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Abstract (English)

Robots play an increasingly important role in our daily lives. They are omnipresent not only in house-
hold items such as vacuum cleaners but also robot arms or automated guided vehicles in factories. A
vacuum cleaner that moves randomly around in an apartment and an automated guided vehicle that
simply follows a line are certainly not the best examples of an intelligent robot, but they are affordable
and do operate reliably. On top of these mass products there are several solutions with higher cogni-
tive capabilities such as robots that are able to prepare pancakes. Typically, an intelligent robot has a
belief system about its environment and about itself, e.g. a map of the robot’s area, with the help of
which the robot can determine its position and find a given destination. While moving around, it may
pick up further information about the configuration and position of other robots, humans or objects:
The robot may infer additional knowledge from those observations. For instance, it may learn that
when detecting a coffee machine, there is a good chance to encounter a group of people around it as
well. Hence, the belief system of a robot can be comprehensive with respect to the application do-
main. However, similar to the human brain, parts of the robot’s belief can be contradictory to the real
world. One reason for that could be the robot’s overestimation. It might think it drove 10 kilometers,
whereas in fact it drove only 5 km because of a problem in the robot’s engine and end up far from
the destination. Based on such incorrect knowledge, the robot might set incorrect and even dangerous
consecutive actions.

This thesis presents a system that detects inconsistencies within the robot’s belief and, if possible,
corrects them. The presented system provides the robot with a set of rules that continuously check
the belief’s consistency. Moreover, all sensing information retrieved by the robot is compared with
the expected value based on past experiences. If an inconsistency is detected, the robot tries to correct
the internal state. In order to have best knowledge of the environment, the correction is always driven
by the question "What happened". This is why the robot maintains a pool of possible explanations
which are always kept updated. The current favorite out of this explanation pool forms the belief of
the robot.

This thesis shows that a robot’s performance benefits from such a pool of explanations ("hypothesis
pool"). A formal description of the system, which includes proofs of several attributes, is also provided
in this thesis. Having started with a simulation, the system is then integrated into a real world robot’s
architecture. Further results show that an automatic domain pattern analysis significantly improves the
performance and the runtime of the belief system. These results are strengthened by a comprehensive
evaluation.
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Abstract (German)

Roboter nehmen eine immer wichtigere Rolle in unserer Gesellschaft ein. Dies gilt füer den Heimge-
brauch ebenso wie füer das industrielle Umfeld. Im Heimgebrauch zeigt sich das z.B. in Form von
Haushaltshelfern wie Staubsaugerroboter oder Rasenmäher. Das industrielle Pendant sind Roboter-
arme oder fahrerlose Transportsysteme. Auch wenn z.B. scheinbar planloses Hin- und Herfahren
eines Staubsaugerroberts oft befremdlich wirken mag, so ist der Einsatz dieser genannten Systeme
doch wirtschaftlich und bewährt sich im Alltag. Neben solch bedingt intelligenten Massenproduk-
ten gibt es jedoch auch eine beachtliche Anzahl von Robotersystemen mit ausgeprägten cognitiven
Fähigkeiten, wie z.B. Roboter, die in der Lage sind Palatschinken zuzubereiten. In der Regel besitzt
ein Roboter eine Wissensbasis, die seine Umgebung und ihn selbst repräsentiert. Dazu zählt z.B. eine
Karte seines Einsatzgebiets, mit deren Hilfe er seine Position ermitteln und zu Zielen finden kann.
Während sich Roboter bewegen, können sie weitere Informationen über die Konfiguration und Po-
sition anderer Roboter, Menschen und Objekte sammeln. Dies kann benutzt werden um daraus auf
weiteres Wissen zu schlieszen. Beispielsweise kann ein Roboter lernen, dass im Falle eines Kaffeeau-
tomaten die Chancen gut stehen, in der Nähe des Automaten eine Gruppe von Personen zu entdecken.
Je nach Einsatzgebiet kann daher die Wissensbasis eines Roboters sehr umfangreich werden. Ähnlich
wie im menschlichen Gehirn können auch Teile dieser Wissensbasis der realen Welt widersprechen.
Ein Grund dafür kann die Selbstüberschätzung des Roboters sein. Folgedessen kann es aufgrund eines
Motorfehlers vorkommen, dass der Roboter denkt, 10 Kilometer gefahren zu sein, obwohl er tatsäch-
lich nur 5 Kilometer zurückgelegt hat. Solch falsches Wissen kann dazu führen, dass der Roboter
falsche oder gar gefährliche Aktionen setzt.

Diese Dissertation präsentiert ein Wissensmanagement-System zur Erkennung und wenn möglich
auch zur Reparatur von Fehlern innerhalb einer Roboterwissensbasis. Dieses neue System stattet
einen Roboter mit einer Menge von Regeln aus, die kontinuierlich die Konsistenz und somit die
Korrektheit der Wissensbasis prüfen. Zusätzlich wird jede eingehende Sensorinformation mit dem
internen, erwarteten Wert verglichen, der sich auf bisher gesammeltes Wissen stützt. Wird eine Inkon-
sistenz entdeckt, versucht der Roboter den internen Wissenszustand zu korrigieren. Ziel dieser Kor-
rektur ist es ein möglichst umfangreiches Wissen von der Umwelt zu erlangen. Dazu geht die Arbeit
der Frage nach "Was ist passiert?". Aus einem Pool von möglichen Hypothesen, der regelmäszig
aktualisiert wird, selektiert das System einen Favoriten, der die aktuelle Wissensbasis des Roboters
definiert.

Diese Dissertation zeigt weiters, wie Roboter durch ein Wissensmangement-System robuster und
autonomer agieren können. Dieses System wird sowohl formal beschrieben als auch wichtige Eigen-
schaften formal bewiesen. Im ersten Schritt wird dieses System in einer Simulation umgesetzt. Im
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nächsten Schritt wird das System in die Architektur eines realen Roboters eingepflegt. Weiters wird
gezeigt, dass eine automatisierte Domänenanalyse die Leistungsfähigkeit und die Laufzeit des Sys-
tems drastisch verbessern kann. Alle Resultate werden durch eine umfangreiche Evaluierung unter-
mauert.
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Chapter 1
Introduction

Robots play an increasing role in our society. In order to fulfill society’s expectations selecting the best
action in every situation is crucial. This thesis aims to provide robots a consistent representation of the
world, so that they can indeed select the best action in every situation. Section 1.1 further motivates
this aim and introduces some background information. This is followed by investigating robotic
frameworks in the surrounding of the presented work. Finally, Section 1.5 presents the structure of
the remaining part of this thesis.

1.1. Background and Motivation

Robots are becoming more and more important in our daily lives. Vacuum cleaners whiz around
apartments, or lawn-mowers cut huge areas of lawn independently. Though their cognitive capabilities
are relatively modest, their features can not be neglected. Both type of robots are able to operate
within boundaries but the environment is typically unknown and no map is used. They cruise the
area uniformly, and they find back to their charging stations. Moreover they are very robust by means
of avoiding falling down stairs, or colliding with obstacles safely. Of course there are many more
elaborated examples aside from the user market. For instance, Minerva a tour-guide robot (see Thrun
et al. (1999)) or Google’s self driving car (Thrun, 2010) that covered a distance of 500,000 (Muller,
2013) miles without human interference. The amount of sensors on and in the car is enormous which
makes the price of the vehicle far too high to spread quickly, but the project was able to overcome
legal issues and launch a car that is allowed to drive autonomously in a few U.S. states such as Nevada
or California. While Google’s self driving car or similar cars from the DARPA Grand Challenge
(see Iagnemma and Buehler (2006)) can be seen as classical robots with its sensors, actuators and
a corresponding decision making system, boundaries blur when it comes to subsystems like lane-
departure warning, collision avoidance or active park assist.
Another example for elaborated robot systems are robot driven warehouses or manufacturing plants.
For example Kiva systems is a goods-to-man order picking and fulfillment system (Wyland, 2008),
where persons operate at designated workstations and goods are delivered and retrieved by a fleet
of robots (Wurman et al., 2007). Goods are stored at mobile inventory shelves. Robots pass under,
lift them and move them to the designated location. For ease of coordination robot movements are
executed on a grid and persons are not allowed to enter the workspace of the robots. More flexible
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Figure 1.1.: Estimated worldwide annual shipments of industrial robots (IFR Statistical Department,
2012)

Figure 1.2.: Annual supply of industrial robots 2010-2011 and forecast for 2012-2015 (IFR Statistical
Department, 2012)

solutions make it possible to share space with human employees and drive around obstacles, but are
far from 4-digit numbers of robots per installation like Kiva. According to past sales volumes (see
Fig. 1.1) and recent trends the number of robot units sold is expected to grow continually in Asia and
respectively stay constant at this level or grow in 2015 in Europe and America (see Fig. 1.2).

