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Zusammenfassung

Gegenstand dieser Masterarbeit ist die Betrachtung der physikalischen und mathematischen Grund-
lagen der Mortar Method (MM). Diese Kopplungsmethode ermöglicht die Kopplung von Regionen
die mit der Randelemente Methode (BEM) oder der Finite Elemente Methode (FEM) diskretisiert
wurden und über nicht-kohärente Netze oder inkompatible Ansatzfunktionen verfügen durch einen
Ansatz in schwacher Form. Im Zuge dieser Arbeit wird das Kopplungsproblem zuerst in analytischer
Form mit den Hilfsmitteln der Kontinuumsmechanik beschrieben und dann ein Ansatz in diskre-
ter Form zur numerischen Berechnung formuliert. Ein einfaches Beispiel mit der Finite Elemente
Methode (FEM) zeigt wie man die diskrete Berechnung der Kopplungsbedingungen durchführen
kann. Am Ende dieser Arbeit erfolgt eine Parameterstudie für einen einfachen Kragträger in 2D
und 3D mit der Randelemente Methode anhand der das Konvergenzverhalten und der auftretende
Diskretisierungsfehler dargestellt werden.

Abstract

Subject to this Master’s Thesis are the physical and mathematical basics of the Mortar Method
(MM). This coupling method offers a coupling approach for regions discretized with the Boundary
Element Method (BEM) or the Finite Element Method (FEM) having non-coherent meshes or
incompatible test functions using a discretisation approach in a weak sense. Further on this thesis
the coupling problem will first be expressed analytically using the tools of the continuum mechanics
and later an approach in discrete form for the numerical analysis is shown. As an introductory
example the Finite Element Method (FEM) is used to show the process of a discrete computation of
the coupling conditions. At the end is worked out a parameter study for a simple cantilever beam
in 2D and 3D which will show the convergence behaviour and existing discretisation errors.



Chapter 1

Introduction

This chapter describes the motivation for the Mortar Method and it’s basic ideas. Further topics of
this chapter are coupling methods and a preview to the chapters of this Master’s Thesis.

1.1 Motivation for the Mortar Method

This method was first introduced to couple wave propagation problems with mechanical systems.
Since those two problems need to have very different numerical discretisations there was a need for
a coupling method that can cope with both of those approximations. This gave rise to a coupling
method which uses energy functions at the interface of two different coupled problems called “Mortar
Method ” [1]. The method was then developed to couple regions of the same physical kind but with
non-conforming meshes. This can happen if we think of problems which need to have different mesh
densities for adjoining regions due to computational accuracy [2]. Or think of body contact problems
which usually lead to non-conforming meshes. Another application are systems with meshes using
different kind of element shape functions.

1.2 Motivation for this Master’s Thesis

The initial idea was developed at the Institute of Structural Analysis at Graz University of Technol-
ogy . Beside all the theory and publications there was the idea to have a practical approach and an
implementation for simple but realistic elasto-static systems. The very start of this thesis was a lit-
erature research. Later the basic algorithms are developed and an implementation for the scientific
software program BEFE++ [3] was done. Finally a convergence study shall show the advantages
and disadvantages of the Mortar Method and the chosen algorithms.

1.3 Mortar Method fundamentals

Basically the Mortar Method is a domain decomposition/coupling method. In this work it is used to
couple two or more subdomains having geometrically non-conforming meshes (non-coherent mesh
nodes at the sub-domain interface). The idea of this coupling method is to introduce interface
fields with additional degree’s of freedom in the form of Lagrange multipliers. The interface fields
are a subspace of two adjacent sub-domains, therefore they represent a dual space. To meet that
constraint the sub-domainsmust be non-overlapping. Finally this coupling method states an equilib-
rium of mechanical energy in each interface field. This leads to additional equations for the unknown
Lagrange multipliers. Since this method does not control the displacements of the interface nodes
directly but the equilibrium of mechanical energy at each interface field it is an approach in a weak
sense. For the mathematical formulation, convergence studies and error estimates publications like
[4], [5], [6] and [7] are recommended.
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Basic facts:

• The Mortar Method is a coupling method

• Coupling of geometrically non-conforming, non-overlapping subdomain meshes

• Energy conservation at the sub-domain interface

• Introducing interface fields and Lagrange multipliers

• Approach in a weak sense

1.4 Other coupling methods

There are a lot of other coupling methods beside the Mortar Method . Two of the most impor-
tant domain decomposition methods are FETI and BETI coupling because they allow for parallel
computing. For that reason a short introduction to this methods is given here.

General properties of FETI and BETI coupling method:

• The stiffness matrices are assembled for each sub-domain.

• Coupling matrices are used to describe the compatibility of nodal displacements at the sub-
domain interfaces.

• Dirichlet boundary conditions are incorporated by using additional constraint conditions.

• The stiffness matrices can be computed in parallel.

• The stiffness matrices do not have to be reassembled for changing coupling- and boundary
conditions.

• Iterative solvers can compute the equation system piece-wise so there is no need to assemble
one single system matrix for all regions.

1.4.1 FETI coupling

The name is a short-cut derived from the name Finite Elements, Tearing and Interconnecting.

Equation system:

[A] · {x} = {b} (1.1)

[K1] [0] · · · · · · [0] [C1]
>

[D1]
>

[0]
. . . . . .

...
...

...
...

. . . [Km]
. . .

... [Cm]> [Dm]>

...
. . . . . . [0]

...
...

[0] · · · · · · [0] [Kn] [Cn]> [Dn]>

[C1] · · · [Cm] · · · [Cn] [0] [0]

[D1] · · · [Dm] · · · [Dn] [0] [0]


·



{u1}
...

{um}
...
{un}
{λc}
{λd}


=



{f1
0 }
...

{fm0 }
...
{fn0 }
{0}
{u0}


• [Km], stiffness matrix of subdomain m

• [Cm], coupling matrix of subdomain m for the interface boundary

• [Dm], Dirichlet constraint matrix of subdomain m for the Dirichlet boundary

• {um}, displacement degree’s of freedom of subdomain m
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• {fm0 }, load vector of subdomain m

• {λc}, Lagrange multiplier for coupling degree’s of freedom

• {λd}, Lagrange multiplier for Dirichlet degree’s of freedom

Equilibrium of forces: The equilibrium of forces for each subdomain is now extended by the
unknown nodal forces at the interface and the Dirichlet boundary.

[Km] · {um}+ [Cm]> · {λc} − [Dm]> · {λd} = {fm0 } (1.2)

The nodal forces minus the nodal forces at the interface and/or the Dirichlet boundary have to be
equal to the external forces due to the displacement.

Coupling conditions: For geometric compatibility the sum of the displacements at any node of
the interface of n adjacent subdomains has to be zero.

n∑
m=1

[Cm] · {um} = {0} (1.3)

The coupling matrix entries are defined like:

• +1, for any degree of freedom ui at the interface of the current subdomain

• −1, for all degree’s of freedom collocated to ui of all adjacent subdomains

The RHS vector for this part of the equation system is a zero vector.

Dirichlet boundary conditions: The displacement at any node along the Dirichlet boundary
has to be equal to a given initial displacement {u0}.

n∑
m=1

[Dm] · {um} = {u0} (1.4)

The Dirichlet matrix entries are defined like:

• 1, for all degree’s of freedom at the Dirichlet boundary

• 0, else

The RHS vector {u0} for this part of the equation system is:

• ui = 0, for locked degree’s of freedom

• ui = ui,0, for initially displaced degree’s of freedom

1.4.2 BETI coupling

The name is a short-cut derived from the name Boundary Elements, Tearing and Interconnecting.
The very beginning of that approach is the boundary integral equation.

C(x) · u(x) =

∫
C
∫

Γ
U(x, y) · t(x) dΓ−

∫
C
∫

Γ
T (x, y) · u(x) dΓ (1.5)

The parts of this equation are:

• C(x), integral free term

• u(x), displacements
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• t(x), tractions

• U(x, y), fundamental solution of the displacements

• T (x, y), fundamental solution of the tractions

• Γ, boundary surface

The discrete form of equation (1.5) using the Collocation-Method is:

[∆Un] · {tn} = [∆T n] · {un} (1.6)

Based on the equation (1.6) the tractions for subdomain Ωn can then be written like:

{tn} = [∆Un]−1 · [∆T n] · {un} (1.7)

where entries of [∆Un] and [∆T n] are integrated kernel-shape-function products over the elements
at the boundary Γ.
The traction vector consists of two parts:

{tn} = {tn0}+ {tnc } (1.8)

where {tn0} are the tractions due to the loading and {tnc } are the tractions of the interface of two
subdomains. Now we plug equation (1.8) into equation (1.7) and get:

{tn0} = [∆Un]−1 · [∆T n] · {un} − {tnc } (1.9)

For the following steps we define a global traction vector {tc} that can be transformed with the
coupling matrices [Cn] into the local (subdomain) traction vector {tnc }.

{tnc } = [Cn]
> · {tc} (1.10)

Further we define a stiffness matrix for each subdomain which is:

[Kn
t ] = [∆Un]−1 · [∆T n] (1.11)

Now we insert equation (1.11) and (1.10) into equation (1.9) and get:

[Kn
t ] · {un} − [Cn]> · {tc} = {tn0} (1.12)

For the reason that we also want the possibility of coupling the Finite Element Method and Boundary
Element Method we have to transform the tractions of the Boundary Element Method subdomains
into nodal forces. This can be done using the mass matrix [Mn] of a subdomain [8]. Now the
stiffness matrix [Kn

t ] and the load vector {tn0} is multiplied with the mass matrix and the global
traction vector {tc} is replaced by the vector {fc} of unknown nodal forces.

[Kn] = [Mn] · [∆Un]−1 · [∆T n]

{fn0 } = [Mn] · {tn0}
(1.13)

Now equation (1.12) can be written as:

[Kn] · {un} − [Cn]> · {fc} = {fn0 } (1.14)

This is the equilibrium of forces for each subdomain Ωn. Now the equation system can be set up in
the same way as it was done for the FETI coupling method.
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

[K1] [0] · · · · · · [0] [C1]
>

[D1]
>

[0]
. . . . . .

...
...

...
...

. . . [Km]
. . .

... [Cm]> [Dm]>

...
. . . . . . [0]

...
...

[0] · · · · · · [0] [Kn] [Cn]> [Dn]>

[C1] · · · [Cm] · · · [Cn] [0] [0]

[D1] · · · [Dm] · · · [Dn] [0] [0]


·



{u1}
...

{um}
...
{un}
{λc}
{λd}


=



{f1
0 }
...

{fm0 }
...
{fn0 }
{0}
{u0}


• [Km], stiffness matrix of subdomain m

• [Cm], coupling matrix of subdomain m for the interface boundary

• [Dm], Dirichlet constraint matrix of subdomain m for the Dirichlet boundary

• {um}, displacement degree’s of freedom of subdomain m

• {fm0 }, load vector of subdomain m

• {λc}, Lagrange multiplier for coupling degree’s of freedom

• {λd}, Lagrange multiplier for Dirichlet degree’s of freedom

1.5 Roadmap to this Master’s Thesis

This document is structured into several chapters and will lead from theoretical to practical com-
putation topics.

• Introduction: Fundamentals of the Mortar Method and other coupling methods.

• Continuum mechanics: Theoretical part containing the formulation for elastic continua
and a numerical approximation approach.

• A simple example: Computation example for a simple Finite Element Method system
showing the principle way to compute coupling coefficients.

• Convergence study: Convergence study for 2D and 3D cantilever problems.

• Conclusion and outlook: Conclusion and outlook to applications and developments of the
Mortar Method .
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Chapter 2

Continuum mechanics

This chapter contains the physical and mathematical formulation of the Mortar Method . First
the problem is expressed in terms of elastic continua and then a numerical approximation will be
derived.

2.1 Preliminaries

Since the Mortar Method is a very general approach we want to make some assumptions to limit
the complexity and the work-load for this Master’s Thesis.

2.1.1 Assumptions and Limitations

• linear solid material.

• no dependence on temperature (isothermal).

• no dependence on time.

• small displacements.

• no energy dissipation (plasticity, friction, etc.).

2.1.2 Symbol names

• C, the “linear elastic tensor”, tensor of 4th order

• T , internal stress, tensor of 2nd order

• t, traction

• tN , traction applied to the Neumann boundary

• tI , traction applied to the interface of two sub-domains

• b, applied body force (e.g. gravity)

• ε, linearised strain tensor

• u, displacements

• u0, applied (initial) displacements

• δu, virtual displacement test function

• δp, virtual force test function

• Ω,Ω(i), domain Ω or sub-domain Ω(i)
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• ΓD,Γ
(i)
D , Dirichlet boundary of a domain Ω or sub-domain Ω(i)

• ΓN ,Γ
(i)
N , Neumann boundary of a domain Ω or sub-domain Ω(i)

• Γ
(m,n)
I , interface of sub-domain Ω(m) and Ω(n)

• γj , Lagrange multiplier field/Mortar Finite Element ,field numbers j

2.1.3 Some expressions

System domain Ω: Let us assume to have small deformations in our system domain so we define

Ω = Ω0 = Ωt (2.1)

where Ω0 is the initial configuration and Ωt the deformed configuration.

