
Amra Džombić, BSc

Pocket Toon
A Smart Flip book

MASTER’S THESIS

to achieve the university degree of
Master of Science

Master’s degree programme: Computer Science

submitted to
Graz University of Technology

Supervisor
Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Institute for Softwaretechnology

Graz, April 2016

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master‘s thesis dissertation.

Graz,

Date Signature

ii

Acknowledgments

I would first like to thank my mother, Safija Ćatović-Džombić. Without her
selflessness, her support, her concern, and her love, none of this would be
possible. This one is for you mom!

I would like to thank my supervisor, Prof. Wolfgang Slany, for the guidance,
encouragement and advice he has provided throughout my time as his
student. I have been extremely lucky to have a supervisor who cared so
much about my work, and who responded to my questions and queries so
promptly.

iii

Kurzfassung

Ein Daumenkino ist eine Art Buch, das eine Serie von zusammenhängenden
Bildern enthält. Wenn dieses schnell durchgeblättert wird, kreiert es so die
Illusion einer Bewegung. Das Daumenkino stellt eine der frühesten Formen
von Animation dar.

Diese Arbeit verwendet als Grundlage das genius design, das ausschließlich
auf der Erfahrung und der Kreativität eines einzelnen Designers basiert,
um das Konzept des traditionellen auf Papier basierenden Daumenkinos
in eine App für Smartphones – Pocket Toon – zu verwandeln. Diese App
erlaubt es den Benutzern Bild-für-Bild-Animationen samt musikalischer
Untermalung zu erstellen. Die Herausforderung hierbei ist, nicht nur eine
App zu kreieren, welche Benutzern dies ermöglicht, sondern diese App mit
einem überzeugenden User-Interface auszustatten, das von Effizienz und
einfacher Handhabe geprägt ist.

Um eben genannte Probleme zu lösen, werden analoge Daumenkinos sowie
Nintendos Flipnote StudioTM analysiert und deren Eigenschaften und Funk-
tionalitäten als Basis für jene von Pocket Toon herangezogen. Diese Eigen-
schaften werden mittels Personas, User stories und Scenarios verfeinert. Das
konzeptuelle Design und die Gruppierung der Anforderungen basieren auf
Information, die aus der Analyse bestehender Daumenkino-Apps gewonnen
wurde. Den agilen Prinzipien folgend, welche die Priorisierung einzelner
Merkmale eines idealen Produktes als essentiell ansiehen, wurden erste,
minimale, jedoch mit den wichtigsten Funktionen ausgestattete Prototypen
erstellt und diese als Basis für die Software-Umsetzung der ersten Version
herangezogen.

iv

Abstract

A flip book is a book that contains a series of related images, which when
flipped rapidly create the illusion of motion. It is one of the earliest forms
of animation.

This thesis applies principles of genius design, which solely relies on the
experience and the creativity of an individual designer, to translate the paper
based flip book concept into a smart mobile application — Pocket Toon,
which will allow users to create image-by-image animations in combination
with sound. The challenge ahead is not merely to provide an app that allows
users to create a series of images, but to design a compelling user interface,
which is characterized by both efficiency and ease of use.

To solve the interaction problem at hand, analog flip books and Nintendo’s
Flipnote StudioNintendo’s Flipnote Studio TM are analyzed and their ex-
isting features are used as a basis for the features of Pocket Toon. These
features are refined by personas, user stories and scenarios. The conceptual
design and the grouping of requirements are based on the information
acquired in the analysis of existing flip book applications. Following the
agile principles of relentlessly prioritizing the features that a theoretical
“finished” product might eventually get, minimal prototypes were designed
and used as basis for the software implementation of the first version.

v

Contents

Abstract iv

1 Introduction 1
1.1 Motivation . 1

1.2 Problem Statement . 2

1.2.1 The user interface design problem 2

1.2.2 The user interface design problem 3

1.2.3 Thesis Outline . 3

2 Related Work 5
2.1 Nintendo’s Flipnote Studio TM 5

2.2 Toon Boom’s Storyboard Pro c© 8

2.3 Autodesk Sketchbook v7 c©: Flipbook feature 11

3 Designing For Interaction 13
3.1 What Is Interaction Design? . 15

3.2 Four Approaches of Interaction Design 19

3.2.1 User-Centered Design (UCD) 19

3.2.2 Activity-Centered Design 20

3.2.3 System Design . 20

3.2.4 Genius Design . 21

3.3 The process of Interaction Design 21

3.3.1 The Importance of Users 22

3.3.2 The four basic activities of interaction design 23

4 Pocket Toon Design Process 31
4.1 Design development process 32

4.1.1 Establishing the Interaction Design Requirements . . . 36

4.1.2 Personas . 45

vi

Contents

4.1.3 User Stories and Scenarios 48

4.1.4 Conceptual Design . 53

4.1.5 Focusing on What is Important First 60

4.1.6 Prototype and Evaluation 61

5 Implementation 68
5.1 Defining Layers . 69

5.2 Pocket Paint and Layers Requirement 70

5.3 Implementation . 71

6 Conclusion and future work 102

Bibliography 105

vii

List of Tables

3.1 Overview of the four interaction design approaches (Saffer
2006) . 21

3.2 High vs Low Quality Prototyping (Rogers et al. 2011) 30

viii

List of Figures

2.1 Single page tools - drawing tools. 7

2.2 Single page tools - page tools. 7

2.3 Single page tools - selection tools. 7

2.4 Animation overview tool. 7

2.5 Camera tool. 7

2.6 Sound tool. 7

2.7 Nintendo’s Flipnote Studio TMTools 7

2.8 Storyboard Pro user interface 8

2.9 Storyboard Pro c©overview of the project 9

2.10 Storyboard Pro c©timeline view 10

2.11 Autodesk SketchBook c©graphical user interface 11

2.12 Autodesk SketchBook c©Flipbook 12

4.1 Analog flip book . 36

4.2 Flipnote StudioTMmain menu 38

4.3 Flipnote StudioTM: create a new flipnote. 39

4.4 Flipnote StudioTMtool menu. 40

4.5 Flipnote StudioTMgallery menu 42

4.6 Flipnote StudioTMgallery overview. 43

4.7 Flipnote StudioTMDetails View. 43

4.8 Primary persona Sophie . 46

4.9 Emily . 47

4.10 High-level schematics: Application interaction 54

4.11 Low-level schematics: Gallery 55

4.12 Low-level schematics: Create page view 56

4.13 Low-Level schematics: Toon overview 57

4.14 Low-Level schematics: Add sound 58

4.15 Low-Level schematics: Online sharing platform 59

4.15 Pocket Toon: High-fidelity low functional prototype 64

ix

List of Figures

4.16 Pocket Paint interface . 65

4.17 Evernote . 66

4.18 Pocket Toon: Create page view redesigned 67

5.1 Pocket Paint: Layer Dialog . 72

5.2 Pocket Paint: Layer Dialog Implemented 73

5.3 Layer undo/redo . 75

5.4 Layer implementation: CommandManager add layer. 76

5.5 Layer implementation: CommandManager layer bitmap com-
mand. 77

5.6 Layer implementation: CommandManager merge layers. . . . 78

x

Listings

5.1 LayerBitmapCommands implementation 80

5.2 LayerCommand implementation 83

5.3 CommandManager implementation 85

xi

1 Introduction

1.1 Motivation

Flip books or flip notes are one of the earliest forms of animation. A flip
book is a book that contains a series of related images, which when flipped
rapidly create the illusion of motion [8]. This illusion is based on two optical
phenomena known as persistence of vision and the phi phenomenon [3].

The visual persistence causes the brain to retain the image cast upon the
retina for about a fraction of the second, even after the image has disap-
peared from view. This phenomenon occurs because the chemical represen-
tation of an image takes time to dissolve. As a result, there is a threshold
below which the eye cannot detect changes in repeated visual stimuli. Thus
a series of images arriving in rapid enough succession appear as one con-
tinues image. Alternatively, if the series of images arrives too slowly, the
continuous image will have a jerking quality, i.e., flicker [19].

While the visual persistence creates the illusion of a single, continuous
image, the phi phenomenon is responsible for conceptually filling the gaps
between the alternating images that progressively differ, thus creating the
illusion of motion. However, if the frequency of alternation exceeds a certain
threshold, the visual persistence will take over and images will be shown at
once [19].

In order to create the illusion of a motion, the rate of the still images, i.e.,
the number of images per second, has to be sufficiently timed so that visual
persistence and the phi phenomena can take effect. In the film industry, for
instance, movies are filmed and played at a rate of 24 frames per second,
which is enough to create the illusion of motion.

1

1 Introduction

The goal of this thesis is to translate the old fashioned flip book into a smart
mobile application, which allows users to create image-by-image animations
in combination with sound. The challenge ahead is not merely to provide
an app that allows users to create a series of images, exploiting above
mentioned optical phenomena, but to design a compelling user interface,
which is characterized by both efficiency and ease of use.

1.2 Problem Statement

1.2.1 The user interface design problem

Designing a good user interface includes many distinct challenges. These
days a good user interface design is less about pretty pictures and more
about the people: What do they like? What kind of applications do they
use? Why do they use them? And most importantly: how do they use
them [24]?

In the same way that a written exam can be seen as a dialog between the
students and their teacher, the application is a dialog between users and the
machine. And just as it is up to the teacher to script this dialog between
him and his students, by preparing exam questions and writing them on
the paper sheet, it is up to the interface designer to script the conversation
between the users and the artificial entity, by designing the user interface.
Consequently, the interface designer’s main task is to understand the user in
every respect: What motivates the users? What are their expectations? What
kind of keywords, icons and layout do they prefer? And after extracting
all these pieces of information, how does one go about writing the perfect
dialog or the perfect application [24]?

2

1 Introduction

1.2.2 The user interface design problem

User centered design provides not only the means for a great user interface,
but also the means for quality software.

The software quality can be measured by different factors, such as:

• Correctness - the ability to perform according to specification
• Extendibility - the ability to adapt to changes of specification
• Reusability - the ability to reuse existing software components
• Efficiency - the ability to place as few demands as possible on hardware

resources
• Maintainability - the ability to be modified and corrected after it has

been delivered
• Readability and clarity - the ability to be read and understood easily
• Documentation and test coverage – the presence of good documenta-

tion and tests
• Scalability - the ability to perform well when the workload increases
• etc.

Focusing on the wants and needs of the user, designers are able to observe
the software from the user’s point of view. This helps to identify desired
software features, i.e., distinct elements of functionality, and determine the
implementation order according to their importance, i.e., prioritizing certain
features over others. This does not only help software developers to focus
on features that matter, but also to focus on one feature at a time. A single
feature is usually easier to design, improve, and test, raising the software
quality at a single point. Thus, qualitative implementation of features equals
qualitative software.

1.2.3 Thesis Outline

This thesis shows the translation of the old fashioned flip book into an
intuitive mobile application – Pocket Toon. Pocket Toon allows users to
create image-by-image animations in combination with sound. Chapter 2

discusses the animation software which inspired Pocket Toon. Chapter 3

examines interaction design. The conceptual design and the development of

3

1 Introduction

the first prototype are discussed in Chapter 4. Chapter 5 describes the soft-
ware implementation. Finally, Chapter 6 provides a summary and discusses
possible future developments.

4

2 Related Work

This thesis has been inspired by several existing animation software, in-
cluding Nintendo’s Flipnote Studio TM, Toon Boom’s Storyboard Pro c©and
Autodesk Sketchbook v7 c©: Flipbook feature.

2.1 Nintendo’s Flipnote Studio TM

The Flipnote Studio is an application for the Nintendo DSi, which allows
users to easily create a flip book -like animation with sound. It provides tools
for creating flip book pages, either by drawing images with the Nintendo
DSi stylus or by importing existing pictures taken with the Nintendo DSi
Camera application, and adding a soundtrack by using the Nintendo DSi
Sound application or the built-in microphone.

Until May 31, 2015 [18] Nintendo, together with Hatena Co., Ltd., pro-
vided a bulletin-board website, called Ugomemo Hatena (Flipnote Hatena),
which allowed users to share their creations, as well as collaborate on
projects.[15]

The Flipnote Studio tools can be grouped in 5 categories 2.7:

1. Playback tool. This tool is visible throughout the application. Users
can start the animation, adjust speed, add new pages, jump to first/last
frame and set a repeat flag.

2. Single page tools. This tool allows users to draw, modify foreground,
background and draft layer, copy drawings across other pages, modify
paper color, show/hide previous pages and select, as well as modify
different objects on a certain page.

5

2 Related Work

3. Animation overview tool. The animation overview tool enables users
to rearrange pages, add, delete insert and copy/paste pages.

4. Camera tool. Users can import images from the system memory and
modify them by changing brightness and contrast.

5. Sound tool. The sound tool allows users to add music or sound effects
to the animation.

6

2 Related Work

Figure 2.1: Single page tools - draw-
ing tools.

Figure 2.2: Single page tools - page
tools.

Figure 2.3: Single page tools - selec-
tion tools.

Figure 2.4: Animation overview
tool.

Figure 2.5: Camera tool. Figure 2.6: Sound tool.

Figure 2.7: Nintendo’s Flipnote Studio TMTools

7

2 Related Work

2.2 Toon Boom’s Storyboard Pro c©

The Toon Boom Storyboard Pro c©is a software for creating digital sto-
ryboards and animatics for 2D/3D animations, live-action productions,
games or events with advanced features. It incorporates many features from
drawing and importing images to camera movements and sound editing.

The storyboard is a comic-like illustration, where each panel represents a
particular scene in the animated cartoon or movie. Each scene consists of an
action, a dialog and a camera angle.

The Storyboard Pro c©provides a simple and intuitive interface for creat-
ing and visualizing storyboards. Beside importing the script and adding
captions, users can easily import, draw, rearrange and modify panels. Each
panel represents a single action i.e. a single image.

Figure 2.8: Storyboard Pro user interface. The interface consist of different toolbars, stage
view (containing stage specific tools, a drawing area and the layer tabs), panel
view (displaying different captions and information related to a current panel),
and thumbnail view (displaying all the panels in the project) [2]. (Source: [20])

8

2 Related Work

Figure 2.9: Storyboard Pro c©overview of the project. Panels are shown as thumbnails and
can easily be rearranged by drag action [2]. (Source: [2])

An animatic is an animated storyboard. The Storyboard’s timeline view
provides all the necessary tools for creating an animatic. Users can assemble
timing of the scene’s visuals and sounds by changing the duration of a
single panel, modify size and camera position, or add camera movements,
transitions between the scenes and the soundtrack to the timeline. Users can
also control the playback of selected panels or the entire storyboard [2].

