
Markus Krammer

Coulomb Interactions in Kinetic Monte Carlo Simulations
for Charge Transport in Organic Semiconductors

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s Degree Program: Technical Physics

submitted to

Graz University of Technology

Supervisor:
Dipl.-Phys. Dr.rer.nat. Karin Zojer

Institute of Solid State Physics

Co-Supervisor:
Univ.-Prof. Dr. Peter Hadley

Graz, June 2016



EIDESSTATTLICHE ERKLÄRUNG
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Kurzfassung

Um ein besseres Verständnis für Landungstransport in organischen Halbleitermaterialien zu erlangen, ist
die Anwendung von Kinetic Monte Carlo Simulationen (KMC) mittlerweile weit verbreitet. Die Trans-
porteigenschaften des Systems werden dabei anhand der Trajektorien aller Ladungsträger ermittelt, die
durch ein dreidimensionales Gitter von Zellen in Abhängigkeit der individuellen Zelleneigenschaften
hüpfen.
Momentan sind zwei unterschiedliche KMC Simulations-Methoden in Verwendung: Dynamic Monte
Carlo (DMC) und First Reaction Method (FRM). Bei DMC werden alle Hüpfraten von allen Ladungs-
trägern nach jedem Simulationsschritt neu berechnet, was korrekte Ergebnisse liefert, jedoch mit hohem
Rechenaufwand verbunden ist. Insbesondere bei einer großen Anzahl an Ladungsträgern, verursacht
durch hohe Ladungsträgerdichten oder große Systeme, muss man enorme Rechenzeiten in Kauf nehmen.
FRM hingegen berechnet nur die Hüpfrate des eben gehüpften Ladungsträgers neu und ist daher zwar
schnell; der Verfahrensfehler ist jedoch bei hohen Ladungsträgerdichten nicht vernachlässigbar.
Gerade für dotierte organische Halbleitermaterialien und nahe des Kontakts eines organischen Dünnfilm-
Transistors, wo hohe Ladungsträgerdichten auftreten, ist FRM nicht anwendbar. Daher haben wir uns
in dieser Masterarbeit damit beschäftigt, eine neue Methode zu entwickeln, die die Schnelligkeit von
FRM mit den exakten Ergebnissen von DMC verbindet. Diese Methode wurde zunächst an einfachen
Bulksimulationen getestet, wo die Mobilität in Abhängigkeit der Ladungsträgerdichte ermittelt wurde.
Nach erfolgreicher Anwendung auf diesem einfachst möglichen Modellsystem, beschäftigten wir uns
mit der Weiterentwicklung der Methode für Injektionssimulationen, wo ein Metallkontakt an einer Seite
des organischen Halbleitermaterials angebracht wird. Für unterschiedliche Regimes, definiert durch un-
terschiedliche externe elektrische Feldstärken und Injektionsbarrieren, wurde die gemessene Stromdichte
untersucht.
Sowohl für Bulk- als auch für Injektionssimulationen konnten wir zeigen, dass die neue Methode einen
geringen Verfahrensfehler mit start reduzierten Rechenzeiten (Faktor 10-100 im Vergleich zu DMC)
verbindet. Weiters gelang es uns, den Grund für die erzielten Verbesserungen der neue Methode physikalisch
zu interpretieren.



Abstract

Kinetic Monte Carlo simulations (KMC) have become a widely used tool to get a better understanding of
the behaviour of charge transport in organic semiconductors and devices. With the help of such simula-
tions, the transport-related properties of a system are derived from the trajectories of all particles hopping
through a three-dimensional grid of cells as a function of individually chosen cell properties.
Two types of KMC simulation methods are commonly in use: The Dynamic Monte Carlo method (DMC)
and the so-called First Reaction Method (FRM). The DMC method is characterized by updating the hop-
ping rates for all charge carriers in each simulation step and so provides the most exact predictions.
However, the method is inherently slow when considering huge amounts of charge carriers and becomes
computationally expensive for large system sizes or large charge carrier densities. FRM, by contrast,
relies on an approximate, very fast update mechanism in which only the rate of the previously hopped
charge carrier is updated. Obviously this method is not considered accurate for large charge carrier den-
sities.
The weakness of FRM is important, since charge carrier densities are large for doped organic semi-
conductors as well as in the vicinity of the injecting contacts of organic thin-film transistors. In this
master thesis we investigate an update mechanism that replicates the accuracy of DMC, particularly in
the limit of high charge carrier densities, while being much faster than DMC and only slightly more
expensive than FRM. In a first step the performance of this improved update mechanism is examined
by determining bulk mobilities as a function of the charge carrier density. After this simplest case of a
KMC simulation, the approach is transferred to the more complicated scenario of injection simulations,
in which a metal contact is used to inject charge carriers. For different injection regimes, determined
by the external electric field strength and the zero-field-energy barrier, the behaviour of our new update
mechanism was analysed by measuring the current density.
For both, bulk and injection simulations, the new method combines a low methodological error with
a reduced computational effort (factor 10-100 compared to DMC). Furthermore, we are able to give a
physical interpretation for the improvements associated with our new method.





Markus Krammer CONTENTS Master Thesis

Contents

1 Introduction to Kinetic Monte Carlo 1
1.1 Theoretical Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Discrete-Time Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Continuous-Time Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.4 Taking Measurements and Error Analysis . . . . . . . . . . . . . . . . . . . . . 10
1.1.5 Relation Between Physical and Markov Time . . . . . . . . . . . . . . . . . . . 15

1.2 The Model System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.1 The State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.2 The Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.3 The Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.4 The Update Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Development of the Code 31
2.1 Setting Up a Kinetic Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Single Charge Carrier Bulk Simulation . . . . . . . . . . . . . . . . . . . . . . 31
2.1.2 Single Charge Carrier Injection Simulation . . . . . . . . . . . . . . . . . . . . 35
2.1.3 Interacting Bulk Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.4 Interacting Contact Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Convergence Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.1 Autocorrelation Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.2 System Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.3 Interaction Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.1 Time Cumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.2 Random Number Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.3 Upper and Lower Limits of the Random Numbers . . . . . . . . . . . . . . . . 55

3 Results 58
3.1 Bulk Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.1 Blocking by Charge Carrier Density Modulation . . . . . . . . . . . . . . . . . 59
3.1.2 Detrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1.3 Error of the New Update Mechanism . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Injection Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.1 The Three Regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.2 Error of the New Update Mechanism . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.3 The Convergence Problem of Regime 3 . . . . . . . . . . . . . . . . . . . . . . 72

4 Conclusion and Outlook 77

5 Abbreviations and Formula Symbols 79

6 Bibliography 81

7 Appendix 83
7.1 Program Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.1.1 Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.1.2 start.f90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.1.3 test.f90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.1.4 run sim.f90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.1.5 correlations.f90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

I



Master Thesis CONTENTS Markus Krammer

7.1.6 numeric lib.f90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.1.7 plot lib.f90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.1.8 storage lib.f90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.1.9 morphology module.f90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.1.10 mc module.f90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.1.11 Structograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

II



Markus Krammer Master Thesis

1 Introduction to Kinetic Monte Carlo

Our modern way of life would not be the same without organic semiconductor materials. They are widely
used as organic light-emitting diode (OLED) in displays especially for smartphones. Applications for
organic photovoltaic (OPV) devices and organic field-effect transistors (OFET) are getting more and
more as well. At the moment it is not attempted to replace the commonly used inorganic semiconductor
materials. Especially in their core competences like mircocontrollers, storage and other miniaturised
electronic systems, organic materials are not competitive. For totally disordered polymer films, charge
mobilities of 10−6 to 10−3 cm2/Vs are reported and for crystalline organic semiconductors charge mo-
bilities of up to 20 cm2/Vs are achieved. [1] Comparable values for inorganic semiconductors are much
higher (e.g. electron mobilities of 1400 cm2/Vs for Silicon and 8500 cm2/Vs for Gallium Arsenide). [2]
The low mobilities increase the switching time for transistors a lot and thus make organic electronic de-
vices inherently slower than their inorganic opponents. Additionally the advance of decades of research
in the field of miniaturisation for inorganic semiconductors is not so easy to catch up. Nevertheless or-
ganic semiconductors are opening a door to a completely new division. Due to properties like flexibility,
unbreakability, lightness and low production costs, applications in the area of biomedicine are likely.
Amongst others the sector of portable media will continue profiting from organic electronics and also
sensors are a promising field of research. [3]
The huge variety of possible materials for organic semiconductors is giving scientists many opportunities
but also arises lots of questions. The task to find the perfect material for the desired application is often
quite challenging. On one hand the inexhaustible amount of alternatives regarding the molecular design
of the materials is exceeding experimentalists patience and on the other hand theoreticians are still strug-
gling with the basic mechanisms that make the organic semiconductor act like it does. Especially in the
sector of charge transport many questions are still open. An example would be that for experimentalists
it is a well known fact that doping the contact region increases the conductivity of the contact a lot. [4]
Exactly this question, why a doped contact is better than a pure one, was the original motivation for this
master thesis. As doping a contact in principle means making it more dirty, the answer is not as trivial as
it might look like at first sight.
To gain a better understanding of the mechanisms that assign an organic semiconductor its properties, a
variety of simulation techniques is used for different length and time-scales. Regarding electronic prop-
erties, three of the most popular ones are Density Functional Theory (DFT), Kinetic Monte Carlo (KMC)
simulations and Drift Diffusion (DD) simulations. In comparison, with DFT single molecules or at least
a handful of molecules can be investigated, KMC is able to simulate a region within a size of up to a
few hundred nanometres and DD can analyse a whole device. But with the increasing length scale, the
accuracy, of course, suffers. In DFT the fully quantum-mechanical calculations are nearly exact, only
correlations beyond mean field approximations are neglected. This means in case of a weakly correlated
electronic system, DFT gives good results without the necessity of assuming any non-physical param-
eters. In contrast KMC simulations cannot be performed without some assumptions. Additionally the
time evolution of the system itself is done classically neglecting all quantum-mechanical correlations,
only the transition probabilities between the different states of the system are partly calculated quantum-
mechanically. The non-physical parameters of the simulations can be either adapted to fit experimental
data or taken from a more fundamental theory like DFT. A DD simulation is even more classical, there
all quantum mechanical and some classical effects are packed into the mobility. Such a simulation is
suited very well for studying geometry effects of devices, but it is not straightforward to consider dop-
ing. For this consideration the effect of doping on the mobility has to be known in advance. In future,
it is imaginable that those three techniques complement one another in terms of getting information for
the assumptions made in one method from the next more precise method. For instance Olivier et al.
presented a combination of DFT and KMC. [5]
For a KMC simulation, the most challenging part is to evaluate the Coulomb interaction between all
charge carriers in a preferably exact, but computationally affordable way. The computational effort
scales with the number of charge carriers squared, so the runtime of the simulation explodes when many
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charge carriers are in the simulation. Especially for doping scenarios [6] as well as near the contacts of
an organic thin-film transistor [7], high charge carrier densities are expected. During this master thesis a
method was developed that can digest such high charge carrier densities within a reasonable simulation
time in which the Coulomb interactions are considered as accurate as necessary to reproduce the results
of an exact implementation.

Kinetic Monte Carlo simulations are a form of Markov Chain Monte Carlo methods. To ensure the
correctness of this method, chapter 1.1 is concerning the conditions which have to be fulfilled for a
proper kinetic Monte Carlo Simulation. In a next step chapter 1.2 is presenting the used model system
and proves the satisfaction of those frame conditions.

1.1 Theoretical Foundations

To develop an understanding for kinetic Monte Carlo simulations, the underlying technique for this
method has to be studied. This is the reason why we start by exploring the Markov Chain Monte Carlo
method here. As we are interested in kinetic Monte Carlo simulations, only aspects which are relevant for
this method are discussed. Additionally we only focus on equilibrium properties of time-homogeneous
systems, whereas transient procedures or time dependent external fields are not considered. We start
off by investigating discrete-time Markov chains as they are quite intuitive and easy to understand. The
concepts introduced during the study of discrete-time Markov chains will help to understand the more
complicated behaviour of continuous-time Markov chains, which we will focus on afterwards. As a ki-
netic Monte Carlo simulation is a realisation of a continuous-time Markov chain, it is obvious that the
knowledge of continuous-time Markov chains is a major key to understanding a kinetic Monte Carlo
simulation. In a next step we will have to think about taking measurements and evaluating their cor-
responding errors in our simulation and finally the physical interpretation of our mathematically con-
structed stochastic process has to be questioned.
Some of the information discussed in the chapters 1.1.1, 1.1.2 and 1.1.3 about ’Markov Chain Monte
Carlo’, ’Discrete-Time Markov Chains’ and ’Continuous-Time Markov Chains’ is provided in [8]. A
very detailed and more general view on discrete-time Markov chains can be found in [9]. The informa-
tion provided in chapter 1.1.3 is discussed very suitably and in more detail in [10]. The statements found
in chapter 1.1.4 are mainly taken out of [11]. In chapter 1.1.5 the equivalence of the continuous-time
Markov Chain Monte Carlo method and the master equation [12] as well as the Poisson process [13, 14]
is demonstrated. For some chapters, source [15] is helpful as it provides a rather basic but quite easily
accessible approach to Markov Chain Monte Carlo simulations concerning discrete-time Markov chains
and error analysis.

1.1.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo is a powerful tool to simulate probability distributions π(x) in a high dimen-
sional state space X , in which the population of the states x ∈X is dominated by a small part of the state
space. In terms of our goal to perform kinetic Monte Carlo simulations for charge transport in organic
semiconductors, only discrete state spaces with a finite number of states are considered here. In physics
a very common application is to simulate many body systems with a model Hamiltonian Ĥ. In thermal
equilibrium the system obeys the Boltzmann statistics, which means that the expectation value

⟨
Â
⟩

therm
of an operator Â in thermal equilibrium is given by⟨

Â
⟩

therm =
1
Z

tr
(

Âe−β Ĥ
)

with the partition function Z = tr
(

e−β Ĥ
)

(1.1)

where tr is the trace of the operator(s), β = 1
kBT is the inverse of the Boltzmann factor kB times the

temperature T and Ĥ is the Hamilton operator. The system reduces to a classical one if the Hamilton
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operator is diagonal in the chosen state space X . In such a case the partition function simplifies to

Z = tr
(

e−β Ĥ
)
= ∑

x∈X
⟨x|e−β Ĥ |x⟩= ∑

x∈X
e−βEx with Ĥ |x⟩= Ex |x⟩ (1.2)

and an expectation value gets

⟨
Â
⟩

therm =
1
Z ∑

x∈X
⟨x| Âe−β Ĥ |x⟩= ∑

x∈X

⟨
Â
⟩

x
e−βEx

Z
with

⟨
Â
⟩

x = ⟨x| Â |x⟩ . (1.3)

The classical nature of the system is getting obvious in the last equation in which the Boltzmann distri-
bution can be abstracted

πx =
e−βEx

Z
(1.4)

In general any probability distribution πx with classical states x out of a discrete state space X can be
sampled with Markov Chain Monte Carlo. Especially for high dimensional state spaces the goal of such
a simulation is to get expectation values

⟨A⟩= ∑
x∈X

Axπx (1.5)

for measurable quantities A of the system, where Ax is the value for this quantity in state x, rather than
sampling the whole state space. To achieve this, a sequential stochastic process is introduced in Markov
Chain Monte Carlo, namely the Markov chain. Each link of such a chain is a state xt ∈ X and the
sequence is ordered by a Markov time t. For a discrete-time Markov chain the time distance between
two neighbouring links of the chain ∆tmin is always the same. As the Markov time itself usually has
no physical relevance, the time interval can be chosen to ∆tmin = 1. In contrast kinetic Monte Carlo
simulations are continuous-time Markov chains (also called Markov jump processes) in which the time
evolution is continuous ∆tmin ∈R+. For both alternatives the essential characteristic of the Markov chain
is the Markov property

P(xt+∆tmin |xu,u ≤ t) = P(xt+∆tmin |xt) (1.6)

which means that the probability that a state xt+∆tmin is visited at time t+∆tmin is only depending on the
state xt that was visited directly prior in Markov time. As a consequence the future evolution of a Markov
chain only depends on the currently occupied state xt and the transition probabilities P(x′t+∆t|xt) to get
from state x, occupied at time t, to state x′ within a time ∆t.

1.1.2 Discrete-Time Markov Chains

In this chapter only discrete-time Markov chains with ∆tmin = 1 are studied. As we are only considering
discrete state spaces with a finite number of states, a single transition between two neighbouring links in a
Markov chain can be described by a transition matrix with matrix element Tx,x′ := P(x′t+1|xt) = P(x′1|x0)
where in the last part the time-homogeneity was used. Note that only due to the Markov property a
transition matrix T can be used to describe the evolution of the Markov chain. For convenience we
define p1(x,x′) := P(x′t+1|xt) = P(x′1|x0). All elements of T are non-negative and the elements in each
row have to sum up to unity. Such a matrix is called a stochastic matrix. Performing n steps leads to a
transition probability pn(x,x′) := P(x′n|x0) = (Tn)x,x′ . For any l,m,n ∈ N with l+m = n the relation

pn(x,x′) = (Tn)x,x′ = (Tl+m)x,x′ = ∑
y∈X

(Tl)x,y(Tm)y,x′ = ∑
y∈X

pl(x,y)pm(y,x′) (1.7)

holds. This relation is called the Chapman-Kolmogorov equation.
Now we can introduce a row vector π̃ = (π̃x) with entries representing the probability that a certain state

3
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is occupied. Starting with an initial probability distribution π̃0, the Markov chain evolves this probability
distribution

π̃n = π̃0Tn (1.8)

within a Markov time n ∈ {0,1,2, ...}. Finally we would like to end up with our desired probability
distribution

(πx) = lim
n→∞

π̃n (1.9)

not depending on the starting configuration π̃0. To assure this, certain conditions have to be fulfilled. So
we will now have a look at some properties of a Markov chain.

Fundamental Terminology:
A state x ∈ X is said to lead to state x′ ∈ X , written as x → x′, if a finite number n ≥ 0 exists for which
a transition from x to x′ is possible pn(x,x′) > 0. Two states x,x′ ∈ X are said to communicate with
each other x ↔ x′ if x → x′ and x′ → x. A set of states C ⊆ X is said to be a communicating class if
all states within this class x ∈ C communicate with each other and no states from outside x′ ∈ X \C are
communicating with states in C. A Markov chain is said to be irreducible, if the only communicating
class is X . In other words the Markov chain can access every state x′ from all states x within a finite
Markov time.
A state is said to be periodic with period d ≥ 2, if the state can only be revisited after a multiple of d
steps. More precise d is the largest number for which the condition

∞

∑
n=1

pn·d(x,x) = 1 (1.10)

holds. The state is called aperiodic when d = 1. A sufficient but not necessary condition for aperiodicity
is p1(x,x) > 0. As an example a state that could be revisited at the earliest after m steps, but also after
m+1, m+2, m+3, . . . steps is aperiodic as well. In case of an irreducible chain, all states have the same
period. This leads to the fact that if one aperiodic state exists in an irreducible chain, the whole chain is
aperiodic.
If the chain is irreducible and aperiodic, a positive integer n has to exist for which the transition matrix
T only contains strictly positive numbers ∃n ∈ N for which (Tn)x,x′ > 0 ∀x,x′ ∈ X . A Markov chain
satisfying the condition of only strictly positive entries in the transition matrix is called a regular chain.
A state y ∈ X is said to be recurrent, if the probability that the state is revisited within a time ∆t < ∞ is
unity; P(x∆t = y|x0 = y∧∆t < ∞) = 1. If this is not the case, it is called transient. A recurrent state where
the expectation value of the time needed to revisit the state is finite ⟨∆t⟩< ∞ is called positive recurrent,
otherwise it is null-recurrent. Note that aperiodicity does not necessarily imply positive recurrence as
aperiodicity describes the finite Markov time t behaviour, whereas positive recurrence considers the
limiting behaviour of t → ∞.
A stochastic process {xt, t ≥ 0} is called regenerative if it ’regenerates’ itself at certain times t0 ≤ t1 <
t2 < t3 . . . of the form tn =A1+A2+ · · ·+An with n∈{1,2,3, . . .} and {An} being identically independent
distributed. Regeneration means that the stochastic process {xt0+t, t ≥ 0} has the same distribution as the
stochastic process {xtn+t, t ≥ 0}. In other words the probabilistic behaviour of the stochastic process
starting at time tn is exactly the same as at time t0. After a time tn the process acts as if it has just started
new. The tn are called regeneration times and the first regeneration time t0 has a special status; if t0 = 0
the process is named pure, otherwise it is named delayed. The {An} are called cycle lengths and it is said
to have a lattice distribution if An takes values in the lattice {a+n ·b,n ∈N} for some values a and b ̸= 0
where b is called the period.
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Existence of a Limiting Distribution:
Those definitions are preparing the path towards the most important part of this chapter, the limiting or
steady-state behaviour of our Markov chain as the number of steps in Markov time n → ∞.
First we will ensure the existence of a limiting distribution with the help of the following theorem:

Theorem 1.1 (Regeneration Theorem - [8] Theorem A.9.1, page 631) Let {xt} be a discrete-time re-
generative process with cycle length distribution of period b = 1 and expectation ⟨A1⟩ < ∞. Then, xt

converges in distribution to a random number x, such that for all joint probability density functions f

⟨f (x)⟩= 1
⟨A1⟩

⟨
t1−1

∑
t=t0

f (xt)

⟩
(1.11)

provided that the expectation exists.

As this theorem is valid for all joint probability density functions f it is also valid for the probability
density π̃ t

y =P(xt = y) and the convergence in distribution ensures that a limiting distribution limt→∞ π̃ t
x =

π̃x exists. Our Markov chain {xt} is a discrete-time regenerative process, in which possible regeneration
times are the times when the process revisits a specific state. With the help of theorem 1.1 and assuming
aperiodicity and irreducibility, it can be shown that

lim
t→∞

pt(x,x′) = π̃x′ (1.12)

which means that the transition probability pt(x,x′) for all pairs of states x,x′ ∈ X leads to a quantity
π̃x′ ∈ [0,1] that in the limit t → ∞ does not depend on the initial state x. If the state x′ is additionally
positive recurrent the quantity π̃x′ > 0 and, if not, π̃x′ = 0. As the transition probability pt(x,x′) is equal to
the matrix entry (Tt)x,x′ of the stochastic transition matrix T which has to satisfy ∑x′ Tx,x′ = 1, and, hence,
∑x′(Tt)x,x′ = 1, the quantity π̃x is a probability density. The simplified reason behind this convergence
is, that the Markov chain ’forgets’ where it started and so, guaranteed that every state can be visited at
any time, it reaches an equilibrium probability density π̃x′ independent of the starting probability density
π̃0

y = δx,y. Equation (1.12) is equivalent to

lim
t→∞

(Tt)x,x′ = π̃x′ ∀x,x′ ∈ X (1.13)

which means that every row of the transition matrix Tt converges to the probability distribution vector π̃ .
In summary we can say that given the Markov chain is irreducible and aperiodic, a probability density
π̃x′ = limt→∞ pt(x,x′) for all x,x′ ∈X with ∑x∈X π̃x = 1 exists and for all states that are positive recurrent
additionally π̃ ′

x > 0 holds. In a next step we will have a look at the uniqueness of π̃ .

Uniqueness:

Theorem 1.2 (Limiting Distribution - [8] Theorem A.10.1, page 634) For an irreducible, aperiodic
Markov chain with transition matrix T, if the limiting distribution π̃ exists, then π̃ is uniquely determined
by the solution of the constrained system of equations

π̃ = π̃T, ∑
x∈X

π̃x = 1, π̃x > 0 ∀x ∈ X (1.14)

Conversely, if there exists a row vector π̃ satisfying (1.14), then π̃ is the limiting distribution of the
Markov chain. In addition π̃x > 0 ∀x ∈ X and all states are positive recurrent.

This important theorem not just ensures the uniqueness of the probability distribution π̃ , it additionally
tells us that irreducibility and aperiodicity leads to the fact that all states are positive recurrent. A proba-
bility distribution π̃ fulfilling (1.14) is called a stationary distribution as it does not change during the
Markov process.
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Correct Sampling:
Now having an existing and unique probability density π̃ , the last step is to develop a convenient check
if we are sampling out of the right probability distribution π with our transition matrix T. Fortunately
this check is delivered with theorem 1.2. If we multiply the very left equation in (1.14) in its sum
representation π̃x′ = ∑x∈X π̃xp1(x,x′) ∀x′ ∈X by ∑x∈X p1(x′,x) = 1 we get the global balance equation

∑
x∈X

π̃x′p1(x′,x) = ∑
x∈X

π̃xp1(x,x′) ∀x′ ∈ X (1.15)

which indicates the balance between the ’probability flux’ out of state x′ and into state x′. A much
stronger assumption than (1.15) is the detailed balance equation

π̃x′p1(x′,x) = π̃xp1(x,x′) ∀x,x′ ∈ X . (1.16)

If this equation is fulfilled for all x,x′ ∈ X , (1.15) is fulfilled as well. With (1.16) we have found our
convenient check to assure that we are sampling from the right probability density. Additionally, if we
find a probability distribution π̃ which satisfies (1.16), the existence of a non-trivial solution to (1.14) is
guaranteed as well.
Finally we can stress that an irreducible and aperiodic Markov chain with transition probabilities p1(x,x′)
and a transition matrix Tx,x′ = p1(x,x′) has a unique stationary distribution π̃ = π̃T which can be found by
π̃x′ = limt→∞(Tt)x,x′ ∀x,x′ ∈ X and if a probability distribution π satisfies the detailed balance equation
πx′p1(x′,x) = πxp1(x,x′) ∀x,x′ ∈ X the probability distributions are the same π = π̃ .

1.1.3 Continuous-Time Markov Chains

Like in the last chapter about ’Discrete-Time Markov Chains’ we again want to get a convenient recipe
to check if we are sampling out of the desired probability distribution π . As our Markov time t ∈ R+

now evolves in continuous-time, things get more complicated. Even the question of how the sample-path
behaviour of a Markov chain in continuous-time looks like is not trivial any more and will be answered
at the end of this chapter.

Transition Function and Kolmogorov Equations:
As for discrete-time Markov chains we again start with the Markov property, which is the basic concept
of a Markov chain. It tells us that the evolution of a Markov chain does not depend on the whole history
of the chain but only on the last point in time of this history. In a more mathematical formulation, the
probability that the Markov chain {x(t), t ≥ t0} starting at time t0 is in a state x′ at time t′, given the
history of the Markov chain {x(t), t0 ≤ t ≤ t1} for all times t within an interval [t0, t1], is determined only
by the state that it is in at time t1.

P(x′(t′)|{x(t), t0 ≤ t ≤ t1}, t′ ≥ t1) = P(x′(t′)|x(t1), t′ ≥ t1) (1.17)

We are only considering time-homogeneous Markov chains and so we can set t1 = 0 and define the
transition probability pt(x,x′) = P(x′(t)|x(0)) in the same way as above. Considering only state spaces
with a finite number of states, we can again arrange this transition probabilities in a matrix Tx,x′(t) =
pt(x,x′). The very crucial difference to the discrete case is that the Markov time is no longer simply the
power of the transition matrix Tt but rather has a functional dependence T(t). Thus we call the matrix
T(t) a transition function. At this point some definitions have to be made:
A function Tx,x′(t) is called a transition function if

1. Tx,x′(t)≥ 0 for all t ≥ 0 and x,x′ ∈ X

and Tx,x′(0) = δx,x′ where δx,x′ =

{
1 for x = x′

0 for x ̸= x′
is the Kronecker delta;

6
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2. ∑x′∈X Tx,x′(t)≤ 1 ∀t ≥ 0 and ∀x ∈ X . If ∑x′∈X Tx,x′(t) = 1 ∀t ≥ 0 and ∀x ∈ X , Tx,x′(t) is said to
be honest, otherwise it is dishonest;

3. Tx,x′(t+s) =∑y∈X Tx,y(t)Ty,x′(s) ∀s, t ≥ 0 and ∀x,x′ ∈X (this is the Chapman-Kolmogorov equa-
tion).

Tx,x′(t) is called a standard transition function if it additionally fulfils

4. limt→0 Tx,x(t) = 1 ∀x ∈ X (due to 0 ≤ ∑x′∈X \{x} Tx,x′(t) ≤ 1−Tx,x(t) we have limt→0 Tx,x′(t) =
δx,x′ ∀x,x′ ∈ X )

For kinetic Monte Carlo simulations, we are not starting from a transition function, but rather from a
rate equation which gives us the transition probabilities per unit time between two states. With this rate
equation we can build up a so called q-matrix. For our time-homogeneous system this q-matrix is not
time-dependent.
A square matrix Q = (qx,x′) with x,x′ ∈ X is called a q-matrix if

0 ≤ qx,x′ < ∞ ∀x,x′ ∈ X with x ̸= x′ (1.18)

and

∑
x′∈X \{x}

qx,x′ ≤ qx ≤ ∞ ∀x ∈ X (where qx,x :=−qx). (1.19)

Q is called stable if qx < ∞ ∀x ∈ X , conservative if

∑
x′∈X \{x}

qx,x′ = qx ∀x ∈ X , (1.20)

and uniformly bounded if

sup
x∈X

qx < ∞. (1.21)

Note, that in our case of a finite dimensional state space, stable and uniformly bounded is in principle the
same.
A transition function Tx,x′(t) is called a Q-function if Q is the q-matrix of Tx,x′(t) which means

T′
x,x′(0) = lim

t→0

Tx,x′(t)−δx,x′

t
= qx,x′ (1.22)

or in matrix representation simply

T′(0) = lim
t→0

T(t)−1

t
= Q (1.23)

where 1 is the identity matrix. As we have a finite dimensional state space we do not have to care about
the convergence of infinite summations and we can write

T′(t) = lim
h→0

T(t+h)−T(t)
h

= lim
h→0

T(t)T(h)−T(t)
h

= T(t)
(

lim
h→0

T(h)−1

h

)
= T(t)Q (1.24)

T′(t) = lim
h→0

T(h+ t)−T(t)
h

= lim
h→0

T(h)T(t)−T(t)
h

=

(
lim
h→0

T(h)−1

h

)
T(t) = QT(t) (1.25)

with the help of the Chapman-Kolmogorov equation. We call T′(t) = T(t)Q the Kolmogorov forward
equation and T′(t) = QT(t) the Kolmogorov backward equation.
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Theorem 1.3 ( [10] Theorem 2.2.2, page 70) Let Q be a stable but not necessarily conservative q-
matrix. Then there exists a (possibly dishonest) transition function fx,x′(t) satisfying both the Kolmogorov
backward and forward equation, with the property that fx,x′(t) is the minimal solution of each of these
equations, in the sense that if Tx,x′(t) is any non-negative solution (not necessarily a transition function)
of either the backward or forward equation, then fx,x′(t)≤ Tx,x′(t) ∀x,x′ ∈ X and ∀t ≥ 0. Furthermore,
fx,x′(t) is the minimal Q-function; that is, if Tx,x′(t) is any other Q-function (not necessarily a solution of
either the backward or forward equation), then fx,x′(t)≤ Tx,x′(t) ∀x,x′ ∈ X and ∀t ≥ 0.

This theorem assures that for every stable q-matrix a corresponding transition function (a Q-function)
exists and this so called minimal Q-function additionally is a solution to the Kolmogorov forward and
backward equation.

Theorem 1.4 ( [10] Proposition 2.2.9, page 83) Let Q be a not necessarily conservative uniformly
bounded q-matrix. Then the minimal solution fx,x′(t) is the unique Q-function.

Now we define a function

T(t) := etQ =
∞

∑
n=0

tn

n!
Qn (1.26)

for a conservative, finite dimensional, stable (and hence uniformly bounded) q-matrix. Proving that
T(t) is a transition function, (T′(0) = Q) and that T(t) satisfies the Kolmogorov backward and forward
equation would prove that it is a Q-function. Due to theorem 1.4, only one unique Q-function can be
found for a uniformly bounded q-matrix which is the minimal Q-function. I.e., once we find a Q-function,
it has to be the minimal Q-function.
With the summation representation

T(t) =
∞

∑
n=0

tn

n!
Qn = 1+ tQ+

t2

2
Q2 +

t3

6
Q3 + . . . (1.27)

it is obvious that T′(0) = Q and T′(t) = T(t)Q = QT(t). However, to prove that T(t) is a transition
function is not as obvious. For that we have to demonstrate all properties that defines a transition function.
We start to do this by showing that Tx,x′(t)≥ 0 ∀x,x′ ∈X . As a preparation we need to show that for two
commuting matrices A and B, which means [A,B] = AB−BA = 0 or equivalently AB = BA the matrix
exponential satisfies eA+B = eAeB:

eA+B =
∞

∑
n=0

(A+B)n

n!
(1.28)

=
∞

∑
n=0

∑n
m=0 AmBn−m n!

m!(n−m!)

n!
(1.29)

=
∞

∑
n=0

n

∑
m=0

Am

m!
Bn−m

(n−m)!
(1.30)

=
∞

∑
k=0

Ak

k!

∞

∑
l=0

Bl

l!
(1.31)

eA+B = eAeB (1.32)

where, (i), in the second line the binomial formula (A+B)n = ∑n
m=0 AmBn−m n!

m!(n−m)! was used (note that
the sorting of products like ABA = A2B is only possible due to the fact that A and B commute) and, (ii),
in the fourth line the summation over (n,m) was replaced by a summation over (k, l) = (m,n−m) with
the corresponding summation limits n ≥ 0 and 0 ≤ m ≤ n transforming to k ≥ 0 and l ≥ 0.
Furthermore, for a matrix M which has only non-negative entries Mx,x′ ≥ 0, the relation

(eM)x,x′ =

(
∞

∑
n=0

Mn

n!

)
x,x′

≥ 0 (1.33)
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is trivially fulfilled, as we are only summing up non-negative terms. As we know that all off-diagonal
entries of our q-matrix are non-negative qx,x′ ≥ 0 ∀x,x′ ∈ X with x ̸= x′ and the diagonal elements have
a finite infimum ∃λ >−∞ for which qx,x > λ ∀x ∈X , the matrix M = t(Q−λ1) has only non-negative
entries.

eM = et(Q−λ1) = etQe−tλ1 = etQ
1e−tλ = T(t)e−tλ (1.34)

Here we used that the identity matrix commutes with every other matrix and eα1 = 1eα ∀α ∈ R. From
this we see that, as e−tλ > 0 ∀t,λ ∈R, the relation (eM)x,x′ ≥ 0 ∀x,x′ ∈X directly implies that Tx,x′(t)≥
0 ∀x,x′ ∈ X and ∀t ≥ 0.
The relation T(0) = 1 follows directly from the summation representation of the matrix exponential
(1.27).

T(t)1 = 11+

(
∞

∑
n=1

tn

n!
Qn−1

)
Q1 = 1 (1.35)

with 1 a vector 1x = 1 ∀x ∈ X . This means that our conservative q-matrix Q1 = 0 leads to a honest
transition function T(t)1 = 1.
With (1.32) and [tQ,sQ] = ts[Q,Q] = 0 the Chapman-Kolmogorov equation is easy to prove:

T(t+ s) = e(t+s)Q = etQesQ = T(t)T(s) (1.36)

Furthermore the relation

lim
t→0

T(t) = lim
t→0

∞

∑
n=0

tn

n!
Qn = 1 (1.37)

tells us that T(t) is standard.
Summing up, we can say that T(t) = etQ is the unique, honest, standard transition function that belongs
to our conservative, finite dimensional, stable (and hence uniformly bounded) q-matrix.

Existence and Uniqueness:
As we now exactly know the properties of our transition function for our Markov chain, we can go on
with thinking about the limiting behaviour.

Theorem 1.5 ( [10] Theorem 5.1.6, page 160) Suppose that Tx,x′(t) is an irreducible transition function.

1. Then the limits π̃x′ = limt→∞ Tx,x′(t) exist and are independent of x for all x′ ∈ X . The set {π̃x,x ∈
X } is a stationary distribution and either

(a) π̃x = 0 ∀x ∈ X or

(b) π̃x > 0 ∀x ∈ X and ∑x∈X π̃x = 1.

2. Suppose π = (πx,x ∈X ) is a probability vector such that πT(t) = π for some t > 0. Then πT(t) =
π for all t ≥ 0 (this means π is a stationary distribution) and π = π̃ where π̃ is as in part 1.

