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Abstract

This thesis examines the valuation of autocallable structured products and
the calibration of the associated model to market data. There is a big vari-
ety of such products in the market. The ones this thesis examines are path
dependent options in a hybrid interest rate and equity market. An appro-
priate formulation of such products requires a model which takes correlated
stochastic interest rates into account, i.e., we combine the very sophisticated
stochastic volatility model from Heston with the Hull-White interest rate
process. Due to their path dependence, pricing is usually done using a PDE
or MC approach. For the calibration to standard European call prices from
the market, however, highly efficient Fourier techniques can be applied.

The contribution of this thesis is the following: We will implement a PDE
method and also an efficient MC simulation scheme, which compute prices
for the desired products. Both methods will be compared using a set of
challenging test cases from practice. Calibration of the Heston-Hull-White
model is due to the correlated stochastic interest rates a quite challenging
task. To simplify the procedure we will perform a switch to the forward
measure. A variety of Fourier based valuation formulas can be found in the
literature. We will adapt our preferred one to our needs and use it in a
standard optimization routine to find the desired parameters of the model.
Additionally the obtained parameters will be compared to the ones which
were calibrated to the pure Heston model. In the end, we will discuss the
results and give some thoughts on how the calibration can be simplified and
the pricing more efficient.
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Chapter 1

Introduction

Over the last couple of decades, the study of finance transformed from an
almost exclusively descriptive, non-mathematical business, to a highly ana-
lytical one. Sophisticated mathematics was deployed due to the emerge and
rapid growth of a global market in financial derivatives. This market emerged
into a hundreds of trillions dollar business. To trade this huge amount of
derivatives without a guide on how to value them and how to hedge the
risk they involve would be very problematically. In recent years financial
engineers created more and more complex products. These exotic and hy-
brid derivatives are based on a combination of underlyings from different
asset classes. One kind of them are autocallable structured products. The
so-called autocallables have become increasingly popular among private in-
vestors in the last years. They are structured products linked to one (or
more) underlying assets and belong to the class of exotic options. The name
autocallable stems from the feature that, if certain predefined market con-
ditions regarding its underlying are met, they will be called automatically,
paying off the investor. This work focuses on autocallables linked ”only”
to one underlying. We also presume to have discrete call dates - where, in
contrast to the continuous ones - the product will only be called at certain
observation dates prior to its scheduled maturity. These observation dates
are typically annually based. An early kick out will occur, for example, if
the observed level of the underlying is at or above a fixed trigger level.

There is a big variety of autocallables on the market. A very common
structure would have payoffs of the following form: If the price of the linked
asset is greater or equal to the trigger level at one of the observation dates,
it is called, and pays a pre-specified fixed-rate return. The trigger level is
allowed to vary and the return is accumulated if the product has not been
called previously. If the product is never called, meaning it is below the
trigger levels at every call date, the investor will be exposed to the downside of
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the reference asset and receives the same negative percentage return. Figure
1.1 visualizes the just described product. These contracts are exclusively
traded over-the-counter (OTC). This implies a great interest on efficient and
accurate pricing methods for these products, as well as appropriate market
modeling.

Figure 1.1: Payoff structure of our autocallable

The valuation of financial products is, due to the fundamental Theorem
of Asset Pricing, a task of calculating their expected discounted payoffs at
maturity with respect to a risk neutral pricing measure. For exotic options
like our autocallables, this is mainly limited to the use of Monte-Carlo meth-
ods in order to compute this expectation numerically. The essence of those
methods is to directly simulate the underlying dynamics and then calculating

2



the average result. There is a big variety of literature on MC applications
in finance available, as for instance the book from Glassermann [14]. Since
a very high number of paths need to be simulated, Monte-Carlo methods re-
quire tremendous computational effort, making them not applicable in many
situations.

However, there is a link between a stochastic process driving the dynamics
of the underlying and partial differential equations (PDEs). Those PDEs
are then solved numerically, i.e. via finite difference discretization schemes.
Such schemes are widely spread in applied mathematics and hence a lot of
literature is available, see for example the books of Seydel [42] or Duffy [13]
for financial applications. Of special interest for us is the work from Haentjens
& in ’t Hout [18] who use a so-called alternating direction implicite (ADI)
time discretization scheme. Those are superior over standard methods such,
as the Crank-Nicolson scheme, when dealing with multi dimensional PDEs
with mixed derivatives. In general, their implementation demands more effort
than for MC simulation, nevertheless, they are advantageous in almost every
other aspect, like computational costs. Additionally, one gets option values
for every knot of the grid on which the PDE is solved. This means, while
having to run several MC simulations to calculate an options sensitivities
one gets the, so called, ”greeks” for free using PDE methods. Bottom line,
these two methods are very powerful when pricing exotic options, for which no
closed form solution can be obtained. Whereas they are of no use if valuation
needs to be done in real-time or for numerous contracts at once. Evaluating
OTC traded products like autocallables in real-time is of no big concern,
however, when calibrating the parameters of a model to market data, speed
is crucial. Conveniently, calibration only makes sense using highly liquid
products such as vanilla options, which are, after all the simplest ones.

When implementing an algorithm to calibrate an option pricing model,
one has to choose a method for pricing such vanilla options. The Fourier
framework offers a highly efficient way of doing so, in any case where a closed-
form expression of the underlying models characteristic function (ChF) is
available. Evaluating an options price is left to a numerical integration of
that ChF. Through Duffie’s transform analysis [12], a characteristic function
is easily derived, for model dynamics in the class of affine jump diffusions.
Also for a high number of Lévy processes the ChF is available in closed
form, however, in this thesis we will abandon jumps and focus on an affine
diffusion. Carr and Madan, in their famous work [7], introduced the Fast
Fourier transform (FFT) for pricing plain vanilla options through Fourier
inversion. They criticize the direct integration method to be unable to use
the computational power of FFT and point out numerical instabilities in
case of using a decomposition of an option price into probability elements,
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like Heston [20] first did when he introduced his famous stochastic volatility
model in 1993. However, Lewis [30] and Attari [4] came up with modifications
of the direct integration method which are free from this instability. Further,
Kilin [27] points out two crucial restrictions using the FFT method. The first
is that the grid spacings must satisfy certain conditions and the number of
grid points must be a power of two. Additionally, the grid points for the
numerical integration must be chosen equidistantly, eliminating the use of
effective integration rules, i.e., the Gaussian quadrature. His point is, that if
one implements a smart caching technique, also the direct integration has the
advantage of simultaneously computing the ChF for different strikes because
the integral is independent of K. Consequently, the number of evaluations
of the ChF is the driving factor for the speed of the calibration. Depending
on the desired accuracy the FFT method is outperformed with a factor of
seven and even higher.

Developing an appropriate model which describes the market well is in-
evitable. Yet it has to be mathematically managable, i.e., allowing for fast
and accurate pricing. This has been the moving cause for a great amount
of literature. A milestone was definitely the work of Black and Scholes [6]
and Merton [34], with their model based on the geometric Brownian motion.
It is still the benchmark in practice, particularly due to the availability of
explicit results. Nevertheless, some downsides are also very well known. It
is not able to deal with many features that are empirically observed in asset
return data, such as fat tails, volatility smiles (and smirks), volatility cluster-
ing and leverage effects. Consequently, more sophisticated models have been
developed. In the so called Stochastic Volatility (SV) models, volatility is as-
sumed to evolve according to a stochastic diffusion process; contrary to the
Black-Scholes case, where it is a constant. Among the most famous works
are the ones by Hull and White [21], Stein and Stein [43] and, above all,
Heston [20]. In his famous work Heston added a square root diffusion to the
price process as instantaneous volatility, and also allowed for a correlation
between the two driving Brownian motions. Alternatively to the SV mod-
els, authors like Merton [35] and Kou [29] introduced jump-diffusions. They
tried to describe the observed features of the market by adding jumps, from
an independent compound Poisson process, to the assets price dynamics.
Furthermore, Bates [5] combines both approaches. Subsequently, modeling
with jumps gained a lot of popularity; in particular Lévy processes, which
are stochastic processes with independent and stationary increments. See
the book of Cont and Tankov [9] for a vast overview on this type of models.
Even though a lot of (successfull) research has been done for this very gen-
eral class of processes, this thesis will focus on continuous diffusions. Models
have been developed to particularly meet the hybrid features of autocallables.
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Therefore, stochastic volatility models were extended to include the term
structure of interest rates. The aim is to combine them, with the Hull-White
[22] or Cox-Ingersoll-Ross [10] model, in which the parameters are consist-
ent with market prices of caps and swaptions. In particular, we chose the
Heston stochastic volatility model and combine it with the Hull-White in-
terest rate process. Correlations will be imposed for the assets price and
its volatility, and between price and interest rate. Regarding the pricing of
the autocallables, this will be no problem when using PDE or MC methods.
However, when trying to calibrate the model to market data, extra work has
to be done for the later correlation. We shall see under which conditions the
Heston-Hull-White (HHW) model, with two correlations, fits into the class of
affine (jump-) diffusions (AJD) from Duffie [12], in order to establish highly
efficient vanilla option valuation.

This thesis is organized as follows: In Chapter 2, we will introduce the mod-
els in use and explain some basic theory in order to put market modeling
on a solid mathematical base. Additionally some fundamental results on
stochastic differential equations, market modeling and complex analysis are
referred to the Appendix. The market modeling is followed by discussing the
three main pricing methods for financial products in Chapter 3. Where the
MC simulation and PDE technique are straight forward and the advanced
reader should be very familiar with those. For the third, namely Fourier
method, a lot of variations can be found in the literature. Due to our special
demand on correlated interest rates a little extra work has to be done in the
last section of this chapter. After that, Chapter 4 will show in detail how
these three pricing methods were implemented within the Heston-Hull-White
model. All the computational studies are contained in Chapter 5, where we
verify the correctness of our implementations and interpret the results. Fi-
nally, Chapter 6 will conclude.
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Chapter 2

Market modeling

2.1 Continuous time security markets

Before discussing the used models, a short review of general theory for a
continuous time security market is given here. We follow the lines of Musiela
& Rutkowski [37, Ch. 10].

Definition 1 (continuous time market model). A continuous time market
model consists of the following:

(i) a probability space (Ω,A,P),

(ii) the filtration F = (Ft)0≤t≤T of A, describing the progress of information
(the filtration is assumed to satisfy the ”usual conditions”, meaning it
is right continuous, i.e., Ft = ∩u>tFu for every t < T ; and F0 contains
all null sets, i.e., if B ⊂ A ∈ F0 and P{A} = 0, then B ∈ F0)

(iii) and a (d + 1)-dimensional price process S = (St)0≤t≤T following a se-
mimartingale with St = (S0

t , S
1
t , . . . , S

d
t ).

We also assume that S0 is a strictly positive benchmark, thus the nu-
meraire asset. Further S̃ = (S̃t)0≤t≤T with S̃t = St/S

0
t = (1, S̃1

t , . . . , S̃
d
t ) is

called the discounted (relative) price process.

Definition 2 (wealth process, self financing trading strategy and gains pro-
cess). A R(d+1) valued predictable stochastic process φt = (φ0

t , . . . , φ
d
t ) is called

a self financing trading strategy if the wealth process V (φ), which is

Vt(φ) = φt · St =
d∑
i=0

φitS
i
t , ∀t ∈ [0, T ],
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satisfies Vt(φ) = V0(φ) +Gt(φ) for t ≤ T , with the gains process

Gt(φ) =

∫ t

0

φu · dSu =
d∑
i=0

∫ t

0

φiudS
i
u, ∀t ∈ [0, T ].

This definition reflects, that there is no infusion of new funds to, nor
withdrawal of money from, the portfolio; the only changes are due to capital
gains. It also means that there are no transaction costs or restrictions on
short selling in the market.

Definition 3 (arbitrage). [37, Def. 10.1.1] A trading strategy φ is called an
arbitrage, if it is admissible and the wealth process satisfies

V0(φ) = 0, P(VT (φ) ≥ 0) = 1, P(VT (φ) > 0) > 0.

Definition 4 (claim, attainable claim and replicating trading strategy). A
trading strategy φ replicates a European contingent claim X, which is modeled
by means of a FT -measurable random variable, if VT (φ) = X IP − a.s.. The
claim X is said to be attainable if it admits at least one replicating trading
strategy. V (φ) is called replicating process of X.

Definition 5 (equivalent martingale measure). A probability measure Q,
equivalent to P, is called a martingale measure for S̃ if the relative price
process follows a local martingale under Q.

Definition 6 (admissible trading strategy). If the relative gains process

G̃t(φ) =

∫ t

0

φu · dS̃u, ∀t ∈ [0, T ],

follows a martingale under Q, then the trading strategy φ is called Q-admissible.
A trading strategy is said to be tame if it is bounded from below, i.e. there
exist m ∈ R such that P-a.s.: Ṽt(φ) ≥ m for all t.

For an attainable claim, the wealth process V (φ) of any Q-admissible
strategy replicating X is called the arbitrage price of X and denoted by
π(X|Q).

Definition 7 (expected value process of a claim). Let X be a (not necessarily
attainable) claim such that the random variable X/S0

T is Q-integrable. Define
the expected value process of X relative to S0 under Q by

νt(X|Q) = S0
tEQ(X/S0

T |Ft), ∀t ∈ [0, T ].

7



The following Proposition shows that the arbitrage price of any contingent
claim agrees with the associated expected value process.

Proposition 1 (risk neutral valuation formula). [37, Prop. 10.1.2 and
10.1.4] For any attainable claim X we have

πt(X|Q) = νt(X|Q), ∀t ∈ [0, T ].

Further, the no-arbitrage price of X satisfies

π0(X) = sup
Q
S0

0EQ(X/S0
T ) = inf

φ∈Θ(X)
V0(φ),

where Θ(X) is the class of tame trading strategies which replicate X. Such
a trading strategy is also called a hedge.

Theorem 1. [37, Sec. 10.1.5][fundamental theorem of asset pricing] If there
exists a to P equivalent measure Q such that the discounted price process S̃
is a local martingale, then the model is arbitrage free.

Remark: This is the practically more relevant direction of the theorem. In
the case of positive locally bounded price processes Delbaen & Schachermayer
[11] showed that the existence of Q is equivalent to the weaker condition ”no
free lunch with vanishing risk”.

Theorem 2 (complete market). If every claim X has a hedge, then the
equivalent martingale measure is unique. An arbitrage free market model is
complete, if and only if the equivalent martingale measure is unique.

2.1.1 The Black-Scholes model

In 1973, by far the most famous market model for pricing derivatives was
introduced by Black and Scholes [6] and Merton [34]. Their associated Black-
Scholes formula for the pricing of European Call and Put Options was revolu-
tionizing the financial world and the surviving inventors Merton and Scholes
received the Nobel Price for Economic Sciences in 1997. The model consists
of a risk-free bond S0

t = ert as the numéraire with r > 0 being the con-
stant non-risky interest rate, and a risky asset S1 = (S1

t )0≤t≤T whose price
dynamics are modeled as

dSt = µStdt+ σStdBt, (2.1.1)

with constant and deterministic drift µ ∈ R, the asset prices volatility σ > 0,
a given initial price S0 > 0 and a standard Brownian motion B = (Bt)0≤t≤T

8



on {FB
t }t∈[0,T ]. Solving this stochastic differential equation gives the following

explicit solution

St = S0 exp

{(
µ− σ2

2

)
t+ σBt

}
, 0 ≤ t ≤ T.

The Brownian motion B is with respect to the ”real life” measure P. For
pricing purposes one needs to switch to an equivalent Martingale measure Q,
which is done with Girsanov’s theorem. A multidimensional version of this
theorem can be found in the Appendix A.3. Now let us derive the, as we
shall see, unique equivalent martingale measure Q on FT : If the discounted
price process S̃1 admits the representation

dS̃1
t = YtdWt

where W is a Brownian motion with respect to the measure Q1, then S̃1 is a
local Martingale with respect to Q. Calculating dS̃1

t yields

dS̃1
t = d(e−rtS1

t ) = d(e−rt)S1
t + e−rtdS1

t + d(e−rt)d(S1
t )

= −re−rtS1
t dt+ e−rtS1

t (µdt+ σdBt)

= S̃1
t ((µ− r)dt+ σdBt)

= σS̃1
t dWt,

therefore, granted by Girsanov’s Theorem, W needs to be a Brownian motion
with respect to Q with

Wt = Bt −
r − µ
σ

t. (2.1.2)

Due to dS̃1
t = σS1

t dWt we have a local Martingale S̃1
t with respect to Q; it is

even a Martingale. The quantity λ := µ−r
σ

is called market price of risk. In

this case one can easily see that this choice of λ is the only one making S̃1
t a

Martingale, hence the Black-Scholes model is complete.
Apparently these very restrictive assumptions deliver some downsides

which motivated the development of more general models. For example,
the Black-Scholes model claims for the logarithmic returns lnSt to be nor-
mally distributed. The distribution observed from real market data, however,
shows that the tails are significantly heavier than those induced by the Gaus-
sian distribution. There is also a certain skewness noticeable and moreover
it doesn’t describe the so called leverage effect. This effect refers to the

1In this thesis we will always denote the Brownian motions with respect to P and Q
with B and W respectively.
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phenomenon that large down-moves in the assets price correlate with an in-
creasing volatility. Also the implied volatility function, which is obtained if
one plugs in the current market value of an option into the option pricing
formula and solve for the volatility, can be considered as a measure of weak-
ness of the model. Doing so, the implied volatility as a function in strike,
is non constant and one observes volatility smiles or smirks, concluding that
the Black-Scholes model does not describe the market correctly.

To address the above mentioned shortcomings the model has been altered
in various ways. Merton [35] and Kou [29] for example added a jump process
to the asset price dynamics. However, jump diffusions still cannot describe
the leverage effect ; therefore, other than adding jumps to the asset price pro-
cess, the most successful variations introduced a (positive) stochastic process
v = (vt)t≥0 to model the diffusion coefficient. This process describes the
instantaneous volatility of the assets returns over the infinitesimal interval
(t, t + dt). The most common diffusion based stochastic volatility model is
the following Heston model.

2.1.2 The Heston model

This model was introduced by Heston [20] in 1993. Here the constant volatil-
ity parameter σ from (2.1.1), is chosen to be replaced by a Cox-Ingersoll-Ross
(CIR) process which follows the dynamics given by the SDE

dYt = κ(θ − Yt)dt+ σ
√
YtdBt, (2.1.3)

where B = (Bt)t≥0 is again a standard Brownian motion and σ > 0, κ >
0, θ > 0. Under these assumptions, with a positive starting value Y0 = y0, the
process stays non-negative. Furthermore the mean reversion feature ensures
for finite volatility. This square root process was introduced by Cox et al.
[10], trying to model the dynamics of short rates. It can be shown that
Y almost sure never reaches zero, if the parameters are chosen as to grant
the restriction 2κθ ≥ σ2, also known as the Feller condition. Although
this condition is very rarely satisfied for financial applications, the process
remains a good choice due to its main characteristic of mean reversion. If
Yt ≥ θ the negative drift pulls the process downwards and vice versa, making
it oscillate around θ. Therefore θ is interpreted as the long term volatility.
The parameter κ determines the rate of this mean reversion.

Contrary to the Black-Scholes SDE it is not obvious that (2.1.3) has a
solution on [0, T ] since the square root is not Lipschitz continuous in zero.
However, in the case of a one dimensional Brownian motion it can be shown,
e.g. in Müller [36], that the condition on the diffusion term can be weakened
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to be Hölder continuous with order 1/2, that is:

|σ(x)− σ(y)| ≤ K max(|x− y|1/2, |x− y|),

hence, the SDE (2.1.3) has a unique strong solution2. Finally, the Heston
model describes the price process as the dynamics of the two dimensional
SDE

dSt/St = µdt+
√
vtdB

S
t ,

dvt = κ(θ − vt)dt+ σ
√
vtdB

v
t ,

(2.1.4)

with a constant correlation dBS
t dB

v
t = ρdt between the two driving Brownian

motions BS
t and Bv

t . A Cholesky decomposition of the correlation matrix
gives their relation as(

Bv
t

BS
t

)
=

(
1 0

ρ
√

1− ρ2

)(
Z1
t

Z2
t

)
where Z1 and Z2 are two independent Brownian motions. The coefficient
ρ ∈ [−1, 1] is indeed the instantaneous correlation; as when calculating the
differential of the quadratic covariation

d[Bv, BS]t = d[Z1, ρZ1 +
√

1− ρ2Z2]t

= d([Z1, ρZ1]t + [Z1,
√

1− ρ2Z2]t)

= d(ρ[Z1, Z1]t +
√

1− ρ2[Z1, Z2]t) = ρdt.

Contrary to the Black-Scholes model now we have two sources of uncer-
tainty, BS and Bv, yet only one risky asset available for trade. Applying
Girsanov’s theorem from A.3 we get infinitely many equivalent martingale
measures. Similar to (2.1.2) in the Black-Scholes case we have

W v
t = Bv

t +
λ

σ

√
vtt,

where (λ/σ)
√
v with λ ∈ R is the market price of volatility risk. The model

under the new martingale measure therefore is

dSt/St = rdt+
√
vtdW

S
t ,

dvt = (κ(θ − vt)− λvt)dt+ σ
√
vtdW

v
t .

2For completeness reasons, the Appendix defines the terms weak and strong solution
of a SDE.
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Thus the Heston model is incomplete but still free of arbitrage; hence a
particular martingale measure (or equivalently market price of volatility risk)
has to be chosen to determine option prices.

