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CHAPTER 1

Introduction

The first few pages of this thesis provide a gentle and informal introduction

to its topic targeted at a general audience. No background in mathematics or any

related fields is assumed, and statements in Section 1.1 are deliberately kept vague

aiming at a more intuitive understanding.

This being said, experts in related scientific areas might want to skip Section 1.1

and proceed directly to Section 1.2. There we highlight the main results obtained

in this thesis, followed by a concise description of key techniques and discussions

of related open problems in Sections 1.3 and 1.4, respectively. We then conclude

Chapter 1 with an outline of the remainder of the thesis.

1.1. An even briefer history of random graphs1

Dear reader,

please find a comfortable seat, help yourself to a drink of your

choice – alcoholic or not – and imagine yourself at a bar or party

asking the notorious question: ‘So tell me, what is the topic of

your Ph.D. studies?’ If you are addressing me and are willing to

spend a couple of minutes of your precious time, the answer might

somewhat resemble the explanation on the following few pages.

That is, of course, except for a lot of smiling, which unfortunately

cannot be adequately transferred to the medium in your hands.

So what is a graph? Well, let us modify the question slightly and ask: what

is a social network? A social network consists of a group of users, and pairs of

them who decided to become ‘friends’ so that they can share the happy (and sad)

moments of their lives with one another. Once we forget about everything else, and

represent each user by a vertex (or a point), and each pair of friends by an edge (or

a line) we obtain a graph.2 Clearly this concept of graphs is very abstract, and thus

there are various other real-world networks which we also regard as graphs. For

example the network of all actors where any two of them are linked if they both

play a role in the same film; a financial market when mapping the participants and

their dependencies; or the brain when looking at neurons and synapses.

1Inspired by the book title ‘A Briefer History of Time’ by Stephen Hawking and Leonard
Mlodinow [69].
2So in particular the graphs in this thesis are not to be confused with the graph of a function,
which you may be familiar with from high-school.

1



1.1. AN EVEN BRIEFER HISTORY OF RANDOM GRAPHS 2

Classical graph theory would then ask questions such as: is the graph connected,

i.e. starting at a given vertex can we reach any other vertex by moving along edges?

Or, is it possible to colour each vertex either red or blue such that all edges contain

precisely one vertex of each colour? What is the maximal number of vertices such

that any two of them form an edge? Is it possible to draw the graph on a piece

of paper without having two edges intersect (apart from possibly their endpoints)?

Under which conditions can we match every vertex to one of its neighbours so that

every vertex gets matched precisely once?

Investigating any of these will provide us with a (slightly) better understanding

of the graph and its structure. However, giving actual answers might take a long

time if the graph in question has a huge number of vertices. To make matters even

worse, we typically would have to perform an immense amount of such calculations

in order to be able to tell our users ‘You might also know these people: [. . .]’ followed

by a stunningly accurate list of people you actually know but might have lost touch

with. But a thorough understanding of the general structure of the network may

help simplify and speed up our answers. In other words, we would like to have a

model for the network which is comparatively easy to analyse (mathematically) yet

retains the general properties of the network.

Now finally, this is where random graphs join the fray. Arguably the simplest

model of a random graph is the following: we fix a set of (distinguishable) vertices,

and then for each two of them we toss a coin; if it comes up heads the edge is

present, if it comes up tails the edge is not present. After having tossed all coins

we obtain a graph that was chosen randomly.3

But what use is something random to make any predictions? If we roll a die

(in a fair way), we cannot forecast what number it will show, so is this not very

chaotic? As a matter of fact it is not: assuming that we throw a large enough

number of dice, we can confidently predict that the number of ones will be very

close to one sixth of all die rolls.

In fact this observation is somewhat a paradigm for random graphs in general:

graph parameters – both basic ones such as the number of edges or significantly

more involved ones like the minimal number of colours we need such that there

is no edge whose end points have the same colour – are often close to what we

should expect them to be. Hence the art of analysing random graphs lies in finding

the right intuition of what should be true, and then rigorously proving that the

paradigm actually holds in the particular case at hand.

Phase transitions. So what happens with properties that can either be satisfied

or unsatisfied, such as for example the property of the graph being connected? If we

use a fair coin (in the previously described model), then the answer is actually quite

simple: it is extremely likely to be connected, the reason being that the number of

edges it contains is very large.

3from the class of all graphs having this set of vertices
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However, once we replace our coin with one which is heavily biased towards

tails (say it comes up heads with some tiny probability p > 0), we observe a far

more intriguing behaviour! For this let us think about the largest component, i.e.

the biggest set of vertices so that for every pair of them we may walk from one to

the other along edges. It turns out that there is a critical value p̂ with the following

properties: if p is smaller than p̂ it is very likely that the largest component is

insignificantly small, but if p is larger than p̂ typically there is a unique component

which contains a substantial fraction of all vertices. This is actually a fundamental

result from 1960 due to two famous Hungarian mathematicians, Paul Erdős and

Alfréd Rényi. In fact, they published a series of papers on similar topics, which are

widely seen as the foundation of random graph theory.4

We call this type of phenomenon a phase transition, where the terminology

is inspired by different phases of matter known in physics: solid, liquid, gas, and

plasma. (Incidentally this is also where random graphs play an important role in

statistical physics as models for systems of interacting particles.)

Component structure of random graphs. With this we have now reached one

of the core topics of this thesis. The first half of the results describe key features

of the component structure of some more general random graph models. At first

we study a model where not every vertex looks the same in the sense that some of

them are more likely to have a larger number of neighbours, this is often modelled

by each vertex having its individual weight. We describe precisely how fast the

largest component grows once it is born, i.e. immediately after the phase transition.

Whereas this is certainly not the strongest result in this thesis, it is still of profound

importance as a preparation for following results.

Mastering the methods used in its proof allows us to prove the second result:

we determine the size of the largest component of random hypergraphs in the very

delicate regime where the giant component is born. A hypergraph in itself is similar

to a graph, it consist of a set of vertices and edges. However now edges may also

consist of more than two vertices. At first glance, this may not sound like a big deal,

but most importantly there is a large number of ‘natural’ yet genuinely different

notions of connectedness in hypergraphs. In many cases studying the component

structure becomes very challenging and profoundly novel concepts are necessary.

In our results the crucial observation was the following: components grow

‘smoothly’. This concept is arguably the most fundamental contribution of this

thesis, and will presumably pave the way for many results on random hypergraphs

in future. One example is our third result: we characterise precisely when the entire

hypergraph becomes connected by exploiting the smoothness of a substantial part

of the hypergraph. So far our results were largely of intrinsic mathematical interest,

in the second half of the thesis we return to problems more directly motivated by

real-world networks.

4So random graphs were already of deep mathematical interest long before computers became
available to the general public, let alone social networks, in the modern sense, existed.
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Percolation processes. Imagine for instance that we would like to model the

spread of some infection (or a rumour, or some neuronal activity) in a real-world

network. Mathematically we think of these as so-called percolation processes on

the components of a random graph: whenever the neighbourhood of a given vertex

satisfies some condition, for instance, it contains at least r ≥ 2 infected vertices,

then the vertex also becomes infected.5 We keep iterating until no more vertices

become infected. There may be two different reasons for this: either there is a global

outbreak meaning that every vertex became infected, or none of the still uninfected

vertices has sufficiently many infected neighbours to become infected as well.

It turns out that, more often than not, these processes have a threshold be-

haviour similar to the phase transition phenomena we studied earlier: by a tiny

increase in some parameter of the random graph model the probability of an out-

break rises from being almost negligible to being very close to one.

While for classical random graph models many variations of percolation pro-

cesses are well-studied, things become very difficult on random graphs with prop-

erties similar to typical real-world networks, even for the most basic percolation

processes as the one described previously. By now it is well-known that many of

these networks share some key features, one of them being clustering : people are

much more likely to know a friend of their friends than to know an average person

with a similar profile. Random graphs with an underlying geometry, i.e. every ver-

tex also has a position and the further two vertices are apart the less likely they

form an edge, tend to exhibit this feature. Alas, studying these kind of models is

very challenging and to date rather little is known about them.

We investigate the spread of an infection (modelled as bootstrap percolation) on

a recently introduced geometric random graph. In particular, we describe in detail

under which circumstances and how an infection starting within a small local region

will gradually spread along the geometry and in the end cause a global outbreak.

Interestingly, viewing things from a more applied side, this information could be

used to locally isolate the infection and thereby save most of the individuals of the

network.

This result should be seen as one of many steps which will be necessary to

bridge the gap between mathematically tractable graph and percolation models on

the one hand, and those which are actually close enough to real-world networks but

are notoriously difficult to analyse rigorously, on the other.

There are also interesting percolation processes having a slightly different fla-

vour, one example being the recent model of jigsaw percolation on a pair of graphs.

We think of a group of individuals, each having a certain (unique) piece of a jig-

saw puzzle. The first graph has a vertex for each individual and two individuals

meet if and only if they are adjacent, while the second graph encodes the inform-

ation whether the puzzle pieces of any two individuals fit together. Whenever two

individuals meet and have compatible puzzle pieces they share these. The main

5In the literature, this example is called bootstrap percolation.
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question is whether in the end the puzzle has been completed. The general idea is

that this process could help us understand how co-operative efforts of large groups

of individuals give rise to great and ingenious collective ideas.

However, also from a purely mathematical perspective this process is of pro-

found interest. It may be seen as a notion of several graphs being ‘simultaneously

connected’. With this perspective it is very natural to study the process on a pair

of random graphs, and it was shown that this percolation process also exhibits a

phase transition phenomenon. We demonstrate how this behaviour generalises in

two directions: first of all for various notions of connectedness in hypergraphs, and

secondly for larger numbers of (hyper-)graphs.

Summary. Random graphs are relevant to various scientific areas ranging from

social networks to biomedical/neurological applications and also statistical physics.

Studying properties of random graphs on an abstract level is a challenging task

which is full of profound mathematical insights. The thesis covers four main topics

centred on phase transition phenomena, which we investigate in great detail. The

focus lies on the component structure of random graphs and hypergraphs and the

behaviour of percolation processes in a random setting.

1.2. Main results

How do structural properties of random graphs and hypergraphs change under

small alterations of their parameters? In this thesis we investigate this question

and primarily focus on regimes where seemingly negligible alterations cause drastic

differences in the behaviour of the model. Loosely speaking, these regimes are char-

acterised by threshold functions: if the parameter is ‘smaller’ than the threshold,

then with high probability (whp for short)6 the random (hyper-)graph does not yet

have a certain property; while if the parameter is ‘larger’ than the threshold, then

whp the random (hyper-)graph has this property. Depending on the meaning of

‘small’ and ‘large’ we call the threshold either sharp or coarse.

This type of phenomenon is also known as a phase transition: one of the first

and arguably the most famous phase transition is that of the giant component.

In 1960 Erdős and Rényi [58] showed that the size of the largest component, i.e.

its number of vertices, in the binomial random graph G(n, p) exhibits a ‘double

jump’ from logarithmic, to polynomial (but still sub-linear), and then linear order.7

However, in contrast to initial beliefs, this was only a rather incomplete picture of

what later became known as the birth of the giant component, a term coined by

Janson,  Luczak, Knuth, and Pittel [73], who extended results by Bollobás [31]

and  Luczak [86]. When the parameter p passes the (sharp) threshold n−1, a unique

largest component forms, which then starts growing gradually and very soon reaches

linear size, turning into a giant component. It then continues to merge with further

6Meaning with probability tending to one as n → ∞, with n being the number of vertices in the
random (hyper-)graph. Unspecified asymptotics are with respect to n→ ∞.
7Their proof is given for the uniformly chosen random graph G(n,m). However due to the asymp-
totic equivalence of these two models (Section 1.4 in [74]), the stated result follows.
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components, until p reaches the (sharp) threshold for connectedness n−1 log n. In

fact, the binomial random graph G(n, p) – seen as a random graph process8 –

becomes connected precisely when the last isolated vertex disappears, as was proven

by Bollobás and Thomason [38].

In the thesis we determine the thresholds for a number of properties related to

the component structure of various random (hyper-)graphs: from the birth of the gi-

ant component via connectedness to percolation processes describing a strengthened

or simultaneous notion of connectedness. In the process we develop new concepts

and techniques providing a detailed picture of these random hypergraphs from a

close-up perspective (Section 1.3). Naturally, these insights open up novel directions

for research and give rise to intriguing open problems (Section 1.4).

1.2.1. Giant component in multi-type random graphs. In recent years the

study of random graphs is largely motivated by their applications as models of

real-world networks. It is hardly surprising that the most basic models such as

G(n, p) and G(n,m) fall short in this task: they are entirely homogeneous and

contain very few vertices of large degrees, which would model ‘hubs’ of the real-

world network properly. Thus, we investigate a random graph model, denoted by

G(n, P ), exhibiting a certain degree of inhomogeneity between its vertices.

In G(n, P ) there are n labelled vertices, where each vertex has one of two types,

and any two vertices of types i and j form an edge independently with probability

pi,j (encoded as an entry of the (symmetric) parameter matrix P ∈ (0, 1]2×2).

The number of vertices of type i is denoted by ni, i.e. the i-th coordinate of the

parameter vector n, and we assume that n1 ≥ n2 → ∞. Our main contribution

lies in taking a very close look at the delicate regime in which the giant component

gradually emerges.

Theorem 1.1 (Theorems 2.1 and 2.4). Let ε = ε(n) > 0 satisfy ε = o(1). Then

the following holds whp:

(a) if ε3n2 min{1, ε−1p2,1n1} → ∞ and

pj,1n1 + pj,2n2 = 1 + ε± o(ε), ∀ j ∈ {1, 2}, (1.1)

then the largest component contains (2 ± o(1))εni vertices of type i, while all

other components contain only o(εni) such vertices for any i ∈ {1, 2};
(b) if ε3n2 →∞ and

pj,1n1 + pj,2n2 = 1− ε± o(ε), ∀ j ∈ {1, 2}, (1.2)

then the largest component contains at most o(n2/3) vertices.

Note that even a very small number of vertices of type 2 can significantly

alter the behaviour of the model (when ε = o(1)): let n2 =
√
εn1, ε3n2 → ∞,

p2,1n1 = 1, and thus p1,1n1 = 1 −
√
ε + ε ± o(ε), so that (1.1) is satisfied. Then

8We associate each edge with a birth time chosen independently and uniformly from [0, 1]. Then
the edges are added one by one to the initially empty graph in their (unique) order of birth times.
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G(n, P ) has a unique largest component containing approximately 2εn1 = ω(n
5/7
1 )

vertices of type 1, but after removing all vertices of type 2 all components have

size at most o(n
2/3
1 ). Qualitatively, this setting allows us to discriminate between

hubs and ordinary vertices in a way which decisively influences the random graph.

Notably, a similar behaviour has not yet been observed within the closely related

framework of inhomogeneous random graphs introduced by Bollobás, Janson, and

Riordan [33]. For more details see Section 2.1.4.

Observe that the conditions in (1.1) and (1.2) are more restrictive than we

would wish for. While the condition in (1.1) implies that the Frobenius eigenvalue

λ of the matrix M := P ·diag(n), which encodes the expected degrees of the vertices,

satisfies λ = 1 + ε± o(ε), the converse is clearly not true. However, the branching

processes heuristic suggests that, even when ε = o(1), the sub- and supercritical

regimes should be characterised by λ. We will pick up on this line of thought (and

a generalisation to an arbitrary number of types) in Section 1.4.1.

The proof is largely based on coupling a component exploration process with a

multi-type Galton-Watson branching process. We highlight some of these coupling

techniques in Section 1.3.1

1.2.2. High-order connected components in random hypergraphs. A large

part of this thesis concentrates on investigating the component structure of random

k-uniform hypergraphs. Despite this being one of the aspects in which hypergraphs

demonstrate their richness in structure and appealing beauty, as yet this topic has

only been studied for the most simple notions of connectedness.

In the following we investigate an entire class of these notions called high-order

connectedness: given an integer k ≥ 2 and an integer j satisfying 1 ≤ j ≤ k − 1,

we consider j-sets (j-tuples of distinct vertices), and say that two distinct j-sets J

and J ′ are j-connected if there is a sequence of edges e1, . . . , em such that

• J ⊂ e1 and J ′ ⊂ em,

• |ei ∩ ei+1| ≥ j for all 1 ≤ i ≤ m− 1.

Any j-set is j-connected to itself. This defines an equivalence relation on the set of

all j-sets, and we refer to its equivalence classes j-components.

High-order connected components exhibit a significantly more diverse beha-

viour than their vertex-connected counterparts (j = 1). For instance, the collection

of j-components of a k-uniform hypergraph does not induce a partition of its vertex

set (nor on the set of `-sets for any 1 ≤ ` ≤ j−1). In particular this means that for

a pair of components C1 and C2 the number of k-sets containing at least one j-set

in C1 and C2, each, is highly non-trivial for j ≥ 2. In fact, this turns out to be the

major challenge when analysing the size of the largest high-order connected com-

ponent in the binomial random k-uniform hypergraph Hk(n, p) using a branching

process approach.

In the process we obtain a remarkable insight: the larger a component grows,

the more evenly it is distributed over all `-sets, for any 1 ≤ ` ≤ j − 1. In other



1.2. MAIN RESULTS 8

words, with exponentially high probability, each `-set is contained in approximately

the same number of j-sets of any sufficiently large j-component in Hk(n, p). This

result is called the smooth boundary lemma (Lemma 1.9 in Section 1.3.2) and it has

already proven to be a powerful tool. The underlying concept of smoothness will

be discuss in detail in Section 1.3.2.

With the help of the smooth boundary lemma we analyse the size of the largest

high-order connected component from a close-up perspective.

Theorem 1.2 (Theorem 3.2). For any 1 ≤ j ≤ k − 1 we set

p̂g = p̂g(n, k, j) := 1

(kj)−1

1

( n
k−j)

, (1.3)

and let ε = ε(n) > 0 satisfy ε→ 0 and ε3n1−δ →∞, for some constant δ > 0.

(a) If p = (1+ε)p̂g, then whp the size of the largest j-component of Hk(n, p) satisfies

(1± o(1)) 2ε

(kj)−1

(
n
j

)
while all other j-components have size at most o(εnj).

(b) If p = (1 − ε)p̂g, then whp all j-components of Hk(n, p) have size at most

O(ε−2 log n).

Previously it was already shown that p̂g defined in (1.3) is the threshold for the

appearance of the giant j-component in Hk(n, p) by Cooley, Kang, and Person [51]

and independently by Lu and Peng [84]. While the first group already determined

the size of the largest j-component up to a multiplicative constant even when

ε = o(1), the second group studied only the simpler regime when ε > 0 is a

constant, although they also provide the leading constant of the size of the largest

j-component.

While the proof for the supercritical regime of Theorem 1.2 is based on the

smooth boundary lemma (Lemma 1.9), the analysis of the subcritical regime is a

simple application of an idea by Krivelevich and Sudakov [82].

Even though we develop the concept of smoothness in the regime barely above

the threshold p̂g, it proves to be a powerful tool at later stages of the evolution

of Hk(n, p) and also for the random k-uniform hypergraph process {Hk(n,M)}M .

We write τc for the hitting time for j-connectedness of {Hk(n,M)}M , and denote

the moment when the last isolated j-set disappears by τi. We prove that whp both

hitting times, τc and τi, coincide, thus extending the classical result by Bollobás

and Thomason [38].

Theorem 1.3 (Theorem 4.1). For any 1 ≤ j ≤ k − 1 whp we have τc = τi.

Special cases of Theorem 1.3 were already proved by Poole [96] for j = 1, and

by Kahle and Pittel [77] for j = k − 1.

Furthermore, by coupling Hk(n, p) and {Hk(n,M)}M via birth times, we use

Theorem 1.3 to prove Theorem 4.3 stating that the property of Hk(n, p) being

j-connected has a sharp threshold given by

p̂c = p̂c(n, k, j) :=
j log n(

n
k−j
) . (1.4)
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As part of Section 1.3.2, which is dedicated to the notion of smoothness, we will

highlight the importance of this concept for the proofs of Theorems 1.2 and 1.3. As

mentioned earlier, many classical questions concerning the j-component structure

of random hypergraphs are still widely open. We briefly discuss some of these in

Section 1.4.2. We expect the notion of smoothness to prove to be a widely-applicable

and important tool for future advances in the theory of random hypergraphs, as in

the case of Theorem 1.3.

1.2.3. Jigsaw percolation: simultaneous connectedness. Recently, Brum-

mitt, Chatterjee, Dey, and Sivakoff [43] proposed a mathematical model, called

jigsaw percolation, which aims to explain how a collective creative process of the

individuals in a social network can achieve extraordinary results, such as a ma-

jor scientific breakthrough. The scenario is the following: each individual has a

(unique) piece of a jigsaw puzzle, and whenever two groups of individuals meet

and have compatible puzzle pieces they share these. The question is whether the

individuals can collaboratively reconstruct the complete puzzle.

We take a more purely mathematical view: consider two random graphs on

a common vertex set (one has red edges, the other blue), we would like to know

whether they are ‘simultaneously connected’. More formally, the process keeps

track of a partition of the vertices into clusters. At the beginning each vertex forms

its own cluster. Then clusters merge if they are connected by both a red edge and

a blue edge. (The merging is done in rounds: first we compute an auxiliary graph

of merge-able partition classes, and then the components of this graph correspond

to the new partition classes.)

We investigate an extension of jigsaw percolation for hypergraphs based on

high-order connectedness. If the process stops with all j-sets in a single cluster

we say that the pair of hypergraphs j-percolates. Our first result shows that the

property that a pair H = (Hk(n, p1),Hk(n, p2)) of k-uniform binomial hypergraphs

j-percolates has a threshold p̂jp = p̂jp(n, k, j) in terms of the product p1p2, and this

threshold satisfies

p̂jp = Θ

(
1

n2k−2j−1 log n

)
. (1.5)

Theorem 1.4 (Theorem 5.2). For 1 ≤ j < k there exists a constant c = c(k, j) > 0

such that

(a) if p1p2 ≥ c
n2k−2j−1 logn

and min{p1, p2} ≥ c logn
nk−j

, then whp H j-percolates;

(b) if p1p2 ≤ 1
cn2k−2j−1 logn

, then whp H does not j-percolate.

In the graph case (k = 2 and j = 1) this result was proven by Bollobás,

Riordan, Slivken, and Smith [37]. Note that a necessary condition for j-percolation

is that both hypergraphs are j-connected. In the supercritical regime this holds whp

because the additional condition min{p1, p2} ≥ c logn
nk−j

(for large c > 0) guarantees

that both p1 and p2 exceed the threshold p̂c for j-connectedness given in (1.4). We

observe that none of the constants in this result have been optimised, and indeed
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the question whether the threshold is sharp or coarse is still open. We discuss this

and related issues in Section 1.4.3.

To derive an upper bound on the threshold we provide a very concise reduction

argument guaranteeing percolation. There are two steps: firstly, in a pair of k-

uniform hypergraphs on n vertices which is supercritical with respect to j-jigsaw

percolation, the pair of link-hypergraphs of any vertex (each being a (k−1)-uniform

hypergraph on n − 1 vertices) is itself supercritical with respect to (j − 1)-jigsaw

percolation. From this fact we then deduce j-jigsaw percolation of the original pair

of hypergraphs. By iterating it remains to consider a pair of hypergraphs being

supercritical with respect to vertex-jigsaw percolation. In this case, we split the

vertex set in half and only consider edges with precisely two vertices in one of

the sides. The resulting pairs of auxiliary graphs are supercritical with respect to

(vertex)-jigsaw percolation, and a union bound completes the argument.

Interestingly, in contrast to the case of graphs, providing an asymptotically

matching lower bound is far from trivial. For this reason we dedicate Section 1.3.3

to the methods for achieving the lower bound.

We strengthen the above result by investigating joint connectedness of an ar-

bitrary (but fixed) number of k-uniform hypergraphs/colours. In other words,

for any integer s ≥ 2 let Hs = (Hk(n, p1), . . . ,Hk(n, ps)), then the threshold

p̂jp,s = p̂jp,s(n, k, j) for j-percolation satisfies

p̂jp,s = Θ

(
1

ns(k−j−1)+1(log n)s−1

)
. (1.6)

Theorem 1.5 (Theorem 5.12). For 1 ≤ j ≤ k−1 and s ≥ 2 there exists a constant

c = c(k, j, s) > 0 such that

(a) if
∏s
i=1 pi ≥

1
cns(k−j−1)+1(logn)s−1 and min{p1, . . . , ps} ≥ c logn

nk−j
, then whp Hs

j-percolates;

(b) if
∏s
i=1 pi ≥

c
ns(k−j−1)+1(logn)s−1 , then whp Hs does not j-percolate.

Note that p̂jp,2 = p̂jp (cf. (1.5) and (1.6)). The special case k = 2, j = 1 and

s ≥ 2 of Theorem 1.5 was proved by Gutiérrez Sánchez [67] using an adaptation

of the approach in [37]. Our proof for the supercritical regime relies on the result

in [67] as the base case for an inductive argument.

In Section 1.3.3 we focus on the subcritical regime of Theorems 1.4 and 1.5.

The focus of Section 1.4.3 lies on analysing the threshold for jigsaw percolation in

more detail.

1.2.4. Bootstrap percolation: localised infections. The fourth and final topic

is largely motivated by applications in real-world networks: percolation processes,

such as bootstrap percolation (where in each round any vertex having at least

r ≥ 2 infected neighbours also becomes infected, and remains so forever), are used

to model the spread of an infection (or some other form of activity within the

network). Therefore their study is specifically focused on random graph models

exhibiting typical properties such as power-law degree sequence, small diameter,
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and strong clustering. Very few rigorous results are known for this type of models,

since their analysis is very challenging.

One of the few exceptions is the model of geometric inhomogeneous random

graphs (GIRGs) which was recently introduced by Bringmann, Keusch, and Len-

gler [41]. There the desired clustering properties originate from an underlying

geometry. Compared to the binomial random graph model G(n, p) there are two

major differences.

First of all, the vertex set is determined by a Poisson point process with intens-

ity n on the underlying geometric space (a torus Td of dimension d ≥ 1), meaning

that every vertex has a position chosen uniformly within this space. The probability

of a pair of vertices forming an edge decreases as their distance increases.

Secondly, every vertex has a weight chosen according to a power-law with ex-

ponent 2 < β < 3, and the greater the weight of a vertex the more likely it is to

form an edge with any other vertex. The model has an additional parameter α > 1

determining how rapidly the edge probabilities decay once vertices are ‘far’ apart.9

More formally, each pair of vertices u and v of weights wu, wv and with positions

xu, xv, forms an edge independently with some probability p = p(wu, wv, xu, xv).

and the function p satisfies

p(wu, wv, xu, xv) = Θ(1) ·min

{(
wuwv

‖xu − xv‖d

)α
, 1

}
.

The underlying geometry provides the opportunity to investigate a localised

variant of bootstrap percolation. Suppose that an infection starts within a local

region B0 called the origin of the infection (to be thought of as very small but still

such that ν = ν(n) := nVol(B0) → ∞), and every vertex in B0 becomes infected

according to some initial infection rate ρ = ρ(n) ∈ [0, 1] independently. We take a

close look at how this infection then spreads in both time and space. The first result

shows that the threshold with respect to ρ for a (linear-sized) outbreak (meaning

that Ω(n) vertices become infected eventually) is

ρ̂ = ρ̂(ν, β) := ν−
1

β−1 . (1.7)

Theorem 1.6 (Theorem 6.1). Consider localised bootstrap percolation with initial

infection rate ρ = ρ(n) ∈ [0, 1].

(a) If ρ = ω(ρ̂), then whp there is an outbreak.

(b) If ρ = o(ρ̂), then whp no additional vertices become infected.

(c) If ρ = Θ(ρ̂), then the probability of an outbreak is Ω(1), but the probability that

no additional vertices become infected is also Ω(1).

Note that hyperbolic random graphs are an instance of GIRGs (this was shown

in [41]). Therefore our result is a strengthening of the recent result on bootstrap

percolation on random hyperbolic graphs by Candellero and Fountoulakis [44].

9The model and our results also extend to α = ∞ with minor modifications, see Chapter 6.
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Our proof is based on a detailed analysis of how a given vertex will typically

become infected depending on its position and weight. We present the key ideas

of this analysis in Section 1.3.4. As a consequence of this thorough analysis we

determine when the infection reaches linear size. We denote the hitting time for

this property by τo (i.e. τo is a random variables taking values in N∪{∞}) and set

i∞ = i∞(n, ν, β) :=
log logν n+ log log n

| log(β − 2)|
.

Theorem 1.7 (Theorem 6.2). For any ε > 0, we have

P(τo ≤ (1 + ε)i∞) =

1− o(1) if ρ = ω(ρ̂),

Ω(1) if ρ = Θ(ρ̂);

and furthermore, if α < β − 1 and ν = no(1), then P(τo ≤ (1− ε)i∞) = o(1).

In the supercritical regime, we can also accurately predict when each individual

vertex will become infected depending on its weight and position. Given a vertex

v we write Lv for its infection time, i.e. Lv ∈ N ∪ {∞} is the hitting time of v

becoming infected, and for any x ∈ Td \B0 and w ∈ R>0 we define

Λ(x,w) :=


max

{
0,

log logν(‖x‖dn/w)
| log(β−2)|

}
, if w > (‖x‖dn)1/(β−1),

2 log logν(‖x‖dn)−log logν w
| log(β−2)| , if w ≤ (‖x‖dn)1/(β−1).

Theorem 1.8 (Theorem 6.4). Suppose that ρ = ω(ρ̂), for ρ̂ as in (1.7). Con-

sider a vertex v = (xv, wv) with xv ∈ Td \ B0, wv = ω(1), and Λ(xv, wv) ≤
log2(ν−2/(β−2)‖xv‖dn). Then whp we have

Lv ≤ (1 + o(1))Λ(xv, wv) +O(1).

If additionally α > β − 1, then whp we also have

Lv ≥ (1− o(1))Λ(xv, wv)−O(1).

Summing up, we characterise under which conditions a localised initial infection

causes a global, linear-sized outbreak. Moreover, we determine how quickly the

infection spreads, and also provide the infection time of individual vertices. In

Section 1.3.4 we sketch the typical evolution of bootstrap percolation on GIRGs,

and how Theorems 1.6, 1.7 and 1.8 follow from these insights. More elaborate

infection models are discussed in Section 1.4.4

1.3. Key techniques

This section briefly summarises the concepts and methods on which the proofs

in this thesis are based. These techniques form the major original mathematical

contribution of our work, in addition to the results highlighted in the previous

section.
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1.3.1. Coupling methods and branching processes. In this section we de-

scribe variations of a branching process approach to the giant component problem

which was originally developed by Bollobás and Riordan [35]. The general idea is

to (partially) explore components using a breadth-first-search algorithm, and then

analyse these exploration processes using stochastic domination.

We use a multi-type variant of this approach to prove Theorem 1.1. For any

vertex, we tightly couple its exploration processes with a 2-type Galton-Watson

branching process. Roughly speaking, vertices in large components are represented

by branching processes which survive, and those lying in small components cor-

respond to branching processes which die out quickly. Hence, by a rather delicate

second moment argument the number of vertices in large components is approx-

imately linear in the survival probability vector of these branching processes. The

argument is then completed by a standard sprinkling argument: any two large com-

ponents would be very likely to have an edge between them, and thus the probability

of two of them coexisting is negligible.

1.3.2. Smoothness. Our analysis of the threshold of the giant high-order connec-

ted component in random hypergraphs (Theorem 1.2) is based on a more elaborate

adaptation of the branching process method described in Section 1.3.1. However,

there is one major obstacle when it comes to the second moment argument.

In order to upper bound the number of j-sets in large components we have to

control how two j-component exploration processes interact. Thus we explore one

component partially (just long enough so that we know if it is likely to be large),

denote the partial component by C1, and call its last generation the boundary ∂C1.

Then for exploring the second component we forbid to query any k-sets con-

taining a j-set of C1, and call the resulting partial component C2. Because we

use a breadth-first search algorithm for the exploration, the only way that both

C1 and C2 are actually contained in the same component (and therefore the two

exploration processes are positively correlated) is if there is successful query of a

k-set containing a j-set of both the boundary ∂C1 and C2.

Whereas in the graph case this is simple since both ∂C1 and C2 are just sets of

vertices, for high-order connectedness (j ≥ 2) things are far more complicated: the

number of k-sets containing at least one j-set from ∂C1 and C2 depends sensitively

on how the individual j-sets in ∂C1 and C2 intersect. We overcome this challenge

by proving that ∂C1 is smooth, in the sense that for any 0 ≤ ` ≤ j − 1 every `-set

of vertices is contained in approximately the same number of j-sets of ∂C1. The

concept of smoothness is arguably one of the deepest concepts in this thesis.

Smooth boundary lemma. More formally, we write ∂CJ(i) for the i-th genera-

tion of the breadth-first search process starting in a j-set J . For any ` = 1, . . . , j−1

let i0(`) be the first round i for which ∂CJ(i) is significantly larger than n` and

for an `-set L let dL(∂CJ(i)) be the number of j-sets of ∂CJ(i) that contain L.

Furthermore, let i1 denote the generation at which the search process hits one of

three stopping conditions (which will be specified in Section 3.3).
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Lemma 1.9 (Smooth boundary lemma – Lemmas 3.3 (simplified) and 3.8). Let

1 ≤ j ≤ k − 1 and ε = ε(n) > 0 satisfy ε→ 0 and ε3n1−δ →∞, for some constant

δ > 0. Then with probability at least 1− exp
(
−nΘ(1)

)
, for all J, `, L, i such that

• J is a j-set of vertices;

• 0 ≤ ` ≤ j − 1;

• L is an `-set of vertices;

• i0(`) + Θ(log n) ≤ i ≤ i1,

the following holds:

dL(∂CJ(i)) = (1± o(1))
|∂CJ(i)|(

n
j

) (
n

j − `

)
.

The proof is based on closely tracking the degrees dL(∂CJ(i)) of an `-set L

during the exploration process. The major challenge lies in both a) obtaining the

precise leading constant and b) investigating the degree within a single generation

and not the entire currently discovered component.

From the perspective of L there are two types of queries (of k-sets) which

contribute to its degree: queries from j-sets not containing L, called jumps; and

queries from j-sets containing L, called pivots. This perspective was previously

used by Cooley, Kang, and Person in [51] for bounding from above the degree of

L within the entire currently discovered component. We use a strengthened form,

Lemma 3.13, of their upper bound at various points of our proof. With its help

the analysis of both jumps and pivots boils down to studying sums of independent

indicator random variables (each of them representing a query). Thus the Chernoff

bounds are applicable and provide concentration with exponentially small error

probabilities provided that the previous generation is not too small.

As we consider a supercritical regime, generations have a tendency to grow in

size (Lemma 3.16). So as soon as they reach a reasonable size, the concentration

arguments remain valid for long enough to ensure that the disparity between the

degrees of different `-sets has evened out. Once generations are smooth they remain

so at least until one of the stopping conditions is reached. Even though the idea

itself is not overly complicated, the details of its proof are rather involved and form

a major part of Chapter 3.

Applications. In fact, in order to complete the proof of Theorem 1.2 by applying

Lemma 1.9 we need to guarantee some properties of the supercritical exploration

process: firstly, a typical component has a reasonably sized boundary before it

grows too large (Lemma 3.10), or in other words, the smoothing process starts

early. Secondly, this implies that whp smoothness is already reached by the time

the exploration process stops (Lemma 3.11).

Lemmas 1.9, 3.10 and 3.11 enable us to not only obtain smooth generations,

but also larger smooth sets, for instance by taking the union of smooth generations.

Actually, this fact is extremely useful for determining the hitting time for high-order

connectedness in random hypergraphs (Theorem 1.3).
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Lemma 1.10 (Smooth subset lemma – Lemma 4.7). Let 1 ≤ j ≤ k − 1, let

ε = ε(n) > 0 satisfy ε → 0 and ε3n1−δ → ∞, for some constant δ > 0, and set

p∗ = 1+ε

((kj)−1)( n
k−j)

. Then whp there is a j-component of Hk(n, p∗) with a subset S

of at least ε3nj many j-sets satisfying the following property:

Each (j−1)-set in Hk(n, p∗) is contained in (1± o(1)) |S|
(nj)

n many j-sets of S.

Applying the Chen-Stein method we show that the last isolated j-set inHk(n, p)

most likely disappears when p = (1± o(1)) j logn

( n
k−j)

. Now using a two-round exposure

once again, Lemma 1.10 implies that there must be a large component C containing

a fairly large smooth subset. We use this information and demonstrate that thus

all other non-trivial components merge with C very quickly. In this regime, we

typically see a giant j-component being the only non-trivial j-component, i.e. all

other j-components are isolated j-sets. This structure transfers to the hypergraph

process {Hk(n,M)}M , due to the asymptotic equivalence of the two models. Hence

j-connectedness is reached precisely when the last isolated j-set disappears as stated

in Theorem 1.3.

1.3.3. Traversable triples. Next we take a closer look at jigsaw percolation: it

is surprisingly challenging to prove that complete percolation does not take place

in the subcritical regime of jigsaw percolation on hypergraphs (Theorem 1.4). Our

proof is based on investigating the number of traversable triples contained in a pair

of random hypergraphs (Hk(n, p1),Hk(n, p2)).

We define this purely combinatorial concept in two steps: firstly, we say that

a collection J of j-sets is traversable (in a hypergraph H) if for every two distinct

j-sets J, J ′ ∈ J , J ′ 6= J there is a sequence of edges e1, . . . , em such that

• J ⊂ e1 and J ′ ⊂ em;

• ∀1 ≤ i ≤ m− 1: some j-set Ji ∈ J is contained in ei ∩ ei+1.

In other words, we may walk from J to J ′ using edges such that the intersection of

two consecutive edges contains at least one j-set from J .10

Then given a vertex set V we call a triple T = (J0, E1, E2) traversable if J0 is

traversable in both the red and blue hypergraphs, (V, E1) and (V, E2), respectively.

Furthermore, we write T`,r,b for the set of all (edge-minimal) traversable triples with

` many j-sets, and the number of red/blue edges being r and b respectively.

We provide an algorithm which associates any triple T ∈ T`,r,b with a blueprint

π(T ), which contains the structural information of T , but not how it is embedded

into the vertex set V . Moreover we denote byMa,m the set of `×(
(
k
j

)
+1) matrices

having non-negative integer entries and satisfying two linear relations depending on

the parameters a,m ∈ N. Then the blueprint is a pair of such matrices.

Lemma 1.11 (Lemma 5.5). For integers ` > r, b ≥ 0: π (T`,r,b) ⊂M`,r ×M`,b.

10Note that this is not equivalent to J being contained in a single j-component in the hypergraph
spanned by all edges (from H) containing at least one j-set from J . The reason is that we insist
that each intersection (of consecutive edges) contains at least one j-set of J .
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In a second step, from any blueprint we algorithmically reconstruct all travers-

able triples (embedded into a pair of hypergraphs (V,E1) and (V,E2)) having this

blueprint. We denote the total number of distinct outputs of this reconstruction

algorithm (with input (M1,M2) ∈M`,r ×M`,b) by Q`,r,b.

Lemma 1.12 (Lemma 5.7). For integers ` > r, b ≥ 0 we have T`,r,b ⊂ Q`,r,b.
Furthermore, there is a constant C > 0 (independent of `, r, b) such that

|Q`,r,b| ≤ |V |jC`−1
(
|V |k−j

)r (
`|V |k−j−1

)b
.

Together, Lemmas 1.11 and 1.12 provide an upper bound on the number of tra-

versable triples containing Θ(log n) many j-sets in a pair of complete hypergraphs

on a (joint) set of n labelled vertices. Thus, it follows by a first moment argument

that whp none of these triples exist in the pair (Hk(n, p1),Hk(n, p2)) in the subcrit-

ical regime of Theorem 1.4, i.e. if p1p2 ≤ 1/(cn2k−2j−1 log n) for a sufficiently large

constant c > 1. As a matter of fact, this already suffices to prove that percolation

does not take place due to the following observation.

Let us consider the jigsaw percolation process on a finer time scale, revealing

edges one by one (no matter their colour), and merging clusters immediately if

possible. Note that each edge can merge at most
(
k
j

)
clusters. Thus, in order for

percolation to take place, there must be a structure containing Θ(log n) many j-sets,

and sets of red and blue edges certifying that it would percolate on its own. (These

correspond to internally spanned sets in [37].) However, each of these must in turn

contain an (edge-minimal) traversable triple (J0, E1, E2), with |J0| = Θ(log n). Yet

we just proved that the existence of such a traversable triple is unlikely, completing

the argument.

1.3.4. Geometric spread of infection. In the following we investigate the evol-

ution of a localised infection process on GIRGs, modelled by bootstrap percolation

(with parameter r ≥ 2). We aim to sketch the proofs of Theorems 1.6, 1.7, and 1.8.

The question of whether there is an outbreak or not is decided in the earliest stages

of the process: typically the process either dies out immediately not infecting any

additional vertex at all, or infects a linear number of vertices.

In the intermediate critical regime each of these events happens with constant

probability: if at least r vertices of ‘large’ weight in the origin B0 of the infection

become infected in the first round, then all of them do and hence the process

behaves as if it was supercritical. On the other hand, the probability of infecting

no additional vertex in the first round is still bounded away from 0.

The proof for dying out immediately is essentially a first moment argument.

Thus we focus on the evolution of the process in the supercritical regime for the

remainder of this section.

So now suppose we are in the case where all heavy vertices close to the origin B0

of the infection are infected. Then we define two sequences of nested inner/outer

infection regions {Bi}i and {B̃i}i and use them to provide a detailed description of
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the process evolving in both time and along the geometry. Certain classes of heavy

vertices – those lying in the inner infection region Bi and having weight at least

wi,0 (the ‘typical maximal weight’ in Bi) – play a key role.

The general idea is to proceed inductively as follows (where all statements hold

whp): we show that in round i the heaviest vertices in the inner infection region Bi,

i.e. those of weight at least wi,0, are all infected (Theorem 6.17(b)), and similarly

we prove that there are no vertices outside of the outer infection region B̃i which

have already become infected (Theorem 6.20(c)). The set of heavy vertices, once

infected, will then start a cascade of infection which reaches vertices of subsequently

lower weights in each round.

We write A(i) for the event that in each round i′ ≤ i the heavy vertices in the

inner infection region Bi have become infected, and introduce a sequences of addi-

tional weight-bounds {wi,`}`, where for each i we have logν(wi,`)→ 0 exponentially

quickly as `→∞. Then Theorem 6.17(c) provides lower bound on the probability

(conditional on A(i)) for any given vertex in the inner infection region Bi of weight

at least wi,` to be infected at time i+ `.

We then use this bound to show that any given vertex of weight at least (some

large constant) C0 > 0 will eventually (in fact by round (1 + ε)i∞) become infected

with probability bounded away from 0. Hence in expectation a linear number of

vertices has already become infected at this point of time. The whp statement

follows with a little additional effort, proving that a linear size outbreak occurs by

round (1 + ε)i∞ at the latest and thus completing the proof of Theorem 1.6.

To prove Theorem 1.7 it remains to establish the corresponding lower bound

on the hitting time τo for the infection reaching linear size. Actually the process is

far from as clear-cut as our idealised description in the previous paragraphs. How-

ever we can control the influence of additional vertices of lower degrees becoming

infected if edge probabilities decay sufficiently rapidly once the ‘maximal distance’

is reached, i.e. α > β − 1 (which is only a minor restriction since β < 3).

We prove that ‘not too many’ additional vertices are infected in round i (The-

orem 6.20(e)), and denote this event by Ã(i). Then we provide an upper bound on

the probability (conditional on Ã(i)) of a given vertex being infected in round i+ 1

depending on how far it is from the outer infection regions B̃0, . . . , B̃i ‘relative’ to

its weight (Theorem 6.20(f)). From here the proof of Theorem 1.7 is completed by

a first moment argument.

Similarly, Theorems 6.17 and 6.20 provide all the information for determining

the infection times of individual vertices (Theorem 1.8). However, the actual proof

splits into several cases and requires quite a bit of calculation.

To conclude this section let us briefly return to our motivation of modelling

an infection process in a real-world network. From this perspective we would like

to not only understand when an outbreak occurs, but also how to save as many

individuals as possible. Our description of the process suggest such a quarantine
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strategy: because Theorem 6.20(e) shows that whp in round i the infection is still

completely contained within the outer infection region B̃i, it suffices to remove all

edges which connect this region to the outside (Td \ B̃i) before round i. Based on

a proof in [41] we show that the expected number of these edges is very small.

1.4. Discussion

Every scientific result leads to a variety of intriguing and challenging open

problems and directions for future research. In this section we will briefly outline a

selection of such ‘loose ends’ related to the topics covered in the thesis. Following

the previous pattern we also split this part into four subsections, one for each of

the core topics.

1.4.1. Young giant in inhomogeneous random graphs. Recall that we ana-

lysed the emergence of the giant component in G(n, P ) using 2-type branching

processes (cf. Sections 1.2.1 and 1.3.1). We identified the threshold in terms of the

matrix M = P · diag(n) based on certain row-sum conditions (cf. (1.1) and (1.2)).

However, drawing our intuition from the branching process approximation, we

suspect the threshold to be most naturally characterised by the Perron-Frobenius

eigenvalue λ (and the corresponding normalised left-eigenvector v) of M satisfying

λ = 1 + ε or λ = 1− ε, where ε→ 0 not too quickly. Moreover, we know from the

Perron-Frobenius theory (cf. Section V.6 in [19]) that, after appropriate rescaling,

the vector describing the expected offspring in the i-th generation of the associated

branching process converges to v as i→∞, assuming that the process survives. In

other words we would expect that there is a function βε = βε(n) = o(1) such that

the vector of survival probabilities satisfies ρ = (1± o(1))βεv (component-wise).

A result of this form describing the growth of the young giant component would

then generalise readily to more sophisticated inhomogeneous random graphs with

an arbitrary number of types. In other words, this would close the gap between the

results for constant ε > 0 by Bollobás, Janson, and Riordan [33] and those inside

the critical window due to Bhamidi, Broutin, Sen, and Wang [27].

1.4.2. Structure and distribution of high-order connected components.

The focus of Sections 1.2.2 and 1.3.2 was on two of the most characteristic re-

gimes in the evolution of high-order connected components in random hypergraphs:

firstly, we determined the size of the giant j-component right after its emergence,

and secondly, we proved that the random hypergraph process becomes j-connected

precisely when its minimal obstruction, i.e. the last isolated j-set, disappears. In

order to obtain these key results we have developed the concept of smoothness and

provided a powerful tool called the smooth boundary lemma.

A very interesting open problem is to pin down the limiting distribution of the

size of the giant j-component. The existing central and local limit theorems for the

case of graphs [85, 95] and more generally vertex-connectedness [25, 36, 79] indicate

that the most likely candidate is also a normal distribution. However, based on our
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experience with high-order connectedness there will be various obstacles, some of

which may be overcome by the smooth boundary lemma or a variation thereof,

while others will require substantial new ideas.

Closely related is the question of the structure of ‘small’ components. It is well-

known that for graphs whp these are all either trees or unicyclic components. But

what is the ‘right’ notion of a tree or a unicyclic component in hypergraphs? In this

context it seems natural to call a j-component with the minimal number of j-sets

a ‘tree’, i.e. a j-component with e edges and (
(
k
j

)
− 1)e+ 1 many j-sets. Similarly,

a j-component with e edges and (
(
k
j

)
− 1)e many j-sets would be ‘unicyclic’. Is it

then true that whp all j-components except for the giant j-component are either

trees or unicyclic?

An affirmative and (very) precise answer to this question might prove to be the

first step towards a local limit theorem for the size of the giant j-component, as was

the case for vertex-connectedness [79]. Also for the approach in [25] controlling the

interaction between small components and the giant component is key, even though

the way in which this is done is quite different from that in [79]. At this point

knowing that the giant j-component contains a large smooth subset (Lemma 1.10,

or more generally Lemma 1.9) might be just the right property to handle how likely

small j-components are to merge with the giant j-component.

1.4.3. Critical window for jigsaw percolation. While we proved the exist-

ence of a threshold for jigsaw percolation on random hypergraphs in Sections 1.2.3

and 1.3.3, there is still a gap of a large but constant multiplicative factor c2 between

the super- and subcritical regimes. Even though this gap has not been optimised

(either by us or in the graph case [37]), this already suggests that this property has

a sharp threshold, and raises the question of determining its asymptotics exactly.

Moreover, recall that there is the additional condition min{p1, p2} ≥ c logn
nk−j

for the supercritical regime, guaranteeing that the necessary condition of both the

red/blue hypergraphs being j-connected is met whp. However, we determined

the sharp threshold for j-connectedness to be p̂c = j(k−j)! logn
nk−j

in (1.4). Thus it

is natural to conjecture that the condition can be relaxed to min{p1, p2} ≥ Cp̂c

for any constant C > 1. But also if p1 = p̂c, then the probability of the red

hypergraph being j-connected is bounded away from both 0 and 1. We conjecture

that conditioned on it being j-connected whp percolation takes place (as whp the

blue hypergraph is also j-connected).

1.4.4. Localised SIRS-infections. Our results concerning bootstrap percolation

on GIRGs provide a very detailed picture of how this process evolves both geomet-

rically and in time (cf. Sections 1.2.4 and 1.3.4). We demonstrated not only how an

infection originating in a small local region can cause an outbreak infecting a linear

number of vertices, but also how fast the infection will spread in this scenario. We

also proved that this kind of information is invaluable for saving the majority of

the population from an imminent outbreak.
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We should emphasise that the importance of our contribution is not merely

limited to the mathematical statements about bootstrap percolation on GIRGs but

also, and maybe foremost, a proof of concept: we illustrate a way of rigorously

modelling an infection process in a geometric setting.

This being said, it is up to us to question whether this is a good model. While

GIRGs are certainly a state-of-the-art model for real-world networks, modelling the

spread of an infection, a belief, or some neuronal activity via bootstrap percolation

is certainly not optimal. Naturally, a large variety of models have been proposed

for these scenarios, amongst them for instance SIR-and SIRS-models (susceptible-

infected -recovering) for epidemiological applications, where infected individuals can

recover from an infection. Investigating the influence of an underlying geometry

on these processes promises to be a challenging task, and certainly one from which

there is much to learn.

1.5. Outline

Chapters 2–6 each consist of a research paper, with modifications, from the

publication list preceding this introduction. Some results have also been published

in conference proceedings. More precisely we have the following correspondence:

Chapter 2 ↔ [6] (with M. Kang and A. Pachón)

Chapter 3 ↔ [2] and [8] (with O. Cooley and M. Kang)

Chapter 4 ↔ [3] and [8] (with O. Cooley and M. Kang)

Chapter 5 ↔ [1] (with B. Bollobás, O. Cooley, and M. Kang)

Chapter 6 ↔ [7] and [10] (with J. Lengler)

The research leading to [7] was conducted during a 3-month research stay at

the ETH Zürich, within the doctoral program ‘Discrete Mathematics’.



CHAPTER 2

Emergence of the giant component in a multi-type

random graph

2.1. Introduction and main results

The theory of random graphs was founded by Erdős and Rényi in the late 1950s.

One of their most striking results concerned the phase transition of the size of the

largest component – adding a few additional edges to a random graph can drastically

alter the size of its largest component. In [58] they considered the random graph

G(n,m) obtained by choosing a graph uniformly at random amongst all graphs on

n (labelled) vertices containing precisely m edges and proved the following result:

Let c ≥ 0 be any constant. If c < 1, then with high probability (whp for short,

meaning with probability tending to one as n→∞) all components in G(n, cn/2)

have size O(log n), while if c = 1, whp the largest component is of size Θ(n2/3), and

if c > 1, then whp there is a component of size Θ(n), called the ‘giant component’,

and all other components are of size O(log n).

Bollobás [31] investigated this phenomenon further and described in detail the

behaviour of G(n,m) when m is close to n/2, i.e. m = (1 ± ε)n/2 for some ε =

ε(n) > 0 satisfying ε → 0 as n → ∞. His initial results were then improved by

 Luczak [86]. In particular, if in addition ε3n → ∞, whp the largest component in

G(n, (1−ε)n/2) has size o(n2/3), whereas the largest component in G(n, (1+ε)n/2)

contains asymptotically 2εn vertices and all other components are of size o(εn). For

a comprehensive account of the results see [15, 30, 74].

In the meantime many of these results have been reproved and strengthened

using various modern techniques such as martingales [89], partial differential equa-

tions [103], and search algorithms [33, 82]. Furthermore, more complicated discrete

structures like random hypergraphs have been studied [26, 36, 79].

