
Michael Holzer BSc BSc

Improving query suggestions for rare
queries on faceted documents.

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Dipl.-Ing. Dr.techn. Roman Kern

Know-Center
Institut für Wissenstechnologien

Graz, April 2015

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
sources used. The text document uploaded to TUGRAZonline is identical to
the present master’s thesis dissertation.

Graz,

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen
als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene
Textdokument ist mit der vorliegenden Masterarbeit identisch.

Graz, am

Datum Unterschrift

iii

Abstract

The goal of this thesis is to improve query suggestions for rare queries
on faceted documents. While there has been extensive work on query
suggestions for single facet documents there is only little known about
how to provide query suggestions in the context of faceted documents. The
constraint to provide suggestions also for uncommon or even previously
unseen queries (so-called rare queries) increases the difficulty of the problem
as the commonly used technique of mining query logs can not be easily
applied.

In this thesis it was further assumed that the user of the information retrieval
system always searches for one specific document - leading to uniformly dis-
tributed queries. Under these constraints it was tried to exploit the structure
of the faceted documents to provide helpful query suggestions. In addition
to theoretical exploration of such improvements a custom datastructure was
developed to efficiently provide interactive query suggestions.

Evaluation of the developed query suggestion algorithms was done on
multiple document collections by comparing them to a baseline algorithm
that reduces faceted documents to single facet documents. Results are
promising as the final version of the new query suggestion algorithm
consistently outperformed the baseline.

Motivation for and potential application of this work can be found in call
centers for customer support. For call center employees it is crucial to
quickly locate relevant customer information - information that is avail-
able in structured form (and can thus easily be transformed into faceted
documents).

iv

Contents

Abstract iv

1 Introduction 1
1.1 Motivation . 1

1.2 Research Question . 3

1.3 Outline . 3

2 Problem and Setting 5
2.1 Finding the Needle in the Haystack 5

2.2 Problems a User of an IR System Faces 6

2.2.1 Spelling . 6

2.2.2 Word Forms . 6

2.2.3 The Vocabulary Problem 7

2.2.4 Synonymy . 7

2.2.5 Homonymy . 7

2.2.6 Incomplete Knowledge to Specify the Query 8

2.3 Problem Setting . 8

2.3.1 Faceted Documents . 8

2.3.2 Queries . 9

2.3.3 Information Need to Document Relation 9

2.3.4 Search Process . 10

2.3.5 Query Suggestions . 11

2.4 Customer Support - a Use Case 12

2.4.1 System Characteristics 13

2.5 Summary . 14

3 Existing Work - State of the Art 16
3.1 Guiding the User to Fulfill Her Information Need 16

3.1.1 Filtering . 16

3.1.2 Faceting . 18

v

Contents

3.1.3 Spelling Correction . 18

3.1.4 Stemming . 19

3.1.5 Query Expansion . 19

3.1.6 Autocompletion . 20

3.2 Assisting the User with Query Suggestions 22

3.2.1 Deriving Query Suggestions 22

3.2.2 Ways of Presenting Query Suggestions to the User . . 24

3.2.3 Query Suggestions for Faceted Documents 25

3.3 Infrequent Queries - Making the Problem Harder 26

3.4 Where to Search - Fulltext Queries on Faceted Documents . . 27

3.5 Summary . 27

4 Approach 29
4.1 Problem Complexity . 29

4.1.1 Linear Integer Program Formulation 30

4.1.2 NP-completeness . 33

4.2 Steps of Query Suggestion Computation 35

4.2.1 Selection of Candidate Documents 36

4.2.2 Compute Terms for Query Suggestions 36

4.2.3 Rearrange the Original Query 36

4.3 Probabilistic Mapping of Query Terms to Facets 37

4.4 Term Reordering According to Predefined Facet Order 38

4.4.1 Inserting a New Query Term Into an Ordered Query . 39

4.4.2 Reordering a Complete Query 40

4.5 Selecting a Set of Documents for the Computation of Term
Suggestions . 42

4.5.1 Fully Entered Last Query Term 42

4.5.2 Partially Entered Last Query Term 43

4.6 Computing Terms for Query Suggestions 44

4.6.1 Desirable Properties of Term Suggestions 45

4.6.2 Quality Function . 45

4.6.3 Facet Aware Quality Function 47

4.6.4 Dampening the Redundancy Factor 48

4.7 Summary . 49

5 Implementation 50
5.1 Used Technology . 51

vi

Contents

5.2 Using Lucene to Compute Terms for Query Suggestions . . . 51

5.3 Using a Custom Datastructure to Compute Terms for Query
Suggestion . 52

5.3.1 Requirements . 52

5.3.2 Datastructure . 52

5.3.3 Construction . 54

5.3.4 Usage . 55

5.3.5 Limitations . 62

5.4 Summary . 63

6 Evaluation 64
6.1 Methodology . 64

6.1.1 Quantifying the Performance of Query Suggestions . . 65

6.1.2 Baseline . 67

6.1.3 Quality Functions . 68

6.1.4 Common Parameters . 69

6.2 Test Data . 69

6.2.1 People and Books . 69

6.2.2 Multiple Facets with Zipf Distributed Words 72

6.3 Results . 72

6.3.1 Small Document Collections 74

6.3.2 Large Document Collections 76

6.3.3 Query distributions . 79

7 Discussion 81
7.1 Numeric Comparison to the Baseline 81

7.1.1 Base Quality Function 81

7.1.2 Facet Aware Quality Function 82

7.1.3 Dampened Facet Aware Quality Functions 82

7.2 Observations . 83

7.2.1 Difficulties . 84

7.2.2 The Bad Parts . 85

7.2.3 The Good Parts . 85

7.3 Summary . 86

8 Conclusion 87
8.1 Review . 87

vii

Contents

8.2 Outlook . 88

8.3 Summary . 88

Bibliography 91

viii

List of Figures

2.1 Query suggestion with term reordering example from Google
Maps 2014 . 12

3.1 Examples of category filters. 17

3.2 Autocompletion in Atlassian’s Confluence. 21

3.3 Example for non-interactive query suggestion, taken from
duckduckgo.com . 24

3.4 Example for interactive query suggestions, taken from duck-
duckgo.com . 25

4.1 Outline of the procedure to insert a new term t into an or-
dered query Q to obtain a query suggestion Qsugg. 41

5.1 Transforming documents to arrays of integers. 53

5.2 Mapping of terms to integers. 53

5.3 Representing the facets of a document collection by arrays of
integers . 54

5.4 Preparation for counting the number of facets that contain a
term. 57

5.5 Preparation for counting the number of documents that con-
tain a term. 59

5.6 Simultaneously counting the number of facets and documents
that contain a term. 61

6.1 Example evaluation of query. 67

6.2 Evolution of query distribution. 80

ix

1 Introduction

In this introductory chapter the reasons for this work are described. After
the motivational part an outline over the rest of the thesis is provided.

1.1 Motivation

The original motivation for this work was provided by call centers for
customer support. The employees of the call centers have access to a software
system to provide customer support. When a customer calls for support a
common task is to retrieve some information about the customer, either the
customer account or some more detailed data, e.g. an order. Naturally this
step should be performed as quickly as possible so that the employee can
move on to handle the customer’s actual problem.

If the customer can provide a unique identifier (such as an account number)
the information retrieval problem is quite trivial. But in the absence of such
information the search becomes more challenging and time consuming: the
search might be performed using data like customer name, address or order
information (e.g. product names). It is here where the system should be
interactive and responsive to enable the employee to quickly zero in on the
desired customer document.

All customer related data resides in a relational database, therefore its
structure is well-known and can (and should) be exploited in the search
process. However it is undesirable to present a cluttered user interface to the
call center employee where she has to enter data into specific fields. Rather
a single textfield to input the query is the preferred user-friendly option, as
all the major web search engines demonstrate.

1

1 Introduction

For this single textfield we want to provide useful query suggestions. Query
suggestions can help a user in several ways. Firstly it may speed up the
process of entering the query, a crucial property in the commercial setting.
Secondly, when the user is unsure about the spelling of a word, a query
suggestion may already present the complete word (either derived from
the first characters of the word entered by the user or from the other query
terms even before the user starts typing the next word), drastically reducing
the time needed to find the right spelling using trial and error. Additionally
a query suggestion showing the term(s) the user was about to enter anyway
can improve the user experience by reassuring the user that she is on the
right track (see 8 Design Patterns for Autocomplete Suggestions 2014 for a user
study supporting this claim).

Query suggestions should satisfy certain properties to be useful for the user.
Despite the lack of any a priori knowledge about the mapping of query
terms to document facets the system should be able to capture the intent of
the user’s query and provide query suggestions that match the user query’s
intended albeit unstated term to document facet mapping. Additionally
it is crucial that every suggested query should have a non-empty result
set: a query that returns zero result documents is certainly not useful. Yet
another aspect is the order of the terms in a query. If there is an inherent
or commonly accepted order for the facets of the suggested query’s terms
(e.g. the order of address facets such as street, street number, postal code
and city is usually given by convention - although it may vary depending
on the current locale) then this order should be respected in the suggested
query.

Previous research in the area of query suggestions focuses mainly on ex-
tracting information from query logs. We will argue that in our setting
these techniques are not applicable because of the distribution of the queries
- contrary to the common power law distribution of queries this work is
based on the assumption that the queries are uniformly distributed - a
consequence of having a unique target document for each information need.
Therefore mining query logs for query suggestions is not feasible.

This thesis will discuss approaches that rely heavily on the indexed docu-
ments to provide query suggestions - not only for common queries but also
for infrequent or even new queries.

2

1 Introduction

1.2 Research Question

As described in the previous chapter the goal of this thesis is to provide
helpful query suggestions on faceted documents. Additionally we make
the assumption that each information need is satisfied by a single target
document. So, put concisely the research question is:

Improving query suggestions on faceted documents for information needs satisfied
by a single target document.

1.3 Outline

In chapter 2 we will elaborate both on the problem itself and on its setting.
It is here where we will argue that the query logs can not be exploited as in
systems where the queries are distributed according to a power law.

In chapter 3 we will discuss related work in the literature. We will give
a short general overview about existing techniques to support the user
of an information retrieval system. Existing work on query suggestions
will be discussed in more detail. Since we argue that the queries in our
target system are mainly one-off queries we will also look at how query
suggestions can be provided for rare or long-tail queries. Most of the existing
work on query suggestions focuses on single-facet documents, so another
section will be about strategies to handle multi-facet (or faceted) documents,
e.g. in scoring.

In chapter 4 the techniques used to provide query suggestions in the target
system will be presented.

Chapter 5 will discuss interesting parts of the implementation of the pre-
sented query suggestion approaches.

In chapter 6 we will present our evaluation strategy and the evaluation
results of our approach in comparison with the baseline.

Discussion and interpretation of the evaluation results will be done in
chapter 7.

3

1 Introduction

In chapter 8 we will provide a concluding discussion about the work done.
We will summarize our improvements and discuss remaining open issues.
Also we will present some ideas for further research based on the work
done in this thesis.

4

2 Problem and Setting

This chapter will present the problem this thesis is trying to solve as well as
a use case where the solution will be applied.

We will start in section 2.1 with some general reasoning why information
retrieval (IR) is an essential challenge of the current time. Section 2.2 looks
at IR systems from a user’s perspective - in particular it discusses some
challenges the user may have to overcome to fulfill her information need.

In section 2.3 we will formalize the problem setting. This includes various
aspects of the IR context, such as the structure of both single documents
and the whole document collection or the expected nature of information
needs.

A use case is presented in section 2.4. It is here where the reasons for the
various requirements from section 2.3 will become more transparent.

2.1 Finding the Needle in the Haystack

In an age where the size of data is often measured in terabytes or even
higher magnitudes users are often faced with an abundance of information
when all they want is just an answer to a single question - their information
need. The most common setting is the web (in 2013 estimated to a size of
4 zettabytes - see Blog, 2014), but others include digital encyclopedias (e.g.
Wikipedia) or large e-commerce sites (e.g. Amazon); the latter can be seen
as a subcategory of enterprise systems.

Typically a user only searches for a very small part of the available infor-
mation - the proverbial needle in the haystack. Unfortunately the haystack

5

2 Problem and Setting

tends to be a rather large one. The need for efficient and effective informa-
tion retrieval systems is thus rather obvious - the user’s search should lead
to the desired answer as fast as possible.

2.2 Problems a User of an IR System Faces

While the task of building a decent IR system is indisputably a challenging
one, using it might be hard as well. In this section we will touch a few
problems a user may face. The typical consequence of each of these problems
is that the user’s query fails to retrieve the documents needed to satisfy her
information need.

2.2.1 Spelling

The user might misspell a word, or maybe even worse, a word might have
multiple possible spellings. A particularly severe case is the last name of
the Russian mathematician Pafnuty Chebyshev caused by the transliteration
from the Cyrillic script to the Latin alphabet: the English and German
Wikipedia entries alone each list four used spellings in English and German,
respectively. Misspelling a word (or using a spelling that deviates from the
one used in the indexed documents) in a query might fail to produce the
desired results.

2.2.2 Word Forms

Misspelling a word is only one possible cause for an unsuccessful search
against an index that actually contains documents that would satisfy the
user’s information need. The index may contain slightly modified forms of
the searched word that adhere to the language’s linguistic rules (i.e. are not
misspellings) and fail to match the word entered in the query.

Languages have various grammatical rules that cause a word to appear in
different forms. Examples from the English language are plurals of nouns
(e.g. query - queries) or inflections of verbs (e.g. search, searches, searched,

6

2 Problem and Setting

searching). The user has no way of knowing which form of a word was
actually used at index time - she can only guess.

2.2.3 The Vocabulary Problem

The Vocabulary Problem was first described in Furnas et al., 1987. It refers
to the problem that different people use different words when naming the
same thing. An example from the cited paper shows how a group of typists
used different words to describe the same text editing operations. For the
user of an IR system this means her search may fail even though the desired
document is present in the index: the user might use a different word in her
query than the author of the indexed document did even though user and
author meant the same thing.

2.2.4 Synonymy

Related to the vocabulary problem and leading to similar problems is
synonymy: different words may have the same meaning. As an example
the words “monitor”, “screen” and “display” can all be used to refer to a
computer’s display. The user of an IR system will obviously have a hard
time guessing the right term that was used in the indexed documents.

2.2.5 Homonymy

Homonymy describes the concept of words that have multiple meanings. For
example the words “Java” and “Python” gained new additional meanings
with the invention of the respective programming languages. Homonymous
words are a problem in IR because documents unrelated to the user’s
information need can match the user’s query thus decreasing the quality of
the results. A user interested in the programming language “Python” won’t
be interested in result documents related to snakes.

7

2 Problem and Setting

2.2.6 Incomplete Knowledge to Specify the Query

A problem of a different kind appears when the user has incomplete knowl-
edge about the searched domain. As an example imagine somebody wants
to find a movie she saw some time ago - without remembering any “hard”
facts such as the title or the names of actors. It is very likely that the searcher
will experience difficulties finding this movie using a web search engine.

2.3 Problem Setting

In this section the problem setting of this thesis is described. We do this by
specifying a set of characteristics and properties of the environment that
are needed to make our approach applicable. This way the ideas from this
work can be easily transferred to various systems that satisfy the described
characteristics and properties.

In the first subsections the structure of both the indexed documents and
the user-issued queries will be discussed. Then we describe characteristics
of typical information needs and associated search processes. Finally it is
discussed how query suggestions can support the user in the described
setting.

2.3.1 Faceted Documents

In this subsection it is defined what is meant by a Faceted Document, the type
of document we will consider in our setting.

A document is the unit of data that an information retrieval system processes.
At index time the document is provided to the system to make it searchable,
and at query time documents are returned as search results.

A document can simply be a single string of text, but it can also have a set
of metadata associated with it. These metadata (e.g. author, category) are
commonly called facets. The values of facets are typically single words or
short, descriptive phrases.

