
Sternig, Christof, BSc

Implementation and Evaluation of a
Virtual Reality Learning Game for

Mathematics

Master’s Thesis

Graz University of Technology

Institut for Information Systems and Computer Media
Head: Kappe, Frank, Univ.-Prof. Dipl.-Ing. Dr.techn

Supervisor: Ebner, Martin, Assoc. Prof. PhD

Graz, September 2016

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

ii

Abstract

With Virtual Reality stated to be the next big thing, due to affordable
head-mounted displays, like Oculus Rift, HTC Vive, etc., more and more
companies are joining and experimenting with Virtual Reality. The fast
evolution of mobile devices, especially mobile phones, with their increasing
computational powers, built-in sensors and the broad availability, has built
a new market for different applications. A new movement, the so called
“Maker Movement”, is rising and electrifying more and more people to
create, invent and experiment new items with available technology. With the
announcement of Google Cardboard, the marriage of these three subjects
was achieved and opened a wide range of possible, cheap Virtual Reality
applications, which can be created and used by everyone. This thesis shows
the potential of combining making, gaming and education by implementing
and evaluating a game prototype by 14 pupils aged 12-13. A simple Virtual
Reality math game was created, using the Google Cardboard toolkit, to
immerge into a virtual world. The aim of the game is to solve math exercises
with increasing difficulty. The pupils were motivated and excited by im-
merging into the Virtual Reality of the game to solve exercises and advance
in the game. After the evaluation the pupils tinkered headsets on their own
to play the game again. The results of evaluation are very positive and
show the high motivational potential of combining making and game-based
learning and its usage in schools as educational instrument.

iii

Kurzfassung

Mit der Entwicklung von leistbaren Virtual Reality Systemen, basierend
auf sogenannten “head-mounted displays” wie der Oculus Rift, dem HTC
Vive, etc. kam es in den vergangenen Jahren zu einem neuerlichen Virtual-
Reality-Boom, dem sich mehr und mehr Firmen anschließen. Die kurzen
Evolutionszyklen bei mobilen Geräten, speziell bei Handys, mit ihrer steigen-
den Rechenleistung, der Vielzahl an mitgelieferten Sensoren und der hohen
Verfügbarkeit bieten eine Plattform für verschiedenste Anwendungen. Die
“Maker”-Bewegung macht sich diese Technologien zunutze, um eigene Ideen
umzusetzen, damit zu experimentieren und um neue Dinge zu erfinden.
Diese Bewegung erfreut sich einer weltweit steigenden Beliebtheit. Als
Google mit der Ankündigung von Google Cardboard “making”, Virtual
Reality und mobile Geräte miteinander verband, entstand eine, für nahezu
jeden verfügbare Möglichkeit, Virtual Reality Anwendungen zu entwickeln
und umzusetzen. Diese Arbeit zeigt das Potenzial, der Verbindung von
“making”, spielen und lernen anhand eines Lernspiels. Dieses Spiel wurde
für Google Cardboard entwickelt und an einer Schule evaluiert. Bei dem
Spiel handelt es sich um ein Virtual Reality Mathematikspiel, in welchem
der Spieler oder die Spielerin Rechenaufgaben lösen muss, um das nächste
Level zu erreichen. Die testenden Schüler waren begeistert als sie mit Google
Cardboard in die virtuelle Welt des Spiels eintauchten und lösten motiviert
die Aufgaben. Nach der Evaluierung bastelten die Schüler in mehreren
Werkstunden ihre eigenen Headsets, um das Spiel zu Hause spielen zu
können. Das durchwegs positive Ergebnis der Evaluierung zeigt, dass die
Kombination aus “making” und spielendem Lernen äußerst motivierend
auf die Schüler wirkt und es auch seine Berechtigung als pädagogisches
Instrument hat.

iv

Contents

Abstract iii

1. Introduction 1

2. State of the Art 4
2.1. Virtual Reality (VR) . 4

2.1.1. History . 5

2.1.2. Virtual Reality Today . 6

2.2. Head-Mounted Displays (HMD) 8

2.2.1. Google Cardboard . 9

2.3. Video Games and Education . 10

2.3.1. (Digital) Game-Based Learning 11

2.3.2. Gamification . 13

2.3.3. Implementing Gamification 15

2.4. Maker Movement . 18

2.4.1. History of the Maker Movement 19

2.4.2. Making in Education . 20

3. Educational Games 25
3.1. Educational Flash Games . 25

3.2. Mobile Educational Games . 30

3.3. Educational Games for PC and Consoles 32

4. Prototype 36
4.1. Idea . 36

4.2. Gameplay and Game Elements 37

4.2.1. Navigation . 37

4.2.2. Level Structure and Items 39

4.2.3. Gameplay . 40

4.2.4. Menus and Settings . 45

v

Contents

4.3. Implementation . 47

4.3.1. Actors and Components 48

4.3.2. Processes . 52

4.3.3. Events . 54

4.3.4. Rendering System . 57

4.3.5. The Game Logic . 62

5. Evaluation 68
5.1. Evaluation Setup . 69

5.2. Results of the Evaluation . 71

5.2.1. Statement 1 . 72

5.2.2. Statement 2 . 73

5.2.3. Statement 3 . 74

5.2.4. Statement 4 . 75

5.2.5. Statement 5 . 76

5.2.6. Observations during Evaluation 77

6. Discussion and Conclusion 79
6.1. Discussion . 79

6.1.1. Gameplay . 79

6.1.2. Evaluation . 81

6.2. Future Research Directions . 83

6.3. Conclusion . 84

Bibliography 86

A. Sources 92
A.1. Actor-Component-System . 92

A.2. Process System . 94

A.3. Event System . 101

A.4. Rendering System . 107

vi

List of Figures

2.1. The sensorama simulator. 6

2.2. Sutherland’s HMD and the tracking device. 9

2.3. Different viewers for Google Cardboard. 11

2.4. Connections of the different learning approaches. 13

2.5. A pupil tinkering his cardboard headset. 23

3.1. A screenshot of Math Lines 10 27

3.2. An image of the game Flash Cards 28

3.3. Level one of the game Bus Driver Math 28

3.4. A screenshot of Math Man . 29

3.5. A screenshot captured when playing “Einmaleins” 31

3.6. The action part of “Monster Numbers” 32

3.7. The math challenges of “Monster Numbers” 32

3.8. A screenshot of Minecraft . 33

3.9. Dr. Kawashima determines the age of the player’s brain . . . 34

4.1. The avatar and the viewing frustum 39

4.2. The four pickups of the game 41

4.3. A screenshot from a game in progress 43

4.4. The main menu . 46

4.5. The highscore screens . 47

4.6. A simple abstraction of the actor-component-system 49

4.7. The actor package . 51

4.8. Actor components package . 52

4.9. Actions executed between two frames 53

4.10. The package holding the process-classes 54

4.11. The event system of the engine 56

4.12. An image of the rendered Scene when playing with the VR
headset . 57

4.13. An image of a sample scene graph 58

vii

List of Figures

4.14. The render system . 62

4.15. The game logic displayed as state machine 64

4.16. Flow diagram of the level loading process 66

5.1. Class picture of the pupils evaluating the prototype. 68

5.2. The cardboard headset used for evaluating the prototype. . . 69

5.3. The evaluation of the statements. 71

6.1. The headsets tinkered by the pupils. 84

viii

List of Tables

2.1. Available and announced VR headsets and the companies be-
hind them (Kelly, 2016; Kuusisto, 2015; “Daydream - Google
VR,” 2016). 10

4.1. The level properties for the five levels of the prototype. 44

4.2. The specifications of the mobile device used to implement,
debug and evaluate the game. 48

5.1. The four different smileys used to rate the statements of the
evaluation. 72

5.2. Final ratings of statement 1. 73

5.3. Final ratings of statement 2. 74

5.4. Final ratings of statement 3. 75

5.5. Final ratings of statement 4. 76

5.6. Final ratings of statement 5. 76

6.1. A list of the issues and suggested solutions identified during
the evaluation and testing of the prototype. 82

ix

Listings

4.1. The rule for exercise generation 42

4.2. The definition file for the avatar used in the game. 50

4.3. The interface implemented by components which can be
registered as listeners. 55

4.4. The level of detail calculation in the MeshNode. Bigger dis-
tances lead to a bigger divisor and the rendered object is
drawn with fewer triangles. 60

4.5. The MeshNode method isVisible is using the frustum culler
to determine if the object should be rendered or not because
it is not in the field of view of the player. 61

4.6. The level definition file of the first level in the game. 65

A.1. The AbstractActorComponent defining the basic properties
and methods for every specific actor component. 92

A.2. The ProcessManager responsible for updating and managing
the processes running during playing. 94

A.3. The base class for every process able to run in the engines
process system. 97

A.4. The source code of the event manager. 101

A.5. The base class every event has to inherit from to fit into the
event system. 105

A.6. A shortened source code of base class for every node the
scene graph can contain. 107

A.7. The shortened Scene class used to traverse the scene graph
and render the scene. 110

x

1. Introduction

Since the dawn of Virtual Reality (VR) there have been major improvements
in technology in recent years. With the evolution of VR headsets and the
announcements of products like Oculus Rift, HTC Vive, Samsung Gear VR
etc. more and more manufacturers have and will release their headsets to
the market, to make Virtual Reality available to the public.

Nowadays, mobile devices are complex computers which are gradually
replacing Personal Computers (PCs) in all-day life (Gartner Press Release,
2016). Due to their high availability, the variety of embedded sensors, cam-
eras and the availability of high computational power, mobile phones espe-
cially lie in the focus of researchers and developers. Children are growing
up with these technologies and are therefore used to mobile devices. They
know how to interact with them and how to use them for surfing the inter-
net, messaging, gaming, etc. (Grimus & Ebner, 2014). In the last few years
a new movement, namely the maker movement, emerged, and is growing
strong (Schön, Ebner, & Kumar, 2014). People all over the world invent,
experiment and create and therefore are part of this movement. Pushed
by small, affordable computers like the Raspberry Pi or the Arduino, of-
fering new possibilities to invent and experiment with ideas and combine
technologies. Makers meet at annual maker fairs to showcase inventions
and experiments. When Google introduced Google Cardboard, making was
combined with VR and mobile technology. Google Cardboard is a do-it-
yourself Virtual Reality headset, consisting of a cardboard structure holding
a smartphone. The smartphone is serving as the screen of the headset, to
simulate Virtual Reality. This marriage of making, VR and a mobile device
offers a great possibility to use concepts of digital game-based learning to
create an immersive learning experience. Using VR techniques for learning,
education or advanced training is an interesting research field with high
potential.

1

1. Introduction

This thesis deals with learning in virtual environments and evaluates the
integration of Virtual Reality applications in school by implementing a
prototype of a math game. The research interest focuses on the following
three research questions:

1. How could a VR-device be integrated into a mathematical learning
scenario?

2. Which lessons could be learned while evaluating this learning sce-
nario in a secondary school class?

3. How does the learning experience look like?

To answer the above research questions, a simplistic Virtual Reality game
is implemented, which should assist and motivate pupils in repeating al-
ready learned mathematical operations like addition and multiplication.
The implemented prototype is evaluated to determine the need for such
educational games and the their possible motivational effects. School chil-
dren of a secondary school class tested and rated the prototype and gave
feedback about issues and positive aspects of the game. To combine the
game-based learning approach with making, the pupils created their own
cardboard headsets in extra lessons to be able to play the game with their
own smartphones.

The structure of the work at hand divides into six chapters including this
introduction. Chapter 2 introduces the history and state-of-the-art of the
used technologies like Virtual Reality, head-mounted displays, digital game-
based learning, project-based learning and the maker movement. The aim
of this chapter is the explanation of key terms used throughout the paper,
so readers can follow the meaning of this text easily. In the second chapter
a few sample educational games for different platforms are outlined to
get a feeling of existing educational games. Chapter 4 explains the game
mechanics of the prototype and technical aspects of the implementation in
detail. The first part of the chapter can be seen as a manual for the game,
the second part describes the modules and concepts of the underlying game
engine driving the game.

The game has been evaluated at a school by children aged 12 to 13, the
process of the evaluation is described in the first part of chapter 5. A
simple feedback system was defined, to enable the pupils to evaluate the
prototype by rating five statements. The results of this evaluation process are

2

1. Introduction

summarized in the second part of the chapter. Finally, chapter 6 wraps up
the impact of the math game on the pupils, the results of the evaluation and
discusses positive and negative aspects of the prototype and the evaluation
process. With the results at hand, further improvements of the shortcomings
and possible extensions to the prototype are addressed and future research
ideas are formulated.

3

2. State of the Art

After introducing the purpose and the aims of this work, this chapter defines
some key words used throughout the text, so the reader understands the
used concepts, their history and the state-of-the-art to better understand the
upcoming chapters.

2.1. Virtual Reality (VR)

Virtual Reality is a computer generated illusion of a real world, in its
perfection it tricks the human senses and mind to be indistinguishable
from the real world it simulates. The goal of creating such a perfect world
although is an utopian desire which cannot be achieved (Stanković, 2015,
p. 4). Common sense defines VR by head-mounted displays like Oculus
Rift and/or data gloves, but this is not a good definition for Virtual Reality
(Burdea & Coiffet, 2003, p. 1). It can also be accomplished by projectors in
combination with PCs called the CAVE (Cruz-Neira, Sandin, & DeFanti,
1993) and all sorts of computer games are creating a VR experience. The
difference of VR from a 3D movie is the possibility to interact with the
created world, change the state of the world and get a feedback about the
effects (Stanković, 2015, p. 9). By providing the possibility of interaction,
consumers of VR can immerge into and get a feeling of presence in the
virtual world. According to Burdea and Coiffet (2003, p. 3), interaction and
immersion are two of three key features of VR with the third feature being
imagination. Virtual Reality is often used to simulate real world processes,
the restriction of the parameters of the simulation, to fully map the extent
of a real world process without breaking the simulation, often lies in the
hands of VR developers and their imagination.

4

2. State of the Art

Another important definition, with respect to Virtual Reality, are Virtual
Environments (VE). “VEs provide the illusion of presence in a place different
from one’s current physical surrounding” (Stanković, 2015, p. 4). VEs can
be roughly categorized according to users taking part in the environment
and the degree of realism, therefore Stanković (2015, p. 10) differs between
four different types of VEs:

• Single user, text only (2D) – i.e. text adventures
• Single user, realistic 3D – AAA games on modern console generations

or the PC (a AAA game, pronounced “triple-A game”, is a high-budget
game developed by a large game studio)
• Multi user, text only (2D) – social networks like Facebook
• Multi user, realistic 3D – Massively Multiplayer Online (MMO) games

or general purpose VEs

The prototype implemented and described in chapter 4 tries to create the
feeling of presence in the virtual world by using Google Cardboard and a
mobile phone as head-mounted display. The implemented game creates a
single user, three-dimensional virtual environment. After defining Virtual
Reality and virtual environments the next chapter briefly outlines the history
of VR.

2.1.1. History

Burdea and Coiffet (2003, p. 3) date the birth of Virtual Reality back to 1962,
when Morton Heilig patented his “Sensorama Simulator” (Heilig, 1962).
Figure 2.1 shows an image of the simulator described in Heilig’s patent.
The purpose of the Sensorama was, to simulate a motorcycle ride through
New York featuring a vibrating seat, a wind simulator, 3D video feedback
and even an odor generator, which made it possible to smell the different
odors of places the user passes. Although the simulator created immersion
it did not feature interaction, one key feature of a modern VR experience,
as previously defined. The first system including immersion and interaction
was created by Lippman (1980), which featured a virtual representation
of Aspen Colorado including three modes of display and free navigation.
With sci-fi literature picking up on the topic in the 1980s, “the term Virtual

5

2. State of the Art

Reality was used in its present meaning for the first time by Jaron Lanier
in 1989” (Stanković, 2015, p. 26). In the 1990s media got interested in the
technology, the first CAVE, as stated previously, was created in 1992. The
hype reached its peak with the implementation of Second Life, a massively
multiuser online virtual community. Although media forecast VR as the
next big thing, inventions like data gloves or head-mounted displays failed
to enter the market. With the invention of mobile devices and social media
popping up, VR systems were abandoned by media and public lost interest
(Stanković, 2015).

Figure 2.1.: An image of the Sensorama simulator invented by Morton Heilig (Evens, 2007).

2.1.2. Virtual Reality Today

With every big company jumping onto the VR train again, Palmer Luckey
started a successful Kickstarter campaign on August 1, 2012, for his VR

6

2. State of the Art

headset Oculus Rift. With his ideas proved that it is possible to create a
high-end VR headset priced below $300. Facebook acquired the company in
2014 for $2 billion and showed the world VR is, again, the next big thing
(Kuusisto, 2015). Many applications especially games created for Virtual
Reality are fueling the desire to buy or use VR-headsets to enter virtual
worlds. Before describing different head-mounted displays and the history
of VR headsets, some applications of Virtual Reality are outlined.

In the past, complex VR systems like flight simulators or virtual battlefields
for tactical combat training, used by the military, have been used mainly for
training purposes rather than for entertainment. Today video games, with
their complex three-dimensional worlds, are Virtual Reality systems with
respect to interaction and immersion, generating big profits and are part of
all-day life of many people. Interactive maps and virtual tours through muse-
ums or buildings are another interesting field for VR-applications, enabling
the user to walk through a museum or visiting a place by selecting it via
an interactive map in front of the computer or via a head-mounted display
(Stanković, 2015). Virtual Reality is also used for educational purposes like
training students in assembling complex mechanical machinery (Sportillo,
Avveduto, Tecchia, & Carrozzino, 2015) or by creating a virtual chemistry
and physics laboratory to enable students to learn under laboratory-like
conditions (Ali, Ullah, Rabbi, & Alam, 2014; Daineko, Ipalakova, Dmitriyev,
Giyenko, & Rakhimzhanova, 2015). In medicine Virtual Reality offers the
possibility of simulating surgeries (Lo Presti et al., 2014; de Paolis, Ricciardi,
& Giuliani, 2014), or to visualize 3D models of organs by superimposing
their MRI or CT images, to create an effective way to examine the corre-
sponding results (Ricciardi, Pastorelli, de Paolis, & Herrmann, 2015). The
before mentioned applications give only a brief overview about research
fields and possible usages for Virtual Reality systems.

This chapter described and defined Virtual Reality and showed some impor-
tant aspects and applications concerning VR. The upcoming text outlines
the evolution of head-mounted displays which are the definition of Virtual
Reality in the common sense as stated previously.

7

2. State of the Art

2.2. Head-Mounted Displays (HMD)

In his paper from 1968, Sutherland introduced a prototype which today
is known as the first head-mounted display. His invention included two
cathode ray tube (CRT) displays, used to render a simple wireframe scene in
front of the user’s left and right eye respectively and an arm-like structure
holding the HMD because of its weight and to keep track of the user’s
head position. Sutherland realized the importance of stereo vision to create
the illusion of depth in the rendered images which creates the feeling of
immersion, but pointed out that, “it is less important than the change that
takes place in the image when the observer moves his head” (Sutherland,
1968, p. 757). To achieve head tracking a sensor was added to the HMD
structure to generate view dependent images of the displayed scene to
enable users viewing the scene from different angles. An image of the
tracking device and the HMD structure is shown in figure 2.2 to get a
feeling of the size of this first prototype of a head-mounted display. In
the years after the presentation of his head-mounted display, devices to
enable interaction with virtual scenes, the usage of force feedback to gain
an even stronger feeling of immersion and tracking devices were tested
and researched. Although Sutherland’s paper was published 50 years ago,
today’s HMDs are using the same concepts as introduced by Sutherland,
two displays used to create a stereoscopic view and head tracking enabling
view dependent rendering of the virtual scene.

The biggest problem of VR and its systems were the missing applications, it
was said to be a technology without a problem (Kuusisto, 2015). Although
used for training purposes as mentioned earlier, HMDs were too expen-
sive for mass production and the missing “killer application” (Kuusisto,
2015, p. 21) prevented the breakthrough for head-mounted displays and
Virtual Reality. Maybe Luckey Palmer and his Oculus Rift finally get VR
going. Table 2.1 shows a summary of current head-mounted displays, their
availability and the companies standing behind them.

8

2. State of the Art

Figure 2.2.: Images of the head-mounted display invented by Sutherland. The left image
shows the tracking device, the right image shows the head-mounted display
with its two CRT displays (Evens, 2007).