Over the last years, random graphs have proved to have wide-ranging applica-

tions in neurobiology, statistical physics, and the modelling of complex networks [90,

104]. Frequently some properties of real-world networks are already empirically

‘known’ and have motivated the definition of more sophisticated random graph

models [48, 49, 102]. In particular, applicable random graph models should al-

low for different types of vertices having different degree distributions, i.e. some

level of inhomogeneity. A general theory of inhomogeneous random graphs was

developed by Bollobás, Janson, and Riordan [33] providing a unified framework

for a large number of previously studied random graph models [34, 42, 91]. For

21
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example they analysed the degree distribution, the number of paths and cycles,

and the phase transition for the giant component. The behaviour at the critical

point (corresponding to G(n, cn/2) for c = 1) has been studied by van der Hofstad

in the so-called rank one case [70]. Recently Bhamidi, Broutin, Sen, and Wang

studied the general inhomogeneous random graph with a bounded number of types

inside the critical window (corresponding to G(n, (1±ε)n/2) for some ε = ε(n) > 0

satisfying ε3n→ C, 0 ≤ C <∞) and described the joint distribution of the largest

components using Brownian motion [27].

In this chapter, we study an inhomogeneous random graph model in which

there are n vertices, each vertex has one of two types, and an edge between a pair

of vertices of types i and j is present with probability pi,j independently of all other

pairs. The focus lies on the weakly supercritical regime, i.e. when the distance to

the critical point of phase transition approaches zero as n → ∞. In this regime

the behaviour of the random graph depends very sensitively on the parameters and

could not be studied using the parametrisation in [33]. We determine the size of

the largest component in this regime (Theorem 2.1).

In order to derive the main results, we apply a simple breadth-first search

approach to construct a rooted spanning tree of a component and couple it with a

multi-type branching process with binomial offspring distributions, which is viewed

as a random rooted tree. In addition, the width and the dual of that random rooted

tree play important roles in the second moment analysis.

The results of this chapter are indeed not surprising and the techniques used

in the chapter may look familiar. The main contribution of this chapter is that it

shows how a simple branching process approach combined with the concepts of tree

width and dual processes can be applied nicely to a multi-type random graph all

the way through the supercritical regime.

2.1.1. Model and notation. In this section we will define multi-type binomial

random graphs and associate them with branching processes.

Multi-type binomial random graph. Let k ∈ N be fixed. Every vertex is associ-

ated with a type i ∈ {1, . . . , k} and we denote by Vi the set of all vertices of type

i ∈ {1, . . . , k}. Given an arbitrary vector n = (n1, . . . , nk) ∈ Nk and a symmetric

matrix of probabilities P = (pi,j)i,j=1,...,k ∈ [0, 1]k×k we consider the k-type bino-

mial random graph Gk(n, P ) on nl vertices of type l, for l ∈ {1, . . . .k}, with the

following edge set: for each pair {u, v}, where u is of type i and v of type j, we

include the edge {u, v} independently of any other pair with probability pi,j and

exclude it with probability 1− pi,j . We write M = (µi,j)i,j∈{1,2} for the matrix of

the expected number of neighbours µi,j = pi,jnj of type j ∈ {1, . . . , k} for a vertex

of type i ∈ {1, . . . , k}.
Associated branching process. Next we associate a binomial branching process

in which each individual has a type i ∈ {1, . . . , k} with the random graph Gk(n, P ).

Fix a time t ∈ N0 and let It be a set of individuals (i.e. the population) at

time t, which we also call the t-th generation of individuals. Then, with each
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individual v ∈ It of type j′ ∈ {1, . . . , k}, we associate a random vector Xv =

(Xv
1 , . . . , X

v
k ), where for each j ∈ {1, . . . , k} the random variable Xv

j is independent

and binomially distributed with parameters nj and pj′,j and thus with mean µj′,j .

Then the population It+1 at time t+1 will be a set containing exactly
∑
v∈It X

v
j new

individuals of type j, for each j ∈ {1, . . . , k}. In other words, the random variable

Xv
j represents the number of children of type j that are born from the individual

v. A k-type binomial branching process starting with an initial population I0

is a sequence of random vectors (Zt(1), . . . , Zt(k))t∈N0
generated by iterating the

construction described above, where Zt(j) is the random variable describing the

number of individuals of type j in the t-th generation for each j ∈ {1, . . . , k} and

t ∈ N0. For i ∈ {1, . . . , k} we denote by T in,P a k-type binomial branching process

starting with a single vertex of type i. We may also use T in,P to denote the rooted

(possibly infinite) tree created by an instance of the branching process. The context

will always clarify the notation. Furthermore, if a statement is independent of the

starting type we simply write Tn,P , for instance, we refer to the matrix M as

offspring expectation matrix of the branching process Tn,P .

Observe that for k = 1 we obtain the classical binomial random graph G(n, p)

where n = n1 and p = p1,1 and the corresponding binomial branching process.

Setup. Throughout the chapter we focus on the case k = 2 and for simplicity we

writeG(n, P ) := G2(n, P ). We denote by n = n1+n2 the total number of vertices in

G(n, P ) and without loss of generality we assume that n1 ≥ n2. Furthermore, unless

specified explicitly, all asymptotic statements are to be understood in terms of n1

and n2 being large enough yet fixed and we use the notation min{n1, n2} = n2 →∞
for this. Note that in general η1,2 6= η2,1 and it is possible that η2,1/η1,2 →∞, even

though p1,2 = p2,1.

Notation. Given a graph G with components C1, . . . , Cr ordered by size such

that |C1| ≥ |C2| ≥ · · · ≥ |Cr| we denote by Li(G) = Ci the i-th largest component

of G and its size by Li(G) = |Li(G)| = |Ci|, for any i ∈ {1, . . . , r}, and set Li(G) = ∅
and Li(G) = 0 if i > r. Moreover, we will use the following standard notation to

describe asymptotic statements: For any real functions f = f(n1, n2) and g =

g(n1, n2) we write: f = O(g) if ∃c > 0, n0 such that f(n1, n2) ≤ c|g(n1, n2)| for all

n1 ≥ n2 ≥ n0; f = o(g) if ∀c > 0 : ∃n0 such that f(n1, n2) ≤ c|g(n1, n2)| for all

n1 ≥ n2 ≥ n0; f = Ω(g) if g = O(f); f = Θ(g) if f = O(g) and f = Ω(g) and

f ∼ g if f − g = o(g).

2.1.2. Main results. We show that G(n, P ) exhibits a phase transition in the size

of the largest component. In particular, we show that in the weakly supercritical

regime there is a unique largest component containing asymptotically 2εn vertices.

In fact, we prove a stronger result.

Theorem 2.1. For n1 ∈ N and n2 ∈ N with n1 ≥ n2, let n = n1 + n2 and let

ε = ε(n1, n2) > 0 with ε = o(1). Furthermore, let

P = (pi,j)i,j∈{1,2} ∈ (0, 1]2×2
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be a symmetric matrix of probabilities satisfying the following conditions:

ε3n2 min{1, ε−1µ2,1} → ∞, (2.1)

µι,1 + µι,2 = 1 + ε± o(ε), for any ι ∈ {1, 2}, (2.2)

where µi,j = pi,jnj for every pair (i, j) ∈ {1, 2}2. Then, whp the following holds for

all integers r ≥ 2 and i ∈ {1, 2} :

|L1 (G(n, P )) ∩ Vi| = (2± o(1))εni and |Lr (G(n, P )) ∩ Vi| = o(εni);

therefore, in particular,

L1 (G(n, P )) = (2± o(1))εn and Lr (G(n, P )) = o(εn).

Remark 2.2. Observe that, up to the term min{1, ε−1µ2,1}, the condition in (2.1)

mirrors the condition ε3n→∞ that is necessary and sufficient for the existence of a

unique largest component in G(n, (1 + ε)/n). In G(n, (1 + ε)/n) the average degree

is 1+ε = Θ(1) and therefore it does not influence the asymptotic statement in (2.1).

In G(n, P ) however, P can be such that we are close to criticality but the average

number µ2,1 (respectively µ1,2) of neighbours of the opposite type for a given vertex

is still o(1). Roughly speaking, it is reasonable that if µ2,1 is ‘very small’, then the

random graph G(n, P ) may have two largest components, one of each type, that

coexist independently since the probability of adding any edge between them is

negligible. In particular, this would happen in case probability p1,2 was equal to

zero and therefore µ1,2 = µ2,1 = 0.

On the other hand, in the special case n2 = o(n), the condition in (2.1) differs

by an additional factor of n2/n = o(1) from that in G(n, (1 + ε)/n). This factor is,

for instance, necessary to show that the number of vertices of type 2 in the largest

components is concentrated around its mean. Therefore it is not avoidable with

this method, even though it might not be optimal.

Remark 2.3. The symmetry of P simply reflects the fact that G(n, P ) is an

undirected random graph.

Note that the parameter ε > 0 describes the distance to the critical point for

the emergence of the giant component in a sense that we will explain now. Roughly

speaking, for some time, the breadth-first exploration process of a component in

G(n, P ) looks like a 2-type binomial branching process Tn,P . This can be described

by a coupling of the two processes. If the branching process dies out its total

population should be rather ‘small’. Thus, by the coupling, the explored component

is also ‘small’. It is well-known that for a 2-type binomial branching process the

property of survival has a threshold and that the critical point is characterised by

the Perron-Frobenius eigenvalue

λ =
µ1,1 + µ2,2

2
+

1

2

√
(µ1,1 + µ2,2)2 + 4 (µ1,2µ2,1 − µ1,1µ2,2) (2.3)

of its offspring expectation matrix M = (µi,j)i,j∈{1,2}. If λ > 1, the process has a

positive probability of survival, while if λ ≤ 1, it dies out with probability 1.
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Next, let us compute λ for the 2-type binomial branching process Tn,P with

parameters as in Theorem 2.1. The condition in (2.2) states that for every constant

δ ∈ (0, 1) there is an n0 = n0 (δ) such that we have |µi,1 + µi,2 − (1 + ε)| ≤ δε, for

i ∈ {1, 2} and all n1 ≥ n2 ≥ n0. This implies

µ1,2µ2,1 − µ1,1µ2,2 ≤ (1 + ε+ δε)
2 − (µ1,1 + µ2,2) (1 + ε+ δε)

and similarly

µ1,2µ2,1 − µ1,1µ2,2 ≥ (1 + ε− δε)2 − (µ1,1 + µ2,2) (1 + ε− δε) .

Therefore we can bound the argument of the square root in (2.3) from above by

(µ1,1 + µ2,2)2 + 4 (µ1,2µ2,1 − µ1,1µ2,2) ≤ (2 (1 + ε+ δε)− (µ1,1 + µ2,2))
2

and from below by

(µ1,1 + µ2,2)2 + 4 (µ1,2µ2,1 − µ1,1µ2,2) ≥ (2 (1 + ε− δε)− (µ1,1 + µ2,2))
2
.

Thus, by (2.3) and since δ was arbitrary, we obtain the following asymptotic estim-

ate for the Perron-Frobenius eigenvalue

λ = 1 + ε± o(ε). (2.4)

In other words, ε describes how close λ is to 1.

Our next result concerns the weakly subcritical regime.

Theorem 2.4. For n1 ∈ N and n2 ∈ N with n1 ≥ n2, let n = n1 + n2 and let

ε = ε(n1, n2) > 0 with ε = o(1). Furthermore, let

P = (pi,j)i,j∈{1,2} ∈ (0, 1]2×2

be a symmetric matrix of probabilities satisfying the following conditions:

ε3n2 →∞, (2.5)

µι,1 + µι,2 = 1− ε± o(ε), for any ι ∈ {1, 2}, (2.6)

where µi,j = pi,jnj for every pair (i, j) ∈ {1, 2}2. Then we have whp

L1 (G(n, P )) = o(n2/3).

Note that analogously to Theorem 2.1 the parameter ε > 0 describes the dis-

tance to the critical point from below. In other words, by (2.6), we know that the

Perron-Frobenius eigenvalue λ of the offspring expectation matrix M of a 2-type

binomial branching process Tn,P with parameters as in Theorem 2.4 satisfies

λ = 1− ε± o(ε). (2.7)

We will dedicate most of this chapter to the more delicate weakly supercritical

regime. A sketch of the proof of Theorem 2.1 is given in Subsection 2.1.3, properties

of supercritical branching processes will be analysed in Section 2.2, and the actual

proof of Theorem 2.1 is provided in Section 2.3. The weakly subcritical regime

follows in Section 2.4 with the proof of Theorem 2.4.
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In Section 2.5 we also consider the size of the largest component in the regimes

where the distance to the critical value is a constant (independent of n1 and n2). In

the supercritical regime the largest component will already be a giant component,

i.e. it is unique and of linear size. Similarly, we get a stronger upper bound on the

size of all components in the subcritical regime. These results can also be proved

using the general framework in [33], however, we give alternative simple proofs.

2.1.3. Proof outline. We extend the method employed by Bollobás and Riordan

in [35] to study the weakly supercritical regime of G(n, p).

To prove Theorem 2.1 we consider the set S of vertices in ‘large’ components.

The first goal is to show that the size of S is concentrated around 2εn by apply-

ing Chebyshev’s inequality. We calculate asymptotically matching upper and lower

bounds for the expected size of S by coupling the breadth-first component explor-

ation process from below and above with 2-type branching processes. Once this

is done, using a more refined version of this idea, we show that the square of this

expectation is an upper bound for the second moment of the size of S, therefore the

variance of the size of S is indeed ‘small’ compared to the square of the expectation

and concentration follows by Chebyshev’s inequality.

So now we know that whp the appropriate number of vertices lie in ‘large’ com-

ponents, but there might be several distinct such components all of which may also

be much smaller than claimed in Theorem 2.1. However, we can construct a ran-

dom graph via a two-round exposure. In the first round we reduce the probability

of including some edges by a tiny bit and note that the above arguments will still

hold in this setting. In the second round we once again look at each pair not yet

connected by an edge and ‘sprinkle’ an edge with a tiny probability independently

for each such pair.

By choosing the magnitude of these probabilities appropriately we can ensure

that the resulting random graph has the same distribution as G(n, P ) and thus we

can identify both random graphs by a coupling argument. Analysing the probability

that ‘large’ components are connected by at least one edge and we use a union bound

to show that whp almost all vertices from S lie in a single component of G(n, P ).

2.1.4. Related work. The general inhomogeneous random graph model G(n, cκn)

studied by Bollobás, Janson, and Riordan [33] is closely related to the model

G(n, P ), and defined as follows. For any n ∈ N consider a random sequence

xn = (x1, . . . , xn) of points from a separable metric space S equipped with a Borel

probability measure ν and let νn be the empirical distribution of xn. Assume that

νn converges in probability to ν, then the triple (S, ν, (xn)n≥1) is called a vertex

space. Furthermore let {κn} be a sequence of symmetric non-negative ν-measurable

functions on S ×S, which converges to a limit κ, and let c > 0 be a constant. Then

the random graph G(n, cκn) is a graph with vertex set [n], where each pair of ver-

tices {k, l} is connected by an edge with probability pk,l := min{1, cκn(xk, xl)/n}
independently of all other pairs.
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It is proved that with respect to the parameter c there is a phase transition

concerning the size of the largest component. In particular, the existence and

uniqueness of the giant component in G(n, cκn) in the supercritical regime are

proved using an appropriate multi-type branching process and analysing an integral

operator Tκ. The critical point of the phase transition is characterised by c0 :=

||Tκ||−1: if c ≤ c0, then the random graph contains only small components, but if

c > c0, then there is a giant component which contains asymptotically ρcn vertices,

where ρc is independent of n and grows linearly in c− c0 > 0.

By contrast the focus of this chapter lies on the weakly supercritical regime

(Theorem 2.1), i.e. the distance ε = ε(n) from the critical point of the phase

transition tends to zero as the number of vertices increases. The analysis in this

regime is quite sophisticated and in particular much more delicate than in the

supercritical regime for ε > 0 being a constant independent of n.

In general it is not sufficient to only scale the edge probabilities multiplicatively

as in G(n, cκn), since even if ε → 0 the spectral gap of the operator (1 + ε)c0Tκ is

always bounded away from 0. In contrast to this, the spectral gap of the offspring

expectation matrix in G(n, P ) is given by µ1,2 + µ2,1 and thus may tend to zero

arbitrarily quickly. Similarly, if one type has significantly fewer vertices than the

others, it will not influence the behaviour of G(n, cκn); however for G(n, P ) in the

weakly supercritical regime these vertices may well be crucial for the component

structure and ignoring them may even result in a subcritical random graph.

For ε → 0, an example is given by n2 =
√
εn1, ε3n2 → ∞, µ2,1 = p2,1n1 = 1,

and thus µ1,1 = p1,1n1 = 1−
√
ε+ ε± o(ε), so that (2.1) is satisfied. Then G(n, P )

has a unique largest component containing (2± o(1))εn1 = ω(n
5/7
1 ) vertices of type

1, but after removing all vertices of type 2 all components have size at most o(n
2/3
1 ).

2.2. Multi-type binomial branching process

Later we will study the component sizes of the random graph G(n, P ) by invest-

igating 2-type binomial branching processes. In this section we investigate some of

their most important properties. We start with a key result concerning the survival

probability of a general multi-type Galton-Watson branching processes.

Lemma 2.5 (e.g. [68], simplified). Let Tn,P be a 2-type binomial branching process

with parameters n1 ∈ N and n2 ∈ N, with n1 ≥ n2, and P = (pi,j)i,j∈{1,2} ∈
(0, 1]2×2. Let λ > 0 be the Perron-Frobenius eigenvalue of its offspring expectation

matrix M = (µi,j)i,j∈{1,2} , where µi,j = pi,jnj , and let (ρ1, ρ2) be the pair of

survival probabilities. Then the following holds:

• if λ ≤ 1, we have ρ1 = ρ2 = 0;

• if λ > 1, then (ρ1, ρ2) is the unique positive solution of

F1(ρ1, ρ2) = F2(ρ1, ρ2) = 0, (2.8)

where Fi(ρ1, ρ2) := 1− ρi−
(

1− µi,1ρ1

n1

)n1
(

1− µi,2ρ2

n2

)n2

, for i ∈ {1, 2}. (2.9)
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We call a branching process that has a positive survival probability supercritical

and otherwise we call it subcritical.

Remark 2.6. There is a very simple way to see that the survival probabilities

must satisfy these equations: we consider the extinction probabilities before and

after the first step of the process and apply the Binomial Theorem.

2.2.1. Asymptotic survival probability. Because the conditions of Theorem 2.1

imply that the Perron-Frobenius eigenvalue of the offspring expectation matrix M

is strictly larger than 1, as seen in (2.4), the associated branching process will have

a positive survival probability that is given implicitly by (2.8).

It is sufficient for us to extract some information about the asymptotic beha-

viour of the unique positive solution from these equations. However, even trying

to solve these equations only asymptotically we have to be very careful with can-

cellation and take into account higher order terms: this is a major reason why the

weakly supercritical regime is significantly harder to analyse than the other regimes.

Lemma 2.7. Under the conditions as in Theorem 2.1 the survival probabilities of

the 2-type binomial branching process Tn,P satisfy

ρ1 ∼ ρ2 ∼ 2ε.

Proof. The key idea is to find suitable bounding functions for the Fi’s defined

in (2.9), for which the asymptotic values of the zeros can be computed easily, and

then to observe that these coincide for the upper and lower bound.

First observe the following fact: if ρ1 ≥ ρ2, we have F1(ρ1, ρ2) ≤ F1(ρ1, ρ1)

and F2(ρ1, ρ2) ≥ F2(ρ2, ρ2); analogously, if ρ1 < ρ2, then F2(ρ1, ρ2) < F2(ρ2, ρ2)

and F1(ρ1, ρ2) > F1(ρ1, ρ1). Thus, without loss of generality due to the Sub-

subsequence Principle (e.g. [74]), we assume ρ1 ≥ ρ2 and consider the bounding

functions Fi(ρi, ρi), for i ∈ {1, 2}:

Fi(ρi, ρi) = 1− ρi −
(

1− µi,1ρi
n1

)n1
(

1− µi,2ρi
n2

)n2

= 1− ρi − exp

(
−(µi,1 + µi,2)ρi −O

(
µ2
i,1ρ

2
i

n1
+
µ2
i,2ρ

2
i

n2

))
,

by the Taylor-expansion of the natural logarithm around 1. Since µi,1 ≤ 2 and

µi,2 ≤ 2, by the conditions of Theorem 2.1 and the fact that ρi ≤ 1 (since it is a

probability), we have

Fi(ρi, ρi) = 1− ρi − exp
(
−
(
µi,1 + µi,2 ±O

(
n−1

2

))
ρi
)

= 1− ρi − exp (−(1 + εi)ρi) ,

where εi = µi,1 + µi,2 − 1±O
(
n−1

2

)
∼ ε, by (2.1), and (2.2).

We define fi(ρi) := 1− ρi − exp (−(1 + εi)ρi) and note that solving fi(ρ
∗
i ) = 0

asymptotically is a well-known problem that turns up when calculating the asymp-

totic value of the survival probability for a single-type Poisson branching process.
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Using the Taylor-expansion of the natural logarithm we get

εi =
− log(1− ρ∗i )− ρ∗i

ρ∗i
=

∞∑
m=1

(ρ∗i )
m

m+ 1
.

Since the coefficients in this series are all positive and εi → 0, this shows that

ρ∗i → 0 and thus εi =
ρ∗i
2 +O((ρ∗i )

2). Having established the asymptotic behaviour

of ρ∗1 and ρ∗2 it remains to show that ρ∗2 ≤ ρ2 and ρ1 ≤ ρ∗1, since this together with

ρ2 ≤ ρ1 and ε2 ∼ ε1 ∼ ε implies ρ2 ∼ ρ1 ∼ 2ε.

For this last step, assume towards contradiction that ρ1 > ρ∗1 and observe that

f1 is negative on the interval (ρ∗1, 1]. Since (ρ1, ρ2) is by definition a solution of (2.8)

we have

0 = F1(ρ1, ρ2) ≤ f1(ρ1) < 0,

a contradiction. Analogously, ρ2 < ρ∗2 leads to a contradiction since f2 is positive

on (0, ρ∗2), completing the proof. �

2.2.2. Dual process. In the proof of Theorem 2.1 we consider the supercritical

branching process Tn,P associated with G(n, P ) and we will need a good upper

bound on the probability its total number of offspring of type j ∈ {1, 2} is at least

lj , for carefully chosen real functions l1 and l2. Since this probability is 1 if the

process survives, this reduces to analysing the conditional probability given the

event D that the process dies out. We call the resulting 2-type binomial branching

process the dual process and we can describe its offspring distributions as follows.

We need to know, for a vertex v of type i ∈ {1, 2} born in generation It, for

some integer t ≥ 0, and a potential child u of type j ∈ {1, 2}, whether the edge

e = {u, v} is present in the dual process, i.e. conditioned on D. Let Ae be the event

that u is a child of v in Tn,P and note that conditioning on Ae will decrease the

probability of D. More precisely, let Y = (Y1, Y2) denote the vector of the number

of individuals of each type in generation It+1. Since Y1 is a independent binomially

distributed random variables, calculating P (D|Ae) by conditioning on Y leads to

P (D | Ae) =

nj−1∑
rj=0

P (Yj = rj + 1 | Ae) (1− ρj)rj+1

·
n3−j∑
r3−j=0

P (Y3−j = r3−j | Ae) (1− ρ3−j)
r3−j .

Next we observe that by definition we have P (Yj = rj + 1 | Ae) = P (Yj = rj | ¬Ae),
for all rj = 0, . . . , nj − 1. Moreover, Y3−j is independent of Ae, and thus we obtain

a similar expression for P (D|¬Ae). More precisely, we have P(D | Ae)
P(D | ¬Ae) = 1 − ρj .

Therefore we get

P (Ae|D) =
P (D|Ae)P(Ae)

P (D|Ae)P(Ae) + P (D|¬Ae)P(¬Ae)
=
pi,j(1− ρj)
1− ρjpi,j

=: πi,j ,

uniformly for all edges e (with one end point of type i and the other of type j). An

analogous calculation shows that the presence of e does not depend on any other
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edges, i.e. the dual process is also a 2-type binomial branching process. Hence, we

write Π = (πi,j)i,j∈{1,2}, H = (hi,j)i,j∈{1,2}, where hi,j := πi,jnj , and denote the

dual process of Tn,P by Tn,Π.

Intuitively it is obvious that the dual process of any supercritical process is

subcritical. For completeness we give a short proof for the processes that we use.

First observe that for each pair (i, j) ∈ {1, 2}2 we have pi,j = O(n−1
j ) by (2.2), and

thus

πi,j = pi,j(1− ρj)
(
1 +O(n−2

j ρj)
)
. (2.10)

Lemma 2.8. Let Tn,P be a 2-type binomial branching process satisfying the condi-

tions of Theorem 2.1. Then the offspring expectation matrix H = (hi,j)i,j∈{1,2} of

the dual process Tn,Π satisfies

hι,1 + hι,2 = 1− ε± o(ε), for ι ∈ {1, 2}, (2.11)

and thus we have λ = 1− ε± o(ε) for the Perron-Frobenius eigenvalue λ of H.

Proof. By (2.2), (2.10), and Lemma 2.7 we get

hι,1 + hι,2 = (µι,1 + µι,2) (1− 2ε) = 1− ε± o(ε), for ι ∈ {1, 2}.

The second statement follows analogously to (2.7). �

The benefit of using the subcritical dual process Tn,Π is that we can bound the

expected total number of offspring of each type.

Lemma 2.9. For i ∈ {1, 2} let T in,P be a 2-type binomial branching process satisfy-

ing the conditions of Theorem 2.1. Then the associated dual process T in,Π satisfies

E
(∣∣T in,Π ∩ Vj∣∣) ≤ ε−1, for j ∈ {1, 2}. (2.12)

Moreover, for any real functions l1 and l2 , this implies that

P
(∣∣T in,P ∩ V1

∣∣ ≥ l1 ∨ ∣∣T in,P ∩ V2

∣∣ ≥ l2) ≤ 2ε+ ε−1l−1
1 + ε−1l−1

2 ± o(ε),

and in particular

P
(∣∣T in,P ∩ V1

∣∣ ≥ l1 ∨ ∣∣T in,P ∩ V2

∣∣ ≥ l2) ≤ (2± o(1))ε, (2.13)

if ε2l1 →∞ and ε2l2 →∞.

Proof. Consider the dual process Tn,Π. We associate a vertex born in generation

It , for integer t ≥ 1, with its line of ancestry, i.e. the string σ ∈ Σt := {1, 2}t+1

which is the finite sequence of types of all its ancestors (starting with the root of

Tn,Π and including itself). Set Σ :=
⋃
t≥1 Σt and denote by Ξ∗ the set of all finite

strings over the alphabet Ξ :=
{

(1, 1), (1, 2), (2, 1), (2, 2)
}
.

We consider the injective function f : Σ→ Ξ∗ defined by

f
∣∣
Σt

: Σt → Ξ∗, σ 7→
((
σ(0), σ(1)

)
,
(
σ(1), σ(2)

)
, . . . ,

(
σ(t− 1), σ(t)

))
,

for t ≥ 1. A string τ ∈ Ξ∗ is called admissible if τ ∈ f(Σ) and we denote the set

of admissible strings by Ξad := f(Σ). Observe that, for every pair (i, j) ∈ {1, 2}2,



2.2. MULTI-TYPE BINOMIAL BRANCHING PROCESS 31

the function f can be seen as a bijection that maps the subset Σi,j ⊂ Σ of lines

of ancestry starting with i and ending in j to the subset Ξadi,j ⊂ Ξad of admissible

strings starting with (i, 1) or (i, 2) and ending with (1, j) or (2, j).

Now let g̃ : Ξ→ R>0, (i, j) 7→ hi,j and note g̃ canonically extends to a function

g : Ξ∗ → R>0, τ 7→
∏

r=0,...,t−1

g̃(τ(r)).

This allows us to compute the expected number of offspring with a fixed line of

ancestry σ ∈ Σ, it is precisely g(f(σ)). Hence, for i ∈ {1, 2}, we obtain

E
(∣∣T in,Π ∩ Vi∣∣) = 1 +

∑
τ∈Ξadi,i

g(τ) = 1 +Gi,i (h1,1, h1,2, h2,1, h2,2) ,

E
(∣∣T in,Π ∩ V3−i

∣∣) =
∑

τ∈Ξadi,3−i

g(τ) = Gi,3−i (h1,1, h1,2, h2,1, h2,2) ,

where, for all (j, j′) ∈ {1, 2}, Gj,j′ is the four-variate ordinary generating function

of Ξadj,j′ (marking the occurrences of (1, 1), (1, 2), (2, 1), and (2, 2) respectively).

Using the ‘symbolic method’ (e.g. [59]) we compute the closed forms of these

generating functions providing

E
(∣∣T in,Π ∩ Vi∣∣) =

1− h3−i,3−i

d
and E

(∣∣T in,Π ∩ V3−i
∣∣) =

hi,3−i
d

,

for i ∈ {1, 2}, if the denominator

d = 1− h1,1 − h2,2 + h1,1h2,2 − h1,2h2,1

is positive. We now establish stronger lower bounds, which allow us to prove state-

ment (2.12). By (2.11), for any constant δ ∈ (0, 1) there exists an integer n∗ = n∗(δ)

such that for all n1 ≥ n2 ≥ n∗ we have

d ≥ 1− h1,1 − h2,2 + h1,1h2,2 − (1− ε(1− δ)− h1,1)(1− ε(1− δ)− h2,2)

= ε(1− δ) (2− h1,1 − h2,2 − ε(1− δ))

≥ ε(1− δ)(2− (1− ε(1− δ))− h3−i,3−i − ε(1− δ))

= ε(1− δ)(1− h3−i,3−i)

≥ ε(1− δ)hi,3−i > 0,

and thus, letting δ → 0, we obtain

E
(∣∣T in,Π ∩ Vi∣∣) ≤ ε−1 and E

(∣∣T in,Π ∩ V3−i
∣∣) ≤ ε−1.

For the second statement we distinguish the two cases of whether Di (the event

that the primal process T in,P dies out) holds or not. we obtain

P
(∣∣T in,P ∩ V1

∣∣ ≥ l1 ∨ ∣∣T in,P ∩ V2

∣∣ ≥ l2)
≤ ρi + P

(∣∣T in,Π ∩ V1

∣∣ ≥ l1)+ P
(∣∣T in,Π ∩ V2

∣∣ ≥ l2).
Applying Markov’s inequality to the right-hand side we deduce

P
(∣∣T in,P ∩ V1

∣∣ ≥ l1 ∨ ∣∣T in,P ∩ V2

∣∣ ≥ l2) ≤ 2ε+ ε−1l−1
1 + ε−1l−1

2 ± o(ε). �
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2.2.3. Width of a tree. The last tool that we need for the proof is the concept

of the width of a rooted tree. The width w(T ) of a rooted tree T is defined as the

supremum of the sizes of all its generations. In this context we will interpret any

branching process as a potentially infinite random rooted tree.

Lemma 2.10. Let Tn,P be a 2-type branching process satisfying the conditions of

Theorem 2.1 and denote by D the event that this process dies out. Then for any

real function m = m(n) such that εm→∞ we have

P ({w (Tn,P ) ≥ m} ∩ D) = o(ε).

Proof. Denote Wm = {w (Tn,P ) ≥ m} and let us construct Tn,P generation by

generation and stop as soon as we see the first generation of size at least m if

there is one. Then we have m1 vertices of type 1 and m2 vertices of type 2 where

m1 + m2 ≥ m. Since each of the vertices of this generation starts an independent

copy of T 1
n,P (respectively T 2

n,P ) we get for the probability of dying out given that

Wm holds

P(D|Wm) = (1− ρ1)m1(1− ρ2)m2 ≤ e−(ρ1m1+ρ2m2) = O(exp(−2εm)) = o(1),

where the asymptotic statements hold due to Lemma 2.7 and since εm→∞. Hence,

we obtain

P(¬D|Wm) = 1− o(1),

and by the law of conditional probability and Lemma 2.7 we have

P (Wm ∧ D) = P (Wm ∧ ¬D) · P(D|Wm)

P(¬D|Wm)
≤ o(P(¬D)) = o(ε),

proving Lemma 2.10. �

2.3. Supercritical regime: proof of Theorem 2.1

The main idea of the proof is to couple the component exploration process in

G(n, P ) with instances of the 2-type binomial branching process Tn,P .

2.3.1. Coupling. Given a vertex v of type i in G(n, P ) we denote its component

by Cv. Furthermore let Tv be the random spanning-tree rooted at v constructed

by exploring new neighbours in Cv via a breadth-first search. Again we interpret

branching processes as potentially infinite random rooted trees.

Lemma 2.11. Given any vector n ∈ N2, any symmetric matrix P ∈ [0, 1]2×2, and

any vertex v of type i ∈ {1, 2}, the following two statements hold.

(i) There is a coupling of the random rooted trees Tv and T in,P such that Tv ⊂
T in,P . In particular, |Cv ∩ Vj | ≤

∣∣T in,P ∩ Vj∣∣ , for j ∈ {1, 2}.
(ii) For any vector m = (m1,m2) ∈ N2 satisfying m ≤ n, there is a coupling of

the random rooted trees Tv and T in−m,P such that T in−m,P ⊂ Tv or both trees

contain at least m1 vertices of type 1 or m2 vertices of type 2. In particular,

either |Cv ∩ Vj | ≥
∣∣T in−m,P ∩ Vj

∣∣, for j ∈ {1, 2}, or the total number of vertices

of type r in Cv and T in−m,P is at least mr for some r ∈ {1, 2}.
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Proof. For the first statement, we generate Tv and T in,P simultaneously, restoring

the set of potential neighbours in the breadth-first search by adding fictional vertices

of the same type to the vertex set of G(n, P ) for each vertex already added as a

neighbour. Any offspring of a fictional vertex is automatically fictional. In this way,

for each type j ∈ {1, 2}, we always have nj potential new neighbours of this type

each chosen independently with probability pj′,j according to the type j′ ∈ {1, 2}
of the current vertex. After removal of all fictional vertices from T in,P we obtain Tv.
Therefore, we have (Tv ∩ Vj) ⊂

(
T in,P ∩ Vj

)
and since |Cv ∩ Vj | = |Tv ∩ Vj | the first

statement holds.

For the second statement we proceed as before with the slight change that in

each step we choose for any type j ∈ {1, 2} exactly nj − mj neighbours from all

possible new neighbours of type j and only add those independently with probability

pj′,j , where j′ ∈ {1, 2} is the type of the current vertex, and ignore all other vertices.

Until we have encountered a total of at least mr vertices of type r in T in−m,P for

some r ∈ {1, 2} there are always enough vertices of each type to choose from. As-

suming that this does not happen for any r ∈ {1, 2}, we thus have
(
T in−m,P ∩ Vj

)
⊂

(Tv ∩ Vj) ⊂ (Cv ∩ Vj) and the claim follows. �

2.3.2. Total size of large components. Using Lemma 2.9 and Lemma 2.11 we

can now establish the expectation of the number of vertices in ‘large’ components.

For any type i ∈ {1, 2}, we denote by Si,L = Si,L (G(n, P )) the set of all vertices

of type i in components that contain at least lj vertices of type j, for some j ∈ {1, 2}
and a properly chosen pair L = (l1, l2) of real functions. Moreover, we denote by

si,L = |Si,L| the cardinality of this set.

Lemma 2.12. Let lj be a real function satisfying ε2lj →∞, for j ∈ {1, 2}. Then

E (si,L) ≤ (2± o(1))εni, for i ∈ {1, 2}.

Proof. For i ∈ {1, 2}, by Lemma 2.11(i) and linearity of expectation, we have

E (si,L) =
∑
v∈Vi

P (|Cv ∩ V1| ≥ l1 ∨ |Cv ∩ V2| ≥ l2)

≤ niP
(∣∣T in,P ∩ V1

∣∣ ≥ l1 ∨ ∣∣T in,P ∩ V2

∣∣ ≥ l2) ∼ 2εni,

where the last step holds by equation (2.13) in Lemma 2.9. �

Lemma 2.13. Let lj be a real function satisfying lj = o(εnj), for j∈{1, 2}. Then

E (si,L) ≥ (2± o(1))εni, for i ∈ {1, 2}.

Proof. We apply Lemma 2.11(ii) with m = L = (l1, l2), since lj = o(εnj), for j ∈
{1, 2}, and note that the parameters of the coupling branching process satisfy (2.1)

and (2.2). Hence, for i ∈ {1, 2}, this yields by linearity of expectation

E (si,L) ≥ niP
(∣∣T in−m,P ∩ V1

∣∣ ≥ l1 ∨ ∣∣T in−m,P ∩ V2

∣∣ ≥ l2)
≥ niP

(
T in−m,P survives

)
∼ 2εni,

where the last step holds due to Lemma 2.7. �
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In the next lemma we will show that si,L (G(n, P )), i.e. the number of vertices

of type i in large components, is concentrated around its expectation.

Lemma 2.14. Let lj be a real function satisfying ε2lj → ∞ and lj = o(εnj), for

j ∈ {1, 2}. Then whp

si,L (G(n, P )) = (2± o(1))εni, for i ∈ {1, 2}.

Proof. Lemmas 2.12 and 2.13 show that E(si,L) ∼ 2εni, hence it is sufficient to

derive the upper bound

E(s2
i,L) ≤ (4± o(1))ε2n2

i ∼ E (si,L)
2

for i ∈ {1, 2}. (2.14)

The reason for this is the classical ‘second moment method’ (e.g. [15, 74]): equa-

tion (2.14) implies that for the random variable si,L the variance is of smaller order

than the square of the expectation, i.e.

V (si,L) = E
(
s2
i,L

)
− E (si,L)

2 ≤ o
(
E (si,L)

2
)
, for i ∈ {1, 2},

which provides concentration by Chebyshev’s inequality.

Without loss of generality fix a type i ∈ {1, 2} for the rest of the proof. Further-

more, fix a vertex v of type i in G(n, P ). Once again we explore the component Cv
of that vertex in a breadth-first search generating a tree T ′v ⊂ Cv. However, we will

stop the exploration immediately, even midway through revealing the neighbours

of one particular vertex, if one of the following two events occurs:

(i) we have already reached a total of lj vertices of type j for some j ∈ {1, 2};
(ii) there are εl2 vertices that have been reached (i.e. children of earlier vertices)

but not yet fully explored (flipped a coin for each possible neighbour).

Note that for stopping condition (ii) we do not distinguish the types of vertices.

Any vertex that has been reached but not fully explored is called boundary

vertex. Observe that this process will create at most εl2 + 1 ≤ 2εl2 boundary

vertices. Furthermore, denote byA the event that the process stops due to (i) or (ii),

rather than because it has revealed the whole component Cv. Note that

{|Cv ∩ V1| ≥ l1 ∨ |Cv ∩ V2| ≥ l2} =⇒ A, (2.15)

a fact that we will use later on.

Now we estimate the probability thatA holds: by the coupling in Lemma 2.11(i)

we may assume that T ′v ⊂ Tv ⊂ T in,P and, since we proceed in a breadth-first

manner, at every point of time all the boundary vertices are contained in at most

two consecutive generations. Hence if A holds, either
∣∣T in,P ∩ Vj∣∣ ≥ lj , for some j ∈

{1, 2}, or the total number of offspring of the process T in,P is finite and w(T in,P ) ≥
εl2/2. As calculated in Lemma 2.9 the probability that the first case occurs is

asymptotically at most 2ε, while for the second case we calculated in Lemma 2.10

that the probability of having large width but still dying out is o(ε), hence

P(A) ≤ (2± o(1))ε. (2.16)
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We use this to relate the second moment to the expectation on the conditional

probability space, where we condition on A holding. We replace si,L by a sum of

indicator random variables and obtain

E
(
s2
i,L

)
=
∑
v∈Vi

E
(
si,L · 1{|Cv∩V1|≥l1∨|Cv∩V2|≥l2}

) (2.14)

≤ niP(A)E (si,L| A) .

Using (2.15) this implies

E
(
s2
i,L

)
≤ (2± o(1))εniE (si,L | A) . (2.17)

For the remainder of this proof we will compute an asymptotic upper bound

for the conditional expectation E (si,L | A) . Now for any vertex u 6∈ T ′v of type i

we reveal its component as before in a breadth-first manner but ignore any vertices

that are in T ′v . In other words, we explore in G′ = G(n, P )\V (T ′v ) until we have

revealed the whole component in this subgraph, and couple the generated tree T ′′u
with T in,P such that T ′′u ⊂ T in,P . We denote by Di the event that this instance of

T in,P dies out and note, in particular, that Di is independent of the event A, hence

P (¬Di| A) = P(¬Di)
L.2.7
= (2± o(1))ε. (2.18)

Let us further observe that |T ′′u | ≤ |Cu| and furthermore that equality holds

unless G(n, P ) contains an edge connecting a boundary vertex to a vertex of T ′′u .

Therefore, for any given r ∈ N, we have

P(|Cu| 6= |T ′′u | | Di ∧ A ∧ {|T ′′u | = r}) ≤ 2εl2rmax {pj,j′ | j, j′ ∈ {1, 2}} ,

by the union bound, as there are at most 2εl2 boundary vertices. Note that by (2.2)

we have max {pj,j′ | j, j′ ∈ {1, 2}} ≤ (1 + ε)n−1
2 ≤ 2n−1

2 . Hence, by the law of total

probability,

P(|Cu| 6= |T ′′u | | Di ∧ A) ≤ 4εl2n
−1
2 E (|T ′′u | | Di) = 4εl2n

−1
2 E

(∣∣T in,Π∣∣).
In order to simplify notation we will write

Xu,L = {|Cu ∩ V1| ≥ l1 ∨ |Cu ∩ V2| ≥ l2}

for the event that the component Cu is large. Hence it follows that

P(Xu,L | A) ≤ P(¬Di) + P(Di)P(Xu,L | Di ∧ A)

≤ P(¬Di) + P(Xu,L ∧ {|Cu| = |T ′′u |} | Di ∧ A)

+ P(Xu,L ∧ {|Cu| 6= |T ′′u |} | Di ∧ A)

≤ P(¬Di) + P(|T ′′u ∩ V1| ≥ l1 ∨ |T ′′u ∩ V2| ≥ l2 | Di)

+ P(|Cu| 6= |T ′′u | | Di ∧ A)

Using Markov’s inequality we express the right-hand side in terms of expectations

P(Xu,L | A) ≤ P(¬Di) +
E
(∣∣T in,Π ∩ V1

∣∣)
l1

+
E
(∣∣T in,Π ∩ V2

∣∣)
l2

+ 4εl2n
−1
2 E

(∣∣T in,Π∣∣) ,
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and observe that these expectations are all of order O
(
ε−1
)

by the bound (2.12)

in Lemma 2.9. Additionally, by our assumptions on L, the coefficients l−1
1 , l−1

2 and

4εl2n
−1
2 are all of order o(ε) and therefore using (2.18) we get

P(Xu,L | A) ≤ (2± o(1))ε.

This bound applies for at least ni − li vertices of type i and thus we have

E (si,L | A) ≤ li + (ni − li)P(Xu,L | A) ≤ li + (2± o(1))εni = (2± o(1))εni.

Inserting this into inequality (2.17) and then applying Chebyshev’s inequality com-

pletes the proof of Lemma 2.14. �

2.3.3. Sprinkling. It remains to prove that almost all vertices in large components

lie indeed in a single component. Essentially we exploit the fact that in order for

two large components to coexist, a large number of edges cannot be present in the

random graph. This however is very unlikely. Due to vertices having two different

types the argument is slightly more involved than in the homogeneous setting.

Proof of Theorem 2.1. Let us first introduce some further notation. We write α :=

min{1, ε−1µ2,1} and set

ξ := αε3n2. (2.19)

Note that α > 0 and ξ →∞ by the assumptions of Theorem 2.1. We set

lj :=
εnj
log ξ

= o(εnj), for j ∈ {1, 2}, (2.20)

and note that we could replace log ξ by any function ξ̂ such that ξ̂ →∞ but growing

very slowly compared to ξ. Moreover, observe that since α ≤ 1 we have

ε2lj =
ε3nj
log ξ

≥ ξ

log ξ
→∞, for j ∈ {1, 2}. (2.21)

Essentially, we know so far that the random graph G(n, P ) satisfying the con-

ditions of Theorem 2.1 contains the ‘right’ number of vertices in large components.

It only remains to show that all these components are connected, and thus form a

single component, if we ‘sprinkle’ some more edges.

Formally we define a symmetric probability matrix P b by setting

pb1,2 :=
αε

n1 log ξ
= min

{
ε

n1 log ξ
,
p1,2

log ξ

}
,

and pb1,1 := pb2,2 := 0. Then let P a be the symmetric probability matrix whose off-

diagonal entries satisfy pa1,2 +pb1,2−pa1,2pb1,2 = p1,2 and set pai,i := pi,i, for i ∈ {1, 2}.
Then we construct G(n, P a) and G(n, P b) independently and couple them in such

a way that we have

G(n, P a) ∪G(n, P b) = G(n, P ).

Since pb1,2 ≤ p1,2/ log ξ we have pa1,2 ≥ p1,2(1−1/ log ξ) implying that the entries

of P a are all positive for large enough n1 and n2 . Furthermore, as pb1,2 = o(ε/n1),

we have pa1,2ni = µ3−i,i ± o(ε), for i ∈ {1, 2} and therefore G(n, P a) also meets all
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requirements of Theorem 2.1. Moreover, we have calculated in (2.20) and (2.21)

that the further conditions of Lemma 2.14 are also satisfied for L = (l1, l2). Let

us denote by Sai,L = Si,L (G (n, P a)) the set of vertices of type i ∈ {1, 2} in large

components of G(n, P a), i.e. components containing at least lj vertices of type j

for some j ∈ {1, 2}. Then, by Lemma 2.14, we have whp∣∣Sai,L∣∣ = 2εni + ζai

for some real function ζai satisfying |ζai | = o(εni). We assume that this event holds.

Let U denote the set of all large components in G(n, P a). Then for any com-

ponent C ∈ U we say that the type j ∈ {1, 2} is a witness for C being large if

|C ∩ Vj | > 1
2 lj . Observe that having a witness is a necessary condition for any

component to be large, hence each large component C ∈ U has at least one witness,

yet it is not a sufficient condition.

For j ∈ {1, 2} we define the set U j ⊂ U of large components for that type j is

a witness and write U j =
{
U j1 , . . . , U

j
rj

}
, for some integer rj ≥ 0. Intuitively, it

should neither of these sets should be empty. We prove this by a counting argument.

Claim 2.15. U1 and U2 are not empty, i.e. r1 > 0 and r2 > 0.

Proof. Without loss of generality assume towards contradiction that r1 = 0, and

thus clearly r2 > 0. Observe that this implies that∣∣U2
ι ∩ V1

∣∣ ≤ 1

2
l1 =

εn1

2 log ξ
and

∣∣U2
ι ∩ V2

∣∣ ≥ l2 =
εn2

log ξ
,

for ι ∈ {1, . . . , r2}. Counting vertices of both types separately, we therefore get

2εn1 + ζa1 =
∣∣Sa1,L∣∣ =

r2∑
ι=1

∣∣U2
ι ∩ V1

∣∣ ≤ r2εn1

2 log ξ

and

2εn2 + ζa2 =
∣∣Sa2,L∣∣ =

r2∑
ι=1

∣∣U2
ι ∩ V2

∣∣ ≥ r2εn2

log ξ
.

This shows (
4 +

2ζa1
εn1

)
log ξ ≤ r2 ≤

(
2 +

ζa2
εn2

)
log ξ,

a contradiction for large enough n1 and n2, since |ζai |ε−1n−1
i = o(1), for i ∈ {1, 2}.

Hence Claim 2.15 holds. �

We continue the proof of Theorem 2.1. Observe that by the definition of wit-

nesses we have ∣∣U jι ∣∣ ≥ ∣∣U jι ∩ Vj∣∣ > 1

2
lj =

εnj
2 log ξ

,

for j ∈ {1, 2} and ι ∈ {1, . . . , rj}. Hence, if we estimate the number of vertices of

type j by only summing over the components in U j we get

rjεnj
2 log ξ

<

rj∑
ι=1

∣∣U jι ∩ Vj∣∣ ≤ (2± o(1))εnj ,

and consequently rj ≤ 5 log ξ, for j ∈ {1, 2}.
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Let U1 ∈ U1 and U2 ∈ U2 be any two large components, i.e. they satisfy∣∣U1 ∩ V1

∣∣ ≥ 1
2 l1 = εn1

2 log ξ and
∣∣U2 ∩ V2

∣∣ ≥ 1
2 l2 = εn2

2 log ξ . Then the probability that in

G(n, P b) there is no edge between U1 and U2 is at most

(1− pb1,2)|U
1∩V1||U2∩V2| ≤ exp

(
− αε

n1 log ξ
· εn1

2 log ξ
· εn2

2 log ξ

)
(2.19)

= exp

(
− ξ

4 log3 ξ

)
.

Taking the union bound for (up to) r1 + r2 − 1 of these events shows that

the probability that in G(n, P ) all components that were large in G(n, P a) are

connected is at least

1− (r1 + r2 − 1) exp

(
− ξ

4 log3 ξ

)
≥ 1− 10 log ξ exp

(
− ξ

4 log3 ξ

)
= 1− o(1).

Thus, whp there is a component C∗ inG(n, P a)∪G(n, P b) = G(n, P ) which contains

Sai,L, for i ∈ {1, 2}.
On the other hand, writing Si,L = Si,L (G(n, P )) for the set of vertices of type

i ∈ {1, 2} in large components of G(n, P ) we get (C∗∩Vi) ⊂ Si,L due to the coupling.

Hence we have

Sai,L ⊂ (C∗ ∩ Vi) ⊂ Si,L.

Furthermore, applying Lemma 2.14, with the same choice of L, directly to G(n, P )

we obtain whp

|Si,L| = 2εni + ζi

for some real function ζi satisfying |ζi| = o(εni). Thus the number of vertices of

type i in the component C∗ satisfies∣∣∣ |C∗ ∩ Vi| − 2εni

∣∣∣ ≤ |ζi|+ |ζai | = o(εni). (2.22)

Moreover, any other large component C in G(n, P ) may at most contain all the

vertices from S1,L \ Sa1,L and S2,L \ Sa2,L, and therefore satisfies

|C ∩ Vi| ≤ |Si,L| −
∣∣Sai,L∣∣ ≤ |ζi|+ |ζai | = o(εni), for i ∈ {1, 2}.

In particular, summing over both types, we have

|C| ≤ |C∗| ,

for large enough n1 and n2 . Consequently, C∗ is already the largest component

L1 (G(n, P )) and satisfies the required asymptotics by (2.22). �

2.4. Subcritical regime: proof of Theorem 2.4

Most of the work for this regime has already been done in Section 2.2.2, since

the associated branching process has essentially the same distribution as the dual

process in the weakly supercritical regime (cf. Section 2.2.2).

Proof of Theorem 2.4. Let the conditions be as in Theorem 2.4. Then, analog-

ously to the proof of Lemma 2.9, we calculate the expected total size of the 2-type
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binomial branching process T in,P , for i ∈ {1, 2}, and get

E
(∣∣T in,P ∣∣) =

1 + µi,3−i − µ3−i,3−i

1− (µ1,1 + µ2,2 − µ1,1µ2,2 + µ1,2µ2,1)
∼ ε−1.

Now let L = δn2/3, for any fixed constant δ > 0 and write SL for the set of

vertices in components of size at least L and sl = |SL|. Then with the coupling

as in Lemma 2.11(i) we get, by applying Markov’s inequality twice and linearity of

expectation,

P (sL ≥ L) ≤ L−1E (sL)

≤ L−1

(∑
v∈V1

P (|Cv| ≥ L) +
∑
v∈V2

P (|Cv| ≥ L)

)
≤ L−1

(
n1P

(∣∣T 1
n,P

∣∣ ≥ L)+ n2P
(∣∣T 2

n,P

∣∣ ≥ L))
≤ ε−1L−2n = (δ2εn1/3)−1 → 0,

since ε3n→∞ by (2.5). Hence, since δ > 0 was arbitrary, whp all components are

of size o(n2/3). �

Remark 2.16. This result can be slightly strengthened: let ξ := ε3n → ∞ and

replace L by L̂ = δn2/3ξ−1/6+c for any 0 < c < 1/6.

2.5. Constant distance from threshold

We complement our close-up analysis of the threshold for the giant component

by investigating the behaviour of G(n, P ) when the distance ε from the threshold

is bounded away from 0.

2.5.1. Above the threshold. In the supercritical regime, when the distance from

the critical point is a constant, G(n, P ) whp has a giant component. The proof is

essentially the same as in Section 2.3 except for some of the arguments used for

calculating the survival probabilities.

Theorem 2.17. For n1 ∈ N and n2 ∈ N with n1 ≥ n2, let n = n1 + n2 and let

ε > 0 be a fixed constant. Furthermore, let

P = (pi,j)i,j∈{1,2} ∈ (0, 1]2×2

be a symmetric matrix of probabilities satisfying the following conditions:

n2µ2,1 →∞, (2.23)

µι,1 + µι,2 = 1 + ε± o(1), for any ι ∈ {1, 2}, (2.24)

where µi,j = pi,jnj for every pair (i, j) ∈ {1, 2}2. Let ρε be the unique positive

solution of the equation

1− ρε − exp (−(1 + ε)ρε) = 0.

Then, whp the following holds for every integer r ≥ 2 and i ∈ {1, 2} :

|L1 (G(n, P )) ∩ Vi| = (ρε ± o(1))ni and |Lr (G(n, P )) ∩ Vi| = o(ni).
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Therefore, in particular,

L1 (G(n, P )) = (ρε ± o(1))n and Lr (G(n, P )) = o(n).