9

2 Related Work

Figure 2.10: Storyboard Pro c©timeline view. Creating animatics(Source: [2])

10

2 Related Work

2.3 Autodesk Sketchbook v7 c©: Flipbook feature

Autodesk SketchBook c©is a professional sketching and painting software.
It provides a very powerful and intuitive user interface with a variety of
tools, allowing artists to easily focus on artistic tasks at hand.

Figure 2.11: Autodesk SketchBook c©graphical user interface (Source: [1])

The flip book feature allows users to enter the animation mode, where they
can create a traditional flip book animation within the SketchBook interface.
The only difference between the SketchBook and the animation mode is that
the layer editor has been modified, containing a fixed number of four layers
per frame and a timeline.

Users can either draw a sequence of images or import an existing sequence
from software such as Maya or 3DMax.

The animation mode focuses on animating a single scene. Each animation
frame (a single image) consists of four layers: foreground, midground,

11

2 Related Work

Figure 2.12: Autodesk SketchBook c©animation mode (Source: [1])

background and background color. Users can neither add new layers nor
delete existing ones. The foreground and midground layers are the only ones
which can be animated, while the background layer is a static image which
cannot be changed. As a consequence, it stays the same throughout the
animation. In general, the background color layer only sets the background
color of the scene.

The timeline tool allows users to add, duplicate, move, rearrange, clear or
delete key frames. In addition, it enables the user to insert empty frames,
scrub through or playback animation, turn ghosting on and off and set the
number of frames ghosted, as well as set the playback range.

12

3 Designing For Interaction

Design - verb
: to plan and make (something) for a specific use or purpose
: the arrangement of elements or details in a product or work
of art

– Merriam-Webster dictionary

Interaction - noun
: mutual or reciprocal action or influence
: the act of talking or doing things with other people
: the action or influence of things on one another

– Merriam-Webster dictionary

Interact - verb
: to talk or do things with other people
: to act together : to come together and have an effect on each
other

– Merriam-Webster dictionary

13

3 Designing For Interaction

This chapter focuses on interaction design. In its essence, interaction design
is about building a dialog between a human and an artificial entity. It is
about creating a unique and satisfying user experience, through products
and services that are easy, effective and pleasurable to use.

Beginning by examining what interaction actually is, this chapter looks at
its building blocks or ”raw materials” and characterizes good interaction
design. Later, the four major approaches to interaction design are described,
namely user-centered design (UCD), activity-centered design, system design
and genius design. Finally, the importance of the users is emphasized and
the four basic activities of interaction design are introduced.

14

3 Designing For Interaction

3.1 What Is Interaction Design?

”Interaction design is the art of facilitating interactions between humans through
products and services.” [23]

The key to interaction design lies in behavior patterns. Designing a behavior
tends to be a tedious task since it requires a deeper understanding of the
fluidity of interaction, the fluidity which is described through motion, space,
time, appearance, texture and sound [23].

Motion is the basis of all interaction. It is expressed though our unique
behavior patterns, which are influenced by emotion, attitude, culture, per-
sonality and context. Thus, human conducts tend to vary, which is evident
in even the simplest of actions, such as talking (e.g. some people use hand
gestures others do not) or walking (e.g. pace) [23].

Motion takes place in a space. More specifically, space provides the context
for an interaction. In interaction design this context is often a combination
of physical and digital space. For example swipe gestures (physical space)
when viewing images on our smart phone enable us to see the previous or
the next image on our screen (digital space) [23].

Naturally, movement through space requires time. The amount of time it
takes to process a single task is directly connected to the complexity of the
task at hand. Pressing a single button, for instance, can take less than a
second, whereas downloading a game via Steam R© can take up to a couple
of hours, depending on the broadband speed [23].

Appearance provides affordances , meaning that ”the qualities or properties
of an object define its possible uses or make clear how it can or should
be used”. Merriam-Webster A physical object is described by properties
such as size, shape, weight, color, proportion and structure. A button, for
example, has affordance of pushing because of its shape and movement
capability. Affordances are contextual and cultural. We know, for instance,
how to push buttons because we have pushed at least one before, but a
person who sees chopsticks for the first time may be confused and unable
to use them properly [23].

15

3 Designing For Interaction

Texture describes how an object feels when being held. Thus, the surface
and the feel add key features to a devices’ appearance. In the world of
mobile devices, vibration (vibrating alerts) and heat would be examples of
texture.

Even though sound is only a minor element of interaction design,it provides
audio information, which can enhance the overall user experience. For
instance, audio indication when locking the phone can reassure the owner
that the phone has been locked properly, without the additional glance at
the screen.

These six elements represent the building blocks of interaction design. It is
up to designers to manipulate them in order to create interactivity. But the
fluidity of interaction cannot be accomplished by mere manipulation. To
achieve a good quality, interaction design needs to reflect some or all of the
following adjectives [23]:

Trustworthy. The product or service performs as expected and promised by
the manufacturer or provider. We are certainly not going to take a bungee
jump with suspiciously worn out cords, nor use a mobile phone with the
battery life of half an hour. People are less likely to engage with things that
could injure them, break lightly, leak their personal data or betray their trust
in any way. Trust is the basis for deeper exploration, as well as identification
with the product or service.

Appropriate. A product or service should be appropriate for the culture,
situation and context in which people live in. Different cultures provide
different contexts. For instance, the Japanese and Koreans are advanced
mobile phone users and can use expert features that people in many other
countries would struggle with. The Europeans use the metric system: meters,
grams, liters, Celsius, etc., whereas Americans use the system of imperial
units, such as yards, miles, pounds, Fahrenheit, etc.

Professor Geert Hofstede conducted one of the most comprehensive studies
on how values in the workplace are influenced by culture. He defined five
dimensions [13]:

• Power distance. The first dimension describes how a society handles
inequalities among people or ”The extent to which the less powerful

16

3 Designing For Interaction

members of institutions and organizations within a country expect
and accept that power is distributed unequally.”
• Individualism versus collectivism. This dimension describes the ”I”

versus ”We” in society. ”Individualism pertains to societies in which
the ties between individuals are loose: everyone is expected to look
after him- or herself and his or her immediate family. Collectivism as
its opposite pertains to societies in which people from birth onward
are integrated into strong, cohesive in-groups, which throughout peo-
ple’s lifetime continue to protect them in exchange for unquestioning
loyalty.”
• Masculinity versus femininity. The third dimension focuses on the

influence of gender roles on society. According to Hofstede, ”A society
is called masculine when emotional gender roles are clearly distinct:
men are supposed to be assertive, tough, and focused on material
success, whereas women are supposed to be more modest, tender, and
concerned with the quality of life. A society is called feminine when
emotional gender roles overlap: both men and women are supposed
to be modest, tender, and concerned with the quality of life.”
• Uncertainty avoidance. This dimension describes society’s tolerance

towards ambiguity and uncertainty or ”The extent to which the mem-
bers of a culture feel threatened by ambiguous or unknown situations”
• Long-term versus short-term orientation. The last dimension concen-

trates on how much society values the future over the past and present.
”The long-term orientation stands for the fostering of virtues oriented
toward future rewards - in particular, perseverance and thrift. Its op-
posite pole, short-term orientation, stands for the fostering of virtues
related to the past and present - in particular, respect for tradition,
preservation of ”face,” and fulfilling social obligations.”

On balance, understanding the context, including cultural, technological
and emotional, in which a product or service operates, is essential for a
good design [23].

Smart. A product or service needs to be smarter than the users. Products
and services are intended to assist humans, therefore, they have to be able
to take as much workload off the users as possible [23].

Responsive. Regardless of whether referring to people, products or services,

17

3 Designing For Interaction

there is nothing more annoying and frustrating than unresponsiveness.
Unresponsiveness is simply rude. Users need to know that a product or
service ”heard” them and that it is working on the task given by the user.
If action is taking time to compute, a good design provides mechanism to
inform users that a task at hand is being processed. For instance, an indicator
telling users how many minutes/seconds it will take until a certain task is
completed [23].

The responsiveness of digital products can be divided in four categories [23]:

• Immediate. The product or service responds in 0.1 seconds or less.
Users consider response as immediate, i.e. with no perceived interrup-
tion.
• Stammer. The product or service takes between 0.1 and 1 second to

complete. Users notice delay, but if this type of behavior is not frequent,
they will probably overlook it. Otherwise the product or service will
be perceived as ”laggy ”.
• Interruption. The product or service does not respond for more than

1 second. Users perceive the task as being interrupted, and shift their
attention from the task to the product or service. For instance, if
submit action takes time to compute without any indication, users will
start to wonder if the product or service is malfunctioning. Repeated
interruption could lead to disruption.
• Disruption. The product or service is unresponsive for more than

10 seconds. Users perceive the task as completely disrupted. In such
cases, a simple indication, for example a progress bar, would diminish
concerns greatly.

Clever. A clever product or service is able to predict the needs of its users
and fulfill those needs in pleasing ways [23].

Ludic. A ludic or playful product or service invites its users to ”play”
without serious consequences. In this way, users are able to explore the
product or service within a safe environment. The ability to undo previous
actions, for instance, would reinforce playfulness [23].

Pleasurable. A product or service has to be pleasing, otherwise it will only
be used when necessary. This can be accomplished in two ways: aestheti-
cally and functionally. Even though people are arguably more forgiving if

18

3 Designing For Interaction

something is pleasing to the eye, users are still dissatisfied if a product or
service is not doing what it is supposed to do, no matter how sophisticated
its design might be. Therefore, products need to be both: pleasing to the eye
and efficient [23].

3.2 Four Approaches of Interaction Design

The four major approaches in finding a solution to interaction design prob-
lems are [23]:

1. User-centered design (UCD)
2. Activity-centered design
3. System design
4. Genius design

There are a few assertions that apply to all these approaches [23]:

• They can be applied to different products and services, from websites
to devices.
• Applying one of these approaches can improve even the most prob-

lematic situation.
• The best designers tend to be those who can move between approaches

and/or combine them.
• An individual designer may tend to use one of these approaches more

than others. Even though one approach can seem more attractive
than others, it is important for interaction designer to know all four
approaches, because some problems may require different approaches
than the preferred one.

The four approaches will now be briefly examined.

3.2.1 User-Centered Design (UCD)

The user-centered design philosophy is based on the premise ”users know
best.” [23] Rather than requiring users to adapt in order to learn how

19

3 Designing For Interaction

to use it, a product or service is designed to support the goals, needs
and preferences of users, thus making the users the center of the design
process.

The goals disclose the intention of the users and play a central part in
the design process. It is up to interaction designers to provide the means
necessary for accomplishing these goals. The means, however, are again
described by the needs and preferences of users [23].

3.2.2 Activity-Centered Design

Unlike the User-centered design, which focuses on the goals and preferences
of the users, the activity centered design focuses on activities, i.e. a cluster
of tasks (actions and decision) that are performed for a specific purpose.
The purpose of an activity is not necessarily a goal, even though they may
overlap. For instance, when raking the leaves, the gardener may have the
goal to tidy the yard, but the purpose of using a rake is to collect the leaves.
In contrast, making tea has the same goal and purpose: to drink tea [23].

Activity-centered design is guided by activity, not by people doing the
activity. Therefore, the main purpose is to design solutions to help users
accomplish certain tasks, rather than to achieve a specific goal [23].

3.2.3 System Design

System design is simply a process of designing a system, i.e. a set of entities
(people, devices, machines and/or objects) that act upon each other. It is a
rigorous design methodology suitable for tackling complex problems [23].

The main focus of the system design are not users, but the context in
which users act. However, the goals and needs of users are not completely
disregarded. They are used to set the goal of the actual system [23].

20

3 Designing For Interaction

3.2.4 Genius Design

Genius design relies solely on the experience and the creativity of an in-
dividual designer. All design decisions are being made by the designer
himself/herself. The designers use their creativity and experience to deter-
mine wants, needs and expectation of users. Users, if involved, are usually
there to test the end product or service and validate the design concept. Rea-
sons for choosing this approach include a lack of resources or the inclination
to involve users in the design process [23].

Needless to say, this approach is recommended exclusively for experienced
designers [23].

Approach Overview Users Designer
User-centered
design

Focuses on user
needs and goals

Guides the de-
sign

Translates user
needs and goals

Activity-
centered design

Focuses on user
activity

Performs activi-
ties

Creates tools for
action

Systems design Focuses on the
parts of the sys-
tem - context

Sets goals of the
system

Assembles the
system

Genius design Relies on experi-
ence of designer

Validates design
concept

Makes all de-
sign decisions

Table 3.1: Overview of the four interaction design approaches (Saffer 2006)

3.3 The process of Interaction Design

Interaction design is a practical and creative activity with the aim of devel-
oping products or services that support users needs, wants and goals, its
main purpose always being to establish a dialog between a person and an
artificial entity.

Every design discipline includes three fundamental activities [22]:

1. Understanding the requirements.

21

3 Designing For Interaction

2. Producing a design that satisfies those requirements.
3. Evaluating the design.

The interaction design is guided by the wants, needs and goals of users. The
users are involved and are directing the development of the design itself. To
completely integrate users in the design process, interaction design extends
the above mentioned list by one extra activity: prototyping. Prototyping
allows users to interact with a design before it reaches its end stage [22].

The following chapter is going to explore the significance of user involve-
ment and the four major activities of interaction design.

3.3.1 The Importance of Users

Interaction design focuses on the actual users of the products or services,
but why is it so important to involve the users in the design process?

Often, when eliciting requirements, developers talk to higher level managers.
Even though their input provides significant information about the system,
their perspective is often very different to the end users’, i.e., the users who
interact with the product or service on a regular basis [22]. For instance,
several years ago, I worked on a project, where all design decisions were
made by higher level managers. These decisions were based on their own
understanding of the underlying workflow. The actual users of the system
were completely left out of the decision making process. Once the first
version of the software was deployed, there was a lot of confusion. It turned
out that the workflow the managers were describing was different to the
one being actually used. Therefore, the higher level managers might provide
a significant insight to the problem that interaction design is trying to solve,
but unless they are performing the task on a daily basis, their perspective
will be very different from someone who is really using the product or
service.

Involving users in design development plays an important role in creating
usable products and services, not only in terms of functionality but also
with reference to expectation management and ownership, two equally
important aspects [22].