2.2.1. Google Cardboard

As mentioned in the introduction of this work, computational power of
mobile devices is growing year-by-year and the equipment of different
equipment and sensors like cameras, GPS, Bluetooth, etc. are used to create
different kinds of applications. With the built-in tracking sensor of modern
mobile devices it is possible to query the device’s position and orientation
which in turn is needed to use the smartphone as a stereoscopic screen for
VR applications. On June 26, 2014 Google introduced Google Cardboard, a
simple cardboard headset construction enclosing a mobile phone, at Google
I/O bringing Virtual Reality to Android devices (Lardinois, 2014). Originally,
the idea emerged from the 20 percent project (Google employees are given
one weekday to dedicate it to their very own projects) of David Coz who
wanted to watch a stereoscopic YouTube video, but could not because of a
missing VR-headset. He realized that a makeshift headset wrapped around
a mobile device in combination with its sensors available to recognize the
head’s position would do the trick. After building the prototype, Google
decided to make an own VR project named Google Cardboard (Metz,
2015).

9

2. State of the Art

Company Name Available
Facebook Oculus Rift Now

HTC Vive Now

Sony
Playstation VR

(Project Morpheus) October 2016

Google Cardboard Now
Google Daydream Fall 2016

Samsung Gear VR Now
Consortium of Companies

(Intel, Razer, etc.) OSVR Fall 2016

Table 2.1.: Available and announced VR headsets and the companies behind them (Kelly,
2016; Kuusisto, 2015; “Daydream - Google VR,” 2016).

To use Google Cardboard Apps and play VR games on the mobile phone
two components, a viewer and a smartphone are needed, as stated earlier.
A multitude of viewers can be purchased online covering different price
categories or one can create a headset by using the construction plans
available on the official Google Cardboard homepage (https://vr.google.
com/cardboard, last visited 23-09-2016). A small sample of different viewers
is shown in figure 2.3. Software development kits (SDKs) for Android, Unity
and iOS are also available on the official site to develop own Virtual Reality
Apps for mobile phones (“Cardboard - Google VR,” 2016). This Google
project is mentioned in this section specifically because it is the basis for
the VR-headset, the pupils tinkered in school according to the construction
plans, to play the designed prototype described in chapter 4.

2.3. Video Games and Education

Video game industry has grown big over the years, with the evolution of
games and game mechanics, realistic graphics and sounds, more and more
people are playing video games. The Entertainment Software Association
(ESA) releases a yearly report, showing essential facts about the computer
and video game industry. The current report points out, that the average
American gamer is 35 years old (Entertainment Software Association, 2015),

10

https://vr.google.com/cardboard
https://vr.google.com/cardboard

2. State of the Art

Figure 2.3.: The image shows a sample of different viewers to play VR games or use the
existing VR applications available in app stores (“Get Cardboard - Google VR,”
2016).

in 2005 the average gamer’s age was 30 (Entertainment Software Association,
2005). 51% of American households own a dedicated game console and
42% are playing video games on a regularly basis (three hours or more
per week) (Entertainment Software Association, 2015). With this statistics
increasing on a yearly basis, using video games for educational purposes
gets an interesting industrial factor. Kapp (2012) reviews researches and
studies about the effectiveness of games and game elements used in a learn-
ing context and concludes, that learners can benefit from such technologies,
when implemented and presented in the right way.

This sections explains some key terms like digital game-based learning and
gamification and their use in learning applications.

2.3.1. (Digital) Game-Based Learning

The term digital game-based learning (DGBL) describes the process of
learning while playing a computer game (Prensky, 2007) and can be seen

11

2. State of the Art

as a specialization of the umbrella term game-based learning (GBL). GBL
focuses on learning by playing any kind of game, i.e. board games, card
games, video games, etc. match the definition of “game” in terms of GBL.

Since the creation of the first video games in the 70s and 80s, the idea of
learning by playing computer games was present. With the evolution of the
game market, from a small industry for young men interested in technology,
to a billion-dollar industry, more and more studies about learning in com-
bination with video games emerged. From the early 2000s the two terms
“Serious Games” and “Digital Game-Based Learning” replaced the term
“Edutainment”, short for education and entertainment (Breuer, 2011).

The term serious game, defined by Abt in 1971, describes all games with
an educational purpose without the intention to be played only for amuse-
ment (Abt, 1987). Digital game-based learning should feel like playing a
computer game without recognizing the learning effect or discovering the
content to be taught by the game (Prensky, 2007). It “is any marriage of
educational content and computer games” (Prensky, 2007, p. 145). Breuer
(2011) points out, that DGBL and serious games as defined beforehand, have
common elements as shown in the following enumeration, with serious
games going beyond when for example being used as distraction for painful
therapies. Although studies and researches differentiate between DGBL and
serious games, the aim of both concepts is, to use games for an educating
purpose going beyond mere entertainment. Breuer lists six common features
of DGBL and serious games:

1. Interactivity – learning by doing and experimenting.
2. Multimedia-based – visualizing/preparing content and feedback by

using 3D models, audio etc.
3. Involvement – the game should be fully engaging to keep the player

from distractions.
4. Challenge – increasing difficulty but beginner friendly, the game

should always challenge the individual skills to keep players moti-
vated.

5. Reward – rewards and feedback of progression should push self-
efficacy and motivation.

6. Social Experience – provide communication channels to connect play-
ers.

12

2. State of the Art

Considered as sets, digital game-based learning is a proper subset of serious
games and game-based learning and further of entertainment education
or short “Edutainment”, which stands for all kinds of educational content
enriched with entertaining elements, i.e. interactive museums. E-learning
on the other hand delivers learning content via and through electronic or
digital media, for example videos on the web, digital slides or audio files.
By adding different grades of game-like elements to the content, e-learning
intersects with Edutainment and its specializations, but it can stand on
its own without adding entertainment. Serious games fully contain DGBL
and have much in common with GBL but can go beyond as mentioned
earlier (Breuer, 2011). Figure 2.4 shows the sets of the different concepts and
their connections.

Figure 2.4.: The different learning approaches displayed as sets and their connec-
tions (Breuer, 2011).

2.3.2. Gamification

According to Deterding, Dixon, Khaled, and Nacke (2011) gamification has
been a contested term since its first appearance in 2008 and there have been

13

2. State of the Art

several definitions of gamification (Kapp, 2012). With the lack of academic
attempts to define gamification, Deterding et al. (2011) mentioned two
ideas current usages of the word are fluctuating between. “The first is the
increasing adoption, institutionalization and ubiquity of (video) games in
everyday life” (Deterding et al., 2011, pp. 9-10). The second idea is the
usage of game design and game elements in non-game contexts or products,
adding enjoyment which in turn is leading to engagement, motivation and
duration. Deterding et al. (2011) define gamification as “the use of game
design elements in non-game contexts” and thus favor the second idea
stated before.

Kapp (2012, p. 10) defines gamification as the usage of “game-based me-
chanics, aesthetics and game thinking to engage people, motivate action,
promote learning, and solve problems”. This definition of gamification is a
more suitable one than the definition by Deterding et al. (2011) with respect
to this work, because it fits the implemented prototype, its mechanics and
methods to convey the learning content. The implemented learning game
“VR-Matherallye” as described in chapter 4 uses well-known game-based
mechanics like collectible power-ups to increase time, points, etc., a platform
the player must not fall off and different styled levels. The fact that it is
played via head-mounted display, to enter the virtual world of the game,
fully engages players and motivates them to explore the world and its
elements. By solving math exercises of increasing difficulty to advance to
the next level and score more points, players are kept motivated to play on
and therefore learn while playing.

The chosen definition for gamification contains several key terms like game-
based mechanics, engagement, motivation or problem solving. By enriching
learning contents by different levels of these concepts, different types of
gamification can be created. This is important when creating and imple-
menting applications using gamification, which will be discussed in the next
section. It will define different types of gamification and the key elements of
educational applications to get a better understanding of how the concept
of gamification can be used to create an engaging learning experience.

14

2. State of the Art

2.3.3. Implementing Gamification

Creating learning applications using game elements, gamifying existing
systems and contents or designing a digital game-based learning application
from scratch is a challenging task. It is important to balance game mechanics
and educational content properly to keep players motivated and engaged.
The definition of gamification showed some key terms, which have an impact
on the look-and-feel of the application at hand. Applications using different
kinds of game-based elements with subtle or rare learning moments can
feel like ordinary computer games on the one hand, educational content
enriched with some game-based elements like highscores, achievements, etc.
on the other hand look like a learning website for example. To categorize
this variety of applications, Kapp, Blair, and Mesch (2014) define the term
interactive learning event (ILE) to combine these different types of gamified
applications under one umbrella term. To create a successful ILE Kapp et al.
(2014) list four important points to keep in mind:

1. Game-based (fun) elements and instructional, non-entertaining ele-
ments should co-exist and grow together to keep the right balance.

2. Interactivity ensures player engagement, player engagement results in
learning more and keeping the knowledge for a longer time.

3. Create a good story, the better the story and the story-telling, the more
the player is engaged. Story elements and learning goals should be
linked for a better learning experience.

4. Proper testing needs to be done in order to evaluate the ILE and it’s
elements.

When ready to implement an interactive learning event, keeping the goals
and important steps mentioned before in mind, Kapp et al. (2014) distin-
guish between three main types of ILEs, namely game, gamification and
simulation. In the context of interactive learning events, gamification gets a
new meaning and should not be mixed with the previous definition. The
three types or categories of ILEs are described and defined in the following
sections.

15

2. State of the Art

Game

A game could be broken down to activities, like matching game items
to other game items, collecting objects to progress in the game, solving
puzzles, exploring the game world etc. Most games contain a set of these
game activities, the user executes to progress or finish the game. For every
game, a well-defined game-space exists, the user is interacting within, to
reach new checkpoints, landmarks, goals or the end of the game, which is
called the winning-state of the game. With the existence of a winning-state,
the players know if they, or other players in case of a multi-player mode,
have won the game (Kapp et al., 2014).

By interacting with the current game state, the player changes the current
state and gets feedback about the changes made and visually recognizes the
effects, due to changing or moving game objects. By trial-and-error the user
can alter the game-state until the winning-state is reached. While interacting
with the game, the user learns which state is favorable and which one is not,
wrong or disadvantageous states can be altered to reach a more suitable
state. This process of interaction, feedback, decision making and evaluating
is known as the game cycle defined by Garris, Ahlers, and Driskell (2002).

In terms of ILE games, two different types can be distinguished, testing and
teaching games. In a testing game, already present knowledge of the players
is queried over and over again to gain a learning effect through repetition.
Teaching games on the other hand are building up knowledge by giving
how-to instructions about upcoming game activities or challenges, so the
users can succeed by using the previously gained knowledge (Kapp et al.,
2014). Combination of these two concepts are possible too, knowledge gets
build by instructing the player, this knowledge is then queried in different
tasks in the game to repeat and internalize the previously taught contents.

Gamification

In ILE-context, gamification is the usage of game elements to motivate and
engage learning people, to work through educational content to achieve
their learning goals. Gamification could be achieved by just using one
game element like badges, achievements, challenges, etc. or a set of such

16

2. State of the Art

game elements. For example, users of the gamified content get different
achievements or badges for working through different parts of the learning
content. The collected badges can be viewed and compared with other users
to compare the learning progress, which in turn leads to a motivational
effect to go on and earn new badges. Gamification does not offer a game
cycle, where users interact and change the state of the application, it merely
“uses parts of games but is no game” (Kapp et al., 2014, p. 56).

As with games, two types of gamification exist, namely structural and
content gamification. Structural gamification is used two enrich content
with game elements to guide the user through the learning content without
changing the content itself. Content gamification changes the learning con-
tent by using animations etc. to create a game-like experience (Kapp et al.,
2014).

A gamification ILE should be used to motivate learners in progressing
through educational content, an example of this kind of ILE is the website
Code School (www.codeschool.com, last visited 23-09-2016). This website
offers online programming courses consisting of slides, videos, interactive
programming challenges, badges and a scoring system to track the learners
progress and therefore is a great example of how to use game-like elements
to gamify content.

Simulation

A “simulation is realistic, controlled-risk environment where learners can
practice behaviors and experience the impacts of decisions” (Kapp et al.,
2014, p. 58). A simulation maps reality in an accurate manner into a virtual
game-like environment. It is used for training purpose to remove the real
world risks for the trainee. Crashing an airplane in the simulator does not
harm the trainee nor the trainer as a crash in the real world would do. The
learner is using previous knowledge or learned actions to succeed in the
simulation. Failure results in feedback, which in turn causes the user to
learn from wrong actions. The main purpose of simulations is therefore the
testing of knowledge by challenging the user with exercises.

17

www.codeschool.com

2. State of the Art

A simulation and a game have many elements in common. Interaction leads
to feedback and a change in behavior of the user as stated before as the game
cycle. There could be highscores, achievements or multi-player elements
as within games. The main difference is the realistic setting of simulations.
The more realistic a simulation is the better. Learning to fly an airplane
should be as realistic as possible and small mistakes should affect the virtual
airplane like a real airplane. Whereas in games flying an airplane is a simple
action manageable by every player without further knowledge.

As stated before, simulations should be used to query previous knowl-
edge. Instructors should teach the necessary content to be successful in the
simulation and challenge the trainee with different exercises (Kapp et al.,
2014).

Classifying the Prototype

According to the above taxonomy, the prototype implemented for this thesis
is a testing game. The game queries knowledge, the player already knows
or should know. It can further be seen as a matching game with the goal
of finding the right answer, or better, solution to the current equation.
According to Kapp et al. (2014, p. 49) using “a testing game to teach, the key
is to add repetition” and further by “getting an answer wrong, learning the
right answer through feedback, and then repeating the process until all the
answers are right”, learning can be achieved by using the testing approach.
The previous knowledge of the player is a factor for the time being needed
to meet the learning goals. Lesser knowledge results in a longer repeat-
error-feedback cycle, until the all goals are reached (Kapp et al., 2014). Due
to the lack of feedback after wrong calculations, the prototype in its current
state is not suitable for a learning-by-testing approach.

2.4. Maker Movement

With today’s availability of cheap technology and tools like 3D printers,
personal computers (PCs), tiny computers like the Raspberry Pi, the Arduino
or even further the Internet of Things (IoT), connecting all sorts of things

18

2. State of the Art

with the internet, inventing and creating, making, can be done by everyone.
Magazines like “Make”, FabLabs, conferences and fairs made “Making”
popular and more and more people are joining this maker movement. The
maker movement stands for creating and developing new things using
the before mentioned technologies. This can happen in fabrication labs
(FabLabs), Makerspaces or on the desktop at home (Schön et al., 2014).
This section outlines the history of the maker movement and shows how
making and education can and should be combined to create a new learning
experience, not only for children, but students and adults.

2.4.1. History of the Maker Movement

With the invention of microcomputing back in the 1970s, technology hob-
byists invented the personal computer and made it popular. Social clubs
like the Hombebrew Computer Club were founded all around the world
to share knowledge, technology and inventions. In 1985 the MIT Media lab
was founded with the purpose of learning by doing. The idea was to offer
expensive technology to hobbyists and makers to realize their ideas. The lab
was a big success and other universities followed the example and created
their own labs. Makers graduating from MIT’s media lab founded own
companies, invented new products to fuel the young maker movement. The
biggest invention of the media lab was the invention of new, other labs, to
invent new items or tools to be used by makers for creating their products,
the so called fabrication laboratories (Libow Martinez & Stager, 2013).

The tools and the space offered by FabLabs, like laser cutters, 3D printers
etc., are used to realize and manufacture own products but also create tools
to be used to create new products. Gershenfeld (2005) points out that these
FabLabs can become smaller, to fit on everyone’s desktop. Students working
in these labs have invented numerous of personal things and systems on
their own, combining different disciplines like technology, arts, etc.

In 2005 the magazine MAKE was published the first time, issued on a two-
week-basis. The magazine introduces makers and their projects and guides
through the development of own projects. In 2006 the first Maker Faire took
place in San Mateo, offering a stage for makers and people interested in
making (Schön et al., 2014). Today maker fairs spread around the world,

19

2. State of the Art

from April 16-17 2016 a maker faire took place in Austria the first time.
In his manifesto, Hatch lists nine principles, make, share, give, learn, tool
up, play, participate, support and change, defining the maker movement,
but he also states, that these principles are there to be altered, rewritten or
extended by anyone. “That is the point of making” (Hatch, 2014, p. 2).

With this brief history about making the next section shows the links
between making and education, as these two disciplines are connected
strongly.

2.4.2. Making in Education

According to Libow Martinez and Stager (2013), Seymour Papert can be
seen as the father of today’s maker movement. He wanted to revolution-
ize education in using modern technologies like computers not only for
problem solving, as they are and have been used, but for creating some
action. In the paper “Twenty Things to Do With a Computer” these previous
mentioned actions, like composing music, programming, etc. are described
and shown (Solomon & Papert, 1971). But Papert not only showed how to
use technology for better educational methods, he was a maker himself. He
invented the programming language Logo, to teach kids the concepts of
programming. He also worked on the first programmable robotic construc-
tion kits for LEGO (Libow Martinez & Stager, 2013). He coined the term
“Constructionism” which means that learners gain knowledge by using
tools, to realize their ideas (Papert, 1986).

With the invention of computers, the desire of using them, to teach schoolchil-
dren was evident. But the first computers were big machines, programming
was done by experts. Adults, apart from experts, did not know how to
program these complex computers, so how teach it to children? With the
previously mentioned invention of Logo by Seymour Papert, things changed
and schools used Logo to teach programing and mathematics to pupils. The
same is true for the maker movement. As stated before, FabLabs teach how
to use technology to create new tools, technology or products. Policy recog-
nized the importance of making, and curricula of schools were expanded
to teach these new working skills, but eventually, in 1999 this skill-based
approach was abandoned due to the rapid evolution of technology. The aim

20

2. State of the Art

is to teach about technology and how it works rather than teaching skills
how work with specific items (Blikstein & Krannich, 2013).

But Halverson and Sheridan (2014, p. 498) point out that “learning in
making is, emphatically, not interchangeable with schooling”. With the
invention of FabLabs and adaptions for schools the learning focus is placed
on “principles of engineering, robotics, and design”. Researches show how
to rebuild a classroom to make it a makerspace, to enable schoolkids ex-
perimenting with tools and technology to create. But there has not been
found a consensus yet, how making should fit into existing curricula or if
it should replace those curriculas. How should testing and grading look
like, as making combines the learning of different skills like mathematics,
physics etc., but also leadership (Thompson, 2014). Makers fear, that insti-
tutionalize making through school programs “will quash the emergence,
creativity, innovation, and entrepreneurial spirit that are hallmarks of the
“maker revolution”” (Halverson & Sheridan, 2014, p. 500). According to
Halverson and Sheridan (2014) “the great promise of the maker movement
in education is to democratize access to the discourses of power that ac-
company becoming a producer of artifacts, especially when those artifacts
use twenty-first-century technologies”. Learning through making has the
potential to reach the institutional and policy goals for learning in science,
technology, engineering and mathematics (Halverson & Sheridan, 2014).

Project-Based Learning

Closely related to making is the concept of project-based learning (PBL),
which was introduced by John Dewey in the 1890s. He noticed the im-
portance to integrate real-world problems and situations into the contents
taught in school. Project-based learning evolved and developed over the
years and there are exist many definitions and different interpretations
of the term (Habok & Nagy, 2016). Markham, Larmer, and Ravitz (2003,
p. 4) define PBL as “a systematic teaching method that engages students
in learning knowledge and skills through an extended inquiry process
structured around complex, authentic questions and carefully designed
products and tasks”. PBL has become more popular but faces challenges as
how to integrate it to school lessons and how teachers and students should

21

2. State of the Art

handle this form of schooling. Studies showed that project-based learning
results in high engagement of students or pupils and also teaching how to
plan, organize a project and communicate with others about aspects of the
project. Although project-based learning combines many positive aspects
of teaching and learning, it is not suitable for learning basic skills. These
basic skills or knowledge like mathematics, writing, reading, etc. needed
to realize the project have to be taught beforehand (Markham et al., 2003).
This work kind of used an inverse approach to PBL. The described math
game was implemented and evaluated in the school. After the evaluation a
tinkering project was realized with the evaluating children to create their
own cardboard headsets to play the prototype on their own. After the eval-
uation the pupils were highly motivated and everyone managed to realize
the complex tinkering project. Figure 2.5 shows a final cardboard headset,
work in progress and a pupil tinkering his cardboard headset.

Even though making has not yet been integrated in school lessons, making
with children is becoming more and more popular. There are workshops,
maker fairs and open labs were adult instructors are motivating children to
create and implement their own ideas. In the book Making-Aktivitäten mit
Kindern und Jugendlichen: Handbuch zum kreativen digitalen Gestalten, Ebner,
Schön, and Narr (2016) defined six principles to differentiate making activi-
ties with children from other projects or leisure time activities.