A third application example for sophisticated robots is the exploration of outer space, especially in
the Mars Exploration Rover Mission (Trebi-Ollennu, 2006) or the recent landing of Curiosity (Wall,
2012). Due to the communication delay of 14 minutes and 6 seconds over the 567 million kilometers
tele-operated navigation with a 1-ton robot becomes complicated. Contingent upon the availability of
enough images from the previous day, NASA navigation staff plans specific navigation commands. If
there is too little information available Curiosity can switch to its autonomous mode and navigate to a
predefined goal. Daily missions typically cover 100-200 meters with a maximum speed of 90 meters
per hour.

All examples have in common that robots decide actively. They lack a global view of their envi-
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ronment and dependability is crucial, though difficult to maintain. Dependability refers to the ability
to perform its mission without causing catastrophes. This means that faults are inevitable and their
consequences are negligible. Thus a dependable robot is safe to humans and to the environment. De-
pendability can be measured by the number of goals achieved and the amount of resources needed
(e.g. time and distance) (Lussier et al., 2005).

Robots typically encounter a number of different faults during their missions. So let us step back
to our manufacturing plant example where we inspect the work of a delivery robot. Imagine a manu-
facturing plant with some production machines, goods receipt where trucks supply raw materials and
an on-site shop, where customers can pick up items on their own after reserving them online. The
robot’s task is to express deliver the blue box from the conveyor near the production machines to the
shop (see Fig. 1.3).

Figure 1.3.: Transport task initial situation

Due to localization or navigation problems the robot misses the aisle to the shop and ends up in the
aisle to the goods receipt. At this point it encounters a soda machine, that is a contradiction to the
expected cash register. There are several explanations for the observed situation (see Fig. 1.4).

First, the observed soda machine is an illusion, resulting from a sensing failure. Sensing failures ei-
ther miss objects, or detect objects even if they are not present or mistake one object for another. Such
failures can occur due to limited hardware capabilities in combination with sources of interference
such as bright lights when using cameras, complex situations, or software faults.

Second, the robot missed the correct aisle and entered the goods receipt aisle. This scenario resem-
bles the true situation in our example and is referred to execution failure. If the outcome of an action
differs from the expected one, it is called an execution error. Execution errors may result from many
sources. Especially dynamic environments are typically very challenging to robots, if the scene can
not be observed as total. According to the ISO norm 26262 (Technical Committee ISO, 2011) we dif-
ferentiate between faults, errors and failures. A fault resembles an abnormal condition that can cause
an element or an item to fail. An error is the discrepancy between a computed, observed or measured
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value or condition, and the true, specified, or theoretically correct value or condition. Finally, a failure
is the termination of the ability of an element, to perform a function as required.

Third, there is a soda machine near the shop. One reason for the robot’s inconsistency could be
incorrect initial knowledge. Namely that the soda machine was always located near the shop. Another
reason could be an exogenous event. Exogenous events summarize actions, that are not executed
by the robot. This could include someone moving the soda machine from the goods receipt area to
the shop, or someone installing a second soda machine near the shop. But exogenous events are not
necessarily executed by other robots or humans, they can be used to model any kind of events like
changing weather (if this information is relevant).

Figure 1.4.: Possible situations explaining the inconsistency.

This means a dependable robot is expected to cope with sensing failures, execution failures, incor-
rect or incomplete initial knowledge and exogenous events, during its continuous Sensing - Decision-
Making - Execution cycle (see Fig. 1.5). Faults in the robot’s hardware, software or domain descrip-
tion are beyond the scope of this thesis.

We present a diagnosis and repair framework that is able to detect inconsistencies within the robot’s
belief and repairs them if possible, where belief is a knowledge base that serves the robot for deci-
sion making. The presented framework is based on the IndiGolog high-level programming language
which allows for interleaved execution, sensing and planning (de Giacomo et al., 2009). After every
execution step a fast consistency check is performed. In case of an inconsistency the most plausible
explanation is adapted, minimizing the risk of failures due to faults in the robot’s belief.

1.2. Existing Frameworks

Before we continue with the proposed system we take a closer look on frameworks that follow similar
strategies.

De Giacomo in (de Giacomo et al., 1998) and similar in (de Leoni et al., 2007) presents an execution
monitoring framework for high-level robot programs. It builds up on the logic progamming language
Golog and is able to recover from malicious exogenous actions. The framework is based on three,
rather strong assumptions, namely (1) that the robot directly perceives all exogenous actions and (2)
that sensing is always correct, and (3) there exists a program post-condition together with the property
that all programs can be executed offline. After receiving an exogenous event, a predicate Relevant
checks if the exogenous event prevents the program from termination. This part is done by offline
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Figure 1.5.: Sensing - Decision-Making - Execution cycle (Gspandl, Podesser, Reip, Steinbauer, and
Wolfram, 2012)

evaluation. If the program is still able to terminate, no further steps are necessary. If not, a predicate
Recover changes the program in a way, that it is terminable and satisfies the program post-condition.
The predicate Recover again uses offline evaluation. In contrast to the assumption that every reluctant
change in the world is due to an exogenous event that can be directly observed, we further discriminate
between execution and sensing failures. Furthermore, typically such failures or exogenous events are
only partially observable.

Fritz in (Fritz, 2009) presents a planning and execution framework that is able to operate in highly
dynamic environments with real world constraints. The emphasis lies on plan optimality during plan-
ning as well as during execution. The framework is composed of Plan Generation, Plan Execution,
State Estimation, State Evaluation and Recovery components (see Fig. 1.6). Plan Generation is re-
sponsible for generating an optimal plan, while Plan Execution is responsible for applying the actions
of that plan. State Estimation fuses all sensor values and identifies differences between expectations
and actually observed properties. State Evaluation decides whether these deviations are relevant to
the current plan. Finally, Recovery executes some kind of replanning, in case the observed deviations
are relevant. Especially if planning takes longer than execution cycles, it is very important to know
whether planning is necessary or not. Furthermore if replanning is necessary, this can be done effi-
ciently by incorporating past planning results, while preserving optimality. Our framework differs as
it focuses on providing the robot a consistent belief. Sensing results are directly integrated only if
consistency can be assured.

CRAM, another relevant framework presented by Beetz et al. (2010) is a software toolbox for
robotic cognition-enabled everyday manipulation tasks. It supports all life-cycle phases from design,
to implementation and deployment. CRAM makes it possible to execute plans written in the CRAM
Plan language (CPL) and to reason about belief states and environment observations. In contrast to
conventional three tier architectures, CRAM provides features of the upper two levels such as parallel
execution, partial ordering of sub-plans, sophisticated failure handling or semantic annotation in one
level. Besides CPL, Prolog based KNOWROB is responsible for knowledge processing and reasoning.
It either evaluates queries or return bindings of queries. Description logic OWL acts as knowledge
representation. Both, CPL and KNOWROB can be fed with a set of extension modules like the
“Everyday Manipulation” extension. This means the CRAM kernel itself stays very compact. The
complete high-level robot control system is called COGITO (Beetz et al., 2010). The super framework
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Figure 1.6.: A framework for plan generation and plan execution including monitoring (Fritz, 2009)

of CRAM adds the additional functionality of reasoning over plans. This is necessary for improving
plans at runtime. In contrast to our framework, CRAM explicitly models the belief of the robot, but
does not reason about inconsistencies within this.