22

3 Designing For Interaction

Expectation management ensures that the expectation of users, with reference
to the product or service, is realistic. The goal is to avoid misrepresentation
of a product or service by making empty promises, which could lead to
frustration and complete rejection of the product or service [22]. Unfortu-
nately, making profit is often perceived as more important than meeting
users’ expectations. This often leads to exaggerated marketing strategies.
However, if a product or service is below users’ expectations, sales will drop
and the product or service will no longer be used.

An early involvement of users in the development process has two advan-
tages [22]:

(A) The users can see from an early stage on what the product or service
is capable of.

(B) The users can understand better what to expect once the final version
of a product or service is available.

Sense of ownership rises from the feeling that users have contributed to the
development of a product or service. The users are more likely to support
the product or service in whose development they were personally involved
in [22].

3.3.2 The four basic activities of interaction design

The process of interaction design involves four basic activities [22]:

1. Establishing requirements
2. Designing alternatives
3. Prototyping, or creating an interactive version of design
4. Evaluating

Establishing Requirements

The basis of all engineering is answering the questions who, what, why and
how. The establishing requirements has two aims [22]:

23

3 Designing For Interaction

1. Understanding as much as possible about the users, their activities
and the context in which the product will be used.

2. Based on the understanding of the users and the context they work in,
one can produce a set of requirements for the product or service.

This can be achieved in two individual steps [22]:

1. Determine the target user group and their needs, preferences and
goals.

2. Establish requirements that form a sound basis for design, using the
information obtained in step one.

What are requirements?

”A requirement is a statement about an intended product that specifies what it
should do or how it should perform.” Rogers et al. That being said, it is vital for
interaction design to make the requirements specific, unambiguous and as
clear as possible [22].

In general, interaction design involves a wide range of requirements, which
broadly can be divided in the following categories [22]:

Functional requirements - fundamental requirements which describe what the
product or service should do.

Data requirements - describe in detail the data that a product or service is
going to handle.

Environmental requirements - describe the context in which the product or
service will operate. There are four aspects to consider when establishing
environmental requirements:

1. Physical environment - light, noise, movement etc., i.e. everything
concerning physical interaction with interface.

2. Social environment - social aspects, such as collaboration and coordi-
nation.

3. Organizational environment - organizational hierarchy and user sup-
port.

4. Technical environment - everything regarding the technology that is
being used.

24

3 Designing For Interaction

User characteristics - capture the essence of the target user group, everything
from cultural background, nationality, preferences, education, mental and
physical disabilities to user expertise: novice, expert, casual or frequent
user.

In order to capture the essence of targeted user group, users are often
transformed into personas. Personas is a profiling technique that models
the typical users of the product or service. Persona represent a fictional
person who captures the most important aspects of the targeted user group,
allowing designers to focus more precisely on the target users.

Each persona has a name, a biography, hobbies and unique goals. The goals
represent the objectives persona wants or needs to fulfill by using product or
service. Beside goals, the descriptions of personas include behavior patterns,
attitudes and environment.

During design processes, a small set of personas is required to achieve
the needed diversity, but the designer should always choose one primary
persona, who represents a large section of the target group.

Usability goals and user experience goals - identify requirements that meet
usability and user experience goals.

Data Gathering for requirements

To establish or clarify existing requirements, interaction designers need to
collect sufficient, relevant and appropriate data They need to cover a broad
spectrum of issues, such as the tasks that users are currently performing,
their goals, the context in which tasks are being performed and the rationale
for the current situation [22].

The common methods for data gathering are [22]:

• Interviews - asking users about their goals and tasks directly.
• Focus groups - gathering users for a discussion about a certain product

in order to learn their wants, needs and goals.
• Questionnaires - used to get initial response about a product or ser-

vice.
• Direct observation - gaining insight about tasks and the context in

which these tasks are performed by observing users directly.

25

3 Designing For Interaction

• Indirect observation - using diaries and interaction logging to gain
insight into tasks and the context in which they are executed.
• Studying documentation - gathering activity data by reading manuals

and other documentations.
• Researching similar products - looking at similar products in order

to develop alternative designs or to induce requirements.

Task Description

Task description is used to envision the product or service that is being
developed. The common description types are scenarios, use cases and
essential use cases (also known as task cases) [22].

This section introduces two description types that are used in this thesis:
the user story and the scenario.

The user story is a short, simple and goal-oriented one-sentence statement
that describes a feature that a user would like to have. They are usually
written on a small index card and have the following structure:

As a <type of user>, I want <some goal>so that <some reason> [21]

”Scenarios are prototypes built of words.”Saffer A scenario is a story about
fictional users (personas) using a product or service to achieve their goals.
The purpose of such a story is to explore the contexts, needs and require-
ments.

An example of a Pocket Toon scenario:

Sophie just finished her toon. She has been drawing for hours now, bringing her
character to life with every page. She even added some music for dramatic purposes.
It is a half-minute tale about her cat Tiger and his mischievous ways. As she plays
the video, she notices that one of the scenes requires small adjustments. She opens
the animation’s ”filmstrip” screen, selects the scene and corrects it. She plays the
video again. It is perfect and ready for sharing with her friends.

26

3 Designing For Interaction

Designing Alternatives

Once requirements have been established we begin with the design activ-
ity. The design activity is an iterative three-step process: design-evaluate-
redesign.

There are two types of design: conceptual design and physical design.

Conceptual Design

Conceptual design is a process of translating previously defined require-
ments into conceptual model. The conceptual model contains all the con-
cepts necessary to understand what a product is capable of and how to
interact with it. Which concepts are going to be used depends on the tar-
get users, type of interaction, type of interface, terminology, metaphors,
etc [22].

There are four key guiding principles [22]:

1. Keep an open mind without forgetting the users and their context
2. Discuss ideas with users as much as possible
3. Use low-fidelity prototyping to reduce feedback time
4. Iterate

The first step when working with conceptual design is getting familiar with
the data collected about users and their goals, in order to try empathizing
with them. By doing so, the designer gets a better understanding of the
desired user experience. Needless to say, at this stage, all design decisions
have to be technologically feasible [22].

Next, the designer develops an initial conceptual model. There are a couple
of approaches that the designer could consider at this stage, namely [22]:

Interface metaphors help users to understand the product or service by
combining familiar and new concepts. An example of interface metaphor
would be a magnifying glass to zoom. Erickson proposed a three-step pro-
cess for generating a good interface metaphor: identify functional requirements,
understand user problems and generate metaphor.

Interaction types determine which type of interaction is provided by a
product or service. There are four different types of interaction: instructing,

27

3 Designing For Interaction

conversing, manipulating and exploring. It is up to the designer to determine
which type or combination of types suit the product or service best.

Interface types highlight some aspects of a product or service. Experiment-
ing with different interfaces at this stage is encouraged, because the designer
will be able to observe different aspects of a product or service. This could
lead to alternative designs.

And finally, before the designer can assemble a prototype, the initial concep-
tual model needs to be expanded by answering the following questions:

1. What functions will the product perform?
2. How are the functions related to each other?
3. What information needs to be available?

Physical Design

The physical design focuses on physical or visual aspects of the product
or service such as colors, sounds, images, materials, interface layout, icon
design and so forth [22].

Prototyping

Prototypes are interactive draft versions of a product or service. In essence,
they are used for simulation. They can be of low or high quality. The
purpose of prototyping is to explore some characteristics of the product
or service, thus emphasizing one set of characteristics over another. At
first glance, this may seem very restrictive, but that is not the case. When
designers prototype one set of characteristics, they present one possible
design approach. Designers can use these different approaches later, in order
to experiment and see what works best for the users. Often, multiple well-
working prototypes are combined into a single hybrid-prototype, capturing
the best of all designs [23].

There are three types of prototype [23]:

Paper prototypes. These are low-quality prototypes, which are very simple,
cheap and quick to produce or modify. They are used to quickly demonstrate
the workings of a product or service. Each piece of paper represents a

28

3 Designing For Interaction

different aspect of the design. For instance, each piece of paper can be
used to demonstrate different screens of a mobile application. With each
interaction, e.g. pressing a button, users can either update the current screen
or go to different a screen.

Digital prototypes. Digital prototypes are easy to distribute and can be of
either high or low quality. There are two kinds of digital prototypes:

• Low functional. There is no real interaction and users are only able to
click through images - very similar to paper prototypes.
• High functional. Users are able to interact with the product or service.

In this way, the prototype is very similar to the final version of a
product or service. The drawback of high quality prototyping is that
the prototypes often get mistaken for real products or services.

Physical prototypes. This type of prototypes can be as small as a control
and as large as rooms. Physical prototypes can be of high quality and low
quality. For instance, a prototype can be made of exactly the same material
as the final product, or it can be made of alternative materials, such as wood
or clay.

Evaluating

Evaluation is a process of collecting information about user experience in
order to determine the usability and acceptability of design [?]. The main
purpose of evaluation is to expose design flaws. Once exposed, the flaws
will be dealt with in the redesign process, which again will be included in
the evaluation process and so on. This is due to aforementioned iterative
nature of the design: design-evaluate-redesign, the purpose being to achieve
user approved quality.

The evaluation can be classified in three categories [22]:

1. Controlled settings involving users. Evaluates hypotheses or behav-
iors. All activities are controlled by evaluators. The evaluators decide
which task users should perform, as well as its duration and the set-
tings of its execution. The main methods are usability testing and
experiments.

29

3 Designing For Interaction

Quality Advantages Disadvantages
Low quality Lower development cost

Evaluate multiple de-
sign concepts
Useful communication
device
Address screen layout is-
sues
Useful for identifying
market requirements
Proof-of-concept

Limited error checking
Poor detailed specifica-
tion to code to
Facilitator-driven
Limited utility after re-
quirements established
Limited usefulness for
usability tests
Navigational and flow
limitations

High quality Complete functionality
Fully interactive
User-driven
Clearly defines naviga-
tional scheme
Used for exploration
and test
Look and feel of final
product
Serves as a living speci-
fication
Marketing and sales tool

More expensive to de-
velop
Time-consuming to cre-
ate.
Inefficient for proof-of-
concept designs
Not effective for require-
ments gathering

Table 3.2: High vs Low Quality Prototyping (Rogers et al. 2011)

2. Natural settings involving users. Evaluates usage of a product or
service in the real world. Evaluators have little or no control over
activities. The main method is the use of field studies.

3. Any settings not involving users. The interface flaws are detected by
consultants and researchers. The range of methods includes inspec-
tions, heuristics, walkthroughs, models, and analytics.

30

4 Pocket Toon Design Process

This chapter describes the design process of Pocket Toon. First, the general
approach of Pocket Toon, with reference to interactive design problems is
explained. Second, the analog flip book and Nintendo’s Flipnote StudioTM

are analyzed, and their existing features are used as a basis for the features
of Pocket Toon. These features are refined by personas, user stories and
scenarios. The conceptual design and the grouping of requirements are
based on the information acquired in the analysis of existing flip book
applications. Third, the process of determining the features of the prototype
is outlined. Finally, the feedback of a small group of test users will be
evaluated and used for further considerations concerning the conceptual
design and the prototype.

31

4 Pocket Toon Design Process

4.1 Design development process

The previous chapters discussed interaction design, its basic building blocks
or ”raw materials”, as well as qualities of good design. Further, the four
approaches of interaction design and the importance of the user have
been highlighted. Moreover, the four basic activities of interaction design,
namely establishing requirements, designing alternatives, prototyping and
evaluating, have been defined.

Using this body of theoretical background on interaction design, the fol-
lowing chapter is going to apply interaction design to the smart flip book
Pocket Toon and describes related design problems.

The first step was to decide on a target user group. In the case of Pocket
Toon, it was decided to focus on teenagers, i.e., users from 13 to 19 years, as
this is also the target user group on Pocket Code on which Pocket Toon is
based. The chosen platform was Android, simply because Pocket Code’s
Android version is the only one already released to the public. In the future,
once Pocket Toon’s Android version and as Pocket Code’s versions for other
platforms, e.g., iOS, will been released, it is planned to develop also versions
of Pocket Toon for other platforms so that users can share and remix their
creations without having to worry about supported platforms.

In order to solve the design problem, it was decided to take a slightly
modified genius design approach. In this context, slightly modified means
that users were involved before the final version of the app was designed.
The needs, preferences and goals of the users were defined by the designer
without user-involvement in order to work on the app. However, during the
first design iteration, the prototype was tested by a small group of interns,
whose age correlated with the target user group. The reason for choosing
the genius design approach was due to the fact that I, the designer, have
been an end user of similar applications for over a decade, i.e., also when I
was a teenager myself, and that my interests thus were and still are similar
to those of the targeted audience.

After choosing the approach, the requirements for the app were decided on.
As mentioned before, the design development process had minimal user
involvement, therefore it was up to the designer to determine the needs,

32

4 Pocket Toon Design Process

preferences and goals of the users. The first step was to examine the actual
analog flip book, which has been around since 1869. After evaluating the
analog version, the existing software solutions were analyzed. Nintendo’s
Flipnote StudioTM, which has already been discussed in Chapter 2, turned
out the be a subtle basis for the Pocket Toon application.

There are two reasons for this:

• Nintendo’s Flipnote StudioTM is a digital flip book.
• It gained a lot of popularity in a short amount of time, which suggests

that its interaction design is comparatively attractive to users.

Finally, personas, user stories and scenarios were created, which were used
in order to guide decisions in the design process.

In essence, establishing requirements for the application was a three step
process:

1. Analysis of analog flip book interaction.
2. Study of Nintendo’s Flipnote StudioTM which accordingly inspired

the Pocket Toon design.
3. Deciding on the target audience, and creating personas, user stories

and scenarios, in order to improve user-related design decisions.

The above mentioned analysis was used to build the conceptual design.
To form features, requirements were defined and grouped, based on their
functionality. Each feature has been illustrated with interaction schematics.

Once the conceptual model had been established, the agile approach was
applied to prototyping:

1. The features were ranked based on their importance.
2. Based on this ranking it was decided which features were going to be

designed and implemented first.
3. The prototype for selected features was designed.

At this stage, an analysis of the Pocket Family, i.e., Pocket Paint and Pocket
Code, has been conducted for the following reasons:

33

4 Pocket Toon Design Process

1. Reusability. The task was to determine if these apps implement some
of the already established features.

2. Familiarity. Both apps have a solid user base. By reusing already
familiar concepts, the learning curve of the users will be much shorter,
since they will be working with something they are already familiar
with – something they already ”know”.

3. Compatibility. Users will be able to open flip books created with
Pocket Toon in Pocket Code. Thereby, they will be empowered to
extend the functionality of their creations with, for instance, more
interactivity. This also provides a way towards more advanced coding
concepts for users.