• The children are the main actors of the making process, they develop
an idea and create, implement and produce the final item.
• The result of the making process is an actual product, which can be

used after the work is finished.
• Making should support the development of creativity of the children.
• To create their products, children are learning how and where they

get the necessary skills to successfully implement their ideas on their
own. This is called self-organized learning.
• The process of making also leads to communication and knowledge

exchange between children working on different products or ideas.
• Making activities, in the best case, are offering possibilities to actively

change, improve and shape the world. The focus lies on principles like
recycling, sustainability or social engagement.

The handbook introduces important concepts of how to build a maker space

22

2. State of the Art

for children, which tools to use and how to teach it to the children. It offers a
variety of making projects which can be done by the children including road
maps for teachers to introduce the projects to the pupils. It also includes
the construction plans for the cardboard viewer which was tinkered by
the pupils which evaluated the prototype of the implemented math game
(Ebner et al., 2016).

Figure 2.5.: The image shows the work in progress and a pupil tinkering his VR headset
during special tinkering lessons. The left sub-image shows the different card-
board parts of the headset which were composed to form the final headset
shown in the topmost sub-image.

This chapter outlined the history and the state-of-the-art of the technologies
used to create the prototype of the implemented math game described in
the upcoming chapters of this thesis. The introduction of Google Cardboard,
combining making and broad available mobile technology to form a cheap
head-mounted display, opens new possibilities to immerge into virtual
realities without using expensive, state-of-the art hardware. The interactive

23

2. State of the Art

learning event “VR-Matherallye” has been classified as a testing game,
with respect to the described key concepts of digital game-based learning
and gamification. The chapter also discussed the importance and positive
effects of project-based learning in schools as well as the possibilities when
integrating making in school lessons. The next chapter will discuss and
show some examples of existing educational games.

24

3. Educational Games

The previous chapter outlined and defined the terms gamification, game-
based learning and the key elements of these concepts. This chapter of
the thesis is about available educational games which can be found on the
internet, for mobile devices or are available for the PC or consoles. The first
part describes educational browser games which can be found on various
website when searching for “educational games”. The second part shows
educational games available for mobile devices and the final part of this
chapter is about adapted PC “AAA”-games and console games to fit the
term educational game.

3.1. Educational Flash Games

Flash games are better known as browser games and can be found in various
forms all over the internet, they can be played even via social networks and
allow to connect with other people. This section will list and describe some
sample applications from the website www.learninggamesforkids.com (last
visited 23-09-2016), which offers different kinds of educational games for
preschool and elementary school kids for free. The site is well structured and
lists the different game categories available in the left side menu, example
categories are:

• Health Games – The games available in this category teach kids about
anatomy, allergies or how to stay fit.
• Vocabulary Games – Kids learn about the structure of words, vo-

cabularies of foreign languages or about synonyms in the available
games.

25

www.learninggamesforkids.com

3. Educational Games

• Geography Games – The games teach about the different continents
and their countries.
• Alphabet Games – This category offers games for every letter of the

alphabet.
• Math Games – Math games is subdivided in different specializing

categories like Addition, Subtraction, 1
st grade math, etc.

The educational game implemented for this thesis is a math game and
therefore the presented math games are all taken from the “Math Games”-
category to compare the ideas and approaches of the different games with
the prototype. Four games have been chosen, the first game is about learning
addition, the second and third one are about addition and multiplication
and the fourth game is a Pacman-like approach to learn the basic calculation
operations.

Math Lines 10/20

The aim of this game is to add bubbles with different values together to form
a chain summing to 10 or 20 respectively. Bubbles are generated randomly,
following a path circling around the center. If the chain of bubbles reaches
the end of the path, the game is over. To shorten the chain, the player has
to shoot bubbles with different values into the moving chain to create a
sub-chain of bubbles summing up to 10/20. Aiming and shooting the new
bubbles is done by moving and clicking the mouse. Image 3.1 shows a
screenshot of the first level of “Math Lines 10”.

Flash Cards

Flash Cards is available in different forms, “Flash Cards: Add Five” gen-
erates exercises where five is added to a random digit, “Flash Cards: Add
Double Digits” is about adding double digit values, etc. The Flash Card
games are also available to practice the different multiplication tables. The
game itself is a simple exercise generator displaying the different calcula-
tions following the specific restrictions. The player has to type in the correct
result and push the enter button on the keyboard to advance to the next

26

3. Educational Games

Figure 3.1.: The image displays a screenshot of the addition game “Math Lines 10” where
the user has to build sub-chains of sum 10.

calculation. After six correct solved calculations the player advances to the
next level. A screenshot of the game is displayed in figure 3.2.

Bus Driver Math

Again this game is available in the addition and multiplication category. The
player is the bus driver checking the money he gets from the passengers
entering the bus. There are three types of passengers, kids, adults and
retirees which have to pay different amounts of money for their bus ticket.
The passengers are entering the bus one after another and put money into
a cash box. The coins thrown into the box are displayed on the screen and
the player has to calculate the sum of the coins and decides if the current
passenger has paid enough or not. If all correct paying passengers entered
the bus the player advances to the next level. Figure 3.3 shows a screenshot
of the first level of the game.

Math Man

The last math game introduced is Math Man, which is a Pacman-like game
where the player collects points by eating them with the avatar, looking

27

3. Educational Games

Figure 3.2.: An image of the game Flash Cards: Add Five, were the player has to solve
exercises of type 5 + n, where n is a random digit, by typing in the correct
result into the input field.

Figure 3.3.: The screenshot shows a passenger entering the bus and the player has to decide
if the paid amount was correct or not.

28

3. Educational Games

like a circle with a mouth. There are enemies, displayed as ghosts, which
have to be eliminated by the player to advance to the next level. Every ghost
presents a digit which is the result of a calculation the player has to solve. To
display one calculation, the player has to navigate the avatar to a “?”-bubble,
which shows a calculation. This exercise has to be solved and the ghost with
the calculated result has to be eaten. Navigation of the avatar is done via
the cursor keys of the keyboard, a ghost is eliminated by moving the avatar
into the ghost. If the player tries to eat the wrong ghost one life is lost, if
no life is left, the game ends. The adapted Pacman-math game is shown in
figure 3.4.

Figure 3.4.: A screenshot showing the adapted Pacman-game to solve exercises and elimi-
nate the ghosts standing for the correct results by eating them.

With this four games the first section of this chapter is completed. All
described games try to teach and help children in learning adding and
multiplying, with math man also adding divisions and subtraction exercises.
Game one, “Math Lines” and game four, “Math Man”, can be compared
with the implemented prototype because they add game-like elements like
matching bubbles or moving an avatar through the game world. “Flash
Cards” is a simple calculation generator and is not augmented with game
elements, the game “Bus Driver Math” shows good looking graphics and
adds a kind of story to the game but is in its core elements like “Flash Cards”.
Therefore these two games cannot be compared with “VR-Matherallye”. The
next section shows and outlines educational games for mobile platforms.

29

3. Educational Games

3.2. Mobile Educational Games

Apps for mobile devices are offered in the corresponding app stores, where
all kinds of applications can be found. As with the browser games described
in the previous section, searching for “educational games” in Google’s play
store lists many learning games for children of all ages. According to Adkins
(2016) the market for mobile learning applications is growing strong in the
next five years due to the acceptance of mobile game-based learning. This
section will outline two mobile math learning games tested and played on a
mobile phone.

Einmaleins (Multiplication Tables)

This math game offers four different modes to train the different multiplica-
tion tables. In the first mode the player has to solve ten exercises in a row
to complete the level and the next level is unlocked. The level has a time
limit which is decreased if one calculation was wrong, if the exercise was
solved correctly, time is added to the clearing time for the level. The second
play mode challenges the player with exercises, a correct calculation adds
time and the player is rewarded with points, a wrong calculation decreases
the time. If the time is up, the current score can be saved. This mode ends
if the time is up, unless there is time on the clock, the player is challenged
with new exercises. Playing mode three is a multi-player mode, where two
players are solving exercises on one device. The fourth mode offers a list
with exercises the player can choose from to learn specific multiplication
tables. As shown in screenshot 3.5 for every calculation four answers are
offered with one being the correct result. The symbols between the equation
to solve and the possible answers are jokers, the player can use to ease
solving the exercise. The jokers are from left to right: get a new exercise,
slow down the time, fifty-fifty-joker and the last one solves the equation
correctly.

30

3. Educational Games

Figure 3.5.: A screenshot of the first playing mode of “Einmaleins”, the green bar at the top
displays the remaining time, jokers can be found in the middle of the screen
between the equation to solve and the possible answers.

Monster Numbers

In “Monster Numbers” the player has to help squirrel Tob to repair its
spaceship to get away from the planet it stranded. The game mixes action
elements with math to overcome obstacles and collect the missing parts
of the space craft. The story mode is divided into six areas, where every
area is subdivided into different levels challenging the player with different
exercises. In action levels, Tob runs through the side scrolling world and
has to jump over gaps and obstacles by swiping over the screen. In math
challenge levels the squirrel faces exercises which have to be solved by the
player to get by enemies. Tob’s friends in the game are monsters looking
like digits which are helping him to get through the levels, also his enemies
are digit-lookalikes. The game adapts its difficulty according to the players
age. Figure 3.6 shows an action level of the game, in image 3.7 the math
challenges are displayed.

The second game introduced in this section tries to merge gaming for enter-
tainment and learning by using separate action levels and math challenge
levels. The first game is a quiz-like game where the player only solves
exercises for points or to get to the next challenges. Both games include ele-

31

3. Educational Games

Figure 3.6.: This screenshot shows the side scrolling levels which are the action parts of the
game. The player has to avoid obstacles by jumping over or sliding through
beneath them.

ments used by the math game implemented for this thesis but the prototype
merges the math challenges with the gameplay in a more fluid way and
does not separate action from learning.

Figure 3.7.: In the math parts the player has to tries to solve the exercise correctly to
overcome the obstacle.

3.3. Educational Games for PC and Consoles

Educational games are available also for the PC and different consoles,
especially Nintendo offers learning applications for its Handheld Nintendo

32

3. Educational Games

DS consoles. A few PC games have been adapted and published as “Edu”-
versions to act as learning games for children and students. Examples are
“KerbalEdu” which is a sandbox game-based on a realistic physics model
where the players can learn about the connections of different physical laws,
“SimCityEDU PollutionChallenge!”, teaches players to build a green city or
the educational version of the game “Minecraft”, which will be described in
the next passage. This section also describes the game “Dr. Kawashima’s
Brain Training” which was developed for the Nintendo DS and published
in 2005.

Minecraft: Education Edition

The game “Minecraft” started as an independent game and was released
in 2009, it advanced to a big hit and was bought by Microsoft in 2014. The
aim of this first person game is to mine resources and craft new things with
them to advance in the game. The education edition of Minecraft is a special
modded (adapted) version for educational purposes. Teachers and pupils
share the same game level and have to solve different exercises together to
achieve specific goals. There are different approaches to bring Mincraft to
the classroom by creating different challenges for a variety of school subjects
(Gallagher, 2015). Figure 3.8 shows a screenshot of the game Minecraft with
its minimalistic graphic style.

Figure 3.8.: A screenshot of the game Minecraft showing its minimalistic graphics.

33

3. Educational Games

Dr. Kawashima’s Brain Training

This game was released in 2005 for the Nintendo DS console and offers
mini games to train the players brain. A starting session of a few random
mini-games determines how old the players game is and compares it with
the players real age. Afterwards, the game allows the player to play the dif-
ferent mini-games to train and get better and faster in solving the exercises.
This game maybe does not fit into the category educational game but is
mentioned here because it was a big success although it was not a classic
game where the player enters a virtual world, it only offered the mini-games
to train the brain and it showed the progress the player is making while
playing and repeating the exercises. Figure 3.9 shows a screenshot of the
game, where the player has completed the first mini-games to determine
his brain’s age.

Figure 3.9.: When starting the game the first time, it determines the brain’s age by letting
the player solve a few random mini-games.

This chapter gave an overview about existing applications and games which
can be classified as educational games, where every game has a different
approach to teach and engage the player at the same time. It is difficult
to create an ILE which satisfies the player’s desire to be entertained and
integrate the educational content fluidly into the game flow. The introduced
games show potential of such learning applications, but it is difficult to
integrate them into the classroom. The games have to be highly adaptable

34

3. Educational Games

to fit the teacher’s need and deliver the right content at the right time to the
pupils. When looking at the above described games, they are all restricted
to test already learned skills which in turn means that they cannot be used
in classes to teach new content. The next chapter describes the implemented
games and its mechanics in detail.

35

4. Prototype

The preceding chapters defined and introduced key terms like Virtual Real-
ity, game-based and project-based learning or the maker movement, showed
how to create educational applications in theory and listed some sample
applications to get a feeling for such applications. The following chapters
describe and present the technical part of this thesis, the implemented pro-
totype of the game “VR-Matherallye”, in detail. Section 4.1 outlines the
idea and reasons why the game was implemented and the goals it aims to
achieve, followed by the description of the gameplay and important game el-
ements in section 4.2. Section 4.3 describes the main parts of the underlying
game engine architecture and shows important parts of the implementation
and some sample code to ease following the description of processes like
initialization or level loading. The second part of the main part deals with
the process of evaluating the prototype and the results of this evaluation.

4.1. Idea

As stated in the introducing chapter of this work, with the increasing
computational power, their high availability and the variety of embedded
sensors, mobile devices are gradually replacing PCs or Laptops in our life.
Due to the fact, that children are growing up with mobile technology and
are used to play, work and use such devices day-to-day, the idea was born, to
implement an educational math game on a mobile phone, to ease accessing
the game by using technology known by children and pupils and also ease
the distribution of the game.

To create an accessible game the gameplay was kept simple, the player moves
through the virtual world and tries to solve exercises by collecting the correct

36

4. Prototype

result of the current calculation. After solving a couple of exercises the player
completes the level and advances to the next one, containing exercises of
increased difficulty. To keep pupils engaged and interested in playing the
game it was transferred to Virtual Reality by using Google Cardboard,
which was introduced in chapter 2. After implementing and evaluating
the first version of the game some improvements had to be integrated to
keep players motivated and make the game more fun. The second version
introduced a time limit, a simple scoring system and power-ups to add
more depth to the gameplay. Additional elements like obstacles, for example
trees or rocks, the player has to avoid or additional floors in the game level,
have been scheduled for the second version but have been delayed to future
versions of the game.

As stated earlier in the text, the game is called “VR-Matherallye” and is
available for Android devices in the Google Play Store. By using Google
Cardboard and the possibility of creating a personal viewer for the game
this project successfully combined making with digital game-based learning
and Virtual Reality. Figure 5.2 shows a sample of a customized viewer which
was used during the evaluation of the game. The next section will explain
the gameplay and game elements which were mentioned beforehand.

4.2. Gameplay and Game Elements

How does the navigation of the player’s avatar work? How are levels
structured? What items are available and what is their purpose? How are
exercises solved, when does the game end? How can the player reach
the next level? These questions are answered in the following subsections,
where the basic game mechanics are explained and described in detail. The
descriptions given do not contain technical details of the different mechanics,
which are covered in section 4.3, but can be seen as a manual for the game.

4.2.1. Navigation

An easy navigation and good controls are a key element in successful games,
sophisticated control mechanics can decrease the overall gaming experience

37

4. Prototype

of the player. Due to the lack of input devices for this VR game, a very simple
navigation scheme was implemented for the prototype. When a new level
is loaded, the player’s avatar is placed in the center of the level platform.
The camera used to render the scene sits atop the avatar as illustrated in
figure 4.1. The avatar moves along the viewing direction with constant
speed. By moving around the own axis, the player changes the viewing
direction and thus the moving direction of the avatar in the virtual world.

While the avatar is moving through the virtual world, the player is perceiv-
ing motion but is not moving himself, which is causing a discrepancy. This
discrepancy, called visually induced motion sickness, “typically occurs in
the absence of real physical motion, thus, motion sickness in simulators, cin-
emas, video-games, or Virtual Reality” Keshavarz and Hecht (2014, p. 521)
causes symptoms like nausea and dizziness. There have been researches
about motion sickness prevention i.e. using pleasant music as countermea-
sure against visually induced motion sickness Keshavarz and Hecht (2014)
or the Entrim 4D motion headset by Samsung, which is “using a combina-
tion of algorithms and Galvanic Vestibular Stimulation (GVS), a safe and
simple technique that sends specific electric messages to a nerve in the
ear, the VR accessory synchronizes your body with changing movements
in video content” (“Samsung to Unveil Hum On!, Waffle and Entrim 4D
Experimental C-Lab Projects at SXSW 2016,” 2016). This headset suggests
the brain that the body is moving like the avatar moves in the Virtual Reality
and thus prevent motion sickness. To keep the prototype’s implementation
simple, no technically nor algorithmic methods have been implemented
to prevent motion sickness to occur. The induced symptoms could lead to
difficulties in keeping the balance while standing and playing the game.
The simplest prevention of losing the balance is to sit down on a revolving
chair and do the navigation by rotating around the chairs axis.

The evaluation of the game, described in chapter 5, showed that neither
motion sickness nor symptoms like nausea or dizziness were a problem for
the children testing the game. The previous simple prevention method of
using a revolving chair was not needed by any of the pupils.

38

4. Prototype

Figure 4.1.: A simple cone model representing the player’s avatar. The camera, visualized
as the frustum of a pyramid, is placed on top of this cone.

4.2.2. Level Structure and Items

The level structure does not change in any of the five sample levels used to
evaluate the game. Every level consists of three key elements, the floor, the
player’s avatar and collectible items. All game objects except the collectible
digits are represented by simple geometric forms to keep the rendering
simple and fast and therefore prevent frame rate issues. The following text
describes and explains the game objects and their properties.

The avatar of the player is illustrated in figure 4.1, it is the player’s repre-
sentation in the virtual world. The cone shaped avatar always moves into
the viewing direction of the player. As stated before, before the game starts,
the avatar is placed in the center of the floor. The floor itself, another key
element, is represented by a scaled cube and bounds the area the player
can navigate his avatar on. Collectible items are divided into two different
types, the digits for solving the exercises and pickups acting as power-ups,
respectively.

The digits are represented by their corresponding 3D objects and are used
to solve the current exercise, the pickups are displayed as green, yellow

39

4. Prototype

and red boxes. The color of the power-ups visualizes the possible effect
of the pickup, where green stands for a positive, yellow for a neutral and
red indicates an undesired effect. As the avatar, the pickups and digits are
placed onto the floor before the game starts. To summarize the pickups
and their effect, the following enumeration lists all power-ups available in
the game and a description of their effects, figure 4.2 shows the in-game
representation of the pickups.

• Time Bonus
Adds thirty seconds to the remaining level time.
• Speed Up

Doubles the speed of the avatar for ten seconds. If a second Speed-Up-
pickup is collected, while the first speed up is still active, the doubled
speed is doubled again.
• Jump

The avatar executes a high jump, which can be used to get a better
view onto the platform or to jump over pickups or digits the player
does not want to collect. The avatar can be navigated while being
airborne to prevent it from a jump off the platform, which will end
the game immediately.
• Invert Controls

The controls are inverted, changing the viewing direction to the right
results in the avatar moving left and vice versa. Additionally, the
moving direction of the avatar changes from forward to backward.
The effect lasts five seconds. This is rather short but as testing showed,
inversion of the controls quickly leads to dizziness or motion sickness.

4.2.3. Gameplay

Following the description of the level structure, the game items and the
navigation of the avatar, this section explains, how to solve exercises and
collect items to accomplish a level in detail. During the loading process
of the level the avatar is placed in the center of the platform and the
collectible items are distributed randomly on the game floor. More precisely
ten digits, nine possibly wrong results and the correct result, and ten pickups
are generated every time a level loads. The generation of the pickups is

40

4. Prototype

Figure 4.2.: The four different pickups collectible in the game. In the top left corner, the
Time-Bonus-pickup, top right the Invert-Controls-pickup, bottom left the Speed-
Up-pickup and bottom right the Jump-pickup

completely random, there are no restrictions or rules the pickup creation
follows. It is possible that seven time bonuses and three speed-up pickups
are created, but no control-inversion or jump-pickup exists. The levels are
restricted to ten power-ups, no extra pickups are generated if all pickups
have been collected. Due to the time limit of the levels no player collected
all power-ups during testing therefore this restriction does not influence the
“fun-factor” of the game.

