
JOSIP BOZIC

MODEL-BASED SECURITY TESTING
OF WEB APPLICATIONS

Doctoral Thesis

Graz University of Technology

Institute for Softwaretechnology
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Supervisor: Univ.-Prof. Dipl-Ing. Dr.techn. Franz Wotawa

Graz, January 2016

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

iii

Abstract

Testing of web applications for common vulnerabilities still represents a
major challenge in the area of security testing. The objective here is not
necessarily to find new vulnerabilities but to ensure that the web application
handles well-known attack patterns in a reliable way. Previously developed
methods based on model-based testing contribute to the underlying chal-
lenge. Actually, the application of this discipline to the security of web
applications is the focus of this thesis. Here two approaches are introduced
that rely on different methods, namely model-based security testing, combi-
natorial testing and planning. The corresponding implementations combine
these elements into testing frameworks for testing of web applications for
vulnerabilities.

v

Acknowledgements

The research that lead to this thesis has been funded in part by the Aus-
trian Research Promotion Agency (FFG) under grant 832185 (MOdel-Based
SEcurity Testing In Practice), ITEA-2 (DIAMONDS), the Austrian COMET
Program (FFG) and in part by the project 3CCar.

vii

List of Publications

[1] J. Bozic and F. Wotawa. Model-based testing - from safety to security.
In Proceedings of the 9th Workshop on Systems Testing and Validation
(STV’12), pages 9-16, October 2012.

[2] J. Bozic and F. Wotawa. Xss pattern for attack modeling in testing. In
Proceedings of the 8th International Workshop on Automation of Software
Test (AST’13), 2013.

[3] J. Bozic and F. Wotawa. Security testing based on attack patterns. In Pro-
ceedings of the 5th International Workshop on Security Testing (SECTEST’14),
2014.

[4] J. Bozic, D. E. Simos, and F. Wotawa. Attack pattern-based combinato-
rial testing. In Proceedings of the 9th International Workshop on Automation
of Software Test (AST’14), 2014.

[5] A. Bernauer, J. Bozic, D. E. Simos, S. Winkler, and F. Wotawa. Retaining
consistency for knowledge-based security testing. In Proceedings of
the 27th International Conference on Industrial Engineering and Other
Applications of Applied Intelligent Systems (IEA-AIE’14), pages 88-97,
2014.

[6] J. Bozic and F. Wotawa. Plan it! automated security testing based on
planning. In Proceedings of the 26th IFIP WG 6.1 International Conference
(ICTSS’14), pages 48-62, 2014.

[7] J. Bozic, B. Garn, D. E. Simos, and F. Wotawa. Evaluation of the ipo-
family algorithms for test case generation in web security testing.
In Proceedings of the Eighth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW’15), pages 1-5, 2015.

[8] J. Bozic, B. Garn, I. Kapsalis, D. E. Simos, S. Winkler, and F. Wotawa.
Attack pattern-based combinatorial testing with constraints for web
security testing. In Proceedings of the IEEE International Conference on
Software Quality, Reliability and Security (QRS’15), 2015.

ix

List of Publications

[9] J. Bozic and F. Wotawa. Purity: a planning-based security testing tool.
In Workshop on Trustworthy Computing, 2015.

x

Contents

Abstract v

Acknowledgements vi

List of Publications ix

1 Introduction 1

2 Related Research 7

3 Integral Components 17
3.1 Definitions . 17

3.2 Resources . 18

3.3 SQLI & XSS . 19

3.4 Test Oracles . 23

3.5 Systems Under Test . 24

4 Model-Based Security Testing 27
4.1 Approach overview . 28

4.1.1 Model-Based Fuzzing 28

4.1.2 Model Inference Assisted Evolutionary Fuzzing 34

4.1.3 Model-Based Mutation Testing 36

4.2 Summary . 39

5 Attack Pattern-Based Combinatorial Testing 41
5.1 Attack Patterns . 42

5.1.1 Modeling Attack Patters 44

5.2 Component Interaction . 48

xi

Contents

5.3 Attack Pattern-Based Testing 50

5.3.1 Case Study . 51

5.3.2 Evaluation . 55

5.4 Combinatorial Testing . 58

5.5 Combining the Approaches . 59

5.6 Combinatorial Grammar for XSS Attack Vectors 59

5.7 Attack Pattern-Based Combinatorial Testing: Initial Evaluation 61

5.8 Evaluation of the IPO-Family Algorithms for Test Case Gen-
eration . 68

5.8.1 Combinatorial Grammar for XSS Attack Vectors and
Constraints . 69

5.8.2 Combinatorial Metrics for Security Testing 72

5.8.3 Evaluation . 73

Exploitation Rate of SUTs and their Relation to the
IPO Family . 74

Combinatorial Coverage Measurement for Web Secu-
rity Testing . 77

5.9 Automated vs. Manual Testing 82

5.9.1 Penetration Testing Execution Methods 84

5.9.2 Evaluation . 85

Exploitation Rate of SUTs 85

Evaluation of Combinatorial Grammars 86

Comparison of Fuzzers and Combinatorial Testing . . 90

Comparison of Automated vs. Manual Test Execution
Methods . 92

5.10 Summary . 92

6 Testing as a Planning Problem 97
6.1 The Security Testing via Planning Approach 98

6.1.1 PLAN4SEC . 100

6.1.2 Running Example . 105

6.1.3 Evaluation . 109

6.2 PURITY: a Planning-based secURITY testing tool 112

6.2.1 Key Components . 115

6.2.2 Structure of Inputs in PURITY 118

6.2.3 Modes of Use . 119

6.2.4 Case Study . 123

xii

Contents

6.3 Summary . 125

7 Conclusion 129

Bibliography 135

xiii

List of Figures

4.1 Simple authentication model 29

4.2 Grammar for SQL statements 30

4.3 Parse tree for a generated SQL injection 31

4.4 Statement mutation-1 . 35

4.5 Statement mutation-2 . 35

4.6 Statement crossover . 36

4.7 SQL injection attack model . 37

4.8 Mutated attack model . 38

5.1 UML based attack model in Yakindu 46

5.2 Label of a transition . 47

5.3 Test creation and execution framework 49

5.4 Result of successful SQLI . 53

5.5 Successful triggering of XSS in Mutillidae 54

5.6 System View in ACTS . 62

5.7 Comparison of combination coverage measurement for pass-
ing tests in DVWA (inp id 1, DL 0) when their respective test
suites are generated in IPOG (above) and IPOG-F (below)
with interaction strength t = 2 81

5.8 Comparison of combination coverage measurement for pass-
ing tests in Gruyere (inp id 1, DL 0) when their respective
test suites are generated in IPOG (above) and IPOG-F (below)
with interaction strength t = 3 82

5.9 Comparison of combination coverage measurement for pass-
ing tests in Webgoat (inp id 2, DL 0) when their respective
test suites are generated in IPOG (above) and IPOG-F (below)
with interaction strength t = 4 83

5.10 Coverage vs. interaction strength with Attack Pattern-based
Combinatorial Testing for BodgeIt (left) and DVWA (right) . . 91

xv

List of Figures

5.11 Coverage vs. interaction strength in Burp Suite for WebGoat
(left) and DVWA (right) . 91

6.1 Plan generation and concretization 109

6.2 PURITY in context with its environment 114

6.3 PURITY’s internal software architecture 117

6.4 PURITY’s GUI . 120

6.5 Section for partly automated testing 122

6.6 Menu for manual testing . 123

6.7 Output table . 124

xvi

List of Tables

5.1 Initial evaluation results . 56

5.2 A sample of XSS attack vectors 63

5.3 Initial evaluation results - Combinatorial Testing 65

5.4 Evaluation results per SUT for given difficulty level and input
field with increasing strength 75

5.5 Evaluation results for measuring combination coverage per
SUT with increasing strength - IPOG 78

5.6 Evaluation results for measuring combination coverage per
SUT with increasing strength - IPOF 79

5.7 Combinatorial evaluation results for automated and manual
tools testing . 87

5.8 Evaluation results for fuzzers and combinatorial testing per
SUT for given difficulty level and input field - APBT 88

5.9 Evaluation results for fuzzers and combinatorial testing per
SUT for given difficulty level and input field - Burp Suite . . 89

6.1 Evaluation results for planning-based testing 111

xvii

1 Introduction

With the ever growing interconnectivity between systems in the world there
is an even stronger growing need for ensuring systems’ security in order to
prevent unauthorized access or other malicious acts. The number of poten-
tial security threats rises with the increasing number of web applications
as well. Vulnerable programs do not only cause costs, they also negatively
impact trust in applications and consequently in the companies providing
the applications. Consequently preventing vulnerabilities should be a top
priority of any provider of systems and services, especially when consid-
ering the consequences of unintended software behavior. Such services
might handle sensitive data about several thousands or millions of users.
It is worth noting that from 2010 and 2013 some vulnerabilities like SQL
injection (SQLI) and cross-site scripting (XSS) have belonged to the top three
web application security flaws [16]. More interestingly, those two flaws have
been under the top 6 from 2004 on, leaving the impression that there has
not been enough effort spent in finding well known flaws.

In 2015, several successful hacking attacks made it into the news. For
example, due to a SQLI security leak, the Ashley Madison website for
extramarital affairs was hacked, thereby confiscating information about
37 million of its users1. The list included, among others, government and
bank officials as well as military personnel. The obtained information,
which included private profile data as well as credit card transactions, was
made public by the responsible hacking group. In the aftermath, lawsuits,
resignations and at least three commited suicides were reported until now.
Later it was also revealed that the website was vulnerable to XSS as well2.

1http://www.businessinsider.com/cheating-affair-website-ashle
y-madison-hacked-user-data-leaked-2015-7. Accessed: 2015-12-28.

2http://www.dailydot.com/politics/ashley-madison-leaked-email
s-security/. Accessed: 2015-12-28.

1

http://www.businessinsider.com/cheating-affair-website-ashley-madison-hacked-user-data-leaked-2015-7
http://www.businessinsider.com/cheating-affair-website-ashley-madison-hacked-user-data-leaked-2015-7
http://www.dailydot.com/politics/ashley-madison-leaked-emails-security/
http://www.dailydot.com/politics/ashley-madison-leaked-emails-security/

1 Introduction

Additionally, the United Arab Emirates Invest Bank was breached and
blackmailed in the aftermath by the corresponding hacker, who demanded
$3 million in Bitcoin. After the bank refused to submit to the request, the
attacker published confiscated information about 50.000 clients3.

The hack of the White House by Russian hackers caught some public
attention as well4, whereas its official website was vulnerable to XSS all
until 2011

5. Several other exposed XSS vulnerabilities were also reported by
eBay6 and Typo3

7.

Another reason why testing software and systems is by far the most im-
portant activity is to ensure high quality in terms of a reduced number
of post-release faults occurring after the software deployment. Thus the
subsequent damage resulting in debugging and time intensive upgrading
may be minimized. Hence, for software developers of such applications one
of the major tasks in providing security is to embed testing methodologies
into the software development cycle. In this way already known vulnera-
bilities may be covered so that a program is suited against typical attack
vectors. Unfortunately, testing with the aim of finding weaknesses that can
be exploited for an attack is usually a manual labor and thus expensive.
Therefore, automation of software testing in the domain of software security
is highly demanded.

There is a wide range of ideas, proposals, and implementations for testing
systems that are based on several white- and black-box testing techniques.
Many of these methods are considered part of model-based testing, a
technique that relies on generating test cases from a given model of the
implementation, where the created test cases are tested against the given
SUT. The main function of this procedure is to invoke unintended behavior
(negative testing) of the program, thus reporting a potential error that might

3http://gulfnews.com/xpress/dubai/courts-crime/hacker-holds-uae
-bank-to-ransom-demands-3m-1.1626394. Accessed: 28-12-2015.

4http://edition.cnn.com/2015/04/07/politics/how-russians-hacke
d-the-wh/. Accessed: 28-12-2015.

5http://www.mynetsafety.com/2011/11/persistent-xss-vulnerabili
ty-in-white.html. Accessed: 28-12-2015.

6http://www.infosecurity-magazine.com/news/ebay-under-fire-aft
er-cross-site/. Accessed: 28-12-2015.

7http://www.livehacking.com/tag/typo3/. Accessed: 28-12-2015.

2

http://gulfnews.com/xpress/dubai/courts-crime/hacker-holds-uae-bank-to-ransom-demands-3m-1.1626394
http://gulfnews.com/xpress/dubai/courts-crime/hacker-holds-uae-bank-to-ransom-demands-3m-1.1626394
http://edition.cnn.com/2015/04/07/politics/how-russians-hacked-the-wh/
http://edition.cnn.com/2015/04/07/politics/how-russians-hacked-the-wh/
http://www.mynetsafety.com/2011/11/persistent-xss-vulnerability-in-white.html
http://www.mynetsafety.com/2011/11/persistent-xss-vulnerability-in-white.html
http://www.infosecurity-magazine.com/news/ebay-under-fire-after-cross-site/
http://www.infosecurity-magazine.com/news/ebay-under-fire-after-cross-site/
http://www.livehacking.com/tag/typo3/

correspond to a vulnerability. So the whole process represents an offensive
thinking approach on testing, which is also known as ethical hacking (white
hat), realized in order to find out how a non-ethical hacker (black hat) may
proceed in his intention to exploit a system.

In this research the focus lies on the topic of providing methods and tech-
niques for testing web applications with respect to known vulnerabilities. In
particular there is interest in automated methods for finding vulnerabilities
without or at least with little user interactions.

The contribution of this work can be summarized as follows:

• Implementation of two testing approaches.
• The depiction and use of attack patterns for automatized testing of

web applications (primarily from a black-box perspective) for specific
vulnerabilities.
• Specification of an input grammar for XSS attack vectors.
• The combination of attack patterns with combinatorial testing: The

result represents the first proposed approach and is called Attack
Pattern-based Combinatorial Testing.
• Introduction of the planning problem into security testing of web

applications for vulnerabilities. This represents the second proposed
approach.
• Implementation of the planning-based tool PURITY for automated

testing.

From the discussed issues, the following research objectives of this thesis
are defined:

RO1: Identify and represent blueprints for attacks.

Since it is assumed that attackers usually follow a certain pattern when
undertaking a specific attack, the goal would be to identify these steps.
Actually, such a blueprint for an attack, that is an algorithm to trigger a
vulnerability, is to be formalized. This would consider a set of generally
true preconditions for an attack with the corresponding set of actions that
are necessary in order to carry out a specific type of attack against any web
application. Since the work is performed from an offensive point of view,
that is, from the view of the attacker, the goal is to depict the necessary

3

1 Introduction

attack information in various ways. The approach should not be restricted
but be adaptable on every web application as well. In the author’s research,
two ways of attack representations are provided, namely through attack
patterns and as planning specifications.

RO2: Introduce a testing approach for web applications and implement a
testing framework.

Various testing methodologies and tools address the problem of security
testing of web applications (see Chapter 2). They implement some of the
concepts, like attack graphs and use planning.

However, the goal of this work is to provide testing methodologies that en-
ables the testing of web applications for different types of vulnerabilities. The
first approach combines model-based security testing with combinatorial
testing for a specific purpose, namely the detection of software vulnerability.
On the other hand, in the second one the testing problem is specified as a
planning problem. Additionally, the planning domain definition language
is integrated into a testing tool. Both novel approaches contribute to the
problem of automation of software testing.

RO3: The new testing framework serves as an alternative to already estab-
lished testing approaches.

Already existing testing methods, for example fuzzing and various manual
and other automated and semi-automated approaches are used in prac-
tice. In order to prove that the introduced approaches are comparable to
these approaches for the sake of vulnerability triggering in web applica-
tions, a comparison between these approaches is drawn and the results are
discussed.

RO4: Adapt planning for testing of web applications and implement a
planning-based testing tool for this case.

Planning was initially used in artificial intelligence, for example by intel-
ligent agents, however, its adaptation for vulnerability detection still rep-
resents an open problem. While planning for testing has been used before
(see Chapter 2 for planning related works), the author’s approach adapts it
for the detection of vulnerabilities in web applications. First, the planning

4

problem and definition have to be implemented in a way so that a planner
generates a plan. Then, a program is tested and a verdict is generated.

According to the objectives, the following research questions are inferred:

RQ1: How can all necessary attack information be formalized?

RQ2: What testing methodologies are developed for vulnerability detection
in web applications?

RQ3: How does Attack Pattern-based Combinatorial Testing perform in
comparison to fuzzing and manual testing approaches?

RQ4: How does planning-based testing perform for vulnerability detec-
tion?

The answers to these questions will be given through the chapters.

This thesis is organized as follows. In the next chapter an overview is given
about all related research that was taken into consideration during the
research. Chapter 3 explains all common integral elements throughout the
work. These include features like definitions and information about the
used testing methodology. In Chapter 4 model-based security testing is
discussed in more detail. Some of the method’s concepts are explained
according to given examples. Afterwards, Chapter 5 discusses the first
of the proposed two approaches. It describes attack patterns and their
adaptation to testing of web applications. The second half of that chapter
goes through combinatorial testing and its incorporation into the overall
testing framework. The second approach is explained in Chapter 6, namely
the implementation of testing as a planning problem. The planning domain
definition language is discussed as well as the functionality of the tool
PURITY. Finally, the thesis is concluded with Chapter 7.

Another work from [27] discusses a testing-related topic, namely the under-
lying problem of consistency handling in knowledge systems. An approach
is explained for resolving consistency issues in bases for test oracles. How-
ever, since the work differs from the bulk of the author’s specific research,
the main expertise as well as contribution was on the side of the other
authors of that paper. Although the explained approach could be extended
in the future, it will not be elaborated because it didn’t relate further to the
author’s main research.

5

2 Related Research

The related research encompasses a variety of works that covers topics of
interest to the author’s work. Since the proposed research was initially
motivated by some of the mentioned works, the differences and similarities
to them have to be pointed out.

In general, they comprise four main topics that are related to the presented
research, namely:

• Model-based testing
• Attack modeling
• Combinatorial testing
• Planning

The first part focuses on model-based testing. Several works are presented
that elaborate the model concepts, testing techniques and vulnerability
detection in applications.

The authors of [93] discuss general topics of model-based security testing
(MBST) and propose three different model categories in order to cover
several security issues in that area. The goal is the defense of a system
that provides the inputs for the generation of test cases. The proposed
model has to provide different aspects of how to secure a system under
test (SUT) against potential security leaks. By doing so, a tester might get
an insight about how to proceed when testing an application. Additionally,
such modeling provides help in prioritizing and management of test cases.
First they suggested the usage of architectural and functional models, which
describe the structure and properties of a specific application. The goal
here is to identify potential entry points for malicious activity so that
appropriate measures can be taken. The authors also suggest threat, fault
and risk models. These models try to depict all possible vulnerabilities

7

2 Related Research

that might occur as well as the output of their mutual interaction. The last
types of models were weakness and vulnerabilities models. The goal of
these depictions is to describe the vulnerabilities. These are categorized so
that testers and developers get aware of potential malicious behavior. On
the other hand, the notions of risk-based security testing and model-based
fuzzing are explained as well. Its goals are test optimization and triggering
of vulnerabilities with atypical inputs, respectively.

In [92] the author explained the use of model-based fuzz testing for security
testing. In this black-box testing technique, the SUT is tested with an infinite
number of randomized, invalid or unexpected inputs. The input values
are generated using fuzz operators. Model-based fuzz testing is used for
randomizing sequential or concurrent behavior of systems.

[41] elaborates a tool chain that supports the mapping of the elements of
MDA-based testing, where platform-independent tests (PIT) are connected
with platform-independent system models (PIM) and platform-specific tests
(PST) are connected with platform-specific system models (PSM). They use
a subset of UML 2.0 called eUML (essential UML), which itself is extended
into the essential modeling language (eTML). Currently, the user creates the
system models and test models manually. Transformation rules are applied
in order to derive PIT from PIM and PST from PSM.

Rawat and Mounier [88] introduced an evolutionary algorithm that com-
bines genetic algorithm and evolutionary strategies. They use a fitness
function, which determines the fitness values of input data using program
slicing. Then the malicious program input is generated and executed against
the SUT until the program crashes. Afterwards, data about the internal struc-
ture of the individuals are collected. With this information, recombining
and mutating individuals with the greatest fitness generate better malicious
input. The same authors describe another fuzzing approach in [89]. They
expand the method of smart fuzzing by using an offset-aware mutation,
which mutates string inputs at specific location in order to enhance the used
mutation operator using several methods (tainted path generation, source-
code instrumentation, mutation and constraint learning and a exploitability
metric). The goal is to detect buffer-overflow vulnerabilities.

Duchene et al. [52] use a combination of model inference and evolutionary
fuzzing in order to detect non-persistent XSS vulnerabilities of web applica-

8

tions. First, they obtain a model of the system under test by using inference
techniques. Afterwards, smart fuzzing is applied by using an evolutionary
algorithm.

In the second part, there are several papers dealing with attack modeling,
automatic test generation and execution in the context of UML-based and
security testing.

Kim and colleagues [72] discuss the usage of UML state machines for class
testing. In their approach, a set of coverage criteria is proposed according to
the control and data flow in the model and the test cases are generated from
the diagram by satisfying these criteria. The authors describe a method on
how to transform the state machine into an extended finite state machine
(EFSM) that are in turn transformed into a flow graph so common data flow
analysis methods and a coverage criteria can be applied in order to generate
test cases as a set of paths by using all data from the model.

Kiezun et al. [71] propose a technique for automatic test case generation for
XSS and SQLI for testing of PHP applications by using concrete and symbolic
execution. They take into consideration persistent cross-site scripting. For
this task to be realized, they implemented the tool ARDILLA, which is able
to use any input generator. The tool generates inputs and executes these
inputs against the SUT. Hence, path constraints are generated and the test
case generator can negate one of the constraints, thus eventually producing
a solution for the new constraint system. ARDILLA tracks all user inputs
through the application in order to find out whether it can lead to a security
breach.

Sheyner et al. [96] introduce a technique for automatically generation and
analysis of attack graphs for network security testing. First a security anal-
ysis of the network is made with the help of scanning tools and already
known information so they can model the network in form of a finite state
machine and specify desired security properties, which an attacker wants to
exploit. The transitions in the model represent potential attacks. The whole
network and its attributes may be described in XML. Then, an attack graph
is generated using a modified version of the model checker NuSMV so that
every path depicts some exploit that leads to an undesired state, which is a
state that could be activated by the attacker. After the graph is specified and
visualized, additional analysis is done in order to determine likelihood for

9

2 Related Research

an attack to occur so that prevention measures can be undertaken. The goal
of the attack graph is to cover all possible attacks in the network and also to
depict all starting point states from which the malicious user can start her
or his activities.

Similar to modeling of attack patterns, Phillips and Swiler [86] use attack
templates for network security testing. These templates consist of steps of
known attacks but also their preconditions that must occur in order for the
attack to be triggered. First they detect attack graphs with a high possibility
of being exploitative. They give information about further malicious activity
possibilities once a former attack was carried out successfully and also
identify consequences of possible linked attacks instead of scanning just for
individual ones. Like the above mentioned approach, this method also uses
attack graphs but puts a greater emphasis on the view of the attack itself.
The authors also analyze defense possibility and simulate attacks along a
path from the graph.

Tian et al. [101] concentrate on penetration test cases for web applications by
modeling SQLI attacks using security goal models (SGM’s) from [42]. First
they describe a general view for the attack, then they branch this model
further by concentrating on the type of goals the attacker has in mind, e.g.
to bypass user authentication. So a bottom-up view is implied by describing
the attack behavior. Further the authors propose coverage criteria in order
for test cases to cover various attack patterns.

In [103] the author compares several commercial and open source pene-
tration testing tools against several web applications, including Mutillidae,
which is also tested in this thesis. The tests were carried out on medium
security level by using the application’s default settings. The result was that
SQLI results do not give any results at all or their number could not be fully
determined. The results for XSS were also very poor but better than the
ones for SQLI although there were a number of false negatives returned by
the tests.

A comparison of vulnerability scanners for SQLI and XSS attacks is given in
[57].

Takanen et al. [100] are dealing with a negative testing technique called
fuzz testing. A fuzzer is a program or framework which generates random

10

or semi-random and unexpected inputs in order to cause unintended soft-
ware behavior. In general, the fuzz generator can create complete random
and unexpected data, alter already known inputs (black-box) or generate
complete systematic test cases according to a known model of the SUT
(white-box). One generation-based fuzzer is Codenomicon from Codenomi-
con Ltd.1, which can be used to fuzz servers, clients and file-processing
programs. One of its features is the possibility to send valid input data
and make a comparison with all other received data from the past, thus
detecting some critical faults.

The authors in [28] use attacker models in form of extended finite state
machines and also present the tool VERA, which uses instantiation libraries,
configuration files and a XML file for the model. In order to carry out an
attack, first an attack is chosen from the library. Then, specific parameters
of the SUT are loaded from the configuration file and finally the attacks
are executed. Although their paper follows a similar idea to our work, the
difference lies in the technical realization, which affects the functionality
of the approach. Also, our approach puts a greater emphasis on the XSS
attacking process as well as detection mechanisms and make use of the
combinatorial testing tool ACTS for test case generation for both SQLI and
XSS.

In [104] the Pattern-driven and Model-based Vulnerability Testing approach
(PMVT) for detecting of XSS is proposed. The method generates tests for
this purpose by using generic vulnerability test patterns and behavioral
models of a specific web application. On the contrary, our work does not
rely on such models and test purposes but uses different test case generation
techniques.

Works that apply threat representations are [105] and [79]. In the first paper
the authors adapt Petri nets in order to depict formal threat models. These
are represented as Predicate/Transition nets and depict a way how to breach
a security leak inside a SUT. Here test cases are created automatically from
these models by creating code by relying on the Model-Implementation
specification. The second work deals with test case generation from Threat
Trees. In this approach, valid as well as invalid inputs are created from
threat modeling.

1http://www.codenomicon.com/. Accessed: 2015-12-28.

11

http://www.codenomicon.com/

2 Related Research

Other works that put more emphasis on the aspect of modeling by using
activity diagrams include [43] and [65]. Furthermore, [25] deals with the
application of state machines.

A detailed overview about SQL injections and cross-site scripting can be
found respectively in [45] and [56].

In the next part a flavor is given about the many different application areas
of combinatorial testing and the corresponding specialized methodology for
test case generation. Its application to the domain of software testing is of
current and growing interest.

For a general treatment of the field of combinatorial testing, the interested
reader is referred to the recent surveys of [40], [85] and [83].

For example, three different case studies of combinatorial testing methods
in software testing have been given in [81]. Applying combinatorial testing
to the Siemens Suite and testing with ACTS have been presented in [62]
and [31], respectively. A case study for pairwise testing through 6-way
interactions of the Traffic Collision Avoidance System (TCAS) has been
presented in [90], while in [48] a study was conducted to replicate the
Lockheed Martin F-16 combinatorial test study in a simplified manner.
Moreover, a proof-of-concept experiment using a partial t-wise coverage
framework to analyze integration and test data from three different NASA
spacecrafts has been presented in [80]. Combinatorial testing on ID3v2

tags of MP3 files was given in [109] while a case study for evaluating the
applicability of combinatorial testing in an industrial environment was
presented in [87].

Finally, combinatorial testing has recently been employed as a method to
concretize the test input of XSS attack vectors in [34, 61]. In detail, in [34] a
novel combinatorial testing technique for the generation of XSS attack vec-
tors was first defined while in [61] the applicability of the previous technique
has been further demonstrated by relaxing constraints and modeling white
spaces in the attack grammar. Moreover, in [32] fuzz testing approaches
for generating XSS attack vectors were compared to combinatorial testing
techniques with promising initial results.

The final part comprises research that is based on planning. Automated
planning and scheduling is a topic from artificial intelligence that deals

12

with defining ways of problem specification and strategy implementation.
Its usual adaptations are in robotics and it is generally used in intelligent
agents and only recently for testing. However, its implementation in testing
of software is the primary interest of our research.

