender.

As every user can add a new item to the system, it is necessary to check if
the item was created in the correct recommender. An example of a item in a
wrong recommender would be to add the skiing resort Kitzbühel to the recommender
Mobile Phones. This is done with a micro task of type 6 which can be seen in

39

4 PeopleViews System Description

Figure 4.14. Those micro-tasks are always distributed when a new item is added to
a recommender to check if it really belongs there. If more than 50% of people think
the item was added to the wrong recommender the item is removed as it apparently
should have been added to another recommender.

Figure 4.14: Example of a micro-task of type 6. The user has to choose whether the given
item is related with the given recommender.

40

4 PeopleViews System Description

4.6 Recommendation Interfaces

Recommendations generated by the Skiing Resorts recommender can be seen in
Figure 4.15. On the left the filter criteria can be set. Setting criteria changes
the number of items in the list and also their ordering according to the chosen
constraints.

Figure 4.15: Example of the recommendation screen for a recommender. The user can choose
an item and view the details or compare two items.

Users can also compare two items to each other. This can be done by checking the
check boxes of 2 different items on the right of the recommendation screen and then
pressing Compare items on the bottom. The resulting interface would look like the
one in Figure 4.16. In the middle of the screen, a spider web representation of the
supports for the user attribute values of the different user attributes can be seen3. On
the bottom, the item attributes are shown. The item attribute Kilometers of Slopes
of the item Kitzbühel is marked because the order relation of this item attribute is
More is better(MIB). As the value for Kitzbühel is higher than for Schladming, it is
marked in this example. The other item attributes do not have order relations due
to their input type and therefore are not marked.

3 In this example, only two of the spider webs are shown as the others look similar.

41

4 PeopleViews System Description

Figure 4.16: Example of the comparison screen for two items. The spider webs give informa-
tion about the user attributes. The list at the bottom of the screen are the item
attributes.

42

4 PeopleViews System Description

4.7 Game

The system contains a game with a purpose which is used to acquire data and
motivate users to interact with the system. The user selects a recommender and
can then play the game containing questions regarding the selected recommender.
This means that the user will only get questions concerning the chosen recommender.
In Figure 4.15 the Play against the community button can be seen in the upper right
corner.

The game consists of 10 questions the user needs to answer. The questions ask
users to specify the support of a specific user attribute and user attribute value for a
given item. Game questions never contain multiple possible answers where the user
has to choose one or more. Figure 4.17 shows an example of such a question. The
user needs to guess the support given by the community for a specific user attribute
value of an item. For each question, the user can get 10 points at most. The better
the user’s answer matches the support given by the community, the more points
the user gets for this question. In Table 4.3, the scaling of the point reduction,
depending on the absolute difference between the users estimated support and the
support given by the community, is shown.

Absolute Difference Reduction in %
≤ 5 0

6 - 10 5
11 - 20 15
21 - 40 25
41 - 60 50
61 - 80 75
81 - 100 100

Table 4.3: Reduction of points per question depending on how large the absolute difference
between the users answer and the answer of the community is.

The computation of the difference is rather easy. To compute it, the support en-
tered by the user supportU(i, ua, uav) and the aggregated support supportΣ(i, ua, uav)
for the item-user attribute-user attribute value combination are needed. Equa-
tion 4.2 shows the computation of the absolute difference d:

d = |supportΣ(i, ua, uav)− supportU(i, ua, uav)| (4.2)

This value d can then be used to calculate the point reduction for each question
as it is shown in Table 4.3.

As users might cheat in the game and open another instance of the system to have
a look at the support given by the community, the game contains a time constraint
to overcome this problem. The time a user may need to answer one question is set

43

4 PeopleViews System Description

Figure 4.17: An example of the interface of a game question. The user needs to specify the
support for the given user attribute value.

to 15 seconds as this is enough time to read the question and quickly think about
the correct answer. If a user is not able to solve each question within 15 seconds, the
points she achieved by answering the questions will be reduced. Table 4.4 shows the
scaling of this reduction depending on how much more time a user needed to finish.
The total points are then calculated from the points acquired by the answering of
questions and the optional reduction because of exceeding the time constraint.

Time extension in s Reduction in %
≤ 10 5

11 - 25 10
26 - 35 25
36 - 45 50
46 - 60 75
≥ 61 100

Table 4.4: Reduction of points in percent is shown depending on how much more time than
the estimated 150 seconds (10 questions, 15 seconds each) the user needed.

After finishing the game, the user receives a game summary that compares the
support estimated by her and the support given by the community for each question
as well as the points she got for each question and the eventual reduction because of
exceeding the time. An example, thereof can be seen in Figure 4.18. The points a

44

4 PeopleViews System Description

user achieved are then added to the users so called game points she already received
when playing games in this recommender before. The user will see a high score and
his current rank compared to all other users who played games in this recommender.

Figure 4.18: This image shows the interface of the game summary. The reduction of points
due to exceeding the time limitation is displayed before the total game score.

Before the user can play the game, the system checks if there is enough data
available to play the game. Data, in this case, means that there must exist at least
10 different user attribute values that were already evaluated in this recommender
to compare the answers given by the user with the answers given by the community.
If there are less than 10 different ones, the game cannot be played as a user would
then get at least two equal questions which does not make sense. Another restriction
for the selection of questions is, that users will not get questions for user attribute
value-item combinations for which they already specified a support.

For clarification, the process of playing the game is again illustrated here:

1. Check if the recommender contains support values for at least 10 different user
attribute values.

45

4 PeopleViews System Description

2. Select 10 random user attribute values and create questions from them.

3. Let the user guess the support in each given question one after the other.

4. Compute the difference between the support estimated by the user and the
support given by the community.

5. Calculate the total points depending on the differences.

6. Check how long the user needed to solve each question and reduce points if
necessary.

7. Calculate the points and show the summary.

8. Add the points to the existing game points and show the high score and the
users rank.

46

5
Micro-Task Scheduling Approach

In this chapter, the micro-task scheduling algorithm will be described in detail. As
already discussed in Sections 2.3 and 3.1, micro-tasks consist of short questions
regarding a specific item and user attribute and are used to collect support values
regarding user attribute values. The micro-task scheduler’s purpose is to find users
who might be best suited to answer those questions. It is assumed that better suiting
users are more likely to answer micro-tasks.

One aspect of the micro-task scheduling approach is to match users with items
based on keywords extracted from item information such as item description or tags
assigned to the item. A history of user interactions such as evaluating or viewing
items is kept in a user profile. For all items the user previously interacted with,
keywords are extracted. As already discussed by Pazzani et al. [9], extracting
keywords from unstructured text such as item descriptions can be used to create
user profiles. Those profiles can later be used to find relevant items for the user.
The applied extraction and weighting algorithms will be explained in this chapter.

Furthermore, micro-task scheduling needs to be invoked by another component.
The Quality Assurance component (see Section 4.1) analyzes existing data and in-
vokes Micro-task Scheduling. It provides information on which item and user at-
tribute values need to be considered.

To generate and distribute micro-tasks, several metrics such as a users workload or
the importance of a micro-task are applied. All influencing factors will be discussed
in detail.

47

5 Micro-Task Scheduling Approach

5.1 TF-IDF

As already stated, keywords can be extracted from unstructured text such as item
descriptions. After extracting keywords, weights are assigned to each keywords
indicating the importance of the respective word compared to all other extracted
keywords. Those importance factors are later used when matching user profiles to
items which will be further explained in Section 5.4.

TF-IDF [10] means Text Frequency Inverse Document Frequency and can be used
to assign weighting factors to words. The TF-IDF is used to calculate how important
a word is to a document in a collection of documents. The calculated value depends
on how often a word appears in one document and also in how many documents it
appears in the corpus. This technique will be used later to assign weightings to item
keywords and user keywords in PeopleViews recommenders.

The TF-IDF value is higher if a term appears very often in a small subset of
documents. A high TF-IDF value means that the term is generally important to
the whole document set. Therefore, a small value means that the term is less im-
portant. Importance, in the context of TF-IDF, is measured by the IDF metric
which will be explained in Section 5.1.2. This means that the words are weighted
according to their importance in the whole set of documents not only by their impor-
tance within one document. Specific examples for the TF-IDF calculations will be
shown later where the weighting of the item and user keywords is described in detail.

The TF-IDF of a term ti is generally calculated by multiplying the TF and the
IDF value of the given term ti with each other. This can be seen in Equation 5.1.

TFxIDF (ti) = TF (ti,d)× IDF (ti) (5.1)

In the following sections, the weighting scheme used in PeopleViews will be
described. The given formulas for TF and IDF in the following two sections where
implemented without using any additional library.

5.1.1 TF

TF represents the term frequency of a specific word within a document, i.e. how
often the term appears in the given document. In Equation 5.2, the general formula
for the calculation of the term frequency of a term ti in a document d is given, where
Ni,d is the number of occurrences of term ti in document d.

TF (ti,d) = Ni,d (5.2)

48

5 Micro-Task Scheduling Approach

5.1.2 IDF

The inverse document frequency represents the importance of a term. To calculate
the IDF, the total number of documents is divided by the number of documents
that contain the term ti. Additionally, the logarithm is applied to the quotient
which gives the logarithmically scaled inverse document frequency of the term ti.
Equation 5.3 illustrates the general formula to calculate the IDF, where N is the
total number of documents and Ni is the number of documents containing term ti.

IDF (ti) = log

(
N

Ni

)
(5.3)

5.2 Extraction and Weighting of Keywords

In this section, the extraction and weighting of user and item keywords will be
described. The calculation of micro-task and recommender keywords will also be
shown. First, the extraction of keywords will be shown for both items and users.
Afterwards, the weighting of the keywords for both will be described in detail.
Finally, the generation of micro-task and recommender keywords will be described.
For the extraction as well as the weighting, examples will be shown to clarify the
theoretically described concepts.

Tables 5.1, 5.2, 5.3 and 5.4 contain the data sources for the extraction of recom-
mender and item keywords as well as user keywords and micro-task keywords.

Data Sources for Recommender Keywords

Recommender description of the recommender

Recommender tags of the recommender

Table 5.1: Data sources used to extract keywords of a recommender.

Data Sources for Item Keywords

Item description of the item

Item tags of the item

Table 5.2: Data sources used to extract keywords of an item.