With all the game objects loaded successfully, five exercises or challenges for
the current level are generated randomly. The type of the exercises generated
depends on the chosen setting from the main menu which is described in
section 4.2.4. To start with a moderate difficulty and increase it to a more
challenging one, each level defines a range for the results of the generated
exercises. As for level one, “Plaza”, the results for the challenges range from
0 to 9 which means the correct result will always be less than ten. Higher
levels have other, broader ranges for the results to increase the difficulty.
This property also influences the generation of the digits for the level, which
are also generated in between the given level range. The ranges for every
level can be found in table 4.1. An exercises consists of two digits and either
the addition symbol (+) or the multiplication symbol (*) (depending on the

41

4. Prototype

chosen mode in the main menu) and the equals symbol (=), see listing 4.1
for the regular expression the exercises are created by.

1 [1−9]?[0−9] ((+[1−9]?[0−9]) | (∗ [1 −9])) =
Listing 4.1: The rule for exercise generation

After the level loading process is finished, all items have been generated,
power-ups and digits are placed onto the platform and the challenges are
generated successfully, the avatar starts moving and the clearing time for
the level starts to decrease. The clearing times vary from level to level and
are chosen tighter for higher levels to gain a second parameter to vary the
difficulty of the levels. The remaining time to clear the level can be increased
by correctly solving the current challenge or by collecting time-pickups
which add 30 seconds of extra time. All collectible items can be “picked” up
by navigating the avatar “into” the desired item. It seems like the avatar runs
through the object and a sound effect is played, if the item was successfully
collected. Three different scenarios are possible when collecting items: a
pickup is collected, the player picked the wrong digit or the player solved
the current exercise by choosing the correct digit. The following enumeration
explains every scenario in detail.

1. A pickup is collected
The simplest of all scenarios, the pickup is applied. The cube represent-
ing the pickup is destroyed, the number of available pickups for this
level is decremented. The possible effect of each pickup is explained
in section 4.2.

2. The wrong result is collected
A sound effect and a message printed on the screen signaling an
incorrect calculation. The player’s remaining time is decreased by five
seconds, the overall score decreases by ten points. The collected digit
is destroyed and a new one is generated randomly according to the
range of the current level.

3. The correct result is collected
As with the wrong result, a sound effect and a message indicate the
correct calculation. The remaining time is increased by five seconds
and additionally 50 points are added to the player’s score. The next

42

4. Prototype

calculation is displayed on the screen and a digit representing the
correct result is generated and placed randomly on the game platform.

Figure 4.3.: The game screen from the player’s point of view. The green circles indicate the
digits, the yellow circles are showing pickup items. The bar in the center of the
screen represents the remaining time; the current calculation is displayed in the
upper half. The green disc at the bottom displays a small fraction of the avatar.
The big digit on the left corresponds to an rotated 3, the digits in the game are
rotating around their own axis so they can be recognized from every angle.

While looping through the above scenarios the player may solve five ex-
ercises within the time limit of the level. If so, the player completed the
current level and advances to the next level. The remaining clearing time is
added to the player’s highscore and the next, more challenging level starts
to load. “VR-Matherallye” knows three ending scenarios which are depicted
in the following enumeration.

43

4. Prototype

1. Time limit is exceeded
The remaining time reaches zero and the player was not able to solve
five calculations.

2. Falling off the platform
If the avatar is navigated beyond the borders of the game floor, the
avatar falls into the void and the game ends immediately, even though
time is still remaining.

3. The player completes all challenges of every level
After clearing every of the five sample levels within the time limit
by overcoming the five challenges, the player has solved 25 exercises
correctly and completes the game.

Regardless of which ending scenario occurred the player’s score is shown
on the screen. Even though a non-winning scenario is reached the player
may have collected some points by calculating correct results or beating a
couple of levels. The player can enter a name to save the score, which can be
viewed on the “Highscores”-screen of the application to compare the score
with other highscores reached by previous playthroughs.

This section showed the rules of the implemented math game and describes
all of the game items and mechanics, table 4.1 summarizes the time limits
and number ranges for the generated calculations of each level. Figure 4.3
shows a screenshot of the first level of a game in progress. The prototype’s
human user interface (HUD) is only has two elements, a green bar indicating
the remaining clearing time of the level and the current exercise to solve.
The screenshot also shows the digits which have to be collected to solve
exercises and a three pickups, a time bonus and two speed-up pickups.

No. Level Name Time Limit Range Addition Multiplication Tables
1 Plaza 60 sec 0 – 9 3

2 City 55 sec 0 – 19 5

3 Jungle 50 sec 0 – 30 6

4 Desert 45 sec 0 – 50 8

5 Mountain 40 sec 0 – 99 7

Table 4.1.: The level properties for the five levels of the prototype.

44

4. Prototype

4.2.4. Menus and Settings

The preceding sections described the gameplay, the navigation mechanics
and how to interact with game items. The game enables the player to change
some settings before starting a new game in the main menu. From the main
menu, the game can be started, the highscores screen can be opened to show
saved highscores from previous games or the application can be closed. This
section completes the Gameplay-section of this chapter by describing the
different adjustable options of the main menu, the highscore list and the
“Save HighScore”-screen.

The main menu is always shown first when the app is started to provide the
settings for a new game. While the player is adjusting the different options
the application loads the game’s assets in the background so the game can
be started without loading times. A screenshot of the main menu is shown
in figure 4.4, it shows two radio button groups which are used to select the
available options. The meaning of all options and their effects on the game
is described in the following enumeration.

1. Choose your Level

• Addition only – calculations in every level of the game are addi-
tions
• Multiplication only – only calculations according to the levels

multiplication table row are generated
• Mix it – additions and multiplications are alternating

2. Are you using Google Cardboard?

• Yes – the game scene is rendered in VR-mode to work with the
cardboard headset. Every frame of the game has to be rendered
twice, one frame for the left and one for the right eye respectively.
See figure 4.12 for a screenshot of a Virtual Reality mode rendered
game scene.
• No – the scene is rendered onto the whole display of the mobile

device to enable playing without a VR-headset as well. This
option enables the player to play without a viewer, therefore
only one frame of the scene is rendered. The screenshot of the
gameplay 4.3 was captured in non-VR-mode.

45

4. Prototype

The buttons at the bottom of the main menu, from left to right, start a new
game, show the highscores screen or close the app. The highscores screen is
shown on the left in figure 4.5, it shows all saved highscores from previous
games in a list sorted in descending order of the scores. To create an entry
in this list, a name can be saved after a game ends in the before mentioned
“Save Highscores”-screen, which is depicted on the right in figure 4.5.

Figure 4.4.: The main menu showed after app startup. Radio buttons in the upper part of
the menu are setting game options, the button row in the lower part are used
to start a new game, show the highscore list or close the app.

This first part of chapter 4 introduced the key elements of the game, im-
portant mechanics to master the levels and challenges and described the
different settings available on the main menu of the app. The reader is now
ready to play the game and understand all gameplay processes without any
further instructions. The next part of this chapter is about important parts
of the implementation of the game and the game engine.

46

4. Prototype

Figure 4.5.: The left part shows the highscores list with some example entries, on the right
screen names and corresponding scores can be saved or discarded. The right
menu is shown after ending the game either by completing all five levels or in
case of losing.

4.3. Implementation

This section is about all technical details and the architecture of the engine
which runs the game. The engine’s design and structure was inspired
by the books Game Coding Complete and Game Programming Patterns by
McShaffry and Graham (2012) and Nystrom (2014). Android Studio served as
Integrated Development Environment (IDE) for implementation, debugging
and testing the source code. The complete engine is written in the Java
programming language. The reference mobile device, used for the evaluation
described in chapter 5, was the Motorola Nexus 6. The phones most important
specifications are listed in table 4.2 taken from “Motorola Nexus 6 - Full
phone specifications” (2000–2016).

The next sections describe the key components of the engine which are
the

• Actor-Component-System
• Process System
• Event System
• Rendering System

47

4. Prototype

and illustrate their connections with the final game prototype. The last
section of this chapter is about the heart of the engine, the game logic,
containing the main loop and using the different components of the engine
to run the game.

Motorola Nexus 6 Specifications
Dimensions 159.3 x 83 x 10.1 mm (6.27 x 3.27 x 0.40 in)
Display Resolution 5.96” (1440 x 2560 pixels)
Operating System (OS) Android OS v5.0 (Lollipop) upgraded to

v6.0 (Marshmallow)
Chipset Qualcomm Snapdragon 805

CPU Quad-core 2.7 GHz Krait 450

GPU Adreno 420

Table 4.2.: The specifications of the mobile device used to implement, debug and evaluate
the game.

4.3.1. Actors and Components

Every element shown on the screen while playing the game is called an
actor. The scene of a game can be seen as the stage, where every element
on this stage has to play a role and therefore can be compared to actors
on a real stage. The implemented engine knows two types of actors, static
actors and simple actors. The floor or the sky box for example are static
actors because the player cannot interact with them. The avatar, digits and
pickups on the other hand are simple actors which can interact with each
other. Each actor is a container or wrapper for actor components. These
components define properties and different behaviors of one actor, for
example the TransformComponent holds the actors position and rotation
for rendering operations or by adding a CollisionComponent the actor will
be registered within the collision system of the engine. By integrating this
actor-component-system the behavior of actors could be changed at runtime
by adding or removing components. Figure 4.6 shows a diagram of the
this system with the rectangle on the right representing an actor which
holds components B and C and possible other components indicated by
the dots. New components from the component pool on the right can be

48

4. Prototype

added to the actor if they are needed but also components from the actor
can be removed if the actor should lose a specific property. One actor can
only contain one component of a specific type, it is not possible to add two
TransformComponent objects to the actor.

Component AComponent D

Component B

Component C

Component E

Actor
Component Pool

...

Figure 4.6.: A simple abstraction of the used actor-component-system, with the actor rep-
resented by the rectangle on the left and the component pool on the right.
Components can be added or removed from the actor which is indicated by the
double arrow between the actor and the component pool. Removed components
are returned to the pool, one actor can only contain one component of the same
type.

Actors are defined in xml-files with the <Actor> tag being the root tag of
the definition file. Every component can be defined by its own tag, to add
a specific component to the defined actor, the components tag has to be
added as a child node of the actor. By using this design, the data defined
in these xml-files defines the behavior of an actor and therefore is called
data-driven development. Behavior or properties can be added by chang-
ing the components in the actor’s definition file and so the engine does
not need to be recompiled which in turn saves time when debugging the
component system. Listing 4.2 shows the definition file for the avatar in
the game. The type attribute of the <Actor> tag indicates the engine, that
the actor being loaded represents the avatar, the resource attribute contains
the path to the avatars game model. The child tags, <TransformComponent>,
<CollisionComponent> and the <MeshRenderComponent> of the root tag rep-
resent the avatar’s components. Components can have child elements too,
to define component-specific properties used for initialization, like the

49

4. Prototype

<Position> or the <YawPitchRoll> tags.

1 <?xml version=” 1 . 0 ” encoding=” utf−8” ?>
2

3 <Actor type=” Player ” resource=”models/player . ob j ”>
4 <TransformComponent>
5 <P o s i t i o n x=” 0 . 0 ” y=” 1 . 0 ” z=” 0 . 0 ”></ P o s i t i o n>
6 <YawPitchRoll x=” 1 . 0 ” y=” 1 . 0 ” z=” 0 . 0 ”></YawPitchRoll>
7 </TransformComponent>
8 <CollisionComponent></CollisionComponent>
9 <MeshRenderComponent>

10 <Color r=” 0 . 5 ” g=” 0 . 1 ” b=” 0 . 9 ” a=” 1 . 0 ”></Color>
11 </MeshRenderComponent>
12 </Actor>

Listing 4.2: The definition file for the avatar used in the game.

The different modules of the engine are organized in packages containing
all module specific classes. At the end of every section an image of the
package is shown to get a feeling of the classes and their connections within
such a module. Figure 4.7 shows the package containing the classes needed
for the actor creation and initialization. There exists only on Actor class
because the actors in the engine act as wrappers for the components and
therefore no different actor types are needed. The ActorFactory is used to
create actor containing the components defined in the actor definition file.

Figure 4.8 illustrates the components package, containing implementations
of the engines basic actor components. Components used in actor definition
files have to be registered in the ComponentFactory so the engine can add
the desired behavior to the actor. The engine’s 6 basic components are listed
and described in the following enumeration, the AbstractActorComponent

class is the parent class of every component. It defines the basic behavior
a component must have to act as actor component, by deriving from this
component new components inherit this basic behavior.

• CollisionComponent

Actors containing a collision component are added to the engine’s colli-
sion system. The avatar, digits and pickups have collision components
attached to enable the avatar collecting digits and pickups.

50

4. Prototype

Figure 4.7.: The actor package contains the actor class and the actor factory to create the
defined actors.

• AbstractRenderComponent

To enable a game object to be rendered, a render component for the
game object has to be implemented. This specific render component
has to inherit the basic render behavior from the AbstractRenderComponent
to draw the new game object into the scene.
• PropertiesComponent

This component is used by digits and contains the value of the dig-
its. This is needed to check if the player solved the current exercise
correctly, when the avatar collects a digit.
• TransformComponent

As mentioned before, it is used to query the position and the rotation
of an actor.
• AnimationComponent

Digits, the avatar and the pickups are animated gain a more dynamic
scene.

This section explained the flexible actor-component-system used by the
engine to augment actors with new properties or behavior, the next section
will explain the process system of the engine in detail. For further study,
the commented source code of the AbstractActorComponent can be found
in listing A.1 of the appendix.

51

4. Prototype

Figure 4.8.: Components are created via the factory during the level loading process. Dif-
ferent component implementations are shown in the implementation package.
All components have to inherit from the AbstractActorComponent-base class.

4.3.2. Processes

A process is a sequence of actions, which are executed for a specified time
or until some condition is met to end the execution. The time span between
the rendering of frame A and the next frame B is used by the engine
to update states or check for events which may have occurred. With the
implementation of processes in the game engine, a concurrent-like behavior
can be reached by updating different processes within this time span. For
instance animations can be mapped to processes by defining the length and
the different steps of the animation within an animation process. When this
process is started, the steps for the animation are executed whenever the
process is updated until the animation has reached the last step, which in
turn ends the process. By animating game objects with processes, which are
updated between the rendering process, the player gets the feeling that all
objects are animated at the same time, although the processes are updated
sequential between the rendering of frames A and B.

To updated and manage the processes running during the game, the engine
uses the ProcessManager. This manager keeps a list of active processes
which are updated one after another between the frames. The actions taking

52

4. Prototype

place between the rendering of two frames are displayed in figure 4.9,
to update the processes the method onUpdate in the ProcessManager is
called.

Frame A Frame A

Update
Processes

Update
Collision-System

Check for
Events

Time remaining before rendering

Figure 4.9.: The image shows the three actions which are executed by the engines main
loop to update the processes, the collision system and check for events which
have to be handled before the next frame.

All processes attached to the ProcessManager have to inherit from
AbstractProcess which defines the basic behavior and the states a process
can have which are listed in the following enumeration.

• Uninitialized – The process has been created but not yet initial-
ized. Initialization will be done in the next onUpdate call of the
ProcessManager.
• Running – This state indicates the process is running and will be

updated by the ProcessManager.
• Paused – A paused process will not be updated but stays in the active

process list until the state changes to running.
• Succeeded – The process has successfully ended and will be removed

from the active process list.
• Failed – An error occurred during the process update step, the process

is removed from the process list.
• Aborted – The engine aborted the process and removes it from the

list.

Two example processes running while playing “VR-Matherallye” are the
DelayedEventTriggerProcess which is initialized with a timestamp and
an event which will be triggered when the timestamp is reached or the
RunProcess responsible for moving the avatar in the viewing direction of

53

4. Prototype

the player. Figure 4.10 shows the processes package containing all relevant
classes to manage the processes in the engine. The RunProcess is not shown
in this figure because it is not a core process but a game specific process. The
source code of the ProcessManager and the AbstractProcess are shown in
listings A.2 and A.3 in the appendix. The upcoming section will explain and
describe the important event system of the engine.

Figure 4.10.: The process manager schedules the attached processes, all attachable pro-
cesses have to inherit from AbstractProcess. An example of an implemented
process is the DelayedEventTriggerProcess in the implementation package.

4.3.3. Events

Every game engine needs an event system which enables the communication
between engine systems without coupling all systems tightly. The event
system is, metaphorically speaking, the glue that keeps the different systems
of the engine stick together. An example will illustrate this concept in more
detail. When the player picks up a digit to solve an exercise, the collision
system reports a collision by creating a CollisionEvent. The event system
distributes this event to all systems of the engine, which have registered
to listen for CollisionEvents. In the example case, the audio system, the
rendering system and the game logic are listening to this kind of event. The
audio system plays a sound effect to indicate, that a digit was collected. The

54

4. Prototype

logic checks if the digit, the player picked up, solves the current exercise
or a wrong digit was picked. The rendering system removes the digit from
the screen, because picking up an item destroys the collected object. With
the help of the event pattern, the collision system can communicate with
the audio system, the renderer and the game logic, even though none of
these modules hold an instance of the collision system. If another system
wants to react to collision events, it only has to register for this event in
the event manager. With this decoupling, the complete collision module
could be rebuilt or exchanged by another system without touching all other
modules.

As with the ProcessManager, the EventManager is responsible for checking
its event queue for events and to trigger them if available. The EventManager

is also updated between the rendering of two frames as can be seen in fig-
ure 4.9. Components of the engine can register as listeners to specific events
by calling addListener, only components implementing the IListenable

interface can be added as listeners. When the game is running, events occur-
ring during playing are queued in the event queue, during the rendering
of two frames the EventManager checks the queue, removes the first event,
checks for registered listeners for the specific event and calls the invoke

method of the listening component with the event data to be processed.
This is done until the queue is empty.

1 /∗ ∗
2 ∗ Thi s i n t e r f a c e has t o be impl emented by a l l c l a s s e s which want

t o r e c e i v e e v e n t n o t i f i c a t i o n s
3 ∗ by t h e e v e n t manager .
4 ∗ /
5 public i n t e r f a c e I L i s t e n a b l e {
6 /∗ ∗
7 ∗ Handler f o r t r i g g e r e d e v e n t .
8 ∗
9 ∗ @param eventData t h e e v e n t d a t a o f t h e t r i g g e r e d e v e n t

10 ∗ /
11 void invoke (IEventData eventData) ;
12 }

Listing 4.3: The interface implemented by components which can be registered as listeners.

The EventManager also offers the possibility to immediately trigger an event

55

4. Prototype

without queuing it. This function is necessary for events occurring in the
initialization and starting states of the engine, for instance when loading
a level the starting scene graph is built by triggering events when a new
SceneNode should be added to the scene. If these events are queued in the
event queue, the renderer will not be able to render the scene because the
EventManager checks for available events only when the game logic is in
running state.

The EventManager only queues events inheriting from the base event class
AbstractEventData, listeners are only registered if they implement the
IListenable interface, as stated before. The simple interface consisting
of a single method invoke taking event data as the only parameter is
shown in listing 4.3. The implementations of the AbstractEventData and
the EventManager classes are shown in listings A.5 and A.4 respectively.
Figure 4.11 illustrates the engine’s event system and its classes. Terms like
scene and scene nodes have been used in this section and will be described
in detail in the next section which is about the rendering system.

Figure 4.11.: The event package of the engine. The EventManager registers listeners and dis-
tributes the events. All events inherit from the base event AbstractEventData.
The implementation-package contains some events used by the engine.

56

4. Prototype

4.3.4. Rendering System

When starting a new game, the game engine starts running and updates the
states of game objects like the avatar of the player, the digits, the pickups
and also manages the exercises the player has to solve. To visualize the
different game objects in their current states the engine uses the rendering
system. The rendering system is responsible for drawing the frames of
the game displaying the game scene on the screen of the mobile device to
enable the user to interact with objects or react to certain game situations.
Basically the rendering system is creating a two-dimensional image from the
three-dimensional scene containing all game objects in their current states. A
rendering system is used by nearly every game engine with engines of text
adventures being an exception. In modern engines, rendering systems are
highly optimized to render detailed scenes including a big amount of objects
in different render passes to create realistic virtual worlds. The methods to
render the frames for the implemented prototype were kept at a basic level
due to the usage of simple game objects consisting of a few vertices. The
renderer contains two basic classes, the Scene and the SceneNode, which are
responsible for the proper rendering of a frame and are described in the
following text.

Figure 4.12.: An image of the rendered scene when playing with the cardboard VR headset.
Two separate images of the scene have to be rendered, one image for the left
eye and one for the right respectively. The left and right image differ slightly
because the images are rendered with respect to the eye distance.

57

4. Prototype

The Scene class contains the scene graph, a tree-like data structure holding
all kinds of different SceneNodes, which in turn represent the game objects
and their current states, the LightManager, which contains all light sources,
and it keeps track of the transformation matrix stack, which is important to
render the game objects properly. It also offers methods to add or remove
nodes to and from the scene respectively and to start the rendering process.
When the engine calls the onRender method of the Scene, the scene graph
gets traversed depth-first starting with the RootNode. Figure 4.13 shows a
simplified scene graph to illustrated the tree-like structure.