Planning, that is, finding actions that lead from an initial state to a goal
state can be considered an old challenge of artificial intelligence. Fikes and
Nilsson [55] introduced STRIPS as a planning methodology for solving this
challenge, where planning is performed under certain assumptions and
where plan generation is separated from its execution. Later Nilsson [84]
introduced a planner for solving dynamic real-world problems where plan
generation and execution collapses under one framework. There the author
introduces the notion of teleo-reactive (T-R) programs, which are artifacts
that direct the execution towards a goal by responding to a changing envi-
ronment according to the perceived sensor data. Teleo-reactive programs
might provide a good base for implementing the behavior of an attacker in
the context of security testing. However, in our approach Fikes and Nilssons
original work is followed and attacks are defined as planning problems
based on STRIPS planning. On the other hand, here lies the main difference
in comparison to our approach as well, namely the area of adaptation, that
is, web applications instead of robotics. Additionally, our approach also
relies on concrete values while the authors’ method remains only at the
abstract level. Further, our plan generation technique depends upon already
existing initial values that are submitted as input files to a planner. This is
a more static approach, that is, the plan generation itself does not rely on
dynamically encountered data from the outside world, for example from the
SUT. However, the teleo-reactive idea could be eventually adapted into our
approach as well by incorporating a more dynamically plan generation. The
challenge here would be the fact that the initial PDDLs have to be enriched
by more corresponding data.

Howe et al. [69] have been one of the first dealing with the use of plan-
ning for test suite generation. Besides the test case generator the authors
compared their test case generator with another technique using a concrete
example, that is, the StorageTek robot tape library command language. The
tool Sleuth made use of the UCPOP 2.0 planner for plan generation. The
authors divided the approach in three parts: problem description generation,
plan generation, and transforming the plan into suitable test cases. If a plan

13

2 Related Research

was not able to be generated, another initial and goal states were used in
order to find a plan fulfilling the final preconditions. The difference to our
work lies in the data from which test cases are generated by the planner.
Our program changes the initial values of the problem specification and
generates test cases dynamically. Additionally, concrete commands and
values are used for the generated plan and execute these against the SUT.
In contrast to their work, our approach does not capture the behavior of the
SUT but only checks its reactions after submitting the attack vectors.

Scheetz et al. [91] introduced a very much similar work a plan is derived
taking into account initial variable conditions and concrete parameter values.
Their approach relies on test objective generation from a class diagram and
then generates test cases by using a UML model of the SUT. Since our work
is primarily a black-box testing approach, it does not rely on a model of the
program. Hence, no test objectives or test cases are derived from a graphical
representation. Our work encompasses attack inputs, which are generated
as part of a combinatorial testing approach. Although their work also uses
a concretization phase for plan generation by applying test objectives, our
approach relies on already specified methods inside the testing framework.
The advantage of the authors’ approach is that, by relying on a model of the
SUT, testing can be adapted on the concrete application while our method
implements a more general idea. Further, it should be applicable on every
SUT of a specific type.

Froehlich and Link [59] introduced a method to obtain test suites from
mapping of UML state charts to a STRIPS planning problem from which
plans can be derived using planning tools. The transformation considers
the preconditions of transitions. Despite the fact that the whole test suite
generation process is automated, the generation of concrete test cases (con-
sidering the specification of the system under test) has still to be performed
manually. In contrast to the authors’ research, our work does not rely on use
cases or UML representations. It relies on a program for test case generation.
However, the used model serves as an input for the generation tool and
comprises a set of parameters and corresponding values. In such way attack
vectors are generated. Then, the resulting test cases are incorporated into
the testing framework and afterwards the planner is being called. In contrast
to our work, in this approach STRIPS is used for test suite derivation, i.e.
before the test cases are being generated. Additionally, the authors still

14

need some manual intervention in order to get test cases, while our work
encompasses an automated mechanism for this purpose.

In [78, 77] the authors proposed an automatic contract-based testing strategy
that combines planning and learning for test case generation. The work is
based on the programming language Eiffel where pre- and postconditions
for methods can be easily specified. Those pre- and postconditions can be
directly mapped into a planning problem from which abstract test cases
can be extracted. In contrast to their method, our plan generation technique
differs in many details. First, it doesn’t rely on a pre-specified contract or a
similar concept but on already specified problem and domain specification.
Our obtained plan undergoes a concretization phase inside an already
mentioned testing framework. The test oracles also differ from the author’s
work by incorporating already set up oracles for the detection of SQLI and
XSS.

Galler et al. [60] presented similar work. In their paper, they discussed
an approach called AIana, that is able to transform Design by ContractTM

specification for Java classes and methods into a PDDL representation, which
then can be used by a planner for generating plans. The generated plan has
to be transformed into Java method calls. Random values are generated for
primitive type parameters and recursive calls for non-primitive parameters.
The authors also provide two case studies for evaluation purposes. In our
approach, the necessary files for the planner are already specified by the
tester but will be also generated during program execution. However, in
their work an already existing specification first has to be transformed
into PDDL. One similarity is the fact that the authors also incorporated an
concretization phase by relying on Java method calls. Another difference is
that they submit random values for testing purposes while our approach
uses CT for that case.

Very similar work includes [94], which elaborates a method for using plan-
ning for the generation of test cases from visual contracts (VC). The latter
are put into a PDDL representation so that the planning tool LAMA is able
to produce a plan. While their work uses the VC before translating it into
PDDL and thus generating a plan, our approach does not rely on VCs at
all. Since VCs use formalisms with pre- and postconditions, the transition
process into a planning problem is more straightforward. However, their

15

2 Related Research

approach is similar to ours because of the PDDL representation and the
usage of a planner.

Armando et al. [24] analyzed security issues in security protocols using
SAT-based model-checking. The authors proposed a method for attacking
these protocols using planning. A protocol insecurity problem specifies all
execution paths of a protocol, including the possibilities to exploit security
leaks, where the entire protocol is depicted by means of a state transition
system. The security properties of the protocol are specified using the
tool AVISS. The security properties are transformed into an Intermediate
Format (IF) and finally, they are read by the model-checker SATMC so that
a planning problem can be generated. The problem itself is represented
in SAT using Graphplan-based encoding, which is mapped back into a
SAT representation in order to produce a solution. In contrast to their
work, our approach targets primarily web applications as testing subjects.
However, the planning problem, which is demonstrated by the authors,
can be adapted on other types of SUTs as well. Additionally, the security
specification of the protocol can be inferred only in case that a white-box
testing approach is used. This fact represents a problem in our case because
our approach relies on a black-box approach, where no information about
the SUT is known at all. In this case, the proposal cannot be applied for
plan generation. Although their work incorporates more intermediate steps,
they are able to generate more SUT-specific test cases, which might improve
the vulnerability detection.

The work that preceded our tool PURITY (see Section 6.2) is based either on
model-based based testing or planning. However, PURITY puts a greater
focus on the technique proposed in [37]. A planner generates a sequence of
abstract actions for security testing. On the contrary, for every action there
is a corresponding method with concrete values. In such way, concrete test
cases are executed accordingly to the abstract plan.

16

3 Integral Components

Several elements are used in this thesis, for example programs, definitions
and overview about tested programs. These will be explained in greater
detail in the sections below.

3.1 Definitions

Through the text some basic definitions are referenced to in order to define
the functionality of some of the background technologies used in the work.
They come either from the field of combinatorial testing (see Section 5.4) or
specify the planning problem (see Section 6.1).

Definition 1 A mixed-level covering array which will be denoted as MCA(t, k, (g1,
. . . , gk)) is an k× N array in which the entries of the i-th row arise from an alpha-
bet of size gi. Let {i1, . . . , it} ⊆ {1, . . . , k} and consider the subarray of size t× N
by selecting rows of the MCA. There are ∏t

i=1 gi possible t-tuples that could appear
as columns, and an MCA requires that each appears at least once. The parameter t
is also called the strength of the MCA.

Definition 2 A tuple (I, G, A) is a planning problem, where I is the initial state,
G is the goal state, and A is a set of actions, each of them comprising a precondition
and an effect (or postcondition). For simplicity it is assumed that each state is given
as a set of (first order logic) predicates that are valid within this state. It is also
assumed that the preconditions and the effects of an action a ∈ A can be accessed
via a function pre(a) and e f f (a) respectively.

Definition 3 A solution to the planning problem (I, G, A) is a sequence of actions
〈a1, . . . , an〉 such that I →a1 S1 →a2 . . .→an−1 Sn−1 →an G.

17

3 Integral Components

3.2 Resources

The presented approaches encompass various software resources that make
up the functionality of the whole system. Programs that are used in addition
to the approaches or as external systems include the following ones:

• WebScarab [21]: A Java based framework that reads the communica-
tion between programs over HTTP and HTTPS. It can intercept and
modify incoming messages and gives information about their content.
Similar programs (for example [5]) could be used for this purpose as
well.
• Yakindu [23]: An open source tool-kit with a modeling environment

for the specification and execution of state machines. The tool and its
adaptation are elaborated in more detail in Section 5.1.
• ACTS [2]: A tool for the generation of combinatorial multi-way test

sets according to specified parameters, which in this case is adapted
to HTML so valid attack vectors are constructed. It is used in combina-
torial testing and is also considered in the area of automated software
testing. The adaptation of the tool is demonstrated in Chapter 5. ACTS
is developed jointly by the US National Institute Standards and Tech-
nology and the University of Texas at Arlington and currently has
more than 1400 individual and corporate users.

Java libraries that represent the foundations for the communication between
the testing program and the tested applications include:

• HttpClient [9]: Implements the client side of the HTTP standard. Used
by the program in order to communicate over HTTP with the SUT.
Attack vectors are submitted as parts of the request after which the
response is read from the tested system so the content from HTTP
header and body may be extracted. Using HttpClient offers the advan-
tage to bypass communication via browser and its intern input filters.
Additionally, it can also handle incorrect HTML element syntax.
• jsoup [11]: A Java based HTML parser. It is used in order to parse

the HTTP response in search for critical data after the attack. This is
critical for the test oracle so the final test verdict is given according to
that information.

18

3.3 SQLI & XSS

Additional software used in the planning-based methodology includes the
following programs:

• Metric-FF [12]: A planning system from [66] that is based on a forward
chaining planner. It handles PDDL files, thus producing a plan.
• JavaFF [10]: A Java implementation of FF [67] that parses PDDL files

and incorporates a planner. However, PURITY makes only use of
the parser in order to extract components like objects, initial values,
actions etc. from both the problem and domain definitions.

3.3 SQLI & XSS

As mentioned in Chapter 1, SQLI and XSS can still be found among the
most common software exploitation methods despite the fact that several
protection mechanisms are already discussed and implemented. For this
case, these two vulnerabilities have been chosen for implementation in the
framework.

In the following both types will be analyzed in more detail.

SQLI is a malicious method that targets user input elements of a web
application that is connected to a SQL database. A SQL statement is injected
into these elements in order to retrieve stored data from the back-end
database. Usually an injected command is sanitized by the application,
however, if the attack vector isn’t filtered, the code from the statement is
executed. As is mentioned in [45], SQL injections are probably as old as SQL
databases are interconnected with web applications. The article [18] from
Jeff Forristal is considered to be the first publicly available report about this
sort of vulnerability. One attribute of SQL statements is their wide structure
that allows attackers to construct injection strings in a very broad way. The
usual target data from the database is confidential data about associated
people or clients of an organization.

In order to demonstrate the functionality of SQLI, an example from [45] is
taken. The application is a retail store where a user can select products by a
certain criteria. For example, if only products are selected that cost less than
$100, the URL is generated and submitted via the GET mehtod:

19

3 Integral Components

http://www.victim.com/products.php?val=100

The code below shows an excerpt how such an input is passed to a new
SQL statement:

$query = "SELECT * FROM Products WHERE Price
< ’$_GET["val"]’ ";
$result = mysql_query($query);

The following SQL statement will return all products from the database that
are cheaper than $100:

SELECT * FROM Products WHERE Price < ’100.00’;

However, an user could alter the URL or submit an SQL statement into an
input field as well. For example, he or she could append the code ‘ OR ‘1’=
‘1 to the URL or directly to the SQL statement:

http://www.victim.com/products.php?val=100’ OR ‘1’=’1

The SQL statement will return all products from the database because of
the OR and the fact that the query will always return a true:

SELECT * FROM ProductsTbl WHERE Price < ’100.00’
OR ’1’=’1’;

Although the executed code from this example will not result in any harm,
it still demonstrates how the user can cause the application to behave in an
unintended way, eventually gaining access to secured data.

XSS is defined as a method to force a website to execute injected malicious
code. Usually, it is the browser where the attack takes place and it is the user
of the browser the attacker tries to target. The code itself is usually written
in HTML or JavaScript. Whatever the attacker chooses to do, first he has
to detect a XSS vulnerability of the SUT. In order to do this, all client-side
inputs on a specific URL address, which values will be sent to the server

20

3.3 SQLI & XSS

must be detected. If a leak is found, the hacker has the possibility to inject
further malicious code. XSS attacks are commonly categorised as follows,
accordingly to [56]:

• Non-persistent (or Reflected; ”Type-1”): All sent user input data is pro-
cessed immediately by the server, returning possible results for the
request. The attacker might send an e-mail to the victim with a link
to a script on the attackers’ server and lure him to click on it. By
doing this, the client executes the remote script unintentionally, thus
activating whatever is coded inside.
• Persistent (or Stored; ”Type-2”): User input data is stored in a database

behind the SUT, so the attacker can inject JavaScript code which
becomes stored permanently. The malicious code will be executed
every time when some user accesses the application. The attack may
cause much more harm than the non-persistent counterpart.
• DOM-based (sometimes ”Type-0”): Similar to the non-persistent version.

The difference lays in the fact that user input data is not sent to the
server but remains within the DOM. So this vulnerability comes not
from the server but is caused by improper handling of user inputs
in the client-side JavaScript. The response from the server does not
include the injected script [97].

Let’s briefly discuss the basic ideas using a variant of XSS on an example
used by Hoglund and McGraw [68]. The example makes use of a web
application comprising an HTML page, where a user name can be entered,
and a server side script handling a request from the HTML page. Commu-
nication between a web browser interpreting the HTML page and the server
is performed using standard HTTP where sending information to the server
is done using the GET message method. Let’s now consider the following
(partial) HTML page interpreted using the client side browser:

<form action=test.cgi method=GET>
User: <input maxlength=10 type=input name=username>
...
</form>

From the HTML code an attacker immediately identifies the existence of
a script named test.cgi with a parameter username that should be

21

3 Integral Components

allowed to be of length 10. In order to test whether there is a server side
limitation of the parameter the attacker might submit the following request
to the server (ignoring the web browser):

http://to_server/test.cgi?username=TOO_LONG

If this request does not lead to an appropriate error message coming from
the server indicating a far too long user name, the attacker knows at least
that it is possible to submit longer strings. This can be used in the next step
of the attack, where the attacker tries to trigger XSS on side of the server by
sending the following request:

http://to_server/test.cgi?username=../etc/passwd

If this request returns the content of the password file, the attacker suc-
ceeded. If not, the attacker might try other requests like:

http://to_server/test.cgi?username=Mary.log; rm rf /;
cat blah

where the whole directory structure is going to be removed in case of
success, maximizing the potential damage. There are of course many dif-
ferent strings to be used by an attacker. There are also many ways for
reactions coming from the server as well. However, the basic principles
are always the same. Every request of an attacker can be seen as po-
tential action having a precondition and an effect. For example, the call
test.cgi?username=TOO LONG can be seen as action for testing string
boundaries of parameters bad bound with a HTTP address including a
server script, the parameter name and a parameter length as preconditions,
and the effect that no corresponding error message is returned. The im-
plementation of this action would compose the request string, send it to
the server and parse the return value. The effect of this action can be used
by another action, for example, the action for testing whether access to a
password file is possible and so on.

22

3.4 Test Oracles

3.4 Test Oracles

Another important issue of the author’s approaches is the identification of
security leaks and because of their nature, different methods for both SQLI
and XSS have been implemented. Note that specifying the success indicator
of an attack for a particular SUT has to be performed only once.

SQLI: This type of attacks target all user inputs. The attack pattern makes
use of the precondition that submitted user information (for example via
a web form) generates a SQL call to the database, which is not validated.
In this case, a malicious user may want to get access to the database by
entering SQL queries inside the input fields, thereby asking to read all
stored user credentials or information about the system. If the application
rejects the SQL string, the attacker may want to slightly change its syntax
and submits the input again. The tester repeats this process all until she or
he succeeds to bypass all application-intern input filters, thus detecting a
security leak inside the software. For the first case it is assumed that the
attack is successful whenever the SUT returns a response with retrieved
data from a database inside the HTTP body. Since the form of confirmation
may be hard to predict, the tester is asked to define an expected value for
that case, which usually should be information about a database entry like
one of the usernames or passwords. In case the program comes along the
same value when parsing the response body, it can be affirmed that the test
case was successful.

XSS: In general, XSS in web applications is found upon unsanitized user
inputs, that is, if a submitted script is processed unfiltered by an applica-
tion, then its potentially harmful content is sent to a client and executed,
eventually causing damage to her or him. This happens if the malicious
code is sent as part of a HTTP response to the victim so a method is needed
for the detection of these specific inputs. After reading the response, the
obtained HTML or XML code is parsed by using a parser. By using these
methods, the whole document is segmented into elements, attributes and
values so the entire response message can be extracted by searching for
key characters or words. In this way an encountered element, for example
<script>, etc., can be detected and so it becomes obvious that the
application is vulnerable to script injections. But if the inserted script is

23

3 Integral Components

returned in a filtered form, the client might read only some non-executable
code. In this case the XSS attack was in vain.

Because a web application might have several scripts as well as other HMTL
elements by default, the program first counts the number of already existing
elements and then submits the malicious injection. In case of reflected XSS,
the response is obtained immediately but in the stored version every time
the program submits a new string, all already stored ones are sent back to
the user. However, because every time before another input is submitted, a
recalculation of occurrence of all elements from the website is done. Because
of this, a new malicious input will be always recognized as an additional
element in case it triggers an action, thus indicating a vulnerability.

If all goes well, the responded HTML code is parsed with the help of jsoup
in search for additional elements and if one is found, a successful XSS leak
is confirmed. Because of this fact, the goals of the proposed approaches
are to inject such a string that will go unsanitized through the application
and to detect whether it was manipulated when parsing the response. In
general, both types of XSS can be detected the same way.

3.5 Systems Under Test

The tested SUTs in this thesis comprised a set of web applications that are
included in the Open Web Application Security Project (OWASP) Broken
Application Project1 and in the Exploit Database Project2. Many of these
programs are primarily meant for testers to practice their exploitation skills
by implementing several security levels, which become even harder to
breach.

All of them have been locally deployed and tested. For the case of efficiency
measurement of the testing methods, some of the SUTs were tested several
times. In such way a conclusion could be drawn about the efficiency of the
corresponding testing technique and technology.

1https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_
Project. Accessed: 2015-12-28.

2http://www.exploit-db.com/. Accessed: 2015-12-28.

24

https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project
https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project
http://www.exploit-db.com/

3.5 Systems Under Test

These testing applications are namely:

• NOWASP (Mutillidae) [13]
• Damn Vulnerable Web Application (DVWA) [6]
• BodgeIt [4]
• WebGoat [17]
• Gruyere [8]
• Bitweaver [3]

The other applications are blog software:

• Wordpress [22]
• Anchor CMS [1]

DVWA and Mutillidae include more security levels that can be selected
by the tester. Testing on each of these levels will differ with regards to
built-in filtering mechanisms, which become even more restrictive with each
higher level so these applications had to be tested against all of them. The
other applications, on the other side, do not have any additional security
features.

Blogs are very popular attack fields for stored XSS as well. For this case, the
known Wordpress blog application was tested as well as Anchor CMS.

All of the SUTs were tested for SQLI and XSS, with every one of them
being checked manually before the actual testing. The fact that DVWA and
Mutillidae also offer the possibility to be checked against additional types of
attacks was ignored. In the other applications only the second type of XSS is
tested because these are blog software, where posts are usually stored and
kept inside a database. All applications have been deployed on an Apache
Server and comprise a MySQL database.

25

4 Model-Based Security Testing

Model-based testing is an active testing methodology with the objective to
generate test suites from models of the SUT. When using models for test
suite generation it can be guaranteed that the test suite is complete with
respect to the given model. Several approaches of model-based testing to
security testing are discussed and it is argued that this methodology is very
beneficial for this purpose in order to ensure quality constraints.

The current research from this area offers several methods and solutions
in order of how to formalize and implement testing techniques that are
able to detect potential security leaks in programs. These methods differ
accordingly to the initial problem statement. For example, if the source
code of the SUT is unknown, black-box techniques like fuzz testing are
the first choice. Fuzz testing is an optimizing random test case generation
method that also makes use of underlying models like communication
process models. On the other hand, if a developer wants to test her or his
own implementation having complete insights of the source code, white-box
testing methods may be applied.

The main function of this approach is to invoke unintended behavior of
the program, thus reporting a potential error, which might correspond
to a vulnerability. So the whole process is actually an offensive thinking
approach on testing, which is also known as ethical hacking (white hat),
realized in order to find out how a non-ethical hacker (black hat) may
proceed in his intention to cause damage to the client.

Even if the focus is not in detecting new security issues, testing applications
regarding known security holes is important in order to prevent applications
to be obviously vulnerable. The introduced approach utilizes models like
state machines or activity diagrams and also makes use of mutation testing.
The purpose is to give an overview of the area of model-based security

27

4 Model-Based Security Testing

testing and to compare different approaches with respect to their ability
of fault detection in the context of security properties. The introduced
approaches vary from the use of models, for example models of the SUT
versus models of attack behaviour, and their fault detection abilities, for
example is it possible to detect new vulnerabilities or not. Here it is worth
mentioning that vulnerability per se might not lead to a successful attack.
Some of the faults might still not be detected either because of shortcomings
regarding the system’s model or combinations of test inputs that make use of
unintended interactions between the SUT and its environment. The latter is
of special interest in security testing because in many cases security holes are
due to unrealistic assumptions regarding interactions and the involved data.
In order to prevent from exploitation of security holes in software, several
techniques have been proposed, including better educating programmers to
attract more attention towards security, and program analysis [68].

Three approaches for the problem of testing SQLI vulnerabilities in a given
web application are explained. The task here is to provide a method for
reading stored data from a database behind the given application using
SQLI attacks in order to fetch stored passwords.

The content of this chapter is taken from the author’s work in [35].

4.1 Approach overview

In this example, it is assumed that the traffic between the tester and the
SUT is already recorded and variable names are extracted. The focus lies
on variables for the username and password and the discussion starts with
the model-based fuzzing approach. Afterwards evolutionary fuzzing is
explained and finally an approach that makes use of mutations.

4.1.1 Model-Based Fuzzing

Fuzzing is a testing technique that generates random or semi-random inputs
for a SUT in order to test for vulnerabilities. This is done through a fuzz
generator [100]. Although fuzzing is divided into several categories, it still

28

4.1 Approach overview

Figure 4.1: Simple authentication model

consists of just vague methods, not only because of the absence of one gener-
ally agreed definition. Fuzzing can be divided into three test case generation
methods [26]: Random fuzzing was the initial fuzzing method. It just creates
complete random input without any special guiding strategy or information
about the SUT. Mutation-based fuzzing is a black-box testing method, which
alters already known input data, for example by manipulating some parts of
the input to becoming invalid. Although mutation-based fuzzing has better
results than random fuzzing, it depends very much on the available infor-
mation of the SUT. Model-based fuzzing uses a white-box testing approach
where a model of the SUT must be known in order to generate input data.
In this way it relies completely on the given structure and behavior of the
SUT and generates systematic test cases with no randomness [99].

The model-based fuzzing approach is discussed by using a running example.
First, a closer look is taken at a partial model of the SUT. Figure 4.1 depicts
a model of a simple authentication mechanism. If just one of the mandatory
inputs is submitted, the user remains in the initial state but by entering
valid values for both variables, the next state can be entered, which gives
access to the stored data. The goal of a SQLI fuzzer is to modify a part of the
structure of a SQL statement as a new input, without violating its existing
syntactic validity.

29

4 Model-Based Security Testing

Figure 4.2: Grammar for SQL statements

A grammar-based white-box fuzzing method is adapted from [63]. The
fuzzing technique relies on its specific fuzz generator, which itself can
use various fuzzing strategies. The generation fuzzing engine must have a
template or other form of input vectors, which acts as a provider of input
data for the generator. In this case, the data description is a grammar, which
has to capture all standard SQL parts but also special signs or characters so
that input filters can be evaded. An adapted version from [98] is shown in
Figure 4.2.

In this way, the generator is fuzzing SQL based tokens. Figure 4.3 shows
the generated grammar-based parse tree.

The authors of [64] give a description of their approach. First, a predefined
input is symbolically executed against the SUT, thus creating constraints on
inputs of the program from conditional statements during their execution.
Then, the collected constraints are negated and processed in a constraint

30

4.1
A

pproach
overview

Figure 4.3: Parse tree for a generated SQL injection

31

4 Model-Based Security Testing

solver, thus defining new inputs for the tested application. In the authors’
case, symbolic values are tokens. Conditional statements define input filters.
Let’s consider a vulnerability from [44] where the following filter is used:

if (stristr($value, ’=’) || stristr($value, ’’))
die(’Insert valid input’);

This means that all equal and white space signs are filtered from the input.
Now the SUT (which contains the input filters) is run on the valid with the
fixed starting input:

SELECT password FROM table WHERE username=’John’

By doing so, the following sequence of symbolic token constraints and will
be defined according to the grammar (just an excerpt is shown in order to
keep the explanation short):

token0 = id
token1 = whitespace
token2 = =
token3 = whitespace
token4 = apostrophe
token5 = lit
token6 = apostrophe

Now the constraint in the path is negated, which corresponds to the given
input filter from the SUT:

token0 = id
token1 = whitespace
token2 = =
token3 = whitespace
token4 = apostrophe
token5 = lit
token6 = apostrophe

32

4.1 Approach overview

The grammar-based constraint solver will now try to satisfy the constraint
and conclude that the keyword LIKE is the only solution, which does not
change the structure of the statement. So the new test case will look like:

SELECT password FROM table WHERE username LIKE ’John’

The next condition is responsible for filtering all white spaces, which can
be replaced with the comment signs. So by applying the same method to
the last generated input and satisfying the new constraints, the following
statement is obtained:

SELECT/**/password/**/FROM/**/table/**/
WHERE/**/username/**/LIKE/**/’John’

The process will continue as long as new input grammar-related combina-
tions can be used. If the application uses another input filters, for example
does not allow SQL keywords like SELECT, FROM etc., the grammar can
be adapted in such a way so that a statement like the following can be
created:

SEL/**/ECT/**/password/**/FR/**/OM/**/table/**/
WHE/**/RE/**/username/**/LI/**/KE/**/’John’

Another form of filter evasion may be URL encoding, which replaces a
potentially dangerous character with the hexadecimal form of their specific
ASCII code. For example, in order to URL-encode the apostrophe symbol,
its representation can be taken, which is %27, and generate the query:

SEL/**/ECT/**/password/**/FR/**/OM/**/table/**/
WHE/**/RE/**/username/**/LI/**/KE/**/%27John%27

Another interesting idea from the authors from [44] is to URL-encode the
URL signs, for example to URL-encode the percentage sign at the beginning,
which results in the alternative expression %25:

33

4 Model-Based Security Testing

SEL/**/ECT/**/password/**/FR/**/OM/**/table/**/
WHE/**/RE/**/username/**/LI/**/KE/**/%2527John%2527

Double-, triple- etc. encodings may be also applied on other input characters,
thus getting a very huge number of possible input patterns. However,
because the tester already knows the model of the SUT and maybe he or
she also knows all used filter mechanisms, a qualitative fuzzing approach
can be defined. But there is still the problem that a big application requires
formulating a huge model. Beside the required resources for writing the
model there is always the question how the quality of the model reflects on
the quality of model-based fuzzing in general.

4.1.2 Model Inference Assisted Evolutionary Fuzzing

Duchene et al. [52] propose a black-box testing approach by combining
the usage of model inference and a genetic algorithm (GA) in order to
exploit potential cross-site scripting (XSS) vulnerability of a given SUT.
First the model of the application is being figured out by using techniques
developed in [19]. Then, using an evolutionary algorithm (EA), various
inputs are automatically generated and tested against the inferred model.
They define an attack grammar GAI which represents attack inputs that
have been already used for testing of other SUTs and feature also random
sequences.