Sub-domain Ω(n): A sub-domain is a subset of particles of the system domain

Ω(n) ⊂ Ω ,
N⋃
n=1

Ω(n) = Ω (2.2)

where N is the total number of sub-domains.

Boundary of a domain: The boundary of a domain is a subset containing all particles at the
surface of the domain.

Γ ⊂ Ω (2.3)

with

ΓD ∪ ΓN ∪ ΓI = Γ (2.4)

The very same applies to all sub-domains Ω(n).

Neumann boundary:

ΓN ⊂ Γ ⊂ Ω (2.5)

Dirichlet boundary:

ΓD ⊂ Γ ⊂ Ω (2.6)

Interface:

Γ
(m,n)
I = Γ(m) ∩ Γ(n) (2.7)

The interface is a dual space.

Γ(m) ∩ Γ(n) = Ω(m) ∩ Ω(n) (2.8)

The sub-domains are non-overlapping.

Partition or field γj of the interface ΓI :

γj ⊂ ΓI ,

nj⋃
j=1

γj = ΓI (2.9)

where nj is the total number of partitions/fields of finite size. In further explanations we will
introduce a Lagrange multiplier for each partition or field, henceforth they are called Lagrange
multiplier fields.
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Relation between stress and strain:

T = C · ε (2.10)

This relation holds only for small deformations and linear elastic material behaviour and incorpo-
rates the assumptions from above.

2.2 Mechanics of a solid body

In the following an elasto-static problem is described assuming small deformations. The problem
to be decomposed is shown in the figure below.

Ω(m) Ω(n)

← Ω →

Γ
(m)
D Γ

(n)
D

Γ
(m)
N

Γ
(m)
N

t
(m)
N

Γ
(n)
N

Γ
(n)
N

t
(n)
N

Γ
(m,n)
I

Figure 2.1: Solid body with two regions (Ω(m), Ω(n))

Now we cut the body along ΓI and get additional tractions tI at the cutting surfaces ΓI . This
tractions are derived from the inner stress T of the body. Their absolute value have to be equal
but with opposite sign on the cutting surface of each subdomain, so their sum is zero. Figure 2.2
shows the subdomain Ω(m) with the tractions t(m)

I of the interface.

Ω(m)

Γ
(m)
D

Γ
(m)
N

Γ
(m)
N

t
(m)
N

Γ
(m,n)
I t

(m)
I

Figure 2.2: Slice of solid body, left region (Ω(m))

2.2.1 Boundary value problem, strong form

To formulate the boundary value problem we use the static “Navier-Lamé equation”. First we do
this for the whole domain Ω.

−∇ · T = b . . . on x ∈ Ω, balance of linear momentum
u = u0 . . . on x ∈ ΓD, initial displacements
T · n = tN . . . on x ∈ ΓN , traction

(2.11)
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Next we formulate this equations for any subdomain Ω(m).

−∇ · T = b . . . on x ∈ Ω, balance of linear momentum
u = u0 . . . on x ∈ Γ

(m)
D , initial displacements

T · n = t
(m)
N . . . on x ∈ Γ

(m)
N , traction

T · n = t
(m)
I . . . on x ∈ Γ

(m,n)
I , traction

(2.12)

2.2.2 Boundary value problem, weak form

To get the weak form of the equations above we will use the Principle of Virtual Displacements.
For this we have to choose an admissible test function δu, such that

δu = u0 on ΓD (2.13)

Balance of linear momentum:

−∇ · T = b (2.14)

and it’s residual form looks like

−∇ · T − b = 0 (2.15)

now we apply the test functions (multiply (2.13) with (2.15))

(−∇ · T − b) · δu = 0 (2.16)

and integrate over the domain∫
Ω

(−∇ · T︸ ︷︷ ︸
T1

−b) · δu dΩ = 0 (2.17)

First we pick out the term T1 (the scalar product is commutative)

T1 =

∫
Ω

(−∇ · T ) · δu dΩ (2.18)

Further we know about the following identity

(∇ ·A) · x ≡ ∇ · (A> x)−A : (∇⊗ x) (2.19)

where A is a tensor of second order and x a vector.
Now we rewrite the term T1 according to this identity

T1 =

∫
Ω

(
−∇ · (T> δu)︸ ︷︷ ︸

T2

+T : (∇⊗ δu)
)
dΩ (2.20)

then we apply the divergence theorem on T2, split the sum and receive for T1

T1 = −
∫
Γ

(T · n) δu dΓ

︸ ︷︷ ︸
T3

+

∫
Ω

T : (∇⊗ δu)︸ ︷︷ ︸
T4

dΩ (2.21)

Next we apply the boundary conditions on T3

T · n = tN . . . applied to Neumann boundary Γ
(m)
N (2.22)
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T · n = tI . . . applied to the interface Γ
(m,n)
I (2.23)

and get

T3 = −
∫

Γ
(m)
N

tN δu dΓ−
∫

Γ
(m,n)
I

tI δu dΓ (2.24)

The term T4 can be substituted by

T4 = sym(∇⊗ δu) = ε(δu) (2.25)

Finally we get∫
Ω(m)

T : ε(δu) dΩ−
∫

Γ
(m,n)
I

tI δu dΓ =

∫
Ω(m)

b δu dΩ +

∫
Γ
(m)
N

tN δu dΓ (2.26)

Lagrange multiplier fields: First we pick up the term of the unknown interface tractions∫
Γ
(m,n)
I

tI δu dΓ (2.27)

and substitute the tractions by Lagrange multipliers

tI = ψ · λ (2.28)

where ψ is a weight function which we define like

ψ := δij . . . Kronecker-Delta (2.29)

δij =

{
1 , i = j

0 , i 6= j
(2.30)

where i is the index of the current point location at the interface and j the index of any other point
location at the interface.

Approximation of the interface integral: As an approximation we substitute the integral over
the interface Γ

(m,n)
I with a sum over the Lagrange multiplier fields γj . The point-wise defined weight

function ψ becomes now to be a field-wise defined function.∫
Γ
(m,n)
I

tI δu dΓ =

nj∑
j=1

∫
γj

tI δu dΓ (2.31)

Each interface field γj shall now be connected to one Lagrange multiplier λj .∫
γj

tI δu dA =

∫
γj

λj · ψ δu dA (2.32)

The Lagrange multipliers are constants and we can factor them out of the integral. Then we change
the integration limits Γ

(m,n)
I to γj , so the weight function ψ can be omitted because it is always 1

in the current γj .

λj

∫
γj

1 · δu dΓ

︸ ︷︷ ︸
cj

(2.33)
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Finally we want to specify the integral to be a vector of coupling coefficients.

cj =

∫
γj

δu dΓ (2.34)

Conservation of mechanical energy at the interface fields: To follow the idea of the Mortar
Method the mechanical energy has to be conserved at the interface. For this we use the Principle
of Virtual Work . First we introduce a virtual force δp and then we state the equilibrium of virtual
work for each interface field.

∂Wj = ∂W
(m)
j − ∂W (n)

j = 0 (2.35)

The displacements on each side of the field are u(m) and u(n). The virtual work in γj derived from
the subdomain Ω(m) is

∂W
(m)
j =

∫
γj

δp(m) dΓ · u(m) (2.36)

and the virtual work derived from subdomain Ω(n) is

∂W
(n)
j =

∫
γj

δp(n) dΓ · u(n) (2.37)

Now the equilibrium of virtual work reads like∫
γj

δp(m) dΓ · u(m) −
∫
γj

δp(n) dΓ · u(n) = 0 (2.38)

Further we define the test functions for the virtual displacement δu and the virtual traction δp to
be the same. Now we can identify:

c
(m)
j =

∫
γj

δp(m) dΓ =

∫
γj

δu(m) dΓ (2.39)

which is the same vector of coefficients like in equation (2.34). Finally we write the equation like

c
(m)
j · u(m) − c(n)

j · u
(n) = 0 (2.40)

System equations: Now we put all things together and get the following system equations∫
Ω(m)

T : ε(δu) dΩ− λj · c(m)
j =

∫
Ω(m)

b · δu dΩ +

∫
Γ
(m)
N

tN · δu dΓ (2.41)

∫
Ω(n)

T : ε(δu) dΩ− λj · c(n)
j =

∫
Ω(n)

b · δu dΩ +

∫
Γ
(n)
N

tN · δu dΓ (2.42)

c
(m)
j · u(m) − c(n)

j · u
(n) = 0 (2.43)

(2.44)

• Equation (2.41): displacement field in region Ω(m)

• Equation (2.42): displacement field in region Ω(n)

• Equation (2.43): coupling condition for regions Ω(m), Ω(n)
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2.3 Numerical approximation

For the numerical approximation we can use the Finite Element Method or the Boundary Element
Method . The following explanations belong to the Finite Element Method . For this coupling method
the type of discretisation doesn’t matter. We choose a parametrisation such that the nodal test
functions are defined among the limits of an intrinsic coordinate space of an element. We also make
use of the Gauss quadrature rules for the numerical approximation of the integral expressions. Then
we can compute all the terms from the section above and we do this node-wise.

Symbol names:

• ξ = {ξn} ∀ n = 1, 2, 3, coordinates in parameter space (intrinsic)

• Ni(ξ), test function at node i

• D, coefficient matrix of the linear strain tensor

• B(Ni(ξg))
, differential operator matrix applied to the test function at node i

• J(ξ), determinant of the Jacobi matrix

• ωg, Gauss quadrature weight

• tN (ξ), traction at the Neumann boundary

• ng, number of Gauss points on one element

Stiffness matrix:

kij =

∫
Ω

T : ε(δu) dΩ⇒

kij =

ng∑
g=1

B(Nj(ξg))
> ·D ·B(Ni(ξg)) · ωg · J(ξg)

where kij is the corresponding coefficient at node i due to a unit displacement at node j.

Applied loading: We derive one part from the body forces applied on the element volumes

fi =

∫
Ω

b · δu dΩ⇒

fi =

ng∑
g=1

Ni(ξg) · b(ξg) · J(ξg)

and another part from the traction applied on the element surfaces

fi =

∫
Γσ

t · δu dΓ⇒

fi =

ng∑
g=1

Ni(ξg) · fN (ξg) · J(ξg)

Both have to be summed up for each node i.
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Coupling coefficients: Since this is the main proposal of this work, the derivations of the cou-
pling coefficients will be explained in more detail in the next section.

2.4 Coupling coefficients

In this section we will derive a numerical approximation of the coupling condition.

2.4.1 Coefficients of the coupling condition

The displacement approach δu is now replaced by the element shape functions Ni(ξ). The integral
formulation for the coupling coefficients for each Lagrange multiplier field γj and element shape
function i is

ci,j =

∫
γj

Ni(ξ) dΓ (2.45)

To compute the coefficients ci,j the following tasks have to be performed:

• Set up the side-elements of the adjacent sub-domains.

• Choose an admissible test function Ni(ξ) for all nodes of the side-elements.

• Choose shape and size of the Lagrange multiplier fields.

• Carry out the integral for every side-element’s shape functions among the limits of the La-
grange multiplier fields.

Side-elements: A side-element is a subspace of the boundary of an element E that is situated
on the interface ΓI .

Si ⊂ ∂E and Si ⊂ ΓI

ΓI

S1

S2

S3

S4

E

1-D interface

S1

S2 S3

S4

S5

S6

ΓI

E

2-D interface

Figure 2.3: Element boundary, side elements

The very same applies to triangles and tetrahedrons.

Test functions of the side-elements: We need to choose test functions for each node of the
side-elements. This can be an arbitrary function. But it would make sense to have them dependent
on the test functions of their parent elements. For instance if an element test function is a linear
polynomial then we should choose a linear polynomial for the side-element test function as well.
If we restrict the test functions to polynomials we can state:

• A side-element test function is of same order like the element test function.

O(Ni) = O(N̂i)
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• A side-element test function lives in a parameter space that is one dimension lower than the
parameter space of the test function of the element.

Ni(ξ1, ξ2, ξ3) 7→ N̂i(ξ1, ξ2) . . . 2-D interface

Ni(ξ1, ξ2) 7→ N̂i(ξ) . . . 1-D interface

Here an example for linear test functions N̂1,3, N̂3,1 of a 1-dimensional side-element S1.