Proof. Let the conditions be as in Theorem 2.17. We will only show the computa-

tion for the survival probabilities, which is very similar to the proof of Lemma 2.7.

For the Fi’s defined in (2.9) we use the same bounding functions as before.

As in the proof of Lemma 2.7 we assume without loss of generality that ρ1 ≥ ρ2

and thus we have F2(ρ1, ρ2) < F2(ρ2, ρ2) and F1(ρ1, ρ2) > F1(ρ1, ρ1). Fix i ∈ {1, 2}.
We consider the bounding functions Fi(ρi, ρi):

Fi(ρi, ρi) = 1− ρi −
(

1− µi,1ρi
n1

)n1
(

1− µi,2ρi
n2

)n2

= 1− ρi − exp

(
−(µi,1 + µi,2)ρi −O

(
µ2
i,1ρ

2
i

n1
+
µ2
i,2ρ

2
i

n2

))
,

by the Taylor-expansion of the natural logarithm around 1. Since µi,1 ≤ 1 + 2ε and

µi,2 ≤ 1 + 2ε, by the conditions of Theorem 2.17 and the fact that ρi ≤ 1 (since it

is a probability), we have

Fi(ρi, ρi) = 1− ρi − exp
(
−
(
µi,1 + µi,2 ±O

(
n−1

2

))
ρi
)

= 1− ρi − exp (−(1 + εi)ρi) ,

where εi = µi,1+µi,2−1±O
(
n−1

2

)
∼ ε, by (2.23) and (2.24). We setD = R>0×(0, 1)

and a real function f on D by setting

f(x, ρ) = 1− ρ− exp(−xρ),

for (x, ρ) ∈ D. Note that we have Fi(ρi, ρi) = f(εi, ρi).

It is well-known that f(x, ρ) = 0 has exactly one solution for any fixed x > 0.

Furthermore note that the partial derivative with respect to the variable x of f does

not vanish on D, therefore we can apply the classical implicit function theorem in

R2. We consider x = ε and denote by (ε, ρε) the corresponding solution of f = 0.

Hence, there is an open set U with ε ∈ U and an open set V with ρε ∈ V such that

{(u, g(u)) | u ∈ U} = {(u, v) ∈ U × V | f(u, v) = 0} ,

where g is a continuous function on U with ρε = g(ε). Let i ∈ {1, 2}. Because

|εi − ε| = o(1), we know that εi ∈ U for large enough n1 and n2, and this implies

that f(εi, g(εi)) = 0. Since g is continuous we have

g(ε1) ∼ g(ε2) ∼ ρε,

and it is sufficient to show that ρ1 ≤ g(ε1) and ρ2 ≥ g(ε2).

For this last step, assume towards contradiction that ρ1 > g(ε1) and observe

that f(ε1, ρ) < 0 for all ρ ∈ (g(ε1), 1]. Since (ρ1, ρ2) is by definition a solution

of (2.8) we have 0 = F1(ρ1, ρ2) ≤ F1(ρ1, ρ1) = f(ε1, ρ1) < 0, a contradiction.

Analogously, ρ2 < g(ε2) contradicts f(ε2, ρ) > 0 for all ρ ∈ (0, g(ε2)).
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Thus we have

ρ1 ∼ ρ2 ∼ ρε, (2.25)

and the remainder of the proof follows the lines of the proof of Theorem 2.1 in

Sections 2.2 and 2.3, by replacing ρ1 ∼ ρ2 ∼ 2ε with statement (2.25). �

2.5.2. Below the threshold. In the subcritical regime, where the distance to the

critical point is a constant, one can obtain a strong upper bound on the size of all

components by a standard application of large deviation inequalities.

Theorem 2.18. For n1 ∈ N and n2 ∈ N with n1 ≥ n2, let n = n1 + n2 and let

1 > ε > 0 be a fixed constant. Furthermore, let

P = (pi,j)i,j∈{1,2} ∈ (0, 1]2×2

be a symmetric matrix of probabilities satisfying the following conditions:

µι,1 + µι,2 = 1− ε± o(1), for any ι ∈ {1, 2}, (2.26)

where µi,j = pi,jnj for every pair (i, j) ∈ {1, 2}2. Then we have whp

L1 (G(n, P )) = O(log n).

Proof. Let the conditions be as in Theorem 2.18. We fix a vertex v and explore

its component Cv in G(n, P ). Denote the resulting spanning tree by Tv and couple

this process with a 2-type branching process Tn,P as in Lemma 2.11(i) such that

Tv ⊂ Tn,P . Let SL be the event that G(n, P ) contains a component of size at least L

for some appropriately chosen real function L. We want to show that P (SL) = o(1).

Let us denote the (possibly infinite) sequence of vertices born in Tn,P , with

respect to the breadth-first exploration, by σ = (v1, v2, v3, . . . ), where v1 = v.

For any vertex u ∈ V1 ∪ V2 let Xu be the random variable that counts the

number of children of u and has a distribution Bin(n1, pj,1) + Bin(n2, pj,2), where

j ∈ {1, 2} is the type of u. Then consider the random variables

Xv,L :=

min{L,|σ|}∑
r=1

Xvr ≤
L∑
r=1

Xvr =: X∗v,L,

where
{
v|σ|+1, . . . , vL

}
is an arbitrary sequence of distinct additional vertices. No-

tice that X∗v,L is a sum of independent Bernoulli random variables satisfying∣∣E (X∗v,L)− L(1− ε)
∣∣ ≤ γ, (2.27)

for some γ = γ(n) = o(L), by (2.26). Using a Chernoff bound (e.g. [74]) yields

P
(
X∗v,L ≥ L− 1

) (2.27)

≤ P
(
X∗v,L ≥ E

(
X∗v,L

)
+ εL− 1− γ

)
(2.27)

≤ exp

(
− (εL− 1− γ)2

2 (L (1− ε) + γ + (εL− 1− γ) /3)

)
γ=o(L)

≤ exp

(
− ε2

2− 4ε
3

L(1± o(1))

)
, (2.28)

uniformly for all vertices v ∈ V1 ∪ V2.
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In order to complete the proof we observe that the event |Tn,P | ≥ L implies

the event Xv,L ≥ L− 1 and therefore we get by application of the union bound

P (SL) ≤
∑

v∈V1∪V2

P (|Cv| ≥ L) ≤
∑

v∈V1∪V2

P (|Tn,P | ≥ L)

≤
∑

v∈V1∪V2

P (Xv,L ≥ L− 1) ≤
∑

v∈V1∪V2

P
(
X∗v,L ≥ L− 1

)
(2.28)

≤ exp

(
log n− ε2

2− 4ε/3
L(1± o(1))

)
= o(1),

for any L > 3ε−2 log n, completing the proof. �

Remark 2.19. In fact this proof also works in the weakly subcritical regime and

shows that whp L1 (G(n, P )) ≤ 3ε−2 log n. Note that if ε3n(log n)−2 → ∞, then

this bound is stronger than the one in Theorem 2.4 (even with the strengthening

from Remark 2.16).

2.6. Concluding remarks

In the previous sections we showed that the emergence of the giant component

in the 2-type random graph G(n, P ) is very similar to the behaviour of the binomial

random graph G(n, p), at least when each row of the expectation matrix is scaled

similarly.

In theory one therefore could study Gk(n, P ), the k-type version of G(n, P ),

assuming that each row of the expectation matrix sums up to approximately 1 + ε.

It is to be expected that in this case we would have ρ1 ∼ · · · ∼ ρk ∼ 2ε and thus

also a unique largest component of size L1 (Gk(n, P )) ∼ 2εn. Proving this for all

k ≥ 3 would be cumbersome at best, since for instance in our proof the bound

on the total expected number of offspring of the dual process relies on explicitly

calculating a set of generating functions.

Therefore let us take another perspective: imposing the row-sum conditions

ensures that the Perron-Frobenius eigenvalue of the offspring expectation matrix

M is roughly 1 + ε, however it also implies that the corresponding normalised left-

eigenvector is not necessarily equal but close to k−1(1, . . . , 1). In this spirit we could

consider Gk(n, P ) for offspring expectation matrices M whose Perron-Frobenius

eigenvalue is 1+ε with the corresponding normalised positive left-eigenvalue v and

study how the survival probabilities behave asymptotically.

The Perron-Frobenius theory (Chapter V.6 in [19]) provides a heuristic for this

since the properly rescaled offspring vector of generation t of the corresponding

branching process converges almost surely to v as t → ∞, under the assumption

that it survives. Thus it would be interesting to know whether in this case it is true

that (ρ1, . . . , ρk) ∼ βεv for some real function βε = o(1).



CHAPTER 3

Emergence of the giant component in random

hypergraphs

3.1. Introduction and main results

Random graph theory was founded by Erdős and Rényi in a seminal series of

papers from 1959-1968. One of the earliest, and perhaps the most important, result

concerned the phase transition in the size of the largest component - a very small

change in the number of edges present in the random graph dramatically alters the

size of the largest component giving birth to the giant component [58]. Over the

years, this result has been refined and improved, and the properties of the largest

component at or near the critical threshold are now very well understood. With

modern terminology, and incorporating the strengthenings due to Bollobás [31] and

 Luczak [86] we may state the result as follows.

Let G(n, p) denote the random graph on n vertices in which each pair of ver-

tices forms an edge with probability p independently. We consider the asymptotic

properties of G(n, p) as n tends to infinity. By the phrase with high probability (or

whp) we mean with probability tending to 1 as n tends to infinity.

Theorem 3.1 ([31, 58, 73, 86]). Let ε = ε(n) > 0 satisfy ε→ 0 and ε3n→∞.

(a) If p = 1+ε
n , then whp the largest component of G(n, p) has size (1 ± o(1))2εn,

while all other components have size O(ε−2 log(ε3n)).

(b) If p = 1−ε
n , then whp all components of G(n, p) have size O(ε−2 log(ε3n)).

The focus of this chapter lies in a generalisation of this result to hypergraphs.

While Theorem 3.1 (and much more) has been known for several decades, for hy-

pergraphs relatively little was known until recently.

Given an integer k ≥ 2 a k-uniform hypergraph consists of a set V of vertices

and a set E ⊂
(
V
k

)
of (hyper-)edges, each of which consists of k vertices. (The

case k = 2 corresponds to a graph.) For hypergraphs there are several meaningful

and natural definitions for connectedness. In the following we concentrate on the

notion of ‘high-order connectedness’. Given an integer 1 ≤ j ≤ k − 1, two distinct

j-sets of vertices (i.e. j-element subsets of the vertex set V ) J1 6= J2 are said to be

j-connected if there is a sequence e1, . . . , em ∈ E of edges such that

• J1 ⊂ e1 and J2 ⊂ em;

• |ei ∩ ei+1| ≥ j for all 1 ≤ i ≤ m− 1.

43
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In other words, we may walk from J1 to J2 using edges which consecutively intersect

in at least j vertices. Any j-set is always j-connected to itself. This forms an

equivalence relation on the set
(
V
j

)
of j-sets. A j-component is an equivalence class

of this relation, i.e. a maximal set of pairwise j-connected j-sets. The case j = 1

is also known as vertex-connectedness, and for j ≥ 2 we use the term high-order

connectedness.1

The case of vertex-connectedness is by far the most studied, not necessarily

because it is a more natural definition, but because it is usually substantially easier

to understand and analyse.

3.1.1. Main results. We consider the natural analogue of the G(n, p) model: let

Hk(n, p) be a random k-uniform hypergraph with vertex set V = [n] in which each

k-tuple of vertices is an edge with probability p independently.

Recently, Cooley, Kang, and Person [51], and independently Lu and Peng [84],

proved that for all 1 ≤ j ≤ k − 1, the phase transition for the largest j-component

in Hk(n, p) occurs at the critical probability threshold of

p̂g = p̂g(n, k, j) := 1

(kj)−1

1

( n
k−j)

.

While the first group already determined the size of the largest j-component up to

a multiplicative constant even when ε = o(1), the second group studied only the

simpler regime when ε > 0 is a constant, although they also provide the leading

constant of the size of the largest j-component.

We extend these results and determine the size of the largest j-component up

to lower order terms immediately after the phase transition, and also show that it

is unique in the sense that the size of the second largest j-component is of smaller

order. Once we know that it is unique, we refer to it as the giant component.

Theorem 3.2. Let 1 ≤ j ≤ k − 1 and let ε = ε(n) > 0 satisfy ε → 0 and

ε3n1−2δ →∞, for some constant δ > 0.

(a) If p = (1 + ε)p̂g, then whp the size of the largest j-component of Hk(n, p) is

(1± o(1)) 2ε

(kj)−1

(
n
j

)
while all other j-components have size at most o(εnj).

(b) If p = (1 − ε)p̂g, then whp all j-components of Hk(n, p) have size at most

O(ε−2 log n).

The case k = 2 (then automatically j = 1) is simply Theorem 3.1. The case

j = 1 for general k was already proved by Schmidt-Pruzan and Shamir [99]. Indeed

much more is known for that case and will be illustrated in Section 3.5.

Our proof works for all k ≥ 2 and 1 ≤ j ≤ k− 1 (i.e. all permissible pairs j, k).

For j ≥ 2 the condition ε3n1−2δ arises from our proof method and is probably

not optimal. By contrast, for j = 1 we do not need any of the machinery which

we develop in this chapter, so our proof works under the slightly weaker, optimal

assumption ε3n → ∞. Thus Sections 3.2 and 3.4 provide a new, short proof of

1This notion is not to be confused with the (vertex-)connectivity of a (hyper-)graph H measuring
the size of the smallest vertex-separator in H.



3.1. INTRODUCTION AND MAIN RESULTS 45

the result in [99]. Most likely, for general j ≥ 2, the optimal condition would be

ε3nj →∞ for which the bounds from the super-critical case (Θ(εnj)) and the sub-

critical case (O(ε−2 log n)) match up to the log n term, suggesting that we have a

smooth transition. We discuss the critical window in more detail in Section 3.5.

3.1.2. Key lemma. For general j, in the supercritical regime (i.e. p = (1 + ε)p̂g),

we need an additional, fundamentally new tool called the smooth boundary lemma

(Lemma 3.8 in Section 3.3), which is the main original contribution of this chapter.

In this introduction we will be deliberately vague about definitions and state a

simplified version of the smooth boundary lemma (Lemma 3.3 below).

The rest of the argument is in essence very similar to a recent proof of the graph

case by Bollobás and Riordan [35]. We will prove Theorem 3.2 using a breadth-first

search algorithm to explore the component containing an initial j-set. We refer

to the collection of j-sets at fixed distance from the initial j-set as a generation.

Roughly speaking, the smooth boundary lemma says that during the (supercritical)

search process, most generations are ‘smooth’ in the sense that any set L of size at

most j − 1 lies in approximately the ‘right’ number of j-sets of the generation.

For any given j-set J we explore its component CJ via a breadth-first search al-

gorithm. Let ∂CJ(i) denote the i-th generation of this process, which we sometimes

refer to as the boundary of the component after round i. For any ` = 1, . . . , j − 1

let i0(`) be the first generation i for which ∂CJ(i) is significantly larger than n`

and for an `-set L let dL(∂CJ(i)) be the number of j-sets of ∂CJ(i) that contain L.

Let i1 denote the generation at which the search process hits one of three stop-

ping conditions (S1), (S2), and (S3), which will be stated explicitly in Section 3.3.1.

Lemma 3.3 (Smooth boundary lemma – simplified form). Let ε, p be as in The-

orem 3.2(a). With probability at least 1− exp(−nΘ(1)), for all J, `, L, i such that

• J is a j-set of vertices;

• 0 ≤ ` ≤ j − 1;

• L is an `-set of vertices;

• i0(`) + Θ(log n) ≤ i ≤ i1,

the following holds:

dL(∂CJ(i)) = (1± o(1))
|∂CJ(i)|(

n
j

) (
n

j − `

)
.

Lemma 3.3 (or its more explicit form, Lemma 3.8) is an interesting result in

itself, giving valuable information about the structure of (large) components.

In Chapter 4 we will demonstrate how this lemma also plays a key role in estab-

lishing the threshold for j-connectedness in Hk(n, p). Indeed we derive a stronger

result: the hitting time for j-connectedness in the random k-uniform hypergraph

process coincides with the moment when the last isolated j-set disappears. Most

notably the proof of this result – except for Lemma 3.8 itself – is largely elementary.

Thus, we believe that the smooth boundary lemma will prove useful for many other

applications in the field of random hypergraphs.
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3.1.3. Intuition and proof outline. In this section, we relate the study of ‘large’

components to branching processes, and provide a sketch of the proof of The-

orem 3.2(a) using the smooth boundary lemma. We will be informal about quan-

tifications and use terms like ‘large’ and ‘many’ without properly defining them.

The rigorous definitions can be found in the actual proofs. From now on, whenever

we refer to a ‘component’ we mean a j-component.

Intuition: branching processes. As is the case for graphs, there is a very simple

heuristic argument which suggests at what threshold we expect the phase transition

to occur and how large we expect the largest component to be. We explore a

component of Hk(n, p) via a breadth-first search process: we begin with one ‘active’

j-set, then find all edges containing that j-set, thus ‘discovering’ any further j-sets

that they contain, then from each of these new ‘active’ j-sets in turn we look for

any more edges containing them and so on.

The first active j-set is contained in
(
n−j
k−j
)

many k-sets, all of which could

potentially be edges. Later on when considering an active j-set we may already

have queried some of the k-sets containing it. However, early in the process,
(
n
k−j
)

is a good approximation (and certainly an upper bound) for the number of queries

which we make from any j-set. Each of these queries results in an edge with

probability p, and for each edge we generally discover
(
k
j

)
− 1 new j-sets (it could

be fewer if some of these j-sets were already discovered, but intuitively this should

not happen often).

We may therefore approximate the search process by a branching process T ∗:
here we represent j-sets by individuals and for each individual its number of children

is given by a random variable with distribution Bin
((

n
k−j
)
, p
)

multiplied by
(
k
j

)
−1.

The expected number of children of each individual is
((
k
j

)
− 1
)(

n
k−j
)
p. If this

number is smaller than 1, then the process always has a tendency to shrink and

will therefore die out with probability 1. This roughly corresponds to the initial

j-set being in a small component. On the other hand, if the expected number of

children is larger than 1, the process has a tendency to grow and therefore has

a certain positive probability of surviving indefinitely, corresponding to the initial

j-set being in a large component.

The expected number of children is exactly 1 when p = p̂g = (
(
k
j

)
−1)−1

(
n
k−j
)−1

,

which is why we expect the threshold to be located there. Furthermore, for p =

(1 + ε)p̂g the survival probability % is asymptotically 2ε

(kj)−1
. This tells us that

we should expect about %
(
n
j

)
of the j-sets of Hk(n, p) to be contained in large

components. Moreover, large components should intuitively merge quickly and

thus form a unique giant component.

Proof outline: motivating smoothness. As is often the case in such theorems,

one half of Theorem 3.2 is easy to prove. Specifically, part (b) can easily be proved

using the ideas implemented by Krivelevich and Sudakov [82] for the graph case.

We now give an outline of the proof of Theorem 3.2(a). Much of this is similar to
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the argument for graphs given by Bollobás and Riordan [35] – we will highlight the

points at which new ideas are required.

The main difficulty is to calculate the number X of j-sets in large components.

We first compute its expectation E(X). Now if we can prove that X is well-

concentrated around E(X), then we can show that almost all of these j-sets lie in

one large component using a standard sprinkling argument.

The first issue that we encounter is, if we find an edge, how many new j-sets do

we discover? It could be as many as
(
k
j

)
− 1, but on the other hand some of these

j-sets may already have been discovered, so perhaps only one of these is genuinely

new. (Any k-set which would give no new j-set should not be queried at all.) This

is important for two reasons: firstly, it is important for the survival probability

of the branching process approximation; and secondly, it may have a significant

impact on the size of the component we discover.

Early on in the exploration process (since a very small proportion of j-sets have

already been discovered) we should discover
(
k
j

)
−1 new j-sets for almost every edge.

For an upper coupling, we will simply assume that we discover
(
k
j

)
− 1 new j-sets

for each edge, and couple this process with the branching process T ∗. In order to

construct a lower coupling we have to be a bit more careful; we only query a k-set if

it contains
(
k
j

)
− 1 previously undiscovered j-sets, thus ensuring that we can define

a lower coupling with a branching process T∗ (defined in Section 3.1.4) which has a

structure similar to T ∗. It follows from the bounded degree lemma in [51] (we use a

strengthening of this result: Lemma 3.13) that these two couplings have essentially

the same behaviour. For this overview we therefore consider only T ∗.
The probability that a j-set lies in a large component, and therefore contributes

to X, is approximately the survival probability of the branching process T ∗, which

is approximately 2ε

(kj)−1
. Thus we have E(X) ∼ 2ε

(kj)−1

(
n
j

)
. For the second moment

we need to consider the probability that two (not necessarily distinct) j-sets J1 and

J2 are both in large components. We grow a (partial) component CJ1 from the

j-set J1 until one of the following three stopping conditions is reached.

(i) the component is fully explored;

(ii) ‘many’ j-sets have been discovered;

(iii) ‘fairly many’ j-sets are currently active (i.e. are in the ‘boundary’ ∂CJ1).

Since we are interested in the probability that both j-sets lie in large compon-

ents we may assume that we do not stop due to condition (i). Next, note that if

stopping condition (iii) is applied, then with high probability J1 lies in a large com-

ponent. This is not hard to prove using the branching process approximation – if

we have fairly many active individuals, then it is highly probable that the branching

process survives. Hence stopping conditions (ii) or (iii) are essentially only applied

if the component of J1 is large. This happens with probability roughly 2ε

(kj)−1
.

We then delete all of the j-sets contained in CJ1 from Hk(n, p) and begin

growing a component CJ2 from the second j-set J2 (assuming J2 itself has not been
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deleted), where any k-set containing a deleted j-set can now no longer be queried.

Deleting these j-sets ensures that the new search process is independent of the

old process, albeit in a restricted random hypergraph. Furthermore, it still follows

from the bounded degree lemma (Lemma 3.13) that T∗ will be a lower coupling,

and trivially T ∗ is still an upper coupling. Once again, we stop the process if CJ2

is fully explored or it becomes large, and the probability that it becomes large is

approximately 2ε

(kj)−1
.

However, since we deleted some j-sets, it might happen that the search process

for J2 stays small even though the component of J2 in Hk(n, p) is large. This can

only happen if there is an edge in Hk(n, p) containing both a j-set of the boundary

∂CJ1 ⊂ CJ1 (i.e. it was active when we deleted it), and a j-set of CJ2 . We would

like to show that the expected number of such edges is o(1), or equivalently, that

the number of k-sets containing two j-sets as above is o(1/p), and thus with high

probability no such edge exists.

This is the point at which the proof requires new ideas not needed in the graph

case. For it is not enough simply to count the number of pairs of j-sets, one from

∂CJ1 and one from CJ2 , for the following reason: given two j-sets, how many k-

sets contain both of them? The answer is heavily dependent on the size of their

intersection. Increasing the size of the intersection by just one may lead to an

additional factor of n in the number of such k-sets.

We therefore need to know that ∂CJ1 and CJ2 behave approximately as expec-

ted with respect to the size of intersections of j-sets chosen one from each. For

this we prove the smooth stop lemma (Lemma 3.28). It states that, with (expo-

nentially) high probability, every set L of size 1 ≤ ` < j lies in approximately the

‘right’ number of j-sets of ∂CJ1 .

Yet we do not prove Lemma 3.28 directly, but instead we establish a much

more powerful tool – the smooth boundary lemma (Lemma 3.3, or rather its more

precise form Lemma 3.8) – which provides a much better understanding of the way

in which components grow. Thus it is certainly also very interesting in its own right

and has already proven to be applicable in a much broader context (see Chapter 4).

This allows us to complete the proof of Theorem 3.2(a): we apply Lemma 3.28

to each j-set J of CJ2 and thereby determine the number of j-sets of ∂CJ1 which

intersect J in some subset L up to some small error. As a consequence we obtain a

close approximation of the total number of k-sets which we have not queried because

of deletions. This shows that with high probability we have not missed any edges

from CJ2 , and thus the probability that J1 and J2 both lie in large components is

approximately
(

2ε

(kj)−1

)2

, which multiplied by the number of pairs (J1, J2) shows

that the second moment is small enough to apply Chebyshev’s inequality and deduce

that X is concentrated around its expectation.

Note that Lemma 3.3 (respectively Lemmas 3.8 and 3.28) is trivial in the case

j = 1. In this case the proof of Theorem 3.2 therefore becomes substantially shorter.

This suggests a concrete mathematical reason why the case of vertex-connectedness
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is genuinely easier than the more general case and not simply easier to visualise.

Essentially it comes down to the following: if we restrict our attention to a set of

vertices of a given size, then every such set behaves identically. However for sets of

j-sets this is far from true.

Structure of the chapter. The chapter is organised as follows.

• In Section 3.2 we quickly prove Theorem 3.2(b).

• In Section 3.3 we investigate the breadth-first search process (with stop-

ping conditions) in detail and prove the smooth boundary lemma (Lem-

mas 3.3 and 3.8).

• In Section 3.4 we prove Theorem 3.2(a) using the smooth stop lemma

(Lemma 3.28), which is based on Lemma 3.8.

• In Section 3.5 we conclude the chapter with a discussion of open questions.

3.1.4. Notation and setup. Throughout the chapter we fix integers k ≥ 2 and

1 ≤ j ≤ k− 1. We omit floors and ceilings when they do not significantly affect the

argument. We use log to denote the natural logarithm (i.e. base e).

All asymptotics in the chapter will be as n → ∞. In particular, we use the

phrase with high probability, or whp, to mean with probability tending to 1 as

n → ∞. For functions f = f(n), g = g(n) > 0, and h = h(n) ≥ 0 we write

f = (1 ± h)g to mean (1 − h(n))g(n) ≤ f(n) ≤ (1 + h(n))g(n) for all sufficiently

large n ∈ N, and similarly with slight abuse of notation we write f 6= (1 ± h)g

to mean that for all sufficiently large n ∈ N either f(n) < (1 − h(n))g(n) or

f(n) > (1 + h(n))g(n). Furthermore, we also use the notation f ∼ g to mean

f = (1± o(1))g (or in other words |f − g| = o(g)). By the notation f � g we mean

that f = o(g).

By the notation c · X, for a constant c ∈ N and an integer-valued random

variable X, we mean a random variable Y with distribution given by Pr(Y = ci) =

Pr(X = i), for any i ∈ N. (Alternatively c ·X may be considered as consisting of c

identical copies of X – note that it does not consist of c independent copies of X.)

Given two (real-valued) random variables X,Y , we say that X is stochastically

dominated by Y if Pr(X ≥ z) ≤ Pr(Y ≥ z) for all z ∈ R.

3.1.4.1. Parameters. We will fix a certain set of parameters (in addition to

j and k) from now on for the remainder of the chapter. Their relation to one

another (and asymptotic behaviour) will be used without explicit reference, since

these would have a negative impact on the overall readability.

First of all, for convenience, we define c` :=
(
k−`
j−`
)
− 1 for every 0 ≤ ` ≤ j − 1.

We fix a constant 0 < δ < 1/6, and think of it as an arbitrarily small constant (in

general our results become stronger for smaller δ). We will have various further

parameters throughout the chapter satisfying the following hierarchies:

n−1/3+2δ/3 � λ� ε∗ � ε� 1

and

ε∗, n
−δ/24 � η � γ0(log n)−1 � (log n)−1.
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We further define γ` := 8`γ0 for any 1 ≤ ` ≤ j − 1.

Note in particular that for any ε satisfying the conditions of Theorem 3.2 we

can choose the remaining parameters such that this hierarchy is satisfied.

3.1.4.2. Set-degrees. Given a hypergraph H and a set L of vertices of H, the

degree of L in H, denoted by dL(H), is the number of edges of H which contain

L. For a natural number `, the maximum `-degree of H, denoted by ∆`(H), is the

maximum of dL(H) over all sets L of ` vertices of H. When ` = 0, this is simply

the number of edges of H.

With slight abuse of notation we will regard a collection J ⊂
(

[n]
j

)
of j-sets

(for instance a j-component) as a j-uniform hypergraph HJ with vertex set [n]

and edge set J . In particular we use dL(J ) and ∆`(J ) instead of dL(HJ ) and

∆`(HJ ), respectively.

3.1.4.3. Exploration process. We will explore components in Hk(n, p) via a

breadth-first search algorithm: loosely speaking we begin with a j-set J and query

all k-sets which contain J to determine whether they form edges. For any that do,

the further j-sets they contain are neighbours of J , and for each of these in turn

we query k-sets containing them to discover whether they form an edge, and so on.

During this process we denote a j-set as:

• neutral if it has not yet been visited by the search process;

• active if it has been visited, but not yet fully queried;

• explored if it has been fully queried.

We refer to discovered j-sets to mean j-sets that are either active or explored, but

not neutral.

More formally, we fix a pair σ = (σj , σk) of total orders, where σj is an order

on
(

[n]
j

)
and σk on

(
[n]
k

)
. Given a j-set J we will consider a standard breadth-first

search algorithm BFS(J) which, in round i, keeps track of a list Qi of discovered

j-sets. Initially, the list Q0 consists of the active j-set J , and all other Qi are empty.

In round i ≥ 0, for each j-set J ′ ∈ Qi in turn, we query all k-sets containing J ′

and at least one (still) neutral j-set (one by one, according to σk). If a queried k-set

K is indeed an edge, then all (still) neutral j-sets J ′′ ⊂ K are added at the end of

Qi+1 (in order according to σj). Then J ′ is marked as explored, and we proceed

with the next j-set in Qi. Once all j-sets in Qi are explored, round i ends. Now

if Qi+1 is non-empty, then we proceed with round i + 1. Otherwise, the process

stops.

For i ≥ 0 we write CJ(i) for the (partial) component discovered up to the

beginning of round i, i.e. it contains all j-sets from Q0, . . . ,Qi (without order).

Similarly, we denote by ∂CJ(i) the i-th generation of the process, which is the set

of j-sets which are active at the beginning of round i, i.e. the set of all j-sets in Qi
(without order).

However, for some arguments we need to consider the process on a finer time

scale. When speaking of the process BFS(J) at time t we mean after the t-th query

has taken place, and write BJ(t) for the set of j-sets discovered at that point.
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Additionally, we denote the time at which the last query of round i− 1 takes place

by ϑi, so in particular we have BJ(ϑi) = CJ(i) for any i ≥ 0.

For purely technical reasons (see Lemmas 3.13 and 3.15) we want BJ(t) to be

defined for all 0 ≤ t ≤
(
n
k

)
. Therefore, once the process has terminated, we query all

k-sets which have not been queried yet in an arbitrary order (however no j-sets are

considered active any more). Similarly, if the context clarifies the initially active

j-set J we usually write BFS instead of BFS(J) for convenience.

3.1.4.4. Branching processes. We will want to approximate this search process

by branching processes (where individuals represent j-sets):

• T ∗ is a branching process in which for each individual the number of

children is given by c0 · Bin
((

n
k−j
)
, p
)

independently;

• T∗ is a branching process in which for each individual the number of

children is given by c0 · Bin
(
(1− ε∗)

(
n
k−j
)
, p
)

independently.

It is clear that T ∗ forms an upper coupling for BFS. It is less obvious that T∗
is a lower coupling (whp), but this fact will be proved later (see Lemma 3.17).

Remark 3.4. It is for this reason that we need ε∗ � ε – then in the lower coupling

T∗ the expected number of children is still approximately 1+ε, i.e. the lower coupling

and upper coupling are still very similar.

3.1.4.5. Concentration inequality. We will use the following form of a Chernoff

bound for sums of independent Bernoulli random variables.

Theorem 3.5 (e.g. [74]). Let X be the sum of finitely many i.i.d. Bernoulli random

variables. Then for any ζ > 0,

P (X ≥ E(X) + ζ) ≤ exp

(
− ζ2

2 (E(X) + ζ/3)

)
P (X ≤ E(X)− ζ) ≤ exp

(
− ζ2

2E(X)

)
.

We also borrow a lemma from [51], which states that we may pick out a sub-

sequence of queries and treat it like an interval of the search process. To this end

we denote by Xt, for each t = 1, . . . ,
(
n
k

)
, the indicator random variable associated

to the t-th query of the search process.

We will be considering a random subsequence t1, t2, . . . , ts from [
(
n
k

)
]. We say

ti is determined by the values of X1, . . . , Xti−1 to mean the following: for any

a ∈ [
(
n
k

)
], the indicator function of the event {ti = a} is a deterministic function of

(the values of) X1, . . . , Xa−1. In particular this means that ti is chosen before Xti

is revealed.

Lemma 3.6 ([51]). Let S = (t1, t2, . . . , ts) be a (random, ordered) index set chosen

according to some criterion such that

• ti is determined by the values of X1, . . . , Xti−1;

• with probability 1 we have 1 ≤ t1 < t2 < . . . < ts ≤
(
n
k

)
.
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Then (Xt1 , . . . , Xts) is distributed as (Y1, . . . , Ys), where Y1, . . . , Ys are independent

Bernoulli random variables with mean p. In particular, we may apply the Chernoff

bound (Theorem 3.5) to
∑
i∈S Xi.

This lemma applies in particular to subsequences given by the set of queries to

k-sets containing a particular `-set while exploring any component, and we therefore

have the following corollary.

Corollary 3.7. With probability at least 1−exp(−Θ(nδ/2)) for every 1 ≤ ` ≤ j−1,

for every `-set L and for every component C, if the number x of queries from j-sets

in C to a k-set containing L satisfies x ≥ nk−j+δ, then the number of edges in C
containing L is (1± o(1))px.

Proof. First fix `, L and C. By Lemma 3.6 we may apply the Chernoff bound

(Theorem 3.5) to the set of queries to k-sets containing L within C. Then the

probability that the number of edges in C containing L is not in (1± ζ)px, for some

constant ζ > 0, is at most

2 exp

(
− (pxζ)2

3px

)
= 2 exp

(
−pxζ2/3

)
≤ 2 exp

(
−nδζ2/3

)
.

We may now apply a union bound over all choices of ` and L (of which there

are at most nj) and all choices of C (of which there are at most nj) and deduce

that the probability that any one of these choices goes wrong is at most

2n2j exp
(
−ζ2nδ/3

)
≤ exp

(
−nδ/2

)
�

3.2. Subcritical regime: proof of Theorem 3.2(b)

The proof idea is the same as that of the subcritical graph case as proved by

Krivelevich and Sudakov [82].

Proof of Theorem 3.2(b). We observe that a component of size m must have at

least m/c0 edges, which were found within an interval of length at most m
(
n
k−j
)

of the search process. Let us consider the probability that an interval of this

length contains so many edges. By Lemma 3.6 we may apply the Chernoff bound

(Theorem 3.5) and obtain

P
(

Bin

(
m

(
n

k − j

)
, (1− ε)p̂g

)
≥ m/c0

)
≤ exp

(
− ε2m2/c0

2

2 ((1− ε)m/c0 + εm/3c0)

)
≤ exp

(
−ε

2m

2c0

)
.

If m ≥ 3c0kε
−2 log n, then this probability is at most n−3k/2 = o(n−k), and

therefore we may take a union bound over all possible starting points for the interval,

of which there are at most
(
n
k

)
< nk, and still have a probability of o(1). In

other words, whp no such interval exists, and therefore no component of size m ≥
3c0kε

−2 log n exists. Note that we were not concerned about optimising the bound

on m. �
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3.3. Smooth exploration

In Section 3.1.3 we illustrated why a thorough understanding of the explora-

tion process BFS (with additional stopping conditions) is crucial to the proof of

Theorem 3.2(a) in Section 3.4. We use BFS to grow the component of some j-set

J until at the beginning of some round i ∈ N one of the following three stopping

conditions is reached:

(S1) the component of J is fully explored (i.e. CJ(i) = CJ(i− 1));

(S2) the (partial) component CJ(i) has reached size at least λnj ;

(S3) the i-th generation ∂CJ(i) has reached size at least λ2nj .

Moreover, we denote the (first) round in which any these stopping conditions is

invoked2 by

i1 = i1(J, λ) := min
i∈N
{(S1) ∨ (S2) ∨ (S3) holds in round i}. (3.1)

Note that this stopping time is crucially influenced by the choice of λ (see Sec-

tion 3.1.4.1). Our choice for the asymptotic properties of λ will be motivated in

the proof of Theorem 3.2 (a) in Section 3.4. Recall that we denoted the time of the

last query performed before the start of round i1 by ϑi1 .

A technical point on both the second and the third stopping conditions is that

we check them only at the beginning of each round, i.e. we do not stop in the

middle of a generation. This is in contrast to the stopping procedure in the graph

case in [35] – in the hypergraph case, stopping immediately would lead to significant

technical difficulties due to the set of active j-sets being spread over two generations.

We will show later that the process does not expand too quickly (Lemma 3.16), and

thus neither the set of active j-sets nor the whole (partial) component ends up being

significantly bigger than the threshold for the stopping condition. Therefore our

convention is much more convenient than the one in [35].

We will focus primarily on ‘large’ components, and thus we define the event E
of stopping due to stopping condition (S2) or (S3) by

E = E(J, λ) := {(S2) ∨ (S3) holds in round i1}. (3.2)

3.3.1. Smooth boundaries. Our goal is to show that the generations of BFS will

eventually become ‘smooth’.

The argument is based on various concentration results, and in order for these

to be valid we need the average degree of `-sets to be reasonably large. Therefore

we will define ‘starting rounds’ i0(`), prior to which we have no information about

the degrees of `-sets, so they may be very ‘non-smooth’ (in the sense that there is a

large disparity between maximum and minimum degree). Over time, though, any

disparity will tend to even itself out. We will set i∗(`) to be the number of rounds

necessary for this process to be complete, and then from round i1(`) onwards, the

degrees of `-sets should be smooth.

2This is well-defined since BFS always terminates in finite time.
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Formally we define these integers as follows: for any ` = 1, . . . , j − 1 let

i0(`) := min
i∈N

{
|∂CJ(i)| ≥ n`+δ

}
,

and set r` := c`
c0

=
(k−`j−`)−1

(kj)−1
. Moreover we set i∗(`) :=

⌈
(j−`) logn

− log((1+2η+2ε)r`)

⌉
, and

i1(`) := i0(`) + i∗(`).

We observe that 0 < i∗(`) = Θ(log n) since r` < 1 is bounded away from 1. Lastly,

we set i1(0) := i∗(0) := i0(0) := 0.

Lemma 3.8 (Smooth boundary lemma). Let ε, p be as in Theorem 3.2(a). With

probability at least 1−exp(−Θ(nδ/4)), using BFS(J) with stopping conditions (S1),

(S2), and (S3), for every J, `, L, i such that

• J is a j-set of vertices;

• 0 ≤ ` ≤ j − 1;

• L is an `-set of vertices;

• i1(`) ≤ i ≤ i1
the following holds:

dL(∂CJ(i)) = (1± γ`)
|∂CJ(i)|(

n
j

) (
n

j − `

)
.

Furthermore, we have i0(0) ≤ i1(0) ≤ i0(1) ≤ i1(1) ≤ · · · ≤ i0(j − 1) ≤ i1(j − 1).

Recall that the parameters γ`, for 0 ≤ ` ≤ j − 1, which we use as error-terms

in Lemma 3.8, were defined in Section 3.1.4.1. Note that we may choose γ` � ε,

for 0 ≤ ` < j, leading to very sharp bounds on the set degrees. However, this

assumption is not necessary for our proof.

Lemma 3.8 is a very deep result and one of our major contributions. In order

to prove Lemma 3.8 we develop various tools in Sections 3.3.2 to 3.3.6, followed by

its proof in Section 3.3.7.

Remark 3.9. Throughout the chapter we will have various claims and lemmas

stating that a certain good event holds with very high probability, generally 1 −
exp(−Θ(nδ/2)) (though sometimes also 1 − exp(−Θ(nδ/4))). Without explicitly

stating so, we will subsequently assume that the good event always holds.

More formally, we introduce a new stopping condition for each lemma, and ter-

minate the process if the corresponding good event does not hold. By a union bound

over all bad events, as long as there are not too many of them, with very high prob-

ability no such stopping condition is ever invoked (note that P (n)·exp(−Θ(nδ/2)) =

exp(−Θ(nδ/2)) for any polynomial P ).

A priori it is not obvious that the statement of Lemma 3.8 is not empty, because

we do not yet know that i1 ≥ i1(`), and in fact this knowledge is also used in its

proof. To this end we show that initially the component grows fast enough that

the portion of the component discovered before the start of the smoothing process

(for (j − 1)-sets) is negligible.
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Lemma 3.10. With probability at least 1− exp(−Θ(nδ/2)), for every s = 1, . . . , j

and every ` = 0, . . . , s− 1, if i0(s− 1) exists, then we have

∆` (CJ (i0(s− 1))) = o(λns−`).

This result is surprisingly tricky to obtain, but we prove Lemma 3.10 in Sec-

tion 3.3.5. Subsequently we then apply Lemma 3.10 to show that i1 ≥ i1(`) for

all 0 ≤ ` < j conditional on the event E , i.e. in particular when exploring a ‘large’

component.

Lemma 3.11. Conditioned on E, with probability at least 1 − exp(−Θ(nδ/2)), we

have i1 − i0(j − 1) ≥ δ
2ε
−1 log n

The proof of Lemma 3.11 concludes Section 3.3.5 and is based on Lemma 3.16

providing an upper bound on the expansion of the search process BFS.

3.3.2. Bounded degrees. Recall that BJ(t) denotes the set of j-sets which have

been discovered by BFS(J) up to time t, i.e. having made precisely t queries so far.

We observe that the number of edges et,J which we have found after t queries is

well-concentrated. In particular, this allows us to switch between the time scales

of queries and rounds with negligible errors.

Lemma 3.12. With probability at least 1− exp(−Θ(nδ/2)), for every j-set J and

every t = 0, . . . ,
(
n
k

)
, the number of edges et,J found in the process BFS(J) up to

time t satisfies et,J = (1± η)pt if pt ≥ nδ,

et,J ≤ (1 + η)nδ otherwise.

Proof. Note that et;J has distribution Bin(t, p). Let us first consider the case t ≥
nδ/p. Then by the Chernoff Bound (Theorem 3.5) we have

P (et,J 6= (1± η)pt) ≤ 2 exp
(
−η2nδ/3

)
≤ 2 exp(−nδ/2),

since η ≥
√

3n−δ/4. Similarly if t < nδ/p we have

P
(
et,J > (1 + η)nδ

)
≤ P

(
Bin

(
p−1nδ, p

)
> (1 + η)nδ

)
≤ exp(−nδ/2).

Finally we apply a union bound over all j-sets J and times t to bound from above

the probability that does not hold by

2

(
n

k

)
exp(−nδ/2) ≤ exp(−nδ/2/2) = exp(−Θ(nδ/2))

as required. �

Observe that et,J can also be seen as a set-degree for ` = 0, in fact we have

et,J = d∅(BJ(t)) = ∆0(BJ(t)). The following lemma provides a crude upper bound

on the set degrees in BJ(t) for general 0 ≤ ` < j. It is a more widely applicable

strengthening of Lemma 12 from [51].
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Lemma 3.13. With probability at least 1−exp(−Θ(nδ/2)), for every j-set J , every

` = 0, . . . , j − 1 and every t = 0, 1, . . . ,
(
n
k

)
the process BFS(J) with stopping condi-

tions (S1), (S2), and (S3) has the following property:

∆`(BJ(t)) = O(tpn−` + nδ).

In particular, if for some i = 0, . . . , i1 and ` = 0, . . . , j − 1 we have |CJ(i)| ≥
n`+δ, then

∆`(CJ(i)) = O(|CJ(i)|/n`).

The proof of Lemma 3.13 is based on analysing the degree dL(BJ(t)) by splitting

it into two parts.

• A jump to L occurs when we query a k-set containing L from a j-set which

did not contain L and the k-set forms an edge of Hk(n, p). Such an edge

contributes at most
(
k−`
j−`
)

to dL(BJ(t)).

• A pivot at L occurs when we query any k-set from a j-set containing L

and it forms an edge. Such an edge contributes at most
(
k−`
j−`
)
− 1 to

dL(BJ(t)).

The concepts of jumps and pivots have already been used in [51]. A significantly

more precise investigation of jumps and pivots will prove crucial in the proof of

Lemma 3.8 in Section 3.3.7.

Proof of Lemma 3.13. Clearly the contribution of J to the degree of any `-set is at

most one and thus negligible, so we ignore it. We prove the statement by induction

on `. For ` = 0 the statement follows from Lemma 3.12, so consider any ` ≥ 0 and

assume that the statement holds for all 0, . . . , `− 1.

Fix 0 ≤ ` < j and an `-set L, and consider its degree dL(BJ(t)), i.e. the number

of j-sets from BJ(t) which contain L. Let d
(jp)
L (BJ(t)) denote the contribution to

dL(BJ(t)) made by jumps to L and d
(pv)
L (BJ(t)) denote the contribution made by

pivots at L.

We start with the contribution d
(jp)
L (BJ(t)) made by jumps, and first consider

the case when t ≥ p−1n`+δ. In other words, we look at an arbitrary j-set J ′ and

distinguish the size 0 ≤ w ≤ ` − 1 of its intersection W := J ′ ∩ L with L. By the

induction hypothesis, with probability at least 1−exp(−Θ(nδ/2)), for any particular

W the number of j-sets J ′ with this intersection is at most

∆w(BJ(t)) = O(tpn−w),

and each set J ′ ∪ L can be extended to at most
(

n
k−j−`+w

)
many k-sets. Thus the

number of queries which could potentially lead to a jump to L is at most

`−1∑
w=0

(
`

w

)
O(tpn−w)

(
n

k − j − `+ w

)
= O(tpnk−j−`).

Since we are only interested in an upper bound on d
(jp)
L (BJ(t)) we may as-

sume that this bound is asymptotically tight. By Lemma 3.6 the corresponding
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subsequence of successful queries has distribution Bin(Θ(tpnk−j−`), p), where in

particular the mean is of order Θ(tpn−`) = Ω(nδ), as t ≥ p−1n`+δ. Therefore the

Chernoff Bound (Theorem 3.5) implies that with probability at least 1−exp(Ω(nδ))

the contribution to dL(BJ(t)) made by jumps is at most

O(tpn−`). (3.3)

On the other hand, if t < p−1n`+δ, we simply observe that

dL(BJ(t)) ≤ dL(BJ(p−1n`+δ)) = O(nδ),

where the equality holds with probability 1− exp(Ω(nδ)) by the arguments above.

Thus we have shown that d
(jp)
L (BJ(t)) = O

(
tpn−` + nδ

)
and now aim to show

that d
(pv)
L (BJ(t)) = O(d

(jp)
L (BJ(t))) with probability at least 1− exp(Ω(nδ)).

From every j-set containing L, we make at most
(
n
k−j
)

queries, and each time

we discover an edge in this way, it contributes at most c` =
(
k−`
j−`
)
− 1 to dL(BJ(t)).

From each of these newly discovered j-sets containing L we make at most
(
n
k−j
)

queries, which could also lead to pivots at L, and this scheme iterates. Thus for an

upper bound on d
(pv)
L (BJ(t)) we may count the total number of vertices contained in

d
(jp)
L (BJ(t)) abstract branching processes each starting at a single vertex and where

each vertex has a number of children distributed as c` · Bin
((

n
k−j
)
dL(BJ(t)), p

)
.

For an upper bound, we also assume d
(jp)
L (BJ(t)) ≥ nδ. The following argument

appeared in [51] based on ideas in [82], but we repeat it here for completeness.

We think of the branching processes as being subtrees of the infinite c`N -ary

tree, where N =
(
n
k−j
)

and in which the children of a vertex are partitioned into

clusters of size c` and the edges to such a cluster are all present with probability

p, or all absent with probability 1 − p, independently for each cluster. Then we

are interested in the size of the subtrees containing the roots, and consider explor-

ing these via a breadth-first search process, always querying a cluster-child of the

infinite tree to check whether it is present.

If a tree containing a root has at least s vertices, then we must have found

at least s−1
c`

cluster-children after having made at most sN queries. Thus if the

total size of the d
(jp)
L (BJ(t)) branching processes is at least Cd

(jp)
L (BJ(t)), for some

constant C, then we must have found at least (C − 1)c`
−1d

(jp)
L (BJ(t)) edges after

having made at most CNd
(jp)
L (BJ(t)) queries.

On the other hand, the number of edges we find in the first Cd
(jp)
L (BJ(t))N

queries is distributed as Bin(CNd
(jp)
L (BJ(t)), p), which has expectation

CNpd
(jp)
L (BJ(t)) = Cc0

−1d
(jp)
L (BJ(t)).

Note that c` < c0 and therefore for sufficiently large C, by the Chernoff bound

(Theorem 3.5) the probability we actually find at least (C − 1)c`
−1d

(jp)
L (BJ(t))

cluster children is at most exp(−Θ(d
(jp)
L (BJ(t)))) ≤ exp(−Θ(nδ)) as required. This

proves the first statement.
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The second statement is a direct consequence of the first statement: recall that

ϑi denotes the last query performed in round i−1, and so we have BJ(ϑi) = CJ(i).

Then by Lemma 3.12 we have with probability at least 1 − exp(−Θ(nδ/2)) that

ϑi ≥ p−1|CJ(i)|/2. We apply the first statement with t = ϑi, and the second claim

follows, since |CJ(i)| ≥ n`+δ implies ϑipn
−` = Ω(nδ). �

To provide a lower bound on the `-degrees in large components, a less sophist-

icated argument works just fine.

Lemma 3.14. With probability at least 1− exp(−Θ(nδ/2)), for each 0 ≤ ` ≤ j − 1

and every component C of size at least Λ we have the following property: each `-set

L is contained in Ω(|C|n−`) j-sets of C.

Proof. We assume that the high probability event from Corollary 3.7 holds. Con-

sider a component C with at least Λ many j-sets. We prove by induction on ` that

any `-set is contained in at least
(

2
(
k
j

)2)−` |C|n−` many j-sets of C. The case ` = 0

simply reasserts the fact that C has size |C|, so assume ` ≥ 1.

Now let L′ ⊂ L be a set of ` − 1 vertices, which by the inductive hypothesis

lies in
(

2
(
k
j

)2)1−`
|C|n−`+1 many j-sets of C. Then for each such j-set J there are

at least
(
n−j−1
k−j−1

)
many k-sets containing J ∪ L (more if L ⊂ J), and each of these

k-sets will be counted in this way at most
(
k
j

)
times. Thus the number of queries

from j-sets in C to a k-set containing L is at least(
n−j−1
k−j−1

)
|C|n−`+1(

2
(
k
j

)2)`−1 (
k
j

) ≥ (1− o(1))
|C|nk−j−`

2`−1
(
k
j

)2`−1
(k − j − 1)!

.

Since |C|nk−j−` ≥ Λnk−2j+1 = λnk−j+1 ≥ nk−j+δ, we may apply Corollary 3.7 and

thus the number of edges we discover is at least

(1− o(1))p|C|nk−j−`

2`−1
(
k
j

)2`−1
(k − j − 1)!

≥ (k − j)!nj−k(
k
j

)
− 1

· |C|nk−j−`

2`
(
k
j

)2`−1
(k − j − 1)!

≥ |C|n
−`

2`
(
k
j

)2` .
Since each edge contains at least one still neutral j-set, which then becomes active,

and furthermore L and C were arbitrary, this proves the inductive step. �

We will use Lemma 3.14 in the sprinkling argument in the proof of The-

orem 3.2(a) in Section 3.4.3. Note that a substantially stronger form of Lemma 3.14

follows (with a little care) from Lemmas 3.8, 3.10, and 3.11. We gave this proof

here because it is much more elementary and does not rely on the heavy machinery

of the smooth boundary lemma.

3.3.3. Coupling. As indicated previously, we aim to use T∗ and T ∗ as lower and

upper couplings on BFS. Let us describe more precisely what we mean by this.

In our search process we will certainly always make at most
(
n
k−j
)

queries from

any j-set. If the actual number is x ≤
(
n
k−j
)
, then we identify these with the first

x queries from an individual of T ∗ (which we view as a subgraph of the infinite(
n
k−j
)
-ary tree in which each edge is present with probability p, and we consider the
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subtree containing the root). The remaining
(
n
k−j
)
− x queries in T ∗ are in effect

‘dummy queries’ which do not exist in the search process, but making extra queries

is permissible for an upper bound. Thus if we are at time t in the search process,

then T ∗ may have made more than t queries. However, since we will generally

be considering generations of the search process rather than the exact time, this

difference does not affect anything.

Similarly we can couple the search process with T∗ by ignoring some queries

which the search process makes, and considering only those queries which would

give c0 =
(
k
j

)
− 1 new j-sets, and of these consider only the first (1− ε∗)

(
n
k−j
)
. Of

course, this requires that there are at least this many such queries in the search

process, which we will prove using Lemma 3.13. We will denote this coupling of

processes (when it holds) by T∗ ≺ BFS ≺ T ∗.