8

2 Problem and Setting

A faceted document is a document that consists solely of a set of facets. In
particular this means that a faceted document has no body - no large section
of text is associated with a document.

Faceted search is usually associated with metadata (as for example in
metadata-based image search like in Yee et al., 2003) - faceting is provided
not on the primary content of the documents but on their metadata. In our
setting a document’s metadata constitute the whole document.

2.3.2 Queries

This subsection describes the type of input entered by the user.

A user-friendly IR interface is usually as simple as possible and demands
as little domain-specific knowledge from the user as possible. This is most
popularly reflected by the common interface solution for web search: a
single textfield. In this work we aim to provide a similar approach for search
on faceted documents.

The input entered by the user (the query) should consist of keywords -
the user should not be bothered with matching keywords to facets. This
would either require knowledge of the internal representation of the facets,
namely the names of the facets used in the index, or some cluttered inter-
face that provides this information. Both options are undesireable from a
user’s perspective since they complicate (and thus slow down) the search
process.

2.3.3 Information Need to Document Relation

An important property of an information need I is the set of documents
RI in the index that match I. Typically it is not known a priori how many
documents RI contains. It might also be the case that the user doesn’t need
to see all documents in RI to satisfy her information need - for example
there could be redundant information across documents in RI .

From a user’s perspective it is desirable that documents that satisfy the
information need are at the top of the results page, for example among

9

2 Problem and Setting

the top ten results. To formulate this idea we define S to be the user
satisfaction, and P(S) the probability that the user is satisfied. Of course
user satisfaction depends on the result documents R, so we are actually
interested in P(S|R).
For a ranked retrieval system the order of the result documents matters. The
user looks at the highest ranked result documents first, so it makes sense
to include this notion in the model. For this we define Rk to be the top k
result documents for k ∈ N. So P(S|Rk) is the probability that the user’s
information need is satisfied by the top k result documents.

In this thesis we will look at a special case, where it is known that for any
information need I the set RI of matching documents has a constant size,
i.e. |RI | = k for some k ∈ N. In particular we will dicuss the case where
k = 1, i.e. each information need is satisfied by exactly one document. This
property has some implications on the user’s search process as will be
discussed next.

2.3.4 Search Process

Given the premise that each information need is satisfied by exactly one
document we can deduce some characteristics of the search process. Using
the search categories introduced in Jansen, Booth, and Spink, 2008 we can
place our users’ searches in either the navigational or transactional category.
It depends on the actual system what the user typically does once the
desired document is located. Since the user’s goal is to zero in on the unique
target document the search is certainly not informational.

The main goal of an information system is to satisfy its users’ information
needs - and it should do this as quickly as possible. In our case this means
to retrieve the target document with minimal effort from the user.

Two important factors of the retrieval speed are the amount of text the user
has to enter and the time she has to wait for feedback from the IR system.
Minimizing the latter demands the immediate display of search results for
the partially entered query as the user types. Minimizing the amount of
typing for the user requires a bit more discussion.

10

2 Problem and Setting

The user’s goal is to enter enough information to uniquely identify the
target document while at the same time avoiding it to enter redundant
information. Query terms that can be deleted from the query such that the
new query still uniquely identifies the target document are redundant and
thus not worth entering in the first place. Without detailed knowledge of
the document collection the user can not know whether a query term she
is about to enter is redundant or not. Here query suggestions can help the
user in refining the query in the right way.

2.3.5 Query Suggestions

Query suggestions should guide the user in fulfilling her information need.
In our setting a query suggestion is useful if it helps to find the unique target
document. Thus a query suggestion should reduce the number of matching
documents while keeping the target document in the result set - precision
should be increased towards a value of 1, recall should be constantly at 1.

Query suggestions can essentially operate on two levels: on facet level and
on phrase level. On the facet level a query suggestion can add term(s)
from a facet that is not part of the current query. On the phrase level a
query suggestion can extend a phrase from a single facet that is already
part of the current query. Phrase extension might again happen on two
levels: completing a partially entered word or adding one or more words to
continue a phrase.

We can put this more formally, starting with the most general form of
query suggestion: Given a query Q a query suggestion is another (related)
query Q′ that is computed from Q by some means. Adding or completing a
partial term can be formulated as follows: Let Q = q1 . . . qn be the original
query, where qn is a partially entered term (potentially the empty string),
then a query suggestion Q′ for Q that completes the term qn has the form
Q′ = (Q \ {qn}) ∪ {t}), where qn is a prefix of t.

Note that the last query suggestion Q′ is written in set notation. Sets are by
definition unordered - the terms of Q′ can be reordered with respect to Q
to match the user’s expectations about the structure of the query terms. For
example the newly completed (or added) term qn might have some close

11

2 Problem and Setting

Figure 2.1: Query suggestion with term reordering example from Google Maps 2014

relationship with a previously entered query term qi, so it might make sense
to group those terms together in Q′. See figure 2.3.5 for an example of term
reordering in a query suggestion in the setting of finding an address.

So far we only discussed cases where query suggestions add terms, but it
may also be desirable to remove terms from a query. A user might have gone
wrong in her quest to find the target document - for example she might
have entered a term that is not present in any document together with the
other query terms. This causes the result set to be empty, an undesirable
situation. Suggested queries can delete terms from the query such that the
result set is not empty any more. In formal terms Q′ = Q \ qi is a query
suggestion obtained by term deletion.

2.4 Customer Support - a Use Case

In this section we describe a use case of this work: Call centers that provide
customer support where employees need to locate customer related data.

When a customer calls for support the employee’s first task is typically to
locate customer related data in the system. This task should be done as
fast as possible because only then the customer’s actual problem can be
handled. To find the relevant customer data the customer has to provide
some information. The employee has to work with this information to
perform a search.

The information provided by the customer can be of varying quality for the
search process: if a unique identifier such as an account number is available

12

2 Problem and Setting

then the search is over quickly - looking up such an identifier is an easy
task. However, if the customer can only provide data like her/his name and
address then the task gets more challenging and time consuming. Names
of people, streets and places often also present spelling challenges - for
the searcher this means she might be entering a wrong term leading to
unsatisfying search results.

One way of mitigating such problems is to shorten the feedback cycle for
the user by providing query suggestions. This way for example potential
spelling mistakes can be avoided already at query time because the correct
spelling is present in a query suggestion.

2.4.1 System Characteristics

Documents

The documents in the target system represent information about customers.
This includes information about the customer’s personal data (such as name
and address) as well as customer related data such as the customer’s orders.
This information resides in a relational database and is thus available in
structured form. From this representation we can build faceted documents
(e.g. a document containing a customer’s personal data) that can be fed into
an index.

A Single Target Document for Each Information Need

The information need of a customer support employee is usually satisfied
by exactly one document. Either she wants to access the customer’s whole
account or some detail of it, for example a particular order. Thus the goal of
the search is to zero in on this single target document.

Query Input

Entering the query should be as easy as possible - the easiest way is to
just enter the data provided by the customer into a single textfield. It is

13

2 Problem and Setting

not desireable to match the customer’s data to specific fields of a complex
search form, or to provide facet information for the terms entered in a single
textfield (e.g. “name:Holzer street:Lerchengasse”). Both options simply cost
time and significantly complicate the employees task.

Query distribution

Queries in our target system are not distributed according to a power law
- as it is common for example in the setting of web search. Rather queries
are distributed uniformly over the indexed data - the probability to be in
need for customer support is approximately the same for every customer.
Along with the requirement that query suggestions should be provided if a
customer is calling for support for the first time this implies that a query
suggestion approach based solely on query logs simply can’t work. Thus
the complete collection of indexed documents needs to be considered when
computing query suggestions.

The Data

The size of the customer bases managed by the use case system range from
a couple of thousand to potentially millions, so scalability is a primary
concern.

The facets of the index documents include but are not limited to customer
contact data such as first and last name, various address fields, telephone
number and email address. In addition the index contains information like
the customer’s ordered products and payment details.

2.5 Summary

Now the problem this thesis is trying to solve has been formally introduced.
After a discussion of a general set of challenges that a user of an IR system
faces our problem setting was described. This includes a set of characteristics
and properties of the IR environment that will be taken as given in this

14

2 Problem and Setting

thesis from now on. Also a use case originating from a real world system
was presented, showing that this work is not only purely of acadamic but
also of practical value.

15

3 Existing Work - State of the Art

In this chapter we take a look on related work. We start with an overview
of techniques that assist a user during a search session. A separate sec-
tion is dedicated to the technique that is the topic of this work: query
suggestion. Other sections discuss existing work on specific aspects of our
problem: dealing with rare (or long-tail) queries and searching on faceted
documents.

3.1 Guiding the User to Fulfill Her Information
Need

There are many ways how an IR system can help the user to fulfill her
information need that are presented in the literature and/or in use in
existing systems. In this section some of them are presented.

3.1.1 Filtering

Many IR systems provide the user with some means to narrow down the
part of the document collection that should be searched by a query, i.e. some
kind of filter is applied (see Baeza-Yates, Ribeiro-Neto, et al., 2011).

An example for this are categories on e-commerce sites such as Amazon or
Ebay (see figure 3.1), provided for selection in a dropdown field. A user that
performs an exploratory search on chess books may enter ’chess book’ in the
query field, but this results in matches not only in the ’Books’ department
but also in others like ’Software’ and ’Music’ - certainly not what the user

16

3 Existing Work - State of the Art

(a) Category filter on Amazon (b) Category filter on Ebay

Figure 3.1: Examples of category filters.

expects. If she instead only enters the query ’chess’ and selects the ’Books’
department only books will appear in the results.

A slightly different approach is used at sites like Yelp 1 or Zvents 2 that
offer search interfaces for locations (e.g. restaurants) and events, respectively.
They both have an additional textfield for the geographic location, and
Zvents has another one for time.

These approaches are not necessarily a departure from the popular choice of
using a single textfield for query input. In the case of e-commerce sites the
default option for the category is usually simply ’All’, and Zvents let’s the
user choose a default location that is preselected in subsequent searches.

Providing additional input fields clutters the user interface, therefore default
interfaces usually provide only limited filtering capabilities. Also further
refinement of the filter - if possible at all - results in longer request-response
cycles. Another shortcoming of this filtering technique is that it is not
possible to combine multiple filters. Thus there is often the need for a more
flexible and interactive approach such as faceting, discussed in the next
subsection.

1www.yelp.com
2www.zvents.com

17

3 Existing Work - State of the Art

3.1.2 Faceting

Faceting provides the means to interactively refine the results of a query
along multiple dimensions of metadata. This technique has been researched
by Hearst et al. (see Hearst et al., 2002, English et al., 2002, Yee et al., 2003

and Hearst, 2008).

Originally developed for metadata-based image search, query refinement
using faceting is now common practice for various kinds of document col-
lections. Faceting not only supports combining multiple filters (for example
on an e-commerce site the user might choose a price range and a customer
rating threshold) but also filtering on hierarchical metadata (for example a
location might be subsequently refined by the sequence Europe→ Austria→
Styria→ Graz). On each iteration the user is presented with a list of facets
where she can select among provided options (for example typical price
ranges); for hierarchical metadata this results in a nice way of refining large
sets (for example the location facet might start out at the continent level
and end up at the city level). At each iteration the user interface provides
information about the currently selected faceting filters, along with the
possibility to revert or change previous choices. Typically each displayed
filter option also provides information on how many documents would still
be matched if the filter would be selected.

Faceted search interfaces are a well-received and established solution for
exploratory searches. However it is not a desirable solution for our use
case system because the request-response cycle is slowed down when the
user searches for specific terms among both the available facets and the
suggested filter options on each iteration. This is caused by the mismatch
between exploratory search (targeted by the faceted search paradigma) and
the need to hunt down a single target document.

3.1.3 Spelling Correction

Misspelling a word in a query is an obvious problem. Without a correction of
the spelling error the IR system can’t properly satisfy the user’s information
need since misspelled words do not match against the indexed documents

18

3 Existing Work - State of the Art

as expected by the user. Approaches for spelling correction are described
for example in Manning, Raghavan, and Schütze, 2008.

Spelling suggestions can be presented both at query time and on the search
results page. At the time of writing Google for example currently imple-
ments both variants. During query time the interactive query suggestion
feature includes suggestions for possible spelling corrections. On the results
page Google suggests a corrected query if it suspects a spelling error in the
query. For common misspellings Google even performs the search on the
corrected query, suggesting the original supposedly misspelled query for
users that insist on their spelling.

Spelling correction relies on a similarity measure for queries such that
the nearest correct query can be suggested. Correct queries are commonly
identified using the indexed data or query logs. Spelling correction can either
be done on single terms or context-sensitively on the complete query.

3.1.4 Stemming

Stemming describes the technique of mapping various forms of a word to
one common stem. Note that this algorithmically computed stem doesn’t
necessarily coincide with the grammatical word stem. An example for
a stemming algorithm is the Porter stemmer, described in Porter, 1980.
Performing stemming at index time as well as on the query terms mitigates
the problem of Word Forms: after stemming the terms “searched” and
“searches” are both reduced (or stemmed) to “search” and the exact word form
used in the indexed documents and the queries doesn’t matter anymore. A
potential downside of unreflected use of this technique is that it is no longer
possible to search for specific forms of a word, e.g. a search for “searched”
will always also yield results for “searches”.

3.1.5 Query Expansion

Query expansion adds - possibly transparent to the user - additional terms
to a query. The reasoning behind query expansion is that adding relevant
terms to the query should increase the effectiveness of the search.

19

3 Existing Work - State of the Art

Query expansion can be both opaque and transparent to the user. Query
expansions can be presented to the user as suggestions both interactively at
query time or on the results page as alternative searches. If query expansion
is done transparently to the user it is called automatic query expansion.

A survey about automatic query expansion is provided by Carpineto and
Romano, 2012. They provide a taxonomy to classify different approaches
with respect to various aspects of query expansion, including the data source
and feature extraction method used to compute query expansions.

It is noteworthy that early work used the indexed documents as the data
source, while later the focus shifted to query logs. Others use external data
(e.g. Wikipedia) or try to exploit the context of the search session.

He and Ounis, 2007 use both the indexed documents as well as an external
data source for query expansion. They also exploit that the indexed docu-
ments consist of multiple facets (title, anchor texts and body) to adjust the
weights of the terms in the expanded query.

Techniques for query expansion can be computationally expensive and are
therefore sometimes applied offline for popular queries. Broder et al., 2009

suggested a way to overcome these problems for rare queries by reusing
computations done for related popular queries.

3.1.6 Autocompletion

As the user types a query it can be tried to guess the rest of the intended
query of the currently entered term. More formally, given a partial query
Qp = q1q2 · · · qk where the qi are the query terms and qk is a potentially
partially entered term, the system tries to compute the user’s intended
query Q = QpQa where Qa is the part that the user has not typed yet. Some
systems try to only compute the next query term, that is if qk is partially
entered to complete it to a full term, and if qk is completely entered to
provide the next query term qk+1.

Note that the autocompletion problem is a subset of the problem of provid-
ing query suggestions: each autocompletion is also a query suggestion.

20

3 Existing Work - State of the Art

Figure 3.2: Autocompletion in Atlassian’s Confluence.

Autocompletion is nowadays provided by all major web search engines
and it is also common in enterprise systems, for example in the Confluence
Wiki by Atlassian (see figure 3.2), often as part of a more general query
suggestion feature.

Various kinds of autocompletion have been studied in the literature, we will
briefly describe a few of them that have some similarity to what we want to
provide.

In Bast and Weber, 2006a autocompletion (in the context of a corpus of
single-facet documents) is provided on the last partially entered query term.
Their system only suggests autocompletions that lead to non-empty result
sets when appended to the already entered query. Instead of using an
inverted index a new datastructure was invented for the computation of
autocompletions. This datastructure (called HYB) is based on the idea to
precompute inverted lists for unions of words.