ΓI 1

2

3

N̂1

S1

S2

S3 ΓI 1

2

3

N̂3

S1

S2

S3

Figure 2.4: Linear test functions, 1-D side element

The choice of Lagrange multiplier fields and the integration needs more detailed explanation. There-
fore they got their own sections. See next both sections.

2.5 Lagrange multiplier fields

In general there is no constraint on the choice of size and shape of the Lagrange multiplier fields γj
at the interface ΓI . But for convenience it would make sense to have some restrictions.

Field size: If we choose fields γj with a characteristic size hmax and then let hmax → 0 we can see
that the energy function in it’s weak form will derive the strong form (point-wise). So it is a good
choice to use small fields. The other point is that every field has a number of degree’s of freedom
in it and this will lead to a higher number of unknowns and to a larger equation system at the end.

Field shape: Since there are no constraints, the shape can be of arbitrary choice. But let us bear
in mind that the shape boundaries are the integration limits. For this the fields should have a shape
geometry that is as simple as possible (triangles, quadrilaterals). There are some possible choices
we can find in the literature.

• Arbitrary choice of size and shape (rare)

• Master-Slave concept (most simple, but powerful)

• Zero moment rule (yet 1D interfaces only)

Arbitrary choice of size and shape: This approach is most independent of the mesh geometry
of the sub-domains. But we have to set up a number of fields that are a subspace of both sub-
domains and this could be a very difficult task if we think of curved surfaces. The main advantage
is that we can completely control the number of degree’s of freedom by the number of fields we
choose. The disadvantage is that the integration over that fields is then for both sub-domains no
more easy as we will see later.
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Master-Slave concept: This is the most powerful and easy concept for a choice of field size and
shape. The main idea is that we choose the Lagrange multiplier fields as the side-elements of one
of both sub-domains. This subdomain is then called the Master and the opposite subdomain the
Slave. The limitation of this concept is that we can not control the number of degree’s of freedom
any more. Their number is now limited to the number of side-elements of the Master subdomain.
We also cannot choose the size of the fields freely. But we can choose between the side-elements
of two sub-domains. If we choose the subdomain with the coarser mesh to be the Master we will
get less fields of bigger size and less degree’s of freedom. If we choose the subdomain with the finer
mesh to be the Master we will get more fields of smaller size and more degree’s of freedom. An
additional advantage of that choice is that the integration of the Master side is very easy since we
have to integrate the side-element test functions over the side-element parameter space itself. For
this Master’s Thesis this is the concept of choice.

Zero moment rule: This concept was published by K.C. Park, C.A. Felippa, G. Rebel [9]. It was
defined for 1D interfaces, thus this applies to plane problems only. In all the concepts above the
integral of a test function is mapped to a constant function at the interface field. They do not care
about the distribution of the test function values along the interface field. This concept helps to
make a choice of field size and location such that the integral of the momenta of the test function
values becomes zero. This concept is mentioned here only for completeness since it is not subject
to this Master’s Thesis.

2.6 Integration

The integration limits are the boundaries of the Lagrange multiplier fields γj . The integral function
(2.45) is the test function Ni(ξ) of the node i defined over the parameter space ξ of a side-element
S. The integration limits do not live in the same space like the test functions do. This and only this
is the crucial point of the Mortar Method ! We will have to transform the integration limits into the
parameter space of the side-element first. And this is no easy task at all! The next two subsections
will try to explain the geometrical problem for 1D and 2D interfaces and how the computation of
the integrals can be carried out. For simplicity linear test functions are used for the the examples.
This also applies to test functions of arbitrary order.
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2.6.1 Integration for 1D interfaces

Cartesian space (X)

G1 G2
γj

Γ
P1 P2

1 2S

N1(ξ)

X1

X2

X3

(0, 0, 0)

Parameter space (ξ)

ξ
1′ 2′(−1) (+1)(0)

g1 g2

1

P ′1 P ′2

Parameter sub-space (ξ̂)

ξ̂

1̂′ 2̂′
(0)(−1) (+1)

ĝ1 ĝ2

Figure 2.5: Integration, 1-D interfaces

Given:

• Side-element S := (P1, P2)

• Lagrange multiplier field γj := (G1, G2)

• Parameter space ξ of the side-element

• Parameter subspace ξ̂ for line elements

• Shape functions Ni(ξ) for side-elements

Integral computation, step by step:

1. Project the Lagrange multiplier field boundary points [G1, G2] onto the element and get the
points [1, 2].

2. Transform the projected points [1, 2] into the parameter space ξ of the side-element. The
result is [1′, 2′].

3. Set up a line element for the segment [1′, 2′] using a parameter subspace ξ̂.

4. Compute the Gauss quadrature node coordinates ξ̂g and weights ω̂g in parameter subspace ξ̂.
Compute the Jacobian Ĵ(ξ̂g).

5. Transform the Gauss nodes ξ̂g into parameter space ξ (result: ξg).

6. Compute the test function values Ni(ξg) and the Jacobian J(ξg).

7. Sum up over all Gauss nodes ξg.
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Now we get the following integration formula∫
γj

Ni(ξ) dA =

ng∑
g=1

ω̂g · Ĵ(ξ̂g) ·Ni(ξg) · J(ξg) (2.46)

where ng is the number of Gauss points.

Other geometry configurations: The picture above shows case 1) of a possible interface con-
figuration. Here are the other two possible cases and how they have to be handled.

Case 2)

G1 G2γj

P1 P21S

N1

N2

Case 3)

G1 G2γj

P1 P2S

N1

N2

Figure 2.6: Geometry configurations, 1-D interfaces
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2.6.2 Integration for 2D interfaces

Cartesian space (x)

P1

P2

P3

G1

G2

G3

γj

S

e1

e2

e3

e4

e5

e6

1 2

3

4
5

6

N1(ξ)

X1

X2

X3

(0, 0, 0)

Parameter space (ξ)

ξ1

ξ2

(0, 0) (1, 0)

(0, 1)

P ′
1 P ′

2

P ′
3

e′1

e′2

e′3

e′4

e′5

e′6

tj6′

1′ 2′

3′

4′
5′

M

g1

g3
g2

Parameter sub-space (ξ̂)

ξ̂1

ξ̂2

(0, 0) (1, 0)

(0, 1)

M̂ 6̂′

1̂′

ĝ1

ĝ2
ĝ3

Figure 2.7: Integration, 2-D interfaces

Given:

• Side-element S := (P1, P2, P3)

• Lagrange multiplier field γj := (G1, G2, G3)

• Parameter space ξ of the side-element

• Parameter subspace ξ̂ for triangles

• Shape functions Ni(ξ) for side-elements

Integral computation, step by step:

1. Compute the intersection points [1, . . . , 6] of the side-element and the Lagrange multiplier
field γj .
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2. Transform the intersection points [1, . . . , 6] into the parameter space ξ of the side-element
(result: [1′, . . . , 6′]). Also transform corner points of side-element S who are laying inside the
field γj into this space.

3. Set up a triangulation T consisting of the intersection points [1′, . . . , 6′] and their midpointM .
If there are transformed corner points they are also part of the triangulation.

4. Set up triangular elements tl using a parameter subspace ξ̂ for all triangles in the triangula-
tion T .

5. Compute the Gauss quadrature node coordinates ξ̂g and weights ω̂g in parameter subspace ξ̂.
Compute the Jacobian Ĵ(ξ̂g).

6. Transform the Gauss nodes ξ̂g into parameter space (result: ξg).

7. Compute the test function values Ni(ξg) and the Jacobian J(ξg).

8. Sum up over all Gauss nodes ξg of one triangle.

9. Sum up over all triangles tl of the triangulation T .

Now we get the following integration formula∫
γj

Ni(ξ) dA =

nl∑
l=1

 ng∑
g=1

ω̂g · Ĵ(ξ̂g) ·Ni(ξg) · J(ξg)


l

(2.47)

where nl is the total number of triangles and ng is the total number of Gauss nodes.

Note: For arbitrary Lagrange multiplier field and side-element geometries we can state:

• In general the edges e′1, e′3 and e′5 are no more straight lines. It would be good to compute
some interpolation points and generate a finer triangulation to get more accurate results for
the integral. For high-order elements this would be necessary. For linear elements there will
be no big difference, thus the computation of that interpolation points can be omitted.

• The computation of the intersection points [1, . . . , 6] is no easy task since we can compute
them analytically only for certain cases. Just think of the rounding errors of node coordinates.
This will lead to non-intersecting geometries in 3-dimensional space. So we will have to find a
numerical solution that can handle such errors and detects intersection points within a given
tolerance.

• The transformation of the intersection points from Cartesian coordinate space into intrinsic
parameter space [1′, . . . , 6′] is also no easy task since the inverse process will lead to a manifold
of results. For this we also need to provide a numerical solution.

Other geometry configurations: The picture above shows for case 1) of intersecting geometries
only. Let us have a look at other possible configurations and how they have to be treated.

Case 2)

Q1

Q2

R1

T

Case 3)

Q1

Q2

R1 R2

T

Case 4)

R1 R2

R3

T

Figure 2.8: Geometry configurations, 2-D interfaces
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Qi are the intersection points and Ri are the inside-points. We can see that the triangulation
polygon T consists of two classes of points, the intersection points Qi and the inside-points Ri. All
configurations share one property: If the sum of intersection points and inside-points is at least three
and they are not aligned to a straight line, there exists a triangulation T . Therefore the integral
exists. There are much more possible configurations for all kind of elements but the computation
of the integral works for all of them like the same.

2.7 Global equation system

Finally we take a look at the global equation system of the coupled problem. The general form of
this equation system is:

[A] · {x} = {b} (2.48)

[K1] [0] · · · · · · · · · [0] [D1]> [C1]> [0]

[0] [K2]
. . .

... [D2]> [C2]> [0]
...

. . . . . . . . .
...

... [0] [0]
...

. . . [Km]
. . .

... [Dm]> [0] [Cm]>

...
. . . . . . [0]

... [0] [0]

[0] · · · · · · · · · [0] [Kn] [Dn]> [0] [Cn]>

[D1] [D2] · · · [Dm] · · · [Dn] [0] · · · [0]

[C1] [C2] [0] [0] [0] [0]
...

. . .
...

[0] [0] [0] [Cm] [0] [Cn] [0] · · · [0]



·



{u1}
{u2}
...

{um}
...
{un}
{λD}
{λ1,2}
{λm,n}



=



{f1
0 }

{f2
0 }
...

{fm0 }
...
{fn0 }
{u0}
{0}
{0}


Symbol names:

• [Kn], stiffness matrix of a subdomain

• [Dn], identity matrix of Dirichlet boundary conditions

• [Cn], Mortar Method coupling matrix

• {un}, displacement vector of a subdomain

• {fn0 }, force vector of a subdomain

• {λD}, Dirichlet degree of freedom vector

• {u0}, Dirichlet displacement vector

• {λmn}, vector of Lagrange multipliers
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Chapter 3

A simple example

In this chapter we will compute a simple example. The goal is to see how the coupling matrices are
computed and the equation system has to be assembled. Further we will get the solution and some
interpretation on what has happened at the interface.

3.1 Configuration

Let us assume to have a very simple system configuration consisting of three finite elements, one
Dirichlet boundary, one Neumann boundary with the following properties.

• Young’s modulus, E = 10000 [kN/m2]

• Poisson’s ration, ν = 0.2 [ ]

• Element thickness, t = 1 [m]

• Subdomain Ω(1) element dimensions, L = 1 [m], H = 1 [m]

• Subdomain Ω(2) element dimensions, L = 1 [m], H = 0.5 [m]

• Dirichlet boundary conditions: ux = 0 [m], uy = 0 [m] at node 1 and 3 of subdomain Ω(1)

• Neumann boundary conditions: px = 100 [kN/m], py = −100 [kN/m] at the boundary be-
tween node 6, 8 and 10 in subdomain Ω(2)

• Plain strain

1 2

43

5 6

7 8

9 10

E1

E2

E3

Ω(1) Ω(2)ΓI

f

Figure 3.1: Simple cantilever, 2 regions

3.2 Stiffness matrices

The stiffness matrices of both subdomains can be computed easily. Their coefficients are not the
major topic of this example, therefore they are noted here only in a general form. For convenience
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the stiffness matrix is written in terms of 2× 2 block matrices.

[ki,j ] =

[
kix,jx kix,jy

kiy,jx kiy,jy

]

where ki,j are the corresponding forces in x and y direction at node i due to virtual displacements
in x- and y-direction at node j. For example: kix,jy is the corresponding force of element node i in
x-direction due to the virtual displacement in y-direction applied at node j.

Stiffness matrix, subdomain Ω(1): The stiffness matrix [K(1)] is then a 8× 8 block matrix.