Lemma 3.15. With probability at least 1− exp(−Θ(nδ/2)), for every j-set J and

every time t satisfying t� ε∗n
k the process BFS(J) satisfies

T∗ ≺ BFS(J) ≺ T ∗.

Proof. The upper coupling is immediate from the definitions. The lower coupling

follows from Lemma 3.13. More precisely, from any j-set J and time t we can

bound from above the number of discovered j-sets which intersect J in ` vertices

by
(
j
`

)
∆`(BJ(t)). For each such discovered j-set, the number of k-sets containing

its union with J is at most
(

n
k−2j+`

)
. Thus by Lemma 3.13 the number of queries

from J which would give fewer than c0 new j-sets is at most

j−1∑
`=0

(
j

`

)
∆`(BJ(t))

(
n

k − 2j + `

)
=

j−1∑
`=0

O
(
(ptn−` + nδ)nk−2j+`

)
= o(ε∗n

k−j),

since ptn−j , n−1+δ � ε∗. Thus the number of k-sets which may still be queried

from J and which would give c0 new j-sets is at least (1 − ε∗)
(
n
k−j
)
, establishing

the lower coupling. �

Note that the lower coupling in Lemma 3.15 only holds early in the process.

However, it follows from stopping conditions (S1), (S2), and (S3) that, with ex-

ponentially high probability, we stop after having performed at most O(λnk) =

o(ε∗n
k) queries (see Lemma 3.17).

3.3.4. Bounded expansion. Next we prove that the expansion of the search pro-

cess is approximately as fast as we expect (once the generations become large).

Note that for small generations there is only an upper bound, which is also much

weaker than for larger generations.

Lemma 3.16. For a j-set J and a round i such that T∗ ≺ BFS(J) ≺ T ∗, condi-

tioned on |∂CJ(i)| = x ∈ N, with probability at least 1− exp(−Θ(nδ/2)) we have

|∂CJ(i+ 1)|

= (1± 2ε∗)(1 + ε)x if x ≥ n1−δ

≤ 2 max(x, nδ) otherwise.
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Proof. Note that since T ∗ is an upper coupling, conditioned on |∂CJ(i)| = x, the

size of the next generation |∂CJ(i+ 1)| is stochastically dominated by a random

variable Yi+1 with distribution c0 · Bin
(
x
(
n
k−j
)
, p
)
. We have

E(Yi+1) = c0x

(
n

k − j

)
p = (1 + ε)x.

Furthermore, by the Chernoff bound (Theorem 3.5) we have

P(|∂CJ(i+ 1)| ≥ (1 + 2ε∗)(1 + ε)x) ≤ P(Yi+1 ≥ (1 + 2ε∗)(1 + ε)x)

= P
(
Yi+1

c0
≥ (1 + 2ε∗)E

(
Yi+1

c0

))
≤ exp

(
−(2ε∗)

2E(Yi+1)

3c0

)
= exp(−Θ(ε∗

2x))

≤ exp(−Θ(n−1+2δn1−δ))

≤ exp(−Θ(nδ/2))

where for the penultimate inequality we used the fact that ε∗ ≥ n−1/2+δ. This

concludes the proof of the upper bound for the first half of the statement.

For the lower bound, we note that since we are in the range where T∗ will give

us a lower bound, |∂CJ(i+ 1)| stochastically dominates a random variable Zi+1

with the distribution of c0 · Bin
(
x(1 − ε∗)

(
n
k−j
)
, p
)
. Thus we have, again by the

Chernoff bound (Theorem 3.5),

P (|∂CJ(i+ 1)| ≤ (1− 2ε∗)(1 + ε)x) ≤ P (Zi+1 ≤ (1− 2ε∗)(1 + ε)x)

≤ P
(
Zi+1

c0
≤ (1− ε∗)E

(
Zi+1

c0

))
≤ exp

(
−(ε∗)

2E(Zi+1)

2c0

)
= exp

(
−Θ

(
ε∗

2x
))

≤ exp(−Θ(nδ/2))

provided that x ≥ n1−δ.

For the second half, the calculation is very similar. |∂CJ(i+ 1)| is dominated

by a random variable Yi+1 with distribution c0 · Bin
(
nδ
(
n
k−j
)
, p
)
, and so

P
(
|∂CJ(i+ 1)| ≥ 2nδ

)
≤ P

(
Yi+1 ≥ 2nδ

)
≤ exp

(
−(1− ε)2E(Yi+1)

3c0

)
= exp

(
−Θ

(
nδ
))

≤ exp(−Θ(nδ/2)). �

Observe that in round i0(`) we have |∂CJ(i0(`))| ≥ n`+δ ≥ n1−δ, for ` ≥ 1.

This means that, by Lemma 3.16 the size of the generations will never decrease
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from that moment onwards for as long as T∗ remains a valid lower coupling. This

will be important for various concentration results.

Recall that ϑi1 denotes the time of the last query before round i1 started, and

in this round one of the stopping conditions is hit.

Lemma 3.17. With probability at least 1 − exp(−Θ(nδ/2)), for any j-set J using

BFS(J) with stopping conditions (S1), (S2), and (S3) we have

ϑi1 = O(λnk).

Thus, in particular, we have

• for all i = 0, . . . , i1:

T∗ ≺ BFS(J) ≺ T ∗;

• for all ` = 1, . . . , j − 1 and i = i0(`), . . . , i1:

|∂CJ(i)| ≥ n`+δ;

• |CJ(i1)| ≤ 2λnj and |∂CJ(i1)| ≤ 2λ2nj.

Proof. We observe that the upper bound in Lemma 3.16 only relies on the upper

coupling BFS ≺ T ∗ which is always satisfied. Thus |CJ(i1)| ≤ 2λnj (as well as

|∂CJ(i1)| ≤ 2λ2nj), and consequently by Lemma 3.12 we have ϑi1 = O(λnk).

Now this immediately implies that the lower coupling also holds for all 0 ≤ i ≤
i1 by Lemma 3.15, proving the second assertion. The remaining statements follow

from Lemma 3.16. �

3.3.5. Initial component growth. We first aim to prove Lemma 3.10, which

states that if round i0(s− 1) exists, for some 2 ≤ s ≤ j, then the maximal `-

degrees in the partial component CJ(i0(s− 1)) are still small, and in particular,

BFS(J) has not yet found a significant number of j-sets. The critical tool for

proving Lemma 3.10 is Lemma 3.18, which gives a lower bound on the probability

that the process will become large within a certain number of rounds.

Recall that T∗ is a branching process starting with one individual in the 0-th

generation and whose offspring is given by the random variable

c0 · Bin

(
(1− ε∗)

(
n

k − j

)
, p

)
.

We have also seen in Lemma 3.17 that this provides a lower coupling T∗ ≺ BFS as

long as we have not reached any stopping condition (which happens in round i1).

Let c > 0 be some constant and let

τ := (s− 1 + δ + c)ε−1 log n. (3.4)

For any i ∈ N we denote by |∂∗(i)| the size of the i-th generation of T∗.

Lemma 3.18. With probability at least εn−c we have |∂∗(τ)| ≥ ns−1+δ.
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We aim to imitate a proof of Markov’s inequality. However, since we have no

upper limit on the size of each generation, we will need to limit the contribution

that the upper tail makes to the expected of |∂∗(i)|.
In order to do this we need to bound the upper tail probabilities, preferably

exponentially. For this we imitate a proof of a Chernoff bound, applying Markov’s

inequality to the random variable eη|∂∗(τ)| for some well chosen η.

We therefore need to calculate E
(
eη|∂∗(i)|

)
. We define

η :=
ε

(1 + ε)τnc/2
(3.5)

set Ci := 1 + δ + iε for 0 ≤ i ≤ τ , and observe that

Ci ≤ 1 + δ + τε
(3.4)
= O(log n). (3.6)

Claim 3.19. For all integers 0 ≤ i ≤ τ we have

E
(
eη|∂∗(i)|

)
≤ 1 + Ci (1 + ε)

i
η ,

for sufficiently large n.

Proof. Since T∗ is a Galton-Watson branching process, each subtree rooted at the

first generation has the same distribution and thus we obtain the following recursion

E
(
eη|∂∗(i)|

)
=

∞∑
t=0

Pr (|∂∗(1)| = t)E
(
eη|∂∗(i)| | |∂∗(1)| = t

)
=

∞∑
t=0

Pr (|∂∗(1)| = t)E
(
eη|∂∗(i−1)|

)t
(3.7)

We prove the claim by induction on i. For the case i = 0 the statement becomes

eη ≤ 1 + C0η which is certainly true for sufficiently large n since η = o(1) and

C0 > 1 is bounded away from 1. We therefore assume that the result holds for

i− 1.

To simplify notation we define xi := (1 + ε)iη. Observe that xi ≤ xτ = ε/nc/2

and consequently, by (3.6), for all 0 ≤ i ≤ τ , we have

Cixi = o(εn−c/4). (3.8)

Also, let

pi := (1 + Ci−1xi−1)
c0 p

and note that for 0 ≤ i ≤ τ we have p ≤ pi ≤ pτ = (1 + o(1))p by (3.8). This

guarantees in particular that

pi � εn−c/4 � 1. (3.9)

We now have

E
(
eη|∂∗(i)|

) (3.7)

≤
∑
s

(( n
k−j
)

s

)
ps(1− p)(

n
k−j)−s E

(
eη|∂∗(i−1)|

)c0s
≤
∑
s

(( n
k−j
)

s

)
ps(1− p)(

n
k−j)−s (1 + Ci−1xi−1)

c0s ,
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and furthermore obtain

E
(
eη|∂∗(i)|

)
≤
∑
s

(( n
k−j
)

s

)
psi (1− p)(

n
k−j)−s

≤
(

1− p
1− pi

)( n
k−j)∑

s

(( n
k−j
)

s

)
psi (1− pi)(

n
k−j)−s.

The terms in the sum are simply binomial probability expressions, now with a

slightly different probability, and therefore their sum is 1. Thus we obtain

E
(
eη|∂∗(i)|

)
≤
(

1− p
1− pi

)( n
k−j)

=
(
1 + (pi − p)(1 + pi + p2

i + . . .)
)( n
k−j)

≤ 1 +

(
n

k − j

)
p

(
pi
p
− 1

)
(1 +O(pi)) +O

((
pi
p
− 1

)2
)
.

Now
pi
p
− 1 = c0Ci−1xi−1 +O(Ci−1

2xi−1
2)

so we have

E
(
eη|∂∗(i)|

)
≤ 1 + (1 + ε)

(
Ci−1xi−1 +O(Ci−1

2xi−1
2)
) (

1 +O(pi + Ci−1
2xi−1

2)
)

≤ 1 + xi
(
Ci−1 +O(Ci−1

2xi−1) +O(Ci−1pi)
)

(3.6),(3.8),(3.9)
= 1 + xi

(
Ci−1 + o(εn−c/4 log n)

)
≤ 1 + Cixi

for any sufficiently large n ∈ N. �

Having obtained a suitable upper bound on E
(
eη|∂∗(i)|

)
we return to the proof

of Lemma 3.18.

Proof of Lemma 3.18. We imitate a proof of Markov’s inequality. For any real

a ≥ 0, let

qa := P(|∂∗(τ)| ≥ a)

We set z := ns−1+δ and yi := (1 + ε)τnic/(2ε) for every i = 1, 2, . . . and note that

y1 = ε−1n(s−1+δ+c)ε−1 log(1+ε)nc

≥ ε−1ns−1+δ+3c/2

> z.

Our main aim is to find a lower bound on qz. We observe that

E(|∂∗(τ)|) ≤ (1− qz)z + qzy1 +

∞∑
i=1

qyiyi+1. (3.10)

Observe that we have

Cττ (1 + ε)
τ
η

(3.5)
= Cττεn

−c/2 (3.4),(3.6)
= o(1)
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and thus together with Markov’s inequality we obtain

qyi ≤
E
(
eη|∂∗(τ)|)
eηyi

C.3.19
≤ 1 + Cττ (1 + ε)

τ
η

en(i−1/2)c/2
≤ e−n

ic/3

for n sufficiently large. Hence

∞∑
i=1

qyiyi+1 ≤
(1 + ε)τ

2ε

∞∑
i=1

e−n
ic/3

n(i+1)c,

and since a−1 log(1 + a) ≤ 1 for any real number a we further obtain

∞∑
i=1

qyiyi+1

(3.4)

≤ ε−1ns−1+δ+ce−n
c/4

= o(e−n
c/5

).

We have thus shown that in (3.10) the contribution to E(|∂∗(τ)|) from the upper

tail is negligible. Now (3.10) tells us that

qzy1 − qzz ≥ E(|∂∗(τ)|)− z − o(e−n
c/5

)

and therefore

qz ≥
(1 + ε)τ − ns−1+δ − o(e−nc/5)

(1 + ε)τnc/(2ε)− ns−1+δ
≥ ε(1 + ε)τ (1± o(1))

2nc(1 + ε)τ (1± o(1))
≥ εn−c,

where we used the fact that ns−1+δ = o((1 + ε)τ ). This completes the proof of

Lemma 3.18. �

We now show how to deduce Lemma 3.10 from Lemma 3.18.

Proof of Lemma 3.10. Note that if s = 1, then i0(s− 1) = 0 and thus there is

nothing to show. So assume 2 ≤ s ≤ j, assume i0(s− 1) exists, and we first

consider the case ` = 0. In this case we aim to prove that with exponentially high

probability we have |CJ (i0(s− 1)) | = o(λns).

We first observe that if the statement does not hold, then we certainly have

|CJ (i0(s− 1)) | ≥ λns/ξ, for any ξ →∞, but each generation up to time i0(s− 1)

only has size at most ns−1+δ. We consider two cases for possibilities of how the

desired conclusion might fail, and show that each of these is very unlikely.

Case 1: There is a generation, say i, of size at least n1/2−δ/2+c. In this case,

using T∗ as a lower coupling for the search process, we begin y = n1/2−δ/2+c inde-

pendent new processes at round i. By Lemma 3.18, each of these has a probability

of at least ε/nc of reaching size at least ns−1+δ within τ rounds. The probability

that i0(s− 1) > i+ τ is therefore at most

(1− ε/nc)y ≤ exp(−εy/nc)

≤ exp(−n−1/3n1/2−δ/2+c/nc)

= exp(−nδ/2).

We may therefore assume that Case 1 does not occur for i ≤ i0(s− 1)− τ .

Case 2: i0(s− 1) ≥ (τ + 1)n1/2−δ/2+c. To show that this is unlikely we once

again aim to consider y independent processes, but in order to do this we take one
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individual from each of the generations (τ + 1)ι, where 0 ≤ ι ≤ n1/2−δ/2+c − 1

and consider the lower coupling T∗ for the search process. Technically these are

not independent processes, since one may be a subprocess of the other, but for

this reason we consider T∗(τ), the process which is cut off after τ rounds. These

processes are now independent, and the same calculation as above shows that the

probability that none of them become large enough after τ rounds is very small.

We may therefore assume that Case 2 does not occur.

However, if neither case occurs, then we have

|CJ(i0(s− 1))| ≤ (τ + 1)n1/2−δ/2+cn1/2−δ/2+c + τns−1+δ

≤ 2τ(n1−δ+2c + ns−1+δ)

s≥2

≤ ns−1+2δ/ε

= o(λns).

This shows that Lemma 3.10 holds for ` = 0. However, now we know that up to

round i0(s− 1) we have found few edges, which intuitively should mean that we are

early in the process, and that all maximum degrees will be small. More precisely,

since |CJ (i0(s− 1)) | ≥ ns+δ by definition of i0(s− 1), Lemma 3.13 implies

∆`(CJ (i0(s− 1))) = O(|CJ(i0(s− 1))|n−`) = o(λns−`)

for every ` = 1, . . . , s− 1 as required. This completes the proof of Lemma 3.10. �

Moreover, with the help of Lemmas 3.10 and 3.16 we now prove Lemma 3.11

which states that (conditional E) the generations reach size nj−1+δ – which happens

in round i0(j − 1) – long before round i1 when the process is stopped.

Proof of Lemma 3.11. The key property is the following: the expansion from one

generation to the next is at most a multiplicative factor of (1 + 2ε∗)(1 + ε) ≤ 1 + 2ε

by Lemma 3.16. Let x := i1− i0(j − 1), we aim to show that conditional on E with

probability at least 1− exp(−Θ(nδ/2)) we have x ≥ δ
2ε
−1 log n.

Suppose first that we hit the stopping condition (S3), i.e. we have |∂CJ(i1)| ≥
λ2nj . Since |∂CJ(i0(j − 1))| ≤ 2nj−1+δ, trivially if j = 1 and otherwise by

Lemma 3.16, we then have (1 + 2ε)x ≥ λ2n1−δ/2. This yields

x ≥ log(λ2n1−δ/2)

log(1 + 2ε)
≥ log(nδ)

2ε
=
δ

2
ε−1 log n.

On the other hand suppose we hit the stopping condition (S2), i.e. we have

|CJ(i1)| ≥ λnj . Then Lemma 3.10 (for ` = 0) implies that up to time i0(j − 1)

we have only seen o(λnj) j-sets in total. Furthermore, Lemma 3.16 implies that

|∂CJ(i0(j − 1))| ≤ 2nj−1+δ, and in each subsequent round i ∈ [i0(j − 1) + 1, i1] the

size of the i-th generation increases at most by a factor of (1 + 2ε) compared to the

previous generation. Thus we have

x∑
i=0

(1 + 2ε)i2nj−1+δ ≥ |CJ(i1) \ CJ(i0(j − 1)− 1)| ≥ (1− o(1))λnj ,
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which implies

1− (1 + 2ε)x+1

1− (1 + 2ε)
≥ (1− o(1))λn1−δ/2,

and furthermore, we obtain (1 + 2ε)x ≥ (1− o(1))ελn1−δ. Because the right-hand

side is at least nδ, this we conclude x log(1 + 2ε) ≥ δ log n and so

x ≥ δ

2
ε−1 log n

as required. Note that in all the Lemmas and Corollaries that we used here, the

‘good’ event holds with probability 1− exp(−Θ(nδ/2)), and a union bound over all

failure probabilities still leaves a probability of at least 1− exp(−Θ(nδ/2)). �

Furthermore, Lemmas 3.10 and 3.16 imply that the partial component can

never be too big compared to the current generation.

Claim 3.20. With probability at least 1 − exp(−Θ(nδ/2)), for any j-set J using

BFS(J) with stopping conditions (S1), (S2), and (S3), the following holds: if for

any i = 0, . . . , i1 we have |∂CJ(i)| ≥ ελn2, then

|CJ(i)| ≤ 3ε−1|∂CJ(i)|.

Proof. We have |CJ(i)| = |CJ(i0(1))| +
∑i
i′=i0(1)+1 |∂CJ(i′)| and Lemma 3.16 is

applicable for all i′ = i0(1) + 1, . . . , i. Hence we obtain

|CJ(i)| ≤ |CJ(i0(1))|+ |∂CJ(i)|
i−i0(1)−1∑

s=0

((1− 2ε∗)(1 + ε))
−s

≤ 2ε−1|∂CJ(i)|+ |CJ(i0(1))|,

and the claim follows since by Lemma 3.10 (for ` = 0 and s = 2) we have

|CJ(i0(1))| = o(λn2). �

3.3.6. Bipeds. In order to control the contribution of jumps very precisely it turns

out we need to investigate a certain type of structure called ‘biped’: given two

integers 1 ≤ m1 ≤ j − 2 and m1 ≤ m2 ≤ j − 1, an m1-set M1, and a (distinct)

m2-set M2,3 it will be necessary to control how many pairs of j-sets they can be

extended to which intersect in j −m2 vertices (not including M1 ∩M2), and might

be ‘seen’ while exploring a given generation.

More formally, given any (distinct) M1 and M2 and any round i = 0, 1, . . . , we

define an (M1,M2, i)-biped to be a pair (X,Y ) where X is a set of m2−m1 distinct

vertices and Y is a set of j −m2 distinct vertices such that

• X ∩ (M1 ∪M2) = ∅;
• Y ∩ (M1 ∪M2 ∪X) = ∅;
• I1 := M1 ∪X ∪ Y ∈ ∂CJ(i);

• I2 := M2 ∪ Y ∈ CJ(i).

3Distinct meaning that if m1 = m2 we have M2 6= M1, and no restriction if m1 < m2.
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We call the j-sets I1 = M1∪X ∪Y and I2 = M2∪Y the first leg and the second leg

of (X,Y ), respectively. Observe that the notion of bipeds is not symmetric in the

parameters M1 and M2. We write Ξ :=
(

[n]
m2−m1

)
×
(

[n]
j−m2

)
. Then the biped degree

of M1 and M2 in round i is defined as

dM1,M2
(i) := |{(X,Y ) ∈ Ξ | (X,Y ) is an (M1,M2, i)-biped}|

and we aim to show that whp these biped degrees are small.

Lemma 3.21. With probability at least 1 − exp(−Θ(nδ/4)), for any integers 1 ≤
m1 ≤ j − 2 and m1 ≤ m2 ≤ j − 1, for any m1-set M1 and (distinct) m2-set M2,

and any i = 1, 2, . . . , i1, the following assertion holds: suppose that

|∂CJ(i− 1)| ≥ n|M1∪M2|+δ (3.11)

and, if i1(j − 1) < i ≤ i1, additionally assume

∆`(∂CJ(i− 1)) = O(|∂CJ(i− 1)|n−`) ∀1 ≤ ` ≤ j − 1, (3.12)

then we have

dM1,M2(i) = O(λ|∂CJ(i)|n−m1). (3.13)

Note that the additional assumption (3.12) is in particular satisfied if the state-

ment of Lemma 3.8 holds at time i− 1. So when proving Lemma 3.8 this condition

will always be satisfied at the times when we apply Lemma 3.21 because we will be

proving Lemma 3.8 inductively.

Proof of Lemma 3.21. Fix a pair (M1,M2) and a round i ≥ 2, since ∂CJ(0) = {J}
and thus (3.11) is not satisfied. Moreover note that we may assume that |M1∪M2| ≤
j − 1, otherwise (3.11) is violated since the total number of j-sets is only

(
n
j

)
. We

want to provide an upper bound on the number of (M1,M2, i)-bipeds.

First we take care of bipeds created in a single query. For this to happen the

k-set to be queried needs to contain a j-set J ′ ∈ ∂CJ(i− 1) as well as M1 ∪M2.

We condition on the size w of their intersection W := J ′ ∩ (M1 ∪M2). Clearly

|CJ(i− 1)| ≥ |∂CJ(i− 1)| ≥ n|M1∪M2|+δ ≥ nw+δ

and so Lemma 3.13 is applicable with ` = w and thus the number of k-sets con-

taining a j-set J ′ ∈ ∂CJ(i− 1) ⊂ CJ(i− 1) and M1 ∪M2 is at most

|M1∪M2|∑
w=k−j−|M1∪M2|

nk−j−|M1∪M2|+wO(∆w(CJ(i))) = O(nk−j−|M1∪M2||CJ(i)|).

Moreover, each query succeeds with probability p independently and if it does, then

this creates at most
(
k
j

)
new (M1,M2, i)-bipeds. Because pnk−j−|M1∪M2||CJ(i)| ≥

nδ by (3.11), the Chernoff Bound (Theorem 3.5) thus implies that with probability

at least 1− exp(−Θ(nδ/2)) their contribution is at most

O(n−|M1∪M2||CJ(i)|) C. 3.20
= O(ε−1n−|M1∪M2||∂CJ(i)|) = O

(
ε−1

n
|∂CJ(i)|n−m1

)
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since |M1 ∪M2| ≥ m1 + 1. In other words, it is negligible compared to the claimed

upper bound. So now let us call k-sets not containing M1 ∪M2 good, and observe

that it remains to estimate the number of (M1,M2, i)-bipeds created when querying

good k-sets.

Now we imagine that throughout the entire process BFS before querying any

good k-set K we pause briefly and colour K red if it satisfies all of the following

conditions:

• M1 is contained in K;

• there exists a set X ⊂ K \M1 of size |X| = m2 −m1 and a still neutral

j-set I1 with M1 ∪X ⊂ I1 ⊂ K;

• the j-set I2 = (I1 \ (M1 ∪X)) ∪M2 is not neutral any more.

Similarly we colour K blue if all of the following conditions hold:

• M2 is contained in K;

• there is a still neutral j-set I2 with M2 ⊂ I2 ⊂ K;

• there exists a set X ⊂ [n] \ (I2 ∪M1) of size |X| = m2−m1 such that the

j-set I1 = (I2 \M2) ∪M1 ∪X is not neutral any more.

Then no matter if K was coloured red, blue, or not at all, we perform its query.

We do this to guarantee that a) the sequence of queries corresponding to marked

k-sets satisfies the conditions of Lemma 3.6 and b) for any query that might result

in an (M1,M2, i)-biped which we have not seen before, the corresponding k-set is

marked.

Note that we need the blue case only to cover the possibility that I2 is also in

∂CJ(i) and happens to be discovered after I1. We will significantly overcount such

cases by allowing I1 ∈ CJ(i) rather than the more restrictive I1 ∈ ∂CJ(i), but this

is permissible for an upper bound.

First we bound the number of k-sets marked red. In this case there must be

a j-set which includes M2 and is not neutral any more, and therefore is certainly

contained in CJ(i+1). By Lemma 3.13 with probability at least 1−exp(−Θ(nδ/2))

this number is at most O(|CJ(i)|n−m2).

Given such a j-set I2, this does not yet uniquely define the second leg: we

choose a set X consisting of m2 −m1 vertices (disjoint from M1, at most nm2−m1

choices), and obtain the j-set I1 := (I2\M2)∪M1∪X as the second leg. Combining

these two steps the number of choices for the legs I1 and I2 is at most

O(|CJ(i)|n−m1). (3.14)

Now, if I1 is responsible for marking a k-set K red, this means that I1 is still

neutral, and therefore K also has to contain a j-set I3 6= I1 which is currently

being explored. In particular we have I3 ∈ ∂CJ(i− 1), since we only consider

queries taking place in round i. By distinguishing the size ` of the intersection

I3∩ I1, and noting that ` ≤ j−1 since I3 6= I1, the number of red k-sets containing
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some active I3 (and the already fixed I1) is at most

j−1∑
`=0

O (∆`(∂CJ(i− 1)))nk−2j+`. (3.15)

We distinguish two cases: first assume that i ≤ i1(j − 1). Then we have

|∂CJ(i)| ≤ |∂CJ(i1(j − 1))| ≤ |∂CJ(i0(j − 1))|(1 + 2ε)i
∗(j−1) ≤ nj−1+2δ

by Lemma 3.16 and furthermore, Claim 3.20 implies

|CJ(i)| = O(ε−1|∂CJ(i)|).

Consequently we obtain

∆`(∂CJ(i− 1)) ≤ ∆`(CJ(i))
L.3.13

= O(|CJ(i)|n−`) = O(ε−1nj−`−1+2δ),

and in particular all summands in (3.15) are of the same order. Moreover, the term

in (3.14) is at most

O(ε−1|∂CJ(i)|n−m1),

and thus the total number of red k-sets is upper bounded by

O(ε−2|∂CJ(i)|nk−j−m1−1+2δ) = O(λ|∂CJ(i)|nk−j−m1), (3.16)

where the last step holds since λε2n1−2δ →∞.

On the other hand, if i1(j − 1) < i ≤ i1, then by the additional assump-

tion (3.12) we have ∆`(∂CJ(i− 1)) = Θ(|∂CJ(i− 1)|n−`) for all 0 ≤ ` ≤ j − 1 and

thus once again all summands in (3.15) are of the same order

O(|∂CJ(i− 1)|nk−2j)
L.3.16

= O(|∂CJ(i)|nk−2j).

For the term in (3.14) we use that |CJ(i)| ≤ |CJ(i1)| ≤ 2λnj by Lemma 3.17.

Multiplying shows that the total number of red k-sets is upper bounded by

O(λ|∂CJ(i)|nk−j−m1). (3.17)

Since we are only interested in an upper bound we assume that the upper

bounds in (3.16) and (3.17) are asymptotically tight. Moreover note that by (3.11)

we have

Θ(pλ|∂CJ(i)|nk−j−m1) = Ω(nδ/2).

Thus the Chernoff Bound (Theorem 3.5) implies that with probability at least

1− exp(−Θ(nδ/2)) the number of successful queries of red k-sets is at most

O
(
λ|∂CJ(i)|n−m1

)
. (3.18)

The argument providing an upper bound on the number of successful queries

of blue k-sets is very similar: we establish counterparts for (3.14) and (3.15), and

from there on the calculations are identical. This time there has to be a j-set I1

which includes M1 and is not neutral any more, so by Lemma 3.13 their number is

upper bounded by the term in (3.14).
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Once this first leg is fixed, there is only a constant number of choices for X ⊂
I1 \M1, and then the second leg I2 := (I1 \ (M1 ∪X))∪M2 is also fixed. Again I2

must still be neutral in order to be responsible for marking a k-set K blue, hence

K must contain a j-set I3 6= I2 which is currently being queried, so in particular

I3 ∈ ∂CJ(i− 1). Distinguishing the size ` of the intersection I3∩I2, where ` ≤ j−1

holds since I3 6= I2, we can upper bound the number of blue k-sets by (3.15).

Therefore with probability at least 1−exp(−Θ(nδ/4)), the total number of suc-

cessful queries of k-sets which were marked (either red or blue) is upper bounded by

the term in (3.18). Furthermore, because a single query can create at most a con-

stant number of bipeds, this is also an upper bound on the number of (M1,M2, i)-

bipeds. Now the claim follows by a union bound over all choices for M1 and M2

and all rounds, since∑
m1,m2≤j

nm1+m2 · nk(1− exp(−Θ(nδ/4))) = 1− exp(−Θ(nδ/4)). �

3.3.7. Jumps and pivots. In a way, the smooth boundary lemma (Lemma 3.8) is

a much more detailed and precise statement of our (strengthened) bounded degree

lemma (Lemma 3.13). The basic idea of the proof is similar: we investigate how the

degree dL(∂CJ(i+ 1)) of a set L increases relative to dL(∂CJ(i)) by distinguishing

the contributions made by jumps and pivots separately. Recall that these were

defined in Section 3.3.2.

• A jump to L occurs when we query a k-set containing L from a j-set which

did not contain L and the k-set forms an edge of Hk(n, p). Such an edge

contributes at most
(
k−`
j−`
)

to dL(∂CJ(i+ 1)).

• A pivot at L occurs when we query any k-set from a j-set containing L

and it forms an edge. Such an edge contributes at most
(
k−`
j−`
)
− 1 to

dL(∂CJ(i+ 1)).

The statement of Lemma 3.8 says that with probability 1− exp(−Θ(nδ/4)), a

certain property must hold for every initial j-set J . We note that it is enough to

show this for a single initial j-set – then the full generality is implied by a union

bound, since
(
n
j

)
exp(−Θ(nδ/4)) = exp(−Θ(nδ/4)). Therefore from now on we fix

an initial j-set J0.

For simplicity we denote ∂CJ0(i) by ∂(i) for each i, and similarly, for any `′-set

L′ we write dL′(i) instead of dL′(∂(i)), for each i.

Definition 3.22. For all 0 ≤ ` ≤ j − 1 and 0 ≤ i ≤ i1 we write S(`, i) for the

property that for all `-sets L we have

dL(i) = (1± γ`)
|∂(i)|(
n
j

) ( n

j − `

)
. (3.19)

In other words, S(`, i) states that all `-degrees within the i-th generation are essen-

tially the same.
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We aim to prove the following four claims. Firstly, the contribution d
(jp)
L (i+ 1)

to dL(i+ 1) made by jumps to L is approximately the same for each L.

Claim 3.23 (Smooth jumps). With probability at least 1− exp(−Θ(nδ/4)), for all

0 ≤ ` ≤ j, `-sets L, and i0(`) ≤ i ≤ i1 the following holds. Suppose that

• S(`′, i) holds for all 0 ≤ `′ ≤ `− 1,

• and, if i ≥ i1(j − 1), additionally S(`′, i) holds for all ` ≤ `′ ≤ j − 1,

then we have

d
(jp)
L (i+ 1) = (1± 2γ`−1)(1 + ε)

(
k−`
j−`
) ((

k
`

)
−
(
j
`

))
c0

|∂(i)|(
n
`

) −O(dL(i)

n

)
.

Note that the additional condition for the case i ≥ i1(j − 1) is necessary since

the proof of Claim 3.23 uses Lemma 3.21.

Secondly, the contribution d
(pv)
L (i+ 1) to dL(i+ 1) made by pivots at L tends

to be smaller than dL(i). We recall that r` = c`
c0

=
(k−`j−`)−1

(kj)−1
and r` < 1 for all ` ≥ 1.

Claim 3.24 (Pivots contract). With probability at least 1− exp(−Θ(nδ/4)), for all

0 ≤ ` ≤ j − 1, `-sets L, and i0(`) ≤ i ≤ i1 the following holds. Suppose that

• S(`′, i) holds for all 0 ≤ `′ ≤ `− 1,

then we have

d
(pv)
L (i+ 1)

= (1± η)(1 + ε)r`dL(i) if dL(i) ≥ nδ/3;

≤ (1 + η)(1 + ε)r`n
δ/3 otherwise.

Claims 3.23 and 3.24 are essentially concentration of probability arguments,

which can only hold whp once generations are large. This is the reason why we

introduced starting times i0(`).

Thirdly, using Claims 3.23 and 3.24 we prove that `-degrees will become smooth

after i∗(`) rounds.

Claim 3.25 (Smooth degrees). With probability at least 1−exp(−Θ(nδ/4)), for all

0 ≤ ` ≤ j − 1 the following holds. Suppose that

• S(`′, i′) holds for all 0 ≤ `′ ≤ `− 1 and i0(`) ≤ i′ ≤ i1(`),

then S(`, i1(`)) holds.

Lastly, we prove that once `-degrees are smooth, they remain smooth (at least)

until the round i1 when one of the stopping conditions (S1), (S2), or (S3) is hit.

Claim 3.26 (Smoothness inheritance). With probability at least 1−exp(−Θ(nδ/4)),

for all 0 ≤ ` ≤ j − 1 and i0(`) ≤ i < i1 the following holds. Suppose that

• S(`′, i) holds for all 0 ≤ `′ ≤ `,
• and, if i ≥ i1(j − 1), additionally S(`′, i) holds for all `+ 1 ≤ `′ ≤ j − 1,

then so does S(`, i+ 1).
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Once again from round i1(j − 1) onwards we need to assume some additional

conditions, since we need to apply Claim 3.23 also in this regime.

Before we provide the proofs for these four claims, we use them to prove

Lemma 3.8. In the remainder of this section we will always assume that all ‘good’

events (with exponentially small error probabilities) happen without explicitly men-

tioning this.

Proof of Lemma 3.8. Clearly i1(0) ≤ i0(1) since i1(0) = 0. We will now show that

i1(`) ≤ i0(`+ 1) (3.20)

for each ` = 1, . . . , j − 2, i.e. we finish the smoothing process for the `-sets before

we start the smoothing process for the (` + 1)-sets. (This is important because of

the inductive nature of the remainder of the proof.)

Recall that by the lower bound of Lemma 3.16, from round i0(1) onwards,

subsequent generations remain at least as large as the previous generation. Thus

by Lemma 3.16 (applying the tight upper bound iteratively for all i0(`) < i ≤ i1(`)

and the cruder upper bound for i = i0(`)) we have

|∂(i1(`))| ≤ |∂(i0(`))| ((1 + ε)(1 + 2ε∗))
i∗(`)

≤ 2n`+δ exp (2εi∗(`))

≤ 2n`+δ exp(Θ(ε log n))

≤ n`+2δ < n`+1,

and therefore we have not yet reached generation i0(`+ 1). This proves the second

assertion of Lemma 3.8.

To prove the first assertion of Lemma 3.8 we use induction on `: we first prove

that S(`, i) holds for all 0 ≤ ` < j and i1(`) ≤ i ≤ i1(j − 1).

Note that S(0, i) is trivially true for all i, since the empty set is contained

in all edges of the i-th generation. So now assume that ` ≥ 1 and S(`′, i) holds

for all 0 ≤ `′ < ` and i1(`′) ≤ i ≤ i1(j − 1). Thus Claim 3.25 is applicable and

therefore S(`, i1(`)) holds. The induction step is completed by iteratively applying

Claim 3.26 for i = i1(`), . . . , i1(j − 1).

Now the proof of Lemma 3.8 is completed by iteratively applying Claim 3.26

for rounds i = i1(j − 1), . . . , i1 (and all 0 ≤ ` < j), and it remains only to prove

our auxiliary results (Claims 3.23, 3.24, 3.25, and 3.26). �

Smooth jumps. Before we prove Claim 3.23, we provide a brief heuristic argu-

ment for why the main term should intuitively be the correct contribution from

jumps to the degree of L. To see this, we consider the number of jumps we expect

to all `-sets in generation i + 1. We have |∂(i)| many j-sets in generation i, from

each of which we may query approximately
(
n
k−j
)

many k-sets, and each forms an

edge with probability p. Thus we expect to find about

p

(
n

k − j

)
|∂(i)| = 1 + ε

c0
|∂(i)|
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edges. Furthermore, an edge results in a jump to
(
k
`

)
−
(
j
`

)
many `-sets (any which

are contained in the edge but not in the j-set from which we made the query).

Since there are
(
n
`

)
many `-sets in total, the average number of jumps to an `-set

‘should’ be about
1 + ε

c0
|∂(i)|

(
k
`

)
−
(
j
`

)(
n
`

) .

Finally, for most jumps to L, the number of j-sets containing L which become

active is
(
k−`
j−`
)
, and thus we obtain the main term in Claim 3.23.

Proof of Claim 3.23. The statement for ` = 0 is trivially true, so we fix some

1 ≤ ` < j, an `-set L and a round i0(`) ≤ i ≤ i1. (In the end we will take a union

bound over all L and i.) Moreover we note that by Lemma 3.16 we have |∂(i)| ≥ nδ.
We consider from how many j-sets J ∈ ∂(i) we we might jump to L. We make

a case distinction on the number 0 ≤ m ≤ ` − 1 of vertices in the intersection of

J ∩ L. Clearly there cannot be a k-set containing J ∪ L if k < j + ` −m, so we

assume

k ≥ j + `−m.

Now let M ( L be an m-set, then there are dM (i)−dL(i) many j-sets containing

M in ∂(i) from which we might jump to L. However, this may include some j-sets

which actually have a larger intersection with L than M . The number of j-sets in

∂(i) which have intersection exactly M with L is also at least

dM (i)−
∑

M(M̃⊂L

d
M̃

(i).

Note that by S(m, i), the degree dM (i) is of order |∂(i)|n−m, and similarly for each

M ( M̃ ( L. Furthermore dL(i) ≤ d
M̃

(i) by definition. Therefore the number of

j-sets in ∂(i) which intersect L in exactly M is

d∗M,L(i) =

dM (i)− dL(i) if m = `− 1

(1−O(1/n))dM (i) otherwise.
(3.21)

Moreover, note that we may assume

d∗M,L(i) = Ω(dM (i)). (3.22)

For 0 ≤ m ≤ ` − 2 this is immediate from S(m, i). On the other hand, for m =

` − 1, if the assumption (3.22) is not true, then d∗M,L(i) = o(dM (i)) which implies

dL(i) = Θ(|∂(i)|n−`+1) by S(` − 1, i), and therefore the O(dL(i)/n) error term in

the statement of Claim 3.23 is as large as the main term. The lower bound is

therefore automatic and we only need to prove an upper bound, which will only

become harder if we increase d∗M,L(i) artificially.

Next observe that the total number of k-sets which would lead to a jump to L

from a j-set intersecting L in M is is given by(
n− j − `+m

k − j − `+m

)
d∗M,L(i). (3.23)
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However some of them might not contain c0 =
(
k
j

)
− 1 still neutral j-sets. We

call any k-set containing L, a j-set J ∈ ∂(i) with M = J ∩ L, and another j-set

J ′ ∈ CJ0(i) tainted and show that the total number of tainted k-sets is at most

O
(
λnk−j−`+md∗M,L(i)

)
. (3.24)

We distinguish cases based on the size w of the intersection W := J ′ ∩ (J ∪L).

We need only consider the cases max{0, 2j + `−m− k} ≤ w ≤ j (the lower bound

comes from the fact that if it is violated, there is no k-set containing J ′ ∪ J ∪ L).

Furthermore assume for now that w ≤ j−1. Then the number of non-neutral j-sets

J ′ with this intersection is at most ∆w(CJ0(i + 1)) = O(λnj−w) by Lemma 3.13.

Moreover, the number of k-sets containing L, J and J ′ is of order nk−j−`+m−(j−w)

(and this quantity is Ω(1) in our range of w). Thus the number of non-permissible

k-sets is at most

O(λnk−j−`+md∗M,L(i)).

Note that this is independent of w. Furthermore, the number of possible choices

for W is at most
∑j−1
w=max{0,2j+`−m−k}

(
j+`−m
w

)
= O(1). This shows that the total

number of tainted k-sets of this type can be bounded as in (3.24).

It remains to consider the case w = j, or in other words J ′ ⊂ J ∪ L. Then

writing M ′ := J ′ ∩ L and m′ := |M ′| we observe that (J \ (J ′ ∪ L), (J ∩ J ′) \ L)

is an (M,M ′, i)-biped, where 1 ≤ m ≤ ` − 1 ≤ j − 2 and m ≤ m′ ≤ ` ≤ j − 1.

Furthermore, we have |∂(i)| ≥ n`+δ ≥ n|M∪M
′|+δ, and if i ≥ i1(j − 1), then (3.12)

is satisfied since S(0, i), . . . , S(j− 1, i) hold by the assumption of Claim 3.23. Thus

Lemma 3.21 is applicable for all i and implies that the number of k-sets containing

such a configuration of L, J , and J ′ is at most

dM,M ′(i)n
k−j−`+m = O(λnk−j−`|∂(i)|).

By S(m, i) we have dM (i) = Θ(|∂(i)|n−m), and hence also in the case when w = j,

the term in (3.24) is an upper bound on the number of tainted queries, by the

assumption in (3.22), as required.

Now letN denote the total number of queries we make from j-sets intersecting L

in precisely M to k-sets containing L and exactly c0 neutral j-sets. Together (3.23)

and (3.24) imply that

N = (1−O(λ))

(
n

k − j − `+m

)
d∗M,L(i). (3.25)

Furthermore, all of these queries are independent and succeed with probability p,

thus the number of edges resulting in jumps from M to L (and which cause its

degree to increase by
(
k−`
j−`
)
) has distribution Bin(N, p). Now recall that by our

assumptions on m we have
(

n
k−j−`+m

)
= Ω(1). Note that the main term in (3.25)

is also an upper bound on the total number (permissible and non-permissible) of

queries which would result in jumps from M to L. Since we will only need the main

term anyway, we therefore slightly abuse notation by using N for both the lower

and upper bound.
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Moreover, note that by (3.22) and S(m, i), we have

N = Ω(nk−j−`+mdM (i)) = Ω(nk−j−`|∂(i)|) = Ω(nk−j+δ).

Thus, we may apply the Chernoff bound (Theorem 3.5) to show that the probability

that the number of such edges is not in (1± η)pN is at most

2 exp(−η2Np/3) ≤ exp(−Θ(η2nδ)) ≤ exp(−Θ(nδ/2)).

If this unlikely event does not occur, then the contribution to dL(i) made by

jumps from M to L is(
k − `
j − `

)
(1± η)N

1 + ε

c0
(
n
k−j
) (3.25)

= (1± 2η)(1 + ε)

(
k−`
j−`
)

c0

(k − j)!
(k − j − `+m)!

d∗M,L(i)

n`−m
,

using λ� η. We now sum over all such sets M ( L and use the fact that

d∗M,L(i)

n`−m
= (1−O(1/n))

dM (i)

n`−m
−O

(
dL(i)

n

)
in all cases. Moreover, by S(m, i) we have

dM (i) = (1± γm)
|∂(i)|(
n
j

) ( n

j −m

)
,

and consequently the contribution to dL(i+ 1) made by jumps to L is

`−1∑
m=0

(
`

m

)
(1± 2η)(1 + ε)

(
k−`
j−`
)

c0

(k − j)!
(k − j − `+m)!

d∗M,L(i)

n`−m

= (1± 3η)(1 + ε)

(
k−`
j−`
)

c0

`−1∑
m=0

(
`

m

)
(k − j)!

(k − j − `+m)!

dM (i)

n`−m
−O

(
dL(i)

n

)

= (1± 3

2
γ`−1)(1 + ε)

(
k−`
j−`
)

c0

`−1∑
m=0

(
`
m

)
(k − j)!j!

(k − j − `+m)!(j −m)!

|∂(i)|
n`
−O

(
dL(i)

n

)

= (1± 2γ`−1)(1 + ε)

(
k−`
j−`
)

c0

|∂(i)|(
n
`

) f −O
(
dL(i)

n

)
,

where

f = f(j, k, `) :=
(k − j)!j!

`!

`−1∑
m=0

(
`
m

)
(j −m)!(k − j − `+m)!

=
(k − j)!j!

`!

`−1∑
m=0

(
`

m

) ( k−`
j−m

)
(k − `)!

=
(k − j)!j!
(k − `)!`!

(∑̀
m=0

(
`

m

)(
k − `
j −m

)
−
(
k − `
j − `

))

=
(k − j)!j!
(k − `)!`!

((
k

j

)
−
(
k − `
j − `

))
.

It remains to observe that the right-hand side simplifies to

k!

`!(k − `)!
− j!

`!(j − `)!
=

(
k

`

)
−
(
j

`

)
. �
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Note that the effect that dL(i) has on the number of jumps to L in generation

i+ 1 is very small (the O(dL(i)/n) term).

Pivots contract. Claim 3.24 shows that the effect that dL(i) has on the number

of pivots at L in generation i + 1, while significantly larger, is still likely to be

smaller than dL(i).

Proof of Claim 3.24. The statement for ` = 0 is trivially true, so we fix some

1 ≤ ` < j, an `-set L and a round i0(`) ≤ i ≤ i1. (In the end we will take a union

bound over all L and i.) Moreover we note that since i ≥ i0(`) we have |∂(i)| ≥ nδ

by Lemma 3.16.

Recall that d
(pv)
L (i+ 1) denote the contribution to dL(i+ 1) made by pivots at

L. We first prove the upper bound. From every j-set containing L, we make at

most
(
n
k−j
)

queries, and each time we discover an edge in this way, it contributes at

most c` =
(
k−`
j−`
)
−1 to dL(i+ 1). Thus d

(pv)
L (i+ 1) is stochastically dominated by a

random variable Z∗ with distribution c` ·Bin
((

n
k−j
)
dL(i), p

)
, which has expectation

E(Z∗) = c`

(
n

k − j

)
dL(i)p = (1 + ε)

c`
c0
dL(i)

= (1 + ε)r`dL(i).

Thus when dL(i) ≥ nδ/3, by the Chernoff bound (Theorem 3.5) applied to Z∗ we

have

P
(
d

(pv)
L (i+ 1) ≥ (1 + η)(1 + ε)r`dL(i)

)
≤ P(Z∗ ≥ (1 + η)(1 + ε)r`dL(i))

≤ exp
(
−η2(1 + ε)r`dL(i)/3

)
≤ exp(−Θ(η2dL(i)))

≤ exp(−Θ(nδ/4))

since η ≥ n−δ/24. This proves the upper bound in the case that dL(i) ≥ nδ/3. In

the second case, we simply take c` ·Bin
((

n
k−j
)
nδ/3, p

)
as a dominating variable and

a similar calculation holds. This proves the upper bound in both cases.

For the lower bound, we observe that since T∗ ≺ BFS, by Lemma 3.17, the

number of queries that would result in exactly c` pivots that we make from each

j-set is at least (1 − ε∗)
(
n
k−j
)
. Thus d

(pv)
L (i + 1) dominates a random variable Z

with distribution c` · Bin
(
(1− ε∗)

(
n
k−j
)
dL(i), p

)
. A similar calculation shows that

P
(
d

(pv)
L (i+ 1) ≤ (1− η)(1 + ε)r`dL(i)

)
≤ P(Z ≤ (1− η)(1 + ε)r`dL(i))

Thm 3.5

≤ exp
(
−(η − ε∗)2(1 + ε)(1− ε∗)r`dL(i)/2

)
≤ exp(−Θ(η2dL(i)))

≤ exp(−Θ(nδ/4)). �

Smooth degrees. Next we prove Claim 3.25 by showing that in each further

round the degree of any `-set L is more and more concentrated around its mean

based on Claims 3.23 and 3.24.
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Proof of Claim 3.25. The statement for ` = 0 is trivially true, so we fix some

1 ≤ ` < j and an `-set L. Note that Claims 3.23 and 3.24 are applicable for all

i0(`) ≤ i ≤ i1(`) by the assumptions of Claim 3.25.

For s ∈ [0, i∗(`)], we set ds := dL(i0(`) + s) and set d′s := max{ds, nδ/3}. Then

by Claims 3.23 and 3.24 we have

ds ≤ (1 + η)(1 + ε)r`d
′
s−1 + (1 + 2γ`−1)(1 + ε)

(
k−`
j−`
) ((

k
`

)
−
(
j
`

))
c0

|∂(i0(`) + s− 1)|(
n
`

)
= (1 + η)(1 + ε)r`d

′
s−1 + (1 + 2γ`−1)g |∂(i0(`) + s− 1)|

where

g = g(k, j, `, n, ε) := (1 + ε)

(
k−`
j−`
) ((

k
`

)
−
(
j
`

))
c0

(
n

`

)−1

.

Note that g is not dependent on s.

If d′s−1 = ds−1, we apply the same inequality with an index shift, and keep

iterating until we have some ds∗ ≤ nδ/3 or else we reach s∗ = 0. In each iter-

ation, say s′ = 1, . . . , s − s∗, we obtain one additional summand depending on

|∂(i0(`) + s− s′)|, and there is exactly one summand depending only on d′s−s′ . For

s′ = s− s∗, this latter term can be bounded by ((1 + η)(1 + ε)r`)
sd0 + nδ/3, since

(1 + η)(1 + ε)r` < 1. Hence we obtain

ds ≤ ((1 + η)(1 + ε)r`)
sd0 + nδ/3

+ (1 + 2γ`−1)g

s−s∗∑
s′=1

((1 + η)(1 + ε)r`)
s′ |∂(i0(`) + s− s′)|

≤ (1 + η)s

(
(1 + ε)sr`

sd0 + (1 + 2γ`−1)g

s∑
s′=1

(1 + ε)s
′
r`
s′ |∂(i0(`) + s− s′)|

)
+ nδ/3.

To calculate the corresponding lower bound we cannot use (1− η)(1 + ε)r`ds−1

from Claim 3.24, since it may be that ds−1 < nδ/3, in which case that result does

not give us any lower bound. Instead we use the lower bound (in all cases) of

(1 − η)(1 + ε)r`ds−1 − nδ/3, which may be negative but which will turn out to be

good enough. Thus we have

ds ≥ (1− η)(1 + ε)r`ds−1 − nδ/3

+ (1− 2γ`−1) (1 + ε)

(
k−`
j−`
) ((

k
`

)
−
(
j
`

))
c0

|∂(i0(`) + s− 1)|(
n
`

) −O
(
ds−1

n

)
≥ (1− 2η)(1 + ε)r`ds−1 + (1− 3γ`−1)g |∂(i0(`) + s− 1)|.

Note that we absorbed the −nδ/3 term by modifying the γ`−1 term. This is permiss-

ible since for any i ∈ [i0(`), i1] we have |∂(i)| ≥ n`+δ, and so γ`−1|∂(i)|/n` � nδ/3.
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This time there is no need to stop prior to s′ = s, so iterating gives

ds ≥ ((1− 2η)(1 + ε)r`)
sd0

+ (1− 3γ`−1)g

s∑
s′=1

((1− 2η)(1 + ε)r`)
s′ |∂(i0(`) + s− s′)|

≥ (1− 2η)s

(
(1 + ε)sr`

sd0 + (1− 3γ`−1)g

s∑
s′=1

(1 + ε)s
′
r`
s′ |∂(i0(`) + s− s′)|

)
.

Observe that only the first term of both the upper and lower bound on ds

depend on L (via d0). In particular for s = i∗(`), we have

0 ≤ ((1− 2η)(1 + ε)r`)
i∗(`)d0 ≤ ((1 + η)(1 + ε)r`)

i∗(`)d0

≤ ((1 + 2η + 2ε) r`)
i∗(`)

nj−` ≤ 1

since we chose i∗(`) =
⌈

(j−`) logn
− log((1+2η+2ε)r`)

⌉
. In other words, d0, the degree of L at

time i0(`) only has an influence of at most one by time i1(`) = i0(`) + i∗(`), which

will not affect calculations significantly, so we ignore it.

The remaining upper and lower bounds do not depend on L. Furthermore,

observing that g = Θ(n−`) and |∂(i)| ≥ Θ(n`+δ), we have nδ/3 = O(n−2δ/3g|∂(i)|),
and so the remaining upper and lower bounds differ by a multiplicative factor of

(1 +O(n−2δ/3))(1 + η)s(1 + 2γ`−1)

(1− 2η)s(1− 3γ`−1)
≤ (1 + 5η)s(1 + 6γ`−1) ≤ (1 + 7γ`−1).