Root

Floor Sky Avatar Digit

Digit Digit

Pickup...

Figure 4.13.: The scene graph constructed at the level loading process. Each node in the
tree contains a game object which is rendered when a rendering process is
triggered by the engine to draw the next frame.

“VR-Matherallye” is a Virtual Reality game, therefore the scene graph has
to be rendered twice, for the left and the right eye respectively, to create
two create two images of the scene which take the distance from one eye to
the other in account. By using the viewer and “merging” the two images
together, the feeling of depth and presence in the virtual world is generated.
Figure 4.12 shows the two images rendered for every frame by the rendering
system.

The SceneNode class is the base class for the different types of nodes, the
engine uses to build up the tree. Every node type has a different function but
inherits the basic functionality from SceneNode. The following enumeration
lists and describes the most important node types of the rendering system.

• CameraNode – This node represents the camera which sits atop the

58

4. Prototype

avatar, see figure 4.1. The camera properties define how to render
the game objects. The avatar and the camera can be seen as the pho-
tographer with its camera taking a picture of a scene. This picture
represents the frame rendered to the screen.
• LightNode – Adds a light source to the scene to enable the rendering

of shadows and highlights on game objects. These nodes are managed
by the LightManager but are not used in the current version of the
prototype.
• SkyBoxNode – This node is used to draw the sky and the surrounding

environment of the floor. It is a big cube enclosing all game objects
with the walls of the cube textured by images. Texturing the walls,
metaphorically speaking, is the process of sticking a poster onto a wall
to cover the empty or white space of the wall with a colorful picture.
• MeshNode – A MeshNode contains the game objects like the floor, the

avatar, etc. When the method onRender of this node is called, the object
within the node is rendered onto the screen.
• RootNode – As the name states, it is the root of the scene graph and

has a special purpose, it manages the render passes to draw a frame.
The rendering of a frame in modern engines is not accomplished in
one render pass but in a couple of different passes to create different
kinds of effects. This prototype is capable of rendering more passes
but in fact only one render pass is needed to draw a scene.

59

4. Prototype

1 private i n t getLod (Matr ix4 f V, Scene scene) {
2 Matrix4 f model =

m Parent . getSceneNodeProperties () . getToWorld () ;
3 Vector3 f p1 = new Vector3 f (m MinCoords . x , 0 . 0 f ,

m MinCoords . z) ;
4

5 p1 . mul (model) ;
6 Vector3 f camPos = new Vector3 f (V. m30 , V . m31 , V . m32) ;
7 p1 . sub (camPos) ;
8

9 / / c a l c u l a t e t h e d i s t a n c e from camera t o game i t em
10 double d i s t a n c e = Math . s q r t (Math . pow(p1 . x , 2 . 0) +

Math . pow(p1 . z , 2 . 0)) ;
11

12 / / t h e r e t u r n e d i n t e g e r d e t e r m i n e s t h e d i v i s o r
f o r t h e t r i a n g l e count

13 i f (d i s t a n c e > 1 2 0 . 0)
14 return m TrianglesCount ;
15 e lse i f (d i s t a n c e > 1 0 0 . 0)
16 return 3 ;
17 e lse i f (d i s t a n c e > 7 0 . 0)
18 return 2 ;
19

20 return 1 ;
21 }

Listing 4.4: The level of detail calculation in the MeshNode. Bigger distances lead to a bigger
divisor and the rendered object is drawn with fewer triangles.

Nodes can be created or destroyed on the fly by the game engine if certain
events occur during the game is running. To speed up the rendering process
two optimizations have been implemented, a rudimentary frustum culling
function and a primitive level of detail (LOD) display of game objects.
Frustum culling ensures that only objects which are visible by the camera
are rendered. Pickups or digits behind the user are not rendered to free
resources for objects which are in the player’s field of view (FOV). The
level of detail implementation checks the distance of the avatar to drawn
game objects. If the distance is bigger than the specified thresholds the
amount of rendered triangles of the corresponding item is decreased which
again increases rendering speed. If an object is far away, the player is able
to distinguish between a digit or a pickup and therefore this primitive
function does not affect the flow of play. Listing 4.4 depicts the source code

60

4. Prototype

of the LOD function, listing 4.5 shows the code of the frustum culling in
the isVisible method of the MeshNode. The method uses the frustum culler
offered by the scene to check if one of the vertices creating the bounding
rectangle, a rectangle defining the base area of the game item, is inside
screen space. If none of the four points lies in a space visible for the player
the object is not drawn.

1 public boolean i s V i s i b l e (Scene scene) {
2 i f (m Propert ies . getRenderPass () == RenderPass . STATIC) {
3 return true ;
4 }
5 Matrix4 f top = scene . getTopMatrix () ;
6 Vector3 f p1 = new Vector3 f (m MinCoords . x , 0 . 0 f ,

m MinCoords . z) ;
7 Vector3 f p2 = new Vector3 f (m MaxCoords . x , 0 . 0 f ,

m MinCoords . z) ;
8 Vector3 f p3 = new Vector3 f (m MaxCoords . x , 0 . 0 f ,

m MaxCoords . z) ;
9 Vector3 f p4 = new Vector3 f (m MinCoords . x , 0 . 0 f ,

m MaxCoords . z) ;
10

11 p1 . mul (top) ; p2 . mul (top) ; p3 . mul (top) ; p4 . mul (top) ;
12

13 i f (scene . getFrustumCuller () . i sPoint Ins ideFrustum (p1))
14 return true ;
15 i f (scene . getFrustumCuller () . i sPoint Ins ideFrustum (p2))
16 return true ;
17 i f (scene . getFrustumCuller () . i sPoint Ins ideFrustum (p3))
18 return true ;
19 i f (scene . getFrustumCuller () . i sPoint Ins ideFrustum (p4))
20 return true ;
21

22 return f a l s e ;
23 }

Listing 4.5: The MeshNode method isVisible is using the frustum culler to determine if
the object should be rendered or not because it is not in the field of view of the
player.

To summarize this section, the important parts of the rendering system are
illustrated in figure 4.14, to give an overview about the classes contained in
the renderer package. In the appendix commented sources of the SceneNode

61

4. Prototype

and a shortened version of the Scene class are listed in listings A.6 and A.7
respectively. The last section of the chapter illustrates the game logic of the
engine.

Figure 4.14.: The render package of the engine and its most important classes. The Scene-
class manages the scene graph and its nodes. The different kinds of nodes
needed to render the scene can be found in the nodes-package. The MeshNode

is used the most and is responsible for drawing the game objects of the scene.

4.3.5. The Game Logic

The game logic is the heart of the game engine, it initializes all engine
sub-systems in the correct order, reads the level definition files and starts the
process of creating the actors with their components and the scene nodes
for the scene graph. It also generates the pickups, digits and calculations
needed for the loaded level. If everything has been initialized, the engine
starts the main game loop, which is running until the player ends, loses
or discards the game. The logic itself is a state machine, which means the
behavior changes according to the current state the logic is in. The following
enumeration lists and describes the possible states of the logic. Figure 4.15

62

4. Prototype

displays the states of the logic and the possible transitions between the
different states.

• INITIALIZING – As stated beforehand, the engines sub-systems like
the process manager, the event manager or the collision system are
initialized. The RunProcess moving the avatar through the virtual
world is created and attached to the process manager. With all steps
completed successfully, the state is switched to the next state LOAD-
ING GAME ENVIRONMENT.
• LOADING GAME ENVIRONMENT – With all the sub-systems up

and running, the first level of the game is loaded. After successfully
loading the level the ten pickups and digits are loaded, the RunProcess

is started and the background music is loaded into the audio system.
The logic switches its state to RUNNING.
• RUNNING – The RUNNING state is the main state of the game

loop, the logic stays in the running state until the level is finished
successfully by solving all challenges or the player loses. During
the RUNNING state the clearing for the level decreases, the process
manager, the event manager and the collision system are updated
and a new frame is drawn, as illustrated in figure 4.9. From the
RUNNING state two state changes are possible, back to the LOAD-
ING GAME ENVIRONMENT state if the level is cleared by the player
or to the GAME OVER state, if the player could not finish the level or
all levels have been finished successfully.
• GAME OVER – If the game is over, the sounds played by the sound

system are stopped, the RunProcess is aborted, the engine shuts down
all sub-systems and the current score of the player is sent to the “Save
Highscore” screen. After saving or discarding the score, the application
displays the main menu and the player could start a new game or
check the highscores.

When the logic has reached the LOADING GAME ENVIRONMENT state
a new level is loaded. Loading a level is achieved by parsing the level
definition file which is again, as with the actor definition files, an xml-file.
The root tag of a level defining file is the World tag, actors which are part
of the world or level follow as child tags. The level definition file knows
three types of child tags, StaticActors, Actors and Properties. The tags

63

4. Prototype

Initializing
Loading

Game Env.
Running

Game
Over

Level completed

Player lost

Player completed the game

Figure 4.15.: The game logic displayed as state machine with the possible transitions
indicated by arrows. A switch from “running” to “loading game environment”
is performed to load the next level. If no new level can be loaded, the player
has completed the game. When the clearing time of the level reaches zero or
the avatar falls off the platform the player loses. In any case, the last state is
always the “game over” state.

are described in the following itemization.

• StaticActors – All actors defined within this tag are treated as static
actors by the engine. In “VR-Matherallye” only two kinds of static
actors are known, the platform and the sky box.
• Actors – The game items like the digits and the pickups are actors,

they are animated and the avatar can interact with them. The avatar
itself also is an actor which is moving through the virtual world. All
actors define within the Actors tag indicate that they have a special
purpose in the game.
• Properties – The child tags of this tag define the level properties like

the time limit, the bounds for calculation results and the number of
digits which should be rendered in the level.

Listing 4.6 shows the definition file for level one, “Plaza”, of the game. The
properties of the game are defined, the clearing time is 60 seconds, the
results of the additions generated do not exceed nine, if the game runs in
multiplication-mode, only multiplications with three are generated. The
maximum amount of generated digits is set to ten, which means that there
are always ten digits present in the world with one being the correct result.
The only actor define within the Actors tag is the avatar because the pickups

64

4. Prototype

and digits for this level are generated dynamically after the level file was
parsed.

1 <?xml version=” 1 . 0 ” encoding=” utf−8” ?>
2 <World>
3 <S t a t i c A c t o r s>
4 <Actor resource=” a c t o r s /skybox . xml”></Actor>
5 <Actor resource=” a c t o r s / f l o o r . xml”></Actor>
6 </ S t a t i c A c t o r s>
7 <Actors>
8 <Actor resource=” a c t o r s /player . xml”></Actor>
9 </Actors>

10 <P r o p e r t i e s>
11 <TimeLimit l i m i t =”60”></TimeLimit>
12 <AdditionBound from=”0” to=”9”></AdditionBound>
13 <M u l t i p l i c a t i o n T a b l e s row=”3”></ M u l t i p l i c a t i o n T a b l e s>
14 <DigitNumber number=”10”></DigitNumber>
15 </ P r o p e r t i e s>
16 </World>

Listing 4.6: The level definition file of the first level in the game.

The following passage describes the instructions executed when a level
definition file is parsed by the game logic. At first, the static actors are
loaded, in the implemented prototype there is no difference in loading a
static actor and a regular actor like the avatar. The <actor> tag is parsed,
the resource attribute of the tag points to the actor definition file, listing 4.2
shows the avatar definition. As described in the actor-component-system
section, an actor object is created and its components are added. This is done
for every actor in the level textttxml-file to create and initialize all actors for
the current level. After creating all actors, the level specific properties and
rules are parsed. If the process ended successfully the logic generates the
exercises and pickups according to the level properties and the logic state
changes to RUNNING. A simplified flow diagram of this process is displayed
in figure 4.16.

This chapter described the game “VR-Matherallye” and its gameplay in-
cluding game items, game flow and how to navigate through the virtual
world. The second part gave some insights into the underlying game engine,
which was created from scratch to develop the game. The most significant
sub-systems of the engine and their connections among each other were

65

4. Prototype

End of File?

Read Actor Tag

Component Tag Available?

Read Component
Tag

Create Actor

Create
Component

Initialize
Component

Add Component to
Actor

No

Yes

No

Yes

Load Level
Properties

Figure 4.16.: A simplified flow diagram of the function used to load and initialize a level
and its actors. Two while loops are needed to initialize a level properly.
The first loop iterates through actor tags in the level definition file. If an
actor is created, the second loop iterates over the components defined in the
actor’s definition file, creates and initializes the component and adds it to the
actor created beforehand. After all actors have been created the level specific
properties are loaded and the level is loaded successfully.

66

4. Prototype

introduced and the game logic including its states and their transitions were
described. The next chapter is about the evaluation of the game by pupils of
a school class and its results.

67

5. Evaluation

The following chapter describes the evaluation process and its results in de-
tail. This chapter is structured in two subsections, the first section describes
the evaluation setup and process. Section 5.2 shows the results, issues and
conspicuousnesses observed while the pupils were testing the game with the
VR headset mounted and finally draws a conclusion about the evaluation of
the prototype.

Figure 5.1.: The image shows the 14 pupils who evaluated the prototype.

68

5. Evaluation

5.1. Evaluation Setup

The evaluation took place on the 18
th of December in the “Neue Mittelschule

(NMS) Fröbel” (secondary school) and lasted about two hours. The class,
taught by Mrs. Silvana Aureli, counts 15 pupils, with one child missing on
the evaluation day. The proportion of boys and girls was almost equal, the
children were aged 12 to 13. Figure 5.1 shows a group picture of the class
taken after the evaluation. After a short introduction of the game, about the
evaluation and their tasks, the pupils were split into groups of three and one
group of two. The evaluation took place in a separate room with only the
current testing group present. Every group ran through a four-step-process
to test and evaluate the game. Figure 5.2 shows an image of the cardboard
headset used by every group to evaluate the prototype.

Figure 5.2.: The picture shows the cardboard headset used to evaluate the prototype. The
pupils tinkered their own headsets after the evaluation and therefore one
headset was provided and used to evaluate the game.

1. Introduction
The evaluating group of pupils got a brief introduction about the game
and its mechanics. Neither of the children in the group had played

69

5. Evaluation

the game before nor had experience with VR headsets or VR games.
Therefore the children got instructions on how to use the cardboard
VR headset, used for the evaluation, how to navigate through the
virtual world and what the aim of the game is.

2. First playthrough
After introducing the game and the VR headset, the first child of the
group started playing the game for the first time. Every child had the
chance to play until it failed or completed the game. Each child of the
testing group played the game once and after that first playthrough,
possible questions were answered, some advice was given to avoid
common mistakes made in the first iteration of the test.

3. Second playthrough
The second playthrough did not differ from the first, the children
played the game again, considering the tips given after the first
playthrough.

4. Evaluation
The evaluation of the game consisted of five statements about the
game. The current evaluation group had to rate the statements by
marking them with one of four differently tempered smileys shown
in figure 5.3. One statement had to be rated with one smiley by the
whole group, not child by child. This “cut-off”-method was used to
gain some extra information about the feelings of the children during
their discussion on how to rate the current statement. This approach
has already been used in previous studies (Spitzer & Ebner, 2015).

The evaluation process lasted approximately two hours. Each of the five
evaluation groups ran through the above described evaluation process and
rated five evaluation statements. Two months after the evaluation took
place, the pupils created their own VR-headsets in six school lessons. The
construction manual needed to tinker the headsets and the bi-convex lenses
to create the stereoscopic vision of the 3-dimensional world created by the
prototype, were offered by the Graz University of Technology. According to
the teachers supervising the tinkering lessons, all pupils enjoyed creating
their own personalized viewers. The results of the evaluation and the ratings
of the statement are presented in the next section.

70

5. Evaluation

Figure 5.3.: The image shows the statements and the smileys used to rate each statement.

5.2. Results of the Evaluation

As described in point 4 of the evaluation process, each of the evaluating
groups rated five statements by marking them with smileys. The statements
were read out loud with additional explanations about each statement’s in-
tentions, to be sure every child understands the meaning of every statement,
begin able to rate them properly. To get a measurable result, every type of
smiley is assigned a score from -2 to +2. The scores are added up group by
group with the sum being the final score of the statement.

The meanings and scores of the different smileys can be found in table 5.1.
The following sections describe each statement, the group-specific ratings
and a brief interpretation of each result. In parentheses below each statement,
the original German statement, as used during the evaluation, is shown.
Observations made during the playthrough-steps of the evaluation process
and discussions, on how to rate the statements, respectively, are described
and interpreted afterwards.

71

5. Evaluation

Smileys and their meaning Points

The evaluating group totally agrees with the
statement of the question 2

The group was not fully convinced but positive
about the statement 1

The children were skeptical about the statement,
but did not completely disagree -1

The group totally disagrees with the statement -2

Table 5.1.: The four different smileys used to rate the statements of the evaluation.

5.2.1. Statement 1

“The game was fun.”
(Das Spiel hat mir Spaß gemacht.)

Results and Interpretation

Table 5.2 shows the final results for statement one. The groups all agreed
on statement one and rated it with the highest score. The children liked to
immerge into the virtual world created by the game and navigate through
it. It was an overwhelming experience for the children to be part of a virtual
world. The fact that no child of the evaluating groups had experience with
Virtual Reality certainly had a big influence on the rating.

72

5. Evaluation

Group No. Points
1 2

2 2

3 2

4 2

5 2

Result 10

Table 5.2.: Final ratings of statement 1.

5.2.2. Statement 2

“Calculating was fun using the game.”
(Mit dem Spiel hat mir das Rechnen spaß gemacht.)

Results and Interpretation

Statement two had the same rating as statement one, shown in table 5.3. The
intention of this statement was to check, if the children like solving math
exercises while playing a computer game. On the one hand the high rating
could mean that all evaluating children liked the game-based approach
of learning math, on the other hand, while discussing in the group, some
pupils pointed out that the calculations were too easy. The reason for the easy
exercises is, that the prototype’s difficulty was designed for pupils attending
primary school. Maybe the rating of statement two could have been worse
by generating calculations with a higher difficulty. A few children also
stated that they did not try to solve the exercises but they liked exploring
the virtual world. Again the effect of diving into a virtual world via the VR
headset could have influenced the ratings of this statement.

73

5. Evaluation

Group No. Points
1 2

2 2

3 2

4 2

5 2

Result 10

Table 5.3.: Final ratings of statement 2.

5.2.3. Statement 3

“It was easy to navigate through the virtual
world.”

(Es fiel mir leicht, mich in der Spielwelt zu bewegen.)

Results and Interpretation

A good navigation mechanic is an important requirement to create a good
user experience. The intention of Statement three was to evaluate the imple-
mented control mechanics of the game. With a final score of seven points,
all groups rated the game’s navigation positive, although three of the five
groups did not rate the statement with the full score. Playing a computer
game always implies the use of an input device like a game controller, a
keyboard or the fingers touching the screen of a mobile device, to control
and navigate the game’s avatar. Since the evaluating pupils were not used
to VR-Games nor VR-Headsets, navigating by moving the whole body took
some time to get used to. All evaluating children managed to navigate
through the world and play the game properly on their second playthrough,
therefore, the navigation mechanics can be considered a success, table 5.4
shows the ratings and the final score of statement three.

74

5. Evaluation

Group No. Points
1 1

2 2

3 1

4 2

5 1

Result 7

Table 5.4.: Final ratings of statement 3.

5.2.4. Statement 4

“It would be fun, playing the game together
with my friends.”

(Es würde mir Spaß machen, wenn ich das Spiel zugleich mit
meinen Freunden/Freundinnen spielen könnte.)

Results and Interpretation

The aim of statement four was to evaluate the need for a multi-player mode.
The final score of seven points (shown in table 5.5) indicates that multiple
players playing the game together in the same virtual world would be a
good extension to the current prototype of the game. Surprisingly one group
did not like the idea of playing against other players and rated the statement
with -1 points, but a multi-player mode being a good idea was the general
opinion.

75

5. Evaluation

Group No. Points
1 -1
2 2

3 2

4 2

5 2

Result 7

Table 5.5.: Final ratings of statement 4.

5.2.5. Statement 5

“I would play the game at home.”
(Ich würde das Spiel gerne zu Hause spielen.)

Results and Interpretation

The intention of this statement was to find out, if the evaluating group
members would download the game and play it at home with their own
VR-headset. All groups top-rated this statement which indicates the success
of the combination of game-based learning in a virtual world combined
with making. The Virtual Reality experience motivated the children to tinker
their own VR-Headset, which was done in six lessons. For the sake of
completeness, table 5.6 shows the final results of statement five.