5.2.1 Keyword Extraction for Items

The keywords for the items are extracted from the item description and the tags
assigned to the items. Whenever an item is created or changed, the old keywords

49

5 Micro-Task Scheduling Approach

Data Sources for User Keywords

Recommender keywords (see Table 5.1) of each
recommender the user interacted with

Item keywords (see Table 5.2) of each item the user interacted with

Table 5.3: Data sources used to extract keywords of the user profile.

Data Sources for Micro-Task Keywords

Recommender keywords (see Table 5.1) of the
corresponding recommender in the micro-task

Item keywords (see Table 5.2) of the
corresponding item in the micro-task

Table 5.4: Data sources used to extract keywords of a micro-task.

are deleted and newly generated to keep the item keywords up to date.

To extract keywords, the description text and tags are separated into single words
to be able to process each word and decide whether it is suitable as a keyword or
not. After separating the keywords, a stop-word removal is performed. Stop-words
are, for example, articles, conjunctions, adverbs, and many more. Stop-words con-
tain no necessary information when it comes to micro-task scheduling. Therefore,
they can be removed from the list of possible words. All possible punctuation marks
are also removed as they do not contain important information. Words containing
punctuation marks such as dashes are split into two words. Moreover, numbers are
removed because they are also not useful in the scheduling process. After removing
every unnecessary and clueless information, the words are uncapitalized to be able
to match words with lower and upper case letters. The set of words left, after per-
forming all previous steps, are the final keywords for the given item.

Stemming will not be performed on the text. Stemming means that words are
transformed to their root form, for example, words in plural are transformed to
singular. Peng et al. [45] state that stemming requires a significant amount of ad-
ditional computation time and furthermore, decreases the precision when matching
keywords.

One problem of traditional stemming is its blind transformation of all
query terms, that is, it always performs the same transformation for the
same query word without considering the context of the word.

The authors list an example of a transformation leading to a totally different
meaning. In their example, book store, book stores, book storing, and booking store
are all reduced to book store, although only book stores is a meaningful match.

50

5 Micro-Task Scheduling Approach

In many cases, reducing plural to singular is not desired as, for example, a user
might be interested in mobile phones having multiple CPU cores but not in mobile
phones with just one CPU core. On the other hand, for example, the verbs ski and
skiing would be reduced to ski which would make sense and would also be helpful
in matching user profiles and item description. However, due to the initially named
disadvantage, stemming will not be applied on the keywords.

The following example will show the extraction of keywords from an item descrip-
tion. The item description and tags of the item Sony Xperia M5 will be used as
an example text here. The tags are: Display, Performance, Storage, Camera. The
item description is:

Sometimes you only get one chance to get the perfect shot with the camera. That’s
why the Xperia M5 is packed full of technology to help you capture the moment as
it happens. Shoot like a pro with a 0.25-second Hybrid Autofocus, 21.5 megapixels
and super-sharp zoom camera.

First of all, the item tags are added to the list of words, then the stop-word re-
moval is performed and afterwards the punctuation marks are removed, which leads
to the following words left:

get chance get perfect shot camera Xperia M5 packed full technology help capture
moment Shoot pro 0 25 second Hybrid Autofocus 21 5 megapixels super sharp zoom
camera Display Performance Storage Camera

Finally, the numbers are removed, the words are uncapitalized and reveal the final
set of words that will be used as keywords for the item Sony Xperia M5 :

get chance get perfect shot camera xperia packed full technology help
capture moment shoot pro hybrid autofocus megapixels super sharp
zoom camera display performance storage camera

5.2.2 Keyword Extraction for Users

The keyword extraction for users is similar to the one for items. The main difference
here is that the user keywords are generated by using the keywords from items and
recommenders the user interacted with. The interactions of users with the system
are stored which enables the system to extract the item keywords and recommender
keywords from items and recommenders the user interacted with. These extracted
keywords can then be added to the user keywords. The keywords for recommenders
are extracted using the same approach as for item keywords. The recommender
description is used as a text for the extraction. With the extracted recommender

51

5 Micro-Task Scheduling Approach

keywords and item keywords from each item, the user keywords are constructed.
The user keywords simply consist of all recommender and item keywords from rec-
ommenders and items he interacted with.

In the following example, the construction of user keywords for user u1 will be
shown. The users interactions with the system can be seen in Table 5.5. The table
also includes the item respectively recommender keywords. If items are marked with
”-”, the recommender was just used by the user and no item was examined. In this
case, only the recommender keywords can be added to the user keywords. Adding
all keywords from every user interaction to a list, results in the user keywords. These
user keywords can then be used, for example, to be matched with item keywords
from newly added items.

Document Recommender Item Recommender/Item Keywords

1 Skiing Resorts - like skiing snowboarding love
mountains help find perfect resort

winter alps rest europe

2 Skiing Resorts Kitzbühel most legendary winter sports
towns especially skiing alps

hahnenkamm streif mausefalle
perfect children families
continuous skiing area

mountains sledging funpark
top challenging pistes large

measured snowboarding

3 Mobile Phones Sony Xperia get chance get perfect shot camera
M5 packed full technology help

capture moment shoot pro hybrid
autofocus mega pixels super sharp

zoom camera display xperia
performance storage camera

Table 5.5: Example interactions user u1 made within the system. It also includes the corre-
sponding recommender or item keywords of each interaction.

5.2.3 Weighting of Item Keywords

To generate weights for the item keywords, the previously described TF can be used.
It calculates the frequency of a term in the item keywords of the given item.

An example of the TF calculation is shown in Table 5.6. For the purpose of this
example the table only contains the TF calculation for some words from the given

52

5 Micro-Task Scheduling Approach

text. The example text is:

get chance get perfect shot camera xperia packed full technology help capture mo-
ment shoot pro hybrid autofocus megapixels super sharp zoom camera display per-
formance storage camera

Term TF

chance 1

perfect 1

shot 1
xperia 1

hybrid 1

sharp 1
camera 3

Table 5.6: Examples of weighted item keywords using TF.

Equation 5.4 shows how to calculate the TF for the term camera. As the term
camera occurs 3 times within the whole text, the result of the TF calculation is
simply 3.

TF (tcamera,d) = Ncamera,d = 3 (5.4)

5.2.4 Weighting of User Keywords

User keywords are weighted using both TF and IDF. As already shown in Sec-
tion 5.2.2, the interactions with the system lead to a set of item and recommender
keywords which can be treated as user keywords. To weight these keywords, the
TF-IDF is a suitable approach because each interaction leads to a document. The
document is represented by the item keywords which means that each document
contains the keywords of one item. From this set of documents the TF-IDF for
each term can be calculated. It is possible that several items contain some equal
keywords. As for every word in every document the TF-IDF is calculated, it is
possible that for one word more than one TF-IDF value exists. For the weighting,
however, only one weighting factor per word should be available because the match-
ing algorithm can not deal with more than one weighting factor per word. To solve
this problem, for each word that has more than one weighing factor, the weights are
simply averaged. Later, examples of the TF-IDF calculation will be shown and also
the averaging [46] can be seen.

In the following example, the weighting of the user keywords in Table 5.5 resulting
from the TF-IDF calculation is shown.

53

5 Micro-Task Scheduling Approach

For reasons of space limitations, Table 5.7 shows only a subset of the whole list
of keywords.

Term TF-IDF

alps 0.1761

skiing 0.2641
mountains 0.1761

children 0.4771
get 0.9542

shoot 0.4771

help 0.1761
camera 0.5283

Table 5.7: Example of weighted user keywords using TF-IDF.

The following equations give an example of the TF-IDF calculation of the word
skiing.

Equation 5.5 shows the TF values for the term skiing in the different documents.

TF (tskiing,1) = Nskiing,1 = 1

TF (tskiing,2) = Nskiing,2 = 2

TF (tskiing,3) = Nskiing,3 = 0

(5.5)

Equation 5.6 gives the calculation of the IDF for the term skiing. The total
number of documents is 3 here.

IDF (skiing) = log

(
N

Nskiing

)
= log

(
3

2

)
= 0.1761 (5.6)

Now, the TF-IDF values for the different documents of term skiing can be cal-
culated in Equation 5.7. As the TF for skiing for document 3 is zero, there is no
need to calculate the IDF, as the TF-IDF value will also be zero because of the
multiplication with zero.

TFxIDF (tskiing, 1) = TF (tskiing,1)× IDF (tskiing) = 1× 0.1761 = 0.1761

TFxIDF (tskiing, 2) = TF (tskiing,2)× IDF (tskiing) = 2× 0.1761 = 0.3522
(5.7)

The final TF-IDF for the term skiing can be calculated by averaging the results
for the TF-IDF values of the different documents as already described above. This

54

5 Micro-Task Scheduling Approach

can be seen in Equation 5.8.

TFxIDF (tskiing) =
1

2

2∑
k=1

TFxIDF (tskiing, k) =
0.1761 + 0.3522

2
= 0.2641 (5.8)

5.2.5 Extraction and Weighting of Recommender Keywords

Recommender keywords are extracted and weighted identically to item keywords.
Table 5.1 lists the data sources used to extract recommender keywords. As can be
seen in Table 5.3 and 5.4, recommender keywords are used in user and micro-task
keywords.

5.2.6 Extraction and Weighting of Micro-Task Keywords

Table 5.4 lists the data sources used to extract keywords of micro-tasks. As can be
seen there, micro-task keywords are comprised of the keywords of the corresponding
item and recommender given in the micro-task.

5.3 Agenda for Micro-Task Generation

To generate a micro-task it is essential to know which recommender, item, user
attribute or user attribute value the micro-task is about. This information is ex-
tracted from a so called agenda. The agenda is generated by the Quality Assurance
component of the system which was already discussed in Section 4.1. The Qual-
ity Assurance invokes the micro-task generation and distribution by providing an
agenda. An overview of that process is shown in Figure 5.1.

The agenda contains all necessary data to generate a micro-task. Each agenda has
a priority between 1 and 5, where 1 is low and 5 is high, to be able to rank the agendas
by their importance. An agenda with high priority is processed earlier than one with
a low priority. Furthermore, an agenda has a start and an end date within which the
micro-tasks for this agenda need to be created. The agenda consists of recommender,
item, user attribute and user attribute value that are needed to create a micro-task.
The agenda, furthermore, has a property Quantity. This property indicates how
many identical micro-tasks are generated from this agenda. Although, agenda and
micro-task include recommender, item, user attribute and user attribute values, they
are two different concepts:

� An agenda is an instruction for the micro-task scheduler to generate a number
of micro-tasks.

� The agenda specifies which recommender, item, user attribute and user at-
tribute value are considered in the micro-task.