The same authors extended their approach in Bast and Weber, 2006b to also
provide limited autocompletion on facets. Given a query with a partially
entered last query term qt they compute categories that contain matches for

21

3 Existing Work - State of the Art

the already entered query and match qt with their name. A category is one
particular facet, so this autocompletion on facets can by no means be called
complete.

Autocompletion on structured data is explored in Nandi and Jagadish, 2007.
In their system the query is entered in a single textfield, having the general
form Q = key1 : value1 key2 : value2 · · · keyn : valuen. This format is not
strict, it is possible to omit either the key or the value part. Autocompletion is
provided on both the key and value parts, always ensuring non-empty result
sets. The authors employed a combination of datastructures (a Lucene-based
inverted index, trie-based datastructures and schema-backed functions for
structural query validation) to compute query suggestions along with dis-
play information (e.g. result set size or type of key).

The concept of autocompletion is taken to a new level by Hawking and Grif-
fiths, 2013 using what they call extended query autocompletion. However,
their approach does not only append terms to the current query, rather it
falls into the more general notion of query suggestions. Thus discussion of
this paper is deferred to 3.2.3.

3.2 Assisting the User with Query Suggestions

One particular way to help the user formulating her query is to suggest
new, alternative or more specific queries to the one the user has typed. Ap-
proaches for query suggestions differ mainly in the way they are computed
and how they are presented to the user. Query suggestions are often com-
puted from query logs, alternatives directly use the indexed data. Computed
query suggestions can be presented to the user interactively as she enters
the query or along with the results for further exploration.

3.2.1 Deriving Query Suggestions

Query suggestions need to be computed by some means, and different
methods have been researched in the literature. The main input value to the
computation is always the query. Depending on the algorithm additionally

22

3 Existing Work - State of the Art

used inputs can be the indexed data, logs of previously issued queries and
even external data. In this subsection we will take a brief look at the various
algorithms presented in the literature.

Computing query suggestions from query logs

A popular approach to compute query suggestions that works well for
common queries is mining query logs. Particular techniques vary in sophis-
tication and the way the query logs are processed. Probably the simplest use
of query logs is to compute the frequency of each query. This has been used
in Church and Thiesson, 2005 to provide query suggestions for wildcard
queries. More sophisticated is the use of clickthrough data, for example in
Beeferman and Berger, 2000 or Cao et al., 2008. Providing query suggestions
for long-tail queries is more difficult due to the data sparsity, but Broccolo
et al., 2012 overcame this problem by mining the query logs not on the
query but on the query term level. Thus they were able to provide query
suggestions even in the case of a new query that was not yet present in the
query logs.

Computing query suggestions from the indexed data

In settings where query logs are not available for query suggestion compu-
tation other approaches need to be devised. Bhatia, Majumdar, and Mitra,
2011 computed query suggestions directly from the indexed documents.
Phrases from the document collection are extracted and indexed, on query
time the indexed phrases are matched against the query and appropriate
phrases presented as query suggestions.

Further approaches to computing query suggestions

A third class of algorithms computing query suggestions makes use of ex-
ternal data, i.e. data not directly linked to the searched document collection
(such as the index or associated query logs). A linguistic approach is to use
e.g. thesauri to find relevant synonym terms, or generally related terms. If

23

3 Existing Work - State of the Art

Figure 3.3: Example for non-interactive query suggestion, taken from duckduckgo.com

we consider query expansion as some sort of query suggestion (from an
existing query a new query is computed to provide better search results),
see Hsu, Tsai, and Chen, 2006 for an example.

3.2.2 Ways of Presenting Query Suggestions to the User

Query suggestions are usually opaque to the user, she can decide to use
a suggestion or to neglect it. To enable the user to make this decision,
query suggestions must be presented to her. There are mainly two places
where query suggestions can be shown to the user: either along with the
query results or already next to the query when it is entered. Choosing the
former results in non-interactive, choosing the latter in interactive query
suggestions.

Non-interactive Query Suggestions

Non-interactive query suggestions are only computed for queries that are
submitted by a user. Therefore this approach is computationally not very
expensive, but the feedback cycle is quite long when compared to interactive
query suggestions. A well-known usecase of non-interactive suggestions
is a common feature of popular web search engines. If a query issued
by a user has only a small number of hits the engine tries to suggest an
alternative query. The small number of results might be for example caused
by a common misspelling that can be corrected by the search engine to
suggest an improved query. See figure 3.3 for an example from the web
search engine DuckDuckGo 3.

3http://www.duckduckgo.com

24

3 Existing Work - State of the Art

Figure 3.4: Example for interactive query suggestions, taken from duckduckgo.com

Interactive Query Suggestions

Interactive query suggestions are computed as the user enters her query.
This method is computationally more expensive - the suggestions need to
be computed with every keystroke of the user. Autocompletion of partially
entered terms can be seen as a special case of interactive query suggestions.
See figure 3.4 for an example from the web seach engine DuckDuckGo.
Note how the suggestions provide term completion, spelling correction and
extension of the current query by a new term all at once.

3.2.3 Query Suggestions for Faceted Documents

Note that all discussed work so far operates on documents without facets. A
work that has a similar intent to ours is Bast and Weber, 2006b. This paper
describes an IR system where autocompletion is provided for the last query
term that the user is currently entering. The indexed document collection

25

3 Existing Work - State of the Art

is the English Wikipedia, along with category information (a Wikipedia
document can be assigned to any number of categories). Autocompletions
are shown for the term (occurrences in the document text) and for matching
category names.

Another very interesting system is described in the recent paper Hawking
and Griffiths, 2013. The authors extended the autocompletion technique to
provide suggestions based on triggers (from the entered query). Suggestions
are associated with actions that can differ according to the type of the
suggestion. The explored actions also contain an approach for interactive
faceting by suggesting filter options on facets. Note that this is significantly
different from what we want to do: our intention is to actually hide the
complexity of facets from the user, while still exploiting their structure in
providing query suggestions.

3.3 Infrequent Queries - Making the Problem
Harder

The typical way to implement query suggestions is to mine the query logs
for information. The query logs are analyzed to identify similar queries that
could lead to better results. For rare queries this approach has an obvious
shortcoming: there are only very few or even no relevant queries in the
query log. This lack of data might cause bad suggestions, or the system
might fail to produce any suggestions at all.

One solution is to compute query suggestions directly from the indexed data.
This approach is harder than mining query logs because suggested queries
have to be computed from relevant documents. This involves deducing
relevant terms from a set of documents - it is arguably easier to find similar
user-entered queries where users have done the work of identifying relevant
terms for an information need.

26

3 Existing Work - State of the Art

3.4 Where to Search - Fulltext Queries on
Faceted Documents

Searching for query terms in a single-facet document is equivalent to search-
ing for the query terms in the single facet of the document. Having doc-
uments with multiple facets raises some questions on how the search for
query terms in a document should be performed.

One straight-forward approach would be to refer this decision to the user.
The user could supply for each query term the document facet where it
should occur. However this has several drawbacks, one of them being that
the user needs to know the names of the facets. This might be acceptable for
some expert systems, but in general users expect to be able to use a system
without prior training.

A common technique is to reduce the multi-facet search to single-facet
search by accumulating the content of all facets in a special catch-all facet
that is then used for searching. Weighting facets can be simulated by simply
adding the content of important facets multiple times to the catch-all facet.
A drawback of this approach is that potential relationships between the
contents of different facets are not used.

Another approach is to simply search for all query terms in all document
facets and assigning weights to the facets. This way e.g. a title facet could
be weighted higher than a body facet such that an occurrence of a query
term in the title facet is assigned a higher score than an occurrence in the
body facet.

3.5 Summary

This chapter presented existing work on various aspects of our problem
on query suggestions for faceted documents, showing this work’s place
in the IR literature. In particular we showed how this work operates on a
problem space where multiple challenges overlap: first of all the general
setting of providing useful query suggestions. Then the aspect of faceted
documents is added, as well as the requirement to provide suggestions

27

3 Existing Work - State of the Art

for any query, however rare it is. Faceted documents imply that standard
approaches for query suggestion need at least be adapted to solve the
problem, and providing suggestions also for rare queries rules out the
applicability of a whole range of standard techniques, such as mining query
logs. The next chapter contains the discussion of an approach to tackle all
these challenges.

28

4 Approach

In this chapter it is described how query suggestions for queries on faceted
documents are computed.

The goal of this thesis is to provide helpful query suggestions on faceted
documents. We will compute query suggestions without using query logs
to be able to provide suggestions not only for common frequent queries but
also for infrequent and even previously unseen queries. Additionally the
query suggestions should guide the user to find her unique target document.
The only way to satisfy these requirements is to use the whole corpus of
indexed documents for the computation of query suggestions.

In the first section 4.1 the problem is discussed in terms of its computational
complexity. As it will be shown the problem to provide the best possible
query suggestions is NP-complete.

The section 4.2 gives a high-level view of the steps involved in query
suggestion computation and the requirements on the suggested queries.

The following sections go into the details of the various steps, including the
mapping of query terms to facets (4.3), term ordering (4.4) and computing
terms to add to the original query (4.5 and 4.6).

4.1 Problem Complexity

The goal of this thesis is to enable the user to find the target document as
fast as possible, i.e. with as few keystrokes as possible. Mathematically this
can be formulated as an optimization problem. In this section we take a
look at the mathematical complexity of this optimization problem.

29

4 Approach

Being able to compute the best possible query for a given target document
would also be useful in evaluating the quality of a query that uniquely
identifies the target document. However, as it will turn out, it is generally
not feasible to compute the optimal query.

4.1.1 Linear Integer Program Formulation

The optimization problem can be formulated as a linear integer program.
In this subsection we will develop such a formulation. We start with some
definitions that we will use subsequently.

Definition 1. Let D be a set of documents, d ∈ D. For a word w we write
w ∈ d if the word w occurs in d and w /∈ d otherwise. The set of all words in
D is W, and the set of words in d is W(d) = {w ∈W|w ∈ d}. The function δ
is used to express whether a document d contains an occurrence of a word
w or not:

δ(d, w) =

{
1 if w ∈ d
0 otherwise

To study the complexity of the optimization problem we use a simplified
version. Instead of counting the user’s keystrokes we count the number of
words that the query must contain to match only the target document d.

Theorem 1 (Integer program formulation). Let d ∈ D be the target docu-
ment. Let W(d) = {w1, w2, . . . , ws} be the set of words that occur in d. Then
the following equations formulate the optimization problem of finding the
smallest set of words that uniquely identify d.

30

4 Approach

min
s

∑
i=1

λi, s.t. (4.1)

λi ∈ {0, 1} (4.2)
s

∑
i=1

λiδ(d, wi) ≥ 1 (4.3)

s

∏
i=1

λi=1

δ(d̃, wi) = 0 ∀d̃ ∈ D \ {d} (4.4)

Proof. The binary variables λi represent the presence of the word wi ∈
W(d) in the query. Thus the inequality 4.3 holds if and only if the query
represented by λ = (λ1, . . . , λs) contains a word that occurs in d. This in
turn is equivalent to d matching the query.

Let d̃ ∈ D \ {d}. The equation 4.4 holds for d̃ if and only if there is at least
one index i such that λi = 1 and δ(d̃, wi) = 0. But this in turn is equivalent
to d̃ not satisfying the query represented by λ.

So the equations 4.3 and 4.4 ensure that the query represented by λ is
matched uniquely by d.

Since the sum of the λi is minimized, the number of words in the query
is minimzed as well. Therefore the integer program solves the problem of
minimizing the query to uniquely match d.

Note that the above integer program formulation contains nonlinear con-
straints. However it is possible to avoid the nonlinear constraints and obtain
a linear integer program:

Theorem 2. Let d ∈ D be the target document. Let W(d) = {w1, w2, . . . , ws}
be the set of words that occur in d. Then the following equations formulate
the optimization problem of finding the smallest set of words that uniquely
identify d.

31

4 Approach

min
s

∑
i=1

λi, s.t. (4.5)

λi ∈ {0, 1} (4.6)
s

∑
i=1

λiδ(d, wi) ≥ 1 (4.7)

s

∑
i=1

(δ(d̃, wi)− 1)λi < 0 ∀d̃ ∈ D \ {d} (4.8)

Proof. Note that the only equation that changed in comparison to the previ-
ous integer program formulation is the inequality 4.8 that replaced 4.4. So it
suffices to show that those two inequalities enforce equivalent constraints.

We start with a simple transformation of 4.8:

s

∑
i=1

(δ(d̃, wi)− 1)λi < 0⇔ (4.9)

s

∑
i=1

δ(d̃, wi)λi <
s

∑
i=1

λi (4.10)

We only need to look at the indexes i such that λi 6= 0 (otherwise the
corresponding terms are contributing 0 to both sides of the inequality).
Then the inequality only holds if and only if there is an index i such that
δ(d̃, wi) = 0. But this is equivalent to the product in 4.4 being 0.

Note that the above linear integer program is actually a so-called 0-1 integer
linear programming problem. It is known that 0-1 integer linear program-
ming is an NP-complete problem. This raises the question whether our query
minimization problem is actually NP-complete as well. This is discussed in
the next subsection.

32

4 Approach

4.1.2 NP-completeness

Definition 2 (Unique target query). Let D be a set of documents and Q a
query. We call Q a unique target query if

|{d ∈ D|d satisfies Q}| = 1.

If d ∈ D is the only document satisfying the query Q, then we call Q a
unique target query for d.

In the previous section we discussed the optimization problem - now we
discuss the associated decision problem.

Definition 3 (Unique target query decision problem). Let D be a set of
documents, d ∈ D the target document. The unique target query decision
problem (UTQ) is formulated as follows:

Is there a unique target query Q for d such that Q contains k words?

Lemma 1. The unique target query decision problem is in NP.

Proof. We have to show that it is possible to verify a given solution in
polynomial time. Let a query Q be a solution. It is possible to check for
every document whether it satisfies Q or not. Furthermore this can obviously
be done in polynomial time, so UTQ ∈ NP.

In the reduction step of the NP-hardness proof of UTQ we will use the Set
Cover Problem (SCP), which is known to be NP-complete (for a proof, see
Karp, 1972):

Definition 4 (Set Cover Problem). Given a universe U = {1, 2, . . . , m} and a
set S of n subsets of U, the set cover problem is formulated as follows:

Is there a subset of S of size k such that their union covers the universe?

Or equivalently:

∃T ⊆ S :
⋃
t∈T

t = U and |T| = k

33

4 Approach

As a first step we reduce the set cover problem to its dual problem, which
we call the Empty Set Intersection Problem:

Definition 5 (Empty Set Intersection Problem). Given a universe U =
{1, 2, . . . , m} and a set S of n subsets of U, the Empty Set Intersection Problem
is formulated as follows:

Is there a subset of S of size k such that their intersection is empty?

Or equivalently:

∃T ⊆ S :
⋂
t∈T

t = ∅ and |T| = k

Lemma 2. The empty set intersection problem is NP-hard.

Proof. Let U = {1, 2, . . . , m} be the universe, and S = {S1, S2, . . . , Sn} be the
set cover subsets of U. Let S̃i = U \ Si and S̃ = {S̃1, S̃2, . . . , S̃n} be the empty
set intersection subsets of U. Let I ⊆ {1, 2, . . . , n} with |I| = k. If {S̃i|i ∈ I}
is a solution to the empty set intersection problem then {Si|i ∈ I} is also a
solution of the set cover problem:

⋂
i∈I

S̃i = ∅⇒

U = (
⋂
i∈I

S̃i)
c =

⋃
i∈I

S̃c
i =

⋃
i∈I

Si ⇒⋃
i∈I

Si = U

It can easily be seen that this reduction can be done in polynomial time.

Now everything is prepared to prove the NP-hardness of UTQ:

Lemma 3. UTQ is NP-hard

34

4 Approach

Proof. We reduce the empty set intersection problem to UTQ.