The correlation introduced in (2.1.4) provides no difficulties since the system
is still of the affine form3, and hence we can model the above mentioned
leverage effect by choosing a negative value for ρ. Moreover, it accounts for
long term implied volatility smiles or skews and volatility clustering. Un-
fortunately it does not model the short term implied volatility in a realistic
way. To address this problem one can add jumps to the dynamics of the price
process like Bates [5] did. However, to model short term volatilities does not
seem that important when pricing autocallables. Therefore we leave this
possible extension aside and focus on another weakness. Autocallables are
hybrid products with a typical maturity of several years, a more realistic
model therefore would account for a stochastic interest rate. A good candid-
ate for a short rate process is the one proposed from Hull and White [22],
which is widely used in practice.

2.2 Fixed income markets

A fixed income market is one on which various interest rate sensitive in-
struments are traded, such as bonds, swaps, swaptions, caps, etc. Before
introducing the model we need to adapt the definition of arbitrage from the
previous security market. So let B(t, T ) be the price of a zero coupon bond
(ZCB) at time t with face value 1; this means that it pays 1 at maturity T .
The price process (B(t, T ))t∈[0,T ] follows a strictly positive adapted process
on the filtered probability space (Ω,F ,P), where F is the completed filtra-
tion of an underlying d-dimensional standard Brownian motion. Suppose
the adapted process r, given on the same probability space, models the short
term interest rate (=spot rate), with Bt = exp(

∫ t
0
rudu) the savings account

process, is defined.

Definition 8 (arbitrage free family of bond prices). [37, Def. 12.1.1] We
call a family B(t, T ) with t ≤ T ≤ T ∗ of adapted processes an arbitrage free
family of bond prices relative to r, if the following conditions hold:

(i) B(T, T ) = 1 and

(ii) there exists a probability measure Q equivalent to P such that the relative
bond price

B̃(t, T ) = B(t, T )/Bt, ∀t ∈ [0, T ] and ∀T ∈ [0, T ∗],

3It will be explained in section 4.3.1 what that means and why it is important for us.
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follows a martingale under Q.

The reason why it is assumed that the relative bond price follows a mar-
tingale, and not a local martingale, is that then we have trivially B̃(t, T ) =
EQ(B̃(T, T )|Ft), such that the bond price is

B(t, T ) = BtEQ
(
B−1
T |Ft

)
= EQ

(
e−

∫ T
t rudu|Ft

)
, ∀t ∈ [0, T ].

Conversely, given any non negative short rate r on a probability space (Ω,F ,P)
and any equivalent probability measure Q, the family (B(t, T ))t≤T≤T ∗ is eas-
ily seen to be an arbitrage free family of bond prices.

If one now wants to match the initial yield curve, given a spot rate pro-
cess r and probability measure Q, the term structure B(0, T ) is uniquely
determined via

B(0, T ) = EQ

(
e
∫ T
0 rudu

)
,

for all maturities T ∈ [0, T ∗]. Matching the yield curve based on a specific
spot rate process a lot more effort is needed than in the case where one
incorporates the initial term structure as an input of the model.

2.2.1 The Hull-White model

Extending Vasicek’s model by a time dependent mean reverting drift term,
Hull and White [22] introduced their model for pricing interest rate derivative
securities in 1990. It is given through the following SDE

drt = a(b(t)− rt)dt+ σdBt, (2.2.1)

where b(t) > 0, t ∈ R+, is a time dependent drift term, which reflects the
observed term structure from the market. The parameters σ and a, as usual,
determine the overall level of volatility and the reversion rate, respectively.
Note the similarity to the CIR type process used for the instantaneous volat-
ility in the Heston model. In contrary to CIR the diffusion term is kept
constant whereas the mean reversion b(t) is time dependent. Applying Itô’s
formula to d(exp(at)rt) and integration yields, for t ≥ 0,

rt = r0e
−at + a

∫ t

0

e−a(t−s)b(s)ds+ σ

∫ t

0

e−a(t−s)dBs.

Hence, rt is normally distributed with

IEQ(rt|F0) = r0e
−at + a

∫ t

0

e−a(t−s)b(s)ds,

13



and

VarQ(rt|F0) =
σ2

2a

(
1− e−2at

)
.

A very useful simplification is achieved by decomposing it into a simpler
stochastic process plus a deterministic one.

Proposition 2. [16, Prop. 2.1][Hull-White decomposition] The Hull-White
process can be decomposed into rt = r̃t + ψt, where

ψt = r0e
−at + a

∫ t

0

e−a(t−s)b(s)ds,

and
dr̃t = −ar̃tdt+ σdBt, with r̃0 = 0.

The process r̃t is now a classical Ornstein Uhlenbeck mean reverting pro-
cess, determined by a and σ only, and independent of the term structure
described by the deterministic ψt. Consequently, it is easier to analyze than
the original one.

The value of a zero coupon bond (ZCB) at time t which pays 1 at maturity
T , given the initial short rate r0, is given by the very well known equation

B(r0, t) =ec(r0,t)

c(r0, t) =− r0

a

(
1− e−a(T−t))− ∫ T

t

b(s)
(
1− e−a(T−s)) ds

+
σ2

2

2a2

(
T − t+

2

a
e−a(T−t) − 1

2a
e−2a(T−t) − 3

2a

)
.

(2.2.2)

This model is widely used and analytically tractable, making it a good choice
for our applications.

2.3 Hybrid markets

2.3.1 The hybrid Heston-Hull-White model

We have already discussed the importance of consideration for every single
asset class, and a correlation between them, when modeling hybrid products
in the Introduction. The autocallable structured products that are treated in
this thesis are equity-interest-rate based derivatives. After introducing widely
established models for each of those asset classes in the preceding Sections,
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we will now combine them in the following hybrid Heston-Hull-White model,
which is given through the three dimensional SDE

dSt/St = rtdt+
√
vtdW

S
t ,

dvt = κ(θ − vt)dt+ σ1

√
vtdW

v
t ,

drt = a(b(t)− rt)dt+ σ2dW
r
t ,

(2.3.1)

where the parameters κ, θ, σ1, a, b(t) and σ2 are as introduced in Chapters
(2.1.2) and (2.2.1), respectively. The SDEs are correlated in the sense of

dW S
t dW

v
t = ρSvdt,

dW S
t dW

r
t = ρSrdt,

whereby the first one of them is predefined by the Heston model. The latter
one describes the influence, movements in stock markets have to the behavior
of interest rates. We leave the third possible correlation between volatility
and interest rates aside4.

A switch from the real life measure P to Q can again be achieved with
Girsanov’s theorem and is straight forward as in the preceding examples. To
simplify those calculations, here the market prices of volatility and interest
rate risk are set to zero and the model (2.3.1) is already stated under Q,
the risk neutral martingale measure. It goes without saying that the Heston-
Hull-White model is incomplete, having three sources of uncertainty and only
two asset classes available for trading.

With the given correlation structure the Brownian motions W r,W v,W S can
be written in terms of the independent ones, Z1, Z2, Z3, as W r

t

W v
t

W S
t

 =

 1 0 0
0 1 0

ρSr ρSv
√

1− ρ2
Sv − ρ2

Sr

 Z1
t

Z2
t

Z3
t

 , (2.3.2)

where the above matrix is again the Cholesky decomposition of the correla-
tion matrix. The correlation between stock prices and interest rates violates
affinity properties, as will be discussed in Section 4.3.1; therefore, an ap-
proximation has to be found which makes the model affine. Duffie’s famous
work [12] then provides transform analysis to derive the characteristic func-
tion. Having knowledge of the ChF, highly efficient Fourier techniques can
be applied for calibration. All of that will be discussed in section 4.3.

4Grzelak and Oosterlee [15] also discuss a model with a full correlation structure.
However, they conclude that the benefits of deploying this v − r−correlation are not
worth the mathematical effort of a more complicated model.
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Various alternations of hybrid models can be found in the literature. For
example, Grzelak and Oosterlee [15] use for the interest rate process the one
from Cox-Ingersol-Ross. Also different stochastic volatility models can be
used, like in [16], where the Schöbel-Zhu SV model [41] is used instead of the
Heston model. The authors also compare these alternations with each other.
In this thesis only the hybrid Heston-Hull-White model will be used.
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Chapter 3

Pricing techniques

Valuing derivatives is due to the fundamental Theorem of asset pricing 1
and Proposition 1 a matter of computing the discounted expected payoff of
the product under a risk neutral pricing measure. Depending on the problem
probabilistic or numerical methods can be applied. Probabilistic methods de-
mand knowledge of the (joint) distribution of the underlying model. When
valuing exotic options this is rarely the case, hence numerical approaches
have to be used. Two very powerful tools are Monte Carlo simulation and
PDE techniques. Both will be introduced with their mathematical back-
ground in the following two sections. Further we discuss a Fourier transform
based method which allows for pricing of plain vanilla options. With that
technique highly efficient (semi) closed form solutions can be obtained if the
characteristic function of the model is known. Consequently, we will use this
method to calibrate the parameters of the model to the given market data.

3.1 Monte Carlo methods

A huge advantage of the Monte Carlo simulation is, that it is straight for-
ward to implement and can be applied easily to every imaginable underlying
structure. However, this requires huge computational power to produce de-
cent values. A lot of research has been done to reduce the variance of MC
estimators. The book of Glassermann [14] provides a comprehensive collec-
tion on this topic. In this section we will just introduce the mathematical
foundations following the lines of this book and implement an efficient MC
scheme, only as a reference for the comparison with other, for our application
more efficient, methods in the following chapter.

The basis of the Monte Carlo methods is the analogy between volume
and probability. This means that one samples randomly from a universe of
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possible outcomes and then takes the fraction of all the random draws that
fall in a given set as an estimate of the set’s volume. The estimate is of the
form

Ĉn =
1

n

n∑
i=1

Ci,

where the {Ci} are i.i.d. random variables, E(Ci) = C and Var(Ci) = σ2
C <

∞. With an increasing number of draws the law of large numbers provides
convergence of the estimate to the correct value almost surely. Further, for
a finite number of draws, the central limit theorem gives information about
the error made in the estimate. The standardized estimator converges for
n→∞ in distribution to the standard normal distribution

Ĉn − C
σC/
√
n

d−→ N(0, 1).

Put in another way, this means that the distribution of the error estimate is

Ĉn − C ≈ N(0, σ2
C/n),

and hence by replacing σC by the sample standard deviation sC of C1, . . . , Cn
one can state the asymptotically valid confidence interval

Ĉn ± zδ/2
sC√
n
, (3.1.1)

where zδ is the 1− δ quantile of the standard normal distribution, meaning
Φ(zδ) = 1− δ.

Remark: Strictly speaking, for a finite number n of draws, the expression

Ĉn − C
sC/
√
n

is t-distributed with n degrees of freedom. For the confidence interval in
(3.1.1) one therefore has to use the quantile tδ of the t-distribution, which
would make it slightly wider. However, for significant sample sizes (> 105)
the difference is negligible.

Convergence order

In addition to the above described MC error, there is another error category
based on the discretization of the SDE. To compare different discretization
schemes with respect to their convergence order two categories of error are
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commonly used to measure the quality of a discretization scheme. For the
SDE

dXt = b(Xt, t)dt+ σ(Xt, t)dWt,

where b and σ satisfy the conditions for existence and uniqueness of a strong
solution (see Appendix A); take t0 < t1 < · · · < tn = T and let X̂(ti) be any
discrete time approximation to the continuous time process X. Then strong
and weak error criteria are

E(||X̂(T )−X(T )||) or E(sup
ti

||X̂(ti)−X(ti)||),

and
|E(f(X̂(T )))− E(f(X(T )))|,

with f : Rd → R satisfying some smoothness conditions, respectively. In
derivative pricing naturally weak errors are most relevant. A discretization
scheme is said to have weak order of convergence p > 0 if

|E(f(X̂(T )))− E(f(X(T )))| ≤ chp,

for some constant c and stepwidth h. Thus, a larger value of p implies a faster
convergence and the same scheme will often have a smaller strong order of
convergence than weak one. For example, under the conditions discussed in
[14, Ch. 6.1.2], the Euler-Maruyama scheme given through

X̂(ti+1) = X̂(ti) + b(X̂(ti))(ti+1 − ti) + σ(X̂(ti))
√
ti+1 − tiZi+1,

has strong order of 1/2, but often achieves weak order of 1. However, for
more complex models it is less likely that such basic schemes like the Euler
yield satisfactory results. In such a case it is therefore often wise to aim for
a more efficient scheme with higher order of convergence.

Andersen [3] proposed several efficient extensions for the Heston model.
To sample from the Heston-Hull-White model we will use one of his schemes
and extend it with a very efficient simulation scheme for the interest rate
process based on a Hull-White decomposition. Details are referred to Section
4.1 where we will explain explicitly how to derive and implement it.

3.2 PDE approach

The second very powerful tool when valuing complex structured products
are partial differential equations (PDEs). Under mild conditions the char-
acteristics of a SDE can be described by a corresponding PDE reflecting

19



its dynamics. The specific structure of the derivative can then be modeled
via the PDEs final and boundary conditions. Except for some simple cases,
like the Black-Scholes PDE, they cannot be solved explicitly and therefore
a numerical discretization, e.g. finite differences, has to be applied. In the
following steps we will show how to use the famous Feynman-Kac theorem
to derive the corresponding HHW PDE. Further we will state a result by
Heath and Schweizer [19] which gives sufficient conditions for the existence
of a unique classical solution to this PDE. The mathematical theory on the
solution, existence and uniqueness of an SDE and its relation to a corres-
ponding PDE is taken from Karatzas & Shreve [26] and Oksendal [38] and
summarized in the Appendix A.

3.2.1 The Feynman-Kac theorem

The point of departure is of course the d-dimensional SDE

X t,x
s = x+

∫ s

t

b(u,X t,x
u )du+

∫ s

t

σ(u,X t,x
u )dWu for t ≤ s <∞,

for which we assume that,

(i) the drift and diffusion coefficient functions bi(t, x), σij(t, x) : [0,∞) ×
Rd → R for 1 ≤ i ≤ d, 1 ≤ j ≤ k are continuous and fulfill the linear
growth condition

‖b(t, x)‖2 + ‖σ(t, x)‖2 ≤ K2
(
1 + ‖x‖2) ,

(ii) further the SDE has a weak solution (X t,x,W ), (Ω,F , IP), (Fs) for every
starting point (t, x) and

(iii) the solution is unique in law.

The generator of an Itô diffusion (see equation (A.1.3) from the Appendix),
in the more general case where the coefficients also depend on the time, is

Atu(x) =
d∑
i=1

bi(t, x)
∂

∂xi
u(x) +

1

2

d∑
i=1

k∑
j=1

aij(t, x)
∂2

∂xi∂xj
u(x), (3.2.1)

with diffusion a = σσT .

Definition 9 (ellipticity). We say At is elliptic in x ∈ Rd if ∃δ > 0 such
that

d∑
i=1

k∑
j=1

aij(x)ξiξj > δ ‖ξ‖2 ∀ξ ∈ Rd\{0} and ∀t ≥ 0.
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Let D ⊆ Rd be open, then At is elliptic in D if it is elliptic in all x ∈ D and
it is called uniformly elliptic, if there ∃δ > 0 such that At is elliptic in D
with the same δ > 0,∀x ∈ D.

Cauchy problem and Feynman-Kac representation

Let T > 0 arbitrary but fixed, constants L > 0, λ ≥ 1 and f : Rd → R, g :
[0, T ]×Rd → R, k : [0, T ]×Rd → R. The functions f, g and k are continuous
and satisfy

|f(x)| ≤ L(1 + ‖x‖2λ) or f(x) ≥ 0 ∀x ∈ Rd,

|g(t, x)| ≤ L(1 + ‖x‖2λ) or g(t, x) ≥ 0 ∀x ∈ Rd, 0 ≤ t ≤ T,

and the operator At as in 3.2.1.

Theorem 3 (Feynman-Kac representation). [26, Th. 7.6] Under the preced-
ing conditions on b, σ and X, suppose that v : [0, T ]×Rd → R is continuous,
v ∈ C1,2((0, T )× Rd) and satisfies the following Cauchy problem

−∂v
∂t

+ kv = Atv + g in [0, T )× Rd,

v(T, x) = f(x) ∀x ∈ Rd,

as well as a polynomial growth condition

max
0≤t≤T

|v(t, x)| ≤M(1 + ‖x‖2µ) ∀x ∈ Rd,M > 0, µ ≥ 1.

Then v has the form

v(t, x) = IEt,x

[
f(XT ) exp

(
−
∫ T

t

k(u,X t,x
u )du

)
+

∫ T

t

g(s,X t,x
s ) exp

(
−
∫ s

t

k(u,X t,x
u )du

)
ds

]
on [0, T ]× Rd, in particular v is unique.

Remark:

• Sufficient conditions for the existence of a classical solution to the
Cauchy problem are:

(i) At is uniformly elliptic,

(ii) aij, bi, k are bounded,
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(iii) aij, bi, k, g are Hölder continuous and

(iv) f, g are continuous and satisfy a polynomial growth condition

• Applied to our financial environment this means, that by departing
from the risk neutral price process of a risky asset, which is a SDE
(Xt)t≤T , with a risk-less interest rate r and a payoff function f(x)
we now know, by setting g(x) = 0 and k = r, that: The expected
discounted payoff,

v(t, x) = IEt,x

(
exp

(
−
∫ T

t

r(u,X t,x
u )du

)
f(X t,x

T )

)
,

is linked to the PDE
∂

∂t
v +Atv − rv = 0

on (0, T )× Rd with
v(T, x) = f(x).

Clearly this is a very powerful result. Whenever it is not possible to obtain a
(semi) closed form solution to compute such expectations, the Feynman-Kac
Theorem provides a way out via PDEs. Using well known finite difference
schemes one can then numerically solve the PDE to get a solution. This is
way more efficient1 than applying standard Monte-Carlo techniques, which
require a lot of computational power.

3.2.2 The HHW PDE

In the following lines we will derive the HHW PDE using the Feynman-Kac
theorem from the previous section. After changing the order of the state
variables to X∗t = (rt, vt, St)

T we have a symmetric correlation matrix

C =

 1 0 ρSr
∗ 1 ρSv
∗ ∗ 1

 , (3.2.2)

and its Cholesky decomposition C = LLT , where L is a lower triangular
matrix with strictly positive entries:

L =

 1 0 0
0 1 0

ρSr ρSv
√

1− ρ2
Sr − ρ2

Sv

 , (3.2.3)

1As the dimension of the SDE increases, MC simulation becomes more efficient at some
point, due to its independence. We are dealing here with three dimensions where PDE
methods clearly outperform MC.
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With the Cholesky decomposition, X∗t can now be rewritten in terms of
independent Brownian motions dZ1

t , dZ
2
t , dZ

3
t . The system (2.3.1) reads now drt

dvt
dSt/St

 =

 a(b(t)− rt)
κ(η − vt)

rt

 dt+

 σ2 0 0
0 σ1

√
vt 0

L3,1
√
vt L3,2

√
vt L3,3

√
vt

 dZ1
t

dZ2
t

dZ3
t

 .

(3.2.4)
Squaring the diffusion matrix yields the symmetric instant covariance matrix:

Σ(X∗t ) =

 σ2
2 0 ρSrσ2

√
vt

∗ σ2
1vt ρSvσ1vt

∗ ∗ vt

 , a(X∗t ).

Applying the Feynman-Kac Theorem (3) the operator from (3.2.1) in the
HHW model is:

At = a(b(t)− rt)
∂

∂r
+ κ(η − vt)

∂

∂v
+ rtSt

∂

∂S

+
1

2

[
σ2

2

∂2

∂r2
+ σ2

1vt
∂2

∂v2
+ vtS

2
t

∂2

∂S2

+2ρSrσ2

√
vtSt

∂2

∂S∂r
+ 2ρSvσ1vtSt

∂2

∂S∂v

]
.

Consequently, this yields the HHW PDE:

0 =
∂u

∂t
+

1

2
s2v

∂2u

∂s2
+

1

2
σ2

1v
∂2u

∂v2
+

1

2
σ2

2

∂2u

∂r2

+ ρSvσ1sv
∂2u

∂s∂v
+ ρSrσ2s

√
v
∂2u

∂s∂r

+ rs
∂u

∂s
+ κ(η − v)

∂u

∂v
+ a(b(t)− r)∂u

∂r
− ru.

(3.2.5)

The Feynman-Kac theorem tells us nothing about the existence of a solution,
indeed we have to assume prior that there is one. Heath and Schweizer [19]
provide an extension of Theorem 3, as a set of very general yet sufficient
conditions under which both approaches are equivalent, without assuming
existence of u(t, x) beforehand.

3.2.3 Martingales vs PDEs: An equivalence result

To establish their equivalence result, Heath & Schweizer’s [19] key assump-
tions are that the process X does not exit from a given domain D ⊆ Rd

and that the drift and diffusion coefficient functions are smooth enough in
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the interior of D. Therefore, typical degeneracies at the boundaries can be
handled, e.g. for v = 0 in the Heston model. There is no general solution
to this problem, but the following analytic and probabilistic assumptions are
weak enough to be satisfied in some typical examples from finance. After
establishing those assumptions and stating Theorem 4 it will also be shown
how to verify them in practice.