The term irreducible is defined in the same way as for discrete-time Markov chains. For a given q-matrix
x → x′ with x,x′ ∈ X if a finite series of n steps of strictly positive matrix elements {qyi,yi+1 > 0, i ∈
{1,2, . . . ,n−1} with y1 = x and yn = x′ can be found.
Like in chapter 1.1.2 about discrete-time Markov chains, we are interested in finding a convenient check
to assure that we are sampling out of the correct probability density π . With theorem 1.5, we guarantee
that the stationary distribution πT(t) = π is exactly the one that we are approaching in the long time
behaviour. The fact that T(t) is honest T(t)1 = 1 in addition to our finite dimensional state space ensures
that the stationary distribution of the limiting behaviour π̃ is not vanishing.

9
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Checking the relation πT(t) = π is not really convenient, so we use (1.26) to get a more handy condition:

πT(t) = πetQ = π

(
1+Q

∞

∑
n=1

tn

n!
Qn−1

)
= π +(πQ)

∞

∑
n=1

tn

n!
Qn−1 !

= π (1.38)

Obviously, πT(t) = π is true if πQ = 0. This leads us, like for the discrete-time Markov chains, to
a global balance equation ∑x∈X πxqx,x′ = 0 ∀x′ ∈ X . For our conservative q-matrix ∑x′∈X \{x} qx,x′ =
−qx,x ∀x ∈ X , we get

∑
x′∈X \{x}

πx′qx′,x = ∑
x′∈X \{x}

πxqx,x′ ∀x ∈ X . (1.39)

This implies the desired, much stricter, but more convenient requirement

πx′qx′,x = πxqx,x′ ∀x,x′ ∈ X . (1.40)

This equation is again called detailed balance equation.
So finally we can sum up our results: A conservative, finite dimensional, stable (and hence uniformly
bounded) and irreducible q-matrix leads to a unique, honest, standard transition function T(t) = etQ and
this transition function leads to the limiting distribution πx′ = limt→∞ Tx,x′(t) ∀x ∈ X . This limiting
distribution is the same distribution as the stationary distribution determined by the detailed balance
equation (1.40).

Construction of a Continuous-Time Markov Chain:
It seems that we are finished with this chapter as we now have shown that our stochastic process {x(t), t ≥
0} does exactly what we want. But unfortunately we did not care about how we could construct our
Markov chain.

Theorem 1.6 (Sample-Path Behaviour - [8] Theorem A.11.1, page 636) For each stable and conserva-
tive q-matrix there exists a continuous-time Markov chain {x(t), t ≥ 0} whose paths are right-continuous
step functions up to a certain random time t∞. Moreover, the sample-path behaviour up to t∞ can be
described as follows:

1. Given its past, the probability that {x(t), t ≥ 0} jumps from its current state x to state x′ is

P(x′|x) =
qx,x′

qx
. (1.41)

2. The amount of time that {x(t), t ≥ 0} spends in state x has an exponential distribution with rate
parameter qx, independent of the past history.

t∞ is the so called time of the first infinity, which is t∞ = ∞ in our case of a conservative, finite dimen-
sional, stable (and hence uniformly bounded) and irreducible q-matrix. This means that our sample-path
behaviour is as described in theorem 1.6 for all times t ≥ 0.

1.1.4 Taking Measurements and Error Analysis

Expectation Values:
In chapter 1.1.3 we have learned, (i), how to construct our Markov chain {x(t), t ≥ 0} and, (ii), that the
probability that the chain is in a certain state x′ tends to the desired probability distribution limt→∞ P(x(t)=
x′) = πx′ . To take measurements, we could start a first Markov chain with a certain state x1(0) and let
the system evolve corresponding to theorem 1.6 for a sufficiently long time t0 so that the system has
equilibrated. Now, as the state x1(t0) is representative for the probability distribution πx, we could take
the measurement A1 = Ax1(t0) of an observable Ax. If we repeat this procedure Nm times (start at a certain
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state x2(0), equilibrate and measure A2 = Ax2(t0), start at a certain state x3(0), equilibrate and measure
A3 = Ax3(t0), . . . ) we would get Nm measures A1,A2, . . . ,ANm and could calculate an estimator for the
expectation value ⟨A⟩ = 1

Nm
∑Nm

n=1 An. This procedure is actually not favourable as we are spending a lot
of time with getting rid of the starting configuration and reaching the limiting distribution to get just
one single measurement. Additionally the procedure could be biased due to the choice of the starting
configuration.
A much better approach is to evolve only one Markov chain {x(t), t ≥ 0}. Of course, we have to get rid
of the starting probability density also in this case, i.e., we again have to let the chain evolve for a certain
period of time t0. This part of the simulation is called thermalisation. After thermalisation, it is supposed
that the Markov chain has reached the limiting distribution P(x(t0)) = πx. Once having reached the limit-
ing (stationary) distribution, the state of the Markov chain at any later time t0+ t with t ≥ 0 is representing
the limiting (stationary) distribution as well P(x′(t0+ t)) = ∑x∈X P(x(t0))Tx,x′(t) = (πT(t))x′ = πx′ . This
means that after thermalisation we can continuously take measurements Ax(t) for a time interval ∆t and
use them for calculating an estimator of the expectation value ⟨A⟩= 1

∆t

∫ t0+∆t
t0 Ax(t)dt.

The Markov chain consists of right-continuous step functions at certain jump-times ti with i ∈ N (see
theorem 1.6). The measurements start after thermalisation at time t0 and we can define the retention
time ∆ti = ti+1 − ti for i = {0,1,2, . . . ,NM −1} as the time in which the Markov chain stays in a certain
state xi = x(ti). The number of Markov jumps after thermalisation is NM. With this the estimator of the
expectation values gets

⟨A⟩= 1
∆t

∫ t0+∆t

t0
Ax(t)dt =

1
∆t

NM−1

∑
i=0

Ax(ti)∆ti (1.42)

The estimator of an expectation value is worth nothing without an error. Assuming that our Markov
chain generates independent random variables out of our probability distribution π , the error could be
evaluated from the variance var(A) of the observable A.

var(A) =
⟨
(A−⟨A⟩)2

⟩
=

1
∆t

∫ t0+∆t

t0

(
Ax(t)−⟨A⟩

)2 dt = · · ·=
⟨
A2⟩−⟨A⟩2 (1.43)

From an unbiased variance var(A) we usually get an estimator of the error of our expectation value with

∆A =
√

var(A)
Nm

where Nm is the number of measurements. The unbiased variance can be shown to be

var(A) = Nm
Nm−1

(⟨
A2
⟩
−⟨A⟩2

)
if the estimator of the expectation value ⟨A⟩ (1.42) is taken to calculate

the variance. So we get

∆A =

√
⟨A2⟩−⟨A⟩2

Nm −1
(1.44)

for the estimator of the error ∆A.

Autocorrelation Function:
In our case of a continuous-time Markov chain, we are, in principle, measuring continuously. Thus it
is not trivial to quantify the number of measurements Nm. To be able to provide Nm, we have to think
about the meaning of independent random variables. If we are in a state x(t) at time t, the state x(t+dt)
occupied an infinite amount of time dt later is presumably dependent of x(t). We have to wait at least as
long as the average time needed to access a new state. In this case, the number of measurements would
be the number of Markov jumps that the chain performed Nm = NM . Due to the Markov property, the
chain is linked with its past and hence the state before and after a jump are not independent. The strength
of the correlation between those two states depends on the way that the jumps are suggested. Practically
it is not possible to create a totally uncorrelated Markov chain. For independent random variables, a new
state would have to be chosen independent of the prior state directly from the probability distribution π .
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This illustrates that our Markov chain cannot generate completely independent random variables. This
is where autocorrelations come into play.
An important quantity to determine the dependence of measurements taken at different times of the same
Markov chain is the normalised autocorrelation function ρ(t). For an observable A it is defined as

ρA(t) :=
cov
(
Ax(t′),Ax(t′+t)

)√
var(Ax(t′)) · var(Ax(t′+t))

=
cov(Ax(t0),Ax(t0+t))

var(A)
(1.45)

where homogeneity in time was assumed after thermalisation t′ ≥ t0. The covariance cov(B,C) of two
observables B and C is given by

cov(B,C) = ⟨(B−⟨B⟩)(C−⟨C⟩)⟩ . (1.46)

A numerically very stable estimator of the autocorrelation function is the so-called empirical autocor-
relation function ρE(t) [15]. For a continuous-time Markov chain it can be evaluated in the following
way:

ρE
A (t) =

1
∆t−t

∫ t0+∆t−t
t0

(
Ax(t′)−⟨A⟩t

)(
Ax(t′+t)−⟨A⟩′t

)
dt′√

1
∆t−t

∫ t0+∆t−t
t0

(
Ax(t′)−⟨A⟩t

)2 dt′ 1
∆t−t

∫ t0+∆t−t
t0

(
Ax(t′+t)−⟨A⟩′t

)2 dt′
(1.47)

=

1
∆t−t

(∫ t0+∆t−t
t0 Ax(t′)Ax(t′+t)dt′

)
−⟨A⟩t ⟨A⟩

′
t√(

⟨A2⟩t −⟨A⟩2
t

)(
⟨A2⟩′t −

(
⟨A⟩′t

)2
) (1.48)

with

⟨A⟩t =
1

∆t− t

∫ t0+∆t−t

t0
Ax(t′)dt′ (1.49)

⟨
A2⟩

t =
1

∆t− t

∫ t0+∆t−t

t0
A2

x(t′)dt′ (1.50)

⟨A⟩′t =
1

∆t− t

∫ t0+∆t−t

t0
Ax(t′+t)dt′ (1.51)

⟨
A2⟩′

t =
1

∆t− t

∫ t0+∆t−t

t0
A2

x(t′+t)dt′ (1.52)

From the simulated continuous-time Markov chain {x(t) = x(ti), ti ≤ t < ti+1 ∀i < NM}, where NM is
the number of jumps the simulation stepped through after thermalisation, the empirical autocorrelation
function can be evaluated directly. Due to the step function nature of the Markov chain, the integrals can
be converted to sums as in (1.42). E.g., (1.49) turns into:

⟨A⟩t =
1

∆t− t

∫ t0+∆t−t

t0
Ax(t′)dt′ =

1
∆t− t

(
N′

M−1

∑
i=0

Ax(ti)∆ti +Ax(tN′
M
)

(
∆t− t− tN′

M

))
, (1.53)

where the variable N′
M is the highest integer for which the relation tN′

M
≤ ∆t− t holds. Similar relations

can be formulated for all other expectation values needed to calculate ρE
A (t). Due to the integration

(considering continuous observables A only depending on the current state of the Markov chain Ax(t)),
the step functions are smoothed out and our empirical autocorrelation function is a smooth and piecewise
differentiable function of time. For an observable B depending on the transition Bx(t),x(t+dt), e.g., a
velocity, the observable only takes non-zero values during the immediate transition. As a consequence,
Dirac-delta-functions appear in Bx(t),x(t+dt) and the integral is only piecewise smooth with steps appearing
in ρE

B (t). Although this evaluation of ρE(t) is the correct one and leads to the accurate time dependence
in continuous Markov time, it is quite cumbersome.
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An easier approach is to treat the continuous-time Markov chain {x(t) = x(ti), ti ≤ t < ti+1 ∀i < NM}
as if it would be a discrete-time Markov chain {xi, i ∈ {0,1, . . . ,NM − 1}}. Calculating the empirical
autocorrelation function ρE

A (i) of an observable Ai = Axi according to the definition (1.45) for a discrete-
time Markov chain, is reminiscent to a continuous-time Markov chain, but the final expression is easier
to handle:

ρE
A (i) =

1
NM−i

(
∑NM−1−i

j=0 AjAj+i

)
−⟨A⟩i ⟨A⟩

′
i√(

⟨A2⟩i −⟨A⟩2
i

)(
⟨A2⟩′i −

(
⟨A⟩′i

)2
) (1.54)

with

⟨A⟩i =
1

NM − i

NM−1−i

∑
j=0

Aj (1.55)

⟨
A2⟩

i =
1

NM − i

NM−1−i

∑
j=0

A2
j (1.56)

⟨A⟩′i =
1

NM − i

NM−1−i

∑
j=0

Aj+i (1.57)

⟨
A2⟩′

i =
1

NM − i

NM−1−i

∑
j=0

A2
j+i (1.58)

Observables Bxi,xi+1 depending on the transition xi → xi+1 now also just have certain values Bi = Bxi,xi+1

for the currently present discrete Markov time i. Hence, they can be treated in exactly the same way as
observables Ai that only depend on the current state xi.
Our discrete-time empirical autocorrelation function ρE

A (i) no longer gives us the correct time depen-
dence in continuous Markov time, but rather tells us how correlated the measured values of the observ-
able A for the individually visited states are. With this simplification it seems that we completely neglect
the continuous-time dependence. Fortunately this is not the case as we still have the retention times,
which can be seen as an observable ∆ti. So by looking at both, the discrete-time empirical autocorre-
lation function of the observable A and of the retention times ∆ti, we should get the same information.
Nevertheless it would be more accurate to directly implement the continuous-time empirical autocorre-
lation function.

Autocorrelation Times:
The shape of the autocorrelation function ρA(t) for a certain observable A is reflecting the behaviour of
the Markov chain and holds information about the system and the observable A. So it is worthwhile
having a more detailed look at it. In the following the time t is assumed to be discrete, but, if the notation
is changed appropriate, the content also holds for continuous times t.
For the analytical autocorrelation function of an observable A as defined in (1.45), it can be shown that

ρA(t) =
Nac

∑
i=1

ci(A)e
− t

τi (1.59)

with Nac being the number of autocorrelation times τi (for a finite dimensional state space Nac is finite)
and corresponding positive coefficients ci(A), where the autocorrelation times are fixed by the transition
matrix (or the transition function and hence the q-matrix in the continuous case) and the coefficients are
depending on the observable A. Note that it is possible that for certain observables A some autocorrela-
tion times τi are not present as the coefficients might be zero ci(A) = 0.
The largest autocorrelation time for which the coefficient is non-zero, cexp(A) > 0, is called the asymp-
totic autocorrelation time τexp(A) as it determines the asymptotic behaviour of the autocorrelation func-
tion limt→∞ ρA(t) = cexp(A)e−t/τexp(A). Additionally, it sets the time-scale for thermalisation as after a few

13
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asymptotic autocorrelation times the Markov chain has more or less completely lost the information of
the starting state.
Another important autocorrelation time is the integrated autocorrelation time τint(A):

τint(A) =
1
2
+

NM

∑
t=1

ρA(t)
(

1− t
NM

)
(1.60)

which can be calculated for a Markov chain having NM links. With this integrated autocorrelation time
an improved estimator of the error of an observable can be given:

∆A =

√
var(A)

NM
2τint (1.61)

Compared to the case of independently generated random variables, where ∆A =
√

var(A)
Nm

, the number

of measurements Nm is efficiently reduced to NM
2τint

. This observation seems to answer the question some
pages before: How ’correlated’ are correlated random variables? From (1.61) one could interpret that
after a time of 2τint the measurements are independent.
For an autocorrelation function just having one dominating autocorrelation time ρA(t) = e−t/τexp the in-
tegrated autocorrelation time τint is given by

τint =
1
2
+

NM

∑
t=1

e−
t

τexp

(
1− t

NM

)
≈−1

2
+

NM

∑
t=0

(
e−

1
τexp

)t
=−1

2
+

1−
(

e−
1

τexp

)NM+1

1− e−
1

τexp

(1.62)

≈ −1
2
+

1

1−
(

1− 1
τexp

) =−1
2
+ τexp ≈ τexp (1.63)

where NM ≫ τexp ≫ 1 was assumed. This shows that the integrated autocorrelation time τint and the
asymptotic autocorrelation time τexp are related. For an autocorrelation function dominated only by τexp,
they are approximately the same τint ≈ τexp, provided that NM ≫ τexp ≫ 1.

Jackknife:
Autocorrelation times are important to be able to estimate the number of necessary jumps to get simu-
lation results that have acceptable error bars, but the calculation of error bars itself is rather done with
different methods. A very important one, and the one of choice here, is a method called Jackknife. In a
first step, the data series (in our case the Markov chain) is divided into NB blocks. The data series in two
different blocks should be uncorrelated to assure that the estimator of the error is trustworthy. Finally
we want to get an estimator and the corresponding error of a certain measure M. This measure could
be the expectation value of an observable A or the fit to an autocorrelation function or any information
that can be extracted out of the data series. Now the whole data series is analysed and yields to the
measure M(0) which is the estimator of the measure. Next the data series is analysed another NB times
{i = 1,2,3, . . . ,NB} while in each step i we leave out block i and analyse the remaining data series to
get the measure M(i). The average of those measures M(av) = 1

NB
∑NB

i=1 M(i) is calculated as well and the
estimator of the error of M is given by

∆M =

√
NB −1

NB

NB

∑
i=1

(
M(i)−M(av)

)2 (1.64)

Compared to the estimator of the error for uncorrelated data, the error is increased by a factor of (NB−1).
This factor appears due to the fact that the measures M(i) always evaluate the same data set except one
block i. Hence, the measures M(i) are highly correlated.
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Jackknife can also be used to get an estimator of the so-called bias b to get an even better estimator of
the measure M:

M = M(0)−b with b = (NB −1)
(

M(av)−M(0)
)

(1.65)

In our case, the bias is assumed to be much lower than the statistical error. Hence it plays a minor role
and the correction is not done.
The most remarkable benefit of Jackknife is, that also estimators of errors for measures involving highly
non-linear data processing like fits of autocorrelation functions can easily be performed. For each mea-
sure M(i) nearly the complete data series is used which leads to very stable values of M(i). As long as
the block size is much larger than each of the autocorrelation times (especially 2τint), the estimator of the
error is a very reliable value for the actual error.

1.1.5 Relation Between Physical and Markov Time

On the last pages we mathematically constructed a method to simulate a stochastic process (the continuous-
time Markov chain) in which the only input is a q-matrix Q that contains certain rates qx,x′ = R(x → x′).
We have spent a lot of time to show that in this simulation we end up with a certain limiting distribution
π that can be determined by the detailed balance equation πx′qx′,x = πxqx,x′ . Now it is time to think about
the physical system that is related to this stochastic process and, hence, to have a look at the differential
equation that describes the time evolution of our continuous-time Markov chain.

Master Equation
At a certain time t, our system is in a state given by the probability distribution row vector π̂(t) which
holds the probability that a state x ∈ X is occupied at time t. Note that π̂ can be any probability distribu-
tion vector satisfying π̂x ≥ 0 ∀x ∈ X and ∑x∈X π̂x = 1. It has generally nothing to do with the stationary
distribution π although for a long enough time t → ∞ it will converge to it. When we start with a proba-
bility distribution vector π̂(0) at time t = 0, the probability distribution vector π̂(t) can be calculated by

π̂x(t) = ∑
x′∈X

P
(
x(t)|x′(0)

)
π̂x′(0) (1.66)

The probability P(x(t)|x′(0)) was called the transition function Tx′,x(t) and in matrix representation this
equation simply writes as π̂(t) = π̂(0)T(t). Taking the time derivative of this equation leads to

d
dt

π̂(t) = π̂(0)
d
dt

T(t) = π̂(0)T(t)Q = π̂(t)Q (1.67)

where the Kolmogorov forward equation T′(t) = T(t)Q was used. Equation (1.67) is already a form of
the master equation. This is getting more obvious if we write the equation component-wise, replace the
off-diagonal matrix elements by the rates qx,x′ = R(x → x′) and use the definition of our conservative
q-matrix to get the diagonal matrix elements qx,x =−∑x′∈X \{x} qx,x′ :

d
dt

π̂x(t) = ∑
x′∈X

π̂x′(t)qx′,x = ∑
x′∈X \{x}

π̂x′(t)R(x′ → x)− ∑
x′∈X \{x}

π̂x(t)R(x → x′) (1.68)

This equation is called the master equation and shows that a change of each element of the probability
distribution vector π̂x(t) over time is happening as long as the probability flux ∑x′∈X \{x} π̂x′(t)R(x′ → x)
into state x is not balanced with the probability flux ∑x′∈X \{x} π̂x(t)R(x→ x′) out of state x. As we already
know, this balance is only reached when the probability distribution vector converged to the stationary
distribution π̂ = π . So we see that the time dependence of our simulation is the one of the master equation
which is commonly used to describe physical systems.
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Poisson Process and Physical Time
The last thing that we need to establish now is a relation between Markov time and physical time. So
we first have to think about what gives us the physical time. We start from a physically motivated rate R
which states that the probability that an event E is happening in an infinitesimal time interval dt is given
by P(E|dt) = Rdt. This event can either happen or not, so the number of events Nevent(t) that happened in
a certain time t can only take integer values, i.e., the infinitesimal change of Nevent(t) can only be 0 or 1:
dN ∈ {0,1}. Such a stochastic process is called Poisson process. The probability P(n, t) = P(N(t) = n)
denotes the probability that at a certain time t the process has experienced n events E. To calculate the
average time between two events we need the probability P(0, t). We divide the interval [0, t] into M
subintervals of length ∆tM = t

M . The probability that there is an event happening in a subinterval for very
short interval lengths is

lim
M→∞

P(E|∆tM) = P(E|dt) = Rdt = lim
M→∞

R∆tM (1.69)

where limM→0 ∆tM = dt is an infinitesimal time interval and we used the definition of the rate R. The
probability that no event is happening in this infinitesimal time interval is (1− limM→∞ R∆tM), provided
that the time interval is short enough so that at most one event can happen in this interval. Two events
happening at the same time are restricted. As the number of events in one interval does not effect the
number of events in any other interval and probabilities of independent events E1 and E2 are multiplica-
tive P(E1 ∧E2) = P(E1)P(E2), we can calculate the probability that no event is happening in a finite
interval [0, t]:

P(0, t) = lim
M→∞

(1−R∆tM)M = lim
M→∞

(
1−R

t
M

)M
= e−Rt (1.70)

The probability pE(t)dt that the first event is happening exactly at a time t is combining the probability
P(0, t) that nothing is happening up to time t and the probability Rdt that an event is happening in the
infinitesimal time interval dt at time t: pE(t)dt = P(0, t)Rdt. At any time this first event has to happen, so
the probability density should be normed and indeed∫ ∞

0
pE(t)dt =

∫ ∞

0
Re−Rtdt = R

(
− 1

R

) (
e−Rt)∣∣∞

0 =−(0−1) = 1 (1.71)

With the probability density pE(t) we can calculate the expectation value

⟨tE⟩=
∫ ∞

0
t ·pE(t)dt =

∫ ∞

0
tR · e−tRdt =

(
−t · e−tR)∣∣∞

0 −
∫ ∞

0
−e−tRdt =− 1

R

(
e−tR)∣∣∞

0 =
1
R

(1.72)

which shows us that the physical time-scale corresponding to the rate R is fixed by the average time
between two events ⟨tE⟩= 1

R .
Considering multiple events E1,E2,E3, . . . ,En with corresponding rates R1,R2,R3, . . . ,Rn that can happen
independent of each other in parallel, every event i has its own probability density pEi(t) = Rie−tRi for
the first event. The overall rate R(n) is the sum of all individual rates R(n) = ∑n

i=1 Ri. With all those
competing processes, one has to trigger the first event. We call the time when the first event of all
events happens tmin. Furthermore we call the first event that happens Emin. We write p(t = tmin) for the
probability density that the first event happens at time t. Below we will show that p(t = tmin) = R(n)e−tR(n)

and that the probability that Ei is the first event happening is P(Ei = Emin) =
Ri

R(n) . Comparing this result
to the sample-path behaviour of our Markov chain (see theorem 1.6), we see that our physical process
corresponds exactly to our Markov chain if we equalise the q-matrix with the corresponding physical
rates qx,x′ = R(x → x′). Given this equality, physical time and Markov time are the same and the time
evolution of the Markov chain can be directly interpreted as the time evolution of a physical system
obeying the master equation. This also implies that non-equilibrium properties of a system could also be
studied with continuous-time Markov chains, as long as it is assured that the system converges to a unique
equilibrium configuration. The term ’equilibrium configuration’ for the physical system corresponds to
the term ’stationary distribution’ for the Markov chain.
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Prove of Equivalence of the Two Sample-Path Behaviours
For convenience we define the set of numbers Nn = {1,2,3, . . . ,n}. We start with assuming that Ej =
Emin which means that j is the fastest process and tj < ti ∀i ∈ Nn \ {j}. The probability distribution
p(tj|tj = tmin) of the time tj given that it is the shortest time is supposed to be

p(tj|tj = tmin) = p(tj|tj < ti ∀i ∈Nn \{j}) = R(n)e−R(n)tj , (1.73)

a relation that we will prove by mathematical induction. We start with the (trivial) basis for only one
process n = 1

p(t1|t1 = tmin) = R1e−R1t1 = R(1)e−R(1)t1 (1.74)

The step from n to n+1 is less trivial:

p(tj|tj < ti ∀i ∈Nn+1 \{j}) =
P(tj < tn+1|tj ∧ tj < ti ∀i ∈Nn \{j})p(tj|tj < ti ∀i ∈Nn \{j})∫ ∞

0 P(tj < tn+1|tj ∧ tj < ti ∀i ∈Nn \{j})p(tj|tj < ti ∀i ∈Nn \{j})dtj
(1.75)

where the Bayes’ theorem

P(A|B) = P(B|A)P(A)
P(B)

(1.76)

and marginalisation

P(A) =
∫

P(A|x)p(x)dx (1.77)

was used. The functions constituting equation (1.75) can be evaluated separately:

P(tj < tn+1|tj ∧ tj < ti ∀i ∈Nn \{j}) =
∫ ∞

tj
p(tn+1)dtn+1 (1.78)

=
∫ ∞

tj
Rn+1e−tn+1Rn+1dtn+1 (1.79)

= e−tjRn+1 (1.80)∫ ∞

0
P(tj < tn+1|tj ∧ tj < ti ∀i ∈Nn \{j})p(tj|tj < ti ∀i ∈Nn \{j})dtj =

=
∫ ∞

0
e−tjRn+1R(n)e−tjR(n)

dtj =
R(n)

Rn+1 +R(n)
=

R(n)

R(n+1) (1.81)

Combining those results concludes our mathematical induction

p(tj|tj < ti ∀i ∈Nn+1 \{j}) =
e−tjRn+1R(n)e−tjR(n)

R(n)

R(n+1)

(1.82)

= R(n+1)e−tj(Rn+1+R(n)) (1.83)

= R(n+1)e−tjR(n+1)
. (1.84)

With the help of marginalisation, this result can be used to calculate the desired probability density
p(t = tmin):

p(t = tmin) =
n

∑
j=1

p(t = tmin|tj = tmin)P(tj = tmin) (1.85)

=
n

∑
j=1

R(n)e−tR(n)
P(tj = tmin) (1.86)

= R(n)e−tR(n)
n

∑
j=1

P(tj = tmin) (1.87)

= R(n)e−tR(n)
(1.88)
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with ∑n
j=1 P(tj = tmin) = 1 because one of the events Ej has to be the first. Now we have proven that

p(t = tmin) = R(n)e−tR(n)
is correct, so let’s continue with proving P(Ei = Emin) =

Ri
R(n) . The probability

that the event Ei is the first that happens is equivalent to the probability that the time when event Ei

happens is the shortest time tmin.

P(Ei = Emin) = P(ti = tmin) =

∫ ∞

0
P(ti = tmin|t1)p(t1)dt1 = · · ·= (1.89)

=
∫

· · ·
∫
Rn+

P(ti = tmin|{tj} ∀j ∈Nn) ∏
j∈Nn

p(tj)dtj (1.90)

The probability that ti is the lowest time tmin, provided that all times tj ∀j ∈Nn have a specified value, is
simply either unity if it is the minimum time or zero if not. With the help of the Heaviside function

Θ(t) =

{
0 for t < 0
1 for t ≥ 0

(1.91)

it can be written as

P(ti = tmin|{tj} ∀j ∈Nn) = ∏
j∈Nn\{i}

Θ(tj − ti) (1.92)

With this we can continue the evaluation of P(Ei = Emin)

P(Ei = Emin) =
∫

· · ·
∫
Rn+

(
∏

j∈Nn\{i}
Θ(tj − ti)p(tj)dtj

)
p(ti)dti (1.93)

=
∫ ∞

0

(
∏

j∈Nn\{i}

∫ ∞

ti
Rje−tjRjdtj

)
Rie−tiRidti (1.94)

=

∫ ∞

0

(
∏

j∈Nn\{i}
Rj

(
− 1

Rj

) (
e−tjRj

)∣∣∞
ti

)
Rie−tiRidti (1.95)

=

∫ ∞

0

(
∏

j∈Nn\{i}
e−tiRj

)
Rie−tiRidti =

∫ ∞

0
Rie−ti(∑j∈Nn Rj)dti (1.96)

=
∫ ∞

0
Rie−tiR(n)

dti =− Ri

R(n)

(
e−tiR(n)

)∣∣∣∞
0
=

Ri

R(n)
(1.97)

So we were able to show that P(Ei = Emin) =
Ri

R(n) for which indeed the relation ∑i∈Nn P(Ei = Emin) =
1

R(n) ∑i∈Nn Ri = 1 is fulfilled. Of course this relation must be fulfilled as one event must be the first.

1.2 The Model System

In this section the model system itself is introduced. It is shown that it fulfils the mathematical require-
ments so that the simulations lead to proper results and the physical motivation behind this model system
is discussed. A very appropriate paper for charge transport in general, where also a lot of information
provided in this section is taken out, is [1]. The kinetic Monte Carlo (KMC) method we implemented
can be found in literature many times like in [16–19].
The first important requirement of the physical system is, that it can be described with a Markov process
at all. As a reminder, the Markov property tells us that the system immediately forgets its past history
after a transition. Thinking of a classical trajectory of a particle, this could never be the case because,
given the initial conditions and the potential energy surface, the trajectory of the particle is determined
for all times. So it never forgets where it came from. For a quantum-mechanical particle things are
different. Assuming that a quantum-mechanical particle is undergoing a transition from one state to an-
other, driven e.g. by the absorption of a photon, it needs some time to relax into a final state. But when
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this relaxation process is finished, the particle looses its memory of the past. For classical systems that
are behaving chaotically, loosing memory is also observed as incredibly tiny changes in the initial and
boundary conditions can change the trajectory of the system dramatically. This means that we need a
stochastic system in which the relaxation times (the times in which the system looses the memory of the
prior state) are happening on a much shorter time-scale than the transition times (the times in which the
system changes from one state to another). This is satisfied for charge carriers hopping in an organic
semiconductor.

1.2.1 The State Space

We start with dividing our real space into finite volumes. Each volume is assigned a point inside the
volume, this could, e.g., be the middle of it. With this points we end up with a discrete real space.
Usually those volumes are cubes and so the points describe a simple cubic lattice. Each volume can host
at most one charge carrier. Below we refer to the structure behind this volume as a cell. The position of
a cell is referred to the point in our discrete real space of the corresponding volume, the size of the cell is
the volume itself, and the edge length of a cubic cell will be called lattice constant. All currently known
organic semiconducting materials have in common that their molecular building blocks have π-orbitals
delocalised across the molecule or a segment of it. The concept of cells that can be occupied by charge
carriers is physically inspired by the fact that the highest occupied molecular orbital (HOMO) and/or the
lowest unoccupied molecular orbital (LUMO) is delocalised over a certain volume according to the size
of the cell. For an electron conducting material the LUMO has to be a delocalised π-orbital and for a
hole conducting material the HOMO. In our simulations we only consider one type of charge carriers, so
either electrons or holes.
Now we have cut our organic semiconductor into cells that are arranged in a simple cubic lattice and each
cell can house at most one charge carrier. The size of the cell is approximately the size of the molecular
orbital that the charge carrier occupies in the organic semiconducting material. Typically an edge length
in the order of 1 nm is chosen.
In a perfectly crystalline organic semiconductor, all molecules would align in the same way and all
energy levels of the HOMOs and LUMOs of the molecules would be the same. In this case the well
known Bloch’s theorem would be applicable and the eigenstates of the Hamilton operator would be
bands delocalised over the entire crystal. With our KMC approach, we assume that the charge carrier
is localised within our cell and not delocalised over the whole simulation volume. So as long as there
are no other interactions that cause localised eigenstates (e.g. strong phonon interactions), KMC cannot
be used to physically interpretable simulate organic semiconductors composed of molecular crystals. If
the molecules or polymers do not form a crystalline structure but rather assemble randomly, an energetic
disorder is induced because the energy levels of a molecule (or a segment of a polymer) are influenced
by their surrounding. Energetic disorder is known to lead to a localisation of the eigenstates, depending
on the dimensionality this localisation is stronger or weaker (see [20] chapters 8.7, 9.9, 10.10 and 13).
As a consequence, a disordered organic semiconductor is suited quite well to be mapped onto a KMC
simulation. Due to the localisation of the eigenstates, the assumption that a cell can be either occupied or
unoccupied becomes a physical foundation. Additionally our Markov chain, which in principle simulates
a classical system, is also valid for quantum-mechanical systems where the states that are simulated are
the eigenstates of the Hamilton operator (see chapter 1.1.1). So the higher the disorder, the better the
physical system is represented by our KMC simulation.
In the simulation, the disorder is introduced by assigning an energy level εi to each cell i. Without
disorder we would get εi = 0 for all cells i. As disorder has a stochastic nature, we have to provide a
certain probability density p(ε) which gives us the probability P(εi = ε) = p(ε)dε that the energy level
εi of a cell i is given by ε . In practice, this probability distribution is often chosen to be a Gaussian

p(ε) =
1√

2πσ
e−

ε2

2σ2 (1.98)
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centred at ⟨ε⟩= 0 with the so-called energetic disorder σ . Exponential probability distributions are also
in use. Likewise, an experimentally evaluated probability distribution could be considered.
Up till now we have mapped our physical system to a state space in which each state is one possibility
of placing Ncc charge carriers into Ncells cells where the number of charge carriers can be either fixed
or assume an integer number between 0 and Ncells, Ncc ∈ {0,1,2, . . . ,Ncells}. The ∑Ncells

n=0
Ncells!

Ncc!(Ncells−Ncc)!
=

2Ncells dimensional state space is incredibly huge, but still it is finite dimensional (for a fixed number of
charge carriers it is ’only’ Ncells!

Ncc!(Ncells−Ncc)!
).

1.2.2 The Rates

To further establish a continuous-time Markov Chain Monte Carlo method, we need the q-matrix, i.e.,
we need rates. We only allow one charge carrier to move during a transition, so a certain charge carrier
could move from its current cell i to a cell j within one transition. With this the irreducibility of our
Markov process is already assured, as, (i), any charge carrier can move to any cell within a finite time
and, (ii), all states of the state space are communicating. There are two commonly employed rates that
are associated to those transitions, the Marcus rate [21] and the Miller-Abrahams rate [22]. The physical
interpretation of those rates will be delivered below, but at the moment we are interested in proving the
conceptual correctness of the method. The Marcus rate RM(i, j) for the hop of a charge carrier from cell
i to cell j is given by

RM(i, j) = ν0e−2αrij exp

(
−
(∆Eij +Er)

2

4ErkBT

)
(1.99)

and the Miller-Abrahams rate RMA(i, j) is

RMA(i, j) = ν0e−2αrij

{
exp
(
−∆Eij

kBT

)
for ∆Eij > 0

1 for ∆Eij ≤ 0.
(1.100)

Both rates are consisting of three parts: the hopping prefactor ν0, a spatial decay term e−2αrij and a
term determined by the difference between the total energy of the system Etot where the charge carrier is
occupying cell j and cell i respectively ∆Eij = Etot(charge carrier at cell j)−Etot(charge carrier at cell i).
The hopping prefactor, in principle, chooses the time-scale and, as it appears linear in the rates and hence
in time, it can be easily changed after the simulation without affecting any measured observable except
the time (and observables involving the time). Those affected observables only have to be multiplied by
a constant factor when changing ν0. From a physical point of view, ν0 tells us how fast a transition can
be undergone if the spatial and energetic damping factor, that are both decreasing the rate, are neglected.
The spatial decay term e−2αrij includes the charge delocalisation constant α and the distance between
the two cells rij = |⃗ri − r⃗j| with the positions of the cells r⃗i and r⃗j. This term takes into account that
hops over larger distances are less likely. As tunnelling is known to have an exponential dependence of
the tunnelling distance, this term is presumed to adopt an exponential function of the distance between
the two cells. When looking at the two rate equations (1.99) and (1.100), they evidently only differ
in the energetic term. Of course, in both expressions the product of the Boltzmann constant kB and
the temperature T is present, as this product kBT = 1

β dictates the energy scale. But that’s it with the
similarities. In the Miller-Abrahams rate equation all hops downwards in energy are equiprobable and
the hops upwards in energy are damped by a Boltzmann factor e−β∆E. In contrast, for Marcus rates we
have a Gauss peak centred at the negative reorganisation energy −Er which means that hops downwards
in energy, for which the energy difference is exactly the reorganisation energy ∆E =−Er, are the fastest
and all hops for other energy differences are slower. For small positive or negative energy differences in
the order of the reorganisation energy, the quantitative behaviour of the two rates is quite similar. On the
other hand, for high negative energy differences the rates obviously disagree. The reorganisation energy
is the energy barrier that has to be overcome to get from one cell to another and it corresponds to twice

20



Markus Krammer 1.2 The Model System Master Thesis

the polaronic binding energy (see later).
Except the energy, all variables constituting the rates are clear. To continue proving the conceptual
correctness of the method, we need to know those energies. The total energy of the system with Ncc

charge carriers occupying cells k1,k2, . . . ,kNcc is given by

Etot = Ecells +Efield +Einteraction +Eown image charge +Eimage charge interaction (1.101)

for a simulation with a metal contact present at one side of the organic semiconductor, or, in other words,
an injection simulation. For a bulk simulation with an organic semiconductor only and no metal surface,
only the first three terms are needed to get the total energy of the system.
The first term is the energy that is given to the Ncc charge carriers by occupying the cells.