Given an initial population of individuals, which represent various input
parts, an evolutionary algorithm is used to crossover and to mutate the
individual inputs. These operations can also be done on individuals from
one or between several population pools like in [50]. To check the fitness
of new individuals from the population, a specific fitness function Fit(I)
is used, which calculates the likelihood of an individual to exploit a po-
tential vulnerability. The function itself is characteristic for the type of
exploitation.

Here the same approach is used in order to detect and exploit possible SQLI
vulnerabilities. First the model of the SUT is inferred by model inference.
Therefore the mentioned techniques from [19] may also be applied again. By

34

4.1 Approach overview

Figure 4.4: Statement mutation-1

Figure 4.5: Statement mutation-2

doing so, the depicted model from Figure 4.1 is obtained, thus generating all
state transitions. Then the entire system is navigated through and searched
for sinks, that is dynamically constructed SQL statements or user-controlled
input (username, password), on the outputs of all given states. In this case,
all transitions contain user inputs but only the valid combination of both
leads to the next state. So, fuzzing is started from the initial state using both
inputs.

The grammar from Figure 4.2 is also used for generating test cases. Now
the first SQL input statement is created by applying input sequences, which
were obtained during inference. In order to successfully test the given SUT,
all locations within a program should be reached, which means also that all
conditionals must be satisfied.

A mutation is defined as either adding or replacing one or more parts of
a statement. In order to keep the example short, the equals sign from the
conditional token is mutated, which is shown in Figure 4.4.

In this way, the same SQL input is obtained as in the model-based fuzzing
example. By mutating all white spaces from the initial statement, the state-
ment from Figure 4.5 is inferred.

Now, by applying crossover, both statements are combined forming the
injection from Figure 4.6, thus forming an input, which is likely to fulfill
both input filters.

35

4 Model-Based Security Testing

Figure 4.6: Statement crossover

The fitness function Fit(I) evaluates all input sequences, thus calculating
the fitness of the individuals. The ones with higher values then form the
new population pool and are used to form new test cases.

In this way, several test cases can be combined and crossed, thus generating
a set of different input sequences for the SUT. These processes are continued
as long as input filters reject the submitted data.

4.1.3 Model-Based Mutation Testing

This testing approach shares similarities with the other two described meth-
ods. In particular, all of the approaches use models. However, the author’s
work uses a model of the attack directly to generate the test cases. In the
proposed approach a general attack plan for exploiting application vul-
nerabilities using one special hacking technique is used. It relies on SQL
injection as an example, which includes input queries but also alternative
attacking directions and bears all known types of filter techniques. All test
cases are created according to that scheme, thus minimizing the level of
randomness (at least as long as all model specifications are not exhausted),
that is the generation process of test sequences should be directed as much
as possible.

However, because of the fact that application programmer may define
custom filters, it might be difficult to model all possible attack variations.
Figure 4.7 depicts a short abstract model of this sort of exploitation from the
very beginning (in order to keep the model simple, it is minimized only to
show a few steps and only for a MySQL database). Also, the model shows
specific SQL instruction syntax as inputs for the SUT.

In this example the test cases start with the generation of injection sequences,
which ask for the technology behind the application by grabbing its banner.

36

4.1 Approach overview

Figure 4.7: SQL injection attack model

37

4 Model-Based Security Testing

Figure 4.8: Mutated attack model

38

4.2 Summary

This is very important because all further used SQL statements depend
partially on the used database system (MySQL, MS SQL Server, Oracle).
The used database can be identified using pre-existing global variables. If
no affirmative message is obtained, the next test cases will test for another
database. The idea behind this method is to mutate the attack model, either
by changing parts of SQLI statements or the order of the execution. A
possible collection of mutations is shown in Figure 4.8. If the generator
starts again to create test cases, different SQLI attacks will be tested against
the SUT. As can be seen in the mutated model, the order but also the values
in Figure 4.8 differ from those in Figure 4.7. By applying this scenario, a
vulnerability may be triggered, which remained uncovered during the first
generated set of tests. Similar to white-box testing, this approach relies
entirely on the complexity and reliability of a pre-existing attack model.

4.2 Summary

Here some new ideas concerning the implementation of several model-based
testing techniques have been shown in order to successfully cover malicious
SQL injections in web applications. Although some other proposes exist,
the adaptation of these techniques is still an area with a high demand for
further scientific research. Also, considerations should be given to make this
topic an interest for the industry. The intention here has been to examine
the presented approaches to cover practical problems but also to examine
further fundamental research. The same techniques may also be applied for
other security breaking and vulnerability triggering methods.

39

5 Attack Pattern-Based
Combinatorial Testing

In order to make test automation possible, all attack vector information
must be gathered and structured in one single representation. For this sake
the use of attack patterns is proposed, that is, methods that describe all pre-
and postconditions, attack steps as well as the expected implications for an
attack to be carried out successfully. A pattern is formalized by using the
UML state machine modeling language [14] and the whole testing system
is integrated into the Eclipse development environment.

In this approach an attack pattern model is executed against the applica-
tion, reporting a positive or negative feedback. Further, a framework is
provided for testing and detection of vulnerabilities in web applications.
The framework comprises two parts: a model-based testing method that is
based on attack patterns, and combinatorial testing for generating attack
vectors to be submitted against the SUT. Here the idea is to use model-
based testing for generating abstract test cases, for example, sequences of
necessary interactions, and combinatorial testing for concretizing the input.
With combinatorial testing different combinations of inputs are captured
and thus the likelihood to find weaknesses in the implementation under
test is increased.

Afterwards, the scope of the research is changed and focused on comparing,
for the first time, the efficiency of the IPO-family algorithms when the
generated test inputs for vulnerability detection in web applications. Most
important, an extensive analysis is presented in terms of (total) vulnerabil-
ities found by the generated test suites using the combinatorial coverage
measurement (CCM) tool [51], where it is revealed that the indicated security
leaks are caused by the interaction of a handful parameters [33].

41

5 Attack Pattern-Based Combinatorial Testing

For generating comprehensive and sophisticated testing inputs, input pa-
rameter modeling was used by adding constraints between the different
parameter values. In addition, using constraints during the modeling of the
attack grammars results in an increase on the number of test inputs that
cause security breaches. Finally, a state-of-the-art manual testing tool has
been compared to the presented automated approach.

In this chapter answers are given for several of the asked research questions
from Chapter 1, namely RQ1, RQ2 and RQ3.

The preceding work, which content was taken for this chapter was pub-
lished in [36, 38, 34, 33, 32]. In these works, the main focus of the thesis’
author was based around model-based testing. On the other hand, the part-
ners from SBA Research put their emphasis on combinatorial testing and
were also responsible for test execution and evaluation with Burp Suite in
Section 5.9.

5.1 Attack Patterns

In order to model attack patterns, the proposed work follows Moore and
colleagues’ [82] definition rules of attack patterns comprising the major
segments: Goal, Preconditions, Actions, and Postconditions. In the following
the general information is outlined, which is necessary to carry out a SQLI
or XSS attack:

Goal: Exploit software vulnerability in order to access sensitive data or to
cause damage.

Precondition(s):
Tester can submit data into application.

Actions:
1) Connect to the application via its URL by communicating over
HTTP.
2) Generate and submit malicious input.
3) Compare output with expected values. (For XSS: Detect unexpected
HTML elements.)

42

5.1 Attack Patterns

Postcondition(s):
Tester accesses obtained information or causes harm to the client.

It is worth mentioning that a model of the particular attack pattern has to
implement the defined actions under the assumption that the precondition
can be ensured.

In the author’s case, the purpose of the model is not to verify the behavior of
the SUT so the application instead of the attack pattern would be modeled.
Hence, trying to achieve state or transition coverage of the model during
testing does not cover any coverage metrics on side of the tested program.
Here the emphasis is put on specifying an attack model which is executed
against the SUT. Moreover, it is worth mentioning that the model itself
should be as general as possible in order not to restrict its use in practice,
that is, it should be able to cover a wide range of web applications and
would demand only minor user inputs in order to adapt the pattern on
another SUT.

For the sake of modeling the attack model, the open source tool-kit YAKINDU
Statechart Tools (see Section 3.2) is used. It consists of an integrated model-
ing environment for the specification and development of systems based
on state machines. The UML state machine is used to specify and model all
necessary information in order for executing the model automatically.

The following data is defined within the YAKINDU editor:

• interface - define the communication points. All variables, operations
and events are defined as their parts.
• variable - specify variables used during model execution. They rep-

resent an essential part because they are used within transitions in
guards and actions.
• operation - are used in order to specify methods, which may be called

either from within the states or as parts of transitions.

The state machine is defined as an aggregation of states, variables, methods,
guards, actions and transitions. Every state represents the current situation
of execution with transitions being the connections between states. Also,
a state may have several transitions, which represent alternate paths of
execution and they can also have entry or exit actions. A transition is

43

5 Attack Pattern-Based Combinatorial Testing

defined with a guard and one or more actions where the first represents
one or several conditions on variables which must occur in order for the
action to take place. The action is usually an operation and is responsible
for activating the next state of the model, which -when entered- activates
all its entry actions. However, the definition of entry or exit operations is
not mandatory. Also, guards and actions may not be specified at all, the
next state will always be activated without conditions or data manipulation.
Choices are also added into the model, which -when encountered- offer at
least two transitions. According to which conditions is satisfied, different
states will be activated.

One important fact of the proposed approach is that the model covers
just the attack pattern and not the inner structure of the SUT. In contrast
to other model-based testing techniques that use a correct version of the
application and compare the output of the real program with the expected
one derived from the model. The functionality of the SUT is not tested at all
but the concentration lies entirely on the test case execution for vulnerability
detection.

5.1.1 Modeling Attack Patters

In order to model attack patterns a modeling language is required, which
would be suitable for visualizing attack patterns in order to depict a se-
quence of interactions with the SUT that could lead to a software exploita-
tion on side of the SUT. Such a language has to be easy to learn and use.
Therefore, UML state machines (UML SMs) [15] are adapted due to its
heavy use in practice for this purpose. The main concept of UML 2.0 state
machines are states and transitions, which in the author’s case hold all
the needed information used for computing attacks based on the modeled
attack pattern.

In Figure 5.1 an example of the UML model of the attack pattern for SQLI
and XSS attacks is depicted for one of the SUTs. As can be seen, the depiction
comprehends additional elements like variables and method calls as well.
In this model an attack starts by specifying a web address of the SUT from
which the relevant information is going to be extracted. In the state Parsed

44

5.1 Attack Patterns

different attack schemata are applied whenever this state is invoked. The
calculation of the attack schemata is performed using methods that are
executed after leaving the state. This attack pattern model is discussed
in the case study section. Before that the basic entities of the model are
introduced, which are needed for describing such an attack pattern.

For the purpose of adapting UML state machines to handle attack patterns,
the entities variables V and methods M are introduced, that are used for
extracting necessary information as well as for constructing concrete test
cases. It is assumed that methods from M are implemented in a program-
ming language like Java. Every method might change the value of a variable
M. It is also assumed that guards and actions used in transitions are also
written in the same language. The value of a guard has to be of type Boolean.
Guards are not allowed to change variables. Actions itself are programs that
might change variable values or cause method invocations.

Formally, state machines Σ are defined as follows:

Σ = (S, V, M, G, A, T, s0, F)

where

• S is a finite, non-empty set of states.
• V is a finite set of variables over a predefined domain.
• M is a finite set of methods that might change the value of variables.
• G is a set of guards, that is, program fragments that return a Boolean

value. Guards are not allowed to change variable values.
• A is a set of actions, that is, program fragments that change the value

of variables.
• T is a set of transitions, that is, T ∈ S× S×G× A, connections between

states with a corresponding guard and an action.
• s0 ∈ S is the initial state.
• F ⊆ S are the final states.

Now the different parts of a state machine will be explained in more detail.

Note that in UML a state may be extended in order to become a composite
state by adding one or more regions, that is, containers that contain states

45

5
A

ttack
P

attern-B
ased

C
om

binatorialTesting

Figure 5.1: UML based attack model in Yakindu

46

5.1 Attack Patterns

Figure 5.2: Label of a transition

or transitions. A composite state has nested states (substates) inside itself.
By applying redefinition to the original state, it applies to the entire state
machine [29]. However, in the proposed case composite states are not used.
Hence, a formal definition is omitted here.

The set of variables V might comprise local or global variables. Local
variables are only used in a particular state. Variables are used by methods
M to undertake necessary data manipulation. Variables may be also involved
as part of the expressions or statements used in guards or actions. As already
said in case of guards variables are only referenced but never defined. In
classical state machines usually there is also a set of events. Events are
usually triggered from actions or external events [72] and are used in
guards.

Although defining events may be useful in some cases, the author’s ap-
proach implements an automatically execution, so events are left out from
the case study. Note that this assumption does not really restrict modeling.
In the proposed case events can be replaced by Boolean variables. Instead
of triggering an event, a method or action can set its value to true and thus
allowing a guard to become true afterwards.

Transitions (see Figure 5.2) are connections between states. Using a transition,
control can pass from one state to another. In order to control the flow, each
transition has a corresponding guard and an action.

A guard from G represents a firing condition and also takes the role of a
constraint for an action to be triggered. They restrict values or demand a
specific expression to be satisfied before allowing the state to be traversed
under consideration of given variables, time-constraints etc. If no guards
are specified, then it is always considered as satisfied.

An action from A comprises a program fragment to be executed before
reaching a target state from the source state. An action can be whatever the

47

5 Attack Pattern-Based Combinatorial Testing

programmer defines, for example method calls or definitions of variable
values. Note that within an action, statements are executed sequentially in
the pre-defined order. Moreover, it is possible to specify no actions at all.

Hence, the semantics of a state machine can be informally defined as follows.
Start with the initial state s0. If there is a transaction from the current state
where its guard evaluates to true, move to the new state. When reaching
a final state the state machine successfully terminates. Otherwise, search
again for transitions to move from one state to another. In order to keep the
state machine deterministic, it is assumed that whenever a state s is active,
there is only one transition where its guard evaluates to true that goes
from s to another state.

After specifying the modeling language, the testing process is discussed
by the using attack patterns approach in Section 5.3.1 in a case study. As
already said, the approach relies on a model of attack patterns. A test case is
a path through the state machine model. In the author’s case state machines
contain cycles in order to ensure that different test cases are executed. A
final state either refers to a case where an attack was successfully carried
out, or when the number of potential test cases is exhausted. In the latter
case it is clear that the attacks modeled can be handled correctly by the SUT.
This does not mean that there are no security issues left.

5.2 Component Interaction

In order realize the testing method of the approach, the communication of
several components has to be established in the testing framework. First of
all, an overview is needed about the various key components.

The framework WebScarab was used for the interpretation of the commu-
nication between a client and a web application. It acts as an intercepting
proxy and reads and analyses the message traffic between a user and the
web application on a server (that can be also employed locally).

Another important part of the framework represents the already mentioned
Java methods that were implemented manually in the first place. Each of
them executes a specific task and eventually returns a new value. Method

48

5.2 Component Interaction

Figure 5.3: Test creation and execution framework

calls are defined as parts of the transitions in an attack pattern, usually
as postconditions. During test execution, the methods are called while
traversing the model, eventually returning new values for specific variables.
Now, these new values may represent a new precondition in the model for
further processing. A transition in the model might be traversed several
times during model execution so some methods might be executed over
and over again. The elaborated examples in the case study, the model but
also some corresponding methods and variables could be used in all other
case studies as well by only slightly adding some changes, usually some
software specific property like the URL address for exploitation sites. Also,
it should be independent from the used implementation technology.

49

5 Attack Pattern-Based Combinatorial Testing

In Figure 5.3 a global overview is given about the main components of the
approach of the framework. The greater part of the depiction, apart from
ACTS and the grammar, encompasses the part of the framework that is
built for test execution, that is, the part that is found upon attack patterns.
The execution begins with the attack model, which calls different methods
that comprehend all other elements in the selected part of the depiction.
Eventually, the tester may be asked for input as well, for example the URL
address. The execution and the functionality of every of the components
will be discussed in detail in the case studies and evaluation sections. It
is important to mention that these elements present the backbone of all
approaches throughout the work. All additional technology is built upon
or incorporated into this main system. The main and only precondition is
a given UML address of the SUT, the HttpClient being responsible for the
HTTP traffic while jsoup parses the response and helps with generating a
final verdict for every submitted attack vector.

The two remaining elements in the picture represent the combinatorial
testing test generation principle. As it will be discussed through Section 5.4
and Section 5.6, it encompasses a grammar, which was created manually
by the authors. It is implemented as an input model in ACTS by eventually
applying constraints as well. According to these specifications, the test set
is generated and saved as a TXT file that is then attached to the execu-
tion framework. Before applying ACTS, attack vectors have been specified
manually.

The entire system including the statechart model and all methods, variables
and external libraries and files are integrated into the Eclipse development
environment.

5.3 Attack Pattern-Based Testing

The approach, called Attack Pattern-based Testing, will be discussed on an
example and evaluated in the aftermath.

50

5.3 Attack Pattern-Based Testing

5.3.1 Case Study

Regarding the test cases, two input sets are used for testing, one for SQLI
and the other one for both types of XSS. In both cases separate text files are
used, each of them containing input strings for the attack type. The program
reads the file and saves all strings in a ArrayList and later, these strings
are fetched by the model by using a counter variable in order to return a
specific entry from the data structure.

The SQLI file consists of injections that comprise strings like x’ OR ’x’ = ’x
in several variations, for example with another keywords or symbols but
also by using URL encodings etc.

However, for XSS some standard injection scripts have been added but a
specific input generation strategy was applied as well. Namely, ACTS was
chosen in order to generate input strings. It should be noted that the XSS
inputs themselves do not contain any harmful code but are rather kept
simple because the goal of the author’s method is to test whether a program
is vulnerable at all and not to directly cause harm to it. Usually, these strings
contain opening and closing tags with the corresponding HTML elements
and try to pop-up a warning or some image.

Now the execution of the Mutillidae attack model from Figure 5.1 is dis-
cussed and possible differences to other examples are mentioned. The
execution of the attack begins in the initial state and resumes to Started. The
next transition asks the tester to enter the URL address of the SUT and if
submitted, the method connect is called where the program sends a HTTP
request and returns the status code from the response.

It should also be mentioned again that the background logic of transitions is
realized on level of methods, which are already implemented and are part of
the testing workspace. If the submitted address is valid, the model accepts
a positive status code but otherwise the state Started will become active
again, hence asking for another URL. In case of a 200, the state Connected
is activated and because there is no precondition in the next transition,
the method parseInitial can be called. This method plays an important
role because it parses the website for user input fields, request methods
etc. in order to find out how a request is to be submitted. The values are

51

5 Attack Pattern-Based Combinatorial Testing

stored in global variables in the background. Next the attack type has to
be chosen. Here the tester decides what type of attack will be submitted
against the SUT, the first choice being SQL injection, the second one XSS.
Then, accordingly to the chosen attack, the method getNumInp will read
the corresponding input file and return the number of entries.

First it is assumed that the SUT is about to be tested against SQLI. In order
to test for SQLI, the tester has to specify an expected value which will
be compared to the result of the attack function. This could be a string
value which would normally never occur by using the application in a
predefined manner. The exploitation attempt is realized in a manner that
during attackSQLI the first attack vector is submitted as a part of the input
fields found by parseInitial to the SUT by using the URL and expected value.
Also inside the method, the returned feedback is parsed and searched for
this value. For example, the expected value is a stored username, so if the
program is vulnerable for an input, the response may look like depicted in
Figure 5.4.

If the expected value is found, a Boolean value is returned to the model.
In case the result is true, the corresponding transition is taken and now
the variable success, which indicates a positive vulnerability detection, is
increased by one and the next input is read by generateSQLI by picking the
content from the next line of the ArrayList. However, if the current SQL
input returns a negative result, the procedure is the same only that there is
no increasing of success and the other transition is taken.

In both cases, SQLI is entered again but this time the new string is submitted
against the SUT. Now, the checking and attacking process is repeated over
and over again all until no further inputs can be read. It is important to
mention that only a successful attack accordingly to the user specification
can be automatically detected. However, it might be the case that the attack
invokes another unexpected behavior on side of the SUT, which might not
be treated as failure.

The second type attack is meant to trigger XSS. In this approach, XSS
exploitation is detected by parsing the response in search for unexpected
HTML elements, which should normally not occur. As mentioned before,
XSS is realized because of inefficient filtering of user inputs so an injected

52

5.3 Attack Pattern-Based Testing

Figure 5.4: Result of successful SQLI

input is sent to the user inside the response. So if the attacker submits a
payload inside a script, the same script is sent back to a victim.

In fact, both types of XSS can be detected in the same way. First attackXSS
parses the website for HTML elements like scripts or images and saves their
number in the according variables. Then, the first attack vector is taken
from the list and is sent as part of the input fields (again from parseInitial)
against the SUT. Now the program accepts the corresponding response and
parses it again but also does a recounting of HTML elements and if an
additional element is found, then there is an indicator for a security leak.

If no such suspicious data has been found, the execution proceeds further by
fetching the next input from the list. For visualization purposes, Figure 5.5

53

5 Attack Pattern-Based Combinatorial Testing

Figure 5.5: Successful triggering of XSS in Mutillidae

depicts the case when the input <script>alert(document.cookie)</script>
triggers an action in a browser, in this case being the display of cookie
data.

However, if the input is filtered, the program does not parse any new ele-
ments but <script>alert(document.cookie)<& #x2f;script>
inside the response body. As can be seen, special HTML characters were
used in order to mask certain symbols, thus evading the security breach. The
data was returned encrypted in the response so the number of parsed HTML
elements after submission remains the same as before and no vulnerability
is reported; hence the execution takes another transition.

The principle here is the same as with SQLI although other injection and
detection types are used of course. The execution terminates when all inputs
are exhausted. The models were tested against five SUT applications and
the execution of the test model reveals the faulty behavior. Thus it became
possible to show that these applications were vulnerable against SQLI or
XSS attacks.

It is also worth mentioning that the model might comprise several different
test cases, which are carried out during traversing the states. Testing can
be automated using the model, thus making it applicable for a test-driven
development process. By modeling attacks instead of the behavior of the
model it is also ensured that a SUT has at least limited capabilities of
preventing successful attacks that are well known.

54

5.3 Attack Pattern-Based Testing

5.3.2 Evaluation

As mentioned before, some manual work is still required before automating
the testing process. The process of modeling attack patterns may not be very
time consuming if the tester has knowledge about the internal structure of
the SUT but if the application is unknown, help can be provided by tools
like WebScarab, which can give information about the usual communication
process between a client and the program. After that, this data can be
implemented in the model and especially into necessary Java methods.

In order to evaluate the method, a collection of 33 custom SQLI and 107 XSS
attack vectors was used, which syntax differs slightly with respect to the
sophistication level. Some SQL inputs are the most common initial injections
whereas others contain more advanced examples that use special symbols,
comments, escape special symbols, key words, UNION statements and the
combination of these methods. For XSS parts strings were used for both
types but also symbol escapes, URL encodings, keyword escapes etc. and
also combined all of the input types. For that case, manually crafted XSS
inputs were used as well as the ones generated by ACTS.

In fact, only those test cases were taken into account, which lead to a positive
result, that is, a breach of the security. Table 5.1 depicts all results according
to the type of application and attack. Here, the SUT, type of vulnerability
(ToV), security level, average execution time in seconds (AET(s)), # of suc-
cessful injections (#SI) and the coverage percentage categorize the overall
results.

However, both attack patterns for both blog applications have been slightly
adapted. Firstly, Wordpress was tested while the testing application was
authenticated so all inputs were submitted after that step. Then, a blog is
picked and all malicious scripts were inserted without checking immediately
for vulnerability and after the end of the list of attacks has been reached, the
blog address is called again. During this step, all firing scripts are parsed
by the program and counted, so the final number of successful inputs is
calculated.

Anchor CMS is similar to Wordpress with the difference that all posts have
to be approved by the administrator. So in this case, the execution of the

55

5 Attack Pattern-Based Combinatorial Testing

Table 5.1: Initial evaluation results

SUT ToV Security Level AET(s) #SI % coverage
DVWA SQLI low 8.47 8 24.24

medium 10.55 2 6.06

high - - -
RXSS low 23.00 15 14.02

medium - - -
SXSS low 26.60 15 14.02

medium - - -
Mutillidae SQLI low 15.69 5 15.15

medium 17.94 5 15.15

high - - -
RXSS low 42.20 40 37.38

medium 52.60 40 37.38

high - - -
SXSS low 53.30 17 15.89

medium 78.10 17 15.89

high - - -
BodgeIt SQLI - 8.50 3 9.09

RXSS - 27.20 13 12.15

SXSS - 26.30 26 24.30

Wordpress SXSS - 33.5 7 6.54

Anchor SXSS - 30 8 7.48

56

5.3 Attack Pattern-Based Testing

model stops after the inputs were submitted and after the tester approves
the posts, the execution may continue by parsing all potentially incoming
scripts by requesting the blog page.

Concerning DVWA and Mutillidae, the measured difference in the results
lies in the fact that every tested program contains different security levels
and thus, filtering mechanisms. Also, it was impossible to detect vulnerabil-
ity on the hardest security level, which means that a more sophisticated test
case generation strategy has to be adapted for this purpose, which should
implement evasion techniques for more advanced filtering mechanisms that
use special HTML characters etc.

However, it should be mentioned that the execution time of the model
is slower than the usual execution of Java code. On the other side, when
adding choices and more method calls, the execution time remains relatively
unaffected so it can be concluded that the number of states has the biggest
influence on the overall execution time. In order to reduce this, the number
of states should be kept smaller if possible. Because of this and to keep
an overview of the model, formerly active states are allowed to become
activated again so the number of states remains independent from the
number of generated test cases.

It is worth mentioning that when testing stored XSS in DVWA on medium
level a vulnerability may be detected only if a successfully string was already
injected in the database at the lowest security level. Surprisingly, there seems
not to be any security measurements against already stored data so that
a former successful input was also successful at this level. If inputs are
submitted on the same level by having a clear database, the process was
unable to breach the security at all with the new string. The highest difficulty
level also remains unbroken.

In Mutillidae if working on medium or high level in a browser, input data
won’t even be submitted if it contains prohibited input but it is possible to
evade this mechanism with HTTPClient, so this part of software could be
exploited despite this fact but only on medium level.

Another interesting fact is that it was possible to enter data with a greater
length than the actual allowed one by the application without having any
error feedback.

57

5 Attack Pattern-Based Combinatorial Testing

5.4 Combinatorial Testing

Testing a SUT requires the existence of test cases and in particular a method
capable of generating such test cases. For developing the testing framework
methods can be used that arise from the field of combinatorial testing, which
is an effective testing technique to reveal errors in a given SUT, based on
input combinations coverage. Combinatorial testing of strength t (where
t ≥ 2) requires that each t-wise tuple of values of the different system
parameters is covered by at least one test case.

To design a test case, the tester identifies possible output values from each
of the actions of the SUT. It is important to find a test case that is not
too large, but yet tests for most of the interactions among the possible
outputs in the action of the SUT. Recently, some researchers [46, 106, 107]
suggested that some faults or errors in SUTs are a combination of a few
actions when compared to the total number of parameters of the system
under investigation.

Combinatorial testing is motivated by the selection of a few test cases in
such a manner that good coverage is still achievable. The combinatorial test
design process can be briefly described as follows:

1. Model the input space. The model is expressed in terms of parameter
and parameter values.

2. The model is input into a combinatorial design procedure to generate
a combinatorial object that is simply an array of symbols.

3. Every row of the generated array is used to output a test case for a
SUT.

One of the benefits of this approach is that steps 2. and 3. can be completely
automated. In particular, ACTS was used and subsequently the attack
pattern-based methodology given in Section 5.3 for these steps.

58

5.5 Combining the Approaches

5.5 Combining the Approaches

A framework is provided for testing and detection of both reflected and
stored XSS in web applications. It two parts: a model-based testing method
that is based on attack patterns, and combinatorial testing for generating the
input data to be submitted to the SUT. Here the idea is to use model-based
testing for generating abstract test cases, for example sequences of necessary
interactions, and combinatorial testing for concretizing the input.