Let T ∈ (0,∞) be the maturity and take an open and connected domain
D in Rd. Consider again the SDE

dX t,x
s = b(s,X t,x

s )ds+
m∑
j=1

σj(s,X
t,x
s )dW j

s , X t,x
t = x ∈ D, (3.2.6)

with b : [0, T ] ×D → Rd and σj : [0, T ] ×D → Rd, j = 1, . . . ,m continuous
functions and W = (W 1 . . .Wm)T a m-dimensional Brownian motion. Let
h : D → [0,∞), g : [0, T ] × D → (−∞, 0] and c : [0, T ] × D → R be given
measurable functions. Then define u : [0, T ]×D → [0,∞] by

u(t, x) := IEt,x

[
h(X t,x

T ) exp

(∫ T

t

c(s,X t,x
s )ds

)
−
∫ T

t

g(s,X t,x
s ) exp

(∫ s

t

c(u,X t,x
u )du

)
ds

]
.

(3.2.7)

The equation above is well-defined in [0,∞], if X t,x does not explode or
leave D before time T . They then define for sufficiently smooth functions
u : [0, T ]×D → R an operator L, which is very similar to the generator At
in (3.2.1), by

(Lu)(t, x) :=
d∑
i=1

bi(t, x)
∂f

∂xi
(t, x)+

1

2

d∑
i,j=1

aij(t, x)
∂2f

∂xi∂xj
(t, x)+ c(t, x)u(t, x),

where a = σσT is again the diffusion matrix. The goal is now to give sufficient
conditions on X,D, b, σ, h, c, g to make sure that u satisfies the PDE

∂u

∂t
+ Lu = g on (0, T )×D (3.2.8)

with boundary conditions

u(T, x) = h(x) for x ∈ D. (3.2.9)
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Theorem 4 (Heath and Schweizer). [19, Th. 1] Suppose that the following
conditions hold:

(A1) The coefficients b and σj, j = 1, . . . ,m are on [0, T ]×D locally Lipschitz-
continuous in x, uniformly in t, i.e., for each compact subset F of D,
there is a constant KF <∞ such that

|G(t, x)−G(t, y)| ≤ KF |x− y|

for all t ∈ [0, T ], x, y ∈ F and G ∈ {b, σ1, . . . , σm}.

(A2) For all (t, x) ∈ [0, T )×D, the solution X t,x of (3.2.6) neither explodes
nor leaves D before T , i.e., IP(supt≤s≤T |X t,x

s | <∞) = 1 and IP(X t,x
s ∈

D for all s ∈ [t, T ]) = 1.

(A3) There exists a sequence (Dn)n∈N of bounded domains contained in D
such that ∪∞n=1Dn = D and for each n, the PDE

∂w

∂t
+ Lw = g on (0, T )×Dn

with boundary condition w(t, x) = h(t, x) on (0, T )× ∂Dn ∪ {T}×Dn

has a classical solution wn(t, x).

Then u satisfies the PDE (3.2.8) with boundary condition (3.2.9). In partic-
ular, u is in C1,2 and there exists a unique classical solution to this PDE.

Whereby (A1) can be easily verified - it is, for instance, satisfied if b and
a are differentiable in x on the open set (0, T ) × D with derivatives that
are continuous on [0, T ] ×D - condition (A2) involves a more careful study
of the process X. Finally, (A3) is easier to verify as the implication of the
combination of:

(A3’) there exists a sequence (Dn)n∈N of bounded domains with Dn ⊆ D such
that ∪∞n=1Dn = D, each Dn has a C2-boundary and for each n,

(A3a′) the functions b and a = σσT are uniformly Lipschitz-continuous
on [0, T ]×Dn,

(A3b′) a(t, x) is uniformly elliptic on Rd for (t, x) ∈ [0, T )×Dn, i.e., there
is δn > 0 such that yTa(t, x)y ≥ δn|y|2 for all y ∈ Rd,

(A3c′) c is uniformly Hölder-continuous on [0, T ]×Dn,

(A3d′) g is uniformly Hölder-continuous on [0, T ]×Dn and

(A3e′) u is finite and continuous on [0, T ]× ∂Dn ∪ {T} ×Dn.

25



Note that the restrictive uniformity assumptions on a, b, g, c are imposed only
for the local bounded domains Dn, and not globally for all x ∈ D. This is an
essential difference compared to standard results from the literature, which
allows to handle certain degeneracies on the boundary of D. Also one can
often readily verify (A3′).

Continuity of u, at first, seems hard to verify. Due to (A1) and (A2)
ensure that X is well-behaved in the interior of D, condition (A3e′) can be
simplified by the following Lemma.

Lemma 1 (easier verification of (A3e′)). [19, Lem. 2] Assume that (A1)
and (A2) hold. If h, g and c are continuous, h and g are bounded and c is
bounded from above, then u is continuous on [0, T ]×D.

Also the uniform ellipticity condition (A3b′) on a can be verified easier
via the next Lemma. A matrix a can’t be uniformly elliptic unless its de-
terminant is non zero.

Lemma 2 (easier verification of (A3b′)). [19, Lem. 3] Assume that σ is
continuous in (t, x). Fix any bounded domain D′ ⊆ D and let det a(t, x) 6= 0
for all (t, x) ∈ [0, T ]×D′. Then a(t, x) is uniformly elliptic on Rd for (t, x) ∈
[0, T )×D′.

Finally, Theorem 4 with Lemmata 1 and 2 give a fairly nice set of assump-
tions under which the martingale and the PDE approaches are equivalent.

3.2.4 Equivalence of the Martingale and PDE approach
for the HHW model

In this section Theorem 4 is applied to the HHW model to show equivalence
between the martingale and PDE approaches. The price at time t of an
European put option with maturity T and strike K is

u(t, St, vt, rt) = IEQ

(
exp

(
−
∫ T

t

rsds

)
(K − ST )+

)
,

which is of the form as in (3.2.7) with g ≡ 0, c = −r and h(ST ) = (K−ST )+.
The reason why we argue here with the put option is the boundedness of
its payoff function. Equivalence for the call payoff function is then a simple
implication of the put-call parity, Ct − Pt = St −KB(t, T ). Now recall the
system of SDEs (2.3.1) in the HHW model with coordinates x := (r, v, S)
and write the functions b(t, x) and σ(t, x) again as in (3.2.4):

b(t, x) =

 a(b(t)− r)
κ(η − v)

r

 ,
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σ(t, x) =

 σ2 0 0
0 σ1

√
v 0

ρSr
√
v ρSv

√
v
√

1− ρ2
Sr − ρ2

Sv

√
v

 ,

with x ∈ D := R × (0,∞)2. Now we check if the conditions from Theorem
4 hold: Condition (A1) is clearly satisfied since b and σ are in C1 for x in
[0, T ]×D. The Hull-White part does not explode and if the Feller condition
2κη ≥ σ2

1 is presumed neither v leaves (0,∞). Subsequently the same is true
for S = S0 exp(

∫
(rs − 1

2
vs)ds +

∫ √
vsdWs), and thus (A2) is satisfied. To

verify (A3) we take for Dn the cuboids (−n, n) × (1/n, n)2 with smoothed
corners so (A3′) is satisfied. The coefficients b and σ are in C1, hence (A3a′)
is obvious; so are (A3c′) and (A3d′). The matrix a(t, x) has full rank and
therefore Lemma 2 yields (A3b′). Finally, (A3e′) follows by Lemma 1.

3.3 Fourier methods

From Martingale pricing it is well known that option prices are the expected
discounted payoff:

E
(
e−

∫ T
0 rsdsw(lnST )

)
. (3.3.1)

For a deterministic r, and if we write the expectation as its integral repres-
entation, we have

V (S0) =

∫
R
e−

∫ T
0 rsdsw(lnST )pT (ST )dST ,

which is the integral of the transition density pT (x) times the payoff function
w(lnST ). Already for simple models, those transition densities are usually
very complicated and analytically hard to handle. Instead, it is much easier
to compute the option value in Fourier space and inverse it. Many authors
have worked with this Fourier technique, such as Lewis [30]. He proposes
a simple option valuation formula for very general stock price processes;
yet only considering a constant interest rate. We account for the essential
feature of correlated stochastic interest rates in the HHW model by using
the so called forward measure approach. This way, the discounting will be
decoupled from formula (3.3.1).

In the next sections, we will describe the forward measure approach,
introduce the Fourier technique used by Lewis [30] and finally propose our
slightly adapted option valuation formula.
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3.3.1 Forward measure approach

Following the lines of [37, Sec. 13.2], this section describes the arbitrage
valuation of contingent claims under stochastic interest rates. Let’s again
denote by B(t, T ) the value of a ZCB at time t maturing at T ≤ T ∗ (with
fixed horizon T ∗ > 0), which follows an Itô process

dB(t, T ) = B(t, T ) (rtdt+ b(t, T )dW ∗
t ) , (3.3.2)

under the martingale measure Q with B(T, T ) = 1. The d-dimensional stand-
ard Brownian motion W ∗ is defined on a filtered probability space (Ω,F ,Q),
and rt is the instantaneous and continuously compounded interest rate. This
means, that the existence of an arbitrage free family of bond prices associated
with a certain short term interest rate process2 r is taken for granted. Fur-
ther, we do also assume that the construction of this market, with primary
tradeable securities being a family of bonds and a certain number of other
assets (stocks), is already arbitrage free. Let again be

πt(X) = BtIEQ
(
XB−1

T |Ft
)
, ∀t ∈ [0, T ],

the no-arbitrage price of an attainable contingent claim X, with savings
account Bt as in Section 2.2.

Definition 10 (forward contract). [37, Def. 13.2.1] For fixed 0 ≤ t ≤
T ≤ T ∗ and a time T contingent claim X, a forward contract written at
t is represented by the time T contingent claim GT = X − FX(t, T ) which
satisfies:

(i) FX(t, T ) is a Ft-measurable random variable;

(ii) the arbitrage price at time t of GT equals zero, i.e., πt(GT ) = 0.

The random variable FX(t, T ) is called the forward price of a contingent
claim X at t which settles at T . In particular, X may be defined as a
preassigned amount of the underlying asset to be delivered at settlement, i.e.
one share of a stock X = ST or a ZCB X = B(T, U) of maturity U ≥ T .

To express the forward price of a claim X in terms of its arbitrage price
πt(X) and B(t, T ) we observe, by simply using the above definition, that

πt(GT ) = BtIEQ
(
GTB

−1
T |Ft

)
= Bt

[
IEQ
(
XB−1

T |Ft
)
− FX(t, T )IEQ

(
B−1
T |Ft

)]
= 0,

2In our case this is the Hull-White process.
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and further

FX(t, T ) =
IEQ
(
XB−1

T |Ft
)

IEQ
(
B−1
T |Ft

) =
πt(X)

B(t, T )
.

Consequently, if the asset to be delivered is a stock the forward price equals

FST (t, T ) =
St

B(t, T )
, ∀t ∈ [0, T ].

Definition 11 (forward martingale measure). [37, Def. 13.2.2] An equival-
ent martingale measure QT on (Ω,FT ) to Q, with Radon-Nikodým derivative

dQT

dQ
=

B−1
T

IEQ
(
B−1
T

) =
1

BTB(0, T )
, Q− a.s.,

is called forward martingale measure for the settlement date T .

Notice, if the Radon-Nikodým derivative is restricted to the σ-field Ft, it
satisfies

ηt =
dQT

dQ|Ft
= IEQ

(
1

BTB(0, T )
|Ft
)

=
B(t, T )

BtB(0, T )
, ∀t ∈ [0, T ].

Furthermore, if the bond price is driven by 3.3.2, we have

ηt = exp

(∫ t

0

b(u, T ) · dW ∗
u −

1

2

∫ t

0

|b(u, T )|2du
)
,

and the process

W T
t = W ∗

t −
∫ t

0

b(u, T )du, ∀t ∈ [0, T ],

follows a standard Brownian motion under QT . Now the forward price can be
expressed in terms of the conditional expectation under the forward measure.

Lemma 3. [37, Lem. 13.2.2] For an QT -integrable attainable contingent
claim X settling at T , the forward price at t for the time T equals

FX(t, T ) = IEQT (X|Ft) , ∀t ∈ [0, T ].

Particularly, the forward price process FX(t, T ), t ∈ [0, T ] follows a martin-
gale under QT .

Clearly, if the asset is again a stock, we have FS(t, T ) = IEQT (ST |Ft).
More generally, the relative price follows a local martingale under QT , provided
that the price of a bond maturing at T is taken as a numeraire. Finally, we
can establish a version of the risk neutral valuation formula from Proposition
1 which fits to stochastic interest rates.

29



Lemma 4 (forward risk neutral valuation formula). [37, Lem. 13.2.3] The
arbitrage price of an attainable contingent claim X settling at T is given by

πt(X) = B(t, T )IEQT (X|Ft) , ∀t ∈ [0, T ].

With this result we can use Fourier techniques to derive a simple option
valuation formula. Let us first define the Fourier transform of an integrable
function and see how it is linked to the characteristic function of a process.

3.3.2 Fourier transform and characteristic function

Definition 12 (Fourier transform and inversion). For u ∈ R the Fourier
transform of a piecewise continuous function f(x) is defined as

f̂(u) = F [f(x)] =

∫
R
eiuxf(x)dx,

where f(x) has to be integrable, i.e.
∫
R |f(x)|dx < ∞. Conversely, given

the transform f̂(u), the original function can be recovered using the Fourier
inversion given through:

f(x) =
1

2π

∫
R
e−iuxf̂(u)du.

Remark: We will later see that it is necessary to generalize this definition
to the whole complex plane. For z ∈ C, Im z 6= 0 the function f̂(z) is called
the generalized Fourier transform of f . The generalized Fourier transform
then is inverted by integrating along a straight line parallel to the real axis
within the strip of regularity

f(x) =
1

2π

∫ iv1+∞

iv1−∞
e−izxf̂(z)dz, z = u+ iv ∈ Sf ,

with constant Im ẑ = v1 where ẑ ∈ Sf and Sf is the strip in which f̂ is
regular.

Definition 13 (characteristic function (ChF)). For c ∈ C with a < Im z < b,
the characteristic function of the process Xt is defined as

φt(z) = IE(exp(izXt)).

Now say pt(x)dx = IP(Xt ∈ {dx}) is the transition density for a process
to reach Xt = x after time t. For a < Im z < b, the ChF of the process Xt is
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identical to the ChF of its transition density pt(x), which is the generalized
Fourier transform of it:

φt(z) = F [pt(x)] =

∫
R

exp(izx)pt(x)dx, a < Im z < b. (3.3.3)

Conversely the transition density can be restored using the inverse Fourier
transform

pt(x) = F−1[φt(z)] =
1

2π

∫ iv+∞

iv−∞
exp(−izx)φt(z)dz, v ∈ (a, b).

The ChF has to be regular3 in a strip parallel to the real axis to compute
option prices.

Theorem 5 (Lukacs). [33, Th. 7.1.1] A ChF φ(z) that is regular in the
neighborhood of z = 0, is also regular in a strip parallel to the real axis and
can be represented as a Fourier integral in it. This strip is either the whole
z-plane, or it has one or two boundary lines. The purely imaginary points
on that boundary of the strip, if its not the whole z-plane, are singular points
of φ(z).

For a good stock market model the ChF φt(z) must exist at z = 0
and z = −i, hence regular in the strip SX = {z : a < Im z < b}, where
a ≤ −1 and b ≥ 0. The first one is trivial. For the second one, with
S̃t = S̃0 exp{Xt} and X0 = 1, known as martingale identity, one observes

that φt(−i) = IE(exp(−i2Xt)) = IE(exp(Xt)) = 14 for a martingale S̃t. We
consider only good models in that sense.

3.3.3 Fourier transform of payoff functions

We have seen that ChFs typically have a z-plane strip in which they are
regular. The key to Lewis’ [30] approach is, that this is also true for typical
payoff functions. Lets take, for example, a call option and set x = lnST . The
payoff function reads w(x) = (ex−K)+, with strike K, and so its generalized
Fourier transform ŵ(z) = F [w(x)], z ∈ C is by a simple integration

ŵ(z) =

(
exp((iz + 1)x)

iz + 1
−K exp(izx)

iz

)∣∣∣∣∞
x=lnK

.

3A complex function of a complex variable is analytic in a region if it has a derivative
at every point in that region. It is called single valued if it has the same value at every
point. If it’s both analytic and single valued in a region it is called regular.

4For processes with IE(expXt) < ∞ this normalization can be achieved with a drift
adjustment.
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The upper limit x =∞ does not exist for all z ∈ C. Applying the restriction
Im z > 1, however, the transform ŵ(z) is well defined and regular in that
strip. Thus we have

ŵ(z) = − K1+iz

z2 − iz
, Im z > 1, (3.3.4)

for a call option. The same calculations can be done, e.g., for put options or
various other standard payoff functions.

Remark: Now we see why it is important to admit a complex valued trans-
form variable. Typical option payoffs have generalized Fourier transforms
and exist in a strip, i.e., z ∈ Sw, just like a ChF. Note also, that so far both
regions of regularity (from the ChF and the payoff function) do not neces-
sarily overlap. The next Section clarifies this necessity for deriving a option
valuation formula.

Inverting the generalized Fourier transform of the payoff function, is again
done by integrating along a straight line parallel to the real axis within the
strip of regularity.5 Fix v = Im z, then

w(x) =
1

2π

∫ iv+∞

iv−∞
e−izxŵ(z)dz, z ∈ Sw.

3.3.4 A simple option valuation formula

We have mentioned already in the beginning of this chapter that there is
need for some adaptions towards Lewis [30] formula. The non correlated,
even constant, interest rate he uses makes a lot of things easier. When having
a correlation between S and r one can not simply move the discounting in
(3.3.1) in front of the expectation. As discussed in Section 3.3.1, we perform
a switch to the forward stock price given through

Ft =
St

B(t, T )
, (3.3.5)

where B(t, T ) is the price of a ZCB at time t paying 1 at maturity T . With
this switch from the spot measure Q, to the T -forward measure QT , we
decouple the discounting from (3.3.1), and hence the value of the option
becomes:

V (St) := πt(w(FT )) = B(t, T ) IEQT (w(FT )).

5Later we will vary the integration contour to derive different variations of option
valuation formulas. By Cauchy’s theorem this can be done if the contour extends to ±∞
as long as we remain within the strip of regularity.
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Assume that under the forward pricing measure the forward stock price
evolves as FT = F0 exp(XT ), where exp(XT ) is a martingale under QT with
IE(exp(XT )) = 1. Now let f0 = lnF0 and fT = lnFT and define the distri-
bution function for the log forward price to reach a final value after time T
as

QT (x, f0) = IP(fT ≤ x|f0) =

∫ x

−∞
qT (ξ, f0)dξ.

Remember from (3.3.3) that the ChF φT (z) of the process XT is the gen-
eralized Fourier transform of the transition density pT (x). Its distribution
is:

PT (x) = IP(XT ≤ x) =

∫ x

−∞
pT (ξ)dξ.

Now
IP(fT ≤ x|f0) = IP(f0 +XT ≤ x|f0) = IP(XT ≤ x− f0),

which means that QT (x, f0) = PT (x− f0) and by differentiating with respect
to x, the densities are qT (x, f0) = pT (x− f0). Taking the Fourier transform
of qT (x, f0) yields

q̂T (z, f0) =

∫ ∞
−∞

exp(izx)qT (x, f0)dx =

=

∫ ∞
−∞

exp(izx)pT (x− f0)dx =

=

∫ ∞
−∞

exp(iz(x′ + f0))pT (x′)dx′ = p̂T (z) exp(izf0),

with x′ = x−f0. Recalling that φT (z) ≡ p̂T (z) we find, for z within the strip
SX with a < Imz < b and a ≤ −1, b ≥ 0, that φT (z) exp(izf0) = q̂T (z).

We have seen that both, the ChF φt(z) and the transform of a typical
payoff function ŵ(z) have their own strips of regularity. Denote by S∗ the
conjugate strip consisting of all z = u− iv, if S contains all z = u+ iv.

Theorem 6 (option valuation). Let Ft be the forward price as in (3.3.5).
Assume that w(efT ) ≥ 0, with fT = lnFT , is a European style payoff func-
tion which is Fourier integrable in a strip and bounded for |fT | < ∞, with
transform ŵ(z), z ∈ Sw. Further, let the dynamics of the model be given as
Ft = F0 exp(Xt), where exp(Xt) is a martingale. The process XT has an
analytic characteristic function φT (z), regular in the strip SX = {z = u+ iv :
v ∈ (a, b), a < −1 and b > 0}. Then, if we assume that SV = Sw ∩S∗X is not
empty, the option value under the forward price is given through:

V (F0) =
1

2π

∫ iv1+∞

iv1−∞
e−izf0φXT (−z)ŵ(z)dz, (3.3.6)
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with z ∈ SV and a fixed v1 = Im ẑ, ẑ ∈ SV . Consequently, the spot option
value is

V (S0) = B(0, T )V (F0). (3.3.7)

This formula provides a starting point with many variations.

Proof. The option value under the forward measure is given as the expect-
ation of the payoff function under the forward price. Straightforward we
obtain:

V (F0) = IE(w(lnFT )) =

=

∫ ∞
−∞

w(fT )qT (fT )dfT =

=

∫ ∞
−∞

1

2π

∫ iv+∞

iv−∞
e−izfT ŵ(z)dzqT (fT )dfT =

=
1

2π

∫ iv+∞

iv−∞

∫ ∞
−∞

e−izfT qT (fT )dfT︸ ︷︷ ︸
q̂T (−z)=φXT (−z) exp(−izf0)

ŵ(z)dz =

=
1

2π

∫ iv+∞

iv−∞
e−izf0φXT (−z)ŵ(z)dz,

as long as z ∈ SV . By simply switching back to the spot price we find
V (S0) = B(0, T )V (F0), which completes the proof.