[K(1)] =


[k1,1] · · · [k1,4]
...

. . .
...

[k4,1] · · · [k4,4]


Stiffness matrix, subdomain Ω(2): Since the elements E2 and E3 are both using the nodes
7 and 8 we have to assemble the element stiffness matrices. The stiffness matrix [K(2)] is then a
12× 12 block matrix.

[K(2)] =



[k5,5] · · · · · · [k5,8] [0] [0]
...

. . . . . .
... [0] [0]

...
. . . [k7,7] [k7,8] · · · [k7,10]

[k8,5] · · · [k8,7] [k8,8]
. . .

...

[0] [0]
...

. . . . . .
...

[0] [0] [k10,7] · · · · · · [k10,10]


3.3 Dirichlet boundary condition identity matrices

For this example we want to couple-in the Dirichlet boundary conditions instead of modifying the
stiffness matrix of subdomain Ω(1). The boundary conditions apply to node 1 and node 3 where
both degree’s of freedom (ux and uy) are locked. The block matrices [d1,1] and [d3,3] for node 1 and
3 are 2× 2 identity matrices. All other block matrices are 2× 2 zero matrices.
The identity matrix for subdomain Ω(1) is then

[D(1)] =

[
[d1,1] [d1,2] [d1,3] [d1,4]

[d3,1] [d3,2] [d3,3] [d3,4]

]
=


1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0


3.4 Mortar Method coupling matrices

For the computation of the coupling matrices [C(1)] and [C(2)] we choose the subdomain Ω(2) to be
the Master side and the subdomain Ω(1) is the Slave side. First we define the Lagrange multiplier
fields and then we compute the matrix coefficients.
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γ1

γ2

2

4

E1
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7

9

E2

E3

Ω(1) Ω(2)ΓI

Interface

γ1

γ2

2

4

E1

Ω(1) N2, N3ΓI

Test functions (slave)

’1’

’0.5’

’1’

γ1

γ2

5

7

9

E2

E3

N5, N7, N9 Ω(2)ΓI

Test functions (master)

’1’

’1’

’1’

Figure 3.2: Lagrange multiplier fields

Here, γ1 and γ2 are the Lagrange multiplier fields. In each field are living two degree’s of freedom,
one for the global x direction and one for the global y direction. For the coupling coefficients we
choose the following notation:

• coefficient name: c

• first subscript: node number

• second subscript: Lagrange multiplier field number

The value of the coupling coefficient ci,j is the integral of the shape function Ni over γj .

ci,j =

∫
γj

Ni ds

where ds is a infinitesimal small part of the curve length of γj . The coupling matrices will be
represented by 2× 2 block matrices like we did for the stiffness matrices before.

[ci,j ] = ci,j · [I] =

[
ci,j 0

0 ci,j

]

where [I] is a 2× 2 identity matrix.

Coupling coefficients and matrix, Slave side: The coupling coefficients are used for the
degree’s of freedom in x and in y direction like the same. Therefore they appear twice in the
coupling matrix. As a convention all coupling coefficients on the Slave side get a minus sign.
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γ1

γ2

2

4

0.
5

0.
5

N2, N4Γ

’1’

’0.5’

’1’

’1’

’0.5’

c2,1

’0.5’

c2,2

’0.5’

c4,1

’0.5’

’1’

c4,2

Figure 3.3: Integration of Slave coupling coefficients

c2,1 = −(1 + 0.5)/2 · 0.5 = −0.375

c2,2 = −0.5/2 · 0.5 = −0.125

c4,1 = −0.5/2 · 0.5 = −0.125

c4,2 = −(1 + 0.5)/2 · 0.5 = −0.375

The coupling matrices for node 1 and 3 are 2× 2 zero matrices. The coupling matrix [C(1)] is

[C(1)] =

[
[0] [c2,1] [0] [c4,1]

[0] [c2,2] [0] [c4,2]

]
=


0 0 −0.375 0 0 0 −0.125 0

0 0 0 −0.375 0 0 0 −0.125

0 0 −0.125 0 0 0 −0.375 0

0 0 0 −0.125 0 0 0 −0.375


Coupling coefficients and matrix, Master : Again the coupling coefficients are used for both,
the degree’s of freedom in x and in y direction.

γ1

γ2

5

9

7

N5, N7, N9Γ

0.
5

0.
5

’1’

’1’

’1’

’1’

c5,1

’1’

c7,1

’1’

c7,2

’1’

c9,2

Figure 3.4: Integration of Master coupling coefficients

c5,1 = 1/2 · 0.5 = 0.25

c5,2 = 0 . . . N5 is zero in γ2
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c7,1 = 1/2 · 0.5 = 0.25

c7,2 = 1/2 · 0.5 = 0.25

c9,1 = 0 . . . N9 is zero in γ1

c9,2 = 1/2 · 0.5 = 0.25

The coupling matrices for node 6, 8 and 10 are 2× 2 zero matrices. The coupling matrix [C(2)] is

[C(2)] =

[
[c5,1] [0] [c7,1] [0] [c9,1] [0]

[c5,2] [0] [c7,2] [0] [c9,2] [0]

]

=


0.25 0 0 0 0.25 0 0 0 0 0 0 0

0 0.25 0 0 0 0.25 0 0 0 0 0 0

0 0 0 0 0.25 0 0 0 0.25 0 0 0

0 0 0 0 0 0.25 0 0 0 0.25 0 0


3.5 Load vector (right hand side)

The load vector of the subdomain Ω(1) is

{f (1)
0 }

> = {f1,x, f1,y, f2,x, f2,y, f3,x, f3,y, f4,x, f4,y}

{f (1)
0 }

> = {0, 0, 0, 0, 0, 0, 0, 0}

For sub-domain Ω(2) we integrate the weight functions to get the nodal weights for all nodes at the
Neumann boundary.

E2

E3

6

10

8

load fΓN

0.
5

0.
5

’1’

’1’

’1’

’1’

w6

’1’

w8,1

’1’

w8,2

’1’

w10

Figure 3.5: Integration of the Neumann boundary

The weight function integrals for all nodes at the Neumann boundary are

w6 = 1/2 · 0.5 · 1 = 0.25

w8,1 = 1/2 · 0.5 · 1 = 0.25

w8,2 = 1/2 · 0.5 · 1 = 0.25

w8 = w8,1 + w8,2 = 0.50

w10 = 1/2 · 0.5 · 1 = 0.25

The load distributions along the Neumann boundary are

fx = 100.0 [kN/m] ; fy = −100.0 [kN/m]
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The nodal force components can now be derived

f6,x = w6 · 100.0 = 25.0

f6,y = w6 · −100.0 = −25.0

f8,x = w8 · 100.0 = 50.0

f8,y = w8 · −100.0 = −50.0

f10,x = w10 · 100.0 = 25.0

f10,y = w10 · −100.0 = −25.0

Now the load vector of the sub-domain Ω(2) is

{f (2)
0 }

> = {f5,x, f5,y, f6,x, f6,y, f7,x, f7,y, f8,x, f8,y, f9,x, f9,y, f10,x, f10,y}

{f (2)
0 }

> = {0, 0, 25,−25, 0, 0, 50,−50, 0, 0, 25,−25}

The displacement vector of the Dirichlet boundary conditions is

{u0}> = {u1x, u1y, u3x, u3y} = {0, 0, 0, 0}

3.6 Degree’s of freedom

The displacements for sub-domain Ω(1) are

{u(1)}> = {u1,x, u1,y, . . . , u4,x, u4,y}

and for sub-domain Ω(2) they are

{u(2)}> = {u5,x, u5,y, . . . , u10,x, u10,y}

The degree’s of freedom of the Dirichlet boundary conditions are the reaction forces at the constraint
nodes

{λD}> = {λd,1,x, λd,1,y, λd,3,x, λd,3,y}

The degree’s of freedom of the coupling condition are the tractions situated at the Lagrange multi-
plier fields.

{λC}> = {λc,1,x, λc,1,y, λc,2,x, λc,2,y}

3.7 Global equation system

Now we are going to put all the things together and set up the global equation system.
[K(1)] [0] [D(1)]> [C(1)]>

[0] [K(2)] [0] [C(2)]>

[D(1)] [0] [0] [0]

[C(1)] [C(2)] [0] [0]

 ·

{u(1)}
{u(2)}
{λD}
{λC}

 =


{f (1)

0 }
{f (2)

0 }
{u0}
{0}


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3.8 Solution and interpretation

Now we solve the equation system and get the displacements {u(1)}, the displacements {u(2)}, the
reaction forces {λD} and the tractions {λC}.

{u(1)}
u2

u2,x −0.00991006

u2,y −0.0162948

u4
u4,x 0.0136536

u4,y −0.0168688

Table 3.1: Displacements {u(1)}

{u(2)}

u5
u5,x −0.00991853

u5,y −0.0164219

u6
u6,x −0.0120578

u6,y −0.0489191

u7
u7,x 0.00188022

u7,y −0.0164548

u8
u8,x 0.0038068

u8,y −0.0488843

u9
u9,x 0.0136451

u9,y −0.0169959

u10
u10,x 0.0196376

u10,y −0.0493577

Table 3.2: Displacements {u(2)}

{λD}
λd,1

λd,1,x −300.000000

λd,1,y −82.640545

λd,3
λd,3,x 499.999999

λd,3,y −117.359455

Table 3.3: Reaction forces {λD}

{λC}
λc,1

λc,1,x −600.000000

λc,1,y −210.971039

λc,2
λc,2,x 1000.000000

λc,2,y −189.028961

Table 3.4: Tractions {λC}

The first thing we can see is that the displacements of the nodes 2 and 5 (and 4 and 9) are no more
the same. This is for the reason that we did not use geometrical constraints for the displacements
at the interface nodes. We chose an equilibrium of energy that does not control the motion of
coinciding points. It only controls the tractions at the interface.
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Figure 3.6: Displaced and origin system configuration

At this scale the differences of the displacements of the interface nodes seem to be very small. To
show them better we zoom close to the interface nodes and look at the relative displacements ∆u.

∆ux

∆uy

2’

5’

∆ux = −0.00002

∆uy = −0.00012

∆ux

∆uy

4’

9’

∆ux = −0.00002

∆uy = −0.00012

∆ux

∆uy

A’

7’

∆ux = 0.0

∆uy = 0.00014

Figure 3.7: Relative displacements, interface nodes

Node A’ is the displaced midpoint location of the line 2’,4’. Here we can see that the node 5’ and
9’ have the same differences in displacements. This is due to the symmetry of the elements at the
interface. Another interesting point is that the gap between the two sub-domains is rather small.
The minimal displacements in x and y direction are:

ux,min = u7,x = 0.00188022

uy,min = u2,y = −0.0162948

If we compute the ratio between the disagreement of displacements (errors) and the absolute value
of the minimal node displacements we get:

ux,min
∆ux,max

≈ 102 and
uy,min

∆uy,max
≈ 102

For this example we can see that the displacement errors of the interface nodes are about 10−2

smaller than the nodal displacements itself.

3.8.1 Proofs

Finally we want to proof the equilibrium of work for all interface fields for the reason that this was
the only boundary condition at the interface of the subdomains. For this we have to integrate the
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product of the traction λc,j , the nodal displacement vector ui and the nodal shape functions N (e)
i (ξ)

of the adjacent Master and Slave boundary elements among the limits of a Lagrange multiplier field
γj . Since the tractions λc,j are constant along each Lagrange multiplier field we can factor them
out.

Integrate work for aMaster boundary element: TheMaster boundary elements are identical
to the Lagrange multiplier fields. So we have to integrate among the limits of the Master boundary
element and to sum up for all element nodes ni.

Wj,Master =

ni∑
i=1

λc,j · ∫
γj

(Ni(ξ) · ui) dΓ

 (3.1)

Integrate work for all Slave boundary elements: Here we have a number of Slave boundary
elements which share a common space with one Lagrange multiplier field . So we have to integrate
among the limits of those common spaces (which are line segments or triangulations) and to sum
up for all nodes ni of all elements ne.

Wj,Slave =

ne∑
e=1

 ni∑
i=1

λc,j · ∫
γj

(N
(e)
i (ξ) · ui) dΓ


 (3.2)

Equilibrium of work at one Lagrange multiplier field γj: The condition for the equilibrium
of work to be met is

Wj,Master −Wj,Slave = 0 (3.3)

Lagrange multiplier field γ1: Integrals among the limits of the Master boundary element
E2.