Let U = {1, 2, . . . , m} be the universe, and S = {S1, S2, . . . , Sn} be the
subsets of the empty set intersection problem. The universe U corresponds
to the documents D \ {d}, where d is the target document of the UTQ
problem. Each Si corresponds to a word wi and its elements correspond to
all the documents that contain the word wi. More precisely:

• W = {w1, w2 . . . wn}.
• di = {wj|i ∈ Sj}, i ∈ {1, 2, . . . , m}
• d = W
• D = {di|i ∈ U} ∪ {d}.

Now let Q =
⋃

i∈I wi be a unique target query for d with k words (|I| = k).
We claim that ⋂

i∈I

Si = ∅.

Si represents all the documents that contain the word wi. If the intersection
of the Si above would contain an element j this would mean that a document
dj 6= d would contain all elements of the query Q. But Q is a unique target
query for d, a contradiction. Thus the claim is proven.

The reduction can obviously be done in polynomial time.

Combining the lemmas 1 and 3 we finally get the following theorem:

Theorem 3. UTQ is NP-complete.

4.2 Steps of Query Suggestion Computation

This section outlines the steps necessary to compute query suggestions.

The generic algorithm for computing query suggestions consists of the
following three steps:

1. Selection of candidate documents.
2. Compute terms for query suggestions.

35

4 Approach

3. Add the suggested terms to the original query and if deemed appro-
priate reorder the query terms.

The following subsections elaborate on the individual steps.

4.2.1 Selection of Candidate Documents

In this step relevant documents for the current query are identified. Only
documents that match the current query (or at least a part of it) are selected
for further computations since documents not related to the current query
can’t help the user to satisfy her information need. Section 4.5 covers this
step.

4.2.2 Compute Terms for Query Suggestions

Once the documents that match the user’s current query are identified the
algorithm can start to compute which terms should be added to the current
query. This is the hard part of the problem: How do we select those terms?
A new term should satisfy certain properties - these can be encoded into a
quality function that ranks terms for suggestion. Section 4.6 describes how
this can be done.

4.2.3 Rearrange the Original Query

Simply appending a new term to a query might irritate the user because
the updated query might be in conflict with the user’s expecations about
the structure of the data represented by the query terms.

Suppose the user searches for a customer using name and address data. If
the current query is “Holzer Lerchengasse Graz” and the system returns
suggestions 27 and 48 for street numbers, then “Holzer Lerchengasse Graz
27” does not capture the structure of the data well - “Holzer Lerchengasse
27 Graz” would be a much more natural suggestion, respecting the close
relationship of street name and street number.

36

4 Approach

4.3 Probabilistic Mapping of Query Terms to
Facets

This section describes how the indexed data can be used to probabilistically
assign each query term to a facet of the indexed documents. A use case of
such a mapping is the reordering of the terms of a suggested query which
will be discussed further down.

First the query needs to be split into terms. For a query Q consisting of n
terms we define q1, q2, . . . , qn to be the individual terms. After the individual
terms have been identified we can proceed to the next step: probabilistically
compute their facets.

Let q be a query term. Now the target is to find the facet fq from the set of
all facets F that most probably contains q. Thus we seek

fq = arg max
f∈F

P(f |t)

Using the definition of conditional probability

P(a|b) = P(a ∩ b)
P(b)

we get

P(f |t) = P(f)P(t| f)
P(t)

.

P(t| f) can be estimated by simple term occurrence counting:

P(t| f) = # occurrences of t in f in all documents
of terms in f in all documents

P(f) and P(t) can also be estimated by simple term occurrence counting.
Thus we have all ingredients to estimate P(f |t). Finally iterating over all
facets we can estimate fq.

Given fqi for all i ∈ {1, 2, . . . , n} a facet-aware query Q′ can be formulated:

Q′ = fq1 :q1 fq2 :q2 · · · fqn :qn

37

4 Approach

The mapping of terms to facets computed this way might not always be clear-
cut - there might be ties (or almost ties) between several facets for a single
term. To respect this one could also continue computations with several
mapped facets for a single term - weighted by the estimated probabilities.

4.4 Term Reordering According to Predefined
Facet Order

Given a term t that is suggested for addition to a query Q it is desirable to
insert it at a position where the user expects it according to her knowledge
about the structure of the data. Somehow the system has to be taught this
expected structure. The simplest way of doing this is to statically predefine
an order on the facets.

Let F = { f1, f2, . . . , fk} be the set of facets of the indexed documents (Note
that this approach assumes F to be a statically known set of facets that
doesn’t change). One way of defining an order would be to define a total
order <F on all facets of F. However, this approach has a serious drawback.
Suppose the user enters terms in a different order - should the query be
reordered after the input of each term? This seems like an annoyance to the
user. A more sensible approach is needed.

Defining a less strict ordering relation on the facets lowers the probability
that a user-entered query will be reordered. Our approach is to only define
orderings on groups of facets that have an order that is well-understood by
the users of the system. Suppose for example there are facets for the street
and street number parts of an address. The common order for these facets
is the street followed by the street number. Using a partial order by defining
total orders only on small disjunct subsets of F triggers fewer reorderings
on the user-entered part of a query while keeping the expected order for
certain facets.

Suppose the ordered facet groups are G = {G1, G2, . . . , Gl} ∪ {Gunordered},
where Gi = (fGi,1, . . . , fGi,kGi

) and Gunordered is the group of all facets that
are not part of any ordered facet group. Note that the facet groups need to
be pairwise disjunctive (otherwise the partial order on F potentially leads

38

4 Approach

to conflicting reorderings). Now every facet group has an associated total
internal ordering ≤Gi (for Gunordered we define all facets to be equal with
respect to the ordering).

Using these ordered facet groups G we can define what we mean by an
ordered query Q:

Definition 6 (Ordered Query). Let Q be a query. Q can be split into query
term groups Q = Q1Q2 . . . Qk using a term to facet mapping function f as
follows:

• Let Q = q1q2 . . . qn be the query terms of Q.
• Starting from left to the right query terms coming after each other

that are mapped by f to facets in the same facet group Gj are grouped
together in a query term group Qi.

Thus we can define a function G that maps a query term group Qi to the
facet group Gj that contains the facets to which the query terms from Qi are
mapped to: G(Qi) := Gj.

Q is an ordered query if and only if it satisfies the following properties:

• If two different query term groups are mapped to the same facet group
then this facet group is Gunordered. More formally:

i 6= j ∧ G(Qi) = G(Qj)⇒ G(Qi) = G(Qj) = Gunordered

• Inside a query term group Qi = t1t2 . . . tl, l ≥ 1, the query terms are
ordered according to its facet group G(Qi) = Gj:

u < v⇒ f (tu) ≤Gj f (tv)

Note that this also well-defined for query term groups Qi with G(Qi) =
Gunordered.

4.4.1 Inserting a New Query Term Into an Ordered Query

Let t be a suggested term and ft = f (t) its facet and Gt the ordered facet
group that contains ft. Where should t be inserted in the original query Q
to get the query suggestion Qsugg?

39

4 Approach

If ft is not part of any ordered facet group (that is, Gt = Gunordered), then t is
simply appended to Q, so Qsugg = Qt. Otherwise there are again two cases
to distinguish.

Let Q = Q1Q2 · · ·Qk be the query term groups of Q. Suppose there is no
query term group Qi of Q with G(Qi) = Gt. Then t is again appended to Q,
resulting in Qsugg = Qt.

If there is a query term group Qi with G(Qi) = Gt then t is inserted into
this group. Let Qi = q1q2 · · · ql. t needs to be inserted into Qi to get an
updated query term group Q

′
i. If ft <Gt f (q1) then Q

′
i = tQi. Otherwise

it is possible to define an index û = max{u| f (qu) ≤Gt ft} and insert
t in Qi after qû. So Q

′
i = q1 · · · qûtqû+1 · · · ql. Note that qû+1 . . . ql might

be empty. After t is inserted into Qi the query suggestion is given as
Qsugg = Q1 · · ·Qi−1Q

′
iQi+1 · · ·Qk.

4.4.2 Reordering a Complete Query

Suppose a user entered several query terms without accepting a query
suggestion. Then the query terms are not necessarily ordered according to
the predefined orderings for the facet groups. Thus in general the terms in a
query suggestion must be reordered completely - it is not sufficient to ensure
that the newly suggested term is inserted according to the orderings.

However, the general case can be reduced to the one discussed above:
inserting one term into a query that respects the orderings of the facet
groups. Let q1q2 · · · qm be an unordered query Q. To sort the query terms qi
we define another query Q′ and initialize it to ∅, the empty query. While
the query Q is not empty, we take the first term from Q and insert it into
Q′, respecting the orderings from the ordered facet groups, and delete it
from Q. Note that Q′ respects the orderings from the ordered facet groups
in every iteration, and thus at the end Q′ is completely ordered.

40

4 Approach

Query Q
Term t

Gt = Gunordered Qsugg = Qt

Q = Q1 · · ·Qk

∃i : G(Qi) = Gt Qsugg = Qt

Qi = q1 · · · ql

ft < f(q1) û = max{u|f(qi) ≤ ft}

Q
′
i = tQi Q

′
i = q1 · · · qûtqû+1 · · · ql

Qsugg = Q1 · · ·Qi−1Q
′
iQi+1 · · ·Qk

no

yes

no

yes

yes

no

Figure 4.1: Outline of the procedure to insert a new term t into an ordered query Q to
obtain a query suggestion Qsugg.

41

4 Approach

4.5 Selecting a Set of Documents for the
Computation of Term Suggestions

In this section it is described how, given a current query, a set of documents
is chosen as input for the algorithm that computes terms for query sugges-
tions. Essentially there are two states of the current query that need to be
considered:

• The last query term is partially entered.
• The last query term is fully entered (followed by a space).

The subsections below discuss both cases. In the following let Q be the
current query, consisting of the terms q1q2 . . . qk.

4.5.1 Fully Entered Last Query Term

Let qk be a fully entered query term. It is noteworthy that for all query
terms (except the last one in the final query the user issues) it can be easily
determined when the term is fully entered: it is followed by a space character
- the user is about to start entering the next query term.

Now it is straight forward to determine a set of documents that should
be mined for terms for query suggestion: all documents that still match
the query Q should be considered. However, the user-entered query Q is
facet-agnostic, so it is necessary to construct a facet-aware query Q̂ from Q.
Without guessing a mapping from query terms to facets there is only one
sensible approach: search for every query term in every facet.

As an example, suppose we have the following current query:

Q = Donald Knuth Programming

and in our document collection we have the facets author, title and publisher.
Then (assuming query terms are combined by logical and) the following
facet-aware query is constructed:

42

4 Approach

Q̂ =

(author:donald OR title:donald OR publisher:donald)AND
(author:knuth OR title:knuth OR publisher:knuth)AND

(author:programming OR title:programming OR publisher:programming)

With the facet-aware query Q̂ it is ensured that all matching documents
contain each word from Q in some facet. So if a term t is selected from any
of the matching documents, then the query Q′ = q1q2 . . . qkt (or rather its
corresponding facet-aware query Q̂′) is guaranteed to have a non-empty
result set.

4.5.2 Partially Entered Last Query Term

Having solved the case where the last query term is fully entered, let’s move
on to the case where the last query term qk is partially entered. Obviously
it is not possible to use the same approach as above, since the facet-aware
query Q̂ won’t have the result set expected: it is necessary to do prefix
search for the partially entered term qk. If q̂k is the term the user is currently
entering, then qk is a prefix of q̂k, but a document containing qk doesn’t
necessarily contain the full term q̂k.

There are basically two solutions to the problem, with different impacts on
the running time of the algorithm. The first solution adjusts the facet-aware
query Q̂, while the second solution defers the prefix string problem to the
selection of terms for query suggestions.

Adapting the facet-aware query Q̂ for the prefix qk of q̂k can simply be done
by replacing qk with qk∗, representing prefix search in Lucene. So, to return
to our example from above, suppose the last term programming was only
partially entered, say: pro. The corresponding facet-aware query now looks
like this:

43

4 Approach

Q̂ =

(author:donald OR title:donald OR publisher:donald)AND
(author:knuth OR title:knuth OR publisher:knuth)AND

(author:pro* OR title:pro* OR publisher:pro*)

While this is a perfectly valid solution (all the points made in the section
above still hold), performing a prefix search is a lot more costly than a
plain string search. Since a fast running time is a crucial property of our
algorithm, we chose a different approach.

Deferring the prefix problem to later in the algorithm when terms are
selected for query suggestions, the partial term qk is simply omitted from
the facet-aware query. Continuing our example, the facet-aware query is
now the following:

Q̂ =

(author:donald OR title:donald OR publisher:donald)AND
(author:knuth OR title:knuth OR publisher:knuth)

Later, when the terms for query suggestions are actually selected, the
algorithm only accepts terms that have qk as a prefix (note that this step is
also necessary in the first solution, albeit on a smaller set of terms). So we
trade faster search for iterating on a larger set of terms later on.

Having selected a set of documents we can now move on to the next
part of the algorithm - computing terms for query suggestions from those
documents.

4.6 Computing Terms for Query Suggestions

At the heart of our problem is the selection of terms for query suggestions -
a query suggestion needs to add a useful term to the current query. After the

44

4 Approach

previous section showed how a set of relevant documents can be obtained
from the current query, this section deals with the problem of selecting
useful terms from these documents for query suggestions.

We start by defining desirable properties of terms for query suggestions in
4.6.1, then we describe how these properties can be encoded into an objective
(or quality) function in 4.6.2. In 4.6.3 a variant of the objective function that
tries to further exploit the relationships between facets is presented. Finally
an approach to smoothen the objective function is presented in 4.6.4.

4.6.1 Desirable Properties of Term Suggestions

Before presenting an objective function, let’s consider what properties a
term should fulfill to be a useful term for query suggestions:

• It should be present in a large fraction of the candidate documents, and
preferably in the same facet. If a term is present in many candidate
documents it is likely that the user is searching for one of these
documents.
• It should further minimize the result set (remember: the user is search-

ing for a single document). Or put in a different way: It should not
suggest redundant terms (a redundant term is a term that is present
in all candidate documents).
• It should not lead to an empty result set (otherwise it would not be a

helpful query suggestion!).

4.6.2 Quality Function

To quantify the above requirements for a suggestion term in a compact way
we introduce an objective function that respects all these requirements.

We start by introducing the building blocks of the final objective function.
Let D be the set of candidate documents, n = |D|, let F be the set of facets
of documents in D and let t be an arbitrary term.

If f ∈ F and d ∈ D then f (d) is the facet f of d. We write t ∈ f (d) if t occurs
in the facet f of d.

45

4 Approach

rdcD(t) describes the number of documents in D where t occurs in some
facet (“relative document count”):

rdcD(t) = |{d ∈ D|∃ f ∈ F : t ∈ f (d)}|

r f cD(t) counts the number of facets of documents in D that contain occur-
rences of t (“relative facet count”):

r f cD(t) = |{ f ∈ F|∃d ∈ D : t ∈ f (d)}|

We define rD(t) as a redundancy factor of t with respect to D:

rD(t) =
{ 1

n+1 if rdcD(t) = n
1 otherwise

(4.11)

Now we can define our objective (or quality) function qD(t):

qD(t) =
rdcD(t)
r f cD(t)

rD(t) (4.12)

Some properties of qD(t):

• qD(t) ≥ 0
• qD(t) > 0⇔ ∃d ∈ D : ∃ f ∈ F : t ∈ f (d)
• Let t1, t2 be two terms such that r f cD(t1) = r f cD(t2) and rD(t1) =

rD(t2). Then qD(t1) ≤ qD(t2)⇔ rdcD(t1) ≤ rdcD(t2).
• Let t1, t2 be two terms such that rdcD(t1) = rdcD(t2) and rD(t1) =

rD(t2). Then qD(t1) ≤ qD(t2)⇔ r f cD(t1) ≥ r f cD(t2).
• Let |D| > 1 and let t1, t2 be two terms such that rdcD(t1) = 1,

rdcD(t2) = |D| and r f cD(t1) = r f cD(t2). Then qD(t1) > qD(t2). (Note
that this is ensured by the (n + 1) term in the denominator of the
redundancy factor, using n would fail to ensure this property.)