The LAAS architecture is presented in (Alami et al., 1998). Though it contains a functional, ex-
ecution and decision level, there are major differences to other frameworks. The decision level does
not only allow for planning, it is realized by a planner-supervisor structure that allows reaction dur-
ing planning. The functional level typically comprises all robot actions and perception capabilities.
Similar to ROS (Quigley et al., 2009) functionality is grouped into modules that pass data or call
services among each other. A module generator is responsible for module synthesis based on a for-
mal module description. A dedicated controller is responsible for module management in order to
facilitate transition between module states as idle, initialized, failed, interrupted or executing. Fur-
thermore all relevant module data and events (default settings, parameter updates, processing results,
commands) are automatically logged to databases. The execution level acts between the decision level
and the functional level. It receives high-level commands and selects, parametrizes and synchronizes
functional modules. All incoming requests are checked for logical constraints written in a formal
language. Many of these constraints can be generated automatically out of module specifications.
While the LAAS architecture pays little attention to repairing inconsistent beliefs, its fault tolerance
is an ubiquitous design goal. This is realized by several generators that try to reduce coding errors by
automatic generation. Furthermore, it is ensured that every part of the system reacts within a given
time span and that it is interruptible. Additional rules, e.g. rules constraining resource usage ensure
smooth system behavior.

Of course there are many other high-level robotic frameworks but most of them more or less ignore
inconsistencies within a robot’s belief or they do not pay attention to dependability. For instance,
NASA Jet Propulsion Laboratory in combination with NASA Ames Research Center, Carnegie Mel-
lon and University of Minnesota provide the “CLARAty” architecture for robotic autonomy (Volpe
et al., 2001). This system only considers inconsistencies between decision and functional layer.

1.3. Research Objectives

This Section introduces the research objectives that motivated and guided the work of this thesis.
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1.3.1. Formal Belief Management

According to the title of this thesis a Belief Management system forms the main interest of this work.
Approaching this topic from an AI perspective the formal definition of such a Belief Management
system is a key issue. Dependability is in the main focus. This means, that the Belief Management
system is expected to provide a consistent belief even in harsh environments.

1.3.2. Belief Management Implementation handling various threats

Building up on a formal definition of such a dependable Belief Management system, the next objective
is to have an implementation of this system. The implementation is expected to behave well even
in the presence of several threats. This threats consist of incomplete knowledge, execution failure,
sensing failure and exogenous events. In case of incomplete knowledge the robot is required to execute
tasks, though it may not have full knowledge of all relevant data. For instance, it should be able to
deliver items to some destination, without knowing exactly the current position of the item to be
delivered. Furthermore a correct overall execution of tasks is expected, even if intermediate steps may
fail, like picking an item. The same is expected to be true for sensing systems that do not provide
correct measurements all the time, like reporting a non-existing item. Exogenous events, where the
environment is changed but not directly observed by the robot, form another threat to be handled by a
Belief Management system.

1.3.3. Efficient Belief Management on a real world Robot

Another key objective is the applicability of such an implementation to a real world robot. This means
that we need a proper framework around the Belief Management in order to ensure a proper interaction
with sensing and execution instances of a real world robot. If robots operate in the same environment
as humans do, they are expected to behave in such a way that they do not block their environment.
This means we expect the robot to behave efficiently. In terms of a Belief Management system, this
issue can be addressed by efficient runtimes of the system.

1.3.4. Systematic Evaluation

Finally, one objective of this thesis is to have a comprehensive evaluation of the proposed system.
This evaluation is expected to answer if such a Belief Management system is able to strengthen or
even enlarge a robot’s capabilities. All the proposed objectives are expected to be systematically
evaluated.

1.4. Contributions

This Section gives an overview over the major contributions of this thesis and explains them shortly.
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1.4.1. Formal Definition and Implementation of Belief Management

Roughly speaking a Belief Management is a system that provides the robot with a base for decision
making. The formal definition of consistency that is crucial for the application of a belief manage-
ment and the formalization of the belief management itself was published in Gspandl, Pill, Reip, and
Steinbauer (2011). Based on this notation we are able to prove several properties of this belief man-
agement. This includes the maximum number of hypotheses needed to explain all inconsistencies
after a number of k executed actions or the number of all hypotheses that explain inconsistencies
arising from a given number of failures. This was published in Gspandl, Pill, Reip, Steinbauer, and
Ferrein (2011). The implementation together with the formal definition was published in Gspandl,
Pill, Reip, and Steinbauer (2013).

1.4.2. Robot Control Architecture

On the basis of the formal definition, a robot control architecture is achieved. It uses an adapted
version of IndiGolog (de Giacomo et al., 2009) that is able to interact with our belief management im-
plementation. A ROS interface covers action execution and sensor information retrieval. This means,
this robot control architecture is able to control simulated agents as well as real world robots. Parts
of this architecture were published in Wolfram, Gspandl, Reip, and Steinbauer (2011) and Gspandl,
Podesser, Reip, Steinbauer, and Wolfram (2012).

1.4.3. Diagnosis Templates

Observations have shown that inconsistencies within the robots belief often arise due to single fail-
ures. Furthermore, especially in large domains generating and testing all hypotheses can be very
time-consuming. So called Diagnosis Templates can help to reduce the number of necessary tests
dramatically. Diagnosis Templates are pre-calculated and explain one inconsistency. At run-time only
hypotheses that follow from Diagnosis Templates explaining the current inconsistency are tested. The
concept of Diagnosis Templates was published in Reip, Steinbauer, and Ferrein (2012).

1.4.4. Belief Management Optimization

Besides the usage of Diagnosis Templates that have a huge impact on the runtime of the belief manage-
ment system, several smaller concepts are used to optimize the runtime performance of the presented
system. Therefore we use several open-lists to influence the hypotheses evaluation selection in order
to achieve faster runtimes. Furthermore, we derive the notation of a hypothesis compression set. Mul-
tiple hypothesis can be compressed into one compression set. The result of the compression again
forms a hypothesis by its own. The usage of compressed hypotheses can tender many consistency
checks unnecessary. In the worst case the runtime of a system applying this feature is not better than
the original system.

1.4.5. Domain Knowledge Generation

Domain Knowledge Generation is essential for intelligent systems, and thus essential for a Belief
Management system as well. Providing correct and comprehensive data input is crucial for a wide ap-
plicability and acceptance of our Belief Management system and additionally for its correct behavior.
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1.5. Outline

Though this topic is a large research topic on its own, first steps in this directions have been under-
taken with colleagues. In this way, two approaches were developed and the findings were published
in Gspandl, Reip, Steinbauer, and Wotawa (2010) and Gspandl, Monichi, Reip, Steinbauer, Wol-
fram, and Zehenter (2007) and Gspandl, Hechenblaickner, Reip, Steinbauer, Wolfram, and Zehentner
(2012).

1.5. Outline

The remaining thesis is structured as follows: Chapter 2 provides necessary preliminaries. This in-
cludes the situation calculus, IndiGolog and history-based diagnosis. The robot delivery domain is
presented in Chapter 3 as it forms the running example throughout the thesis. Chapter 4 introduces
the formal definition of the belief management. These findings are extended by the application of
Guarded Action Theories in Chapter 5. This is followed by Chapter 6 that transfers this system to
a real robot. Chapters 7 and 8 tackle performance issues. Chapter 7 presents Diagnosis Templates
and Chapter 8 combines hypothesis compression and hypothesis selection. Chapter 9 provides an
evaluation of the presented system. Domain Knowledge Generation is tackled in Chapter 10. Finally,
Chapter 11 concludes the thesis and depicts directions for further research.
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Chapter 2
Preliminaries

Within this chapter we provide theoretical foundations for the remaining part of this thesis. First, we
introduce the situation calculus a logic formalism. This is followed by an overview of IndiGolog.
IndiGolog is a high-level programming language that allows incremental program execution. Finally,
we give an introduction to histoty-based diagnosis. Please note that, as usual, all free variables in
formulas are meant to be implicitly universally quantified. Lists of variables are abbreviated as vector:
x⃗ for x1,x2, ...,xn.