W5,x = 1/2 · u5,x · λc,1,x = −4.95926500

W5,y = 1/2 · u5,y · λc,1,y = 1.55210735

W7,x = 1/2 · u7,x · λc,1,x = 0.94011000

W7,y = 1/2 · u7,y · λc,1,y = 1.55521687

W1,Master = W5,x +W5,y +W7,x +W7,y = −0.9118

W2,x = (1 + 0.5)/2 · u2,x · λc,1,x = −7.43254500

W2,y = (1 + 0.5)/2 · u2,y · λc,1,y = 2.31014184

W4,x = 0.5/2 · u4,x · λc,1,x = 3.41340000

W4,y = 0.5/2 · u4,y · λc,1,y = 0.79717293

W1,Slave = W2,x +W2,y +W4,x +W4,y = −0.9118

Equilibrium of work for γ1

W1,Master −W1,Slave = −0.9118− (−0.9118) = 0.0000

The error ε1 relative to the work of the Master side is 0.0%.
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Lagrange multiplier field γ2: Integrals among the limits of the Master boundary element
E3.

W9,x = 1/2 · u9,x · λc,2,x = −4.09355000

W9,y = 1/2 · u9,y · λc,2,y = 1.79280134

W7,x = 1/2 · u7,x · λc,2,x = −0.56408600

W7,y = 1/2 · u7,y · λc,2,y = 1.73572313

W2,Master = W9,x +W9,y +W7,x +W7,y = −1.1291

Integrals among the limits of the common space between the Slave boundary element E1 and the
Lagrange multiplier field γ2.

W2,x = 0.5/2 · u2,x · λc,2,x = 1.48650900

W2,y = 0.5/2 · u2,y · λc,2,y = 0.85943272

W4,x = (1 + 0.5)/2 · u4,x · λc,2,x = −6.14412000

W4,y = (1 + 0.5)/2 · u4,y · λc,2,y = 2.66912120

W2,Slave = W2,x +W2,y +W4,x +W4,y = −1.1291

Equilibrium of work for γ2

W2,Master −W2,Slave = −1.1291− (−1.1291) = 0.0000

The error ε2 relative to the work of the Master side is 0.0%.

Equilibrium of work at the complete interface Γ: Finally we sum up the quantities from
above and have a look at sum over the complete interface. The difference of work at the interface is

∆WΓ = 0.0000
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Chapter 4

Convergence study for the 2D and 3D
cantilever beam

This chapter is divided into the following sections.

1. Preliminaries, general system settings

2. Analytic solution, solution of the Euler-Bernoulli equation

3. Observations, summary of observations made for 2D and 3D systems

4. Convergence study for the 2D cantilever beam

5. Convergence study for the 3D cantilever beam

4.1 Preliminaries

4.1.1 Discretisation

All systems shown below are discretised with the Boundary Element Method . And with this dis-
cretisation method a two-field problem (displacement and traction) is solved using plain stress
conditions. This leads to a high convergence rate and less elements are needed to solve the problem.

2D system geometry
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3D system geometry
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un

it

z

x

y

4.1.2 Dirichlet boundary conditions

For all systems the Dirichlet boundary is on the left side of region R1 in partition P4. The boundary
condition is the same for all nodes of that partition. For 2D systems it is defined as ux = uy = 0
and for 3D systems ux = uy = uz = 0.

4.1.3 Neumann boundary conditions

For all systems the Neumann boundary is on the right side of region R2 in partition P2. The
boundary condition is the same for all elements of that partition. For 2D systems it is defined as
qx = 1, qy = −1 and for 3D systems as qx = 1, qy = 0, qz = −1.

4.1.4 Material parameters

For all systems the Young’s modulus E = 1000.0 and the Poisson ratio ν = 0.3.
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4.1.5 Mesh refinement
To be able to show the convergence behaviour of the cantilever beam according to the given boundary
conditions different mesh refinement ratio’s have been chosen (from coarse to dense meshes). For
systems coupled with the Mortar Method different refinement ratio’s have been chosen for both
regions to show the dependency between interface configuration and convergence behaviour.

2D systems, mesh refinement
rr1 rr2 Coupling rr1 rr2 Coupling
2 2 Beti 3 3 Beti
5 5 Beti 7 7 Beti
9 9 Beti 10 10 Beti

2 2 Mortar 3 3 Mortar
5 5 Mortar 7 7 Mortar
9 9 Mortar 10 10 Mortar

2 3 Mortar 2 5 Mortar
2 7 Mortar 2 9 Mortar
2 10 Mortar — — —

3 2 Mortar 5 2 Mortar
7 2 Mortar 9 2 Mortar
10 2 Mortar — — —

3D systems, mesh refinement
2 2 Beti 3 3 Beti
4 4 Beti 5 5 Beti

2 2 Mortar 3 3 Mortar
4 4 Mortar 5 5 Mortar

2 3 Mortar 2 4 Mortar
2 5 Mortar — — —

3 2 Mortar 4 2 Mortar
5 2 Mortar — — —

rri . . . refinement ratio, number of elements per unit

Table 4.1: Mesh refinement ratio’s for 2D and 3D systems
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4.1.6 Graph sets
The results are combined to graph sets in order to show the convergence of the solutions and/or the
specific behaviour of the discretisation- and coupling methods. They are used to make the difference
between the various solutions more visible.

2D systems - graph sets
Set Coupling rr1 − rr2 Coupling rr1 − rr2

1 Beti 2-2,3-3,5-5,7-7,9-9,10-10 — —
2 Mortar 2-2,3-3,5-5,7-7,9-9,10-10 — —
3 Mortar 2-3,2-5,2-7,2-9,2-10 Beti 2-2,10-10
4 Mortar 3-2,5-2,7-2,9-2,10-2 Beti 2-2,10-10

3D systems - graph sets
1 Beti 2-2,3-3,4-4,5-5 — —
2 Mortar 2-2,3-3,4-4,5-5 — —
3 Mortar 2-3,2-4,2-5 Beti 2-2,5-5
4 Mortar 3-2,4-2,5-2 Beti 2-2,5-5

Set . . . compilation set number
rri − rrj . . . refinement ratio’s of region 1 and 2
Coupling . . . coupling method

Table 4.2: Graph sets for 2D and 3D systems

4.1.7 Legends and captions used in figures and tables

For abbreviation legends and captions are printed in the following short forms.

Legends:

B, R1, P2, rr3, rr2

is to be read like: BETI coupling, region 1, partition 2, the refinement ratio in region 1 is 3 elements
per unit and the refinement ratio in region 2 is 2 elements per unit.

ux, B, rr2, rr5

is to be read like: displacement ux, BETI coupling, the refinement ratio in region 1 is 2 elements
per unit and the the refinement ratio in region 2 is 5 elements per unit.

Captions: The text below a figure or table.

Set 1, Mortar, uy, R1, P2, 1st

is to be read like: graph Set 1 (see table 4.2), Mortar Method coupling, displacement uy in region
1, partition 2 (see figure 4.3 and 4.30) using element shape functions of 1st order.

4.2 Analytic solution

The analytic solution due to the Euler-Bernoulli beam theory is compared with the results of the
numerical analysis.
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Figure 4.1: Cantilever beam configuration

4.2.1 Displacement functions:

The solution for the displacement distribution in z-direction considering shear deformation is

uz(x) =

x∫
0

My(x) ·My(x)

E · Jy
dx+

x∫
0

Qz(x) ·Qz(x)

G ·A · κs
dx (4.1)

with

My(x) = Fv(x− L); My(x) = 1(x− L) (4.2)

Qz(x) = Fv; Qz(x) = 1 (4.3)

we get the transversal displacement function

uz(x) =
Fv

E · Jy

(
x2 · L

2
− x3

6

)
+

Fv
G ·A · κs

x (4.4)

The cross-section rotation function (without shear distortion) is

ϕy(x) =
d uz(x)

dx
=

Fv
E · Jy

(
x · L− x2

2

)
(4.5)

The function for the displacements in x-direction at bottom and top edge (center line ±h/2) of the
beam is

ux,M (x) = ϕy(x) ·
(
±h

2

)
=

[
Fv

E · Jy

(
x · L− x2

2

)]
·
(
±h

2

)
(4.6)

The solution for the displacement distribution due to longitudinal forces in x-direction is:

ux,N (x) =

x∫
0

Nx(x) ·Nx(x)

E ·A
dx (4.7)

with

Nx(x) = Fh; Nx(x) = 1 (4.8)

we get the displacement function in x-direction

ux,N (x) =
Fh
E ·A

x (4.9)

The complete displacement distribution at bottom and top edge of the beam in x-direction is

ux(x) = ux,M (x) + ux,N (x) = ±h
2

[
Fv

E · Jy

(
x · L− x2

2

)]
+

Fh
E ·A

x (4.10)
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We also need the following parameters:

b = 1.0 . . . cantilever width
h = 1.0 . . . cantilever height
E = 1000.0 . . .Young’s modulus
ν = 0.3 . . .Poisson ratio

G =
E

2(1 + ν)
= 384.6154 . . . shear modulus

Jy =
b · h3

12
= 0.0833 . . . area moment of inertia about the y-axis

A = b · h = 1.0 . . . cross-section area
κs = 0.85 . . . shear factor for rectangular shape (Timoshenko)

4.2.2 Transversal displacement maximum uz,max:

To be compared later we evaluate the transversal displacement (4.4) at the right side of the beam.
We get the maximum displacement in z-direction uz,max.

uz,max = uz(x = 8.0) =

1.0

1000.0 · 0.0833

(
8.02 · 8.0

2
− 8.03

6

)
︸ ︷︷ ︸

2.0480

+
1.0

384.6154 · 1.0 · 0.85
8.0︸ ︷︷ ︸

0.0245

= 2.0725 (4.11)

4.2.3 Longitudinal displacement extrema ux,max, ux,min:

We also evaluate the longitudinal displacements (4.10) at the right side of the beam. We get the
maximum (top of the beam) and minimum (bottom of the beam) displacements in x-direction ux,max

and ux,min. The latter is needed for comparison reasons later on this document.

ux,max = ux(x = 8.0,+
h

2
) =

+
1.0

2

[
1.0

1000.0 · 0.0833

(
8.0 · 8.0− 8.02

2

)]
︸ ︷︷ ︸

0.1920

+
1.0

1000.0 · 1.0
8.0︸ ︷︷ ︸

0.0080

= 0.2000 (4.12)

ux,min = ux(x = 8.0,−h
2

) =

−1.0

2

[
1.0

1000.0 · 0.0833

(
8.0 · 8.0− 8.02

2

)]
︸ ︷︷ ︸

−0.1920

+
1.0

1000.0 · 1.0
8.0︸ ︷︷ ︸

0.0080

= −0.1840 (4.13)
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4.2.4 Longitudinal and transversal displacement functions:
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Figure 4.2: Analytic displacement functions

The picture at the left hand side shows the distribution of the transversal displacements along the
cantilever beam located on the bottom line of region 1 and 2. The picture on the right hand side
shows the longitudinal displacements at the bottom and the top line of region 1 and 2.
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4.3 Observations

This section shows the results of the numerical analysis of the cantilever beam for 2D and 3D. The
following sections contain graphical and tabulated results and more detailed explanations.

Convergence behaviour: The following observations are the same for 2D and 3D systems.

1. In general the convergence behaviour of the complete system shows major dependency on the
convergence behaviour along the regions but minor on the actual interface configuration.

2. Mortar Method coupled systems with the same mesh refinement ratio’s in both regions turn
out to have the same convergence behaviour like BETI coupled systems. They also approach
the same displacement values.

3. When using different mesh refinement ratio’s in both regions we can observe that the systems
still converge against the BETI coupled solution.

4. The disagreement of displacements at opposite points at the interface show the following
behaviour:

• They have small values, scaling with the displacement at the interface point. For 1st

order element shape functions this scaling factor is about 10−2 ÷ 10−3 and for 2nd order
element shape functions it is about 10−3 ÷ 10−4.

• They become small when using high refinement ratio’s. Having a dense mesh at one side
of the interface (Master side) is advantageous.

• The influence on the convergence behaviour of the system is getting lost with increasing
refinement ratio’s.

• The convergence behaviour of the disagreement of displacements is not strictly monotonous,
strict monotony starts from a certain mesh refinement ratio.

5. As expected the convergence behaviour becomes better when having more nodal degree’s of
freedom. The convergence behaviour of the displacements at the interface do not follow this
trend directly. The following three circumstances have influence on the convergence behaviour
of the displacements at the interface.

(a) nodal degree’s of freedom of the interfacing meshes.

(b) Lagrange multipliers of theMortar Finite Elements (Master element degree’s of freedom).

(c) order of the element shape functions.

6. Increasing the element shape function order leads to a higher convergence rate which is as
expected. The disagreement of displacements are still due to the Lagrange multiplier fields
because the number of Lagrange multipliers does not increase by the order of the element
shape functions.