The prototype was tested with interns, whose age correlated with the
target group. The testing provided valuable feedback, which inspired some
additional research and led to a refinement of the design.

The refined prototype was used as the basis of the software implementation.
Based on previous functionality and the analysis of the exisiting Pocket
family of apps, it became obvious that Pocket Paint could provide the
complete drawing functionality. Thus, it was decided to completely integrate
it in Pocket Toon. This is highly beneficial because:

(A) There is no need to ”reinvent the wheel” by implementing yet another
paint editor.

(B) The benefit of reusing the concepts that are familiar to 200,000 users
(more than 2,000 users reviewed Pocket Paint in Play Store as of April
2016) is that if users get interested in Pocket Toon, they will only have
to learn a few new features.

(C) Using the already existing user basis enables a broader adoption.

However, the analysis also revealed that:

(A) Pocket Paint is missing one crucial feature – layers. Layers allow an
artist to separate different elements of the image. With layer function-
ality, users could separate foreground and background elements of
flip book pages. In addition, this functionality could be used to allow
tracing of previous images.

34

4 Pocket Toon Design Process

(B) If Pocket Paint is integrated into the Pocket Toon app, there is also a
need for a library, the reason being that designer would reuse the core
functionality of Pocket Paint but add designs and interaction specific
to Pocket Toon..

Therefore, the software implementation is a three step process:

1. Implementation of missing feature in Pocket Paint, i.e., layers.
2. Refactoring Pocket Paint into a library.
3. Implementing Pocket Toon.

Due to the limitations of the thesis’ scope, it was not possible to fully
complete all three steps. The implementation of the layers, however, was
successful. In order to create the library, Pocket Paint had to be refactored,
completely separating the core functionality and GUI. This turned out to be
a very complex task, because the current implementation did not support
the library requirements. Thus, Pocket Paint has been prepared to be used
as a basis for Pocket Toon, and the first version of Pocket Toon has been
conceptually designed, but the implementation of Pocket Toon exceeded
the scope of this thesis.

35

4 Pocket Toon Design Process

4.1.1 Establishing the Interaction Design Requirements

Analog Flip Book

When considering the functionality of the analog flip book, the following
activities come to mind: One can:

1. Turn pages and move forward or backward, similar to a regular book.
2. Draw on each page or add images.
3. Add a new page to the flip book animation.
4. Remove the pages one does not need anymore.
5. Disassemble the flip book into pages.
6. Rearrange the pages.
7. Flip the pages at a different speed, thus creating the animation.

Figure 4.1: Analog flip book – can be made with paper and staples.

36

4 Pocket Toon Design Process

In order to gain an understanding of the needs, preferences and goals of
the users, the functionality has to be translated into user stories. In addition,
one has to follow interaction reverse engineering, starting by observing the
end product and its interaction. Later the needs, wants and goals of the
users are taken under consideration.

Thus, the following user stories were extracted as a basis for the work on
the application described in this thesis:

As a flip book enthusiast, I want be able to flip forward so that I can either see the
next drawing or get to the next blank page.

As a flip book enthusiast, I want be able to flip backwards so that I can see the
previous drawing(s).

As a flip book enthusiast, I want be able to draw on a blank page so that I can create
one frame of my animation.

As a flip book enthusiast, I want be able to add an image the size of my flip book
page so that I can create one frame of my animation.

As a flip book enthusiast, I want be able to add blank pages so that I can expand my
animation.

As a flip book enthusiast, I want be able to remove pages I do not need anymore so
that I can refine my animation.

As a flip book enthusiast, I want be able to disassemble my flip book so that I can
get an overview of all the pages I have created so far.

As a flip book enthusiast, I want be able to rearrange my flip book pages so that I
can refine my animation.

As a flip book enthusiast, once the flip book is assembled, I want be able to flip the
pages at different speeds so that I can create an animation.

This list established the first set of functionality requirements for a flip
book’s digital counterpart.

37

4 Pocket Toon Design Process

Animation Software

Chapter 2 provided a rough overview of Nintendo’s Flipnote StudioTM. This
section analyzes its features in greater detail and describes which features
were selected to be included in Pocket Toon, thus refining and expanding
the first set of functionality requirements.

After being started/opened, the Flipnote Studio welcomes users with the
following screen:

Figure 4.2: Flipnote StudioTMmain menu

Users can either view previously created flipnotes (gallery feature), create a
new flipnote or visit the Flipnote Hatena site to review flipnotes of other
users or embed their animations in other web pages.[26] Unfortunately, the
Flipnote Hatena service was terminated on May 31, 2013. As a consequence,
its features could not be analyzed, and their analysis thus is not part of this
thesis.

Beside allowing users to create new flipnotes, as well as save them in the
gallery, Nintendo’s Flipnote StudioTMpermits users to share their works and
review the animations of others, thus incorporating a social factor. It is this
social interaction that the Pocket Toon application also aspires to.

38

4 Pocket Toon Design Process

When starting a new flipnote project, one can see the following features on
the screens:

Figure 4.3: Flipnote StudioTM: create a new flipnote.

The bottom screen provides a surface for drawing and stylus interaction,
while the upper screen provides the following pieces of information:

• Which options are bound to which arrow:

– Up – Tool menu
– Right – Create new page
– Down – Play animation

• Information page and tools that are being used:

– Whether the foreground or background layer is selected
– Which tool is currently being used
– Whether the current page should be copied to all following pages
– Whether the tracing 1 has been activated

1In traditional animation, the lightbox is used to create an accurate sequence of draw-
ings by tracing the existing drawing. The new paper sheet would be placed on existing
drawings, allowing the animator to trace the non-moving parts and slightly reposition
parts that should be animated, thus illustrating the movement. For example, in order to

39

4 Pocket Toon Design Process

• Flipnote page counter.

The user can access the tool menu either by pressing the up arrow or by
clicking the frog icon in the lower left corner of the interaction screen. Once
in the menu, the user can either select between different tools, quit to main
menu, send the flipnote to other users or save the flipnote.

Figure 4.4: Flipnote StudioTMtool menu.

As mentioned in Chapter 2, the tools can be grouped in five categories:

1. Playback tool. This tool is visible throughout the application. Users
can start the animation, adjust speed, add new pages, jump to first/last
frame and set a repeat flag.

2. Single page tools. This tool allows users to draw, modify foreground,
background and draft layer, copy drawings across other pages, modify
paper color, show/hide previous pages and select, as well as modify
different objects on a certain page.

animate characters, the key animator would first draw key poses of the characters on
different sheets. E.g., if a character waves, two key positions on two different paper sheets
are needed: the hand has to be positioned at the far right and on the second sheet at the
far left. Then the assistant animator would draw ”Inbetweens”, meaning the remaining
drawings that link the key poses. Taking the example of the waving character, this would
include all the hand positions between the two key positions – far right and far left [25].

40

4 Pocket Toon Design Process

3. Animation overview tool. The animation overview tool enables users
to rearrange pages, add, delete insert and copy/paste pages.

4. Camera tool. Users can import images from the system memory and
modify them by changing brightness and contrast.

5. Sound tool. The sound tool allows users to add music or sound effects
to the animation.

The process of creating a flipnote is very straightforward. Users can select
a tool they would like to work with and select the layer on which they
would like to draw – background or foreground. Once finished with the
current page, the users can create a new page by pressing the right arrow. If
the tracing option is activated, the users will see a transparent version of
previous drawings. The foreground and/or background can be copied on
the next pages by activating the ”Copy” option, otherwise they have to be
redrawn by hand each time a new page is added. Beside drawing, users can
also import images from the system memory into their flipnote pages.

In order to add music and sound effects to their animation, users have to use
the sound tool. Users can add sounds by recording them with the Nintendo
DSi microphone. There are two types of sounds that can be added to the
animation:

• Sound track – whose length corresponds to animation length.
• Sound effects – max. 3 sound effects, each max. 2 seconds.

The animation can be played either in the page edit mode by pressing the
down arrow, which allows users a quick review of the animation while still
working on it, or in the main menu by using the playback tool.

The last tool interesting for designing Pocket Toon, is the animation overview
tool, which allows users to fully review and edit their animation by adding,
deleting, copying or rearranging pages.

Compared to the analog flip book, overlaps concerning functionality can be
detected. However, the execution differs between the analog and the digital
version. Similar to the analog flip book, users are able to flip through pages,
draw foreground or background, insert images, add or delete pages, get an
overview of the animation, rearrange pages and play the animation. The

41

4 Pocket Toon Design Process

only new functionality regarding the creation of the flip book is adding the
sound.

The gallery allows users to revisit their previously created flipnotes.

Figure 4.5: Flipnote StudioTMgallery menu

The gallery offers filter functionality. The users can either view recently
saved flipnotes, search flipnotes by date or view all flipnotes that have been
stored on the device or an SD Card. They can also visit the Flipnote Hatena
sharing platform, or view previously grouped flipnotes by selecting one of
the icons on the right menu bar.

In the gallery overview, selecting a flipnote will automatically result in
starting the flipnote animation on the top screen. The flipnotes can either be
edited or viewed for details. In the Details view, users can delete a selected
flipnote, send it to other users, play it or assign a sticker to it (form of
labeling and grouping).

42

4 Pocket Toon Design Process

Figure 4.6: Flipnote StudioTMgallery overview.

Figure 4.7: Flipnote StudioTMDetails View.

43

4 Pocket Toon Design Process

After reviewing Nintendo’s Flipnote StudioTM, it was concluded that the
gallery and the possibilities of publishing and reviewing animations on
social platforms should be added to Pocket Toon as well. The users can
benefit greatly from social platforms since they can:

• Share their work with the rest of the community
• Learn from each other by providing feedback via comments and

ratings
• Find people who inspire them
• Exchange ideas and collaborate
• Specific to Catrobat’s Pocket family of apps:

– Pocket Toon users will be able to share their creations not only
on Pocket Toon’s sharing platform, since their creations are auto-
matically available on Pocket Code’s sharing platform as regular
Pocket Code programs, because the internal data format of Pocket
Toon animations is a subset of and upwards compatible to the
internal data format of programs created with Pocket Code. This
will allow Pocket Code users to extend animations originally
created with Pocket Toon with interactions such as tapping or
reactions to sensor input that cannot be realized with the means
provided by Pocket Toon alone. The intended goal is that, by
becoming aware of Pocket Code’s possibilities (e.g. they get no-
tified if their toons have been remixed by Pocket Code users),
Pocket Toon users might become interested in learning more
advanced concepts of programming and thus motivated to start
using Pocket Code themselves in order to create interactive art,
animations, and game apps.

– Pocket Toon users could also contribute to collaboratively created
games by providing Pocket Code users with animations, which
the latter could then easily integrate in their own games.

Therefore, the following user stories have been added:

As a Pocket Toon user, I want be able to add music to my animation so that I can
portray the emotions of the scene better.

As a Pocket Toon user, I want be able to view all the animations I’ve created

44

4 Pocket Toon Design Process

so far, so that I can play or edit them again.

As a Pocket Toon user, I want be able to share my animations with other users
so that I can give and receive valuable feedback, e.g., in the form of reviews or
comments.

4.1.2 Personas

This section is going to present personas that were used in order to describe
the target audience. The personas method is a profiling technique that
models the typical users of the product or service. A persona represents a
fictional person who captures the most important aspects of the targeted
user group, allowing a designer to focus more precisely on the real needs of
one typical user as compared to the compound needs of an inhomogeneous
group of different users.

Each persona has a name, a biography, behavioral patterns, interests and
goals. The goals represent the objectives a persona wants or needs to fulfill
by using a specific product or service

Our primary persona is Sophie, a young artist whose dream is to become
a recognized mangaka – a japanese comic book artist. Sophie conveys her
emotions through pen and paper, i.e., she speaks through her art.

The second persona, Emily, is outgoing and very articulate. She likes hanging
out with her friends and capturing every precious moment with her camera.
She represents the more general audience assumed to be interested in the
Pocket Toon app.

45

4 Pocket Toon Design Process

Sophie

Figure 4.8: Sophie. She does not like to be photographed, so she draws a fast sketch of
herself.

Sophie is 13 years old and lives with her parents on the outskirts of the Graz. She is
attending the 3rd year of lower secondary school. Every morning, she takes a 45
minutes bus ride to school, but she does not mind, since she gets to see her friends,
especially her best friend Marie. She is interested in arts, music and all sorts of
creative endeavors, hoping that one day she will be a recognized mangaka (author
of manga – Japanese comics). In her free time, she plays piano, draws and reads
manga, watches anime, and pets her cat Tiger.

General Information
Programing experience: None
Smartphone: Samsung Galaxy S3

Daily usage: Approx. 4h/day
Favorite apps: Deviantart
Download Behavior: Good Play Store rating

Smartphone Behavior:

Sophie owns a smartphone for about a year. She mainly uses her phone to
take pictures of her drawings, edit her newly crafted artwork and post it
on social platforms such as Facebook, Instagram and Deviantart. Therefore,
she likes to try out different editing and drawing software. She even bought

46

4 Pocket Toon Design Process

a stylus. Sophie also uses WhatsApp to chat with her friends and make
appointments.

Her end goals:

• Wants to create art easily without reading complex manuals
• To publish her art and see what others think of it
• Wants to have fun, and drawing is fun to her

Emily

Figure 4.9: Emily

Emily is 16 years old and lives with her parents in Graz. She is attending the
2nd year of high school. Every morning, she meets with her friends and takes a 15
minutes walk to school. She likes hanging out with her friends and taking pictures
of their daily activities. She likes to print and pin these pictures to a board, right
above her desk, making a collage of her favorite memories. In her free time, she rides
her horse Chester.

General Information
Programing experience: None
Smartphone: Sony Xperia Z3 Compact
Daily usage: Approx. 5h/day
Favorite apps: Facebook, Instagram and WhatsApp
Download Behavior: Based on suggestions from friends

Smartphone Behavior: Emily owns a smartphone for about three years. She
mainly uses her phone to take pictures of memorable moments with her

47

4 Pocket Toon Design Process

friends and broadcast these experiences through Facebook, Instagram and
WhatsApp.

Her end goals:

• Wants to create ”moving photo collage” easily and be able to add
music to it
• Wants to publish her videos among friends
• Wants to have fun, while sharing her experience with others

4.1.3 User Stories and Scenarios

The user stories represent a short description of features the user would like
to have. They are usually described with a few keywords written on small
index cards. The goal is to have a short and simple description of a feature
told from the perspective of the user.