In the implementation ACTS was used for generation of input strings by
specifying parameters and constraints in order to structure the inputs for
the particular application domain. Once specified, these inputs are used by
the attack pattern model in order to submit them to a web application.

The goal of the proposed approach is to cover standard XSS exploitation
attempts by checking whether certain parts of the SUT are vulnerable to
potentially malicious scripts. Also, the tester can detect what parts of the
SUT are vulnerable and gets the impression how an injection is structured
so further measures can be taken. The main differences to other techniques
and tools lie in the generation, structure and execution of test cases.

5.6 Combinatorial Grammar for XSS Attack
Vectors

In this section, a general structure for XSS attack vectors is considered where
each one of them is comprised of 12 discrete parameters where 6 of them are
single-valued or have to satisfy certain constraints. The used combinatorial
grammar is presented below in BNF form so as to be able to generate
possible parameter values through ACTS. It should be noted that although
attack grammars for XSS attack vectors have been given in [53], [102], this
is the first time that such a grammar is used in terms of combinatorial
modeling and the authors’ approach for combinatorial security testing is
novel in that sense.

59

5 Attack Pattern-Based Combinatorial Testing

FOBRACKET : : = <
TAG : : = img | frame | s r c | s c r i p t | body | HEAD |
BODY | i frame | IFRAME | SCRIPT
FCBRACKET : : = >
QUOTE1 : : = ‘ ‘ | ‘ | n u l l
SPACE : : = \n | \ t | \ r | \ r \n | \a | \b | \c | | n u l l
EVENT : : = o n c l i c k | onmouseover | onerror | o n f i r e |
onbeforeload | onaf te r load | onaf ter lunch |
onload | onchange | n u l l
SPACE2 : : = \n | \ t | \ r | \ r \n | \a | \b | \c | |
n u l l
QUOTE2 : : = ‘ ‘ | ‘ | n u l l
PAYLOAD : : = a l e r t (1) | a l e r t (0) |
a l e r t (document . cookie) | a l e r t (”hacked”) |
a l e r t (’ hacked ’) |
s r c =” http ://www. cnn . com”> ;
LOBRACKET : : = </
CLOSINGTAG : : = img | frame | s r c | s c r i p t | body |
HEAD | BODY | i frame | IFRAME | SCRIPT
LCBRACKET : : = >

BNF Grammar for XSS Attack Vectors

Based on the previously presented attack grammar a XSS attack vector is
considered to be of the following form:

AV :=< FOBRACKET, TAG, FCBRACKET, QUOTE1, SPACE, EVENT, SPACE2,

QUOTE2, PAYLOAD, LOBRACKET, CLOSINGTAG, LCBRACKET >

The given parameter values are just a fragment of possible options. If the
designer would like to generate a vast number of inputs, it is sufficient to
just add parameter values in the given BNF for XSS attack vectors. Moreover,
the grammar also satisfies some constraints using the constraint tool from

60

5.7 Attack Pattern-Based Combinatorial Testing: Initial Evaluation

ACTS. For example, the TAG parameter is matched with the CLOSINGTAG
parameter to always be able to produce valid inputs.

For the second step of the combinatorial test design process the notion of
mixed-level covering arrays (a specific class of combinatorial designs) is
used. For the sake of complicity the definition of mixed-level covering arrays
is provided in Section 3.1 as Definition 1, which is taken from [47] since this
is the underlying generated structure in the ACTS tool.

It should be remarked that this technique of discretizing the parameter
values is referred to as input parameter modeling for combinatorial testing
[73] and essentially enables the designer to choose the possible parameter
values for the SUT. Thus, it is natural to define the attack grammar as a
combinatorial one when the first one is used for input parameter modeling.
Figure 5.6 depicts the System View of ACTS with already specified grammar,
its parameters, values as well as the generated output.

Essentially, this means that given the t-wise interaction of the covering array
ACTS generates all possible t-tuples of parameter values for a number of t
total parameters in the SUT. This is another explanation for the strength t of
the covering array where for any selection of t-rows each t-tuple appears at
least once.

For all cases, the parameters of the MCA are derived from the BNF com-
binatorial grammar according to the following formulation. The number
of rows of the MCA equals to the number of types in the presented combi-
natorial grammar while the size of alphabets gi of the MCA equals to the
number of derivation rules per type. For example, all XSS attack vectors
from MCA(2, 12, (1, 1, 1, 1, 3, 3, 6, 9, 9, 10, 10)) for the src tag when there is
need to test for pairwise interactions (t = 2) can be found in Table 5.2.

5.7 Attack Pattern-Based Combinatorial Testing:
Initial Evaluation

For combinatorial interaction strength 2, ACTS threw out 114 inputs and
respectively 1031 and 8332 strings for strength 3 and strength 4. The ob-

61

5
A

ttack
P

attern-B
ased

C
om

binatorialTesting

Figure 5.6: System View in ACTS

62

5.7
A

ttack
P

attern-B
ased

C
om

binatorialTesting:
InitialE

valuation

Table 5.2: A sample of XSS attack vectors
FOBRACKET TAG FCBRACKET QUOTE1 SPACE EVENT SPACE2 QUOTE2 PAYLOAD LOBRACKET CLOSINGTAG LCBRACKET

< src > ’ \r\n onclick \b ’ alert(document.cookie) </ src >
< src > null \a onmouseover \c ’’ alert(\hacked\")" </ src >
< src > ’’ \b onerror null alert(’hacked’) </ src >
< src > null \c onfire null ’’ src=\http://www.cnn.com\">" </ src >
< src > ’ onbeforeload \n ’’ alert(1) </ src >
< src > ’ nil onafterload \t ’’ alert(0) </ src >
< src > ’’ \n onafterlunch \r\n ’’ alert(document.cookie) </ src >
< src > ’ \t onload \a ’ alert(\hacked\")" </ src >
< src > ’’ \r onchange \b ’’ alert(’hacked’) </ src >
< src > ’ \r\n nil \r ’ alert(1) </ src >

63

5 Attack Pattern-Based Combinatorial Testing

tained results of the evaluation are depicted in Table 5.3. It should be also
mentioned that input fields were tested with textual or password values as
well as textarea tags.

In the table, information is given about the strength (S), SUT, type of
vulnerability (ToV), difficulty level (DL), execution time in seconds, # of
successful injections (#SI) as well as the percentage of coverage.

In contrast to manual testing, several issues were encountered during the
testing process about the structure and meaning of successful vulnerability
detection. Before doing the automated tests, many of the generated inputs
from ACTS were used by the testers in order to see how the SUT reacts
by executing them in the browser. During that process the conclusion was
drawn that Google Chrome is more resistant to malicious inputs than
Mozilla Firefox regarding the filtering of inputs on browser side so many
scripts which were executed in Firefox, could not be triggered in Chrome.
For this sake, another interesting fact is that the program reported more
encounters of critical HTML elements than when executed by a browser.

In the table it can be observed that in DVWA not a single breakthrough was
reported on the medium and hard levels. On the lowest security level the
got the same results for both persistent and stored XSS, so it is assumed that
the software uses identical defense mechanisms for these cases although
this seems not to be the case with the higher level, where type-2 XSS could
not be triggered at all.

On the hand, Mutillidae and BodgeIt have been breached on both levels for
both types of XSS.

The authors’ observations led to the conclusion that only certain tags could
go unfiltered, especially script, src and i f rame while others like body, head
and f rame were not able to cause a security break. This leads to the obvious
conclusion that such applications need more protection against these critical
tags and keywords.

Also, the specified attack grammar in ACTS is so far successful for script
tags in case no filtering is applied, so it actually may be possible to put
a more malicious code inside a script by using the same structure but by
expanding the grammatical content between the tags. On the other hand,
a redefinition of unsuccessful elements is eventually needed. All this does

64

5.7 Attack Pattern-Based Combinatorial Testing: Initial Evaluation

Table 5.3: Initial evaluation results - Combinatorial Testing

S SUT ToV DL Execution time (s) #SI % coverage
2 BodgeIt RXSS - 30.00 69 60.53

SXSS - 31.80 56 49.12

3 RXSS - 244.60 619 60.04

SXSS - 242.80 512 49.66

4 RXSS - 1788.70 4991 59.90

SXSS - 1950.80 4157 49.89

2 DVWA RXSS 1 27.40 69 60.53

SXSS 1 28.50 69 60.53

RXSS 2 30.70 56 49.12

SXSS 2 30.60 0 0.00

3 RXSS 1 281.80 619 60.04

SXSS 1 284.90 619 60.04

RXSS 2 269.30 512 49.66

SXSS 2 289.20 0 0.00

4 RXSS 1 2284.30 4991 59.90

SXSS 1 3200.60 4991 59.90

RXSS 2 2684.19 4157.00 49.89

SXSS 2 3010.10 0 0.00

2 Mutillidae RXSS 1 56.60 69 60.53

SXSS 1 61.10 41 35.96

RXSS 2 74.20 69 60.53

SXSS 2 80.80 41 35.96

3 RXSS 1 514.00 619 60.04

SXSS 1 536.30 302 29.29

RXSS 2 625.90 619 60.04

SXSS 2 700.30 302 29.29

4 RXSS 1 3990.90 4991 59.90

SXSS 1 4451.70 2398 28.78

RXSS 2 5246.00 4991 59.90

SXSS 2 5586.50 2405 28.86

65

5 Attack Pattern-Based Combinatorial Testing

not downgrade the using of combinatorial testing but eventually reveals
something about the mechanism of designing grammars and payloads for
XSS, which might be expanded further.

The reason for the overall results may be the fact that the structure of
the generated inputs by ACTS is relatively manageable according to the
specified parameter segments for the generation process. For example, it was
specified that all of the inputs begin with the opening tag and conclude with
its closing counterpart and also use the usual HTML element names. The
detection mechanisms in the proposed program have been implemented as
well in order to be effective against the same symbols and HTML elements.
In all the cases where the SUT didn’t have any intern filtering mechanisms
specified against these symbols, the submitted element is returned and
parsed successfully without being filtered by the application. However, if
the system already has some prevention mechanisms like the evasion of
specific tags or keywords from the input, then all incoming injections with
these symbols were rejected. For that reason, no testing quality could be
achieved just by increasing the number of inputs as long as some different
combinatorial syntax isn’t defined. In fact, high coverage rates are obtained
in all cases where this filtering hasn’t been applied.

Another very interesting fact is that for every combinatorial interaction
strength, the same coverage of positive results was achieved, that is, vul-
nerability detections, no matter how many inputs were submitted. Also,
BodgeIt and Mutillidae were tested with inputs from strength 5 with 48755

inputs but then only to reaffirm the same conclusion.

From a purely combinatorial point of view some additional conclusions are
drawn for the same coverage of positive results. Firstly, it is deduced that
the interaction of the involved parameters is independent of the SUTs that
were evaluated. In other words, if a close look is taken on the evaluation
results it can be seen that an interaction of two modeled parameters (t = 2)
is sufficient for a tester to penetrate the specific web applications (at least on
the first security levels where applicable). As already discussed, increasing
the strength of the covering arrays in ACTS for t = 3 and t = 4 implies an
increase on the number of interactions of the parameters of the generated
inputs. Having this in mind, obtaining the same coverage percentage leads

66

5.7 Attack Pattern-Based Combinatorial Testing: Initial Evaluation

to the conclusion that every possible positive input has been generated
already for strength t = 2 (and reproduced for higher strengths).

As usually is the case when considering the mathematical modeling of com-
plex systems (and such are the SUTs that were evaluated) there are some
certain advantages and disadvantages of Attack Pattern-based Combinato-
rial Testing. One positive aspect of the presented methodology is that the
(general) combinatorial testing oracle from [74] can also be used for security
testing of web applications. Recall that this oracle is based on first testing
all two pairwise interactions (t = 2). Then the tester continues by increasing
the interaction strength t until no further errors (injections in this case) are
detected by the t-way tests (inputs), and finally optionally tries t + 1 and
ensures that no additional errors are detected. The main motivation for com-
binatorial testing is the reduction of the search space while still being able
to test for t-way interactions. The latest is also a sufficient condition for the
successful application of combinatorial testing. This milestone is considered
to be achieved as for all tested SUTs; a significant reduction on the number
of possible inputs was accomplished. For example, with the grammar all
2-way interactions were tested with 114 inputs out of all 158799 possible
inputs when considering exhaustive search of its parameters. This implies a
reduction of 99.93% of the total search space produced by the combinatorial
grammar while still being able to penetrate the aforementioned SUT.

This efficiency on test execution however does not come with some draw-
backs. It was mentioned that a more complex combinatorial grammar is
needed to break through the higher security levels of the SUTs. Unfor-
tunately, adding more values in the parameters of the grammar would
contribute to an exponential growth of the computational time required to
generate the required covering arrays by ACTS. One possible way to over-
come this shortcoming would be to consider adding more parameters in the
grammar instead of parameter values as this would increase the complexity
only by a logarithmic scale. Here the evaluation on the combinatorial part
of the authors’ methodology is concluded and the last remark is considered
as a starting point for further research on the cross-fertilization of the fields
of combinatorial testing and web application security.

67

5 Attack Pattern-Based Combinatorial Testing

5.8 Evaluation of the IPO-Family Algorithms for
Test Case Generation

An examination is undertaken in order to show how two of the most
popular algorithms for combinatorial test case generation, namely the IPOG
and IPOG-F algorithms, perform in web security testing. For generating
comprehensive and sophisticated testing inputs input parameter modeling
has been used by adding constraints between the different parameter values.
The evaluation indicates that both algorithms generate test inputs that
succeed in revealing security leaks in web applications with IPOG-F giving
overall slightly better results w.r.t. the test quality of the generated inputs.
In addition, using constraints during the modeling of the attack grammars
results in an increase on the number of test inputs that cause security
breaches.

Last but not least, a detailed analysis of the evaluation results confirms that
combinatorial testing is an efficient test case generation method for web
security testing as the security leaks are mainly due to the interaction of a
few parameters. This statement is further supported by some combinatorial
coverage measurement experiments on the successful test inputs. It should
be noted that, in all of the previous works the focus was to compare manual
to automated penetration testing tools and the underlying combinatorial
test generation algorithm was IPOG. The main difference to this work is
the inclusion of the IPOG-F algorithm for generating the test suites and a
comparison between these two algorithms of the IPO-family applicable in
web security testing, for the first time.

In this work the IPOG-based test generation algorithm [75] was used and its
refinement IPOG-F [58] to generate the test suites, as these are implemented
in ACTS. Both algorithms are a generalization of the in-parameter-order
(IPO) strategy first introduced by Lei and Tai [76]. A detailed description of
the IPO-family can be further found in [73] and [108].

68

5.8 Evaluation of the IPO-Family Algorithms for Test Case Generation

5.8.1 Combinatorial Grammar for XSS Attack Vectors and
Constraints

Here the general structure for XSS attack vectors is reviewed where each
one of them is comprised of 11 discrete parameters (types) and discussed
in detail below. This new structure builds upon a combinatorial grammar
given in Section 5.6 by modeling white spaces and executable JavaScript
that can appear in an XSS attack vector but also extends the one given in
[61, 32] by adding constraints between the different parameters values.

For the sake of completeness, a fragment of the combinatorial grammar is
presented below, denoted by G, in BNF form so as to be able to generate
possible parameter values through ACTS, where inside the parentheses in
the parameters the full range of values is listed, which has been taken into
account in the implementation.

JSO(15)::= <script> | <script> | ...
WS1(3)::= tab | space | empty
INT(14)::= \"; | ’> | ">> | ...
WS2(3)::= tab | space | empty
EVH(3)::= onLoad(| onMouseOver(| onError(
WS3(3)::= tab | space | empty
PAY(23)::= alert(’XSS’) | SRC="javascript:alert(’1’);"> |

HREF="http://ha.ckers.org/xss.js"> | ...
WS4(3)::= tab | space | empty
PAS(11)::= ’) | ;// | ’> | ...
WS5(3)::= tab | space | empty
JSE(9)::= </script> | \> | ’\> | ...

Reviewed BNF Grammar for XSS Attack Vectors

The expert knowledge was essential in the design of the AV, where the
goal is to produce valid JavaScript code when this is injected into SUT
parameters. The description of the types in the previous AV has briefly
mentioned in [61], however here it is also included, in more detail, for the
sake of completeness:

69

5 Attack Pattern-Based Combinatorial Testing

• The JSO (JavaScript Opening Tags) type represent tags that open a
JavaScript code block. They also contain values that use common
techniques to bypass certain XSS filters, like <script> or <img.
• The WS (white space) type family represents the white space but also

variations of it like the tab character in order to circumvent certain
filters.
• The INT (input termination) type represents values that terminate the

original valid tags (HTML or others) in order to be able to insert and
execute the payload, like "’> or ">.
• The EVH (event handler) type contains values for JavaScript event

handlers. The usage of JavaScript event handlers, like onLoad(or
onError(, is a common approach to bypass XSS filters that filter out
the typical JavaScript opening tag like <script> or filters that remove
brackets (especially < and >).
• The PAY (payload) type contains executable JavaScript like
alert("XSS") or ONLOAD=alert(’XSS’)>. This type contains dif-
ferent types of executable JavaScript in order to bypass certain XSS
filters.
• The PAS (payload suffix) type contains different values that should

terminate the executable JavaScript payload (PAY state value). The
PAS is necessary to produce valid JavaScript code that is interpreted
by a browser like ’) or ’>.
• The JSE (JavaScript end tag) type contains different forms of JavaScript

end tags in order to produce valid JavaScript code like </script> or
>.

In addition, constraints were added to the XSS attack grammar. The moti-
vation for this reason rises from the fact that in real-world systems adding
constraints may produce test suites with better quality and also considerably
reduce the search space. This approach for combinatorial testing has been
followed for example in [85, 30, 95].

It should be noted that although attack grammars for XSS attack vectors have
been given in [34, 61, 32, 102, 53, 54], this is the first time that constraints
are imposed on such attack grammars in terms of combinatorial modeling
when the model is input to the IPOG-F algorithm and the approach for
revisiting the notion of combinatorial security testing is novel in that sense.

70

5.8 Evaluation of the IPO-Family Algorithms for Test Case Generation

Below the full set of constraints for the grammar is presented by using the
constraint tool from ACTS where the symbol => means an implication and
the symbol || an OR statement. This grammar will be denoted with G c to
distinguish it from G when constraints are enforced.

(JSO=1) => (JSE=1)
(JSO=2) => (JSE=2)
(JSO=3) => (JSE=3)
(JSO=4) => (JSE=2 || JSE=4)
(JSO=5) => (JSE=5 || JSE=6 || JSE=7 || JSE=8 || JSE=9)
(JSO=6) => (JSE=5 || JSE=6 || JSE=7 || JSE=8 || JSE=9)
(JSO=7) => (JSE=5 || JSE=6 || JSE=7 || JSE=8 || JSE=9)
(JSO=9) => (JSE=5 || JSE=6 || JSE=7 || JSE=8 || JSE=9)
(JSO=10) => (JSE=9)
(JSO=11) => (JSE=2 || JSE=3 || JSE=4)
(JSO=12) => (JSE=5 || JSE=6 || JSE=7 || JSE=8 || JSE=9)
(JSO=13) => (JSE=5 || JSE=6 || JSE=7 || JSE=8 || JSE=9)
(JSO=14) => (JSE=2 || JSE=3 || JSE=4)
(JSO=15) => (JSE=2 || JSE=3 || JSE=4)
(EVH=1) => (PAY=12 || PAY=14 || PAY=17 || PAY=18 || PAY=19)
(EVH=2) => (PAY=13 || PAY=14 || PAY=17 || PAY=18 || PAY=19)
(EVH=3) => (PAY=12 || PAY=13 || PAY=17 || PAY=18 || PAY=19)
(INT=2) => (PAS=10 || PAS=11)
(INT=3) => (PAS=10 || PAS=11)
(INT=4) => (PAS=10 || PAS=11)
(INT=5) => (PAS=6 || PAS=7 || PAS=8 || PAS=9)
(INT=6) => (PAS=6 || PAS=7 || PAS=8 || PAS=9)
(INT=7) => (PAS=6 || PAS=7 || PAS=8 || PAS=9)
(INT=8) => (PAS=6 || PAS=7 || PAS=8 || PAS=9)
(INT=9) => (PAS=6 || PAS=7 || PAS=8 || PAS=9)
(INT=10) => (PAS=6 || PAS=7 || PAS=8 || PAS=9)
(INT=11) => (PAS=10 || PAS=11)
(WS1=WS2 && WS2=WS3 && WS3=WS4 && WS4=WS5)

Constraints for XSS Attack Grammar

In the implementation, a translation layer was used from the integer values
presented previously to actual values per derivation type, in a similar
manner to the ones presented for G. The rationale for the used constraints
by incorporating the expert knowledge is as follows:

71

5 Attack Pattern-Based Combinatorial Testing

• Constraints of the form (JSO=x) => (JSE=y) for appropriate val-
ues x and y ensure coupling of the outermost JavaScript opening and
closing tags. An alignment between these two types is necessary to
produce valid JavaScript code.
• Constraints of the form (EVH=x) => (PAY=y) for appropriate val-

ues x and y offer the possibility to use only those payload values,
which are, derived from expert knowledge, most likely to succeed
when coupled with the respective event handler.
• Constraints of the form (INT=x) => (PAS=y) for appropriate val-

ues x and y further express necessary correlations/conditions between
the two stages to be able to ultimately execute the payload type, which
an experienced tester would intuitively use when performing manual
penetration testing.
• Constraints between the whitespace types mainly serve to reduce the

overall size of the test suites.

This grammar will be denoted with G c to distinguish it from G when
constraints are enforced.

5.8.2 Combinatorial Metrics for Security Testing

There has been a great need for metrics, for example how to measure the
efficiency of testing experiments, in software security the latest years. Many
different notions of coverage criteria used in traditional software testing
such as branch coverage and statement coverage were also adopted by
security researchers [70] and some new have been proposed [49].

In the context of automated security testing for web applications [49], it was
defined as the exploitation rate of a SUT, denoted by ER, the proportion of
XSS attack vectors that were successful, for example the ones that exploit an
XSS vulnerability, per given test suite and SUT:

ER =
Attack vectors that exploit an XSS vulnerability

Total number of attack vectors per test suite and SUT
(5.1)

In this work, combinatorial coverage measurement metrics (which differ to
the ER) have been used as well to determine the quality of the successful

72

5.8 Evaluation of the IPO-Family Algorithms for Test Case Generation

attack vectors. In particular, the interest is put on the number of t-way
combinations covered in passing tests. This notion of combinatorial cov-
erage [73], which can be computed by the CCM tool [51], is defined as
the proportion of covered t-way (valid) tuples of given k parameters in a
mixed-level covering array. Such tuples in combinatorial testing literature
are also met as variable-value configurations.

5.8.3 Evaluation

It should be noted that until now in all of the previous case studies the test
suites have been generated with the IPOG algorithm. However, in this case
study the test suites for IPOG have been regenerated and also new ones
were created with the IPOG-F algorithm.

This was needed as one of the goals of the case study is to investigate which
of the two algorithms of the IPO family, namely IPOG and IPOG-F, generates
better quality test suites w.r.t. to XSS vulnerability detection. In particular,
the intention is to compare the exploitation rate of the test suites focused
on triggering XSS exploits. Secondly, on the same level of importance, the
intention is to investigate the combinatorial coverage of passing tests to
determine whether security leaks are caused by the interaction of a few
parameters.

The SUTs were tested with different sets of test suites, produced by the
ACTS tool and based on the combinatorial grammar given in Section 5.8.1.
The difference between the four sets of test suites rely on imposing various
constraints on the different types of the attack grammar and the underlying
combinatorial test case generation algorithm used.

As before, an XSS grammar was used for the input model in ACTS and
generated inputs for combinatorial interaction strengths t ∈ {2, 3, 4} twice
for each algorithm, where the first dataset consists of attack vectors that
were created without setting any constraints on the data structure, while
the second input file comprises attacks which were generated according to
constraints mentioned in Section 5.8.1. All mentioned applications have been
tested against all attack vectors and the responsive results are displayed.

73

5 Attack Pattern-Based Combinatorial Testing

The cardinality of the total space is 3× 3× 3× 3× 3× 3× 9× 11× 14×
15× 23 = 348585930 tests. When generating the test suites using the au-
thors’ model as input to a MCA(t, 11, (3, 3, 3, 3, 3, 3, 9, 11, 14, 15, 23)), for
t ∈ {2, 3, 4}, a reduction of ≈ 99.99% of the total search space can be
observed. In addition, from Table 5.4. it is evident that the test suites gen-
erated by the IPOG-F are smaller than the ones produced by the IPOG
algorithm, for the model without constraints and the situation is reversed
when these are enforced. Regarding the usage of constraints, enforcing them
in test case generation makes the test suites even smaller in both cases.

Finally, it should be noted that the test generation in ACTS for all test suites
was quite fast in a normal workstation, ranging from some seconds to a
couple of minutes for increasing strength.

All test suites were executed using the attack pattern-based testing frame-
work. In order to draw a meaningful comparison, the same elements of a
SUT were tested with all test suites, which were input fields with textual and
password values or textarea tags but attack vectors were as well attached to
the URL paths without any variable binding.

Exploitation Rate of SUTs and their Relation to the IPO Family

In this section, it is investigated how the exploitation rate of the different
SUTs, which were considered in the case study, scales when the combinato-
rial interaction strength increases, for given difficulty level and input field in
each one of the SUTs for the IPOG and IPOG-F algorithms. The evaluation
results are depicted in Table 5.4 for the XSS combinatorial grammar that
was used (with and without constraints on the parameter values) when the
generated vectors are tested against the SUTs.