2D and 3D systems: The difference between 2D and 3D systems is pretty small. The convergence
behaviour is almost the same. There is little difference in the displacement disagreements of opposite
points at the interface. Further the displacements of both systems approach almost the same end
value.
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4.4 Convergence study for the 2D cantilever beam

This section contains the graphical and tabulated results of the numerical analysis for the 2D
cantilever beam.

4.4.1 System geometry
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Figure 4.3: 2D cantilever with 2 regions

4.4.2 Interface displacements using first order shape functions
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Figure 4.4: Displaced interface configurations

In Set 1 (coarse mesh) we can see the gaps and overlaps of the both regions at the interface when
using the Mortar Method . The blue line marks the displaced figure of a BETI coupled system which
has an offset to the other lines. If the mesh density advances (Set 2, dense mesh) the gaps and
overlaps become significantly smaller. In Set 2 it is interesting to see that the nodes of the region
with the coarse mesh approach the displaced figure of the region with the dense mesh.
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Displacement, coarse mesh

u u1 u1′ u1b ∆u1′−1 ∆u1−1b ∆u1′−1b

ux -0.13033300 -0.13101200 -0.13143100 −0.00067000 0.00108000 0.00041000

uy -0.61578100 -0.61564800 -0.61686100 0.00014000 0.00108000 0.00122000

u u2 u2′ u2b ∆u2′−2 ∆u2−2b ∆u2′−2b

ux 0.13834800 0.13902800 0.13943200 0.00067000 −0.00108000 −0.00041000

uy -0.61578100 -0.61591700 -0.61713300 0.00012000 0.00108000 0.00120000

Table 4.3: Set 1, displacement values

Displacement, dense mesh

u u1 u1′ u1b ∆u1′−1 ∆u1−1b ∆u1′−1b

ux -0.13912400 -0.13912400 -0.13943000 0.00000000 0.00030000 0.00030000

uy -0.64859600 -0.64858400 -0.64922300 0.00000000 0.00063000 0.00063000

u u2 u2′ u2b ∆u2′−2 ∆u2−2b ∆u2′−2b

ux 0.14711600 0.14711600 0.14741200 0.00000000 −0.00030000 −0.00030000

uy -0.64859600 -0.64887800 -0.64951900 0.00002000 0.00063000 0.00064000

Table 4.4: Set 2, displacement values

Looking at this tables we can assert two things.

1. The disagreement of displacements in x- and y-direction are about 10−2 ÷ 10−3 times the
absolute values at opposite points at the interface.

2. For regions with very different mesh densities (Set 2) we recognize a disagreement of displace-
ments about 10−3÷10−4 times the absolute displacement. It seems that a higher mesh density
on one side of the interface is advantageous. This can be explained with the higher number
of Lagrange multipliers which are limited to the number of Master elements.

4.4.3 Interface displacements using second order shape functions
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Figure 4.5: Displaced interface configurations

In Set 1 and 2 we can see that using elements with second order shape functions the results of both
regions at the interface agree better then with first order shape functions. Set 2 additionally shows
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that the difference to a BETI coupled system becomes very small. Mesh adaptation at the interface
and the convergence for the whole system becomes better with increasing shape function order and
increasing number of Lagrange multiplier fields (Master elements).

Displacements, coarse mesh

u u1 u1′ u1b ∆u1′−1 ∆u1−1b ∆u1′−1b

ux -0.13924100 -0.14190800 -0.14067700 −0.00267000 0.00143000 −0.00124000

uy -0.65360400 -0.65368200 -0.65443900 −0.00008000 0.00082000 0.00075000

u u2 u2′ u2b ∆u2′−2 ∆u2−2b ∆u2′−2b

ux 0.14724300 0.14993500 0.14867000 0.00269000 −0.00142000 0.00127000

uy -0.65360400 -0.65392600 -0.65473600 −0.00005000 0.00085000 0.00081000

Table 4.5: Set 1, displacement values

Displacements, dense mesh

u u1 u1′ u1b ∆u1′−1 ∆u1−1b ∆u1′−1b

ux -0.13996000 -0.14004800 -0.14007000 −0.00009000 0.00012000 0.00003000

uy -0.65175000 -0.65177900 -0.65176600 −0.00003000 0.00002000 −0.00002000

u u2 u2′ u2b ∆u2′−2 ∆u2−2b ∆u2′−2b

ux 0.14794000 0.14804600 0.14804800 0.00010000 −0.00010000 0.00000000

uy -0.65175000 -0.65202000 -0.65206300 −0.00003000 0.00008000 0.00005000

Table 4.6: Set 2, displacement values

Comparing the values in the tables the differences at the interface are much smaller than for the
case of first order shape functions.

4.4.4 Discretisation with first order shape functions

• Displacements ux at the right side of region 1, partition 2 (interface)

• Displacements uy at the right side of region 1, partition 2 (interface)

• Displacements ux at the left side of region 2, partition 4 (interface)

• Displacements uy at the left side of region 2, partition 4 (interface)

• Displacements ux at the bottom edge of region 1+2, both regions partition 1

• Displacements uy at the bottom edge of region 1+2, both regions partition 1
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Displacements ux, interface, reg. 1, part. 2
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Figure 4.6: Convergence behaviour of BETI and Mortar Method coupling
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Figure 4.7: Unequal mesh densities, comparing the Mortar Method with BETI coupling

Set 3 has only two visible lines. All lines are part of the left side of the interface where the mesh
refinement ratio is constant. Therefore all lines of the Mortar Method coupled systems are hiding
behind the red line from the coarse meshed BETI coupled system. All other sets show typical
convergence behaviour.
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Displacements uy, interface, reg. 1, part. 2
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Figure 4.8: Convergence behaviour of BETI and Mortar Method coupling
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Figure 4.9: Unequal mesh densities, comparing the Mortar Method with BETI coupling

Set 3 has only two visible lines. All lines are part of the left side of the interface where the mesh
is coarse. Therefore all lines of the Mortar Method coupled systems are hiding behind the red line
from the coarse meshed BETI coupled system. All other sets show typical convergence behaviour.
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Displacements ux, interface, reg. 2, part. 4
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Figure 4.10: Convergence behaviour of BETI and Mortar Method coupling
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Figure 4.11: Unequal mesh densities, comparing the Mortar Method with BETI coupling

In Set 3 two lines are visible. In this case all lines are part of the right side of the interface. The
mesh is coarse in region 1 and all Mortar Method coupled systems approach the displaced figure
of region 1 which is the same like the red line from the coarse meshed BETI coupled system. All
other sets show typical convergence behaviour.
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Displacements uy, interface, reg. 2, part. 4
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Figure 4.12: Convergence behaviour of BETI and Mortar Method coupling
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Figure 4.13: Unequal mesh densities, comparing the Mortar Method with BETI coupling

In Set 3 two lines are visible. In this case all lines are part of the right side of the interface. The
mesh is coarse in region 1 and all Mortar Method coupled systems approach the displaced figure
of region 1 which is the same like the red line from the coarse meshed BETI coupled system. All
other sets show typical convergence behaviour.
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Displacements ux, bottom edge, reg. 1+2, part. 1
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Figure 4.14: Convergence behaviour of BETI and Mortar Method coupling

Both sets show typical convergence behaviour. In the middle of the system we can see some small
disagreements of displacements in x-direction at the interface.

Displacements ux

Coupling rr vl vr ∆v = vr − vl ve

Mortar 2 −0.12077800 −0.12075300 0.00002000 −0.15842400

Mortar 3 −0.13031100 −0.13190000 −0.00159000 −0.17199200

Mortar 5 −0.13694400 −0.13730200 −0.00035000 −0.18030100

Mortar 7 −0.13859400 −0.13873300 −0.00014000 −0.18237900

Mortar 9 −0.13922100 −0.13929000 −0.00008000 −0.18319800

Mortar 10 −0.13943000 −0.13942900 0.00000000 −0.18344400

Beti 2 −0.12080900 −0.12080900 0.00000000 −0.15841500

Beti 10 −0.13943000 −0.13943000 0.00000000 −0.18344400

vl, vr . . . value at the left, right side of the interface

ve . . . value at beam end, rr . . . refinement ratio

Table 4.7: Set 2, disagreement of displacements at the interface
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Figure 4.15: Unequal mesh densities, comparing the Mortar Method with BETI coupling

In Set 3 all systems converge, but not against the blue line of the BETI coupled system which is
almost identical to the analytic solution. This is due to the coarse mesh in region 1.

Displacements ux

Coupling rr vl vr ∆v = vr − vl ve

Mortar 2 −0.12077800 −0.12075300 0.00002000 −0.15842400

Mortar 3 −0.13033300 −0.13101200 −0.00067000 −0.16864800

Mortar 5 −0.12412000 −0.12429000 −0.00017000 −0.15906200

Mortar 7 −0.13830600 −0.13837400 −0.00006000 −0.17611600

Mortar 9 −0.13887400 −0.13891900 −0.00005000 −0.17666500

Mortar 10 −0.13912400 −0.13912400 0.00000000 −0.17688000

Beti 2 −0.12080900 −0.12080900 0.00000000 −0.15841500

Beti 10 −0.13943000 −0.13943000 0.00000000 −0.18344400

vl, vr . . . value at the left, right side of the interface

ve . . . value at beam end, rr . . . refinement ratio

Table 4.8: Set 4, disagreement of displacements at the interface
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Displacements uy, bottom edge, reg. 1+2, part. 1
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Figure 4.16: Convergence behaviour of BETI and Mortar Method coupling

Both sets show typical convergence behaviour. The disagreements of displacements at the interface
do not have much influence on the displacements in y-direction.

Displacements uy

Coupling rr vl vr ∆v = vr − vl ve

Mortar 2 −0.57298600 −0.57318600 −0.00020000 −1.81253000

Mortar 3 −0.61569700 −0.61569200 0.00000000 −1.95092000

Mortar 5 −0.63999900 −0.63999700 0.00000000 −2.03172000

Mortar 7 −0.64618800 −0.64618800 0.00000000 −2.05206000

Mortar 9 −0.64853600 −0.64853600 0.00000000 −2.05972000

Mortar 10 −0.64922300 −0.64922400 −0.00002000 −2.06198000

Beti 2 −0.57313200 −0.57313200 0.00000000 −1.81263000

Beti 10 −0.64922300 −0.64922300 0.00000000 −2.06199000

vl, vr . . . value at the left, right side of the interface

ve . . . value at beam end, rr . . . refinement ratio

Table 4.9: Set 2, disagreement of displacements at the interface
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Figure 4.17: Unequal mesh densities, comparing the Mortar Method with BETI coupling

In Set 3 all systems converge, but not against the blue line of the BETI coupled system which is
almost identical to the analytic solution. This is due to the coarse mesh in region 1.

Displacements uy

Coupling rr vl vr ∆v = vr − vl ve

Mortar 2 −0.57298600 −0.57318600 −0.00020000 −1.81253000

Mortar 3 −0.61578100 −0.61564800 0.00014000 −1.93668000

Mortar 5 −0.58149300 −0.58166200 −0.00017000 −1.82844000

Mortar 7 −0.64568200 −0.64559600 0.00008000 −2.02592000

Mortar 9 −0.64778100 −0.64785000 −0.00006000 −2.03253000

Mortar 10 −0.64859600 −0.64858400 0.00000000 −2.03494000

Beti 2 −0.57313200 −0.57313200 0.00000000 −1.81263000

Beti 10 −0.64922300 −0.64922300 0.00000000 −2.06199000

vl, vr . . . value at the left, right side of the interface

ve . . . value at beam end, rr . . . refinement ratio

Table 4.10: Set 4, disagreement of displacements at the interface
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4.4.5 Discretisation with second order shape functions

In this section all systems from the previous section are shown again. But now the elements are
discretised with 2nd order shape functions. There are no extra explanations given. This is for the
reason that the convergence behaviour is same like before but with higher convergence ratio.