Ecells =
Ncc

∑
l=1

εkl (1.102)

An externally applied electric field F⃗ leads to the energy

Efield =
Ncc

∑
l=1

qF⃗⃗rkl (1.103)

where r⃗kl is the position of cell kl which is occupied by charge carrier l and the charge is q=±e depending
on whether holes or electrons are the simulated charge carriers (e is the elementary charge). The Coulomb
interaction energy is given by

Einteraction =
Ncc

∑
l=1

Ncc

∑
m=l+1

e2

4πε0εr |⃗rkl − r⃗km |
=

1
2

Ncc

∑
l=1

Ncc

∑
m=1
m ̸=l

e2

4πε0εr |⃗rkl − r⃗km |
(1.104)

with the vacuum permittivity ε0 and the relative permittivity εr. In the summation, double counting has
to be prevented. As soon as a metal contact is present, contributions to the energy from the own image
charge [23]

Eown image charge =−
Ncc

∑
l=1

e2

16πε0εrdkl

(1.105)

and the image charges of all other charge carriers

Eimage charge interaction =−
Ncc

∑
l=1

Ncc

∑
m=l+1

e2

4πε0εr

∣∣∣⃗rkl − r⃗ img
km

∣∣∣ =−1
2

Ncc

∑
l=1

Ncc

∑
m=1
m ̸=l

e2

4πε0εr

∣∣∣⃗rkl − r⃗ img
km

∣∣∣ (1.106)

have to be considered in which double counting has to be prevented for the evaluation of the Coulomb
interaction with the image charges as well. The minimum distance of the cell kl occupied by charge
carrier l to the metal contact is given by dkl . The variable r⃗ img

km
is the position of the image cell of cell km

where the image charge of charge carrier m is found.
From this total energy Etot, the change in energy when a charge carrier is moving from cell i to cell j can
be calculated:

∆Eij = Etot(charge carrier at cell j)−Etot(charge carrier at cell i) (1.107)

= εj − εi +qF⃗ (⃗rj − r⃗i)+
Ncc

∑
l=1
kl ̸=j

e2

4πε0εr |⃗rj − r⃗kl |
−

Ncc

∑
l=1
kl ̸=i

e2

4πε0εr |⃗ri − r⃗kl |

− e2

16πε0εrdj
+

e2

16πε0εrdi
−

Ncc

∑
l=1
kl ̸=j

e2

4πε0εr

∣∣∣⃗rj − r⃗ img
kl

∣∣∣ +
Ncc

∑
l=1
kl ̸=i

e2

4πε0εr

∣∣∣⃗ri − r⃗ img
kl

∣∣∣ (1.108)
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The cells of the charge carriers are again labelled by {k1,k2, . . . ,kNcc} and symmetry was used for inter-
actions |rj − rkl | = |rkl − rj| and image charge interactions

∣∣∣rj − r img
kl

∣∣∣ = ∣∣∣rkl − r img
j

∣∣∣. All terms, in which
the moving charge carrier does not appear, cancel out. So we can define an energy

Ei = εi +qF⃗⃗ri +
Ncc

∑
l=1
kl ̸=i

e2

4πε0εr |⃗ri − r⃗kl |
− e2

16πε0εrdi
−

Ncc

∑
l=1
kl ̸=i

e2

4πε0εr

∣∣∣⃗ri − r⃗ img
kl

∣∣∣ (1.109)

which is the energy needed to place a new charge carrier at cell i and, as the difference in total energy,
when a charge carrier is hopping from cell i to cell j, is the same as taking a charge carrier at cell i out of
the simulation and insert a new one at cell j, the difference in total energy is

∆Eij = Ej −Ei (1.110)

Note that the total energy of the system is not given by Etot ̸= ∑Ncc
i=1 Ei because to get the correct total

energy of the system one would have to place the charge carriers one after the other starting with an
empty system and hence all interactions are erroneously double counted in ∑Ncc

i=1 Ei.
By knowing the energies and consequently the rates, we can feed the q-matrix with this information.
As a reminder, we have to show that the q-matrix is conservative, finite dimensional, stable (and hence
uniformly bounded) and irreducible. The dimensionality d ≤ 2Ncells with Ncells being the number of cells
was already shown and we already discussed that the chain is irreducible.
To ensure that the q-matrix is conservative, we simply have to take the total rate R(N) = ∑N

i=1 Ri for each
Markov jump to evolve the system in time, where Ri are all rates of the transitions allowed in the current
state and N is the number of those transitions. So the fact that our q-matrix is conservative is guaranteed
by implementing the method in a correct way as described in theorem 1.6.
Next we want to show that the q-matrix is stable. Having a look at the rates we see that any rate
of any transition cannot be larger than ν0. So it holds that qx,x′ ≤ ν0 ∀x,x′ ∈ X with x ̸= x′ and
qx = ∑x′∈X \{x} qx,x′ ≤ ν0 ∑x′∈X \{x} 1 ≤ ν02Ncells < ∞ which shows that Q is stable and uniformly bounded.
To finish the considerations about the correctness of our method, we will show that for both rates the
stationary distribution, which is also the limiting distribution of our Markov chain, is given by the Boltz-
mann statistics

πx =
1
Z

e−βEtot
x ∀x ∈ X with Z = ∑

x∈X
e−βEtot

x (1.111)

where Etot
x is the total energy of the system being in state x. Due to πx ≥ 0 and ∑x∈X πx = 1 the row

vector π is a probability distribution and by showing that it satisfies the detailed balance equation (1.40)
it is ensured that the Markov chain indeed tends towards the probability distribution π in the limiting
behaviour (see theorem 1.5). We have to prove that πx′qx′,x = πxqx,x′ ∀x,x′ ∈ X so we have to think
about allowed transitions. The matrix element qx,x′ is only non-zero if the two states only differ in the
position of one charge carrier. All the other rates are zero and the detailed balance equation is fulfilled
trivially for those. So we consider two states xi and xj that differ only in the position of one charge
carrier, i.e., in xi a charge carrier is occupying cell i and cell j is empty while in xj it is the other way
round. The position of all the other charge carriers stays the same, no matter if there are 0 or N − 2
remaining charge carriers present. An important remark at this point is, that the allowed transitions have
to be chosen symmetric which means that if a charge carrier is allowed to hop from cell i to cell j, a hop
from cell j to cell i has to be allowed too. This being provided, the two entries in the q-matrix are given
by qxi,xj = RM or MA(i, j) and qxj,xi = RM or MA(j, i). The fact that the detailed balance equation has to be
fulfilled for all x,x′ ∈ X is equivalent to the requirement that it has to be fulfilled for all xi,xj ∈ X and
for all cells i, j ∈ {1,2, . . . ,Ncells}. All the other combinations of x and x′ that are not covered with xi and
xj are not allowed and hence anyway fulfilled.
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We start with the Marcus rate:

πxiqxi,xj = πxjqxj,xi (1.112)
1
Z

e−βEtot
xi RM(i, j) =

1
Z

e−βEtot
xj RM(j, i) (1.113)

1
Z

e−βEtot
xi ν0e−2αrij exp

(
−
(∆Eij +Er)

2

4ErkBT

)
=

1
Z

e−βEtot
xj ν0e−2αrji exp

(
−
(∆Eji +Er)

2

4ErkBT

)
(1.114)

We use rji = rij and ∆Eji =−∆Eij and remove all terms obviously fulfilling equality

e−βEtot
xi exp

(
−β

∆E2
ij +2∆EijEr +E2

r

4Er

)
= e−βEtot

xj exp

(
−β

∆E2
ij −2∆EijEr +E2

r

4Er

)
(1.115)

e−βEtot
xi exp

(
−β

2∆EijEr

4Er

)
= e−βEtot

xj exp
(

β
2∆EijEr

4Er

)
(1.116)

e−βEtot
xi exp

(
−β

∆Eij

2

)
= e−βEtot

xj exp
(

β
∆Eij

2

)
(1.117)

e−β(Etot
xi
+∆Eij) = e−βEtot

xj (1.118)

which is fulfilled, as ∆Eij was introduced as

∆Eij = Etot(charge carrier at cell j)−Etot(charge carrier at cell i) = Etot
xj
−Etot

xi
.

For the Miller-Abrahams rate, the procedure is exactly the same with the slight difference that we have
to distinguish between ∆Eij > 0, ∆Eij < 0 and ∆Eij = 0. All terms containing no energies vanish like for
the Marcus rate and we end up with

πxiqxi,xj = πxjqxj,xi (1.119)
1
Z

e−βEtot
xi RMA(i, j) =

1
Z

e−βEtot
xj RMA(j, i) (1.120)

e−βEtot
xi exp

(
−

∆Eij

kBT

)
= e−βEtot

xj for ∆Eij > 0, (1.121)

e−βEtot
xi = e−βEtot

xj exp
(
−

∆Eji

kBT

)
for ∆Eij < 0, and (1.122)

e−βEtot
xi = e−βEtot

xj for ∆Eij = 0. (1.123)

where equality holds for all three cases.
This shows us that both rates are tending to the same equilibrium configuration (in mathematical words
limiting or stationary distribution). As a consequence, measures only depending on the stationary distri-
bution like charge carrier densities should give the same values for simulations done with Marcus rates
and Miller-Abramahs rates respectively. This is very counter-intuitive as especially for high negative
energy differences ∆Eij the rates have nothing to do with each other. So how can we interpret this fact?
Of course the Markov chains themselves are looking completely different and the time evolution of the
systems as well. But the time evolution itself is not uniquely determining the limiting behaviour. And
exactly this fact that different time evolutions can have the same limiting behaviour and furthermore the
same stationary distribution, is responsible for the situation that for both rates measures only depending
on the limiting distribution are the same. As an example, a simulation done with Marcus rates and an-
other one done with Miller-Abrahams rates can have completely different autocorrelation functions but
still the estimators of charge carrier densities have to be the same within their differing error bars.
This consequence also holds for considering different hopping regions. E.g. for a spherical hopping
region, the hopping radius rhop,cc is the maximum distance for which a hop of a charge carrier is allowed.
This means that rates R(i, j) for cells separated by more than the hopping radius rij > rhop,cc are set to
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R(i, j) = 0. It is a numerical parameter which reduces the computational cost of our simulation if it is cho-
sen to be low. Depending on the charge delocalisation constant α , the hopping range has to be selected
higher or lower to get a reliable time evolution. As long as the hopping region is taken in a way that
the Markov chain is still irreducible and the allowed hops are symmetric, the detailed balance equation
is fulfilled and the limiting behaviour does not change. Symmetric means if the rate for a charge carrier
hopping from cell i to cell j is non-zero, then the rate from j to i has to be non-zero as well. Irreducibility
is assured as long as the hopping region is big enough so that at least nearest neighbour hopping is al-
lowed. So we see that the choice of the hopping region does not affect measures that only depend on the
stationary distribution.
Measures depending on the time evolution of the Markov chain like velocities, mobilities and current
densities are changing when we are changing the rates or the hopping region. So we have to be careful
when we say that two different simulations are sampling from the same stationary distribution. Getting
the same results for measures only depending on the stationary distribution does not imply getting the
same results for all measures. But still it is remarkable at this point to state that charge carrier densities
do not depend on the chosen rate or the hopping region while velocities, mobilities and current densities
do.
This leads us to the next question: What is the difference between Marcus rates and Miller-Abrahams
rates? Charge transport, in general, is governed by the interplay between electrons and phonons. Phonons
are quasiparticles of vibrational modes. In an organic semiconductor intramolecular vibrations of single
molecules (or segments of a polymer) and intermolecular vibrations of the whole material have to be
considered. Including all electronic and vibrational degrees of freedom in a single calculation, one ends
up with quasiparticles called polarons. Those polarons can be interpreted as electrons coated by a cloud
of phonons which means that an electron is creating a distortion of the material as soon as it is placed
anywhere. The energy associated with this distortion is called polaronic binding energy. Coming back
to the electron-phonon picture, the charge transport is mainly influenced by two effects; the electronic
coupling and the electron-phonon interactions. The electronic coupling in principle means that due to a
wave function overlap of two localised states, the charge carrier can move through the material. In an
organic semiconductor this overlap is rather small as the mainly Van der Waals-driven packing density
of molecules is quite low compared to covalently bound inorganic semiconductors. The electron-phonon
interactions result from the fact that a change in the position of an atom, caused by a phonon, changes
the electronic structure of the whole molecule. As a consequence, phonons can raise and lower the en-
ergy levels of the electrons and induce hops. In organic semiconductors both is observed, strong and
weak electron-phonon interactions depending on the molecule itself and the alignment of the molecules.
For loosely packed molecules with intensively swinging intramolecular vibrations one could probably
assume a strong electron-phonon interaction. Of course this simple picture does not hold in reality as
many effects concurrently govern this interaction strength. To get an estimator for the electron-phonon
interactions, molecular dynamics simulations or density functional theory are suitable. In summary we
can say that for an organic semiconductor the electronic coupling is weak and the electron-phonon inter-
action can be weak or strong. With the assumption of weak electronic coupling a general expression for
the rates can be obtained by means of time-dependent perturbation theory. To get the Miller-Abrahams
rates from this expression, weak electron-phonon interactions and low temperatures are considered. Only
one phonon can be absorbed or emitted during a hop and hence the energy difference that is overcome
during a hop should not exceed the maximum energy of the acoustical phonons (the Debye energy)
and the energy of the optical phonons. In contrast, the Marcus rate is received when assuming strong
electron-phonon coupling and high temperatures.

1.2.3 The Simulation

Performing a Hop:
With the given rates (1.99) or (1.100) and the sample-path behaviour given in theorem 1.6 we can con-
struct our Markov chain. Starting from a given state in which charge carriers occupy certain cells, we can
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calculate the energy differences for hops of all charge carriers to all nearby cells within a distance of the
hopping region. With those energy differences the corresponding rates can be calculated. Assuming that
Ncc charge carriers are in the simulation and Nhop is the number of neighbouring cells within the hopping
region, a number of NR = Ncc ·Nhop rates Ri have to be calculated. Additionally we need the total rate
R(NR) = ∑NR

i=1 Ri and with this the next hop is chosen with probability Ri
R(NR) . This is done by taking a

uniformly distributed random number ξ out of the interval (0,1] and multiply it by R(NR) to get a random
number ξ R = ξ ·R(NR) out of the interval (0,R(NR)]. Now we are summing up the individual rates Ri and
as soon as the condition ξ R ≤ ∑j

i=1 Ri is fulfilled, j is our chosen hop. The time that the system stays in a
certain state was said to be exponentially distributed with rate parameter R(NR). So the retention time ∆t
is generated by taking a random number ξ uniformly distributed over the interval (0,1) and calculate

∆t =− log(ξ )
R(NR)

(1.124)

where log(e) = 1 is the natural logarithm. The fact that ∆t is exponentially distributed with rate parameter
R(NR) can be easily shown by means of the inverse transformation method (see e.g. [24]).
Now the Markov time is evolved by the amount ∆t and the hop of the charge carrier corresponding to
rate j is performed. In this new state we recalculate the energy differences and the rates, choose a hop
and assign a time and repeat this process again and again and again. . .

Initial State:
The initial state of our system can be chosen randomly as it has no effect on the simulation at all as long
as it cannot be directly drawn out of the stationary distribution. If it could be drawn out of the stationary
distribution, we would not have to thermalise the system. But as long as one cannot be sure whether the
starting state is drawn from the stationary distribution or not, we have to thermalise the system according
to the asymptotic autocorrelation time τexp. A commonly taken value for the amount of Markov time to
spend with thermalisation is about 10% of the total Markov time. If thermalisation is not finished within
10% of the total Markov time, it can be assumed that most of the Markov chain is correlated and the
measures taken from this chain are not representative anyway. On the other hand taking less than 10%
does not really effect the computational effort. Coming back to the starting configuration, note that if
we are able to draw a state directly out of the stationary distribution, we would not need to simulate it
with a Markov Chain Monte Carlo method. So this consideration is needless anyway and the take home
message of this passage is: Thermalisation is important!

Measurement:
After thermalisation we can start measuring. The most important measures are charge carrier densities,
velocities, mobilities and current densities. Those quantities and the relations between them will be
discussed in the following.
The most obvious measure is the charge carrier density ncc(V) where V is the volume with respect to
which averaging is performed. At a certain time t, a number of Ncc(V, t) charge carriers is in the volume
V which leads to the time averaged estimator of ncc(V)

ncc(V) =
1

V (tNM − t0)

∫ tNM

t0
Ncc(V, t)dt =

1
V (tNM − t0)

NM−1

∑
i=0

Ncc(V, ti)∆ti (1.125)

where (as introduced in chapter 10) t0 is the time after thermalisation, tNM is the final Markov time after
NM hops and ∆ti = ti+1− ti is the retention time for hop i. In this master thesis, the charge carrier density
is often given in charge carriers per cell (ccpc), rather than in charge carriers per volume, as this is more
meaningful for the simulations:

n cell
cc (V) =

1
V

Vcell
(tNM − t0)

∫ tNM

t0
Ncc(V, t)dt =

Vcell

V (tNM − t0)

NM−1

∑
i=0

Ncc(V, ti)∆ti. (1.126)
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The volume of a cell is written as Vcell.
The other measures mentioned above are dynamical properties which have to be calculated with more
care. First we will calculate an estimator of the velocity and start with only one charge carrier in our
simulation. It performs hops at times ti and stays in a state for an amount of time ∆ti until the next hop
is performed. We can expect that at any time in this time interval the charge carrier has to move. The
knowledge of the exact time dependence of the velocity v⃗(t) is not necessary, as we are only interested
in the average with respect to time. So whether it is a Dirac delta function describing an instantaneous
hop, a constant velocity in the time interval ∆ti, or anything else does not effect the time average:

v⃗i =
1

∆ti

∫ ti+1

ti
v⃗(t)dt =

∆⃗si

∆ti
. (1.127)

∆⃗si is the distance that was overcome during this hop. Averaging this velocity over the time interval
[t0, tNM ] of the whole Markov chain after thermalisation, we get

v⃗ av =
1

tNM − t0

∫ tNM

t0
v⃗(t)dt =

1
tNM − t0

NM−1

∑
i=0

∆⃗si

∆ti
∆ti =

∑NM−1
i=0 ∆⃗si

tNM − t0
=

∆⃗s tot

tNM − t0
(1.128)

So the time-averaged velocity of a single charge carrier is simply the total distance ∆⃗s tot that it travelled
over the total time (tNM − t0) elapsed. Taking into account that a constant number of Ncc charge carriers
is present in the simulation, our time dependent velocity v⃗ j(t) gets an additional index for the charge
carrier j. Averaging over those charge carriers leads to

v⃗ av =
1

Ncc

Ncc

∑
j=1

1
tNM − t0

∫ tNM

t0
v⃗ j(t)dt =

1
Ncc (tNM − t0)

Ncc

∑
j=1

NM−1

∑
i=0

∆⃗s j
i

∆ti
∆ti =

1
Ncc (tNM − t0)

NM−1

∑
i=0

∆⃗si =

=
1

tNM − t0

NM−1

∑
i=0

∆⃗si

Ncc∆ti
∆ti =

1
tNM − t0

NM−1

∑
i=0

v⃗i∆ti (1.129)

where we see that we can define an average velocity v⃗i =
∆⃗si

Ncc∆ti
for each time step. The distance travelled

by charge carrier j in time interval i is given by ∆⃗s j
i . Summing over all times for one charge carrier j gives

the total distance ∆⃗s j,tot that this charge carrier travelled during the simulation. Additionally summing
over all charge carriers leads to the total distance travelled by all charge carriers ∆⃗s tot and is the same
as summing over all hopping distances ∆⃗si belonging to the time interval ∆ti not depending on which
charge carrier performed this hop:

NM−1

∑
i=0

Ncc

∑
j=1

∆⃗s j
i =

Ncc

∑
j=1

(
NM−1

∑
i=0

∆⃗s j
i

)
=

Ncc

∑
j=1

∆⃗s j,tot = ∆⃗s tot =
NM−1

∑
i=0

∆⃗si. (1.130)

As soon as the number of charge carriers is not constant, it is not straight forward to give an ensemble
average for the velocity as it is not really clear how to weight different numbers of charge carriers Ncc,i

for different times ti. If we do it straight forwardly by using the definition of the average velocity for a
time step i introduced above

v⃗i =
∆⃗si

Ncc,i∆ti
(1.131)

we end up with an effective number of charge carriers Ncc,eff in the simulation given by the relation

v⃗ av =
∆⃗s tot

Ncc,eff (tNM − t0)
=

1
tNM − t0

NM−1

∑
i=0

∆⃗si

Ncc,i
(1.132)

where 1
Ncc,eff

in general has to be a matrix to fulfil the relation component-wise. This matrix is difficult
to interpret from a physical point of view. The time averaged velocity of a single charge carrier is still
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physically interpretable. So probably by averaging reasonable over those time averaged velocities of
all charge carriers, respecting the time that they spent in the simulation, could lead to a proper average
velocity. Anyhow, we will not calculate velocities for systems in which the number of charge carriers
can change, so we do not have to care about this right now.
The mobility µ is simply defined as the ratio between the velocity in field direction vE and the absolute
value of the electric field strength F

µ =
vE

F
(1.133)

and can be calculated directly from the measured velocity discussed above (at least for a constant number
of charge carriers).
Considering fluctuating numbers of charge carriers, the current density j⃗ is a more representative measure
for the system than the velocity. Additionally it can be spatially resolved in an easy way as it is not
necessarily referred to the trajectory of a charge carrier. There are two useful and, of course, theoretically
equivalent ways to define the current density. The first one is to count the number of charge carriers ∆Ncc

with charge q =±e that go through a certain area A in a time interval ∆t = tNM − t0. With this the current
density jA averaged over this area is given by

jA =
q∆Ncc

A∆t
(1.134)

This definition is a very useful measure for the simulation as we just have to count the amount of charge
carriers going through the desired area. For a spatial resolution of the current density j⃗ (⃗r, t), we need to
take a more fundamental definition

j⃗ (⃗r, t) = qncc (⃗r, t) v⃗ (⃗r, t) (1.135)

which is the product of the charge q =±e, the charge carrier density ncc (⃗r, t) and the velocity v⃗ (⃗r, t) at a
given position and time. For a certain time interval i starting at time ti and a certain cell k with position
r⃗k, we can find a charge carrier density

ncc (⃗rk, ti) =
Ncc(k, i)

Vcell
(1.136)

where Ncc(k, i) is the number of charge carriers occupying cell k at time ti which is 0 if it is not occupied
and 1 if it is occupied. Next we find an expression for the velocity of a hop performed by a charge carrier
sitting in cell k at time ti

v⃗ (⃗rk, ti) =
∆⃗s(k, i)

∆ti
(1.137)

where ∆⃗s(k, i) = ∆⃗si if the hop at time ti started at cell k and ∆⃗s(k, i) = 0 if not. With this the current
density gets

j⃗ (⃗rk, ti) =
q

Vcell
Ncc(k, i)

∆⃗s(k, i)
∆ti

(1.138)

and we can average it over time. As the cell has to be occupied before a hop, Ncc(k, i) and ∆⃗s(k, i) are
zero exactly for the same times and, when Ncc(k, i) = 1, also ∆⃗s(k, i) is non-zero. So Ncc(k, i) can be
dropped and the time average of the current density j⃗ (⃗rk) is given by

j⃗ (⃗rk) =
1

tNM − t0

∫ tNM

t0
j⃗ (⃗rk, t)dt =

1
tNM − t0

NM−1

∑
i=0

j⃗ (⃗rk, ti)∆ti =

=
1

tNM − t0

NM−1

∑
i=0

q
Vcell

Ncc(k, i)
∆⃗s(k, i)

∆ti
∆ti =

q
Vcell (tNM − t0)

NM−1

∑
i=0

∆⃗s(k, i) =
q∆⃗s tot(k)

Vcell (tNM − t0)
(1.139)
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which means that the current density at cell k is calculated by summing up all distances of all hops
performed from this cell ∆⃗s tot(k) = ∑NM−1

i=0 ∆⃗si(k). When we are additionally averaging this current
density over a certain volume V = A · l with an area A and a length l we get

j⃗V =
Vcell

V

rj∈V

∑
j

q∆⃗s tot(k)
Vcell (tNM − t0)

=
q

A · l(tNM − t0)

rj∈V

∑
j

∆⃗s tot(k) =
q

A · l(tNM − t0)
∆⃗s tot(V) (1.140)

By assuming that the charge carriers are mainly travelling normal to the area A so that the number of
charge carriers ∆Ncc which were going through area A can be estimated by ∆Ncc ≈ |∆⃗s tot(V)|

l we get∣∣∣⃗jV ∣∣∣= q
A(tNM − t0)

|∆⃗s tot(V)|
l

≈ q∆Ncc

A(tNM − t0)
= jA (1.141)

Our definition of the current density j⃗(⃗rk, ti) is most likely the easiest one, but probably not the best.
By addressing all the travelled distance to the starting cell, this cell gets an overestimation of distance
whereas all the other cells that are passed during the hop are getting an underestimated amount of dis-
tance, namely nothing. With this approach, a scenario in which a charge carrier is hopping between two
cells for many times would correspond to a high current in both cells pointing in the opposite direction
while effectively no current would pass the area between the two cells. So it might be better for some
applications to distribute the travelled distance evenly amongst all the cells that were passed during the
hop to get more smooth current densities. On the other hand this smoothing would not take those forth
and back hopping into account. So in general both methods complement one another and it would be
useful to implement both. We have only used the method in which all the distance is put into one cell.

1.2.4 The Update Mechanisms

With the term ’update mechanism’ we refer to the way that the rates are recalculated after a hop. Above,
one update mechanism was already introduced which we call ’Dynamic Monte Carlo’ or DMC. In the
DMC approach we recalculate all energy levels of all charge carriers and all energy levels that charge
carriers would have if they were moving from their current cell i to an adjacent cell j within the hopping
region. For the calculation of one energy level, we have to sum up the contributions of all Coulomb
interactions from all other charge carriers (Ncc − 1). As we have to do this for Ncc charge carriers and
Nhop + 1 cells (Nhop is the number of neighbours within the hopping region), we have to handle the
Coulomb interaction (Ncc −1)Ncc(Nhop +1) times. Looking at the dependence on the number of charge
carriers Ncc of the time that this calculation needs, we are calling it an O(N2

cc)-process. In this master
thesis we are interested in constructing a method that can cope with huge amounts of charge carriers, so
a DMC simulation is expected to be way to time-consuming.
An established alternative to this computationally expensive update mechanism is the so called ’First
Reaction Method’ or FRM. [24] We have already proven (see page 17 and following) that, for a given
set of NR rates Ri and its sum R(NR) = ∑NR

i=1 Ri, the following two update mechanisms are stochastically
identical:

1. Choose a process i according to the probability Ri
R(NR) and assign a retention time ∆t out of an

exponential distribution with rate parameter R(NR). This is exactly the update mechanism that we
became familiar with above and we called DMC.

2. Assign a retention time ∆ti to each process i out of an exponential distribution with rate parameter
Ri and choose the process with the fastest time.

At first sight it seems that the second option is way more intricate compared to the first one as, (i), we still
have to calculate all the rates after each hop and, (ii), additionally we need much more random numbers.
As generating random numbers is usually time-consuming and the risk of running into correlations of the
pseudo-random-number-generator rises with the amount of required random numbers, this option seems
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to be totally infeasible. But with the following property of exponentially distributed random numbers,
new light is shone on this method.
A time t is drawn from an exponential distribution with rate R at time t0. If it is known that there is a time
t1 for which t0 ≤ t1 < t holds, then the time t behaves as if it was drawn from an exponential distribution
with rate R at time t1.
To prove this statement, we will have a look at the probability distribution p(t|t > t1 ∧ t1 ∧ (t0,R)) which
holds the probability distribution of t given that t > t1 for a fix t1 and (ti,R) stands for the fact that t was
drawn out of an exponential distribution with rate R starting at time ti. Such an exponential distribution
can be written as

p(t|(ti,R)) = Θ(t− ti)Re−R(t−ti) (1.142)

with the Heaviside function Θ(t). As a non-relevant remark, this should be the left-continuous Heaviside
step function Θ(0) = 0 rather than the right-continuous one that we used elsewhere, as simultaneously
happening events are restricted in a Poisson process. For the prove this does not make any difference as
an integral does not change its value by changing only one discrete point.
With Bayes’ theorem (1.76) and marginalisation (1.77) we can rewrite

p(t|t > t1 ∧ t1 ∧ (t0,R)) =
P(t > t1|t∧ t1 ∧ (t0,R))p(t|t1 ∧ (t0,R))∫ ∞

−∞ P(t > t1|t∧ t1 ∧ (t0,R))p(t|t1 ∧ (t0,R))dt
(1.143)

As p(t|t1 ∧ (t0,R)) does not depend on the value of t1 at all it simplifies to p(t|(t0,R)) and the probability
P(t > t1|t∧ t1 ∧ (t0,R)) that t > t1 for given values of t and t1 can only take on the values 0 or 1 depending
on if the statement t > t1 is true or false. With this we can solve the integral in the denominator∫ ∞

−∞
P(t > t1|t∧ t1 ∧ (t0,R))p(t|t1 ∧ (t0,R))dt =

∫ ∞

−∞
Θ(t− t1)Θ(t− t0)Re−R(t−t0)dt (1.144)

=

∫ ∞

t1
Re−R(t−t0)dt (1.145)

= R
(
− 1

R

) (
e−R(t−t0)

)∣∣∣∞
t1
= e−R(t1−t0) (1.146)

where t0 ≤ t1 assures that Θ(t− t0)Θ(t− t1) = Θ(t− t1). Putting all those equations together leads to

p(t|t > t1 ∧ t1 ∧ (t0,R)) =
Θ(t− t1)Θ(t− t0)Re−R(t−t0)

e−R(t1−t0)
(1.147)

= Θ(t− t1)Re−R(t−t1) (1.148)

p(t|t > t1 ∧ t1 ∧ (t0,R)) = p(t|(t1,R)) (1.149)

which finishes the prove. So we see that, given the time t1 is lower than the time t, the random number
t′ = t− t1 is behaving exactly as if it would have been drawn new from an exponential distribution with
rate constant R.
How can we use this result for our alternative update mechanism? The FRM, in general, implies that
we have a number of n processes labelled by i with rates Ri. At Markov time 0 we assign a retention
time ∆t0

i to each process i from an exponential distribution with rate constant Ri. The process j with the
shortest retention time ∆t0

j is performed and the Markov time is evolved to ∆t0
j . The rate for process j is

recalculated and a new time ∆t1
j is chosen from an exponential distribution with this new rate constant

Rj. At this point, the fact shown above comes into play because, assumed that the other rates Ri do not
change, we can use the times ∆t0

i calculated previously to get the new times ∆t1
i = ∆t0

i −∆t0
j . So we do

not need to recalculate all rates and all retention times in each step. We only have to calculate the new
rate of the currently performed process and get the retention time for it, i.e., only one random number is
required for one Markov step.
Now this alternative update mechanism seems to be much more favourable than the original one, so why
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is it not used for every simulation? The problem is, that the rates of the other processes are changing
as soon as we include interactions in our simulation. This means that in FRM we are neglecting that
the interactions change the rate due to which we induce a methodological error. For very low charge
carrier densities, FRM is producing good results: All charge carriers are far apart of each other. Thus,
the interactions are not changing in good approximation.
We are interested in developing a new update mechanism that combines the benefits of FRM and DMC,
in which a reduced computational cost by only recalculating a few rates is combined with reducing the
methodological error by updating the ’right’ rates. As FRM is producing good results for low charge
carrier densities and fails for high charge carrier densities, it is quite obvious to define, as a next step,
an update radius rup: For charge carriers j within this update radius around the hopping charge carrier i
|⃗ri − r⃗j| < rup, the rates are recalculated after a hop and for all the other charge carriers the retention
times are reduced by the current retention time. The statement p(t|t > t1 ∧ t1 ∧ (t0,R)) = p(t|(t1,R))
proven above and the equality of the two sample-path behaviours proven on page 17 ensure that this
update mechanism is correct (if the rates outside the update sphere are not changing). With this update
mechanism, we can continuously change from FRM (rup → 0) to DMC (rup → ∞). This master thesis
focuses on the question of how to choose the update radius to get a negligible methodological error while
the computational effort is still low.
As this idea is unexceptional, it was no surprise that other researchers already had this idea. After
implementing this method, we found out that Heiber et al. already claimed to have performed related
simulations but without giving any details of the method. [25]
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2 Development of the Code

One of the major goals of my master thesis was to write the code for a kinetic Monte Carlo simulation.
This section contains all information needed to efficiently set up the program starting from scratch. As
I have written the program in Fortran, special attention is drawn to the intricacies of implementing the
program in this particular language. Nevertheless nearly all information in this section is also valid for
all other programming languages.
In chapter 2.1 I present a suggestion, how to develop the code starting from non-interacting simulations
via short range interacting bulk system to a fully interacting injection simulation.
In a next step, the reliability of the measurements of a kinetic Monte Carlo simulation is scrutinised in
chapter 2.2. The values of not necessarily physical parameters such as simulation time, system size,
interaction radius and many more can have huge effects on particular observables. Hence the choice of
those parameters is critically reviewed.
All programmers know that coding always goes hand in hand with hours and hours of debugging. To
make future programmers life a bit easier, problems that I was struggling with and hints for non-obvious
program details are found in chapter 2.3.

2.1 Setting Up a Kinetic Monte Carlo Simulation

This chapter is not aiming to give a detailed recipe for the implementation of a KMC solver in the
sense of stating that a certain variable has to be in this structure or the dependency diagram of the used
routines has to look like this. Those informations are given for the implementation I developed in the
appendix (see chapter 7.1). This chapter can be seen as a guideline for developing your own code.
The implementation hints are always trying to guarantee the highest possible flexibility without loosing
performance. Depending on the requirements of your KMC solver, some points are probably to general
and you can save coding time by implementing it more adapted to your system and other points might
be implemented not flexible enough and you have to think of implementing it more universal. The
information given here should be seen as support and not as strict rule.

2.1.1 Single Charge Carrier Bulk Simulation

One of the easiest systems for a KMC simulation is a single charge carrier in a quasi-infinite volume.
As there is nothing but the organic semiconducting material in the simulation (no metal contacts or other
interfaces), it is called a bulk simulation. Although it is very simple, it already contains the core part of a
KMC simulation, the hopping process. Important structures like the cells that can be occupied by charge
carriers are also present. Hence, we will start here by building up the lattice of the cells.

Lattice:
A lattice of Ncells = N1 ×N2 ×N3 cubic cells of a certain size l (the lattice constant) is created in which
every cell is assigned a certain index to address it (see fig. 2.1). Next, a variable neighbours(i1,i2) is
introduced, in which the neighbours of every cell i1 into direction i2 are stored. The directions are the
allowed hopping directions, e.g. for nearest neighbour hopping only (which is mainly used in this master
thesis), there are 6 nearest neighbours in our simple cubic lattice. In this neighbour network the periodic
boundary conditions (pbc) can be included straight-forwardly, e.g. the nearest neighbours of cell 1 in
fig. 2.1 would be 2, 4 and 10 without pbc and with pbc the cells 3, 7 and 19 would be nearest neighbours
as well. The benefit of using such a neighbour network, compared to a three dimensional index like
(2,1,3) for cell 20 in fig. 2.1, is, that any lattice can be simulated without the need to change much in the
code. Moreover, in most programming languages (except Matlab) the addressing of a neighbouring cell
via this variable neighbours(i1,i2) is faster than adding e.g. (1,0,0) to (2,1,3) to get from cell 20 to
cell 21 which is its neighbour in i2 = 1 direction. At this point I want to mention that for an efficient
implementation of a KMC solver in Matlab, other aspects have to be considered and the method I am
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Figure 2.1: Example for the labelling of the cubic cells with a 3×3×3 lattice. Counting starts in the first
dimension and every time one dimension is filled up, one step into the next higher dimension is executed.

presenting here is probably not the best solution. The intricacies arising when Matlab is used for coding
are discussed in the master thesis of Philipp Breitegger [26], who in parallel with me developed a KMC
solver in this particular programming language.