In the previous section, the following user stories have been collected:

As a flip book enthusiast, I want be able to flip forward so that I can either see the
next drawing or get to the next blank page.

As a flip book enthusiast, I want be able to flip backwards so that I can see the
previous drawing(s).

As a flip book enthusiast, I want be able to draw on a blank page so that I can create
one frame of my animation.

As a flip book enthusiast, I want be able to add an image the size of my flip book
page so that I can create one frame of my animation.

As a flip book enthusiast, I want be able to add an image the size of my flip book
page so that I can create one frame of my animation.

As a flip book enthusiast, I want be able to add blank pages so that I can expand my
animation

As a flip book enthusiast, I want be able to remove pages I do not like so that I can
refine my animation.

48

4 Pocket Toon Design Process

As a flip book enthusiast, I want be able to disassemble my flip book so that I can
get an overview of all the pages I have created so far.

As a flip book enthusiast, I want be able to rearrange my flip book pages so that I
can refine my animation.

As a flip book enthusiast, once the flipbook is assembled I want be able to flip the
pages at different speed so that I can create an animation.

As a Pocket Toon user, I want be able to add the music to my animation so that I
can portray the emotions of the scene better.

As a flip book enthusiast, once the flipbook is assembled, I want be able to flip the
pages at different speed so that I can create an animation.

As a Pocket Toon user, I want be able to share my animations with other users so
that I can give and receive valuable reviews.

This section is going to describe the user stories in greater detail. However,
before proceeding with the user description, the following points have to be
clarified:

(A) Sophie is the primary persona, therefore all the stories are told from
her perspective.

(B) The term animation will be replaced with toon, which is an informal
definition for the cartoon, which is also the explanation for the app’s
name Pocket Toon.

From a high-level view, the user stories can be grouped in four categories,
i.e., top stories:

1. Create New Toon
2. Continue Toon
3. Toon Gallery
4. Online Sharing Platform

The sections below will describe the stories for each category.

Create New Toon – As an artist I want to be able to create a new toon...

As an artist I want to be able to create new pages (frames).

49

4 Pocket Toon Design Process

As an artist I want to be able to draw or insert images into a new page.

As an artist I want to be able to draw or insert an image into the background.

As an artist I want to be able to draw or insert an image into the foreground.

As an artist I want to be able to use different drawing tools, as well as the camera.

As an artist I want to be able to select the size of drawing tools such as for the brush
eraser or the pen.

As an artist I want to be able to select the color with which I draw.

As an artist I want to be able to select objects I have drawn so far.

As an artist I want to be able to rotate selected objects.

As an artist I want to be able to move selected objects.

As an artist I want to be able to color closed surfaces with a fill tool.

As an artist I want to be able to completely undo my drawing actions easily.

As an artist I want to be able to completely redo my drawing actions easily.

As an artist I want to be able to delete the whole content of the current page and
start over.

As an artist I want to be able to view previous pages so that the movement of objects
on my current page is accurate.

As an artist I want to be able to hide previous pages so that once I got the movement
of objects, I can concentrate on the drawing.

As an artist I want to be able to hide the foreground so I can focus on the back-
ground.

As an artist I want to be able to show the foreground to see if the composition is
right.

As an artist I want to be able to view the background of my drawing to see if the
composition is right.

As an artist I want to be able to hide the background of my drawing so I can focus
on the foreground.

50

4 Pocket Toon Design Process

As an artist I want to be able to see all pages I’ve created so far.

As an artist I want to be able to insert a new page and edit it instantly.

As an artist I want to be able to edit a page instantly.

As an artist I want to be able to delete pages I don’t need anymore.

As an artist I want to be able to copy some of the current pages.

As an artist I want to be able to click/scroll through the pages, and reorganize them
to my liking.

As an artist I want to be able to see all pages I’ve created so far – to view my flipbook
animation.

As an artist I want to be able to change the speed rate of individual pages.

As an artist I want to be able to add a soundtrack to my toon.

As an artist I want to be able to add sound effects.

Continue Toon – As an artist I want to be able to continue where I left
off.

Toon Gallery – As an artist I want to be able to see all my toons.

As an artist I want to be able to play my toon.

As an artist I want to be able to edit my toon.

As an artist I want to be able to delete my toon.

As an artist I want to be able to make a copy of my toon.

As an artist I want to be able to publish my toon and share my artwork with
others.

Online Sharing Platform – As an artist I want to be able to share and view
toons online.

As an artist I want to be able to view toons created by others.

As an artist I want to be able to download toons created by others.

As an artist I want to be able to rate toons created by others.

51

4 Pocket Toon Design Process

As an artist I want to be able to comment on toons created by others.

As an artist I want to be able to receive comments related to my toon.

As an artist I want to be able to receive ratings on my toon.

As an artist I want to be able to add other toons to my favorites.

As an artist I want to be able to name my toon.

As an artist I want to be able to add a short description to my toon.

A scenario is a story about fictional users (personas) using a product or service to
achieve their goals.

The following paragraphs describe Sophie’s story:

Sophie is inspired. She’d like to make a small toon of her cat Tiger destroying the
Christmas tree’s decorations. This has been his favorite activity for years now. She
takes her phone, unlocks it and starts Pocket Toon. She selects the new toon option,
picks the brush, selects the color green and choses the background layer. She starts
drawing a Christmas tree. She switches between colors, brush sizes and tools, in
order to create a most glorious Christmas tree. There, it’s done. She creates a new
page, selects the foreground and starts drawing Tiger’s paw. He needs to enter the
scene slowly. Couple of pages later, he’s finally beneath the Christmas tree. Suddenly
she hears her mother calling for her. She closes the application, places her phone on
the table and runs downstairs.

Sophie is back in her room. She picks up her phone, unlocks it and restarts Pocket
Toon. This time she selects ”Continue”. She flips through her already created pages
to get herself reconnected. Finally, she creates a new page and continues drawing
Tiger climbing up a Christmas tree.

Sophie just finished her toon. She has been drawing for hours now, bringing her
character to life with every page. She even added some music for dramatic purposes.
It is a half-minute tale about her cat Tiger and his mischievous ways. As she plays
the video, she notices that one of the scenes requires small adjustments. She opens
the animation’s ”filmstrip” screen, selects the scene and corrects it. She plays the
video again. It is perfect and ready for sharing with her friends.

Sophie is on the bus on her way to school. Her best friend Marie is sitting next to
her. Marie asks Sophie about her thoughts on their favorite show which aired the

52

4 Pocket Toon Design Process

night before. Sophie says she forgot all about it because she was animating Tiger’s
Christmas activity. Marie wants to see the toon and jokes that the toon better be
good since last night’s episode was amazing. Sophie takes her phone out, unlocks it,
opens Pocket Toon and selects the gallery. She scrolls until she sees the title ”Oh,
Christmas tree”. She clicks on the toon and presses play. Suddenly the bus echoes
with Maries’ laughter.

4.1.4 Conceptual Design

This thesis describes the conceptual model through schematics, because it is
believed that schematics can capture interaction far better than words and
tables [12].

To begin with, the high-level schematic, which describes a complete appli-
cation interaction, is presented. Next, smaller schematics, representing the
lower-level concepts, namely the Gallery, Create Page, Toon Overview, Add
Sound and Online Sharing Platform, are introduced.

53

Figure 4.10: High-level schematics: Application interaction

Figure 4.11: Low-level schematics: Gallery

Figure 4.12: Low-level schematics: Create page view

Figure 4.13: Low-Level schematics: Toon overview

Figure 4.14: Low-Level schematics: Add sound

Figure 4.15: Low-Level schematics: Online sharing platform

4 Pocket Toon Design Process

4.1.5 Focusing on What is Important First

Up to this section, the requirements for Pocket Toon have been described.
Based on those requirements, the complete conceptual design was built,
visualizing interaction. The next step is materializing the app.

At this stage, it was decided to take an agile approach and apply the
following steps:

1. Break big problems down into smaller ones.
2. Focus on the really important points and forget everything else.

Through user stories, the main problem has already been broken into
smaller parts. With conceptual design, requirements have been grouped
into standalone entities, i.e. features, based on their functionality:

1. Gallery
2. Online Sharing Platform
3. Create Page View
4. Toon Overview
5. Toon Sound

The most important feature of a digital flip book is that the users are able to
create at least a flip book in the traditional sense, including the following
options:

1. Turn pages and move forward or backward, similar to a regular book.
2. Draw on each page or add an image.
3. Add a new page to the flip book animation.
4. Remove pages.
5. Disassemble flip book into pages.
6. Rearrange the pages.
7. Flip the pages at different speed, thus creating the animation.

As a consequence, the Create Toon Page View and Toon Overview are the
only two features that the first version of the Pocket Toon app is going to
have. The other three elements are going to be implemented in later versions
of the app.

60

4 Pocket Toon Design Process

4.1.6 Prototype and Evaluation

The prototype design process of this thesis included the following activi-
ties:

1. Review of Pocket Paint and Pocket Code
2. Creating the prototype

Pocket Paint provides a sophisticated basis for drawing activities. It has
all the functionality Sophie wishes for in a paint editor. She can work
with different tools and colors, adjust their properties, undo/redo her
actions, and import photos from her gallery or camera and edit them. Beside
functionality, Pocket Paint provides a simple and easy interaction. Both,
functionality and design concepts are taken under consideration, aiming at
benefiting from reusability and familiarity.

There were far less similarities between Pocket Toon and Pocket Code but
the analysis revealed that the Pocket Code’s player (interpreter) and some
IDE parts of Pocket Code could be candidates for reusability.

I used the Create Page View conceptual model to build a high-fidelity, low
function prototype. I built this prototype using InVision [14], an online
prototyping tool, and tested it with a very small group of interns, whose
age correlated with the target user group.

The test was conducted with a group of three interns. They were all girls
between the age of 14 and 19. They were asked to perform the following
tasks:

1. Go to Create Page View.
2. Select Tool.
3. Draw.
4. Show/Hide foreground.
5. Show/Hide background.
6. Copy content of the current page to all the following pages.
7. Go to next page.
8. Hide/Show tracing of previous page.
9. Play toon.

10. Go to Toon Overview.

61

4 Pocket Toon Design Process

11. Add new page.
12. Delete existing page.
13. Explain how they would rearrange pages.
14. Change settings of the toon such as speed.
15. Use Camera.

The following results were obtained through the test:

1. All three subjects found the ”Copy content of the current page to all
the following pages” task confusing. The icon used did not provide
the necessary clarification. It only added to the existing task confusion.

2. None of them found using swipe gestures to create new pages or
move forwards/backwards intuitive. They were all looking for some
kind of indicator such as an arrow, three dots to continue or dog ears,
suggesting that they could move to another page.

3. Two of them had difficulties turning tracing on and off, i.e. understand-
ing the purpose of the light bulb. When I later explained the lightbox
metaphor, they remarked that they would have needed something
more analogous to a real light bulb. As a consequence, additional
interaction has to be integrated.

4. One of the subjects suggested that I should change the Toon Overview
icon, because the chosen film strip is very similar to the gallery, result-
ing in confusion.

5. All three maintained that the design was simple and apart from the
previously mentioned problems, very intuitive.

6. Only one subject confirmed interest in using the app. The other two
had no interest in using it, but found it suitable for a younger audience
or art classes.

62

4 Pocket Toon Design Process

63

4 Pocket Toon Design Process

Figure 4.15: Pocket Toon: High-fidelity low functional prototype

64

4 Pocket Toon Design Process

Figure 4.16: Pocket Paint interface

First design iteration

Even though I conducted a test with a very small group of interns, the
result provided valuable feedback. I used this feedback in order to refine the
conceptual design schematics of Create Page View and Toon Overview.

Specific problems that needed to be solved was improving the flipping
through Pocket Toon pages. The interns told me that they were expecting
some kind of visual indicator for flipping the pages forward or backward.
The risk when solving this problem was cluttering the design with too
many visual elements. So, I decided to study Google’s Material design
guidelines [10] and winners of the Material Design Awards [9] for possible
guidance.

The solution to my ”flipping pages”-problem was to use arrows which
disappear as soon as users touch the drawing surface. I also decided to
add an animation effect to the right arrow button, transforming it to a plus
symbol as soon as the user reaches the last page. This decision was inspired
by the Evernote design [7], which has been recognized for its achievements
in design through the Material Design Showcase Award [9].

65

4 Pocket Toon Design Process

Figure 4.17: Evernote

The ”copy content of the current page to all the following pages”-functionality
was removed completely. I decided that the first version would only have a
single static background (similar to Autodesk Sketchbook v7 c©: Flipbook
feature) and if the users want to copy the foreground to multiple pages,
they would have to use the Toon Overview feature.

66

Figure 4.18: Pocket Toon: Create page view redesigned

5 Implementation

As outlined in Section 4.1., the software implementation can be described
as a three step process:

1. Implementation of missing feature in Pocket Paint (layers).
2. Refactoring Pocket Paint into library.
3. Implementing Pocket Toon.

Due to limitation of the thesis’ scope, only the first step was completed,
in other words, adding the layer feature to Pocket Paint. The refactoring,
however, turned out to be a very complex task, because of the restrictions of
the current implementation. Thus, the transformation into a library, which
demands a clean separation between GUI and Core, could not be realized.
However, in spite of the current limitations, I plan to continue contributing
in a leading role to the implementation of Pocket Toon together with other
members of the Catrobat team as part of the Catrobat free open source
software development efforts.

Therefore the last chapter of this thesis describes the layer implementation.

68

5 Implementation

5.1 Defining Layers

Layers represent a virtual stacking of transparent images, [16] where each
layer represents a separate image, whose content can be modified without
influencing any other layer in the stack. This is known as ”nondestructive
editing”. Changes made in one layer remain isolated from other layers [16].
For instance, Sam is on vacation in South Africa. He just took a picture of
the amazing wildlife and now wants to create a postcard with his personal
greetings on it in order to send it to his family and friends. He opens the
wildlife image with his favorite image editing software, which supports
layers. The image is automatically added to the first layer (often called
”Background” layer). Sam creates another layer on top of the Background
layer and adds his handwritten greetings to it. The greetings did not turn out
quite right, so Sam erases them. Even though the handwritten greetings are
gone, his wildlife image is still intact. This is due to the fact that the changes
made by Sam only affected the top layer, the ”foreground” layer. Sam tries
again. This time, his greetings are written perfectly but the position is a
bit off. Sam selects the layer with his greetings, moves it around, rotates it,
even scales it, until he finds a position that ”feels right”. He prints his post
card. Without a layer system, it would not have been possible to isolate and
modify separate elements of the image. The changes would have affected
the image as whole.