In particular, in Table 5.4 information is given about the combinatorial
interaction strength (Str.), the SUT, the input field ID (inp ID), type of
vulnerability (VT), eventually the difficulty level (DL), the exploitation rate
(the number of positive inputs divided by the total number of tested vectors)
and its respective percentage for both IPOG and IPO-F algorithms. The
abbreviation for the SUTs are given as well, that is, Mutillidae (M), BodgeIt

74

5.8 Evaluation of the IPO-Family Algorithms for Test Case Generation

Table 5.4: Evaluation results per SUT for given difficulty level and input field with increas-
ing strength

SUT parameters Str. G G c
IPOG IPOG-F IPOG IPOG-F

App DL VT inp id ER % ER ER % ER ER % ER ER % ER
M 0 RXSS 1 2 111/345 32.17 102/345 29.57 116/250 46.40 121/252 48.02

M 0 RXSS 1 3 1580/4875 32.41 1561/4830 32.32 836/1794 46.59 950/2012 47.22

M 0 RXSS 1 4 17344/53706 32.29 17127/53130 32.24 3974/8761 45.36 4449/9760 45.58

M 0 RXSS 2 2 129/345 37.39 136/345 39.42 116/250 46.40 123/252 48.81

M 0 RXSS 2 3 1849/4875 37.93 1822/4830 37.72 839/1794 46.77 942/2012 46.82

M 0 RXSS 2 4 20135/53706 37.49 19957/53130 37.56 4108/8761 46.89 4667/9760 47.82

M 0 RXSS 3 2 0/345 0.00 0/345 0.00 0/250 0.00 0/252 0.00

M 0 RXSS 3 3 0/4875 0.00 0/4830 0.00 0/1794 0.00 0/2012 0.00

M 0 RXSS 3 4 0/53706 0.00 0/53130 0.00 0/8761 0.00 0/9760 0.00

M 1 RXSS 1 2 111/345 32.17 102/345 29.57 116/250 46.40 121/252 48.02

M 1 RXSS 1 3 1580/4875 32.41 1561/4830 32.32 836/1794 46.59 950/2012 47.22

M 1 RXSS 1 4 17344/53706 32.29 17127/53130 32.24 3974/8761 45.36 4449/9760 45.58

M 1 RXSS 2 2 129/345 37.39 136/345 39.42 116/250 46.40 123/252 48.81

M 1 RXSS 2 3 1849/4875 37.93 1822/4830 37.72 839/1794 46.77 942/2012 46.82

M 1 RXSS 2 4 20135/53706 37.49 19957/53130 37.56 4108/8761 46.89 4667/9760 47.82

M 1 RXSS 3 2 0/345 0.00 0/345 0.00 0/250 0.00 0/252 0.00

M 1 RXSS 3 3 0/4875 0.00 0/4830 0.00 0/1794 0.00 0/2012 0.00

M 1 RXSS 3 4 0/53706 0.00 0/53130 0.00 0/8761 0.00 0/9760 0.00

B 0 RXSS 1 2 198/345 57.39 201/345 58.26 145/250 58.00 153/252 60.71

B 0 RXSS 1 3 2842/4875 58.30 2842/4830 58.84 1073/1794 59.81 1207/2012 59.99

B 0 RXSS 1 4 31441/53706 58.54 31120/53130 58.57 5366/8761 61.25 6084/9760 62.34

B 0 RXSS 2 2 131/345 37.97 135/345 39.13 97/250 38.80 106/252 42.06

B 0 RXSS 2 3 1890/4875 38.77 1888/4830 39.09 737/1794 41.08 823/2012 40.90

B 0 RXSS 2 4 20927/53706 38.97 20648/53130 38.86 3918/8761 44.72 4551/9760 46.63

B 0 SXSS 3 2 32/345 9.28 32/345 9.28 37/250 14.80 38/252 15.08

B 0 SXSS 3 3 561/4875 11.51 551/4830 11.41 257/1794 14.33 273/2012 13.57

B 0 SXSS 3 4 6052/53706 11.27 6024/53130 11.34 1504/8761 17.17 1590/9760 16.29

B 0 SXSS 4 2 308/345 89.28 305/345 88.41 217/250 86.80 215/252 85.32

B 0 SXSS 4 3 4434/4875 90.95 4407/4830 91.24 1558/1794 86.85 1745/2012 86.73

B 0 SXSS 4 4 42898/53706 79.88 42378/53130 79.76 7676/8761 87.62 8618/9760 88.30

G 0 RXSS 1 2 122/345 35.36 122/345 35.36 89/250 35.60 92/252 36.51

G 0 RXSS 1 3 1744/4875 35.77 1755/4830 36.33 671/1794 37.40 758/2012 37.67

G 0 RXSS 1 4 19381/53706 36.09 19223/53130 36.18 3303/8761 37.70 3566/9760 36.54

G 0 SXSS 2 2 23/345 6.67 23/345 6.67 17/250 6.80 18/252 7.14

G 0 SXSS 2 3 327/4875 6.71 322/4830 6.67 118/1794 6.58 136/2012 6.76

G 0 SXSS 2 4 3587/53706 6.68 3542/53130 6.67 610/8761 6.96 749/9760 7.67

W 0 RXSS 2 2 198/345 57.39 201/345 58.26 145/250 58.00 153/252 60.71

W 0 RXSS 2 3 2842/4875 58.30 2842/4830 58.84 1073/1794 59.81 1207/2012 59.99

W 0 RXSS 2 4 31441/53706 58.54 31120/53130 58.57 5366/8761 61.25 6084/9760 62.34

D 0 RXSS 1 2 175/345 50.72 178/345 51.59 128/250 51.2 134/252 53.17

D 0 RXSS 1 3 2517/4875 51.63 2520/4830 52.17 954/1794 53.18 1081/2012 53.73

D 0 RXSS 1 4 27864/53706 51.88 27578/53130 51.91 4755/8761 54.27 5345/9760 54.76

D 0 SXSS 2 2 91/345 26.38 92/345 26.67 88/250 35.20 84/252 33.33

D 0 SXSS 2 3 1303/4875 26.73 1302/4830 26.96 537/1794 29.93 616/2012 30.62

D 0 SXSS 2 4 14068/53706 26.19 13928/53130 26.21 2276/8761 25.98 2825/9760 28.96

D 1 RXSS 1 2 106/345 30.72 109/345 31.59 80/250 32.00 86/252 34.13

D 1 RXSS 1 3 1548/4875 31.75 1554/4830 32.17 613/1794 34.17 692/2012 34.39

D 1 RXSS 1 4 17173/53706 31.98 16952/53130 31.91 3285/8761 37.50 3787/9760 38.80

D 1 SXSS 2 2 0/345 0.00 0/345 0.00 0/250 0.00 0/252 0.00

D 1 SXSS 2 3 0/4875 0.00 0/4830 0.00 0/1794 0.00 0/2012 0.00

D 1 SXSS 2 4 0/53706 0.00 0/53130 0.00 0/8761 0.00 0/9760 0.00

75

5 Attack Pattern-Based Combinatorial Testing

(B), Gruyere (G), Webgoat (W) and DVWA (D). Further, the table gives the
corresponding results for constrained values in each case.

In DVWA, higher interaction strengths caused higher exploitation rates
when using the constrained test set. This was the case with test sets from
both algorithms. When the same element in the SUT was tested against
reflected XSS, the program obtained 32% for t = 2 and 37.50% for the
t = 4 for IPOG. The other algorithm gave for the same elements results
around 34.13% and 38.80%. A slight increase for constrained vectors was
also reported in Webgoat with IPOG, where for t = 2 the output has been
58% and 61.25% for the highest strength. A slight increase of 1.63% was
also reported when using IPOG-F for the same SUT. When Mutillidae was
tested with unconstrained vectors, 29.57% was achieved for t = 2 and
corresponding 32.24% for t = 4.

On the other hand, when comparing the testing outcome from both al-
gorithms regarding the test sets, the most evident difference is obtained
in Mutillidae. In this SUT the exploitation rate differs most between con-
strained values and their counterpart. While the overall results for the first
tested element result around 32% for all interaction strengths in IPOG,
for the same algorithm we achieved much higher results with constrained
vectors. In this case, the program reported respectively 46.60% and 48.02%
in favor for IPOG-F. Similar results were observed after testing another
element of this SUT. However, the program was not able to trigger any
vulnerability for another element. The assumption is that this part uses
defense mechanisms that reject parts of the vectors. Also, equal results were
obtained when the SUT was tested against the same test sets but on a higher
difficulty level. In this case, additional attack prevention mechanisms were
activated inside the SUT. However, vectors that were before able to succeed
in triggering XSS, also caused the same effect in the upgraded SUT.

In DVWA the program calculated 31.75% for IPOG for t = 3, while achieving
34.17% for the same algorithm when using constrained values. When tested
with t = 4, results varied even more with respectively 31.91% and 38.80%
for IPOG-F. In BodgeIt the results were 79.88% for unconstrained vectors
in IPOG but 87.62% for the other test set when tested against stored XSS.
Similar results were obtained while testing for reflected XSS.

76

5.8 Evaluation of the IPO-Family Algorithms for Test Case Generation

Now the test results for both algorithms for Webgoat will be discussed. This
SUT was tested just for reflected XSS against one element. In this case, an
exploitation rate of about 57.39% was observed for the lowest interaction
strength in IPOG. However, the biggest difference is calculated when using
constrained vectors. Here a slight increase was obtained in the exploitation
rate with IPOG-F when tested against t = 2. Moreover, a result of about
60.71% was observed compared to the same test set from the other algorithm,
where only 58% was achieved. A slightly smaller difference was achieved
for the unconstrained counterpart. However, here the exploitation result
was higher for IPOG-F for every interaction strength. A better result is also
confirmed for t = 4 where IPOG got 61.25% but IPOG-F succeeded with
additional 1.09%.

To summarize the evaluation results of this section, in the majority of
the input fields of the SUTs, an increase in the exploitation rate could be
witnessed when changing G with G c and it is clear that using constraints
results in better quality attack vectors. In addition, IPOG-F gives overall
better results than IPOG and the usage of the first algorithm is used by
the authors’ side when generating tests for web security testing in terms of
exploitation rate. Last but not least, the fundamental rule of combinatorial
testing is confirmed; testing with higher interaction strength makes likely to
reveal more errors. In this context, this rule is interpreted and confirmed in
terms of exploitation rate, that is increasing the interaction strength implies
higher exploitation rates when these are tested for XSS vulnerabilities.

Combinatorial Coverage Measurement for Web Security Testing

In this section, the simple t-way combination coverage of passing tests
derived from the experiments for Gruyere, DVWA and Webgoat in the CCM
tool has been computed. In particular, test suites were taken into account
that were generated only via G as some problems were encountered while
parsing the constraints of G c in CCM. The CCM tool offers a user-friendly
GUI interface to perform the experiments and has the functionality to print
combination coverage charts. It should be noted that in contrast to prior
applications of CCM for evaluating combination coverage in large test suites
that are not necessarily designed using covering arrays (for example [80]),

77

5
A

ttack
P

attern-B
ased

C
om

binatorialTesting

Table 5.5: Evaluation results for measuring combination coverage per SUT with increasing strength - IPOG
IPOG

SUT C(11,t) t=2 t=3 t=4

D
V

W
A 2-way 55 2477/2922 84.77% 2922/2922 100.00% 2922/2922 100.00%

3-way 165 16676/57812 28.85% 54066/57812 93.52% 57803/57812 99.98%
4-way 330 46388/716350 6.48% 340821/716350 47.58% 700147/716350 97.74%

G
ru

ye
re 2-way 55 2076/2772 74.89% 2771/2772 99.96% 2771/2772 99.96%

3-way 165 12469/53168 23.45% 46270/53168 87.03% 53086/53168 99.85%
4-way 330 32522/637878 5.10% 262873/637878 41.21% 601575/637878 94.31%

W
eb

go
at 2-way 55 2610/2997 87.09% 2997/2997 100.00% 2997/2997 100.00%

3-way 165 18368/60134 30.55% 56710/60134 94.31% 60125/60134 99.99%
4-way 330 52355/755586 6.93% 368455/755586 48.76% 742208/755586 98.23%

78

5.8
E

valuation
ofthe

IP
O

-Fam
ily

A
lgorithm

s
forTestC

ase
G

eneration

Table 5.6: Evaluation results for measuring combination coverage per SUT with increasing strength - IPOF
IPOF

SUT C(11,t) t=2 t=3 t=4
D

V
W

A 2-way 55 2507/2922 85.80% 2922/2922 100.00% 2922/2922 100.00%
3-way 165 18256/57812 31.58% 54223/57812 93.79% 57803/57812 99.98%
4-way 330 51826/716350 7.23% 349377/716350 48.77% 700739/716350 97.82%

G
ru

ye
re 2-way 55 2106/2772 75.97% 2771/2772 99.96% 2771/2772 99.96%

3-way 165 13637/53168 25.65% 46842/53168 88.10% 53086/53168 99.85%
4-way 330 36445/637878 5.71% 271808/637878 42.61% 602139/637878 94.40%

W
eb

go
at 2-way 55 2661/2997 88.79% 2997/2997 100.00% 2997/2997 100.00%

3-way 165 19998/60134 33.26% 57200/60134 95.12% 60125/60134 99.99%
4-way 330 57843/755586 7.66% 379774/755586 50.26% 743397/755586 98.39%

79

5 Attack Pattern-Based Combinatorial Testing

in the authors’ case the passing tests (successful XSS exploits) come from
test suites that are produced through combinatorial testing. This feature
plays an important role in the evaluation of the passing tests.

In Table 5.5 and Table 5.6 information is given about the combinatorial inter-
action strength (Str.) of the test suites that the passing tests were originated,
the SUT (App), the simple t-way combination coverage for t ∈ {2, 3, 4}
that is to be measured and its respective percentage for the passing tests
that their original test suites were generated with the IPOG and IPOG-F
algorithms. In addition, the number of t-way combinations is listed in each
case denoted by C(11, t). Recall that, combination coverage is measured as
the proportion of fully covered t-way combinations of given k parameters in
a test suite.

Moreover, in Figures 5.7, 5.8, 5.9 a visualization is given of the combination
coverage (in Y axis) with the percentage of combinations reaching a particu-
lar coverage (X axis) for DVWA, Gruyere and Webgoat, respectively.

From the evaluation results of this table, for DVWA and Gruyere appli-
cations when the simple 2-way combination coverage is measured in the
passing tests of the test suites that were generated with interaction strength
t = 3 and t = 4 in both IPOG and IPOG-F algorithms, this selection of pass-
ing tests forms a covering array of strength 2 as all 2-way combinations of
the 11 variables of the attack grammar are fully covered. Usually, large test
suites naturally cover a high percentage of t-way combinations but a case
study for web security testing where the passing tests are a covering array is
not known to the authors of this work. However, after some post-processing
of these results it should be noted that the cardinality of each one of the
11 variables is in some cases smaller than the ones that were presented in
Section 5.8.1. This implies that some variable values in the attack grammar
do not contribute in revealing XSS vulnerabilities. This could lead to a
method to reverse engineer the structure of successful vectors in order to
achieve better results in terms of exploitation rate and will be explored
further in future research.

For example, when testing Webgoat with the test suites generated via
IPOG-F algorithm, for interaction strength t ∈ {2, 3, 4} it can be seen that
JSO(1) = <scr<script>ipt> does not appear in any of the variable-value
configurations of the t-way combinations of the parameters of the attack

80

5.8 Evaluation of the IPO-Family Algorithms for Test Case Generation

Figure 5.7: Comparison of combination coverage measurement for passing tests in DVWA
(inp id 1, DL 0) when their respective test suites are generated in IPOG (above)
and IPOG-F (below) with interaction strength t = 2

grammar in passing tests. The first step for attack grammar refinement
would be to remove this value from the parameter JSO. At this point, it
should be mentioned that is also related to the filter mechanisms of the
Webgoat application but since the focus is put on successful attack vectors
as a discrete structure will not be elaborated further on this security testing
perspective.

Moreover, from the evaluation results in Table 5.5 and Table 5.6 it can
be observed that IPOG-F again gives better results than IPOG algorithm.
Another point that should be mentioned to conclude this evaluation is
that when taking into account the measurement results for simple 2-way
combination coverage in the passing tests of the test suites generated with

81

5 Attack Pattern-Based Combinatorial Testing

Figure 5.8: Comparison of combination coverage measurement for passing tests in Gruyere
(inp id 1, DL 0) when their respective test suites are generated in IPOG (above)
and IPOG-F (below) with interaction strength t = 3

interaction strength t = 2, some ”hidden” variable-value configurations of
3-way and 4-way combinations can be seen appearing. This implies that
such combinations will produce successful attack vectors w.r.t. XSS exploits
also for higher interaction strengths.

5.9 Automated vs. Manual Testing

In order to reveal vulnerabilities, manual and automatic testing approaches
use different strategies for detection of certain kinds of inputs that might

82

5.9 Automated vs. Manual Testing

Figure 5.9: Comparison of combination coverage measurement for passing tests in Webgoat
(inp id 2, DL 0) when their respective test suites are generated in IPOG (above)
and IPOG-F (below) with interaction strength t = 4

lead to a security breach. Here a state-of-the-art manual testing tool is
compared to an automated one that is based on model-based testing. The
first tool requires user input from the tester whereas the second type reduces
the necessary amount of manual manipulation. Both approaches depend on
the corresponding test case generation technique and its produced inputs
are executed against the system under test.

Manual testing tools provide mechanisms for a user to adapt the testing
framework on the SUT by choosing tested elements. An automation of this
process is certainly desirable. However, complete automation as of today
is still under constant development, even though there are some partly
automated tools [20, 102] that support professional penetration testers.

83

5 Attack Pattern-Based Combinatorial Testing

The evaluated results indicate that both techniques succeed in detecting
security leaks in web applications with different results, depending on the
background logic of the testing approach. Last but not least, the claim of the
study is that Attack Pattern-based Combinatorial Testing with constraints
can be an alternative method for web application security testing, especially
when the authors’ method is compared to other test generation techniques
like fuzz testing.

Here the main contributions are:

• Detailed evaluation of a case study for web security testing, including
automated and manual test execution methods;
• Extensive comparison between the test generation component of the

attack pattern-based combinatorial testing technique with various
fuzzers.

5.9.1 Penetration Testing Execution Methods

In this section details about the two penetration testing execution methods
are provided, automated and manual ones, that have been used in the case
study. A description of their test oracles is given as their functionality has
been described already in past works. Both methods can be applied to secu-
rity testing, however here the focus is put explicitly on penetration testing,
for example exploiting XSS vulnerabilities, where the main difference (to
security testing) relies on the fact that the testing procedure is initiated once
the web applications are installed in an operational environment.

• Attack Pattern-based Testing: This approach is elaborated in detail in
the previous sections.
• Manual Penetration Testing Tools: The Burp Suite [5] is an integrated

platform for performing security testing of web applications. It is
widely used by security professionals since it allows them to perform
many penetration testing tasks. The oracle used within Burp Suite was
enabled by using the ”Search responses for payload strings” configu-
ration option within the intruder. This option flags all results where
the payloads were exactly reflected to the response. The rationale
behind this decision is that if the vector was not blocked or potential

84

5.9 Automated vs. Manual Testing

dangerous characters were not stripped out, the assumption is that
a XSS vulnerability was triggered. Additionally, for the cases where
stored XSS has been tested for, the option ”Follow redirections:On-site
only” is enabled in order to catch the redirections triggered from the
injected vectors that were manage to be stored on the server side.

5.9.2 Evaluation

As described in Section 5.8 a more complex XSS grammar has been formu-
lated for the input model in ACTS and inputs were generated for combi-
natorial interaction strengths t = {2, 3, 4} twice. The first dataset consists
of inputs that were created without setting any constraints on the model
and comprises different test suites depending on the strength while the
second one comprises of analogue test suites, which were generated accord-
ing to constraints introduced in Section 5.8.1. All mentioned applications
were tested against both attack inputs and the responsive results have been
displayed. In the first case, for interaction strength t = 2 the combinatorial
tool generated 345 inputs and respectively 4875 and 53706 attack strings
for t = 3 and t = 4. Because constraints put a limitation on the data struc-
ture, a remarkably smaller amount of strings were created for the second
dataset, namely 250, 1794 and 8761 inputs. Both sets were used in the attack
pattern-based approach and in Burp Suite so a comparison could be made
according to the results from both cases. In order to draw a meaningful
comparison, the same parts of a SUT were tested, which were input fields
with textual and password values or textarea tags but attack strings were
also attached to the URL paths without any variable binding.

Exploitation Rate of SUTs

In this section it is investigated how the exploitation rate of the different
SUTs, which were considered in the case study scales when the combinato-
rial interaction strength increases, for given difficulty level and input field
in each one of the SUTs per penetration testing tool. The evaluation results
are depicted in Table 5.7 for the modeled XSS combinatorial grammar (with
and without constraints on the derivation types) and when the generated

85

5 Attack Pattern-Based Combinatorial Testing

vectors where executed using the attack pattern-based testing method and
also with manual penetration testing frameworks (Burp Suite). In particular,
it gives information about the combinatorial interaction strength (Str.), the
SUT, the input parameter ID (ID), type of vulnerability (VT), eventually the
difficulty level (DL), the exploitation rate (the number of positive inputs
divided by the total number of tested vectors) and its respective percentage.
Again, the names of the SUTs are abbreviated by their corresponding initial
letter plus Bitweaver (BW). Further, the table gives the corresponding results
for constrained values, where in only a few cases in Gruyere some test runs
were not completed due to its unexpected behavior (denoted by ”N/A” in
the table).

In the majority of the input fields of the SUTs the fundamental rule of com-
binatorial testing is re-confirmed; testing with higher interaction strengths
is likely to reveal more errors (see for example results for WebGoat and
BodgeIt). In this context, this rule is interpreted and confirmed in terms of
exploitation rate, for example increasing the interaction strength implies
higher exploitation rates of web applications when these are tested for XSS
vulnerabilities.

Evaluation of Combinatorial Grammars

In almost all of the experiments, a better exploitation rate was achieved by
applying constraints upon input generation, which leads to the conclusion
that even better results might be achieved by setting even more constraints
but also testing with greater combinatorial interaction strengths. For both
input sets a somehow higher rate was obtained with increasing t. In all test
runs when testing with attack vectors generated with constraints, either a
significant increase of the exploitation rate was achieved or exactly the same.
In detail, in some test runs the improvement in the exploitation rate is up to 7

times greater than the exploitation rate achieved with the vectors generated
by the combinatorial grammar without constraints. The authors’ opinion is
that the reason the obtained results when constraints were applied are better
(from the ones without constraints) because a test suite with better quality
was generated, that is by excluding many low quality attack vectors.

86

5.9 Automated vs. Manual Testing

Table 5.7: Combinatorial evaluation results for automated and manual tools testing
SUT parameters Str. Attack Pattern-based Testing Manual Testing (Burp Suite)

G G c G G c
SUT DL VT ID ER % ER ER % ER ER % ER ER % ER
W 0 RXSS 2 2 198/345 57.39 145/250 58.00 177/345 51.30 156/250 62.40
W 0 RXSS 2 3 2842/4875 58.3 1073/1794 59.81 4240/4875 86.97 1672/1794 93.20
W 0 RXSS 2 4 31441/53706 58.54 5366/8761 61.26 47249/53706 87.98 8586/8761 98.00
B 0 RXSS 1 2 175/345 50.72 145/250 58.00 315/345 91.30 250/250 100.00
B 0 RXSS 1 3 2518/4875 51.64 1073/1794 59.81 4445/4875 91.18 1794/1794 100.00
B 0 RXSS 1 4 31441/53706 58.54 5366/8761 61.25 49012/53706 91.26 8761/8761 100.00

B 0 RXSS 2 2 107/345 31.01 97/250 38.80 9/345 2.61 40/250 16.00
B 0 RXSS 2 3 1564/4875 32.08 737/1794 41.08 117/4875 2.40 264/1794 14.72
B 0 RXSS 2 4 20926/53706 38.96 3918/8761 44.72 1279/53706 2.38 1379/8761 15.74

B 0 SXSS 3 2 31/345 8.99 42/250 16.80 57/345 16.52 75/250 30.00
B 0 SXSS 3 3 561/4875 11.51 294/1794 16.39 831/4875 17.05 524/1794 29.21
B 0 SXSS 3 4 6052/53706 11.27 1481/8761 16.90 8996/53706 16.75 2531/8761 28.89

B 0 SXSS 4 2 308/345 89.28 175/250 70.00 0/345 0.00 0/250 0.00
B 0 SXSS 4 3 4434/4875 90.95 1264/1794 70.46 0/4875 0.00 0/1794 0.00
B 0 SXSS 4 4 42899/53706 79.88 6172/8761 70.45 0/53706 0.00 1/8761 0.01
D 0 RXSS 1 2 175/345 50.72 128/250 51.20 315/345 91.30 250/250 100.00
D 0 RXSS 1 3 2517/4875 51.63 954/1794 53.18 4445/4875 91.18 1794/1794 100.00
D 0 RXSS 1 4 27864/53706 51.88 4755/8761 54.28 49012/53706 91.26 8761/8761 100.00

D 0 SXSS 2 2 104/345 30.14 98/250 39.20 150/345 43.48 138/250 55.20
D 0 SXSS 2 3 1364/4875 27.98 565/1794 31.50 2149/4875 44.08 996/1794 55.52
D 0 SXSS 2 4 13862/53706 25.81 2581/8761 29.46 23402/53706 43.57 4739/8761 54.09

D 1 RXSS 1 2 106/345 30.72 80/250 32.00 210/345 60.87 170/250 68.00
D 1 RXSS 1 3 1547/4875 31.73 613/1794 34.17 2966/4875 60.84 1219/1794 67.95
D 1 RXSS 1 4 17172/53706 31.97 3285/8761 37.50 32724/53706 60.93 6223/8761 71.03

D 1 SXSS 2 2 0/345 0 0/250 0.00 0/345 0.00 0/250 0.00
D 1 SXSS 2 3 0/4875 0 0/1794 0.00 0/4875 0.00 0/1794 0.00
D 1 SXSS 2 4 0/53706 0 0/8761 0.00 2/53706 0.00 6/8761 0.07
G 0 RXSS 1 2 122/345 35.36 89/250 35.60 315/345 91.30 250/250 100.00
G 0 RXSS 1 3 1744/4875 35.77 671/1794 37.40 4445/4875 91.18 1794/1794 100.00
G 0 RXSS 1 4 19382/53706 36.09 3303/8761 37.70 N/A N/A N/A N/A

G 0 SXSS 2 2 23/345 6.67 17/250 6.80 50/345 14.49 42/250 16.80
G 0 SXSS 2 3 326/4875 6.69 118/1794 6.58 629/4875 12.90 256/1794 14.27
G 0 SXSS 2 4 3576/53706 6.66 456/8761 5.20 N/A N/A N/A N/A
M 0 RXSS 1 2 111/345 32.17 116/250 46.40 345/345 100.00 250/250 100.00
M 0 RXSS 1 3 1580/4875 32.41 836/1794 46.60 4875/4875 100.00 1794/1794 100.00
M 0 RXSS 1 4 17344/53706 32.29 1833/8761 20.92 53706/53706 100.00 8761/8761 100.00

M 0 RXSS 2 2 158/345 45.8 161/250 64.40 63/345 18.26 83/250 33.20
M 0 RXSS 2 3 2304/4875 47.26 1153/1794 64.27 921/4875 18.89 581/1794 32.39
M 0 RXSS 2 4 25199/53706 46.92 5521/8761 63.02 9803/53706 18.25 2812/8761 32.10

M 0 RXSS 3 2 0/345 0 0/250 0.00 345/345 100.00 250/250 100.00
M 0 RXSS 3 3 0/4875 0 0/1794 0.00 4875/4875 100.00 1794/1794 100.00
M 0 RXSS 3 4 0/53706 0 0/8761 0.00 53706/53706 100.00 8761/8761 100.00

M 1 RXSS 1 2 111/345 32.17 116/250 46.40 345/345 100.00 250/250 100.00
M 1 RXSS 1 3 1580/4875 32.41 836/1794 46.60 4875/4875 100.00 1794/1794 100.00
M 1 RXSS 1 4 17344/53706 32.29 1833/8761 20.92 53706/53706 100.00 8761/8761 100.00

M 1 RXSS 2 2 158/345 45.8 161/250 64.40 63/345 18.26 83/250 33.20
M 1 RXSS 2 3 2304/4875 47.26 1154/1794 64.33 921/4875 18.89 581/1794 32.39
M 1 RXSS 2 4 25199/53706 46.92 5521/8761 63.02 9803/53706 18.25 2812/8761 32.10

M 1 RXSS 3 2 0/345 0 0/250 0.00 345/345 100.00 250/250 100.00
M 1 RXSS 3 3 0/4875 0 0/1794 0.00 4875/4875 100.00 1794/1794 100.00
M 1 RXSS 3 4 0/53706 0 0/8761 0.00 53706/53706 100.00 8761/8761 100.00

BW 0 RXSS 1 2 0/345 0 0/250 0.00 72/345 20.87 84/250 33.60
BW 0 RXSS 1 3 0/4875 0 0/1794 0.00 1269/4875 26.03 588/1794 32.78
BW 0 RXSS 1 4 0/53706 0 0/8761 0.00 14225/53706 26.49 2904/8761 33.15

BW 0 RXSS 2 2 0/345 0 0/250 0.00 72/345 20.87 84/250 33.60
BW 0 RXSS 2 3 0/4875 0 0/1794 0.00 1269/4875 26.03 588/1794 32.78
BW 0 RXSS 2 4 0/53706 0 0/8761 0.00 14225/53706 26.49 2904/8761 33.15

BW 0 RXSS 3 2 198/345 57.39 145/250 58.00 345/345 100.00 250/250 100.00
BW 0 RXSS 3 3 2842/4875 58.69 1073/1794 59.81 4875/4875 100.00 1794/1794 100.00
BW 0 RXSS 3 4 31441/53706 58.54 5366/8761 61.25 53706/53706 100.00 8761/8761 100.00

BW 0 RXSS 4 2 0/345 0 0/250 0.00 345/345 100.00 250/250 100.00
BW 0 RXSS 4 3 0/4875 0 0/1794 0.00 4875/4875 100.00 1794/1794 100.00
BW 0 RXSS 4 4 0/53706 0 0/8761 0.00 53706/53706 100.00 8761/8761 100.00

87

5
A

ttack
P

attern-B
ased

C
om

binatorialTesting

Table 5.8: Evaluation results for fuzzers and combinatorial testing per SUT for given difficulty level and input field - APBT