55

5 Micro-Task Scheduling Approach

Figure 5.1: Overview of the micro-task generation process based on an agenda.

� It tells the micro-task scheduler how many (given by Quantity) micro-tasks
need to be generated in which time period (between tstart and tmax).

� A micro-task includes the provided recommender, item, user attribute and
user attribute value. In addition, the micro-task type, the user the task was
assigned to and after the task was solved, the finishing date are contained by
a micro-task.

� Micro-tasks are associated with a user interface depending on the micro-task
type, whereas the agenda is used to pass information from the Quality Assur-
ance to the micro-task scheduler.

Table 5.8 gives an example of an agenda.

Property Value

tstart 01.08.2016 14:00
tmax 01.09.2016 14:00

user attribute Quality of lift facilities

user attribute values new, average, old

item Kitzbühel

recommender Skiing Resorts
Quantity 3
Priority 3

Table 5.8: Example agenda for recommender Skiing Resorts.

56

5 Micro-Task Scheduling Approach

Selecting the Type of the Micro-Task based on the Agenda

Micro-tasks generally are created based on the properties specified in the agenda.
Different micro-tasks need different information when they are created. As each
micro-task type needs other information, a decision tree (see Figure 5.2) can be
used to decide which micro-task type results from a given agenda.

Figure 5.2: The decision tree that is used to determine the micro-task type by the given agenda.

The leafs of the decision tree indicate micro-task types. The different micro-task
types and their visualizations were already discussed in Section 4. The following list
explains the inner nodes in the decision tree:

� #items?: A distinction between micro-tasks showing one item and micro-
tasks showing multiple items is taken here. Currently, only one micro-task
type contains multiple items (micro-task type 2).

� user attribute?: If no user attribute is specified in the agenda, micro-tasks
of type 5 are created. Otherwise, further decisions need to be made.

� #values?: If only one user attribute value is specified in the agenda, micro-
tasks of type 1 are generated. Otherwise, further decisions are necessary.

� choice?: Depending on the choice type of the specified user attribute (multiple
choice or single choice) either micro-tasks of type 4 or 3 are generated. The
choice type of the user attribute is defined by the user when adding the user
attribute.

All micro-tasks but type 6 micro-tasks are created from the decision tree. These
type 6 micro-tasks are CAPTCHAs and do not rely on the informations from an

57

5 Micro-Task Scheduling Approach

agenda. The CAPTCHAs are created based on the human score of a person. The
quality assurance contains mechanisms that detect whether a user acts like a human
or not. Therefore, a human score (see Section 4.5) exists in the system to describe
whether the user acts like a human. The value ranges between 0 and 1 where 1
means the user is human and 0 means the user acts non-human. The number of
CAPTCHAs distributed to a user is based on this human score. If the human score
is high, the user will get a small number of CAPTCHAs, if the human score is small,
she will get many CAPTCHAs.

To construct micro-tasks from the agenda in Table 5.8, the following steps using
the decision tree are performed:

� There is exactly one item given in the agenda, therefore, the agenda is passed
on left path to the next node

� There is at least one user attribute present in the agenda, therefore, again the
left path can be used

� More than 1 user attribute values are present in the agenda, therefore, the
agenda is passed to the node on the right path

� The choice type of the user attribute needs to be checked. As the user attribute
Quality of lift facilities allows only single choice, the agenda is passed on the
right path.

� The leaf of the decision tree is reached and therefore, the type of the micro-task
is known. It is micro-task type 3.

The visualization of the selection process is depicted in Figure 5.3. As the agenda
specified a quantity of three, three identical micro-tasks are generated. The only
difference between these three micro-tasks can be observed after the micro-task
scheduling process as each micro-task will be assigned to a different user. The
resulting micro-task before being scheduled can be seen in Table 5.9. The associated
view can be seen in Figure 5.4.

58

5 Micro-Task Scheduling Approach

Figure 5.3: Path taken through the descision tree when processing the example agenda shown
in Table 5.8.

Property Value

tstart 01.08.2016 14:00
tmax 01.09.2016 14:00
tfinish -

user attribute Quality of lift facilities

user attribute values new, average, old

item Kitzbühel

keywords most legendary winter sports towns especially
skiing alps measured top hahnenkamm streif
mausefalle challenging pistes perfect children

families large continuous skiing area snowboarding
mountains snow sledging funpark tirol

recommender Skiing Resorts

micro-task type 3
user -

Table 5.9: Micro-task generated from the agenda shown in Table 5.8 before scheduling.

59

5 Micro-Task Scheduling Approach

Figure 5.4: Associating view of the micro-task created from the agenda in Table 5.8.

60

5 Micro-Task Scheduling Approach

5.4 Scheduling Approach

The scheduling of micro-tasks is done based on a score that is computed for each
user-micro-task pair. It tries to assign micro-tasks to users which are assumed to
be best suited to solve the task. The suitability of users will be calculated and
expressed by a function named score. The computation of this score takes many
aspects of user’s interactions with the system as well as some aspects of a micro-task
itself into account. In this section, all formulas will be defined and afterwards an
illustrative example showing the functionality of the set of formulas will be given
based on the previously defined example recommender, items, and users.

The logarithm is used in the entire set of formulas. The reason for this is that
originally all formulas where multiplied with each other and not added to each other
to compute the score. All the values of the quotients of the formulas range between
0 and 1. If values smaller than 1 are multiplied with each other, they will get even
smaller and at some point, the precision of a computer is not enough anymore to
deal with such small values. Therefore, the logarithm is used throughout the hole
set of formulas to overcome this problem. With the usage of the logarithm, all
multiplications are transformed to additions because of the calculation rules for the
logarithm. The logarithm does not change the similarity measure between values
which means that if one value is large and the other small, they will have the same
relation to each other after applying the logarithm to both of them.

Some of the formulas contain weighting parameters (αi, αe1 , αe2 , αw, αe3). The
weighting factors for all examples are set to one. The weighing factors express the
influence of each formula on the score. The weighting factors can be tweaked by
hand or using a machine learning approach such as a genetic algorithm. To apply a
genetic algorithm a certain amount of support values needs to be available, otherwise
the learning process would lead to overfitting [47]. The utility function used in the
genetic algorithm can be defined as number of correctly classified items which is the
same metric as used in the evaluation (see Section 6).

All fractions include the addition of one in the denominator to avoid possible
divisions by zero.

5.4.1 Definitions

In Equation 5.9, the formula for the computation of the score is shown. It depends
on a user u and a micro-task m and is a combination of the importance of a micro-
task m and the qualification of a user u to perform micro-task m. The score gives
indication about how high the probability is assumed to be that the user will give
a proper answer to this micro-task. The value range of the score is always a small
negative value. The reason for this is that in almost every equation the logarithm
is used on a number smaller than 1. The logarithm of such a number is a small
negative number, therefore, the score is also negative. Most of the time it ranges
between 0 and -5. The larger (nearer to zero) the score is, the better the user fits

61

5 Micro-Task Scheduling Approach

the micro-task.

score(u,m) = importance(m) + qualification(u,m) (5.9)

Equation 5.10 gives the definition of the importance of the micro-task m that
should be scheduled. The importance indicates how urgent the completion of this
micro-task is. Each micro-task m that was generated from an agenda has a due
date tmax(m) and generation date tstart(m). The value tcurrent(m) is the time stamp
when the micro-task enters the scheduling process. All timestamps are measured in
milliseconds.

importance(m) = log

(
tcurrent(m)− tstart(m) + αi

tmax(m)− tstart(m) + 1

)
(5.10)

The qualification of a user u to solve a micro-task m is defined in Equation 5.11.
The qualification is composed of the ability of a user to solve the micro-task and
the interest of a user in this micro-task. This formula shows how probable it is that
the user can give a good answer for the micro-task and how much she might be
interested in such a micro-task.

qualification(u,m) = ability(u,m) + interest(u,m) (5.11)

In Equation 5.12, the ability of a user u to solve the micro-task m is given. The
ability indicates the quality of a user’s interactions with the system and how good
she would be suited to solve the micro-task. It is made up by the experience and
the excellence of a user in the respective recommender.

ability(u,m) = experience(u, r(m)) + excellence(u, r(m)) (5.12)

The computation of the experience is shown in Equation 5.13. The previously
defined micro-task and user keywords are used here. The experience declares how
good the user keywords match the micro-task keywords. Each value weight(km) in
the numerator is the sum of the user keywords weight and the micro-task keywords
weight for all matching user and micro-task keywords. Each value weight(k) in
the denominator is the total sum of all user keywords and all micro-task keywords
regardless whether they match or not.

experience(u,m) = log

(
αe1 + Σkm∈kw(u)∩kw(m)weight(km)

1 + Σk∈kw(u)∪kw(m)weight(k)

)
(5.13)

62

5 Micro-Task Scheduling Approach

Equation 5.14 gives the computation rule for the excellence of a user u in the
recommender r(m) the micro-task belongs to. The formula indicates the quality of
a user’s evaluations compared to the evaluations given by the rest of the community.
The value #correctanswers(u, r(m)) is the number of correct answers given by the
user u in the recommender r. A correct answer is determined by comparing the
support values of the user u given for evaluations in this recommender r(m) with
the aggregated supports for the evaluations given by the community for this recom-
mender. If the difference between the users estimated support and the aggregated
support does not exceed a certain value, the answer is treated as correct, otherwise,
it is treated as wrong. The threshold is defined by the Quality Assurance and can
change with time. The value #answers(u, r(m)) is the total number of support
values given by the user u for items in the recommender r(m).

excellence(u, r(m)) = log

(
αe2 + #correctanswers(u, r(m))

1 + #answers(u, r(m))

)
(5.14)

The interest of a user u in a micro-task m is defined in Equation 5.15. It is a
combination of the workload of a user u within a specific time period ∆ and the
emphasis of the user u for the recommender r(m). It determines the general will-
ingness of the user to solve micro-tasks in the recommender the micro-task belongs
to.

interest(u,m,∆) = workload(u,∆) + emphasis(u, r(m)) (5.15)

In Equation 5.16, the workload of a user u is defined. The workload uses the time
period ∆ to determine how frequently the user interacts with the system, especially
evaluates items. The time period ∆ is given in days. The value #answers(u,∆) is
the number of support values the user entered within the time period ∆ no matter
what recommender the evaluation belonged to. The time period ∆ in PeopleViews
implementation is set to 7 days. As the workload does not include a fraction, it needs
to be multiplied with minus 1. The reason for that is that a higher workload needs
to be indicated by a negative number farther away from zero than a lower workload
(workload of zero would be the best case).

workload(u,∆) = −log (αw + #answers(u,∆)) (5.16)

Finally, the emphasis is defined in Equation 5.17. It represents the general will-
ingness of the user to contribute to the recommender r(m) the micro-task belongs to
compared to the general contributions to the system. The value #answers(u, r(m))
represents the number of support values in evaluations specified in the recommender
r(m). #answers(u) is the total number of support values given in evaluations over

63

5 Micro-Task Scheduling Approach

all recommenders.

emphasis(u, r(m)) = log

(
αe3 + #answers(u, r(m))

1 + #answers(u)

)
(5.17)

After the score for each user was calculated, the micro-task is distributed to n
best matching users. n is given by the agenda (property Quantity) that is generated
by the quality assurance. For example, the agenda shown in Table 5.8 has a quantity
of n = 3.