2.1. Situation Calculus

The situation calculus is a second order language. It was first proposed by McCarthy (1963) and
later refined by Reiter (2001). Every change in the world is modeled by named actions. Sequences
of actions denoting world histories are called situations. The initial situation is represented by the
constant S0. A special binary function symbol do maps situation × action to its successor situation. s

′ =
do(α,s) denotes the resulting situation s

′

after executing action α in situation s. If not stated otherwise,
actions are indicated by α,β,χ. For example, if action pickup(x) states that a robot takes some object
x, do(pickup(x),s) relates to the situation after the robot picked up the object in situation s. Situations
and actions are first order terms. For example, do(putdown(x),do(goto(room),do(pickup(x),s))) is
a situation term for the action sequence [pickup(x),goto(room),putdown(x)] in situation s. Note that
due to the recursive behavior of do, action sequences have to be read from right to left. Relations and
functions that change over time (from situation to situation) are called relational fluents and functional
fluents respectively. They take exactly one situation term as last argument. Within the situation
suppressed form, this last parameter is omitted. For example the predicate is_at(obj,room) denoting
if object obj is in room room is dependent of the current history. Please note that we use history and
situation synonymously. It might change after the robot picks up an object and moves it to another
room.

The executability of actions is denoted by a special predicate Poss. Poss(α,s) denotes that action
α is executable in situation s (Action Preconditions). For instance, Poss(pickup(obj),s) ⊃ ∃room.
is_at(obj,room,s) ∧at(room,s) defines that a robot can only pickup an object obj if it is in the same
room as the object. However the executability of actions may vary with situations. For example, the
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robot is required to have enough battery for executing the pickup task. Or if the robot is located in
a crowd, it must not be blocked. So enumerating and considering all these possible contexts seems
to be impossible at design time for real-world related domains. If preconditions are too specific, they
can not be instantiated at run-time as some facts might not be available. The problem of defining
them best is called the qualification problem (Lin, 2008). The classical example for this problem is
bird(x)∧¬penguin(x)∧¬ostrich(x)∧¬pekingDuck∧ . . . ⊃ flies(x). This means a bird flies if it is not a
penguin, an ostrich or ... Given the fact bird(Tweety) and trying to infer flies(Tweety), this cannot be
achieved as there is no information about Tweety being a penguin or not. Reiter (2001) distinguishes
between important qualifications as bird(x) and minor qualifications as ¬penguin(x),¬ostrich(x), ...
and ignores all "minor" qualifications.

Another omnipresent problem when axiomatizing dynamic worlds is the frame problem. Effects
are generally modeled by effect axioms. They describe how an action changes a fluent. For in-
stance, has_object(obj,s) ⊃ is_at(obj,room,do(goto(room),s)) states that the object obj is in room
room after the robot moves there and whether the robot is in possession of this object. Besides
these effect axioms, frame axioms for describing action invariants are needed. Those cover flu-
ents that are not changed by actions. For example the fluent has_object is not affected by the ac-
tion goto: has_object(obj,s) ⊃ has_object(obj,room,do(goto(room),s)) and ¬has_object(obj,s) ⊃
¬has_object(obj,room,do(goto(room),s)) for the negative case. This results in 2× ∣A∣× ∣F ∣ axioms,
where ∣A∣ stands for the number of actions and ∣F ∣ for the number of fluents. On the one hand, the
axiomatizer needs to write down all axioms and on the other hand the implementation has to reason
efficiently over such a huge number of axioms. A solution to the frame problem seeks to fulfill two
goals. First, it should be possible to generate frame axioms out of effect axioms. This reduces error-
proneness and saves a lot of painful labor. Second, the solution is expected to lead to a minimum
number of axioms.

The first part of the frame problem was addressed by Pednault (Pednault, 1989). Given a fluent
on describing the state of a lightbulb and an action switch that either switches on the lightbulb on or
switches it off, the positive and negative effect axioms are (Reiter, 2001):

¬on(x,s) ⊃ on(x,do(flip(x),s))
on(x,s) ⊃ ¬on(x,do(flip(x),s))

This is extended to the logically equivalent forms:

¬on(x,s)∧y = x ⊃ on(x,do(flip(y),s))
on(x,s)∧y = x ⊃ ¬on(x,do(flip(y),s))

Assuming that the formulas indicated above describe all possibilities how action flip is able to alter the
fluent on, we can conclude that, if the lightbulb was on before flip and off after flip, then on(x,s)∧y = x
held. This leads to:

on(x,s)∧¬on(x,do(flip(y),s)) ⊃ y = x

¬on(x,s)∧on(x,do(flip(y),s)) ⊃ y = x

This is again logically equivalent to:

on(x,s)∧y ≠ x ⊃ on(x,do(flip(y),s))
¬on(x,s)∧y ≠ x ⊃ ¬on(x,do(flip(y),s))
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Finally, we received our first frame axioms. It states that the action flip has no effect on fluent on
respectively ¬on whenever y does not equal x. This derivation is specific, but it can be generalized.
This is done with a positive (ε+F(x⃗, y⃗,s)) and negative (ε−F(x⃗, y⃗,s)) effect axiom for every action α(y⃗)
and fluent F(x⃗,s). The effect axioms are first-order formulas where all free variables are in x⃗, y⃗,s.

ε
+

F(x⃗, y⃗,s) ⊃ F(x⃗,do(α(y⃗),s))
ε
−

F(x⃗, y⃗,s) ⊃ ¬F(x⃗,do(α(y⃗),s))

Again, we use the assumption that both effect axioms express all cases where action α influences
fluent F (Causal Completeness Assumption). If F(x⃗,s) and ¬F(x⃗,do(α(y⃗,s))) hold, we can rewrite
the above-mentioned formulas to:

F(x⃗,s)∧¬F(x⃗,do(α(y⃗),s)) ⊃ ε
−

F(x⃗, y⃗,s)
¬F(x⃗,s)∧F(x⃗,do(α(y⃗),s)) ⊃ ε

+

F(x⃗, y⃗,s)

This is equivalent to:

F(x⃗,s)∧¬ε
−

F(x⃗, y⃗,s) ⊃ F(x⃗,do(α(y⃗),s))
¬F(x⃗,s)∧¬ε

+

F(x⃗, y⃗,s) ⊃ ¬F(x⃗,do(α(y⃗),s))

Thus, we are able to automatically compute frame axioms for every action fluent combination that
consists of effect axioms. If there is no connection by means of effect axioms, empty effect axioms
are required:

f alse ⊃ F(x⃗,do(α(y⃗),s))
f alse ⊃ ¬F(x⃗,do(α(y⃗),s))

This solution presented by Pednault makes it possible to generate frame axioms easily, but with a clear
drawback, the high number of frame axioms.