By definition we have

1 + 7γ`−1 ≤ 1 + γ`.

Taking a union bound over all sets L of size `, we may say that with probability

at least 1− exp(−Θ(nδ/4)), all `-sets have asymptotically the same degree in ∂(i).

More precisely this is stated as follows. We have∑
L

dL(i) =

(
j

`

)
|∂(i)|

which implies that

1(
n
`

) ∑
L

dL(i) =

(
n−`
j−`
)(

n
j

) |∂(i)|.

We further have, for any particular `-set L0, that by the arguments above

1

1 + γ`

1(
n
`

) ∑
L

dL(i) ≤ dL0(i) ≤ (1 + γ`)
1(
n
`

) ∑
L

dL(i)

and since 1/(1 + γ`) ≥ 1− γ`, the conclusion of Claim 3.25 follows. �

Smoothness inheritance. It remains to prove Claim 3.26 which, roughly speak-

ing, states that once generations are smooth, they remain smooth.

Proof of Claim 3.26. The statement for ` = 0 is trivially true, so we fix some

1 ≤ ` < j, i0(`) ≤ i < i1, and an `-set L. Note that Claims 3.23 and 3.24 are

applicable for i by the assumptions of Claim 3.26.
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From S(`, i) we deduce that the error-term O(dL(i)n−1) = O(|∂(i)|n−`−1)

in Claim 3.23 is negligible compared to the main order term, which has order

Θ(|∂(i)|n−`). Similarly, property S(`, i) implies that dL(i) = Θ(|∂(i)|n−`) = Ω(nδ)

by Lemma 3.16 since i ≥ i0(`), and thus Claim 3.24 provides both an upper

and a lower bound on the contribution of pivots at L to dL(i+ 1). Therefore,

by Claims 3.23 and 3.24 we have

dL(i+ 1) = (1± 3γ`−1)(1 + ε)

(
k−`
j−`
) ((

k
`

)
−
(
j
`

))
c0

|∂(i)|(
n
`

) + (1± 2η)(1 + ε)r`dL(i).

Using S(`, i), this becomes

dL(i+ 1) = (1 + ε)
|∂(i)|(
n
j

) ( n

j − `

)(1± 4γ`−1)

(
k−`
j−`
) ((

k
`

)
−
(
j
`

))
(
j
`

) ((
k
j

)
− 1
) + (1± 2η)r`

 .

Moreover, we have |∂(i+ 1)| = (1±2ε∗)(1+ε)|∂(i)| by Lemma 3.16, and recall

that ε∗ � η � γ0 and γ` = 8γ`−1 ≥ γ0. Lastly observe that(
k−`
j−`
) ((

k
`

)
−
(
j
`

))(
j
`

) =

(
k

j

)
−
(
k − `
j − `

)
and ((

k

j

)
− 1

)
r` =

(
k − `
j − `

)
− 1.

Thus we obtain

dL(i+ 1) = (1± γ`)
|∂(i+ 1)|(

n
j

) (
n

j − `

)
,

as claimed. �

3.4. Supercritical regime

We now use Lemma 3.8 to prove Theorem 3.2(a), which is substantially harder

than the proof of Theorem 3.2(b) even having proved Lemma 3.8 already.

As mentioned earlier we will consider the random variable X counting the

number of j-sets in ‘large’ components. In a first step we compute its mean, and

then in the second step we establish concentration around its mean by a second

moment argument. Once the intermediate goal of X being concentrated around its

mean is achieved, we complete the proof using a sprinkling argument to show that

almost all vertices in ‘large’ components in fact lie in a single giant component.

But first we briefly highlight two important properties of the supercritical

branching processes, which we use to couple exploration processes using BFS.

3.4.1. Properties of branching processes. We will also need some results on

branching processes. The arguments here are similar to standard and well-known

arguments, but the actual processes may have an unfamiliar distribution, so for

completeness we give the full arguments in Appendix 3.A.

Survival probability. Consider the branching process T ∗, in which the number

of children has distribution c0 · Bin
((

n
k−j
)
, p
)
. For the supercritical case we have
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p = (1 + ε)p̂g. By setting up a suitable recursion (see Appendix 3.A), we may

deduce that the survival probability % of this process is the unique positive solution

to the equation

(1− %)c0 =

c0( n
k−j)∑
i=0

P
(

Bin

(
c0

(
n

k − j

)
, p

)
= i

)
(1− %)c0i

which is asymptotically

% ∼ 2ε/c0. (3.26)

Likewise the lower coupling process T∗, in which the number of children has distri-

bution c0 · Bin
(
(1− ε∗)

(
n
k−j
)
, p
)
, has survival probability %∗ with

%∗ ∼ 2ε/c0. (3.27)

Dual process. When we explore a component and the lower coupling T∗ survives

indefinitely we can conclude that the component must be large, since the search

process certainly survives until T∗ is no longer a lower coupling. However if the

upper coupling T ∗ dies out we need some information on the total size of all its

generations in order to decide whether this implies that the component must be

small.

Recall that T ∗ has the offspring distribution

c0 · Bin

((
n

k − j

)
, p

)
where p = (1 + ε)po. We denote the event that T ∗ dies out by D and condition on

it. This defines a conditional branching process TD, called the dual process, with

offspring distribution

c0 · Bin

((
n

k − j

)
, pD

)
,

where

pD = (1− ε+ o(ε))p̂g,

(see Appendix 3.A for a proof). Thus the expected number of children of any

individual in TD is given by

c0

(
n

k − j

)
pD = 1− ε± o(ε) < 1

and hence in particular the dual process is a subcritical branching process.

Therefore we can give an asymptotic estimate on the expected total size of TD
by standard techniques (see [68]):

E (|TD|) =

∞∑
i=0

(
c0

(
n

k − j

)
pD

)i
=

1

1− c0
(
n
k−j
)
pD
∼ ε−1. (3.28)
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Consequently we can bound the probability of the process T ∗ being larger than

some Λ = Λ(n) by conditioning on D and applying Markov’s inequality

P (|T ∗| ≥ Λ) = P (¬D) · 1 + P(D) · P (|T ∗| ≥ Λ | D)

≤ P (¬D) + 1 · P (|TD| ≥ Λ)

(3.28)

≤ %+ (1± o(1))ε−1Λ−1

(3.26)∼ 2ε

c0
, (3.29)

as long as ε2Λ→∞.

3.4.2. Total size of large components. Let X denote the number of j-sets in

components of size at least

Λ := λnj

and observe that ε2Λ→∞ is satisfied (see Section 3.1.4.1). While calculating the

expectation E(X) is easy, proving that X is concentrated around E(X) is the main

challenge of the proof of Theorem 3.2(a). We will show the following claim

Claim 3.27. Whp we have

X = (1± o(1))
2ε(

k
j

)
− 1

(
n

j

)
. (3.30)

First moment. We first determine E(X) by (partially) growing the component

from an arbitrary j-set J using BFS and verifying whether it has size at least Λ.

By Lemma 3.12 we only need O(λnk) queries to do so. Therefore the coupling

T∗ ≺ BFS ≺ T ∗ holds by Lemma 3.15 (until time t = O(λnk)) and we obtain

E (X) ≤
(
n

j

)
P (|T ∗| ≥ Λ)

(3.29)∼ 2ε

c0

(
n

j

)
and similarly

E (X) ≥
(
n

j

)
P (|T∗| =∞) = %∗

(
n

j

)
(3.27)∼ 2ε

c0

(
n

j

)
.

Hence we have

E(X) = (1± o(1))
2ε

c0

(
n

j

)
. (3.31)

Second moment. Let L denote the union of all large components, i.e. compon-

ents of size at least Λ. In order to apply Chebyshev’s inequality to prove that X

is concentrated around its expectation, we need to show that E(X2) ∼ E(X)2. We

may interpret X2 as the number of ordered pairs of j-sets in large components

(formally we may pick the same j-set twice in such a pair) and thus we can write

its expectation as

E
(
X2
)

=
∑

J1∈(Vj ), J2∈CJ1

P (J1, J2 ∈ L) +
∑

J1∈(Vj ), J2∈(
n
j)\CJ1

P (J1, J2 ∈ L) . (3.32)

Fix an arbitrary j-set J1. We start growing its component using BFS, and

recall that CJ1(i) denotes its partial component at the beginning of round i and
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∂CJ1(i) the i-th generation. We denote the upper coupling branching process for

the exploration by T J1 (i.e. T J1 is a particular instance of T ∗). We continue to

grow the component until at the beginning of some round i ∈ N one of the following

three stopping conditions is reached4:

(S1) the component of J1 is fully explored (i.e. no j-sets are still active);

(S2) the (partial) component CJ1(i) has reached size at least Λ = λnj ;

(S3) the i-th generation ∂CJ1(i) has reached size at least λΛ = λ2nj .

Moreover, the (first) round in which any these stopping conditions is invoked was

denoted by

i1 = min
i∈N
{(S1) ∨ (S2) ∨ (S3) holds in round i}.

With slight abuse of notation we write CJ1 for CJ1(i1). Similarly, we write ∂CJ1

instead of ∂CJ1(i1) and call ∂CJ1 the boundary of CJ1 .

Note that the choice of λ (see Section 3.1.4.1) was tailored for this application:

on the one hand, we want to stop as early as possible so that the coupling still

holds; on the other, we want to be sure, that we can use the information which

stopping condition was invoked to reliably distinguish between large components

and those which are not large. While we already proved that the coupling is valid

for the entire stopped exploration process (Lemma 3.17), we will now demonstrate

that this setup also allows us to detect large components accurately.

We start by comparing the reasons why the search processes stop with the

events that the corresponding components are large. First, observe that if the ex-

ploration CJ1 stopped because the component was fully explored, (S1), then it never

reached size Λ and therefore J1 does not lie in a large component. Consequently it

will not contribute to X2. Hence we are interested in the case when the exploration

of the component of J1 stops due to stopping condition (S2) or (S3) and we recall

that this event was denoted by

E = {(S2) ∨ (S3) holds in round i1} .

From the previous observation it is immediate that {J1 ∈ L} =⇒ E and thus

P (J1, J2 ∈ L) ≤ P (E ∧ {J2 ∈ L}) = P (E)P (J2 ∈ L | E) . (3.33)

In order to give a suitable upper bound for P (E) we have to analyse the upper

coupling T J1 if we stop due to the second or third stopping condition, (S2) or (S3)

respectively. For technical reasons we distinguish two cases in a way that might

seem a little awkward: if stopping condition (S2) was implemented, then clearly

J1 does lie in a large component and therefore T J1 will contain at least Λ many

j-sets since we already reached that size when we stopped the exploration. This

motivates a case distinction according to the following implication

E =⇒
{∣∣T J1 ∣∣ ≥ Λ

}
∨
(
E ∧

{∣∣T J1∣∣ < Λ
})

. (3.34)

4Recall that we already saw these stopping conditions defined for general exploration processes
(using BFS) in Section 3.3
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LetW be the event that the generation of T J1 at which we stopped the exploration

process is larger than λΛ. Observe that

E ∧
{∣∣T J1 ∣∣ < Λ

}
=⇒ W ∧

{∣∣T J1 ∣∣ < Λ
}
, (3.35)

since the event E can only hold (subject to
{∣∣T J1 ∣∣ < Λ

}
) if the boundary ∂CJ1

of the explored component was at least of size λΛ and hence the corresponding

generation of the upper coupling must also have been large, i.e. W needs to hold.

Because {∣∣T J1∣∣ < Λ
}

=⇒
{∣∣T J1∣∣ <∞} , (3.36)

we want to consider the event that T J1 dies out after having had a large generation.

Intuitively we would imagine that the chances of this happening are very small so

let us make this intuition more precise.

Assume thatW holds. Then there is a generation of T J1 with at least λΛ j-sets

in the boundary, and from each of these we start an independent copy of T ∗, all of

which need to die out in order for T J1 to die out. Since the survival probability of

T ∗ is (1± o(1)) 2ε

(kj)−1
≥ ε/2k we thus have

P
(∣∣T J1 ∣∣ <∞ ∣∣W) ≤ P (|T ∗| <∞)

λΛ ≤
(

1− ε

2k

)λΛ

≤ exp

(
−ελΛ

2k

)
, (3.37)

and the right-hand side is o(1). This implies

P
(
W ∧

{∣∣T J1 ∣∣ <∞}) = P(W)P
(∣∣T J1∣∣ <∞ ∣∣W)

= P
(
W ∧

{∣∣T J1∣∣ =∞
})
·
P
(∣∣T J1∣∣ <∞ ∣∣W)

P (|T J1 | =∞ | W)

(3.37)
= P

(∣∣T J1∣∣ =∞
)
· o(1)

(3.26)
= o(ε) . (3.38)

Putting things together, from (3.34), (3.35), and (3.36) we obtain

P (E) ≤ P
(∣∣T J1 ∣∣ ≥ Λ

)
+ P

({∣∣T J1∣∣ <∞} ∧W) ≤ 2ε

c0
+ o (ε) , (3.39)

where the second inequality holds by (3.29) and (3.38).

Now let us first consider the contribution to E(X2) that comes from j-sets

J2 which lie inside CJ1 . By Lemma 3.17, there are at most 2Λ such j-sets, and

therefore the contribution is at most∑
J1∈(Vj ), J2∈CJ1

Pr(J1, J2 ∈ L)
(3.29)

≤
(
n

j

)
· 2Λ ·O(ε) = O(ελn2j) = o(ε2n2j).

Since E(X2) ≥ E(X)2 = Θ(ε2n2j), this contribution is negligible, and therefore the

expression in (3.32) simplifies and we obtain

E(X2) = (1± o(1))
∑

J1∈(Vj ), J2∈(
n
j)\CJ1

Pr (J1, J2 ∈ L) .
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Consequently, by (3.33) and (3.39), we have

E
(
X2
)
≤ (1 + o(1))

(
n

j

)
P (E)

∑
J2∈(Vj )\CJ1

P (J2 ∈ L | E) .

≤ (1 + o(1))
2ε

c0

(
n

j

) ∑
J2∈(Vj )\CJ1

P (J2 ∈ L | E) . (3.40)

Therefore assume that J2 lies outside CJ1 and fix it for the remainder of the

proof. We delete all the j-sets of CJ1 from Hk(n, p) – any k-sets containing them

may now no longer be queried.

We start a new BFS process from J2 growing a component in this restricted

hypergraph which we denote by H′. The partial component obtained at the be-

ginning of round i is denoted by CJ2(i). Similarly as before, we denote the upper

coupling branching process for this exploration by T J2 (which is also an independ-

ent instance of T ∗). We continue to grow the component until one of the following

two stopping conditions is reached:

(T1) the component of J2 (in H′) is fully explored;

(T2) the (partial) component CJ2(i) has reached size Λ = λnj .

Again, we only stop at the beginning of a round, and denote the corresponding

stopping time by

i2 = min
i∈N
{(T1) ∨ (T2) holds in round i}.

Moreover, with slight abuse of notation write CJ2 instead of CJ2(i2).

If CJ2 has size at least Λ, then certainly the component containing J2 in

Hk(n, p) has size at least Λ. On the other hand, if CJ2 stops because of (T1),

then it may be that in fact the whole component is large, but we missed some of

it because of the j-sets of CJ1 which we deleted. We will show that the number of

k-sets we were forbidden to query is small enough that whp none of them would

have resulted in an edge of the hypergraph.

We first observe that such queries can only occur between CJ2 and the boundary

∂CJ1 of CJ1 (any j-sets of CJ1 not in ∂CJ1 were already fully explored). The

intuition is that CJ2 remains small, while the boundary of CJ1 is very small, so

the number of pairs of j-sets, one from each side, should still be small. We might

therefore expect that there are very few k-sets containing such pairs.

The problem with this naive argument is that the number of k-sets containing

a pair of j-sets is heavily dependent on the size of their intersection. While on the

whole most pairs of j-sets do not intersect, those which do carry disproportionately

large weight because there are many more k-sets containing both of them.

However, we already proved the smooth boundary lemma (Lemma 3.8) allows

us to overcome this obstacle: it implies that ∂CJ1 is ‘smooth’ in the sense that

for any 0 ≤ ` ≤ j − 1 and for any `-set L, the number of j-sets in ∂CJ1 which

contain L is about the ‘right’ number, and in particular almost the same regardless
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of the choice of L (though dependent on |L| = `). This statement is formalised in

Lemma 3.28. Recall (from Section 3.1.4.2) that dL(∂CJ1) denotes the number of

j-sets of the boundary ∂CJ1 containing the set L.

Lemma 3.28. Conditioned on E, with probability at least 1− exp(−Θ(nδ/4)), for

every 0 ≤ ` ≤ j − 1 and `-set L the following holds (at the beginning of round i1):

dL(∂CJ1) = (1± o(1))
|∂CJ1 |(

n
j

) (
n

j − `

)
.

Proof. Recall (from Section 3.3.1) that i0(j − 1) was defined to be the round when

the generations reach size nj−1+δ for the first time, and after round i1(j − 1) =

i0(j − 1) + Θ(log n) generations are smooth by Lemma 3.8. Hence it only remains

to prove that i1(j − 1) ≤ i1. This follows directly from Lemma 3.11 stating that

conditional on E we have i1 − i0(j − 1) ≥ ε−1 log n� log n. �

We note that Lemma 3.28 is already much weaker than Lemma 3.8 itself, but

sill considerably stronger than we would need for the proof of Theorem 3.2(a), for

which concentration within a constant multiplicative factor would be sufficient.

Next we demonstrate how to employ Lemma 3.28 to provide an upper bound

on the probability of the (partial) component CJ2 being large conditioned on E .

We denote the upper coupling process of CJ2 by T J2 (being an instance of T ∗).
Conditioned on E and

{∣∣T J2∣∣ <∞} , we need to analyse the event F of J2 being a

(potential) false negative, i.e. CJ2 contains fewer than Λ j-sets but the component

of J2 in Hk(n, p) is larger than CJ2 . (In fact, a genuine false negative would require

the component to be larger than Λ, but bounding the probability of this weaker

event will be sufficient.)

We know, by Lemma 3.17, that the boundary ∂CJ1 has size at most 2λΛ and

each `-set is contained in O(λΛ/n`) sets of ∂CJ1 , by Lemma 3.28. Thus for a j-set

of CJ2 , the number of k-sets which we did not query because they contained j-sets

of CJ1 is
j−1∑
`=0

O(λΛ/n`)

(
j

`

)(
n− j

k − 2j + `

)
= O(λΛnk−2j).

Therefore, if we assume CJ2 contains precisely r ∈ N j-sets, the expected number

of edges within these disallowed k-sets is at most O
(
λΛnk−2jrp

)
= O

(
λ2r
)
, and

thus the probability that we have overlooked at least one edge is O
(
λ2r
)
. Hence,

by the law of total probability we obtain

P
(
F
∣∣ E ∧ {∣∣T J2∣∣ <∞}) = O

(
λ2
∞∑
r=0

rP
(
|CJ2 | = r

∣∣ E ∧ {∣∣T J2∣∣ <∞}))
= O

(
λ2E

(
|CJ2 |

∣∣ E ∧ {∣∣T J2 ∣∣ <∞}))
= o

(
ε2E

(∣∣T J2 ∣∣ ∣∣ E ∧ {∣∣T J2 ∣∣ <∞})) .
Now since the process T J2 is independent of E and is distributed as T ∗ we obtain

P
(
F
∣∣ E ∧ {∣∣T J2 ∣∣ <∞}) = o

(
ε2E (|TD|)

) (3.28)
= o(ε) . (3.41)
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In other words, false negatives are very unlikely. This solves the main difficulty in

the proof of Claim 3.27.

Since we only need an upper bound for the probability that the component of

J2 in Hk(n, p) is large, we do not need to care about false positives. Therefore we

consider J2 to be large in the following three cases:

• T J2 survives;

• T J2 dies out and J2 is a false negative;

• T J2 dies out, J2 is not a false negative and its component in Hk(n, p) is

large.

Observe that every j-set J2 ∈ L will satisfy exactly one of these conditions.

Still assuming that E holds, we calculate the probabilities of these events. For

the first case we obtain

P
(∣∣T J2∣∣ =∞

∣∣ E) = P
(∣∣T J2 ∣∣ =∞

) (3.26)∼ 2ε

c0
, (3.42)

since the branching process T J2 is independent of E . Moreover, estimate (3.41)

immediately shows

P
({∣∣T J2∣∣ <∞} ∧ F ∣∣ E) ≤ P

(
F
∣∣ E ∧ {∣∣T J2∣∣ <∞}) (3.41)

= o(ε) . (3.43)

For the last case let us first note that

{¬F ∧ {J2 ∈ L}} =⇒ {|CJ2 | ≥ Λ} =⇒
{∣∣T J2 ∣∣ ≥ Λ

}
and T J2 is independent of the event E . Thus we have

P
({∣∣T J2 ∣∣ <∞} ∧ ¬F ∧ {J2 ∈ L}

∣∣ E) ≤ P
(
Λ ≤

∣∣T J2∣∣ <∞)
≤ P

(∣∣T J2∣∣ ≥ Λ
∣∣ ∣∣T J2 ∣∣ <∞)

= P (|TD| ≥ Λ)

(3.28)

≤ (1 + o(1))ε−1/Λ = o(ε) , (3.44)

by Markov’s inequality and since ε2Λ → ∞. Consequently, by estimates (3.42),

(3.43) and (3.44), we obtain

P (J2 ∈ L | E) ≤ 2ε

c0
+ o(ε) . (3.45)

This yields a good enough upper bound on the second moment:

E
(
X2
) (3.40)

≤ (1 + o(1))

(
n

j

)
2ε

c0

∑
J2∈(Vj )\CJ1

P (J2 ∈ L | E)

(3.45)

≤ (1 + o(1))

(
2ε

c0

(
n

j

))2

(3.31)
= (1 + o(1))E (X)

2
,

and therefore we have for the variance

V (X) = E(X2)− E(X)2 = o(E(X)2) .
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Hence Chebyshev’s inequality tells us that for any constant ζ > 0,

P(X 6= (1± ζ)E(X)) ≤ 2V(X)

ζ2 E(X)2
= o(1/ζ2) = o(1),

and so whp X = (1 ± o(1))E(X). We have thus shown that the number of j-sets

in large components is approximately as expected, and consequently Claim 3.27

follows from (3.31). �

3.4.3. Sprinkling. In order to complete the proof of Theorem 3.2(a) based on

Claim 3.27 we also need to know that all (or at least almost all) j-sets of L lie in

the same component. To prove this, we use a standard sprinkling argument.

Proof of Theorem 3.2(a). Let p2 := ε
λ3nk

and p1 be such that

p1 + p2 − p1p2 = (1 + ε)p̂g = p.

Recall that λ3nj → ∞, thus p2 = o(εp̂g), and consequently p1 = (1 + ε + o(ε))p̂g.

We expose the edges of Hk(n, p) in two rounds and couple the random hypergraphs

so that we have Hk(n, p1) ∪Hk(n, p2) = Hk(n, p).

Now observe that after the first round of exposure the number of j-sets in

large components already satisfies the asymptotics in Claim 3.27. In other words,

Hk(n, p1) has (1 ± o(1)) 2ε

(kj)−1

(
n
j

)
j-sets in large components. Let us denote the

large components in Hk(n, p1) by C1, . . . , Cs, where s ≤ (1±o(1))ε
(
n
j

)
/Λ = O(ε/λ).

Furthermore assume that s ≥ 2, i.e. there are at least two large components,

since otherwise there is nothing to prove. We will merge all of them with C1 by using

a union bound, let us therefore concentrate on merging C1 with C2. By Lemma 3.14

each (j − 1)-set lies in Ω(λn) many j-sets of any large component of Hk(n, p1).

Pick a (j−1)-set J ′ and consider the (k− j+1)-uniform link hypergraph of J ′,

i.e. the hypergraph on [n] \ J ′ whose edges are all (k − j + 1)-sets which, together

with J ′, form an edge of Hk(n, p). This has two distinct vertex-components C(J′)
1

and C(J′)
2 containing Ω(λn) vertices each, corresponding to C1 and C2 respectively.

There are therefore Ω(λ2nk−j+1) possible (k− j+1)-sets which intersect both C(J′)
1

and C(J′)
2 . (These correspond to k-sets containing J ′, which also contain a j-sets

from both C1 and C2.)

Moreover, we may do the same for any (j − 1)-set J ′ (of which there are
(
n
j−1

)
in total). In doing so we may count k-sets multiple times, but certainly at most(
k
j

)
= O(1) times. Hence there are at least

(
n
j−1

)(
k
j

)−1
Ω(λ2nk−j+1) = Ω(λ2nk)

k-sets which, if they form an edge in Hk(n, p2), will merge the components C1 and

C2. Thus the probability that these two components do not merge is at most

(1− p2)Ω(λ2nk) ≤ exp
(
− ε

λ3nk
Ω(λ2nk)

)
≤ exp (−Ω(ε/λ)) .

Consequently the probability that at least one of C2, . . . , Cs does not merge with C1
is at most

O(ε/λ) exp (−Ω(ε/λ)) = o(1).
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Hence, in Hk(n, p), whp there is a single component of size (1 ± o(1)) 2ε

(kj)−1

(
n
j

)
,

while this is also the number of j-sets in large components by Claim 3.27. Thus,

even though sprinkling the edges with probability p2 may have created more large

components, they can only have total size o(εnj), completing the proof. �

3.5. Concluding remarks

Since random graphs have been so extensively studied, various further ques-

tions immediately suggest themselves, regarding whether we can also prove similar

results for hypergraphs. Before we discuss these topics we briefly comment on a

very interesting alteration of the breadth-first search exploration process for hyper-

graphs.

Hypertrees. In this chapter, we used the fact that Lemma 3.13 can be applied to

the search process BFS to show that T∗ ≺ BFS ≺ T ∗. However, this also applies to

the following variant of the search process: we define BFS2 to be the corresponding

breadth-first search process in which a k-set may only be queried if it contains c0

neutral j-sets (as opposed to at least one for BFS).

BFS2 is a search algorithm specifically looking for a tree, where we define a tree

to be a component with e edges and c0e+ 1 many j-sets. Note that this algorithm

will not necessarily reveal all of a component; however all the arguments involving

BFS which we use in this chapter also hold for BFS2. Thus we deduce that the

number of j-sets contained in large trees is approximately 2ε
c0

(
n
j

)
, and indeed these

(rooted) trees are smooth in the sense of the smooth boundary lemma.

Critical window. The natural candidate for the optimal lower bound on ε in

Theorem 3.2 would be ε3nj → ∞, for which the bounds from the super-critical

case (Θ(εnj)) and the sub-critical case (O(ε−2 log n)) match up to the log n term,

suggesting that we have a smooth transition. In particular, this condition is also

sufficient for the sprinkling argument in Section 3.4.3 to work.

However, for j ≥ 2, our proof method requires additional conditions. Thus for

these cases, our range of ε is probably not best possible. On the other hand, for

j = 1 most of our machinery is not needed, and the proofs simplify and actually

work under the optimal assumption ε3n→∞.

The additional condition arises in the proof because we need the smooth bound-

ary lemma. The boundary has size up to λ2nj = o(ε2nj), and the typical degree

within the boundary of an `-set is o(ε2nj−`). If we are to show that these degrees

are concentrated, we need this typical degree to be large, which in the case of

` = j − 1 means ε2n must be large, thus leading to our condition on ε. However,

currently there is another bottleneck in the proof of Lemma 3.21, which provides an

upper bound on the biped degrees. In a nutshell we lose an factor of λ by estimating

∆`(∂CJ(i)) ≤ ∆`(CJ(i)), while i is still too small to expect smoothness of `-sets for

all 1 ≤ ` ≤ j − 1. We use this estimate for instance to derive (3.16). Unfortunately
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this error compounds similarly as in the previous obstruction meaning that ε3n1−2δ

must be large.

If we were to attempt to do away with this condition, we would need to have

some control over degrees which may be very small. Presumably we would need to

determine more precisely what the probability distribution of such degrees is.

Limiting distribution for giant component. The size of the giant compon-

ent shortly after the phase transition is a random variable whose mean we have

(asymptotically) determined in this chapter, and we have further shown that it

is concentrated around its mean. However, we have not proved what the actual

distribution of this random variable is.

The most likely candidate would be a normal distribution as is the case for

graphs (as proved by Pittel and Wormald [95] and by Luczak and  Luczak [85]).

More generally for the 1-component in k-uniform hypergraphs, analogous results

were proved for various ranges of ε by Karoński and  Luczak [79] and by Behrisch,

Coja-Oghlan and Kang [25], and for the whole of the supercritical regime (ε �
n−1/3) by Bollobás and Riordan [36]. For these cases, central and local limit the-

orems are known. It would be interesting to prove similar results for the size of the

largest j-component.

Structure of components. For graphs, it is well known that shortly after phase

transition, all components are whp trees or at most unicyclic. It would be interesting

to know if something similar holds in hypergraphs. (A natural generalisation of

unicyclic would be the most tree-like connected non-tree structure, i.e. a component

with e edges and c0e many j-sets. In this case, when discovering the component,

exactly one j-set would be seen twice.) This would be particularly interesting when

aiming for a local limit theorem for the size of the largest j-component, because

in both [25, 79] (j = 1) it proved crucial to closely investigate the interactions of

small components with the giant component.

Cores. The study of cores in random graphs was initiated by Bollobás [32]. The `-

core is the (unique) maximal subgraph of minimum degree at least `. The threshold

for the existence of a giant `-core for ` ≥ 3 was determined by Pittel, Spencer, and

Wormald [94].

For hypergraphs, the degree has many possible generalisations just as connec-

tedness does. For each of these, we may then define the `-core and consider its

properties. For vertex-degree, Molloy [87] determined the critical threshold for the

existence of a non-empty `-core and its asymptotic size, but in general this is still

an open question.

3.A. Appendix: branching processes

Recall that we aim to calculate the asymptotic value of the survival probability

% of the branching process T ∗, in which the number of children has distribution

c0 · Bin
((

n
k−j
)
, p
)
, where p = (1 + ε)p̂g. For technical reasons, it is slightly easier
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first to calculate the probability %0 that at least one of c0 independent branching

processes (each an instance of T ∗) survives. In this case the number of children in

the first generation has distribution Bin
(
c0
(
n
k−j
)
, p
)
.

By standard results for branching processes (see [68]) we know that % > 0. We

note that the processes all die out if and only if all subprocesses starting at children

in the first generation die out. Making a case distinction on the number of such

children, we obtain

1− %0 =

c0( n
k−j)∑
i=0

P
(

Bin

(
c0

(
n

k − j

)
, p

)
= i

)
(1− %0)i

=

c0( n
k−j)∑
i=0

(
c0
(
n
k−j
)

i

)
pi(1− p)c0(

n
k−j)−i(1− %0)i,

and thus

1− %0 = (p(1− %0) + 1− p)c0(
n
k−j) = (1− p%0)

c0( n
k−j) = (1− (1 + ε)p̂g%0)

p̂−1
g .

Solving this equation for ε yields

ε =
1− (1− %0)

p̂g

%0p̂g
− 1 =

f(%0)

%0p̂g
, (3.46)

for

f(%0) = 1− %0p̂g − (1− %0)
p̂g

=
p̂g(1− p̂g)

2
%2

0 +
p̂g(1− p̂g)(2− p̂g)

6
%3

0 + . . . .

Since this expression has only non-negative coefficients, (3.46) implies that

ε ≥
p̂g(1−p̂g)

2 %2
0

%0p̂g
=
%0

2
−O(p̂g%0)

and hence %0 = o(1) since ε = o(1) and p̂g = o(1). Consequently we derive the

asymptotic estimate

ε =
%0

2
+O

(
%0p̂g + %2

0

)
∼ %0

2
(3.47)

from (3.46). Since 1− %0 = (1− %)c0 , we have

% = 1− (1− %0)
1
c0 =

%0

c0
+O

(
%2

0

) (3.47)∼ 2ε

c0
. (3.48)

Remark 3.29. Note that an almost identical calculation shows that the survival

probability %∗ of the lower coupling process T∗ also satisfies

%∗ ∼
2ε(

k
j

)
− 1

, (3.49)

because each individual has (1− ε∗)(1 + ε) = 1 + ε± o(ε) children in expectation.

Recall that TD is the dual process, i.e. the process T ∗ conditioned on D, the

event that T ∗ dies. We consider the children of an individual as being grouped into

litters, each containing c0 children, where the number of litters has distribution
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Bin
((

n
k−j
)
, p
)

in T ∗. We want to show that TD is a branching process in which each

individual has a number of litters of children which has binomial distribution.

To analyse the dual process we consider the change of the probability of D
subject to the presence Ae of a litter of children of an individual J , in other words

P (Ae) = p and Ae is independent from the rest of the process. We denote by

∂(J) the set of individuals in the same generation (of T ∗) as J and calculate the

probabilities P (D | Ae) and Pr (D | ¬Ae) by conditioning on the number of litters

(of children) s(∂(J)) of individuals in ∂(J). Denoting M := |∂(J)|
(
n
k−j
)

we obtain

P (D | Ae) =

M−1∑
i=0

P(s (∂(J)) = i+ 1 | Ae) (1− %)(i+1)c0

=

M−1∑
i=0

P
(
Bin(M − 1, p) = i

)
(1− %)(i+1)c0

and similarly

P (D | ¬Ae) =

M−1∑
i=0

P (s(∂(J)) = i | ¬Ae) (1− %)ic0

=

M−1∑
i=0

P
(
Bin(M − 1, p) = i

)
(1− %)ic0 .

Consequently we have

P (D | Ae)
P (D | ¬Ae)

= (1− %)
c0 , (3.50)

and thus obtain

P (Ae | D) =
P (D | Ae)P (Ae)

P (D | Ae)P (Ae) + P (D | ¬Ae)P (¬Ae)

=

P(D | Ae)
P(D | ¬Ae) · P (Ae)

P(D | Ae)
P(D | ¬Ae) · P (Ae) + P (¬Ae)

(3.50)
=

(1− %)
c0 p

1− p (1− (1− %)
c0)

,

In particular, note that this probability is independent of the choice of e and J ,

hence we denote it by pD. Moreover we obtain the estimate

pD =
(1− %)c0p

1−O(p%)
= p (1− %)

c0 +O(p2%)
(3.48)

= (1− ε± o(ε))p̂g .

Furthermore a very similar calculation shows that conditioned on D the presence of

e is still independent of all other edges. Hence the dual process TD is a branching

process whose offspring distribution is given by

c0 · Bin

((
n

k − j

)
, pD

)
.



CHAPTER 4

Hitting time for connectedness in random

hypergraphs

4.1. Introduction and main results

In the study of random graphs, one of the most well-known results concerns the

hitting time for connectedness. More precisely, if we add randomly chosen edges

one by one to an initially empty graph on n vertices, then at the moment the last

isolated vertex gains its first edge, the whole graph will also become connected (this

classical result was first proved by Bollobás and Thomason in [38]). This interplay

between local and global properties is an example of the common phenomenon

relating graph properties with their smallest obstruction; the graph can certainly

not be connected while an isolated vertex still exists, but this smallest obstruction

is also the critical one which is last to disappear.

In this chapter we generalise the result of Bollobás and Thomason to random

k-uniform hypergraphs. For an integer k ≥ 2, a k-uniform hypergraph consists

of a set V of vertices together with a set E of (hyper-)edges, each consisting of k

vertices. We need to define the notion of connectedness, for which there is a whole

family of possible definitions. For any 1 ≤ j ≤ k−1, we say that two distinct j-sets

of vertices (i.e. j-element subsets of the vertex set V ) J1 6= J2 are j-connected if

there is a sequence e1, . . . , em ∈ E of edges such that

• J1 ⊂ e1 and J2 ⊂ em;

• |ei ∩ ei+1| ≥ j for all 1 ≤ i ≤ m− 1.

In other words, we may walk from J1 to J2 using edges which consecutively intersect

in at least j vertices. Any j-set is always j-connected to itself. This forms an

equivalence relation on the set
(
V
j

)
of j-sets. A j-component is an equivalence class

of this relation, i.e. a maximal set of pairwise j-connected j-sets. The case j = 1

is also known as vertex-connectedness, and for j ≥ 2 we use the term high-order

connectedness.1

Note that in the case k = 2, j = 1 this is simply the usual definition of con-

nectedness for graphs. More generally, for arbitrary k ≥ 2 the case j = 1 is by far

the most well-studied. The definition for general j is also entirely natural, albeit

harder to visualise and often requires more complex analysis. In this chapter we

will be interested in arbitrary 1 ≤ j ≤ k − 1 and k ≥ 3.

1This notion is not to be confused with the (vertex-)connectivity of a (hyper-)graph H measuring
the size of the smallest vertex-separator in H.

92
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4.1.1. Main results. We first define the uniform model, the counterpart of the uni-

form model of Erdős and Rényi for graphs: given any natural numbers k,M, n such

that M ≤
(
n
k

)
, the random hypergraph Hk(n,M) is a hypergraph chosen uniformly

at random from all k-uniform hypergraphs on vertex set {1, . . . , n} which have M

edges. This is closely related to the random hypergraph process {Hk(n,M)}M which

is defined as follows:

• Hk(n, 0) is the hypergraph on vertex set {1, . . . , n} with no edges;

• For 1 ≤M ≤
(
n
k

)
, Hk(n,M) is obtained from Hk(n,M − 1) by adding an

edge chosen uniformly at random from among those k-sets which do not

already form an edge.

Note that the random hypergraph obtained in the M -th step of the process has the

same distribution as in the uniformly chosen random hypergraph Hk(n,M), so the

notation is consistent.

We consider asymptotic properties of random hypergraphs and throughout this

chapter any asymptotics are as n → ∞. In particular we say with high probability

(or whp) to mean with probability tending to 1 as n→∞.

We say that a j-set is isolated if it is not contained in any edges. It is trivial

to see that if a hypergraph contains isolated j-sets, then it is not j-connected

(assuming it has more than j vertices). Our main result is that this trivial smallest

obstruction is also the critical one in a random hypergraph.

Let τc denote the time step in the hypergraph process {Hk(n,M)}M at which

the hypergraph becomes j-connected. Similarly, let τi denote the time at which the

last isolated j-set disappears. Note that the properties of being j-connected and of

having no isolated j-set are monotone increasing properties, so these two variables

are well-defined. Furthermore, as noted above, τi ≤ τc holds deterministically.

Theorem 4.1. For any 1 ≤ j ≤ k − 1 and k ≥ 3, whp in the random hypergraph

process {Hk(n,M)}M we have τc = τi.

Special cases of Theorem 4.1 were already proved by Poole [96] for j = 1, and

by Kahle and Pittel [77] for j = k − 1.

The uniform model and the associated hypergraph process allow us to formulate

exact hitting time results such as Theorem 4.1, which we prove in Section 4.4.

However, the drawback is that the analysis of the model can become tricky due to

the fact that the presence of different edges is not independent (the total number

is fixed). For this reason, it is often easier to analyse the binomial model : Hk(n, p)

is a random k-uniform hypergraph on vertex set {1, . . . , n} in which each k-set is

an edge with probability p independently of all other k-sets. In Section 4.2 we will

show that if p = M/
(
n
k

)
, then the two models are very similar and we can transfer

results from one model to the other.

For the proof of Theorem 4.1 we will also make use of the following result

(Theorem 4.2), which is interesting in itself and is therefore stated in a significantly

more general form than we need for Theorem 4.1. For integer valued random
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variables Z and Z ′ we denote their total variation distance by dTV (Z,Z ′), i.e.

dTV (Z,Z ′) =
1

2

∑
i∈Z
|P (Z = i)− P (Z ′ = i)| .

For integer-valued random variables Xn and Y , we say Xn converges in distribution

to Y , denoted by Xn
d−→ Y , if for every integer i we have P(Xn = i)→ P(Y = i).

Theorem 4.2. For any k ≥ 3 and 1 ≤ j ≤ k − 1 and for any integer s ≥ 0, let

ps = ps(n, k, j) =
j log n+ s log log n+ cn(

n
k−j
) ,

where |cn| = o(log n), and let Ds be the number of j-sets of degree precisely s in

Hk(n, ps) (i.e. which lie in s edges). Then we have

dTV (Ds,Po (E (Ds))) = O(n−j(log n)s+1). (4.1)

In particular, Ds satisfies the following:

(i) Ds = 0 whp if cn →∞;

(ii) Ds
d−→ Po

(
jse−c

j!s!

)
if cn → c for any c ∈ R;

(iii) Ds →∞ whp if cn → −∞.

We prove Theorem 4.2 in Section 4.3. These two theorems together give the

following corollary, proved in Section 4.3.

Theorem 4.3. Let k ≥ 3 and 1 ≤ j ≤ k − 1, and let p0 = j logn+cn

( n
k−j)

.

(a) If cn → ∞, then whp Hk(n, p) is j-connected (and therefore contains no

isolated j-sets).

(b) If cn → −∞, then whp Hk(n, p) contains isolated j-sets (and is therefore

not j-connected).

In other words, the properties of being j-connected and having no isolated j-sets

both undergo a (sharp) phase transition at threshold p̂c, given by

p̂c = p̂c(n, k, j) :=
j log n(

n
k−j
) .

4.1.2. Methods. The main contribution of this chapter is to deduce Theorem 4.1

from Theorem 4.2. Attempting to prove this directly using standard techniques

generalised from the graph case does not work because j-components in a hyper-

graph may be strangely and non-intuitively distributed. To overcome this problem

we quote a powerful result from Chapter 3, which guarantees one component with

a large subset which is in some sense smoothly distributed. We then show that whp

all non-trivial components are connected to this smooth subset.

4.1.3. Notation and definitions. We introduce a few more definitions before we

proceed with the proofs. We fix k ≥ 3 and 1 ≤ j ≤ k − 1 for the remainder of the

chapter. The order |H| of a hypergraph H is the number of vertices it contains,

while its size e(H) is the number of edges. Since a j-component consists of j-sets

of vertices, we may view it as a j-uniform hypergraph in which the edges are the
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j-sets in the component. In particular, the size of a j-component is the number of

j-sets it contains. From now on we will use component to mean j-component.

We will sometimes need to relate the j-sets of a component to the edges of the

hypergraph which connect them. To allow us to do this, for a k-uniform hypergraph

H we define the j-size of H to be the number of j-sets contained in edges of H. We

ignore floors and ceilings whenever they do not significantly affect the argument.

4.2. Asymptotic equivalence of Hk(n,M) and Hk(n, p)

We need to know that Hk(n, p) and Hk(n,M) are roughly equivalent, which is

a generalisation of a standard fact about the corresponding graph models (see [30,

74]). In fact, [74] considers a more general setting than we require here, but what

we state is an immediate corollary of the results there (see [74], Corollary 1.16).

Let N =
(
n
k

)
and to ease notation, for some property Q we will denote by

PM (Q) the probability that Hk(n,M) has property Q. Pp(Q) is defined similarly.

Lemma 4.4. Let Q be some monotone increasing property of k-uniform hyper-

graphs and let M = Np→∞. Then

(a) Pp(Q)→ 1 implies PM (Q)→ 1;

(b) Pp(Q)→ 0 implies PM (Q)→ 0.

This lemma allows us to transfer properties from Hk(n, p) to Hk(n,M) (trans-

ferring in the other direction is also possible, with some small modifications, but

we will not need to do this here). However, this only works for monotonically in-

creasing properties. This is fine for the properties of being j-connected or of having

no isolated j-sets, but in the proof of Theorem 4.1 we will need to consider the

probability of having a component of size r, for various fixed r. This property is

not even convex (and nor is its complement) and so for this case we will need some

more careful arguments.

The following standard argument allows us to transfer properties from the

binomial to the uniform model provided that the failure probability is small enough.

Lemma 4.5. Let Q be an arbitrary property, and suppose that M → ∞ and p =

M/N → 0. Then

PM (Q) ≤ Pp(Q)

P(e(Hk(n, p)) = M)
= Θ(M1/2)Pp(Q).

Proof. The inequality follows from the fact that

Pp(Q) =

N∑
m=0

Pm(Q)P(e(Hk(n, p)) = m) ≥ PM (Q)P(e(Hk(n, p)) = M).

For the equality we note that using Stirling’s approximation we have(
N

M

)
pM (1− p)N−M = Θ(1)

√
N

M(N −M)

NN

MM (N −M)N−M
pM (1− p)N−M ,

and thus obtain P
(
e(Hk(n, p)) = M

)
= Θ(M−1/2). �
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4.3. Degree distribution

Next we use the Chen-Stein method to approximate the distribution of the

number of j-sets with a given degree.

Theorem 4.6 (Theorem 1.B in [23]). Given a finite index set I and a random

variable W =
∑
i∈I Zi, where Zi is a Bernoulli random variable with parameter

pi ∈ [0, 1], denote by λ =
∑
i∈I pi the expectation of W . Assume that for each

i ∈ I there is a pair of coupled random variables (Ui, Vi) such that Ui has the

distribution of W and Vi + 1 has the distribution of W conditioned on {Zi = 1}.
Then we have

dTV
(
W,Po(λ)

)
≤ min{1, λ−1}

∑
i∈I

piE (|Ui − Vi|) .

Now we use Theorem 4.6 to prove Theorem 4.2 stating that the number of

j-sets of a given degree in Hk(n, p) is asymptotically Poisson distributed when p is

close to j logn+s log logn

( n
k−j)

.

Proof of Theorem 4.2. Let C =
(
k
j

)
− 1. Fix an integer s ≥ 0 and suppose p =

ps = j logn+s log logn+cn

( n
k−j)

, where |cn| = o(log n). Then the expected number of j-sets

of degree s in Hk(n, p) satisfies

E(Ds) =

(
n

j

)((n−j
k−j
)

s

)
ps(1− p)(

n−j
k−j)−s

= (1± o(1))
nj

j!

(
nk−j

(k−j)!

)s
s!

ps exp

(
−p
(

n

k − j

))
= (1± o(1))

1

j!s!
es(k−j) logn−s log((k−j)!)+s log p−s log logn−cn

= (1± o(1))
js

j!s!
e−cn , (4.2)

since

log p = −(k − j) log n+ log log n+ log(j(k − j)!) +O

(
log logn+ |cn|

log n
+

1

n

)
.

For any j-set J we denote its degree in Hk(n, p) by deg(J) and analyse how

Ds changes by conditioning on the event {deg(J0) = s} for an arbitrary j-set J0.

First we construct Hk(n, p) and denote by E0 the set of edges containing J0,

then we distinguish three cases:

(a) If deg(J0) < s, add s−deg(J0) distinct k-sets chosen uniformly at random from{
K ∈

(
V
k

) ∣∣∣ J0 ⊂ K
}
\ E0 to the hypergraph;

(b) If deg(J0) = s, do nothing;

(c) If deg(J0) > s, delete a set of deg(J0) − s edges chosen uniformly at random

from E0.

We denote the resulting hypergraph by H∗ = H∗(J0). For any j-set J we write

deg∗(J) for its degree in H∗ and D∗s(J0) for the number of j-sets J 6= J0 such
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that deg∗(J) = s. Furthermore observe that this construction provides a coupling

of Hk(n, p) and H∗ such that removing all edges containing J0 in either one of

them yields the same random hypergraph H− = H−(J0). For any j-set J we write

deg−(J) for its degree in H−.

Aiming to apply Theorem 4.6, we let I be the set of all j-sets and for all J

let ZJ = 1{deg(J)=S}, pJ = P (deg(J) = s), UJ = W = Ds and VJ = D∗s(J0). We

observe thatH∗ has the same distribution asH conditioned on the event {deg(J0) =

s}, so VJ has the same distribution as W conditioned on {ZJ0 = 1}.
Now applying Theorem 4.6 and using min

{
1, 1

E(Ds)

}
≤ 1

E(Ds)
, we obtain

dTV
(
Ds,Po(E(Ds))

)
≤
∑
J P (deg(J) = s)E (|Ds −D∗s(J0)|)

E (Ds)

= E (|Ds −D∗s(J0)|) . (4.3)

Hence it suffices to estimate the random variable |Ds −D∗s(J0)| . We observe that

|Ds −D∗s(J0)| = 1{deg(J0)=s} +
∑
J 6=J0

|1{deg(J)=s} − 1{deg∗(J)=s}|

≤ 1{deg(J0)=s} +

s∑
t=1

∑
J 6=J0

deg∗(J)>deg(J)

1{deg(J0)=s−t}

+

(n−jk−j)−s∑
t=1

∑
J 6=J0

deg∗(J)<deg(J)

deg−(J)≤s

1{deg(J0)=s+t}.

To justify the inequality, first note that if deg(J0) = s, then H = H∗ and only the

first term contributes. Furthermore, if deg(J0) < s, say deg(J0) = s − t for some

t ∈ [1, s], then the only contribution to |Ds −D∗s(J0)| comes from j-sets J 6= J0

whose degree increased, i.e. deg∗(J) > deg(J). Similarly, if deg(J0) = s+t for some

t ∈
[
1,
(
n−j
k−j
)
− s
]
, observe that for a j-set J to contribute it is necessary to have

either deg(J) = s or deg∗(J) = s. Note that these cannot hold unless deg−(J) ≤ s,
and we will simply bound the probability of this (more likely) event.

Moreover, each inner sum has at most Ct terms, since we certainly only sum

over j-sets J whose degree has changed, and adding or deleting an edge influences

the degree of at most C j-sets (other than J0).

Note also that deg−(J) has distribution

Bin

((
n− j
k − j

)
−
(
n− |J0 ∪ J |
k − |J0 ∪ J |

)
, p

)
,

independently of deg(J0), and the probability that deg−(J) ≤ s is maximised when

|J0∪J | is minimised. Hence for an upper bound we will assume that |J0∪J | = j+1.

With this motivation we write Ñ :=
(
n−j
k−j
)
−
(
n−j−1
k−j−1

)
= (1± o(1))

(
n
k−j
)

and define

q = P
(

Bin
(
Ñ , p

)
≤ s
)
.
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Combining these two arguments we obtain the upper bound

|Ds −D∗s(J0)| ≤ 1{deg(J0)=s} +

s∑
t=1

1{deg(J0)=s−t} Ct

+

(n−jk−j)−s∑
t=1

1{deg(J0)=s+t}Bin(Ct, q).

Therefore, using the notation x+ = max{x, 0} for any x ∈ R, we have

E (|Ds −D∗s(J0)|) ≤ P (deg(J0) = s) + CE
(

(s− deg(J0))
+
)

+ CqE
(

(deg(J0)− s)+
)
, (4.4)

We can estimate both probabilities in (4.4) using

P (deg(J0) = s) ≤ q =

s∑
i=0

(
Ñ

i

)
pi(1− p)Ñ−i

≤ O(1) ·
(
Ñp
)s

exp
(
− Ñp

)
= O((log n)sn−j),

where the second and third lines follow because s is bounded. Moreover, we have

E (s− deg(J0))
+ ≤ sP (deg(J0) ≤ s) ≤ sq = O((log n)sn−j)

and furthermore

E (deg(J0)− s)+ ≤ E(deg(J0)) + s = O(log n).

Therefore (4.3) and (4.4) provide (4.1), i.e.

dTV (Ds,Po (E (Ds))) = O(n−j(log n)s+1). (4.5)

Now assume limn→∞ cn = c. By (4.2) we know that E (Ds) → jse−c

j!s! and by the

continuity in λ of the function P(Po(λ) = i) for each i

Po (E (Ds))
d−→ Po

(
jse−c

j!s!

)
,

hence by the triangle inequality and (4.1), case (ii) in the second claim follows.

Cases (i) and (iii) can be easily deduced from case (ii). �

4.4. Hitting time for connectedness

The proof which we present is largely elementary except for the use of The-

orem 4.2 and the concept of smoothness which we introduced and investigated in

detail in Chapter 3. Note that in Chapter 3 we focused on Hk(n, p) for much smal-

ler probabilities, and thus we are now not in the optimal range for the application

of these methods. But nevertheless, our results will turn out to be strong enough

for proving Theorem 4.1.

We provide the appropriate tool (Lemma 4.7) in Section 4.4.1. After deriving

a second preliminary result in Section 4.4.2, we prove Theorem 4.1 in Section 4.4.3.
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4.4.1. Smooth subset. We use the smooth boundary lemma (Lemma 3.8) to

prove the existence of a component containing a ‘reasonably large’ subset which

is ‘smooth’ in the sense that all (j−1)-sets are in about the ‘right’ number of j-sets

of S (see Lemma 4.7 below). More precisely, we say that a set S of j-sets is smooth

if every (j − 1)-set is contained in (1± o(1)) |S|
(nj)

n j-sets of S.

Lemma 4.7. Let 1 ≤ j ≤ k − 1, let ε = ε(n) > 0 satisfy ε→ 0 and ε3n1−δ →∞,

for some constant δ > 0, and set p∗ = 1+ε

((kj)−1)( n
k−j)

. Then whp there is a component

of Hk(n, p∗) with a subset S of at least ε3nj many j-sets which is smooth:

Each (j−1)-set in Hk(n, p∗) is contained in (1± o(1)) |S|
(nj)

n many j-sets of S.

We note that Lemma 4.7 is not stated explicitly in this form in Chapter 3, but

is implicit in the proofs in Section 3.3. We therefore give a brief outline of how it

can be deduced from our previous results.