64

5 Micro-Task Scheduling Approach

5.4.2 Example

Reminder and Preparations

As a reminder, the important parts of the example recommenders already described
and created in Chapter 3 are shown again.

The users interacting with the system and their corresponding keywords can be
seen in Table 5.11. In Table 5.10 the two example recommenders with their key-
words are shown. Table 5.12 and 5.13 contain the evaluations done by the users.

Recommender Name Keywords

Mobile Phones want buy new mobile need performance need high
battery life recommender will help make decision

Skiing Resorts like skiing snowboarding love winter mountains help
find perfect resort

Table 5.10: Examples of recommenders and their keywords extracted from the description.

User Keywords

Mike kw(Samsung Galaxy S7) ∪ kw(Apple iPhone 6S) ∪ kw(Mobile Phones)

James kw(Samsung Galaxy S7) ∪ kw(Sony Xperia M5) ∪ kw(Mobile Phones)

∪ kw(Kitzbühel) ∪ kw(Schladming) ∪ kw(Skiing Resorts)

Linda kw(Apple iPhone 6S) ∪ kw(Mobile Phones)

∪ kw(Schladming) ∪ kw(Skiing Resorts)

Marry kw(Sony Xperia M5) ∪ kw(Mobile Phones)

kw(Kitzbühel) ∪kw(Obertauern) ∪ kw(Skiing Resorts)

Table 5.11: User keywords based on their interactions from Table 5.12 and 5.13 and the key-
words kw(...) from Table 5.10 and 5.14.

The first step is to calculate the user keywords and item keywords and their
weightings as shown in Section 5.2. For the sake of simplicity and due to space
limitations there will only be a table containing the user and item keywords without
weightings. For an example on the calculation of keywords’ weights see Section 5.2.
Table 5.14 contains the items and their keywords and Table 5.11 contains the user
keywords calculated from the given evaluations.

To begin the example, lets assume there was a new item added to the recommender
Skiing Resorts. The item Nassfeld can be seen in Table 5.15.

The keywords for the item Nassfeld are:

nassfeld one top ski resorts austria excited perfectly groomed slopes unique moun-
tain panorama plenty sun special services lifts gondolas six person chairlifts quad

65

5 Micro-Task Scheduling Approach

User Item Performance Value for Battery life for Design
money different usages

Mike Samsung acceptable looses gaming(80%) valuable

Galaxy S7 (80%) slightly browsing(75%) (80%)

(60%) photo(70%)

James Samsung very good looses photo(70%) moderate

Galaxy S7 (75%) slightly gaming(85%) (90%)

(80%)

Linda Apple very good keeps value photo(80%) valuable

iPhone 6S (90%) (70%) browsing(75%) (80%)

James Sony acceptable looses fast telephoning(80%) moderate

Xperia M5 (60%) (60%) browsing(70%) (70%)

Marry Sony very good looses browsing(85%) valuable

Xperia M5 (75%) slightly photo(75%) (90%)

(80%)

Mike Apple excellent looses gaming(80%) moderate

iPhone 6S (80%) slightly browsing(70%) (80%)

(75%) photo(60%)

Table 5.12: Example evaluations of items of the recommender Mobile Phones. The support is
given as a percentage value in brackets.

chairlifts drag lifts magic carpets perfectly groomed slopes difficult medium easy aus-
tria longest floodlit slopes alps exclusive freeride funareas snowpark long valley run
guaranteed snow snow making sunshine express ski hotspots kids practice area fam-
ilies

Further assumptions to be made are the number of evaluations done by the users
within a time period, the number of correct evaluations in both recommenders, and
the total number of evaluations in both recommenders. Table 5.16 gives assump-
tions for those numbers.

Finally, to generate micro-tasks, an agenda is needed. The quality assurance
detected the newly added item Nassfeld in the database and therefore, created the
agenda shown in Table 5.17. This agenda will be used to generate the micro-tasks
from.

66

5 Micro-Task Scheduling Approach

User Item Price Experience Quality Target Quality
level level of lift audience of ski

needed facilities lodges

Marry Kitzbühel exp. moderate average rec. athlete good

(80%) (90%) (70%) (70%) (70%)
snowboarder

(80%)

James Kitzbühel mod. high new top. athlete moderate

(90%) (75%) (80%) (70%) (80%)
rec. athlete

(70%)

James Schladming mod. moderate new rec. athlete good

(80%) (75%) (70%) (80%) (80%)
rec. family

(90%)

Linda Schladming mod. low average snowboarder good

(70%) (70%) (90%) (80%) (90%)
family

(80%)

Marry Obertauern cheap moderate new rec. athlete moderate

(70%) (65%) (80%) (70%) (75%)
family

(65%)

Table 5.13: Example evaluations of items of the recommender Skiing Resorts. The support is
given as a percentage value in brackets.

67

5 Micro-Task Scheduling Approach

Item Keywords

Kitzbühel most legendary winter sports towns especially skiing alps
measured top hahnenkamm streif mausefalle challenging

pistes perfect children families large continuous
skiing area snowboarding mountains snow sledging

funpark tirol

Schladming mountains skiing area ski mountain shows best one thing
common offer fine slopes modern cable cars lifts

culinary delights huts offers kids families athletes
connoisseurs styria funpark families snowboarding

skiing snow

Obertauern one snowiest ski areas alps means perfect conditions late
november early may middle salzburg mountains gondola
chairlifts drag lifts fantastic ski runs cross country trails

plenty excellent après ski nightlife modern hotel standards
top wellness fitness offer wonderfully carefree holiday mood

funpark snowkiting skiing beautiful kombibahn

Samsung features fine interplay glass metal large quad hd display
Galaxy S7 super amoled technology ensures brilliant images consistently

sharp writing driven galaxy octa core processor memory
side stand networking functionality combines bandwidth

wlan mimo lte faster downloads shorter buffer load
times hd video streaming calling complex sites megapixel

camera offers fast autofocus focuses seconds display
performance video security samsung galaxy

Sony get chance get perfect shot camera xperia packed full
Xperia M5 technology help capture moment shoot pro hybrid

autofocus megapixels super sharp zoom camera display
performance storage camera sony

Apple inch retina hd display touch aluminum stronger glass
iPhone 6S cover chip desktop architecture brand new megapixel

isight camera live pictures touch id faster lte wlan long
battery life iOS iCloud smooth continuous unibody design

live pictures camera display retina iphone apple

Table 5.14: Item keywords for the recommenders Skiing Resorts and Mobile Phones.

68

5 Micro-Task Scheduling Approach

Item Name Family Sledging Cross-country Kilometers types of
Friendly skiing of slopes lift facilities

Nassfeld Yes Yes Yes 110 cableway,
chair lift,
drag lift

Table 5.15: Information about the new item Nassfeld of the recommender Skiing Resorts.

User Recommender #correctanswers #answers #answers(∆)

Mike Mobile Phones 7 12 6

James Mobile Phones 6 10 5

James Skiing Resorts 8 12 6

Linda Mobile Phones 4 5 0

Linda Skiing Resorts 3 6 2

Marry Mobile Phones 3 5 2

Marry Skiing Resorts 5 6 3

Table 5.16: Needed assumptions for each recommender for the number of correct support val-
ues given, the total number of support values given, and the number of support
values given within a time period ∆.

Property Value

tstart 28.05.2016 16:23
tmax 15.06.2016 16:23

user attribute Target Audience

user attribute values family, recreational athlete, top-class athlete,
snowboarder

item Nassfeld

recommender Skiing Resorts
Quantity 2
Priority 3

Table 5.17: Example agenda for recommender Skiing Resorts of item Nassfeld.

69

5 Micro-Task Scheduling Approach

Calculations

From the agenda shown in Table 5.17, a micro-task m1 of type 4 related to the
item Nassfeld and user attribute Target Audience belonging to recommender Skiing
Resorts needs to be created. The type again is determined using the decision tree
depicted in Figure 5.2. The steps taken in the decision tree according to the agenda
in Table 5.17 can be seen in Figure 5.5. The agenda contains exactly one item and
a user attribute. It also contains more than one user attribute value and the choice
type for the user attribute is multiple choice. These properties lead to micro-tasks
of type 4. The given quantity in the agenda is 2, therefore, 2 micro-tasks need to
be generated and distributed.

Generally, larger values (closer to zero) of all calculated (intermediate) results
indicate a better fit of the user for the respective formula than a value father away
from zero.

Figure 5.5: Path taken through the descision tree when processing the example agenda shown
in Table 5.17.

First of all, the importance of the micro-task is calculated in Equation 5.18. The
time stamps are given in milliseconds. Start time tstart(m1) is May 28 2016 16:23,
current time tcurrent(m1) is May 29 2016 16:23 and due time tmax(m1) is June 15 2016

70

5 Micro-Task Scheduling Approach

Property Value

tstart 28.05.2016 16:23
tmax 15.06.2016 16:23
tfinish -

user attribute Target Audience

user attribute values family, recreational athlete, top-class athlete snowboarder

item Nassfeld

keywords nassfeld one top ski resorts austria excited
perfectly groomed slopes unique mountain panorama
plenty sun special services lifts gondolas six person

chairlifts quad chairlifts drag lifts magic carpets perfectly
groomed slopes difficult medium easy austria longest

floodlit slopes alps exclusive freeride funareas snowpark
long valley run guaranteed snow snow making

sunshine express ski hotspots kids practice area families

recommender Skiing Resorts

micro-task type 4
user -

Table 5.18: Micro-task resulting from the agenda shown in Table 5.17.