Group No. Points
1 2

2 2

3 2

4 2

5 2

Result 10

Table 5.6.: Final ratings of statement 5.

76

5. Evaluation

5.2.6. Observations during Evaluation

Following the results of the evaluation, this section describes some obser-
vations made during the evaluation process and gives some explanations
about their potential causes. The following enumeration does not follow a
specific order.

1. The evaluating person begins to walk forward.
While playing the game some pupils began to walk into their viewing
direction, this could be caused on the one hand, by the desire to move
the avatar faster into its moving direction, or on the other hand by
the discrepancy caused by moving within the virtual world without
moving one’s body.

2. The testing pupils did not see the current calculation to solve.
This observation was mostly made during the first playthrough. When
the evaluating person was told to look up a little to see the current
exercise the person lifted the head which moves the game’s camera
upward, causing the calculation to move upward as well. The eyes
have to be moved upwards to see the exercise without changing the
camera angle in the game. This could take some time to get used to it.

3. Bending the whole body or tilting the head to the left or right was
used to navigate the avatar.
Due to the new way of navigation without input devices and only
a brief introduction to the new navigation mechanics some pupils
needed some extra time to get used to navigation of the avatar and
tried different motions to control the avatar. After some short instruc-
tions during playing the game, the pupils internalized the navigation
process.

4. The first playthrough during the evaluation process was worse than
the second playthrough.
The first playthrough sometimes lasted only a few seconds because the
avatar fell off the game platform due to bad navigation. If this was the
case, the child was instructed again and could start the playthrough
one more time which resulted in a far better first playthrough. The
cause of this problem is the start of the game, because the avatar moves
forward immediately after the game starts. Until the evaluating person

77

5. Evaluation

has adjusted the VR-Headset the avatar may have moved close to one
edge of the platform.

5. Motion sickness did not occur.
This was a very positive observation because previous, adult, test
persons could not play the game for a long time due to motion sickness.

6. During the evaluation-step there was little discussion between the
group members.
The intention of forming groups to evaluate the game was to observe
the discussion during rating of the statements. Unfortunately, there
was little discussion between the group members, almost every group
had some kind of leader, who took the rating-smileys and distributed
them with the other group members agreeing in most of the times.

This chapter explained the evaluation process and the rating of the evalua-
tion. The results of the evaluation have been very positive and they suggest
that there is a high potential in game-based learning combined with making
when used for educational purpose. The next section concludes the thesis
and discusses issues which should be tackled when extending the prototype
and outlines potential improvements to the current prototype.

78

6. Discussion and Conclusion

This is the concluding chapter of the thesis, it will discuss issues and
possible solutions of the implemented prototype and outlines future research
directions. It will also answer the research questions from the introductory
chapter of this thesis. This chapter contains three sections, the first section
carries a discussion about the results of the prototype’s evaluation, the
second section is about future research direction and the third section finally
concludes this thesis.

6.1. Discussion

The discussion section is divided into three subsections, the first part is about
the gameplay of the prototype, discussing the positive and negative aspects
and how to improve the game flow. The second section lists problems
and mistakes, which occurred during the evaluation process and gives
suggestions on how to improve it for further evaluations.

6.1.1. Gameplay

The game design and the navigation mechanics were held simple, to create
a beginner friendly, Virtual Reality experience. Navigating by changing
the viewing direction is an easy way to control the avatar but was hard to
explain, while introducing the game’s mechanics to the pupils. After a first
hands-on and a few minutes with the game, all pupils got used to it. The
game objects could clearly be recognized and the children understood how
to solve calculations and use the pickups to their advantages. Changing the
level after three correct solved exercise also added to the fun factor of the

79

6. Discussion and Conclusion

game and motivated the pupils in the group, to solve more exercises than
the previous group member to advance to the next level.

Some pupils pointed out, that calculations are too easy to solve, but as
stated in the in the previous chapter, the prototype was implemented for
pupils of primary schools. With a short interval given to bound the results
of additions, sometimes preceding exercises result in the same solution.
A better Random Number Generator (RNG) has to be implemented, to
solve this problem and to get a better distribution of the exercises. Another
problem is a drop of the frame rate, which occurs when too much objects
have to be rendered. This could also be prevented by a more advanced RNG
distributing the created objects equally over the gaming platform to avoid
placing to many digits or pickups on the same area of the platform. But
a better distribution will not completely fix this problem. If the avatar is
positioned near a boundary of the game floor and the player changes the
viewing direction, to get back into the middle of the platform, the player
gains a big field of view, containing many game objects, which in turn have
to be rendered and a frame rate drop could occur. The engine has to be
extended by more advanced rendering patterns to get a steady frame rate
in all possible situations. Positively the frame rate problem either did not
occur during the evaluation or it did not disturb the game experience for
the pupils although it occurred. If the prototype is extended or revised these
problems have to be addressed. The current calculation to solve, displayed
in the upper area of the screen was not seen by all pupils at once. A better
way to display text onto the screen should be implemented to make the
player see the calculations immediately without any help.

The combination of the simple game mechanics and the new experience of
emerging into a virtual world via a VR-Headset was an exciting experience
for the pupils, there were no complaints about the simplistic graphics
or missing realism, which is standard in AAA-games (spoken “triple A”,
standing for high budget video games) on the new console generations or
the PC nowadays. As suggested by Kapp et al. (2014), the prototype should
be extended to offer a story and story-telling to provide better engagement
and long-term motivation. A feedback system and better evaluation of the
learn progress should be implemented to visualize the learning progress of
the player, which has a motivating effect too. Adding new challenges like
boss-fights, a multi-player mode, enabling comparison with other human

80

6. Discussion and Conclusion

players, may increase engagement as well as adding connection to social
media. Showing the learning progress to friends via social media could lead
to engaging friends to replay the game and progress further in the game.

6.1.2. Evaluation

The four step evaluation process, as described in chapter 5, turns out to be
a good method to gain information about the prototype. The evaluating
group size of three pupils per group and one group of two was a good
decision. The groups were big enough to have the attention of every group
member while introducing the game and the headset and to deal with the
limited time for the whole evaluation process.

A problem of multiple groups was the introduction of the game for every
group. Future groups may have gotten a more detailed introduction due to
mistakes made by previous groups. Also two playthroughs have not been
planned, but after the first playthrough of group one, a second playthrough,
after a second briefing, seemed to be necessary and it showed that every
group needed this extra briefing and a second playthrough.

Evaluating the game via rating statements using smileys was very intuitive
for the children. Every statement was read out loud and additional informa-
tion was given to be sure, every statement is understood by every child. The
intention of three group members having only one vote for a statement was,
to observe the pupils, while discussing how to rate the statement and gain
some additional information about the thoughts and feelings of the children.
Unfortunately, as stated in the evaluation chapter, every group had some
kind of leader, distributing the smileys at first. The other group members
agreed in most cases without having a discussion about the rating. Rating
the statements by pupil and a little interview on the one hand could have
resulted in some additional or more precise information but on the other
hand would have exceeded the time limit for this evaluation. Distributing
smileys to every child in the group could be a second way to improve the
rating process. Now each child gets the chance to rate each statement and by
different ratings of the same statement could result in a discussion between
the pupils.01

81

6. Discussion and Conclusion

Despite these shortcomings, the evaluation process itself was good enough
to gain some vital information and results, to build atop for improvements
and extensions of the prototype. It clearly showed, that the pupils are willing
to use and play educational games and enjoyed the game-based approach.
Table 6.1 summarizes the known issues and suggested solutions as listed in
the above text.

No. Issue Solution

1
Same solution for subsequent ex-
ercises

Add a more advanced random
number generator.

2

Possible drops of the frame rate
resulting in jerking and thus
could result in motion sickness.

Implement a more advance ren-
dering algorithm including bet-
ter Level-Of-Detail (LOD) me-
chanics.

3
Current exercise is difficult to
see.

Implement a better Human User
Device (HUD) and find better
ways to position text elements
on screen.

4 No story was added to the game. Add a compelling story for a
higher level of engagement.

5
Common game elements are
missing

Add well-known game elements
like a multi-player mode, ene-
mies, boss fights, etc.

6

Introduction of the game to ev-
ery single evaluating group was
biased.

Create a script to follow when
introducing the game to the eval-
uating groups.

7
No discussion during the rating
of the statements.

Rating the statements by pupil
including a little interview.

Table 6.1.: A list of the issues and suggested solutions identified during the evaluation and
testing of the prototype.

82

6. Discussion and Conclusion

6.2. Future Research Directions

The evaluation of the prototype in the school showed that there is a high
potential in educational games. Children are used to playing games and the
combination of playing and learning is a great way to break up old structures
of today’s teaching. A more advanced prototype could be used for testing
pupils or to submit results of a homework. All pupils get the same exercises
and play the game at home. Their results are submitted as homework.
Another step would be the integration into lessons, to make the game a tool
for the teachers, to teach new content to pupils. For that purpose, a good
feedback system to better evaluate and visualize the learning progress of
every pupil, has to be implemented. Also further testing of the prototype
has to be done to fix unknown flaws in the gameplay.

Using the prototype during school lessons and integrating such an edu-
cational medium into learning scenarios in school demands some initial
training for teachers to use this new schooling method properly. It should
be evaluated how such training for a teaching staff should look like and
if it demands explicit training lessons for teachers or if precise guidelines,
on how to integrate and use such media in school, will be sufficient. The
aforementioned integration of story elements should be evaluated as well.
How could adding a story be done and how will the story elements fit with
the math content tested by the current prototype. How can challenges of the
game mask mathematical calculations and integrate them into the gameplay
to blend learning and playing without being recognized by the player.

The time period between the evaluation and the tinkering lessons should
be better timed for future experiments and evaluations. After the first
hands-on pupils are motivated and engaged to create their own headsets to
immediately play the game. By delaying the tinkering lessons too long the
motivational effect could suffer. Further research should investigate how
the possibility of creating a personalized head-mounted display fosters the
creativity and tinkering skills of the pupils.

83

6. Discussion and Conclusion

6.3. Conclusion

The aim of this thesis was to evaluate the need for educational computer
games in combination with making. The game mechanics and implemen-
tation details have been described in the previous chapters of this thesis,
the making-part consisted of tinkering a VR-Headset made of cardboard.
The game was evaluated by 14 pupils with one headset and a testing de-
vice. After the evaluation, the children tinkered their own VR-Headset with
the help of their teachers to play Virtual Reality games. In six lessons the
pupils created their own, personalized Virtual Reality viewers. The teachers
mentioned the positive attitude of the pupils during the tinkering lessons
and were amazed by the high motivated children, although it was no easy
task to tinker the cardboard headsets. The lessons were a big success and
the pupils were happy with their headsets. Figure 6.1 shows examples of
the headsets created by the pupils. (RQ1)

Figure 6.1.: The headsets tinkered by the pupils in extra school lessons to play the prototype
and other VR games.

Although the game was kept very simple in its presentation due to perfor-
mance bottlenecks, resulting from mobile hardware and the simple render-

84

6. Discussion and Conclusion

ing system, the pupils were excited to play the game. Emerging into the
virtual world via the cardboard headset was an overwhelming experience,
because none of the evaluating children used a VR-Headset ever. The results
of the evaluation have been positive throughout the evaluation process
and none of the pupils felt motion sickness nor criticized the game or its
mechanics. Navigation within the virtual world needed some time, so the
children got used to it, but the learning curve was steep and every child
was able to solve exercises and therefore was motivated to play on. (RQ2)

The results of the evaluation clearly show, that educational games in com-
bination with making can be a great success. The prototype created an
extended learning experience for the pupils. Using their mathematical
knowledge to advance in the game motivated the pupils to play on and
try again after failing to finish a level or the game. By using and playing
“VR-Matherallye”, the process of repetition to tighten the mathematical
skills of the children is added a fun and motivational component, leading to
long-term engagement. To improve the learning experience, the mathemati-
cal content must be highly adapted to the level of education of the users.
Additionally, a compelling story should be added and the user interface
must be improved to keep the pupils or players motivated and to reduce
the time of teacher introductions. (RQ3)

The impact of a better looking, realistic 3D game using educational elements
and integrating one or more new elements, mentioned in the recommenda-
tions of the previous section, could have an even greater impact and show
great potential to be used in schools and for education of pupils. Maybe
the positive and educational effects of learning by doing and game-based
learning will revolutionize learning as we know it today.

85

Bibliography

Abt, C. C. (1987). Serious games. Lanham, MD: University Press of America.
Adkins, S. S. (2016, August). The 2016-2012 Worldwide Self-paced eLearn-

ing Market: Global eLearning Market in Steep Decline. Ambient Insight.
Retrieved September 16, 2016, from http://www.ambientinsight .
com / Resources / Documents / AmbientInsight The % 202016 - 2021

Worldwide Self-paced%20eLearning Market.pdf
Ali, N., Ullah, S., Rabbi, I., & Alam, A. (2014). The Effect of Multimodal

Virtual Chemistry Laboratory on Students’ Learning Improvement.
In L. T. de Paolis & A. Mongelli (Eds.), Augmented and Virtual Reality
(Vol. 8853, pp. 65–76). Lecture Notes in Computer Science. Cham:
Springer International Publishing. doi:10.1007/978-3-319-13969-2 5

Blikstein, P. & Krannich, D. (2013). The makers’ movement and FabLabs
in education. In J. P. Hourcade, N. Sawhney, & E. Reardon (Eds.),
Proceedings of the 12th International Conference on Interaction Design and
Children (p. 613). doi:10.1145/2485760.2485884

Breuer, J. (2011). Spielend lernen? eine bestandsaufnahme zum (digital) game-
based learning. Landesanstalt für Medien NRW. Retrieved May 4, 2016,
from http://lfmpublikationen.lfm-nrw.de/index.php?view=product
detail&product id=190

Burdea, G. & Coiffet, P. (2003). Virtual reality technology. Academic Search
Complete. Wiley. Retrieved April 16, 2016, from https://books.google.
ca/books?id=0xWgPZbcz4AC

Cruz-Neira, C., Sandin, D. J., & DeFanti, T. A. (1993). Surround-screen
projection-based virtual reality: the design and implementation of
the CAVE. In M. C. Whitton (Ed.), SIGGRAPH ’93 Proceedings of the
20th annual conference on Computer graphics and interactive techniques
(pp. 135–142). New York: ACM. doi:10.1145/166117.166134

86

http://www.ambientinsight.com/Resources/Documents/AmbientInsight_The%202016-2021_Worldwide_Self-paced%20eLearning_Market.pdf
http://www.ambientinsight.com/Resources/Documents/AmbientInsight_The%202016-2021_Worldwide_Self-paced%20eLearning_Market.pdf
http://www.ambientinsight.com/Resources/Documents/AmbientInsight_The%202016-2021_Worldwide_Self-paced%20eLearning_Market.pdf
http://dx.doi.org/10.1007/978-3-319-13969-2_5
http://dx.doi.org/10.1145/2485760.2485884
http://lfmpublikationen.lfm-nrw.de/index.php?view=product_detail&product_id=190
http://lfmpublikationen.lfm-nrw.de/index.php?view=product_detail&product_id=190
https://books.google.ca/books?id=0xWgPZbcz4AC
https://books.google.ca/books?id=0xWgPZbcz4AC
http://dx.doi.org/10.1145/166117.166134

Bibliography

Daineko, Y., Ipalakova, M., Dmitriyev, V., Giyenko, A., & Rakhimzhanova,
N. (2015). 3D Physics Virtual Laboratory as a Teaching Platform. In
L. T. de Paolis & A. Mongelli (Eds.), Augmented and Virtual Reality
(Vol. 9254, pp. 458–466). Lecture Notes in Computer Science. Cham:
Springer International Publishing. doi:10.1007/978-3-319-22888-4 34

de Paolis, L. T., Ricciardi, F., & Giuliani, F. (2014). Development of a Seri-
ous Game for Laparoscopic Suture Training. In L. T. de Paolis & A.
Mongelli (Eds.), Augmented and Virtual Reality (Vol. 8853, pp. 90–102).
Lecture Notes in Computer Science. Cham: Springer International
Publishing. doi:10.1007/978-3-319-13969-2 7

Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design
elements to gamefulness. In A. Lungmayr (Ed.), Proceedings of the 15th
International Academic MindTrek Conference Envisioning Future Media
Environments (pp. 9–15). New York, NY: ACM. doi:10.1145/2181037.
2181040

Ebner, M., Schön, S., & Narr, K. (2016). Making-Aktivitäten mit Kindern und
Jugendlichen: Handbuch zum kreativen digitalen Gestalten (1. Auflage).
Norderstedt: Books on Demand.

Entertainment Software Association. (2005). Essential Facts about the Com-
puter and Video Game Industry. Retrieved May 4, 2016, from http:
//www.tntg.org/documents/gamefacts.pdf

Entertainment Software Association. (2015). Essential Facts about the Com-
puter and Video Game Industry. Retrieved May 4, 2016, from http:
//www.theesa.com/about-esa/esa-annual-report/

Evens, E. D. (2007). A brief history of (virtual) reality. Retrieved May 4, 2016,
from http://kunochan.com/?p=33

Gallagher, C. (2015). Minecraft in the classroom: Ideas, inspiration, and student
projects for teachers (Online-Ausg). San Francisco: Peachpit Press.

Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, Motivation, and
Learning: A Research and Practice Model. Simulation & Gaming, 33(4),
441–467. doi:10.1177/1046878102238607

Gartner Press Release. (2016). Worldwide Device Shipments to Grow 19

Percent in 2016, While End-User Spending to Decline for the First
Time. Retrieved August 21, 2016, from http://www.gartner.com/
newsroom/id/3187134

Gershenfeld, N. (2005). Fab: The coming revolution on your desktop - from
personal computers to personal fabrication. New York, NY: Basic Books.

87

http://dx.doi.org/10.1007/978-3-319-22888-4_34
http://dx.doi.org/10.1007/978-3-319-13969-2_7
http://dx.doi.org/10.1145/2181037.2181040
http://dx.doi.org/10.1145/2181037.2181040
http://www.tntg.org/documents/gamefacts.pdf
http://www.tntg.org/documents/gamefacts.pdf
http://www.theesa.com/about-esa/esa-annual-report/
http://www.theesa.com/about-esa/esa-annual-report/
http://kunochan.com/?p=33
http://dx.doi.org/10.1177/1046878102238607
http://www.gartner.com/newsroom/id/3187134
http://www.gartner.com/newsroom/id/3187134

Bibliography

Grimus, M. & Ebner, M. (2014). Learning with Mobile Devices Perceptions
of Students and Teachers at Lower Secondary Schools in Austria. In J.
Viteli & M. Leikomaa (Eds.), Proceedings of World Conference on Educa-
tional Multimedia, Hypermedia and Telecommunications 2014 (pp. 1665–
1674). AACE.

Habok, A. & Nagy, J. (2016). In-service teachers’ perceptions of project-based
learning. Springerplus, 5(83). doi:10.1186/s40064-016-1725-4

Halverson, E. R. & Sheridan, K. (2014). The Maker Movement in Education.
Harvard Educational Review, 84(4), 495–504. doi:10 .17763/haer.84 .4 .
34j1g68140382063

Hatch, M. (2014). The maker movement manifesto: Rules for innovation in the
new world of crafters, hackers, and tinkerers. New York: McGraw-Hill
Education.

Heilig, M. L. (1962). Sensorama simulator. US Patent 3,050,870. Google
Patents. Retrieved April 19, 2016, from https://www.google.com/
patents/US3050870

Kapp, K. M. (2012). The gamification of learning and instruction: Game-based
methods and strategies for training and education. Pfeiffer essential re-
sources for training and HR professionals. San Francisco, CA: Pfeiffer.

Kapp, K. M., Blair, L., & Mesch, R. (2014). The gamification of learning and
instruction fieldbook: Ideas into practice. San Francisco, CA: Wiley.

Kelly, K. (2016). The untold story of magi leap, the world’s mos secretive
startup. Retrieved April 19, 2016, from http://www.wired.com/2016/
04/magic-leap-vr/

Keshavarz, B. & Hecht, H. (2014). Pleasant music as a countermeasure
against visually induced motion sickness. Applied ergonomics, 45(3),
521–527. doi:10.1016/j.apergo.2013.07.009

Kuusisto, F. (2015). Vr head-mounted displays. XRDS: Crossroads, The ACM
Magazine for Students, 22(1), 65. doi:10.1145/2837754

Lardinois, F. (2014, June). The story behind google’s cardboard project.
Retrieved August 21, 2016, from http://techcrunch.com/2014/06/26/
the-story-behind-googles-cardboard-project/

Libow Martinez, S. & Stager, G. (2013). Invent to learn: Making, tinkering,
and engineering in the classroom. Torrance, Calif.: Constructing Modern
Knowledge Press.