The second part of the frame problem, namely the compact representation of frame axioms (Schu-
bert called them explanation closure axioms), was first addressed by Haas (1987) and later extended
by Schubert (1990). They focus on identifying actions that change a fluent. For instance, if a robot
is holding an object, but does not in the successor situation, then it either puts the object down or
someone took the object.

has_object(x,s)∧¬has_object(x,do(a,s)) ⊃ a = putdown(x)∨a = snatch(x)

This can be rewritten to a frame axiom:

has_object(x,s)∧a ≠ putdown(x)∧a ≠ snatch(x) ⊃ has_object(x,do(a,s))

Every action other than snatch or putdown leaves the fluent has_object unchanged under the assump-
tion that actions with different names are different actions (Unique Name Assumption). The general-
ization of the given example leads to:

F(x⃗,s)∧¬F(x⃗,do(a,s)) ⊃ΦF(x⃗,a,s)
¬F(x⃗,s)∧F(x⃗,do(a,s)) ⊃ΨF(x⃗,a,s)

13
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This states that ΦF(x⃗,a,s) and ΨF(x⃗,a,s) provide an explanation for every change of F. This can be
rewritten to the logically equivalent form:

F(x⃗,s)∧¬ΦF(x⃗,a,s) ⊃ F(x⃗,do(a,s))
¬F(x⃗,s)∧¬ΨF(x⃗,a,s) ⊃ ¬F(x⃗,do(a,s))

Due to an universal quantification over actions, it is possible to reduce the number of frame axioms
from 2× ∣A∣× ∣F ∣ to 2× ∣F ∣. Thus, we receive a compact representation of frame axioms, but Schubert
argued that there is no algorithm to generate them automatically.

Finally, Reiter merged both approaches to receive a compact representation of frame axioms that is
easy to provide (Reiter, 1991, 2001). This is shown by an example of an object that breaks (if fragile)
after dropping it, or if the object is close to an exploding bomb. Broken objects can be repaired. The
positive and negative effect axioms for broken are:

fragile(x,s) ⊃ broken(x,do(drop(r,x),s))
next_to(b,x,s) ⊃ broken(x,do(explode(b),s))

¬broken(x,do(repair(x,s))

This can be rewritten to the logically equivalent form:

[∃r.a = drop(r,x)∧ fragile(x,s)∨∃b.{a = explode(b)∧next_to(b,x,s)}] ⊃ broken(x,do(a,s))
∃r.a = repair(r,x) ⊃ ¬broken(x,do(a,s))

Under the completeness assumption that we have given all effect axioms leading to F respectively ¬F ,
we can state that a change from F to ¬F is due to the actions drop or explode, and a change from ¬F
to F is due to repair. We can rewrite the sentence according to Schubert’s proposal indicated above:

¬broken(x,s)∧broken(x,do(a,s)) ⊃
∃r.a = drop(r,x)∧ fragile(x,s)∨∃b.{a = explode(b)∧next_to(b,x,s)}

And for the negative case:

broken(x,s)∧¬broken(x,do(a,s)) ⊃∃r.a = repair(r,x)

Based on this example we can derive a general case. Therefore we take a step back and investigate
the transformation of effect axioms into their normal forms. The positive and negative normal forms
are denoted by:

γ
+

F(x⃗,a,s) ⊃ F(x⃗,do(a,s))
γ
−

F(x⃗,a,s) ⊃ ¬F(x⃗,do(a,s))

Starting from effect axioms, we are faced with effect axioms of the form:

φ
+

F ⊂ F(t⃗,do(α,s))

α denotes an action term such as pickup(x) or goto(room) and t⃗ is a term. By expliciting the action
and its parameters we receive:

a = α∧ x⃗ = t⃗ ∧φ
+

F ⊃ F(x⃗,do(a,s))
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x⃗ = t⃗ is an abbreviation for x1 = t1 ∧ x2 = t2 ∧ ...∧ xn = tn and x⃗ are new variables that differ from one
another and from any variable in the original effect axiom. If y1,y2, ...,ym stand for all free (implicitly
universally qualified) variables except the situation variable s, then the following sentence is logically
equivalent:

∃y1,y2, ...,ym.[a = α∧ x⃗ = t⃗ ∧φ
+

F] ⊃ F(x⃗,do(a,s))

To this extent, every effect axiom with free variables x⃗,a,s can be written as:

ψF ⊃ F(x⃗,do(a,s))

For each of k positive effect axioms we receive:

ψ
(1)
F ⊃ F(x⃗,do(a,s))

ψ
(2)
F ⊃ F(x⃗,do(a,s))

⋮
ψ
(k)
F ⊃ F(x⃗,do(a,s))

This can be combined to a single, logically equivalent sentence, that defines the normal form of the
positive effect axioms for fluent F . The negative case is derived in the same manner.

[ψ1
F ∨ψ

(2)
F ∨ ...∨ψ

(k)
F ] ⊃ F(x⃗,do(a,s))

For simplicity we will use the abbreviated positive and negative forms:

γ
+

F(x⃗,a,s) ⊃ F(x⃗,do(a,s)) (2.1)

γ
−

F(x⃗,a,s) ⊃ ¬F(x⃗,do(a,s)) (2.2)

Having defined the positive and negative normal form effect axiom for a fluent F , we can apply the
causal completeness assumption, stating that both sentences completely describe all cases where F
changes from positive to negative or vice versa. This yields to explanation closure axioms:

F(x⃗,s)∧¬F(x⃗,do(a,s)) ⊃ γ
−

F(x⃗,a,s) (2.3)

¬F(x⃗,do(a,s))∧F(x⃗,s) ⊃ γ
+

F(x⃗,a,s) (2.4)

Again it is necessary that actions with different names are different (unique name assumption).

≠ ∃γ
+

F(x⃗,a,s)∧ γ
−

F(x⃗,a,s) (2.5)

If now T is a first-order theory and entails that in no situation the positive normal form effect axiom for
fluent F and the negative normal form effect axiom for fluent F can hold both (2.5), then the normal
form effect axioms and the explanation closure axioms logically correspond:

F(x⃗,do(a,s)) ≡ γ
+

F(x⃗,a,s)∨F(x⃗,s)∧¬γ
−

F(x⃗,a,s). (2.6)

Sentence 2.6 is called the successor state axiom for fluent F . It describes all changes to a fluent in
a compact way and can be generated according to the procedure indicated. Thus, they provide an
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elegant solution to the frame problem. This holds if the effect axioms have the form that a fluent F
becomes true or false after execution of a given action a, if some condition R held before:

R(x⃗,s) ⊃ (¬)F(x⃗,do(a,s)) (2.7)

Furthermore actions must be deterministic. So actions with uncertain effects such as flipping a coin
cannot be considered. Taking the above mentioned example we receive the following successor state
axiom for the fluent broken:

broken(x,do(a,s)) ≡ ∃r.a = drop(r,x)∧ fragile(x,s)∨
∃b.{a = explode(b)∧next_to(b,x,s)}∨broken(x,s)∧¬∃r.a = repair(r,x)

2.1.1. Formal Language and Basic Action Theory

The situation calculus is a second-order language with equality. Within this thesis we follow the
definition of Reiter (2001). It consists of the sorts action, situation and a sort object for all domain
specific objects. The Basic Action Theory (BAT) provides the basic axiomatization of the language.
The language specific alphabet consists of:

• variable symbols

• 2 function symbols of sort situation (constant S0 and do: action ×situation→ situation)

• a binary predicate ⊏∶ situation× situation

• a binary predicate symbol Poss ∶ action× situation

• for each n ≥ 0, countable infinite predicate symbols with arity n of the form (action∪ obj)n

(situation independent relations)

• for each n ≥ 0, countable infinite function symbols with arity n of the form (action∪obj)n→ obj
(situation independent functions)

• for each n ≥ 0, finite or countable infinite function symbols with arity n of the form (action∪
obj)n→ action (action functions)

• for each n ≥ 0, finite or countable infinite predicate symbols with arity n of the form (action∪
objn× situation (relational fluents)

• for each n ≥ 0, finite or countable infinite function symbols with arity n of the form (action∪
obj)n× situation→ obj (functional fluents)

Variable symbols allow arbitrary use of domain specific variables. S0, as mentioned earlier, denotes
the initial situation. The function do yields to successor situations. Besides fluents that have a sit-
uation as last argument, no other function or relation is allowed to use situations as arguments. A
binary predicate ⊏ allows for situation ordering. Action preconditions are denoted by Poss. Situation
independent relations and functions model facts that do not change over time, e.g. prime(x) or si-
nus(x). Besides the given specific alphabet part, the alphabet contains the standard alphabet of logical
symbols.
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The foundational axioms for situations consist of four axioms and are denoted by Σ:

do(a1,s1) = do(a2,s2) ⊃ a1 = a2∧ s1 = s2 (2.8)