Energy Assignment:
Having built up the lattice and a neighbour network, we can continue by randomly assigning energy
levels εi1 for the cells i1 according to a Gaussian distribution (1.98) with a specific energetic disorder σ
and writing them into a variable energetic landscape(i1). For a bulk simulation of a single charge
carrier, the energy of the charge carrier reduces to the first two terms in (1.101). The external electric
field F⃗ has to be applied into a certain direction, e.g. the x3-direction. As periodicity has to be considered,
the best way to include the energy contribution of the electric field is directly in the energy difference
∆Eij between the charge carriers total energy occupying cell i and j respectively:

∆Eij = εi − εj +qF∆x ij
3 (2.1)

where q =±e is the charge of the charge carriers and the distance of the hop between cell i and cell j into
x3 direction ∆x ij

3 appears. The hop from cell i to cell j is belonging to a hopping direction i2 in variable
neighbours(i1,i2). With knowing this hopping direction, the distance of the hop can be looked
up from a predefined variable holding the distances for the allowed hopping directions. The distance
between cells within the hopping region is a typical quantity that is needed many times in a Monte Carlo
simulation. It is, thus, advisable to precalculate and store it once, rather than to calculate it some million
times during the time evolution of the Markov chain. As this variable only has to hold 3 ·Nhop entries for
a three dimensional system and Nhop allowed hopping directions, an insignificant amount of memory is
needed. For Monte Carlo simulations in general, it is time-saving to precalculate quantities that are used
in every step as long as they do not need too much storage.

Problem with Boltzmann Statistics:
With the energy difference ∆Eij defined in (2.1) and the periodic boundary conditions, the charge carriers
will moves, on average, into field direction (or in opposite direction of the field depending on the charge).
However, in doing so they apparently loose potential energy continuously. The consequence for the total
energy of the system becomes obvious, when a charge carrier exits the sample volume and is reintroduced
at the opposite side due to the periodic boundary conditions. The charge carrier itself just hopped one
lattice constant l into field direction and the total energy of the system was reduced by ∆Eij = εi−εj−eFl.
But if we compare the two states of our state space, the total energy of the system is raised by ∆Eij =
εi − εj + eFl(Nx3 − 1), where Nx3 is the number of cells in x3 direction. This means, that each state of
our state space appears an infinite number of times with different total energies of the system due to the
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periodic boundary conditions and the Boltzmann statistics (1.111) can no longer be used as stationary
distribution.
The q-matrix of our Markov chain is still conservative, finite-dimensional, stable (and hence uniformly
bounded) and irreducible and the system also tends to a stationary distribution πx′ = limt→∞ Tx,x′(t) ∀x ∈
X as described in chapter 1.1.3. But the stationary distribution is not simply the Boltzmann statistics and
it is not known by us at this point. It is also doubtful, if the stationary distribution can be found with the
detailed balance criterion (1.40) or if the global balance criterion (1.39) has to be used. Nevertheless, it
has to be related to the Boltzmann statistics, as locally the detailed balance criterion is fulfilled by the
Boltzmann statistics. Unfortunately the insight gained in chapter 1.2.2, that the equilibrium quantities
like spatially resolved charge carrier densities do not depend on the chosen rate equation or the hopping
radius, cannot be assumed to hold for this unknown stationary distribution.

Hopping Process:
Having the energy differences for all the allowed hops of the charge carriers, we can calculate the rates,
either Marcus (1.99) or Miller-Abrahams (1.100). With the rates, we can start the simulation by initially
placing the charge carrier at a randomly chosen cell and calculate the rates for all Nhop hops. As all those
rates become invalid after the hop, it is preferable to use the original sample-path behaviour described in
theorem 1.6 and chapter 1.2.3. So we need one random number ξ1 ∈ (0,1] to choose the hop according
to Ri

R(Nhop)
and a second ξ2 ∈ (0,1) to assign the retention time ∆t = − log(ξ2)

R(Nhop)
. After a hop, the rates are

recalculated, the hop and the retention time are chosen randomly and the charge carrier evolves. After
thermalisation we start to measure the displacement in field direction for each hop and sum it up. When
the simulation has finished, we calculate the mobility µ

µ =
∆x tot

3
F∆t

(2.2)

with the totally travelled distance, ∆x tot
3 , into field direction, the electric field strength F, and the time, ∆t,

elapsed during the simulation after thermalisation. The totally travelled distance can be calculated either
by, (i), remembering the starting position, x start

3 , and the final position x final
3 and calculating the total

distance in x3 direction ∆x tot
3 = x end

3 − x start
3 (considering the periodic boundary conditions) or, (ii), by

summing up all hopping displacements in x3 direction for each hop performed. The second possibility is
slightly favourable, as, (i), the hopping distances are calculated anyway and, (ii), the convergence of the
mobility can be monitored during the simulation. Additionally, the second case permits to easily estimate
a Jackknife-based error (see page 14 and following) by leaving out blocks in the summation of the
travelled distance. As long as the simulation time is much longer than the system inherent autocorrelation
times, the errors calculated with Jackknife are reliable.

Error Determination:
Regarding errors, we have to consider that the choice of the energetic landscape already induces some
degree of random ambiguity for all measurable quantities. Therefore, an averaging over multiple, ran-
domly chosen, independent energetic landscapes is necessary to get reliable values for our measurable
quantities. As the simulation results of different energetic landscapes can be assumed to be independent
(as long as the random number generator is producing uncorrelated random numbers), the estimator of a
quantity Ai averaged over NEL energetic landscapes is

⟨A⟩= 1
NEL

NEL

∑
i=1

Ai (2.3)

and the estimator of the error ∆A of ⟨A⟩, given that the measurements are independent, is simply the
standard error

∆A =

√
1

NEL(NEL −1)

NEL

∑
i=1

(Ai −⟨A⟩)2 =

√
⟨A2⟩−⟨A⟩2

NEL −1
(2.4)
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where⟨
A2⟩= 1

NEL

NEL

∑
i=1

A2
i (2.5)

When we are averaging over multiple energetic landscapes, it seems to be of limited use to calculate
the error of the individual energetic landscapes. This is true as long as the error associated to the indi-
vidual energetic landscapes is lower than the estimator of the error due to averaging over the energetic
landscapes. For a thoroughly evaluated error, both the individual and the ensemble error have to be
calculated and the larger of both has to be taken. In general, the ensemble error originating from aver-
aging over multiple energetic landscapes should be the bigger one anyway. However, as the number of
landscapes being simulated is limited, the ensemble error could, by chance, be lower as well.

Simulation Results:
With this a first runnable KMC simulation should be ready for testing. As a first benchmark, reference
[16] is very suitable. In the first part of this paper, the bulk mobility for a single charge carrier is
calculated for different electric field strengths. Hopping is restricted to nearest neighbour hopping and
Marcus rates (1.99) are used to evolve the system. The parameters needed to reproduce the data given
in fig. 1 in [16] are shown in tab. 2.1. The parameter Er given in [16] is a bit misleading, as one has to
take ε ·Er instead of just Er to get the same results. The value for Er given in tab. 2.1 is correct when our
definition of the Marcus rate (1.99) is used.

Table 2.1: Parameters needed to reproduce the bulk mobility shown in fig.1 in [16]

.

Er 0.75 eV (12 ·10−20 J)
ν0 6.76 ·1011 s−1

σ 62.4 meV (1 ·10−20 J)
T 298 K

N1 ×N2 ×N3 35×35×70
α 0 m−1

l 1 nm
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Figure 2.2: Simulation of the bulk mobility of a single charge carrier in a disordered material. The dots
are our simulation results and the line shows the fitted Poole-Frenkel-type electric field dependence given
in [16]

The comparison of our results with the fitted function for the Poole-Frenkel-type field dependence of
the mobility performed in [16] is shown in fig. 2.2. For this simulation, the charge carrier was hopping
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1,000,000 times plus 100,000 steps for thermalisation; for every electric field strength 10 randomly cho-
sen energetic landscapes were sampled. The error is obtained by averaging the mobility values associated
to those 10 independent energetic landscapes. The curves of our simulation and the corresponding ones
in the paper show the same behaviour.

2.1.2 Single Charge Carrier Injection Simulation

To enhance the simulation from a single charge carrier bulk simulation to a single charge carrier injection
simulation, we have to put a metal contact on one side and adapt the boundary condition on the opposite
side. To get an idea of how to model the boundary condition on the opposite side of the metal contact,
the work of Wolf et al. [27] was studied. In this work, a single charge carrier injection simulation was
performed in a way discussed in the following.
A lattice of 170×170×20 cubic cells with a lattice constant of l = 0.6 nm was simulated with periodic
boundary conditions into direction x1 and x2. For the calculation of the energy levels (compare (1.101)),
the Gaussian distributed energies of the cells Ecells, the energy caused by an electric field applied in x3
direction Efield and the contribution of the own image charge Eown image charge was considered. As expected
for a single charge carrier simulation, no interactions are considered. Having a look at the energy needed
to place a charge carrier at cell i (1.109), only three of the five terms are present in this simulation, the
interaction terms do not appear since there are no other charge carriers to interact with. Miller-Abrahams
rates (1.100) were used. We note here that the process was modelled in an unconventional way, probably
this is due to the fact, that limited computer power in 1999 required particularly economic approaches.
A charge carrier is starting in the metal at the Fermi energy EF. For a charge carrier hopping out of
the metal, the energy of the starting cell i (called injection cell) for the hop is simply the Fermi energy
Ei = EF while the energy of the cell j of our simulation volume where the charge carrier hops to is
Ej = Ecell

j +Efield
j +Eown image charge

j . The rates for the injection of a charge carrier from the metal to the
organic semiconductor are Miller-Abrahams rates with ∆Eij = Ej −EF. Injections are assumed to be
only perpendicular to the metal surface and the charge carriers can only hop into the first two layers. To
average over multiple energetic landscapes, the position of the metal contact is chosen randomly. This
means that a neighbouring pair of layers is chosen out of the 20 possible layer pairs and exactly for those
two layers the corresponding rates for injection are calculated. The distance from the contact to the first
layer is the lattice constant and to the second layer twice the lattice constant. This distance of one lattice
constant from the contact to the first layer is taken for the hopping distance to calculate the rates as well
as for the starting point of the electric field and the image charge potential. After calculating all those
n = 170×170×2 rates Rij, one injection event is chosen randomly corresponding to the probability Rij

∑Rij
,

which is exactly the same as introduced for our sample-path behaviour of the Markov chain (1.41). No
time is assigned in this simulation. This is understandable, as no time dependent measures are taken.
After this injection, the charge carrier can perform hops within a cube of 5×5×5 cells centred around
it. If the contact is within this cube, it is considered as one single cell with Fermi energy, i.e. also hops
back into the metal are only permitted perpendicular to the metal surface. If the charge carrier hops back
into the metal, it recombines with the contact and is not further regarded in the on-going simulation.
If the charge carrier reaches the 9th layer or hops even beyond it, the charge carrier is assumed to be
separated far enough from the contact. In this case we call the charge carrier escaped and also take it out
of the simulation. So a charge carrier is removed from the simulation either when it recombines with the
metal contact or when it escapes. Simulating many charge carriers one after the other and counting the
numbers of escape Nesc and recombination events Nrec, the escape probability of a charge carrier ϕ can
be measured:

ϕ =
Nesc

Nesc +Nrec
(2.6)

Beyond these reasonable assumptions, the authors introduced a correction factor f to approximately
account for hot charge carriers that are injected from the tail of the Fermi-Dirac distribution. This does
not affect the energy of the injection cells for the simulation itself, which is still the Fermi energy EF.
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Rather, there is a competing process to injection where the charge carrier recombines within the metal
due to a relaxation from the hot tail of the Fermi-Dirac distribution to the Fermi energy EF. This latter
process is assumed to have a rate of R = ν0 which corresponds to a rate with rij = 0 and ∆Eij < 0. The
correction factor

f =
∑Rij

ν0 +∑Rij
(2.7)

is easily accessible, as the sum over all injection rates ∑Rij is calculated in the course of the simulation.
The relaxation in the metal is not directly included in the simulation. The associated correction factor is
determined after the simulation and the corrected escape probability ϕf is defined as

ϕf =
Nesc

Nesc +Nrec
f . (2.8)

I.e. the denominator still contains the total number of charge carriers that were simulated, but the number
of successfully escaped charge carriers Nesc is reduced by the factor f corresponding to the fraction of
charge carriers that would not have made it out of the metal. Exactly this quantity ϕf is displayed in fig.1
in [27].
How can we interpret this paper to develop an injection simulation and use the results given in this paper
to benchmark our simulations? As we are interested in developing a code to measure current densities
for interacting charge carriers that can be continuously injected, it is evidently not helpful to implement
the method exactly in the same way as in [27]. Our simulations differs in two technical aspects from the
system simulated by Wolf et al.: (i), the sampling over multiple energetic landscapes is done differently,
(ii), our injection and hopping processes assign a time.
The creation of the energetic landscape is not a bottleneck of the simulation at all, so it seems to be
useless to average over 20 correlated energetic landscapes when we can easily create 20 uncorrelated
ones with not much extra computer power required. Each of those uncorrelated energetic landscapes
is created as follows: As an escape happens in the layers more than 8 cells apart from the contact and
the charge carriers can overcome a maximum distance of two layers per hop, our bulk simulation size
is 170×170×10. For the metal contact, an additional layer of cells is placed at the top in x3 direction.
This means that layer 1 and 2 are the escape layers and layer 11 is the metal contact.
Each injection cell can perform injections and let charge carriers recombine with it at any time as the huge
reservoir of charge carriers in the metal is assumed to be unaffected by changing the number of charge
carriers in the reservoir by 1. So the injection cells are treated as being occupied and unoccupied at the
same time, which is consistent with the delocalisation and abundance of the charge carriers in the metal.
The energy of the injection cells is the Fermi energy EF for injection and recombination. One could
also think of injecting hot charge carriers from the occupied tail E > EF of the Fermi-Dirac distribution
and let them recombine with the contact according to the unoccupied part E < EF of the Fermi-Dirac
distribution. For sure, this changes the physical results of the measurements (Note that when considering
the Fermi-Dirac distribution for injection rather than a sharp Fermi energy, care has to be taken to avoid
violation of detailed balance). As we are mainly interested in comparing different simulation techniques
in this master thesis, we will, for the sake of simplicity, assume a sharp Fermi energy EF for injection
and recombination throughout the remainder of this thesis.
Based on the such defined processes and energy levels, we can calculate rates with the Miller-Abrahams
rate equation, (1.100). For injection, all 170×170×2 injection rates can be precalculated and an update
mechanism has to be chosen. Without interaction, all injection rates are constant and DMC and FRM are
equivalent. For DMC, an injection is chosen according to (1.41) and an exponentially distributed time
with a rate parameter being the sum over all injection rates is drawn. After the injection took place, the
single charge carrier evolves in the same way as described in the chapter 2.1.1 on single charge carrier
bulk simulations until it either recombines or escapes. Now the next injection is performed in the same
way as before and the charge carrier moves again through the bulk, and so on. In FRM, at the beginning
all injections get a time drawn from an exponential distribution with a rate parameter according to the
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individual rates and the fastest injection event is performed. This fastest time is, (i), subtracted from
all other times and, (ii), recalculated. After the charge carrier escaped or recombined, the next fastest
injection is performed. For an efficient simulation it is useful to sort the hopping times in FRM. In both
cases the number of escapes and recombinations is counted and the escape probabilities ϕ (2.6) and ϕf
(2.8) are calculated.

Simulation Results:
Now we can test our injection simulation and the required parameters are summarised in tab. 2.2. For
the given values of the system size Ncells = N1 ×N2 ×N3, the extension of the contact layer is not in-
cluded. Note that the hopping prefactor ν0 is not listed. As no times are measured, ν0 does not effect the
simulation and can thus be chosen arbitrary (e.g. ν0 = 1 s−1).

Table 2.2: Parameters needed to reproduce the escape probabilities shown in fig.1 in [27]

.

σ 80 meV
T 250 K

N1 ×N2 ×N3 170×170×10
l 0.6 nm
α 5

l = 8.33 ·109 m−1

εr 3.5

The results of our simulations are shown in fig. 2.3. Our escape probabilities ϕ without the correction
factor f , corresponding to (2.6), are shown as dashed lines, and the escape probabilities ϕf with correction
factor f , given by (2.8), are plotted as continuous lines. The results depicted in [27] are displayed as
crosses (×). Each simulation was run until 10000 injected charge carriers either recombined with the
contact or escaped. For all simulations this took less than 2000000 steps (no thermalisation required
in this particular case). Additionally 20 different energetic landscapes were sampled. The values for
the escape probabilities were produced by averaging over the data from the 20 uncorrelated runs with
different energetic landscapes. The term zero-field-energy barrier ∆ in this context refers to the difference
between the Fermi energy EF and the mean value of the Gaussian distributed energy levels of the cells
εi without an external electric field and own image charge interaction considered. So as ⟨εi⟩= 0 we get
∆ =−EF.
The results fit quite well with the data from [27]. Especially for high zero-field-energy barriers ∆ (lower
panels in fig. 2.3) it can be seen, that the shape of the curve is not just a consequence of the escape
probability ϕ , but mainly formed due to the correction factor f . The lowest zero-field-energy barrier
∆ = 0.2 eV (top left panel in fig. 2.3) is an outlier, our simulation does not represent the data shown
in [27] at all. Only the slope for low electric fields seems to be quite similar.
We are quite convinced that out simulations are correct, also for the ∆ = 0.2 eV simulation. To support
our results, the following discussion is held. As the correction factor f for the ∆ = 0.2 eV case does not
change the general behaviour of the simulation, it is omitted in the further discussion. For high electric
fields, all the charge carriers are forced to the escape layers and the injection efficiency will approach
unity. In contrast, for low electric fields the charge carriers will be forced back into the contact by
their image charge and the injection efficiency goes to 0. This means that there has to be a transition
between the electric-field-dominated regime (ϕ → 1) and the image-charge-dominated regime (ϕ → 0).
To find the approximate electric field where this transition takes place, we have to take a look at the
energetic landscape. For field strengths above 5 · 107 Vm−1, the energy levels beyond the second layer
are decreasing with increasing distance to the contact. As our transition field strengths are above this
value, the challenge for a charge carrier wanting to escape is to reach the second layer. Due to the
spatial decay term, injection of charge carriers preferably occurs into the first layer rather than into the
second. In a simplified picture, they can decide there if they want to move to the second layer or back
into the metal. The escape process can be assumed to be favoured, if the average energy level of the
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Figure 2.3: Simulated escape probability ϕ depending on the electric field strength F for different zero-
field-energy barriers ∆. The dashed line shows our simulated escape probability ϕ without the correction
factor f considered (calculated with (2.6)) and the solid line shows ϕf taking f into account (calculated
with (2.8)). The results from [27] are shown as crosses (x). The estimated transition field (see tab. 2.3)
are indicated with a dotted line. The results of our simulation, including the correction factor f , fit well
with the data given in [27] except the ∆ = 0.2 eV curve (see discussion in the text).

second layer is lower than the Fermi energy. To get an estimate for the average energy level in the second
layer, the energies due to the electric field, the own image charge and the energetic disorder have to be
considered. To estimate the contribution from the energetic disorder, some thoughts have to be made.
The injection will be preferably done to a low energy cell in the first layer, which means that the charge
carrier is occupying a certain cell in the first layer and cannot move around very much. If the charge
carrier wants to hop to the second layer, hops are restricted to the neighbouring cells of this low energy
cell in the first layer and the charge carrier cannot choose low energy cells in the second layer. As a
consequence the energy contribution of the energetic disorder is, on average, εi = 0. So the transition
can be approximately calculated by equalising the Fermi energy and the energy contribution from the
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electric field and the image charge in the second layer

EF = 2lqF− e2

16πε0εr2l
(2.9)

where l is the lattice constant. Values for this transition are given in tab. 2.3 for different barriers ∆. For
the ∆ = 0.5 eV and 0.4 eV cases, where such a transition is particularly apparent in the simulations, the
estimated fields fit very well. If we have a look at the ∆ = 0.2 eV case, the transition field fits much better
to our simulation than to [27].

Table 2.3: Electric field strength (2.9) where the transition from a field dependent to an image charge
dependent regime approximately takes place as a function of the zero-field-energy barrier ∆.

∆ / eV F / Vm−1

0.2 9.53·107

0.4 2.62·108

0.5 3.45·108

0.6 4.29·108

0.7 5.12·108

0.8 5.95·108

This seems to favour our simulation results, but why should [27] be wrong only for the ∆ = 0.2 eV
case? This is the only case where the first layer overall builds a trap layer, i.e., the layer average energy
level is below the Fermi energy and for low electric field strengths also below the layer average of the
second layer. This means that a charge carrier is injected into the first layer and travels around in the
first layer for a very long time until it decides whether to recombine or to start the journey to the escape
layers. The sometimes enormously long time that a charge carrier needs to pick a path is computationally
very expensive and as in the year 1999 computer power was scarce, the simulations in [27] maybe did
not converge. All the other simulations for the other Fermi energies were by far less intense from a
computational point of view.

2.1.3 Interacting Bulk Simulation

The next step in the development of the program is to implement interactions between the charge carriers.
For the energies calculated with (1.109) the first three parts are present for our interacting bulk simula-
tion and the external electric field is favourably included in the calculation of the energy difference as
described in (2.1). For the hopping process, in general, Marcus or Miller-Abrahams rates can be taken.
We have decided to take Miller-Abrahams rates (1.100). To assure that only one charge carrier can be
housed by one cell, we have used an array occupied that tells us whether a cell is currently occupied or
not. As soon as interaction and, hence, multiple charge carriers in the simulation are concerned, all three
update mechanisms can be implemented.
For a DMC simulation it is done exactly in the same way as it is done for one charge carrier; we calculate
all rates Ri for all charge carriers Ncc and all allowed hopping cells of those charge carriers Nhop, one hop
is chosen according to (1.41) and the time is advanced by an exponentially distributed random number
with rate parameter being the sum over all rates ∑Ri.
In FRM, we combine both alternatives introduced in chapter 1.2.4. For each individual charge carrier
we calculate all rates Ri to all cells i within the hopping region. We get Nhop rates and calculate the sum
of them R(Nhop). According to the probability Ri

R(Nhop)
we choose one hop and assign a retention time ∆t

drawn from an exponential distribution with rate R(Nhop). This is done for every charge carrier j and so
we end up with Ncc times ∆tj and hopping destinations ij where Ncc is the number of charge carriers.
The hops are sorted in a hopping queue according to their time and the charge carrier k with the fastest
time ∆tk is allowed to hop to cell ik. All times ∆tj of all other charge carriers j ̸= k are reduced by ∆tk
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and the Markov time is advanced by ∆tk. The hopping time of the currently hopped charge carrier k is
recalculated as described above and sorted back into the hopping queue.
For our new method it works exactly in the same way as for FRM with the only difference that after a hop
not only the hopping time for the currently hopped charge carrier is recalculated, but the hopping times
of all charge carrier within a distance of the update radius rup,cc to the new cell where the charge carrier
hopped to. Searching for the charge carriers to update can either be done by looking through all charge
carriers in the simulation or by scanning the region that has to be updated. For the second alternative, the
array occupied, introduced above, which tells us if a cell is occupied or not is very useful, especially
if it is not just a logical array but one that holds the index of the charge carrier that is occupying the
according cell. Depending on the number of charge carriers that are in the simulation and the update
radius, one of those two searching methods is favourable. If the number of charge carriers is higher than
the number of cells within the update sphere the second method is chosen. If it is the other way round
the first one is preferred. In both cases the periodic boundary conditions have to be taken into account to
get the correct distances between the cells.

Evaluation of the Coulomb Interactions:
A very crucial topic that is raised at this point is the calculation of the Coulomb interaction. As the 1

r
dependence of the interaction strength is known to be very long ranging and we are considering peri-
odic boundary conditions, we, in principle, would have to use the Ewald summation method (see chap-
ter 2.2.3) to calculate the interactions. A commonly made approximation is to cut-off the potential at a
radius given by the so-called thermal capture radius rtc used e.g. in [16]

rtc =
e2

4πε0εrkBT
(2.10)

From a mathematical point of view, cutting off a long ranging 1
r potential leads to a methodological error

that can be huge. However, from a physical point of view, the cut-off can be interpreted. A cut-off radius
may occur due to the screening of the Coulomb potential in the organic semiconductor. This lends the
justification to use a cut-off radius, at least in the very first implementation. To avoid high virtual forces
at the border of the cut-off region, the Coulomb potential for the cut-off radius should be subtracted
from the Coulomb interaction. For the interaction of two charge carriers at cell i and j respectively, the
corrected cut-off Coulomb potential Ecut-off Coulomb

ij is given by

Ecut-off Coulomb
ij =

e2

4πε0εrrij
− e2

4πε0εrrc
(2.11)

with the distance rij between the two cells and the cut-off radius rc which can be chosen such that it
is larger than the thermal capture radius rc > rtc. Note that, with this cut-off radius, our new update
mechanism is exact as soon as the update radius is greater than the cut-off radius plus twice the hopping
radius rup,cc > rc +2rhop,cc.
Including Coulomb interactions in the code can be done in two ways: (i), Either the sum in the third term
of (1.109) is directly calculated according to the distances of the charge carriers for each energy level that
needs to be calculated during an update. Or, (ii), an array is used where this sum is stored and corrected
for each hop, i.e., the Coulomb potential of the hopped charge carrier centred at the previously occupied
cell is subtracted and the Coulomb potential centred at the current cell, where the charge carrier hopped
to, is added to this array. Note that for using the latter, a dipole potential for each hopping direction could
reduce the computational effort but may overload the memory. The first option (i) is preferable for low
amounts of charge carriers, a small amount of allowed hopping directions, a small update radius, and a
large system size whereas the second one (ii) is used for high charge carrier densities, a large number of
allowed hopping directions and a large update radius.

Simulation Results:
To benchmark the simulation of interacting charge carriers, the work done by Zhou et al. [28] can be
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used. In this work bulk mobilities were measured depending on the charge carrier density considering
Coulomb interactions. They utilised Miller-Abrahams rates for nearest neighbour hopping only and
calculated the interactions with a direct summation method for the difference in Coulomb interaction
energy between two cells. All energies, like the energetic disorder or the potential due to the external
electric field, were given in kBT . Unfortunately the Coulomb interaction energy was not given in this
energy scale, as they used εr = 4. This choice of the Coulomb interaction energy fixes a total energy
scale and vanishes the benefit of reduced quantities. Changing the temperature now changes the strength
of the Coulomb interactions for the simulated system and without knowing the temperature, we are not
able to reproduce the exact numbers of their simulations. Considering those missing or inconsistently
given reduced values, we focused on the trends shown in [28] rather than on reproducing the exact
numbers. For this we used a set of parameters that is comparable to that given in [28] (see tab. 2.4). The
hopping prefactor was chosen to give a mobility of µ = 10−8 Vm−1 for the isoenergetic (σ = 0 meV)
case.

Table 2.4: Used parameters to get the trend of the bulk mobility shown in fig.1 of [28]

.

ν0 2.25 ·1013 s−1

εr 4.0
F 2.59 ·107 Vm−1

T 300 K
N1 ×N2 ×N3 51×51×51

l 1.0 nm
α 5

l = 5 ·109 m−1

rc 20.0 nm

As this computationally expensive simulation should just serve as a benchmark, we were not spending too
much time with sampling over multiple energetic landscapes to get error bars. Rather, the convergence
check was just done by looking at the time series of the cumulatively measured mobility. About 10 to 20
million hops (+10% thermalisation) were needed to get acceptable convergence. Our measured mobilities
can be seen in fig. 2.4, in which the results for FRM, DMC and the update radius method are shown.
DMC simulations we carried out up to charge carrier densities of n cell

cc = 10−3 ccpc (charge carriers per
cell), as for going beyond these densities the computational effort would not be proportional to the gained
knowledge. An in-depth comparison between those three methods will be given in chapter 3.
In general, the trends for all simulations in fig. 2.4 behave in the same way as shown in [28]. From the
viewpoint of a benchmark, our approach is not entirely wrong. Furthermore, we can already get a first
impression of the performance of our new method. First we will take a look at the discrepancies of the
three methods in the bottom left corner. The lowest lying curves refer to the highest disorder of 87.4 meV.
At very low charge carrier densities (10−5 to 10−4 ccpc) the mobilities for all three update mechanisms
differ. This discrepancy is coming from the fact that we were not averaging over multiple energetic
landscapes. For each method and each energetic disorder, one energetic landscape was drawn according
to the disorder. This landscape was used for all charge carrier densities to get comparable results for one
curve. Assuming a high energetic disorder and only few charge carriers in the simulation, the results
are dominated by the randomly chosen, very deep traps of our landscape. Hence, the dependence of
the mobility on the energetic landscape is strongest for high energetic disorder and low charge carrier
densities. It is remarkable that for higher charge carrier densities, the dependence on the deep traps is
reduced and all three methods lead to the same mobilities for charge carrier densities between 10−4 and
10−3 ccpc for the highest energetic disorder.
Apart from the special case of high disorder and very low charge carrier densities, the results only differ
for very high charge carrier densities. Here the fact that we are incorrectly considering the interactions
in FRM (left panel in fig. 2.4) and also in the case of a small update radius (right panel in fig. 2.4) comes
into play. The reasons that we hold responsible for this behaviour will be discussed in more detail in
chapter 3.1. Here we just mention that FRM shows a peculiar down bending for high charge carrier
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Figure 2.4: Bulk mobility µ depending on the overall charge carrier density n cell
cc given in charge carrier

per cell (ccpc) for different Gaussian disorders σ including Coulomb interaction between the charge car-
riers up to a cut-off radius of rc = 20 nm. The energetic disorders σ are (0.0,43.7,49.9,68.7,87.4) meV
from top to bottom respectively. In the left plot, FRM results are shown with a solid line and DMC
results with x. In the right plot, results for our new update method for an update radius of rup,cc = 1 nm
are drawn as solid line and the x are again the same DMC results as in the left plot. The trends recover
those seen in [28].

densities being seemingly independent of the energetic disorder. On the other hand, the new method
with a very low update radius rup,cc = 1 nm already fits much better to the curves given in [28]. It is
conjecturable that this low update radius does not lead to very accurate results compared to correct DMC
calculations, but at least it is an improvement compared to FRM.

2.1.4 Interacting Contact Simulation

The obvious next step is to add all up to one program which performs injections and considers interac-
tions. With all the work done previously this is rather simple as one just has to take a look at if the fastest
injection time or the fastest hopping time is the lowest and perform this fastest process. The evaluation
of injection times and hopping times will always be done separately to have a modular program that can
be easily changed from injection to bulk simulations.

Update Mechanisms:
The calculation of the injection rates in DMC is done like for single charge carrier injection simulations
as described in chapter 2.1.2.
For our new update mechanism, in which the update of hopping rates is confined to a region around the
previously hopped charge carrier, we can distinguish between an update radius rup,cc for the charge carri-
ers in bulk and rup,inj for injections. In the case of a bulk hop or injection, each of the two update spheres
is centred at the cell in which the charge carrier has landed. However, for escape and recombination
events, the charge carrier is removed from the simulation. Hence the two update spheres will be centred
at the position prior the hop. The recalculation of rates is performed for all charge carriers within rup,cc

and for all injection cells within rup,inj. It is advisable to select hops from an injection cell reminiscent
to bulk hops. I.e., the rates to all bulk cells that are allowed to be reached from the injection cell are
determined. These include hops being perpendicular and diagonal to the contact surface. The associated
probabilities are assigned according to (1.41). One of those injection events is randomly chosen corre-
sponding to its probability. The duration of this event is associated to an exponential distribution in time
(1.124), whose rate parameter corresponds to the sum of all hopping rates associated to this injection
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cell. So, like charge carriers in bulk, each injection cell assigns an injection event to a certain bulk cell
and a corresponding injection time. The injection times of all injection cells are sorted and the fastest
injection time competes against the fastest hopping time.
Including injection in FRM simulations is less straight forward. The following problem readily illus-
trates, why an FRM implementation must differ from our update method described above. After a com-
pleted injection event, a charge carrier populates a cell into which the injection cell can still inject. This
creates a scenario FRM is not meant to consider, i.e., to deal with (i) a close proximity of two charge car-
riers (the previously placed charge carrier and the one for which the next injection rate will be calculated)
and (ii) an injection event blocked due to a charge carrier residing next to the interface. Rather, FRM is
justified when low charge carrier densities are present. In this case, a previously injected charge carrier
likely moved away from the contact prior the next injection from the same injection cell. This situation
is much better accounted for, when the injection rates are reevaluated prior to the injection event. So in
FRM we are, like in a bulk simulation, updating only the hopping rate of the charge carrier that hopped.
For an injection process, however, we first recalculate the injection time of the injection cell, then place
the charge carrier and finally calculate the hopping rate of the new charge carrier. For recombinations
and escapes, no times have to be recalculated at all.

Hopping Region:
A spherical region with bulk hopping radius rhop,cc is assumed; this shape is consistent with the spherical-
symmetrical spatial decay term in the rate expressions (1.99) and (1.100). Hops to all injection cells
within the hopping radius are allowed, i.e. recombination is considered perpendicular and diagonal to
the metal surface. Also for injection a spherical injection region is assumed, here with an injection radius
rhop,inj. However, as we are always starting from the Fermi level, rates for injections from different
injection cells to the same bulk cell can be lumped into one rate. This single rate possesses a spatial
decay factor consisting of the sum over all spatial factors ∑i∈injection region e−2αrij due to the individual
injection cell i in the injection region. In essence, this can be interpreted as rate associated to an injection
hop perpendicular to the metal surface with a modified spatial contribution.

Assessment of Detailed Balance:
It can be shown (for details see below) that the implementation of the simulation introduced above, i.e.,
in terms of injection, recombination, escape, hopping radii, etc., violates the conditions of detailed bal-
ance. Our simulation does not sample the Boltzmann distribution. For the purpose of comparing update
mechanisms, being the focus of the present master thesis, sampling from an approximate Boltzmann dis-
tribution will not affect the main conclusions. However, the physical interpretation of injection following
this simulation scheme is affected if not even inhibited.
To overcome this issue, we first turn towards the origin of the problem. The state space of an injection
simulation only considers the locations of charge carriers that are in the organic semiconductors, i.e. the
escape layers and the metal contact are not considered. A configuration within this state space is deter-
mined by the positions of the charge carriers. States associated to different numbers of charge carriers
are linked via injection, recombination and escape. For injection and recombination, this linking is un-
problematic if all cells allowed to inject are permitted to contribute to recombination. Strictly speaking,
if the bulk hopping radius rhop,cc is identical with the injection radius rhop,inj. Even though this is not
always done in the following, it can be enforced and, thus, ensures detailed balance around the contact.
However, the problems are more severe at the opposite side of the sample volume. An arbitrary state x
with a charge carrier placed at a cell i near the escape layers is linked to a state x′ in which this charge
carrier has been removed via an escape process. If we call the rate for this escape process R, the q-matrix
entry for the corresponding state is qx,x′ = R (see chapter 1.1.3 for details about states, the q-matrix,
detailed balance,. . . ). However, there is no direct process that could link x′ and x and no associated
rate, i.e., qx′,x = 0. Now it is obvious that the detailed balance equation πxqx,x′ = πx′qx′,x is not fulfilled
considering that the stationary distribution π is the Boltzmann distribution. In fact, the situation is even
worse, as the implementation of escape also leads to the fact that global balance cannot be fulfilled for the
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Boltzmann distribution. This is because all processes except the escape process are in detailed balance
(when rhop,cc = rhop,inj), so there is no counterpart that could compensate the escape process. To sidestep
this problem, an inverse process to the escape process could be considered to guarantee detailed balance.
This is done for diode simulations [29] due to the second electrode.