Given the above properties we can conclude that qD(t) satisfies all our
requirements of an objective function. Computing k terms for query sug-
gestions can now be done by computing qD(t) for all terms t and select the
terms that yield the top k values for qD(t).

46

4 Approach

4.6.3 Facet Aware Quality Function

The quality function qD as described above is independent of the other terms
in the query. However, if some information is known about the (expected)
structure of the query this can be exploited as well.

To be able to do this there are essentially two building blocks needed: firstly
there needs to be some way to map a query term to a specific facet and
secondly the expected structure of the query (with respect to the order of
the facets the query terms are mapped to) needs to be known. Mapping
query terms to facets is discussed in section (4.3). Dealing with an expected
structure of queries is discussed in section (4.4).

If a suggested term would fit into the expected query structure the quality
function can boost this term. Suppose for example a term from a facet A
is supposed to be followed by a term from a facet B and the last entered
query term has been mapped to facet A. Then a suggested term t that is
mapped to facet B should be boosted. As a more concrete example suppose
the term “Michael” was the last query term. “Michael” can be mapped to
a first name, and after a first name a last name is expected. The suggested
term that is mapped to the lastname facet should be boosted with respect
to terms that are mapped to other facets.

Let’s put this ideas into a more formal notation. Let qD be the quality
function from above, let fD be a function that maps terms to facets with
respect to a set of documents D, let tq be the last term of the current query
and let b be the boost factor for suggested terms that are mapped to the
expected facet. First we define a function δ f that represents the expected
structure of the query. For two facets f1 and f2 it decides whether a term of
facet f2 is expected to follow a term of facet f1 in a query:

δ f (f1, f2) =

{
1 if a term of facet f2 is expected to follow a term of facet f1
0 otherwise

Now we can define a function bD(t) that computes the facet boost factor for
a suggested term:

47

4 Approach

bD(t) =
{

b if δ f (fD(tq), fD(t)) = 1
1 otherwise

Finally we can define our facet aware quality function q f
D:

q f
D(t) = bD(t)qD(t) (4.13)

Note that q f
D can not only consider relationships between different facets

but also boost suggested terms that are mapped to the same facet as the
last query term - it all depends on information encoded in the function
δ f . Boosting terms of the same facet can make sense for facets that contain
multiple words (e.g. last names or names of cities are not always single
words, they can also be composed of multiple words).

4.6.4 Dampening the Redundancy Factor

The redundancy factor, defined in equation (4.11) introduces a rather crude
point of discontinuity when a term occurs in all documents of D. To mitigate
this one can try to smoothen this discontinuity by using a dampening
function. Using two different dampening functions we introduce two more
variations of our quality function (note that these alternative redundancy
factor functions can be used both in the facet-agnostic and the facet-aware
quality functions defined above):

rsqrt
D (t) =

{
1√
n+1

if rdcD(t) = n
1 otherwise

(4.14)

rlog
D (t) =

{
1

log(n)+1 if rdcD(t) = n
1 otherwise

(4.15)

48

4 Approach

4.7 Summary

This chapter started with bad news: the optimization problem lying at the
heart of our IR problem was shown to be based on an NP-complete problem.
However, the NP-completeness mainly concerns the evaluation of a query
for a specific document, computing query suggestions for an unknown
document works more or less the other way around. Thus we continued
by developing a heuristic approach for computing query suggestions. The
whole process of computing query suggestions in our setting was formal-
ized, separated into multiple steps. The main step is the computation of
terms to be added to the current query. The actual selection of the terms
is delegated to a quality function, assessing the relevance or usefulness of
a term for the current query. Several quality functions were introduced,
though one forms the basis of the others. This quality function not only
considers the total amount of documents that contain a term, but also takes
into account that the user’s goal is to find a single document.

Having laid the theoretical foundations in this chapter, the next one provides
some insights into the details of the implementation of the developed ideas.
In particular, it focuses on one aspect that was neglected in this chapter:
performance in the sense of response time to the user - a superior query
suggestion algorithm is worthless if the user can pause for a cup of coffee
while waiting for suggestions to appear.

49

5 Implementation

This chapter presents the most important aspects of the implementation of
the ideas described in the previous chapters. After the first section reveals
the technologies used in the implementation the following sections present
the most interesting parts of the implementation.

After settling on the theoretical aspects of a query suggester the main
practical challenge is to achieve acceptable performance in terms of response
time. Of all the parts necessary for the computation of query suggestions
as described in the previous chapter the step selecting terms for query
suggestions is practically the most demanding one. The main reason for
this is that the algorithm to identify terms for query suggestions operates
on the complete index - potentially a very large set of data. There were
other non-trivial challenges that needed solving in the implementation,
but to both avoid bloating of this section and to try to focus on ideas that
could prove to be useful to others we limit the discussion of implementation
details to this topic.

In section 5.2 we briefly present a first naive implementation that directly
uses the index provided by Lucene. This implementation was used in the
beginning to test the practicality of ideas for query suggestion.

In terms of computation time the approach of directly using the index
provided by Lucene proved to be unacceptable. A more specialized repre-
sentation of the document collection was needed. In section 5.3 a rather
simple array-based solution is presented that provides sensible response
times for computation of terms for query suggestions. Both constructing the
data structure for a given document collection and using the data structure
to identify terms for query suggestions are described.

50

5 Implementation

5.1 Used Technology

For the implementation the programming language Java was chosen. Com-
mon information retrieval functionality was built upon the Apache Lucene
library 1. Lucene is a library providing functionality for various aspects
of full text search. At its core is an implementation of an inverted index,
surrounded by a vast array of supporting and supplementing features like
tokenization, analysis, query parsing, scoring or hit highlighting.

Lucene was used for building and querying inverted indices for document
collections. This includes Lucene’s capabilities for tokenization, analysis,
queryparsing and scoring. Fast querying of an inverted index is also crucial
for query suggestion since the set of documents matching the current query
needs to be computed at every keystroke the user performs.

5.2 Using Lucene to Compute Terms for Query
Suggestions

This section briefly describes the attempt to directly use a Lucene index for
the computation of terms for query suggestions.

Being used for full text search on the document collection the Lucene index
is already available, so the straight forward solution is to use it for the
computation of terms for query suggestions as well. To compute all the
expressions needed in the quality function described in equation 4.12 we
need to count the occurrences of all the terms in all facets of all documents
that match the current query. While it is possible, such an iteration is not
idiomatic for an inverted index - an inverted index is good to map from
terms to documents that contain them, not for iteration over terms in a
document. In addition, to actually count term occurrences it is also necessary
to perform string comparisons, another time consuming task. Consequently,
it turns out that this approach can not be used to provide real time query
suggestions.

1http://lucene.apache.org

51

5 Implementation

5.3 Using a Custom Datastructure to Compute
Terms for Query Suggestion

With the first approach (using the Lucene index directly) failing, another
solution was needed. This time a custom datastructure was designed to
provide better performance.

5.3.1 Requirements

The custom datastructure needs to provide fast implementations for the
following operations on a set of documents D:

• For each term t count the number of documents in D that contain t.
• For each term t count the number of facets in D that contain t.

Since the set of documents is arbitrary (it depends on the user’s current
query), the datastructure has to contain information about the complete
document collection.

5.3.2 Datastructure

One issue of the Lucene based implementation was the usage of string
comparisons. To mitigate this issue we assign a unique integer to each term
that occurs in the document collection, introducing a mapping from strings
to integers. Thus each document is represented by an array of integers. To
be more precise it is also needed to account for the facets of the documents.
This can be done by representing each facet by an array of integers, and the
documents in turn by an array of facets - so each document is represented
by an array of arrays of integers. Note that this induces a mapping of facets
to array indices. However, our algorithm only needs the number of facets
that contain occurrences of a term, not the facets themselves.

See figure 5.1 for an example of transforming two documents into their
integer arrays representation. The associated term to integer mapping is
shown in figure 5.2.

52

5 Implementation

Document 1

Author

Christopher D. Manning,
Prabhakar Raghavan, Hinrich
Schütze

Title

Introduction to Information Re-
trieval

Publisher

Cambridge University Press

Document 2

Author

Ricardo Baeza-Yates, Berthier
Ribeiro-Neto

Title

Modern Information Retrieval:
The Concepts and Technology
behind Search

Publisher

ACM Press Books

Document 1

Author

christopher d manning prab-
hakar raghavan hinrich schutze

Title

introduction to information re-
trieval

Publisher

cambridge university press

Document 2

Author

ricardo baeza yates berthier
ribeiro neto

Title

modern information retrieval
the concepts and technology
behind search

Publisher

acm press books

Document 1

Author

0 1 2 3 4 5 6

Title

7 8 9 10

Publisher

11 12 13

Document 2

Author

14 15 16 17 18 19

Title

20 9 10 21 22 23 24 25 26

Publisher

27 13 28

Figure 5.1: Transforming documents to arrays of integers.

0 christopher 8 to 16 yates 24 technology

1 d 9 information 17 berthier 25 behind

2 manning 10 retrieval 18 ribeiro 26 search

3 prabhakar 11 cambridge 19 neto 27 acm

4 raghavan 12 university 20 modern 28 books

5 hinrich 13 press 21 the

6 schutze 14 ricardo 22 concepts

7 introduction 15 baeza 23 and

Figure 5.2: Mapping of terms to integers.

53

5 Implementation

Author [[0, 1, 2, 3, 4, 5, 6], [14, 15, 16, 17, 18, 19]]

Title [[7, 8, 9, 10], [20, 9, 10, 21, 22, 23, 24, 25, 26]]

Publisher [[11, 12, 13], [27, 13, 28]]

Figure 5.3: Representing the facets of a document collection by arrays of integers

So far we represent each document as an array of arrays of integers. For
reasons that will be explained in the subsection 5.3.4 we split the documents
into their facets and represent each facet of the document collection as an
array of documents, in turn represented by arrays of integers. Figure 5.3
shows an example of this representation.

5.3.3 Construction

Since each document of the document collection is represented by an array
of integers what is needed is esentially a mapping of terms to integer IDs.
To account for term analysis (i.e. tokenization and normalization) it is the
analyzed terms that are mapped to IDs. However, to provide sensible query
suggestion terms it is needed to keep the unnormalized form of terms for
presentation to the user. Thus the construction algorithm needs to keep
track of the following:

• The mapping of analyzed terms to integer IDs.
• The mapping of integer IDs back to the unnormalized terms for

presentation to the user.
• The next available integer ID.

The construction algorithm simply iterates over all documents, and for
each document over all its facets. Term to integer ID mapping is global
(over the whole document collection), so for each encountered term the

54

5 Implementation

algorithm checks whether its analyzed form has already been assigned an
ID and reuses it if this is the case, otherwise a new ID is assigned. For
each facet of a document this results in an array of integer IDs. For each
facet of the document collection this results in an array of arrays of integer
IDs, one for each document. In the implementation this is represented by
a Map < String, int[][] >, each entry representing a facet of the document
collection. In addition to this map the second part of the output of the
construction of our datastructure is an array of TermIn f o objects that contain
the normalized term as well as its unnormalized form. The indices of this
array correspond to the term IDs from the mapping of terms to integer IDs.
So to find the term given its ID is a single array access (see figure 5.2 for an
example of such an array).

The construction algorithm interates over all terms of all documents in
the collection. Let n be this total number terms. For each term the most
expensive operations are the access and potential update of the term to
integer ID mapping (all other operations can easily be done in constant
time). Using a HashMap these map operations have a best case running time
of O(1), but it can be worse. However, it is quite easy to achieve O(log n)
worst case running time using a different datastructure, resulting in an
overall construction time of O(n log n).

Note that the construction algorithm avoids the usage of Integer objects (as
opposed to the primitive int values) - an intricacy of the Java programming
language that wraps primitive integer values into objects to make integers us-
able in generic collections (or rather in generics in general). Previous versions
of this algorithm used integer objects to provide the mapping back from
integer IDs to the term information (using a Map < Integer, TermIn f o >)
which turned out to be a serious performance issue: the JVM had a lot of
work to do garbage collecting short-lived Integer objects.

5.3.4 Usage

Now that we have the documents represented as arrays of integer IDs
(partitioned by facets) we need to put this datastructure into use. When
we want to compute terms for query suggestion we need essentially two
inputs (apart from our datastructure): a set of documents (given by ID)

55

5 Implementation

and a quality function that quantifies the relevance of a term for query
suggestion. The quality function gets as input the following information
about a candidate term: the normalized and unnormalized form of the term,
and the number of documents and facets that contain occurrences of the
term (more accurately: occurrences of terms that are normalized to the same
token).

Thus we need to count occurrences of terms in facets and in documents
over a set of document IDs. In the following parts we will discuss how our
algorithm solves both problems.

The running time of the various steps of our algorithm will mainly depend
on the total number of terms in the selected document set. We will use k to
refer to this number.

Preparation for Counting the Number of Facets that Contain a Term

A straight-forward implementation would be to iterate over all documents
and keep track of the terms encountered in each facet. However, both the
running time and the space usage are less than optimal - we can do much
better.

Firstly, note that we already partitioned the integer term ID arrays for the
documents by facets. So, given a document ID and a facet we can quickly
access its terms. As the first step the algorithm accumulates for each facet all
the term IDs for all documents, resulting in a single integer array for each
facet. It is here (and in the following steps) where the partition by facets
has significant benefits over partitioning by document. This step is a simple
concatenation of arrays, having running time O(k).
To be able to iterate over all facets simultaneously we sort these integer
arrays (a simple upper bound for the running time is O(k log k)). With
these sorted arrays it is quite straightforward to iterate over all terms over
all facets. For each term ID we iterate over all the facets and count the
facets that contain the term. And since the number of facets can typically be
bounded by a constant the simultaneous iteration turns out to be efficient
as well (essentially the time complexity is O(k)) - the overall running time
is dominated by the sorting step.

56

5 Implementation

Facet A [[4, 17, 31], [5, 57, 23]]

Facet B [[10, 11, 17], [33, 17, 25]]

Select Documents

Merge by Facet

Facet A [4, 17, 31, 5, 57, 23]

Facet B [10, 11, 17, 33, 17, 25]

Sort Facets

Facet A [4, 5, 17, 23, 31, 57]

Facet B [10, 11, 17, 17, 25, 33]

Figure 5.4: Preparation for counting the number of facets that contain a term.

See figure 5.4 for an illustration of the preparation step for counting the
number of facets that contain a term.

Preparation for Counting the Number of Documents that Contain a
Term

The algorithm for counting the number of facets that contain an occurrence
of a term can easily be extended to also compute the total number of
occurrences of a term in a set of documents - when counting the number
of facets that contain a specific term we also have the information how
often the term actually occurs in a facet, so a simple counter is enough.
However, we don’t want the total number of occurrences of a term in a set of
documents, we need the number of documents that contain an occurrence
of a term.

Our datastructure is actually less suited for this than for counting the

57

5 Implementation

number of facets containing a term, but it can still be done quite efficiently.
At first we need to collect all term occurrences for each document. This
step can be done in linear time with respect to the total number of term
occurrences in the set of documents (simply copying and merging the arrays
from the facet partitions is enough).

Now each document is represented by an array of integer IDs. These arrays
can contain duplicates - a term can occur multiple times in a document.
However, we are not interested in the number of times a term occurs in a
document, only whether it occurs in a document or not. The easiest and
quite efficient way get rid of these duplicate entries is to first sort the arrays
and then copy the unique entries to a new array (now duplicates can be
easily identified since they occur next to each other in the sorted array).

At this point we have for each document the set of terms it contains. The
arrays representing these term sets are now concatenated into a single
array. Sorting this array finally enables efficient counting of the number of
documents that contain a term - just as it was done for the facet counting
part above.