16:23. As already stated, the time values in the equation are given in milliseconds.

importance(m1) = log

(
tcurrent(m1)− tstart(m1) + αi

tmax(m1)− tstart(m1) + 1

)
= log

(
1464531780000− 1464445380000 + 1

1466000580000− 1464445380000 + 1

)
= −1.25527

(5.18)

The interest of the users in this micro-task is calculated. Therefore the workload
and emphasis of each user must be calculated. Table 5.19 contains the interest of the
users in the micro-task and also the corresponding workload and emphasis values.

User Interest Workload Emphasis

Mike -1,95904 -0.84510 -1,11394
James -1,32696 -1.07918 -0,24778

Linda -0,71120 -0.47712 -0,23408
Marry -1,01223 -0.77815 -0,23408

Table 5.19: Interest, workload and emphasis of all users in the system. Values closer to zero
indicate a higher interest, lower workload, and higher emphasis respectively.

71

5 Micro-Task Scheduling Approach

As an example, the workload, emphasis, and interest of the user James will be
calculated here. Equation 5.19 shows the computation of the workload. As already
mentioned, the time period ∆ is 7 days in this example. The total number of answers
of user James is the sum of the number of answers in all recommenders in the time
period ∆. In this example, the total number is 11, as for Skiing Resorts it is 6 and
for Mobile Phones it is 5 as mentioned in Table 5.16 and they are summed up.

workload(James) = −log(αw + #answers(James,∆))

= −log(1 + 11) = −1.07918
(5.19)

The emphasis of user James is computed in Equation 5.20. Skiing Resorts is
abbreviated as SR in the formula to keep it shorter.

emphasis(James, SR) = log

(
αe3 + #answers(James, SR)

1 + #answers(James)

)
= log

(
1 + 12

1 + 22

)
= −0, 24778

(5.20)

Now that workload and emphasis have been computed, the interest of user James
is computed in Equation 5.21.

interest(James,m1, 7) = workload(James, 7) + emphasis(James, SR)

= −1.07918 + (−0, 24778) = −1, 32696
(5.21)

The next value to compute is the ability of the users to solve the micro-task. To
calculate the ability, experience and excellence need to be computed first. Table 5.20
shows the calculated values for ability, experience, and excellence for each user.

User Ability Experience Excellence

Mike -1,40324 -1,40324 0
James -0,65099 -0.49129 -0,15970

Linda -0,95462 -0,71158 -0,24304
Marry -0,46883 -0,40188 -0,06695

Table 5.20: Ability, experience and excellence of this micro-task of all users in the system.
Values closer to zero indicate a higher ability, higher experience and higher excel-
lence respectively.

To compute the experience, the user and micro-task keywords and their weights are
needed. As the computation of weights has already been shown (see Section 5.2.2)
no calculation examples will be done here.

72

5 Micro-Task Scheduling Approach

The experience of user James is calculated in Equation 5.22. The calculation of
the summing is not shown in detail as the sums involve too much summands (see
Table 5.11 for keywords of user James and keywords for Nassfeld in Section 5.4.2;
223 keywords in total).

experience(James,m1) = log

(
αe1 + Σkm∈kw(James)∩kw(m1)weight(km)

1 + Σk∈kw(James)∪kw(m1)weight(k)

)
= log

(
1 + weight(snow) + ...+ weight(mountain)

1 + weight(features) + ...+ weight(families)

)
= log

(
1 + 35.74361

1 + 112.88743

)
= −0, 49129

(5.22)

Now the excellence of user James needs to be computed. This can be seen in
Equation 5.23.

excellence(James, SR) = log

(
αe2 + #correctanswers(James, SR)

1 + #answers(James, SR)

)
= log

(
1 + 8

1 + 12

)
= −0, 15970

(5.23)

After experience and excellence were calculated, the ability of user James can be
calculated as shown in Equation 5.24.

ability(James,m1) = experience(James, SR) + excellence(James, SR)

= −0.49129 + (−0.15970) = −0, 65099
(5.24)

Using the previously calculated values for ability and interest, the qualification of
each user can be calculated. Furthermore the total score can be calculated as the
importance was already computed. Table 5.21 shows the final score, qualification,
ability, interest, and importance for the users and the micro-task.

The calculation of the qualification is shown in Equation 5.25.

qualification(James,m1) = ability(James,m1) + interest(James,m1)

= −0, 65099 + (−1.32696) = −1, 97795
(5.25)

The final score is computed in Equation 5.26.

score(James,m1) = importance(m1) + qualification(James,m1)

= −1.25527 + (−1, 97795) = −3, 23322
(5.26)

73

5 Micro-Task Scheduling Approach

User Score Qualification Ability Interest Importance

Mike -4,61755 -3,36228 -1,40324 -1.95904 -1.25527
James -3,23322 -1,97795 -0,65099 -1.32696 -1.25527

Linda -2,92109 -1,66582 -0,95462 -0.71120 -1.25527
Marry -2,73633 -1,48106 -0,46883 -1.01223 -1.25527

Table 5.21: Final scores of each user and the necessary values to compute the score. Best
suiting users are selected based on their score. Users are assumed to be most
suitable for micro-tasks if the score is closer to zero.

The final results in Table 5.21 show that the 2 best suited users to complete the
micro-task are Marry and Linda as their scores are the largest (closest to zero).
Therefore, Marry and Linda each get assigned the micro-task shown in Table 5.18.

74

6
Evaluation

This chapter contains the evaluation for the scheduling approach described in Chap-
ter 5. The baseline algorithms, the scheduling approach was compared with, are also
discussed in this chapter. Furthermore, the used dataset will be described and also
the evaluation results are discussed in detail. The problems when evaluating the
algorithm as well as the limitations due to the dataset and the solutions to the
occurred problems are illustrated.

6.1 Dataset

To evaluate the scheduling approach described in Chapter 5, no dataset exists on
which all the presented formulas can be directly applied. The requirements regarding
such a dataset would be:

1. A large amount of users (at least thousand) is necessary for the study to be
representative and show that the scheduling approach is scaling to a large user
base.

2. A large amount of items (at least thousand) is needed such that separate
training and tests set can be extracted.

3. Detailed, objective, textual item descriptions are needed to extract keywords
for the items and the user profile.

4. History of user interactions with items is necessary to create the user profile
and estimate the user’s interests. To create a representative user profile a
certain amount of user interactions needs to be present (at least 10 interactions
in a certain domain could indicate interest in that domain).

75

6 Evaluation

5. A high amount of evaluations per item is needed to estimate average ratings
and to find diverging user evaluations. This information is used to estimate a
user’s experience in a certain recommender domain.

6. Different recommender domains are necessary because the approach includes
user’s interest in different domains.

For the existing datasets collected using PeopleViews (collected for the eval-
uation done in the master’s thesis of Michael Schwarz) requirements 2, 4, and 5
can not be met. In those studies only a small set of items was used (less than 15
items per recommender domain). Also users where asked to evaluate exactly three
items which is insufficient to determine users interests. Furthermore, one of the two
existing recommender domains in the study was assigned randomly to study partic-
ipants. As study participants were paid for completing the study, users only used
the system once to complete the study without using the system again. As noted
by Schnitzer et al. [28], paid micro-workers tend to maximize their revenue per time
unit, therefore, their behavior when using the system is different to normal users.

To collect an appropriate dataset a long-term study would be necessary. The
setup of such a study will be described in Chapter 7.

The dataset that fulfilled the most requirements was the MovieLens 10M data
set [48]. To meet all specified requirements some adoptions to the data set where
necessary which will be described after introducing the MovieLens dataset. The
MovieLens dataset contains 10 000 054 ratings, 95 580 tags applied to 10 681 movies
and 71 567 users. The data set is provided by the online movie recommendation
system MovieLens. This data set was the only one containing some kind of descrip-
tion in form of genres and tags. Tags are not only one single word but can be a
whole sentence.

After analyzing the tags, it was clear that they are not suitable to be used for
the study as they were very subjective to users opinions instead of objective movie
descriptions. As it turned out, users misused tags to textually rate the movies. Some
of the most used tags include classic, excellent, funny, bad movie, don’t watch it. As
clearly can be seen such tags do not provide any objective description of a movie.
Therefore, detailed movie descriptions needed to be supplemented to the MovieLens
dataset.

The Netflix Roulette database [49] is a web service providing detailed informations
about movies such as movie descriptions or actors. To get a movie description,
the function getAllData(mn) from the provided API is used. The argument mn
represents the name of the movie. As this database does not contain ratings, the
two data sets MovieLens and Netflix Roulette need to be combined. The Netflix
Roulette database provides the needed movie description and the MovieLens data
set contains the users, movies, and ratings.

Another problem is that the ratings are just star ratings in MovieLens. Star
ratings are often not subjective or biased for some reason. For example, a movie

76

6 Evaluation

can get a bad rating because the user does not like one of the actors. Because of
this, the value of the star rating is not taken into account in the evaluation; just the
fact that the user actually evaluated the movie or not.

While trying to get the movie descriptions, a problem occurred. When using
the movie names as arguments, not all movies were found in the Netflix Roulette
database. As the function of the API just takes the name of the movie, the problem
might have occurred because the movie name in the MovieLens database was written
differently than in the Netflix Roulette database. This is a problem that could not be
solved, as there was no other way to get the needed information out of the database.
This resulted in a reduction of the final data set size to 2016 movies, 6 040 532
ratings and 58 126 users. Users that did not evaluate any remaining movie were
removed from the dataset. Nevertheless, the combined dataset still met all specified
requirements.

Simplifications of the Scheduling Algorithm

Due to the differences between the MovieLens dataset and the PeopleViews struc-
ture, some simplifications where applied to be able to use the formulas of the schedul-
ing algorithm. For each component of the formulas presented in Section 5.4 the used
data sources and eventually simulated data are listed. No modifications to the for-
mulas were made.

� The importance (Equation 5.10) could not be calculated as there are no time
restrictions for micro-tasks available in the MovieLens dataset. As it is not
possible to estimate or simulate such information, the importance was set to
1 for all micro-tasks.

� The experience (Equation 5.13) can be calculated using the keywords extracted
from the movie descriptions which were fetched from Netflix Roulette. The
history of evaluations was used to generate the user profiles.

� The excellence (Equation 5.14) values were simulated. To simulated them,
first the average rating for each movie was calculated. Evaluations which were
within ±0.5 of this average were deemed as correct answers.

� The workload (Equation 5.16) was calculated using the history of users eval-
uations.

� The emphasis (Equation 5.17) was calculated by treating the movie genres as
different recommender domains.