Layers can have many different characteristics depending on the software
solution and its implementation, the fundamental ones being [11]:

1. Opacity. Values lie between 0% (transparent) and 100% (completely
opaque).

2. Holes. Allow details of underlying layers to be visible when either
the image data of the higher-level or top layer has been erased, or the
higher-level or top layer is smaller than the layer beneath.

3. Ability to be merged (blended) with other layers.

69

5 Implementation

5.2 Pocket Paint and Layers Requirement

In order to extract implementation requirements, it is necessary to examine
the current state of Pocket Paint. The current implementation of Pocket
Paint provides the following features:

It supports a single image (Bitmap) only.

A Bitmap can be modified with several tools. The properties of a tool can be
adjusted, for instance, stroke size, color, etc.

Pocket Paint implements the command pattern. Each command describes
an interaction between a tool and an underlying Bitmap. The commands
are necessary in order to implement the Undo and Redo functionality.

The undo and redo commands are stored on two separate command stacks,
which are the property of the CommandManager. Every time users undo
their action, Pocket Paint moves a command from the Undo stack to the
Redo stack, wipes the Bitmap clean, and reuses the remaining Undo stack
commands to repaint the image. If the users decide to redo a previously
undone action, the action is moved from the Redo stack to the Undo stack.
Basically, Undo and Redo stacks mirror each other.

The users can save the modified image to their device’s file system.

The enhanced version of Pocket Paint modifies the basic functionality and
adds extra layer operations (add, remove, merge etc), namely:

1. Tools can only modify the Bitmap of the currently active layer. The
only exception to this rule is a crop tool, which resizes the whole
image.

2. The undo and redo actions apply to the layer(s) in which the respective
actions were taken. E.g., undoing a merge of two layers regenerates
the two original layers.

3. Support for the following layer operations:

a) Add layer.
b) Delete layer.
c) Merge layers.
d) Change opacity of the layer.

70

5 Implementation

e) Lock the layer.
f) Hide/show the layer.
g) Name layer.
h) Copy layer.
i) Move layer up or down in the list of layers, changing visibility

precedence.
j) Move layer to the top or bottom in the list of layers.

4. The users need to be able to save the image. Two possible solutions
are:

a) Merging all the layers (flattening the image) and saving it as png.
b) Maintaining layer structure.

5.3 Implementation

The implementation of the layers has been initiated three years ago by
several members of the Catrobat team but was far from being completed
and had stalled for several months before I started working on it.

Figure 5.1 shows the layer dialog, which provides the layer interaction. The
layers are stacked in a list. The upper layers have visibility precedence over
lower layers. The users can either add, delete, merge, or rename, layers,
change visibility, lock, as well as change layer opacity. They can also move
layers up and down the stack, thus changing their visibility precedence.

Therefore, the Layer Dialog has been implemented as follows:

Each layer object holds information about its opacity, name, visibility, lock,
and unique ID, in order to differentiate between layers and drawing sur-
face.

In order to create a drawing surface in Android, two components are
needed [4]:

• Canvas – which is an interface to the actual surface upon which the
graphics will be drawn – it holds the ”draw” calls [5].

71

5 Implementation

Figure 5.1: Pocket Paint: Layer Dialog

• Underlying Bitmap – which holds the pixels and upon which the
drawing is performed [5].

Therefore, the layer object needs to contain Canvas and its underlying
Bitmap.

The stack with layer objects is implemented using GridView. GridView
displays layers in a two-dimensional, scrollable grid. In order to perform
a stack manipulation (adding, removing, rearranging), the LayerAdapter,
which extends the BaseAdapter, was implemented1.

Once the layer basis has been established, the implementation of the remain-
ing features, which have been defined in Section 5.2., can begin.

1Notice that merge has not been mentioned, because merge is special version of add –
the properties of two selected layers are merged into new layer, after which selected layers
are removed. The new is then added to LayerAdapter.

72

5 Implementation

Figure 5.2: Pocket Paint: Layer Dialog Implemented

Tools can modify only the Bitmap of currently active layer

In order to adapt the tools to the layer implementation, it is important to
gain basic understanding of how the ”tool action”, for instance, drawing a
line, is executed in Pocket Paint.

The ”tool action” consists of two activities:

The first activity is executed on the drawing surface and is visible to the user.
The surface tracks finger motion of the user, for example, when the brush
tool is being used, the users will see the ”paint” trace on the screen, which
corresponds to their finger movement, without changing the underlying
Bitmap.

The changes on the Bitmap happen during the second activity. Section 5.2.

73

5 Implementation

illustrated that interaction between the Bitmap and the tool is described by
a command. The ”tool action” begins as soon as users touch the drawing
surface and ends as soon as they lift their finger from it. Every time users
perform a ”tool action”, the tool generates a new command, which is
then executed on the underlying Bitmap. Therefore, the commands are
responsible for Bitmap modifications.

The same activities apply to layers. The only difference is that the second
activity modifies the Bitmap of the currently selected layer. Nevertheless,
the drawing surface class, all tools and all commands classes needed to be
modified

The undo and redo actions apply only to the corresponding layer(s)

The modification of undo and redo functionality provided a greater chal-
lenge because it required a complete redesign of the CommandManager,
which is responsible for undo, redo and the execution of commands.

In Section 5.2., undo/redo operations were described in detail. The basic
principle of mirroring stays the same, however, the complexity of the task is
much higher.

Since the Pocket Paint implements the command pattern, the first step is to
identify new commands, i.e. extending the existing set.

Figures 5.4, 5.5 and 5.6 revealed that in order to implement undo/redo
functionality it is necessary to differentiate between the layer commands
and the Bitmap command (the current command implementation in Pocket
Paint), as well as between different layer command types. The following
design decisions were made and implemented:

The Bitmap command represents a ”tool action” which is associated to some
layer, for example, the. DrawTool creates a PathCommand which draws a
line on the Bitmap of a currently active layer.

LayerBitmapCommands act as a Bitmap command manager for the corre-
sponding layer. This manager contains the associated layer, the undo and
redo stack and it manages all the Bitmap commands associated with the
layer.(Listing: 5.1).

74

5 Implementation

Figure 5.3: Layer undo/redo

75

Figure 5.4: Layer implementation: CommandManager add layer.

Figure 5.5: Layer implementation: CommandManager layer bitmap command.

Figure 5.6: Layer implementation: CommandManager merge layers.

5 Implementation

LayerCommand describes layer operations such as add, remove, merge and
rename. Its initialization depends on the operation with which it has been
associated with (Listing: 5.2):

• ADD/REMOVE – contains a single layer to which add/remove opera-
tion applies.
• MERGE/UNMERGE – contains merged layers, list of layers to be

merged and their associated LayerBitmapCommands.
• RENAME – contains the layer to which the change has been applied

and its former name.

The CommandManager (Listing: 5.3) has been implemented as follows:

The command of the undo/redo stack has been implemented as
Pair<CommandType,CommandLayer>.

The undo and redo stack have been implemented as linked lists of
Pair<CommandType,CommandLayer>.

Beside the undo and redo stack, the CommandManager contains a list of
LayerBitmapCommands, which represents the list of all currently active
layers i.e. correlates to the layers in the Layer Dialog. The reason for this
is that every time a remove or merge operation is undone, the layers that
have been previously removed from the system need to be restored in their
original state (prior to removal or merge). There is also a benefit of such
a design: such data structure could be used in order to save images with
layers. However, this will be discussed later in this section.

The CommandManager supports two different workflows:

1. Commit command workflow – command is added to command stack.
2. undo/redo workflow, where undo and redo are mirroring operations:

a) Undo – command is removed from undo stack and pushed on
redo stack.

b) Redo – command is removed from redo stack and pushed back
to undo stack.

As a consequence of the support of both workflows, each of these workflows
has to be described with its own set of methods.

79

5 Implementation

/∗∗
∗ Descr ibes l a y e r commands r e s p o n s i b l e f o r drawing . These

commands are performed on l a y e r ’ s bitmap .
∗/

publ ic i n t e r f a c e LayerBitmapCommands
{

/∗∗
∗ R e t r i e v e s l a y e r assigned to command manager .
∗ @return Layer which has been assigned to command manager .
∗/

Layer getLayer () ;

/∗∗
∗ Commits command f o r assigned l a y e r .
∗ @param command which has been performed on l a y e r .
∗/

void commitCommandToLayer (Command command) ;

/∗∗
∗ R e t r i e v e s a l l the commands performed on l a y e r s bitmap .
∗ @return l a y e r bitmap commands .
∗/

Lis t<Command> getLayerCommands () ;

/∗∗
∗ Copies l a y e r commands to current LayerBitmapCommands .
∗ @param commands commands to be copied .
∗/

void copyLayerCommands (L i s t<Command> commands) ;

/∗∗
∗ Undo drawing command f o r assigned l a y e r .
∗/

void undo () ;

/∗∗
∗ Redo drawing command f o r assigned l a y e r .
∗/

void redo () ;
}

/∗∗
∗ Contains a l l the commands t h a t are to be executed on the l a y e r ’

s bitmap .

80

5 Implementation

∗/
publ ic c l a s s LayerBitmapCommandsImpl implements

LayerBitmapCommands {
p r i v a t e Layer mLayer ;

p r i v a t e LinkedList<Command> mCommandList ;
p r i v a t e LinkedList<Command> mUndoCommandList ;

publ ic LayerBitmapCommandsImpl (LayerCommand layerCommand)
{

mLayer = layerCommand . getLayer () ;
mCommandList = new LinkedList<Command>() ;
mUndoCommandList = new LinkedList<Command>() ;

}

@Override
publ ic Layer getLayer () {

re turn mLayer ;
}

@Override
publ ic void commitCommandToLayer (Command command)
{

synchronized (mCommandList)
{

mUndoCommandList . c l e a r () ;
mCommandList . addLast (command) ;
synchronized (mLayer . getLayerCanvas ())
{

command . run (mLayer . getLayerCanvas () , mLayer .
getBitmap ()) ;

}

Paint ro idAppl i ca t ion . currentTool . r e s e t I n t e r n a l S t a t e (
Tool . StateChange . RESET INTERNAL STATE) ;

}
}

@Override
publ ic L i s t<Command> getLayerCommands () {

re turn mCommandList ;
}

81

5 Implementation

@Override
publ ic void copyLayerCommands (L i s t<Command> commands) {

f o r (Command command : commands)
{

mCommandList . add (command) ;
}

}

@Override
publ ic synchronized void undo ()
{

synchronized (mCommandList)
{

Command command = mCommandList . removeLast () ;
mUndoCommandList . addFirs t (command) ;
executeAllCommandsOnLayerCanvas () ;

}
}

@Override
publ ic synchronized void redo () {

synchronized (mUndoCommandList) {

i f (mUndoCommandList . s i z e () != 0) {
Command command = mUndoCommandList . removeFirst () ;
mCommandList . addLast (command) ;

synchronized (mLayer . getLayerCanvas ())
{

command . run (mLayer . getLayerCanvas () , mLayer .
getBitmap ()) ;

}

Paint ro idAppl i ca t ion . currentTool .
r e s e t I n t e r n a l S t a t e (Tool . StateChange .
RESET INTERNAL STATE) ;

}
}

}

p r i v a t e void executeAllCommandsOnLayerCanvas ()
{

synchronized (mLayer . getLayerCanvas ())

82

5 Implementation

{
clearLayerBitmap () ;
f o r (Command command : mCommandList)
{

command . run (mLayer . getLayerCanvas () , mLayer .
getBitmap ()) ;

}

Paint ro idAppl i ca t ion . currentTool . r e s e t I n t e r n a l S t a t e (
Tool . StateChange . RESET INTERNAL STATE) ;

}
}

p r i v a t e void clearLayerBitmap ()
{

synchronized (mLayer . getLayerCanvas ())
{

mLayer . getBitmap () . eraseColor (Color .TRANSPARENT) ;
}

}
}

Listing 5.1: LayerBitmapCommands implementation

/∗∗
∗ Descr ibes Layer command . I t can conta in e i t h e r simple l a y e r on

which some operat ion i s being
∗ performed , or l i s t of merged l a y e r s ids , along with the new

l a y e r crea ted by merge and
∗ merged l a y e r s bitmap command managers .
∗/

publ ic c l a s s LayerCommand
{

p r i v a t e Layer mLayer ;
p r i v a t e ArrayList<Integer> mListOfMergedLayerIds ;
p r i v a t e ArrayList<LayerBitmapCommands> mLayersBitmapCommands ;

p r i v a t e S t r i n g mLayerNameHolder ;

publ ic LayerCommand (Layer l a y e r)
{

mLayer = l a y e r ;
}

83

5 Implementation

publ ic LayerCommand (Layer newLayer , ArrayList<Integer>
l is tOfMergedLayerIds)

{
mLayer = newLayer ;
mListOfMergedLayerIds = listOfMergedLayerIds ;
mLayersBitmapCommands = new ArrayList<LayerBitmapCommands

>(mListOfMergedLayerIds . s i z e ()) ;
}

publ ic LayerCommand (Layer layer , S t r i n g layerNameHolder)
{

t h i s . mLayer = l a y e r ;
t h i s . mLayerNameHolder = layerNameHolder ;

}

publ ic Layer getLayer () {
re turn mLayer ;

}

publ ic ArrayList<Integer> getLayersToMerge ()
{

re turn mListOfMergedLayerIds ;
}

publ ic void setLayersBitmapCommands (ArrayList<
LayerBitmapCommands> layersBitmapCommandManagerList)

{
t h i s . mLayersBitmapCommands =

layersBitmapCommandManagerList ;
}

publ ic ArrayList<LayerBitmapCommands> getLayersBitmapCommands
() {
re turn mLayersBitmapCommands ;

}

publ ic S t r i n g getLayerNameHolder () {
re turn mLayerNameHolder ;

}

publ ic void setLayerNameHolder (S t r i n g layerNameHolder) {
t h i s . mLayerNameHolder = layerNameHolder ;

}

84

5 Implementation

}

Listing 5.2: LayerCommand implementation

/∗∗
∗ Descr ibes undo/redo command manager r e s p o n s i b l e f o r

a p p l i c a t i o n s l a y e r management .
∗/

publ ic i n t e r f a c e CommandManager
{

/∗∗
∗ Adds the new command (draw path , erase , draw shape) to

corresponding l a y e r .
∗ @param bitmapCommand command to commit to l a y e r bitmap .
∗ @param layerCommand conta ins l a y e r to which command should

be commited .
∗/

void commitCommandToLayer (LayerCommand layerCommand , Command
bitmapCommand) ;