Remark: If we take the result in (3.3.6) and compare it with the integral
representation of the expectation we see that,∫ ∞

−∞
w(fT )qT (fT )dfT =

1

2π

∫ iv1+∞

iv1−∞
ŵ(z)q̂T (−z, f0)dz, (3.3.8)

can be interpreted as Parseval style identity as found in Lewis [30, Th. 3.1
and Lem. 3.3].

Corollary 1 (call option formula). Under the assumptions of Theorem (6),
for a European call with payoff w(ST ) = (ST −K)+ the option value is given
as:

V (S0) = −KB(0, T )

2π

∫ iv1+∞

iv1−∞
e−iz ln(F0/K)φXT (−z)

dz

z2 − iz
. (3.3.9)

Proof. Recall the Fourier transform for the payoff function of a call from
(3.3.4). Since it is regular for Im ẑ > 1 with ẑ = u+ iv1, the strip SV is non
empty and simply plugging the transform into (3.3.6) and (3.3.7) yields the
result.
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Contour variations

With help of the residue calculus from Appendix B (Theorem 16 and Corol-
lary 3), variations of the derived formulas can be obtained. Since the integ-
rand in (3.3.9) is regular throughout S∗X , except for simple poles at z = 0
and z = i, we can move the integration contour to, let’s say, v2 ∈ (0, 1). By
doing so we pick up the residue at z = i.

Now say f(z) is the integrand in formula (3.3.9). Consequently, from the
residue Theorem 16, we know that for sufficiently large r > 0 we have:∫ iv1+r

iv1−r
f(z)dz +

∫ iv2+r

iv1+r

f(z)dz +

∫ iv2−r

iv2+r

f(z)dz +

∫ iv1−r

iv2−r
f(z)dz = 2πiResif.

Since f(z) is zero at∞, the second and fourth integral vanish if we let r →∞,
which yields ∫ iv1+∞

iv1−∞
f(z)dz −

∫ iv2+∞

iv2−∞
f(z)dz = 2πiResif,

where we flipped the integration path in the second integral. According to
Corollary 3, the residue at z = i, for our function f with simple zero in the
denominator, is

Resif = −KB(t, T )

2π

e−i
2 ln(F0/K)φ(−i)

2i− i

= −B(t, T )F0

2πi
,

and hence, after bringing the second integral to the right side, we obtain

V (S0) = B(0, T )F0 −
KB(0, T )

2π

∫ iv1+∞

iv1−∞
e−izf0φXT (−z)

dz

z2 − iz
, v2 ∈ (0, 1).

Finally by choosing, the symmetrically between the poles lying v2 = 1/2, the
formula becomes

V (S0) = B(0, T )

[
F0 −

1

π

√
F0K

∫ ∞
0

Re

{
eiu ln(F0/K)φXT (u− i

2
)

}
du

u2 + 1
4

]
.

(3.3.10)

35



Chapter 4

Autocallables in the HHW
model with correlated
stochastic interest rates

In the previous chapters we have discussed market models which suit the
needs of an equity-interest-rate hybrid product, like the in Chapter 1 presen-
ted autocallables. Subsequently we have introduced pricing techniques, ap-
plicable to this challenging product and model combination. Further, despite
the tricky yet desired price-interest-rate correlation, also a method to calib-
rate the parameters of the model to market data was derived in Section 3.3.4
from the previous Chapter. The current chapter shows how these concepts
will be implemented within our framework. Firstly, an efficient MC approach,
used only as a comparison to the following, much more efficient, PDE solu-
tion is presented. Secondly, we will show how to use Fourier techniques to
calibrate the models’ parameters to market data.

4.1 An efficient MC simulation scheme

Our scheme is based on a simple and efficient simulation scheme of the Heston
stochastic volatility model from Andersen [3], combined with an exact way
of sampling from the Hull-White model. We will use his QE (quadratic
exponential) algorithm for the variance process and extend the formula for
the price discretization with the stochastic interest rate component, which
will be simulated based on the Hull-White decomposition.
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4.1.1 Simulation scheme for the volatility process

For a mean reverting square-root diffusion process like in (2.1.4),

dvt = κ(θ − vt)dt+ σ1

√
vtdWt,

we know the following analytical results as in [3] Proposition 1 and Corollary
1.

Proposition 3. [3, Prop. 1] Take the cumulative distribution function of
the non-central chi-square distribution with ν degrees of freedom and non-
centrality parameter λ,

Fχ′2(z; ν, λ) = e−λ/2
∞∑
j=0

(λ/2)j

j!2ν/2+jΓ(ν/2 + j)

∫ z

0

zν/2+j−1e−x/2dx,

and set

d =
4κθ

σ2
1

,

n(t, T ) =
4κe−κ(T−t)

ε2(1− e−κ(T−t))
, T > t.

The distribution of v(T ), conditional on v(t), is then,

IP(v(T ) < x|v(t)) = Fχ′2

(
xn(t, T )

e−κ(T−t) ; d, v(t)n(t, T )

)
.

Corollary 2. [3, Cor. 1] For T > t, v(T ) has, conditional on v(t), the first
two moments

IE(v(T )|v(t)) = θ + (v(t)− θ)e−κ(T−t),

Var(v(T )|v(t)) =
v(t)σ2

1e
−κ(T−t)

κ

(
1− e−κ(T−t))+

θσ2
1

2κ

(
1− e−κ(T−t))2

.

In Figure (4.1), the exact distribution of v is compared to a Gaussian and
lognormal who were matched to the first two moments of v. Clearly, neither
of them is a real good approximation for low values of the variance process.
Unfortunately v has a strong affinity for the area around zero volatility and in
many practical applications can even reach the origin, since often the Feller
condition is not satisfied, i.e., 2κθ << σ2

1.
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Figure 4.1: [3, Fig. 1] Example of exact distribution of v compared to a Gaussian
and lognormal matched to the first two moments of v. The parameters are T =
0.1, v(0) = η = 0.04, κ = 0.5, and ε = 1.

The non-central chi-square distribution approaches a Gaussian one for a
non-centrality parameter approaching infinity. With a non-centrality para-
meter of v(t)n(t, t+ ∆), Proposition 3 above yields that a Gaussian variable
with its first two moments like in the last Corollary would be a good proxy
for large v(t). For small v(t), the non-centrality vanishes and its distribution
becomes proportional to that of a central chi-square distribution. Recalling
the density of a central chi-square distribution with ν degrees of freedom,

fχ2(x; ν) =
1

2ν/2Γ(ν/2)
e−x/2xν/2−1. (4.1.1)

With the Feller condition not being satisfied the term xν/2−1 implies a large
density of v(t + ∆) around zero, for small v(t). Approximating it with a
Gaussian variable is clearly not accurate in this case.

The QE scheme is designed to address this weakness by dividing the prob-
lem into two schemes that work well for each ends. At first we concentrate on
the high values of v(t). Andersen [3] uses an observation that a non-central
Chi-square distribution with moderate or high non-centrality parameter can
be well represented by a power function applied to a Gaussian variable. For
sufficiently large values of v̂(t) we have

v̂(t+ ∆)
d
≈ a(b+ Zv)

2, (4.1.2)

with Zv standard Gaussian, and a and b, who depend on v̂(t), determined
by moment matching. We note that a cubic transformation of Zv would be
preferable. However, it allows negative values for the v-process, and therefore
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the above quadratic representation is preferred. Unfortunately, the scheme
does not work well for low values of v̂(t); it even fails to work for sufficiently
low values (see Remark after Proposition 4). Now take a look at the asymp-
totic density of 4.1.1 if one lets x → 0. Inspired by this, Andersen [3] uses
an approximated density for v̂(t+ ∆), conditional on small v̂(t), of the form

IP (v̂(t+ ∆) ∈ [x, x+ dx] |v̂(t))
d
≈
(
pδ0 + β(1− p)e−βx

)
dx, x ≥ 0, (4.1.3)

where δ is the Dirac delta. With p ∈ [0, 1] and β ≥ 0 one can easily verify
that this is a valid density function. The strength of the probability mass
at the origin is defined by p. This mass has an exponential tail similar to
that of the central chi-square density. To sample from (4.1.3) one simply
needs to integrate this density to get its cumulative distribution function
and calculate the inverse.

Ψ(x) = IP (v̂(t+ ∆) ≤ x|v̂(t)) = p+ (1− p)
(
1− e−βx

)
, x ≥ 0,

with its inverse

Ψ−1(u) = Ψ−1(u; p, β) =

{
0, 0 ≤ u ≤ p,

β−1ln
(

1−p
1−u

)
, p < u ≤ 1.

By applying the inverse distribution function method we get the sampling
scheme

v̂(t+ ∆) = Ψ−1(Uv; p, β) (4.1.4)

where Uv is uniformly distributed and p and β again depend on v̂(t). This
scheme is simple and fast to execute. Figure (4.2) shows the quality of the
two estimates, (4.1.2) for high and (4.1.4) low values respectively. The only
thing left to do now is determine the constants a, b, p, β, which is done by
moment matching techniques, and a rule for when to switch between both
schemes.

Computing a and b:

Proposition 4. Set

m = θ + (v̂(t)− θ)e−κ∆,

s2 =
v̂(t)σ2

1e
−κ∆

κ

(
1− e−κ∆

)
+
θσ2

1

2κ

(
1− e−κ∆

)2
,

ψ =
s2

m2
.
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Figure 4.2: [3, Fig. 4] Quality of estimators - the parameters are as in figure (4.1),
except for v(0) = 0.01 in the left and 0.09 in the right picture.

Let v̂(t + ∆) be as in (4.1.2). With Corollary 2, IE(v̂(t + ∆)|v̂(t)) = m and
Var(v̂(t+ ∆)|v̂(t)) = s2. Then

b2 = 2ψ−1 − 1 +
√

2ψ−1
√

2ψ−1 − 1 ≥ 0,

a =
m

1 + b2
,

for ψ ≤ 2.

Proof. For a proof see [3, Propositions 4, 5 and Corollary 1].

Remark: It can easily be seen that this only works for ψ ≤ 2. With higher
values of ψ, (meaning low values of V̂ (t)), this scheme is failing.

Computing p and β:

Proposition 5. Set m, s, ψ as in proposition (4) and assuming ψ ≥ 1. Then

p =
ψ − 1

ψ + 1
∈ [0, 1) ,

β =
1− p
m

=
2

m(ψ + 1)
> 0.

For v̂(t + ∆) as in (4.1.4), then again IE(v̂(t + ∆)|v̂(t)) = m and Var(v̂(t +
∆)|v̂(t)) = s2 as in Proposition 4 before.

Proof. For a proof see [3, Propositions 4, 6 and Corollary 1].
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Switching rule:

The quadratic and exponential sampling schemes can only be moment matched
for ψ ≤ 2 respectively ψ ≥ 1. Luckily these domains overlap, meaning at
least one of both can always be used. The most natural approach now is to
introduce some level ψc ∈ [1, 2] where both domains overlap. Since m and s2

depend on v(t), this level shows us when to use which scheme at every time
step.

QE-algorithm:

The following algorithm summarizes how to perform one simulation step.

1: Choose an arbitrary level ψc ∈ [1, 2] for the switching rule.
2: Given v̂(t), compute m, s2 and ψ from Proposition 4.
3: Draw a standard normal random variable Zv and compute its corres-

ponding uniform Uv = Φ(Zv)
1.

4: if ψ ≤ ψc then
5: Compute a and b from Proposition 4.
6: Compute v̂(t+ ∆) with (4.1.2) and Zv.
7: else
8: Compute β and p from Proposition 5.
9: Compute v̂(t+ ∆) with (4.1.4) and Uv.

10: end if

Note that the computations in this algorithm involve a lot of time independ-
ent calculations. To speed up the procedure they should be pre-cached before
running a loop over all time steps. Also, due to the fact that the exact choice
of ψc has very little effects on the quality of the scheme, it is set to ψc = 1.5,
as in [3, Ch. 3.2.3].

4.1.2 Simulation scheme for the short rate process

The Hull-White interest rate process,

drt = a(b(t)− rt)dt+ σ2dWt,

can be simulated very easily and efficiently. In order to do this we will first
decompose it as in Proposition 2, into

rt = r̃t + ψt, (4.1.5)

1Φ is the cumulative standard normal distribution function (CDF), which simply trans-
forms a N(0, 1) random variable into a uniformly U(0, 1) one.
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with
dr̃t = −ar̃tdt+ σdWt, with r̃0 = 0, (4.1.6)

and

ψt = r0e
−at + a

∫ t

0

e−a(t−s)b(s)ds. (4.1.7)

For the remaining stochastic Ornstein-Uhlenbeck part (4.1.6) the following
is very well known:

Theorem 7. [39, Th. 1] The Ornstein-Uhlenbeck stochastic process as in
(4.1.6) is normally distributed with expectation and variance

IE (r̃(t)|r̃(s)) = r̃(s)e−a(t−s),

Var (r̃(t)|r̃(s)) =
σ2

2

2a

(
1− e−2a(t−s)) .

Hence, it can be simulated exactly. The function b(t) is supposed to
reflect the market’s term structure, which is usually given as a discount curve
P (0, Ti) with maturities Ti. One can easily calculate the spot rates b(t) from
the discount curve via the formula

b(T ) = f(0, T ) +
1

a

∂

∂T
f(0, T ) +

σ2
2

2a2

(
1− e−2aT

)
, (4.1.8)

as in Musiela [37, p. 294], where f(0, T ) is the instantaneous forward rate,
which is defined as

f(0, T ) = −∂ lnP (0, T )

∂T
.

We will approximate the forward rates f(0, T ) with the left sided difference

quotient, whereas the derivative ∂f(0,Ti)
∂Ti

is approximated with the central
difference quotient, which gives a smoother result. For the spot rates b(t)
with t ∈ (Ti, Ti+1) a cubic interpolation should be sufficient.

Finally, the Hull-White decomposition (4.1.5) combined with Theorem 7
and equation (4.1.8) give a fairly handy set of formulas to efficiently simulate
the interest rate process, as described by the following algorithm:

Exact simulation of rt:

1: Calculate the spot rates from the given market discount curve with for-
mula (4.1.8).

2: Draw a standard normal random variable Zr.
3: Compute r̃(s + ∆) from r̃(s) with expectation and variance as given in

Theorem 7.
4: Compute the deterministic part ψt with formula (4.1.7).
5: Compute r(t) = r̃(t) + ψt.
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4.1.3 Simulation scheme for the price process

Recall from Section 2.3.1 that we can write the three correlated Brownian
motions W S

t ,W
v
t ,W

r
t in terms of independent ones with the Cholesky de-

composition of the correlation matrix as W r
t

W v
t

W S
t

 =

 1 0 0
0 1 0

ρSr ρSv
√

1− ρ2
Sv − ρ2

Sr

 Z1
t

Z2
t

Z3
t

 .

Subsequently, we will propose a discretization scheme as in Andersen [3, Ch.
4.2] joined by the interest rate dynamics. After performing a log transform-
ation (xt = lnSt) to the price process, using Itô’s formula, and plugging in
the correlation structure from before, we obtain for the log price process the
following exact representation:

dx(t) = (r(t)− 1

2
v(t))dt+

√
v(t)dW S

t

= (r(t)− 1

2
v(t))dt+

√
v(t)

[
ρSrdZ1(t) + ρSvdZ2(t) +

√
1− ρ2

Sv − ρ2
SrZ3(t)

]
Integrating the independent HHW SDEs yields:

v(t+ ∆) = v(t) +

∫ t+∆

t

κ(θ − v(u))du+ σ1

∫ t+∆

t

√
v(u)dW v

u

r(t+ ∆) = r(t) +

∫ t+∆

t

a(b(T − u)− r(u))du+ σ2

∫ t+∆

t

dW r
u

x(t+ ∆) = x(t) +

∫ t+∆

t

(r(u)− 1

2
v(u))du

+ ρSr

∫ t+∆

t

√
v(u)dW r

u + ρSv

∫ t+∆

t

√
v(u)dW v

u

+
√

1− ρ2
Sv − ρ2

Sr

∫ t+∆

t

√
v(u)dZ3(u)
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Isolating
∫ t+∆

t

√
v(u)dWv(u) from the first equation and substituting it into

the third we find

x(t+ ∆) = x(t) +

∫ t+∆

t

(r(u)− 1

2
v(u))du

+ ρSv
1

σ1

(
v(t+ ∆)− v(t)− κθ∆ + κ

∫ t+∆

t

v(u))du

)
+ ρSr

∫ t+∆

t

√
v(u)dW r

u +
√

1− ρ2
Sv − ρ2

Sr

∫ t+∆

t

√
v(u)dZ3

u

= x(t) +
ρSv
σ1

(v(t+ ∆)− v(t)− κθ∆)

+

∫ t+∆

t

r(u)du+

(
κρSv
σ1

− 1

2

)∫ t+∆

t

v(u)du

+ ρSr

∫ t+∆

t

√
v(u)dW r

u +
√

1− ρ2
Sv − ρ2

Sr

∫ t+∆

t

√
v(u)dZ3

u.

The time integrals for v(u) and r(u) are approximated by the simple quad-
rature ∫ t+∆

t

v(u)du ≈ ∆ [γ1v(t) + γ2v(t+ ∆)]

for constants γ1 and γ2. Since W r is independent of v, conditional on v(t) and∫ t+∆

t
v(u)du, the two Itô integrals are Gaussian with mean zero and variance∫ t+∆

t
v(u)du, hence they become∫ t+∆

t

√
v(u)dWr(u)

d
≈
√

∆
√
γ1v(t) + γ2v(t+ ∆)Zr,

where Zr is a standard normal random variable independent of v. These
approximations yield

x̂(t+ ∆) = x̂(t) +
ρSv
σ1

(v(t+ ∆)− v(t)− κθ∆) + ∆ (γ1r(t) + γ2r(t+ ∆))

+ ∆

(
κρSv
σ1

− 1

2

)
(γ1v(t) + γ2v(t+ ∆))

+
√

∆ρSr
√
γ1v(t) + γ2v(t+ ∆)Z1

+
√

∆
√

1− ρ2
Sv − ρ2

Sr

√
γ1v(t) + γ2v(t+ ∆)ZS.

Finally, we use the central approximation γ1 = γ2 = 1
2

for the integrals and
replace v(t) and r(t) by their approximations v̂(t) and r̂(t). After rearranging
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and collecting terms we get the following prefered expression for the log price

x̂(t+ ∆) = x̂(t) +K0 +K1 (r̂(t) + r̂(t+ ∆)) +K2v̂(t) +K3v̂(t+ ∆)

+K4

√
v̂(t) + v̂(t+ ∆)Zr +K5

√
v̂(t) + v̂(t+ ∆)ZS,

(4.1.9)

with

K0 = −ρSvκθ∆
σ1

, K2 =

(
1

2
∆

(
κρSv
σ1

− 1

2

)
− ρSv

σ1

)
, K4 =

√
1

2
∆ρSr,

K1 =
1

2
∆, K3 =

(
1

2
∆

(
κρSv
σ1

− 1

2

)
+
ρSv
σ1

)
, K5 =

√
1

2
∆
√

1− ρ2
Sv − ρ2

Sr.

Note that the Ki depend also on the time step. By combining the above
scheme for the log price with the two schemes for the spot rate and volatility
we have a efficient way of sampling from the HHW process.

Algorithm for the log price xt:

1: Given r(t), v(t) and x(t),
2: Compute r(t+ ∆) from r(t).
3: Compute v(t+ ∆) from v(t).
4: Compute x(t+ ∆) from equation (4.1.9).

4.1.4 Convergence and consistency considerations

To analyse the convergence of the x process is complicated due to the fact
that high order moments may not exist. Andersen [2, Prop. 3.1] shows for
which maturity and model parameters the k-th moment IE(xkT ), for k > 1, is
finite. Such analysis is for example performed in Lord [32], yet other authors
turn to a simpler concept, namely the one of weak consistency. There is a
strong connection between the two, as shown in [28, p. 328]. However, for a
proof on the weak consistency we refer the interested reader to [3, Prop. 10].
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4.2 An ADI finite difference approach for the

HHW PDE

We have derived the HHW PDE already in Section 3.2.2, which is given as

∂u

∂t
=

1

2
s2v

∂2u

∂s2
+

1

2
σ2

1v
∂2u

∂v2
+

1

2
σ2

2

∂2u

∂r2

+ ρSvσ1sv
∂2u

∂s∂v
+ ρSrσ2s

√
v
∂2u

∂s∂r

+ rs
∂u

∂s
+ κ(η − v)

∂u

∂v
+ a(b(T − t)− r)∂u

∂r
− ru,

(4.2.1)

with u = u(s, v, r, T − t), s > 0, v > 0,−∞ < r < ∞ and 0 < t ≤ T . The
HHW PDE is a time dependent convection diffusion equation on a three-
dimensional spatial unbounded domain. Initial and boundary conditions
complete the PDE. Those are given by the specific option under considera-
tion. If the volatility v → 0 we see that all the terms in front of derivatives
of the second order, except the one from ∂2u/∂r2, disappear. The correla-
tions between the three Brownian motions yield the mixed spatial derivative
terms. Furthermore, we notice that the coefficient of ∂u/∂r depends on the
time.