• Displacements ux at the right side of region 1, partition 2 (interface)

• Displacements uy at the right side of region 1, partition 2 (interface)

• Displacements ux at the left side of region 2, partition 4 (interface)

• Displacements uy at the left side of region 2, partition 4 (interface)

• Displacements ux at the bottom edge of region 1+2, both regions partition 1

• Displacements uy at the bottom edge of region 1+2, both regions partition 1

Displacements ux, interface, reg. 1, part. 2
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Figure 4.18: Convergence behaviour of BETI and Mortar Method coupling
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Figure 4.19: Unequal mesh densities, comparing the Mortar Method with BETI coupling

Displacements uy, interface, reg. 1, part. 2
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Figure 4.20: Convergence behaviour of BETI and Mortar Method coupling
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Figure 4.21: Unequal mesh densities, comparing the Mortar Method with BETI coupling

Displacements ux, interface, reg. 2, part. 4
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Figure 4.22: Convergence behaviour of BETI and Mortar Method coupling
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Figure 4.23: Unequal mesh densities, comparing the Mortar Method with BETI coupling

Displacements uy, interface, reg. 2, part. 4
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Figure 4.24: Convergence behaviour of BETI and Mortar Method coupling
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Figure 4.25: Unequal mesh densities, comparing the Mortar Method with BETI coupling

Displacements ux, bottom edge, reg. 1+2, part. 1
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Figure 4.26: Convergence behaviour of BETI and Mortar Method coupling
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Displacements ux

Coupling rr vl vr ∆v = vr − vl ve

Mortar 2 −0.13846800 −0.14611700 −0.00764000 −0.18770700

Mortar 3 −0.13920500 −0.14261500 −0.00340000 −0.18554300

Mortar 5 −0.13972000 −0.14090000 −0.00117000 −0.18467000

Mortar 7 −0.13981800 −0.14044200 −0.00063000 −0.18442700

Mortar 9 −0.13998200 −0.14027700 −0.00029000 −0.18443000

Mortar 10 −0.13994500 −0.14021400 −0.00027000 −0.18436400

Beti 2 −0.14130400 −0.14130400 0.00000000 −0.18601900

Beti 10 −0.14007000 −0.14007000 0.00000000 −0.18435400

vl, vr . . . value at the left, right side of the interface

ve . . . value at beam end, rr . . . refinement ratio

Table 4.11: Set 2, disagreement of displacements at the interface
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Figure 4.27: Unequal mesh densities, comparing the Mortar Method with BETI coupling

Displacements ux

Coupling rr vl vr ∆v = vr − vl ve

Mortar 2 −0.13846800 −0.14611700 −0.00764000 −0.18770700

Mortar 3 −0.13924100 −0.14190800 −0.00267000 −0.18562800

Mortar 5 −0.13982800 −0.14038300 −0.00055000 −0.18498100

Mortar 7 −0.13987500 −0.14012300 −0.00024000 −0.18480200

Mortar 9 −0.14000500 −0.14010500 −0.00010000 −0.18480600

Mortar 10 −0.13996000 −0.14004800 −0.00009000 −0.18475700

Beti 2 −0.14130400 −0.14130400 0.00000000 −0.18601900

Beti 10 −0.14007000 −0.14007000 0.00000000 −0.18435400

vl, vr . . . value at the left, right side of the interface

ve . . . value at beam end, rr . . . refinement ratio

Table 4.12: Set 4, disagreement of displacements at the interface
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Displacements uy, bottom edge, reg. 1+2, part. 1
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Figure 4.28: Convergence behaviour of BETI and Mortar Method coupling

Displacements uy

Coupling rr vl vr ∆v = vr − vl ve

Mortar 2 −0.65561200 −0.65528300 0.00032000 −2.10400000

Mortar 3 −0.65353800 −0.65334200 0.00020000 −2.08257000

Mortar 5 −0.65227200 −0.65219200 0.00008000 −2.07361000

Mortar 7 −0.65175900 −0.65171500 0.00005000 −2.07096000

Mortar 9 −0.65189800 −0.65187100 0.00003000 −2.07098000

Mortar 10 −0.65169600 −0.65167400 0.00003000 −2.07024000

Beti 2 −0.65740300 −0.65740300 0.00000000 −2.08979000

Beti 10 −0.65176600 −0.65176600 0.00000000 −2.07016000

vl, vr . . . value at the left, right side of the interface

ve . . . value at beam end, rr . . . refinement ratio

Table 4.13: Set 2, disagreement of displacements at the interface
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Figure 4.29: Unequal mesh densities, comparing the Mortar Method with BETI coupling

Displacements uy

Coupling rr vl vr ∆v = vr − vl ve

Mortar 2 −0.65561200 −0.65528300 0.00032000 −2.10400000

Mortar 3 −0.65360400 −0.65368200 −0.00008000 −2.08353000

Mortar 5 −0.65240500 −0.65249200 −0.00009000 −2.07650000

Mortar 7 −0.65185300 −0.65190800 −0.00005000 −2.07446000

Mortar 9 −0.65195700 −0.65198700 −0.00003000 −2.07455000

Mortar 10 −0.65175000 −0.65177900 −0.00003000 −2.07394000

Beti 2 −0.65740300 −0.65740300 0.00000000 −2.08979000

Beti 10 −0.65176600 −0.65176600 0.00000000 −2.07016000

vl, vr . . . value at the left, right side of the interface

ve . . . value at beam end, rr . . . refinement ratio

Table 4.14: Set 4, disagreement of displacements at the interface
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4.5 Convergence study for the 3D cantilever beam

This section contains the graphical and tabulated results of the numerical analysis for the 3D
cantilever beam.

4.5.1 System geometry
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Figure 4.30: 3D cantilever with 2 regions

4.5.2 Interface displacements using first order shape functions
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Figure 4.31: Displaced interface configurations

In Set 1 and 2 we can see the gaps and overlaps of the both regions at the interface when using the
Mortar Method . The blue line marks the displaced figure of a BETI coupled system which has an
offset to the other lines. In this case a higher refinement ratio in one region does not always mean
that the gaps and overlaps at the interface become smaller. In some cases the convergence starts at
a certain refinement ratio which is equivalent to the number of Lagrange multipliers.
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Displacement, coarse mesh

u u1 u1′ u1b ∆u1′−1 ∆u1−1b ∆u1′−1b

ux -0.14152000 -0.14121700 -0.14281600 0.00030000 0.00130000 0.00160000

uz -0.65889300 -0.65915200 -0.66118500 −0.00026000 0.00229000 0.00203000

u u2 u2′ u2b ∆u2′−2 ∆u2−2b ∆u2′−2b

ux 0.14972000 0.14931400 0.15096800 −0.00041000 −0.00125000 −0.00166000

uz -0.65889300 -0.65948800 -0.66149200 −0.00026000 0.00227000 0.00201000

Table 4.15: Set 1, displacement values

Displacement, dense mesh

u u1 u1′ u1b ∆u1′−1 ∆u1−1b ∆u1′−1b

ux -0.13778200 -0.13966000 -0.14043900 −0.00188000 0.00266000 0.00078000

uz -0.64714300 -0.64817200 -0.65038000 −0.00104000 0.00323000 0.00220000

u u2 u2′ u2b ∆u2′−2 ∆u2−2b ∆u2′−2b

ux 0.14578200 0.14764800 0.14844600 0.00186000 −0.00267000 −0.00081000

uz -0.64714300 -0.64849100 -0.65068100 −0.00107000 0.00325000 0.00218000

Table 4.16: Set 2, displacement values

The tables show that the maximum displacement disagreement of top and bottom interface points
is about 10−3.

4.5.3 Interface displacements using second order shape functions
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Figure 4.32: Displaced interface configurations

Set 1 shows almost perfect conforming displacement figures of the interface. There is just a small
offset to the blue line of the BETI coupled system. In Set 2 the top and bottom points of the
interface have a small offset where the displaced figures of the interface of both regions can have
slightly bigger overlaps and gaps. This is due to the geometry configuration of the opposite elements
at the interface.
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Displacement, coarse mesh

u u1 u1′ u1b ∆u1′−1 ∆u1−1b ∆u1′−1b

ux -0.13888900 -0.14493500 -0.14051200 −0.00604000 0.00163000 −0.00441000

uz -0.65095100 -0.65077800 -0.64992000 0.00018000 −0.00104000 −0.00085000

u u2 u2′ u2b ∆u2′−2 ∆u2−2b ∆u2′−2b

ux 0.14679800 0.15303500 0.14848900 0.00623000 −0.00168000 0.00455000

uz -0.65095100 -0.65102500 -0.65021500 0.00017000 −0.00099000 −0.00082000

Table 4.17: Set 1, displacement values

Displacement, dense mesh

u u1 u1′ u1b ∆u1′−1 ∆u1−1b ∆u1′−1b

ux -0.13933100 -0.14060100 -0.13971900 −0.00127000 0.00040000 −0.00087000

uz -0.64556700 -0.64571200 -0.64732400 −0.00014000 0.00175000 0.00162000

u u2 u2′ u2b ∆u2′−2 ∆u2−2b ∆u2′−2b

ux 0.14729200 0.14862700 0.14767000 0.00133000 −0.00038000 0.00095000

uz -0.64556700 -0.64598300 -0.64762100 −0.00012000 0.00175000 0.00163000

Table 4.18: Set 2, displacement values

The tables show that the maximum displacement disagreement of top and bottom interface points
is about 10−3.

4.5.4 Discretisation with first order shape functions

• Displacements ux at the right side of region 1, partition 2 (interface)

• Displacements uz at the right side of region 1, partition 2 (interface)

• Displacements ux at the left side of region 2, partition 4 (interface)

• Displacements uz at the left side of region 2, partition 4 (interface)

• Displacements ux at the bottom edge of region 1+2, both regions partition 1

• Displacements uz at the bottom edge of region 1+2, both regions partition 1
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Displacements ux, interface, reg. 1, part. 2
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Figure 4.33: Convergence behaviour of BETI and Mortar Method coupling
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Figure 4.34: Unequal mesh densities, comparing the Mortar Method with BETI coupling

In all sets above the displacements in x-direction show good convergence, even for the coarse meshed
region. The Mortar Method coupled systems approach the solution of the BETI coupled system.
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Displacements uz, interface, reg. 1, part. 2
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Figure 4.35: Convergence behaviour of BETI and Mortar Method coupling

The BETI coupled systems in Set 1 and the Mortar Method coupled systems in Set 2 show the
same convergence behaviour. The purple line (refinement ratio of 3 elements per unit) should be
situated between the orange and the green one. This non-monotonous convergence behaviour is due
to the influence of the element geometry configuration along the width of the beam.
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Figure 4.36: Unequal mesh densities, comparing the Mortar Method with BETI coupling

In Set 3 the left region has a coarse mesh. Here the displaced figures of all Mortar Method coupled
systems approach the red line of the coarse meshed BETI coupled system. In Set 4 the right region
has a mesh. The displaced figures of the Mortar Method coupled systems converge against the blue
line of the dense meshed BETI coupled system. Again we see the non-monotonous convergence
behaviour which is explained above.
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Displacements ux, interface, reg. 2, part. 4

−
0
.1

5

−
0
.1

−
0
.0

5 0

0
.0

5

0
.1

0
.1

5

0

0.2

0.4

0.6

0.8

1

ux [m]

z
[m

]

ux, B, rr2, rr2 ux, B, rr3, rr3
ux, B, rr4, rr4 ux, B, rr5, rr5

−
0
.1

5

−
0
.1

−
0
.0

5 0

0
.0

5

0
.1

0
.1

5

0

0.2

0.4

0.6

0.8

1

ux [m]

z
[m

]

ux, M, rr2, rr2 ux, M, rr3, rr3
ux, M, rr4, rr4 ux, M, rr5, rr5

Set 1, Beti, ux, R2, P4, 1
st Set 2, Mortar, ux, R2, P4, 1

st

Figure 4.37: Convergence behaviour of BETI and Mortar Method coupling
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Figure 4.38: Unequal mesh densities, comparing the Mortar Method with BETI coupling

In all sets we can see typical convergence behaviour. All systems converge against the blue line of
the dense meshed BETI coupled system.
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Displacements uz, interface, reg. 2, part. 4
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Figure 4.39: Convergence behaviour of BETI and Mortar Method coupling
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Figure 4.40: Unequal mesh densities, comparing the Mortar Method with BETI coupling

In Set 1, 2 and 4 we can see the non-monotonous convergence behaviour mentioned above.
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Displacements ux, bottom edge, reg. 1+2, part. 1
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Figure 4.41: Convergence behaviour of BETI and Mortar Method coupling

Displacements ux

Coupling rr vl vr ∆v = vr − vl ve

Mortar 2 −0.13836000 −0.13659200 0.00177000 −0.18114100

Mortar 3 −0.14140700 −0.14289900 −0.00150000 −0.18731200

Mortar 4 −0.13961800 −0.14002300 −0.00041000 −0.18458800

Mortar 5 −0.14005200 −0.14048200 −0.00044000 −0.18506800

Beti 2 −0.13762900 −0.13762900 0.00000000 −0.18155600

Beti 5 −0.14043900 −0.14043900 0.00000000 −0.18539000

vl, vr . . . value at the left, right side of the interface

ve . . . value at beam end, rr . . . refinement ratio

Table 4.19: Set 2, disagreement of displacements at the interface

Both sets show typical convergence behaviour. At the interface of both regions we can see some
small disagreement of displacements in x-direction.
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Figure 4.42: Unequal mesh densities, comparing the Mortar Method with BETI coupling

Displacements ux

Coupling rr vl vr ∆v = vr − vl ve

Mortar 2 −0.13836000 −0.13659200 0.00177000 −0.18114100

Mortar 3 −0.14152000 −0.14121700 0.00030000 −0.18574000

Mortar 4 −0.13898300 −0.13921200 −0.00023000 −0.18356800

Mortar 5 −0.13778200 −0.13966000 −0.00188000 −0.18420900

Beti 2 −0.13762900 −0.13762900 0.00000000 −0.18155600

Beti 5 −0.14043900 −0.14043900 0.00000000 −0.18539000

vl, vr . . . value at the left, right side of the interface

ve . . . value at beam end, rr . . . refinement ratio

Table 4.20: Set 4, disagreement of displacements at the interface

Even for unequal mesh refinement ratio’s we get good convergence. The disagreement of displace-
ments at the interface is still small.