Lippman, A. (1980). Movie-maps: An application of the optical videodisc to
computer graphics. In J. J. Thomas (Ed.), Proceedings of the 7th annual

88

http://dx.doi.org/10.1186/s40064-016-1725-4
http://dx.doi.org/10.17763/haer.84.4.34j1g68140382063
http://dx.doi.org/10.17763/haer.84.4.34j1g68140382063
https://www.google.com/patents/US3050870
https://www.google.com/patents/US3050870
http://www.wired.com/2016/04/magic-leap-vr/
http://www.wired.com/2016/04/magic-leap-vr/
http://dx.doi.org/10.1016/j.apergo.2013.07.009
http://dx.doi.org/10.1145/2837754
http://techcrunch.com/2014/06/26/the-story-behind-googles-cardboard-project/
http://techcrunch.com/2014/06/26/the-story-behind-googles-cardboard-project/

Bibliography

conference on Computer graphics and interactive techniques (pp. 32–42).
New York, NY: ACM. doi:10.1145/800250.807465

Lo Presti, G., Freschi, C., Sinceri, S., Morelli, G., Ferrari, M., & Ferrari,
V. (2014). Virtual Reality Surgical Navigation System for Holmium
Laser Enucleation of the Prostate. In L. T. de Paolis & A. Mongelli
(Eds.), Augmented and Virtual Reality (Vol. 8853, pp. 79–89). Lecture
Notes in Computer Science. Cham: Springer International Publishing.
doi:10.1007/978-3-319-13969-2 6

Markham, T., Larmer, J., & Ravitz, J. L. (2003). Project based learning handbook:
A guide to standards-focused project based learning for middle and high
school teachers (2nd ed.). Novato, CA.: Buck Institute for Education.

McShaffry, M. & Graham, D. (2012). Game coding complete (Fourth Edition).
Course Technology, Cengage Learning.

Metz, C. (2015, January). The inside story of google’s bizarre plunge into
vr. Retrieved April 22, 2016, from http://www.wired.com/2015/06/
inside-story-googles-unlikely-leap-cardboard-vr/

Nystrom, R. (2014). Game programming patterns (First Edition). Genever
Benning.

Motorola Nexus 6 - Full phone specifications. (2000–2016). Retrieved March
16, 2016, from http://www.gsmarena.com/motorola nexus 6-6604.
php

Cardboard - Google VR. (2016). Retrieved September 1, 2016, from https:
//vr.google.com/cardboard

Daydream - Google VR. (2016). Retrieved September 1, 2016, from https:
//vr.google.com/daydream

Get Cardboard - Google VR. (2016). Retrieved September 1, 2016, from
https://vr.google.com/cardboard/get-cardboard

Samsung to Unveil Hum On!, Waffle and Entrim 4D Experimental C-Lab
Projects at SXSW 2016. (2016). Retrieved September 5, 2016, from
https://news.samsung.com/global/samsung-to-unveil-hum-on-
waffle-and-entrim-4d-experimental-c-lab-projects-at-sxsw-2016

Papert, S. (1986). Constructionism: A New Opportunity for Elementary Science
Education.

Prensky, M. (2007). Digital game-based learning (Paaragon House ed.). St. Paul,
Minn.: Paragon House.

Ricciardi, F., Pastorelli, E., de Paolis, L. T., & Herrmann, H. (2015). Scalable
Medical Viewer for Virtual Reality Environments. In L. T. de Paolis &

89

http://dx.doi.org/10.1145/800250.807465
http://dx.doi.org/10.1007/978-3-319-13969-2_6
http://www.wired.com/2015/06/inside-story-googles-unlikely-leap-cardboard-vr/
http://www.wired.com/2015/06/inside-story-googles-unlikely-leap-cardboard-vr/
http://www.gsmarena.com/motorola_nexus_6-6604.php
http://www.gsmarena.com/motorola_nexus_6-6604.php
https://vr.google.com/cardboard
https://vr.google.com/cardboard
https://vr.google.com/daydream
https://vr.google.com/daydream
https://vr.google.com/cardboard/get-cardboard
https://news.samsung.com/global/samsung-to-unveil-hum-on-waffle-and-entrim-4d-experimental-c-lab-projects-at-sxsw-2016
https://news.samsung.com/global/samsung-to-unveil-hum-on-waffle-and-entrim-4d-experimental-c-lab-projects-at-sxsw-2016

Bibliography

A. Mongelli (Eds.), Augmented and Virtual Reality (Vol. 9254, pp. 233–
243). Lecture Notes in Computer Science. Cham: Springer International
Publishing. doi:10.1007/978-3-319-22888-4 17

Schön, S., Ebner, M., & Kumar, S. (2014). The Maker Movement. Impli-
cations of new digital gadgets, fabrication tools and spaces for cre-
ative learning and teaching. Retrieved May 6, 2016, from http : / /
www.openeducationeuropa.eu/de/article/The-Maker-Movement.-
Implications-of-new-digital-gadgets,-fabrication-tools-and-spaces-
for-creative-learning-and-teaching

Solomon, C. & Papert, S. (1971). Twenty Things to Do With a Computer.
Retrieved May 6, 2016, from http : / / www. stager. org / articles /
twentythings.pdf

Spitzer, M. & Ebner, M. (2015). Collaborative Learning Through Drawing
on iPads. In S. Carliner, C. Fulford, & N. Ostashewski (Eds.), Pro-
ceedings of World Conference on Educational Multimedia, Hypermedia and
Telecommunications (pp. 633–641).

Sportillo, D., Avveduto, G., Tecchia, F., & Carrozzino, M. (2015). Training
in VR: A Preliminary Study on Learning Assembly/Disassembly Se-
quences. In L. T. de Paolis & A. Mongelli (Eds.), Augmented and Virtual
Reality (Vol. 9254, pp. 332–343). Lecture Notes in Computer Science.
Cham: Springer International Publishing. doi:10 .1007/978 - 3 - 319 -
22888-4 24

Stanković, S. (2015). Virtual Reality and Virtual Environments in 10 Lectures.
In A. C. Bovik (Ed.), Synthesis Lectures on Image, Video, and Multimedia
Processing (Vol. 8, pp. 1–197). Morgan & Claypool Publishers. doi:10.
2200/S00671ED1V01Y201509IVM019

Sutherland, I. E. (1968). A head-mounted three dimensional display. In
AFIPS (Ed.), Proceedings of the December 9-11, 1968, fall joint computer
conference, part I (pp. 757–764). doi:10.1145/1476589.1476686

Thompson, G. (2014). The Maker Movement Conquers the Classroom. THE
Journal (Transforming Education through Technology. Retrieved May 6,
2016, from https://thejournal.com/Articles/2014/04/30/The-Maker-
Movement-Conquers-the-Classroom.aspx?Page=2

90

http://dx.doi.org/10.1007/978-3-319-22888-4_17
http://www.openeducationeuropa.eu/de/article/The-Maker-Movement.-Implications-of-new-digital-gadgets,-fabrication-tools-and-spaces-for-creative-learning-and-teaching
http://www.openeducationeuropa.eu/de/article/The-Maker-Movement.-Implications-of-new-digital-gadgets,-fabrication-tools-and-spaces-for-creative-learning-and-teaching
http://www.openeducationeuropa.eu/de/article/The-Maker-Movement.-Implications-of-new-digital-gadgets,-fabrication-tools-and-spaces-for-creative-learning-and-teaching
http://www.openeducationeuropa.eu/de/article/The-Maker-Movement.-Implications-of-new-digital-gadgets,-fabrication-tools-and-spaces-for-creative-learning-and-teaching
http://www.stager.org/articles/twentythings.pdf
http://www.stager.org/articles/twentythings.pdf
http://dx.doi.org/10.1007/978-3-319-22888-4_24
http://dx.doi.org/10.1007/978-3-319-22888-4_24
http://dx.doi.org/10.2200/S00671ED1V01Y201509IVM019
http://dx.doi.org/10.2200/S00671ED1V01Y201509IVM019
http://dx.doi.org/10.1145/1476589.1476686
https://thejournal.com/Articles/2014/04/30/The-Maker-Movement-Conquers-the-Classroom.aspx?Page=2
https://thejournal.com/Articles/2014/04/30/The-Maker-Movement-Conquers-the-Classroom.aspx?Page=2

Appendix

91

Appendix A.

Sources

A.1. Actor-Component-System

AbstractActorComponent

1 /∗ ∗
2 ∗ Base c l a s s f o r a l l a c t o r components .
3 ∗ /
4 public a b s t r a c t c l a s s AbstractActorComponent implements

IActorComponent {
5 protected Actor m Owner ;
6

7 /∗ ∗
8 ∗ S e t s t h e component owner .
9 ∗

10 ∗ @param owner t h e owner o f t h e component
11 ∗ /
12 public void setOwner (Actor owner) {
13 m Owner = owner ;
14 }
15

16 @Override
17 a b s t r a c t public boolean i n i t (XmlPullParser parser) ;
18

19 @Override
20 public void p o s t I n i t () { }
21

22 @Override
23 public void onChanged () { }

92

Appendix A. Sources

24

25 @Override
26 public void update (i n t deltaMs) { }
27

28 /∗ ∗
29 ∗ Gets t h e component ID .
30 ∗
31 ∗ @return t h e component ID
32 ∗ /
33 public I n t e g e r get Id () {
34 return getIdFromName (getName ()) ;
35 }
36

37 /∗ ∗
38 ∗ Gets t h e component name .
39 ∗
40 ∗ @return t h e component name
41 ∗ /
42 public a b s t r a c t S t r i n g getName () ;
43

44 /∗ ∗
45 ∗ C o n v e r t s t h e g i v e n component name i n t o t h e c o r r e s p o n d i n g

component ID .
46 ∗
47 ∗ @param name t h e component name
48 ∗ @return t h e component ID
49 ∗ /
50 public s t a t i c I n t e g e r getIdFromName (S t r i n g name) {
51 return name . hashCode () ;
52 }
53 }

Listing A.1: The AbstractActorComponent defining the basic properties and methods for
every specific actor component.

93

Appendix A. Sources

A.2. Process System

ProcessManager

1 /∗ ∗
2 ∗ S i n g l e t o n c l a s s f o r managing , u p d a t i ng and m a i n t a i n i n g a l l

p r o c e s s e s in t h e e n g i n e .
3 ∗ /
4 public c l a s s ProcessManager {
5 /∗ ∗
6 ∗ The c l a s s name .
7 ∗ /
8 public s t a t i c f i n a l S t r i n g TAG =

ProcessManager . c l a s s . getName () ;
9

10 private s t a t i c ProcessManager m Instance = new
ProcessManager () ;

11 private Lis t<AbstractProcess> m ProcessLis t ;
12

13 /∗ ∗
14 ∗ Gets t h e i n s t a n c e o f t h e p r o c e s s manager .
15 ∗
16 ∗ @return t h e p r o c e s s manager
17 ∗ /
18 public s t a t i c ProcessManager g e t I n s t a n c e () {
19 return m Instance ;
20 }
21

22 /∗ ∗
23 ∗ C o n s t r u c t o r , c r e a t e s t h e p r o c e s s manager .
24 ∗ /
25 private ProcessManager () {
26 m ProcessLis t = new ArrayList <>() ;
27 }
28

29 /∗ ∗
30 ∗ Updates a l l p r o c e s s e s c u r r e n t l y in p r o c e s s l i s t .
31 ∗
32 ∗ @param de l taMs t h e t ime p a s s e d s i n c e l a s t u pd a t e
33 ∗ @return t h e number o f s u c c e s s f u l and a b o r t e d / f a i l e d

p r o c e s s e s combined in an i n t e g e r , where
34 ∗ t h e f i r s t 16 b i t s h o l d t h e s u c c e s s f u l count and

t h e l e a s t 16 b i t s t h e f a i l e d count

94

Appendix A. Sources

35 ∗ /
36 public i n t updateProcesses (long deltaMs) {
37 i n t currentProcess = 0 ;
38 short successCount = 0 ;
39 short fa i lCount = 0 ;
40

41 t r y {
42 while (currentProcess < m ProcessLis t . s i z e ()) {
43 Abstrac tProcess p =

m ProcessLis t . get (currentProcess) ;
44

45 i f (p . g e t S t a t e () ==
Abstrac tProcess . S t a t e . UNINITIALIZED)

46 p . o n I n i t () ;
47

48 i f (p . g e t S t a t e () == Abstrac tProcess . S t a t e .RUNNING)
49 p . onUpdate (deltaMs) ;
50

51 i f (p . isDead ()) {
52 switch (p . g e t S t a t e ()) {
53 case SUCCEEDED:
54 p . onSuccess () ;
55 Abstrac tProcess c h i l d =

p . removeChild () ;
56

57 i f (c h i l d != null) {
58 a t t a c h P r o c e s s (c h i l d) ;
59 } e lse {
60 ++successCount ;
61 }
62 break ;
63

64 case FAILED :
65 p . onFai l () ;
66 ++fa i lCount ;
67 break ;
68

69 case ABORTED:
70 p . onAbort () ;
71 ++fa i lCount ;
72 break ;
73 }
74 m ProcessLis t . remove (p) ;
75 } e lse {

95

Appendix A. Sources

76 ++currentProcess ;
77 }
78 }
79

80 return ((successCount << 16) | fa i lCount) ;
81 } catch (ConcurrentModif icat ionException ccModEx) {
82 Logger . g e t I n s t a n c e () . e r r o r (TAG, ” Concurrent

Modif icat ion Exception ”) ;
83 return −1;
84 }
85 }
86

87 /∗ ∗
88 ∗ Gets t h e number o f p r o c e s s e s c u r r e n t l y in t h e p r o c e s s l i s t .
89 ∗
90 ∗ @return t h e number o f p r o c e s s e s
91 ∗ /
92 public i n t getProcessCount () {
93 return m ProcessLis t . s i z e () ;
94 }
95

96 /∗ ∗
97 ∗ Abor t s a l l p r o c e s s e s and e m t i e s t h e p r o c e s s l i s t .
98 ∗
99 ∗ @param immed ia t e p r o c e s s e s a r e a b o r t e d i m m e d i a t e l y i f t r u e

100 ∗ /
101 public void a b o r t A l l P r o c e s s e s (boolean immediate) {
102 I t e r a t o r i t = m ProcessLis t . i t e r a t o r () ;
103

104 while (i t . hasNext ()) {
105 Abstrac tProcess p = (Abstrac tProcess) i t . next () ;
106

107 i f (immediate)
108 p . abort () ;
109 }
110 }
111

112 /∗ ∗
113 ∗ A t t a c h e s a new p r o c e s s .
114 ∗
115 ∗ @param p t h e p r o c e s s t o a t t a c h
116 ∗ /
117 public void a t t a c h P r o c e s s (Abst rac tProcess p) {
118 Logger . g e t I n s t a n c e () . i n f o (TAG, ” Attaching new Process ” +

96

Appendix A. Sources

p . t o S t r i n g ()) ;
119 m ProcessLis t . add (p) ;
120 }
121

122 public void r e s e t () {
123 m ProcessLis t . c l e a r () ;
124 }
125 }

Listing A.2: The ProcessManager responsible for updating and managing the processes
running during playing.

AbstractProcess

1 /∗ ∗
2 ∗ A b s t r a c t c l a s s which d e f i n e s t h e must have b e h a v i o r o f a

p r o c e s s running in t h e e n g i n e .
3 ∗ /
4 public a b s t r a c t c l a s s Abstrac tProcess {
5 private S t a t e m State ;
6 private Abstrac tProcess m ChildProcess ;
7

8 /∗ ∗
9 ∗ The s t a t e s o f a p r o c e s s .

10 ∗ /
11 public enum S t a t e {
12 UNINITIALIZED ,
13 REMOVED,
14 RUNNING,
15 PAUSED,
16 SUCCEEDED,
17 FAILED ,
18 ABORTED
19 }
20

21 /∗ ∗
22 ∗ C o n s t r u c t o r , s e t s t h e s t a t e t o u n i n i t i a l i z e d : {@link

S t a t e #UNINITIALIZED } .
23 ∗ /
24 public Abstrac tProcess () {
25 m State = S t a t e . UNINITIALIZED ;
26 m ChildProcess = null ;
27 }
28

97

Appendix A. Sources

29 /∗ ∗
30 ∗ Gets t h e c u r r e n t s t a t e .
31 ∗
32 ∗ @return t h e s t a t e
33 ∗ /
34 public S t a t e g e t S t a t e () {
35 return m State ;
36 }
37

38 /∗ ∗
39 ∗ Checks i f t h e p r o c e s s i s a l i v e .
40 ∗
41 ∗ @return t r u e i f t h e p r o c e s s i s a l i v e , f a l s e o t h e r w i s e
42 ∗ /
43 public boolean i s A l i v e () {
44 return (m State == S t a t e .RUNNING | | m State ==

S t a t e .PAUSED) ;
45 }
46

47 /∗ ∗
48 ∗ Checks i f t h e p r o c e s s i s dead .
49 ∗
50 ∗ @return t r u e i f t h e p r o c e s s i s dead , f a l s e o t h e r w i s e
51 ∗ /
52 public boolean isDead () {
53 return (m State == S t a t e .SUCCEEDED | | m State ==

S t a t e . FAILED | | m State == S t a t e .ABORTED) ;
54 }
55

56 /∗ ∗
57 ∗ Checks i f t h e p r o c e s s was removed .
58 ∗
59 ∗ @return t r u e i f t h e p r o c e s s was removed , f a l s e o t h e r w i s e
60 ∗ /
61 public boolean isRemoved () {
62 return (m State == S t a t e .REMOVED) ;
63 }
64

65 /∗ ∗
66 ∗ Checks i f t h e p r o c e s s i s paused .
67 ∗
68 ∗ @return t r u e i f t h e p r o c e s s i s paused , f a l s e o t h e r w i s e .
69 ∗ /
70 public boolean isPaused () {

98

Appendix A. Sources

71 return (m State == S t a t e .PAUSED) ;
72 }
73

74 /∗ ∗
75 ∗ S e t s t h e s t a t e o f t h e p r o c e s s t o s u c c e e d e d i f i t s s t a t e i s

running or paused .
76 ∗ /
77 public void succeed () {
78 i f (m State == S t a t e .RUNNING | | m State == S t a t e .PAUSED) {
79 m State = S t a t e .SUCCEEDED;
80 }
81 }
82

83 /∗ ∗
84 ∗ Abor t s t h e p r o c e s s and s e t s i t s s t a t e t o a b o r t e d .
85 ∗ /
86 public void abort () {
87 m State = S t a t e .ABORTED;
88 }
89

90 /∗ ∗
91 ∗ S e t s t h e s t a t e o f t h e p r o c e s s t o f a i l e d i f i t s running or

paused .
92 ∗ /
93 public void f a i l () {
94 i f (m State == S t a t e .RUNNING | | m State == S t a t e .PAUSED) {
95 m State = S t a t e . FAILED ;
96 }
97 }
98

99 /∗ ∗
100 ∗ Pauses t h e p r o c e s s .
101 ∗ /
102 public void pause () {
103 i f (m State == S t a t e .RUNNING)
104 m State = S t a t e .PAUSED;
105 }
106

107 /∗ ∗
108 ∗ Resumes t h e p r o c e s s .
109 ∗ /
110 public void resume () {
111 i f (m State == S t a t e .PAUSED)
112 m State = S t a t e .RUNNING;

99

Appendix A. Sources

113 }
114

115 /∗ ∗
116 ∗ S e t s t h e s t a t e o f t h e p r o c e s s t o running .
117 ∗ /
118 protected void o n I n i t () {
119 m State = S t a t e .RUNNING;
120 }
121

122 /∗ ∗
123 ∗ A t t a c h e s a c h i l d p r o c e s s t o t h i s p r o c e s s .
124 ∗
125 ∗ @param c h i l d t h e c i l d p r o c e s s
126 ∗ /
127 public void at tachChi ld (Abstrac tProcess c h i l d) {
128 m ChildProcess = c h i l d ;
129 }
130

131 /∗ ∗
132 ∗ Removes t h e c h i l d p r o c e s s .
133 ∗
134 ∗ @return t h e c h i l d p r o c e s s o r n u l l i f no c h i l d p r o c e s s i s

a t t a c h e d
135 ∗ /
136 public Abstrac tProcess removeChild () {
137 i f (m ChildProcess != null) {
138 Abstrac tProcess tmp = m ChildProcess ;
139 m ChildProcess = null ;
140 return tmp ;
141 }
142 return null ;
143 }
144

145 /∗ ∗
146 ∗ Updates t h e p r o c e s s .
147 ∗
148 ∗ @param de l taMs t h e t ime p a s s e d s i n c e t h e s t a r t o f t h e

p r o c e s s
149 ∗ /
150 a b s t r a c t public void onUpdate (long deltaMs) ;
151

152 /∗ ∗
153 ∗ C a l l e d when t h e p r o c e s s ended s u c c e s s f u l .
154 ∗ /

100

Appendix A. Sources

155 a b s t r a c t public void onSuccess () ;
156

157 /∗ ∗
158 ∗ C a l l e d when t h e p r o c e s s f a i l e d .
159 ∗ /
160 a b s t r a c t public void onFai l () ;
161

162 /∗ ∗
163 ∗ C a l l e d when t h e p r o c e s s was a b o r t e d .
164 ∗ /
165 a b s t r a c t public void onAbort () ;
166

167 /∗ ∗
168 ∗ P r i n t s p r o c e s s i n f o r m a t i o n s .
169 ∗
170 ∗ @return t h e p r o c e s s i n f o r m a t i o n .
171 ∗ /
172 @Override
173 a b s t r a c t public S t r i n g t o S t r i n g () ;
174 }

Listing A.3: The base class for every process able to run in the engines process system.