Solutions in (semi) closed form only exist for plain vanilla style options.
For the numerical solution we therefore consider the following approach based
on finite differences. First the PDE is discretized in the spatial variables,
(s, v, r), leading a system of stiff ODEs (ordinary differential equations). The
resulting semi-discrete system is then solved by application of a suitable time
discretization method. Three dimensions yield a very large semi-discrete sys-
tem, with a high bandwidth also. Simple (and pure) explicit or implicit time
discretization schemes are not suitable to tackle those challenges. Therefore,
splitting schemes of the ADI (alternate direction implicit) type have to be
used. Those are known to perform very well for PDEs of the above type.

In the following subsection we state the specific initial and boundary
conditions for our option. The finite difference scheme and its spatial dis-
cretization on a non uniform grid will be presented subsequently, followed by
the chosen ADI scheme, which will be explained in the corresponding Section
4.2.4.

46



4.2.1 Initial and boundary conditions

For the introduced product with payoff function as in Figure 1.1, the initial
condition is given as

u(s, v, r, T ) =

{
P4, s ≥ K4,

s, s < K4,
(4.2.2)

where the last observation date T4 = T . The payoffs at the observation dates
Ti for i ∈ {1, 2, 3} serve as boundary conditions in the space dimensions.
Before stating them we first restrict the spatial domain to a bounded set
[0, Smax]× [0, Vmax]× [−Rmax, Rmax] with Smax, Vmax, Rmax sufficiently large.
Hence, we have
for s = 0

u(s, v, r, t) = 0, (4.2.3)

for s = Smax

u(s, v, r, t) =


B(r, t, T1)P1, t ≤ T1

B(r, t, T2)P2, T1 < t ≤ T2

B(r, t, T3)P3, T2 < t ≤ T3

B(r, t, T4)P4, T3 < t ≤ T4,

(4.2.4)

for v = Vmax

∂u

∂v
(s, v, r, t) = 0,

∂2u

∂v2
(s, v, r, t) = 0,

∂2u

∂s∂v
(s, v, r, t) =

∂2u

∂s∂r
(s, v, r, t) =

∂2u

∂v∂r
(s, v, r, t) = 0,

(4.2.5)

for r = ±Rmax
∂u

∂r
(s, v, r, t) = 0, (4.2.6)

and finally for t ∈ {T1, T2, T3}

u(s, v, r, t) =


P1, t = T1 and s ≥ K1

P2, t = T2 and s ≥ K2

P3, t = T3 and s ≥ K3.

(4.2.7)

The function B(r, t, Ti) again denotes the value of a ZCB, given that the short
rate at t equals r. Concerning the boundary condition at r = ±Rmax, it is
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easy to show that the ’rho’ of an European call option (sensitivity of option
price for small changes in the spot interest rate) vanishes for extreme values of
the spot interest rate in the Black Scholes model, and it is therefore plausible
that this holds for our model (2.3.1) as well. Further, at v = Vmax, the first
order derivative has been set to zero, as done by Haentjens and ’t Hout [18]
for up-and-out call options. All second order derivatives at this boundary
were also set to zero for convenience reasons. The other, Dirichlet boundary
conditions are given through the structure of the autocallable. Finally, the
boundary at v = 0 is simply treated by inserting v = 0 into the PDE (4.2.1).

4.2.2 Generating the spatial grid

For the spatial dimensions we use a nonuniform grid like in ’tHout & Haentjens
[18] or ’tHout & Foulon [23]. The goal is, of course, to have relatively many
grid points near the strikes Ki in the S-direction. This is done so as to reduce
numerical difficulties, where the payoff function w has discontinuous derivat-
ives, and because these are the regions of interest. Applying a non uniform
grid therefore improves the accuracy of the discretization over a uniform one.
We strictly follow the steps in [18, Ch. 2.2] except for splitting the domain
[0, Smax] into four parts for every strike Ki.

Let m1 be the number of grid points in the S-direction. Since only m1

4

points are created for every part of the domain we firstly need to take care
that m1 mod 4 = 0. The split subsets of the domain are given as [B1, B2] ∈
{
[
0, K1+K2

2

]
,
[
K1+K2

2
, K2+K3

2

]
,
[
K2+K3

2
, K3+K4

2

]
,
[
K3+K4

2
, Smax

]
}. Now let,

for every one of them, be d1 > 0 and equidistant points ξ0 < · · · < ξm1/4

given by

ξi = sinh−1(−Ki/d1) + i∆ξ, (0 ≤ i ≤ m1

4
),

where

∆ξ =
4

m1

[
sinh−1((B2 −B1 − (Ki −B1))/d1)− sinh−1(−(Ki −B1)/d1)

]
.

Transforming the equidistant points ξi to

si = Ki + d1 sinh(ξi), (0 ≤ i ≤ m1

4
),

gives a non uniform grid for each subset. Merging them then yields the grid
for the whole S-domain 0 = s0 < s1 < · · · < sm1 = Smax which concentrates
around the four barriers. The parameter d1 controls the fraction of points
that lie ’close’ to these barriers. We have chosen d1 = S0/100.

In the v- and r-direction we also define non uniform grids according to
Haentjens and ’t Hout [18] which concentrate around 0 and the initial value
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of the short rate process R0 respectively. Let again be m2 and m3 the number
of grid points in the spatial domains, d2, d3 > 0 and equidistant points η0 <
· · · < ηm2 and ζ0 < · · · < ζm3 be given through

ηj = j∆η (0 ≤ j ≤ m2),

∆η =
1

m2

sinh−1(Vmax/d2),

and

ζk = sinh−1((−Rmax −R0)/d3) + k∆̇ζ (0 ≤ k ≤ m3),

∆ζ =
1

m3

[
sinh−1((Rmax −R0)/d3)− sinh−1((−Rmax −R0)/d3)

]
.

Then the grid points 0 = v0 < v1 < · · · < vm2 = Vmax, respectively −Rmax =
r0 < r1 < · · · < rm3 = Rmax are given by

vj = d2 sinh(ηj) (0 ≤ j ≤ m2)

and
rk = R0 + d3 sinh(ζk) (0 ≤ k ≤ m3).

Like before the parameters d2, d3 control the fraction of points in the neigh-
borhood of v = 0 and r = R0.

To neglect the error made by restricting the spatial domain we set our
boundaries far enough from the regions of interest. In our implementation
we set Smax = 10S0, Vmax = 5 and Rmax = 1. Figure 4.3 shows an example of
grid points in all three spatial dimensions.

4.2.3 Finite difference discretization

Given an increasing sequence of grid points {xi}i∈Z and ∆xi = xi − xi−1 for
all i, first and second order derivatives for any given function f : R→ R are
approximated by the following finite difference formulas:

f ′(xi) ≈ α−2f(xi−2) + α−1f(xi−1) + α0f(x0), (4.2.8)

f ′(xi) ≈ β−1f(xi−1) + β0f(xi) + β1f(xi+1), (4.2.9)

f ′(xi) ≈ γ0f(x0) + γ1f(xi+1) + γ2f(xi+2), (4.2.10)

f ′′(xi) ≈ δ−1f(xi−1) + δ0f(xi) + δ1f(xi+1). (4.2.11)
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Figure 4.3: Example of the distribution of grid points - they concentrate around
the strike prices Ki, zero volatility and the initial short rate r0 respectively.

Approximations (4.2.8) and (4.2.10) are backward and forward schemes,
whereas (4.2.9) and (4.2.11) are central first and second order schemes re-
spectively. For the weights α{−2,−1,0}, β{−1,0,1}, γ{0,1,2}, δ{−1,0,1} we have

α−2 =
∆xi

∆xi−1(∆xi−1 + ∆xi)
, α−1 =

−∆xi−1 −∆xi
∆xi−1∆xi

, α0 =
∆xi−1 + 2∆xi

∆xi(∆xi−1 + ∆xi)
,

β−1 =
−∆xi+1

∆xi(∆xi + ∆xi+1)
, β0 =

∆xi+1 −∆xi
∆xi∆xi+1

, β1 =
∆xi

∆xi+1(∆xi + ∆xi+1)
,

γ0 =
−2∆xi+1 −∆xi+2

∆xi+1(∆xi+1 + ∆xi+2)
, γ1 =

∆xi+1 + ∆xi+2

∆xi+1∆xi+2
, γ2 =

−∆xi+1

∆xi+2(∆xi+1 + ∆xi+2)
,

δ−1 =
2

∆xi(∆xi + ∆xi+1)
, δ0 =

−2

∆xi∆xi+1
, δ1 =

2

∆xi+1(∆xi + ∆xi+1)
.

Note that the PDE (4.2.1) also has mixed derivative terms fxy(xi, yj) who
are treated by successively applying the central scheme (4.2.9) in x- and
y-directions. Those schemes possess a truncation error of second order on
smooth grids2 whenever the discretized function is often enough continuously
differentiable.

Considering the two Dirichlet boundary conditions (4.2.3) and (4.2.4) at

2The term smooth refers to the function used to generate the non uniform grid.
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the boarders s = 0 and Smax, our relevant set of grid points is

G = {(si, vj, rk) : 1 ≤ i ≤ m1 − 1, 0 ≤ j ≤ m2, 0 ≤ k ≤ m3}.

We replace every spatial derivative by its corresponding central scheme, ex-
cept for the following regions:

• At v = 0 we simply set this value in the HHW PDE. Except for the
first spatial derivative ∂u/∂v all other terms in the v-direction vanish.
For ∂u/∂v we then use the forward scheme (4.2.10), independently of
whether or not the Feller condition holds.

• In the region v > η we apply the backward scheme (4.2.8) for the
derivative ∂v/∂v. It reduces spurious oscillations in the FD solution
when σ1 is small. Central schemes often produce oscillations making
one sided schemes preferable.

• At the boundaries r = ±Rmax the Neumann conditions (4.2.6) give
∂u/∂r. It follows that the mixed derivative terms ∂2u/∂s∂r and ∂2u/∂v∂r
vanish there. The second order derivative ∂2u/∂r2 is approximated us-
ing the central scheme (4.2.11) with virtual points rm3 + ∆rm3 > Rmax

and r0−∆r0 < −Rmax. Due to the vanishing derivative we can simply
copy the value from the boarder ±Rmax.

• In the r−direction the backward (4.2.8) and (4.2.10) schemes are used
if r < 0 respectively r > 0. This is, again, done to reduce spurious
oscillations.

After the discretization, of the three space dimensions, the initial-boundary
value problem of the HHW PDE transforms into an initial value problem for
a system of stiff ordinary differential equations (ODEs):

U ′(t) = A(t)U(t) + g(t), 0 ≤ t ≤ T and U(0) = U0,

with A(t) a given matrix and g(t) a given vector determined by the bound-
ary conditions. Ordered in a convenient way U(t) contains the approxima-
tions of the option values u(s, v, r, t) for every (s, v, r, t) ∈ G × [0, T ]. Ob-
viously U0 is directly obtained from the payoff function at t = T . It is
important here to mention that the size of this ODE system, which equals
m = (m1 − 1)(m2 + 1)(m3 + 1), is usually very large making it numerically
challenging. In our numerical tests we had to deal with sizes up to one mil-
lion. Due to this fact alternating direction implicit (ADI) schemes have been
introduced.
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4.2.4 Time discretization (ADI schemes)

Those huge sizes of linear equation systems reveal the downsides of standard
methods like the Crank-Nicolson scheme, it is therefore very important to
choose an appropriate time discretization scheme. In every new time step
the system of linear equations needs to be solved. The large bandwidth
of A(t) makes this computationally very demanding and therefore Crank-
Nicolson numerically inefficient. We have to watch out for a more effective
solution method. Dividing the matrix A(t) into simpler ones, containing only
derivatives in one spatial dimension, solves the problem of large bandwidths.
This is actually the key approach leading us to the ADI splitting schemes.
Here, we will decompose A(t) into four simpler matrices,

A(t) = A0 + A1 + A2 + A3(t),

containing the part coming from all the mixed derivative terms and the ones
from the s−, v−, and r−directions respectively. The remaining term ru from
equation 4.2.1 is distributed evenly over the latter three. In analogy to the
matrices we will split the vector into g(t) = g0(t)+g1(t)+g2(t)+g3(t). Note,
that for the matrices the time dependency of A(t) is only passed on to A3(t),
which makes A0, A1, A2 time independent. In contrary to standard European
call options, like in ’tHout & Haentjens [18], the time dependency of g(t) is
passed on to g0(t), g1(t), g2(t) and g3(t). This is due to the more complex
boundary conditions for autocallables. This requires a bit of adjustment in
the time discretization schemes which are in this paper. Finally, depending
on how one arranges the sequence of the solution vector U(t), the matrices
A1, A2, A3(t) are essentially tridiagonal or pentadiagonal.

Now we discretize time by setting tn = n · ∆t with ∆t = T/N , a fixed
integer N ≥ 1 and θ > 0 a given real parameter. These schemes generate
successive approximations Un to the solution U(tn) for n = 1, 2, . . . , N . Ad-
apting the schemes to our case where every spatial boundary vector is time
dependent we end up with the following ADI schemes:

Douglas (Do) scheme:
Y0 = Un−1 + ∆t(A(tn−1)Un−1 + g(tn−1)),

Yj = Yj−1 + θ∆t(AjYj − AjUn−1 + gj(tn)− gj(tn−1)), (j = 1, 2)

Y3 = Y2 + θ∆t(A3(tn)Y3 − A3(tn−1)Un−1 + g3(tn)− g3(tn−1)),

Un = Y3.

(4.2.12)
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Craig-Sneyd (CS) scheme:

Y0 = Un−1 + ∆t(A(tn−1)Un−1 + g(tn−1)),

Yj = Yj−1 + θ∆t(AjYj − AjUn−1 + gj(tn)− gj(tn−1)), (j = 1, 2)

Y3 = Y2 + θ∆t(A3(tn)Y3 − A3(tn−1)Un−1 + g3(tn)− g3(tn−1)),

Ỹ0 = Y0 + 1
2
∆t(A0Y3 − A0Un−1 + g0(tn)− g0(tn−1)),

Ỹj = Ỹj−1 + θ∆t(AjỸj − AjUn−1 + gj(tn)− gj(tn−1)), (j = 1, 2)

Ỹ3 = Ỹ2 + θ∆t(A3(tn)Ỹ3 − A3(tn−1)Un−1 + g3(tn)− g3(tn−1)),

Un = Ỹ3.

(4.2.13)
Modified Craig-Sneyd (MCS) scheme:

Y0 = Un−1 + ∆t(A(tn−1)Un−1 + g(tn−1)),

Yj = Yj−1 + θ∆t(AjYj − AjUn−1 + gj(tn)− gj(tn−1)), (j = 1, 2)

Y3 = Y2 + θ∆t(A3(tn)Y3 − A3(tn−1)Un−1 + g3(tn)− g3(tn−1)),

Ŷ0 = Y0 + θ∆t(A0Y3 − A0Un−1 + g0(tn)− g0(tn−1)),

Ỹ0 = Ŷ0 + (1
2
− θ)∆t(A(tn)Y3 − A(tn−1)Un−1 + g(tn)− g(tn−1)),

Ỹj = Ỹj−1 + θ∆t(AjỸj − AjUn−1 + gj(tn)− gj(tn−1)), (j = 1, 2)

Ỹ3 = Ỹ2 + θ∆t(A3(tn)Ỹ3 − A3(tn−1)Un−1 + g3(tn)− g3(tn−1)),

Un = Ỹ3.

(4.2.14)
It is easy to see that the A0 part is always treated in an explicit way. This

is due to its large bandwidth. All the other parts, however, are dealt with in
an implicit fashion. The main task, in every time step, is to solve systems of
linear equations, with coefficient matrices of the form (I−θ∆tAj) for j = 1, 2
and (I − θ∆tA3(tn), with I being the corresponding identity matrix. The
matrices A1, A2, A3(t) have a small bandwidth so we can do this efficiently
by LU factorization. Due to their time independence the matrices A1, A2 can
be created once beforehand. If the time step is constant we can do the same
with their LU factorizations L1, U1, L2, U2. For every new time step ∆t we
have to create a new factorization. Unfortunately, the time dependency of
A3(t) requires the whole procedure of creation and factorization to be done
in every time step.

4.2.5 Comments on stability and error analysis

The CS and MCS schemes are simply extensions of the Do scheme, whereas
the former are the same for θ = 1

2
. One can obtain the order of consistency (in
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the non stiff sense) of these schemes via Taylor expansion and some tedious
calculations. The order of the Do scheme is one for any given θ if the matrix
A0 is non zero. The CS scheme has order two for a θ of 1

2
, whereas the

MCS has it for any given parameter value. With the latter scheme one can
therefore choose θ to meet some additional requirements.

Stability is also very important when applying such numerical schemes.
For the above ADI schemes such results are discussed in detail by ’tHout
& Welfert [24]. To be precise, they are speaking of unconditional stability,
meaning without a restriction on the time step ∆t, and in the l2-norm. Lets
state the semidiscretized convection diffusion equation as

∂u

∂t
= c · ∇u+∇ · (D∇u),

with c and D = (dij) being a constant real vector and a constant positive
semidefinite real matrix. Due to the occurrence of mixed derivatives the
matrix D will be non diagonal.

Unfortunately, sufficient conditions on θ regarding stability, for three di-
mensional convection diffusion equations with mixed derivatives do not exist
in the corresponding literature. Thus, in this implementation, the para-
meter θ will be selected on the base of results for two dimensional convection
diffusion and three dimensional pure diffusion equations, both with mixed
derivative terms. To express the results lets state the following condition on
D

|dij| ≤ γ
√
diidjj for all i 6= j, (4.2.15)

where γ ∈ [0, 1] can be interpreted as the relative size of the mixed derivative
coefficients. For γ = 1 the above condition is always fulfilled because D
is positive semidefinite. With the HHW PDE we have more information,
expressed in a γ < 1.

The Do and CS schemes are both stable if θ ≥ 1
2

for two dimensional
convection diffusion equations with mixed derivatives, whereas for the MCS
scheme we have 1

2
≤ θ ≤ 1. For a γ ≤ 0.96 the latter scheme is also stable for

θ = 1
3
. In the case of three dimensional pure diffusion equations, with mixed

derivatives, the Do, CS and MCS schemes are stable whenever θ ≥ 2
3
, θ ≥ 1

2

and θ ≥ max{1
4
, 2

13
(2γ + 1)} respectively. Also, a smaller value for θ turns

out to produce a smaller error.
Looking at the diffusion matrix for the HHW PDE

D(s, v) =
1

2

 s2v ρSvσ1sv ρSrσ2s
√
v

∗ σ2
1v ρ23σ1σ2

√
v

∗ ∗ σ2
2

 ,

54



it’s easy to see that the condition (4.2.15) holds for γ = max{|ρSv|, |ρSr|, |ρ23|}.
In the implementation we therefore select for the Do, CS and MCS schemes
the values θ = 2

3
, θ = 1

2
and θ = max{1

3
, 2

13
(2γ + 1)} respectively. As one

would naturally guess, the largest discretization errors occur around the bar-
rier levels and observation dates, due to the non smoothness of the payoff
function. For such regions, in the literature, often a damping procedure is
applied to reduce the errors. At the observation dates T1, . . . , T4, instead of
performing one step with length ∆t, one could make two substeps of length
∆t/2 with the Do scheme and a parameter value of θ = 1. Although, numer-
ical tests have shown, that in our case the benefits are not significant.

In ’tHout & Haentjens [18] temporal errors, for numerically challenging
up and out call options, were inspected. They found that for sufficiently small
∆t the errors behave as C(∆t)p, where p = 1.0 for the Do and 1.6 ≤ p ≤ 2.0
for the CS and MCS scheme, with a constant C. Whereas p and C are only
weakly dependent on the number of grid points.

4.3 Calibrating the HHW model to market

data

In the last chapter we have seen that knowledge of the characteristic func-
tion of a model leads to highly efficient pricing formulas within the Fourier
framework. Following Duffie [12], the class of affine diffusion processes will
be introduced and further, some transform analysis which leads us to their
characteristic function. To perform this analysis, the non affine HHW model
additionally requires approximation of its non affine terms. We will then
plug the ChF into a Lewis [30] style formula which was derived in Chapter
3.3.4. Finally this formula will be implemented in a way which makes the
calibration routine even faster than the celebrated FFT.

4.3.1 Affine diffusion processes

Lets say we have a process X, which is Markovian in some state space D ⊂
Rn, and solves the following system of SDEs,

dXt = µ(Xt)dt+ σ(Xt)dWt,

where µ : D → Rn, σ : D → Rn×m and W a m-dimensional standard
Brownian motion.
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Definition 14 (processes of affine form). The above system is said to be of
the affine form if:

µ(Xt) = a0 + a1Xt, for some (a0, a1) ∈ Rn × Rn×n,

[σ(Xt)σ(Xt)
T ]ij = (c0)ij + (c1)TijXt, for (c0, c1) ∈ Rn×n × Rn×n×n,

r(Xt) = r0 + rT1 Xt, for arbitrary (r0, r1) ∈ R× Rn,

for i, j = 1, . . . , n, where r(Xt) : D → R is a fixed affine discount rate
function (interest rate component).

Proposition 6. Under the assumptions of Definition 14 before, a transform
φ(z,Xt, t, T ) : Cn ×D × R+ × R+ → C of Xt given by

φ(z,Xt, t, T ) = IE

(
exp

(
−
∫ T

t

r(Xs)ds

)
eizXT |Ft

)
.

is
φ(z,Xt, t, T ) = eA(z,t)+B(z,t)Xt ,

where the coefficients A(z, t) and B(z, t) have to satisfy the complex valued
ODEs

d

dt
B(z, t) = r1 − aT1B(z, t)− 1

2
B(z, t)T c1B(z, t),

d

dt
A(z, t) = r0 − aT0B(z, t)− 1

2
B(z, t)T c0B(z, t),

with boundary conditions B(z, T ) = z and A(z, T ) = 0.