See figure 5.5 for an illustration of the preparation step for counting the
number of documents that contain a term.

While the approach described above works, a different and arguably more
efficient alternative approach trades more memory usage for a better run-
ning time. The idea behind this second approach is essentially to do the
aggregation of terms of a document into a pseudo catch-all facet when
setting up the datastructure. This way the elimination of duplicate terms
only needs to occur once at construction time and not at each invocation -
this part can now be done analogously to the other (“real”) facets: simply
concatenate the arrays for the selected documents by facet.

The running times (both construction and usage) are not affected by this
change - it’s still O(n log n) for construction and O(k log k) for usage.

58

5 Implementation

[4, 17, 31, 10, 11, 17]

[5, 57, 23, 33, 17, 25]

Merge Facets by Document

Sort and remove duplicates

[4, 10, 11, 17, 31]

[5, 17, 23, 25, 33, 57]

Merge Documents

[4, 5, 10, 11, 17, 17, 23, 25, 31, 33, 57]

Figure 5.5: Preparation for counting the number of documents that contain a term.

Counting the Number of Documents and Facets that Contain a Term

Now we are finally ready to actually count the number of documents
and facets that contain a term. In fact, the counting of the number of
facets and the number of documents that contain a term can now be done
simultaneously - providing all the information we need about a term at the
same time.

Since both the arrays containing the term IDs for the facets as well as the
array containing the term IDs for all documents are already sorted we
can iterate simultaneously over all those arrays, counting the number of
occurrences of each term ID while iterating, both the number of facets
and the number of documents. For each iterated array we need to keep
track of the currently visited element, and globally we need to keep track
of the minimum term ID that is currently visited by any array. For this
minimum term ID we actually count the occurrences - all arrays containing
an occurrence of this ID have it as their currently visited ID, thus at this
point counting is very easy. Note that for the facet arrays we ignore multiple

59

5 Implementation

occurrences of a term ID (we are only interested whether the term ID occurs
in a facet of not), whereas for the document array we count them (duplicates
inside a document were already removed in the preparation step). Once the
occurrences of the minimal term ID have been counted the currently visited
element is advanced to the next element in all arrays that contained the
minimal term ID. Finally the next globally minimal term ID is computed
and the iteration continues. Since the algorithm iterates over all arrays only
once and for each term ID only constant time operations are executed the
running time of this step is bounded by O(k).
See figure 5.6 for an illustration of this process.

Ranking and Selecting Terms

Once all the information needed about a term in a set of documents is
collected this information is handed to a quality function. This function
contains the crucial logic in deciding which terms should be suggested - for
a given term it computes a score, a single number. Thus we can rank all
terms according to a quality function. Keeping a sorted list of all terms is
rather inefficient. It suffices to keep the k top scoring terms, where k is the
number of suggestions finally presented to the user.

This far the algorithm operated only on the integer IDs, but we need to
present the original term to the user. The term can be easily recovered from
our datastructure - it contains a mapping from integer IDs to the associated
terms.

One detail we ommitted so far is that certain terms are not eligible for use
in query suggestions. Terms that occur already in the user’s query should
certainly not be presented again as suggestions, so those terms need to
be filtered out by the suggestion algorithm. This can easily be done by
comparing a candidate term for suggestion with the terms already present
in the query as part of the ranking step.

60

5 Implementation

Facet A [4 5 17 23 31 57]

Facet B [10 11 17 17 25 33]

Documents [4 5 10 11 17 17 23 25 31 33 57]

Element Facets Documents
- - -

Facet A [4 5 17 23 31 57]

Facet B [10 11 17 17 25 33]

Documents [4 5 10 11 17 17 23 25 31 33 57]

Element Facets Documents

4 1 1

Facet A [4 5 17 23 31 57]

Facet B [10 11 17 17 25 33]

Documents [4 5 10 11 17 17 23 25 31 33 57]

Element Facets Documents

4 1 1

5 1 1

Facet A [4 5 17 23 31 57]

Facet B [10 11 17 17 25 33]

Documents [4 5 10 11 17 17 23 25 31 33 57]

Element Facets Documents

4 1 1

5 1 1

10 1 1

Facet A [4 5 17 23 31 57]

Facet B [10 11 17 17 25 33]

Documents [4 5 10 11 17 17 23 25 31 33 57]

Element Facets Documents

4 1 1

5 1 1

10 1 1

11 1 1

Facet A [4 5 17 23 31 57]

Facet B [10 11 17 17 25 33]

Documents [4 5 10 11 17 17 23 25 31 33 57]

Element Facets Documents

4 1 1

5 1 1

10 1 1

11 1 1

17 2 2

Figure 5.6: Simultaneous counting of number of facets and documents that contain a term.
Circles indicate the currently visited element in an array, the globally minimal
term ID among the currently visited elements is highlighted with red. The
tables at the right show the counted elements. The Facets column shows the
number of facets containing an element, and the Documents column shows the
number of documents containing an element.

61

5 Implementation

Computing Term Suggestions for Partially Entered Last Query Terms

So far we only discussed the case of suggesting complete terms, i.e. the user
is about to start entering a new query term. But what about the case when
the user has partially entered the last query term (i.e. she is currently typing
a word)?

As it turns out we only need to adjust the last part of the computation of
terms for query suggestions. We start the computation as if the partial last
term hasn’t been entered, i.e. we operate on the set of documents that match
the user’s query without the partial last query term. In the final ranking
step we simply filter out all terms that do not start with the already entered
prefix - this way our algorithm only suggests terms that have the partially
entered last query term as a prefix.

5.3.5 Limitations

The current implementation of the datastructure described above has some
shortcomings. Those proved to be not relevant for research purposes, but
may be more problematic in a real-world setting.

RAM-only

Currently the whole datastructure is loaded into the working memory. For
very large document collections this can become a problem. The solution
would be to persist the datastructure into the file system and only load/keep
the parts needed to/in RAM - similarly to Lucene’s file based inverted
index.

Non-Incremental

It is so far not possible to apply changes in the document collection to
the datastructure. Once the datastructure is constructed for a document
collection it remains static. A workaround for evolving document collections
would be to periodically rebuilt the query suggestion datastructure (taking

62

5 Implementation

O(n log n) time). However, a more sensible approach would be to implement
an update feature into the datastructure itself. As interesting as this topic is,
for this thesis it was out of scope.

5.4 Summary

Computing query suggestions as outlined in chapter 4 is a computation-
ally expensive problem. Unfortunately it does not seem to be possible to
directly use an inverted index (as provided by Lucene) as the basis for the
computations. Another approach was needed and this chapter introduced a
custom datastructure that enabled efficient calculation of terms for query
suggestions. This datastructure is able to provide the needed data for selec-
tion of terms for query suggestions for document collections with millions
of documents with a response time in the magnitude of milleseconds.

63

6 Evaluation

So far the discussion was solely on theoretical and implementational as-
pects of query suggestions. In this chapter the developed algorithms are
put into practice by evaluating them against a baseline query suggestion
algorithm. The evaluation transforms the claims about the capabilities of
our algorithms into numbers. By performing the evaluation on document
collections of different characteristics we get some insights into the strenghts
and weaknesses of the algorithms.

The methodology of our evaluation is presented in the first section. This
includes the description of all involved query suggestion algorithms: the
used baseline as well as our algorithms (varied by choosing different pa-
rameters). Along with the used algorithms this section also presents how
the performance of query suggestions is put into numbers - a crucial point
of the evaluation.

The document collections used for evaluation are described in section 6.2.
Those collections vary in various characteristics, e.g. in size (number of
documents) and term distributions.

The results of the evaluation runs are presented in section 6.3. Note that the
interpretation and discussion of these results is deferred to the next chapter
that is dedicated entirely to this.

6.1 Methodology

To evaluate the performance of an IR system there are two main choices
available: either do a user study or do automated tests without human
interaction. A big advantage of the latter is that once the setup is done it can

64

6 Evaluation

be performed repeatedly at low cost (in terms of e.g. time or space for and
coordination of people). So if one decides to do an evaluation on a different
document collection it is much cheaper to redo an evaluation based on
automated tests than to repeat a user study with dozens of participants.

Because of both the reasons outlined above as well as others we decided
to do our evaluation based on automated tests. For the setup of those tests
there are various aspects that need to be resolved. How do you model your
users? How do you quantify the results or benefits of query suggestions?
The following subsections describe how our evaluation setup addressed
these issues.

6.1.1 Quantifying the Performance of Query Suggestions

To gain any understanding about the performance of a query suggestion
algorithm there needs to be some means to quantify the usefulness of query
suggestions to the user. The main goal is to enable the user to satisfy her
information need more quickly. Setting factors aside that are beyond the
influence of an IR system (such as the time the user spends thinking), the
limiting factors are the user’s interaction with the system. In our case this
means typing into a textfield, as well as selecting query suggestions.

Those two interactions can be quite simply quantified by counting keystrokes:
typing a letter is one keystroke, thus counting 1. Counting the acceptance
of a query suggestion is slightly more involved: one possibility to accept
a query suggestion is by selecting it with a mouse click, but that doesn’t
match well with counting key strokes. Another way is by using the arrow
keys to navigate to the suggestions. Pressing the down key once selects the
top-ranked query suggestion. Each time the down key is pressed again, the
selection moves down to the next query suggestion. Finally accepting a
query suggestion is done by pressing the enter key. So to accept the query
suggestion ranked at place k, the user needs to press the down key k times
and hit enter once, resulting in k + 1 key strokes.

So now we have a model to quantify the costs of entering a query: the
number of letters typed plus the number of key strokes needed for accepting
query suggestions. Next we need to find a way to generate representative

65

6 Evaluation

queries. As it turns out it is simpler to look at this problem from the other
side, the other side of a query being its target: a document. Since our
presumption is that in our setting each information need is satisfied by
a unique result document we know that an entered query has a single
document as the target. So to model an information need we start from a
document d and generate a query from d.

This gets us to the next question: How, given a document, do we generate a
query? First, note that a query Q that consists of all the terms of a document
d appended together can only be matched by d (otherwise our assumptions
are violated). The only thing to decide is the order how the terms are
appended: randomly, facet after facet, or iterate over all facets, taking a
single term each round? We decided to choose the facet after facet approach:
define an order on the facets, concatenate the terms of each facet and then
concatenate these term blocks by the defined order on the facets. Note that
ideally one would compute the shortest possible query that has only d in
its result set. However, this is unfeasible for large document collections, as
this optimization problem (or more correctly: a simplified version of it) was
shown to be NP-complete in 4.1.2.

Now we have all ingredients that are needed to do the evaluation of a query
suggestion algorithm on a query for a target document d. The evaluation
tries to mimic the behaviour of a “perfect” user: it “types” the query,
accepting provided suggestions if they cost less in terms of key strokes
than completely writing the current term. This continues as long as the
query is ambiguous (i.e. the size of the result set contains more than one
document). As soon as only the target document d is the only document
still matching the current query, the “typing” is stopped and the costs of
entering the query are summed up.

This evaluation process is illustrated in figure 6.1. The generated query is
“USA Alfred Hitchcock”. “USA” is typed, no suggestions are used, so the
costs are equal to the number of letters in the word: 3. The next term is
“Alfred”. Here, after typing “Alf” (adding 3 to the costs), the term is present
in the list of suggestions on the second position, so the costs for accepting
the suggestion are 3: 2 for hitting the down key twice to select the suggestion
and 1 to accept the selected suggestion by hitting the enter key. Note that
simply typing the whole term “Alfred” would have resulted in the same

66

6 Evaluation

Action Content Costs

Type USA 3

Type Alf 3

Select Suggestion

Alfonso

Alfred

AlFayyum

Alfred-Pischof-Gasse

Aelfgifu

3

Type H 1

Select Suggestion

Hitchcock

Hardware

Hurts

Heart

Hart

2

Total costs: 12

Figure 6.1: Example evaluation of query.

total costs. For the last term in the example, the right term appears in the
suggestions on the top position after entering just the first letter, giving a
total cost of 3 for the term “Hitchcock”, a clear win over just typing the term
(costing 9). So the summed up costs for the whole query are 12 (typing the
whole query would have resulted in a total cost of 18).

6.1.2 Baseline

As the baseline we use an approach that adapts a standard query suggestion
algorithm that operates on single-facet documents for faceted documents.

67

6 Evaluation

More specifically we mimic the strategy to collect data from all facets into
a single facet. When selecting terms for query suggestions this algorithm
selects the terms that have the most occurrences in this catch-all facet in the
selected documents.

To fit this baseline algorithm into the query suggestion framework developed
for our new query suggestion algorithm the easiest way is to design a quality
function with the same parameters as our quality functions 4.12 and 4.13.
This means that for a term t the function gets two numbers as its input:
r f cD(t) (the number of facets that contain an occurrence of t) and rdcD(t)
(the number of documents that contain an occurrence of t). For the baseline
quality function we simply return rdcD(t):

qb
D(t) = rdcD(t) (6.1)

In addition to this “real” baseline we also evaluate the suggestion algorithms
against the worst case: no query suggestions at all are provided to the user.
Put differently, this mimics a user who doesn’t use query suggestions at all,
simply typing her query without any assistance. This “bottom baseline” is
included as a sort of sanity check for our query suggestions: Do they help
at all? Because if typing only is not worse than utilizing query suggestions
then our query suggestion algorithms have clearly gone wrong.

6.1.3 Quality Functions

Both quality functions from chapter 4, the facet-agnostic 4.12 and the facet-
aware 4.13 are evaluated. For the facet-aware quality function the order of
the facets is provided, matching the order of the facets used in the evaluation
query construction outlined above. Additionally two variations of the facet-
aware quality function are evaluated as well: they employ the dampened
redundancy factor functions defined in 4.14 and 4.15.

68

6 Evaluation

6.1.4 Common Parameters

Some parameters of the query suggestion algorithm don’t depend on the
used quality function. Perhaps the most obvious one is the number of
query suggestions that are presented to the user. In the evaluation runs this
number was set to 5. Another common parameter is the maximal number of
documents that are used for the computation of terms for query suggestion.
If this number is set too high the response time of the algorithm suffers,
resulting in an inacceptible user experience. If it is set too low then the query
suggestions might not be as useful as they could be. For the evaluation this
number was set to 5000. This means, if the current query is still matched
by more than 5000 documents in the document collection, then only the
5000 top ranked documents are further processed by the query suggestion
algorithm.

For all facet aware quality functions one can choose two more parameters:
whether to boost terms from the same facet and the boost factor for terms
that match the given facet order. In the evaluation runs a constant boost
factor of 2 was used, and terms from the same facet as the previous term
were always boosted.

6.2 Test Data

For an evaluation one obviously needs data - in this case a document
collection. This section describes how the document collections used in the
evaluation runs were generated. Basically two kinds of document collections
were generated: one containing people (names and addresses) owning books
(title, author, year of publication) and one with several facets containing
words drawn from a set of Zipf distributed words (same set of words,
different distributions for each facet).

6.2.1 People and Books

This document collection contains documents representing people and
books “owned” by people. Each person is randomly assigned between 0

69

6 Evaluation

Facet Description
firstName First name of the person
lastName Last name of the person

personType Type of the person (by Wikipedia), may be empty
cityName Person’s home city

cityCountry Person’s home country
cityPopulation Population of person’s home city

streetName Street the person lives in
houseNumber House number of person’s home

bookTitle Title of the owned book
bookAuthor Author of the owned book

bookYear Publication year of the owned book
type “person” or “ownedBook”

Table 6.1: Document structure for People and Books index

and 10 books. See table 6.1 for a description of the documents’ structure.

The data are taken from multiple sources as described in the following
paragraphs.