A.3. Event System

EventManager

1 /∗ ∗
2 ∗ S i n g l e t o n c l a s s , imp l ements t h e e v e n t manager i n t e r f a c e and

a c t s a s t h e g l o b a l e v e n t manager
3 ∗ in t h e e n g i n e .
4 ∗ /
5 public c l a s s EventManager implements IEventManager {
6 /∗ ∗
7 ∗ The c l a s s name .
8 ∗ /
9 public s t a t i c f i n a l S t r i n g TAG = EventManager . c l a s s . getName () ;

10

11 private s t a t i c EventManager m Instance = new EventManager () ;
12

13 LinkedList<IEventData> m EventQueue ;
14 Map<UUID, L is t<I L i s t e n a b l e>> m EventListenerMap ;
15

101

Appendix A. Sources

16 /∗ ∗
17 ∗ C o n s t r u c t o r .
18 ∗ /
19 private EventManager () {
20 m EventQueue = new LinkedList <>() ;
21 m EventListenerMap = new HashMap<>() ;
22 }
23

24 /∗ ∗
25 ∗ Gets t h e i n s t a n c e o f t h e e v e n t manager .
26 ∗
27 ∗ @return t h e e v e n t manager
28 ∗ /
29 public s t a t i c EventManager g e t I n s t a n c e () {
30 return m Instance ;
31 }
32

33 @Override
34 public boolean addListener (I L i s t e n a b l e component , UUID

eventType) {
35 L i s t check = m EventListenerMap . get (eventType) ;
36

37 i f (check == null) {
38 check = new ArrayList () ;
39 check . add (component) ;
40 m EventListenerMap . put (eventType , check) ;
41 } e lse {
42 ArrayList<I L i s t e n a b l e> l i s t e n e r s = new

ArrayList<>(check) ;
43 i f (l i s t e n e r s . conta ins (component)) {
44 Logger . g e t I n s t a n c e () . warning (TAG, ” Attempting to

double−r e g i s t e r a l i s t e n e r ! ”) ;
45 return f a l s e ;
46 }
47 l i s t e n e r s . add (component) ;
48 m EventListenerMap . put (eventType , l i s t e n e r s) ;
49 }
50 return true ;
51 }
52

53 @Override
54 public boolean removeListener (I L i s t e n a b l e component , UUID

eventType) {
55 L i s t check = m EventListenerMap . get (eventType) ;

102

Appendix A. Sources

56 boolean success = f a l s e ;
57

58 i f (check == null) {
59 Logger . g e t I n s t a n c e () . warning (TAG, ”Event type not

a v a i l a b l e ! ”) ;
60 return success ;
61 }
62 ArrayList<I L i s t e n a b l e> l i s t e n e r s = new ArrayList<>(check) ;
63 for (I t e r a t o r <I L i s t e n a b l e> i t = l i s t e n e r s . i t e r a t o r () ;

i t . hasNext () ;) {
64 I L i s t e n a b l e l i s t e n e r = i t . next () ;
65

66 i f (component == l i s t e n e r) {
67 l i s t e n e r s . remove (l i s t e n e r) ;
68 success = t rue ;
69 break ;
70 }
71 }
72 m EventListenerMap . put (eventType , l i s t e n e r s) ;
73 return success ;
74 }
75

76 @Override
77 public boolean t r i g g e r E v e n t (IEventData eventData) {
78 boolean processed = f a l s e ;
79 L i s t check = m EventListenerMap . get (

eventData . getEventType ()) ;
80

81 i f (check == null) {
82 Logger . g e t I n s t a n c e () . warning (TAG, ”Event type not

a v a i l a b l e ! ”) ;
83 return processed ;
84 }
85 ArrayList<I L i s t e n a b l e> l i s t e n e r s = new ArrayList<>(check) ;
86 for (I t e r a t o r <I L i s t e n a b l e> i t = l i s t e n e r s . i t e r a t o r () ;

i t . hasNext () ;) {
87 I L i s t e n a b l e l i s t e n e r = i t . next () ;
88 l i s t e n e r . invoke (eventData) ;
89 processed = t rue ;
90 }
91 return processed ;
92 }
93

94 @Override

103

Appendix A. Sources

95 public boolean queueEvent (IEventData eventData) {
96 L i s t check = m EventListenerMap . get (

eventData . getEventType ()) ;
97

98 i f (check == null) {
99 Logger . g e t I n s t a n c e () . warning (TAG, ”Event type not

a v a i l a b l e ! ”) ;
100 return f a l s e ;
101 }
102 return m EventQueue . add (eventData) ;
103 }
104

105 @Override
106 public boolean abortEvent (IEventData eventData , boolean

al lOfThisType) {
107 boolean success = f a l s e ;
108 ArrayList<I L i s t e n a b l e> l i s t e n e r s = new

ArrayList<>(m EventListenerMap . get (
eventData . getEventType ())) ;

109

110 i f (l i s t e n e r s == null) {
111 Logger . g e t I n s t a n c e () . warning (TAG, ”No events in f o r

the s p e c i f i e d event type in queue ! ”) ;
112 return success ;
113 }
114

115 i n t i = 0 ;
116 synchronized (m EventQueue) {
117 while (i < m EventQueue . s i z e ()) {
118 IEventData queuedEvent = m EventQueue . get (i) ;
119 i f (queuedEvent . getEventType () ==

eventData . getEventType ()) {
120 m EventQueue . remove (queuedEvent) ;
121 success = t rue ;
122

123 i f (! al lOfThisType)
124 break ;
125 }
126 }
127 }
128 return success ;
129 }
130

131 @Override

104

Appendix A. Sources

132 public boolean updateEvents () {
133 boolean updated = t rue ;
134 IEventData event = m EventQueue . p o l l () ;
135

136 while (event != null) {
137 ArrayList<I L i s t e n a b l e> l i s t e n e r s = new

ArrayList<>(m EventListenerMap . get (
event . getEventType ())) ;

138

139 for (i n t i = 0 ; i < l i s t e n e r s . s i z e () ; ++ i) {
140 I L i s t e n a b l e l i s t e n e r = l i s t e n e r s . get (i) ;
141 l i s t e n e r . invoke (event) ;
142 }
143 event = m EventQueue . p o l l () ;
144 }
145 return updated ;
146 }
147

148 /∗ ∗
149 ∗ R e s e t s t h e e v e n t l i s t e n e r s and t h e e v e n t queue .
150 ∗ /
151 public void r e s e t () {
152 m EventQueue . c l e a r () ;
153 m EventListenerMap . c l e a r () ;
154 }
155 }

Listing A.4: The source code of the event manager.

AbstractEventData

1 /∗ ∗
2 ∗ Base e v e n t imp l ement ing t h e e v e n t d a t a i n t e r f a c e .
3 ∗ <p>
4 ∗ A l l e v e n t s used in t h e e n g i n e must i n h e r i t from t h e a b s t r a c t

b a s e e v e n t .
5 ∗ </p>
6 ∗ /
7 public a b s t r a c t c l a s s AbstractEventData implements IEventData {
8 private f l o a t m TimeStamp ;
9

10 /∗ ∗
11 ∗ D e f a u l t C o n s t r u c t o r .
12 ∗ /

105

Appendix A. Sources

13 public AbstractEventData () {
14 m TimeStamp = 0 ;
15 }
16

17 /∗ ∗
18 ∗ C o n s t r u c t o r .
19 ∗
20 ∗ @param timeStamp
21 ∗ /
22 public AbstractEventData (f l o a t timeStamp) {
23 m TimeStamp = timeStamp ;
24 }
25

26 /∗ ∗
27 ∗ Gets t h e e v e n t t y p e .
28 ∗
29 ∗ @return t h e e v e n t t y p e (UUID)
30 ∗ /
31 @Override
32 a b s t r a c t public UUID getEventType () ;
33

34 /∗ ∗
35 ∗ Gets t h e t ime stamp o f t h e e v e n t .
36 ∗
37 ∗ @return t h e t ime stamp
38 ∗ /
39 @Override
40 public f l o a t getTimeStamp () {
41 return m TimeStamp ;
42 }
43

44 /∗ ∗
45 ∗ Gets t h e name o f t h e e v e n t .
46 ∗
47 ∗ @return t h e e v e n t name
48 ∗ /
49 @Override
50 public S t r i n g getName () {
51 return ” BaseEvent ” ;
52 }
53 }

Listing A.5: The base class every event has to inherit from to fit into the event system.

106

Appendix A. Sources

A.4. Rendering System

SceneNode

1 /∗ ∗
2 ∗ B a s i c Scene Node .
3 ∗ /
4 public c l a s s SceneNode implements ISceneNode {
5 protected ArrayList<ISceneNode> m Children ;
6 ISceneNode m Parent ;
7 SceneNodeProperties m Propert ies ;
8

9 /∗ ∗
10 ∗ C o n s t r u c t o r s removed f o r i l l u s t r a t i o n
11 ∗ /
12

13 /∗ ∗
14 ∗ S e t s t h e p a r e n t o f t h i s node .
15 ∗
16 ∗ @param p a r e n t t h e p a r e n t node
17 ∗ /
18 public void s e t P a r e n t (ISceneNode parent) {
19 m Parent = parent ;
20 }
21

22 @Override
23 public SceneNodeProperties getSceneNodeProperties () {
24 return new SceneNodeProperties (m Propert ies) ;
25 }
26

27 @Override
28 public void setTransform (Matr ix4 f toWorld , Matr ix4 f

fromWorld) {
29 m Propert ies . setTransform (toWorld , fromWorld) ;
30 }
31

32 @Override
33 public i n t onUpdate (Scene scene , long elapsedMs) {
34 I t e r a t o r <ISceneNode> i t = m Children . i t e r a t o r () ;
35

36 while (i t . hasNext ()) {
37 ISceneNode next = i t . next () ;
38 next . onUpdate (scene , elapsedMs) ;

107

Appendix A. Sources

39 }
40 return 1 ;
41 }
42

43 @Override
44 public boolean i s V i s i b l e (Scene scene) {
45 boolean v i s i b l e = f a l s e ;
46

47 for (ISceneNode node : m Children) {
48 i f (node . i s V i s i b l e (scene)) {
49 v i s i b l e = t rue ;
50 break ;
51 }
52 }
53 return v i s i b l e ;
54 }
55

56 @Override
57 public i n t renderChildren (Scene scene) {
58 I t e r a t o r <ISceneNode> i t = m Children . i t e r a t o r () ;
59

60 while (i t . hasNext ()) {
61 ISceneNode next = i t . next () ;
62

63 i f (next . preRender (scene) == 1) {
64 i f (next . i s V i s i b l e (scene)) {
65 double alpha = next . getSceneNodeProperties ()

. g e t M a t er i a l () . getAlpha () ;
66

67 i f (alpha == 1 . 0) {
68 next . render (scene) ;
69 } e lse {
70 Matrix4 f t ransformat ion =

scene . getTopMatrix () ;
71 Vector4 f worldPos = new Vector4 f () ;
72 t ransformat ion . getColumn (3 , worldPos) ;
73 Matrix4 f camFromWorld =
74 scene . getCamera ()

. getSceneNodeProperties ()

. getFromWorld () ;
75 Vector4 f screenPos = new Vector4 f () ;
76 screenPos . mul (camFromWorld) ;
77

78 AlphaSceneNode alphaNode = new

108

Appendix A. Sources

AlphaSceneNode (next , t ransformation ,
screenPos . z) ;

79 scene . addAlphaSceneNode (alphaNode) ;
80 }
81 next . renderChildren (scene) ;
82 }
83 }
84 next . postRender (scene) ;
85 }
86 return 1 ;
87 }
88

89 @Override
90 public i n t render (Scene scene) {
91 return 1 ;
92 }
93

94 @Override
95 public i n t postRender (Scene scene) {
96 scene . popMatrix () ;
97 return 1 ;
98 }
99

100 @Override
101 public boolean addChild (ISceneNode c h i l d) {
102 i f (c h i l d == null)
103 return f a l s e ;
104

105 i f (! m Children . add (c h i l d))
106 return f a l s e ;
107

108 ((SceneNode) c h i l d) . s e t P a r e n t (t h i s) ;
109

110 return true ;
111 }
112

113 @Override
114 public boolean removeChild (I n t e g e r a c t o r I d) {
115 I t e r a t o r <ISceneNode> i t = m Children . i t e r a t o r () ;
116 boolean childRemoved = f a l s e ;
117

118 while (i t . hasNext () && ! childRemoved) {
119 ISceneNode next = i t . next () ;
120 i f (next . getSceneNodeProperties () . getActorId () ==

109

Appendix A. Sources

a c t o r I d) {
121 next . removeChild (a c t o r I d) ;
122 i t . remove () ;
123 childRemoved = t rue ;
124 }
125 }
126 return childRemoved ;
127 }
128

129 /∗ ∗
130 ∗ S e t s t h e node ’ s v i s i b i l i t y .
131 ∗ <p>
132 ∗ S e t t i n g a node v i s i b l e o r i n v i s i b l e a l s o a f f e c t s t h e nodes

c h i l d r e n .
133 ∗ </p>
134 ∗
135 ∗ @param v i s i b l e <code>t rue </ code> i f t h e node and i t s

c h i l d r e n s h o u l d be v i s i b l e , <code> f a l s e </ code> o t h e r w i s e
136 ∗ /
137 public void s e t V i s i b l e (boolean v i s i b l e) {
138 for (ISceneNode c h i l d : m Children) {
139 SceneNode node = (SceneNode) c h i l d ;
140 node . s e t V i s i b l e (v i s i b l e) ;
141 }
142 }
143 }

Listing A.6: A shortened source code of base class for every node the scene graph can
contain.

Scene

1 /∗ ∗
2 ∗ The Scene c l a s s .
3 ∗ /
4 public c l a s s Scene implements I L i s t e n a b l e {
5 ISceneNode m Root ;
6 CameraNode m Camera ;
7 MatrixStack m MatrixStack ;
8 Lis t<AlphaSceneNode> m AlphaSceneNodes ;
9 Map<Integer , ISceneNode> m ActorMap ;

10 LightManager m LightManager ;
11 FrustumCuller m FrustumCuller ;
12 ITheme m CurrentTheme ;

110

Appendix A. Sources

13

14 /∗ ∗
15 ∗ D e f a u l t C o n s t r u c t o r .
16 ∗ /
17 public Scene () {
18 m Root = new RootNode () ;
19 m MatrixStack = new MatrixStack (5 0) ;
20 m LightManager = new LightManager () ;
21 m ActorMap = new HashMap<>() ;
22 m FrustumCuller = new FrustumCuller () ;
23 m CurrentTheme = new StandardTheme () ;
24

25 / / add l i s t e n e r s t o e v e n t manager
26 IEventManager eventManager = EventManager . g e t I n s t a n c e () ;
27 eventManager . addListener (this ,

NewRenderComponentEvent . EVENT ID) ;
28 eventManager . addListener (this ,

ActorDestroyedEvent . EVENT ID) ;
29 eventManager . addListener (this ,

DisableActorEvent . EVENT ID) ;
30 eventManager . addListener (this , EnableActorEvent . EVENT ID) ;
31 eventManager . addListener (this ,

NewAnimationEvent . EVENT ID) ;
32 eventManager . addListener (this , SwitchThemeEvent . EVENT ID) ;
33 }
34

35 /∗ ∗
36 ∗ G e t t e r and S e t t e r s removed f o r i l l u s t r a t i o n
37 ∗ /
38

39 /∗ ∗
40 ∗ Renders t h e s c e n e with a l l c h i l d r e n
41 ∗
42 ∗ @return <code >1</ code> i f s u c c e s s f u l , <code >0</ code> e l s e
43 ∗ /
44 public i n t onRender () {
45 i f (m Root != null && m Camera != null) {
46 m Camera . setView (t h i s) ;
47 m LightManager . c a l c u l a t e L i g h t i n g (t h i s) ;
48

49 i f (m Root . preRender (t h i s) == 1) {
50 m Root . render (t h i s) ;
51 m Root . renderChildren (t h i s) ;
52 m Root . postRender (t h i s) ;

111

Appendix A. Sources

53 }
54 }
55

56 renderAlphaPass () ;
57

58 return 1 ;
59 }
60

61 /∗ ∗
62 ∗ Adds a c h i l d wi th <code>a c t o r I d </ code> t o t h e s c e n e .
63 ∗
64 ∗ @param a c t o r I d t h e a c t o r i d o f t h e c h i l d
65 ∗ @param c h i l d t h e c h i l d t o be added
66 ∗ @return <code>t rue </ code> i f t h e c h i l d was added ,

<code> f a l s e </ code> o t h e r w i s e
67 ∗ /
68 public boolean addChild (I n t e g e r actorId , ISceneNode c h i l d) {
69 i f (a c t o r I d != Constants . INVALID ID) {
70 m ActorMap . put (ac tor Id , c h i l d) ;
71 }
72 i f (c h i l d instanceof LightNode) {
73 i f (m LightManager . getLightCount () + 1 <

Constants . MAX LIGHTS SUPPORTED)
74 m LightManager . addLight (c h i l d) ;
75 }
76 return m Root . addChild (c h i l d) ;
77 }
78

79 /∗ ∗
80 ∗ Removes t h e a c t o r wi th t h e g i v e n a c t o r i d from t h e s c e n e .
81 ∗
82 ∗ @param a c t o r I d t h e a c t o r i d
83 ∗ @return <code>t rue </ code> i f t h e a c t o r was removed ,

<code> f a l s e </ code> o t h e r w i s e
84 ∗ /
85 public boolean removeChild (I n t e g e r a c t o r I d) {
86 i f (a c t o r I d == Constants . INVALID ID)
87 return f a l s e ;
88

89 ISceneNode c h i l d = f indActor (a c t o r I d) ;
90

91 i f (c h i l d instanceof LightNode)
92 m LightManager . removeLight (c h i l d) ;
93

112

Appendix A. Sources

94 m ActorMap . remove (a c t o r I d) ;
95

96 return m Root . removeChild (a c t o r I d) ;
97 }
98

99 /∗ ∗
100 ∗ Pushes a new world m at r ix on to t h e m at r i x s t a c k .
101 ∗
102 ∗ <p>
103 ∗ The g i v e n <code>toWorld </ code> ma tr ix i s pushed onto t h e

s t a c k and m u l t i p l i e d
104 ∗ with t h e p r e v i o u s t o p m at r ix o f t h e s t a c k t o ga in c o r r e c t

t r a n s f o r m a t i o n m a t r i c e s f o r
105 ∗ a s p e c i f i c node in t h e s c e n e .
106 ∗ </p>
107 ∗
108 ∗ @param toWorld t h e new to−world t r a n s f o r m a t i o n m at r i x
109 ∗ /
110 public void pushAndSetMatrix (Matr ix4 f toWorld) {
111 m MatrixStack . pushMatrix () ;
112 m MatrixStack . multMatrix (toWorld) ;
113 }
114

115 /∗ ∗
116 ∗ Pops t h e c u r r e n t t r a n s f o r m a t i o n m at r i x from t h e s t a c k .
117 ∗ /
118 public void popMatrix () {
119 m MatrixStack . popMatrix () ;
120 }
121

122 @Override
123 public void invoke (IEventData eventData) {
124 /∗ ∗
125 ∗ Event h a n d l i n g was removed f o r i l l u s t r a t i o n
126 ∗ /
127 }
128 }

Listing A.7: The shortened Scene class used to traverse the scene graph and render the
scene.

113