Remark: Note that φ(z,Xt, t, T ) differs from the familiar characteristic
function of XT due to the discounting r(Xt). Conversely to Grzelak and
Oosterlee [15] we also use the generalized characteristic function where the
argument is complex valued, to be able to apply the Fourier methods from
Lewis [30] as in chapter 3.3.4 to obtain a semi closed formula used for cal-
ibration. Duffie [12] also handles jumps in his transform analysis, which we
dropped here since we do not have any in the HHW model.

4.3.2 Change to the forward measure

As explained in Chapter 3.3.4 already, we need to switch to the forward price,
defined by F (t) = S(t)

B(t,T )
, to decouple discounting from the expectation and

being able to apply formula (3.3.10). Following Grzelak and Oosterlee [17]
the price for an European call option is then,

V (t, S, v) = B(t, T )IET (max(F (T )−K, 0) | Ft) ,

56



where the interest rate r disappeared from the argument. Applying Itô we
find the dynamics of the forward price as,

dF (t) =
1

B(t, T )
dS(t)− S(t)

B2(t, T )
dB(t, T ), (4.3.1)

which is a Martingale under the T -forward measure and hence we don’t
find any drift in it anymore. Since the short rate is modeled as Hull-White
process, the dynamics for the ZCB B(t, T ) in (4.3.1) are:

dB(t, T )/B(t, T ) = r(t)dt+ σ2Br(t, T )dW T
r (t), (4.3.2)

with Br(t, T ) = 1
a

(
e−a(T−t) − 1

)
. Hence, the model under the T -forward

measure is:

dF (t)/F (t) =
√
v(t)dW T

F (t)− σ2Br(t, T )dW T
r (t),

dv(t) = κ(η − v(t))dt+ σ1

√
v(t)dW T

v (t),
(4.3.3)

with correlations dW T
F (t)dW T

v (t) = ρFvdt and dW T
F (t)dW T

r (t) = ρFrdt as
before.

4.3.3 The forward HHW PDE

In order to retrieve the characteristic function one first has to determine
its corresponding pricing PDE. The spot HHW PDE is useless here since we
need to change to the forward measure, like discussed before, to apply Fourier
techniques. We simply proceed, with the forward HHW model (4.3.3), as in
chapter (3.2.2) to derive the corresponding PDE.

Recall the HHW forward model from equation (4.3.3) above with state
vector X∗t = (vt, Ft)

T . With the correlation structure for the three BM from
(2.3.2), the SDEs for the HHW forward model can be written as

(
dvt

dFt/Ft

)
= b(X∗t )dt+ σ(X∗t )

 dZ1
t

dZ2
t

dZ3
t

 (4.3.4)

with

b(X∗t ) =

(
κ(η − vt)

0

)
,

σ(X∗t ) =

(
σ1
√
vt 0 0

ρFv
√
vt ρFr

√
vt − σ2Br(t, T )

√
1− ρ2

Fr − ρ2
Fv

√
vt

)
,
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with independent Brownian motions Z1
t , Z

2
t and Z3

t . Hence, the instantan-
eous covariance matrix is

Σ(X∗t ) =

(
σ2

1vt ρFvσ1vt
∗ vt + σ2

2B
2
r (t, T )− 2ρFrσ2Br(t, T )

√
vt

)
. (4.3.5)

Applying Feynman-Kac yields the HHW forward PDE

0 =
∂u

∂t
+ κ(η − v)

∂u

∂v
+ F 2

(
1

2
v +

1

2
σ2

2B
2
r (t, T )− ρFrσ2Br(t, T )

√
v

)
∂2u

∂F 2

+
1

2
σ2

1v
∂2u

∂v2
+ ρFvσ1vF

∂2u

∂F∂v
.

(4.3.6)

4.3.4 A deterministic approach to an affine version of
the forward HHW model

In the pure Heston case a simple switch to the log-price xt made the model
affine. Applying Itô’s formula with xt = logFt to (4.3.6) yields

0 =
∂u

∂t
+

(
1

2
v +

1

2
σ2

2B
2
r (t, T )− ρFrσ2Br(t, T )

√
v

)(
∂2u

∂x2
− ∂u

∂x

)
+ κ(η − v)

∂u

∂v
+

1

2
σ2

1v
∂2u

∂v2
+ ρFvσ1v

∂2u

∂x∂v
.

From that, or equivalently from the instantaneous covariance matrix in (4.3.5),
we obtain that the system is still not of the affine form due to Σ(2,2) contain-

ing
√
v(t). Applying Itô’s formula again to

√
v(t) is not possible because

the second derivative of the square root at v = 0 does not exist. A trivial
step to make the model affine would be to set ρFr to zero, which clearly is
no meaningful solution. Hence another way has to be found.

Detailed thoughts on how to reformulate the model, under the spot mar-
tingale measure, to impose an indirect correlation between stock price and
interest rate can be found in Grzelak and Oosterlee [15, Ch. 2 ff]. They con-
clude that it is sufficient to approximate the non affine term in the covariance
matrix. Also the alternative extension where the short rate is modeled as
a CIR type process is handled there. Note that the HW process is just a
special case of CIR where the exponent of the state variable in the diffusion
is set to zero.
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Deterministic approach

The easiest way for an approximation for the term Σ(2,2) is to replace
√
vt by

its expectation:

Σ(2,2) ≈ v(t) + σ2
2B

2
r (t, T )− 2ρFrσ2Br(t, T )IE (

√
vt) . (4.3.7)

Now the model is of the affine form as in chapter 4.3.1 discussed and we
can derive its characteristic function. To calculate IE(

√
vt), Lemma 5 gives

a closed form expression for the expectation and variance of a CIR type
process.

Lemma 5 (expectation and variance of a CIR type process). [15, Lem. 3.1]
Suppose vt is of CIR type as in 4.3.3. Then, for a given time t > 0, its square
root’s expectation and variance are given by

IE (
√
vt) =

√
2c(t)e−λ(t)/2

∞∑
k=0

1

k!
(λ(t)/2)k

Γ(1+d
2

+ k)

Γ(d
2

+ k)
, (4.3.8)

and

Var (
√
vt) = c(t)(d+ λ(t))− 2c(t)e−λ(t)

(
∞∑
k=0

1

k!
(λ(t)/2)k

Γ(1+d
2

+ k)

Γ(d
2

+ k)

)2

,

where

c(t) =
1

4κ
σ2

1(1− e−κt), d =
4κη

σ2
1

, λ(t) =
4κv(0)e−κt

σ2
1(1− e−κt)

,

with Γ(k) being the gamma function:

Γ(k) =

∫ ∞
0

tk−1e−tdt.

However, evaluating this analytic expression is quite expensive and for
that reason [15] derived a much cheaper approximation based on the delta
method for a random variable X. This method states, that for a random
variable X, with expectation IE(X) and variance Var(X), one can approx-
imate a function φ(X) by a first order Taylor expansion at IE(X) provided
that its first derivative with respect to X exists and is sufficiently smooth.

Lemma 6 (delta method for the expectation of the variance process). [15,
Lem. 3.2] The expectation of

√
vt can be approximated as:

IE (
√
vt) ≈

√
c(t)(λ(t)− 1) + c(t)d+

c(t)d

2(d+ λ(t)
, (4.3.9)
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with

c(t) =
1

4κ
σ2

1(1− e−κt), d =
4κη

σ2
1

, λ(t) =
4κv(0)e−κt

σ2
1(1− e−κt)

.

Note that in order for the expression under the square root to stay positive
we need 8κη/σ2

1 ≥ 1 as discussed in the Appendix of [15]. Clearly this is the
case if the Feller condition is satisfied. The good quality of this approximation
is shown in [15, Fig: 3.1]. This means, that whenever formula (4.3.9) is
applicable, we will use it. And for the parameter sets where the square root
would become negative, we use the exact representation from Lemma 5 which
is always save to do so.

4.3.5 Characteristic function for the deterministic ap-
proximation of the HHW model

We can now use Duffie’s transform analysis and apply it to the HHW forward
PDE. Recall Proposition 6 which states, applied to the HHW forward model
with its two state variables Xt = (xt, vt), that the discounted characteristic
function is of the following form3:

φ(u,Xt, τ) = exp{A(u, τ) +B(u, τ)xt + C(u, τ)vt} (4.3.10)

with boundary conditions A(u, 0) = 0, B(u, 0) = iu and C(u, 0) = 0. Where
τ := T − t is the time lag.

Lemma 7. For u ∈ C and τ ≥ 0 the functions A(u, τ), B(u, τ) and C(u, τ)
from (4.3.10) are given by:

B(u, τ) = iu,

C(u, τ) =
1− e−D1τ

σ2
1(1− ge−D1τ)

(κ− σ1ρxviu−D1),

A(u, τ) = κηI2(τ) +
1

2
σ2

2I3(τ) + ρxrσ2I4(τ),

3Note that we only put the summand B(u, τ)xt in it here for completeness reasons. In
the derivation of the Fourier formula we assumed the dynamics of the forward price as
Ft = F0e

Xt in order for the ChF to fulfill the martingale identity φXt(−i) = 1.
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with D1 =
√

(σ1ρxviu− κ)2 − σ2
1iu(iu− 1) and g = κ−σ1ρxviu−D1

κ−σ1ρxviu+D1
, where

I2(τ) =
τ

σ2
1

(κ− σ1ρxviu−D1)− 2

σ2
1

log

(
1− ge−D1τ

1− g

)
,

I3(τ) = iu(iu− 1)
1

2a3
(−3− e−2aτ + 4e−aτ + 2aτ),

I4(τ) = iu(iu− 1)
1

a

∫ τ

0

IE
(√

v(T − s)
)

(1− e−as)ds.

Proof. With the state vector Xt = (xt, vt)
T the form φ := φ(u,Xt, t, T ) has

to satisfy the pricing PDE

0 =
∂φ

∂t
+ κ(η − v)

∂φ

∂v
+

1

2
σ2

1v
∂2φ

∂v2
+ ρFvσ1v

∂2φ

∂x∂v

+

(
1

2
v +

1

2
σ2

2B
2
r (t, T )− ρFrσ2Br(t, T )IE

(√
v
))(∂2φ

∂x2
− ∂φ

∂x

)
,

subject to the terminal condition φ(u,XT , T, T ) = exp(iuxT ). Since this
PDE is affine, its solution is of the form as in equation (4.3.10). With the
notation A := A(u, t, T ), B := B(u, t, T ) and C := C(u, t, T ), the partial
derivatives are given by:

∂φ

∂t
= φ

(
∂A

∂t
+ x

∂B

∂t
+ v

∂C

∂t

)
,

∂φ

∂x
= Bφ,

∂2φ

∂x2
= B2φ,

∂φ

∂v
= Cφ,

∂2φ

∂v2
= C2φ,

∂2φ

∂x∂v
= BCφ.

Substituting these into the PDE:

0 =
∂A

∂t
+ x

∂B

∂t
+ v

∂C

∂t
+ κ(η − v)C +

1

2
σ2

1vC
2 + ρFvσ1vBC

+

(
1

2
v +

1

2
σ2

2B
2
r (t, T )− ρFrσ2Br(t, T )IE(

√
v)

)(
B2 −B

)
.

By collecting terms for x and v we get the following set of ODEs:

∂B

∂t
= 0,

∂C

∂t
= κC − 1

2
σ2

1C
2 − 1

2
(B2 −B)− ρFvσ1BC,

∂A

∂t
= −κηC −

(
1

2
σ2

2B
2
r (t, T )− ρFrσ2Br(t, T )IE

(√
v
)) (

B2 −B
)
,
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subject to the boundary conditions A(u, 0) = 0, B(u, 0) = iu and C(u, 0) = 0.
Now set τ = T − t. Due to the boundary condition for B, we obviously have,
B(u, τ) = iu. The ODE for C(u, τ) is given as a Riccati type equation

d

dτ
C(u, τ) = q2C

2(u, τ) + q1C(u, τ) + q0,

with corresponding q0, q1, q2. Its solution is given by:

C(u, τ) =
1− e−D1τ

σ2
1(1− ge−D1τ)

(κ− σ1ρxviu−D1),

with D1 and g as above. Integrating A yields

A(τ)− A(0) = κη

∫ τ

0

C(s)ds

+ iu(iu− 1)

(
1

2
σ2

2

∫ τ

0

B2
r (s)ds− ρFrσ2

∫ τ

0

Br(s)IE
(√

v(T − s)
)
ds

)
and a straight forward evaluation of the integrals

A(τ) = κηI2(τ) +
1

2
σ2

2I3(τ) + ρFrσ2I4(τ)

with I2(τ), I3(τ) and I4(τ) as stated above.

Remark: Note that the equations for d
dτ
C(u, τ) and I2(τ) are of the same

form as in Heston [20]. The ODE for the variance C(u, τ) includes the
complex root D1, which has, of course, two possible values. Albrecher et al.
[1] point out that, when choosing this value as Heston did, instabilities occur
due to the branch cut4 of the logarithm. Choosing the second value5, as we
did, results in a stable procedure.

Finally, plugging this ChF into our preferred option valuation formula (3.3.10),
we can implement highly efficient calibration routines. The next chapter dis-
cusses how to do this in a way to be as fast as possible.

4A branch cut is a curve, with possibly open, closed, or half-open ends, in the complex
plane across which an analytic multivalued function is discontinuous.

5This results in a minus in front of D1; in physics a term of the form e−D1τ is often
referred to as damping term.
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4.3.6 Accelerating the calibration

The calibration routine we are going to implement is based on the direct
integration of (3.3.10). This method is often criticized in the literature. Carr
and Madan [7] fault the inability of it to keep up with their celebrated FFT
method in terms of speed. They also point out numerical instabilities in case
of decomposing the option price into probabilistic elements as in Heston [20].
However, for the latter modifications have been proposed, as for example the
one from Lewis [30] we derived in Section 3.3.4 or another one as in Attari
[4], which are free from this instability. Also the speed argument is only
valid if one implements the direct integration method in a very needlessly
unoptimized way. The purpose of this chapter is to show, as Kilin did in [27],
a naturally seeming, optimized way of implementing the direct integration
method.

Fast Fourier Transform (FFT)

Let us just quickly review the basic idea of FFT to better understand its
major downside, namely the harsh restrictions on the grid spacings, which
blow up computational speed. The value of a call option V (S0) is given as

V (S0) =
e−γk

π

∫ ∞
0

e−ikuψ(u)du,

with

ψ(u) =
e−rTφ(u− (γ + 1)i)

γ2 + γ − u2 + (2γ + 1)ui
,

where γ is a damping parameter, k the log strike price and φ(u) the ChF of
the log price. The above integral is then approximated using an integration
rule ∫ ∞

0

e−ikuψ(u)du ≈
NFFT−1∑
j=0

e−ikujψ(uj)wjδ,

uj = jδ,

(4.3.11)

with weights wj and NFFT the number of grid points. The crucial restriction
here is, that the grid points uj must be chosen equidistantly. Effective integ-
ration rules, i.e. the Gaussian quadrature, cannot be used therefore. With
a set of log strikes {km = −(NFFTλ

2
) + mλ, m = 0, . . . , NFFT − 1}, the FFT

simultaneously computes the above integral approximation. If the second
restriction for the grid spacings,

λδ =
2π

NFFT

,
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is satisfied, the sums (4.3.11) can be written as

NFFT−1∑
j=0

e−ikujψ(uj)wjδ =

NFFT−1∑
j=0

e
−i
(

2π
NFFT

)
jm
hj,

which allows the application of the FFT with vector h = {hj = ei(
Nλ
2
jδ)ψ(uj)wjδ,

j = 0, . . . , NFFT − 1}. Chourdakis [8] showed how to accelerate this method
with his fractional FFT algorithm. Within this method the latter condi-
tion on the grid spacings can be relaxed. Further the accuracy of the FFT
strongly depends on the choice of the dampening parameter γ. Using a
practicable grid size of NFFT < 4096 there is no value for γ which yields
acceptable pricing errors for all possible parameter values as Lord and Kahl
[31] provide examples for that. Whereas a refinement of the grid would solve
this problem, it also slows down the calibration.

Caching technique for the direct integration method

However, the simultaneous calculation of all strikes is not only an exclusive
advantage of FFT, since a smart implementation of direct integration yields
the same. This is due to the fact that the value of the ChF does not depend
on the strike. Hence the values for the various maturities can be stored in
the cache and used in every loop of the strike. A basic algorithm to avoid
these recalculations would look like:

1: Loop over maturities.
2: Loop over strikes.
3: Loop over grid points for the integration rule.
4: If at the first step of the strike loop: Evaluate the ChF and save the value

to the cache.
5: If not at the first step of the strike loop: Read the value of the ChF from

the cache.
6: Evaluate the whole integrand.
7: Calculate the price of the option.

The number of evaluations of the ChF is the main driving factor slowing down
the calibration and therefore should be as low as possible. There are even
more terms in the valuation formula which do not depend on the strike or
maturity. Hence, further acceleration could be done also pre-calculating and
storing them in the cache. Applying the above caching technique and being
able to use effective integration rules, which do not require any restrictions
on the grid spacings, such as the Gaussian quadrature drastically lower this
number.
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To verify all that Kilin has conducted two experiments6: At first, by taking
100 option values with 100 different (reasonable) parameter sets, he evaluated
the minimum grid size for the numerical integration rule to reach a certain
accuracy. The results can be seen in [27, p. 12, Table 1]. For all the tested
models the grid for the FFT based methods must be at least seven times
finer than for the direct integration method. In the second experiment he
compared calibration times directly where the grid size has been set as to
have an accuracy of 1.0 and 0.02 basis points7. For that, the calibration time
of the direct integration method, is approximately 16, respectively, seven
times faster than for the others. This corresponds to the grid sizes from the
first experiment.

Bottom line, when comparing the calibration speed, one has to take
into account every practicably applicable optimization opportunity for that
method. The simultaneous calculation of option prices for several strikes
is not an exclusive advantage of FFT based methods. Hence, it is not a
valid criteria for comparing the calibration methods. We have seen that the
number of evaluations of the ChF is a much more appropriate measure for
that.

6Even though he did not experiment with the HHW model directly, but with the Heston
and several other Levy models, we can safely conclude similar results in our case.

7A basis point is one hundredth of a percent.
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Chapter 5

Computational studies

In this final chapter the results from our numerical studies will be presented.
Additionally to the, in this thesis focused HHW model, we will also calculate
prices for the well known and approved Heston model mentioned in Section
2.1.2. We do that with all three pricing techniques, as far as they are ap-
plicable. This refers, of course, to the Fourier technique, which excludes the
possibility to price path dependent options, like mentioned a couple of times.

We will start by doing some convergence and consistency checks on the
two models and all three pricing techniques for simple European options.
This is due to two reasons: The first, like just stated, is applicability of our
semi closed formula within the Fourier framework. Hence, we can compare
it to the other methods and see if it works, which we have to do in order
to calibrate later with a peaceful conscience. The second reason is, that
naturally the payoff structure is much simpler for the European call option
making it a less challenging test to see if the methods were implemented
correctly.

Followed by that we will apply the MC and PDE methods to the in
the beginning introduced autocallable structured products. This is again
done for the HHW and as well the Heston model. The last Section then
will concentrate on the calibration to market data within the HHW model.
Calibration of such a hybrid model is usually done in two steps: Firstly, the
parameters of the Hull-White model are calibrated to market prices from
caps1.Knowing them they can be plugged into the HHW model to calibrate
the remaining ones. Finally, we will also compare these calibrated parameters
to those one would obtain from the pure Heston model.

Concerning the coding environment it shall be mentioned that all pro-
grams were written in Matlab Version 7.5.0 (R2007b) c©. Table 5.1 shows

1Caps are the structural equivalent to call options in the interest rate market.
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Case A Case B Case C Case D Case E Case F

κ 3 0.6067 2.5 0.5 0.3 1
η 0.12 0.0707 0.06 0.04 0.04 0.09
σ1 0.04 0.2928 0.5 1 0.9 1
a 0.2 0.05 0.15 0.08 0.16 0.22
c1 0.05 0.055 0.101 0.103 0.055 0.074
c2 0.01 0.005 0.001 0.003 0.025 0.014
c3 1 4 2.3 1 1.6 2.1
σ2 0.03 0.06 0.1 0.09 0.03 0.07
ρsv 0.6 -0.7571 -0.1 -0.9 -0.5 -0.3
ρsr 0.2 0.6 -0.3 0.4 0.2 -0.5
T 1 3 0.25 10 15 5
K 100 100 100 100 100 100

Table 5.1: Parameters used in the tests. Note that for cases D,E and F the
Feller condition is not satisfied. They are referred to as very challenging real life
examples.

our six main test cases for the computational studies. They were already
used in Haentjens & ’t Hout [18], Oosterlee et al. [17] and Andersen2 [3]. In
the cases D,E and F the Feller condition is not satisfied and hence they are
referred to as very challenging real life examples from the market. For the
time dependent mean reverting function b(t) in the HHW model (2.3.1) we
will, if not explicitly stated, use the form:

b(t) = c1 − c2e
−c3t.