SUT parameters Attack Pattern-based Testing
Fuzzers Best CT

SUT DL VT ID OWASP Rsnake HTML Xenotix % ER
5SEC

M 0 RXSS 1 41.59 43.42 32.94 38.91 46.60
M 0 RXSS 2 71.68 60.53 92.94 89.86 64.40
M 0 RXSS 3 2.65 0.00 16.47 9.35 0.00
M 1 RXSS 1 41.59 43.42 32.94 38.91 46.60
M 1 RXSS 2 71.68 60.53 92.94 89.86 64.40
M 1 RXSS 3 2.65 0.00 16.47 9.35 0.00
B 0 RXSS 1 43.36 46.05 32.94 40.88 61.25
B 0 RXSS 2 43.36 46.05 22.35 28.52 44.72
B 0 SXSS 3 12.39 23.68 23.53 28.12 16.90
B 0 SXSS 4 71.68 85.53 40.59 51.60 90.95
G 0 RXSS 1 6.19 3.95 14.12 19.23 37.70
G 0 SXSS 2 0.00 0.00 7.06 11.25 6.80
W 0 RXSS 2 43.36 46.05 33.53 41.39 61.26
D 0 RXSS 1 41.59 43.42 31.76 40.88 54.28
D 0 SXSS 2 39.82 31.58 30.59 27.73 39.20
D 1 RXSS 1 41.59 43.42 20.59 27.99 37.50
D 1 SXSS 2 0.88 0.00 0.59 2.48 0.07

BW 0 RXSS 1 0.00 0.00 0.00 0.00 0.00
BW 0 RXSS 2 0.00 0.00 0.00 0.00 0.00
BW 0 RXSS 3 43.36 46.05 32.94 41.14 59.81
BW 0 RXSS 4 0.00 0.00 0.00 0.00 0.00

88

5.9
A

utom
ated

vs.
M

anualTesting

Table 5.9: Evaluation results for fuzzers and combinatorial testing per SUT for given difficulty level and input field - Burp
Suite

SUT parameters Manual Testing (Burp Suite)
Fuzzers Best CT

SUT DL VT ID OWASP Rsnake HTML Xenotix % ER
5SEC

M 0 RXSS 1 99.12 97.37 93.53 88.82 100.00
M 0 RXSS 2 39.82 30.26 61.76 63.86 33.20
M 0 RXSS 3 83.19 82.89 74.12 78.37 100.00
M 1 RXSS 1 99.12 96.05 93.53 88.82 100.00
M 1 RXSS 2 39.82 30.26 61.76 63.86 33.20
M 1 RXSS 3 83.19 82.89 74.12 78.37 100.00
B 0 RXSS 1 98.23 97.37 90.59 85.69 100.00
B 0 RXSS 2 7.96 0.00 5.29 1.11 16.00
B 0 SXSS 3 46.02 15.79 0.00 0.00 30.00
B 0 SXSS 4 0.00 0.00 0.00 0.00 0.01
G 0 RXSS 1 83.19 82.89 74.12 78.37 100.00
G 0 SXSS 2 6.19 3.95 6.47 26.41 16.80
W 0 RXSS 2 39.82 57.89 42.35 76.67 98.00
D 0 RXSS 1 83.19 82.89 74.12 78.37 100.00
D 0 SXSS 2 92.04 93.42 84.12 68.56 55.52
D 1 RXSS 1 83.19 82.89 60.00 66.93 71.03
D 1 SXSS 2 0.00 0.00 0.00 0.00 0.00

BW 0 RXSS 1 26.55 40.79 8.24 26.73 33.60
BW 0 RXSS 2 26.55 40.79 8.24 26.73 33.60
BW 0 RXSS 3 99.12 96.05 93.53 88.82 100.00
BW 0 RXSS 4 99.12 96.05 93.53 88.82 100.00

89

5 Attack Pattern-Based Combinatorial Testing

Comparison of Fuzzers and Combinatorial Testing

In this section, the focus of the evaluation is changed and now an investiga-
tion is aimed how the authors’ test suites generated by combinatorial testing
compare to fuzzers. A number of such test suites (produced by fuzzers) have
been collected, which are publicly available and executed them against the
same SUTs using both automated and manual test case execution methods.
The exploitation rate is compared for the vectors produced with combinato-
rial and fuzz testing within the same test execution method (when these are
tested against the same web application), in order to draw more accurate
conclusions. In the evaluation results presented in Table 5.8 and Table 5.9
the best exploitation rate achieved with combinatorial testing for the same
test run from Table 5.7 is taken into account, denoted by best CT % ER.
When comparing the exploitation rate of fuzzers and combinatorial testing
in Table 5.8 and Table 5.9, as before, information for the SUT (App) is given,
the input parameter ID (inp ID), type of vulnerability (VT) for the attack
pattern-based testing method and also with the manual testing tool, Burp
Suite. In particular, the following resources have been considered:

1. OWASP XSS Filter Evasion Cheat Sheet1 with 113 vectors.
2. Attack and Discovery Pattern Database for Application Fuzz Testing2

(rsnake) with 76 vectors.
3. HTML5 Security Cheat Sheet3 with 170 vectors.
4. OWASP Xenotix XSS Exploit Framework4, where its 1530 vectors were

extracted.

Comparing the exploitation rate that the different test inputs achieve against
the SUTs in both tools, it can be argued that the diversity of the vectors
generated with combinatorial testing has achieved better results than fuzzers
in some cases. In other words, the fact that test suites with different sizes
(attributed to the interaction strength) can be generated for given SUTs

1https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet.
Accessed: 2015-12-28.

2https://code.google.com/p/fuzzdb. Accessed: 2015-12-28.
3https://html5sec.org/. Accessed: 2015-12-28.
4https://www.owasp.org/index.php/OWASP_Xenotix_XSS_Exploit_Fram

ework. Accessed: 2015-12-28.

90

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://code.google.com/p/fuzzdb
https://html5sec.org/
https://www.owasp.org/index.php/OWASP_Xenotix_XSS_Exploit_Framework
https://www.owasp.org/index.php/OWASP_Xenotix_XSS_Exploit_Framework

5.9 Automated vs. Manual Testing

Figure 5.10: Coverage vs. interaction strength with Attack Pattern-based Combinatorial
Testing for BodgeIt (left) and DVWA (right)

Figure 5.11: Coverage vs. interaction strength in Burp Suite for WebGoat (left) and DVWA
(right)

offers a larger attack surface when compared to the one achieved with
fuzz testing. Moreover, the use of constraints in the attack grammar can
filter out some low quality attack vectors and this is another reason why
combinatorial testing outperforms fuzz testing in some test runs. Clearly,
these two features of combinatorial testing cannot be achieved with fuzz
testing. It should be noted as well that even in the case where combinatorial
testing and fuzz testing achieve the same exploitation rate, in practice the
number of actual positive inputs differs since the size of test suites generated
with combinatorial test suites is quite larger. To give an example, for t = 4
there are 8761 attack vectors when G c is considered. To conclude with,
it is evident from Table 5.8 and Table 5.9 that in half of the test runs in
both automated and manual test execution methods, inputs generated with
combinatorial testing achieve better exploitation rate.

91

5 Attack Pattern-Based Combinatorial Testing

Comparison of Automated vs. Manual Test Execution Methods

The obtained results rely heavily on the test oracles from the tools. While
testing with Burp, there have been several cases where a detection rate
of 100% is noticed. This would indicate that every submitted vector was
able to trigger a vulnerability. In other words, both testing procedures have
produced a certain amount of false positives, which influenced the final
results. The used tools were not able to detect such potential outcomes in an
automatic manner. The authors’ assumption is that the obtained results de-
pend more on the test execution method rather than the quality of the inputs
due to different mechanisms that take place on the test oracles of the testing
tools. This argument is further supported by the fact that differences were
noticed on the results not only when comparing the combinatorial gram-
mars themselves, but also when comparing the results that were obtained
when testing the vectors that have been produced by fuzzers.

It is intriguing to investigate whether in the authors’ experiments the find-
ings of [85] are confirmed, which states that imposing constraints on real-
world applications make higher strength combinatorial interaction testing
feasible (in the sense that they reveal more subtle XSS attacks).

This motivating question led the authors to revisit the notion of attack
pattern-based combinatorial testing by including constraints in the combi-
natorial grammar in the first place. Figure 5.10 and Figure 5.11 demonstrate
that an increase of the interaction strength implies an increase of the cov-
erage when testing for XSS vulnerabilities, for both automated testing and
manual testing approaches. In these figures the coverage results obtained by
the XSS grammars are denoted with G and G c, without and with constraints,
respectively.

5.10 Summary

An approach based on attack patterns has been introduced in this chapter.
In contrast to other work in security testing based on UML models, the
attack pattern-based approach does not rely on the behavior of the system
but instead attack patterns are modeled. By executing the model against the

92

5.10 Summary

applications, the approach proved that testing a program against known
SQLI and XSS vulnerabilities is possible. The whole process can be auto-
mated using tools for executing UML models. The most important fact is
that the model, once specified, executes fully automatically and reports its
status.

Further, the mentioned approach is combined with a test case generation
method from the area of combinatorial testing. The main task for expanding
this technique into a more general approach for automatically XSS detection
is to put more emphasis on the extension of an attack grammar for XSS
although this presents a greater challenge because of the variety of possible
inputs and an undefined structure of such strings.

Additionally, an input grammar was revised for combinatorial generation
of test inputs and constraints were adapted for another test suite in more
detail. These two sets of input data were used by both an automatically
and a manually testing approach in order to test several programs for
XSS. The conclusion is highlighted that testing with combinatorial attack
grammars with increasing interaction strength results in higher exploitation
rates. Setting constraints upon the input model also results in significantly
improved attack vectors. However, in order to further improve the testing
results in the attack pattern-based technique, a revisited test oracle might
be taken into consideration since some discrepancies were witnessed with
manual penetration testing methods.

According to the elaborated approach, several of the asked research ques-
tions are being answered.

RQ1: How can all necessary attack information be formalized?

Once necessary attack information is gathered, this can be formalized in
form of a pattern. A formal definition of such an attack pattern is given in
form of a UML state machine. All necessary attack information is imple-
mented in the model as parts of transitions with corresponding variables
and method calls. The relevant aspects of modeling are discussed and it is
shown how SQL injection and reflected as well as stored XSS attacks can
be modeled. Because of the flexibility of the model, future adaptations are
easily possible, for example by incorporating mutation functions, encoding
types or evasion of special symbols.

93

5 Attack Pattern-Based Combinatorial Testing

In addition to this attack depiction, Section 6.3 will explain another repre-
sentation.

RQ2: What testing methodologies are developed for vulnerability detection
in web applications?

The first approach, called Attack Pattern-based Combinatorial Testing, com-
prises the area of combinatorial testing with the emphasis on test case
generation for attack vectors and the attack pattern-based testing technique
for test case execution against web applications. The generated vectors
were automatically tested against the SUTs with different combinatorial
interaction strength with highly promising initial results. In addition, new el-
ements may be applied into the attack pattern model, for example mutation
functions, encoding types or evasion of special symbols.

The second approach will be explained as an addition to this research
question in Section 6.3.

RQ3: How does Attack Pattern-based Combinatorial Testing perform in
comparison to fuzzing and manual testing approaches?

Three main benefits of the proposed approach are identified and confirmed
when compared to fuzz testing, especially with regard to combinatorial test
generation.

• The quality of the XSS attack vectors generated from the combinatorial
testing procedure is achieved through the covered combinations of
different types in a test suite while with fuzzing a designer is not able
to target a specific combination of type values.
• The diversity of the XSS attack vectors generated from the proposed

approach is achieved through the different number of attack vectors
per test suite, a direct implication of the interaction strength parameter.
• Last but not least, combinatorial testing is motivated by a selection of

a few tests such that good coverage is still achievable while still being
able to reduce the search space. In this regard for t = 2, as was already
shown in Section 5.8.1, a reduction of 99.99% of the total search space
has been achieved.

On the other hand, when comparing the results from the automated and
manual approaches, following observations are made:

94

5.10 Summary

• On the performance side, the evaluated manual tool is faster in ex-
ecuting each test run when executing automatically. However, Burp
required some manual set-up in order to execute the huge amount
of attack vectors in an automated fashion. On the other hand the
tool offers the possibility to set the number of threads that will run
concurrently when executing a test run, so the execution time was
shorter than its automated counterpart.
• Slighty better test results are obtained when testing with Burp Suite.

However, as mentioned in Section 5.9.2, both testing methods possibly
generated a certain number of false positives that remained undetected
by both approaches.

Although the Attack Pattern-based Combinatorial Testing approach may
have some drawbacks, its obtained testing results confirm the authors’ opin-
ion that the approach can be used and in some cases even outperform
the already established testing practices. From the comparison of the com-
binatorial grammars against ones used for fuzz testing the conclusion is
drawn that the proposed approach can be seen as an alternative method
for revealing XSS vulnerabilities in web security testing. A redefinition of
some features, for example the test oracle and the input model as well as
setting additional constraints on the input grammar could lead to even
better results.

95

6 Testing as a Planning Problem

The adaptation of the attack models is not easy and requires substantial
effort. In order to make modeling easier, it is suggested to represent attacks
as a sequence of known actions that have to be carried out in order to be
successful. Each action has some preconditions and some effects. Hence, it
is possible to represent testing in this context as a planning problem where
the goal is to break the application under test.

Here a method is introduced that is based on planning for computing test
cases where a test case is a sequence of interactions with the web application
under test. The underlying idea of using planning for test case generation
originates from two sources. First, there is already publication available
describing testing as a planning problem. Second, and even more important,
when having a look of how to break a system, it becomes obvious that
providing and executing an attack is nothing else than finding an interaction
sequence that finally leads to a situation where a vulnerability can be
exploited.

The contributions of this chapter are the following: A presentation is given
for an approach for test case generation and execution in the security domain
that is based on planning. An algorithm is presented that makes use of
a planner for generating test cases, which are executed after generation.
The approach is illustrated by using a small example and the empirical
evaluation is discussed, indicating that the approach has similar capabilities
for detecting vulnerabilities of web applications than previous approaches
whereas the new approach is easier to adapt and extend.

Additionally, a contribution is made by presenting the tool PURITY (Planning-
based secURITY testing tool) for testing web applications. PURITY executes
test cases against a given website while the test execution proceeds auto-
matically. In contrast to other penetration testing tools, PURITY relies on

97

6 Testing as a Planning Problem

planning. In addition, it also allows a tester to configure input parameters
and also tests a website in a manual manner.

Finally, the chapter contributes to the answers for the research questions
RQ1 and RQ2 and gives an answer for RQ4 (see Chapter 1).

The original works for this chapter are [37, 39].

6.1 The Security Testing via Planning Approach

Planners are commonly used for intelligent agents and autonomous systems
in order to generate action sequences that lead a system from the initial state
into a defined goal state. Once specified, these plans instruct the system
what to do in each step as long as all actions can be undertaken and typically
considering that the environment does not change during plan execution. In
the proposed security testing approach the generated plan for testing web
applications is used with respect to the well-known vulnerabilities: SQLI
and reflected as well as stored XSS. For this purpose the test case generation
problem is specified as a planning problem. First, the planning problem is
defined in the classical way in Section 3.1 as Definition 2, following [55].

An action a can be executed in a state S if and only if its precondition pre(a)
is fulfilled in S. If an action a can be executed, then the execution moves to
a new state S′ comprising all predicates that are in S and do not contradict
e f f (a) and all predicates of e f f (a). In this case it is given as S→a S′.

Definition 3 in Section 3.1 defines the solution of a planning problem.

In classical planning it is assumed that there is atomic time, that is, the
execution of an action can be done in finite time and no interruption is
possible, there are no exogenous events, the action effects are deterministic
and there is omniscience on the part of the agent. In the context of the
proposed application all these assumptions are (more or less) fulfilled, when
assuming stateless applications.

In order to state security testing as a planning problem, the following
representation is suggested:

98

6.1 The Security Testing via Planning Approach

• Each action that can be performed by an attacker has to be modeled
as a planning action, considering the preconditions and the potential
effects.
• The initial state considers the currently available information of a web

application, that is, the web address, the script to be executed, and the
parameter to be used, etc.
• On the other hand, the goal state specifies what to expect from an

application in case of a detected vulnerability.

When specifying the security information as a planning problem, the prob-
lem of generating tests immediately becomes a planning problem. Every
plan is a test case comprising the actions necessary to be carried out in order
to detect a vulnerability. This approach is very flexible because it allows for
easy adaptation. Every time new information about other attack actions is
available, they can be integrated into the set of actions. The plans can be
generated once more taking care of the new actions. Moreover, if designed
in a good way each action can be used for testing different applications. For
this purpose each action definition has to be as general as possible. In this
way, also reuse is supported.

In order to implement the proposed approach, it relies on ordinary planner
and planning languages. In particular it is assumed to use the Planning
Domain Definition Language (PDDL) in order to specify the corresponding
domain. That is, the actions those are problem independent, and the problem
file, that is, application specific values, the initial state, and the goal state,
which are specific to a certain application.

Every action definition in the domain consists of a list of parameters and
preconditions as well as the resulting effects. In case the initial values satisfy
a specific precondition from some action, this action is put on top of the
planner. Because of the execution of the action, its effects might change
some values, which may lead to the satisfaction of preconditions from some
other action. The action generation continues as long the specified goal is
not reached, thus generating a plan. Otherwise the problem is considered
improvable.

In order to adapt the planning-problem to security testing, a specific domain
and problem description have to be defined. Furthermore, a generated plan

99

6 Testing as a Planning Problem

is considered as one abstract test case. An abstract test case is a test case
that cannot directly be executed by the SUT. This is due to the fact that
concrete values are missing or that the abstract actions do not provide any
information on how to execute them in the current environment. In order
to solve this issue and to come to a concrete test case, for each action a
corresponding method is specified in Java. This method implements the
interaction with the SUT and makes use of concrete values. As described in
the previous sections, the message traffic between tester and application is
handled by using HttpClient and jsoup for parsing of responses, thereby
relying on detection mechanisms for SQLI and XSS.

6.1.1 PLAN4SEC

In the following the algorithm PLAN4SEC is discussed, which is for im-
plementing the described approach. PLAN4SEC makes use of an ordinary
planner. In this implementation the planning system Metric-FF (see Sec-
tion 3.2) is used, which itself relies on the FF planner [7]. However, the
approach is not limited and other planners can be used as well. PLAN4SEC
was already introduced by the authors in [37]. The approach behind the
automated execution in PURITY was extended in order to cover additional
functionality. The improved PLAN4SEC 2.0 is depicted in Algorithm 1.

The algorithm uses the domain D and the set of problem files P as inputs.
Moreover, other information is used as well, that is, the URL address (URL),
the set of initial values (U) that encompasses the type of attack (T) and
the HTTP method (M) to be used. Additionally, it takes the set of attack
vectors (X) and concrete actions (C) as well as a function Φ mapping actions
to their corresponding Java method. The output of the algorithm is a set
of plans (PL), a set of obtained HTML elements (E) during execution. The
final output is a table (V) with all attack vectors and SUT parameter values
that lead to a vulnerability breach. The corresponding function res reports
FAIL whenever a test triggers a vulnerability, whereas PASS is thrown
otherwise.

The main improvement of PLAN4SEC 2.0 is a dynamic PDDL generation,
crawler consideration and processing of new outputs during the execution.

100

6.1 The Security Testing via Planning Approach

Algorithm 1 PLAN4SEC 2.0 – Improved plan generation and execution
algorithm
Input: Domain D, set of problem files P = {p0, . . . ,pn}, address URL,
set of initial values U = {(t,m)|t ∈ T,m ∈ M} with a set of attack types
T = {t0, . . . ,tn} and set of HTTP methods M = {m0, . . . ,mn}, set of attack
vectors X = {x0, . . . ,xn}, set of concrete actions C = {c0, . . . ,cn} and a
function Φ = a 7→ c that maps abstract actions to concrete ones.
Output: Set of plans PL = {A0, . . . ,An} where each Ai = {a0, . . . ,an}, set
of HTML elements E = {e0, . . . ,en} and a table with positive test verdicts V.

1: PL = ∅
2: for SELECT URL, X, C, U, p ∈ P, D do
3: while URL.hasNext() do
4: E = parse(URL) . Identify user input fields
5: while U = ∅ do
6: A = makePlan(p, D)
7: PL = PL ∪ {A}
8: res(A) = FAIL
9: for x′ ∈ X do

10: for e′ ∈ E do
11: for a ∈ A do . Execute plan
12: a′ = ConcreteAct(a, Φ, x′, e′)
13: if Exec(a′) fails then
14: res(A) = PASS
15: else
16: res(A) = FAIL
17: V = V ∪ res(A)
18: end if
19: end for
20: end for
21: end for
22: p = makePDDL(U, p, D) . New problem
23: P = P ∪ p
24: end while
25: URL = crawler.next() . Pick next URL
26: end while
27: end for
28: Return (V) as result

101

6 Testing as a Planning Problem

The last point represents information that cannot be foreseen before the
testing starts. However, it is applied dynamically into the testing process.

The idea behind this algorithm is the following one. For every URL address
the program parses user input elements from the website as well as the
current initial values from the problem’s PDDL. Additionally it initializes
the crawler, which in time returns all hyperlinks from the website in form of
URLs. Now the program checks whether HTML elements have been encoun-
tered during the parsing of the website in step 4 (E). As mentioned before,
these are the input fields where the user is supposed to interact with the
SUT. The goal is to test every of these elements separately before continuing
the execution. Since these values cannot be known at the beginning, the
program has to identify them for every incoming URL. Now the planner
returns the first sequence of actions from the domain and problem files
(step 6). Afterwards the first attack vector is picked from the input files.

The function Φ takes as arguments the abstract action (a) from the plan and
maps it to its concrete counterpart in Java (c).

During plan execution, the test case generator assigns the attack vector (x′)
to one of the HTML inputs (e′) from the website. Afterwards, when the plan
execution terminates, the program still remains in the loop of that vector but
assigns it now to another HTML element in E and repeats the plan execution
again from the beginning (steps 10-20). Now, generated abstract actions are
read one by one from the saved plan. PURITY traverses through all concrete
Java methods in order to find the corresponding action implementation
(step 12). When encountered, it is executed and eventually generates new
values.

In such a way a plan is re-run for a certain address and a certain attack vector
several times. Only after testing of all user input elements, the execution
proceeds further. In case that no input elements are available, the program
switches immediately to the next part. After the tests have been executed for
all input elements, eventually a positive test verdict is saved into the table
(step 17). A concrete example for this table is given in the Section 6.2.4.

A major difference to the initial version of the algorithm is the fact that
PURITY generates and executes several problem definitions. In fact, a new

102

6.1 The Security Testing via Planning Approach

PDDL file is generated dynamically after all attack vectors have been exe-
cuted against one web page. For this case let’s take a look at the initial values
of an individual problem definition. These specify the starting conditions
for further plan generation. A sample of a few initial values is given below:

(:init
(inInitial x)
(Logged no)
(not (statusinit two))
(Type sqli)
(= (sent se) 0)
(not (Empty url))
(GivenSQL sqli)
(GivenXSS xssi)
(Method post)
(Response resp)
(not (Found exp resp))
(not (FoundScript script resp))
...
)

Initial values description in PDDL

The goal is to generate new problem files with different initial values so that
different plans are generated as well. With a new sequence of actions the
test execution will also differ from the previously plan. During execution
the problem file is parsed in search for an already set initial value, which
will be replaced by a new one from the corresponding data set from U. It
should be mentioned that the same set of values is specified twice, once in
the PDDL files and at the concrete level in Java.

For demonstration purposes the change of two of the initial values are
explained, namely Type and Method. Here Type can have three values,
namely sqli, rxss and sxss whereas Method encompasses only get and
post. Both sets are implemented in the PDDL files as well in Java on the
concrete side. If sqli was the initial value of Type in the first problem file
then another will take its place, for example rxss. The program will keep

103

6 Testing as a Planning Problem

the implementation of the current problem (p) but will replace its current
value (e.g. sqli) with a new one (rxss) in step 22. Then, a new PDDL
file is saved (step 23) with this specification and marked as next in line for
procession. The plan generation is invoked again as well as the attacking
sequence.

However, one important attribute of PURITY is that a method for the
generation of initial values is directly invoked from another method of
the same kind. This means that for every value of Type several files with
different initials are obtained. After all of them have been executed, new
files for a new value of Method is generated. For example, for three values
of Type and two different values of Method a total of six PDDL files are
generated, which results in six plans and attack executions. Theoretically, by
taking the values of one more initial predicate, e.g. (inInitial x) with
22 possible values for x, a sum of (3× 2× 22 =) 132 problem files can be
generated and so on. It is important to note that for every abstract value
the corresponding concrete values have to be set as well. For example, if
the method from the plan is post then the website will be tested only with
that method despite the fact that get might be its default value. But since
there has to be at least one file where (Method get) is specified, this will
be executed as well.

Actually, in this way eventually an unwanted behavior of the SUT is trig-
gered and tested whether this might lead to a security breach as well. The
more initial values are specified and manipulated, the more different tests
are carried out for this sake. This PDDL generation process will continue as
long as all combinations of objects from U are executed.

In fact, this principle can be applied to every initial value so a huge number
of test cases are generated. Of course, the last method would call no other
because all value combinations would have been already executed. How-
ever, it remains the task of the programmer to implement new generation
methods.

The entire testing process will last as long as the crawler returns new
hyperlinks. Afterwards, the execution terminates permanently.

104

6.1 The Security Testing via Planning Approach

6.1.2 Running Example

A demonstrate of the approach is given by using DVWA. The plan genera-
tion process is explained as well as the execution of plans. As mentioned
in the previous section, first the problem and domain files are specified
manually, accordingly to the testing purpose and the current SUT. Have a
look at the following PDDL description of the problem:

(define (problem mbt-problem)
(:domain mbt)
(:objects
x - active
s - server
si - status-si
lo - status-lo
se - status-se
type - type
url - address
m - method
a - action
exp - expect
un - username
pw - password
sqli - sqli
xssi - xssi
script - script
resp - response
)
(:init
(inInitial x)
(Logged no)
(not (statusinit two))
(Type sqli)
(= (sent se) 0)
(not (Empty url))
(GivenSQL sqli)
(GivenXSS xssi)

105

6 Testing as a Planning Problem

(Method post)
(Response resp)
(not (Found exp resp))
(not (FoundScript script resp))
)
(:goal (inFinal x))
)

Problem description in PDDL

This PDDL description of the problem contains the problem definition, the
domain reference, the objects that are used in the domain specification, the
initial values and finally, the goal specification. The objects are of certain
types, which are set in the domain definition. For the initial values various
necessary parameters like the type of attack, the used HTTP method, the
current position in the execution process, the indicator whether an input for
SQLI or XSS is specified etc. are taken into consideration.

When using this PDDL description together with the following partially
description of the domain, the planner is able to generate a plan.

(define (domain mbt)
(:requirements :strips :typing :equality :fluents :adl)
(:types active address server status-si status-lo

status-se type expect result method integer sqli
xssi response script)

(:constants init - active no yes - status-lo two -
status-si sqli rxss sxss - type get post - method)

(:predicates
(inInitial ?x)
(inAddressed ?x)
(inSentReq ?x)
(inRecReq ?x)
(inParse ?x)
(inSQLI ?x)
(inRXSS ?x)
(inSXSS ?x)
(GivenSQL ?sqli)

106

6.1 The Security Testing via Planning Approach

(GivenXSS ?xssi)
(inFinal ?x)
)
(:functions
(statusinit ?si - status-si)
(Method ?m - method)
)
(:action Start
:parameters(?x - active ?url - address ?lo - status-lo)
:precondition (and (inInitial ?x)(not (Empty ?url)))
:effect (and (inAddressed ?x)(not (inInitial ?x))

(Logged yes))
)
(:action SendReq
:parameters(?x - active ?lo - status-lo ?se - status-se

?si - status-si)
:precondition (and (inAddressed ?x) (Logged yes))
:effect (and (inSentReq ?x)(not (inAddressed ?x))

(assign(sent ?se)1)(statusinit two)))
)
(:action Finish
:parameters (?x)
:precondition (inFound ?x)
:effect (inFinal ?x))
)

Domain description in PDDL

In the domain description at the beginning all possible requirements are
listed, in order to allow different planners to use PDDL. Afterwards, all
object types are initialized whereas the objects themselves are defined in the
problem definition. In the PDDL code constants define special values for
some of the types. Predicates are logical functions that affect certain objects,
whereas functions specify entities that can change their value during plan
execution. Finally, the actions are constructed with the definition of used
parameters within that action, the precondition and the postcondition. At
the beginning of plan generation, the planner will take the initial values

107

6 Testing as a Planning Problem

and search in the action table for satisfied preconditions. If such an action
can be found, it will be added to the current plan. When taking this action,
the corresponding effects might change some relation, for example the
action Start changes the active position from inInitial to inAddressed. After
updating the state, the planner searches for new possible actions to be taken.
This process might continue as long as the goal from the problem definition
is not reached or the planner notices that it cannot be attained. In the latter
case, no plan can be delivered back.