� All weighting parameters (αi, αe1 , αe2 , αw, αe3) were set to 1. If they would
have been optimized by a genetic algorithm, the problem of overfitting could
have occurred which would have falsified the results of the scheduling algo-
rithm.

77

6 Evaluation

6.2 Evaluation Approach

Before describing the evaluation approach, the algorithms, the scheduling approach
was compared to, will be described. The three baseline algorithms used are item-
similarity (case-based), Most Frequent User, and Random User. Item-similarity,
Most Frequent User, and Random User were chosen because those are algorithms
are applicable to the chosen dataset and are widely used as baselines in research
studies.

In this section, several abbreviations are used. Table 6.1 contains each abbrevi-
ation, a short description and the scope of the abbreviation. Possible scopes are
item-similarity, evaluation algorithm and both. They describe in which context each
abbreviation is valid.

Item-similarity

Item-similarity or case-based recommendation [50] is a form of knowledge-based
recommendation and performs very well in domains such as books or digital cameras
where products are defined in terms of a set of properties such as price or color.
Instead of properties, in this evaluation, keywords are matched. With this algorithm
it is possible to find users who should evaluate a new movie, that is similar to the
movies she rated in the past based on matching keywords. The following steps are
performed to find suitable users for new movies:

� Compare the movie keywords from the evaluation movie in mev with the movie
keywords from the already evaluated movies in mr.

� Add each already evaluated movie in mr where more than 5 keywords match
the keywords from an evaluation movie in mev to a set l

� From each movie me in the set l:

◦ Add the users who evaluated this movie to the set lu

◦ Select n users randomly from the list lu that should evaluate the evalua-
tion movie me and store them in us.

The threshold of 5 matching keywords was empirically determined as this resulted
in the highest percentage of correctly chosen users for the evaluation of the evaluation
movie me.

The discussed algorithm would be applied to subitem 5(a)i of the evaluation al-
gorithm. Therefore, the selection of mev and mr is not described.

Most Frequent User

The Most Frequent(MF) algorithm selects the most frequent users from the data
set and in this case, suggests them as best matching users to solve the micro-task.

78

6 Evaluation

Abbreviation Description Scope

M Total set of movies both

U Total set of users both

R Total set of ratings evaluation algorithm

m Movies randomly selected from M both

mev
Evaluation movies randomly selected

from m
both

mr
Remaining movies in m after selecting

mev
both

me
Evaluation movie with more than 5

matching keywords
item-similarity

l
Set of movies with more than 5 matching

keywords
item-similarity

lu Set of users who evaluated the movie mev item-similarity

r Ratings of the movies m evaluation algorithm

rr
Subset of r containing all ratings of the

movies mr
evaluation algorithm

rev
Subset of r containing all ratings of the

movies mev
evaluation algorithm

us
Set of users selected by the baseline

algorithms or the scheduling algorithm
both

cc
Number of correctly identified user-movie

combinations
evaluation algorithm

cn
Number of wrongly identified user-movie

combinations
evaluation algorithm

Table 6.1: List of abbreviations with descriptions used in either the item-similarity approach,
the evaluation algorithm or both.

The most frequent users are the ones who added the most ratings to the data set.
The number of ratings a user provided is calculated and then the users are ranked
descending by the number of ratings they provided. When used in the evaluation,
the first n users are selected from this set and chosen to solve the given micro-
task. Table 6.2 contains four randomly chosen users extracted from the MovieLens
dataset and their corresponding number of ratings. Table 6.3 shows the list after
ordering according to the number of ratings. If, for example, a micro-task needs to
be distributed to 2 people, they would be assigned to the users u2 and u4 according
to Table 6.3.

79

6 Evaluation

User Number of Ratings

u1 941
u2 1 639
u3 786
u4 1 306

Table 6.2: Example of the number of ratings
for some users before ordering.

User Number of Ratings

u2 1 639
u4 1 306
u1 941
u3 786

Table 6.3: Table 6.2 after ordering descend-
ing by the number of ratings.

Random User

This algorithm is rather easy. For each given micro-task, a specific number of users
who should solve the task is selected completely random from the whole set of all
users. In contrast to the Most Frequent User algorithm where always the same users
are chosen for the tasks, here for each micro-task a random set of users is chosen to
solve the task.

Evaluation algorithm

The evaluation algorithm predicts which movie should be evaluated by which user.
This is equivalent to predicting which micro-task should be solved by which user.
Therefore, it is feasible to use such an algorithm to evaluate the micro-task schedul-
ing approach.

The dataset D initially contains the set of movies M , the set of users U and the
set of ratings R. Each rating consists of the user u that entered the rating, the movie
m that was rated and the rating value rv. As the goal of the scheduling algorithm
is to predict suitable users, the rating value rv will not be used in the evaluation
algorithm. Furthermore, the rating value could not be predicted by the scheduling
algorithm, as it is not designed to predict the rating value but the user who should
rate a movie. Each step of the evaluation algorithm will be explained in detail in
the following list. To clarity the different entries in the used sets, examples will be
given in tables referenced in each item. To keep the examples small, 8 movies m
and 2 movies mev are chosen.

1. Randomly choose a subset of movies m (see Table 6.5) from the total set of
movies M (see Table 6.4). Only movies in m will be used to train and test the
algorithms. The size of m varies to show how the prediction quality changes
depending on the size of the dataset.

2. Choose randomly a set mev (see Table 6.7) as evaluation movies from the set
of movies m. For these movies mev the scheduling algorithm will choose the
best suitable users. The remaining set of movies is mr (see Table 6.6) after
removal of the evaluation movies mev from m. These mr movies are used as
training data for the scheduling algorithm.

80

6 Evaluation

3. The set of ratings r (see Table 6.8) regarding all movies in m is split in two
subsets. All ratings rr (see Table 6.9) for the movies mr are used as training
data. The ratings rev (see Table 6.10) are ratings for the movies in mev and
will be used when testing the algorithm.

4. Training phase:

a) For each movie of the set mr generate the item keywords.

b) Generate user keywords for each user in the set U based on her evaluated
items.

5. Test phase: For each algorithm (Item-similarity, most frequent user, random
user, and the micro-task scheduling algorithm):

a) For each evaluation movie in mev:

i. Choose the set of suitable users us (see Tables 6.11 and 6.12) from
the total set of user U by applying the respective algorithm.

A. For each rating in rev where the user who created the rating is
contained in us, increase the count cc of correctly matching user-
movie combinations.

B. If, for a rating in rev, there exists no matching user in us, then
increase the count cn of the non-matching user-movie combina-
tions.

b) Finally, compute the total sum over all of correctly matching user-movie
combinations cc and and the total sum over all non-matching user-movie
combinations cn of all movies in mev.

c) With the two total sums, the percentage of correctly identified user-movie
pairs can be calculated by dividing the sum of all correctly-matching
user-movie combinations by the sum over all correctly-matching and non-
matching user movie-combinations. Equation 6.1 shows the calculation
of the percentages as plotted in Figure 6.1.

Correct classified movies in % =
cc

cc + cn
· 100 (6.1)

81

6 Evaluation

Movie ID Movie name

1 Toy Story

2 Cutthroat Island

3 Easy Rider

4 Star Wars: Episode III
5 Batman Begins

6 Sabrina
7 3:10 to Yuma

8 Shoot ’Em up
9 Juno

11 Cloverfield

12 Breakfast at Tiffany’s

13 Casablanca
...

Table 6.4: Extract of the total set of movies
M with movie ID and movie
name.

Movie ID Movie name

4 Star Wars: Episode III
5 Batman Begins
9 Juno

12 Breakfast at Tiffany’s
43 Superman

76 Fools Rush In

97 Alien
133 Grease

Table 6.5: Set of movies m with movie ID
and movie name chosen ran-
domly from M .

Movie ID Movie name

4 Star Wars: Episode III
5 Batman Begins
9 Juno

12 Breakfast at Tiffany’s

76 Fools Rush In

97 Alien

Table 6.6: Set of movies mr with movie ID
and movie name after choosing
the movies mev.

Movie ID Movie name

43 Superman
133 Grease

Table 6.7: Set of movies mev with movie
ID and movie name chosen ran-
domly from m.

82

6 Evaluation

Rating ID Movie ID User ID
4 4 u1

8 4 u2

8 4 u3

12 5 u1

45 5 u2

65 5 u5

69 9 u1

73 9 u3

81 9 u4

88 12 u3

90 12 u4

92 43 u1

105 43 u2

120 43 u5

134 76 u1

138 76 u5

179 97 u1

190 97 u2

204 97 u5

207 133 u3

209 133 u4

Table 6.8: List of all ratings in r with rating
ID, movie ID and user ID.

Rating ID Movie ID User ID

4 4 u1

8 4 u2

8 4 u3

12 5 u1

45 5 u2

65 5 u5

69 9 u1

73 9 u3

81 9 u4

88 12 u3

90 12 u4

134 76 u1

138 76 u5

179 97 u1

190 97 u2

204 97 u5

Table 6.9: Set of ratings rr of the movies
mr with rating ID, movie ID and
user ID.

Rating ID Movie ID User ID

92 43 u1

105 43 u2

120 43 u5

207 133 u3

209 133 u4

Table 6.10: Set of ratings rev of the movies
mev with rating ID, movie ID
and user ID.

User ID

u1

u2

u3

u5

Table 6.11: Suitable users us for evalution
movie Superman. Green col-
ored users actually evaluated the
movie Superman whereas red
colored users did not.

User ID

u1

u3

u4

u5

Table 6.12: Suitable users us for evalu-
tion movie Grease. Green col-
ored users actually evaluated the
movie Grease whereas red col-
ored users did not.

83

6 Evaluation

The Tables 6.11 and 6.12 where generated using the item-similarity algorithm.
As it can be seen from Table 6.11, the number of correctly identified movie-user
combinations cc is 3 for movie Superman whereas Table 6.12 shows that for movie
Grease it is 2. The number of wrongly identified user-movie combinations cn is 1
for movie Superman and 2 for movie Grease.

With the values for cc and cn for both movies, the percentage of correctly classi-
fied movies can be calculated by summing up the cc values and the cn values and
using Equation 6.1. Equation 6.2 shows the percentage calculation for the correctly
classified users in this example over all selected evaluation movies.

Correctly classified movies in % =
cc

cc + cn
·100 =

3 + 2

3 + 2 + 1 + 2
·100 = 62, 5% (6.2)

This evaluation algorithm is executed on the data set several times with different
numbers of randomly chosen movies m, randomly chosen evaluation movies mev and
chosen users k. For each parameter set, several runs are executed to get meaningful
evaluation results.