5.1 Consistency and convergence studies for

European calls

As mentioned in the first lines of this Chapter, we will not only concentrate
on the autocallables for our pricing methods, but also basic European calls
due to the applicability of the Fourier method. This way we see if our derived
formula works, which is important when calibrating later.

2Andersen worked with the Heston model and the additional parameters were just set
that the HHW model converges to it.
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5.1.1 Convergence of the HHW to the Heston model
for European calls

When discussing the different market models in Chapter 2 we’ve introduced
the HHW model as the extension of the Heston stochastic volatility model
with the Hull-White interest rate process. So at first we wanted to check if
our derived methods and formulas converge to the very sophisticated Heston
model when choosing the parameters appropriately. We have implemented
the Fourier method also for the Heston model. Due to the constant interest
rate, where no switch to the forward measure is needed, this was straight
forward. The ChF3 and option valuation formula are given in Albrecher et
al. [1, p. 4] and Lewis [30, p. 14, formula 3.11].

To reduce the HHW model to the Heston model we simply set c2, σ2 and
ρsr equal to zero for a constant and non correlated interest rate. Option
prices, which were calculated for various strikes K = {70, 100, 140} with
initial values S0 = 100, v0 = η and r0 = b(0), can be seen in Table 5.2.

The first line for each strike displays the prices obtained from the Fourier
method in the Heston model. Whereas the following three show the absolute
error compared to the prices in the HHW model. They are negligibly low for
the Fourier and PDE methods and for the MC simulation they are all within
a confidence interval of three standard deviations.

5.1.2 Consistency for European calls

This section investigates the consistency between the three methods in the
HHW model. We will use again our standard test cases from Table 5.1 and
compute European call prices for in-the-money, at-the-money and out-of-the-
money options, e.g. K = {70, 100, 140}, respectively with start values for
S0, v0 and r0 as before. It shall also be mentioned that the grid generation for
the PDE is done as in Section 4.2.2 suggested, except for the price dimension
where we need to concentrate grid lines around one strike K only. Further,
the time steps are chosen equidistantly.

For the at-the-money and out-of-the-money options the first three cases
in Table 5.3 show that the bias between the two methods is very low, whereas
it is higher for the latter three. This is due to the long maturities of those
challenging examples where one can see that the deterministic approximation
from Section 4.3.4 is not optimal. The in-the-money options show a better
result, yet the negative effects of this approximation can be seen.

3Note that we used the second version of the ChF which has the minus in the complex
exponent. As Albrecher pointed out in his paper, this so called damping term avoids
numerical instabilities in the form of the branch cut of the complex logarithm.
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Case A Case B Case C Case D Case E Case F
K = 100

Heston Fourier 15.994 25.110 6.064 66.024 59.178 39.412

HHW
Fourier 0.000 0.008 0.000 0.040 0.012 0.002
PDE 0.011 0.010 0.004 0.007 0.008 0.014
MC 0.038 0.019 0.005 0.063 0.031 0.032

K = 70
Heston Fourier 35.025 43.829 31.761 75.970 70.988 55.227

HHW
Fourier 0.001 0.008 0.003 0.012 0.002 0.003
PDE 0.013 0.008 0.000 0.004 0.007 0.014
MC 0.129 0.184 0.110 0.335 0.109 0.219

K = 140
Heston Fourier 4.628 8.788 0.043 53.110 44.165 23.291

HHW
Fourier 0.001 0.004 0.000 0.081 0.034 0.003
PDE 0.007 0.015 0.000 0.014 0.007 0.012
MC 0.038 0.170 0.003 0.062 0.051 0.160

Table 5.2: Results for the test cases A-F and different strikes K with c2 = σ2 =
ρsr = 0. The grid for the PDE method was chosen to be 100/50/50 in the (S, v, r)
directions with ∆t = 1/16 and for the MC simulation we had ∆t = 1/32 with
5 · 105 paths.

As a consequence of the error induced by this approximation within the
Fourier method, we are using the PDE results as the comparison to the MC
prices. For all six cases Table 5.4 below lists MC estimates of the bias to
the PDE prices, for a time step ∆ ranging from 1 year to 1/32 year. Again,
due to computational limitations the number of paths was set to 5 · 105. For
a step size of four steps per year the bias is moderately low. Using a grid
of eight steps a year we obtain already accurate results. Refining it further
to 16 and 32 the bias becomes negligible with respect to the sampling error
induced by the MC simulation. The starred results indicate that the PDE
price lies within the MC confidence interval of three standard deviations.
As in Andersen [3] it is hard to establish an empirical convergence order4

since the biases are too low to be statistically significant. It however seems
to be higher than one, which is the one of a basic Euler scheme. Andersen
conducts further tests in [3, Ch. 5.1, Fig. 5] to show that this assumption
is true. Since we implemented an exact simulation scheme for the interest

4Recall from Section 3.1 that an order n means that the absolute value of the bias
decreases as c ·∆n.
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Case A Case B Case C Case D Case E Case F
K = 100

Fourier 15.662 27.019 5.983 57.048 50.266 34.281
PDE 15.651 26.941 5.982 55.984 50.067 34.627
Bias 0.011 0.078 -0.002 1.064 0.199 -0.347

K = 70
Fourier 34.524 43.839 31.752 65.317 63.264 51.109
PDE 34.512 43.929 31.741 64.660 63.226 50.982
Bias 0.012 -0.090 0.012 0.657 0.039 0.127

K = 140
Fourier 4.521 12.993 0.040 48.747 36.493 18.392
PDE 4.516 12.615 0.040 47.186 36.012 19.436
Bias 0.005 0.377 0.000 1.561 0.481 -1.402

Table 5.3: Comparison of Fourier and PDE prices for a set of three different strikes
with S0 = 100, v0 = η and r0 = b(0). The grid for the PDE method was chosen to
be 100/40/30 points in the S, v and r dimension respectively, with 100 time steps
a year.

rate process, as in Section 4.1.2 described, and used the same QE-scheme for
the volatility, only extending his discretization of the price process we can
savely assume the same here. All that results in a highly efficient simulation
scheme when it comes to speed and accuracy. Additionally we conducted
one further test to validate our Fourier formula and compared it to the PDE
solution by calculating Fourier prices for every grid point on the restricted
(s, v, r, t) domain [70 140]×v0×r0×0, for two different v0 and r0. Figure 5.1
shows the bias for three combinations of initial volatility and interest rate.

These two cases were chosen because A satisfies the Feller condition
whereas E does not. They also have very diverse maturities of one and
15 years respectively. From Figure 5.1 we can see that the Fourier approxim-
ation formula is accurate for different (even extreme) initial values of v0 and
r0 and maturities. In Table 5.5 we located the point Si with the maximum
error for each setting. Especially for case A we find very accurate results.
For the challenging example E the maximum error is higher, yet it occurs for
very far out-of-the-money or in-the-money initial prices.
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Case A Case B Case C Case D Case E Case F
∆ K = 100
1 0.516 2.124 6.206 2.392 2.185

1/2 0.115∗ 1.248 3.228 1.008 1.099
1/4 0.095∗ 0.535 0.093 1.635 0.439 0.686
1/8 0.064∗ 0.270 0.071 0.511 0.261 0.392
1/16 0.014∗ 0.100∗ 0.053∗ 0.051∗ 0.073∗ 0.243∗

1/32 0.087∗ 0.007∗ -0.003∗ -0.050∗ -0.015∗ -0.013∗

∆ K = 70
1 1.258 3.188 7.065 2.872 2.676

1/2 0.511 1.790 3.776 1.274 1.334
1/4 0.285 0.796 0.769 2.017 0.569 0.805
1/8 0.177 0.418 0.406 0.822 0.339 0.426
1/16 0.042∗ 0.181 0.226 0.316 0.115∗ 0.229∗

1/32 0.134∗ 0.050∗ -0.030∗ 0.185∗ 0.001∗ -0.046∗

∆ K = 140
1 0.132∗ 1.050 5.219 1.882 1.886

1/2 -0.027∗ 0.656 2.545 0.717 0.894
1/4 0.005∗ 0.258 0.008 1.138 0.263 0.570
1/8 0.009∗ 0.118 0.003∗ 0.082∗ 0.139∗ 0.339
1/16 -0.007∗ 0.022∗ 0.002∗ -0.109∗ -0.006∗ 0.213∗

1/32 0.054∗ -0.036∗ 0.000∗ -0.188∗ -0.057∗ 0.007∗

Table 5.4: Convergence of the MC simulation to the PDE prices with same initial
values as in Table 5.3. The star behind a result indicates that the PDE price is
within the confidence interval of three standard deviations.

Case v0 r0 max error Si price at Si

A

0.12 0.04 0.019 133.4 40.954
0.12 0.13 0.019 129.0 43.237
0.32 0.04 0.024 138.5 47.716
0.32 0.13 0.024 138.5 53.646

E

0.04 0.03 0.324 70.3 24.839
0.04 -0.01 0.418 71.5 19.719
0.22 0.03 0.528 70.3 28.672
0.22 -0.01 0.684 71.5 23.984

Table 5.5: Location of the maximum error for different initial values v0 and r0.
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Figure 5.1: Comparison between Fourier and PDE method. The plots on the left
side show results for case A (Feller condition satisfied) and the plots on the right
side show case E (Feller condition not satisfied). We used again a grid of 100/40/40
in the (s, v, r) direction with 100 time steps a year.
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5.2 Consistency studies for autocallables

From the above numerical studies we saw that the prices for European call
options are consistent within all three pricing methods. Hence, we can savely
say that their implementations are correct. Lets now take a look on the more
complex autocallable structured products. Of course the Fourier method
drops out here and the PDE scheme and MC simulation are the remaining
pricing methods under consideration. We will use again the six parameter
sets from Table 5.1, except for the parameters defining the payoff structure,
i.e. the strike K and the maturity T . Instead, recall the structure for the
autocallables introduced in Figure 1.1 from Chapter 1. For the numerical
tests we will use the following set of observation days Ti, barriers Ki and
payoffs Pi (in EUR), for i = 1, . . . , 4, respectively,

16-Feb-2015, 15-Feb-2016, 14-Feb-2017, 14-Feb-2018,
100%, 90%, 80%, 65%,

1053.5, 1107.0, 1160.5, 1214.0,

and as valuation day t the 14-Feb-2014. Further, the issue price of the
product is 1000EUR per unit (share).

In light of the already implemented routines for call options only minor
changes need to be done for the autocallables, namely initial and boundary
conditions. The grid in the price dimension S is generated according to
Section 4.2.2 in order to concentrate around the barrier levels. Additionally
the time step is reduced substantially around the observation days. During
the course of the year we put grid points only quarterly, whereas all other lie
symmetrically in a 1/10-th a year interval around those days. The intention
of that non uniform grid is of course again, as for the call options before,
to reduce numerical difficulties. To visualize the grid spacings, Figure 5.2
shows the surface of autocallable prices for all S and t, with initial v0 = η
and r0 = b(0). It’s easy to see that the grid lines concentrate around the
discontinuities in the payoff structure.

We also tried some alternations on these grid spacings in the S and t
dimensions but none of them seemed very beneficial. Especially in the time
direction one might think that this rough grid spacing is not optimal and
tend to a smoother one as for the price dimension. But doing so would cause
heavy losses in efficiency because for every change in the time step all the LU
factorizations for the ADI time discretization would have to be recalculated
again and again, slowing down the whole routine. This way we only need to
do this twice a year and tests showed that numerical accuracy does not suffer
from that. Haentjens and ’t Hout [18] also suggest implementing a damping
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Figure 5.2: Surface of autocallable prices for all initial prices S and valuation days
t with fixed initial volatility and interest rate.

procedure right after the points of discontinuity. They use it for the numer-
ically very tough up-and-out call options, where the payoff vanishes above a
predefined barrier level. The idea behind such a damping procedure is that
instead of performing one full time step, from this point of discontinuity, they
do two sub steps of size ∆t/2 using the Douglas scheme (4.2.12) from Section
4.2.4 before continuing with the more sophisticated Craig-Sneyd (4.2.13) or
Modified Craig-Sneyd (4.2.14) schemes. This flattens out possible oscillations
faster. We also did some experiments with damping after every observation
day, however the improvements were not really significant.

To test the consistency (and also convergence), we calculated MC prices
for a refining number of time steps a year, each with a sufficient5 amount of
5 · 105 paths. They are compared to the PDE prices for which the number
of grid points is 400/20/20/100 in the S, v, r and t dimension respectively.
These numbers were chosen irrespective of the run time but with focus to a
highest possible accuracy. The PDE and MC results for all six test cases can

5In the sense that the resulting MC confidence interval is sufficient small.
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Case A Case B Case C Case D Case E Case F
PDE 886.396 925.421 903.783 928.327 999.445 928.521

MC

1 14.059 4.203 -3.840 -6.664 -3.697 0.735∗

1/2 6.054 2.782 -1.532 -2.412 -0.914 -0.067∗

1/4 2.156 1.789 -0.965 -1.557 -0.359∗ 0.376∗

1/8 1.834 1.011 0.284∗ -0.903 -0.562∗ 0.266∗

1/16 1.274 1.412 0.145∗ -0.674 -0.273∗ 0.648∗

1/32 1.106∗ -0.056∗ 0.350∗ -0.630∗ -0.061∗ 0.804∗

1/64 0.467∗ 0.823∗ 0.656∗ -0.164∗ 0.246∗ 0.261∗

Table 5.6: Convergence of the MC simulation to the PDE prices with same initial
values as in Table 5.3. The star behind a result indicates that the PDE price is
within the MC confidence interval of three standard deviations.

be found in Table 5.6 below. Using 32 steps a year we already obtain highly
accurate prices with a bias less than 10−3. They all lie within the confidence
interval of three standard deviations. For the cases C, E and F even a much
lower step size gives satisfying results. Also the convergence rate of the bias
obtained by these, and other tested scenarios, seems to be higher than one,
and hence consistent with our observations for the call options before and
those of Andersen [3] in the simpler Heston model.

Altogether we can say that both methods work very well. As mentioned
in the preceding Chapters already, the PDE method is our preferred pricing
tool, whereas the MC simulation is used rather as a backtest.

5.3 Calibration to market data

We have mentioned already in the beginning of this Chapter that calibrating
a hybrid market model like the HHW one is performed in two steps. At first
the Hull-White model is calibrated to caps, yielding a and σ2. The mean
reversion function of the short rate b(t) is also given through the discount
curve from the market used to calibrate the Hull-White model. Secondly
those parameters are plugged into the HHW model which then is calibrated to
European call (or put) option prices. The focus of this thesis lies in the second
part. For the Hull-White parameters we were lucky to receive calibrated
values from DEKA Bank, i.e. a mean reversion intensity of a = 0.0874
and a interest rate volatility of σ2 = 0.0102. The discount curve including
the cap price, to which the Hull-White model was calibrated, as well as the
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implied volatility surface6 for the equity market are given in Appendix D, also
provided by DEKA. From the discount curve we can calculate the function
of the short rates b(t) via formula (4.1.8) as described in Section 4.1.2, which
completes the Hull-White part. The results can be seen in Figure 5.3. Only
the remaining parameters need to be calibrated anymore.

Figure 5.3: Short rates from discount curve

Calibration of course is a matter of optimizing an objective function with
respect to some constraints on the parameters. When calibrating our model
to given market data we want to find the parameter values which minimize
the error made by our formula 3.3.10 compared to the markets given prices.
The constraints on the parameters κ, η, v0, σ1, a, σ2, ρSv and ρSr are given
as in Section 2.3.1, where we introduced the HHW model. For those only
restricted (bounded) from one side we will set another bound on the other
side, as can be seen in Table 5.7 below, to avoid restrictions that would make
no sense in real life.

κ η v0 σ1 ρSv ρSr
Lower bound e e e 0.1 -0.99 -0.99
Upper bound 20 2 2 3 0.99 0.99

Table 5.7: Lower and upper bounds for the parameters from the HHW model.
The value ’e’ was set to 10−5.

6The corresponding option prices are of course the ones in the Black-Scholes sense.
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5.3.1 Calibration of the pure Heston model

To compare the parameter estimates to a sophisticated model we also calib-
rated market data to the pure Heston model. Since we already implemented
the Fourier method for previous tests to calculate Heston prices for European
calls, this was pretty much no additional effort. For the calibration routine
we used the caching technique from Section 4.3.6 in combination with the
Gauss quadrature from the Appendix C to keep the number of evaluations
of the ChF as low as possible. Further, as optimization solver we chose the
Matlab function fmincon7, which is an interior point algorithm. This one is
supposed to work well for objective functions of the least squares type with
smooth constraints. With a constant interest rate r = 0.04 and initial val-
ues {2.0, 0.05, 0.05, 0.3,−0.5} for κ, η, v0, σ1 and ρSv respectively, we got the
following parameter estimates:

κ η σ1 v0 ρSv Est time MSE
1.9750 0.0758 1.0514 0.0347 -0.7266 0.4733s 0.002413

Table 5.8: Parameter estimates for the pure Heston model.

Plugging those values, and the ones for the Hull-White part from before,
into our PDE and MC pricing routines for the autocallable from Section 5.2
we get the prices 962.59 and 961.94, with three standard deviation confidence
interval [961.14, 962.75], respectively.

5.3.2 Calibration of the Heston-Hull-White model

Like described before, now we are going to take the Hull-White parameters
and plug them into the option valuation formula. It shall also be mentioned,
that, in light of Section 4.3.6 we did some additional precaching to speed
up the calibration, i.e. the expectation IE

(√
vt
)

from Lemmata 5 and 6 is
independent of the strike K and hence can be evaluated beforehand. There
are some other values which were precached, e.g. the forward price, but the
before mentioned expectation is the most time saving.

The calibration was performed in two different ways. For the first, we
fixed ρSr and calibrated the model for a whole range [−0.9, 0.9], with step size
0.1, of correlations to see how the mean squared error (MSE) behaves. The
initial values for the optimization algorithm were {2.0, 0.05, 0.05, 0.3,−0.5}
for κ, η, v0, σ1 and ρSv as before.

7Check the Matlab page http://de.mathworks.com/help/optim/ug/choosing-a-
solver.html for further informations on the solver and other possible choices.
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κ η σ1 v0 ρSv ρSr Est time MSE
1.8527 0.0797 1.0358 0.0345 -0.7023 -0.90 4.9940s 0.002313
1.8536 0.0789 1.0125 0.0343 -0.7134 -0.80 3.1547s 0.002248
1.8210 0.0791 1.0055 0.0343 -0.7160 -0.70 3.0607s 0.002236
2.3292 0.0746 1.1793 0.0350 -0.6925 -0.60 6.3726s 0.002578
1.7601 0.0798 0.9979 0.0344 -0.7191 -0.50 2.7659s 0.002227
1.7301 0.0802 0.9943 0.0344 -0.7207 -0.40 2.2816s 0.002225
1.7005 0.0806 0.9907 0.0344 -0.7223 -0.30 2.1839s 0.002223
1.6712 0.0809 0.9872 0.0344 -0.7239 -0.20 2.7661s 0.002223
1.6421 0.0813 0.9837 0.0344 -0.7255 -0.10 3.5440s 0.002224
1.6134 0.0818 0.9803 0.0344 -0.7270 0.00 2.0958s 0.002225
1.5850 0.0822 0.9770 0.0344 -0.7286 0.10 2.8213s 0.002228
1.5569 0.0826 0.9738 0.0344 -0.7301 0.20 2.7206s 0.002232
1.5292 0.0831 0.9706 0.0344 -0.7317 0.30 2.4610s 0.002236
1.5019 0.0836 0.9677 0.0344 -0.7332 0.40 3.3126s 0.002242
1.4747 0.0840 0.9647 0.0344 -0.7347 0.50 2.9297s 0.002248
1.4481 0.0846 0.9620 0.0344 -0.7362 0.60 3.3604s 0.002255
2.0194 0.0749 1.1003 0.0350 -0.7327 0.70 3.2139s 0.002765
2.0208 0.0747 1.0991 0.0350 -0.7360 0.80 3.4318s 0.002807
2.0196 0.0745 1.0971 0.0350 -0.7389 0.90 3.5347s 0.002851

Table 5.9: Parameter estimates for a given range -0.9:0.1:0.9 of correlations ρSr in
the HHW model.

From Table 5.9 we can see that the MSE is slightly better when we assume
a negative correlation ρSr. The error gets worse with increasing correlation,
whereas one outlier is encountered at ρSr = −0.6. Note that wherever we
obtain a relatively high MSE, the condition 8κη/σ2

1 ≥ 1 is not fulfilled. This
might be due to numerical difficulties that arise when we are forced to use
formula 4.3.8 instead of the simpler approximation 4.3.9 for the expectation
of the volatility. Also the much higher runtime in those cases suggests that
the optimization algorithm more often jumps to parameter constellations
where the above condition is violated.

Now, the other way we calibrated the remaining parameters is to also let
the algorithm optimize the second correlation factor. We can clearly see that
the minimum of the MSE in the above results must be somewhere between
-0.2 and -0.3. That is why, for the next calibration run, we used an initial
ρSr of -0.25.

As expected, the algorithm converged to the region where the MSE
was the lowest in the previous experiment, yielding a correlation of ρSr =
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κ η σ1 v0 ρSv ρSr Est time MSE
1.6759 0.0809 0.9877 0.0344 -0.7236 -0.2153 4.5947s 0.002223

Table 5.10: Parameter estimates in the HHW model.

−0.2153. Naturally the runtime is higher due to this additional degree of
freedom for the optimization routine. The results can be seen in Table 5.10.
In the following Table 5.11 we compared the prices for the autocallable when
using those different sets of parameter estimates to see how big the gap
between them is.