2.2 Convergence Considerations

In this chapter we are having a look at selected parameters of our kinetic Monte Carlo simulations and
why we have chosen them in the way we did. For the remaining parameters, values commonly used
in literature were taken. The lattice constant, as an example, strongly influences the simulations. We
have taken a value of 1 nm for our simulations as this seemed to be a value commonly used in literature.
When simulating a certain material, this parameter could be adapted and also the lattice structure could
be chosen other than simple cubic, but we have not investigated the effects of a varying lattice constant
or lattice structure at all. The impact of the hopping prefactor ν0 was already discussed previously and
we saw that is can be easily adapted after the simulation. So the value of this factor will not affect our
comparison of different update methods. A clearly non-physical parameter is the hopping radius rhop,cc
and rhop,inj. The strength of the effect of changing the hopping radius is governed by the physically
motivated parameter α (delocalisation constant, see (1.99) and (1.100)), the lower α the stronger the
effect. If α is taken high, then changing rhop,cc or rhop,inj has only little effect. A rigorous investigation
of the effect of the update radius would have gone far beyond the scope of this master thesis, so we
restricted the simulations to nearest neighbour hopping. Some more parameters of the simulation will be
discussed in the following sections.

2.2.1 Autocorrelation Times

A very important question for all Markov Chain Monte Carlo methods is: How long should a simulation
run? As we already learned in chapter 1.1.4, the autocorrelation function can give us the answer to this
question. To obtain the interplay between autocorrelation times and measured quantities, we computed
the discrete empirical autocorrelation function (1.54). Note that this expression may not contain all the
information provided in the accurate continuous empirical autocorrelation function (1.48).
The investigated system was a 51× 51× 51 cells bulk simulation with periodic boundary conditions in
all directions with only one charge carrier. A single charge carrier simulation was taken, because it is
a very fast simulation and the autocorrelation times for this system should, in principle, be rather high
compared to simulations with more charge carriers, as the effects of deep traps are stronger when less
charge carriers are in the simulation. The hopping radius was restricting hops to nearest neighbour cells
only and Miller-Abrahams rate (1.100) was taken. The rest of the parameters for this simulation are
found in tab. 2.5.

Table 2.5: Used parameters for measuring the autocorrelation function.

ν0 2.25 ·1013 s−1

εr 4.0
F 1.0 ·108 Vm−1

T 300 K
σ 87.4 meV

N1 ×N2 ×N3 51×51×51
l 1.0 nm

α 5
l = 5 ·109 m−1

For one run, 200 million hops plus 20 million hops thermalisation were performed and multiple ener-
getic landscapes were investigated. The absolute value of the empirical autocorrelation function of the
retention times ∆t of the hops

∣∣ρE
∆t

∣∣, the displacements ∆s during one hop in field direction
∣∣ρE

∆s

∣∣, and the
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average mobility µ of one hop
∣∣ρE

µ
∣∣ (see (1.131) and (1.133)) were measured. Results of some energetic

landscapes are shown in fig. 2.5 for
∣∣ρE

∆t

∣∣, fig. 2.6 for
∣∣ρE

∆s

∣∣ and fig. 2.7 for
∣∣ρE

µ
∣∣.
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Figure 2.5: Absolute value of the empirical autocorrelation function
∣∣ρE

∆t

∣∣ of the hopping times ∆t calcu-
lated with (1.54) for a single charge carrier bulk simulation with energetic disorder σ = 87.4 meV. The
different curves show 6 different randomly chosen energetic landscapes.
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Figure 2.6: Absolute value of the empirical autocorrelation function
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∣∣ of the hopping distances in
field direction ∆s calculated with (1.54) for a single charge carrier bulk simulation with energetic disorder
σ = 87.4 meV. The different curves show 6 different randomly chosen energetic landscapes. The insert
is a zoom for low times up to 60 Markov jumps.

When looking at the autocorrelation functions, the first eye-catcher is that the different energetic land-
scapes lead to completely different autocorrelation functions (the six curves in fig. 2.5 to 2.7 belong to
six different energetic landscapes). Moreover, the autocorrelation function for the retention times ∆t (see
fig. 2.5) drops below noise much faster than the other two. The autocorrelation function for the hopping
distances in field direction ∆s (see fig. 2.6) and the mobility µ (see fig. 2.7) are quite similar apart from
the slight difference that the straight line appearing for times t > 100 are shifted to lower values of the
autocorrelation function for the mobility. Those facts can be interpreted consistently when we recall that
the autocorrelation function for an observable A is given by

ρA(t) =
Nac

∑
i=1

ci(A)e
− t

τi (2.12)

with Nac autocorrelation times τi only depending on the transition function of the Markov chain and
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Figure 2.7: Absolute value of the empirical autocorrelation function
∣∣ρE

µ
∣∣ of the mobility µ calculated

with (1.54) for a single charge carrier bulk simulation with energetic disorder σ = 87.4 meV. The dif-
ferent curves show 6 different randomly chosen energetic landscapes. From the asymptotic behaviour of
the autocorrelation function, the asymptotic autocorrelation time τexp, where

∣∣ρE
µ
∣∣ drops by a factor of 1

e ,
can be evaluated (see triangle above the curves).

coefficients, ci(A), of those exponentials only depending on the observable A. The autocorrelation times
are determined by the transition function which, in turn, is given by the rates that are associated to the
energy scales present in the simulation. This means that all three observables ∆t, ∆s, and µ should have
the same autocorrelation times but with different coefficients. An example for evaluating an autocor-
relation time from the autocorrelation function is shown in fig. 2.7 for the topmost curve. There the
slope of the straight line for high Markov times t > 200 in the logarithmic plot provides the asymptotic
autocorrelation time τexp. Looking at the autocorrelation function for the retention times ∆t (fig. 2.5), we
see very short autocorrelation times (all below 4 Markov jumps) before the six curves for the different
energetic landscapes drop below noise. As they drop very fast, it cannot be said clearly if this is one
specific autocorrelation time or many different but quite similar ones. In the insert in fig. 2.6, it is seen
that there are many correlation times forming a continuously curved graph that finally ends in a straight
line. This tells us that there is an interplay of many energy scales as it can be expected for a randomly
disordered material. The straight line for long times seen in the autocorrelation function of ∆s (fig. 2.6)
and µ (fig. 2.7) is associated to the deepest trap in the system and, hence, can change a lot from one
energetic landscape to another. The kink after which the behaviour of the autocorrelation function is
dominated by the asymptotic autocorrelation time τexp is always approximately at the same value of the
autocorrelation function (≈ 0.07 for ∆s and ≈ 0.03 for µ) for different energetic landscapes. Those ob-
servations all reflect the fact that the autocorrelation times τi are governed by the energetic landscape and
the coefficients ci(A) are determined by the observable. In the autocorrelation function for the retention
times the asymptotic autocorrelation time should appear as well, but obviously the coefficient for this is
below 10−3.
After all this information about autocorrelation functions, what is the take home message of this section?
For single charge carrier bulk simulation with a disorder of σ = 87.4 meV, we observed asymptotic
autocorrelation times τexp in the range of 30 to 380 Markov jumps that strongly depend on the choice
of the energetic landscape. The integrated autocorrelation time is much lower due to the multitude of
autocorrelation times and a rapid drop of the autocorrelation function below at least 10−1 depending on
the observable that was investigated. For our further simulations, we will not investigate autocorrelation
functions and rather, calculate errors with Jackknife (see the passage about Jackknife on page 14). To
check if thermalisation worked and to assure that no correlation times in the order of the simulation time
appeared, the time series of the measured observable is inspected by eye. As long as thermalisation was
successful, the estimators of errors calculated by Jackknife should give trustworthy results.
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2.2.2 System Size

The system size is the number of cells Ncells = N1 ×N2 ×N3 that we are simulating. For injection simu-
lations the injection cells are not within this system size but the escape layers are. So Ncells is the number
of cells of organic semiconducting material. As the simulation results depend on the choice of those
values, we will give thought to those values in the following.
For bulk simulations with periodic boundary conditions, the choice of Ncells does not matter that much.
Taking a smaller system mainly increases the variance between different energetic landscapes. Of course,
there are further finite size effects that could be eliminated with finite size scaling, but this is not influenc-
ing our aim to compare different update mechanisms. Hence, we do not bother about finite size effects.
In literature (e.g. [28]), typical values of about 50×50×50 cells are thought to be ’large enough’ to get
measures that are showing the trend of the thermodynamic limit.
When injection is considered, the choice of the value for the system size parallel to the contact N1 ×N2
is related to the choice for bulk simulations as periodic boundary conditions are used here as well. So
a value of about 50× 50 injection cells is reasonable for our purposes. However, the number of layers
perpendicular to the contact N3 that are needed until the effect of the contact has decayed and the charge
carriers behave like in a bulk simulation, is more challenging to estimate. Although we are giving an
estimation in the following, the convergence to the bulk properties should be always checked as well.
The convergence is seen best in the layer average of the charge carrier density parallel to the contact,
which should reach a plateau far away from the contact. Of course there can be layers that have much
higher charge carrier densities than others due to deep trap energy levels in those layers, but the trend
of the layer averaged charge carrier density should not change much for an increasing distance to the
contact.
Our estimation assumes, that the influence of the contact is negligible as soon as the probability that a
charge carrier returns to the contact is negligible. To return to the contact, an energy difference ∆E has
to be overcome by the charge carrier which is either determined by the Fermi energy EF of the contact or
by the maximum of the transport level in the organic semiconductor depending on which energy is the
higher. To be able to easily calculate an estimation, we consider that one single charge carrier is in the
simulation. This is reasonable, because other charge carriers would rather push our charge carrier away
than help him to get back to the contact. For one charge carrier, the potential is formed by the external
electric field F (1.103) and the image charge potential (1.105) for an isoenergetic case (σ = 0 meV). The
maximum of the transport level is, in this case, found at a distance d to the contact that is given by

d =

√
e

16πε0εrF
. (2.13)

As we only have discrete distances, the maximum is either in layer j =
⌊d

l

⌋
or in layer j+1 =

⌈ d
l

⌉
1 with

the lattice constant l. We can calculate the maximum of the transport level with Et,max =max(E(j),E(j+1))
where E(j) is the image charge potential plus the potential from the electric field F for layer j. With non-
vanishing energetic disorder σ ̸= 0 meV, the effective maximum of the transport level is assumed to be
reduced by σ which leads to Et,max = max(E(j),E(j+1))−σ .
Regardless of which energy is the highest, the energy ∆Etot(i) that has to be overcome by the charge
carrier positioned in layer i is

∆Etot(i) = max(EF,Et,max)−
(
− e2

16πε0εrl · i
− eFl · i−σ

)
(2.14)

To overcome this energy barrier, m layers have to be crossed, where m is the number of layers betweeen
the current layer i of the charge carrier and, (i), the metal contact if the Fermi energy is the maximum,
or, (ii), the layer containing the maximum of the transport level if Et,max > EF. As hopping through
a disordered energetic landscape only decreases the probability that a charge carrier finds back to the

1⌊x⌋ and ⌈x⌉ is floor and ceiling function of x
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contact, an isoenergetic landscape is assumed in the following calculations, so that the energy difference
between two layers is simply given by ∆E = ∆Etot(i)

m . Note that this energy difference is depending on the
layer i that is investigated. Furthermore we only consider nearest neighbour hops as long range hops will
not significantly influence the results while increasing the complexity of the calculations tremendously.
So now we have reduced the problem to an isoenergetic case with energy difference ∆E between two
layers and we want to know the probability that a charge carrier goes m steps upwards in energy at any
time P∆E(m). The rates R+ and R− for hops upwards and downwards in energy and the rate R0 for hops
perpendicular to the contact can be calculated with Marcus rate (1.99) or Miller-Abrahams rate (1.100).
The corresponding probabilities are

P̃+ =
R+

R++R−+4R0
P̃− =

R−
R++R−+4R0

and P̃0 =
4R0

R++R−+4R0
(2.15)

with four nearest neighbours perpendicular to the contact. Now we have further reduced the problem to
that of a one dimensional random walk with probabilities P̃+,P̃− and P̃0 to go left (towards the contact or
upwards in energy), right (away from the contact or downwards in energy) or stay at the current position.
All four hops to the nearest neighbours perpendicular to the contact can be merged into one rate, 4R0, as
they are not changing the distance to the contact and we do not care about at which lateral position the
charge carrier overcomes the barrier or reaches the contact. The probability that the walker goes left m
times P∆E(m) can be given iteratively. In the first step the walker can go left, right or stay. From this new
position, the walker has to go left (m− 1), (m+ 1) or m times, respectively, to totally move m steps to
the left. So the iteration writes as follows:

P∆E(m) = P̃0P∆E(m)+ P̃−P∆E(m+1)+ P̃+P∆E(m−1) (2.16)

By moving the first term on the right to the left and dividing by (1− P̃0) we get

P∆E(m) = P−P∆E(m+1)+P+P∆E(m−1) (2.17)

with

P− =
R−

R++R−
and P+ =

R+

R++R−
(2.18)

which is a one dimensional random walk with probabilities P+ and P− to move to the left and right.
The probability that the walker ever moves m steps to the left can also be given in a different way:
The probability P∆E(m) that a walker at any time moves m steps to the left is given by the combined
probability that it at any time moves (m−1) steps to the left, P∆E(m−1), multiplied with the probability
that, from there, it at any time moves one step to the left P∆E(1).

P∆E(m) = P∆E(m−1)P∆E(1) (2.19)

This relation is fulfilled by an exponential expression P∆E(m) = P∆E(1)m. Plugging this into the iterative
equation (2.17) leads to a quadratic equation for P∆E(1)

P∆E(m) = P−P∆E(m+1)+P+P∆E(m−1) (2.20)

P∆E(1)m = P−P∆E(1)m+1 +P+P∆E(1)m−1 (2.21)

0 = P−P∆E(1)2 −P∆E(1)+P+ (2.22)

with the solution

P∆E(1) =
1±

√
1−4P−P+

2P−
=

1±
√

1−4P−(1−P−)

2P−
=

1±
√

(1−2P−)2

2P−
=

=
1± (1−2P−)

2P−
=

1+(1−2P−)

2P−
=

1−P−
P−

=
P+

P−
(2.23)
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The relation P+ = (1−P−) was used and the positive sign of the root is taken for P− ≥ 1
2 to get the lower

of both probabilities. This is satisfied as P− is the probability for hopping downwards in energy. With
this we get our final result

P∆E(m) =

(
P+

P−

)m

=

(
R+

R−

)m

(2.24)

To calculate the number of layers for the simulation, a limit Pmax ret for the return probability P∆E(m) and
a minimum number of layers istart has to be given. For this minimum number of layers istart, the energy
difference ∆Etot(istart) is calculated with (2.14) and the layer of the energy maximum j is evaluated.
The distance between the last layer in simulation and the energy maximum m = i− j is used to get the
energy difference between two layers ∆E = ∆Etot(istart)

m , with which the rates R+ and R− are evaluated,
and the return probability P∆E(m) is calculated. If the return probability is already below our chosen
limit Pmax ret, istart is the number of layers that is used for our simulation. Else the number of layers is
increased and the procedure is repeated until the probability P∆E(m) undercuts Pmax ret. In conclusion,
we end up with a number of layers i that are needed for our simulation to achieve the desired accuracy.
Finally, the number of escape layers has to be added to the calculated number of layers to get the total
number of layers for our system size.

2.2.3 Interaction Range

The Coulomb potential of a charge carrier is very long ranging. So it is obvious that, with the cut-
off radius introduced for the calculation of interactions, a methodological error is introduced that can
be very significant for certain measures. For some measures, the effect of the cut-off radius might be
negligible, but for others it is clearly not. Measures that are very sensitive to changes in the cut-off radius
are, e.g., spatially resolved charge carrier densities in injection simulations (see [26] page 52). In the
implementation we were introducing above, the interaction potential can be easily precalculated. That
means that it is no significant difference in the performance of a simulation of the Markov chain whether
the potential is calculated, (i), with only one term or, (ii), by summing up multiple terms and taking long
range interactions into account. To get the exact potential of a system with periodic boundary conditions,
the so-called Ewald summation method [30] is the method of choice. In this method the total energy
of an interacting system with periodic boundary conditions can be calculated under the assumption that
the system is charge neutral. With the considerations presented below, it can also be used to calculate
the Coulomb potential of a single charge carrier in a 3D or 2D periodic system. The starting point for
our calculations is the Ewald summation method described in [31]. There we find the calculation of the
potential field generated by one single charge carrier at position r⃗i with charge qi and all its periodic
images

φi(⃗r) =
qi

ε0εr

1
4π ∑⃗

T

1∣∣∣⃗r− r⃗i − T⃗
∣∣∣ (2.25)

where T⃗ is a translation vector of the system. In the case of periodicity in three dimensions and a system
size of Ncells = N1 ×N2 ×N3 cubic cells with lattice constant l, the translation vector can take values
T⃗ = (i ·N1l, j ·N2l,k ·N3l)⊤ with i, j,k ∈ Z. The sum in (2.25) collects all those possibilities. Note that
this sum is diverging, i.e., by subtracting another diverging sum we could produce any number that we
want, depending on the summation sequence. This, of course, needs to be avoided. Thus we rewrite the
sum with the so called Ewald method and isolate the singularity of the summation. The key idea of the
Ewald summation method is to split the sum into a fast converging real space sum and a fast converging
reciprocal space sum. In the following, the prefactor qi

ε0εr
is set to 1 for notational convenience and will

be, in the end, reintroduced.
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3D-Ewald Summation
In a three dimensional system with periodicity in all three directions, the Fourier transform of the poten-
tial is given by

φ̃i(G⃗) =
∫

V
d3r

1
4π ∑⃗

T

1∣∣∣⃗r− r⃗i − T⃗
∣∣∣e−iG⃗⃗re−ε |⃗r−⃗ri−T⃗| (2.26)

where V is the volume of the system and the factor e−ε |⃗r−⃗ri−T⃗| for ε > 0 assures the convergence of the
integral and is afterwards taken out by letting ε go to zero. The reciprocal lattice vector G⃗ for a cubic
system of N ×N ×N cubic cells with lattice constant l is given by G⃗ = 2π

Nl (i, j,k)
⊤ with i, j,k ∈ Z. The

sum over T⃗ is equivalent to integrating over R3 and with some integral transformations we get

φ̃i(G⃗) =
∫
R3

d3r
1

4π
1

|⃗r− r⃗i|
e−iG⃗⃗re−ε |⃗r−⃗ri| =

∫
R3

d3r
1

4π
1
r

e−iG⃗(⃗r+⃗ri)e−εr (2.27)

=
1
2

e−iG⃗⃗ri

∫ ∞

0
drr2

∫ 1

−1
d cosΘ

1
r

e−iGr cosΘ−εr (2.28)

=
1
2

e−iG⃗⃗ri

∫ ∞

0
dr

1
−iG

(
e−iGr − eiGr)e−εr (2.29)

=
1
2

e−iG⃗⃗ri
1

−iG

(
1

−iG− ε
e−iGr−εr − 1

iG− ε
eiGr−εr

)∣∣∣∣∞
0

(2.30)

=
1
2

e−iG⃗⃗ri
1

−iG

(
1

iG+ ε
+

1
iG− ε

)
=

1
G2 e−iG⃗⃗ri (2.31)

To reconstruct the real space potential, an inverse Fourier transformation has to be performed:

φi(⃗r) =
1
V ∑⃗

G

φ̃i(G⃗)eiG⃗⃗r =
1
V ∑⃗

G

1
G2 e−iG⃗⃗rieiG⃗⃗r. (2.32)

Although we are now summing up a function that behaves like 1
G2 for large G instead of 1

|T⃗| for large
∣∣∣T⃗∣∣∣,

the sum over the absolute value of the terms still diverges as the number of equivalent terms with same
G is increasing like G2 in three dimensions. Additionally, the G = 0 term is ill-defined.
The Ewald method splits the potential into a short range φ̃S

i (G⃗) and a long range φ̃L
i (G⃗) part by exploiting

the mathematical identity
∫ ∞

0 e−G2tdt = 1
G2 and splitting the integral into two at t = 1

4η2 .

φ̃i(G⃗) = φ̃S
i (G⃗)+ φ̃L

i (G⃗) (2.33)

with

φ̃S
i (G⃗) = e−iG⃗⃗ri

∫ 1
4η2

0
e−G2tdt and φ̃L

i (G⃗) = e−iG⃗⃗ri

∫ ∞

1
4η2

e−G2tdt (2.34)

The long range part φ̃L
i (G⃗) is integrated again and Fourier transformed to real space. This yields

φL
i (⃗r) =

1
V ∑⃗

G

1
G2 e

− G2

4η2 eiG⃗(⃗r−⃗ri) (2.35)

where a very fast convergence of the sum is guaranteed by the factor e
− G2

4η2 . Attention has to be drawn
to the term for G = 0 which is still ill-defined. The short range part is first Fourier transformed and then
integration is carried out:

φS
i (⃗r) = ∑⃗

T

1

4π
∣∣∣⃗r− r⃗i − T⃗

∣∣∣erfc
(

η
∣∣∣⃗r− r⃗i − T⃗

∣∣∣) (2.36)
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with the complementary error function

erfc(x) =
2√
π

∫ ∞

x
e−t2dt = 1− erf(x). (2.37)

The behaviour of the complementary error function for large x → ∞ is like a Gaussian erfc(x) ∼ e−x2

which also assures a fast convergence. Overall, we end up with the potential at position r⃗ that is created
by a charge carrier with charge qi positioned at cell r⃗i and all its 3D periodic replica given by

φi(⃗r) = ∑⃗
T

qi

4πε0εr

∣∣∣⃗r− r⃗i − T⃗
∣∣∣erfc

(
η
∣∣∣⃗r− r⃗i − T⃗

∣∣∣)+ qi

Vε0εr
∑⃗
G

1
G2 e

− G2

4η2 eiG⃗(⃗r−⃗ri) (2.38)

where both sums rapidly converge and the divergence of the initial summation is packed into the ill-
defined term for G = 0. To get rid of this term, charge neutrality has to be established. This, however,
is difficult if we are just interested in the potential of one charge carrier. We impose charge neutrality
by positioning the charge carrier (for which we want to know the potential) with charge q at r⃗i = r⃗1
(including all its periodic images) and a second charge carrier with charge −q at r⃗i = r⃗2 but leaving out
the T⃗ = 0 term in the sum. The potential of both charge carriers is now given by

φ (⃗r) = ∑⃗
T

q

4πε0εr

∣∣∣⃗r− r⃗1 − T⃗
∣∣∣ −∑⃗

T

q

4πε0εr

∣∣∣⃗r− r⃗2 − T⃗
∣∣∣ + q

4πε0εr |⃗r− r⃗2|
(2.39)

= ∑⃗
T

q

4πε0εr

∣∣∣⃗r− r⃗1 − T⃗
∣∣∣erfc

(
η
∣∣∣⃗r− r⃗1 − T⃗

∣∣∣)−∑⃗
T

q

4πε0εr

∣∣∣⃗r− r⃗2 − T⃗
∣∣∣erfc

(
η
∣∣∣⃗r− r⃗2 − T⃗

∣∣∣)
+

q
Vε0εr

∑⃗
G̸=0

1
G2 e

− G2

4η2 eiG⃗(⃗r−⃗r1)− q
Vε0εr

∑⃗
G̸=0

1
G2 e

− G2

4η2 eiG⃗(⃗r−⃗r2)+
q

4πε0εr |⃗r− r⃗2|
. (2.40)

In (2.40) the G = 0 term already vanishes during the first Fourier transformation due to charge neutrality.
The

∣∣∣T⃗∣∣∣= 0 term can be taken out of the sums, so that

φ (⃗r) = ∑⃗
T ̸=0

q
erfc

(
η
∣∣∣⃗r− r⃗1 − T⃗

∣∣∣)
4πε0εr

∣∣∣⃗r− r⃗1 − T⃗
∣∣∣ − ∑⃗

T ̸=0

q
erfc

(
η
∣∣∣⃗r− r⃗2 − T⃗

∣∣∣)
4πε0εr

∣∣∣⃗r− r⃗2 − T⃗
∣∣∣ +q

erfc(η |⃗r− r⃗1|)
4πε0εr |⃗r− r⃗1|

−q
erf(η |⃗r− r⃗2|)
4πε0εr |⃗r− r⃗2|

+
q

Vε0εr
∑⃗

G̸=0

1
G2 e

− G2

4η2
(

eiG⃗(⃗r−⃗r1)− eiG⃗(⃗r−⃗r2)
)

(2.41)

where 1−erfc(x) = erf(x) was used. The idea to get the potential of one charge carrier always possessing
the same but finite potential offset is to set the position of the artificially introduced charge carrier r⃗2 to
the position for which we want to know the potential, i.e., r⃗ → r⃗2. Except the fourth term, the limit can
be evaluated straight-forwardly.

lim
r⃗→r⃗2

q
erf(η |⃗r− r⃗2|)
4πε0εr |⃗r− r⃗2|

=
q

4πε0εr
lim
x→0

erf(ηx)
x

=
q

4πε0εr
lim
x→0

2√
π e−(ηx)2η

1
=

qη
2π 3

2 ε0εr
(2.42)

From the second to the third term, L’Hôpital’s rule was used. By defining the difference, ∆⃗r = r⃗1 − r⃗2,
between the point where the charge carrier is sitting and the position where the potential is evaluated, we
get

φ(∆⃗r) =
q

4πε0εr

erfc(η∆r)
∆r

− 2η√
π
+ ∑⃗

T ̸=0

erfc
(

η
∣∣∣∆⃗r+ T⃗

∣∣∣)∣∣∣∆⃗r+ T⃗
∣∣∣ −

erfc
(

η
∣∣∣T⃗∣∣∣)∣∣∣T⃗∣∣∣


+

4π
V ∑⃗

G ̸=0

e
− G2

4η2

G2

(
cos
(

∆⃗rG⃗
)
−1
) (2.43)
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where the symmetric summation over G⃗ was used to eliminate the imaginary part of the complex ex-
ponential. Both sums in this equation can be easily calculated and rapidly converge. The only re-
maining question is how to choose the cutting point η to separate the short-range from the long-range
region. If we are choosing η to high, then the sum over T⃗ converges fast but the sum over G⃗ lasts very
long. If we choose η to low it is the other way round. Introducing a comparable summation variable
u =

√
i2 + j2 + k2 for T⃗ = l ·N(i, j,k)⊤ and G⃗ = 2π

l·N (i, j,k)
⊤ with i, j,k ∈ N, the two sums converge like

e−(αu)2
with αT = η l ·N and αG = π

η l·N . The fastest convergence is given if both sums converge in the

same way, i.e., αT = αG, which leads to η =
√

π
l·N . With this condition, our Ewald summation for a system

with three dimensional periodicity is complete.

2D-Ewald Summation
In a system with periodicity only in two directions the derivation in principle works in the same way
but with some more subtle considerations about the G = 0 term which is described in detail in [31]. The
basic idea how to get charge neutrality is the same and the limit r⃗ → r⃗2 can be performed as shown above.
The final expression is a bit longer

φ(∆⃗r) =
q

4πε0εr

{
erfc(η∆r)

∆r
+

2η√
π
+

2
√

π
Aη

(
1− e−η2|∆x3|2

)
− 2π |∆x3|

A
erf(η |∆x3|)

+ ∑⃗
T ̸=0

erfc
(

η
∣∣∣∆⃗r+ T⃗

∣∣∣)∣∣∣∆⃗r+ T⃗
∣∣∣ −

erfc
(

η
∣∣∣T⃗∣∣∣)∣∣∣T⃗∣∣∣


+

π
A ∑⃗

G̸=0

cos
(

G⃗∆⃗r
)

G

(
eG|∆x3|erfc

(
G
2η

+η |∆x3|
)
+ e−G|∆x3|erfc

(
G
2η

−η |∆x3|
))

−
2erfc

(
G
2η

)
G

 (2.44)

with the distance between the charge carrier and the position where the potential of the charge carrier is
calculated |∆x3| perpendicular to the 2D periodic plane and the area A = (l ·N)2 of the periodic plane.
The lattice constant is given by l and the system size by N ×N ×N3 where N3 is chosen regarding to
chapter 2.2.2. The convergence of those sums is for large T⃗ and G⃗ again e−(αu)2

and the cutting point
η is, like in the 3D case, again η =

√
π

l·N . Especially for large |∆x3|, the convergence can be numerically
instable, so a careful numerical treatment of the terms and sums is recommended. Taking the same
potential with a different sign of the charge for the interaction between the charge carriers and their
image charges guarantees the correct boundary condition φ = 0 at the metal interface.

2.3 Troubleshooting

This chapter is not thought to give a recipe for debugging a code, it discusses some probably surprising
effects of numerical method errors. Most of them are associated with the creation and application of
random numbers.

2.3.1 Time Cumulation

When the simulation is performed in FRM or with the new update mechanism, differences of times are
calculated very often. At a certain Markov time ti after i Markov jumps we have retention times ∆t j

i
for all possible processes j. The fastest process k with the shortest retention time ∆t k

i is performed. Its
retention time and probably some more retention times of the processes jnew are recalculated and the new
retention times are given by ∆t jnew

i+1 . The retention times of the processes jold that are not recalculated can
be retrieved by subtracting the retention time of the performed process ∆t jold

i+1 = ∆t jold
i −∆t k

i . The total
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Markov time is evolved by ti+1 = ti +∆t k
i .

An alternative and, at first sight, faster way is to use total times rather than time differences. This means
that for Markov jump i at Markov time ti we do not have retention times but total Markov times t j

i when
process j would happen in total Markov time. Again the process k with the lowest time t k

i is performed
and the Markov time is evolved to this time ti+1 = t k

i . New retention times ∆t jnew
i+1 are evaluated for the

processes jnew and the Markov time at which those processes would occur is calculated t jnew
i+1 = t k

i +∆t jnew
i+1 .

The times for processes jold, that are not recalculated, can be used unchanged t jold
i+1 = t jold

i . Especially in
FRM, where only one process is recalculated, some computational time can be saved with this method.
However, as this manipulation of the retention times is of linear order O(Ncc) for the charge carriers Ncc,
the difference in computational cost is not really significant. Considering this, it is remarkable, as we
will show below, that the mathematically identical method produces numerically different results.
We performed bulk simulations with the same sequence of random numbers, once with retention times
∆t j

i and once with cumulated times t j
i . The energetic landscape and the starting configuration was the

same. Two charge carriers were put into bulk and 20 billion hops (+10% thermalisation) were performed.
The used parameters are shown in tab. 2.6. For this methodological test, the interactions were turned off.

Table 2.6: Used parameters to demonstrate the error due to time cumulation.

ν0 2.25 ·1013 s−1

εr 4.0
F 1.0 ·108 Vm−1

T 300 K
σ 100 meV

N1 ×N2 ×N3 51×51×51
l 1.0 nm
α 5

l = 5 ·109 m−1

rc 0.0 nm

The results of the two methods are shown in fig. 2.8. On the x-axis the progress of the simulation i
NM

is
shown, which is the current Markov jump i divided by the total amount of Markov jumps simulated NM.
The y-axis shows the mobility µ that is calculated by averaging over the time series up to the current
Markov jump.
At the very beginning, i.e., up to a progress of about 0.03, the two methods produce the same mobilities.
Note that a progress of 0.03 already refers to a number of 600 million Markov jumps which is already
quite a lot. Having a very detailed look at those mobilities at the beginning, they are differing but to a
negligible extent. After those 600 million Markov jumps, the two curves are diverging continuously. The
method of the retention times ∆t j

i is described more or less by a straight line (as it should be) and the
method of the cumulated times t j

i bends down. At a progress of about 0.42, a distinctive kink appears
for the curve of the cumulated time method and after this kink, the mobility for this method is no longer
trustworthy at all. This figure illustrates that it is worth to invest a bit more computer time and work with
retention times rather than with cumulated ones.
To interpret the difference between the two methods, numerical rounding has to be taken into account.
Our random numbers are floating point accuracy which means that the difference between two uniformly
distributed random numbers between 0 and 1 is in the order of 10−8. The total Markov time is calculated
with double precision which means that rounding errors of about 10−16 can appear. After 6 ·108 Markov
jumps, the fastest times out of our exponentially distributed random numbers are not distinguishable any
longer, as the rounding connected to the time cumulation cuts off the short time differences of the hops.
Accordingly, the hopping times for the two charge carriers, which are in our simulation, will sometimes
be equal. In this case, the code always selects the first charge carrier and, due to this artificial preference,
we are sampling out of a wrong probability distribution. The onset of the wrong probability distribution
is continuously moving to higher and higher hopping times until it reaches a certain threshold (at a
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Figure 2.8: Comparison between the usage of a retention time ∆t j
i and a cumulated time t j

i for Markov
jump i and charge carrier j. For this comparison the averaged mobility µ up to a certain Markov time i
with progress i

NM
is plotted, NM is the total number of Markov jumps. Above a progress of about 0.03

(visualised by a dotted line), the cumulation of the retention times to an absolute Markov time t j
i has

significant numerical problems (detailed discussion see text).

progress of about 0.42) where the sample-path behaviour deviates from the original one so strongly that
a different stationary distribution is approached by the Markov chain.

2.3.2 Random Number Generator

Special attention has to be drawn to the random number generator. In Fortran there are two different ones,
rand() and random number(). rand() is a fast random number generator which gains its pseudo-
random numbers from a simple modulo generator. The drawback of this simple method is that the
random numbers can be correlated and the periodicity of such a random number generator is low. The
periodicity is given by the number of random numbers that are created until the sequence of random
numbers is repeated. A bulk simulation with two charge carriers, nearest neighbour hopping with Miller-
Abrahams rates and in total 4 billion hops (+10% thermalisation) was simulated. The parameters of the
simulation are the same as in tab. 2.6 but with a different sequence of random numbers and hence a
different energetic landscape. So it is not surprising, that the mobility in this simulation converges to a
slightly different value than before. The convergence of the mobility µ over the Markov jumps is shown
in fig. 2.9.
The graph shows a pronounced periodic behaviour, but such a periodicity could also belong to a very
long autocorrelation time. So what makes us so sure that this is caused by the random number generator
rand()? In this simulation, the hopping time to each neighbour assigned an exponentially distributed
random time and all times are recalculated after a hop. This means that we need 12 random numbers
for each of the 4 billion Markov jumps yielding a total of 48 billion random numbers in the simulation.
The difference between the two very significant peaks at progress (0.399±0.001) and (0.444±0.001)
belongs to one period. In this period (2,160± 96) million random numbers were used which belongs
to a periodicity of 2(31.01±0.07). The random number generator rand() is supposed to have a period
of 231 which perfectly matches with our observed one. This is already a very strong indicator that the
periodicity is not caused by an enormously large autocorrelation time. An even stronger indicator is, that
this periodic behaviour disappears as soon as we take the random number generator random number()

with a guaranteed periodicity higher than 2123 (not shown).
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Figure 2.9: Convergence of the mobility µ over the progress of the bulk simulation. The periodic be-
haviour is caused by the periodicity of the Fortran random number generator rand(). The time cumula-
tion discussed in chapter 2.3.1 induces the kink at a progress of about 0.6.

2.3.3 Upper and Lower Limits of the Random Numbers

If we think of the continuous probability distribution of our exponentially distributed random number
with rate parameter R, it is clear that the limits 0 and ∞ have to be excluded from the probability density.
The lower limit 0 has to be excluded as we are not allowing simultaneous events for our Poisson process
and the upper limit ∞ cannot be reached limC→∞

∫ ∞
C Re−Rtdt = 0. From a random number generator we

usually get uniformly distributed random numbers ξ = random number() in the interval [0,1) which
means that the lower limit ξ = 0 is included and would lead to t = − log(ξ )

R = ∞. This would cause
problems as the time t = ∞ should not be reached. Taking a random number ξ = 1−random number()
leads to a random number out of the interval (0,1] and a time t = 0 can appear for ξ = 1. This choice
can also cause severe problems as shown in the scenario below. As a consequence, both limits have to
be excluded.
The system, in which severe problems were observed when t = 0 is not excluded from the random
number generation, was an injection simulation with the parameters shown in tab. 2.7. For bulk hopping,
only nearest neighbour hopping was allowed, and for injections, a hopping radius of 2 nm was used.
Interactions were considered correctly with Ewald summation and the system size was chosen to give a
return probability of about 10−6.

Table 2.7: Used parameters to show the error due to the wrong limits of the random numbers.