Person Name and Type

These data were parsed from the English Wikipedia (Wikipedia 2014). Name
and person type were taken from the “Infobox” part of articles about people.
Names on wikipedia are not split up into first and last name, rather all
parts of the name are concatenated to the full name. To extract first and last
name we employed a rather crude heuristic to take the first word (indicated
by a following whitespace character) as the first name and concatenate the
remaining words to represent the last name. Some full names also contain
a comma - then the part preceding the comma is typically the lastname
and the part after the comma constitutes the first name(s). In the context
of our evaluation this simple heuristic is enough, since the correctness
of first/last names is less important than having realistically distributed
first/last names.

70

6 Evaluation

The header of Wikipedia Infoboxes contains information about a person’s
occupation - this was used as the person type.

Person data for index documents were generated by first randomizing the
order of items and then iterate over them. Given the natural distribution
of names on Wikipedia this leads to a realistic distribution of names in the
generated document collection.

Cities

Population data about cities was taken from Mongabay 2014. A list of the
world’s cities with a population over 200.000 was generated, including the
city’s country. For each person chosen from the Wikipedia-backed names list
a city was randomly picked from the list of cities. The probability for each
city was weigthed by its population, again resulting in a realistic distribution
in the document collection.

Street and House Number

Street names were obtained from Statistik Austria 2014 in the form of lists of
streets from the Austrian cities Graz and Vienna. To account for different
lengths of streets, each street was assigned a number of houses. The number
of houses was generated using a gamma distribution with parameters k = 3
and θ = 2.0, scaled by a factor of 10. For each person a random street was
chosen, weighted by the number of houses on the streets. After a street was
chosen, a house number within the range of 1 and the number of houses on
the chosen street was selected uniformly.

Books

A list of almost 70.000 books was generated using data available at Internet
Book List 2014. For each book the list contains its title, author and publication
year. Each generated person was assigned a random number of k books
(uniformly between 0 and 10). For each of the assigned books a document
was generated containing both the person’s and the book’s data (in addition

71

6 Evaluation

to the document representing the person alone), giving a total of k + 1
documents for each person.

To differentiate between documents for owned books and for people, a facet
representing the document type was introduced (with values being either
“person” or “ownedBook”).

6.2.2 Multiple Facets with Zipf Distributed Words

To complement the first (people and books) document collection with some-
thing different we generated another set of documents. This time we started
simply from a list of English words (taken from Mieliestronk’s list of English
words 2014). For each of the facets (10, simply named by the letters from a
to j) the following steps were executed:

• Shuffle the complete list of words.
• Pick words according to a Zipf distribution.

So each facet has a word distribution that is typical for natural language, but
due to the shuffling step the probabilities of the single words are different
among the facets.

The parameters for the Zipf distribution were chosen as N the number of
words in the word list, and s = 1.1.

See table 6.2 for an example document from this collection.

6.3 Results

The following subsections present the evaluation results on various docu-
ment collections.

To reference the evaluated quality functions concisely each of them was
assigned a short descriptive name. Table 6.3 lists these names along with
the respective quality function.

72

6 Evaluation

Facet Content
a remembers resourcefulness malpractice remembers zooms

beats refinancing quiff tarriest expatriated
b gateposts fugue revives goodhumoured shrewdness

cloisters sensory blatantly carcinogenesis isles
c lustier blunting distraction inconceivable undercoat

disputed escarpment disputed fitly lustier
d reciprocating undaunted mediates flippancy satiny

capitalisation ascertainable manuals reside stadiums
e amoral permitting conjurers creationism methylated

vexing mildest clod tilts neatness
f subjectivity assailants enfranchised obsesses assailants

traumatic sines capacitors prosthesis innumerate
g papas protease sloughed darkrooms constituency

constituency purities lanky knuckleduster constituency
h lees optimality swappers justly forecourts

hastily fugitive theoreticians veering cox
i frumps contravene norms coinages is

gobbets integrationist ethological toddle typewritten
j gated dopey obtained inverter flirts

gated championing regal dripping inverter

Table 6.2: Example document for our Zipf distributed words collection.

Name Quality function

writer No suggester (typing only)

mostCommon qb
D(t) = rdcD(t) (the baseline)

experimental qD(t) =
rdcD(t)
r f cD(t)

rD(t) (see 4.12)

facetAware q f
D(t) = bD(t)qD(t) (see 4.13)

logDampened qsqrt
D = bD(t)

rdcD(t)
r f cD(t)

rsqrt
D (t) (see 4.14)

sqrtDampened qlog
D = bD(t)

rdcD(t)
r f cD(t)

rlog
D (t) (see 4.15)

Table 6.3: Quality function names

73

6 Evaluation

Three result tables were generated for each of the evaluated document
collections. These three tables are crosstables comparing the evaluated
quality functions in terms of “Number of wins”, “Amount gained” and
“Maximal gain”. To explain what the entries in these crosstables mean we
look at the entry for a pair of quality functions A and B. Let k be the value
for A versus B in the “Number of wins” crosstable. This means that for
k evaluated documents the costs (in terms of keystrokes) for the quality
function A were lower than the costs for the quality function B. In the
“Amount gained” crosstable a value of k is the total sum of keystrokes saved
by using the quality function A over B (summing only the costs of evaluated
documents where A lead to lower costs than B). Finally a value of k in the
“Maximal gain” crosstable means that the highest number of keystrokes
saved by using A over B on any evaluated document was k.

Additionally for each evaluated document collection a comparison of the to-
tal costs (the sum of the costs for all evaluated documents) was computed.

6.3.1 Small Document Collections

People and Books

The document collection has 50.000 documents, 1.000 randomly picked
documents were evaluated. The chosen facet order for evaluation queries
was the following: bookTitle, bookAuthor, firstName, lastName, personType,
cityName, cityCountry, cityPopulation, streetName, houseNumber. Facets not
in this list were randomly appended to the ordered query. The results are
shown in the tables 6.4 (Number of wins crosstable), 6.5 (Amount gained
crosstable) and 6.6 (Maximum amount gained crosstable), a comparison of
the total costs by quality function is shown in 6.7.

Zipf Distributed Words

The document collection has 50.000 documents, 1.000 randomly picked
documents were evaluated. The chosen facet order for evaluation queries
was alphabetically from a to j. The results are shown in the tables 6.8

74

6 Evaluation

Number of wins writer mostCommon experimental facetAware logDampened sqrtDampened
writer x 0 0 0 0 0

mostCommon 815 x 48 95 38 38

experimental 816 31 x 82 16 16

facetAware 839 410 423 x 17 17

logDampened 843 515 516 272 x 0

sqrtDampened 843 515 516 272 0 x

Table 6.4: Number of wins crosstable (People with books small)

Amount gained writer mostCommon experimental facetAware logDampened sqrtDampened
writer x 0 0 0 0 0

mostCommon 11427 x 60 119 49 49

experimental 11402 35 x 98 20 20

facetAware 11946 638 642 x 19 19

logDampened 12259 881 877 332 x 0

sqrtDampened 12259 881 877 332 0 x

Table 6.5: Amount gained crosstable (People with books small)

Max gain writer mostCommon experimental facetAware logDampened sqrtDampened
writer x 0 0 0 0 0

mostCommon 64 x 4 4 4 4

experimental 64 2 x 4 4 4

facetAware 66 5 5 x 2 2

logDampened 66 5 5 3 x 0

sqrtDampened 66 5 5 3 0 x

Table 6.6: Maximal gain crosstable (People with books small)

writer mostCommon experimental facetAware logDampened sqrtDampened
34884 23457 23482 22938 22625 22625

Table 6.7: Total costs (People with books small)

75

6 Evaluation

Number of wins writer mostCommon experimental facetAware logDampened sqrtDampened
writer x 0 0 0 0 0

mostCommon 969 x 218 129 125 125

experimental 967 105 x 27 21 21

facetAware 977 520 577 x 19 19

logDampened 977 512 567 14 x 0

sqrtDampened 977 512 567 14 0 x

Table 6.8: Number wins crosstable (Zipf distributed words small)

Amount gained writer mostCommon experimental facetAware logDampened sqrtDampened
writer x 0 0 0 0 0

mostCommon 7995 x 354 184 179 178

experimental 7767 126 x 31 22 22

facetAware 8781 970 1045 x 22 22

logDampened 8776 959 1031 17 x 0

sqrtDampened 8776 959 1031 17 0 x

Table 6.9: Amount gained crosstable (Zipf distributed words small)

(Number of wins crosstable), 6.9 (Amount gained crosstable) and 6.10

(Maximum amount gained crosstable), a comparison of the total costs by
quality function is shown in 6.11.

6.3.2 Large Document Collections

People and Books

The document collection has 1.000.000 documents, 20.000 randomly picked
documents were evaluated. The chosen facet order for evaluation queries
was the following: bookTitle, bookAuthor, firstName, lastName, personType,
cityName, cityCountry, cityPopulation, streetName, houseNumber. Facets not

Max gain writer mostCommon experimental facetAware logDampened sqrtDampened
writer x 0 0 0 0 0

mostCommon 31 x 4 3 3 3

experimental 30 4 x 2 2 2

facetAware 34 7 7 x 2 2

logDampened 34 7 7 2 x 0

sqrtDampened 34 7 7 2 0 x

Table 6.10: Maximal gain crosstable (Zipf distributed words small)

76

6 Evaluation

writer mostCommon experimental facetAware logDampened sqrtDampened
27369 19374 19602 18588 18593 18593

Table 6.11: Total costs (Zipf distributed words small)

Number of wins writer mostCommon experimental facetAware logDampened sqrtDampened
writer x 0 0 0 0 0

mostCommon 19867 x 1999 3660 1057 1057

experimental 19861 1219 x 3081 431 431

facetAware 19855 9563 10057 x 370 370

logDampened 19865 13040 13558 8676 x 0

sqrtDampened 19865 13040 13558 8676 0 x

Table 6.12: Number wins crosstable (People with books large)

in this list were randomly appended to the ordered query. The results are
shown in the tables 6.12 (Number of wins crosstable), 6.13 (Amount gained
crosstable) and 6.14 (Maximum amount gained crosstable), a comparison of
the total costs by quality function is shown in 6.15.

Zipf distributed Words

The document collection has 500.000 documents, 18.800 randomly picked
documents were evaluated. The chosen facet order for evaluation queries
was alphabetically from a to j. The results are shown in the tables 6.16

(Number of wins crosstable), 6.17 (Amount gained crosstable) and 6.18

(Maximum amount gained crosstable), a comparison of the total costs by
quality function is shown in 6.19.

Amount gained writer mostCommon experimental facetAware logDampened sqrtDampened
writer x 0 0 0 0 0

mostCommon 307550 x 2621 4175 1189 1189

experimental 306404 1475 x 3444 468 468

facetAware 317375 14003 14418 x 420 420

logDampened 328018 21661 22086 11064 x 0

sqrtDampened 328018 21661 22086 11064 0 x

Table 6.13: Amount gained crosstable (People with books large)

77

6 Evaluation

Max gain writer mostCommon experimental facetAware logDampened sqrtDampened
writer x 0 0 0 0 0

mostCommon 71 x 4 4 4 4

experimental 70 6 x 4 3 3

facetAware 72 6 6 x 3 3

logDampened 72 8 8 6 x 0

sqrtDampened 72 8 8 6 0 x

Table 6.14: Maximal gain crosstable (People with books large)

writer mostCommon experimental facetAware logDampened sqrtDampened
909934 602454 603600 592626 581982 416255

Table 6.15: Total costs (People with books large)

Number of wins writer mostCommon experimental facetAware logDampened sqrtDampened
writer x 0 0 0 0 0

mostCommon 18060 x 5204 2583 2473 2473

experimental 18087 2308 x 725 534 534

facetAware 18190 10282 11408 x 370 370

logDampened 18199 10253 11358 496 x 0

sqrtDampened 18199 10253 11358 496 0 x

Table 6.16: Number wins crosstable (Zipf distributed words large)

Amount gained writer mostCommon experimental facetAware logDampened sqrtDampened
writer x 0 0 0 0 0

mostCommon 201380 x 8631 3966 3784 3784

experimental 195635 2886 x 909 648 648

facetAware 217193 19779 22467 x 486 486

logDampened 217265 19669 22278 558 x 0

sqrtDampened 217265 19669 22278 558 0 x

Table 6.17: Amount gained crosstable (Zipf distributed words large)

Max gain writer mostCommon experimental facetAware logDampened sqrtDampened
writer x 0 0 0 0 0

mostCommon 44 x 8 7 7 7

experimental 44 5 x 4 4 4

facetAware 46 9 9 x 5 5

logDampened 46 9 9 3 x 0

sqrtDampened 46 9 9 3 0 x

Table 6.18: Maximal gain crosstable (Zipf distributed words large)

writer mostCommon experimental facetAware logDampened sqrtDampened
633520 432140 437885 416327 416255 416255

Table 6.19: Total costs (Zipf distributed words large)

78

6 Evaluation

6.3.3 Query distributions

The diagrams in figure 6.2 show how the distribution of queries evolves
from a single query term to the complete query. The queries are taken from
the evaluation with the large “People and Books” index. Note that the bars
on the left hand side of the diagrams are sometimes too small to be visible:
there always is a bar on the left hand side that extends to the top of the
scale. The series of figures nicely illustrates how the distribution transforms
from the typical exponential distribution to a uniform distribution (caused
by the unique target document presumption).

79

6 Evaluation

(a) 1 query term (b) 2 query terms

(c) 3 query terms (d) 4 query terms

(e) 8 query terms (f) 15 query terms

(g) 21 query terms (h) 22 query terms

Figure 6.2: Evolution of query distribution.

80

7 Discussion

The last chapter presented evaluation results in plain numbers. In this
chapter the meaning of these numbers is discussed.

To make this chapter more readable we will use abbreviations for the
evaluated quality functions:

• writer: W
• mostCommon: MC
• experimental: EXP
• facetAware: FA
• logDampened: LD
• sqrtDampened: SD

7.1 Numeric Comparison to the Baseline

7.1.1 Base Quality Function

Starting with the negative: looking at the tables in the previous chapter
showing the evaluation results one rather disappointing fact stands out.
EXP consistently performs a little worse than the MC, our baseline. In the
direct comparison MC has some more wins than EXP: 48 to 31 and 218
to 105 out of 1000 on the small document collections, 1999 to 1219 (out of
20000) and 5204 to 2308 (out of 18800) on the large document collections.
So this is a first drawback, however the gap is not too big. Let’s reexamine
EXP again:

qD(t) =
rdcD(t)
r f cD(t)

rD(t)

81

7 Discussion

Remember that the redundancy factor rD(t) was designed to explicitly
punish redundant terms that occur in all documents matching the current
query. So if the user is typing a redundant word then EXP is simply inferior
to the basic MC. The goal of EXP is to find non-redundant terms, especially
those that reduce the size of the set of matching documents to 1, i.e. it works
best on the last term of the query. This has shown not to be sufficient to
outperform MC in the evaluation - it needed additional modifications.

7.1.2 Facet Aware Quality Function

Designing the quality function to prefer terms that shrink the set of match-
ing documents proved to be insufficient. Providing more information to the
quality function by making it aware of the expected order of the facets (lead-
ing from EXP to FA) improved the performance. On all evaluated document
collections FA won over MC on more than 40% (on the “Zipf distributed
words” collection even more than 50%) of the evaluated documents. It is
also noteworthy that the number of wins of MC over FA is almost double
the number of wins of MC over EXP on the “people with books” collections
- on the Zipf distributed words collections that factor is inversed. This is
one of two parts of the evaluation where the different distribution of words
in the facets of the two kinds of collections showed quite drastic effects.
Comparing FA and EXP directly to each other the situation is almost the
same as for FA and MC, only a little clearer in favor of FA.

The gap in performance between the two facet agnostic quality functions
(MC and EXP) is drastically smaller than the gaps in performance between
both MC and EXP in comparison to the facet aware quality function (FA).
This shows that adding the facet awareness has a drastically higher effect
on the performance of the quality function than operating solely on the
document and facet counts of terms.