/∗∗
∗ Adds new l a y e r to a p p l i c a t i o n .
∗ @param layerCommand conta ins l a y e r to add .
∗/

void commitAddLayerCommand (LayerCommand layerCommand) ;

/∗∗
∗ Removes corresponding l a y e r from a p p l i c a t i o n .
∗ @param layerCommand conta ins l a y e r to remove .
∗/

void commitRemoveLayerCommand (LayerCommand layerCommand) ;

/∗∗
∗ Merges two l a y e r s .
∗ @param layerCommand conta ins l a y e r to be merged .
∗/

void commitMergeLayerCommand (LayerCommand layerCommand) ;

/∗∗
∗ Changes v i s i b i l i t y of corresponding l a y e r .
∗ @param layerCommand conta ins l a y e r which v i s i b i l i t y should

be changed .
∗/

85

5 Implementation

void commitLayerVisibilityCommand (LayerCommand layerCommand) ;

/∗∗
∗ Locks the corresponding l a y e r .
∗ @param layerCommand conta ins l a y e r which should be (un)

locked .
∗/

void commitLayerLockCommand (LayerCommand layerCommand) ;

/∗∗
∗ Renames corresponding l a y e r .
∗ @param layerCommand conta ins l a y e r to rename .
∗/

void commitRenameLayerCommand (LayerCommand layerCommand) ;

/∗∗
∗ Undo l a s t command applied to s p e c i f i c l a y e r .
∗/

void undo () ;

/∗∗
∗ Redo l a s t command applied to s p e c i f i c l a y e r .
∗/

void redo () ;

/∗∗
∗ Clears manager command l i s t s .
∗/

void resetAndClear () ;
}

publ ic c l a s s CommandManagerImplementation implements
CommandManager , Observer

{
p r i v a t e s t a t i c f i n a l i n t MAXCOMMANDS = 5 1 2 ;
p r i v a t e s t a t i c f i n a l i n t INIT APP lAYER COUNT = 1 ;

enum CommandType {COMMIT LAYER BITMAP COMMAND
,ADD LAYER, REMOVE LAYER
,MERGE LAYERS
,CHANGE LAYER VISIBILITY
,LOCK LAYER
,RENAME LAYER}

86

5 Implementation

enum Action {UNDO, REDO}

p r i v a t e LinkedList<Pair<CommandType , LayerCommand>>
mLayerCommandList ;

p r i v a t e LinkedList<Pair<CommandType , LayerCommand>>
mLayerUndoCommandList ;

p r i v a t e ArrayList<LayerBitmapCommands>
mLayerBitmapCommandsList ;

p r i v a t e RefreshLayerDialogEventLis tener
mRefreshLayerDialogListener ;

p r i v a t e RedrawSurfaceViewEventListener
mRedrawSurfaceViewListener ;

p r i v a t e UpdateTopBarEventListener mUpdateTopBarListener ;
p r i v a t e ArrayList<ChangeActiveLayerEventListener>

mChangeActiveLayerListener ;
p r i v a t e LayerEventListener mLayerEventListener ;

publ ic CommandManagerImplementation ()
{

mLayerCommandList = new LinkedList<Pair<CommandType ,
LayerCommand>>() ;

mLayerUndoCommandList = new LinkedList<Pair<CommandType ,
LayerCommand>>() ;

mLayerBitmapCommandsList = new ArrayList<
LayerBitmapCommands>() ;

}

publ ic void se tRef reshLayerDia logLis tener (
RefreshLayerDialogEventLis tener l i s t e n e r)

{
mRefreshLayerDialogListener = l i s t e n e r ;

}

publ ic void setRedrawSurfaceViewListener (
RedrawSurfaceViewEventListener l i s t e n e r)

{
mRedrawSurfaceViewListener = l i s t e n e r ;

}

publ ic void setUpdateTopBarListener (UpdateTopBarEventListener
l i s t e n e r)

87

5 Implementation

{
mUpdateTopBarListener = l i s t e n e r ;

}

publ ic void addChangeActiveLayerListener (
ChangeActiveLayerEventListener l i s t e n e r)

{
i f (mChangeActiveLayerListener == n u l l)
{

mChangeActiveLayerListener = new ArrayList<
ChangeActiveLayerEventListener >() ;

}

mChangeActiveLayerListener . add (l i s t e n e r) ;
}

publ ic void se tLayerEventLis tener (LayerEventListener l i s t e n e r)
{

mLayerEventListener = l i s t e n e r ;
}

@Override
publ ic void commitCommandToLayer (LayerCommand layerCommand ,

Command bitmapCommand)
{

synchronized (mLayerCommandList)
{

clearUndoCommandList () ;
enableUndo (t rue) ;

ArrayList<LayerBitmapCommands> r e s u l t =
layerIdToOneElementBitmapCommandList (layerCommand .
getLayer () . getLayerID ()) ;

r e s u l t . get (0) . commitCommandToLayer (bitmapCommand) ;
layerCommand . setLayersBitmapCommands (r e s u l t) ;

mLayerCommandList . addLast (createLayerCommand (
CommandType .COMMIT LAYER BITMAP COMMAND,
layerCommand)) ;

}

drawingSurfaceRedraw () ;
}

88

5 Implementation

@Override
publ ic void commitAddLayerCommand (LayerCommand layerCommand)
{

synchronized (mLayerCommandList)
{

clearUndoCommandList () ;

LayerBitmapCommands bitmapCommand = new
LayerBitmapCommandsImpl (layerCommand) ;

layerCommand . setLayersBitmapCommands (
layerBitmapCommandToOneElementList (bitmapCommand)) ;

mLayerBitmapCommandsList . add (bitmapCommand) ;
mLayerCommandList . addLast (createLayerCommand (

CommandType .ADD LAYER, layerCommand)) ;

i f (mLayerCommandList . s i z e () > INIT APP lAYER COUNT)
{

enableUndo (t rue) ;
}

}

drawingSurfaceRedraw () ;
}

@Override
publ ic void commitRemoveLayerCommand (LayerCommand layerCommand

)
{

synchronized (mLayerCommandList)
{

clearUndoCommandList () ;
enableUndo (t rue) ;

ArrayList<LayerBitmapCommands> r e s u l t =
layerIdToOneElementBitmapCommandList (layerCommand .
getLayer () . getLayerID ()) ;

layerCommand . setLayersBitmapCommands (
layerIdToOneElementBitmapCommandList (layerCommand .
getLayer () . getLayerID ())) ;

mLayerBitmapCommandsList . remove (r e s u l t . get (0)) ;
mLayerCommandList . addLast (createLayerCommand (

CommandType .REMOVE LAYER, layerCommand)) ;

89

5 Implementation

}

drawingSurfaceRedraw () ;
}

@Override
publ ic void commitMergeLayerCommand (LayerCommand layerCommand)
{

synchronized (mLayerCommandList)
{

clearUndoCommandList () ;
enableUndo (t rue) ;

ArrayList<LayerBitmapCommands> r e s u l t =
getLayerBitmapCommands (layerCommand .
getLayersToMerge ()) ;

layerCommand . setLayersBitmapCommands (r e s u l t) ;

LayerBitmapCommands bitmapCommand = new
LayerBitmapCommandsImpl (layerCommand) ;

f o r (LayerBitmapCommands manager : r e s u l t)
{

bitmapCommand . copyLayerCommands (manager .
getLayerCommands ()) ;

mLayerBitmapCommandsList . remove (manager) ;
}

mLayerBitmapCommandsList . add (bitmapCommand) ;
mLayerCommandList . addLast (createLayerCommand (

CommandType . MERGE LAYERS, layerCommand)) ;
}

drawingSurfaceRedraw () ;
}

@Override
publ ic void commitLayerVisibilityCommand (LayerCommand

layerCommand)
{

synchronized (mLayerCommandList)
{

clearUndoCommandList () ;
enableUndo (t rue) ;

90

5 Implementation

mLayerCommandList . addLast (createLayerCommand (
CommandType . CHANGE LAYER VISIBILITY , layerCommand))
;

}

drawingSurfaceRedraw () ;
}

@Override
publ ic void commitLayerLockCommand (LayerCommand layerCommand)
{

synchronized (mLayerCommandList)
{

clearUndoCommandList () ;
enableUndo (t rue) ;

mLayerCommandList . addLast (createLayerCommand (
CommandType . LOCK LAYER, layerCommand)) ;

}
}

@Override
publ ic void commitRenameLayerCommand (LayerCommand layerCommand

)
{

synchronized (mLayerCommandList)
{

clearUndoCommandList () ;
enableUndo (t rue) ;

mLayerCommandList . addLast (createLayerCommand (
CommandType .RENAME LAYER, layerCommand)) ;

}
}

p r i v a t e ArrayList<LayerBitmapCommands>
layerBitmapCommandToOneElementList (LayerBitmapCommands
command)

{
ArrayList<LayerBitmapCommands> r e s u l t = new ArrayList<

LayerBitmapCommands>(1) ;
r e s u l t . add (command) ;
re turn r e s u l t ;

91

5 Implementation

}

p r i v a t e ArrayList<LayerBitmapCommands>
layerIdToOneElementBitmapCommandList (i n t l a y e r I d)

{
ArrayList<Integer> ids = new ArrayList<Integer >(1) ;
ids . add (l a y e r I d) ;
re turn getLayerBitmapCommands (ids) ;

}

p r i v a t e ArrayList<LayerBitmapCommands> getLayerBitmapCommands (
ArrayList<Integer> l a y e r I d s)

{
synchronized (mLayerBitmapCommandsList)
{

ArrayList<LayerBitmapCommands> r e s u l t = new ArrayList<
LayerBitmapCommands>() ;

f o r (LayerBitmapCommands layerBitmapCommands :
mLayerBitmapCommandsList)

{
f o r (i n t id : l a y e r I d s)
{

i f (layerBitmapCommands . getLayer () . getLayerID
() == id) {
r e s u l t . add (layerBitmapCommands) ;

}
}

}

re turn r e s u l t ;
}

}

p r i v a t e Pair<CommandType , LayerCommand> createLayerCommand (
CommandType operation , LayerCommand layerCommand)

{
re turn new Pair<CommandType , LayerCommand>(operation ,

layerCommand) ;
}

@Override
publ ic synchronized void resetAndClear ()
{

92

5 Implementation

mLayerCommandList . c l e a r () ;
mLayerUndoCommandList . c l e a r () ;
mLayerBitmapCommandsList . c l e a r () ;
enableRedo (f a l s e) ;
enableUndo (f a l s e) ;

}

@Override
publ ic void undo ()
{

synchronized (mLayerCommandList)
{

i f (mLayerCommandList . s i z e () > INIT APP lAYER COUNT)
{

Pair<CommandType , LayerCommand> command =
mLayerCommandList . removeLast () ;

mLayerUndoCommandList . addFirs t (command) ;
processCommand (command, Action .UNDO) ;
enableRedo (t rue) ;

i f (mLayerCommandList . s i z e () ==
INIT APP lAYER COUNT)

{
onFirstCommandReached () ;

}
}

}
}

p r i v a t e void onFirstCommandReached ()
{

changeActiveLayer (mLayerCommandList . get (0) . second . getLayer
()) ;

enableUndo (f a l s e) ;
}

@Override
publ ic void redo ()
{

synchronized (mLayerUndoCommandList)
{

i f (mLayerUndoCommandList . s i z e () != 0)
{

enableUndo (t rue) ;

93

5 Implementation

Pair<CommandType , LayerCommand> command =
mLayerUndoCommandList . removeFirst () ;

mLayerCommandList . addLast (command) ;
processCommand (command, Action .REDO) ;
i f (mLayerUndoCommandList . s i z e () == 0)
{

enableRedo (f a l s e) ;
}

}
}

}

p r i v a t e void clearUndoCommandList ()
{

synchronized (mLayerCommandList)
{

enableRedo (f a l s e) ;
mLayerUndoCommandList . c l e a r () ;

}
}

p r i v a t e void processCommand (Pair<CommandType , LayerCommand>
command, Action a c t i o n)

{
switch (a c t i o n)
{

case UNDO:
processUndoCommand (command) ;
break ;

case REDO:
processRedoCommand (command) ;
break ;

}
}

p r i v a t e void processUndoCommand (Pair<CommandType , LayerCommand
> command)

{
switch (command . f i r s t)
{

case COMMIT LAYER BITMAP COMMAND:
handleUndoCommitLayerBitmapCommand (command . second)

;
break ;

94

5 Implementation

case ADD LAYER:
handleRemoveLayer (command . second) ;
break ;

case REMOVE LAYER:
handleAddLayer (command . second) ;
break ;

case MERGE LAYERS :
handleUnmerge (command . second) ;
break ;

case CHANGE LAYER VISIBILITY :
handleLayerVis ibi l i tyChanged (command . second) ;
break ;

case LOCK LAYER :
handleLayerLockedChanged (command . second) ;
break ;

case RENAME LAYER:
handleLayerRename (command . second) ;
break ;

}
}

p r i v a t e void processRedoCommand (Pair<CommandType , LayerCommand
> command)

{
switch (command . f i r s t) {

case COMMIT LAYER BITMAP COMMAND:
handleRedoCommitLayerBitmapCommand (command . second)

;
break ;

case ADD LAYER:
handleAddLayer (command . second) ;
break ;

case REMOVE LAYER:
handleRemoveLayer (command . second) ;
break ;

case MERGE LAYERS :
handleMerge (command . second) ;
break ;

case CHANGE LAYER VISIBILITY :
handleLayerVis ibi l i tyChanged (command . second) ;
break ;

case LOCK LAYER :
handleLayerLockedChanged (command . second) ;
break ;

95

5 Implementation

case RENAME LAYER:
handleLayerRename (command . second) ;
break ;

}
}

p r i v a t e void handleUndoCommitLayerBitmapCommand (LayerCommand
command)

{
command . getLayersBitmapCommands () . get (0) . undo () ;
changeActiveLayer (command . getLayer ()) ;
drawingSurfaceRedraw () ;

}

p r i v a t e void handleRedoCommitLayerBitmapCommand (LayerCommand
command)

{
command . getLayersBitmapCommands () . get (0) . redo () ;
changeActiveLayer (command . getLayer ()) ;
drawingSurfaceRedraw () ;