In total, the evaluation algorithm was executed with 11 different parameter set-
tings. For each parameter setting, 20 runs were made to calculate an average. The
different parameter settings for each set of runs are listed in Table 6.13.

Size of Setting 1 Setting 2 Setting 3 Setting 4 Setting 5 Setting 6

m 10 20 50 75 100 150
mev 3 5 10 10 15 20

k 20 30 40 50 55 75

Size of Setting 7 Setting 8 Setting 9 Setting 10 Setting 11

m 300 600 1000 1500 2016
mev 25 30 35 40 50

k 100 120 150 200 220

Table 6.13: The 11 different parameter settings used for the evaluation of the scheduling al-
gorithms.

6.3 Evaluation Results

Figure 6.1 shows the evaluation results for the different algorithms. In the plot the
x-axis is logarithmic. This is just done to get a better visualization of the results. As

84

6 Evaluation

the logarithm does not change the order relation it does not distort the final results.
The x-axis represents the increasing number of chosen movies m. The y-axis shows
the percentage of correctly matching user-movie combinations.

Figure 6.1: The correctly matching user-movie combinations in percent for the scheduling al-
gorithm, the most frequent user algorithm, the case-based recommendation algo-
rithm, and the random user algorihtm.

What can also be seen from the plot is that the performance of the Random User
algorithm decreases steadily with an increasing number of movies. The reason for
this is that with the higher number of movies also a higher number of users are
taken into account and this leads to a decrease of matches for the Random User
algorithm. The results reflect the expected behavior of the algorithm. As there are
more users, the algorithm can choose from, it is harder to find matching ones as the
number of possible users gets very large.

For the Most Frequent User and the scheduling algorithm the trend of their per-
formance is similar. The scheduling algorithm performs for all parameter settings

85

6 Evaluation

(see Table 6.13) slightly better than the Most Frequent User algorithm. Figure 6.2
shows the improvement of the scheduling algorithm compared to the Most Frequent
User algorithm. Equation 6.3 shows the formula for computing the improvement
of algorithm a1 compared to algorithm a2. The function c(a) gives the correctly
classified movies in % of algorithm a. A positive improvement value means that
a1 performs better than a2, a negative improvement value means that a1 performs
worse than a2. The scheduling algorithm is always between 1 and 4 percent better
than the Most Frequent User algorithm except for the beginning, there the schedul-
ing algorithm outperforms the Most Frequent User algorithm by around 17 percent.
In this case, there is a very small number of movies with a small number of users
to be distributed to just 3 evaluation movies. This setting simulates some kind of
cold start. At the beginning, there is a very small number of existing movies and
some ratings, then a new item is added to the data set and correct users need to be
chosen. With a large number of data, it is much easier to find a good prediction but
with a small one it is harder to make a good prediction. Also with fewer ratings it is
hard for the Most Frequent User algorithm to make a good prediction as many users
have the same amount of ratings. As can be seen, the prediction of the scheduling
algorithm is apparently much better than for a small number of movies and ratings.

Improvement(a1, a2) =
c(a1)− c(a2)

c(a2)
· 100 (6.3)

But for a growing data set the Most Frequent User algorithm is getting nearly as
good as the scheduling algorithm on this data set. The reason for this is that for an
increasing set of movies also the set of ratings and therefore users increases. As the
number of ratings gets larger and larger, the power users are revealed. Power users
are users who interact very frequently with the system and therefore make many
evaluations. There are users in this data set with over 1500 evaluations. So they
evaluated more than 3/4 of all movies. Therefore the algorithm computes such good
results. This is also an expected result as it was clear form the beginning that there
are many power users in this large data set.

When investigating the waveform of the item-similarity approach in Figure 6.1,
it can be seen, that the percentage of correctly classified movies increases slower
than for the Most Frequent User algorithm or the scheduling algorithm. It is not
really clear why this behavior can be observed but apparently the performance of
the case-based recommendation approach also increases with the increasing number
of movies but not as fast as the Most Frequent User algorithm or the scheduling
algorithm do.

In Figure 6.3, the improvement of the micro-task scheduling algorithm compared
to the case-based recommendation algorithm can be seen. It can be seen that in the
beginning, the item-similarity algorithm performs much worse than the scheduling

86

6 Evaluation

Figure 6.2: The improvement in percent of the scheduling algorithm compared to the Most
Frequent User algorithm.

algorithm. As can be seen in Figure 6.1 the scheduling algorithm’s performance
stagnates earlier than the performance of the item-similarity approach. Therefore,
the improvement decreases before settling at around 100% where the number of
correctly classified movies also stagnates for the item-similarity approach.

87

6 Evaluation

Figure 6.3: The improvement in percent of the scheduling algorithm compared to the item-
similarity algorithm.

88

7
Limitations and Future Work

This chapter contains the limitations which occur on the technical side and also the
ones that appeared during the implementation of the scheduling algorithm. Fur-
thermore, the issues that have arisen during the implementation will be explained.

A discussion of future work and possible improvements regarding the scheduling
approach and the evaluation will be shown.

7.1 Limitations

The limitations section will be split into the technical limitations regarding the
server and the user interface of PeopleViews, the limitations of the scheduling
approach, and the limitations of the evaluation.

7.1.1 Technical Limitations

The known technical limitations of the system are given due to the used client-server
concept and the used JavaScript APIs used for the user interface. The following
limitations are known

� As many technologies and libraries are used for the user interface, some browsers
or versions of browsers might have visualization problems. There are many
known issues with any version of the Microsoft Internet Explorer as this
browser does not support many of the used APIs, for example, HTML5.

� As the server (see Chaper 4) of the system was written in Java, the server
needs a Java installation to be able to run the system.

89

7 Limitations and Future Work

7.1.2 Limitations of the Scheduling Algorithm

The scheduling approach needs a rather high amount of data to select suitable users
(see Chapter 6). The approach needs to know all the items a user interacted with,
the micro-tasks she solved in the last period, furthermore, the keywords of items
and recommenders, and other properties (see Section 6.1) that are used by the set
of equations (see Section 5.4). Therefore it is not easy to apply this approach to
other recommender systems.

7.2 Limitations of the Evaluation

As already mentioned in Section 6.1 it is not possible to take every aspect of the
scheduling algorithm into account. The reason for this is the used data set. As there
are no public data sets available that cover all the aspects needed to exploit the full
potential of the scheduling algorithm, some data had to be simulated.

7.3 Future Work

The keyword extraction of the scheduling algorithm could be further improved by
labeling the keywords with part-of-speech tags (POS tagging) [51]. This approach
assigns one or more specific classes to a word and with this information, it is easier
to distinguish between important and not important words. For example, nouns and
adjectives could be weighted higher than verbs as they are more descriptive regarding
items. POS tagging would reduce the amount of user keywords per user significantly.

Another task for future work would be to use a library for genetic algorithms to
tune the weighting parameters of the scheduling algorithm. This would have been
beyond the scope of this thesis, therefore, it is subject to future work. This genetic
algorithm needs training to tune the parameters and a test set to verify the results.
It performs several runs on the data set and would change the weighting parameters
of the scheduling algorithm in every run until the number of wrongly distributed
micro-tasks is as low as possible. This parameter set with the lowest error is then
used as weighting parameters in the algorithm.

A possible problem of learning the parameters is overfitting. As overfitting is
also possible for large amounts of data online-learning needs to be applied. In
this concept, a possible overfitting can be detected by an increasing amount of not
answered or wrongly answered micro-tasks.

Evaluation with PeopleViews data

To be able to perform a study regarding the scheduling algorithm which uses the
data collected by PeopleViews, the following requirements need to be fulfilled:

90

7 Limitations and Future Work

� The users must not be paid to interact with the system as this influences the
data quality and the user’s behavior [52].

� Users need to interact with the system repeatedly to generate a history of their
interactions and to be able to react to newly assigned micro-tasks.

� The users need to solve micro-tasks as this enables the scheduling algorithm
to predict the workload of users.

� The data collection needs to be conducted in a long-term study for various
reasons. The first reason is to give the users enough time to contribute to the
system. Second, time-related parts of the scheduling algorithm (importance
and workload) can only be evaluated if users repeatedly use the system over a
longer period of time.

The requirements regarding the resulting dataset for an evaluation with People-
Views were already described in Section 6.1.

91

8
Conclusion

The constraint-based recommender system implemented in this thesis can be used to
build and maintain recommenders, add and modify items, evaluate items and gener-
ate recommendations. The user can specify supports regarding objective attributes
of the items (user attribute values) when evaluating them. These supports are aggre-
gated and used to calculate recommendations as shown in Chapter 3. Furthermore,
the user is able to enter requirements to the system to get suitable recommendations.

A completely new user interface was designed with the intention of being intuitive
and easy to understand (see Chapter 4). As the system is based on a client-server
architecture, it is easy to exchange or improve parts of the user interface.

A game is implemented to motivate users to add knowledge to the system. Fur-
thermore, micro-tasks are used to acquire data to improve the recommendation
quality. To assign micro-tasks to suitable users, a set of formulas (see Chapter 5)
was introduced that is capable of choosing users based on their previous interactions
with the system. These formulas take certain aspects such as a user’s interest in a
recommender domain, a user’s expertise or her current workload into account.

The evaluation of the scheduling algorithm was challenging, as there exist no data
sets that met the requirements specified in Section 6.1. The MovieLens dataset cho-
sen for evaluation the scheduling approach was enriched with data from the Netflix
Roulette database. Additionally some data was simulated to perform the evaluation
as shown in Section 6.1.

The evaluation results show that without tuning the parameters the scheduling

92

8 Conclusion

algorithm already achieves more than 50% of correctly classified movies. This is
a satisfying result for such algorithms. This thesis was a proof of concept that a
recommender system can be implemented in such a generic way that it is possible
to add multiple recommender domains to one system and distribute micro-tasks for
fast and simple data acquisition to users who are suitable to add reasonable data to
the system.

93

Bibliography

[1] P. Resnick and H. R. Varian, “Recommender systems,” Commun. ACM, vol. 40,
no. 3, pp. 56–58, Mar. 1997.

[2] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collaborative filtering
to weave an information tapestry,” Commun. ACM, vol. 35, no. 12, pp. 61–70,
Dec. 1992.