Proof of Lemma 4.7. Starting from some j-set J , we explore the component con-

taining J using a breadth-first search process BFS(J). This partitions the j-sets

of the component into generations, which can be numbered according to the order

they were discovered in.

We fix a starting j-set J which lies in the largest component of Hk(n, p), let

∂Cg denote the g-th generation of this search process BFS(J), and Cg = ∪g′≤g∂Cg′ .
Then there are generations g0 and g1 such that the following statements hold whp.

(1) Either |∂Cg1 | ≥ ε3nj or |Cg1 | ≥ ε3/2nj ;

(2) |Cg0 | = o(|Cg1 |) (and in particular g0 < g1);

(3) Every generation ∂Cg with g0 ≤ g ≤ g1 is smooth.

We set g0 = i1(j − 1) and g1 = i1, where i1(j − 1) and i1 are defined in

Section 3.3. Recall that i1 is the round at which one of three stopping conditions

(S1), (S2) or (S3) is invoked, and these stopping conditions contain a parameter λ,

which we choose to be λ = ε3/2.

Property (1) follows from these stopping conditions. We use here the fact that

J is in the largest component of Hk(n, p), which is a giant component whp by

Theorem 3.2(a), therefore whp either (S2) or (S3) is invoked at time i1 (as (S2)

would be invoked before (S1)).

Property (2) follows from Lemmas 3.10, 3.11 and 3.16. More precisely, whp

g0 = i1(j − 1) = i0(j − 1) + O(log n), while g1 = i1 ≥ i0(j − 1) + Ω(ε−1 log n) by

Lemma 3.11. Furthermore, whp |CJ(i0(j − 1))| = o(ε3/2nj) by Lemma 3.10 applied

with s = j and ` = 0. Finally, by Lemma 3.16, whp the generations between g0 and

g1 are at least as large as those between i0(j − 1) and g0, and there are significantly

more of them (Ω(ε−1 log n) compared to O(log n)).

Finally, property (3) is given by Lemma 3.8 (with ` = j − 1 and using the fact

that i1 ≥ i1(j − 1).

We now use these three properties to prove the existence of the set S. We

make a case distinction based on (1). If |∂Cg1 | ≥ ε3nj , then we simply set S =
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∂Cg1 , and S is smooth by (3). On the other hand, if |Cg1 | ≥ ε3/2nj , then we let

S = Cg1 \ Cg0−1. Then since every generation from g0 to g1 is smooth, and since

a union of smooth sets is also smooth, we have that S is smooth. Furthermore,

|S| = (1− o(1))|Cg1 | ≥ ε3nj . �

Lemma 4.7 has the following corollary which we will apply later.

Corollary 4.8. Let 1 ≤ j ≤ k−1, let ε = ε(n) > 0 satisfy ε→ 0 and ε3n1−δ →∞,

for some constant δ > 0, and suppose p ≥ 1+ε

((kj)−1)( n
k−j)

. Then whp there is a

component of Hk(n, p) with a subset S of at least ε3nj many j-sets which is smooth:

Each (j−1)-set in Hk(n, p∗) is contained in (1± o(1)) |S|
(nj)

n many j-sets of S.

Proof. We set p∗ = 1+ε

((kj)−1)( n
k−j)

and p′ = p−p∗
1−p∗ and let H1 = H(n, p∗) and H2 =

H(n, p′) independently. Observe that we may couple in such a way that Hk(n, p) =

H1 ∪ H2. Furthermore, by Lemma 4.7, whp H1 has a component containing a

smooth set S of the appropriate size. In Hk(n, p) this component may be bigger

than in H1, but certainly still contains S. �

4.4.2. Well-constructed hypergraphs. We will also use the following proposi-

tion. We say that a hypergraph is well-constructed if it can be generated from an

initial j-set via a search process, i.e. by successively adding edges such that each

edge contains at least one previously discovered j-set, and such that each edge also

contains at least one previously undiscovered j-set.

Proposition 4.9. Up to isomorphism, the number of well-constructed k-uniform

hypergraphs of j-size s is at most 2ks
2

.

Proof. We explore the hypergraph by adding the edges one by one in the order in

which it is well-constructed. The resulting hypergraph is uniquely determined, up to

isomorphism, by the intersection of each edge with the previous vertices (though we

will multiple count the isomorphism classes, this is permissible for an upper bound).

When adding the i-th edge, we certainly have at most (i−1)k vertices so far, and so

the number of possible intersections is at most 2(i−1)k. Multiplying over all edges,

of which there are certainly at most s (each edge gives at least one new j-set), we

have that the number of such hypergraphs is at most 2
∑s
i=1(i−1)k ≤ 2ks

2

. �

4.4.3. Critical obstruction for connectedness. We now prove Theorem 4.1

using Corollary 4.8 and Proposition 4.9.

Proof of Theorem 4.1. Let us consider any p,M satisfying

j log n− ξ(
n
k−j
) ≤ p = M/N ≤ j log n+ ξ(

n
k−j
) (4.6)

where ξ = log log n. We apply Theorem 4.2 (with s = 0 and cn = ±ξ) and

Lemma 4.4 to observe that in both Hk(n, p) and Hk(n,M), whp there are isolated

j-sets at the lower end of this range but not at the upper end. We will now prove
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that other than these isolated j-sets, there is just one very large component whp.

We certainly know by Corollary 4.8 that there is a component containing a large

smooth set S. For the rest of the proof we fix this component and the set S.

We consider the possibility that there is a second non-trivial component con-

taining r j-sets, and make a case distinction on the size of r. Note that for any

component of size r in a k-uniform hypergraph, there is a well-constructed subhy-

pergraph of every (up to a constant
(
k
j

)
error) j-size up to r. (More precisely, for any

integer r′ ≤ r there exists an integer r′′ with |r′′ − r′| ≤
(
k
j

)
and a well-constructed

subhypergraph of j-size r′′.)

Let us set r0 = log log n and distinguish two cases.

Case 1: 2 ≤ r ≤ r0. We first observe that in a component of size r ≥ 2 we

must have at least one edge, and therefore at least
(
k
j

)
≥ k ≥ 3 j-sets, i.e. we

automatically have r ≥ 3.

We show that the expected number of components of size r is very small and

apply Markov’s inequality. Any component of size r can be associated with a well-

constructed hypergraph H of j-size r which is isolated from the remaining j-sets of

Hk(n, p). Then e(H) ≤ r and furthermore |H| ≤ j + (k − j)e(H), since each new

edge of H gives at most k − j new vertices. For each j-set of H, we have at least(
n−j
k−j
)
− r
(
n−j−1
k−j−1

)
non-edges (any k-set containing this j-set but no other j-sets of

H). Thus the expected number of isolated copies of H in Hk(n, p) satisfies

E(XH) ≤ nj+(k−j)e(H)pe(H)(1− p)r((
n−j
k−j)−r(

n−j−1
k−j−1)) (4.7)

and so

log(E(XH)) ≤ (j + (k − j)e(H)) log n+O(r log log n)

− (k − j)e(H) log n− (1−O(r/n)−O(ξ/ log n))rj log n

= (1− r ± o(1))j log n ≤ (−3rj/5) log n.

Note that this bound does not depend on the specific structure of H, only on

the number of j-sets r. Let Xr be the number of components of size r. Then by

Proposition 4.9 we have

E(Xr) ≤ 2kr
2

n−3rj/5 ≤ n−4rj/7

where for the last inequality we use the fact that r ≤ r0 = o(log n). By taking

a union bound over all 3 ≤ r ≤ r0, we conclude that with probability at least

1− 2n−12j/7 there are no components of this size.

Case 2: r ≥ r0. In this case, rather than looking at the full component we look

at a well-constructed subgraph H of j-size r0. Such a subgraph certainly exists

up to an additive
(
k
j

)
error term in the j-size, which will not affect calculations

significantly. Most of the calculations which lead to (4.7) are still valid, replacing

r by r0. However, since we are no longer considering a full component, we must be

more careful about the number of non-edges.
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At this point we make use of the set S of j-sets guaranteed by Corollary 4.8,

which lie in a different component to H. For each of the r0 many j-sets of H, pick

an arbitrary (j − 1)-set within it and by Corollary 4.8, this (j − 1)-set is contained

in (1± o(1))ε3n many j-sets of S. For each such pair of j-sets intersecting in j − 1

vertices, there are
(
n−j−1
k−j−1

)
k-sets containing both of them, all of which must be

non-edges, since the j-sets lie in different components.

It may be that we multiple count the non-edges in this way. However, each k-

set may only be counted from a pair of j-sets it contains, and therefore the number

of times it is counted is certainly at most
(
k
j

)
(k − j). Thus in total the number of

non-edges is at least

r0ε
3n

2
(
k
j

)
(k − j)

(
n

k − j − 1

)
= Θ

(
r0ε

3nk−j
)
.

Similarly a in (4.7) we bound the expected number of such structures H by

E(XH) ≤ nj+(k−j)e(H)pe(H)(1− p)Θ(r0ε
3nk−j).

Then, writing Y for the number of such well-constructed hypergraphs of j-size r0

which are not in the same component as S, we obtain

log(E(Y )) ≤ kr0
2 log 2 + j log n+O (r0 log log n)−Θ

(
r0ε

3 log n
)
.

Now observe that in Corollary 4.8 we may choose any ε = o(1) such that

ε3n1−δ → ∞. Choosing ε3 = 1
log log logn , we have r0ε

3 → ∞ and the last term

in the above inequality dominates, and we have log(E(Y )) ≤ −C log n for any

constant C. In particular, choosing C = 12j/7, we have E(Y ) ≤ n−12j/7. By

Markov’s inequality, this implies that with probability at least 1−n−12j/7 we have

Y = 0 and therefore no further components of size r.

Combining the two cases, this tells us that with probability at least 1−3n−12j/7,

Hk(n, p) only has one non-trivial component. Finally note that M = pN =

Θ(nj log n). Thus by Lemma 4.5 we conclude that with probability at least 1 −
3n−12j/7

√
M = 1− o(n−8j/7), Hk(n,M) also has only one non-trivial component.

We now take a union bound over all possible M satisfying (4.6), of which there

are at most 2ξ

( n
k−j)

(
n
k

)
= O(ξnj), and deduce that the probability that there is ever

a second non-trivial within this time period is at most

O(ξnj)n−8j/7 = O(ξn−j/7) = o(1)

as required. �

4.5. Threshold for connectedness

Theorem 4.3 follows almost immediately from Theorems 4.1 and 4.6. In or-

der to apply Theorem 4.1 in the binomial model, we apply the standard trick of

birth times: to each k-tuple we assign a number (the birth time) between 0 and

1 uniformly at random and independently of all other k-tuples. Then the hyper-

graph process {Hk(n,M)}M can be obtained by adding edges in increasing order
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of birth time (with probability 1 no two edges have the same birth time), while the

hypergraph obtained by taking all edges with birth time at most p is distributed

as Hk(n, p).

Proof of Theorem 4.3. Theorem 4.6 (with s = 0) tells us that if cn → ∞, then

whp there are no isolated j-sets, and therefore Theorem 4.1 tells us that whp the

hypergraph is j-connected. This proves part (a). Part (b) is simply an application

of Theorem 4.6 with s = 0. �

4.6. Concluding remarks

In [96], it is determined for the case j = 1 that the hitting time for d-strong

vertex-connectedness, i.e. the time at which the hypergraph first has the property

that deleting any set of less than d vertices still leaves a vertex-connected hyper-

graph, is the same as the hitting time for having no vertices of degree less than d

whp. It would be interesting to generalise this result to d-strong j-connectedness

(removing fewer than d many j-sets still leaves a j-connected hypergraph), which

is presumably attained whp when every j-set has degree at least d. However, this

would present significant additional difficulties, not least that Lemma 4.7 would no

longer give the substructure which we require.



CHAPTER 5

Jigsaw percolation on random hypergraphs

5.1. Introduction and main results

Jigsaw percolation on graphs was introduced by Brummitt, Chatterjee, Dey,

and Sivakoff [43] as a model for interactions within a social network. It was inspired

by the idea of collectively solving a puzzle. The premise is that each of n people has

a piece of a puzzle which must be combined in a certain way to solve the puzzle.

In the model there are two possibly overlapping sets of edges coloured red

and blue defined on a common set of vertices. (In particular, any pair of vertices

may form both a red and a blue edge at the same time.) Jigsaw percolation is a

deterministic process on clusters of vertices that evolves in discrete time. Initially,

each vertex forms its own cluster and in each subsequent time-step two clusters

merge if they are joined by at least one edge of each colour. The process stops once

no two clusters can be merged. Our jigsaw process percolates if we end in a single

cluster. In particular, the process cannot percolate if either of the graphs given by

blue or red edges is not connected.

More generally, given integers 1 ≤ r ≤ s, define (r, s)-jigsaw percolation as

follows. Let G1, . . . , Gs be graphs on the same vertex set V . At each discrete time

t = 0, 1, . . . , we have a partition of V into clusters. At time t = 0 this is the finest

partition: every vertex forms its own cluster. At time t, let G̃t be the graph whose

vertices are the clusters, with two vertices joined by an edge if the corresponding

clusters are joined by an edge in at least r of the graphs Gi. The clusters of our

jigsaw process at time t+ 1 are the unions of the clusters that belong to the same

component of G̃t. The process percolates if eventually we arrive at a single cluster.

Note that a (1, s)-process percolates if and only if the union of the graphs Gi is

connected. On the other hand, if we have (s, s)-percolation then each Gi must be

connected. However, the connectedness of each Gi is far from sufficient for (s, s)-

percolation. So far, only (2, 2)-jigsaw percolation has been considered: in most of

this chapter, we shall do the same (and drop (2, 2) from the notation), but we shall

consider larger s in Section 5.4.

Returning to the motivation, the blue graph may represent a puzzle graph of

how the pieces of the puzzle may be combined to reach a solution, while the red

graph may represent the people graph, modelling friendships between the people

who hold the puzzle pieces.

104
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Brummitt, Chatterjee, Dey, and Sivakoff [43] studied the model when the

red graph is the binomial random graph and with various deterministic possib-

ilities for the blue graph, including a Hamilton cycle, or other connected graphs of

bounded maximum degree, and provided upper and lower bounds for the percola-

tion threshold probabilities.

Gravner and Sivakoff [65] improved on these results for many different puzzle

graphs of bounded degree, and also introduced a generalised process with redund-

ancy parameters in the number of neighbours required for clusters to merge.

The setting in which both graphs are binomial random graphs was studied

by Bollobás, Riordan, Slivken, and Smith [37], who determined the asymptotic

order of the threshold for percolation in terms of the product of the two associated

probabilities.

Before we state their result, we set the scene. Let G(n, p1) and G(n, p2) denote

the pair of random graphs on the (common) vertex set [n] (for a ∈ N, we define

[a] := {1, . . . , a}), where each edge is present independently with probability p1 or

p2 respectively. Throughout the chapter any unspecified asymptotic is with respect

to n → ∞ and in particular we use the phrase with high probability, abbreviated

to whp, to mean with probability tending to 1 as n → ∞. With this notation the

main result in [37] is the following.

Theorem 5.1 ([37]). Let 0 ≤ p1, p2 ≤ 1 and let G1 = G(n, p1) and G2 = G(n, p2).

Then there exists a constant c > 0 such that

(a) if p1p2 ≥ c
n logn and min{p1, p2} ≥ c logn

n , then whp (G1, G2) percolates;

(b) if p1p2 ≤ 1
cn logn , then whp (G1, G2) does not percolate.

Our main aim in this chapter is to extend the percolation process above and

this result to a hypergraph setting.

5.1.1. Setup. We denote by
(
V
i

)
the set of i-element subsets of a set V and call its

elements i-sets.

Hypergraphs and high-order connectedness. Given an integer k ≥ 2, a k-uniform

hypergraph (or k-graph) H consists of a set V = V (H) of vertices and a set E =

E(H) of edges, where E ⊂
(
V
k

)
. (Thus for k = 2 this defines a graph.) There are

several natural possibilities for the concept of connectedness of a hypergraph: here

we define some of them. Given an integer 1 ≤ j < k, we say that two distinct j-sets

of vertices (i.e. j-element subsets of the vertex set V ) J1 6= J2 are j-connected if

there is a sequence e1, . . . , em ∈ E of edges such that

• J1 ⊂ e1 and J2 ⊂ em;

• |ei ∩ ei+1| ≥ j for all 1 ≤ i ≤ m− 1.

In other words, we may walk from J1 to J2 using edges which consecutively intersect

in at least j vertices. Any j-set is always j-connected to itself. This forms an

equivalence relation on the set
(
V
j

)
of j-sets. A j-component is an equivalence class

of this relation, i.e. a maximal set of pairwise j-connected j-sets. The case j = 1
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is also known as vertex-connectedness, and for j ≥ 2 we use the term high-order

connectedness.1

High-order jigsaw percolation. A double k-graph (V,E1, E2) consists of a set

E1 ⊂
(
V
k

)
of red edges and a set E2 ⊂

(
V
k

)
of blue edges on a common set V of

vertices. We call the k-graphs (V,E1) and (V,E2) the red k-graph and the blue

k-graph respectively.

Let (V,E1, E2) be a double k-graph, J ⊂
(
V
j

)
, and let C0 be a partition of J

into κ0 := |C0| partition classes. (Unless stated otherwise, C0 will be the partition

in which every j-set forms its own partition class and so κ0 = |J |.) Then j-jigsaw

percolation is a deterministic, discrete time process which is characterised by a

sequence of partitions {Ct}t=0,1,... of J . We write κt := |Ct| for the number of

partition classes at time t and denote the partition classes by Ct,1, . . . , Ct,κt . The

partition Ct+1 is obtained from Ct as follows:

(I) We define an auxiliary graph G̃t on the vertex set [κt], where the edge {i, i′}
is present if and only if there are j-sets Ji,1, Ji,2 ∈ Ct,i and Ji′,1, Ji′,2 ∈ Ct,i′
and edges e1 ∈ E1 and e2 ∈ E2 such that Ji,1∪Ji′,1 ⊂ e1 and Ji,2∪Ji′,2 ⊂ e2.

(II) If G̃t is an empty graph, then STOP.

(III) Otherwise we set κt+1 to be the number of components of G̃t and denote

these components by C1, . . . , Cκt+1
. The partition Ct+1 is then given by

Ct+1,i =
⋃
w∈Ci Ct,w, for 1 ≤ i ≤ κt+1.

(IV) If κt+1 = 1, then STOP.

(V) Otherwise we proceed to time t+ 1.

If the process stopped in step (IV), then J percolates on (V,E1, E2); otherwise, i.e.

the process stopped in step (II), we say that J does not percolate on (V,E1, E2).

We refer to the partition classes Ct,i as clusters.

The main results in this chapter deal with the setting when J =
(
V
j

)
. In this

case we simply say (V,E1, E2) j-percolates or (V,E1, E2) does not j-percolate. The

generalised version is required in the proofs of our results.

Throughout the chapter we will ignore floors and ceilings whenever this does

not significantly affect the argument.

5.1.2. Main results. In this chapter we consider the random binomial double k-

graph Hk(n, p1, p2) on the vertex set [n] where every k-set is present as a red edge

with probability p1 and present as a blue edge with probability p2 independently

of each other and of all other k-sets.

As we have already noted, a necessary condition for j-jigsaw percolation on a

double k-graph is that both the red and the blue k-graphs are j-connected. In this

setting the red/blue k-graph is a copy of the binomial random k-graph Hk(n, p1) or

Hk(n, p2) respectively, i.e. the vertex set is [n] and each k-set is present independ-

ently with probability p1 or p2 respectively. It was shown in [3] that the (sharp)

1This notion is not to be confused with the (vertex-)connectivity of a (hyper-)graph H measuring
the size of the smallest vertex-separator in H.
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threshold for j-connectedness in Hk(n, p) is

p̂c = p̂c(n, k, j) :=
j log n(

n
k−j
) . (5.1)

As in [37], we impose a slightly stronger condition on min{p1, p2} to ensure the

j-connectedness of both random hypergraphs in the supercritical regime. We prove

the following extension of Theorem 5.1.

Theorem 5.2. For integers 1 ≤ j < k let 0 ≤ p1, p2 ≤ 1 and let H = Hk(n, p1, p2).

Then there exists a constant c = c(k, j) > 0 such that

(a) if p1p2 ≥ c
n2k−2j−1 logn

and min{p1, p2} ≥ c logn
nk−j

, then whp H j-percolates;

(b) if p1p2 ≤ 1
cn2k−2j−1 logn

, then whp H does not j-percolate.

In other words, the threshold p̂jp = p̂jp(n, k, j) for j-jigsaw percolation on

Hk(n, p1, p2) in terms of the product p = p1p2 is of order

p̂jp = Θ

(
1

n2k−2j−1 log n

)
.

Somewhat surprisingly, the result in the subcritical regime (Theorem 5.2(b))

does not seem to be easy to prove. The corresponding subcritical case for graphs

(i.e. k = 2 and j = 1) was almost trivial, but the general case requires significantly

more involved analysis.

On the other hand, the supercritical case (Theorem 5.2(a)) becomes much easier

since we prove a neat reduction to the graph case.

The methods that we apply in this chapter can also be used, with minimal

additional work, to prove some generalisations of and related results to Theorem 5.2.

We give these results, and outlines of the proofs, in Section 5.4.

5.2. Subcritical regime

Let 1 ≤ j < k be integers. As a first step we develop some necessary conditions

for any double k-graph H with vertex set V to j-percolate. Then, in the second

step, we show that if H is distributed as Hk(n, p1, p2) then whp it fails to satisfy

the weakest of these necessary conditions.

5.2.1. Necessary conditions for complete percolation. The initial idea is to

modify the algorithm (given by (I)–(V) in Section 5.1.1) slightly so that for each

cluster it additionally keeps track of two sets of edges, one red and one blue, which

allow us to obtain this cluster by a sequence of merges.

In this spirit we consider triples of the form (J0, E1, E2) where J0 ⊂
(
V
j

)
, E1 ⊂(

V
k

)
, and E2 ⊂

(
V
k

)
, i.e. embedded into the complete double k-graph

(
V,
(
V
k

)
,
(
V
k

))
.

We call the edges in E1 red and those in E2 blue; note that edges may be red and

blue at the same time. The size of a triple is given by |J0|. Furthermore, we call

(J0, E1, E2) internally spanned if J0 percolates on the double k-graph (V, E1, E2).

Note that these triples play a crucial role for j-jigsaw percolation on double k-graphs

(comparable to internally spanned sets in [37]).
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Claim 5.3. For every positive integer N ≤
(|V |
j

)
/
(
k
j

)
, if a k-graph H j-percolates,

then it must contain an internally spanned triple of size ` for some N ≤ ` ≤
(
k
j

)
N .

Proof. We shall think of the edges of H arriving one at a time: whenever an edge

arrives, we check whether it can be used to merge some clusters. Note that each

edge e that arrives can be used to merge a cluster C with some others if e contains

some j-set of C, so with the arrival of an edge at most
(
k
j

)
clusters will be merged.

Therefore, when the first cluster of size at least N forms, it was created by merging

at most
(
k
j

)
clusters each of size at most N − 1, and therefore has size at most(

k
j

)
N . �

Constructing all internally spanned triples of a given size does not seem easy,

so instead of doing this, we consider a relaxation of internally spanned triples. To

do so we first define a strengthened notion of j-connectedness on k-graphs. Let

(V,E) be a k-graph and let J ⊂
(
V
j

)
be a collection of j-sets. We say that a subset

J ∗ ⊂ J is J -traversable (on (V,E)) if for every two distinct j-sets J, J ′ ∈ J ∗,
J ′ 6= J , there is a sequence of edges e1, . . . , em ∈ E such that

• J ⊂ e1 and J ′ ⊂ em;

• for all 1 ≤ i ≤ m− 1 some j-set Ji ∈ J is contained in ei ∩ ei+1.

In other words, we may walk from J to J ′ using edges such that the intersection of

two consecutive edges contains at least one j-set from J . Furthermore any singleton

{J} ⊂ J is J -traversable. To shorten notation, a collection J is called traversable

if it is J -traversable. Note that
(
V
j

)
-traversable collections of j-sets are precisely

j-connected collections. Now we say that a triple (J0, E1, E1) is traversable if J0 is

traversable in both the red and blue k-graphs, (V, E1) and (V, E2) respectively.

Fact 5.4. Every internally spanned triple (of size ` ≤
(|V |
j

)
) is traversable and

contains an edge-minimal traversable triple (with at most `−1 edges of each colour).

Let us denote the set of all edge-minimal traversable triples (within the com-

plete double k-graph) of size ` by T`. To give a bound on this set, we partition it

according to the number of red and blue edges: for all integers 0 ≤ r, b ≤ `− 1 we

define

T`,r,b := {(J0, E1, E2) ∈ T` | |E1| = r ∧ |E2| = b} .

Next, in order to extract further structural information from these triples, we fix

an arbitrary pair σ = (σj , σk) of total orders. Here σj is an order on
(
V
j

)
and σk

on
(
V
k

)
. Clearly, σ induces a total order on each of the sets J0, E1 and E2.

Given a triple T = (J0, E1, E2) ∈ T`,r,b we explore J0 in a breadth-first search

using only red edges and colouring j-sets white once they have been discovered.

More precisely, we study the following exploration process starting from the minimal

element J(1) of J0 with respect to σ. Initially we colour J(1) white and make it

active. Then in each step there is an active j-set, say J , and we consider all edges

of E1 containing J which have not been considered previously. For each of these

edges in turn (according to σ), we consider all the j-sets of J0 that it contains and
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colour them white, if they are not yet coloured white, in the order given by σ. We

have then finished exploring J and move on to the next j-set which was coloured

white in this process. Since J0 is traversable in (V, E1), this induces a new total

order on J0 that we call the BFS-order of T (with respect to σ) and denote by

τσ = τσ(T ) := (J(1), . . . , J(|J0|)). (Note that τσ will in general be different from the

order induced by σ on J0.)

Additionally, we introduce marks on the j-sets of J0. As we shall see, marking

a j-set in the blue process is similar to colouring it white in the red process. Initially

J(1) is marked and all other j-sets are unmarked. We then go through J0 according

to τσ. In the i-th step, i.e. when J(i) is active, we reveal all blue edges that contain

J(i) and none of {J(i+1), . . . , J(|J0|)} one by one according to σ. Whenever we reveal

a blue edge in this way we mark all the still unmarked j-sets in J0 that it contains.

The reason for colouring and marking the j-sets in J0 is that it allows us to

additionally keep track of two sets of parameters, ri,z and bi,z, for 1 ≤ i ≤ |J0|
and 0 ≤ z ≤

(
k
j

)
. We say that a red (respectively blue) edge performs z-duty

if we colour (respectively mark) precisely z j-sets when it is revealed. Then ri,z

denotes the number of red z-duty edges that were revealed while J(i) was active.

Similarly bi,z denotes the number of blue z-duty edges that were revealed when

J(i) was coloured white. We store this information in matrices R := (ri,z)i,z and

B := (bi,z)i,z and call the pair πσ(T ) := (R,B) the blueprint of T with respect to

the pair of orders σ.

For our upcoming arguments we introduce some notation for such matrices.

Given a positive integer a and an a ×
((
k
j

)
+ 1
)

matrix M = (mi,z)i,z with non-

negative integer entries, we define

f(M) :=

a∑
i=1

(kj)∑
z=0

zmi,z and g(M) :=

a∑
i=1

(kj)∑
z=0

mi,z.

Furthermore, for a non-negative integer m, we define

Ma,m :=

{
M ∈ Z

a×((kj)+1)
≥0

∣∣∣∣ f(M) = a− 1 ∧ g(M) = m

}
.

(We shall only ever use these definitions with a = ` and m either b or r.)

The intuition behind these definitions is the following: f allows us to recon-

struct the total number of white (respectively marked) j-sets (apart from J(1))

from the blueprint of a triple while g provides the number of red (respectively blue)

edges. More formally this is stated in the following lemma.

Lemma 5.5. Let ` > r, b ≥ 0 be integers and σ be a pair of total orders on
(
V
j

)
and

(
V
k

)
. For any T = (J0, E1, E2) ∈ T`,r,b, the blueprint πσ(T ) = (R,B) satisfies

• f(R) = f(B) = |J0| − 1 = `− 1;

• g(R) = |E1| = r;

• g(B) = |E2| = b.

In other words πσ (T`,r,b) ⊂M`,r ×M`,b.
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Proof. Let T = (J0, E1, E2) and recall that J0 contains precisely `−1 j-sets exclud-

ing J(1) (which is already initially both white and marked) and is traversable in both

the red and blue k-graphs (V, E1) and (V, E2) respectively. Therefore, each j-set in

J0 \ {J(1)} coloured white by at least one red edge and likewise receives a mark

from at least one blue edge. On the other hand, no j-set is coloured/marked more

than once. Since f(R) counts the number of j-sets coloured white by red edges and

f(B) counts the number of marks given by blue edges, the first statement follows.

On the other hand, recall that T contains r red edges and b blue edges. Since

T is edge-minimal, any edge, either red or blue, was revealed in the process and

thus was counted in precisely one of the ri,z and one of the bi,z. Thus the second

and third statements follow. �

Next we give a (crude) upper bound on the number of such matrices.

Claim 5.6. Let a > m ≥ 0 be integers. If Ma,m 6= ∅, then

m ≥
(
k

j

)−1

(a− 1).

Furthermore, there is a constant C ′ > 0 (independent of a,m) such that

|Ma,m| ≤ (C ′)a−1.

Note that for minimal traversable triples, certainly the number of j-sets is larger

than the number of edges, since we start from one j-set and each edge should give

rise to at least one new j-set, and so the condition a > m is fulfilled in these cases.

Proof. For the first statement let M be any matrix in Ma,m. Then

a− 1 = f(M) =

a∑
i=1

(kj)∑
z=0

zmi,z ≤
(
k

j

) a∑
i=1

(kj)∑
z=0

mi,z =

(
k

j

)
m.

For the second statement, first note that all entries of a matrix in Ma,0 must be

zero, hence |Ma,0| ≤ 1. Therefore let us assume m > 0. Choosing an arbitrary

a ×
((
k
j

)
+ 1
)

matrix M with non-negative integer entries satisfying h(M) = m

can be seen as having a set of m elements and partitioning it into a
((
k
j

)
+ 1
)
≤

2m
(
k
j

)2
potentially empty partition classes. Thus, (using the fact that there are(

t+s−1
t−1

)
=
(
t+s−1
s

)
ways of partitioning s indistinguishable elements into t distin-

guishable classes) we certainly obtain the upper bound

|Ma,m| ≤
(

2
(
k
j

)2
m+m− 1

m

)
≤

3e
(
k
j

)2
m

m

m

≤

(
9

(
k

j

)2
)a−1

. �

Recall that, given `, r and b, we wanted to provide an upper bound on |T`,r,b|.
We do this by constructing a superset of T`,r,b. To this end we first choose a

blueprint (R,B) ∈ M`,r ×M`,b and then construct all possible triples (J0, E1, E2)

(within the complete double k-graph) such that its collection of white j-sets J0

is traversable in the red k-graph (V, E1). We use the following procedure that
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terminates after ` steps, or if at any point we do not have a valid choice; in the

latter case, the current instance of the procedure is discarded. The input is a

blueprint (R,B); for 0 ≤ i ≤ `, we keep track of an integer νi, a sequentially

ordered collection J0(i) := (J(1), . . . , J(νi)) of white j-sets (embedded into V ) and

two collections, E1(i) and E2(i), of red and blue edges respectively (embedded into

V ). Furthermore, we keep track of marks on the white j-sets in every step. For any

instance that does not get discarded, the output is the triple (J0(`), E1(`), E2(`)).

Initially we colour an arbitrary j-set J(1) white and mark it. No edges are

coloured yet. At time 1 ≤ i ≤ `, we consider the i-th white j-set J(i) (if it does

not exist, the instance is discarded immediately). For each 1 ≤ z ≤
(
k
j

)
we colour

ri,z distinct edges containing J(i) red one by one and for each of them we perform

z-duty, i.e. colour precisely z of the non-white j-sets it contains white, one by one.

Whenever a j-set J(i) is coloured white, for every 0 ≤ z ≤
(
k
j

)
we colour bi,z distinct

edges blue one by one such that each edge satisfies the following three conditions:

• it contains J(i) and some white j-set J(i∗) with i∗ < i;

• it does not contain any (already) white j-set J(i′) with i′ > i;2

• it is a z-duty edge, i.e. it contains precisely z (still) unmarked j-sets from

(J(0), . . . , J(i)) (this may include J(i) or not); these are now marked.

Now let Q`,r,b denote the set of all outputs of instances of this procedure that

did not get discarded, i.e. every one of our choices in the procedure was valid.

Lemma 5.7. For all integers ` > r, b ≥ 0 we have T`,r,b ⊂ Q`,r,b; furthermore,

there is a constant C > 0 independent of `, r, b such that

|Q`,r,b| ≤ |V |jC`−1
(
|V |k−j

)r (
`|V |k−j−1

)b
.

Proof. The first assertion is simple. Fix a pair σ of total orders on
(
V
j

)
and

(
V
k

)
.

Now consider a triple T ∈ T`,r,b and note that by Lemma 5.5 its blueprint satisfies

πσ(T ) = (R,B) for some (R,B) ∈ M`,r ×M`,b. Knowing T , σ, and therefore

also τσ(T ), it is straightforward to provide an instance of the above procedure with

input (R,B) and output T that does not get discarded.

For the upper bound on the total number of outputs let us first fix any particular

blueprint (R,B) ∈ M`,r ×M`,b. For the red edges, as far as an upper bound is

concerned, in each step and for each z we may choose ri,z elements from a set of

at most |V |k−j with replacement and then there are at most
(
k
j

)z
ways to choose

the white j-sets within any red edge. (Of course these bounds are quite crude in

general, but sufficient for our result.) Since we have at most |V |j choices for the

initial white j-set we have at most

|V |j
∏
i,z

((
k

j

)z
|V |k−j

)ri,z
= |V |j

(
k

j

)f(R) (
|V |k−j

)g(R)
= |V |j

(
k

j

)`−1 (
|V |k−j

)r
2Note that we could insist that an edge contains no j-sets with J(i′) at all with i′ > i, as is indeed
the case for traversable triples. However, substituting this weaker condition is valid since we seek
an upper bound on the number of structures, and will be sufficient for our purposes.
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instances which can be distinguished by their combined white and red structure.

Now consider the number of ways of choosing a blue z-duty edge together with

the z j-sets to be marked. A blue edge contains at least j + 1 already embedded

vertices, for instance those in J(i) ∪ J(i∗), and there are at most ` choices for J(i∗).

Thus we have at most `|V |k−j−1 choices for this edge. Once it is fixed, there are

at most
(
k
j

)z
choices for which j-sets should be marked. Therefore the number of

choices for the blue edges and marks is at most∏
i,z

(
k

j

)bi,z
(`|V |k−j−1)bi,z =

(
k

j

)f(B)

(`|V |k−j−1)g(B) =

(
k

j

)`−1

(`|V |k−j−1)b.

Finally, we have already counted the number of matrices R ∈ M`,r and B ∈
M`,b in Claim 5.6: there is a constant C ′ > 0 such that we have |M`,r| ≤ (C ′)`−1

and |M`,b| ≤ (C ′)`−1. Combining this with the previous calculations provides the

desired upper bound with C =
(
C ′
(
k
j

))2

�

5.2.2. No percolation. We now prove Theorem 5.2(b) stating that in the sub-

critical regime the binomial random double k-graph Hk(n, p1, p2) whp does not

j-percolate, because it does not contain an edge-minimal traversable triple of size

roughly log n.

Proof of Theorem 5.2(b). Let c > 0 be a sufficiently large constant and suppose

p = p1p2 =
1

cn2k−2j−1 log n
.

As mentioned earlier, it is a necessary condition for j-percolation of Hk(n, p1, p2)

that both its red and blue k-graphs are j-connected. Therefore, by (5.1), we may

without loss of generality assume

j(k − j)! log n

2nk−j
≤ p1, p2 ≤

2

j(k − j)!cnk−j−1(log n)2
,

where the upper bound follows directly from the lower bound and the assumption

on the product p. We will prove that H distributed as Hk(n, p1, p2) does not

j-percolate by showing that there is a bottleneck in the process.

By Claim 5.3 and Fact 5.4 we have the upper bound

P (H j-percolates) ≤
∑
`,r,b

∑
T∈T`,r,b

P (T ⊂ H) ,

where (a priori) the first sum ranges over all integers `, r and b satisfying log n ≤
` ≤

(
k
j

)
log n and 0 ≤ r, b ≤ ` − 1. Furthermore, Lemma 5.5 and Claim 5.6 imply

that
(
k
j

)−1
(`− 1) ≤ r, b whenever T`,r,b 6= ∅.

It will be convenient to split the summation into two parts, depending on

whether the edge-minimal traversable triple T = (J0, E1, E2) contains more red or

blue edges. So let us first consider the term

q1 :=
∑
r≤b<`

∑
T∈T`,r,b

P (T ⊂ H) .
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Since any triple T ∈ T`,r,b contains precisely r red edges and b blue edges,

the probability that it is contained in H is pr1p
b
2 and in particular this probability

depends only on the parameters r and b. Furthermore note that by Lemma 5.7 we

have

|T`,r,b| ≤ njC`−1
(
nk−j

)r (
`nk−j−1

)b
for some positive constant C > 0 and thus∑

T∈T`,r,b

P (T ⊂ H) ≤ njC`−1
(
nk−jp1

)r (
`nk−j−1p2

)b
≤ njC`−1

(
`n2k−2j−1p

)r
, (5.2)

since r ≤ b and `nk−j−1p2 = o(1). Now recall that `n2k−2j−1p ≤
(
k
j

)
/c < 1

for c sufficiently large, and thus the term is maximal when r is minimal, i.e. r =(
k
j

)−1
(`− 1). This provides the upper bound

q1 ≤
∑
r≤b<`

nj

(kj)C(kj)

c


`−1

(kj)
≤
((

k

j

)
log n

)3

nj

(kj)C(kj)

c

(logn−1)/(kj)

= o(1)

for any sufficiently large constant c dependent on k and j.

To complete the proof consider

q2 :=
∑
b≤r<`

∑
T∈T`,r,b

P (T ⊂ H) .

Swapping the roles of red and blue we can use precisely the same argument to show

that q2 = o(1) (using p′1 := p2, p′2 := p1, `′ := `, r′ := b and b′ := r). Thus

P (H j-percolates) ≤ q1 + q2 = o(1),

in other words the binomial random double k-graph Hk(n, p1, p2) whp does not

j-percolate. �

5.3. Supercritical regime

As we shall see, the supercritical regime is easier to prove, since we simply

reduce to the graph case k = 2 and j = 1. In the first step we provide the reduction

for any k ≥ 3 but j = 1. We then show how to obtain the result for arbitrary pairs

(k, j) from the setting with (k − 1, j − 1) as long as j ≥ 2.

Proof of Theorem 5.2(a). Given integers 1 ≤ j < k, we define a statement S(k, j)

as follows.

S(k, j): There exists a constant c = c(k, j) > 0 such that for any

functions p1 = p1(n) and p2 = p2(n) satisfying c logn
nk−j

≤ p1, p2 ≤
1 and p1p2 ≥ c

n2k−2j−1 logn
for sufficiently large n, the double

k-graph Hk(n, p1, p2) j-percolates whp.

Let us observe that showing that S(k, j) holds for all pairs of integers 1 ≤ j < k

proves Theorem 5.2 (ii). We proceed inductively, with the base case being the result

on graphs, proved in Theorem 5.1 (i).
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Remark 5.8. S(2, 1) holds.

We split the induction step into two parts.

Claim 5.9. Let k ≥ 3, then S(2, 1) implies S(k, 1).

Proof. Let k ≥ 3 be an integer. Assume S(2, 1) holds and let c′ = c(2, 1). Set

c = c(k, 1) := 3(2k)2kc′. By monotonicity, in order to show S(k, 1) it suffices to

prove that H distributed as Hk(n, p1, p2) 1-percolates for probabilities p1 = p1(n)

and p2 = p2(n) satisfying

p = p1p2 =
c

n2k−3 log n

and
c log n

nk−1
≤ p1, p2 ≤

1

nk−2(log n)2
,

where the upper bound is an immediate consequence of the lower bound and the

first condition.

We use the following construction to reduce to the graph case. Split the vertex

set [n] into two disjoint sets, say Q := [n/2] and Q∗ := [n] \ [n/2]. Let H ′ be the

double graph on Q whose edges are any pair in Q contained in an edge of H whose

remaining k− 2 vertices are all in Q∗. Note that if H ′ 1-percolates then all vertices

of Q must lie in a single cluster C of the final partition C∞ of the 1-jigsaw percolation

process in H. Notice that H ′ is distributed as H2(n′, p′1, p
′
2) with n′ := n/2 and

the edge probabilities p1 = p1(n′) and p2 = p2(n′) satisfy

p′i := 1− (1− pi)(
n/2
k−2) ≥ 1− exp

(
−pi(n/(2k − 4))k−2

)
≥ pin

k−2

(2k)k
(5.3)

for i ∈ {1, 2} and sufficiently large n, since pi = o(n−(k−2)). In particular we have

p′1p
′
2 ≥

p1p2n
2k−4

(2k)2k
≥ c′

n′ log n′

and also

p′i ≥
pin

k−2

(2k)k
≥ c log n

(2k)kn
≥ c′ log n′

n′
,

for i ∈ {1, 2}. Thus, by the choice of c′, H ′ does indeed 1-percolate whp.

Similarly, reversing the roles of Q and Q∗, i.e. considering only edges with

precisely 2 vertices from Q∗, we deduce that whp there is a cluster C∗ ∈ C∞ such

that Q∗ ⊂ C∗. Even though these two events may not be independent (at least for

k = 4) applying a union bound guarantees that they happen simultaneously whp.

Furthermore, there are at least two edges, one red and one blue, present in H ′.

The edges of H which gave rise to these (which may not be uniquely determined)

each contain at least one vertex from Q and Q∗ (since k ≥ 3). Thus the clusters C
and C∗ must coincide and contain all vertices, i.e. C = C∗ = [n]. In other words, H

1-percolates whp. �

Claim 5.10. Let k > j ≥ 2, then S(k − 1, j − 1) implies S(k, j).
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Proof. Fix integers k > j ≥ 2. Assume S(k−1, j−1) holds and let c′ = c(k−1, j−1).

Set c := max{5c′, (2k)k}. Again, by monotonicity, in order to show S(k, j) it suffices

to prove that H distributed asHk(n, p1, p2) j-percolates for probabilities p1 = p1(n)

and p2 = p2(n) satisfying

p = p1p2 =
c

n2k−2j−1 log n
and p1, p2 ≥

c log n

nk−j
.

We expose the edges of H in two rounds, i.e. for i = 1, 2 we set p′i := 1 −
√

1− pi ≥ pi/2. Note that pi = 2p′i − (p′i)
2

and thus we obtain H as the union of

two independent copies Hα and Hβ of Hk(n, p′1, p
′
2). (In particular we obtain the

final partition of j-jigsaw percolation on H by running j-jigsaw percolation on Hα

and using its final partition, denoted by C∞[Hα], as the initial partition for j-jigsaw

percolation on Hβ .)

In the following we will consider certain link double (k − 1)-graphs associated

to Hα. They are constructed as follows. Given a vertex v ∈ [n] we first delete from

Hα all edges (k-sets) that do not contain the vertex v. Then we delete v from the

vertex set and replace every remaining edge e with the (k− 1)-set e \ v. We denote

by Hα,v the resulting random double (k− 1)-graph on the vertex set [n] \ {v}, and

call it the link double (k − 1)-graph of v.

Now note that there is a natural bijection mapping the set of (j − 1)-sets

(respectively (k−1)-sets) in Hα,v to the set of j-sets (respectively k-sets) containing

v in Hα. Therefore any cluster in the final partition of (j−1)-jigsaw percolation on

Hα,v corresponds to a collection of j-sets (once we have added v to each) which must

be contained in a cluster of C∞[Hα]. Therefore, whenever Hα,v (j − 1)-percolates,

there is a unique cluster in C∞[Hα] which contains all j-sets which include v, and

thus we call it the corresponding cluster to v. We call a vertex v good if Hα,v

(j − 1)-percolates; vertices that are not good are called exceptional. This notion is

motivated by the following observation. The corresponding clusters of any two good

vertices u and u′ overlap in all j-sets containing both u and u′, thus indeed they

must coincide (since j ≥ 2). In other words, the final partition C∞[Hα] contains a

cluster C which includes every j-set with at least one good vertex.

Hence it remains to study j-sets containing only exceptional vertices. For this

we observe that Hα,v is distributed as Hk−1(n′, p′1, p
′
2), where n′ := n− 1 and the

probabilities p′1 = p′1(n′) and p′2 = p′2(n′) satisfy

p′1p
′
2 ≥

c

4n2k−2j−1 log n
≥ c′

(n′)2(k−1)−2(j−1)−1 log(n′)
,

p′i ≥
c log n

2nk−j
≥ c′ log(n′)

(n′)(k−1)−(j−1)

for i ∈ {1, 2} and sufficiently large n. Consequently, by the choice of c′, Hα,v (j−1)-

percolates whp and therefore the expected number of exceptional vertices is o(n),

say n/ξ, for some function ξ →∞. Thus whp there are at most n/
√
ξ exceptional

vertices, by Markov’s inequality.
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Now we run j-jigsaw percolation on Hβ with initial partition C0[Hβ ] := C∞[Hα]

and show that whp C1[Hβ ] = C∞[Hβ ] = [n], i.e. there is percolation in a single step.

For this it is sufficient to show that whp for every j-set J = {u(1), . . . , u(j)} contain-

ing only exceptional vertices there are edges e1 (red) and e2 (blue) in Hβ each con-

taining J and a good vertex v1 and v2 respectively, since J ′ := {u(1), . . . , u(j−1), vi}
satisfies J ′ ∈ C∞[Hα] and J ′ ⊂ ei. For any i ∈ {1, 2} and any such j-set J , the

probability that no edge ei exists is at most

(1− p′i)
(1−1/

√
ξ)n(n−j−1

k−j−1) ≤ exp
(
−p′ink−j/(2k)k−j

)
≤ exp

(
−(2k)j−kc log n

)
≤ n−(2k)j = o

(
n−j

)
,

for sufficiently large n and by the choice of c. Hence we may take the union bound

over i ∈ {1, 2} and all (such) j-sets. Therefore Hk(n, p1, p2) j-percolates whp,

completing the proof. �

Proposition 5.8 and Claims 5.9 and 5.10 imply that S(k, j) holds for all pairs

of integers 1 ≤ j < k and this proves Theorem 5.2(a). �

5.4. Related models

With some small alterations these methods can also be applied for other models,

for instance line graphs or in a setting with any fixed number of colours.

5.4.1. Line graphs. We consider the following random double graph L(n, p1, p2)

that has a vertex for every pair of elements from the set [n], i.e. V =
(

[n]
2

)
, and

any two vertices that intersect form a red/blue edge with probabilities p1 and p2,

respectively, independently of each other and of all pairs of vertices; disjoint vertices

cannot form an edge. Note that (graph-)jigsaw percolation on this model is closely

related to 2-jigsaw percolation on H3(n, p1, p2). Following the lines of our proof for

j = 2 and k = 3 we obtain the following result.

Theorem 5.11. Let 0 ≤ p1, p2 ≤ 1 and let L = L(n, p1, p2). Then there is a

constant c > 0 such that

(a) if p1p2 ≤ 1
cn logn , then whp L does not j-percolate;

(b) if p1p2 ≥ c
n logn and min{p1, p2} ≥ c logn

n , then whp L j-percolates.

In other words, the threshold p̂jp,L = p̂jp,L(n) for jigsaw percolation on the

random double graph L(n, p1, p2) in terms of the product p = p1p2 is of the order

p̂jp,L = Θ

(
1

n log n

)
.

In fact, the proof for the subcritical regime will be simplified since there cannot

be any edges doing multiple duty (neither in red nor in blue). For the supercritical

regime one reduction step is enough, since the link graph of a vertex in the line

graph is a binomial random double graph and thus the result from [37] applies.
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5.4.2. Multiple colours. Returning to the original motivation of jigsaw percola-

tion, one might ask whether the social network is able to collectively solve multiple

puzzles simultaneously. In this spirit we define a binomial random s-fold k-graph

Hk(n, p1, . . . , ps) in which the vertex set is [n] and any k-set forms an i-edge with

probability pi independently for all 1 ≤ i ≤ s and all other k-sets.

Now in the process of j-jigsaw percolation clusters merge if for each colour

there is at least one edge connecting them. Hence, based on the same intuition,

we analyse internally spanned (s+ 1)-tuples (the s-coloured analogue of internally

spanned triples) and observe that the sequence of white j-sets is already determined

by the set of edges of the first colour, say red. Now any further colour essentially

behaves like blue and in particular independently of the other colours, given the

sequence of white j-sets. With this intuition we obtain the following generalisation

of Theorem 5.2.

Theorem 5.12. For integers 1 ≤ j < k and s ≥ 2 let 0 ≤ p1, . . . , ps ≤ 1 and let

Hs = Hk(n, p1, . . . , ps). Then there is a constant c = c(s, k, j) > 0 such that

(a) if
∏s
i=1 pi ≤

1
cns(k−j−1)+1(logn)s−1 , then whp Hs does not j-percolate;

(b) if
∏s
i=1 pi ≥

c
ns(k−j−1)+1(logn)s−1 and min{p1, . . . , ps} ≥ c logn

nk−j
, then whp Hs

j-percolates.

In other words, the threshold p̂jp,s = p̂jp,s(n, k, j) for j-jigsaw percolation on

the s-fold k-graph Hk(n, p1, . . . , ps) in terms of p =
∏s
i=1 pi is of order

p̂jp,s = Θ

(
1

ns(k−j−1)+1(log n)s−1

)
.

Proof outline. It turns out that there is a minor technical obstacle when de-

termining the upper bound on the probabilities pi for all i ∈ [s] from some necessary

conditions for j-percolation of an s-fold k-graph. As before the k-graph of (any)

colour i ∈ [s] has to be j-connected, i.e. by (5.1) we may assume

pi = Ω

(
log n

nk−j

)
.

However, this alone will not yield useful upper bounds. Instead we observe that

additionally, for any proper subset I ( {1, . . . , s} of size at least two, it is necessary

that the |I|-fold k-graph Hk(n, (pi)i∈I) j-percolates. Therefore, Theorem 5.12 is

proved by induction over s with Theorem 5.2 providing the base case. Hence

assume
∏
j∈[s]:j 6=i pj = Ω(p̂jp,s−1) for all i ∈ [s]. Additionally, by monotonicity, we

may also assume
∏
j∈[s] pj = Θ(p̂jp,s) and thus obtain the following upper bounds

on the probabilities pi:

pi =

∏
j∈[s] pj∏

j∈[s]:j 6=i pj
= O

(
p̂jp,s

p̂jp,s−1

)
= O

(
1

nk−j−1 log n

)
. (5.4)

Even though this upper bound is slightly weaker than in the two-colour case (where

we had another factor of 1/ log n at our disposal) it turns out to be sufficient for

adapting our proof.
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More precisely, the bound in (5.4) is used in the following two arguments:

• In the subcritical regime, in order to derive (5.2), and there we only need

that `nk−j−1pi ≤ 1 for all ` ≤
(
k
j

)
log n and all colours i ∈ [s]. This holds if

the constant c(s, k, j) is chosen sufficiently large compared to c(s−1, k, j).

• In the supercritical regime, for the last estimate in (5.2), but the argument

doesn’t change at all since having a single (1/ log)-factor is already enough

here.

Apart from these occurrences the upper bound is only used to reprove the statement

(in the supercritical regime) for graphs [37] in the setting of multiple colours. There

the upper bound allowed us to use several asymptotic approximations, which may

not be useful any more if we only have the weaker bound. However, these technical

issues can be dealt with and the details can be found in [67].

5.5. Concluding remarks

Theorem 5.2 holds for a large enough constant c, which we made no attempt to

optimise (nor was any such attempt made for graphs in [37]). It would be interesting

to know the exact threshold, and in particular whether it is sharp, i.e. the upper

and lower thresholds are asymptotically the same.

Note also that in the supercritical regime there was an extra condition on

min{p1, p2} which contained a factor of c. However, there is no intrinsic reason

why this c should be the same as the c in the product. Indeed, the reason for this

condition is to ensure that each hypergraph is j-connected whp, but as mentioned

in the introduction, the asymptotic threshold for this was determined in [3] to be
j(k−j)! logn

nk−j
. It is therefore natural to conjecture that this condition can be replaced

by min{p1, p2} ≥ c′ logn
nk−j

for any constant c′ such that j(k−j)! < c′. In fact, even if,

say p1 = j(k−j)! logn
nk−j

, there is a certain probability, bounded away from 0 and 1, that

the red k-graph is j-connected. It is then natural to conjecture that, conditioned

on it being j-connected (note that whp the blue k-graph will also be j-connected),

whp the double k-graph Hk(n, p1, p2) j-percolates.