}

p r i v a t e void handleAddLayer (LayerCommand command)
{

mLayerBitmapCommandsList . add (command .
getLayersBitmapCommands () . get (0)) ;

addLayer (command . getLayer ()) ;

changeActiveLayer (command . getLayer ()) ;
layerDialogRefreshView () ;
drawingSurfaceRedraw () ;

}

p r i v a t e void handleRemoveLayer (LayerCommand command)
{

mLayerBitmapCommandsList . remove (command .
getLayersBitmapCommands () . get (0)) ;

removeLayer (command . getLayer ()) ;

changeActiveLayer (getNextExistingLayerInCommandList (
command . getLayer () . getLayerID ())) ;

layerDialogRefreshView () ;
drawingSurfaceRedraw () ;

}

96

5 Implementation

/∗∗
∗ Undo −− Redo operat ions are r e f l e c t i o n s of one another . By

merge the previously merged l a y e r
∗ needs to be re−added along with i t s LayerBitmapCommands ,

while o r i g i n l a y e r s need to be
∗ removed along with t h e i r LayerBitmapCommands .
∗ @param command Layer command conta in ing merged l a y e r and

i t s LayerBitmapCommands .
∗/

p r i v a t e void handleMerge (LayerCommand command)
{

ArrayList<LayerBitmapCommands> r e s u l t =
getLayerBitmapCommands (command . getLayersToMerge ()) ;

f o r (LayerBitmapCommands bitmapCommand : r e s u l t)
{

removeLayer (bitmapCommand . getLayer ()) ;
mLayerBitmapCommandsList . remove (bitmapCommand) ;

}

addLayer (command . getLayer ()) ;
mLayerBitmapCommandsList . add (command .

getLayersBitmapCommands () . get (0)) ;

command . setLayersBitmapCommands (r e s u l t) ;

changeActiveLayer (command . getLayer ()) ;
layerDialogRefreshView () ;
drawingSurfaceRedraw () ;

}

/∗∗
∗ Undo −− Redo operat ions are r e f l e c t i o n s of one another . By

un−merge the previously merged l a y e r
∗ needs to be removed along with i t s LayerBitmapCommands ,

while o r i g i n l a y e r s need to be
∗ re−added along with t h e i r LayerBitmapCommands .
∗ @param command Layer command conta in ing o r i g i n l a y e r s and

t h e i r LayerBitmapCommands .
∗/

p r i v a t e void handleUnmerge (LayerCommand command)
{

ArrayList<LayerBitmapCommands> r e s u l t =

97

5 Implementation

layerIdToOneElementBitmapCommandList (command . getLayer ()
. getLayerID ()) ;

mLayerBitmapCommandsList . remove (r e s u l t . get (0)) ;
removeLayer (command . getLayer ()) ;

L i s t I t e r a t o r <LayerBitmapCommands> i t e r a t o r = command .
getLayersBitmapCommands () . l i s t I t e r a t o r () ;

LayerBitmapCommands bitmapCommand ;
while (i t e r a t o r . hasNext ())
{

bitmapCommand = i t e r a t o r . next () ;
addLayer (bitmapCommand . getLayer ()) ;
mLayerBitmapCommandsList . add (bitmapCommand) ;
i t e r a t o r . remove () ;

}

command . setLayersBitmapCommands (r e s u l t) ;

changeActiveLayer (getNextExistingLayerInCommandList (
command . getLayer () . getLayerID ())) ;

layerDialogRefreshView () ;
drawingSurfaceRedraw () ;

}

p r i v a t e void handleLayerVis ibi l i tyChanged (LayerCommand command
)

{
command . getLayer () . s e t V i s i b l e (! command . getLayer () .

g e t V i s i b l e ()) ;

changeActiveLayer (command . getLayer ()) ;
layerDialogRefreshView () ;
drawingSurfaceRedraw () ;

}

p r i v a t e void handleLayerLockedChanged (LayerCommand command)
{

command . getLayer () . setLocked (! command . getLayer () . getLocked
()) ;

changeActiveLayer (command . getLayer ()) ;
layerDialogRefreshView () ;

}

98

5 Implementation

p r i v a t e void handleLayerRename (LayerCommand command)
{

S t r i n g layerName = command . getLayer () . getName () ;
command . getLayer () . setName (command . getLayerNameHolder ()) ;
command . setLayerNameHolder (layerName) ;

changeActiveLayer (command . getLayer ()) ;
layerDialogRefreshView () ;

}

p r i v a t e Layer getNextExistingLayerInCommandList (i n t
or ig inLayerId)

{
synchronized (mLayerCommandList)
{

L i s t I t e r a t o r <Pair<CommandType , LayerCommand>> i t e r a t o r
= mLayerCommandList . l i s t I t e r a t o r (mLayerCommandList

. s i z e ()) ;

Layer commandsLayer ;
while (i t e r a t o r . hasPrevious ())
{

commandsLayer = i t e r a t o r . previous () . second .
getLayer () ;

i f (commandsLayer . getLayerID () != or ig inLayerId)
{

i f (layerIdToOneElementBitmapCommandList (
commandsLayer . getLayerID ()) . s i z e () == 1)

{
re turn commandsLayer ;

}
}

}

re turn n u l l ;
}

}

p r i v a t e synchronized void deleteFailedCommand (Command command)
{

}

99

5 Implementation

p r i v a t e void drawingSurfaceRedraw ()
{

i f (mRedrawSurfaceViewListener != n u l l)
{

mRedrawSurfaceViewListener . onSurfaceViewRedraw () ;
}

}

p r i v a t e void layerDialogRefreshView ()
{

i f (mRefreshLayerDialogListener != n u l l)
{

mRefreshLayerDialogListener . onLayerDialogRefreshView ()
;

}
}

p r i v a t e void enableUndo (boolean enable)
{

i f (mUpdateTopBarListener != n u l l)
{

mUpdateTopBarListener . onUndoEnabled (enable) ;
}

}

p r i v a t e void enableRedo (boolean enable)
{

i f (mUpdateTopBarListener != n u l l)
{

mUpdateTopBarListener . onRedoEnabled (enable) ;
}

}

p r i v a t e void changeActiveLayer (Layer l a y e r)
{

i f (mChangeActiveLayerListener != n u l l)
{

f o r (ChangeActiveLayerEventListener l i s t e n e r :
mChangeActiveLayerListener)

{
l i s t e n e r . onActiveLayerChanged (l a y e r) ;

}
}

100

5 Implementation

}

p r i v a t e void removeLayer (Layer l a y e r)
{

i f (mLayerEventListener != n u l l)
{

mLayerEventListener . onLayerRemoved (l a y e r) ;
}

}

p r i v a t e void addLayer (Layer l a y e r)
{

i f (mLayerEventListener != n u l l)
{

mLayerEventListener . onLayerAdded (l a y e r) ;
}

}

@Override
publ ic void update (Observable observable , Object data) {

i f (data i n s t a n c e o f BaseCommand . NOTIFY STATES)
{

i f (BaseCommand . NOTIFY STATES .COMMAND FAILED == data)
{

i f (observable i n s t a n c e o f Command)
{

deleteFailedCommand ((Command) observable) ;
}

}
}

}
}

Listing 5.3: CommandManager implementation

101

6 Conclusion and future work

This thesis discussed the process of translating the old fashioned flip book
into an intuitive mobile application, which allows users to create image-by-
image animations in combination with sound. The goal was not merely to
provide an app that allows users to create a series of images, exploiting two
optical phenomena - persistence of vision and the phi phenomenon, but to
design a compelling user interface, which is characterized by both efficiency
and ease of use.

To solve the interaction problem at hand, this thesis applied the genius
design approach of interaction design, which relies solely on the experience
and the creativity of an individual designer. Even though seemingly limited
in comparison to other interaction design approaches, the genius approach,
in combination with user-centered requirements gathering techniques; for
instance, persona, user stories and scenarios, provided sufficient data to
build a complete conceptual model of an interactive mobile flip book app.
Agile principles of prioritizing were used in order to build a first prototype,
which was simple and intuitive to use and provided the basis for the first
version of the app. Further, the thesis demonstrates that Pocket Toon could
capitalize from reusability, familiarity and compatibility by integrating
design concepts and functionality of its Pocket ”siblings” - Pocket Code and
Pocket Paint.

Despite its final outcome, this thesis provides a solid base for design and
implementation of an intuitive flip book mobile app:

1. It gathered the necessary requirements.
2. It provided detailed descriptions of features necessary for creating and

sharing flip books.
3. It provided a conceptual design, thus described interaction.

102

6 Conclusion and future work

4. It prioritized important features and built a low-fidelity prototype
which can be used for initial implementation.

5. Finally, it integrated existing design concepts and the functionality
of Pocket Code and Pocket Paint, thus benefiting from reusability,
familiarity and compatibility.

Thus, future designers and developers can use this thesis as the basis for
the further implementation of Pocket Toon.

103

Appendix

104

Bibliography

[1] Autodesk. Sketchbook pro features - autodesk, 2013.
http://www.autodesk.com/products/
sketchbook-pro/features/all/list-view.

[2] T. Boom. Toon boom storyboard pro 4.2 user guide,
2013. http://docs.toonboom.com/help/storyboard-
pro/Content/SBP/SBP Documentation Cover Page UG.html.

[3] Britannica. History of the motion picture — britannica.com, 2015.
http://www.britannica.com/art/history-of-the-motion-picture.

[4] A. Developers. Canvas, 2009. http://developer.android.com/reference/
android/graphics/Canvas.html.

[5] A. Developers. Canvas and drawables, 2009.
http://developer.android.com/guide/topics/graphics/2d-
graphics.html.

[6] T. D. Erickson. Human-computer interaction. chapter Working with
Interface Metaphors, pages 147–151. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1995. ISBN 1-55860-246-1. URL http:

//dl.acm.org/citation.cfm?id=212925.212939.

[7] Evernote. Evernote: The workspace for your life’s work, 2008.
https://evernote.com/.

[8] P. Fouché. History - flipbook.info.
http://www.flipbook.info/history.php, 2006.

[9] R. Fulcher. Material design awards - articles - google design., 2015.
https://design.google.com/articles/material-design-awards/.

105

http://dl.acm.org/citation.cfm?id=212925.212939
http://dl.acm.org/citation.cfm?id=212925.212939

Bibliography

[10] Google. Introduction - material design - google design
guidelines, 2014. https://www.google.com/design/spec/material-
design/introduction.html.

[11] J. Gulbins. Mastering Photoshop Layers: A Photographer’s Guide. Rocky
Nook, 2013. ISBN 9781492001287. URL https://books.google.at/

books?id=xD-4BAAAQBAJ.

[12] H. Hartson and P. Pyla. The UX Book: Process and Guidelines for Ensuring
a Quality User Experience. Elsevier, 2012. ISBN 9780123852410. URL
https://books.google.at/books?id=5KqoHjeEKkkC.

[13] G. Hofstede, G. Hofstede, and M. Minkov. Cultures and Organiza-
tions: Software of the Mind, Third Edition. McGraw-Hill Education,
2010. ISBN 9780071770156. URL https://books.google.at/books?

id=o4OqTgV3V00C.

[14] InVision. Invision: Free web and mobile prototyping, 2011.
https://www.invisionapp.com.

[15] S. Iwata. Iwata asks : Nintendo dsi : Volume 7 : Flipnote studio, 2013.
http://iwataasks.nintendo.com/interviews/.

[16] R. Lynch. The Adobe Photoshop CS4 Layers Book: Harnessing Photo-
shop’s Most Powerful Tool. Safari Books Online. Focal Press/Elsevier,
2009. ISBN 9780240521558. URL https://books.google.at/books?

id=L2Op956Iz_8C.

[17] Merriam-Webster. Affordance, 2008. http://www.merriam-
webster.com/dictionary/affordance.

[18] Nintendo. Official site - flipnote studio 3d for nintendo 3ds, 2013.
http://flipnotestudio3d.nintendo.com.

[19] M. of the Moving Image. Museum of the moving image - shutters,
sprockets, and tubes, 2007. http://www.movingimage.us/sprockets/.

[20] L. Rains. Efficient and powerful storyboarding wins, 2013.
https://www.toonboom.com/community/success-stories/larry-
rains.

106

https://books.google.at/books?id=xD-4BAAAQBAJ
https://books.google.at/books?id=xD-4BAAAQBAJ
https://books.google.at/books?id=5KqoHjeEKkkC
https://books.google.at/books?id=o4OqTgV3V00C
https://books.google.at/books?id=o4OqTgV3V00C
https://books.google.at/books?id=L2Op956Iz_8C
https://books.google.at/books?id=L2Op956Iz_8C

Bibliography

[21] J. Rasmusson. The Agile Samurai: How Agile Masters Deliver Great
Software. Pragmatic Bookshelf Series. Pragmatic Bookshelf, 2010.
ISBN 9781934356586. URL https://books.google.at/books?id=

KjmXSQAACAAJ.

[22] Y. Rogers, H. Sharp, and J. Preece. Interaction Design: Beyond Human
- Computer Interaction. Interaction Design: Beyond Human-computer
Interaction. Wiley, 2011. ISBN 9780470665763. URL https://books.

google.at/books?id=b-v_6BeCwwQC.

[23] D. Saffer. Designing for Interaction: Creating Smart Applications
and Clever Devices. Voices That Matter. Pearson Education, 2006.
ISBN 9780132798105. URL https://books.google.at/books?id=

Ckrd3Hoi4IsC.

[24] J. Tidwell. Designing Interfaces. O’Reilly Media, 2010.
ISBN 9781449302733. URL https://books.google.at/books?id=

5gvOU9X0fu0C.

[25] T. White. Animation from Pencils to Pixels: Classical Techniques for Digital
Animators. NetLibrary Inc. Focal, 2006. ISBN 9780240806709. URL
https://books.google.at/books?id=oyzBquuOULMC.

[26] F. A. Wika. Flipnote hatena, 2015.
http://flipnote.wikia.com/wiki/Flipnote Hatena.

107

https://books.google.at/books?id=KjmXSQAACAAJ
https://books.google.at/books?id=KjmXSQAACAAJ
https://books.google.at/books?id=b-v_6BeCwwQC
https://books.google.at/books?id=b-v_6BeCwwQC
https://books.google.at/books?id=Ckrd3Hoi4IsC
https://books.google.at/books?id=Ckrd3Hoi4IsC
https://books.google.at/books?id=5gvOU9X0fu0C
https://books.google.at/books?id=5gvOU9X0fu0C
https://books.google.at/books?id=oyzBquuOULMC