ν0 2.25 ·1013 s−1

εr 4.0
F 3.78 ·107 Vm−1

T 300 K
σ 100 meV
∆ 0.8 eV

N1 ×N2 ×N3 51×51×13
l 1.0 nm
α 5

l = 5 ·109 m−1

The simulation was performed for different injection update radii rup,inj and DMC. The escape current
density jesc was measured by counting the number of escape events over time (see chapter 1.1.4). In
fig. 2.10, the obtained current densities over the update radius are shown. The straight line corresponds
to the DMC results. All simulations are done with the same energetic landscape and the errors are
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Figure 2.10: Divergence of the new update method compared to a DMC simulation due to the wrong
choice of the limits of the generated random numbers. The escape current density jesc of the injection
simulation is plotted over the update radius rup,inj and the straight line shows the results of the proper
DMC simulation. For details see text.

To understand the data presented in fig. 2.10, we have to go into the matter very deeply. Injection sim-
ulations are mainly governed by the interplay between the zero-field-energy barrier ∆, the own image
charge of the charge carrier, and the externally applied electric field. Depending on those quantities, the
charge carrier densities can vary from very high to extremely low values. In this case, we have a high
zero-field-energy barrier ∆ = 0.8 eV and a rather low electric field F = 3.78 ·107 Vm−1 and, thus, a very
low charge carrier density. Additionally, the disorder σ = 100 meV is very high, so most injections are
performed to low lying energy levels in the first layer. From there, all hops are upwards in energy except
the recombination with the contact. So the recombination is the most likely event and only a very small
part of the injected charge carriers can escape over the remaining barrier. If we now think of a random
number ξ = 1 that creates a retention time ∆t = 0, independent of the energy difference between the
two cells, this random number chooses one process that will be performed immediately. If this was an
injection, then the injected charge carrier will populate a cell with a rather high energy level compared
to normal injections and approximately half of the cells surrounding the charge carrier will be lower in
energy. This means that it is very likely that the charge carrier starts its journey towards the escape layers.
Consequently, the randomly chosen injection with retention time ∆t = 0 in this special scenario strongly
biases the escape current density towards higher values. With this insight, we can again look at fig. 2.10.
For a DMC calculation we need two random numbers per Markov jump to get, (i), the randomly chosen
process out of all processes and, (ii), the retention time. This is the lowest possible amount of required
random numbers that is also needed in FRM. There we also need one random number to pick the neigh-
bour of the recalculated process and a second one for the retention time. With our new update mechanism
we need two random numbers for each process that is recalculated. This leads to the fact that the higher
the update radius rup,inj, the more injections need to be recalculated in each Markov jump and the more
random numbers are required. Hence also the random number ξ = 1 is produced more often and the
escape current density is biased more strongly with increasing update radius rup,inj. This is exactly the
behaviour that can be seen in fig. 2.10. For a very low update radius, our new method quickly converges
to the accurate DMC results. For rup,inj = 4 nm to rup,inj = 7 nm, the measured mobilities are the same
within their error bars. At a certain threshold of the update radius of about rup,inj = 8 nm, the escape
current density created by the randomly chosen injections starts to dominate the correct escape current
density. The results for our new update mechanism rise according to the increasing amount of random
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numbers needed for one Markov jump. When ∆t = 0 is excluded from the simulation, this behaviour is
not observed (not shown).

To summarise all those problems, we can say that special attention has to be drawn to the application of
random numbers. It is recommended to generate as little random numbers as possible from the correct
discretised probability density and process them as direct as possible. Doing so prevents many unneces-
sary problems in advance.
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3 Results

With a working program in our hands, it is time to test the new update mechanism that we have developed
so far. To get a feeling for kinetic Monte Carlo simulations, the method is tested for bulk simulations.
With the knowledge gained in the bulk simulations, an efficient systematic check of the correctness of
our new method for injection simulations can be developed.

3.1 Bulk Simulations

Our new update mechanism should be able to cope with high charge carrier densities, so it is quite
obvious that the most important parameter to be investigated with our new update mechanism is the
charge carrier density. This quantity can be easily altered in bulk simulations by putting a certain initial
number of charge carriers into the simulation. As the number of charge carriers does not change due to
the periodic boundary conditions, the charge carrier density stays at this initial value. Another important
parameter is the energetic disorder σ which can dramatically change the behaviour of our charge carriers
in the simulation. Besides those important parameters, there are many other parameters that have effects
on the simulation, but those effects are not as substantial as the effects of the two parameters charge
carrier density and energetic disorder. As an example, the externally applied electric field F influences the
results. However, especially for Miller-Abrahams rates (which we will be using exclusively in chapter 3),
it mainly changes the depth of traps. The stronger the fields the higher the energy difference between
two layers perpendicular to the field and the lower the traps get. Some parameters probably significantly
change the behaviour such as the lattice constant l or the relative permittivity εr, but they are more or less
physically determined for the simulation of organic semiconductors. All those parameters that are kept
constant for the bulk simulation are listed in tab. 3.1.

Table 3.1: Used parameters for the bulk simulations to compare the new update mechanism and FRM to
the accurate DMC.

ν0 2.25 ·1013 s−1

εr 4.0
F 1.0 ·108 Vm−1

T 300 K
N1 ×N2 ×N3 51×51×51

l 1.0 nm
α 5

l = 5 ·109 m−1

Only nearest neighbour hopping is allowed and Miller-Abrahams rates (1.100) are used to calculate the
hopping rates. Interactions between all charge carriers including all their periodic images are considered
with Ewald summation method (see chapter 2.2.3). The randomly chosen energetic landscape was al-
ways calculated with the same seed, which means that the same sequence of random numbers was used
and, hence, the same energetic landscape is simulated. As we are only comparing the different update
mechanisms we do not need to average over multiple grids. The comparability between the different
update mechanisms is guaranteed much better, when a specific energetic landscape being representative
for the chosen energetic disorder is taken to measure the same quantities on the same system. In each
simulation 10 to 20 million hops (+10% thermalisation) are performed. The quantity that is measured is
the bulk mobility µ and errors are calculated with Jackknife (see chapter 1.1.4).
A typical result for a simulation can be seen in fig. 3.1 in which the bulk mobility µ is plotted with respect
to the update radius rup,cc. At rup,cc = 0 nm, the results of the FRM are plotted. The straight line with
error bars at the beginning and the end indicates the mobility of the DMC method to which the mobilities
of the update radius method should converge for an increasing update radius rup,cc. This simulation
was performed with an intermediate overall charge carrier density of n cell

cc = 0.02 ccpc (charge carriers
per cell) and no energetic disorder σ = 0 meV. For this case, FRM still produces quite good results
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Figure 3.1: Mobility µ over the update radius rup,cc for an overall charge carrier density of n cell
cc =

0.02 ccpc and an isoenergetic landscape σ = 0 meV. The new update mechanism converges with in-
creasing update radius rup,cc to the accurate DMC results.

with an error of the mobility below 4% compared to the DMC mobility. Our new update mechanism
reproduces the FRM mobilities for a low update radius rup,cc ≤ 2 nm and then shows a quick transition
to a DMC-like behaviour. For an update radius above rup,cc ≥ 5 nm the results are within their error bars
approximately the same. This result is, in principle, what we expected, i.e., for rup,cc → 0 we get FRM
and for rup,cc → ∞ we get DMC with our new update mechanism. Furthermore, the graph reveals that
the DMC limit is reached already with rup,cc ≈ 5 nm.
An extrapolation from this very special case to a general one without any further data is not possible. To
gain more insight we have to think about the effects that are leading to the convergence of our new update
method. The two effects that we make responsible for the convergence are already discussed in [28] in
a slightly different context. In general, the two effects are mixing and the convergence is due to an
intricate interplay of those two effects. For very high charge carrier densities, the two effects influence
the mobility nearly additive, so we have a look at overall charge carrier densities of n cell

cc = 0.1 ccpc.
Furthermore one of those two effects is only observed for a disordered system, i.e., σ > 0 meV.

3.1.1 Blocking by Charge Carrier Density Modulation

We refer to the effect that is always present, independent of the energetic disorder σ , as blocking by
charge carrier density modulation. The reason for this effect is illustrated in fig. 3.2.
If we now take a look at fig. 3.3, we can explain the convergence of the mobility for an increasing update
radius rup,cc by exactly this effect (the same argumentation holds for the convergence of the mobility
shown in fig. 3.1). For a charge carrier density of n cell

cc = 0.1 ccpc, one charge carrier has an average
share of 10 nm3. This corresponds to a sphere with radius 1.34 nm and an approximate average distance
between two charge carriers of 2.67 nm. If a charge carrier now hops 1 nm into a certain direction, the
next charge carrier in forward direction is still 1.67 nm away and in the backward direction the distance
is in average 3.67 nm. With an update radius rup,cc of 1 nm this implies that we will, on average, not
include any other charge carrier in our update sphere but the currently hopped one. So it is no surprise
that changing the update mechanism from FRM to rup,cc = 1 nm does not change the simulated mobility.
Increasing the update radius to rup,cc = 2 nm already includes the charge carrier in forward direction and
by further increasing the update radius to rup,cc = 4 nm, the rates for nearly all charge carriers surrounding
the charge carrier density modulation are recalculated and the modulation is balanced nearly correct. As
we are talking about average distances, it is clear that the exact convergence needs a higher update radius.
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(a) Before the hop (b) Update in FRM (c) Update in DMC

Figure 3.2: Blocking of the motion of a charge carrier by the modulation of the charge carrier density
after a hop. In the left picture the homogeneous charge cloud (grey) symmetrically surrounds the blue
charge carrier in its white sphere where no other charge carriers are in. If it hops, a reduced charge carrier
density is created behind it (turquoise) and an increased charge carrier density in front of it (red). Due
to this modulation of the charge carrier density and the Coulomb repulsion between the charge carriers,
the charge carrier is forced back to the position where it previously hopped away from. In FRM (middle
picture) the previously hopped charge carrier is the only one that feels this force as all other rates are
unchanged. For a DMC simulation (right picture) the charge carrier density modulation can be balanced
by all surrounding charge carriers and the probability that the previously hopped charge carrier hops back
straight is reduced. This leads to a reduction of the blocking. As a consequence, FRM underestimates
the mobility µ .
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Figure 3.3: Mobility µ over the update radius rup,cc (including error bars) for an overall charge carrier
density of n cell

cc = 0.1 ccpc and an isoenergetic landscape σ = 0 meV. The convergence of the new update
mechanism is governed by the effect of blocking due to charge carrier density modulations (see text).

Nevertheless the major part of the convergence is completed within a low update radius.

3.1.2 Detrapping

The second effect mentioned above, that is associated with a certain energetic disorder σ > 0 meV, will
be called detrapping here. It is the effect that charge carriers can help other charge carriers out of traps
when they come close enough to each other, discussed in fig. 3.4.
In fig. 3.5, the mobilities for an energetic disorder of σ = 50 meV (left panel) and σ = 100 meV (right
panel) is shown. The charge carrier density is n cell

cc = 0.1 ccpc like above. This means that fig. 3.3
completes the series with σ = 0 meV.
When we take a look at those graphs (fig. 3.3 and fig. 3.5), it can be seen that qualitatively the convergence
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Figure 3.4: Illustration of the effect of detrapping induced by approaching charge carriers. In both panels
the energy levels Ei of the cells at position i seen by the black charge carrier are indicated by different
heights of the bars. The energy is including the energetic disorder (the black charge carrier is sitting in
a trap), an externally applied field (the linearly decreasing energy from left to right) and the interaction
with the grey charge carrier (see also (1.109)). Left panel: The black charge carrier is sitting in a trap
due to a sufficiently large distance between the two charge carriers. Right panel: When the grey charge
carrier is following the electric field and comes closer and closer to the black charge carrier, the trap site
does not act as trap any longer. So the black charge carrier is easily released.
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Figure 3.5: Mobility µ over the update radius rup,cc (including error bars) for an overall charge carrier
density of n cell

cc = 0.1 ccpc and different energetic disorders σ . The convergence of the new update
mechanism is governed by both the effect of blocking due to charge carrier density modulations and
detrapping due to approaching charge carriers (see text).

of the new update mechanism for rup,cc ≥ 3 nm is approximately the same for all energetic disorders σ .
This convergence is mainly dominated by the blocking effect. Due to the reduction of homogeneity for
increasing disorder, the convergence is almost but not exactly the same. Especially for rup,cc = 3 nm the
inhomogeneity induced by the energetic disorder influences the mobility. The most prominent change
due to an increasing disorder is the apparent jump in mobility from FRM to rup,cc = 1 nm. In the
isoenergetic case (see fig. 3.3), FRM and rup,cc = 1 nm are more or less identical. At non-zero disorder
σ > 0 meV (see fig. 3.5), however, there is a significant change in the mobility. This apparent jump is
nearly exclusively generated by the energetic disorder. It is intuitive that the effect of detrapping is most
pronounced for a close proximity of the charge carriers, as then the Coulomb interaction is strongest and
detrapping is most efficient.
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3.1.3 Error of the New Update Mechanism

As we now understand the effects that mainly govern the convergence of our new update mechanism, we
can take a look at the error of the update mechanisms compared to the accurate DMC method. This error
∆µ is related to the measured mobility µmethod of the method compared with the proper results of a DMC
simulation µDMC:

∆µ =

∣∣∣∣µDMC −µmethod

µDMC

∣∣∣∣ . (3.1)

The values of ∆µ are shown for FRM and rup,cc = 1 nm to rup,cc = 5 nm in fig. 3.6, and for rup,cc = 6 nm
to rup,cc = 11 nm in fig. 3.7.
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Figure 3.6: Error of the mobility ∆µ achieved by the update mechanism compared to the accurate results
received by a DMC simulation as a function of the charge carrier density n cell

cc . The investigated update
mechanisms are FRM and our new update mechanism in an update radius range of rup,cc = 1 nm to
rup,cc = 5 nm. The data for higher update radii is found in fig. 3.7. The error is reduced for an increasing
update radius (discussion see text). The dashed line at an error of 1% is do guide the eye.
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Figure 3.7: Error of the mobility ∆µ achieved by the update mechanism compared to the accurate re-
sults received by a DMC simulation as a function of the charge carrier density n cell

cc . The new update
mechanism was tested for update radii from rup,cc = 6 nm to rup,cc = 11 nm. The evaluation of the FRM
and lower update radii is shown in fig. 3.6. The reduction of the error seems to stagnate with increasing
update radius rup,cc (discussion see text). The dashed line at an error of 1% is do guide the eye.

Simulations for even higher update radii were performed but did not show significant changes compared
to the rup,cc = 11 nm case. When we look at the top row of fig. 3.6, the improvement of our new update
mechanism compared to FRM can be readily seen. For high charge carrier densities, the FRM totally fails
with errors in the order of 70% (which is a factor of 3). If we go from FRM to rup,cc = 1 nm, we see the
behaviour discussed above, i.e., that the effect of detrapping is already partially considered which leads
to reduced errors compared to FRM for high energetic disorders. The reduction is seen for all charge
carrier densities but most pronounced for the highest ones. A further increment of the update radius
rup,cc leads to a mixing of the two effects discussed above. If we have a look at the plot for rup,cc = 2 nm,
we see that for low charge carrier densities n cell

cc = 10−3 ccpc and high energetic disorder σ = 100 meV
the error of our new update mechanism is even higher than for FRM. If we have a look at the mobility
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for this point we see that the mobility of our simulation is higher than the one of the DMC calculation.
This behaviour might be described by the fact that charge carriers can detrap other charge carriers as
they are coming close enough to each other, but for such a low update radius the distance between the
two charge carriers is already so small that the trapped charge carrier is catapulted out of the trap to fast.
With increasing update radius the charge carriers are detrapped more smoothly and the results of the
simulation are getting better and better. For an update radius of rup,cc = 4 nm the charge carrier density
dependency has already flattened out and with further increasing update radius (see also fig. 3.7) the error
further reduces. The last significant drop of the errors is observed for the change from rup,cc = 7 nm to
rup,cc = 8 nm where nearly all errors including their error bars are below 1%, which means that the lower
limit of the error bar of all data points lies below 1%. As an error below 1% is sufficient for most KMC
simulations, an update radius of rup,cc = 8 nm for bulk hopping will be sufficient for our requirements.
Especially for high energetic disorders, the variations between different energetic landscapes is much
higher than 1%. So the methodological error made with an update radius of rup,cc = 8 nm should be
negligible compared to the Monte Carlo error and the error created by averaging over multiple energetic
landscapes.

3.2 Injection Simulations

In contrast to bulk simulations, it is more difficult to systematically check the correctness of our new
update mechanism as we can no longer choose the charge carrier density n cell

cc . Instead, the charge
carrier density is determined by the interplay between the zero-field-energy barrier ∆, the externally
applied electric field strength F, and the image charge potential. So the charge carrier density, being an
important parameter for bulk simulations, is replaced by ∆ and F as the two important parameters for
injection simulations.
For all simulations in this chapter, Miller-Abrahams rates (1.100) were used. For charge carriers in the
organic semiconductor, only nearest neighbour hops are allowed rhop,cc = 1 nm and also recombination
with the contact is restricted to nearest neighbour hopping. Injection cells can inject up to a radius of
rhop,inj = 2 nm where the efficiency of the calculation of injection rates was increased by the usage of
the combined spatial decay term ∑i∈injection region e−2αrij discussed in chapter 2.1.4. All interactions with
all periodic replica and all image charges and their periodic replica are considered in exact fashion with
the help of two dimensional Ewald summation (see chapter 2.2.3). In the same way as in chapter 3.1,
(i), only one specific energetic landscape was simulated for which the different update mechanisms
were compared to the accurate DMC results and, (ii), the errors were evaluated with Jackknife (see
chapter 1.1.4). The measured quantity was the escape current density jesc which is determined from the
number of charge carriers that escape over a certain time. The number of layers N3 parallel to the contact
were chosen to give a return probability below 10−6 (see chapter 2.2.2) with at least 9 layers (including
the escape layer but excluding the contact). Unfortunately, a bug was found in the code for the calculation
of the layer convergence, so the value of 10−6 is not always strictly right. However, the magnitude is
correct, the return probability is sometimes found to be slightly higher than 10−6 and sometimes it is
significantly lower than that. For the new update mechanism, all hopping times for all charge carriers
are recalculated after each Markov jump, because here we are investigating the effect of only partially
updating the injection processes. The methodological error due to only partially updating the hopping
processes was already investigated in the last chapter. Parameters that were the same for all simulations
are found in tab. 3.2.

3.2.1 The Three Regimes

Depending on the different values for the zero-field-energy barrier ∆ and the externally applied electric
field strength F, we were able to identify three injection regimes. Those three regimes result in differently
shaped, spatially resolved charge carrier densities n cell

cc (i). All of them pose specific challenges for the
update mechanisms. To understand the behaviour of our system, we have to take a look at the energetic
landscape of the three regimes (see fig. 3.8).

64



Markus Krammer 3.2 Injection Simulations Master Thesis

Table 3.2: Parameters used to compare the new update mechanism and FRM to the accurate DMC for
the injection simulations.

ν0 2.25 ·1013 s−1

εr 4.0
T 300 K

N1 ×N2 51×51
l 1.0 nm
α 5

l = 5 ·109 m−1

(a) Regime 1

En
er

gy

Position

(b) Regime 2

En
er

gy

Position

(c) Regime 3

En
er

gy

Position

Figure 3.8: The average energy level for each layer parallel to the contact is shown for three different
injection regimes. The grey region is the contact and the energy level in the grey region indicates the
Fermi energy EF. An externally applied electric field F bends the energies down for increasing distance
from the contact while the image charge potential lowers the energy levels near the contact. The left
picture shows regime 1 where a strong electric field F dominates the energetic landscape and the energy
levels nearly drop linear. The behaviour of this system is bulk-like. Regime 2, depicted in the middle,
refers to a rather weak electric field F and a low zero-field-energy barrier ∆. As the Fermi energy is very
close to the energy of the first layer or even higher than it, lots of charge carrier are injected but only
a few can escape over the barrier. On the right side a low electric field F and a high zero-field-energy
barrier ∆ is determining the energetic landscape of regime 3. In this case hardly any charge carriers are
injected and out of those few charge carriers only a very small fraction can pass the barrier. For a more
detailed discussion, see text.

Regime 1
The first regime (fig. 3.8a) is characterised by a high electric field F. The term ’high’ in this context
is determined by the requirement that, on average, the energy levels for each layer always drop when
increasing the distance to the contact. So the Fermi energy is higher than the average energy level of the
first layer and the average energy level of the first layer is higher than the average energy level of the
second layer and so on. This energetic landscape is very similar to that of a bulk simulation (where the
layer average energy levels linearly decrease due to the external electric field) with the only difference
that the contact layer can inject as many charge carriers as the bulk can digest. With this knowledge,
we expect a rather homogeneous distribution of the spatially resolved charge carrier density n cell

cc (i) and,
depending on the interplay between the externally applied electric field strength F and the strength of the
Coulomb interaction between the charge carriers, a rather high overall charge carrier density. Exactly
this behaviour can be seen in fig. 3.9.
In both cases the electric field is strong enough to lead to continuously decreasing energy levels, so we
are in regime 1. For a distance d to the contact of d = 9 nm we are in the escape layer which is the
reason for a vanishing charge carrier density in this layer n cell

cc (d = 9 nm) = 0 ccpc. In the middle of the
simulation volume (around d = 5 nm) we see a plateau in the charge carrier density. This plateau tells
us that, (i), the system size is big enough to simulate the contact region and ,(i), the bulk-like transport
of the charge carriers separated far enough from the contact is already observed for a distance d > 3 nm.
Following this plateau to the escape layer, a slight reduction of the charge carrier density close to the
escape layers at d = 8 nm is observed. This reduction can be seen clearly in the right panel of fig. 3.9.
The effect is much lower but also present in the left panel of fig. 3.9. The reason for this reduction is

65



Master Thesis 3 RESULTS Markus Krammer

.....
2

.
4

.
6

.
8

.0 .

2

.

4

.

6

.

8

.

·10−2

. .. ..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .. ..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .. ..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

d / nm

.

n
ce

ll
cc

(d
)

/c
cp

c

.

∆ = 0.2 eV
F = 7.75 ·108 Vm−1

.

. ..σ =

. ..0 meV

. ..50 meV

. ..100 meV

.....
2

.
4

.
6

.
8

. 0.

2

.

4

.

6

.

8

.

·10−2

. .. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

. .. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

. .. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

d / nm

.

∆ = 0.8 eV
F = 3.78 ·109 V

m

Figure 3.9: Charge carrier density of a layer n cell
cc (d) parallel to the contact in a distance d to the contact

for different energetic disorders σ . The zero-field-energy barrier ∆ and the externally applied electric
field F is given above the plots. The simulations are performed with DMC, for which 30 million Markov
jumps (+10% thermalisation) were evaluated. Only one energetic landscape was sampled and the errors
were calculated with Jackknife. Both energetic landscapes are examples for the first regime governed by
a strong electric field F (see text).

the fact, that the movement of the charge carriers next to the escape layer is not blocked by other charge
carriers.
Near the contact (d ≤ 3 nm), a different behaviour of the two examples in fig. 3.9 can be seen. This
is due to the different total field strengths and the alignment of the Fermi energy to the layer average
energies in the organic semiconductor. In the left panel of fig. 3.9, the electric field is not strong enough
to digest all the charge carriers that are flooded into the bulk. This results in a high charge carrier density
in the first layer compared to the other layers. For an increasing energetic disorder, the layer average of
the energy levels of the occupied cell is reduced by a value in the order of the energetic disorder. So
more charge carriers are injected and injection is increasingly dominating over bulk transport. Hence,
the charge carrier accumulation in the first layers is increased with increasing disorder. When we look
precisely at the plateaus of the charge carrier densities, we see that the lower the energetic disorder, the
higher the charge carrier density at the plateau. This is expectable as a lower disorder leads to a higher
bulk mobility. Hence, a higher amount of charge carriers can be guided through the bulk. The escape
current density also reflects this argumentation as it is slightly higher for lower energetic disorder σ (not
shown).
In contrast to this, we see a slightly decreasing charge carrier density near the contact in the right panel
of fig. 3.9. This means that all injected charge carriers are efficiently transported away from the contact.
So the bottleneck for this simulation is rather the injection than the bulk transport which means that the
field could guide more charge carriers through the bulk than what the contact provides. Having a very
precise look at the plateau, it can be seen that the charge carrier density is higher for higher energetic
disorders σ , which is understandable due to the fact that disorder reduces the average occupied energy
level of a layer and, hence, the injection can take place a bit easier. The bulk mobility is still higher
for lower energetic disorders and as the current density is determined by the charge carrier density and
the average velocity, which is proportional to the bulk mobility, those two different trends for the charge
carrier density and the bulk mobility lead to a nearly equal escape current density for different energetic
disorders σ . In a strict sense the bulk mobility dominates marginally and the escape current density
insignificantly decreases with increasing energetic disorder (not shown).

66



Markus Krammer 3.2 Injection Simulations Master Thesis

Regime 2
The second regime is specified by a rather efficient injection followed by a barrier that has to be overcome
to escape from the contact (see fig. 3.8b). In this case, a lot of charge carriers will be injected into the
first layer but only a small part of those charge carriers will make it to the escape layer. If the Fermi
energy is even above the average occupied energy level of the first layer, the charge carriers will move
around in this layer before they decide whether to recombine or to cross the barrier. The average charge
carrier density n cell

cc (d) in the layer with a distance d to the contact will be very inhomogeneous in this
case.
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Figure 3.10: Charge carrier density of a layer n cell
cc (d) parallel to the contact in a distance d to the contact

for different energetic disorders σ . The zero-field-energy barrier is ∆ = 0.2 eV and the externally applied
electric field is F = 7.75 · 106 Vm−1. The simulations are performed with DMC where 100 million
Markov jumps (+10% thermalisation) were evaluated. Only one energetic landscape was sampled and
the errors were calculated with Jackknife. For σ = 0 meV 22 layers were simulated and for the other
two cases 25 layers. The energetic landscape represents the second regime of easy injection followed
by a barrier that has to be overcome to escape from the contact. Injection is getting easier with higher
energetic disorder σ (see text).

The most obvious feature in fig. 3.10 is that the missing averaging over multiple energetic landscapes is
causing strongly oscillating curves for the cases σ = 50 meV (×) and σ = 100 meV (♢). The Fermi
energy is located at EF =−0.2 eV and for the isoenergetic case (σ = 0 meV) the energy level of the first
layer is Elayer 1 = −0.098 eV due to the electric field and the own image charge potential. An energetic
disorder σ > 0 meV reduces the average energy level of occupied cells by a value that approximately
corresponds to the value of the energetic disorder. Thus, Elayer 1 −σ approximates the layer averaged
occupied energy level and attains the values −0.148 eV and −0.198 eV for σ = 50 meV and σ =
100 meV, respectively. The hop upwards in energy for injections reduces from 0.102 eV for σ = 0 meV
to 0.052 eV for σ = 50 meV, and to 0.002 eV for σ = 100 meV. This explains the behaviour of the
curves for a low distance to the contact d where the highest disorder σ has the highest charge carrier
density n cell

cc (d = 1) due to the most efficient injection. For a distance d ≈ 2 nm to d ≈ 3 nm the charge
carrier density drops due to the barrier. As the barrier shape after the first layer is about the same for
different energetic disorders, the drop in the charge carrier density observed when going from d = 1 nm to
d = 3 nm has approximately the same magnitude for all three energetic disorders. At higher distances the
oscillations caused by the energetic disorder prevent further interpretations. The escape current density
for such low charge carrier densities in the bulk is already strongly determined by the bulk mobility
whose value changes over several magnitudes with varying σ (see fig. 2.4). The latter is the reason due
to which the escape current density tremendously drops for increasing energetic disorder (not shown).
We additionally see that the influence of the contact is reaching to higher distances d compared to the
results for regime 1 (see fig. 3.9) and the influence of the escape layers is also stronger and reaches further
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into the bulk. There is not really a plateau and hence the system size is probably not large enough to
guarantee that the transition from the contact region to the bulk region is considered correctly.

Regime 3
In regime 3, a very high zero-field-energy barrier ∆ and a low electric field F gives rise to a large energy
offset between the contact and the first layer followed by an additional barrier due to the electric field
and the own image charge (see fig. 3.8c). A very low charger carrier density in the first layer can be
anticipated, as nearly no charge carriers will overcome the huge injection barrier. For the other layers,
an even lower charge carrier density can be expected. Additionally, oscillations due to the energetic
disorder can be foreseen, as a higher charger carrier density averages out the effects of disorder to a
certain amount, while very low charge carrier densities react much more sensitive to changes in the
energetic landscape.
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Figure 3.11: Charge carrier density for regime 3 (see fig. 3.8c) of a layer n cell
cc (d) parallel to the contact in

a distance d to the contact for different energetic disorders σ . The zero-field-energy barrier is ∆ = 0.8 eV
and the externally applied electric field is F = 3.78 ·107 Vm−1. The simulations are performed with DMC
where 100 million Markov jumps (+10% thermalisation) were evaluated. Only one energetic landscape
was sampled and the errors were calculated with Jackknife. For σ = 0 meV 13 layers were simulated,
for σ = 50 meV 14 layers and for σ = 100 meV 16 layers. Hardly any charge carriers are injected and
if they make it to the first layer, a barrier has to be overcome to escape from the contact (see also text).

The charge carrier density shown in fig. 3.11 reflect these expectations. The σ = 100 meV curve shows
fluctuations over one magnitude for the bulk-dominated plateau and indicates a charge carrier density
below 3 · 10−7 ccpc in the first layer. I.e. less than 0.0008 charge carriers are on average in this layer.
From the first to the second layer, the charge carrier density drops due to the barrier that has to be
overcome. However, once the charge carrier made it to the third or fourth layer, it usually escapes.
This argumentation is supported by the fact that a plateau can be observed for the charge carrier density
in the middle layers. The influence of the escape layers is stronger than in regime 1 but much less
compared to regime 2. This indicates that the system size is sufficiently large for this scenario. For
higher energetic disorders, σ ≥ 50 meV, the lowest energy levels of the first layer are reduced by much
more than 1×σ , it is rather in the order of 2×σ or even 3×σ . Hence, energetic disorder strongly
reduces the energy difference for injection. As this energy difference enters the rates exponentially, the
charge carrier density in the first layer is dramatically increased, i.e., by several orders of magnitude,
compared to the isoenergetic case. From such a low energy level in the first layer, the remaining barrier,
that prevents the escape from the contact, is much higher compared to the isoenergetic case. This is the
reason why the charge carrier density for σ = 100 meV drops by two orders of magnitude when we go
from the first to the second layer and for σ = 0 meV it just decreases approximately by a factor of 2.
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Nevertheless, the charge carrier density in bulk increases by approximately three orders of magnitude
when we go from σ = 0 meV to σ = 100 meV. For the escape current density, the huge differences of
the charge carrier densities are competing with the huge differences of the bulk mobilities for different
energetic disorders. In fact, they are nearly cancelling each other. With only a factor of about 2.6 between
the different escape current densities, it is increasing with increasing energetic disorder σ (not shown).

In Between the Three Regimes
With the three regimes discussed so far, we cover, in principle, all challenging scenarios for our new
update mechanism. Once it can digest each of them, it can be assumed that also a superposition of those
regimes can be digested. The charge carrier density for an exemplary mix of the regimes is shown in
fig. 3.12.
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Figure 3.12: Charge carrier density of a layer n cell
cc (d) parallel to the contact in a distance d to the contact

for different energetic disorders σ . The zero-field-energy barrier is ∆ = 0.2 eV and the externally applied
electric field is F = 7.75 ·107 Vm−1. The simulations are performed with DMC where 50 million Markov
jumps (+10% thermalisation) were evaluated. Only one energetic landscape was sampled and the errors
were calculated with Jackknife. For all energetic disorders 9 layers were simulated. This scenario depicts
an intermediate case of regime 1 and regime 2 discussed so far (see text and fig. 3.8).

Here, the electric field is high enough to cause decreasing energy levels with increasing distance from
the contact. However, the Fermi energy is below the energy level of the first layer in the isoenergetic
case. For a disorder of σ = 50 meV, the average occupied energy level in the first layer is about the
same as the Fermi energy and for σ = 100 meV it is clearly below EF. The situation in the first layers is
reminiscent to regime 2 in which, (i), injection is getting easier with increasing energetic disorder and,
(ii), the relative reduction in charge carrier density from the first to the second layer is approximately
the same for all three energetic disorders (compare fig. 3.10). The rest of the system is behaving more
like regime 1 in which many charge carriers are available near the contact but cannot be transported
due to a low (and thus limiting) bulk mobility. Corresponding to the decreasing bulk mobilities for
increasing energetic disorder, the charge carrier densities far away from the contact ought to decrease for
increasing energetic disorder. However, this cannot be clearly seen in fig. 3.12. The formation of a bulk
plateau is prevented by an insufficient size of the system (for σ = 0 meV the plateau is nearly reached).
Nevertheless, a reordering of the charge carrier densities can already be notified. This is, in principle,
the same reordering that can be seen in the left plot of fig. 3.9 for a distance d between 2 nm and 3 nm.
As the electric field in our mixed case is much lower, the reordering occurs at much larger distances
from the contact. Nevertheless, for a sufficiently large system, plateaus such as in the left plot of fig. 3.9
determined by the bulk mobility should appear. The escape current density (not shown) for this scenario
is strongly decreasing for increasing energetic disorder, in accord with our argumentation. For the rather

69



Master Thesis 3 RESULTS Markus Krammer

low charge carrier densities in the order of 10−3 ccpc, the mobility already shows a huge dependence on
the energetic disorder that also leads to a bigger difference between the charge carrier densities for the
plateaus. This decreasing charge carrier density in combination with a decreasing bulk mobility leads to
a strongly decreasing escape current density for increasing energetic disorder.

3.2.2 Error of the New Update Mechanism

All of the five energetic landscapes introduced above were used to test the performance of the new update
mechanism and FRM compared to DMC. The chosen measure to compare the simulation results was the
escape current density jesc as this quantity is the one that we are interested in. The error ∆jesc for the
method that was compared to DMC was calculated by

∆jesc =

∣∣∣∣ jesc,DMC − jesc,method

jesc,DMC

∣∣∣∣ (3.2)

Results for the error of the escape current density plotted with respect to the injection update radius rup,inj

can be seen in fig. 3.13 for the five scenarios that were introduced above. The two very right panels in the
top and bottom row in fig. 3.13 correspond to regime 1 with charge carrier densities depicted in fig. 3.9
left and right panel respectively. The top left panel shows regime 2 (charge carrier density found in
fig. 3.10), the bottom left panel represents regime 3 (charge carrier density found in fig. 3.11) and the top
middle panel is an example for a superposition of regime 1 and regime 2 (charge carrier density found in
fig. 3.12)).
The results for our implementation of the FRM for injection simulations are plotted at rup,inj = 0 nm.
Those simulations are orders of magnitude off the DMC results. Only for the bottom left scenario,
which represents the third regime (high ∆ = 0.8 eV and low F = 7.75 · 106 Vm−1), this method works
acceptable. As this regime is characterised by a very low charge carrier density, it is not really surprising
that FRM works. In all other cases, the charge accumulation near the contact prevents FRM from being
a proper way to simulate the scenario. When we have a very precise look at where FRM is supposed to
work (regime 3, bottom left panel in fig. 3.11), we see that FRM performs worse for higher energetic
disorders. For such a scenario we already found out that the charge carriers are injected to cells with
the lowest energy level from which they have to overcome another high energy barrier to escape from
the contact. Nearly all the current is moving over not even a handful of cells in the first layer. When a
charge carrier in one of those cells decides to move over the second barrier, it takes some time to do so.
But in FRM, the cell is assumed to be empty for injections. So it can happen that a new charge carrier
is trying to hop to this cell when the cell is still occupied. In such a case, it will not be able to move
there and the injection time for the injection cell is recalculated with this charge carrier occupying one
cell of the injection region of the injection cell. This recalculated injection time is much higher than the
one without the charge carrier in the vicinity of the contact and the charge carrier will be far away until
the next injection is performed by this injection cell. This results in a massive blocking of the injection
cell as usually the injection time would be recalculated when the charge carrier leaves the vicinity of
the contact. In the simulation for σ = 100 meV, this blocking manifests impressively, as the number of
charge carriers that are injected within a certain time is lowered by two orders of magnitude compared
to DMC calculations (not shown). Surprisingly, the escape current density is not affected by this totally
wrong injection current density. Presumably this is due to the fact that the current is mainly limited by
the second energy barrier. So there is still enough charge carrier density in the first layer, even for this
tremendously reduced injection current density, and the bulk can only digest a small fraction of it; this
fraction is comparable for FRM and DMC. In conclusion, FRM only produces acceptable results for
very low charge carrier densities and low energetic disorders, so that the formation of current channels
is suppressed.
Looking at the performance of the new update mechanism once more, it shows a very fast convergence
for the bulk-like regime 1 which is represented by the top right and bottom right panel in fig. 3.13. The
inhomogeneous charge carrier density created by regime 2 (top left panel in fig. 3.13) also shows a fast
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Regime 3 (fig. 3.11)
∆ = 0.8 eV

F = 3.78 ·107 Vm−1
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Figure 3.13: Error of the escape current density ∆jesc with respect to DMC achieved by FRM plotted at
rup,inj = 0 nm and the new update mechanism for injection update radii rup,inj = 2 nm to rup,inj = 15 nm
for the five scenarios introduced above. The convergence of the new update mechanism with increasing
update radius is, in general, already completed at a very low update radius rup,inj (discussion see text).
The dashed line at an error of 1% is do guide the eye.

convergence. The measured results quickly drop below the errors of the simulation. Note that the high
errors for the high energetic disorder σ = 100 meV is not due to the method but, rather, due to the bad
statistics of the simulation, already for rup,inj = 3 nm our new update mechanism and DMC are the same
within their (huge) error bars. The statistics could be improved by simulating for a longer time but as this
simulation is the most time-consuming of all, the knowledge gained by such a simulation is not worth
the effort. Additionally when we have a look at the other graphs, the simulations for higher energetic
disorders usually show better convergence as long as the data is reliable. This might be due to the fact
that the change of the energy levels due to the Coulomb interactions affects the injection process less
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for strongly disordered energetic landscapes. The mixed regime in the top middle picture also shows an
error decreasing faster with increasing update radius rup,inj for higher energetic disorder. Within at least
rup,inj = 4 nm, the error of our new update mechanism dropped below 1% or it is within the accuracy
of the simulation. Finally there is only one plot left, the bottom left one which shows the results for
regime 3. Here the convergence is very slow, especially for low energetic disorders. The higher the
energetic disorder the better the convergence, so we have to mainly consider the isoenergetic case for our
convergence. As we already discussed, there are very little charge carriers in the simulation and for high
energetic disorder, current channels are transporting the current through the barrier. In the isoenergetic
case no current channels are present and the transport is spread all-over the bulk. A discussion of the
poor convergence for this case is stated in the following.