[3] A. Felfernig and R. Burke, “Constraint-based recommender systems: Technolo-
gies and research issues,” in Proceedings of the 10th International Conference
on Electronic Commerce, ser. ICEC ’08. New York, NY, USA: ACM, 2008,
pp. 3:1–3:10.

[4] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive
algorithms for collaborative filtering,” in Proceedings of the Fourteenth Confer-
ence on Uncertainty in Artificial Intelligence, ser. UAI’98. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1998, pp. 43–52.

[5] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and
J. Riedl, “Grouplens: Applying collaborative filtering to usenet news,” Com-
mun. ACM, vol. 40, no. 3, pp. 77–87, Mar. 1997.

[6] X. N. Lam, T. Vu, T. D. Le, and A. D. Duong, “Addressing cold-start problem
in recommendation systems,” in Proceedings of the 2nd international conference
on Ubiquitous information management and communication. ACM, 2008, pp.
208–211.

[7] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative
filtering recommendation algorithms,” in Proceedings of the 10th International
Conference on World Wide Web, ser. WWW ’01. New York, NY, USA: ACM,
2001, pp. 285–295.

[8] G. Linden, B. Smith, and J. York, “Amazon.com recommendations: item-to-
item collaborative filtering,” IEEE Internet Computing, vol. 7, no. 1, pp. 76–80,
Jan 2003.

[9] M. J. Pazzani and D. Billsus, Content-Based Recommendation Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 325–341.

94

Bibliography

[10] J. Ramos, “Using tf-idf to determine word relevance in document queries,” in
Proceedings of the first instructional conference on machine learning, 2003.

[11] R. Van Meteren and M. Van Someren, “Using content-based filtering for recom-
mendation,” in Proceedings of the Machine Learning in the New Information
Age: MLnet/ECML2000 Workshop, 2000, pp. 47–56.

[12] R. Burke, “Knowledge-based recommender systems,” Encyclopedia of library
and information science, vol. 69, no. Supplement 32, p. 180, 2000.

[13] A. Felfernig, B. Gula, G. Leitner, M. Maier, R. Melcher, and E. Teppan, Per-
suasion in Knowledge-Based Recommendation. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 71–82.

[14] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara, “The distributed con-
straint satisfaction problem: Formalization and algorithms,” IEEE Transac-
tions on knowledge and data engineering, vol. 10, no. 5, pp. 673–685, 1998.

[15] A. Felfernig, M. Jeran, M. Stettinger, T. Absenger, T. Gruber, S. Haas,
E. Kirchengast, M. Schwarz, L. Skofitsch, and T. Ulz, “Human computation
based acquisition of financial service advisory practices,” in Proceedings of the
1st International Workshop on Personalization & Recommender Systems in
Financial Services, Graz, Austria, 2015, pp. 27–34.

[16] A. Felfernig, S. Haas, G. Ninaus, M. Schwarz, T. Ulz, M. Stettinger, K. Isak,
M. Jeran, and S. Reiterer, “Recturk: Constraint-based recommendation based
on human computation,” in RecSys 2014 CrowdRec Workshop, 2014, pp. 1–6.

[17] A. Felfernig, T. Ulz, S. Haas, M. Schwarz, S. Reiterer, and M. Stettinger,
“Peopleviews: Human computation for constraint-based recommendation,” in
ACM RecSys 2015 CrowdRec Workshop, 2015.

[18] R. Burke, “Hybrid recommender systems: Survey and experiments,” User Mod-
eling and User-Adapted Interaction, vol. 12, no. 4, pp. 331–370, 2002.

[19] ——, Hybrid Web Recommender Systems. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 377–408.

[20] G. Karypis, “Evaluation of item-based top-n recommendation algorithms,” in
Proceedings of the tenth international conference on Information and knowledge
management. ACM, 2001, pp. 247–254.

[21] A. Albadvi and M. Shahbazi, “A hybrid recommendation technique based on
product category attributes,” Expert Systems with Applications, vol. 36, no. 9,
pp. 11 480 – 11 488, 2009.

95

Bibliography

[22] G. Lekakos and P. Caravelas, “A hybrid approach for movie recommendation,”
Multimedia Tools and Applications, vol. 36, no. 1, pp. 55–70, 2008.

[23] L. von Ahn, “Human computation,” in Design Automation Conference, 2009.
DAC ’09. 46th ACM/IEEE, July 2009, pp. 418–419.

[24] A. J. Quinn and B. B. Bederson, “Human computation: A survey and taxonomy
of a growing field,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’11. New York, NY, USA: ACM, 2011, pp.
1403–1412.

[25] L. Von Ahn, “Human computation,” Ph.D. dissertation, Pittsburgh, PA, USA,
2005.

[26] M. C. Yuen, L. J. Chen, and I. King, “A survey of human computation systems,”
in Computational Science and Engineering, 2009. CSE ’09. International Con-
ference on, vol. 4, Aug 2009, pp. 723–728.

[27] C. Sarasua, E. Simperl, and N. F. Noy, “Crowdmap: Crowdsourcing ontol-
ogy alignment with microtasks,” in International Semantic Web Conference.
Springer, 2012, pp. 525–541.

[28] S. Schnitzer, C. Rensing, S. Schmidt, K. Borchert, M. Hirth, and P. Tran-Gia,
“Demands on task recommendation in crowdsourcing platforms-the worker’s
perspective,” in ACM RecSys 2015 CrowdRec Workshop, Vienna, 2015.

[29] V. Ambati, S. Vogel, and J. G. Carbonell, “Towards task recommendation in
micro-task markets.” in Human computation, 2011, pp. 1–4.

[30] M. Hadano, M. Nakatsuji, H. Toda, and Y. Koike, “Assigning tasks to work-
ers by referring to their schedules in mobile crowdsourcing,” in Third AAAI
Conference on Human Computation and Crowdsourcing, 2015.

[31] V. Rajan, S. Bhattacharya, L. E. Celis, D. Chander, K. Dasgupta, and
S. Karanam, “Crowdcontrol: An online learning approach for optimal task
scheduling in a dynamic crowd platform,” in Proceedings of ICML Workshop:
Machine Learning Meets Crowdsourcing, 2013.

[32] X. Wang, “A genetic algorithm for task scheduling based on user overall sat-
isfaction,” in Cyber-Enabled Distributed Computing and Knowledge Discovery
(CyberC), 2012 International Conference on, Oct 2012, pp. 527–530.

[33] S. Deterding, M. Sicart, L. Nacke, K. O’Hara, and D. Dixon, “Gamification.
using game-design elements in non-gaming contexts,” in CHI ’11 Extended Ab-
stracts on Human Factors in Computing Systems, ser. CHI EA ’11. New York,
NY, USA: ACM, 2011, pp. 2425–2428.

96

Bibliography

[34] G. Zichermann and C. Cunningham, Gamification by design: Implementing
game mechanics in web and mobile apps. ” O’Reilly Media, Inc.”, 2011.

[35] J. Hamari, J. Koivisto, and H. Sarsa, “Does gamification work? – a literature
review of empirical studies on gamification,” in 2014 47th Hawaii International
Conference on System Sciences, Jan 2014, pp. 3025–3034.

[36] D. McSherry, “Similarity and compromise,” in Case-Based Reasoning Research
and Development: 5th International Conference on Case-Based Reasoning, IC-
CBR 2003 Trondheim. Springer Berlin Heidelberg, 2003, pp. 291–305.

[37] L. Davis, “Handbook of genetic algorithms,” 1991.

[38] L. Richardson and S. Ruby, RESTful web services. ” O’Reilly Media, Inc.”,
2008.

[39] Apache spark, spark.apache.org.

[40] C. Bauer and G. King, “Hibernate in action,” 2005.

[41] R. Johnson, J. Hoeller, K. Donald, C. Sampaleanu, R. Harrop, T. Risberg,
A. Arendsen, D. Davison, D. Kopylenko, M. Pollack et al., “The spring
framework–reference documentation,” Interface, vol. 21, 2004.

[42] J. L. Carlson, Redis in Action. Greenwich, CT, USA: Manning Publications
Co., 2013.

[43] M. Otto and J. Thornton, “Bootstrap,” Twitter Bootstrap, 2013.

[44] B. Bibeault and Y. Kats, jQuery in Action. Dreamtech Press, 2008.

[45] F. Peng, N. Ahmed, X. Li, and Y. Lu, “Context sensitive stemming for web
search,” in Proceedings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval. ACM, 2007, pp. 639–
646.

[46] G. Salton and C. Buckley, “Term-weighting approaches in automatic text re-
trieval,” Information processing & management, vol. 24, no. 5, pp. 513–523,
1988.

[47] D. M. Hawkins, “The problem of overfitting,” Journal of chemical information
and computer sciences, vol. 44, no. 1, pp. 1–12, 2004.

[48] Movielens 10m dataset, grouplens.org/datasets/movielens/10m/.

[49] Netflix roulette api, netflixroulette.net/api/.

[50] B. Smyth, Case-Based Recommendation. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 342–376.

97

Bibliography

[51] E. Brill, “Part-of-speech tagging,” Handbook of natural language processing, pp.
203–414, 2000.

[52] S. Chang, F. Harper, L. He, and L. Terveen, “Crowdlens: Experimenting with
crowd-powered recommendation and explanation,” 2016.

98

	Introduction and Motivation
	Related Work
	Recommender Systems
	Collaborative Recommendation
	Content-Based Recommendation
	Knowledge-Based Recommendation
	Hybrid Recommendation

	Human Computation
	Micro-Tasks
	Games
	Similarities and improvements to related work

	Basic Recommendation Approach
	Definitions
	Recommendation Approach
	Result Set
	Support of Item Attributes
	Aggregated Support
	Utility Function

	PeopleViews System Description
	PeopleViews Architecture
	User Interfaces
	Recommender Interfaces
	Item Interfaces
	Micro-Task Interfaces
	Recommendation Interfaces
	Game

	Micro-Task Scheduling Approach
	TF-IDF
	TF
	IDF

	Extraction and Weighting of Keywords
	Keyword Extraction for Items
	Keyword Extraction for Users
	Weighting of Item Keywords
	Weighting of User Keywords
	Extraction and Weighting of Recommender Keywords
	Extraction and Weighting of Micro-Task Keywords

	Agenda for Micro-Task Generation
	Scheduling Approach
	Definitions
	Example

	Evaluation
	Dataset
	Evaluation Approach
	Evaluation Results

	Limitations and Future Work
	Limitations
	Technical Limitations
	Limitations of the Scheduling Algorithm

	Limitations of the Evaluation
	Future Work

	Conclusion