CHAPTER 6

Bootstrap percolation on geometric

inhomogeneous random graphs

6.1. Introduction and main results

One of the most challenging and intriguing questions about large real-world net-

works is how activity spreads through the network. ‘Activity’ in this context can

mean many things, including infections in a population network, opinions and ru-

mours in social networks, viruses in computer networks, action potentials in neural

networks, and many more. While all these networks seem very different, in the

last two decades there was growing evidence that most of them share fundamental

properties [14, 54]. The most famous property is that the networks are scale-free,

i.e. the degrees follow a power-law distribution P(deg(v) ≥ d) ≈ d1−β , typically for

some 2 < β < 3. Other properties include a large connected component which is

a small world (poly-logarithmic diameter) and an ultra-small world (constant or

poly-loglog average distance), that the networks have small separators and a large

clustering coefficient. We refer the reader to [41] for more detailed discussions.

Classical models for random graphs fail to have these common properties. For

example, Erdős-Rényi graphs or Watts-Strogatz graphs do not have power-law de-

grees, while Chung-Lu graphs and preferential attachment (PA) graphs fail to have

large clustering coefficients or small separators. The latter properties typically

arise in real-world networks from an underlying geometry, either spatial or more

abstract, e.g., two nodes in a social networks might be considered ‘close’ if they

share similar professions or hobbies. It is well-known that in real-world networks

the spread of activity (of the flu, of viral marketing, ...) is crucially governed by

the underlying spatial or abstract geometry [83]. For this reason, the explanatory

power of classical models is limited in this context.

In recent years models were developed in order to overcome the previously men-

tioned limitations, most notably hyperbolic random graphs (HypRGs) [22, 28, 29,

93] and in more general1 geometric inhomogeneous random graphs (GIRGs) [41],2

and spatial preferential attachment (SPA) models [12, 52, 72]. Apart from the

power-law exponent β, these models come with a parameter α > 1, which models

how strongly the edges are predicted by their distance. There are very few theor-

etical results on impact of the geometry on the spread of activity in such networks.

1It is non-obvious that GIRGs are a generalisation of HypRGs, see Theorem 6.3 in [41].
2Other than in [41] we do not condition on the number of vertices to be exactly n, which leads to
slightly less technical proofs.

119
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In this chapter we make a first step by analysing a specific process, bootstrap

percolation [47], on the recent and very general GIRG model. In this process, an

initial set of infected (or active) vertices (the bootstrap) iteratively recruits all ver-

tices which have at least k infected neighbours, where k ≥ 2 is a parameter. It

was originally developed to model various physical phenomena (see [11] for a short

review), but has by now also become an established model for the spreading of

activity in networks, for example for the spreading of beliefs [55, 64, 97, 101], beha-

viour [62, 63], or viral marketing [78] in social networks (see also [46]), of contagion

in economic networks [17], of failures in physical networks of infrastructure [108] or

computer architecture [60, 80], of action potentials in neuronal networks (e.g. [16,

50, 56, 57, 92, 100, 105, 106], see also [81] for a review), and of infections in popu-

lations [55].

6.1.1. Our contribution. We investigate bootstrap percolation on GIRGs with

an expected number of n vertices. We fix a ball B in the underlying geometric

space, and we form the bootstrap by infecting each vertex in B independently with

probability ρ. In this way, we model that an infection (a rumour, an opinion, ...)

often starts in some local region, and from there spreads to larger parts of the

network.

In Theorem 6.1 we determine a threshold ρ̂ such that in the supercritical case

ρ = ω(ρ̂) with high probability3 (whp for short) a linear fraction of the graph is

infected eventually, and in the subcritical case ρ = o(ρ̂) infection ceases immediately.

In the critical case ρ = Θ(ρ̂) both options occur with non-vanishing probability:

if there are enough (at least k) ‘local hubs’ in the starting region, i.e. vertices

of relatively large expected degree, then they become infected and facilitate the

process. Without such local hubs the initial infection is not dense enough, and

comes to a halt.

For the supercritical case, we show that it only takes O(log log n) rounds until a

constant fraction of all vertices is infected, and we determine the number of rounds

until this happens up to a factor 1± o(1) in Theorem 6.2. For the matching lower

bound in this result, we need the technical condition α > β− 1, i.e. edge-formation

may not depend too weakly on the geometry. Notably, if the starting region B is

sufficiently small then the number of rounds agrees (up to minor terms) with the

average distance in the network. In particular, it does not depend on the infection

rate ρ, as long as ρ is supercritical.

Finally we demonstrate that the way the infection spreads is strongly governed

by the geometry of the process, again under the assumption α > β − 1. Starting

from B, the infection is carried most quickly by local hubs. Once the local hubs in

a region are infected, they pass on their infection (a) to other hubs that are even

further away, and (b) locally to nodes of increasingly lower degree, until a constant

fraction of all vertices the region is infected.

3Meaning with probability tending to 1 as n→ ∞.
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Indeed, given a vertex v (i.e. given its expected degree and its distance from

B), and assuming that v is not too close to B, we can predict whp in which round

it will become infected (Theorem 6.4), again up to a factor 1± o(1).

In real applications such knowledge is invaluable: for example, assume that a

policy-maker only knows initial time and place of the infection, i.e. she knows the

region B and the current round i. In particular, she does not know ρ, she does

not know the graph, and she has no detailed knowledge about who is infected.

Then we show that she is able to identify a region B′ in which the infection can be

quarantined. In other words, by removing (from round i onwards) all edges crossing

the boundary of B′ whp the infection remains contained in B′.

The number of edges to be deleted is relatively small (Theorem 6.7): it can be

much smaller than n (in fact, any function f(n) = ω(1) can be an upper bound, if

i and Vol(B) are sufficiently small), and it is even much smaller than the number

of edges inside of B′, as was already noted in [41].

6.1.2. Related work. The GIRG model was introduced in [41], and we rely on

many results from this paper. The average distance of a GIRG (which, as we show,

agrees with the time until the bootstrap percolation process has infected a constant

portion of all vertices) was determined in [40] in a much more general setup.

Bootstrap percolation has been intensively studied theoretically and experi-

mentally on a multitude of networks, including trees [21, 47], lattices [13, 20],

Erdős-Rényi graphs [75], various geometric graphs [39, 61, 88, 105], and scale-free

networks [18, 24, 53, 78]. On geometric scale-free networks there are some experi-

mental results [45], but little is known theoretically.

Recently, Candellero and Fountoulakis [44] determined the threshold for boot-

strap percolation on HypRGs (in the threshold case α = ∞, cf. below). However,

they assumed that the initial infection takes place globally, i.e. whether any vertex

is infected initially is independent of its position, and not locally as in our set-

ting, where no vertex outside of a certain geometric region is infected initially. We

emphasise that this idea does not apply for non-geometric random graph models.

Using a localised initial infection has two major consequences.

Firstly, in the global setting, the (expected) number of initially infected vertices

needs to be polynomial in n in order for the infection to start spreading significantly;

while in our setting every ball containing an expected number of ω(1) vertices can

initiate a large infection whp.

Secondly, using our knowledge about how the process evolves in time with

respect to the geometry, we show that the infection time of any vertex is mainly

governed by its geometric position and its weight. By contrast, using a global initial

infection the infection times only depend on the expected degrees. Note that we do

not encode these expected degrees as geometric information (in contrast to [44]),

but rather in the weights.

While there is plenty of experimental literature and also some mean-field heur-

istics on other activity spreading processes on geometric scale-free networks (e.g. [66,
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71, 98, 107, 109, 110]), rigorous mathematical treatments are non-existent with the

notable exception of [76], where rumour spreading is analysed in an SPA model

with a push and a push&pull protocol.

6.1.3. Model and notation. In this section we first define the random graph

model that we will discuss in this chapter. Afterwards we formally introduce boot-

strap percolation. In the last part of this section we then collect all notation used

in the chapter for global reference.

6.1.3.1. Geometric inhomogeneous random graphs. A GIRG is a graph G =

(V,E) where both the vertex set V and the edge set E are random. Each vertex v

is represented by a pair (xv, wv) consisting of a position xv (in some ground space)

and a weight wv ∈ R>0.

Ground space and positions. We fix a (constant) dimension d ≥ 1 and consider

the d-dimensional torus Td = Rd/Zd as the ground space. We usually think of it as

the d-dimensional cube [0, 1]d where opposite boundaries are identified and measure

distances by the ∞-norm on Td, i.e. for x, y ∈ [0, 1]d we define

‖x− y‖ := max
1≤i≤d

min{|xi − yi|, 1− |xi − yi|}.

The set of vertices and their positions are given by a homogeneous Poisson point

process on Td with intensity n ∈ N. More formally, for any (Lebesgue-)measurable

set B ⊂ Td, let V ∩B denote (with slight abuse of notation) the set of vertices with

positions in B. Then |V ∩B| is Poisson distributed with mean nVol(B), i.e. for any

integer m ≥ 0 we have

P (|V ∩B| = m) = P(Po(nVol(B)) = m) =
(nVol(B))

m
exp(−nVol(B))

m!
,

and if B and B′ are disjoint measurable subsets of Td then |V ∩B| and |V ∩B′| are

independent. Note in particular that the total number of vertices |V | is Poisson

distributed with mean n, i.e. it is also random. An important property of this

process is the following: given a random vertex4 v = (xv, wv), if we condition on

xv ∈ B, where B is some measurable subset of [0, 1]d, then the position xv is

uniformly distributed in B.

Weights. For each vertex, we draw independently a weight from some distribu-

tion D on R>0. We say that the weights follow a weak power-law for some exponent

β ∈ (2, 3) if a D-distributed random variable D satisfies the following two condi-

tions: there is a constant wmin ∈ R>0 such that P (D ≥ wmin) = 1, and for every

constant γ > 0 there are constants 0 < c1 ≤ c2 such that

c1w
1−β−γ ≤ P (D ≥ w) ≤ c2w1−β+γ (6.1)

for all w ≥ wmin. If this condition is also satisfied for γ = 0, then we say that the

weights follow a strong power-law.

4By abuse of notation, xv and wv may either denote random variables or values.
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Edges. Next we fix an α ∈ R>1∪{∞}. Then two distinct vertices u = (xu, wu)

and v = (xv, wv) form an edge independently of all other pairs with probability

p(xu, xv, wu, wv), where the function p satisfies

p(xu, xv, wu, wv) = Θ(1) min

{(
wuwv

‖xu − xv‖dn

)α
, 1

}
, (6.2)

if α <∞. In the threshold model α =∞ we instead require that p satisfies

p(xu, xv, wu, wv) =

Ω(1) if ‖xu − xv‖ ≤ C1

(
wuwv
n

)1/d
0 if ‖xu − xv‖ > C2

(
wuwv
n

)1/d (6.3)

for some constants 0 < C1 ≤ C2 . Note that for C1 6= C2 the edge probability may

be arbitrary in the interval
(
C1

(
wuwv
n

)1/d
, C2

(
wuwv
n

)1/d)
.

6.1.3.2. Bootstrap percolation. Let k ≥ 2 be a constant, let B0 ⊂ Td be meas-

urable, and let 0 ≤ ρ = ρ(n) ≤ 1. Then bootstrap percolation with threshold k,

starting region B0, and initial infection rate ρ is the following process. For every

integer i ≥ 0 there is a set V ≤i ⊂ V of vertices which are infected (or active) at

time i. The process starts with a random set V ≤0 ⊂ V which contains each vertex

in V ∩B0 independently with probability ρ, and which contains no other vertices.

Then we define iteratively

V ≤i+1 := V ≤i ∪
{
v ∈ V

∣∣ v has at least k neighbours in V ≤i
}

for all i ≥ 0. Moreover, we set V ≤∞ :=
⋃
i∈N V

≤i.

We denote by ν = ν(n) := nVol(B0) the expected number of vertices in B0.

Throughout the chapter we will assume that B0 is a ball centred at 0, without loss

of generality due to symmetry of Td. Moreover, we will assume that ν = ω(1).

6.1.3.3. Further notation. We often consider subsets of the vertex sets which

satisfy some restrictions on their weights, positions, or whether they are infected at

a given point of time. We use the following (slightly abusive) notation throughout

the chapter: for a weight w ∈ R>0, a measurable set B ⊂ Td, and a time i ≥ 0 we

set

V ≤i≥w∩B :=
{
u = (xu, wu) ∈ V

∣∣ wu ≥ w, xu ∈ B, u ∈ V ≤i} .
All three types of restrictions are optional.

Moreover, we use the superscript “(= i)” to describe vertices which become

infected (precisely) in round i, i.e. V =i := V ≤i \ V ≤i−1 and V =0 := V ≤0 etc.

Furthermore, the index “≥ w” may be replaced by “< w” or “∈ [w,w′)”, with the

obvious meaning.

Additionally, we denote the neighbourhood of a vertex v ∈ V by N (v) :=

{u ∈ V | {u, v} ∈ E} and this notation may be modified by the same three types of

restrictions, i.e.

N≤i≥w(v)∩B := N(v) ∩ (V ≤i≥w∩B).

For any two sets of vertices U1 and U2, we denote the set of edges between

them by E (U1, U2) := {e = {u1, u2} | u1 ∈ U1, u2 ∈ U2}.



6.1. INTRODUCTION AND MAIN RESULTS 124

For a vertex v ∈ V , we define its infection time as Lv := inf
{
i ≥ 0

∣∣ v ∈ V ≤i}
and Lv :=∞ if the infimum does not exist.

For any λ ≥ 0 and any closed ball B ⊂ Td of radius r ≥ 0 centred at 0 we

denote by λB the closed ball of radius λr around 0.

Since it occurs frequently in our proofs, we abbreviate ζ := 1/(β − 2) > 1. For

all 0 < ε < ζ and all i ≥ 0, we set

ν0 := ν and νi = νi(ε) := ν
(ζ−ε)i
0 ,

ν̃0 = ν̃0(ε) := ν(β−1)/(β−2)+ε and ν̃i = ν̃i(ε) := ν̃
(ζ+ε)i

0

We define Bi = Bi(ε) and B̃i = B̃i(ε) to be the closed ball centred around 0 of

volume min{νi(ε)/n, 1} and min{ν̃i(ε)/n, 1}, respectively. Note that Bi(ε) ⊂ B̃i(ε′)
for all i ≥ 0 and all 0 < ε, ε′ < ζ. The balls Bi and B̃i will play a crucial role in

describing how fast the infection spreads, cf. Theorem 6.20 and Theorem 6.17.

Given any constant η > 0, we define the functions ŵ
(η)
− , ŵ

(η)
+ : R≥0 → R≥0 by

ŵ−(µ) = ŵ
(η)
− (µ) := µ1/(β−1+η) and ŵ+(µ) = ŵ

(η)
+ (µ) := µ1/(β−1−η).

As we will see in Lemma 6.15, in a region with an expected number of µ = ω(1)

vertices, whp the largest weight that occurs in this region is in [ŵ−(µ), ŵ+(µ)].

In general we will be interested in results for large values of n, and in particular

we use the phrase with high probability (whp) to mean with probability tending to

1 as n→∞. Moreover, all unspecified limits and asymptotics will be with respect

to n→∞, and all constants hidden by Landau-notation are positive. For example,

for a function f = f(n) the notation f = O(1) means that there is n0 > 0 and an

absolute constant C > 0 that depends only the constant parameters α, β, d, wmin,D,

and k of the model, such that f(n) ≤ C for all n ≥ n0. Similarly, f = ω(1) means

limn→∞ f(n) =∞ etc.

Similarly, when our proofs involve parameters ε, η > 0 then by the notation

O(ε), O(η) etc. we implicitly mean that the (positive) hidden constants only depend

on the parameters d, α, β, wmin,D, and k of the model, but not on ε or η. To enhance

readability, in all proofs we stick to the convention that if ε and η occur together,

then η = η(ε) > 0 is chosen so small that Cη < cε for all concrete constants C

and c in our proofs that depend only on the model parameters. In particular, the

expression Ω(ε)−O(η) will be positive for all hidden constants that appear in our

proofs.

In the proofs, for the sake of readability, we will not state each time when we

use inequalities that only hold for sufficiently large n. For example, we will use

inequalities like ν > 2 without further comment although they are only true for

sufficiently large n.

Throughout the chapter we will ignore all events of probability 0. For example,

we will always assume that V is a finite set, and that all vertices in V have different

positions. Furthermore, whenever it does not affect the argument, we omit floors

and ceilings.
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6.1.4. Main results. First of all we show that bootstrap percolation on a GIRG

has at threshold with respect to the initial infection rate ρ. Since hyperbolic random

graphs are a special instance of GIRGs, this contains in particular the result of [44]

on (threshold) hyperbolic random graphs, where the case ν = n was studied.

Theorem 6.1. Consider a bootstrap percolation process on a GIRG G = (V,E)

with initial infection rate ρ = ρ(n) ∈ [0, 1]. We set

ρ̂ = ρ̂(ν, β) := ν−
1

β−1 .

If the weights follow a strong power-law, then the following holds.

(i) If ρ = ω(ρ̂), then |V ≤∞| = Θ(n) whp.

(ii) If ρ = Θ(ρ̂), then |V ≤∞| = Θ(n) with probability Ω(1), but also V ≤∞ = V ≤0

with probability Ω(1).

(iii) If ρ = o(ρ̂), then V ≤∞ = V ≤0 whp.

If the weights follow a weak power-law, then the following holds.

(iv) If there is a constant δ > 0 such that ρ ≥ ρ̂1−δ, then |V ≤∞| = Θ(n) whp.

(v) If there is a constant δ > 0 such that ρ ≤ ρ̂1+δ, then V ≤∞ = V ≤0 whp.

Whenever we refer to the supercritical regime we mean case (i) and (iv). Simil-

arly, (iii) and (v) form the subcritical regime and (ii) is the critical regime. Note in

particular that there is a supercritical regime regardless of how small the expected

number ν of vertices in the starting region is, provided that ν = ω(1). This is in

sharp contrast to non-geometric graphs like Chung-Lu graphs, where the expec-

ted size of the bootstrap must be polynomial in n (if the bootstrap is chosen at

random).

In fact, the proof of Theorem 6.1 will grant a deeper insight into the evolution

of the process, in particular in the supercritical and critical regimes.

We consider the hitting time τo for the increasing property of a constant fraction

of all vertices are infected, i.e. τo is a random variables taking values in N ∪ {∞},
and show a doubly logarithmic upper bound on τo in the supercritical and critical

regimes. Furthermore, we prove that this bound is tight up to minor order terms if

the influence of the underlying geometry on the random graphs is sufficiently strong

(α > β − 1).

Theorem 6.2. In the situation of Theorem 6.1, set

i∞ = i∞(n, ν, β) :=
log logν n+ log log n

| log(β − 2)|
,

then for any ε > 0 we have

P(τo ≤ (1 + ε)i∞) =

1− o(1) if (i) or (iv) holds,

Ω(1) if (ii) holds;

and furthermore, if α < β − 1 and ν = no(1), then P(τo ≤ (1− ε)i∞) = o(1).
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Remarkably, the bounds do not depend on the initial infection rate ρ, as long

as ρ is supercritical/critical. Moreover, if the expected number ν of vertices in

the starting region is sufficiently small (if log log ν = o(log log n)), then the bound

coincides with the average distance in the graph, again up to minor order terms.

In fact, we can still refine the statement of Theorem 6.2 tremendously, at least

in the case α > β − 1. In the following, we determine for every fixed vertex v its

infection time Lv, up to minor order terms (with the restriction that v may not

be too close to the starting region). We will show that it is given by the following

expression (see also Remark 6.6 below).

Definition 6.3. For any x ∈ Td \B0 and w ∈ R>0 we define

Λ(x,w) :=


max

{
0,

log logν(‖x‖dn/w)
| log(β−2)|

}
, if w > (‖x‖dn)1/(β−1),

2 log logν(‖x‖dn)−log logν w
| log(β−2)| , if w ≤ (‖x‖dn)1/(β−1).

(6.4)

In the first case we use the convention that the second term is −∞ if ‖x‖dn/w < 1,

and thus does not contribute to the maximum.

Note that in the second case, the sign of log logν w may be either positive or neg-

ative. However, then we have the lower bound Λ(x,w) ≥ log logν(‖x‖dn)/| log(β−
2)|+O(1) due to the upper bound of w and thus, in particular Λ(x,w) ≥ 0, since

x ∈ Td \B0.

Theorem 6.4. Assume we are in the situation of Theorem 6.1 and (i) or (iv)

holds. Let v = (xv, wv) be any fixed vertex such that xv ∈ Td \ B0, wv = ω(1) and

Λ(xv, wv) ≤ log2(‖xv‖dn/ν̃0). Then whp

Lv ≤ (1 + o(1))Λ(xv, wv) +O(1).

If additionally α > β − 1 then we also have whp

Lv ≥ (1− o(1))Λ(xv, wv)−O(1).

As in Theorem 6.2, the bounds do not depend on the initial infection rate ρ,

as long as it is supercritical.

Remark 6.5. The technical restrictions in Theorem 6.4 are necessary: if a vertex

has weight wv = O(1) then the number of neighbours is Poisson distributed with

mean Θ(wv) (see Lemma 6.12), so v is even isolated with probability Ω(1). In

particular, we cannot expected that whp v is ever infected.

The restriction Λ(xv, wv) ≤ log2(‖xv‖dn/ν̃0) ensures that v is not too close to

the starting region. If v is too close, then it may have neighbours inside of B0,

and in this case it does depend on ρ when they are infected. (And of course, this

process iterates.)

The term log2(‖xv‖dn/ν̃0) is not tight and could be improved at the cost of

more technical proofs. However, there are already rather few vertices that violate
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the condition Λ(xv, wv) ≤ log2(‖xv‖dn/ν̃0). For example, recall that it only takes

O(log log n) steps until a constant fraction of all vertices are infected. At this time,

we only exclude vertices which satisfy ‖xv‖dn ≤ ν̃0 · (log n)O(1), so the expected

number of affected vertices is also at most ν̃0 · (log n)O(1). Even this is a gross

overestimate, since the vertices close to the origin have much smaller infection

times Lv, and thus only very few of them are affected by the condition.

Remark 6.6. The first case in Definition 6.3 is not needed if we restrict ourselves

to vertices as they typically appear in GIRGs. More precisely, as we will see in

Lemma 6.15, Section 6.2.2, whp all vertices in v = (xv, wv) ∈ V ∩ (Td \B0) satisfy

wv ≤ (‖xv‖dn)1/(β−1−η) where η > 0 is an arbitrary constant. In the border case

(‖xv‖dn)1/(β−1) ≤ wv ≤ (‖xv‖dn)1/(β−1−η) both expressions in (6.4) agree up to

additive constants, i.e.

Λ(xv, wv) =
2 log logν(‖xv‖dn)− log logν wv

| log(β − 2)|
±O(1). (6.5)

Therefore, we could also use (6.5) as definition for Λ if we would exclude vertices

which are unlikely to exist in Theorem 6.4 .

Finally, we provide a strategy how to contain the infection within a certain

region when only the starting set and the current round a known, but not the set

of infected vertices. Note that the number of edges that need to be removed is

substantially smaller than the expected number of vertices ν̃i in the containment

area B̃i.

Theorem 6.7. Assume that we are in the situation of Theorem 6.1, and that

α > β − 1. If the starting region B0 is known, then by removing all edges crossing

the boundary of B̃i before round i + 1, whp the infection is contained in B̃i. The

expected number of edges crossing the boundary of B̃i is ν̃
max{3−β,1−1/d}±o(1)
i .

Before we proceed with an outline of the proofs, we briefly describe the or-

ganisation of this chapter. In Section 6.2.1 we collect some tools and derive basic

properties of GIRGs. Afterwards, in Section 6.3, we investigate the evolution of

bootstrap percolation on GIRGs in great detail, followed by the proof of The-

orem 6.7. Using this description we then derive Theorem 6.4 in Section 6.4, and

prove Theorems 6.1 and 6.2 simultaneously in Section 6.5. We conclude this chapter

with a brief discussion of open problems in Section 6.6.

6.1.5. Intuition and proof outline. In this section we give an intuitive descrip-

tion of how the process evolves, and at the same time a very rough outline of the

proofs. We warn the reader that some statements in this section are not literally

true, but they are only true if appropriate error margins are taken into account.5

5This applies in particular to the definition of the balls Bi the quantities νi, and the weights that
will appear in the course of the argument. The exact statements are rather technical and are
given in Sections 6.3.2 and 6.3.1.
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Initial phase. For the subcritical regime, we distinguish between high-weight

vertices (wv = ω(w0), where w0 = ν1/(β−1)) and low-weight vertices (wv = O(w0)).

By an easy computation, the expected number of low-weight vertices in B0 that are

infected in round 1 is o(1), so by Markov’s inequality no low-weight vertex becomes

infected whp. On the other hand, whp no high-weight vertex exists in B0, and the

expected number of infected vertices outside of B0 is also o(1) because they are too

far away from infected vertices. In order words, whp no vertex is infected in the

first round, and thus the percolation process stops immediately.

In the critical regime, the calculation is comparable, but if there exist vertices

of weight Θ(w0) then these vertices are infected with probability Ω(1). The number

of vertices of weight Θ(w0) is Poisson distributed with mean Θ(1), so it may happen

(each with probability Ω(1)) that either no such vertex exists (so percolation process

stops) or that there are at least k such vertices, and that all of them are infected.

Similarly, in the supercritical regime, whp k vertices of weight (slightly less

than) w0 are infected. Then these k vertices whp infect all other vertices of similar

weight in at most two more rounds.

Cascade of infection. If all vertices of weight Θ(w0) are infected (in either the

critical or supercritical regime), they start a cascade of infection which evolves in

two ‘main directions’: it spreads along the geometry, i.e. to larger regions; and to

vertices of subsequently smaller weights, which is necessary in order to become a

linear-sized outbreak. For this recall that we defined ζ = 1/(β−2) > 1, and consider

the sequence Bi of nested balls of volume νi/n centred at 0, where νi ≈ νζ
i

.

Geometric spread. We inductively show the following: if in the i-th round all

vertices of weight wi ≈ ν
1/(β−1)
i in Bi are infected, then in the next round, whp

the vertices of weight wi in Bi infect all vertices of weight wi+1 in Bi+1, thus

spreading the infection to new regions. Note that in order to prove this, for vertices

in Bi+1 it suffices to count the number of neighbours of a certain weight in Bi,

which is a Poisson distributed random variable. This gives a lower bound on how

fast the infection spreads geometrically. It can not spread faster since whp there

are no edges from Bi to Td \ Bi+1. This latter fact already allows us to execute a

quarantine strategy (Theorem 6.7).

Linear-sized outbreak. The crucial observation is the following: if in round j

every vertex of weight w in some region has a large probability to be infected, then

in round j + 1 every vertex of weight at least w′ ≈ w1/ζ in this region has a large

(though slightly smaller) probability to be infected.

To prove this formally, we consider a vertex of weight w′. Such a vertex (but not

vertices of smaller weight) has at least wδ neighbours of weight w, with probability

at least 1 − exp(−wδ). So we pick k such neighbours, and bound the probability

that at least one of them is not infected by a union bound. In this way, we lose a

factor of k in each round, but going through the proof details it turns out that this

factor is still negligible compared to the error term exp(−wδ) (see Theorem 6.17).
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This describes an ‘infection pathway’ providing a lower bound on the speed of

the outbreak reaching linear size. It is the most challenging and technical part of

the proof to complement this infection pathway by a matching upper bound.

Since in round i−1 there is no infected vertex in Bi\Bi−1 it is not hard to argue

that in round i only vertices of large weight in Td \Bi−1 are infected. However, in

subsequent rounds it does happen that vertices of very small weight in Td \ Bi−1

become infected. Fortunately, this only happens with rather small probability,

which we explicitly bound (Theorem 6.20(f)) as a function of the weight.

Once we have such a bound in some round, we use that whp no vertex in

Td \Bi−1 (not too close to the boundary) has strictly more than one neighbour in

Bi−1. Therefore, in order for a vertex v in Td \ Bi−1 to be infected, at least one

of its neighbours in Td \ Bi−1 must have been infected in the previous round, and

we can bound the probability of this event by the expected number of previously

infected neighbours in Td \ Bi−1. It turns out that this simple bound is sufficient

to provide the desired matching upper bound.

We remark that it is in this last step where we use the assumption α > β − 1

in Theorems 6.2 and 6.4, since otherwise there do exist vertices in Td \ Bi−1 that

have several neighbours in Bi−1, and these vertices exist in a substantial part of

Bi. Even worse, for α < β − 1, in some (large) subregion of Bi the number of

infections in round i+ 1 that come from neighbours in Bi−1 dominates the number

of infections that come from neighbours in Bi. For investigating the case α < β−1

(which is not done in this thesis), it will no longer be possible to use a bound on

the infection probability that is uniform within Td \Bi−1, or within Bi \Bi−1.

Together Theorems 6.17 and 6.20 allow us to simultaneously prove Theor-

ems 6.1 and 6.2 without further preparation, and provide almost complete control

over the process. As a consequence, for a each vertex v with fixed weight and pos-

ition (outside of the starting region B0), and for each round j we obtain lower and

upper bounds for the probability that v is infected before round j. We can thus

compute rounds j1, j2 for which the probability is at most o(1) and at least 1−o(1),

respectively, and we demonstrate that these rounds coincide up to lower order terms

(Theorem 6.4). While it is still rather complicated to perform the calculations of

j1 and j2 (for technical reasons), no further knowledge about the infection process

is required.

6.2. Preliminaries

In Section 6.2.1 we collect basic tools and observations that we use through-

out the chapter. Afterwards, we provide some basic properties of GIRGs in Sec-

tion 6.2.2.

6.2.1. Tools. We start with a fact which often allows us to treat the case α = ∞
along with the case of finite α without case distinction.
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Observation 6.8. For every function p satisfying (6.3) and every α ∈ R>1, there

is a function p̄ satisfying (6.2) such that p̄(x1, x2, w1, w2) ≥ p(x1, x2, w1, w2) for all

x1, x2 ∈ Td and all w1, w2 ≥ wmin.

In other words, GIRGs in the threshold case α =∞ are dominated by GIRGs

with finite α. In particular, whenever we prove an upper bound on the number of

active vertices that holds for all GIRGs with finite α, the same upper bound also

holds for threshold GIRGs.

In [41], GIRGs were defined with a fixed number of vertices, while we assume

the set of vertices to be given by a homogeneous Poisson point process. Our choice

allows for slightly less technical proofs. In particular, one of the benefits of the

Poisson point process is the following elementary fact.

Fact 6.9. Let λ ∈ R≥0 and let X be a Poisson distributed random variable with

mean λ. Furthermore, given some 0 ≤ q ≤ 1, let Y be a random variable which

conditioned on {X = x}, for any x ∈ N0, is the sum of x independent Bernoulli

random variables with mean q. Then Y is Poisson distributed with mean qλ.

This means that for instance |N≥w(v)∩B| is Poisson distributed with mean

nq, where q denotes the probability that a vertex u with random position xu and

random weight wu satisfies wu ≥ w and xu ∈ B, and is a neighbours of v. We will

apply this observation throughout the chapter without giving explicit reference.

Many relevant quantities can be expressed by summing (some function) over

all vertices whose weights lie in a given interval, the following lemma provides an

easy way of evaluating these.

Lemma 6.10 (Lemma 4.1 in [40]). Let 0 ≤ w0 < w1, and let f : R≥0 → R≥0 be a

piecewise continuously differentiable function. Then in any finite set V of weighted

vertices, we have∑
v∈V,w0≤wv<w1

f(wv) = f(w0)|V≥w0
| − f(w1)|V≥w1

| +

∫ w1

w0

|V≥w|
d

dw
f(w)dw.

Note in particular that if f(0) = 0, then, by using w0 = 0 and w1 > max{wv |
v ∈ V }, we have∑

v∈V
f(wv) =

∫ w1

0

|V≥w|
d

dw
f(w)dw =

∫ ∞
0

|V≥w|
d

dw
f(w)dw.

The lemma is actually formulated slightly more general than Lemma 4.1 in [40].

First, in [40] the lemma was only formulated if V is the vertex set of a GIRG, but

their proof does not use this restriction. Second, f was assumed to be everywhere

continuously differentiable. However, our version follows immediately by applying

Lemma 4.1 in [40] to every continuously differentiable piece, and by noting that all

the intermediate terms cancel out.6

6Formally speaking, the term d
dw
f(w) is a distribution and not a function if f is not differentiable

everywhere, and the integral is then to be understood as evaluation of the distribution. However,
in our simple applications we may just ignore the values where f is not differentiable.
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The next lemma spells out an almost trivial calculation, but since it is ubiquit-

ous in our proofs, we state it as a lemma nevertheless. In our applications, g(w)

is typically the number of vertices of weight at least w (possibly with additional

restrictions), and f is the probability that such a vertex has a certain property

(e.g., that it forms an edge with some fixed v). After application of Lemma 6.10,

this almost always leads to an integral as given in (6.6) below.

Lemma 6.11. Let g : R≥0 → R≥0 be a non-zero monomial, and let f : R≥0 → R≥0

be continuous and piecewise a non-zero monomial with non-negative exponent, for

a finite number of pieces. Moreover, assume that there is w̃ such that the exponent

of w in f(w)g(w) is strictly larger than 0 for w < w̃, and strictly smaller than 0

for w > w̃. Then for every w0 ≤ w̃ ≤ w1,∫ w1

w0

g(w)
d

dw
f(w)dw = O(f(w̃)g(w̃)). (6.6)

Moreover, assume that the exponent of f is non-zero in an interval

(a) [(1− Ω(1))w̃, w̃] ⊂ [w0, w̃], or

(b) [w̃, (1 + Ω(1))w̃] ⊂ [w̃, w1],

then the O(·) in (6.6) may be replaced by Θ(·).

Proof. Let g(w) = Cwr. Let us first assume that, by continuity, f satisfies f(w) =

C0w
s0 for w ≤ w̃ and f(w) = C1w

s1 for w ≥ w̃, i.e. that f consists of only two

pieces. Then by assumption r + s0 > 0 > r + s1. We first consider the lower part

of the integral. If s0 = 0 then (df/dw)(w) = 0 for w ≤ w̃, and the integral from

w0 to w̃ vanishes. So assume that s0 > 0. Then (df/dw)(w) = C0s0w
s0−1, and the

antiderivative of g(df/dw) is CC0s0/(r + s0)wr+s0 . Since r + s0 > 0, this function

is increasing in w, and∫ w̃

w0

g(w)
d

dw
f(w)dw =

CC0s0

r + s0

(
w̃r+s0 − wr+s00

)
= Θ(f(w̃)g(w̃)− f(w0)g(w0)).

(6.7)

Note that if w0 ≤ (1−Ω(1))w̃, then f(w̃)g(w̃)−f(w0)g(w0) = Ω(f(w̃)g(w̃)) since fg

is a polynomial with positive exponent r+s0 in [w0, w̃], which proves the additional

statement (a).

For the upper part of the integral, we may assume s1 > 0, since otherwise this

part of the integral vanishes. Then (df/dw)(w) = C1s1w
s1−1, and the antiderivative

of g(df/dw) is CC1s1/(r + s1)wr+s1 . Note crucially that the sign of this function

is negative since r + s1 < 0. Hence,∫ w1

w̃

g(w)
d

dw
f(w)dw =

CC1s1

−(r + s1)

(
w̃r+s1 − wr+s11

)
= Θ(f(w̃)g(w̃)− f(w1)g(w1)).

(6.8)

Similarly to the first part, if w1 ≥ (1 + Ω(1))w̃, then f(w̃)g(w̃) − f(w1)g(w1) =

Ω(f(w̃)g(w̃)), which proves the additional statement (b). On the other hand, (6.6)

follows immediately from (6.7) and (6.8) by leaving out the negative terms. This

proves the lemma in the case that f consists of only two pieces.
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For the case of several pieces, the additional statement follows by restricting

the integral to the two pieces bounded by w̃. For the upper piece, assume that

w0 = w
(1)
0 < . . . < w

(λ)
0 = w̃ are the endpoints of the different pieces below w̃.

Then in the same way as (6.7), we get∫ w̃

w0

g(w)
d

dw
f(w)dw = O(

λ∑
i=1

f(w
(i)
0 )g(w

(i)
0 )) ≤ O(λf(w̃)g(w̃)) = O(f(w̃)g(w̃)),

since fg is an increasing function in [w0, w̃]. Analogously we prove (b). �

6.2.2. Basic properties of GIRGs. In this section we list briefly some basic

properties of GIRGs. The first lemma, taken from [40], tells us that the expected

degree of a vertex equals its weight, up to constant factors. Moreover, it gives the

marginal probability that two vertices u, v of fixed weights but random positions

in Td are adjacent. This probability remains the same if the position of one (but

not both) of the vertices is fixed. An expert reader may recognise that it is the

same marginal probability as in Chung-Lu random graphs, cf. [40] for a discussion

in depth.

Lemma 6.12 (Lemma 4.4 and Theorem 7.3 in [40]). Let v = (xv, wv) be a vertex

with fixed weight and position. Then

E(deg(v)) = Θ(wv). (6.9)

Moreover, if u = (xu, wu) is a vertex with fixed weight, but with random position

xu ∈ Td. Then

P ({u, v} ∈ E | wu, wv, xv) = Θ
(

min
{wuwv

n
, 1
})

. (6.10)

Note in particular that the right hand side of (6.10) is independent of xv, so the

same formula still applies if also the position xv of v is randomised.

The next lemma gives a bound on the expected number of neighbours of a fixed

vertex of large weight.

Lemma 6.13. Let η > 0 be a constant and consider a vertex v = (xv, wv) with

fixed weight and position. Then for every w ≥ wmin we have

(a) E(|N≥w(v)|) = O(min{wvw2−β+η, nw1−β+η}).
In particular, for a random vertex u we have, independently of xv and wv,

P(wu ≥ w | {u, v} ∈ E) = O(w2−β+η);

(b) E(|N≥w(v)|) = Ω(min{wvw2−β−η, nw1−β−η}).

Proof. (a) By Lemma 6.12, the probability that a vertex u with fixed weight wu and

random position xu ∈ Td is adjacent to v is Θ(1) min{wuwv/n, 1}. The expected

number of vertices of weight at least w is at most O(nw1−β+η) by the power-law

condition (6.1). We distinguish two cases. If wwv ≥ n then the probability to

connect to any vertex of weight w is Θ(1), so E(|N≥w(v)|) = Θ(E(|V≥w|)), and the
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claim follows. So assume wwv ≤ n. Then by Lemma 6.10 we can compute the

expectation as the following integral, which we then evaluate using Lemma 6.11.

E(|N≥w(v)|) ≤ O
(
nw1−β+ηwwv

n
+

∫ ∞
w

nw1−β+η
u

d

dwu
min

{wvwu
n

, 1
}
dwu

)
≤ O

(
wvw

2−β+η
)
.

Combining both cases we obtain E(|N≥w(v)|) ≤ O(min{wvw2−β+η, nw1−β+η}).
The second statement follows because the expected total number of neighbours

of v is Θ(wv). Therefore, the probability that a random neighbour of v has weight

at least w is P({u, v} ∈ E ∧ wu ≥ w)/P({u, v} ∈ E) = O(w2−β−η), as required.

(b) This follows completely analogously to (a), except that we use that the

expected number of vertices of weight at least w is at least Ω(nw1−β−η) by the

lower bound in the power-law condition (6.1). �

We often need to bound the expected number of neighbours of a given vertex

in some geometric region, which we may do by the following lemma.

Lemma 6.14. Let η > 0 and C > 1 be constants, define m := min{α, β − 1 − η}
and consider a closed ball B ⊂ Td of radius r > 0 centred at 0. Let v = (xv, wv) be

a vertex with fixed weight and position. Then

E (|N (v)∩B|) = O(nVol(B)) ·

min
{

wv
nVol(B) , 1

}
, if ‖xv‖ ≤ Cr,

min
{(

wv
‖xv‖dn

)m
, 1
}

if ‖xv‖ ≥ Cr.

Proof. In the first case ‖xv‖ ≤ Cr, the expected number of vertices in B is nVol(B),

so µ ≤ nVol(B). On the other hand, the expected number of neighbours of v is

O(wv), so µ = O(1) ·min{wv, nVol(B)}.
For the second case, as before µ ≤ nVol(B). This proves the claim in the case

wv ≥ ‖xv‖dn, so assume otherwise. Observe that every vertex in B has distance

Θ(‖xv‖) from v, and that the expected number of vertices in B of weight at least

w is O(nVol(B)w1−β+η).

Consider first the case α < β − 1− η. Then by Lemma 6.10,

E (|N (v)∩B|) ≤ O
(
nVol(B) min

{(
wv
‖xv‖dn

)α
, 1

}
+

∫ ∞
wmin

nVol(B)w1−β+η d

dw
min

{(
wwv
‖xv‖dn

)α
, 1

}
dw

)
.

Note that the exponent of w in the integrand is always negative, no matter which

value the minimum attains. Moreover, recall that we assumed wv < ‖xv‖dn
and hence for w = wmin the minimum is O((wv/(‖xv‖dn))α). Thus by applying

Lemma 6.11 (with w̃ = wmin = Θ(1)), the integral also evaluates to O(nVol(B) ·
min{(wv/(‖xv‖dn))α, 1}), as required.

On the other hand, if α+1−β+η ≥ 0, then by Observation 6.8 we may restrict

ourselves to α <∞. Moreover, using Lemma 6.10 (with lower bound 0), we obtain
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the following estimate

E (|N (v)∩B|) = O

(∫ ∞
0

nVol(B)w1−β+η d

dw
min

{(
wwv
‖xv‖dn

)α
, 1

}
dw

)
.

This integral evaluates to O(nVol(B) · (wv/(‖xv‖dn))β−1−η), by Lemma 6.11 (with

w̃ = ‖xv‖dn/wv). Since we have already shown that E (|N (v)∩B|) ≤ nVol(B), this

proves the claim. �

In the last lemma of this section we show that whp there are no vertices whose

weight is much larger than their distance from the origin.

Lemma 6.15. Let η > 0 be a constant and consider a closed ball B ⊂ Td of radius

r > 0 centred at 0, satisfying nVol(B) = Θ(rdn) = ω(1). Then with probability 1−
(rdn)−Ω(η) there is no vertex v = (xv, wv) with xv ∈ Td \B and wv ≥ ŵ+(‖xv‖dn).

Proof. Let n̂ be the number of such vertices. Let r′ > r, then the probability density

to find a vertex v = (xv, wv) with ‖xv‖ = r′ is equal to the volume of an r′-sphere

around 0 that is intersected with Td. By ignoring the intersection, we can only

make the volume larger, so it is at most O((r′)d−1n). Moreover, the probability

that a vertex has weight at least w is at most O(w1−β+η/2) by the power-law

condition (6.1) (using γ = η/2). Hence, by Lemma 6.10 and Lemma 6.11 we obtain

E (n̂) = O(1) ·
∫ ∞
r

(r′)d−1n((r′)dn)(1−β+η/2)/(β−1−η)dr′ = (rdn)−Ω(η),

and the statement follows by Markov’s inequality. �

6.3. Evolution of the process

In this section we will prove two theorems which describe the geometrical evol-

ution of the process in detail. First we show that in the supercritical regime the

process will reach certain regions whp in a given time, yielding a lower bound on

its speed. This lower bound also applies in the critical regime if in the first step

sufficiently many heavy vertices were activated, an event which holds with at least

constant probability. Afterwards, we show that certain regions cannot be reached

too early in the process, providing an upper bound on its speed. From this we then

derive Theorem 6.7 in Section 6.3.3.

6.3.1. Lower bound on the speed. In this section we show lower bounds for

the probability that a vertex in a specific region and with a specific weight will be

active in some round, provided that we start in the supercritical case. Recall that

the supercritical case is defined by ρ = ω(ρ̂) if the weight follow a strong power-law,

and ρ ≥ ρ̂1−δ for some constant δ > 0 otherwise. The same bounds also hold in

the critical case if at least k ‘heavy’ vertices are activated in the first round, which

happens with probability Ω(1).

The key idea is that the infection spreads in two ways: firstly, from ‘heavy’

vertices in one region to ‘heavy’ vertices in the next (surrounding) region, where

the volume of the region increases by an exponent of ζ−ε in each step, and secondly,
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from vertices of weight w to nearby vertices of weight w1/(ζ−ε). We formalise the

occurring weights with the following definitions.

Definition 6.16. Let ε > 0 be a constant and let η = η(ε) > 0 be a constant which

is sufficiently small compared to ε, cf. Section 6.1.3.3. For any integers i ≥ 0 and

` ≥ 0, we define

wi,` := ŵ−(νi)
(ζ−ε)−` = ν

(ζ−ε)−`/(β−1+η)
i = ν(ζ−ε)i−`/(β−1+η).

We abbreviate the set of all vertices in Bi of weight at least at least wi,0 by Ui :=

V≥wi,0∩Bi, and we call such vertices heavy if the value of i is clear from the context.

As usual, superscripts in the notation denote active vertices, so U≤ji := V ≤j≥wi,0∩Bi.
Furthermore we denote by H(i) the event that in round i+ 3 all vertices in Ui are

active.

The following theorem gives lower bounds on the probability that a vertex is

active in some round. It agrees with the above intuition in the following sense: if j

is the first round in which a vertex has, say, probability 1/2 to be active according

to the bound in Theorem 6.17(c), then j agrees with the round that is predicted

by the above intuition, up to additive constants. We will see in Section 6.4 that

Theorem 6.20 provides matching lower bounds on j, up to minor order terms. So

in this sense, Theorem 6.17 is tight.

Theorem 6.17. Let ε and η be as in Definition 6.16. Assume furthermore that we

are in the supercritical case, or instead that |U≤1
i | ≥ k. Then the following is true:

(a) Whp |Ui| = ν
Ω(η)
i and |Ui| = O(νi) uniformly for all i ≥ 0.

(b) Whp all the events H(i) occur.

(c) There exist constants C0, C1, C2 > 0 such that the following holds: Let v =

(xv, wv) be any vertex with fixed position and weight and let i, ` ≥ 0 be such

that xv ∈ Bi and wv ≥ max{wi,`, C0}. Then for sufficiently large n ∈ N,

P
(
v ∈ V ≤i+3+`

∣∣ H(0), . . . ,H(i)
)
≥ 1− exp

(
−C1ν

C2(ζ−ε)−`
i

)
.

Before we prove Theorem 6.17, we remark the following.

Remark 6.18. Our proof will in fact show that (c) still holds if we replace Bi

by an arbitrary ball of the same volume, and that it suffices if only a constant

fraction of all heavy vertices is active. More precisely, let B be any ball, and let

H(i′, B) be the event that in round i′ at least half of the vertices in B of weight

at least ŵ−(nVol(B)) are active. Then there are constants C0, C1, C2 > 0 such

that for any vertex v = (xv, wv) with fixed position xv ∈ B, and with fixed weight

wv ≥ max
{

(nVol(B))(ζ−ε)−`/(β−1+η), C0

}
we have

P
(
v ∈ V ≤i

′+`
∣∣∣ H(i′, B)

)
≥ 1− exp

(
−C1(nVol(B))C2(ζ−ε)−`

)
.

For the sake of readability, we omit the details and prove Theorem 6.17 only in the

case B = Bi.
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Proof of Theorem 6.17. (a) By definition of Ui,

E(|Ui|) ≥ νiw
1−β−η/2
i,0 = ν

Ω(η)
i .

The random variable |Ui| is Poisson distributed, and thus P (|Ui| ≤ E(|Ui|)/2) ≤
exp(−Ω(E(|Ui|))). By a union bound over all i, we see that whp |Ui| ≥ ν

Ω(η)
i for

all i ≥ 0. Similarly, the upper bound follows since 0� E(|Ui|) ≤ E(|Bi|) = O(νi).

(b) We first show that in the supercritical case for weak power-law weights,

whp |U≤1
0 | ≥ k. Let v = (xv, wv) be a vertex in U0. Then we claim that in round

1, such a vertex will be active with at least constant probability. We may restrict

ourselves to the case wv ≤ ν, since larger weights make it only easier to become

active.

Consider a ball around v with the property that every vertex of weight at least

wmin (so all vertices) in this ball have probability Ω(1) to connect to v. Observe

that by condition (6.2) and (6.3) on the edge probabilities we may choose the

ball to have volume Ω(wv/n). (For α < ∞ we may choose the volume to be

exactly wv/n, for α = ∞ we may have to choose it smaller by at most a constant

factor.) Since wv ≤ ν, at least a constant fraction of this ball lies in B0. Hence,

E(|N≤0(v)|) = Ω(ρwv) = ω(1). Since |N≤0(v)| is a Poisson distributed random

variable, v becomes active whp. In particular, if we fix any k vertices in U0 then

whp all k of them will be active in round 1. This implies that whp |U≤1
0 | ≥ k, as

claimed.

Next we show that |U≤1
0 | ≥ k implies that whp at least an Ω(1) fraction of

all vertices in U0 is active in round 2. For α < ∞, any two vertices in U0 have

probability at least Ω(min{w2
0/ν, 1}) = Ω(1) to be adjacent, independently of each

other. For α = ∞, the probability is also Ω(1) since w2
0/ν = ω(1). Hence, by the

Chernoff bound, whp |U≤2
0 | = Ω(|U0|).

We show that the same holds in the supercritical case for strong power-law

weights, i.e. whp at least an Ω(1) fraction of U0 is active in round 2. Recall that

ρ = ω(ν−1/(β−1)) since we are supercritical. Let ρ′ be a function with the properties

ρ′ = o(ρ), ρ′ = o(1/w0) = o(ν−1/(β−1+η)), and ρ′ = ω(ν−1/(β−1)), and let w′ :=

1/ρ′. Note that E(|V≥w′∩B0|) = Ω((w′)1−βν) = ω(1).

As for weak power-laws, for a vertex v of weight at least w′, we consider a ball

B around v of volume w′/n. In the case α <∞, every vertex in B has probability

Ω(min{wminw
′/w′, 1}) = Ω(1) to connect to v. In the case α =∞, we may achieve

the same by shrinking the ball B by at most a constant factor. In either case, the

expected number of vertices in V ≤0∩B is ρnVol(B) = Ω(ρ/ρ′) = ω(1). Hence, every

vertex in V≥w′ ∩ B0 is in V ≤1 with probability 1 − o(1). By Markov’s inequality,

whp the number of vertices in V≥w′∩B0 that are not in V ≤1 is o(E(|V≥w′∩B0|)).
In particular, whp |V ≤1

≥w′ ∩B0| = ω(1).

Finally, for any two vertices u ∈ U0 and v ∈ V≥w′∩B0, the probability that u

and v are adjacent is Ω(1), since w0w
′/ν ≥ w2

0/ν = ω(1) with room to spare. The

claim now follows as for the other cases.
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So we have shown that in all cases whp an Ω(1) fraction of all vertices in U0

is active in round 2, so let us assume this. To show that H(0) holds whp, recall

that any two vertices in U0 have probability Ω(1) to be connected. Therefore,

the probability that a vertex in U0 does not become active in round 3 is at most

P (Bin(|U0|,Ω(1)) < k) = exp(−Ω(|U0|)) = o(1/|U0|) by a Chernoff bound. Hence,

by the union bound whp all vertices in U0 are active in round 3. This proves that

H(0) holds whp.

It remains to prove that the statement holds uniformly for all i ≥ 1. By (a) we

may assume that for all i ≥ 0 the set |Ui| satisfies |Ui| = ν
Ω(η)
i and |Ui| = O(νi).

We claim that any two vertices vi−1 ∈ Ui−1 and vi ∈ Ui with fixed position

and weight form an edge with probability Ω(1). Indeed, this follows immediately

since their distance is at most (νi/n)1/d, and hence

wvi−1
wvi

‖xvi − xvi−1
‖dn
≥ wi−1,0wi,0

νi
= ν

(ζ−ε)−1+1
β−1+η −1

i = ν
Ω(ε)−O(η)
i = ω(1).

Therefore, the number of edges from a vertex vi ∈ Ui into Ui−1 is lower bounded

by a binomially distributed random variable Bin(|Ui−1|,Ω(1)). By the Chernoff

bound, the probability that vi has less than k neighbours in Ui−1 is at most

exp(−Ω(|Ui|)) = exp
(
−νΩ(η)

i−1

)
. A union bound over all vertices in Ui−1 shows

that still with probability at least 1− exp
(
−νΩ(η)

i−1

)
every vertex in Ui has at least

k neighbours in Ui−1. A union bound over all i ≥ 1 shows that whp the same is

still true for all i ≥ 1 simultaneously. Hence, by a simple induction, all the events

H(i) occur, as required.

(c) We only give the proof in the case α < ∞, and explain in the end the

changes that are necessary for α = ∞. For α < ∞, we prove the statement for

C0 := (8k)2d/(ε2(β−2)), C1 := 4−d/ε and C2 := (ε(β−2)/2)(ζ−ε)/(β−1+η), where

we assume that ε > 0 is sufficiently small. We use induction on `. If wv ≥ wi,0

then H(i) implies that v ∈ A(i+ 3), so for ` = 0 there is nothing to show.