66



Displacements uz, bottom edge, reg. 1+2, part. 1
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Figure 4.43: Convergence behaviour of BETI and Mortar Method coupling

Displacements uz

Coupling rr vl vr ∆v = vr − vl ve

Mortar 2 −0.63902100 −0.63877600 0.00024000 −2.03687000

Mortar 3 −0.65856100 −0.65843900 0.00012000 −2.10237000

Mortar 4 −0.64763700 −0.64765800 −0.00002000 −2.06785000

Mortar 5 −0.64980400 −0.64982600 −0.00002000 −2.07348000

Beti 2 −0.63902100 −0.63902100 0.00000000 −2.04043000

Beti 5 −0.65038000 −0.65038000 0.00000000 −2.07609000

vl, vr . . . value at the left, right side of the interface

ve . . . value at beam end, rr . . . refinement ratio

Table 4.21: Set 2, disagreement of displacements at the interface

Set 1 and 2 show the same good convergence behaviour. The disagreement of displacements at the
interface does not seem to have any impact. Even coarse meshes show good convergence.
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Figure 4.44: Unequal mesh densities, comparing the Mortar Method with BETI coupling

Displacements uz

Coupling rr vl vr ∆v = vr − vl ve

Mortar 2 −0.63902100 −0.63877600 0.00024000 −2.03687000

Mortar 3 −0.65889300 −0.65915200 −0.00026000 −2.09405000

Mortar 4 −0.64720800 −0.64745200 −0.00024000 −2.06383000

Mortar 5 −0.64714300 −0.64817200 −0.00104000 −2.07021000

Beti 2 −0.63902100 −0.63902100 0.00000000 −2.04043000

Beti 5 −0.65038000 −0.65038000 0.00000000 −2.07609000

vl, vr . . . value at the left, right side of the interface

ve . . . value at beam end, rr . . . refinement ratio

Table 4.22: Set 4, disagreement of displacements at the interface

Unequal mesh refinement ratio’s also lead to good convergence behaviour. Again there is no influence
of the interface to see.
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4.5.5 Discretisation with second order shape functions

In this section all systems from the previous section are shown again. But now the elements are
discretised with 2nd order shape functions. There are no extra explanations given. This is for the
reason that the convergence behaviour is same like before but with higher convergence ratio.

• Displacements ux at the right side of region 1, partition 2 (interface)

• Displacements uz at the right side of region 1, partition 2 (interface)

• Displacements ux at the left side of region 2, partition 4 (interface)

• Displacements uz at the left side of region 2, partition 4 (interface)

• Displacements ux at the bottom edge of region 1+2, both regions partition 1

• Displacements uz at the bottom edge of region 1+2, both regions partition 1

Displacements ux, interface, reg. 1, part. 2
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Figure 4.45: Convergence behaviour of BETI and Mortar Method coupling
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Figure 4.46: Unequal mesh densities, comparing the Mortar Method with BETI coupling

Displacements uz, interface, reg. 1, part. 2
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Figure 4.47: Convergence behaviour of BETI and Mortar Method coupling
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Figure 4.48: Unequal mesh densities, comparing the Mortar Method with BETI coupling

Displacements ux, interface, reg. 2, part. 4
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Figure 4.49: Convergence behaviour of BETI and Mortar Method coupling
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Figure 4.50: Unequal mesh densities, comparing the Mortar Method with BETI coupling

Displacements uz, interface, reg. 2, part. 4
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Figure 4.51: Convergence behaviour of BETI and Mortar Method coupling
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Figure 4.52: Unequal mesh densities, comparing the Mortar Method with BETI coupling

Displacements ux, bottom edge, reg. 1+2, part. 1
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Figure 4.53: Convergence behaviour of BETI and Mortar Method coupling
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Displacements ux

Coupling rr vl vr ∆v = vr − vl ve

Mortar 2 −0.13779200 −0.15120300 −0.01341000 −0.19340800

Mortar 3 −0.13889700 −0.14534400 −0.00644000 −0.18875500

Mortar 4 −0.13936900 −0.14109000 −0.00171000 −0.18529400

Mortar 5 −0.13953100 −0.14059400 −0.00107000 −0.18493100

Beti 2 −0.14056000 −0.14056000 0.00000000 −0.18600500

Beti 5 −0.13971900 −0.13971900 0.00000000 −0.18429100

vl, vr . . . value at the left, right side of the interface

ve . . . value at beam end, rr . . . refinement ratio

Table 4.23: Set 2, disagreement of displacements at the interface
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Figure 4.54: Unequal mesh densities, comparing the Mortar Method with BETI coupling

Displacements ux

Coupling rr vl vr ∆v = vr − vl ve

Mortar 2 −0.13779200 −0.15120300 −0.01341000 −0.19340800

Mortar 3 −0.13888900 −0.14493500 −0.00604000 −0.18931800

Mortar 4 −0.13949700 −0.14141500 −0.00192000 −0.18694900

Mortar 5 −0.13933100 −0.14060100 −0.00127000 −0.18491100

Beti 2 −0.14056000 −0.14056000 0.00000000 −0.18600500

Beti 5 −0.13971900 −0.13971900 0.00000000 −0.18429100

vl, vr . . . value at the left, right side of the interface

ve . . . value at beam end, rr . . . refinement ratio

Table 4.24: Set 4, disagreement of displacements at the interface
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Displacements uz, bottom edge, reg. 1+2, part. 1
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Figure 4.55: Convergence behaviour of BETI and Mortar Method coupling

Displacements uz

Coupling rr vl vr ∆v = vr − vl ve

Mortar 2 −0.65290400 −0.65246200 0.00044000 −2.13942000

Mortar 3 −0.65101200 −0.65072800 0.00029000 −2.10135000

Mortar 4 −0.64760200 −0.64749600 0.00010000 −2.07181000

Mortar 5 −0.64763400 −0.64756400 0.00006000 −2.06906000

Beti 2 −0.65024200 −0.65024200 0.00000000 −2.07930000

Beti 5 −0.64732400 −0.64732400 0.00000000 −2.06384000

vl, vr . . . value at the left, right side of the interface

ve . . . value at beam end, rr . . . refinement ratio

Table 4.25: Set 2, disagreement of displacements at the interface
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Figure 4.56: Unequal mesh densities, comparing the Mortar Method with BETI coupling

Displacements uz

Coupling rr vl vr ∆v = vr − vl ve

Mortar 2 −0.65290400 −0.65246200 0.00044000 −2.13942000

Mortar 3 −0.65095100 −0.65077800 0.00018000 −2.10407000

Mortar 4 −0.64773600 −0.64745400 0.00027000 −2.08147000

Mortar 5 −0.64556700 −0.64571200 −0.00014000 −2.06743000

Beti 2 −0.65024200 −0.65024200 0.00000000 −2.07930000

Beti 5 −0.64732400 −0.64732400 0.00000000 −2.06384000

vl, vr . . . value at the left, right side of the interface

ve . . . value at beam end, rr . . . refinement ratio

Table 4.26: Set 4, disagreement of displacements at the interface
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Chapter 5

Conclusion and outlook

5.1 Conclusion

As a conclusion the following facts derived from the convergence study can be stated.

1. In general the convergence behaviour of the complete system shows major dependency on the
convergence behaviour along the regions but minor on the actual interface configuration.

2. Mortar Method coupled systems with equal mesh refinement ratio’s in both regions turn out
to have the same convergence behaviour like BETI coupled systems. They also approach the
same displacement values.

3. When using unequal mesh refinement ratio’s in both regions we can observe that the systems
still converge against the BETI coupled solution. This convergence behaviour is due to the
actual interface geometry configuration. One fact is that having a dense mesh on one side
of the interface is advantageous. Another fact is that using coarse meshes potentially breaks
monotonous convergence behaviour. Monotonous convergence behaviour starts from a certain
mesh refinement ratio then.

4. As expected the convergence behaviour inside the regions becomes better when having more
nodal degree’s of freedom. This fact has only partial influence on the convergence behaviour
on the displacement at the interface. This is for the reason that a better adaptation of both
meshes at the interface is due to three different circumstances.

(a) nodal degree’s of freedom of the interfacing meshes

(b) Lagrange multipliers of theMortar Finite Elements (Master element degree’s of freedom)

(c) order of the element shape functions

5. Increasing the element shape function order leads to high convergence rate along the regions.
This is as expected. The disagreement of displacements at the interface is still due to the
Lagrange multiplier fields because the number of Lagrange multipliers do not increase by the
order of the element shape functions.

5.2 Outlook

In this section the possibilities for the development and the applications of the Mortar Method are
shown.

5.2.1 Developing the Mortar Method

From the current state of this coupling method there are some possibilities for further development
given.
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More Lagrange multipliers

The virtual work is computed by the integral of the displacement function times the virtual traction
function ψ situated in the Lagrange multiplier field . ψ is constant inside the Lagrange multiplier
field . It can be changed to a polynomial of any order like finite elements have. The benefit of this
would be that the number of Lagrange multipliers of one Lagrange multiplier field is increasing by
the number of degree’s of freedom of this function. But this will also lead to a higher number of
integrals that need to be evaluated.

Coupling condition

By now the coupling condition is always just an integral of the field function amongst the limits
of the Lagrange multiplier fields. This formulation does not take care about the momenta this
integrals have according to the Lagrange multiplier fields. Physically this method just satisfies the
balance of linear momentum but not the balance of angular momentum. There is a publication which
introduces a way to find a partitioning and the size of the Lagrange multiplier fields that allows for
satisfying both of the momentum balances mentioned above. It is called the zero-moment-rule[9]
which is available for 1D interfaces of 2D regions. This method does not come very handy for a
numerical analysis in common Finite Element Method and Boundary Element Method applications
because it is necessary to solve a 1D beam problem to find the needed points of zero moment.
For this a solution can be developed that introduces Lagrange multipliers (additional degree’s of
freedom) for the angular momenta. This applies to 3D regions with 2D interfaces as well. The
following mathematical formulations shall give a hint how this possibly could work.
Present coupling coefficients, balance of linear momentum:

ci,j =

∫
γj

ϕi · ψj dγ

where ci,j is the coupling coefficient for node i according to field j, ϕi is the nodal shape function
of node i and ψj is the weight function inside the field γj .
Additional coupling coefficients, balance of angular momentum:

ai,j =

∫
γj

(ϕi · r) · ψj dγ

where r is the radius of the current location of dγ to a freely chosen reference point inside the
Lagrange multiplier field γj . As an idea the balance of angular momentum can then be defined for
each coordinate direction.

Generalisation

The Mortar Method is defined by an approach in a weak sense which is based on an integral
formulation. This can be generalized by replacing the integral over the field function amongst the
limits of a Lagrange multiplier field by a function Φ that projects the field function in a certain
way into the Lagrange multiplier field . The only limit for the definition of this function Φ is the
compatibility with the linear equation system (it needs to be a scalar function of the nodal degree’s
of freedom at the interface).

5.2.2 Applications of the Mortar Method

Here a number of applications is shown where the Mortar Method makes sense.

Different displacement approaches

• Unequal mesh refinement ratio’s at the interface of two regions.
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• Different element shape function order of the elements at the interface.

• Different discretisation types of two interfacing regions (FEM, BEM).

• Coupling a mesh (FEM or BEM) with a beam (Euler-Bernoulli theory).

• Coupling a mesh (FEM or BEM) with a potential field (e.g. Ansatz of Treffz)

Tunnel structures

For tunnel structures it is very common to use the Boundary Element Method with a semi-finite
domain. In modern applications also plastic zones are introduced for more accurate modelling
and a better result for displacement and stress. This zones are typically discretised with finite
elements since this approach fits better to the physical formulation of such plastic zones and offers
more degree’s of freedom for a dense solution. Since it makes sense to refine/adapt the FEM
mesh for each load step we typically get non-conforming interfaces. To make the mesh adaptation
completely independent from the surrounding regions the Mortar Method can be applied to couple
those interfacing regions.
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