3.2.3 The Convergence Problem of Regime 3

Our new update mechanism has the biggest problems with the isoenergetic case σ = 0 meV of regime 3
(compare fig. 3.13 bottom left plot), in which the energy barrier for the injection from the Fermi level
to the first layer is much higher than the second energy barrier from the first layer to the second layer.
This results in a very low charge carrier density and a rather high injection efficiency. The injection
efficiency in this case can be determined by the ratio of the current density flowing through the bulk
and the injection current density. The reason for the bad convergence of our new update mechanism
can be understood by taking a look at the influence of the charge carriers leaving the update sphere of
the injection cell. We are recalculating the energy levels of the cells involved in our injection process
each time a charge carrier is hopping in the update radius of the injection cell rup,inj. If we think of a
configuration with only one charge carrier in bulk, this means that a charge carrier leaving the update
sphere of the injection cell seems to be still at its previous position for the injection cell as the injection
rates will no longer be updated. As a consequence, the next injection process will be wrongly blocked
by an amount determined by the Coulomb interaction energy of a charge carrier sitting at a cell rup,inj

apart from the injection cell. In general, there is not only one injection cell blocked by one charge carrier
that leaves the contact region. To determine the amount of blocked injection cells, we start with no
charge carriers in bulk, i.e., all injection times for all injection cells are correct. Injecting one charge
carrier causes the recalculation of injection rates within an area of r2

up,injπ of the contact. On its way
to the escape layers, this charge carrier leaves the update radius of an injection cell, then the one of
the neighbouring injection cell, etc. So one escape from the contact region blocks an area of r2

up,injπ
injection cells. Starting from a situation where all rates of all injections are calculated correctly, we
build up a virtual layer of charge carriers in a distance rup,inj to the contact that is falsely seen by the
injection cells. The competing process that reduces the charge carrier density of this virtual layer is
recombination with the contact. This process leaves an area of r2

up,injπ corrected rates for the associated
injection processes. Those two competing processes create a layer of virtual charge carriers in a distance
rup,inj with a certain ’coverage’ c, defined as the ratio of the number of injection processes with false rates
and the number of total injection processes. If we take the number of injections Ninj in a long enough
time interval and the number of recombinations Nrec in the same time interval, the coverage c should
converge to c∗ = Ninj−Nrec

Ninj
. Starting from a correctly calculated injection process, the coverage would

be c = 0 and the first escape from the contact causes a coverage of c =
r2

up,injπ
N1N2l2 with the lattice constant

l and the number of cells N1 ×N2 in a layer parallel to the contact. For the functional dependence of
the coverage c(iesc) on the number iesc of escapes from the contact region, this implies that we require

a function starting at c(0) = 0 with a derivative of c′(0) =
r2

up,injπ
N1N2l2 and for iesc → ∞ we claim c(∞) = c∗.

The easiest function that can be interpolated between those data points is

c(iesc) = c∗
(

1− e
−

r2
up,injπ

c∗N1N2 l2
iesc

)
(3.3)

If we allow more than one charge carrier in the simulation, we can expect that the charge carrier nearest
to the contact influences the contact most. Assuming a charge carrier density n cell

cc,1 in the first layer, the
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rates are correctly recalculated in the vicinity of those charge carriers in the first layer. Each of those

charge carriers influences a number of
r2

up,injπ
l2 injection cells. This means that a fraction of n cell

cc,1
r2

up,injπ
l2 is

calculated correctly while, for the rest, the coverage c(iesc) holds and we get a total coverage of

c(iesc) =

c∗0

(
1− e

−
r2
up,injπ

c∗N1N2 l2
iesc

)
for c∗0 > 0

0 for c∗0 ≤ 0

with c∗0 =

(
1−n cell

cc,1
r2

up,injπ
l2

)
c∗ and c∗ =

Ninj −Nrec

Ninj
(3.4)

The energy shift of a virtual charge carrier can be approximated by the Coulomb interaction energy
caused by a charge carrier at a distance rup,inj to the contact on a cell in the first layer and its virtual
image charge Coulomb interaction

∆Ev =
e2

4πε0εr

(
1

rup,inj − l
− 1

rup,inj + l

)
(3.5)

The energy difference for the correct calculation of the injection rates is determined by the Fermi energy
EF, the electric field strength F and the own image charge (compare (1.109)). This method is optimised
for the isoenergetic case, nevertheless energetic disorder σ can be approximately considered by shifting
down the energy levels in bulk by σ .

∆Ecorr = Elayer 1 −EF = ∆−qlF− e2

16πε0εrl
−σ (3.6)

This correct energy difference is increased by ∆Ev only for the cells that are blocked. The blocked cells
are a fraction given by the coverage c, so we shift the energy levels, on average, only by c∆Ev. For high
energy barriers, the injection process is determining the properties of the simulation. So the error of the
injection rate is a good approximation for the total error ERRtot of the simulation. This error is obtained
when we calculate the rate Rcorr for the correct injection with energy difference ∆Ecorr and the rate Rv for
the case when the virtual charge carriers are blocking the injection with energy difference ∆Ecorr +c∆Ev

ERRtot =

∣∣∣∣Rcorr −Rv

Rcorr

∣∣∣∣ (3.7)

The rates can be calculated by Miller-Abrahams rate (1.100) or Marcus rate (1.99), here we used Miller-
Abrahams rates.
If the argumentation above is correct, we should be able to compare the error calculated by our as-
sumptions to the ones received from the calculations (see fig. 3.13 bottom left plot). This comparison is
visualised in fig. 3.14.
The estimator of the error was calculated by evaluating the coverage (3.4) with the measured injection and
escape current densities and the charge carrier density in the first layer of the corresponding simulation.
With this measured coverage, the rates and the error were calculated. We see that, for the isoenergetic
case, the estimator fits very well to the simulated error except for very high update radii, i.e., when the
update radius is in the range of the system size and the layer of virtual charge carriers is no longer in our
system. So the reduction of the error is a boundary effect and does not represent the actual convergence
of our new update mechanism to DMC results. For an energetic disorder of σ = 50 meV the estimated
error slightly undervalues the simulated one for low update radii (always less than a factor of 2) but the
trend is represented very well.
This gives us the confidence to improve our simulations by decreasing the coverage via updating all
injection processes at certain Markov times. To minimise the chance of biasing the simulation, the
Markov time elapsed between two total injection updates is kept constant. Note that we would strongly
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Figure 3.14: Error of the escape current density jesc for the new update mechanism over the update radius
rup,inj for a zero-field-energy barrier of ∆ = 0.8 eV and an electric field strength of F = 3.78 ·107 Vm−1.
The error estimated with (3.4) to (3.7) is depicted with lines, the data points from our simulations are
taken from fig. 3.13 bottom left panel (detail see text).

bias the results if we would update after a fixed number of Markov jumps. As injection in this regime
takes much more time than bulk hopping, there would be, on average, to many charge carriers in the
simulation during the total injection updates and hence the injection process would be blocked to much.
The implementation of updating after a certain Markov time is more complex than updating after a certain
number of Markov jumps. We have solved this by using a variable time next update which holds the
Markov time when the next update has to be performed. Ahead of each Markov jump this variable is
compared with the current Markov time ti evolved by the retention time ∆ti of the process that would be
performed next. If time next update is lower than ti +∆ti, then all rates of all injection processes are
recalculated, the hopping times of the charge carriers are reduced by time next update− ti, and the
current Markov time ti is set to time next update. This approach is understandable as recalculating
at a certain time for exponentially distributed random numbers also implies advancing the Markov time
to this point, although nothing happened in the time till the update. When the update is performed, the
time when the next update happens is evolved by the time difference between two total injection updates.
Special attention has to be drawn to the case when the current Markov time is larger than the time at
which the next update would be performed, which can happen if the last total injection update was in
the last Markov jump and the lowest retention time of the updated processes was larger than the time
difference between two total updates. In this case, the processes were up to date anyway, so we do
not have to update the injection processes, but the variable time next update has to be increased by
the time difference between two total updates until it is larger than the current Markov time. With this
corrected time next update we can have a look whether an update is required before the next process
as described above. To evaluate the constant time difference between two injection updates, we fix a value
for the desired accuracy of our simulation (e.g. 1%) and calculate the coverage cacc that is needed to get
this accuracy by solving the implicit equation (3.7) for the coverage numerically. To get estimators for
the long time convergence c∗ and the charge carrier density in the first layer n cell

cc,1 we start a simulation
without total injection updates by performing a number of NM,therm = 0.1 ·NM Markov jumps (NM is
the desired number of total Markov jumps for the actual simulation) for thermalisation and afterwards
another NM,cov = 0.1 ·NM Markov jumps for measuring purposes. After thermalisation we count the
number of injected charge carriers Ninj and recombined charge carriers Nrec to get c∗ and measure the
charge carrier density in the first layer. Now we know our desired coverage cacc and all quantities in (3.4)
except the number of escapes iesc that are needed for this accuracy, which is, in principle, the quantity
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that we want to know.

iesc =−c∗N1N2l2

r2
up,injπ

log

1− cacc(
1−n cell

cc,1
r2

up,injπ
l2

)
c∗

 with c∗ =
Ninj −Nrec

Ninj
(3.8)

Note that if the desired coverage cacc is already higher than the overall long time coverage c∗0, no update
is necessary. This case can already be eliminated at the very beginning of this calculation (before the
implicit equation (3.7) is solved numerically) when the error of the method (3.7) is calculated with the
overall long time coverage c∗0 of the simulation (see (3.4)) and this error is already below the desired
accuracy.
To get the Markov time between two total injection updates ∆tinj update we have to multiply the number
of escapes iesc (which is a non integer value) with the average Markov time between two escapes

∆tinj update = iesc
∆tcov

Nesc −Nrec
(3.9)

where ∆tcov is the elapsed Markov time during the NM,cov Markov jumps after thermalisation.
This implementation can be used for all regimes, as there will be no updates necessary for regime 1
and regime 2 due to the high charge carrier densities in the first layer. The performance of our final
program can be seen in fig. 3.15 where the method error is plotted over the zero-field-energy barrier ∆
for a selected set of update mechanisms compared to DMC results. Energetic disorders of σ = 0 meV
and σ = 50 meV were simulated with electric field strength F = 3.78 · 107 Vm−1 and a system size of
51×51×14 cells.
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Figure 3.15: Error of the escape current density jesc for the new update mechanism over the zero-field-
energy barrier ∆ for different update mechanisms compared to DMC results. The electric field strength
is F = 3.78 · 107 Vm−1 and the energetic disorder is written above the plots. A number of 10 million
Markov jumps (+10% for thermalisation and eventually +10% for coverage evaluations) were simulated.
The improved update mechanism, which is updating all injection processes after a certain Markov time,
yields to an error of around 1%, which is exactly the chosen error for the method (detail see text). The
dashed line at an error of 1% is do guide the eye.

The two plots in fig. 3.15 quite impressively confirm the predictions for the error of the escape current
density. The range of simulated zero-field-energy barriers ∆ was chosen to include the transition from
regime 3 to regime 2. For ∆ = 0.8 eV hardly any charge carriers are injected and for ∆ = 0.2 eV the
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charge carrier density in the first layer is around 0.01 ccpc. In the isoenergetic case, σ = 0 meV, depicted
on the left side, the old method without a total injection update leads to method errors above 30% for an
injection update radius of rup,inj = 4 nm and still errors of about 10% for rup,inj = 8 nm. With decreasing
∆ this method error is changing when the transition from regime 3 to regime 2 is happening below
∆ = 0.4 eV and for ∆ = 0.2 eV all errors are below 1%. If we now take a look at the impressive results of
our improved method where the injection rates are recalculated after a certain Markov time, we see that
the errors of this method are 1% within their statistical fluctuation, which is exactly what we predicted.
The same holds for an energetic disorder of σ = 50 meV where the improved method again produces
errors around 1% whereas, in contrast, not performing total injection updates for rup,inj = 4 nm leads to
10% and for rup,inj = 8 nm to 2%. Another remarkable point is that the error of 1% is not depending on
the chosen update radius in regime 3.
If we now have a look at tab. 3.3, where the number of total injection updates for our simulation with 10
million Markov jumps is shown, we see that the lower update radius rup,inj = 4 nm does not really need
more total injection updates than the higher update radius rup,inj = 8 nm to reach this accuracy. Only for
low zero-field-energy barriers ∆ the number of recalculations decreases more slowly for the lower update
radius.

Table 3.3: Number of total injection updates needed to achieve the accuracy of 1% for the simulations
described above with NM = 10 million. The simulation differs a bit from the introduced implementation,
so the numbers in this table are slightly higher than what they really are.

σ = 0 meV σ = 50 meV
∆ / eV rup,inj = 4 nm rup,inj = 8 nm rup,inj = 4 nm rup,inj = 8 nm

2.00E-001 54475 0 0 0
2.67E-001 178039 109192 0 0
3.33E-001 212208 246704 113486 0
4.00E-001 198396 247246 161823 115438
4.67E-001 195676 241321 169915 130828
5.33E-001 197822 243082 171172 128752
6.00E-001 194125 240744 174560 135149
6.67E-001 193175 238958 176286 135007
7.33E-001 192392 240046 176259 131443
8.00E-001 195962 241874 170653 136848

As a reminder, an injection update radius rup,inj = 4 nm is enough to produce errors below 1% for the
simulation of regime 1 and regime 2 (compare fig. 3.13). With our improved method we can achieve
exactly the errors that we want for regime 3 by updating all injection processes after a certain Markov
time practically independent of the injection update radius rup,inj (as long as it is ≥ 4 nm). The number
of total injection updates is not influenced much by rup,inj as well. So it is definitely favourable to take
rup,inj = 4 nm instead of rup,inj = 8 nm as it produces approximately the same error and the runtime is 2-4
times lower for rup,inj = 4 nm.
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4 Conclusion and Outlook

During this master thesis we developed an improved update mechanism for kinetic Monte Carlo simu-
lations and testing its performance. The challenge was to reduce the computational effort compared to
an accurate update mechanism (where all rates of all ongoing processes are updated after every Markov
jump), but keep the methodological error as low as possible, especially for very high charge carrier den-
sities, where the well established first reaction method (a computationally very economical alternative
update mechanism) fails.
We started with the development of an improved update mechanism for the simplest type of kinetic
Monte Carlo simulations, where only one type of charge carriers can hop through a homogeneous bulk
material. This material consists of cubic cells with a cell size of 1 nm3 where one charge carrier can
occupy one cell. The total energy of the system is composed of the energetic disorder of our organic
semiconductor, an external electric field, and the Coulomb interaction between the charge carriers. In
this case our new update mechanism updates all hopping processes within a certain update radius around
the currently hopped charge carrier. The measured mobility for our improved update mechanism rapidly
converges to the accurate results with increasing update radius, especially for high charge carrier densi-
ties. The two major effects that lead to this convergence are blocking (see chapter 3.1.1) and detrapping
(see chapter 3.1.2), both induced by the Coulomb interaction between the charge carriers. The method-
ological error of our new update mechanism for the bulk mobility was below 1% for an update radius
rup,cc ≥ 8 nm. For our system size of 51×51×51 nm3 the volume of the update sphere is approximately
60 times smaller than the total volume, which leads to a reduction of the computational effort of a factor
of 60 for a clever implementation.
The extension of our new update mechanism to a more complex system was shown in a next step, where
injection simulations were performed. Here a layer of contact cells is put on one side of the organic
semiconductor where charge carriers can be injected by the injection cells or recombine with them. This
means that a charge carrier can be created or annihilated by the injection cells. Furthermore the charge
carriers are taken out of the simulation as soon as they reach a certain distance to the contact cells where
it can be assumed that they are no longer influencing the contact region. The hopping process of charge
carriers in the organic semiconductor is now supplemented by injection processes which also need to
be updated. Additionally to the energy contributions mentioned for the bulk simulations, image charge
interactions induced by the metal contact have to be considered. Introducing an update radius for injec-
tions rup,inj again leads to a low methodological error already for low update radii in most cases. The
observable that was measured for injection scenarios was the current density of the charge carriers that
were leaving the contact region. Unfortunately only increasing the update radius was not enough to
ensure a proper convergence of our new update mechanism for all possible regimes of an injection simu-
lation. The most challenging regime for our new update mechanism is surprisingly the one with very low
charge carrier densities. For this regime we need to update all injection processes after a fixed Markov
time, in addition to updating a few injection processes within the update radius for injections rup,inj after
each Markov jump. The methodological error is now determined by the update radius for bulk hopping
rup,cc, the update radius for injections rup,inj, and the Markov time after which all injection processes
are updated. Choosing the update radii rup,cc = 8 nm and rup,inj = 4 nm in combination with updating
all injection processes after a certain Markov time evaluated with the method described in chapter 3.2.3
should guarantee a methodological error below 1% for the current density of the charge carriers leaving
the contact region, independent of the simulated regime.
It is expected that our new update mechanism reduces the computational effort of any kinetic Monte
Carlo simulation where Coulomb interactions are present while producing a low methodological error.
By assigning an update radius to each type of process and eventually updating all processes of a certain
type after a fixed Markov time (not a fixed amount of Markov jumps), more complex processes like hop-
ping of multiple types of charge carriers or exiton creation and annihilation are assumed to be digestible
as well.
Due to the strongly reduced simulation time of our new update method, it is very suitable e.g. for
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overview-simulations, in which a wide range of parameters is scanned. This may enable the identifica-
tion of the position of a certain phase transition; the details of this transition might then be simulated with
the accurate update mechanism. As we are cutting off the exact interactions at a certain distance and get
some kind of mean field approximation beyond this cut-off, especially the long ranging correlations at
a phase transition can be expected to produce huge methodological errors and the results will be of the
grade of a mean field approximation.
In a usual kinetic Monte Carlo simulation we need to average over multiple energetic landscapes. If we
are not sure if our new update mechanism is producing correct results, it is recommendable to use one
of those energetic landscapes to compare the results of our new update mechanism and the accurate one.
With this the methodological error can be estimated but we only need to simulate the computationally
expensive accurate method once. For the other energetic landscapes our new update mechanism can be
used and overall we can strongly reduce the computational effort.
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5 Abbreviations and Formula Symbols

Abbreviations
ccpc charge carriers per cell
DD Drift Diffusion
DFT Density Functional Theory
DMC Dynamic Monte Carlo
FRM First Reaction Method
HOMO Highest Occupied Molecular Orbital
KMC Kinetic Monte Carlo
LUMO Lowest Unoccupied Molecular Orbital

Formula Symbols
α charge delocalisation constant
β = 1

kBT inverse temperature
d minimum distance to the metal contact
δx,x′ Kronecker delta
∆ zero-field-energy barrier
∆E energy difference
∆jesc error of the escape current density of a certain update mechanism compared to

DMC results
∆µ error of the mobility of a certain update mechanism compared to DMC results
∆⃗s distance overcome by a charge carrier
∆t retention time (Markov time for which the Markov chain stays in its current

state)
e elemental charge
E energy
EF Fermi energy of the metal
Er reorganisation energy
erf(x) error function
erfc(x) complementary error function
η splitting parameter for the Ewald method
ε0 vacuum permittivity
εi randomly chosen energy level of cell i
εr relative permittivity of the medium
F electric field strength
G⃗ reciprocal lattice vector of a periodic system
Ĥ Hamilton operator
i, j,k, l,m,n indices for summation and labelling
j⃗ current density
jA current density through a specific area A
jesc escape current density
kB Boltzmann factor
l lattice constant
µ mobility
ncc charge carrier density
n cell

cc charge carrier density in charge carriers per cell (ccpc)
N integer number of a specific quantity
N1 ×N2 ×N3 number of cells in the simulated system in x1, x2 and x3 direction, contact layer

is excluded, escape layers are included in N3
Nac number of autocorrelation times
Ncells number of cells Ncells = N1 ×N2 ×N3
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Formula Symbols (continued)
Ncc number of charge carriers in the simulation
Nesc number of escape events
Nhop number of neighbours where hopping is allowed
Ninj number of injection events
NM number of Markov jumps in the main simulation (after thermalisation)
Nrec number of recombination events
ν0 hopping prefactor
p(A|B) probability density of A given B
P(A|B) probability of A given B
pn(x,x′) / pt(x,x′) probability density that the Markov chain performes a transition from state x

to x′ within a discrete Markov time n / continuous Markov time t
π = (πx) probability distribution row vector
πx entry corresponding to state x in probability distribution vector π
ϕ injection efficiency
φ potential field
q =±e charge of a charge carrier
Q = (qx,x′) q-matrix of the continuous time Markov chain
r⃗ real space position vector
rc Coulomb cut-off radius
rhop,cc hopping radius for bulk hopping
rhop,inj hopping radius for injection
rtc thermal capture radius
rup update radius of the new update mechanism
rup,cc update radius for bulk hopping
rup,inj update radius for injection cells
R rate or rate parameter of an exponentially distributed random number
R(n) = ∑n

i=1 Ri summarised rate of n individual rates Ri

ρA(t) autocorrelation function for an observable A
ρE

A (t) empirical autocorrelation function for an observable A
σ energetic disorder of the Gaussian distributed energy levels of the cells
t Markov time
t0 Markov time after thermalisation
T temperature
T = (Tx,x′) transition matrix / transition function of the Markov chain
T⃗ real space translation vector of a periodic system
τi(A) autocorrelation time with index i for an observable A
τexp(A) asymptotic autocorrelation time for an observable A
τint(A) integrated autocorrelation time for an observable A
Θ(t) Heaviside step-function
v⃗ velocity
V volume of the system
Vcell volume of a cell
x ∈ X state x out of state space X of the system
X state space of the system
ξ uniformly distributed random number in the interval (0,1] or (0,1)
x1, x2, x3 real space Cartesian coordinate into the corresponding direction
Z partition function
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7 Appendix

7.1 Program Documentation

The described program simulates charge transport in organic semiconductors on a microscopic scale. The
method that is used to perform the simulation is kinetic Monte Carlo. The code was initially developed
during a stay at Durham University with the kind help of Chris Groves and further improved at the
Technical University of Graz. Fortran was chosen as a programming language using the standard of
2003 compiled with gfortran and mpif90. Parallelisation was implemented using openmpi. Most
programs consist of 10 files, the two files morphology modul.f90 and mc modul.f90 are the most
important ones where all the structures and functions for building up a simulation are found. In the
following chapters the content of the files is described and in chapter 7.1.11 structograms of commonly
used programs can be found.

7.1.1 Makefile

The Makefile is used for compiling the program to get an executable file. The used compiler as well as
the used files and their control hierarchy can be found in it. To create an executable file, make has to be
typed into the terminal and the Makefile combines all the necessary modules and functions.

7.1.2 start.f90

In this file the starting point of a Fortran program, the program-routine, is found. Additionally the
task-ID of the simulated process is evaluated for parallel computing. If there are different simulations
available, the user can decide which simulation should be executed by choosing the corresponding ex-
ercise number. This can be done either by typing e.g. ./KMC -exnr 1 into the terminal to run the first
exercise of the program KMC, or calling the program, which should be executed, without additional infor-
mation ./KMC and then following the instructions of the program to choose the right exercise number.
For parallelised simulations, the program is started, e.g. with 4 cores which are all executing example 1,
with the following terminal command: mpirun -np 4 KMC -exnr 1

7.1.3 test.f90

This subroutine is used for testing parts of the program and having a detailed look at the performance
of certain subroutines and functions. The tests are executed if the exercise number 0 is chosen at the
beginning of the program.

7.1.4 run sim.f90

Here the information about the simulation is found. The parameters like the lattice size or the hop-
ping range are chosen and the subroutines to do the simulation are called. Some typical examples of
how this subroutine can be structured are found in chapter 7.1.11. The name of this file can vary, e.g.
the simulation of the bulk mobility for a single charge carrier that was compared with [16] was called
rep marsh07.f90 where rep is short for reproduce. To execute this part of the program, exercise num-
ber 1 (or if more than one such files are available a higher number) has to be picked.
Additionally to the parameters, a function randE has to be provided, which assigns the Gaussian dis-
tributed energy levels for the bulk, the Fermi-energy for the injection cells and so on. The chosen random
distribution has to be conform with the morphology assigned by get morphology (see page 90). This
means the function gets an integer number as input that decides which random distribution should be
taken for the energy level and the output of the function is the randomly chosen energy level.
For parallelisation the corresponding MPI-routines are used to collect or distribute certain variables. For
details about parallelisation I have to refer to the homepage of Open MPI [https://www.open-mpi.
org/ accessed on May 11th, 2016].
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7.1.5 correlations.f90

In this module the subroutines for calculating autocorrelation functions and autocorrelation times are
found. The implementation is described in detail in [15].

7.1.6 numeric lib.f90

This is a library with useful numerical calculations. If not specified in the file, the algorithms are taken
out of [32] with minor adaptions.

7.1.7 plot lib.f90

Most of the visualisations are done with gnuplot. The file plot lib.f90 contains visualisation-
routines especially for 2D plots.

7.1.8 storage lib.f90

The file storage lib.f90 contains standard subroutines for writing, appending and reading data to and
from files.

7.1.9 morphology module.f90

One of the two core modules used for the simulation. This module focuses on the structures and functions
needed to initialise the Monte Carlo simulation, like getting the energetic landscape or building up the
neighbour network for hopping. The structures, subroutines and functions given in this file will be
described on the next pages.
Before the first structure is defined, some physical constants, like the Boltzmann constant kB or the
elemental charge e, and derived variables of those constants, that are used in the code, are defined.

hopping parameters

Structure containing all the parameters needed to calculate the Marcus and the Miller-Abrahams hopping
rates.

beta: β = 1
kBT kB: Boltzmann constant

T: temperature
two alpha: 2 ·α α: charge delocalisation constant
nu h: ν0 ν0: hopping prefactor
E r: Er Er: reorganization energy
beta4Er: 4βEr 4βEr: constant needed to calculate Marcus rates
injection ratio: ν0,inj

ν0,hop
ν0,inj: injection hopping prefactor
ν0,hop: bulk hopping prefactor

hopping info

Structure with information about the hopping region, the neighbour network for hopping and the expo-
nential factor needed to calculate distant hopping.

radius: The hopping radius rhop,cc defines a sphere where hopping is allowed.
radius contact: The injection radius rhop,inj defines a half-sphere where injection is allowed.
region: Instead of the hopping radius rhop,cc, this variable can be used to define a

hopping region. The region is a box of size (2·region(i)+1) into dimen-
sion i.
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region contact: Instead of the injection radius rhop,inj, this variable can be used to define an
injection region. The region is a box of size (2·region contact(i)+1)
into dimension i except normal to the contact where only hops to bulk cells
up to a distance region contact(i) are allowed.

neighbours: A variable containing all the possible hopping neighbours of every cell in
the bulk. neighbours(i1,i2) addresses the hopping neighbour into hop-
ping direction i2 of bulk cell number i1

neigh contact: A variable containing all the possible hopping neighbours of the injection
cell in the simulation. neigh contact(i1,i2) addresses the hopping
neighbour into injection direction i2 of injection cell number i1

index x: Transforms the hopping direction number used for neighbours into a hop-
ping distance into the specified dimension. index x(i1,i2) gives the
change of cells into dimension i1 of hopping direction i2. The result can
of course be positive and negative.

index x contact: Transforms the hopping direction number used for neigh contact into a
hopping distance into the specified dimension. index x contact(i1,i2)

gives the change of cells into dimension i1 of hopping direction i2. The
result can of course be positive and negative.

n: Number of neighbours where bulk hopping is allowed.
n contact: Number of neighbours where injection is allowed.
exp r: Factor ν0 exp(−2αr) to consider delocalisation for the calculation of the

hopping times in bulk. r is the hopping distance of the hopping direction.
exp r to contact: The same as exp r, only the hopping distance r can be different if a hop

from the contact to the bulk has a spatial offset.
exp r from contact: Factor ν0 · injection ratio · exp(−2αr) to consider delocalisation for

the calculation of the injection times. r is the hopping distance of the injec-
tion direction.

interaction info

Structure containing the range and the strength of the interactions.

radius: Value of the chosen cut-off radius rc for interactions. For
rc = nan Ewald summation method is used to calculate
the exact potential of the charge carrier and all its peri-
odic replica, where nan is the numerical data type ’not a
number’.

energy: The variable energy(i1,i2,i3) contains the interaction
energy between two cells that are spatially separated by
a 3D index distance of (i1,i2,i3) (all of them can be
positive and negative).

image: The variable image(i1,i2,i3) contains the image
charge interaction energy between a cell and an image
cell that are spatially separated by a 3D index distance of
(i1,i2,i3) (i1 and i2 can be positive and negative and
i3 is starting from 1 for the charge carrier and the image
charge carrier being in the first layer directly next to the
metal contact).

i1 min, i1 max, i2 min, i2 max,
i3 min, i3 max:

Lowest and highes index appearing in energy (indices
in the range i1 = −i1,min : i1,max, i2 = −i2,min : i2,max and
i3 = −i3,min : i3,max) and image (indices in the range i1 =
−i1,min : i1,max, i2 = −i2,min : i2,max and i3 = 1 : (2 · i3,max +
1)).
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i1 mapping, i2 mapping,
i3 mapping, i3image mapping:

Index difference between two cells when the position of
one cell is changed to the hopping neighbours.

i1 m contact, i2 m contact,
i3 m contact, i3image m contact:

Index difference between two cells when the position of
one cell is changed to the injection neighbours.

update info

Structure used to define the region where the hopping rates have to be recalculated. After a hop or an
injection, all charge carriers and injection cells within the specified region around the current position of
the moved charge carrier are recalculated (except when the charge carrier recombines with the contact,
then the previous cell of the charge carrier is taken as a centre of the update region).

radius: Value of the chosen update radius rup,cc or rup,inj.
i1 min, i1 max, i2 min,
i2 max, i3 min, i3 max:

This variables hold the index boundaries used to define the update re-
gion, e.g. a sphere (see fig. 7.1).

n Number of cells in the update region.

x3

x2

x1

×P

i3

i2
i1 i1 max(i2,i3)

i2 max(i3)

i3 max

Figure 7.1: The variables i1 min(i2,i3), i1 max(i2,i3), i2 min(i3), i2 max(i3), i3 min and
i3 max are defining index boundaries which can be used to address all elements in a certain shape. For
this the index i3 is running from -i3 min to i3 max, the index i2 from -i2 min(i3) to i2 max(i3)

and the index i1 from -i1 min(i2,i3) to i1 max(i2,i3). The example point P in the figure has the
relative indices (i1,i2,i3) to the centre (note that all three are negative in this example).

nearest neighbour info

Structure that holds the information about the nearest neighbour network. This network is needed to
perform grid searches in a certain region used e.g. for finding injection cells and charge carriers to
update.

neighbours: neighbours(i1,i2) contains the nearest neighbour of cell i1 into direction i2.
For a 3D cubic lattice i2 = 1,2 and 3 are the positive x1, x2 and x3 directions and
i2= 4,5 and 6 are the negative ones.

n: Number of nearest neighbours (in 3D cubic n = 6).
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lattice info

In this structure all information about the lattice is found.

dim: Dimension of the lattice
n dim: Number of cells of the lattice into the corresponding dimension
n dim half: For the calculation of the nearest periodic image of a charge carrier, half

the lattice size is needed. This variable contains
⌊
n dim

2

⌋
.

n tot: Total number of cells including escape layers and contact layer
add dim: Number of cells that have to be skipped to get to the nearest neigh-

bour in the corresponding direction. For the example lattice shown in
fig. 2.1 the stored values would be add dim(1) = 1, add dim(2) = 3,
add dim(3) = 9 and add dim(4) = 27. The last value is the same as
n tot, i.e. add dim(dim+1) = n tot.

ltype: In this variable the type of the lattice is stored.
1: Cubic lattice with periodic boundary conditions in all directions for
bulk simulations.
2: Cubic lattice with a contact and escape layers. The contact is the
last layer in x3 direction and the escape layers are the first layers in x3
direction. Periodic boundary conditions are used into directions x1 and
x2.

btype: Holds which bulk type is used.
1: Homogeneous bulk, there is only one kind of material with one prob-
ability distribution for the energetic disorder
2: Additionally to the homogeneous bulk, there are static charges.

ptype: Chosen potential type (detailed description see get external

potential page 90):
1: only linear electric field
2: own image charge and linear electric field
3: additionally static charges (and if necessary their image charges) are
considered

stype: Simulation type regarding the update mechanism:
1: FRM
2: new update mechanism
3: DMC

boundary conditions: The boundary conditions in the desired dimension are specified here.
Note that not all boundary conditions are available everywhere. Open
boundary conditions result in entries that are 0 for the neighbours. Re-
flecting boundary conditions are recognised due to a negative sign of
the neighbour (e.g. if reflecting boundary conditions into the positive
direction x3 would be established in the lattice shown in fig. 2.1, then
the nearest neighbour of cell 23 into direction 3 (positive x3 direction)
would be -23).
1: Periodic boundary condition
2: Open boundary condition
3: Reflecting boundary condition in positive direction, open boundary
condition in negative direction
4: Open boundary condition in positive direction, reflecting boundary
condition in negative direction
5: Reflecting boundary condition in positive and negative direction

constant: Real space distance between nearest neighbours (usually called lattice
constant l)
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bulk end: Cell number of the last cell in bulk before the contact starts. If no contact
is present, it is equal to n tot.

bulk start: Cell number of the first cell in bulk after the escape layers. If no contact
is present, it is equal to 1.

cell to x: Converts the cell number to a dim-dimensional index of cell.
Cell number 12 in fig. 2.1 would give cell to x(12,1)=3,
cell to x(12,2)=1 and cell to x(12,3)=2.

contact info

Structure containing all necessary informations about the contact.

x: Real space coordinate x3 of the contact.
start: Number of the first cell which belongs to the contact. The injection cells are

numbered from start in the structure contact info to n tot in the structure
lattice info (see above).

n: Number of cells in the contact.
layer: Integer number of the layer of the contact, e.g. for 12 total layers, layers 0 to 10

are bulk layers and layer 11 is the contact layer.
image x: Integer used to calculate the layer (parallel to the contact) where the image charge

carrier is found, e.g. if the layer of the charge carrier is L1 = 5 and the contact
layer is layer= 9 then the image charge is in the imaginary layer L2= 12 which
is calculated by L2 = 2 ·layer−1−L1, i.e. image x = 2 ·layer−1 and L2 =
image x−L1.