So let ` ≥ 1. Before we start with the inductive step, note that we may assume

ν
(ζ−ε)−`+1

i ≥ Cβ−1+η
0 ≥ (8k)2d(β−1+η)/(ε2(β−2)), (6.11)

since otherwise both the statements for ` and `− 1 concern only vertices of weight

at least C0, and thus the case ` follows trivially from the statement for `− 1.

Let v be a vertex with position xv ∈ Bi and with weight wv ≥ wi,`. We claim

that every vertex in distance at most r` :=
(
ν

(ζ−ε)−`+1

i /n
)1/d

with weight at least

wi,`−1 has probability Ω(1) to connect to v. Indeed, this follows from

wi,`−1wi,`
rd`n

= ν
(2−β−η+(ζ−ε)−1)(ζ−ε)−`+1/(β−1+η)
i

≥ ν(ε(β−2)/2)(ζ−ε)−`+1/(β−1+η)
i

(6.11)

≥ (8k)d/ε ≥ 1 (6.12)

Since ` ≥ 1, we have r` ≤ (νi/n)1/d, which is the radius corresponding to the

ball Bi. Hence, if we consider a ball around v with radius r`, then at least a 2−d
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proportion of this ball falls into Bi. Therefore, the expected size of N`−1(v) satisfies

E(|N`−1(v)|) = Ω(1) · 2−drd`nw
1−β+η
i,`−1 ν

(ε(β−2)/2)(ζ−ε)−`+1/(β−1+η)
i

≥ c2−dν(ε(β−2)/2+2η)(ζ−ε)−`+1/(β−1+η)
i

for some constant c > 0 and any sufficiently large n. Furthermore, if the constant

ε > 0 is sufficiently small we obtain

E(|N`−1(v)|) ≥ 2−d/εν
(ε(β−2)/2)(ζ−ε)−`+1/(β−1+η)
i

(6.11)

≥ (4k)d/ε ≥ 8k.

Recall that |N`−1(v)| is a Poisson distributed random variable and thus we have

P(|N`−1(v)| < k) ≤ exp(−E(|N`−1(v)|)/4) · exp(−E(|N`−1(v)|)/4)

≤ exp(−2k) exp
(
−4−d/εν

(ε(β−2)/2)(ζ−ε)−`+1/(β−1+η)
i

)
.

So assume that |N`−1(v)| ≥ k, and pick any k vertices v1, . . . , vk ∈ N`−1(v). By

induction hypothesis,

P(v1 6∈ A(i+ `+ 1)) ≤ exp
(
−4−d/εν

(ε(β−2)/2)(ζ−ε)−`+2/(β−1+η)
i

)
(6.11)

≤ exp
(
−2 · 4−d/εν(ε(β−2)/2)(ζ−ε)−`+1/(β−1+η)

i

)
(6.11)

≤ exp(−kd) exp
(
−4−d/εν

(ε(β−2)/2)(ζ−ε)−`+1/(β−1+η)
i

)
where the second inequality holds since ζ−ε ≥ 1+ε for any sufficiently small ε > 0.

The same bound applies to the other vj . By a simple union bound,

P(v1, . . . , vk ∈ A(i+ `+ 1)) ≥ 1− k exp(−kd) exp

(
−4−d/εν

(ε(β−2)/2)(ζ−ε)−`+1

β−1+η

i

)
.

Hence,

P (v 6∈ A(i+ `+ 2)) ≤ P (|N`−1(v)| < k) + P ({v1, . . . , vk} 6⊂ A(i+ `+ 1))

≤
(
exp(−2k) + k exp(−kd)

)
exp

(
−4−d/εν

(ε(β−2)/2)(ζ−ε)−`+1

β−1+η

i

)

≤ exp

(
−4−d/εν

(ε(β−2)/2)(ζ−ε)−`+1

β−1+η

i

)
= exp

(
−C1ν

C2(ζ−ε)−`
i

)
as required.

For α = ∞, equation (6.12) does not imply that the corresponding vertices

connect with probability Ω(1), but it suffices to decrease r` by at most a constant

factor to ensure this property. This can be compensated by changing (for example)

C1. We omit the details. �

6.3.2. Upper bound on the speed. In this section we show upper bounds for the

probability that a vertex in a specific region and with a specific weight will be active

in some round (Theorem 6.20(f)). To bound the probability, we need to condition
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on the event that the process does not infect too many vertices in certain regions

and rounds, which we show to hold whp in Theorem 6.20(e). More precisely, we

consider the following families of events.

Definition 6.19. Let ε > 0 be a constant and let η = η(ε) > 0 be a constant which

is sufficiently small compared to ε, cf. Section 6.1.3.3. Moreover, let h = h(n) be a

function satisfying h(n) = ω(1), h(n) = o(log n), and h(n) = νo(1). Then we define

the following families of events:

• For all i ≥ 0

E(i) := {V ≤i∩ (Td \ B̃i) = ∅},

in other words, no vertex outside of B̃i is activated by time i;

• For all ` ≥ 0 and w ≥ wmin

F(`, w) := Fε,η,h(`, w) :=
{∣∣∣V ≤`≥w∩ 2`B̃0

∣∣∣ ≤ h`w2−β+η ν̃
1−(ζ+ε)−`(β−1)−1

0

}
,

and

F(`) := Fε,η,h(`) :=
⋂

w′≥wmin

F(`, w′),

i.e. the number of vertices in 2`B̃0 being activated by time ` is not ‘too

large’;

• For all j ≥ 0

G(j) := Gε,η,h(j) :=

j⋂
j′=0

(E(j′) ∩ F(j′)),

in other words, it is all ‘good’ events up to time j hold.

Theorem 6.20. Let ε, η, h be given as in Definition 6.19 and assume α > β − 1.

Then, for sufficiently large n,

(a) E(0) is always satisfied;

(b) P(F(0)) ≥ 1−O(h−1);

(c) For all i ≥ 1 we have

P (E(i) | G(i− 1)) ≥ 1− h−Ω(i);

(d) For all ` ≥ 1 we have

P (F(`) | G(`− 1)) ≥ 1− h−Ω(`);

(e) Whp, the events G(j) hold for all j ≥ 0;

(f) For all i ≥ 1 and ` ≥ 0, and for every fixed vertex v = (xv, wv) such that

xv ∈ Td \ 2`+1B̃i−1 and wv ≥ wmin we have

P
(
v ∈ V ≤i+`

∣∣ G(i+ `− 1)
)
≤ wv2`dν̃−(ζ+ε)−`−2/(β−1)

i .

Proof. First note that all statements only become easier if the edge probabilities

are decreased. Hence, by Observation 6.8 we may restrict ourselves to the case

α <∞, since this case dominates the case α =∞.
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To prove (c), (d), and (f), we will use induction on i+`, where we set ` = 0 and

i = 0 in (c) and (d), respectively. In particular, in order to prove (c) and (d) for

i, `, we will assume statement (f) for i′, `′ as long as i′+ `′ ≤ i+ `− 1. Throughout

the proof, we will mutually assume that n is sufficiently large; for example, we will

use that h and ν̃0 are larger than any fixed constant without further comment.

(a) This statement is trivial as only vertices in B0 ⊂ B̃0 are active at time 0.

(b) Fix a weight w ≥ wmin and note that∣∣∣V ≤0
≥w∩ B̃0

∣∣∣ ≤ ∣∣V≥w∩B0

∣∣
since initially activation only occurs within B0. Furthermore, the right-hand side

is a Poisson distributed random variable and we have

E(|V≥w∩B0|) ≤ O(νw1−β+η) = O(w2−β ν̃
β−2
β−1−Ω(ε)

0 w−1+η) ≤ O(w2−β ν̃
β−2
β−1−Ω(ε)

0 ),

(6.13)

where in the last step we used that w−1+η = O(1). Let w̄ be the weight that

satisfies w̄2−β ν̃
(β−2)/(β−1)
0 = h. Then by Markov’s inequality,

∣∣∣V ≤0
≥w̄∩ B̃0

∣∣∣ = 0 with

probability 1−O(ν̃
−Ω(ε)
0 h) = 1−O(h−1) since h = ν̃

o(1)
0 . Note that this implies (b)

for all w ≥ w̄.

For smaller w, observe in (6.13) that ν̃
−Ω(ε)
0 dominates every O(1)-term for suf-

ficiently large n. Let F∗(0, w) be the event that
∣∣V≥w∩B0

∣∣ ≤ (2w)2−β ν̃
(β−2)/(β−1)
0

and note that

P(F∗(0, w)) ≥ 1− exp
(
−Ω(1) · (2w)2−β ν̃

(β−2)/(β−1)
0

)
(6.14)

by (6.13) and a Chernoff bound. The exponent (β− 2)/(β− 1) in (6.14) equals the

exponent 1−(β−1)−1 of ν̃0 in F(0, w). Hence, if F∗(0, w′) holds for some w′ ≥ wmin,

then F(0, w) holds for all w ∈ [w′, 2w′]. Therefore, it remains to prove F∗(0, 2swmin)

for all s ∈ {0, . . . , log2(w̄/wmin) − 1}. A union bound over all such s using (6.14)

shows that all these events hold with probability 1 − exp{−Ω(h)} = 1 − O(h−1).

This concludes the proof of (b).

(c) We will show that with sufficiently large probability, no vertex in Td \ B̃i
has a neighbour in B̃i−1. This will imply the statement, since we assumed G(i−1),

which means in particular that all active vertices in round i− 1 are in B̃i−1.

By Lemma 6.15, with probability 1 − ν̃−Ω(η)
i ≥ 1 − h−Ω(i) there is no vertex

v = (xv, wv) such that xv ∈ Td \ B̃i and wv ≥ ŵ+(‖xv‖dn). So let v = (xv, wv)

be a vertex satisfying xv ∈ Td \ B̃i and wv ≤ ŵ+(‖xv‖dn), and note in particular

that ‖xv‖ ≥ (ν̃i/n)1/d ≥ 2(ν̃i−1/n)1/d. Hence, due to Markov’s inequality, the

probability of v having a neighbour in B̃i−1 is at most

E(N (v)∩ B̃i−1) = O(1) · ν̃i−1

(
wv
‖xv‖dn

)β−1−η

by Lemma 6.14.
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We call any such vertex v = (xv, wv) bad, i.e. v is bad if it satisfies xv ∈ Td \ B̃i
and wv ≤ ŵ+(‖xv‖dn), and if v has at least one neighbour in B̃i−1. Integrating

over rv := ‖xv‖ and using Lemma 6.10, we can thus bound the expected number

E(nbad) of bad vertices by

O(1)

∫ ∞
(ν̃i/n)1/d

rd−1
v n

∫ ŵ+(rdvn)

wmin

w1−β+2η
v

d

dwv
ν̃i−1(rdvn)1−β+ηwβ−1−η

v dwvdrv.

Hence, since (ŵ+(rdvn))η = (rdvn)η/(β−1−η) ≤ (rdvn)η, we have

E(nbad) = O(1)

∫ ∞
(ν̃i/n)1/d

r−1
v (rdn)2−β+2η ν̃i−1drv = O(1) · ν̃2−β+2η

i ν̃i−1 = ν̃
2η−Ω(ε)
i .

Thus by Markov’s inequality, with probability at least 1 − ν̃2η−Ω(ε)
i ≥ 1 − h−Ω(i)

there is no such vertex. Statement (c) follows.

(d) We distinguish two cases. For w ≥ ν̃
(ζ+ε)−`(1+3η)/(β−1)
0 , we consider the

upper bound
∣∣∣V ≤`≥w∩ 2`B̃0

∣∣∣ ≤ ∣∣∣V≥w∩ 2`B̃0

∣∣∣. Since we have

E
(∣∣∣V≥w∩ 2`B̃0

∣∣∣) = O(1) · 2`dν̃0w
1−β+η = O(1) · w2−β2`dν̃

1−(ζ+ε)−`(1+η)/(β−1)
0 ,

and since this number is Poisson distributed, we obtain

P
(∣∣∣V≥w∩ 2`B̃0

∣∣∣ ≤ 2(2w)2−β2`dν̃
1−(ζ+ε)−`/(β−1)
0

)
(6.15)

≥ 1− exp
(
−Ω(1) · w2−β2`dν̃

1−(ζ+ε)−`/(β−1)
0

)
by a Chernoff bound.

Similarly as in the proof of (b), it suffices to establish the bound in (6.15) only

for weights of the form 2swmin for s ∈ {0, . . . , log2(w̄`/wmin)−1}, where w̄` is defined

by w̄2−β
` 2`dν̃

1−(ζ+ε)−`/(β−1)
0 = h`. A union bound over all such s proves that F(`, w)

holds for all w ≥ ν̃(ζ+ε)−`(1+3η)/(β−1)
0 with probability 1−exp(−Ω(h`)) = 1−h−Ω(`).

For the second case assume that w ≤ ν̃
(ζ+ε)−`(1+3η)/(β−1)
0 . We claim that it

suffices to restrict ourselves to vertices of weight at most ŵ := ŵ0
+(ν̃0) = ν̃

1/(β−1)
0 .

More precisely, we will show that with probability at least 1 − h−Ω(`), for every

w ≤ ν̃(ζ+ε)−`(1+3η)/(β−1)
0 we have

|U(w)| ≤ h`w2−β+η ν̃
1−(ζ+ε)−`/(β−1)
0 , (6.16)

where U(w) := V ≤`∈[w,ŵ]∩ 2`B̃0.

This suffices because by the first case there are sufficiently few other vertices

active: we have proved that with probability at least 1− h−Ω(`) we have∣∣∣V ≤`≥ŵ∩ 2`B̃0

∣∣∣ ≤ h`ŵ2−β+η ν̃
1−(ζ+ε)−`/(β−1)
0 ≤ 1

2
h`w2−β+η ν̃

1−(ζ+ε)−`/(β−1)
0 ,

for every w ≤ ν̃(ζ+ε)−`(β−1)−1(1+3η)
0 , since then w = o(ŵ) as ` ≥ 1.

Thus we want to bound E(|U |) by calculating the expected number of edges

having one endpoint in V ≤`−1 and the other in V∈[w,ŵ]∩ 2`B̃0, i.e. we set

M(w) := E
(
V ≤`−1, V∈[w,ŵ]∩ 2`B̃0

)
.
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Furthermore we observe that each edge in M(w) is also contained in at least one

of the following two edge-sets: let

M∗(w) := E
(
V ≤`−1∩ 2`+1B̃0, V∈[w,ŵ]

)
,

and

M∗(w) := E
(
V ∩ (Td \ 2`+1B̃0), V∈[w,ŵ]∩ 2`B̃0

)
,

then we have M(w) ⊂M∗(w)∪M∗(w). It will turn out that the bound on |U(w)| ≤
|M∗(w)|+ |M∗(w)| obtained this way strong enough to prove (6.16).

We start by estimating the summand |M∗(w)|. As a preparation, we first bound∣∣∣V ≤`−1
≥w′ ∩ 2`+1B̃0

∣∣∣, i.e. the number of vertices in a slightly larger region that were

already active in the previous round. Since we assumed that F(` − 1) holds, for

those vertices which are also contained in the slightly smaller region 2`−1B̃0 we

already know that∣∣∣V ≤`−1
≥w′ ∩ 2`−1B̃0

∣∣∣ ≤ 2(`−1)d(w′)2−β+η ν̃
1−(ζ+ε)−`+1/(β−1)
0 . (6.17)

Now if ` = 1, then no other vertices were active in round `− 1 = 0 by (a). For

` ≥ 2, we need to examine the remaining region 2`+1B̃0 \ 2`−1B̃0. Note that this

area is contained in 2`B̃1. Hence, we may apply (f) with i′ = 1 and `′ = `− 2, and

thus

E
(∣∣∣V ≤`−1
≥w′ ∩ (2`+1B̃0 \ 2`−1B̃0)

∣∣∣) = O(1) · 2(`+1)dν̃0(w′)1−β+ηw′2(`−2)dν̃
− (ζ+ε)−`

β−1

1

= O(1) · h`(w′)2−β+η ν̃
1− (ζ+ε)−`+1

β−1

0 . (6.18)

Combining equations (6.17) and (6.18) we obtain

E
(∣∣∣V ≤`−1
≥w′ ∩ 2`+1B̃0

∣∣∣)
= O(1) ·min

{
h`(w′)2−β+η ν̃

1− (ζ+ε)−`+1

β−1

0 , 2(`+1)dν̃0(w′)1−β+η

}
, (6.19)

where the second term arises from dropping the condition on being active in round

i−1. Now we denote by w̃ = Θ(1)ν̃
(ζ+ε)−`+1(β−1)−1

0 2(`+1)dh−` the weight for which

the two expressions in (6.19) coincide.

Recall that for any vertex u = (xu, wu) of fixed weight (and independently of its

position) we have E(|N (u)|) = Θ(wu) by Lemma 6.12. Moreover, by Lemma 6.13,

the probability q(w) for a random neighbour of u to have weight at least w satisfies

q(w) = O(w2−β+η/2), independently of u. Therefore we have

E(|M∗(w)|) = O(q(w))
∑

u∈V ≤`−1
≥0

∩ 2`+1B̃0

E(|N (u)|),

and by Lemma 6.10 the sum evaluates to

O(1) ·
∫ ∞

0

min

{
h`w2−β+η

u ν̃
1− (ζ+ε)−`+1

β−1

0 , 2(`+1)dν̃0w
1−β+η
u

}(
d

dwu
wu

)
dwu.
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Hence, by Lemma 6.11 with w̃ we obtain

E(|M∗(w)|) = O(1) · w2−β+η/22(`+1)dν̃0w̃
2−β+η

= O(1) · w2−β+η/22(`+1)d(3−β+η)h`(β−2−η)ν̃
1−(ζ+ε)−`+1(β−2+η)/(β−1)
0

≤ w2−β+η/2h`(β−2−2η)ν̃
1−(ζ+ε)−`(1+Ω(ε)−O(η))/(β−1)
0

≤ w2−β+η/2h`(β−2−2η)ν̃
1−(ζ+ε)−`/(β−1)
0 . (6.20)

Next we turn to the edges in M∗(w). If ` = 1, then V ≤`−1∩ (Td \ 2`+1B̃0) is

empty by (a), hence also M∗(w). So assume ` ≥ 2. Fix a vertex v = (xv, wv) such

that xv ∈ 2`B̃0 and wv ≤ ŵ and denote by M∗(w, v) := {e ∈ M∗(w) | v ∈ e}
the subset of M∗(w) consisting of all edges incident with v. Now note that every

edge in M∗(w, v) must bridge a distance of at least r̃` := 2`(ν̃0/n)1/d and hence

Lemma 6.10 and Lemma 6.11 imply

E (|M∗(w, v)|) = O(1) ·
∫ ∞
r`

rd−1n

∫ ∞
0

w1−β+η
∗

d

dw∗
min

{(w∗wv
rdn

)α
, 1
}
dw∗dr

= O(1) ·
∫ ∞
r̃`

rd−1n

(
rdn

wv

)1−β+η

dr = O(1) · (r̃d`n)2−β+ηwβ−1+η
v

= O(1) ·
(

2d`ν̃0

wv

)2−β+η

wv = O(1) · ν̃−
(ζ+ε)−`
β−1

0 wv,

where the last step follows from (β − 2)(β − 2 − η)(ζ + ε)2 ≥ 1 since we assumed

wv ≤ ŵ = ν̃
1/(β−1)
0 and ` ≥ 2. Hence,

E(|M∗(w)|) = O(1) · ν̃0

∫ ∞
w

w1−β+η/2
v

d

dwv

(
ν̃
−(ζ+ε)−`/(β−1)
0 wv

)
dwv

≤ O(1) · w2−β+η/2ν̃
1−(ζ+ε)−`/(β−1)
0 .

Together with (6.20), this shows that the expected number of vertices in U(w)

is also bounded by

E(|U(w)|) ≤ 2w2−β+η/2h`(β−2−2η)ν̃
1−(ζ+ε)−`/(β−1)
0 ,

and therefore, by Markov’s inequality, we have

P
(
|U(w)| ≥ 1

2
(2w)2−β+ηh`ν̃

1−(ζ+ε)−`/(β−1)
0

)
= w−η/2h−Ω(`).

As in the proof of (b), by a union bound over all weights of the form 2swmin for

s ∈ {0, . . . , log2(ŵ/wmin) − 1}, we find that with probability 1 − h−Ω(`), for all

w ≥ wmin we have

|U(w)| ≤ 1

2
w2−β+ηh`ν̃

1−(ζ+ε)−`/(β−1)
0 , (6.21)

concluding the proof of (d).

(e) This follows from (a)–(d) by a simple union bound.

(f) Fix a vertex v = (xv, wv) such that xv ∈ Td \ 2`+1B̃i−1. The statement (f)

is trivial if wv ≥ ν̃
(ζ+ε)−`−2/(β−1)
i , so assume the contrary. We first estimate the
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number of neighbours in 2`B̃i−1. Observe that every such vertex has distance at

least r̃i−1,` := 2`(ν̃i−1/n)1/d of v. Therefore, using

wv ≤ ν̃(ζ+ε)−`−2/(β−1)
i ≤ ν̃(ζ+ε)−2/(β−1)

i ,

we obtain

E
(∣∣∣N (v)∩ 2`B̃i−1

∣∣∣) = O(1) · 2`dν̃i−1

∫ ∞
0

w1−β+η d

dw
min

{(
wwv

2`dν̃i−1

)α
, 1

}
dw

L. 6.11,α>β−1
= O(1) · wv

(
2`dν̃i−1

wv

)2−β+η

= O(1) · wv2`d
(
ν̃

(ζ+ε)−1−(ζ+ε)−2/(β−1)
i

)2−β+η

.

Since (2− β + η)
(
(ζ + ε)−1 − (ζ + ε)−2/(β − 1)

)
= −(ζ + ε)−2(β − 1)−1(1 + Ω(ε))

we deduce

E
(∣∣∣N (v)∩ 2`B̃i−1

∣∣∣) = O(1) · wv2`dν̃−(ζ+ε)−2/(β−1)−Ω(ε)
i

≤ 1

2
wv2

`dν̃
−(ζ+ε)−`−2/(β−1)
i . (6.22)

In the case ` = 0, this already proves the assertion since in round i−1 no vertex

outside of B̃i−1 is active by E(i− 1), and thus P(v ∈ V =i) ≤ E(N(v) ∩ 2`B̃i−1).

So assume ` ≥ 1. Set U∗ :=
∣∣∣N≤i+`−1(v)∩ (Td \ 2`B̃i−1)

∣∣∣. In this case, we can

use the induction hypothesis of statement (f) for i′ = i and `′ = `− 1 to estimate

E (|U∗|) =

O(1)

∫ ∞
0

rd−1n

∫ ∞
0

w1−β+η d

dw

(
min{wh`ν̃−

(ζ+ε)−`−1

β−1

i , 1}min{
(wwv
rdn

)α
, 1}

)
dwdr.

To compute this integral, note that whenever the second minimum is attained by 1,

the inner integral runs either over a polynomial in w with exponent 1−β+η < −1,

or over the zero function. On the other hand, whenever the second minimum is

is attained by the expression (wwv/(r
dn))α, then the inner integral runs over a a

polynomial in w with exponent larger than −1 (either with exponent α−β+η > −1,

or even with exponent α− β + η + 1). Therefore, by Lemma 6.11 for w̃ = rdn/wv,

we obtain in all cases

E (|U∗|) = O(1)

∫ ∞
0

rd−1n

(
rdn

wv

)1−β+η

min

{(
rdn

wv

)
h`ν̃
−(ζ+ε)−`−1/(β−1)
i , 1

}
dr.

Similarly, let r∗ be defined by rd∗n/wv = h−`ν̃
(ζ+ε)−`−1/(β−1)
i , then the exponent

of r in the antiderivative of the integrand is positive for all r < r∗ and negative for

all r > r∗. Hence,

E (|U∗|) = O(1) · wv
(
h`ν̃
−(ζ+ε)−`−1/(β−1)
i

)β−2−η
≤ 1

2
wv2

`dν̃
−(ζ+ε)−`−2/(β−2)
i ,

since (ζ + ε)(β − 2 − η) ≥ 1 and h = ω(1). Combined with equation (6.22) this

proves the claim. �
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6.3.3. Isolation strategies. In this section we prove Theorem 6.7. As outlined

in Section 6.1.5, the corollary is a rather straightforward consequence of The-

orem 6.20(e).

Proof of Theorem 6.7. By Theorem 6.20, whp there is no vertex outside of B̃i which

is active in round i. Therefore, it suffices to (permanently) remove by the end of

round i all edges that cross the boundary of B̃i, i.e. all edges in E(B̃i,Td \ B̃i).
This is very similar to [41, Lemma 7.1 and Theorem 7.2], where the number of

edges cutting a grid is considered. It does not follow directly from this lemma since

the error terms in [41] are too large for our purposes. However, what does follow

directly from their proof is that among those edges that are completely contained

in 2B̃i, the number of edges that cross a fixed axis-parallel hyperplane is at most

ν̃
max{3−β,1−1/d}±o(1)
i . Since the boundary of B̃i consists of a constant number of

faces, this proves the bound for those edges which have both endpoints in 2B̃i.

So it remains to consider the set Mi := E(B̃i,Td \ 2B̃i). Let η > 0 be any

constant, and let v = (xv, wv) be a vertex such that xv ∈ Td \ 2B̃i. Then by

Lemma 6.14 (in the case α > β−1) the expected number of neighbours of v inside

of B̃i is

E(N (v)∩ B̃i) = O(ν̃i) min

{(
wv
‖xv‖dn

)β−1−η

, 1

}
.

Note that v has distance at least ri := (ν̃i/n)1/d from the origin. Thus we may use

Lemma 6.10 and Lemma 6.11 to estimate

E(|Mi|) = O(1)

∫ ∞
ri

rd−1n

∫ ∞
0

w1−β+2η
v

d

dwv
ν̃i min

{( wv
rdn

)β−1−η
, 1

}
dwvdr

= O(ν̃i)

∫ ∞
ri

r−1(rdn)2−β+2ηdr = O(ν̃3−β+2η
i ).

Since ν̃i = ω(1), we can deduce that E(|Mi|) ≤ ν̃3−β+3η
i for sufficiently large n.

Since this holds for all η > 0, the claim follows. �

6.4. Infection times

In this section we prove Theorem 6.4, which gives a precise formula for the

infection time of an individual vertex. As outlined in Section 6.1.5, Theorem 6.4 is

a straightforward consequence of the upper and lower bounds for the probability to

be infected that are given in Theorem 6.20 and 6.17. However, due to the rather

technical nature of these theorems, the proof is still a rather tedious calculation.

We distinguish several cases as in the definition of Λ(xv, wv), see Definition 6.3, the

most relevant one being Case (III), cf. Remark 6.6.

Proof of Theorem 6.4. Let v = (xv, wv) be an fixed vertex that satisfies the condi-

tions in Theorem 6.4. Let ε > 0 be a constant and let η = η(ε) > 0 be a constant

which is sufficiently small compared to ε, cf. Section 6.1.3.3.
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First we remark that it suffices to show that for every sufficiently small ε >

0, whp Lv = (1 ± O(ε))Λ(xv, wv) ± O(1), where the hidden constants are both

independent of ε. Then by a standard diagonalizing argument, we also have whp

Lv = (1 ± o(1))Λ(xv, wv) ± O(1). We split the proof in three parts (I), (II) and

(III), ‘typical’ vertices are treated in (III):

(I): Assume that wv > (‖xv‖dn)1/(β−1) and the maximum in (6.4) is 0, i.e. we

also have wv ≥ ‖xv‖dn/ν. In this case, the lower bound on Lv is trivial, so we

show the upper bound. Since then the second term in the maximum must be non-

positive, we have ‖xv‖dn ≤ wvν. Let i ≥ 1 be so large that (ζ−ε)i/(β−1+η) > 1,

but observe that we may still choose i = O(1).

Assume first ‖xv‖dn ≤ νi, so xv ∈ Bi. By the technical condition in The-

orem 6.4 we have ‖xv‖dn ≥ ν̃0, and hence wv ≥ ν̃
1/(β−1)
0 = νΩ(1) = ν

Ω(1)
i . Hence,

we may choose ` = O(1) such that wv ≥ wi,` = ν
(ζ−ε)−`/(β−1+η)
i , and it follows

directly from part (c) of Theorem 6.17 that whp v is active after i+ `+ 3 = O(1)

rounds, as required.

On the other hand, if ‖xv‖dn ≥ νi then every vertex in Bi has distance at

most 3‖xv‖dn from v. Let wi := ν
1/(β−1+η)
i . By Theorem 6.17, after i + 3 rounds

all vertices in V≥wi∩Bi are active whp, and there are ν
Ω(η)
i = ω(1) many such

vertices. Note that any such vertex has probability Ω(1) to form an edge with v,

since wvwi/(3
d‖xv‖dn) ≥ wi/(3

dν) = Ω(1). Therefore, whp v is active in round

i+ 4 = O(1), again as required.

(II): Assume that still wv > (‖xv‖dn)1/(β−1), but that the maximum in (6.4) is

attained by the second term, i.e. ‖xv‖dn/wv ≥ ν. We need to show an upper and a

lower bound on Lv. For the upper bound, choose i ≥ 0 minimal such that

‖xv‖dn/wv ≤ wi, (6.23)

where wi = ν
1/(β−1+η)
i = ν(ζ−ε)i/(β−1+η) as before. Observe that this i satisfies

i = log logν(‖xv‖dn/wv)/ log(ζ − ε) +O(1) ≤ (1 +O(ε))Λ(xv, wv) +O(1).

By Theorem 6.17, whp all vertices in V≥wi∩Bi are active in round i+ 3, and there

are ω(1) of them. As in (I), we discriminate two sub-cases.

Either ‖xv‖dn ≥ νi. In this case, the distance from v to any point in Bi is

at most 3‖xv‖, and v has probability Ω(1) to form an edge with each vertex in

V≥wi∩Bi by (6.23). By Theorem 6.17, whp all these vertices are active in round

i+ 3, and there are ω(1) of them, so whp v will be active in round i+ 4.

Or ‖xv‖dn ≤ νi, hence xv ∈ Bi. Furthermore we have wv > (‖xv‖dn)1/(β−1) ≥
(wi−1wv)

1/(β−1) by minimality of i in (6.23), implying wv > w
1/(β−2)
i−1 ≥ wi. Thus

by Theorem 6.17 whp v is active in round i+ 3. In either case, whp v is active in

round i+O(1), i.e. Lv ≤ i+O(1) ≤ (1 +O(ε))Λ(xv, wv) +O(1), as required.

For the lower bound, if ‖xv‖dn/wv ≤ ν̃0 = ν(β−1)/(β−2)+ε then Λ(xv, wv) =

O(1), so there is nothing to show. Otherwise, ‖xv‖dn/wv ≥ ν̃0 ≥ ν̃1/(β−1−η)
0 , so we
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may choose i ≥ 0 to be maximal such that

‖xv‖dn/wv ≥ w̃i, (6.24)

where w̃i = ν̃
1/(β−1−η)
i = ν̃

(ζ+ε)i/(β−1−η)
0 as before. Note that this i satisfies

i = log logν(‖xv‖dn/wv)/ log(ζ + ε)−O(1) ≥ (1−O(ε))Λ(xv, wv)−O(1).

Let ` = O(1) be sufficiently large such that ζ` > (β − 1 − η). If i ≤ `, then

i = O(1), and there is nothing to show. Otherwise, (6.24) implies in particular

‖xv‖dn ≥ Ω(1) · ν̃1/(β−1−η)
i = Ω(1) · ν̃(ζ+ε)`/(β−1−η)

i−` > 2ν̃i−`.

Hence, by Lemma 6.14 (with C = 21/d > 1) we obtain

E(N(v) ∩ B̃i−`) = O(1)ν̃i−`
(
‖xv‖dn/wv

)1−β+η
.

Using (6.24), we may continue

E(N (v)∩ B̃i−`) = O(1)ν̃i−`/ν̃i = ν̃
−Ω(1)
i ,

where the last step holds for any ` ≥ 1. By Markov’s inequality, whp v has no

neighbours in B̃i−`. On the other hand, by Theorem 6.20 whp there is no active

vertex outside of B̃i−` in round i − `. Therefore, whp v is not active in round

i− `+ 1, i.e. Lv > i− `+ 1 ≥ (1−O(ε))Λ(xv, wv)−O(1), as required.

(III): Assume wv ≤ (‖xv‖dn)1/(β−1). We bound Lv from above and below.

For the upper bound, let i ≥ 0 be minimal with the property that xv ∈ Bi, i.e.

‖xv‖dn ≤ νi = ν(ζ−ε)i (6.25)

Observe that i ≥ 1 because ‖xv‖dn ≥ ν̃0 > ν due to the technical assumption in

Theorem 6.4 and since the function Λ is non-negative. Thus, we have ‖xv‖dn ≥
νi−1 = ν

1/(ζ−ε)
i by minimality of i.

Let ` ≥ 0 be minimal with the property that

wv > (‖xv‖dn)(ζ−ε)−`/(β−1+η) (6.26)

Since we are in the case wv ≤ (‖xv‖dn)1/(β−1), we have ` ≥ 1, and thus (6.26) is

false if we replace ` by ` − 1. By minimality of i, the right hand side of (6.26)

is at least ν
(ζ−ε)−`−1/(β−1+η)
i and recall that we only consider weights wv = ω(1).

Hence, Theorem 6.17 applies for ` + 1, and, if we condition on events that hold

whp, tells us that v is active in round i+ `+ 4 with probability

1− exp
(
−C1ν

C2(ζ−ε)−`−1

i

)
= 1− o(1),

where the last inequality holds due to the following estimate

ν
(ζ−ε)−`−1

i

(6.25)

≥ (‖xv‖dn)(ζ−ε)−`−1 (6.26),`−1

≥ w(β−1+η)/(ζ−ε)2
v = ω(1).

It remains to note that by choice of i and ` we have

i = log logν(‖xv‖dn)/ log(ζ − ε) +O(1)
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and ` = i+ log logν wv/ log(ζ − ε) +O(1). Hence, whp

Lv ≤ i+ `+ 4 ≤ (1 +O(ε))Λ(xv, wv) +O(1),

as required.

For the lower bound, we distinguish yet two more sub-cases. Let ` ≥ 0 be the

smallest non-negative integer that satisfies

w2
v ≥ 2−(`+1)d(‖xv‖dn)(ζ+ε)−`−3/(β−1). (6.27)

(IIIa) Assume first that ‖xv‖dn ≥ 2`+1ν̃0. In this case, let i ≥ 1 be maximal

with the property

‖xv‖dn ≥ 2`+1ν̃i−1 = 2`+1ν̃
(ζ+ε)i−1

0 . (6.28)

It is easy to check (e.g., by using the very generous estimate 2 < ν̃
(ζ+ε)i

0 ) that i

satisfies

i ≥ log logν(‖xv‖dn)/ log(ζ + ε)−O(log(`+ 1)). (6.29)

If ` = O(1) then wv = (‖xv‖dn)Θ(1) and therefore

Λ(xv, wv) = log logν(‖xv‖dn)/| log(β − 2)| ±O(1).

Since by Theorem 6.20(c) whp no vertex outside of B̃i−1 is active in round i − 1

and xv 6∈ B̃i−1, it follows then whp Lv > i − 1 ≥ (1 − O(ε))Λ(xv, wv) − O(1), as

required. This settles the case ` = O(1).

Next observe that by minimality of i there exists 0 ≤ j ≤ O(log(` + 1)) such

that ‖xv‖dn ≤ ν̃i+j . In particular, if ` > C for some sufficiently large constant

C > 0 then j < `. Since we have already treated the case ` = O(1), we may

henceforth assume that ` > C. Then `− j > 0, and by (6.28) the requirements of

Theorem 6.20(f) are met for i and `− j. Since in particular ` ≥ 1, by the choice of

`, we have

w2
v ≤ 2−`d(‖xv‖dn)(ζ+ε)−`−2/(β−1) ≤ 2−`dν̃

(ζ+ε)−`−2/(β−1)
i+j

= 2−`dν̃
(ζ+ε)−(`−j)−2/(β−1)
i , (6.30)

and therefore Theorem 6.20(f) yields that v is not active in round i + ` − j with

probability at least

1− wv2(`−j)dν̃
−(ζ+ε)−(`−j)−2/(β−1)
i

(6.30)

≥ 1− w−1
v 2−jd = 1− o(1).

In order to relate i + ` − j with Λ(xv, wv), we derive ‖xv‖dn ≥ ν̃
(ζ+ε)i−1

0

from (6.28), and plug it into (6.27) to obtain

w2
v ≥ 2−(`+1)dν̃

(ζ+ε)i−`−4/(β−1)
0 = 2−(`+1)dνΘ(1)(ζ+ε)i−` .

Hence, taking logarithms on both sides,

Θ(1)(ζ + ε)i−` log ν ≤ 2 logwv + (`+ 1)d log 2 ≤ 4dmax{logwv, `}. (6.31)

If the maximum is attained by logwv, then (6.31) gives ` ≥ i− log logν wv/ log(ζ +

ε)−O(1), and together with (6.29) and j = O(log(1 + `)), we conclude i+ `− j ≥
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(1 − O(ε))Λ(xv, wv) − O(1), as required. On the other hand, if the maximum

in (6.31) is attained by `, then (6.31) yields

`+
log `

log(ζ + ε)
≥ i+

log log ν

log(ζ + ε)
−O(1) ≥ i− log logν wv

log(ζ + ε)
−O(1),

where the second inequality comes from wv = ω(1). Thus we obtain again i+`−j ≥
(1−O(ε))Λ(xv, wv)−O(1), as required. This concludes the proof of the lower bound

in the case ‖xv‖dn ≥ 2`+1ν̃0.

(IIIb) Assume ‖xv‖dn ≤ 2`+1ν̃0. It remains to show the lower bound on Lv in

this case. We want to apply Theorem 6.20(f) for i = 0, but we need to change the

definition of ` slightly. Let `′ ≥ 0 be the smallest non-negative integer satisfying

w2
v ≥ 2−(`′−1)dν̃

(ζ+ε)−`
′−1/(β−1)

0 . (6.32)

Similar as in (IIIa), this definition implies

`′ + log(`′ + 1)/ log(ζ + ε) ≥ − log logν wv/ log(ζ + ε)−O(1). (6.33)

If `′ ≤ 1 then wv = ν̃
Ω(1)
0 . In this case, since ‖xv‖dn ≤ 2`+1ν̃0, a sufficient condition

for ` to satisfy (6.27) is

ν̃
Ω(1)
0 ≥ 2−(`+1)d(2`+1ν̃0)(ζ+ε)−`−3/(β−1).

Since this is already satisfied for some large enough constant, by the definition of

`, this implies ` = O(1) and thus ‖xv‖dn = ν̃
O(1)
0 , and the lower bound is trivial,

because Λ(xv, wv) = O(1).

So assume instead that `′ > 1. Let `∗ := min{`′ − 1,Λ(xv, wv)}. Then by the

assumption in Theorem 6.4, we have `∗ ≤ log2(‖xv‖dn/ν̃0), and hence ‖xv‖dn ≥
2`
∗
ν̃0. Since `∗ < `′, the reverse of (6.32) holds for `∗. These two properties allow

us to apply Theorem 6.20(f) with i = 0 and `∗ − 1, which tells us that v is not

active in round `∗ − 1 with probability at least

1− wv2(`∗−1)dν̃
−(ζ+ε)`

∗−1/(β−1)
0 ≥ 1− w−1

v = 1− o(1).

It remains to show the minimum in the definition of `∗ is attained by the

second term, more precisely `∗ = Λ(xv, wv) + O(1). Next observe that by (6.33)

it is sufficient to deduce log logν(‖xv‖dn) = o(`′) + O(1) in order for this claim to

hold. Since ‖xv‖dn ≤ 2`+1ν̃0, we have logν(‖xv‖dn) ≤ o(`) + O(1). However, by

the choice of `, we have

w2
v ≤ 2−`d(‖xv‖dn)(ζ+ε)−`−2/(β−1−η) ≤ (2`+1ν̃0)(ζ+ε)−`−2/(β−1),

and similar as for (6.28) it can be easily deduced that ` = O(1 + | log logν wv|) =

O(`′). This concludes the proof for the case ‖xv‖dn ≤ 2`ν̃0. �
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6.5. Threshold and speed of the process

We prove Theorem 6.1 and Theorem 6.2 together. Let ε > 0 be a constant

and let η = η(ε) > 0 be a constant which is sufficiently small compared to ε,

cf. Section 6.1.3.3.

We first show the second statement of Theorem 6.2.

Claim 6.21. Assume that α > β − 1 and ν = no(1), then |V ≤(1−ε)i∞ | = o(n) whp.

Proof. Let i0 be (somewhat arbitrary) the largest integer such that ν̃i0−1 ≤ n/ log2 n

and note that then i0 ≥ (1 − O(ε))(log logν n)/| log(β − 2)|. Moreover, for i1 :=

(1−ε)(log log n)/| log(β−2)| we have 2i1 ν̃i0−1 = o(n), so whp there are o(n) vertices

in 2i1B̃i0−1.

Next consider the vertices outside of 2i1B̃i0−1. By Theorem 6.20 each such

vertex of weight at most log log n has probability o(1) to be in V ≤i0+i1 . Therefore,

the expected number of vertices of weight at most log log n in V ≤i0+i1 is o(n). On

the other hand, the total expected number of vertices of weight larger than log log n

is also o(n). Altogether, this shows E(|V ≤i0+i1 |) = o(n), and the statement follows

from Markov’s inequality. �

6.5.1. Subcritical regime: (iii), (v). We will indeed show that whp the process

does not infect any vertices in the first step.

Claim 6.22. V ≤1 = V ≤0 whp.

Proof. For any vertex v = (xv, wv) with fixed weight and position we denote by

µv := E(|N (v)∩B0|) its expected number of neighbours in B0. We have shown in

Lemma 6.14 that for any constant C > 1,

µv = O(ν) ·

min {wv/ν, 1} , if ‖xv‖ ≤ C(ν/n)1/d/2,

min
{(
wv/(‖xv‖dn)

)m
, 1
}

if ‖xv‖ ≥ C(ν/n)1/d/2,
(6.34)

where m = min{α, β − 1 − η} > 1. Since initially only vertices in B0 are activ-

ated, recall that the number N≤0(v) of initially active neighbours of v is Poisson

distributed with mean ρµv. In particular, P(|N≤0(v)| ≥ k) = P(Po(ρµv) ≥ k) =

O(1) · min{(ρµv)k, 1}. Clearly, we can bound the number |V =1| of vertices that

turn active in round 1 by the number of vertices that have at least k neighbours in

V ≤0. (It is only an upper bound since the latter also counts vertices which were

already in V ≤0.)

So let us first consider the contribution nin := |V =1∩ 2B0| of vertices v =

(xv, wv) inside of 2B0. By (6.34) these satisfy µv = O(wv), and thus by Lem-

mas 6.10 and 6.11 we obtain

E(nin) = O(1)

∫ ∞
0

νw1−β+γ d

dw
min{(ρw)k, 1}dw = O(νρβ−1−γ) = o(1), (6.35)

where γ = 0 for strong power-laws, and otherwise γ > 0 is an arbitrary constant.

On the other hand, to estimate the contribution nout := |V =1∩ (Td \ 2B0)|
of vertices v = (xv, wv) outside of 2B0, we may use µv = O(ν)(wv/(‖xv‖dn))m
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by (6.34). Furthermore, since each such vertex has distance at least (ν/n)1/d from

the origin, Lemma 6.10 and Lemma 6.11 imply

E(nout) = O(1)

∫ ∞
(ν/n)1/d

rd−1n

∫ ∞
0

w1−β+η d

dw
min

{(
ρν
( w

rdn

)m)k
, 1

}
dwdr

= O(1)

∫ ∞
(ν/n)1/d

rd−1n

(
rdn

(ρν)1/m

)1−β+η

dr

= O(1) · ν2−β+η(ρν)(β−1+η)/m

Now we use that ρ = O(ν−1/(β−1)). Observe that this bound holds both in case

(iii) and (v), and that it even holds for the critical case (ii). We derive ρν =

O(ν(β−2)/(β−1)), and hence E[nout] = ν−(β−2)(1−1/m)+O(η). Thus, since m > 1, if

η > 0 is small enough we have

E(nout) = o(1). (6.36)

We will later use the fact that this also holds in the critical regime (ii).

Together (6.35) and (6.36) show that E(|V =1|) = o(1), and thus by Markov’s

inequality whp no vertices turned active in round 1, as claimed. �

6.5.2. Critical regime: (ii). We first show that with constant probability no

further vertices are ever activated.

Claim 6.23. V ≤1 = V ≤0 with probability Ω(1).

Proof. First observe that (6.36) also holds in this regime, i.e. by Markov’s inequality

whp no vertex outside of 2B0 is active in round 1. Furthermore, let c > 0 be a

(small) constant, to be determined later, and let w0 := ν1/(β−1). Moreover, note

that |V≥cw0
∩ 2B0| is Poisson distributed with mean O(ν(cw0)1−β) = O(1), since

c = Ω(1). Therefore the event A := {V≥cw0
∩ 2B0 = ∅} occurs with probability at

least exp(−O(1)) = Ω(1). Consequently it suffices to show that V ≤1
≤cw0

∩ 2B0 = V ≤0

with probability Ω(1) if we condition on the event A.

Since every vertex v = (xv, wv) satisfies E(|N (v)∩B0|) ≤ E(|N (v)|) = O(wv),

by (6.9), the number of neighbours in V ≤0 is a Poisson distributed random variable

with mean at most O(ρwv). Observe that this upper bound remains valid if we

condition on the event A, since this can only decrease the expected degree of v.

Therefore we obtain

P
(
|N≤0(v)| ≥ k

∣∣ A) = O(1) ·min{(ρwv)k, 1} = O((ρwv)
k),

and by Lemma 6.10 it follows that

E
(
|V =1
≤cw0

∩ 2B0|
∣∣ A) = O

(
ν(cw0)1−β(ρcw0)k +

∫ cw0

0

νw1−β d

dw
(ρw)kdw

)
= O(1) · ν(cw0)1−β(ρcw0)k = O(ck+1−β),

where all the hidden constants are independent of c.

Now note that we may choose the constant c > 0 small enough such that

E
(
|V =1
≤cw0

∩ 2B0|
∣∣ A) ≤ 1/2, and then by Markov’s inequality |V =1

≤cw0
∩ 2B0| = 0
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with conditional probability at least 1/2. Thus V ≤1 = V ≤0 with probability Ω(1),

and the claim follows. �

Next we show that with constant probability at least k heavy vertices will be

activated in the first round. Afterwards, the remaining steps will be identical with

the supercritical regime, so we prove them together, cf. below.

Claim 6.24. |V =1
≥w0
∩B0| ≥ k with probability Ω(1).

Proof. We first consider the case α <∞. Note that the number of vertices in B0 of

weight at least w0 = ν1/(β−1) is Poisson distributed with mean Θ(νwβ−1
0 ) = Θ(1).

In particular, with probability Ω(1) there are at least k such vertices. So assume

this event holds, and let v1, . . . , vk be k distinct such vertices.

For each 1 ≤ i ≤ k, denote by Ki be the intersection of B0 with the ball of

volume ν1/(β−1)/n around vi. Note that nVol(Ki) = Ω(ν1/(β−1)). The number of

vertices in V ≤0∩Ki is Poisson distributed with mean ρnVol(Ki), so in particular

P(|V ≤0∩Ki| ≥ k) = Ω(1). Note that the events K(i) := {|V ≤0∩Ki| ≥ k} are posit-

ively associated for different i, i.e, conditioning on the events K(i1), . . . ,K(is) does

not decrease the probability of K(i) for any subset of (distinct) indices i1, . . . , is, i.

Hence,

P (∀i ∈ {1, . . . k} : K(i)) ≥
k∏
i=1

P(K(i)) = Ω(1)

by the law of conditional probability.

On the other hand, for each vertex v with fixed weight and fixed position in

Ki we have P({v, vi} ∈ E) = Ω(w0/ν
1/(β−1)) = Ω(1), and this lower bound is

independent for any two such vertices. So conditioned on the events K(i), we have

P(vi ∈ V ≤1 | K(1), . . . ,K(k)) = Ω(1), and this lower bound is independent for all

i. Altogether, we have shown that with probability Ω(1) we have {v1, . . . , vk} ⊂
V =1
≥w0
∩B0, proving the claim in the case of α >∞.

The case α = ∞ is completely analogous, except that it may be necessary

to shrink the balls around v1, . . . , vk be at most a constant factor, so that still

every vertex in the i-th ball has probability Ω(1) to connect to vi. Since this only

decreases the expected number of (active) vertices in each ball by constant factors,

the remaining proof stays the same. We omit the details. �

6.5.3. Supercritical regime: (i), (iv). In this proof we also include the critical

regime (ii), provided that at least k heavy vertices got activated in the first round,

i.e. |V =1
≥w0
∩B0| ≥ k, where as before w0 = ν1/(β−1). Let ε > 0 be constant.

Claim 6.25. E(|V ≤(1+ε)i∞ |) = Ω(n).

Proof. Let i ≥ 0 be the smallest index such that νi ≥ n (and thus Bi = Td), and

note that i ≤ (1 + ε)(log logν n)/| log(β − 2)| if n is sufficiently large. Then there

exists ` ≤ (1 + ε)(log log n)/| log(β − 2)| such that wi,` = O(1). Theorem 6.17 tells

us immediately that every vertex of weight at least C has probability Ω(1) to be in
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A(i+ 3 + `), for some sufficiently large constant C > 0. Since the expected number

of vertices of weight at least C is Ω(n), this already shows the claim. �

It remains to proof the corresponding whp statement.

Claim 6.26. |V ≤(1+ε)i∞ | = Ω(n) whp.

Proof. Let h = h(n) = ω(1) be a function with log log h = o(log log n). Then by the

same argument as before, every vertex of weight at least wh := ŵ−(h) = h1/(β−1+η)

has probability 1− h−Ω(1) to be in V ≤(1+ε/2)i∞ . Now decompose the torus Td into

balls Q1, . . . , Qs of volume Θ(h/n).7 Fix any such ball Q, and call Q good if in

round j := (1 + ε/2)i∞ at least half of the vertices in V≥wh∩Q are active, and

bad otherwise. Recall that in expectation only a o(1) fraction of the vertices in

V≥wh∩Q are inactive in round j, so by Markov’s inequality the probability that Q

is bad is o(1). So in expectation only a o(1) fraction of the sets Q1, . . . , Qs are bad,

and again by Markov’s inequality, whp at least half of them are good.

Now let C > 0 be a sufficiently large constant, and assume Q is good. Then we

may apply Remark 6.18 (for some suitably chosen 0 ≤ ` = O(log log h)) to deduce

that an expected 2/3-fraction of the vertices in V≥C∩Q are active in round j+ `, if

C > 0 is sufficiently large. In formula, E(|V ≤j+`≥C ∩Q|) ≥ 2E(|V≥C∩Q|)/3, and thus

by Markov’s inequality,

P
(∣∣∣V ≤j+`≥C ∩Q

∣∣∣ ≥ E
(∣∣V≥C∩Q∣∣) /2) = Ω(1),

and this bound holds independently of the activity in any other ball. Therefore, by a

Chernoff bound, whp an Ω(1) fraction of the balls Q1, . . . , Qs satisfy |V ≤j+`≥C ∩Q| ≥
E
(∣∣V≥C∩Q∣∣) /2 = Ω(h), and thus whp |V ≤j+`| = Ω(s · h) = Ω(n). Since j + ` ≤

(1 + ε)i∞ for sufficiently large n, the claim follows. �

Proof of Theorem 6.1 and Theorem 6.2. Theorem 6.1 follows immediately by com-

bining Claims 6.22, 6.23, 6.24 and 6.26, while Theorem 6.2 is proven by Claims 6.21

and 6.26. �

6.6. Concluding remarks

We have shown that in the GIRG model for scale-free networks with underlying

geometry, even a small region can cause an infection that spreads through a linear

part of the population. We have analysed the process in great detail, and we have

determined its metastability threshold, its speed, and the time at which individual

vertices becomes infected. Moreover, we have shown how a policy-maker can utilise

this knowledge to enforce a successful quarantine strategy.

We want to emphasise that the latter result is only a proof of concept, intended

to illustrate the possibilities that come from a thorough understanding of the role

of the underlying geometry in infection processes. In particular, we want to remind

the reader that bootstrap percolation is not a perfect model for viral infections

7This is possible since we use the ∞-norm. It would also suffice to consider any disjoint balls with
total volume Ω(1).
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(though it has been used to this end), but is more adequate for processes in which

the probability of transmission grows more than proportional if more than one

neighbours is active, like believes spreading through a social network (‘What I tell

you three times is true.’), or action potential spreading through a neuronal network.

Therefore, this chapter is only a first step. There are many other models for the

spread of an infection, most notably SIR and SIRS models for epidemiological ap-

plications, and we have much yet to learn from analysing these models in geometric

power-law networks like GIRGs. From a technical point of view, it is unsatisfactory

that our analysis does not include the case α ≤ β − 1. We believe that also in this

case, the bootstrap percolation process is essentially governed by the geometry of

the underlying space, only in a more complex way. Understanding this case would

probably also add to our toolbox for analysing less ‘clear-cut’ processes.
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