∀P.[P(S0)∧∀a,s.P(s) ⊃ P(do(a,s))] ⊃ ∀s.P(s) (2.9)

¬s ⊏ S0 (2.10)

s ⊏ do(s,s′) ≡ s ⊑ s′ (2.11)

The first axioms 2.8 defines unique names for situations. This means situations are only the same if
they consist of the same actions. That is different to states (as used in different languages), which
describe the values of fluents. Two situations might lead to the same values of all fluents, but they
are different as long as their action history is different. An action history is described by recursive do
functions starting from the initial situation. The next axiom 2.9 leads to the whole set of situations
by induction, starting in the initial situation. The initial situation is ensured to be the first situation
by axiom 2.10. Additionally, axiom 2.11 leads to an ordering of situations, where s ⊑ s′ that is not
contained in the language’s alphabet, is an abbreviation for s ⊏ s′∨s = s′. All four axioms are domain-
independent. Combining the given axioms we can see situations form a tree. The initial situation acts
as root node. This rood node is extended layer by layer with all possible actions.

Situations can consist of an arbitrary number of actions. Syntactically every action can be used,
but very often we are only interested in situations that are executable. This means, starting in the
initial situation, the first action can be executed and every following action can be executed after its
predecessor action has finished. Based on the predicate Poss, we introduce an abbreviation executable
that states that all actions from the given situation’s action history are executable:

executable(s) ≡ ∀a,s∗.do(a,s∗) ⊑ s ⊃ Poss(a,s∗) (2.12)

The basic theory of actions (BAT) is a collection of all axioms defining the situation calculus:

D = Σ∪DSS∪Dap∪Duna∪DS0 (2.13)

Besides the foundational axioms for situations, it contains the successor state axioms DSS for func-
tional and relational fluents, the action precondition axiomsDap, the unique names axioms for actions
Duna and the initial situation DS0 . Successor state axioms for relations are already defined in 2.6.
Successor state axioms for functional fluents are defined in a similar manner and have the following
form

F(x1,x2, ...,xn,do(a,s)) ≡ΦF(x1,x2, ...,xn,a,s)

In this case ΦF(x1,x2, ...,xn,a,s) is a formula uniform in s. Uniform in s means that the given formula
is determined by situation s and does not depend on any situation s′ with s ≠ s′. Action preconditions
are sentences of the form

Poss(α(x1,x2, ...,xn),s) ≡Πα(x1,x2, ...,xn)

Here α(x1,x2, ...,xn),s) is an action function symbol with arity n and Πα(x1,x2, ...,xn) a formula
that is uniform in s. Unique name axioms for actions ensure that actions with different names relate
to different actions. The initial situation describes the root of execution. It consists of first-order
sentences that are uniform in S0, thus having no dependency on any other situation than the initial
one. For consistency reasons it is necessary that for every fluent, the condition of a maximum of one
successor state axiom holds.
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2.1.2. Regression

Regression is a necessary prerequisite for reasoning. It transforms formulas uniform in s into a formula
uniform in S0 s = do([a1,a2, ...,an],S0). We abbreviate the situation term do(an,do(an−1, ...,do(a2,
do(a1,σ)))) with do([a1,a2, ...,an−1,an],σ) for ease of readability. This way we can evaluate for-
mulas after a sequence of actions was performed, which is a requirement for planning and automated
reasoning. A formula W that is uniform in situation s and contains a fluent F is replaced by a log-
ical equivalent formula W ′ that contains the successor state axiom of fluent F instead of the fluent
itself. For a relational fluent F(t⃗,do(α,σ)) with successor state axiom F(x⃗,do(a,s)) ≡ Φ(x⃗,a,s),
the fluent F(t⃗,do(α,σ)) inW is reduced to Φ(x⃗,σ,σ) inW ′. Note thatW ′ is closer to S0 thanW .
This step is repeated as long as the formula simply depends on situation S0. Formulas in S0 can be
evaluated using only DS0 and Duna. Formulas are regressable if each situation term has the syntactic
form do([a1,a2, ...,an],S0) with actions a1,a2, ...,an, and for each Poss(α,σ) predicate α has the form
A(t1,t2, ...,tn). There is no quantification over situations and there is no usage of predicate ⊏ or of the
equality operator on situations.

Reiter (2001) defined a regression operator R that reduces regressable formulas W uniform in s,
into formulas uniform in S0. The regression operator builds up on BAT.

• W is an atom.

– IfW is an situation independent atom then
R[W] =W

– IfW is a relational fluent of the form F(t⃗,S0) then
R[W] =W

– IfW is a functional fluent of the form f (t⃗,S0) then
R[W] =W

– If W is a Poss atom of the form Poss(A(t⃗),σ) for action A(t⃗) and situation σ with pre-
condition axiom Poss(A(x⃗,s) ≡ΠA(x⃗,s), then
R[W] =R[ΠF(A(t⃗),σ)]

– IfW is a relational fluent of the form F(t⃗,do(α,σ)) with successor state axiom
F(x⃗,do(a,s)) ≡ΦF(x⃗,a,s) then
R[W] =R[ΦF(t⃗,α,σ)]

– IfW is a functional fluent of the form f (τ,do(α
′,σ′)) with every mentioned situation of

the form do([a1,a2, ...,an],S0) and successor state axiom f (x⃗,do(a,s)) = y ≡ φ f (x⃗,y,a,s),
then
R[W] =R[∃y.φ f (t⃗,y,α,σ)∧W ∣ f (t⃗,do(α,σ

y ] where φ∣t′t denotes the replacement of all oc-
currences of t′ by t in formula φ. In our case every function fluent f is replaced by its
result y.

• W is non-atomic. It is defined inductively over logical connectives. Note that the use of con-
nectives ¬, ∧ and ∃ is sufficient in order to formulate logically equivalent sentences to all other
logical connectives or quantifiers.

– R[¬W] = ¬R[W]
– R[W1∧W2] =R[W]∧R[W]
– R[∃v.W] = ∃v.R[W]
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2.2. IndiGolog

Regression delivers logical equivalent formulas that depend on the initial situation only. Though the
regression depends on successor state axioms Dss, the subsequent evaluation is only based on Duna

and DS0 . Regressed formulas are first-order and the second-order induction axiom from Σ is not in
use. Thus regression can be done in first-order.

2.2. IndiGolog

IndiGolog is an agent programming language and one of the most recent Golog (see Levesque et al.
(1997)) variants. Golog is based on an extended version of the situation calculus that allows for com-
plex actions and procedures. It offers high-level structures to program a robot’s behavior such as
if then else and while statements or subprograms. The functionality of Golog was first extended by
ConGolog in (de Giacomo et al., 2000). ConGolog added support for concurrency and interrupts.
Both Golog and ConGolog are executed offline, i.e. the complete program is evaluated first, before
any execution is triggered. This limitation is intolerable in dynamic real-world robotic setups. In-
diGolog, an incremental and online Golog variant, tackles this drawback. That means, IndiGolog
only commits to one action, executes it and selects the next action. This obviously leads to situations
where tasks cannot be established, due to the greed for executing an action. In case the user wants
a robot to examine more than the next action, a search operator exists. This search operator facili-
tates the possibility to do offline evaluation similar to Golog within a defined lookahead. This allows
the programmer to switch smoothly between deliberation and reactive behavior (Sardiña, 2005). The
formal semantics of IndiGolog builds up on ConGolog and is explained in Chapter 2.2.1. The key
components of IndiGolog are presented in Chapter 2.2.2.