PDE MC MCl MCu
Heston params 962.73 962.18 961.37 962.99
HHW params 961.47 960.96 960.14 961.77

Table 5.11: Comparison of prices for the autocallables with Heston and HHW
parameter estimates.

The fact that the parameter estimates from Tables 5.8 and 5.10, for the
Heston and HHW model respectively, are very similar, also reflects in the
autocallable’s prices. Their MC confidence intervalls even overlap. Unfortu-
nately we didn’t have more sets of market data to analyse this matter further.
Finally, we also observe, that it is save for a Bank to issue such a product.
The contract we received states that the product is issued for 1000EUR plus
additional charges of 30EUR. This results in an expected profit margin of
about 7%.
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Chapter 6

Conclusion

Within this thesis, we have discussed the pricing of autocallable structured
products in the hybrid Heston-Hull-White model with correlated stochastic
interest rates. Due to the complexity of these products we used PDE and
MC methods to do so. We also calibrated the model to market data using
highly efficient Fourier techniques.

Regarding the pricing techniques, we implemented a PDE method based
on finite differences and alternate direction implicit time stepping as used in
Haentjens and ’t Hout [18]. Even in case of a three dimensional convection
diffusion equation, which we had to solve, those methods work very well
and therefore are superior to MC simulation. Nonetheless, we have also
implemented an efficient MC method based on the algorithms from Andersen
[3] and an exact simulation of the interest rate process. Due to the huge
computational demand, the use of the MC method was more as a reference,
whereas the PDE method is the primary pricing tool. For the calibration we
used a, to our needs adapted, Fourier style formula introduced in Lewis [30]
to calculate European call prices. The correlated stochastic interest rates
demanded a change of measure, to the T -forward measure, to be able to use
that technique.

During our computational studies we found that all implemented methods
work very well and give consistent results. To verify the correctness of our
Fourier formula we additionally implemented the PDE and MC methods to
price European call options. All three methods were compared using a set of
challenging parameters which cover different market scenarios. Consequently,
we also calculated prices for autocallables and compared the PDE solutions
to the MC confidence interval. Finally, to calibrate our model, we received
a set of market data from DEKA bank, i.e., an implied volatility surface
for a various number of strike prices and maturities and a discount curve.
Calibration of a hybrid model usually works in two steps. The first one,
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which is calibrating the interest rate process to caps, was not part of our
work. Hence, we were also lucky to receive some calibrated parameter values.
In the second step, the rest of the parameters is calibrated. On one side, we
plugged the already known parameters into the Heston-Hull-White model to
get the remaining ones. On the other side, also the pure Heston model was
calibrated, to compare both parameter estimates. We found that they were
only slightly different, which expectedly lead to very similar autocallable
prices. To analyse the effects, of correlated stochastic interest rates, on the
price better, various sets of market data and more tests are essential.

Finally, and because it would have gone beyond the constraints of this
thesis, we want to present some thoughts for interesting future work. Nat-
urally, having various sets of market data would be an immediate extension
of this work in order to analyse the effects of using the more general hybrid
Heston-Hull-White model compared to, e.g., the Heston model. Oosterlee
and Grzelak [15] present more ways of approximating the model in order to
derive semi closed solutions. Even though they find that the deterministic
approximation is not inferior to more advanced (stochastic) ones. Contrary
to that, one could also try to abandon the stochastic interest rate and im-
ply merely a non constant but deterministic one, which reflects the term
structure. Such a model would be much easier to handle and maybe only
a negligible drawback compared to the other one. Concerning the efficiency
of the PDE and MC methods, it would be definitely worth considering to
implement the forward dynamics to reduce the number of dimensions to two.
Especially for the PDE method this should bring substantial performance.
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Appendix A

Fundamental results

For completeness reasons we will state some fundamental results concerning
stochastic differential equations and probability theory, following the lines of
Karatzas & Shreve [26, Ch. 5] and Oksendal [38, Ch. 5,7 and 8].

A.1 Existence and uniqueness of strong and

weak solutions to SDEs

There are two concepts of solutions to stochastic differential equations with
respect to Brownian motion, namely weak and strong ones. Also the exist-
ence and uniqueness of such solutions will be discussed.

Let bi(t, x) and σij(t, x) for 1 ≤ i ≤ d, 1 ≤ j ≤ r, from [0,∞) ×
Rd → R be Borel-measurable functions. Define the d-dimensional drift
vector b(t, x) = {bi(t, x)}1≤i≤d and (d × r)-dimensional dispersion matrix
σ(t, x) = {σij(t, x)}1≤i≤d,1≤j≤r. The intention is to give the stochastic differ-
ential equation

dX i
t = bi(t,Xt)dt+

r∑
j=1

σij(t,Xt)dW
j
t , 1 ≤ i ≤ d,

or written compact as

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, (A.1.1)

where W = {Wt; 0 ≤ t < ∞} is an r−dimensional Brownian motion, a
meaning. A solution X = {Xt; 0 ≤ t < ∞}, of this equation, is a suit-
able stochastic process with continuous sample paths and values in Rd and
coefficients b(t, x) and σ(t, x); the matrix a(t, x) = σ(t, x)σT (t, x) is called
diffusion matrix.
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For the concept of a strong solution we fix a probability space (Ω,F , IP)
and a r-dimensional Brownian motion W = {Wt,FWt ; 0 ≤ t < ∞} on it
with its natural filtration {FWt }t≥0 and FWt = σ{Ws, 0 ≤ s ≤ t}. An initial
value X0 is a random variable on (Ω,F , IP) independent of the Brownian
motion with distribution µ, µ(A) = IP(X0 ∈ A) for A ∈ B(Rd). The natural
filtration {FWt }t≥0 is extended by

Gt , σ(x0) ∨ FWt = σ(x0,Ws, 0 ≤ s ≤ t),

and completed with the IP-Null sets (since there are Null sets which aren’t
in the σ-algebra)

N , {N ⊆ Ω : ∃G ∈ G∞ with N ⊆ G and IP(G) = 0},

to the augmented filtration (Ft)t≥0 given by

Ft , σ(Gt ∪N ), 0 ≤ t <∞; F∞ , σ

(⋃
t≥0

Ft

)
. (A.1.2)

It is obvious that {Wt,Gt; 0 ≤ t < ∞} is a r-dimensional Brownian motion
and hence, {Wt,Ft; 0 ≤ t <∞} is one with the filtration {Ft} satisfying the
usual conditions.

Definition 15 (strong solution). [26, Def. 2.1] A strong solution to the
SDE (A.1.1), on the given probability space (Ω,F , IP), with respect to the
fixed Brownian motion (Wt)t≥0 and initial value x0, is a process X = (Xt)t≥0

with continuous sample paths and

(i) X is adapted to the filtration (Ft)t≥0,

(ii) X0 = x0 IP-a.s.,

(iii) IP
(∫ t

0
|bi(s,Xs)|+ σ2

ij(s,Xs)ds <∞
)

= 1 holds for all 1 ≤ i ≤ d,

1 ≤ j ≤ r, 0 ≤ t <∞, and

(iv) Xt = X0 +
∫ t

0
b(s,Xs)ds+

∫ t
0
σ(s,Xs)dWs ∀0 ≤ t <∞ almost surely.

Remark: The crucial point here is that the version of the Brownian motion
Wt is given in advance and the solution constructed from it is (Ft)t≥0 adapted.
This is expressed in (i) and meets an intuitive understanding of X as the
output of a dynamical system described by b and σ, whose input are the
Brownian motion W and initial value x0.
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Definition 16 (strong uniqueness). [26, Def. 2.3] Let the coefficients (b, σ),
a r-dimensional Brownian motion W on some probability space (Ω,F , IP) and
independent d-dimensional start vector X0 be given. Further the filtration is
given as in (A.1.2). Suppose that X and X̃ are two strong solutions of (A.1.1)
with respect to W and initial value X0, then IP(Xt = X̃t; 0 ≤ t < ∞) = 1
and we say that strong uniqueness holds for (b, σ).

Theorem 8 (strong uniqueness). [26, Th. 2.5] Let the coefficients b(t, x), σ(t, x)
be locally Lipschitz continuous in the space variable, i.e., for every n ≥ 1 there
exists a constant Kn > 0 such that ∀t ≥ 0, ‖x‖ ≤ n and ‖y‖ ≤ n. Then if

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ Kn ‖x− y‖ ,

strong uniqueness holds for (A.1.1).

Theorem 9 (existence of a strong solution). [26, Th. 2.9] Suppose that, for
every t ≥ 0, x, y ∈ Rd and positive constant K, the coefficients satisfy the
global Lipschitz and linear growth conditions

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ K ‖x− y‖ ,
‖b(t, x)‖2 + ‖σ(t, x)‖2 ≤ K2(1 + ‖x‖2),

on some probability space (Ω,F , IP) with {Ft} as in (A.1.2). Further, let x0

be an Rd valued random vector, independent of the r-dimensional Brownian
motion W = {Wt,FWt ; 0 ≤ t <∞}, with finite second moment

IE ‖x0‖2 <∞.

Then there exists a strong solution of equation (A.1.1) with respect to W and
X0 which is a continuous, adapted process X = {Xt,Ft; 0 ≤ t <∞}.

A weaker notion of solvability, under which existence can be shown for
much milder assumptions on the drift term, is presented in the following
definition. Given only the coefficients b(t, x) and σ(t, x), and asking for a
pair (Xt,Wt) on some filtration Ft and probability space (Ω,Ft, IP) leads to
the so called weak solution. The uniqueness attached to it will lead naturally
to the strong Markov property of the solution process.

Definition 17 (weak solution). [26, Def. 3.1] A weak solution to (A.1.1) is
a triple (X,W ), (Ω,F , IP), {Ft}, where

(i) (Ω,F , IP) is a probability space, {Ft} a filtration of sub-σ-fields of F
(Ft ⊂ F ∀t ≥ 0) satisfying the usual conditions,
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(ii) X = {Xt,Ft; 0 ≤ t < ∞} is a continuous, adapted Rd-valued process,
W = {Wt,Ft; 0 ≤ t <∞} a r-dimensional Brownian motion and

(iii) the integrability conditions (iii) and (iv) from Definition 15 are satis-
fied.

The filtration {Ft} is not necessarily the augmentation of Gt = σ(X0) ∨
FWt , 0 ≤ t < ∞, thus, the value of the solution Xt(ω) is not necessarily
given by a measurable functional of the Brownian path {Ws(ω); 0 ≤ s ≤
t} and initial value X0(ω). Consequently, the existence of a weak solution
(X,W ), (Ω,F , IP), {Ft} is no guarantee, given another Brownian motion

{W̃t, F̃t; 0 ≤ t < ∞} on an eventually different probability space (Ω̃, F̃ , ĨP),

for the existence of another weak solution (X̃, W̃ ), (Ω̃, F̃ , ĨP), {Ft}.

Definition 18 (pathwise uniqueness). [26, Def. 3.2] Suppose that both

(X,W ), (Ω,F , IP), {Ft} and (X̃,W ), (Ω,F , IP), {F̃t} are weak solutions
to (A.1.1) with common probability space and Brownian motion relative to

a possibly different filtration and same initial value, i.e. IP(X0 = X̃0) = 1.

Whenever X and X̃ are indistinguishable, i.e. IP(Xt = X̃t;∀0 ≤ t <∞) = 1,
we say that pathwise uniqueness holds for (A.1.1).

Remark: The strong uniqueness results from Theorems 8 and 9 also hold
for the pathwise uniqueness since their proofs do not take advantage of the
special form of the filtration for a strong solution.

Definition 19 (uniqueness in probability law). [26, Def. 3.4] If for two

solutions (X,W ), (Ω,F , IP), (Ft) and (X̃, W̃ ), (Ω̃, F̃ , ĨP), (F̃t), with same ini-

tial distribution, X and X̃ have the same law, we say that uniqueness in
the sense of probability law holds for (A.1.1), i.e. they have the same finite
dimensional distributions.

Proposition 7 (Yamada & Watanabe). [26, Prop. 3.20] Uniqueness in
probability law is implied by pathwise uniqueness.

This means that under the assumptions of Theorem 8 a solution, weak
or strong, is unique in probability law (weakly unique). From a modeling
point of view, this result is very useful, because the weak solution concept,
which does not specify the explicit representation of the Brownian motion
beforehand, is more natural. Solving a SDE in the weak sense is equivalent
to finding the law of a diffusion process in terms of the martingale problem
developed by Stroock & Varadhan [45]; and further leads to the important
Markov property.
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Definition 20 (Itô diffusion). [38, Def. 7.1.1] A stochastic process satisfying

dXt = b(Xt)dt+ σ(Xt)dWt, t ≥ s, Xs = x;

and the conditions in Theorem 8 is called a (time-homogeneous) Itô diffusion.
(Note that the general case where the coefficients also depend on the time t
can be reduced to this situation [38, Ch. 10,11])

Theorem 10 (generator of an Itô diffusion). [38, Def. 7.3.1 and Th. 7.3.3]
The generator of an Itô diffusion, defined as

Af(x) = lim
t→0

IEx(f(Xt))− f(x)

t
, x ∈ Rn,

for f ∈ C2
0(Rn) is

Af(x) =
d∑
i=1

bi(x)
∂

∂xi
f(x) +

d∑
i=1

k∑
j=1

aij(x)
∂2

∂xi∂xj
f(x), (A.1.3)

with a = σσT .

A.2 Martingale problem and Markov prop-

erty

Theorem 11 (Martingale problem). [38, Th. 8.3.1] Suppose Xt is an Itô
diffusion with generator A. Then for every f ∈ C2

0(Rn) the process

Mt = f(Xt)−
∫ t

0

Af(Xs)ds

is a Martingale w.r.t M generated by Mt.

Theorem 12 (Markov property for Itô diffusions). [38, Th. 7.1.2] For a
bounded Borel function f from Rn to R and t, h ≥ 0 we have:

IEx (f(Xt+h)|Ft)(ω) = IEXt(ω)(f(Xh)). (A.2.1)

A relation of the form (A.2.1) continues to hold if t is replaced by a
stopping time.

Theorem 13 (strong Markov property for Itô diffusions). [38, Th. 7.2.4]
Let f be as before, a stopping time τ <∞ a.s. and h ≥ 0. Then

IEx(f(Xτ+h)|Fτ ) = IEXτ (f(Xh)). (A.2.2)
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A.3 Girsanov change of measure

Girsanov’s theorem has an outstanding meaning in financial mathematics.
It provides the base for switching from the ”real life” measure P to the risk
neutral pricing measure Q.

Theorem 14 (Girsanov change of measure). Let B = (B1, . . . , Bd) be a
P d-dimensional Brownian motion and Y i ∈ L1(Bi). Let

Zs = exp

(
d∑
i=1

∫ s

0

Y i
udB

i
u −

1

2

d∑
i=1

∫ s

0

(Y i
u)2du

)

be a P-martingale. Then dQt
dP (B) = Zt defines an equivalent measure Q and

the process

Ws = Bs −
∫ s

0

Yudu,

is a Q-Brownian motion.

Remark: The condition Y ∈ L1(B) is equivalent with Y being predictable
and

∫ t
0
Y 2
s ds <∞ P-a.s. for all t ≥ 0. Under the Novikov condition

E

(
exp

(
1

2

d∑
i=1

∫ t

0

(Y i
u)2du

))
<∞

(Zs)s≤t is a martingale.
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Appendix B

Residue calculus

In order to retrieve the preferred formula 3.3.10 via contour variations we
have to apply residue calculus. The residue Theorem and some basic defin-
itions are recalled, e.g. from Rudin [40] or Jaenich [25], in the following
lines.

Definition 21 (holomorphic functions). [40, Def. 10.2] Let f be a complex
function defined in Ω. If, for z0 ∈ Ω, the limit

lim
z→z0

f(z)− f(z0)

z − z0

,

exists, we denote it by f ′(z0) and call it the derivative of f at z0. A function
f is called holomorphic (or analytic) in Ω, if the derivative exists for every
z0 ∈ Ω. This class of functions will be denoted by H(Ω).

Remark: H(Ω) is a ring, i.e. if f, g ∈ H(Ω), then also f + g ∈ H(Ω) and
fg ∈ H(Ω). The usual differentiation rules from real analysis also apply
here. Further, a function which is analytic and single valued in a region is
called regular.

Definition 22 (regular and singular points). [40, Def. 16.1] Let D be an
open circular disc, suppose f ∈ H(D), and let β be a boundary point of D.
We call β a regular point of f if there exists a disc D1 with center β and a
function g ∈ H(D1) such that g(z) = f(z) for all z ∈ D∩D1. Any boundary
point of D which is not a regular point is called a singular point of f .

Definition 23 (isolated singularity). [40, Def. 10.19] A function f is said
to have an isolated singularity at a ∈ Ω if f ∈ H(Ω− {a}). The singularity
is called removable if f can be so defined at a that the extended function is
holomorphic in Ω.
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Definition 24 (meromorphic function). [40, Def. 10.41] Let Ω be an open
set and A ⊂ Ω. A function f is called meromorphic if

(i) A has no limit point in Ω,

(ii) f ∈ H(Ω− A),

(iii) f has a pole at each point of A.

Note that every f ∈ H(Ω) is also meromorphic in Ω since A = ∅ is not
excluded in this definition and by (i) A is at most countable.

A holomorphic function is not developable into a power series around an
isolated singularity in general, although it is in a so called Laurent series.

Definition 25 (Laurent series). [25, Sec. 4.3] A Laurent series around a is
a series of the form

∞∑
n=−∞

cn(z − a)n, (B.0.1)

or more specific speaking the pair

∞∑
n=1

c−n(z − a)−n and
∞∑
n=0

cn(z − a)n,

where the first one is called principal part.

Theorem 15 (index). [40, Th. 10.10] Let γ be a closed path and Ω the
compliment of γ∗ (relative to the plane). Define

Indγ(z) =
1

2πi

∫
γ

dξ

ξ − z
z ∈ Ω,

the index of z with respect to γ. Then Indγ is an integer valued function on Ω
which is constant in each component of Ω and 0 in the unbounded component
of Ω.

Definition 26 (residue). Lets say the holomorphic function f has an isolated
singularity at a. For sufficient small ε > 0 the residue of f at a is

Resaf(z) :=
1

2πi

∫
|z−a|=ε

f(z)dz. (B.0.2)

Developing f around a into a Laurent series, only the coefficient c−1

contributes to its value. The residue is therefore also the −1-th coefficient of
the Laurent series of f in a circular disc around a.
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Theorem 16 (residue theorem). [40, Th. 10.42] Let f be meromorphic in
Ω and A the set of points in Ω at which f has poles. If Γ is a cycle in Ω−A
such that IndΓ(α) = 0 for all α 6= Ω, then

1

2πi

∫
Γ

f(z)dz =
∑
a∈A

IndΓ(a) Resaf.

Residue calculus

If f(z) has a pole of order k at z0, then

Resz0f(z) =
1

(k − 1)!

d(k−1)

dz(k−1)
|z0( z − z0)kf(z).

Corollary 3 (residue in the case of simple denominator zeros). [25, p. 78]
If g(z) and h(z) are holomorphic at z0 and h(z) has a simple zero there, then

Resz0
g(z)

h(z)
=

g(z0)

h′(z0)
.

With the residue Theorem 16 and the last Corollary 3 we can obtain our
preferred option valuation formula in the end of Section 3.3.4.
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Appendix C

Numerical integration

The Gauss quadrature is a very efficient way of approximating integrals of
the following form: ∫ b

a

w(x)f(x)dx ≈
n∑
i=1

wif(xi),

where w(x) is a non-negative weight function and the xi and wi are the
abscissae and weights. For our option valuation formula this means that we
have a weight function

w(x) = e−x,

and the interval [a, b] = [0,∞]. From Stoer [44, Sec. 3.6] we know that the
xi and wi are therefore given through the Laguerre polynomials

Ln(x) =
n∑
j=0

(−1)j
(n!)2

(j!)2(n− j)!
xj,

with xi being the i-th root of Ln(x) and the weights are

wi =
xi

(n+ 1)2[Ln+1(xi)]2
.

From Theorem [44, Th. 3.6.24] we have, for f ∈ C2n[a, b], that the error
of the above integration rule is∫ b

a

w(x)f(x)dx−
n∑
i=1

wif(xi) =
f (2n)(ξ)

(2n)!
< Ln, Ln >,

with ξ ∈ (a, b) and the scalar product for a real function g is given through

< g, g >=

∫ b

a

w(x)g(x)2dx.
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Appendix D

Market data

SP500 Volatility Market Data

MktIV = [ ...

27.8000 26.3800 25.3200 25.1800

24.7700 24.0200 23.6400 23.6900

21.8600 21.5800 22.0300 22.3900

18.7800 19.3000 20.4700 20.9800

15.7200 17.1200 18.9400 19.7000

13.3400 15.1700 17.4800 18.4900

13.2300 13.7300 16.1800 17.3600 ] ./ 100;

T = [45 98 261 348] ./ 365;

K = [120 125 130 135 140 145 150];

EUR discount curve and market price for cap

PV_disc = [ ...

0.99850 0.98495 0.96299 0.93648 0.90790

0.99620 0.98007 0.95667 0.92946 0.90062

0.99310 0.97474 0.95012 0.92234 0.89333

0.98931 0.96903 0.94338 0.91514 0.88604 ];

dt = 0.5;

MarketPR = 650; % in bps
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