hop offset: Offset of the hopping distance from the contact to the nearest neighbour cell in
bulk. If hop offset = 0.0 the distance from a injection cell to the nearest bulk
cell for hopping or injection is one lattice constant, if hop offset= 0.5 the dis-
tance from an injection cell to the nearest bulk cell for hopping or injection is half
a lattice constant.

field offset: Offset of the position of the contact for field calculations. If field offset= 0.0
the fields start at the centre of the injection cell, if field offset= 0.5 the fields
start at the boarder between the injection cells and the first cells in bulk. This
offset is also considered for the image charges (own image charges and image
charge interaction).

energy info

Structure holding informations about the energetic landscape and the dynamical interactions.

morphology: It holds which type a certain cell is, e.g. if it is a contact cell or a bulk cell.
static part: Contains all static energy contributions like energy levels of cells, own image

charge potentials and potentials created by external fields.
dynamic part: Coulomb interaction between the charge carriers themselves and the charge carri-

ers and other image charge carriers. This array is only updated when up to date

is true.
up to date: If true, the Coulomb interactions are continuously calculated by subtracting and

adding monopole potentially to dynamic part. If false, the Coulomb interactions
are calculated by summing up all contributions of all charge carriers for every cell
which energy level needs to be known.

get lattice and contact info

Subroutine for calculating certain variables in the structures lattice info (see page 87) and
contact info (see page 88).
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The calculated variables are add dim, n dim half, boundary conditions, n tot, bulk end,
bulk start and cell to x in the structure lattice info as well as x, n, start, layer and image x

in the structure contact info.
The subroutine is used once during the initialisation process.

get nearest neighbours

In this subroutine the variable neighbours in the structure nearest neighbour info (see page 86) is
calculated.
It is called once during the initialisation process.

get interaction info

Subroutine that calculates the variables in the structure interaction info (see page 85). The radius
has to be handed in and all other variables in the structure interaction info are allocated and cal-
culated. If the interaction radius is nan, Ewald summation calc ewald sum (see page 90) is used to
calculate the exact interaction potential including all periodic images. The results of the Ewald summa-
tion method can be stored to a file and for later simulations also read out of a file to save computer time.
The subroutine is called once during the initialisation process.

get update info sphere

This subroutine allocates and calculated all variables in structure update info (see page 86) for a given
update radius.
Usually it is called once during the initialisation process. For injection simulations where the update
radius for charge carriers in bulk is different to the update radius of injection cells, it is called twice.

get hopping info box

This subroutine calculates the neighbours in the structure hopping info (see page 84). For a hop, the
maximum hopping distance into a direction xi to the target cell is given by the variable region(i) in
hopping info. So this variable defines a cube of size (2 ·region(1)+ 1)× (2 ·region(2)+ 1)× (2 ·
region(3)+ 1) where hopping is allowed. For all cells the neighbours within that region, considering
the chosen boundary conditions, are stored in neighbours.
It is called during the initialisation process if a cubic hopping region is desired.

get hopping info sphere

The same as subroutine get hopping info box (see above). The only difference is that the hopping
region is not a cube, but a sphere with a specified radius found in the structure hopping info (see
page 84). A value has to be assigned to the hopping radius before the subroutine is evaluated.
It is called during the initialisation process if a spherical hopping region is desired.

get coordinates from cell number

Subroutine calculating the real space position of the centre of a cell addressed by its cell number. Within
this subroutine get indices from cell number (see page 89) is called.
It is used in add external potential (see page 90) and for visualisations.

get indices from cell number

Out of the cell number this subroutine calculates the three dimensional index of the cell. Looking at
fig. 2.1 e.g. cell number 6 would have the 3D index (3,2,1).
The subroutine is used in subroutines get lattice and contact info (see page 88) to evaluate the
variable cell to x in structure lattice info (see page 87).
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get morphology

In this subroutine the morphology of the system is determined. If the bulk type btype in the structure
lattice info (see page 87) is 1 (homogeneous bulk) then the entries in the variable morphology in
structure energy info (see page 88) are 1 for the bulk (i.e. all the energy levels are drawn from the same
probability distribution) and 2 for the contact. btype = 2 additionally introduces static charges placed
uniformly distributed over the bulk. Charges with the same polarity as the charge carriers are labelled 3
in morphology and charges with a different polarity are labelled 4.
This subroutine is used during the initialisation process or if multiple morphologies are sampled, it is
used once at the beginning of every run.

get energetic landscape

This subroutine uses the variable morphology in structure energy info to assign each cell its energy
level and store it in variable static part of structure energy info (see page 88). A function randE

has to be provided by the user, which assigns the right energy levels for the different cell types. This
function receives the cell type and gives back the energy level, e.g. for morphology(i1) = 1 a random
number from a Gaussian distribution is drawn or for morphology(i1) = 2 the energy level is set to the
Fermi energy of the metal contact.
This subroutine is called during the initialisation process or if multiple energetic landscapes are sampled,
it is used once at the beginning of every run.

add external potential

Depending on the chosen ptype, found in the structure lattice info (see page 87), the external po-
tentials are added to the variable static part of structure energy info (see page 88).
If ptype= 1 only a linear potential from an electric field pointing in the x3 direction is considered. With
contact the potential starts with 0 at the contact and decreases departing from the contact. Without a
contact the lowest potential is at low x3 values and increases with increasing x3.
ptype= 2 additionally includes the image potential of the charge carrier itself. In this case a contact has
to be present as else there would be no image charge.
In case ptype = 3 static charges are included. The Coulomb interaction potential for those charges are
considered in the same way as interactions between charge carriers (with a cut-off radius or Ewald sum-
mation). If the contact is present, also image charges of the static charges and the image charge of a
single charge carrier are concerned. Additionally the potential of an electric field can be considered in
the same way as for ptype= 1.
The subroutine is called once during the initialisation process. If sampling over multiple arrangements
of the static charges is performed, then the external potential has to be recalculated at the beginning of
each run.

change charge neutrality dipole potential

With this subroutine the potential of a homogeneous charge background all-over the system can be added
or changed. The dipole is created by the consideration of the image charge background.
This subroutine would be needed if charge neutrality has to be assured far apart from the contact.

calc direct sum

Calculate the potential field created by the charge carrier formation which is used for the Ewald summa-
tion method to check if the Ewald summation method is leading to the correct values. The convergence
of this direct summation is very poor compared to the Ewald summation.

calc ewald sum

Calculate the potential field created by the charge carrier formation described in chapter 2.2.3 with Ewald
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summation method.
This subroutine is used in get interaction info (see page 89) if the interaction radius is chosen
nan.

7.1.10 mc module.f90

Together with morphology module.f90 (see chapter 7.1.9) this is the central module for the kinetic
Monte Carlo simulation. Different to the subroutines found in morphology module.f90, in which most
of the subroutines are only used during the initialisation process, the subroutines in mc module.f90

are mainly for the Markov Chain Monte Carlo process. The focus is on bulk hopping, injection and
combining those two processes with different update mechanisms.
The module can in principle be used for bulk and injection simulations. As there are some very time
critical routines in this module, not all differences are covered with an if-statement. The sections that
have to be commented or uncommented for changing from bulk to injection simulations are marked with
the following comment above it:
! change bulk-injection

carrier info

A structure containing all information about the charge carriers. As new charge carriers can be created
and annihilated due to injection, recombination with the contact and escape processes, the storing of the
properties of the charge carriers is a task were a lot of time can be saved. The current number of charge
carriers in the simulation is held in n. It would be intuitive, that the indices of the charge carriers currently
in the simulation go from 1 to n. But as this would imply that after every creation or annihilation, all
the lists of the properties of the charge carriers would have to be resorted, it is too time consuming to
implement it in that way. A maybe faster way is to use queue and free to manage the indices of the
charge carriers that are in the simulation and those who are available to be injected. In queue the indices
of the charge carriers that are currently in use are stored from 1 to n sorted by their hopping time tau

and in free the indices of the unused charge carriers are found from 1 to i free.
During a creation the new charge carrier assigns the index free(i free) and i free is decremented
by 1. Additionally the hopping time tau is calculated for the new charge carrier, its index is sorted into
queue and the number of present charge carriers n is incremented by 1.
An annihilation works the other way round, n is decremented and i free incremented, the index of the
annihilated charge carrier is stored in free(i free) and in queue the index is ejected and the appearing
gap is closed by the slower charge carriers.
The strength of this approach is, that only queue has to be resorted after a creation or annihilation, but
this has to be done anyway, as the changed hopping times always need to be resorted. No strength without
weakness, unfortunately the charge carriers cannot be addressed directly, one always needs queue to find
the right index.

occupied: This variable, with indices going from 1 to bulk end in the structure
contact info (see page 88), indicates if a bulk cell is occupied by a charge car-
rier. An occupied cell is marked with the index of the charge carrier that occupies
it, all unoccupied cells are labelled by 0.

cell: Holds the current cell of the charge carriers. As for all other variables, the stored
value of an unused charge carrier is not specified.

hop to: Here the suggested cell where the charge carrier would hop to is found.
tau: Calculated retention time of the suggested hop.
queue: In queue(1:n) the indices of the used charge carriers are stored. The order is

determined by the retention times of the next hops with the fastest first.
rates: Calculated rates of the charge carrier, only needed for DMC.
n: Number of charge carriers that are currently used in the simulation.
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n max: Number of available charge carriers. If more than n max charge carriers are tried
to be injected, an error is produced and the program stops.

free: free(1:i free) holds the indices of the charge carriers that are currently not
used in the simulation.

i free: Number of charge carriers that are still available for injection. free(i free) is
the charge carrier that will be injected next and escaped last.

injected: Number of charge carriers that are injected during the simulation up to the current
Markov time.

escaped: Number of charge carriers that escaped during the simulation up to the current
Markov time.

contact: Number of charge carriers that recombined with the contact during the simulation
up to the current Markov time.

update: Indices of the charge carriers for which the hopping time should be updated.
n update: Number of charge carriers for which the hopping time should be updated.
direction: Direction of the next hop corresponding to the directions defined by neighbours

and index x in the structure hopping info (see page 84).
t hop: Markov time where the charge carriers was hopping for the last time. This vari-

able is used to calculate the occupation times of the cells and hence the spatially
resolved charge carrier densities.

injection info

Like the structure carriers info for charge carriers (see page 91), this structure contains informa-
tion about the injection process. In principle it is built up in the same way as carrier info, but less
complicated due to the fact, that the number of injection cells in the contact does not change during the
simulation. So all the fields have a size of n in the structure contact info (see page 88) and all those
indices are always in use.

cell: Index number of the injection cells where injection can take place. Used to find
the potential cells in bulk where the injection process can place a charge carrier.

hop to: Number of the cell in bulk where the charge carrier would be injected.
tau: Retention time when the injection would be performed
queue: Indices of the injection cells sorted by their retention time tau.
rates: Calculated rates of the injection processes, only needed in DMC.
update: Indices of the injection cells for which the injection process should be updated.
n update: Number of injection cells for which the injection process should be updated.
direction: Direction of the next injection corresponding to the directions defined by

neigh contact and index x contact in the structure hopping info (see
page 84).

measure info

This structure is used to measure quantities during the simulation that are needed for the evaluation.

time: Current Markov time of the simulation.
frm failed: Number of times that a hop or injection would have been performed onto an

occupied cell in FRM and a recalculation of the process was necessary.
n up inj radius: Number of times that a total injection update was performed for the new update

mechanism.
injection count: Number of injections that were performed from a certain contact cell.
recomb count: Number of charge carrier that recombined with a certain contact cell.
occ time: Markov time that a certain cell in bulk was occupied, used to measure the

spatially resolved charge carrier density.
occ count: Number of times that a cell was occupied.
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distance cell: Hopping distance that was overcome within hops from a certain bulk or contact
cell, used to measure spatially resolved current densities.

calc miller abrahams rates

The central subroutine to calculate the rates with the help of the Miller-Abrahams rate equation (1.100).
The parameters for all possible neighbouring hopping cells are handed over and this subroutine calculates
the individual rates to all those cells and the sum of them.
The header is exactly the same as in subroutine calc marcus rates (see page 93), so that a function
handle can be used to decide externally if the Miller-Abrahams rate equation or Marcus theory should be
used to calculate the rates without loosing computational performance.
The function handles (internally called fct calc hopping rates or fct calc injection rates)
are used by the following subroutines:

calc single hopping time (see page 93)
calc single injection time (see page 94)
calc time until injection needs update (see page 96)
calc new hopping time dmc (see page 99)
calc new injection dmc (see page 99)
calc layer convergence (see page 99)

calc marcus hopping time

The central subroutine to calculate the rates with the help of Marcus theory (1.99). The parameters for all
possible neighbouring hopping cells are handed over and this subroutine calculates the individual rates
to all those cells and the sum of them.
The header is exactly the same as in subroutine calc miller abrahams rates (see page 93), so that a
function handle can be used to decide externally if Marcus theory or the Miller-Abrahams rate equation
should be used to calculate the rates without loosing computational performance.
The function handles (internally called fct calc hopping rates or fct calc injection rates)
are used by the following subroutines:

calc single hopping time (see page 93)
calc single injection time (see page 94)
calc time until injection needs update (see page 96)
calc new hopping time dmc (see page 99)
calc new injection dmc (see page 99)
calc layer convergence (see page 99)

calc single hopping time

The cell number of the charge carrier to recalculate the hopping time is handed over to this subroutine. By
calling calc energies with interaction up to date hop (see page 97) or calc energies with

interaction without precalc hop (see page 96), the neighbouring hopping cells with their corre-
sponding energies and delocalisation factors are evaluated and handed over to the function calc miller

abrahams rates (see page 93) or calc marcus rates (see page 93). The choice of the function is de-
termined externally by handing in the function handle func calc hopping rates. With the calculated
rates a certain hop is chosen randomly and a retention time is assigned corresponding to theorem 1.6. If
all potential hopping cells are occupied, the cell where the hop should go to is the current cell and an in-
finite retention time is handed over. The case that the cell has no neighbour at all, which is characteristic
for an escape cell, has to be prevented proir to calling this subroutine.
The subroutine is called by:

calc multiple hopping times (see page 94)
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perform single hop frm (see page 94)
perform single injection frm (see page 95)

calc multiple hopping times

This subroutine recalculates the hopping times for all charge carriers whose indices are found in
update(1:n update) from structure carrier info (see page 91). To recalculate the hopping times it
uses calc single hopping time (see page 93). The charge carriers with new hopping times are sorted
into queue in the structure carrier info (see page 91).
This subroutine is used during the initialisation process in some simulations and called by the following
subroutines:

perform single hop radius (see page 94)
perform single injection radius (see page 95)
recalc tau inf carriers frm (see page 96

perform single hop frm

This subroutine performs the fastest hop and updates the hopping time of this charge carrier after the hop
took place, considering recombination with the contact and the escape process. To calculate the retention
time calc single hopping time (see page 93) is used. The retention times of all other charge carriers
and all injection processes (if present in the simulation) are reduced by the current retention time. At the
end the hopping time is sorted into queue in the structure carrier info.
The subroutine is called by perform single step frm (see page 95) and for some simulations it is
used in the Markov Chain Monte Carlo iteration.

perform single hop radius

After the fastest hop is performed in this subroutine and recombination and escape is checked, the hop-
ping times for all charge carriers and injection cells within the update radius rup,cc and rup,inj defined in
the structure update info (see page 86) are recalculated. The update radius rup,cc has to be at least as big
as the hopping radius rhop,cc to prevent unintended double occupation and as a consequence misbehaviour
of the program. The charge carriers to update are found with the subroutine find carriers to update

(see page 97) and recalculated with calc multiple hopping times (see page 94). The injection cells
to update are found with find injection cells to update sphere (see page 98) and recalculated
with calc multiple injection times (see page 95). The retention times of charge carriers and in-
jection cells that are not recalculated are reduced by the retention time of the current hop.
The subroutine is called by perform single step radius (see page 95) or directly in the Markov
Chain Monte Carlo iteration.

calc single injection time

Similar to calc single hopping time (see page 93), an injection cell is handed over to this sub-
routine. With this it finds the potential injection cells with the associated energy levels and the de-
localisation factors with calc energies with interaction up to date injection (see page 97)
or calc energies with interaction without precalc injection (see page 97) and calculates
the injection rates with calc miller abrahams rates (see page 93) or calc marcus rates (see
page 93) depending on the chosen function selected by the function handle fct calc injection time.
If all allowed hopping cells of the injection cell are currently occupied, the cell where the injection should
go to is the injection cell itself and the assigned hopping time gets infinite.
The subroutine is called by:

calc multiple injection times (see page 95)
perform single injection frm (see page 95)
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calc multiple injection times

This subroutine recalculates all injection times of the injection cells whose indices are found in
update(1:n update) in the structure injection info (see page 92) with the subroutine
calc single injection time (see page 94). Afterwards the new injection times are sorted into queue
in the structure injection info (see page 92).
This subroutine is used during the initialisation process and called by:

perform single hop radius (see page 94)
perform single injection radius (see page 95)
recalc tau inf injection frm (see page 96
check if injection needs update (see page 96)

perform single injection frm

The fastest injection is performed in this subroutine. The hopping time of the created charge carrier is
calculated with calc single hopping time (see page 93) and it is included in queue in the structure
carrier info (see page 91). The escape process is also considered, but no recombination with the
contact, as then the charge carrier would not be injected. The retention time of the injection process is
recalculated with calc single injection time (see page 94) and sorted into queue in the structure
injection info (see page 92). As the former charge carrier situation around the injection cell is
thought to be more representative for the next injection process, the Coulomb interactions of the currently
injected charge carrier are not considered for the calculation of the injection time. The retention times of
all other injection cells and charge carriers are reduced by the retention time of the current injection.
The subroutine is called by perform single step frm.

perform single injection radius

In this subroutine the fastest injection is performed and all hopping times of the charge carriers and injec-
tion cells within the update radius rup,cc and rup,inj are updated. To find the charge carriers that need to be
updated find carriers to update (see page 97) is used and they are updated with calc multiple

hopping times (see page 94). The injection cells that need to be updated are found with find

injection cells to update sphere (see page 98) and updated with calc multiple injection

times (see page 95). The retention times of the charge carriers and injection cells, that are not recalcu-
lated, are reduced by the retention time of the current injection.
The subroutine is called by perform single step radius.

perform single step frm

This subroutine compares the fastest hopping time and the fastest injection time. It performs a hop with
perform single hop frm (see page 94) if the hopping time is lower or an injection with perform

single injection frm (see page 95) if the injection time is lower. Previously it checks if there is
a charge carrier in the simulation and performs an injection if not. For an injection process an unused
charge carrier has to be available, so trying to inject when i free in the structure carrier info (see
page 91 is zero leads to an error stopping the whole simulation.
This subroutine is used during the Markov Chain Monte Carlo iteration if FRM is used.

perform single step radius

This subroutine compares the fastest hopping time and the fastest injection time. It performs a hop
with perform single hop radius (see page 94) if the hopping time is lower or an injection with
perform single injection radius (see page 95) if the injection time is lower. Previously it checks
if there is a charge carrier in the simulation and performs an injection if not. For an injection process an
unused charge carrier has to be available, so trying to inject when i free in the structure carrier info

(see page 91 is zero leads to an error stopping the whole simulation.
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When updating charge carriers and injection cells within a certain update radius rup,cc and rup,inj is de-
sired, this subroutine is used during the Markov Chain Monte Carlo iteration.

recalc tau inf carriers frm

In FRM simulations it is possible, that hopping times get infinite, because all the potential hopping
neighbours of a charge carrier are occupied. With other update mechanism this is no problem as the
times are recalculate anyway when a neighbouring cell gets unoccupied, but in FRM this would lead
to a charge carrier that is fixed to its position for ever. To overcome such a scenario, this subroutine
recalculates all hopping times that are infinite.
This subroutine is only used for high charge carrier densities during the Markov Chain Monte Carlo
iteration. It is not performed in every iteration, but after a certain number of steps or a certain number of
infinities it could be called.

recalc tau inf injection frm

In FRM simulations it is possible, that injection times get infinite, because all the potential hopping
neighbours of an injection cell are occupied. With other update mechanism this is no problem as the
times are recalculate anyway when a neighbour gets unoccupied, but in FRM this would lead to an
injection cell that would not inject any more. To overcome such a scenario, this subroutine recalculates
all injection times that are infinite.
This subroutine is only used for high charge carrier densities during the Markov Chain Monte Carlo
iteration. It is not performed in every iteration, but after a certain number of steps or a certain number of
infinities it could be called.

calc time until injection needs update

This subroutine calculates the Markov time between two total injection updates as described in chap-
ter 3.2.3.
It is called once after the extended thermalisation for injection simulations with the new update mecha-
nism.

check if injection needs update

To assure the accuracy of an injection simulation with very low charge carrier densities, this subroutine
checks if a total injection update is required (see chapter 3.2.3). It needs the Markov time between two
total injection updates calculated with calc time until injection needs update (see page 96).
The subroutine is used during the Markov Chain Monte Carlo iteration for an injection simulation with
the new update mechanism if a total injection update is required to achieve a small enough methodolog-
ical error for regimes with a very low charge carrier density.

calc energies with interaction without precalc hop

This subroutine is needed to prepare the information needed to calculate the hopping rates when the
interactions contained in variable dynamic part in structure energy info (see page 88) are not up
to date. A bulk cell is handed over to this subroutine and it finds the neighbours that are available for
hopping and calculates its energy levels including the static potentials as well as interactions with other
charge carriers and image charges. The interactions are calculated by directly summing up all Coulomb
contributions of all other charge carriers and their image charges. The spatial decay term for the allowed
hops is determined as well. It is also concerned that only one charge carrier can occupy a cell, occupied
cells are rejected from the list of possible hopping cells.
This subroutine is called by:

calc single hopping time (see page 93)
calc new hopping time dmc (see page 99)
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calc energies with interaction up to date hop

This subroutine is needed to prepare the information needed to calculate the hopping rates when the
interactions contained in variable dynamic part in structure energy info (see page 88) are up to date.
A bulk cell is handed over to this subroutine and it finds the neighbours that are available for hopping
and calculates its energy levels including the static potentials as well as interactions with other charge
carriers and image charges. The interactions are derived directly from dynamic part. The spatial decay
term for the allowed hops is determined as well. It is also concerned that only one charge carrier can
occupy a cell, occupied cells are rejected from the list of possible hopping cells.
This subroutine is called by:

calc single hopping time (see page 93)
calc new hopping time dmc (see page 99)

calc energies with interaction without precalc injection

This subroutine is needed to prepare the information needed to calculate the injection rates when the
interactions contained in variable dynamic part in structure energy info (see page 88) are not up to
date. An injection cell is handed over to this subroutine and it finds the neighbours that are available for
hopping and calculates its energy levels including the static potentials as well as interactions with other
charge carriers and image charges. The interactions are calculated by directly summing up all Coulomb
contributions of all other charge carriers and their image charges. The spatial decay term for the allowed
injections is determined as well. It is also concerned that only one charge carrier can occupy a cell,
occupied cells are rejected from the list of possible hopping cells.
This subroutine is called by:

calc single injection time (see page 94)
calc new injection time dmc (see page 99)

calc energies with interaction up to date injection

This subroutine is needed to prepare the information needed to calculate the injection rates when the
interactions contained in variable dynamic part in structure energy info (see page 88) are up to
date. An injection cell is handed over to this subroutine and it finds the neighbours that are available
for hopping and calculates its energy levels including the static potentials as well as interactions with
other charge carriers and image charges. The interactions are derived directly from dynamic part. The
spatial decay term for the allowed injections is determined as well. It is also concerned that only one
charge carrier can occupy a cell, occupied cells are rejected from the list of possible hopping cells.
This subroutine is called by:

calc single injection time (see page 94)
calc new injection time dmc (see page 99)

find carriers to update

A cell number is handed over to this subroutine and from this cell, the charge carriers that are within a
distance rup,cc to it are marked for updating the hopping time. The cell number that is handed in is usually
the new position of the currently hopped or injected charge carrier. For recombination and the escape
process the cell where the charge carrier was before it hopped is taken as a centre for the update region.
The information about the update region is found in the structure update info (see page 86). All the
marked charge carriers are held by update(1:n update) in structure carrier info (see page 91).
To find the charge carriers, two different opportunities are imaginable. The first opportunity is to go
through all the charge carriers and find out if their distance to the considered cell is lower than the update
radius rup,cc. For low charge carrier densities and a big update radius this is the method of choice. If
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the charge carrier density is high and/or the update radius rup,cc is small, the number of charge carriers
gets higher than the number of potential update cells and hence it is preferable to have a look at if the
cells in the update region house a charge carrier or not. Depending on the number of update cells n in
structure update info (see page 86) and the number of charge carriers in the simulation n in structure
carrier info (see page 91), either the update region is scanned for charge carrier or the distance to all
charge carriers is checked to find out which charge carriers have to be updated.
This subroutine is called by:

perform single hop radius (see page 94)
perform single injection radius (see page 95)

find injection cells to update sphere

With the cell number where the charge carrier is at the moment (or was previously for recombination
and the escape process), all injection cells within the radius rup,inj are marked for updating their hop-
ping time. This marking is done by writing their indices into update(1:n update) in the structure
injection info (see page 92).
For finding the injection cells whose injection time needs to be recalculated, the distance from the com-
mitted bulk cell to the nearest injection cell is evaluated. Starting from this nearest injection cell, a circle
is drawn with a radius determined by the distance between the committed bulk cell and the nearest injec-
tion cell. All injection cells within this circle are marked for updating.
This subroutine is called by:

perform single hop radius (see page 94)
perform single injection radius (see page 95)

find injection cells to update projection

This subroutine in principle is the same as find injection cells to update sphere (see page 98)
with the only difference that we are not updating all injection cells within an update sphere but projecting
a circle with radius rup,inj onto the contact layer and update all injection cells within this projection. So
the update shape is rather a cylinder with radius rup,inj and the axis is oriented into x3 direction.
The subroutine was written to check if this update is leading to better results for the convergence problem
of regime 3 (see chapter 3.2.3), but it does not. So it is no longer in used.

perform single step dmc

This subroutine compares the calculated hopping time and injection time for a DMC simulation and
performs a hop with perform single hop dmc (see page 98) if the hopping time is lower or an injection
with perform single injection dmc (see page 99) if the injection time is lower. Previously it checks
if there is a charge carrier in the simulation and performs an injection if not. For an injection process an
unused charge carrier has to be available, so trying to inject when i free in the structure carrier info

(see page 91 is zero leads to an error stopping the whole simulation.
When performing a DMC injection simulation is desired, this subroutine is used during the Markov
Chain Monte Carlo iteration.

perform single hop dmc

After the chosen hop is performed in this subroutine and recombination and escape is checked, the new
hopping time and injection time is recalculated with calc new hopping time dmc (see page 99) and
calc new injection time dmc (see page 99).
The subroutine is called by perform single step dmc (see page 98) or directly in the Markov Chain
Monte Carlo iteration.
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perform single injection dmc

In this subroutine the chosen injection is performed and escape is checked. Afterwards the new hop-
ping time and injection time is recalculated with calc new hopping time dmc (see page 99) and
calc new injection time dmc (see page 99).
The subroutine is called by perform single step dmc (see page 98).

calc new hopping time dmc

All rates for all hopping possibilities of all charge carriers are calculated and according to theorem 1.6,
an exponentially distributed random number with the sum over all rates as a rate parameter is drawn for
the retention time and one of the hops is randomly chosen according to its rate.
This subroutine is called by:

perform single hop dmc (see page 98)
perform single injection dmc (see page 99)

calc new injection time dmc

Like for the hopping process, this subroutine calculates all rates for all hopping possibilities of all injec-
tion cells and according to theorem 1.6, an exponentially distributed random number with the sum over
all rates as a rate parameter is drawn for the retention time and one of the injections is randomly chosen
according to its rate.
This subroutine is called by:

perform single hop dmc (see page 98)
perform single injection dmc (see page 99)

update energy dynamic part

This subroutine is used to keep the variable dynamic part in structure energy info (see page 88)
up to date. After every Markov jump the previous and the new cell number of the charge carrier that
has just hopped is handed in and the monopole potential centred at the previous cell is subtracted from
dynamic part where the monopole potential centred at the new cell is added to dynamic part. The
update of the dynamic Coulomb interactions is only done if up to date in structure energy info is
true. In this case the subroutine is used by:

perform single hop frm (see page 94)
perform single injection frm (see page 95)
perform single hop radius (see page 94)
perform single injection radius (see page 95)
perform single hop dmc (see page 98)
perform single injection dmc (see page 99)

initialise energy dynamic part

Starting from a blank variable dynamic part in structure energy info (see page 88) the Coulomb
interactions of all charge carriers and their image charges are added to dynamic part.
This subroutine is needed to initialise the variable dynamic part in structure energy info before the
Markov Chain Monte Carlo iteration is started when up to date in structure energy info is true.

calc layer convergence

With this subroutine the needed layers parallel to the contact to undercut a certain return probability are
evaluated (see chapter 2.2.2).
For injection simulations, it is called once during the initialisation.
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allocate and initialise fields

This subroutine allocates all necessary fields in the structures

carrier info (see page 91)
injection info (see page 92)
measure info (see page 92)
energy info (see page 88)

with the correct size.
It is used during the initialisation process. Depending on which structures are handed in, only the arrays
that are in those structures are allocated. So it can be called multiple times during the initialisation to
allocate only some arrays one after the other.

deallocate fields

This subroutine deallocates all the fields that are used during the simulation. The fields are found in the
structures

carrier info (see page 91)
injection info (see page 92)
measure info (see page 92)
lattice info (see page 87)
hopping info (see page 84)
interaction info (see page 85)
update info (see page 86)
nearest neighbour info (see page 86)
energy info (see page 88)

This subroutine is used after all simulations are done at the end of the program. It can also be used to
deallocate the arrays in one particular structure if only this structure is handed in. This can be useful
when certain arrays need to be deallocated during the simulation.

Dependency Diagram
In module mc module.f90 the dependencies are much more complicated than in module morphology

module.f90 (see chapter 7.1.9), where in principle no dependencies are present. For a better under-
standing the important dependencies in mc module.f90 are shown in fig. 7.2, fig. 7.3 and fig. 7.4.
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..perform single step frm

page 95
.

perform single hop frm

page 94

.

perform single injection frm

page 95

.

update energy dynamic part

page 99

.

calc single hopping time

page 93

.

calc single injection time

page 94

.

calc energies with interaction

without precalc hop page 96
or up to date hop page 97

.

calc energies with interaction

without precalc injection page 97
or up to date injection page 97

.

Function Handle
fct calc hopping rates or injection rates

..calc miller abrahams rates

page 93
. calc marcus rates

page 93

Figure 7.2: Dependency diagram of the subroutines found in the module mc module.f90 used for an
FRM simulation.
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..perform single step radius

page 95
.

perform single injection radius

page 95

.

perform single hop radius

page 94

.

update energy dynamic part

page 99

.

find injection cells to update sphere

page 98

.

find carriers to update

page 97

.

calc multiple injection times

page 95

.

calc multiple hopping times

page 94

.

calc single injection time

page 94

.

calc single hopping time

page 93

.

calc energies with interaction

without precalc hop page 96
or up to date hop page 97

.

calc energies with interaction

without precalc injection page 97
or up to date injection page 97

.

Function Handle
func calc hopping rates or injection rates

..calc miller abrahams rates

page 93
. calc marcus rates

page 93

Figure 7.3: Dependency diagram of the subroutines found in the module mc module.f90 used for a
simulation with the new update mechanism.
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..perform single step dmc

page 98
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perform single hop dmc

page 98
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perform single injection dmc

page 99

.

update energy dynamic part

page 99

.

calc new hopping time dmc

page 99

.

calc new injection time dmc

page 99

.

calc energies with interaction

without precalc hop page 96
or up to date hop page 97

.

calc energies with interaction

without precalc injection page 97
or up to date injection page 97

.

Function Handle
fct calc hopping rates or injection rates

..calc miller abrahams rates

page 93
. calc marcus rates

page 93

Figure 7.4: Dependency diagram of the subroutines found in the module mc module.f90 used for a
DMC simulation.
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7.1.11 Structograms

Most of the simulations are either bulk simulations or injection simulations. In the following, the basic
concepts of the main program for those simulations are schemed.

Bulk Simulation
The term bulk simulation means, that a cubic lattice with periodic boundary conditions in all direc-
tions is simulated and an electric field is applied in x3 direction. The number of charge carriers is con-
stant during the simulation, as no recombination, no escape and no injection takes place. The global
variable qEfield int found in the module mc module.f90 is used to consider the periodic bound-
ary conditions for the electric field correctly. The electric field must not be considered as an external
potential in add external potential (see page 90). This means without additional external poten-
tials like static charges, add external potentials does not have to be evaluated and if further ex-
ternal potentials are considered, Efield = 0 has to be handed over to this subroutine. The variable
qEfield int is the electric field strength times the elemental charge of the used charge carriers and
has to be provided. The potential drop due to this electric field is directly considered in the calculation
of the energy levels in calc energies with interaction without precalc hop (see page 7.1.10)
and calc energies with interaction up to date hop (see page 7.1.10). Although the contact is
not used here, internally the structure contact info (see page 88) is necessary. This is due to the fact
that the simulation is optimised for the injection simulation. A typical structogram of a bulk simulation
for our new update mechanism is found in fig. 7.5. When FRM or DMC is used as update mechanism,
the structogram has to be slightly changed, especially the called functions in the Markov Chain Monte
Carlo iteration have to be chosen differently. If up to date in structure energy info (see page 88) is
true, the subroutine initialise energy dynamic part (see page 99) has to be called additionally at
the end of the initialisation process.

Injection Simulation
The cubic lattice is limited by a contact in the positive x3 direction and escape layers (the number of
escape layers corresponds to the maximum hopping distance) in the negative x3 direction. Periodic
boundary conditions are introduced into the other directions. As the program is optimised for injection
simulations, the implementation is much more straight forward compared to a bulk simulation. In fig. 7.6
the stuctogram of a typical injection simulation for our new update mechanism can be seen. Structograms
for other update mechanisms (FRM or DMC) are comparable with slight changes of the used subroutines
in the Markov Chain Monte Carlo iteration.
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Choose parameters for the simulation held by the structures hopping parameters,
lattice info, contact info and energy info

Choose the cut-off radius rc, the update radius rup,cc and the hopping radius rhop,cc

Choose the energetic disorder σ , the relative permittivity εr and the electric field
strength F to set qEfield int

call get lattice and contact info

call get nearest neighbours

call get hopping info sphere

call get interaction info

call get morphology

Provide the function randE which assigns the randomly chosen energy levels

call get energetic landscape

call get update info sphere for bulk hopping with rup,cc

Choose parameters for the Markov Chain Monte Carlo process like the number of ther-
malisation steps n thermalise and the number of Monte Carlo steps n steps in the
main simulation
Choose the number of charge carriers for the desired charge carrier density and param-
eters for measurements

call allocate and initialise fields

Randomly place the charge carriers in the system, double occupation of cells has to be
prevented
call calc multiple hopping times to initialise the hopping times of all randomly
placed charge carriers
i = 1 to n thermalise

call perform single hop radius

i = 1 to n steps

call perform single hop radius

Perform measurements

Evaluate and illustrate measurements

call deallocate fields

Deallocate rest of the fields that are not part of structures

Figure 7.5: Structogram of a bulk simulation with our new update mechanism
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Choose parameters for the simulation held by the structures hopping parameters,
lattice info, contact info and energy info

Choose the cut-off radius rc, the update radius rup,cc and rup,inj and the hopping radius
rhop,cc and rhop,inj

Choose the zero-field-energy barrier ∆, the energetic disorder σ , the electric field
strength F and the relative permittivity εr

call get layer convergence to evaluate the system size

call get lattice and contact info

call get update info sphere for bulk hopping with rup,cc

call get update info sphere for injection with rup,inj

call get nearest neighbours

call get hopping info sphere

call get interaction info

call get morphology

Provide the function randE which assigns the randomly chosen energy levels

call get energetic landscape

call add external potential

Choose parameters for the Markov Chain Monte Carlo process like the number of ther-
malisation steps n thermalise and the number of Monte Carlo steps n steps in the
main simulation

Choose the maximum number of charge carriers and parameters for measurements

call allocate and initialise fields

call calc multiple injection times to initialise the hopping times of all injection
cells
i = 1 to n thermalise

call perform single step radius

i = 1 to n steps

call perform single step radius

Perform measurements

Evaluate and illustrate measurements

call deallocate fields

Deallocate rest of the fields that are not part of structures

Figure 7.6: Structogram of an injection simulation with the new update mechanism
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