2.2.1. IndiGolog Formal Semantics

The formal semantics of IndiGolog builds up the work done in ConGolog. Therefore, it uses two
special predicates Trans and Final. Trans(δ,s,δ′,s′) evaluates if by a single program execution step
leads from program δ in situation s to program δ

′ in situation s’. Final(δ,s) checks if program δ

terminates in situation s. The predicate Trans is defined by the axioms T :

1. Empty program:
Trans(nil,s,δ′,s′) ≡ False

2. Primitive actions:
Trans(a,s,δ′,s′) ≡ Poss(a[s],s)∧δ

′ = nil∧ s′ = do(a[s],s)
3. Test/wait actions:

Trans(φ?,s,δ′,s′) ≡ φ[s]∧δ
′ = nil∧ s′ = s

4. Sequence:
Trans(δ1;δ2,s,δ′,s′) ≡ ∃γ.δ′ = (γ;δ2)∧Trans(δ1,s,γ,s′)∨Final(δ1,s)∧Trans(δ2,s,δ′,s′)

5. Non-deterministic branch:
Trans(δ1∣δ2,s,δ′,s′) ≡ Trans(δ1,s,δ′,s′)∨Trans(δ2,s,δ′,s′)

6. Non-deterministic choice of argument:
Trans(πv.δ,s,δ′,s′) ≡ ∃s.Trans(δ

v
x,s,δ

′,s′)
7. Non-deterministic iteration:

Trans(δ
∗,s,δ′,s′) ≡ ∃γ.(δ

′ = γ;δ
∗)∧Trans(δ,s,γ,s′)
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8. Synchronized conditional:
Trans(if φ then δ1 else δ2 endif ,s,δ′,s′) ≡ φ[s]∧Trans(δ1,s,δ′,s′)∨¬φ[s]∧Trans(δ2,s,δ′,s′)

9. Synchronized loop:
Trans(while φ do δ endWhile,s,δ′,s′) ≡
∃γ.(δ

′ = γ;while φ do δ endWhile)∧φ[s]∧Trans(δ,s,γ,s′)
10. Concurrent execution:

Trans(δ1∥δ2,s,δ′,s′) ≡ ∃γ.δ′ = (γ∥δ2)∧Trans(δ1,s,γ,s′)∨∃γ.δ′ = (δ1∥γ)∧Trans(δ2,s,γ,s′)
11. Prioritized concurrency:

Trans(δ1⟫δ2,s,δ′,s′) ≡
∃γ.δ′ = (γ⟫δ2)∧Trans(δ1,s,γ,s′)∨
∃γ.δ′ = (δ1⟫γ)∧Trans(δ2,s,γ,s′)∧¬∃ζ,s′′.Trans(δ1,s,ζ,s′′)

12. Concurrent iteration:
Trans(δ

∥,s,δ′,s′) ≡ ∃γ.δ′ = (γ∥δ
∥)∧Trans(δ,s,γ,s′)

The predicate Trans(δ,s,δ′,s′) retrieves an action from program δ or preprocesses program δ to re-
trieve an action in a later step. The remaining program is unified with δ

′. φ[s] denotes the formula φ

in situation s. The above-mentioned axioms read as:

1. An empty program cannot evolve.

2. If the program consists of a single action only, this actions is executed and the remaining pro-
gram is empty.

3. Checks if formula φ holds in situation s. If yes the remaining program is empty.

4. If δ1 is not finished, it is evolved and the resulting program is prepended to δ2. Otherwise δ2 is
evolved.

5. Evolves either δ1 or δ2.

6. Replaces all occurrences of variable v in program δ by some instantiation x (δv
x) and evolves it.

7. Evolves δ and prepends the remaining program to the δ
∗.

8. If formula φ holds, δ1 is evolved, otherwise δ2.

9. If formula φ holds, δ is evolved.

10. Either δ1 or δ2 is evolved. In contrast to non-deterministic branches the resulting program of
the evolved section is again concurrently executed to the other program section.

11. In contrast to concurrent execution, δ2 is evolved only if δ.

12. Evolves one step in δ
∥ and starts concurrently executing the remaining program together with

the whole loop. This can lead to an unbounded number of parallel loop executions.

The predicate Final checks if the current program can terminate in situation s. It is defined by the
axioms F :

1. Empty program:
Final(nil,s) ≡ True

2. Primitive action:
Final(a,s) ≡ False
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3. Test/wait action:
Final(φ =,s ≡ False

4. Sequence:
Final(δ1;δ2,s) ≡ Final(δ1,s)∧Final(δ2,s)

5. Non-deterministic branch:
Final(δ1∣δ2,s) ≡ Final(δ1,s)∨Final(δ2,s)

6. Non-deterministic choice of argument:
Final(πv.δ,s) ≡ ∃x.Final(δ

v
x.s)

7. Non-deterministic iteration:
Final(δ

∗,s) ≡ True

8. Synchronized conditional:
Final(if φ then δ1 else δ2 endif ,s) ≡ φ[s]∧Final(δ1,s)∨¬φ[s]Final(δ2,s)

9. Synchronized loop:
Final(while φ do δ endWhile,s) ≡ ¬φ[s]∨Final(δ,s)

10. Concurrent execution:
Final(δ1∥δ2,s) ≡ Final(δ1,s)∨Final(δ2,s)

11. Prioritized concurrency:
Final(δ1∥δ2,s) ≡ Final(δ1,s)∨Final(δ2,s)

12. Concurrent iteration:
Final(δ

∥,s) ≡ True

The axioms indicated read as:

1. The empty program is a final configuration

2. A primitive action is not a final configuration

3. A test/wait action is not a final configuration

4. A final configuration is achieved if both δ1 and δ2 are final configurations.

5. It is a final configuration if any branch is a final configuration.

6. It is a final configuration if the replacement of all variables v with some value x is a final
configuration.

7. Non-deterministic iteration is a final configuration.

8. If φ holds in s, δ1 has to be final. If φ does not hold, δ2 has to be final.

9. If φ does not hold in s, δ has to be final.

10. Both δ1 and δ2 have to be final configurations.

11. Both δ1 and δ2 have to be final configurations.

12. Concurrent iteration is a final configuration.
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Besides the axioms for Trans and Final IndiGolog introduces axioms for sensing. This is a special
fluent SF(a,s) in combination with axioms that describe the correlation of sensing consequences in a
situation s by action a. For instance

SF(senseDoor(d),s) ≡Open(d,s)

Actions without appropriate use of sensing information use SF(a,s) ≡ True.

Equipped with axioms for Trans and Final as well as for sensing we are able to extend the Basic
Action Theory D. We introduce an extended Basic Action Theory D∗ =D∪C ∪{Sensed}. {Sensed}
represents all axioms necessary for sensing. C is made up of axioms for reifying programs as terms,
as well as sets T and F with axioms for Trans and Final.

The notion of history is special in IndiGolog. Instead of plain actions, it uses pairs (a,µ) of an action
a together with its sensing result µ. Combining the actions a1, ...,an with sensing results µ1, ...,µn leads
to history σ = (a1,µ1) ⋅ ... ⋅(an,µn).

2.2.2. IndiGolog Components

The implementation of IndiGolog is based on LeGolog (Levesque and Pagnucco, 2000) and provides a
framework for acting on real robots. That was tested with a variety of robots such as Lego Mindstorm
(Lego, 2015) or ER1 Evolution (2015) from Evolution Robotics, which was acquired by iRobot in
2012 (iRobot, 2015). IndiGolog is written in Prolog. The compatibility with SWI Prolog (Wielemaker
et al., 2012; SWI-Prolog, 2015) allows simple interfacing to Java or C. The framework consists of the
parts top-level main cycle, the language semantics, the temporal projector, the environment manager,
the set of device managers, and the domain application, where only the device managers and the
domain application are domain specific. The components are shown in Figure 2.1.