7.1.3 Dampened Facet Aware Quality Functions

We evaluated two dampened quality functions: one uses the logarithm (LD),
the other one the square root (SD) as its dampening function. As it turns

82

7 Discussion

out both functions have exactly the same effect on the performance of the
quality function: the evaluation results of SD and LD are identical.

The effects of applying those dampening functions differs drastically on the
two kinds of document collections. On the “people with books” collections
it leads to another improvement, on the “Zipf distributed words” collections
LD and SD are very slightly worse than FA - both in the direct comparison
and in comparison to MC.

On the small “people with books” collection the improvement against the
non facet aware quality functions (including the baseline) is around 100

more wins than FA (in total wins on more than 50% of the evaluated
documents) and only 38 and 16 losses against MC and EXP, respectively. In
the direct comparison to FA the dampened quality functions win on more
than 25% of the evaluated documents while losing on less than 2%.

On the large “people with books” collection the dampened quality functions
win on more than two thirds of the evaluated documents against the MC
and EXP, while losing on about 5% against MC and 2% against EXP. Against
FA they win on more than 40% of the evaluated documents while losing on
less than 2%. This indicates that the positive effect of applying a dampening
function increases with the size of the document collection.

As mentioned above the situation is different on the “Zipf distributed words”
collections. There is amost no difference between the evaluation results of
the dampened functions and FA. The margins are so small that they are
rather meaningless. Therefore we conclude that the effects of dampening
depend very much on the characteristics of the document collection. It
might change nothing at all or improve performance further (in comparison
to FA).

7.2 Observations

Given the discussion of the evaluation results in the previous section one
can observe a number of effects of the various modifications to the quality
functions. This section attempts to provide reasons for those effects.

83

7 Discussion

7.2.1 Difficulties

Narrow Margins

So far we only discussed one third of the tables from the evaluation chapter.
These were the tables that showed the binary outcome of the comparisons
of the quality functions: the number of wins and losses. There is a reason
for the neglegence of the other tables. Those tables show the amount of
keystrokes that were gained by using one quality function over another.
For each evaluation there is one table where the gains are summed up
and one where the maximal gains are shown. Already the maximal gains
are rather small numbers (the largest being 8, in the small “people with
books” collection the largest number is just 5), but when the table with the
summed gains is combined with the one showing the wins it turns out that
the majority of wins is by the smallest possible margin: by 1 keystroke.

So is all the effort practically for nothing? We’d like to argue against that.
Even though on a large part of the documents there are simply no differ-
ences between various quality functions (on some evaluated documents the
computed suggestions provided no improvement over simply writing the
query terms, i.e. even W did not lose against any other quality function)
there are also documents where the right quality function can make a larger
difference. Most of the time the gains will be small, but it is rather obvious
that (picking the right quality function) the gains are consistently there.
And those gains should certainly be provided to the users. Additionally, as
the chapter about existing work showed, research on this topic is just at its
beginning and it is likely that future works will further increase the gains.

Hard to Win

In the subsection above the narrow (and sometimes nonexistent) margins
were discussed. Reasons for these narrow margins are that the documents of-
ten provide only very little chances for a quality function to win keystrokes
over another quality function. We briefly discuss two sources for this diffi-
culty: short words and short queries.

84

7 Discussion

First we look at short words. Suppose the query contains the phrase “to have
and have not”. For a two letter word like “to” term suggestions are simply
worthless: it takes at least to keystrokes to select a suggestion - it takes the
same amount of keystrokes to type a two letter word. For a three letter word
the suggestion must be the top suggestion before the user starts typing -
otherwise the cost of typing the whole word beats using suggestions again.
To put this more concisely into numbers: given a term of length n, the
maximal possible gain with query suggestions is n− 2. Since the majority of
words used in texts tend to be short (for a reference see for example Miller,
Newman, and Friedman, 1958) this issue shows its effects.

The special kind of documents (faceted documents) we studied had quite
little content. If the document collection is not very large and the distribution
of the words is rather flat then it takes only a few terms in a query to make
it unambiguous. And short queries mean that there are only very few
opportunities for the quality functions to outperform each other.

7.2.2 The Bad Parts

The quality function designed to zero in on the unique target document
quickly did not perform as well as hoped. It was not a meaningful improve-
ment over the baseline. On the contrary, on the evaluated documents it was
slightly worse.

Another modification showed mixed results. Smoothing the quality function
with a dampening function worked quite well on one kind of document
collections, but failed to improve over other quality functions on the second
kind of document collections.

7.2.3 The Good Parts

The largest gains were achieved by adding facet awareness to the quality
function by boosting terms that matched the expected facet order. The gains
achieved by this were consistent over all evaluations. In addition this not
only achieved gains, but also reduced the losses to a negligable amount.

85

7 Discussion

Losing one or two keystrokes on only a few percent of the documents in a
collection won’t even be perceivable to users.

Another step in the right direction was the introduction of dampening
functions into the quality function. While leading to improvements on one
kind of evaluation document collection the decline in performance on the
second kind of evaluation document collection was negligable. In short this
means possible gains at a very small risk of losses.

7.3 Summary

This chapter discussed the evaluation results from the previous chapter. It
turns out that it is quite hard to save the user more than a few keystrokes
when she enters a query: the margins between the various quality functions
are very narrow. This can be (at least partially) explained by short terms and
short queries: both provide only very few opportunities to save keystrokes.

On the plus side two measures showed great potential: making the quality
function aware of the expected order of facets in the query and apply a
dampening function to smoothen the quality function. The positive effect of
adding facet awareness indicates that the key to better query suggestions is
to understand the structure of the document collection as well as how the
users’ perceive the relationships between the facets. Finally the dampening
functions’ positive contribution shows that too abrupt leaps in the quality
function hurt its performance - intuitively a smoother function is more
predictable and leads to more consistent results.

86

8 Conclusion

Searching for a specific document in a large collection of faceted documents
is a challenging task. Supporting the user with query suggestions along the
way enables her to complete this task as fast as possible. In this chapter
we review what the work of this thesis accomplished in improving query
suggestions for rare queries on faceted documents and provide a short
outlook on future work.

8.1 Review

To rank new terms for query suggestions a number of quality functions were
introduced. These quality functions were designed to exploit knowledge
about the nature of both the information need and the document collection.
They punished redundant terms that did not decrease the number of docu-
ments matching the current query and used information about the facets of
the documents.

Evaluation of the quality functions on two kinds of faceted document
collections showed substantial gains against a baseline quality function
(the baseline quality function simply counts the number of documents
that contain occurrences of a term). While the initial attempt to punish
redundant terms by implementing a redundancy factor did not lead to the
hoped improvements, a large gain in performance was achieved by making
the quality function aware of the expected order of facets in the query.
Dampening the redundancy factor showed additional potential.

To maximize the usefulness of query suggestions to the user they need to be
presented interactively. A custom datastructure was developed to compute
query suggestions within the time constraints of an interactive system.

87

8 Conclusion

8.2 Outlook

While this thesis made progress in several directions, there are still many
aspects open for exploration. In the next paragraphs we will touch a few of
them.

The developed quality functions were evaluated in one rather specific way.
More extensive evaluation can improve the understanding of these quality
functions. So far it was evaluated how query suggestions computed using
these quality functions can reduce the number of keystrokes for a prede-
termined query. Another evaluation may investigate how well the quality
functions perform in suggesting new terms or whether the performance
varies on the position of the suggested term in the query (early terms versus
final terms). Also very interesting would be a user study to also capture the
subjective effects of the query suggestions on users.

For the evaluation the order of the facets in the queries was selected arbi-
trarily. While in some domains this might work well, in others this order
might not be known beforehand. In those cases the facet order should be
for example learned from query logs.

The developed datastructure for the computation of query suggestions
currently does not support efficient updates - it basically has to be recon-
structed from scratch when updates to the document collection need to be
incorporated in the query suggestions. This might be acceptable for some
systems, but others may need a (near) real time view of the document
collection. Therefore the datastructure should be adapted to enable efficient
updates.

8.3 Summary

Providing query suggestions on faceted documents for rare queries is a prob-
lem that has various challenging aspects to it. This thesis showed progress
on some of them (e.g. providing suggestions for any query, exploiting
the structure of faceted documents or computing suggestions in realtime).
Others are still open (e.g. support updates in the datastructure used for

88

8 Conclusion

computation of query suggestions) or need more extensive investigation (e.g.
user study to get feedback about the subjective effects of query suggestions).
The scope of this thesis needed limitation, thus open topics are deferred to
future work.

89

Appendix

90

Bibliography

8 Design Patterns for Autocomplete Suggestions (2014). url: http://baymard.
com/blog/autocomplete-design (visited on 11/08/2014) (cit. on p. 2).

Baeza-Yates, Ricardo, Berthier Ribeiro-Neto, et al. (2011). Modern Information
Retrieval. second edition. ACM press New York (cit. on p. 16).

Bast, Holger and Ingmar Weber (2006a). “Type less, find more: fast au-
tocompletion search with a succinct index.” In: Proceedings of the 29th
annual international ACM SIGIR conference on Research and development in
information retrieval. ACM, pp. 364–371 (cit. on p. 21).

Bast, Holger and Ingmar Weber (2006b). “When you’re lost for words:
Faceted search with autocompletion.” In: SIGIR. Vol. 6, pp. 31–35 (cit. on
pp. 21, 25).

Beeferman, Doug and Adam Berger (2000). “Agglomerative Clustering of
a Search Engine Query Log.” In: Proceedings of the Sixth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD
’00. Boston, Massachusetts, USA: ACM, pp. 407–416. isbn: 1-58113-233-6.
doi: 10.1145/347090.347176. url: http://doi.acm.org/10.1145/
347090.347176 (cit. on p. 23).

Bhatia, Sumit, Debapriyo Majumdar, and Prasenjit Mitra (2011). “Query
suggestions in the absence of query logs.” In: Proceedings of the 34th inter-
national ACM SIGIR conference on Research and development in Information
Retrieval. ACM, pp. 795–804 (cit. on p. 23).

Blog, VSAT Global Series (2014). In 2013 the amount of data generated world-
wide will reach four zettabytes. url: http : / / vsatglobalseriesblog .

wordpress.com/2013/06/21/in-2013-the-amount-of-data-generated-

worldwide-will-reach-four-zettabytes/ (visited on 01/17/2014) (cit.
on p. 5).

Broccolo, Daniele et al. (2012). “Generating suggestions for queries in the
long tail with an inverted index.” In: Information Processing & Management
48.2, pp. 326–339 (cit. on p. 23).

91

http://baymard.com/blog/autocomplete-design
http://baymard.com/blog/autocomplete-design
http://dx.doi.org/10.1145/347090.347176
http://doi.acm.org/10.1145/347090.347176
http://doi.acm.org/10.1145/347090.347176
http://vsatglobalseriesblog.wordpress.com/2013/06/21/in-2013-the-amount-of-data-generated-worldwide-will-reach-four-zettabytes/
http://vsatglobalseriesblog.wordpress.com/2013/06/21/in-2013-the-amount-of-data-generated-worldwide-will-reach-four-zettabytes/
http://vsatglobalseriesblog.wordpress.com/2013/06/21/in-2013-the-amount-of-data-generated-worldwide-will-reach-four-zettabytes/

Bibliography

Broder, Andrei et al. (2009). “Online expansion of rare queries for sponsored
search.” In: Proceedings of the 18th international conference on World wide
web. ACM, pp. 511–520 (cit. on p. 20).

Cao, Huanhuan et al. (2008). “Context-aware query suggestion by mining
click-through and session data.” In: Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM,
pp. 875–883 (cit. on p. 23).

Carpineto, Claudio and Giovanni Romano (2012). “A survey of automatic
query expansion in information retrieval.” In: ACM Computing Surveys
(CSUR) 44.1, p. 1 (cit. on p. 20).

Church, Kenneth and Bo Thiesson (2005). “The wild thing!” In: Proceedings
of the ACL 2005 on Interactive poster and demonstration sessions. Association
for Computational Linguistics, pp. 93–96 (cit. on p. 23).

English, Jennifer et al. (2002). Flexible search and navigation using faceted
metadata. Tech. rep. Technical report, University of Berkeley, School of
Information Management and Systems, 2003. Submitted for publication
(cit. on p. 18).

Furnas, George W. et al. (1987). “The vocabulary problem in human-system
communication.” In: Communications of the ACM 30.11, pp. 964–971 (cit.
on p. 7).

Google Maps (2014). url: https://www.google.at/maps (visited on 11/08/2014)
(cit. on p. 12).

Hawking, David and Kathy Griffiths (2013). “An enterprise search paradigm
based on extended query auto-completion: do we still need search and
navigation?” In: Proceedings of the 18th Australasian Document Computing
Symposium. ACM, pp. 18–25 (cit. on pp. 22, 26).

He, Ben and Iadh Ounis (2007). “Combining fields for query expansion and
adaptive query expansion.” In: Information processing & management 43.5,
pp. 1294–1307 (cit. on p. 20).

Hearst, Marti (2008). “Uis for faceted navigation: Recent advances and
remaining open problems.” In: HCIR 2008: Proceedings of the Second Work-
shop on Human-Computer Interaction and Information Retrieval. Citeseer,
pp. 13–17 (cit. on p. 18).

Hearst, Marti et al. (2002). “Finding the flow in web site search.” In: Commu-
nications of the ACM 45.9, pp. 42–49 (cit. on p. 18).

92

https://www.google.at/maps

Bibliography

Hsu, Ming-Hung, Ming-Feng Tsai, and Hsin-Hsi Chen (2006). “Query ex-
pansion with conceptnet and wordnet: An intrinsic comparison.” In:
Information Retrieval Technology. Springer, pp. 1–13 (cit. on p. 24).

Internet Book List (2014). url: http://www.iblist.com/ (visited on 11/07/2014)
(cit. on p. 71).

Jansen, Bernard J, Danielle L Booth, and Amanda Spink (2008). “Deter-
mining the informational, navigational, and transactional intent of Web
queries.” In: Information Processing & Management 44.3, pp. 1251–1266

(cit. on p. 10).
Karp, Richard M (1972). Reducibility among combinatorial problems. Springer

(cit. on p. 33).
Manning, Christopher D, Prabhakar Raghavan, and Hinrich Schütze (2008).

Introduction to information retrieval. Vol. 1. Cambridge university press
Cambridge (cit. on p. 19).

Mieliestronk’s list of English words (2014). url: http://mieliestronk.com/
wordlist.html (visited on 11/07/2014) (cit. on p. 72).

Miller, George A, Edwin B Newman, and Elizabeth A Friedman (1958).
“Length-frequency statistics for written English.” In: Information and
control 1.4, pp. 370–389 (cit. on p. 85).

Mongabay (2014). url: http://www.mongabay.com/igapo/2005_world_
city_populations (visited on 11/07/2014) (cit. on p. 71).

Nandi, Arnab and HV Jagadish (2007). “Assisted querying using instant-
response interfaces.” In: Proceedings of the 2007 ACM SIGMOD inter-
national conference on Management of data. ACM, pp. 1156–1158 (cit. on
p. 22).

Porter, Martin F (1980). “An algorithm for suffix stripping.” In: Program:
electronic library and information systems 14.3, pp. 130–137 (cit. on p. 19).

Statistik Austria (2014). url: http://www.statistik.at (visited on 11/07/2014)
(cit. on p. 71).

Wikipedia (2014). url: http://en.wikipedia.org (visited on 11/07/2014)
(cit. on p. 70).

Yee, Ka-Ping et al. (2003). “Faceted metadata for image search and brows-
ing.” In: Proceedings of the SIGCHI conference on Human factors in computing
systems. ACM, pp. 401–408 (cit. on pp. 9, 18).

93

http://www.iblist.com/
http://mieliestronk.com/wordlist.html
http://mieliestronk.com/wordlist.html
http://www.mongabay.com/igapo/2005_world_city_populations
http://www.mongabay.com/igapo/2005_world_city_populations
http://www.statistik.at
http://en.wikipedia.org