For the running example the following plan can be computed using Metric-
FF:

0: START X URL LO
1: SENDREQ X LO SE SI
2: RECREQ X SI
3: PARSE X M USERNAME PASSWORD TYPE
4: CHOOSERXSS X TYPE
5: ATTACKRXSS X XSSI M UN PW
6: PARSERESPXSS X SCRIPT RESP
7: PARSERESPXSSCHECK X SCRIPT RESP
8: FINISH X

Generated plan

Such a generated plan is read by the parser from JavaFF (see Section 3.2).
Names of the actions are translated into names of the corresponding Java
functions. Note that in the implementation the action names and the names
of their corresponding Java functions are the same. The Java functions are
executed step by step. In addition the Java functions use concrete values for
parameters and communication with the web application.

For example, let’s assume that the URL address of the SUT is specified and
SQLI is chosen in the program. In this case the initial values (not(Empty
url)) and (GivenSQL sqli) are satisfied, sqli being the attack vector. The
object x from the type active is meant to give the current status of the
execution, for example inInitial states that the execution has just started.
When analysing the action definitions, all preconditions are met in order to
satisfy the action Start. Now the program runs its corresponding method
and then reads the next action, executing its next methods afterwards,

108

6.1 The Security Testing via Planning Approach

Figure 6.1: Plan generation and concretization

thereby manipulating concrete variable by it’s own. When picking the
action SendReq, the program will send a HTTP request with HttpClient to
the URL address. But, if the tester has not specified this in the program,
a discrepancy emerges between the plan and the program. In that case,
the program will not be able to follow the plan until the end and the
execution stops immediately, setting the plan execution to PASS because
of not reaching a vulnerable state. Otherwise, execution continues until
reaching the final action of the plan.

Figure 6.1 depicts the entire plan generation and concretization process
from the abstract point of view.

6.1.3 Evaluation

In order to provide an evaluation, the proposed planning approach to secu-
rity testing has been tested on some of the already familiar web applications.
For the evaluation, the PLAN4SEC algorithm was implemented in Java.

109

6 Testing as a Planning Problem

A domain and problem file similar to the ones in Section 6.1.2 were used
but they were extended substantially for the evaluation. In sum, 19 action
definitions as well as more predicates and initial values were taken into
consideration. For carrying out the whole evaluation, three values for the
attack type, two for the method, two for the login status and 20 for the
current status were used. For every type of attack, only one attack vector
was used for the concrete test cases. The objective of the evaluation was to
show the applicability of the approach both in running time as well as the
capabilities of detecting vulnerabilities.

The obtained results are depicted in Table 6.1 where for each SUT, the
difficulty level (DL), the total time (T) for carrying out the tests, the number
of generated plans (#P), the total planning time (planT), the average plan
generation time (avgPT), the number of generated actions (#A), the total
plan execution time (execT), the average number of generated actions per
plan (avgA), and information of how often SQLI, RXSS, and SXSS attacks
have been successful, are given. All time values are in second (s).

When executing PLAN4SEC on DVWA and Mutillidae, vulnerability could
only be triggered on the first two security levels. In both cases, the third one
remains impervious. Because of this reason, no row is added for the third
level of these two applications in Table 6.1. It is worth noting that stored XSS
could not be detected on the second level of DVWA too. This is due to the
fact that the used input string was successfully filtered by the application.
The second application BodgeIt has much more SQLI leaks but seems to be
more resistant against XSS.

It can be seen that the time for executing PLAN4SEC is acceptable. The
approach is performed automatically only requiring the user to specify case
specific information, like different URL addresses and different expected
values for SQLI. Beside the small amount of adaptation, no further changes
were required. This holds especially for the domain specification, which is
the same for all SUTs in this evaluation. Note that the Java methods, which
correspond to the actions, have to be slightly changed. The unchanged
domain specification is also the reason behind the same number of generated
plans for all applications.

The success of the exploitations heavily depends on the used input. Despite
the fact that the system is being tested by using different interactions for

110

6.1
The

S
ecurity

Testing
via

P
lanning

A
pproach

Table 6.1: Evaluation results for planning-based testing
SUT DL T #P planT avgPT #A execT avgA SQLI RXSS SXSS

DVWA 1 355.10 273 292.06 1.07 972 49.41 3 29 30 30

2 835.70 273 739.70 2.71 972 57.51 3 29 30 0

BodgeIt na 357.38 273 308.53 1.13 972 20.99 3 53 18 20

Mutillidae 1 309.56 273 288.44 1.06 972 13.44 3 31 30 25

2 316.91 273 292.89 1.07 972 13.76 3 31 30 20

111

6 Testing as a Planning Problem

checking exploits, there is still a need for convert values to be executed.
These values have to be adapted (maybe randomly) during execution, which
is currently not done. As mentioned before, only one attack vector has
been used for the evaluation. However, it is worth noting that this is not a
principle restriction of the proposed approach.

Because of the relatively high number of potential combination of different
input parameters, a higher number of plans was received but also a larger
number of successful tests. What might also be interesting is the fact that
the average number of actions is rather small. This indicates that the action
definitions in the domain specifications use only a small number of precon-
ditions and also originates from the underlying plan generation technique,
that is, Metric-FF.

In this evaluation, the algorithm has to terminate assuming that all called
functions terminate. This is due to the fact that all input sets are finite,
determining the number of iterations. The algorithm is polynomial in space
and time when assuming the execution of external functions in unit time.
Hence, when using the generated test suite for regression testing purposes
only the execution time has to be considered, which is the result of the
PLAN4SEC algorithm.

When this approach and the results given in Table 6.1 are compared with
the results obtained using the previous method relying on models of attack
patterns, a similar behavior is obtained regarding the detection capability
for vulnerabilities for the same web applications. Hence, when considering
the much more easy adaptation of the model to different SUTs, the plan-
ning based approach is indeed an improvement and worth being further
investigated.

6.2 PURITY: a Planning-based secURITY testing
tool

In order to make security testing of web application easier, the penetration
testing tool Planning-based secURITY testing tool (PURITY) is proposed. It
has been developed for testing of websites to detect potential SQLI as well

112

6.2 PURITY: a Planning-based secURITY testing tool

as reflected and stored types of XSS security issues in an either manually
or automated fashion (or something in-between). The tester is asked for a
minimum amount of informations. PURITY also offers the possibility to
define all test parameters if desired. The tool is partly built upon previously
work already explained. It combines Attack Pattern-based Combinatorial
Testing with planning. In fact, PURITY improves test case generation using
a planner and makes use of the communication implementation and test
oracles from the previously works. The tool presents the obtained test results
in detail after the test execution terminates. It represents a security testing
tool that is easy to use but also provides high configurability and offers
extendibility. It is a research prototype written in Java.

In Figure 6.2 the tool is depicted in context with its surrounding environ-
ment. It takes inputs from the user like the www address of the application,
PDDL files, which define the initial state and potential attack actions, and
potential concrete attack vectors used when testing the application. PURITY
generates plans from which concrete test cases to be submitted to the SUT.
However, it also analyses the received feedback from the SUT in order to
detect vulnerable behavior.

PURITY encompasses several elements that interact with each other as well
as with the user, which will be described later in more detail. It offers
additional possibilities for the tester to define test parameters like the type
of attack, the used attack actions, the test data etc. The tests can be carried
out both manually and automatically. Accordingly to the implemented
test oracle, the program gives a verdict whether the vector succeeded in
triggering a vulnerability. Also, the corresponding tested element is shown
to the tester so she or he gets a visual expression of the output.

In fact, the tool offers a great deal of configurability with regards to the
implemented technology. The tester can interact with the program on a
minimum scale that is by setting only the initial configuration like URL
address. On the contrary, a test can be carried out completely manually by
assigning specific values to selected parts of the website.

In the following the underlying techniques and the internal architecture of
PURITY will be briefly described.

113

6 Testing as a Planning Problem

PURITY	

WWW

PDDL	 Input	
vectors	

SUT	

User	 /	 tester	

Figure 6.2: PURITY in context with its environment

114

6.2 PURITY: a Planning-based secURITY testing tool

6.2.1 Key Components

PURITY encompasses a variety of different components. These have been
implemented using different Java libraries as well as other external pro-
grams. While some of them were already explained in Section 3.2, the most
important new ones are the following:

• Crawler: The implemented crawler offers the possibility to define the
crawl depth and number of pages to fetch. (In the initial version of
PURITY the open source Web crawler Crawler4j1 has been used but in
the meantime it got replaced by the author’s own implementation.)
• Test oracles: They are implemented inside PURITY. Detection mech-

anisms for both SQLI and XSS are discussed in detail in Section 3.4
as well as in the authors’ related works. However, it is important
to understand how SQLI works in order to know why an expected
value is asked for in PURITY’s GUI. The general fact is that after a
malicious vector has been submitted, the outcome is always hard to
predict. In this case the tester is asked to specify a unique value which
will be searched for in the HTTP response after the attack occurs. For
example, the tester might already know (e.g. by social engineering)
the username of a victim. In that case, this could be specified as an
indicator value. On the other hand, the detection of both types of XSS
is handled automatically without necessary feedback specification.

Figure 6.3 depicts the internal software architecture of the proposed tool.
All interaction between tester and PURITY proceeds over the GUI. This
represents the front end from where the entire functionality can be accessed.
However, below that layer the implementation is responsible for the data
flow between the individual components and the user.

A web application is accessed either over the World Wide Web or locally,
wherever it might be deployed. The URL acts as the starting point once the
testing process is started. The communication between PURITY and SUT is
handled dynamically by HttpClient like in the previous approach.

The Web crawler browses the SUT and identifies hyperlinks in websites that
are connected to the initial URL. It takes the submitted URL as a starting

1https://github.com/yasserg/crawler4j. Accessed: 2015-12-28.

115

https://github.com/yasserg/crawler4j

6 Testing as a Planning Problem

seed and eventually returns all ongoing addresses. It should be mentioned
that the tester can restrict the crawl depth and define a maximum number
of pages to fetch. During test execution, all incoming data from the crawler
is submitted directly to HttpClient.

However, concrete inputs are needed for a test case. PURITY encompasses
two initial test sets, one with SQL injections and the other containing XSS
vectors. New ones can be obtained externally by attaching them to the tool.
During execution, these TXT files are read line by line and sent to HttpClient,
which puts them inside HTTP requests as well. If the tester wants to create
new input files, he should take care of the data structure for both SQL and
JavaScript. Otherwise the data will be sent to the SUT anyway; however no
meaningful results would be obtained.

It is very important to note that until now all of the described components
from Figure 6.3 work as parts of the Java implementation. This means that
concrete test cases are built automatically from the current URL address,
web component data and attack vectors by the test case generator.

Plans are generated by the planner, as described in Section 6.1. A plan
cannot be used for testing purposes unless there are concrete values that
somehow correspond to abstract values from the planning domain. The
test case generator reads the abstract actions and searches for their con-
crete counterpart in the implementation. Once found, it is executed. One
advantage of this approach is the fact that for one abstract object from an
action a dozen of concrete attack vectors can be applied. For example, the
implementation picks one attack vector from the input files and applies it to
a variable in the implementation. After the plan is executed on the concrete
level, PURITY reads the next vector and repeats the plan execution with the
new value.

The implementation calls the planner by submitting the two PDDL files.
However, PURITY also generates new files of this kind. Since every plan is
constructed according to a specific data configuration, a different configu-
ration would also result in a different plan. Exactly that is what PURITY
focuses on: It creates new problem definitions with somehow different initial
values. Now Metric-FF delivers a new plan that is parsed by the tool, which
carries out the concrete execution. The way PURITY creates new PDDL files
will be elaborated further.

116

6.2 PURITY: a Planning-based secURITY testing tool

GUI	

Control	

Planner	 TC	 Gen	 HTTP	
Client	 Crawler	 Logger	

PDDL	 Input	
vectors	

WWW

PURITY	

Figure 6.3: PURITY’s internal software architecture

117

6 Testing as a Planning Problem

Generally speaking, the implementation generates concrete data accordingly
to abstract ones. On the other hand, it also creates abstract data that is meant
to be processed by the planner. The planner produces in turn new abstract
data for the implementation. This is a cyclic process that continues as long
as plans are generated and attack vectors are available.

Finally, the logger collects all relevant data produced during the execution.
The tester has the choice whether she or he wants to log all events during
the execution or just critical messages like exceptions.

6.2.2 Structure of Inputs in PURITY

As mentioned before, one of the primary motivations for this tool was to
ease the effort for the tester to effectively test a program. For this case,
the amount of interaction is kept as small as possible. For instance, it is
completely sufficient just to give the URL address of the SUT and click a
button in order to start the testing process. The rest will be handled by the
program automatically. This fact increases the usability of the tool while
keeping the execution time relatively low.

On the other hand the tester might want to know the functionality behind
PURITY and interacts with the system. If this is the case, the tool offers
several possibilities to realize that. However, first a description has to be
provided about what types of user inputs are used in PURITY:

Type of attack: Can be either SQLI or XSS. According to this choice, the
program expects different attack vectors and applies different test oracles.
However, if the tool is run completely automatically, the SUT will be tested
for both vulnerabilities.

Attack vectors: A text file is attached to the PURITY and read line by line.
Every row should contain one vector that resembles either one SQL query
or JavaScript code. The tester can attach TXT files with attack vectors to
PURITY before the testing process starts. Otherwise the tool will make use
of two files that are already included.

Domain.pddl: This file is already attached to the tool and it encompasses
predicate and function definitions as well as actions. Once set, the domain

118

6.2 PURITY: a Planning-based secURITY testing tool

file will remain unchanged during automated test execution that is all
further plans will be constructed according to the same definition.

Problem.pddl: The problem file is part of the tool and specifies objects and
initial values. During execution these values will be replaced with new ones,
thus continuously creating new problem files. Every generated plan will be
derived from a different problem specification.

Here the symbolic names domain.pddl and problem.pddl will be used
for both specifications regardless of the files’ name.

6.2.3 Modes of Use

After starting PURITY, the tester has the choice between four different test
execution modes. Figure 6.4 depicts the GUI of the tool.

The minimum requirement for every one of them is to specify the URL
address of the SUT. The initial values for the crawler are initially set to −1
for both the crawl depth and number of pages to fetch. These values decide
about how deep the crawler will go into the application by starting from
the initial URL and how many pages will be fetched during that search (−1
stands for unlimited.). In the following a brief description is given of each
mode of use PURITY offers.

Completely Automatic

This mode is the most extensive one because it performs the execution in a
completely automated manner. It will be picked per default if the checkbox
auto-generate plans is selected.

If she or he desires, the tester can load own input files into the tool before
pushing the start button. Since this mode tests automatically for both SQLI
and XSS, the tester can use test sets for both vulnerabilities. The user can
edit the initial domain specification and delete actions in a simple editor if
desired. In such way fewer actions are taken into consideration by Metric-FF
so the plans will get simpler as well. From now on the reduced domain file
will remain unchanged during the entire testing process.

119

6 Testing as a Planning Problem

Figure 6.4: PURITY’s GUI

120

6.2 PURITY: a Planning-based secURITY testing tool

When the execution starts, PURITY submits the initial PDDL files to Metric-
FF that in turn generates the first abstract test case. If no plan could be
generated, the user will be notified. From now on the procedure follows
PLAN4SEC 2.0 as long as attack vectors are available and plans are gener-
ated. An example of this type of execution is demonstrated in Section 6.1.2.

Of all modes, this one covers most of the functionality of PURITY and
demonstrates the adaptation of planning in testing at its best.

Partly Automatic

This selection relies on testing as well but to a much lesser extent. In this case
the tester generates just one plan, which actions are displayed in a separate
window. Additionally, all available actions are parsed from domain.pddl
and displayed as well. Now the tester can make experiments by deleting
and adding actions or changing the order of their appearance.

The new list will be sent to the test case generator and carried out automati-
cally as would be the usual case. However, the difference to the completely
automated approach lies in the fact that this time only one plan is executed.
To be precise, only one execution is carried out per attack vector. Figure 6.5
depicts the section that contains the generated plan. As can be seen, plan
actions can be either removed or added from the menu.

Actually this mode is meant for the tester to manipulate planning related
data and to check the corresponding effects.

Completely Manual

With this choice the tester can test a single website by manually writing val-
ues for all its user input fields. HttpClient parses the page from the specified
URL and displays all HTML elements that could be tested. Now the user can
add or remove parameters if she or he wishes. For example, sometimes it is
proven to be useful to submit one parameter twice in a request, for example
by submitting username=Ben&username=[malicious script]. This
configuration can be defined manually in the table. In order to realize this,
the tester adds a row in the elements table and writes the name of the
parameter and its value. Afterwards she or he might initialize the testing
process.

121

6 Testing as a Planning Problem

Figure 6.5: Section for partly automated testing

However, there will be no result table displayed since the user has a clear
insight what parts of the SUT are tested with a known attack vector. Since
no planning and crawler are used and no test files are attached, only one
test case will be executed per attack. Figure 6.6 shows the manual testing
section. All extracted HTML elements are shown in the table and concrete
values are added in the cells from the corresponding column.

In fact, this functionality and the following one define PURITY as a manual
testing tool as well.

Partly Manual

If user input fields are encountered during parsing of a website in the
completely manual mode, the tester is also offered the possibility to test
one specific element against a list of vectors in an automated manner. In
order to accomplish this, a button is located in the table beside the field that
is wished to be tested. This opens a file chooser where one or more vector
files can be selected. After the desired vulnerability is checked as well, the
testing process can be started. Now the desired website’s input element will
be tested automatically against all vectors from the input file(s).

122

6.2 PURITY: a Planning-based secURITY testing tool

Figure 6.6: Menu for manual testing

6.2.4 Case Study

The functionality of PURITY is demonstrated by testing one of the SUTs
from Section 3.5 by choosing the automated mode. The tester is asked to
specify an URL, the input data sets, PDDL files and the specifications for
the crawler. In order to select the completely automated mode, the tester
has to select the corresponding checkbox. Otherwise the program chooses
the partly automated mode. The tester can edit the domain specification or
add several test input files.

Once the specification is selected, testing can be started. In this example the
URL represents the local address where the SUT has been deployed. First,
the planner is called with the selected PDDL’s and the corresponding output
is read. As explained above, the planning system will return a plan to the
implementation which will start immediately the concrete test execution.
First the initial values of the current problem.pddl are parsed in search
for critical objects, like type or method. The configuration is saved and
the execution continues by fetching the first vector from the TXT file as
explained in Section 6.1.1. Since it may be hard to predict what hyperlinks
are connected to the initial URL, it can be expected to encounter sites with
no input fields at all. In this case the current test run is terminated and the
next one starts.

123

6 Testing as a Planning Problem

Figure 6.7: Output table

After all tests have been executed for the initial URL, the crawler fetches
the next ongoing address. For example, in the above demonstration the
new address would be http://localhost:8080/bodgeit/home.jsp.
The concrete test execution will now continue by parsing a new problem
definition after which the vector files will be read from the beginning and
so on.

After execution, all positive test verdicts are displayed in the table. Figure 6.7
depicts such a table where every row contains the type of triggered vulnera-
bility, the responsive attack vector, name of the vulnerable HTML element
and the corresponding URL address. The table can be exported as an Excel
sheet. Besides that, the diagnosis window also shows some statistical data
like the generation and execution time for all tests, the number of generated
plans and actions etc. Also, the total amount of successful tests for both
SQLI and XSS is shown. The reasons behind the high number of XSS vectors
lies in the fact that HTML input elements were very vulnerable for the
tested SUT. On the other side, not a single SQLI leak was detected. The
reason for this is either that the expected value hasn’t been the right choice
or that software intern filtering mechanisms were efficient enough to escape

124

6.3 Summary

the malicious code in the first place. Another reason for a failure is usually
the fact that a website does not use a database or no user input fields are
available.

6.3 Summary

This chapter introduces a planning-based security testing approach for
web application vulnerabilities. The algorithm PLAN4SEC is described in
detail, which is meant for security testing of web applications. Besides test
case generation the algorithm also allows for automated test execution.
The underlying method from predefined specifications is discussed and its
realization explained. Eventual changes can be straightforwardly integrated
into the algorithm. The first initial results indicate that the approach can be
used in testing of web applications.

Additionally, the research prototype PURITY is presented that is meant for
either automated or manual testing (or something in-between). For this tool
some several new features were added so a unique planning based testing
framework was made.

However, there is space for improvement for this approach when considering
the concretization of test cases. Adding more actions of finer granularities
in the initial specification might increase the number of tests and make the
approach more effectively in practice. In particular, the influence on the
certain improvements to the vulnerability detection would be interesting to
determine.

According to the explained approach, some of the research questions will
be answered.

RQ1: How can all necessary attack information be formalized?

In addition to the attack representation in Chapter 5, the second type of
attack depiction is realized in the following way.

All attack information is implemented as part of the planning problem. This
is done by defining specific individual actions that encompass pre- and

125

6 Testing as a Planning Problem

postconditions, which are defined by predicates with corresponding param-
eters. The necessary information is defined inside the domain and problem
specifications in PDDL. These definitions are used by action specifications.
According to the implementation, a planner generates the plan that acts as a
test case for the later testing process. Actually, the resulting plan represents
one attacking attempt. During execution, the individual values from the
specification might change, which will result in a different plan, that is,
a different attack. Since the research is based around SQLI and XSS, the
generated plan will represent actions for these types of vulnerabilities.

RQ2: What testing methodologies are developed for vulnerability detection
in web applications?

A novel approach to security testing based on planning is introduced. In
particular, the test case generation problem is formalized as a planning
problem and a planner is used for generating plans that represent abstract
test cases. However, the limitations of the approach are not reached. The
number of plans to be generated can be much higher when using either
more initial values or planners that deliver different plans and not only
one. In contrast to other testing methods the mapping to planning increases
reuse of knowledge used for test generation and also makes adaptations to
specific languages much easier. In particular, new actions can be added to
the domain definition.

The planning-based security testing tool PURITY is used to test web appli-
cations for both SQLI and XSS. The tester can use it on black- or white-box
basis. PURITY encompasses the novel testing approach, which is based on
the test case generation technique that is based on automated plan genera-
tion. On the other hand, the tester is also offered the possibility to execute
the tool in a manual manner. She or he can set test parameters and see how
the SUT reacts on different inputs.

RQ4: How does planning-based testing perform for vulnerability detec-
tion?

The empirical evaluation using the SUTs from Section 3.5 indicates that
the approach can be used in practice. The planning time including plan
generation and execution is high but acceptable for the application domain.

126

6.3 Summary

Also, the capabilities of detecting vulnerabilities are in line with other
approaches to automated testing of web applications.

Although a research prototype, PURITY succeeded in testing of several web
applications. It offers a high degree of compatibility, which is demonstrated
in the tool description above. However, it remains possible to improve it
further by including additional features, for example adding more actions
into the domain specification and increasing the configurability by allowing
more manual intervention. PURITY can be experimented with so even new
test scenarios can be adapted. Although it does not represent a demand,
the tester can add own attack vectors or manipulate existing ones. As was
demonstrated before, the execution time is relatively low when applying
thhis technique.

127

7 Conclusion

From the global point of view this thesis addressed several open problems,
including, but not limited to:

• Testing of web applications
• Conceptualizing attacks
• Test case generation and execution

In order to contribute to these topics, several methods were applied and
combined. First, some of the state-of-the-art topics from model-based testing
have been presented and elaborated on an example. Then, the notion of
pattern modeling has been applied to attacks on web applications, that
is, testing for vulnerabilities. Information about the attack procedure is
gathered manually by observing the interaction between the client and a
web application. Then, the obtained information is implemented in form of
a UML state machine. These models are commonly used in model-based
testing so the tester might be familiar with their application. The resulting
representation acts as an attack pattern, that is, a unique sequence of actions
with specific pre- and postconditions. Since SQLI and XSS are among the
most common vulnerabilities, these two attack scenarios have been chosen
for depiction. Both can be chosen either separately by the tester during
execution or put together into one single graphical representation. Since
Java methods are implemented and run in the background during execution,
additional functions can be programmed and adapted into the testing
framework easily. In addition to the attack, corresponding test oracles were
defined with respect to the vulnerabilities. The attack pattern is executed in
an automated fashion (or semi-automated; according to the choice of the
tester) against a SUT, thus generating a verdict according to the oracles. The
goal of test automation is to release the tester from time-consuming manual
work and to fasten the entire process. Another advantage of this approach

129

7 Conclusion

is that it should not depend upon a particular SUT but can be used on a
wide scale. The tester is asked only for a minimum of interaction with the
testing framework.

Then, an overview is given about the functionality of combinatorial testing.
This is a testing technique that combines values from parameters according
a specified input model. One of its main advantages is the fact that a good
coverage is achieved by generating a lesser number of test cases. In the
case of vulnerability detection this means that they might be triggered
by executing fewer test cases. Here combinatorial testing was applied for
the generation of concrete attack vectors for XSS. First the attack vector
information is structured in form of an attack grammar. Afterwards, the
grammar is implemented as an input model for the test case generation
tool ACTS, which subsequently generates corresponding attack vectors.
Then, these were executed against the SUTs in an automated manner by
attaching them to an attack pattern. The new approach, which combines
the attack pattern-based test execution with combinatorial testing-based
test case generation, is called Attack Pattern-based Combinatorial Testing.
However, in order to improve the quality of attack vectors, constraints
were put upon the grammar in the input model so that new test sets were
generated. Constraints are used in combinatorial testing in order to restrict
and guide the parameter interaction so that more meaningful attack values
are generated in the aftermath. This mechanism contributes to test suite
reduction and increases the vulnerability detection likelihood as well. Since
combinatorial testing uses different strategies for test suite generation, the
output will differ depending of what algorithm was used in the first place.
For this case, two of the most used algorithms were used, namely IPOG and
IPOG-F, for test case generation for XSS. After executing the two generated
sets of attack vectors, it has been concluded that the obtained results from
the test suites from IPOG-F were overall slightly better. As mentioned before,
this was the first time that such a comparison between the algorithms was
drawn for web security testing.

Finally, Attack Pattern-based Combinatorial Testing was compared to a state-
of-the-art manual testing tool. While slightly better results were obtained
with Burp Suite, the automated approach, naturally, was faster during
execution. For this sake, some additional effort was required for Burp in
order to execute tests in an automated manner. Further, a comparison

130

between the proposed approach and fuzzing indicated that, in the author’s
opinion, the quality and diversity of the attack vectors is higher when being
produced by CT, especially when taking constraints into consideration.
Additionally, since a lesser number of test cases still achieves good coverage,
less time is needed for vulnerability detection than by applying fuzzing.

The summary of several evaluations confirmed the author’s assumption that
Attack Pattern-based Combinatorial Testing can be taken into consideration
as an alternative for the current established testing doctrines and their
corresponding implementations.

Furthermore, a planning-based approach was introduced for testing web
applications as well. Again, all necessary attack information is implemented.
In this case however it is defined in PDDL, a language for domain and
problem specifications in planning. Since a security breach can be repre-
sented as a sequence of actions, where one of them causes another, this
can be represented as a plan. Every action consists of specific parameters,
pre- and postconditions that are constructed with predicates, objects and
other elements. Then, the planner constructs a plan for every type of attack
where every plan represents an abstract test case. This abstract test case is
combined with concrete test cases in order to be executed against a SUT.
The algorithm PLAN4SEC was introduced, which is meant for plan genera-
tion and execution and explains the whole planning-based approach. The
evaluation confirmed the applicability of the idea for vulnerability testing
of web applications.

In addition, the tool PURITY is introduced, which automatizes the entire
planning-based testing approach and offers the tester a great amount of
configurability. Although it still represents a prototype, the tool can be used
for automated, semi-automated and manual testing. The tester is given the
possibility to configure the testing process, for example by adding other
attack vectors or by constructing or modifying a plan.

When comparing both approaches, several conclusions can be drawn:

• Specification effort: Since both approaches demand some initial man-
ual work, the question remains which of the methods would be easier
for a tester to adapt. The graphical representation is clearly easier to
define, since elements can be added and deleted with less effort from

131

7 Conclusion

the state machine. On the contrary, planning specifications require
some knowledge from PDDL.
• Execution time: Once all attack information is implemented, attack

vectors are executed. By evaluating both approaches, it is noted that
testing based on planning clearly outperforms its graphical coun-
terpart with regard to time duration. However, the planning based
approach has the drawback that some generated plans cannot lead
to the goal state, that is, security breach but these will be executed
anyways, thus consuming some execution time in vain. Although
it should be mentioned that such abstract plans are traversed very
quick because of the absence of values on the concrete level so no
preconditions will be satisfied.
• Extensibility: Both approaches can be extended by the tester. However,

the issues are the same as with the specification effort. PDDL requires
more coding effort while state machine manipulation demands less
time and offers visual impression about the order of execution as well.
On the other hand, in PURITY the tester can manipulate the plan
manually, thereby easily constructing new test cases.
• Configurability: Both approaches offer the tester the possibility to

intervene with the framework or the execution. In the attack pattern,
user input or manipulation of values can be done during execution by
stopping the process, eventually leading testing into different direc-
tions. However, PURITY offers the greatest amount of configurability
since the tester can use several modes and also manipulate the plans.
Since PURITY is a manual testing tool as well, the tester gets an imme-
diate feedback about the vulnerable elements and the causing attack
vector.

However, there is still room for improvement for both new approaches.
Since the attack model comprises a certain number of states, this can be
extended by adding new ones. In such way, other attack types may be de-
picted or added to the existing testing procedure, thereby executing several
attacks one after another. More preconditions could be incorporated into
the model so that more complex applications might be tested by extracting
more information etc. Regarding the application of combinatorial testing, a
refinement of the attack grammar might lead to better attack vectors as well
as the definition of additional constraints upon the input model. Until now,

132

attack vectors were generated that were meant for testing a SUT. However,
malicious inputs, that is, inputs that exploit the system could be generated.
Since there is no actual limit for the construction of XSS inputs, the input
model can encompass a much greater number of parameters and values.
On the other hand, imposing constraints on the input model decreases the
number but increases the quality of generated inputs. As demonstrated in
the evaluations, this means that a lesser number of tests is more likely to
trigger a vulnerability, which directly influences the necessary testing costs.
Since ACTS relies on different test generation algorithms, a combination of
several combinatorial strategies would also deliver a different kind of test
sets. Implementing a new algorithm might generate different attack vectors
and reduce the number of generated tests, thereby increasing their quality.
However, one of the still unhandled topics is the encounter of false positives.
Since the behavior of a SUT is hard to predict, a false verdict could be trig-
gered by the interaction of several background elements. In the evaluation
in some cases a vulnerability was triggered for every of the manual tests,
which leads to the conclusion that it might not be the specific attack vector
that causes the vulnerability but something else. For this case, an extension
to the defined test oracles may be needed. The PDDL definitions require
some manual work in order to be specified. By extending the individual
specifications longer plans could be generated as well. For example, actions
and initial parameters can be added into the respective files. Actually, plans
can be generated and executed continuously as long as a vulnerability is
not triggered.

Finally, it is the hope of the author that the two presented approaches offer a
new perspective on model-based security testing. Eventually, both ideas can
be developed further, either by extending the attack patterns or re-defining
planning specifications.

133

Bibliography

[1] Anchor cms. http://anchorcms.com/. Accessed: 2015-12-01.

[2] Automated combinatorial testing for software (acts). http://www.
nist.gov/itl/csd/scm/acts.cfm. Accessed: 2014-01-28.

[3] Bitweaver. http://www.bitweaver.org/. Accessed: 2015-12-01.

[4] Bodgeit. https://code.google.com/p/bodgeit/. Accessed:
2015-12-01.

[5] Burp suite. http://portswigger.net/burp/. Accessed: 2014-01-
28.

[6] Damn vulnerable web application (dvwa). http://www.dvwa.co.
uk/. Accessed: 2015-12-01.

[7] Fast-forward. http://fai.cs.uni-saarland.de/hoffmann/
ff.html. Accessed: 2015-12-01.

[8] Gruyere. http://google-gruyere.appspot.com/. Accessed:
2015-12-01.

[9] Httpclient. http://hc.apache.org/httpcomponents-clien
t-ga/. Accessed: 2015-12-01.

[10] Java ff. http://www.inf.kcl.ac.uk/staff/andrew/JavaFF/.
Accessed: 2015-12-07.

[11] jsoup: Java html parser. http://jsoup.org/. Accessed: 2015-12-01.

[12] Metric-ff. http://fai.cs.uni-saarland.de/hoffmann/metr
ic-ff.html. Accessed: 2015-02-10.

135

http://anchorcms.com/
http://www.nist.gov/itl/csd/scm/acts.cfm
http://www.nist.gov/itl/csd/scm/acts.cfm
http://www.bitweaver.org/
https://code.google.com/p/bodgeit/
http://portswigger.net/burp/
http://www.dvwa.co.uk/
http://www.dvwa.co.uk/
http://fai.cs.uni-saarland.de/hoffmann/ff.html
http://fai.cs.uni-saarland.de/hoffmann/ff.html
http://google-gruyere.appspot.com/
http://hc.apache.org/httpcomponents-client-ga/
http://hc.apache.org/httpcomponents-client-ga/
http://www.inf.kcl.ac.uk/staff/andrew/JavaFF/
http://jsoup.org/
http://fai.cs.uni-saarland.de/hoffmann/metric-ff.html
http://fai.cs.uni-saarland.de/hoffmann/metric-ff.html

Bibliography

[13] Nowasp (mutillidae). http://sourceforge.net/projects/mut
illidae/. Accessed: 2015-12-01.

[14] Omg unified modeling language infrastructure version 2.4.1. http:
//www.omg.org/spec/UML/2.4.1/Infrastructure. Accessed:
2015-12-01.

[15] Omg unified modeling language superstructure version 2.4.1. http:
//www.omg.org/spec/UML/2.4.1/Superstructure. Accessed:
2015-12-01.

[16] Owasp top ten project. https://www.owasp.org/index.php/OW
ASP_Top_10. Accessed: 2015-12-01.

[17] Owasp webgoat project. https://www.owasp.org/index.php/
Category:OWASP_WebGoat_Project. Accessed: 2015-12-01.

[18] Phrack magazine, volume 8, issue 54. http://phrack.org/issue
s/54/8.html#article. Accessed: 2015-12-01.

[19] Spacios project no. 257876, fp7-ict-2009-5. http://www.spacios.
eu. Accessed: 2015-12-01.

[20] sqlmap. http://sqlmap.org/. Accessed: 2014-01-28.

[21] Webscarab. https://www.owasp.org/index.php/Webscarab.
Accessed: 2015-12-01.

[22] Wordpress. http://wordpress.org/. Accessed: 2015-12-01.

[23] Yakindu statechart tools. http://statecharts.org/. Accessed:
2015-12-01.

[24] A. Armando, L. Compagna, and P. Ganty. Sat-based model-checking
of security protocols using planning graph analysis. In Proceedings of
the 12th International Symposium of Formal Methods Europe (FME), LNCS
2805. Springer-Verlag, pages 875–893, 2003.

[25] A. Beer, S. Mohacsi, and C. Stary. IDATG: An Open Tool for Auto-
mated Testing of Interactive Software. In Proceedings of the COMP-
SAC’98 - 22nd International Computer Software and Applications Confer-
ence, 1998.

136

http://sourceforge.net/projects/mutillidae/
http://sourceforge.net/projects/mutillidae/
http://www.omg.org/spec/UML/2.4.1/Infrastructure
http://www.omg.org/spec/UML/2.4.1/Infrastructure
http://www.omg.org/spec/UML/2.4.1/Superstructure
http://www.omg.org/spec/UML/2.4.1/Superstructure
https://www.owasp.org/index.php/OWASP_Top_10
https://www.owasp.org/index.php/OWASP_Top_10
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
http://phrack.org/issues/54/8.html#article
http://phrack.org/issues/54/8.html#article
http://www.spacios.eu
http://www.spacios.eu
http://sqlmap.org/
https://www.owasp.org/index.php/Webscarab
http://wordpress.org/
http://statecharts.org/

Bibliography

[26] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier. Finding software
vulnerabilities by smart fuzzing. In Proceedings of the 2011 IEEE Fourth
International Conference on Software Testing, Verification and Validation
(ICST), pages 427–430, March 2011.

[27] A. Bernauer, J. Bozic, D. E. Simos, S. Winkler, and F. Wotawa. Retaining
consistency for knowledge-based security testing. In Proceedings of
the 27th International Conference on Industrial Engineering and Other
Applications of Applied Intelligent Systems (IEA-AIE’14), pages 88–97,
2014.

[28] A. Blome, M. Ochoa, K. Li, M. Peroli, and M. T. Dashti. Vera: A flexible
model-based vulnerability testing tool. In Proceedings of the Sixth
International Conference on Software Testing, Verification and Validation
(ICST’13), 2013.

[29] E. Boerger, A. Cavarra, and E. Riccobene. Modeling the dynamics
of uml state machines. In International Workshop on Abstract State
Machines (ASM’2000), pages 223–241, 2000.

[30] M. Borazjany, L. Yu, Y. Lei, R. Kacker, and R. Kuhn. Combinatorial
testing of acts: A case study. In Proceedings of the 2012 IEEE Fifth
International Conference on Software Testing, Verification and Validation
(ICST’12), pages 591–600, 2012.

[31] M.N. Borazjany, Linbin Yu, Yu Lei, R. Kacker, and R. Kuhn. Combi-
natorial testing of acts: A case study. In Software Testing, Verification
and Validation (ICST), 2012 IEEE Fifth International Conference on, pages
591–600, 2012.

[32] J. Bozic, B. Garn, I. Kapsalis, D. E. Simos, S. Winkler, and F. Wotawa.
Attack pattern-based combinatorial testing with constraints for web
security testing. In Proceedings of the IEEE International Conference on
Software Quality, Reliability and Security (QRS’15), 2015.

[33] J. Bozic, B. Garn, D. E. Simos, and F. Wotawa. Evaluation of the
ipo-family algorithms for test case generation in web security testing.
In Proceedings of the Eighth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW’15), pages 1–5, 2015.

137

Bibliography

[34] J. Bozic, D. E. Simos, and F. Wotawa. Attack pattern-based combi-
natorial testing. In Proceedings of the 9th International Workshop on
Automation of Software Test (AST’14), 2014.

[35] J. Bozic and F. Wotawa. Model-based testing - from safety to security.
In Proceedings of the 9th Workshop on Systems Testing and Validation
(STV’12), pages 9–16, October 2012.

[36] J. Bozic and F. Wotawa. Xss pattern for attack modeling in testing. In
Proceedings of the 8th International Workshop on Automation of Software
Test (AST’13), 2013.

[37] J. Bozic and F. Wotawa. Plan it! automated security testing based on
planning. In Proceedings of the 26th IFIP WG 6.1 International Conference
(ICTSS’14), pages 48–62, 2014.

[38] J. Bozic and F. Wotawa. Security testing based on attack patterns.
In Proceedings of the 5th International Workshop on Security Testing
(SECTEST’14), 2014.

[39] J. Bozic and F. Wotawa. Purity: a planning-based security testing tool.
In Workshop on Trustworthy Computing, 2015.

[40] M. Brcic and D. Kalpic. Combinatorial testing in software projects.
In MIPRO, 2012 Proceedings of the 35th International Convention, pages
1508–1513, 2012.

[41] M. Busch, R. Chaparadza, Z. R. Dai, A. Hoffmann, L. Lacmene, T. Ng-
wangwen, G.C. Ndem, H. Ogawa, D. Serbanescu, I. Schieferdecker,
and J. Zander-Nowicka. Model transformers for test generation from
system models. In Conquest 2006. Hanser Verlag, Berlin, 2006.

[42] D. Byers and N. Shahmehri. Unified modeling of attacks, vulnerabili-
ties and security activities. In Proceedings of the 2010 ICSE Workshop on
Software Engineering for Secure Systems (SESS’10), IEEE, 2010.

[43] M. Chen, X. Qiu, W. Xu, L. Wang, J. Zhao, and X. Li. Uml activity
diagram-based automatic test case generation for java programs. In
The Computer Journal, 2007.

138

Bibliography

[44] J. Clarke, R. M. Alvarez, D. Hartley, J. Hemler, A. Kornbrust, H. Meer,
G. OLeary-Steele, A. Revelli, M. Slaviero, and D. Stuttard. SQL Injection
Attacks and Defense. Syngress, Syngress Publishing, Inc. Elsevier, Inc.,
30 Corporate Drive Burlington, MA 01803, 2009.

[45] J. Clarke, K. Fowler, E. Oftedal, R. M. Alvarez, D. Hartley, A. Korn-
brust, G. O’Leary-Steele, A. Revelli, S. Siddharth, and M. Slaviero.
SQL Injection Attacks and Defense, Second Edition. Syngress, 2012.

[46] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and
Gardner C. Patton. The AETG system: An approach to testing based
on combinatorial design. IEEE Trans. Softw. Eng., 23(7):437–444, July
1997.

[47] Charles J. Colbourn. Covering arrays. In Charles J. Colbourn and
Jeffrey H. Dinitz, editors, Handbook of Combinatorial Designs, Discrete
Mathematics and Its Applications, pages 361–365. CRC Press, Boca
Raton, Fla., 2nd edition, 2006.

[48] Atlee M. Cunningham Jr., Jon Hagar, and Ryan J. Holman. A system
analysis study comparing reverse engineered combinatorial testing
to expert judgment. In Proceedings of the 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation, ICST ’12, pages
630–635, Washington, DC, USA, 2012. IEEE Computer Society.

[49] ThanhBinh Dao and Etsuya Shibayama. Coverage criteria for auto-
matic security testing of web applications. In Somesh Jha and Anish
Mathuria, editors, Information Systems Security, volume 6503 of Lecture
Notes in Computer Science, pages 111–124. Springer Berlin Heidelberg,
2010.

[50] J. D. DeMott, R. J. Enbody, and W. F. Punch. Revolutionizing the field
of grey-box attack surface testing with evolutionary fuzzing. In Black
Hat USA 2007, Las Vegas, 2007.

[51] I. Dominguez Mendoza, D.R. Kuhn, R.N. Kacker, and Yu Lei. CCM:
A tool for measuring combinatorial coverage of system state space.
In Empirical Software Engineering and Measurement, 2013 ACM / IEEE
International Symposium on, pages 291–291, 2013.

139

Bibliography

[52] F. Duchene, R. Groz, S. Rawat, and J. Richier. Xss vulnerability detec-
tion using model inference assisted evolutionary fuzzing. In Proceed-
ings of the 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation (ICST), pages 815–817, April 2012.

[53] Fabien Duchene, Roland Groz, Sanjay Rawat, and Jean-Luc Richier. Xss
vulnerability detection using model inference assisted evolutionary
fuzzing. In Proceedings of the 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation, ICST ’12, pages 815–817,
Washington, DC, USA, 2012. IEEE Computer Society.

[54] Fabien Duchene, Sanjay Rawat, Jean-Luc Richier, and Roland Groz.
KameleonFuzz: Evolutionary Fuzzing for Black-Box XSS Detection. In
CODASPY, pages 37–48. ACM, 2014.

[55] Richard E. Fikes and Nils J. Nilsson. STRIPS: A New Approach to
the Application of Theorem Proving to Problem Solving. Artificial
Intelligence, 2:189–208, 1971.

[56] S. Fogie, J. Grossman, R. Hansen, A. Rager, and P. D. Petkov. XSS
Attacks: Cross Site Scripting Exploits and Defense. Syngress, 2007.

[57] J. Fonseca, M. Vieira, and H. Madeira. Testing and comparing web
vulnerability scanning tools for sql injection and xss attacks. In Pro-
ceedings of the 2007 IEEE Symposium Pacific Rim Dependable Computing
(PRDC 2007), 2007.

[58] M. Forbes, J. Lawrence, Yu Lei, Raghu Kacker, and D. Richard Kuhn.
Refining the in-parameter-order strategy for constructing covering
arrays. Journal of Research of the National Institute of Standards and
Technology, 113:287–297, 2008.

[59] P. Froehlich and J. Link. Automated test case generation from dynamic
models. In Proceedings of the 14th European Conference on Object-Orinted
Programming (ECOOP’00), 2000.

[60] S. J. Galler, C. Zehentner, and F. Wotawa. Aiana: An ai planning system
for test data generation. In 1st Workshop on Testing Object-Oriented
Software Systems, pages 30–37, 2010.

140

Bibliography

[61] Bernhard Garn, Ioannis Kapsalis, Dimitris E. Simos, and Severin Win-
kler. On the applicability of combinatorial testing to web application
security testing: A case study. In Proceedings of the 2nd International
Workshop on Joining AcadeMiA and Industry Contributions to Testing
Automation (JAMAICA’14). ACM, 2014.

[62] L.S.G. Ghandehari, M.N. Bourazjany, Yu Lei, R.N. Kacker, and D.R.
Kuhn. Applying combinatorial testing to the siemens suite. In Software
Testing, Verification and Validation Workshops (ICSTW), 2013 IEEE Sixth
International Conference on, pages 362–371, 2013.

[63] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based whitebox
fuzzing. In PLDI, pages 206–215, 2008.

[64] P. Godefroid, M. Levin, and D. Molnar. Automated whitebox fuzz
testing. In NDSS, 2008.

[65] A. Heinecke, T. Brueckmann, T. Griebe, and V. Gruhn. Generating test
plans for acceptance tests from uml activity diagrams. In Proceedings of
the 17th International Conference on Engineering Computer-Based Systems,
IEEE, 2010.

[66] J. Hoffmann. Extending ff to numerical state variables. In Proceedings
of the 15th European Conference on Artificial Intelligence (ECAI-02), pages
571–575, 2002.

[67] J. Hoffmann and B. Nebel. The ff planning system: Fast plan genera-
tion through heuristic search. In Journal of Artificial Intelligence Research
14, pages 253–302, 2001.

[68] Greg Hoglund and Gary McGraw. Exploiting Software: How to Break
Code. Addison-Wesley, 2004. ISBN: 0-201-78695-8.

[69] A. E. Howe, A. von Mayrhauser, and R. T. Mraz. Test case generation
as an ai planning problem. In Automated Software Engineering, 4, pages
77–106, 1997.

[70] Adam Kieyzun, Philip J. Guo, Karthick Jayaraman, and Michael D.
Ernst. Automatic creation of sql injection and cross-site scripting
attacks. In Proceedings of the 31st International Conference on Software

141

Bibliography

Engineering, ICSE ’09, pages 199–209, Washington, DC, USA, 2009.
IEEE Computer Society.

[71] A. Kiezun, P. J. Guo, K. Jayaraman, and M. D. Ernst. Automatic
creation of sql injection and cross-site scripting attacks. In Proceedings
of the 30th International Conference on Software Engineering (ICSE’09),
2009.

[72] Y. G. Kim, H. S. Hong, S. M. Cho, D. H. Bae, and S. D. Cha. Test cases
generation from uml state diagrams. In IEEE Proceedings-Software,
146(4), pages 187–192, 1999.

[73] D.R. Kuhn, R.N. Kacker, and Y. Lei. Introduction to Combinatorial
Testing. Chapman & Hall/CRC Innovations in Software Engineering
and Software Development Series. Taylor & Francis, 2013.

[74] Rick Kuhn, Yu Lei, and Raghu Kacker. Practical combinatorial testing:
Beyond pairwise. IT Professional, 10(3):19–23, 2008.

[75] Yu Lei, Raghu Kacker, D. Richard Kuhn, Vadim Okun, and James
Lawrence. IPOG-IPOG-D: Efficient test generation for multi-way com-
binatorial testing. Softw. Test. Verif. Reliab., 18(3):125–148, September
2008.

[76] Yu Lei and Kuo-Chung Tai. In-parameter-order: A test generation
strategy for pairwise testing. In The 3rd IEEE International Sympo-
sium on High-Assurance Systems Engineering, HASE ’98, pages 254–261,
Washington, DC, USA, 1998. IEEE Computer Society.

[77] A. Leitner and R. Bloem. Automatic testing through planning. Tech-
nical report, Technische Universität Graz, Austria, 2005.

[78] Andreas Leitner. Strategies to automatically test eiffel programs.
Master’s thesis, Technische Universität Graz, Austria, 2004.

[79] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu. Security test
generation using threat trees. In Proceedings of the ICSE Workshop on
Automation of Software Test (AST’09), pages 62–69, 2009.

142

Bibliography

[80] J.R. Maximoff, M.D. Trela, D.R. Kuhn, and R. Kacker. A method
for analyzing system state-space coverage within a t-wise testing
framework. In Systems Conference, 2010 4th Annual IEEE, pages 598–
603, 2010.

[81] Manish Mehta and Roji Philip. Applications of combinatorial testing
methods for breakthrough results in software testing. In Proceedings of
the 2013 IEEE Sixth International Conference on Software Testing, Verifica-
tion and Validation Workshops, ICSTW ’13, pages 348–351, Washington,
DC, USA, 2013. IEEE Computer Society.

[82] A. P. Moore, R. J. Ellison, and R.C. Linger. Attack Modeling for
Information Security and Survivability. In Technical Note CMU/SEI-
2001-TN-001, March 2001.

[83] Changhai Nie and Hareton Leung. A survey of combinatorial testing.
ACM Comput. Surv., 43(2):11:1–11:29, February 2011.

[84] N. J. Nilsson. Teleo-reactive programs for agent control. In Journal of
Artificial Intelligence Research, 1, pages 139–158, 1994.

[85] J. Petke, S. Yoo, M. B. Cohen, and M. Harman. Efficiency and early
fault detection with lower and higher strength combinatorial inter-
action testing. In Proceedings of the 9th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE’13), pages 26–36,
2013.

[86] C. Phillips and L. Swiler. A graph-based system for network vulnera-
bility analysis. In ACM New Security Paradigms Workshop, pages 71–79,
1998.

[87] Elisa Puoskari, Tanja E. J. Vos, Nelly Condori-Fernandez, and Peter M.
Kruse. Evaluating applicability of combinatorial testing in an indus-
trial environment: A case study. In Proceedings of the 2013 International
Workshop on Joining AcadeMiA and Industry Contributions to Testing
Automation, JAMAICA 2013, pages 7–12, New York, NY, USA, 2013.
ACM.

143

Bibliography

[88] S. Rawat and L. Mounier. An evolutionary computing approach for
hunting buffer overflow vulnerabilities: A case of aiming in dim light.
In Proceedings of the 2010 European Conference on Computer Network
Defense (EC2ND), pages 37–45, October 2010.

[89] S. Rawat and L. Mounier. Offset-aware mutation based fuzzing for
buffer overflow vulnerabilities: Few preliminary results. In Proceedings
of the 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pages 531–533, March
2011.

[90] D. Richard Kuhn and Vadim Okum. Pseudo-exhaustive testing for
software. In Proceedings of the 30th Annual IEEE/NASA Software En-
gineering Workshop, SEW ’06, pages 153–158, Washington, DC, USA,
2006. IEEE Computer Society.

[91] M. Scheetz, A. von Mayrhauser, R. France, E. Dahlman, and A. E.
Howe. Generating test cases from an oo model with an ai planning
system. In Proceedings of The 10th International Symposium on Software
Reliability Engineering. IEEE Computer Society, Washington, DC, USA,
pages 250–259, 1999.

[92] I. Schieferdecker. Model-based fuzz testing. In Proceedings of the 2012
IEEE Fifth International Conference on Software Testing, Verification and
Validation (ICST), page 814, April 2012.

[93] I. Schieferdecker, J. Grossmann, and M. Schneider. Model-based
security testing. In Proceedings of the Model-Based Testing Workshop at
ETAPS 2012. EPTCS, pages 1–12, 2012.

[94] M. Schnelte and B. Gueldali. Test case generation for visual contracts
using ai planning. In INFORMATIK 2010, Beitraege der 40. Jahrestagung
der Gesellschaft fuer Informatik e.V. (GI), pages 369–374, 2010.

[95] I. Segall, R. Tzoref-Brill, and A. Zlotnick. Common patterns in combi-
natorial models. In Software Testing, Verification and Validation (ICST),
2012 IEEE Fifth International Conference on, pages 624–629, 2012.

[96] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing. Automated
generation and analysis of attack graphs. In Proceedings of the IEEE
Symposium on Security and Privacy, 2002.

144

Bibliography

[97] D. Stuttard and M. Pinto. The Web Application Hacker’s Handbook:
Discovering and Exploiting Security Flaws. Wiley Publishing, Inc., 2011.
Second Edition.

[98] Z. Su and G. Wassermann. The essence of command injection at-
tacks in web applications. In Symposium on Principles of Programming
Languages, pages 372–382, 2006.

[99] A. Takanen. Fuzzing: the past, the present and the future. In SSTIC’09,
2009.

[100] A. Takanen, J. DeMott, and C. Miller. Fuzzing for Software Security
Testing and Quality Assurance. Artech House, Inc., Norwood, USA,
2008.

[101] W. Tian, J.-F. Yang, J. Xu, and G.-N. Si. Attack model based penetration
test for sql injection vulnerability. In Proceedings of the 2012 IEEE 36th
Annual Computer Software and Applications Conference Workshops, 2012.

[102] Omer Tripp, Omri Weisman, and Lotem Guy. Finding your way in
the testing jungle: A learning approach to web security testing. In
Proceedings of the 2013 International Symposium on Software Testing and
Analysis, ISSTA 2013, pages 347–357, New York, NY, USA, 2013. ACM.

[103] F. van der Loo. Comparison of Penetration Testing Tools for Web
Applications. Master’s thesis, University of Radboud, Netherlands,
2011.

[104] A. Vernotte, F. Dadeau, F. Lebeau, B. Legeard, F. Peureux, and F. Piat.
Efficient detection of multi-step cross-site scripting vulnerabilities. In
Proceedings of the 10th International Conference on Information System
Security (ICISS’14), pages 358–377, 2014.

[105] D. Xu, M. Tu, M. Sanford, L. Thomas, D. Woodraska, and W. Xu.
Automated security test generation with formal threat models. In
IEEE Transactions on Dependable and Secure Computing 9 (4), pages
526–540, 2012.

[106] Cemal Yilmaz, Myra B Cohen, and Adam A Porter. Covering arrays
for efficient fault characterization in complex configuration spaces.
Software Engineering, IEEE Transactions on, 32(1):20–34, 2006.

145

Bibliography

[107] Linbin Yu, Yu Lei, R.N. Kacker, and D.R. Kuhn. Acts: A combinatorial
test generation tool. In Software Testing, Verification and Validation
(ICST), 2013 IEEE Sixth International Conference on, pages 370–375,
2013.

[108] Jian Zhang, Zhiqiang Zhang, and Feifei Ma. The IPO family. In Auto-
matic Generation of Combinatorial Test Data, SpringerBriefs in Computer
Science, pages 41–49. Springer Berlin Heidelberg, 2014.

[109] Zhiqiang Zhang, Xiaojian Liu, and Jian Zhang. Combinatorial testing
on id3v2 tags of mp3 files. In Proceedings of the 2012 IEEE Fifth Interna-
tional Conference on Software Testing, Verification and Validation, ICST ’12,
pages 587–590, Washington, DC, USA, 2012. IEEE Computer Society.

146