The top-level main cycle implements all the presented semantics. Furthermore, it incorporates
exogenous events and sensing actions. The main cycle is implemented in prolog with the predicate
indigo(E,H) with a program E and a history H. This predicate uses the predicate Trans/4 and Final/2
(as explained above) in order to realize the execution.

indigo(E,H) :- handle_exogenous(H,H2), !, indigo(E,H2).
indigo(E,H) :- handle_rolling(H,H2), !, indigo(E,H2).
indigo(E,H) :- catch(final(E,H), exog, indigo(E,H)).
indigo(E,H) :- catch(trans(e,H,E1,H1), exog, indigo(E,H)),
(var(H1) -> true ;
H1 = H -> indigo(E1,H);
H1 = [A|H] -> exec(A,S), handle_sensing(H,A,S,H2), indigo(E1,H2)).

First, the main cycle applies all exogenous events to the history through the predicate handle_exogenous.
If the predicate succeeds, the cut operator (!) inhibits backtracking, as exogenous events cannot be
undone. Then the indigo is called recursively. If handle_exogenous fails, because there are no exoge-
nous events, the second clause checks if the current history should be rolled forward. As evaluation
on formulas depends on regression, the runtime of regression depends directly on the length of the
history. Thus, if the history is too long, the initial situation S0 is moved forward by progression (Re-
iter, 2001). Therefore, successor state axioms of actions that have already occurred are applied to

22



2.2. IndiGolog

Figure 2.1.: The IndiGolog implementation architecture. Links with a circular ending represent goal
posted to the circled module (de Giacomo et al., 2009)

the initial situation. This is carried out by the temporal projector, that is explained afterwards. Again
if rolling forward succeeds, this is followed by a cut and a recursive call to indigo. Otherwise the
third clause of indigo becomes active. Third, the current program is tested for termination. The catch
predicate is responsible for exception handling. It the evaluation of Final overlaps with the arrival
of an exogenous event, an exception is thrown that interrupts the evaluation of Final. The second
argument unifies the name of the exception (in our case exog) and calls the recovery argument at the
third position. The fourth clause does the actual execution by applying the Trans predicate. This call
to Trans is again encapsulated in a catch clause. If the evaluation of Trans succeeds, the successor
history is checked for unification. This means that if H1 is still a free variable, there was a problem
in Trans and further evaluation of the indigo clause is canceled by evaluating true. Otherwise if the
history after the Trans call is the same as before the call, no new action is necessary in real world and
therefore indigo is called recursively. If the history was extended in Trans, the new action A is split
from H1 and executed in real world by the predicate exec. Sensing results for the executed action
are incorporated into the current history by the predicate handle_sensing. Finally indigo is called
recursively to continue execution.

The temporal projector manages the robot’s belief about the world and evaluates formulas. As the
interface is quite abstract, it makes it possible to implement a broad range of formalisms (besides the
basic action theory). The interface contains the predicates eval/3, handle_sensing and handle_rolling.
As mentioned above, handle_rolling is responsible for keeping the history length at a suitable size.
This is done by rolling up the history by progression if it is exceeds a specific length. Imagine a light
bulb that can be switched by the action flip with ¬on in S0 and the situation do([flip,flip],S0). If this
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history is rolled by one action, ¬on switches to on in the new S′0 and the new action history is now
([flip],S′0). Note that the state (all fluent values) is the same in both situations.

handle_sensing ensures that the sensing information is processed. The simplest way to achieve this,
it to add the sensing information to the history. IndiGolog’s standard implementation adds the sensing
information to the current history and carries out conditioned successor state axioms to do regression.
In order to provide support to incomplete knowledge, the standard temporal projector implementation
keeps the value for every fluent in its initial situation database. If the value is not known, more than
one entry per fluent can exist (see Sardiña et al. (2004)). For instance if the value of a relational fluent
is unknown, two entries with fluent values true and false are saved. Conditional successor state axioms
for sensing actions allow to reject one special fluent value entry or reduce all possible values to only
one remaining value. They have the form:

settles(a,r, f ,v,w)
rejects(a,r, f ,v,w)

settles takes an action a, with sensing result r, and sets fluent f to value v if w is known to be true.
Similarly rejects takes an action a, with sensing result r, and invalidates value v for fluent f if w is
known to be true. Successor state axioms for actions are modeled in a straight forward manner:

causes(a, f ,v,w)

causes states that fluent f takes value v after executing action a if w is possibly true. Finally,
eval(F,H,V) evaluates if a fluent F is known to be V at history H. This predicate is relevant, as
it provides the evaluation functionality for the predicates Trans and Final.

The environment manager in conjunction with the device managers is responsible for communi-
cation with real robots, software agents, the web, etc. As illustrated in Figure 2.1, the environment
manager abstracts the device manager. Each device manager is responsible for a dedicated hardware
participant. It handles the specific device communication and implements a high-level interface, so
that the environment manager can invoke it. The device manager can also handle the communication
to a graphical interface as shown in Sardiña and Vassos (2005). In order to restrict the use of the
framework to a minimum, the communication between the environment manager and the device man-
agers uses TCP/IP, to allow any TCP/IP-supporting technology to be used as device manager. The
environment manager on the other side of the communication is written in prolog. It is connected
to the main cycle, but acts in an independent thread to reduce communication problems due to com-
putations within the main cycle. Generally, the environment manager transfers execution commands
to the device managers and sends back sensing information as well as exogenous events to the main
cycle. The domain application models the domain-specific part of an application. First, it provides an
axiomatization of the dynamics of the world. This includes all actions with their preconditions and
successor state axioms and the initial situation. It contains the high-level program and its subroutines
that determine the robot’s behavior. It also summarizes all necessary information to execute actions
in real world. This includes mapping high-level symbols to the low-level execution codes.

2.3. History-Based Diagnoses

Especially in dynamic environments conventional diagnosis approaches that look at the question "what
is wrong" have their limit. Due to limited sensor or actuator capabilities (see Goel et al. (2000); Verma
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et al. (2004)) for approaches that focus on sensor and execution faults), or influences from (object)
interaction, actions may fail though their components behind it are intact. So, a more interesting and
helpful question instead is "what happened" according to McIlraith (1999). Based on this principle
Iwan (2002) proposed the concept of history based diagnoses.
In classical diagnosis (Reiter, 1987) a predicate AB(x) is used to denote an abnormal component x. If
a component is marked abnormal the result cannot be trusted. This works fine for systems with a clear
work flow, for instance when the result of one logical gate is fed into another logical gate. In robotic
environments marking components turns out to be a somewhat more difficult. Imagine a robot taking
a cup from a table, but it does not succeed. We can easily blame the gripper (including its control
algorithm) by applying the predicate AB in order to provide a consistent world model. But what can
be inferred from this world model. Is it valid to draw any conclusions? For example the robot might
have dropped every other object from the table, while trying to get the cup. Or if the gripper is strong
enough it might have moved/turned the robot by colliding with a fixed solid body and pushing itself
away. Furthermore, from a cognitive perspective it remains unclear if the malfunction of the gripper
has any influence on a solar eclipse (frame problem). History based diagnoses on the other hand aims
to explain the consequences of malfunctions. From a theoretical point of view, it is important that by
providing a consistent action sequence the situation calculus provides a solution to the frame problem.
And in practical terms, concrete explanations allow much faster corrections (if intended).
History-based diagnosis (Iwan, 2002) tries to find a consistent variant of the inconsistent current action
sequence. This is done by inserting actions (at any point within the history) and by replacing actions
through variants of them. In this manner even long delays between action failures and potential
indirect effects can be handled. Imagine a robot with the task to bring an object B from room R1 to
room R2, with the initial situation that both the robot and the object B are in room R1. After an action
sequence

η̄
∗ = [pickup(B),goto(R2),putdown(B)]

the robot receives the feedback (an observation) that the object B is not in R2, though it was expected
to be according to η̄

∗. Some explanations are:

(1) The robot lost its way and entered R3 instead of R2.
(2) The robot failed to grasp B during the pickup-action.
(3) The robot lost B on its way to R2.
(4) Somebody took away B after the robot had put it down in R2.

Here in case (1) and (2), a variation of the original action caused the failure (goto the wrong room and
no-grasp instead of grasp). In case (3) and (4) an external source caused the error by snatch the object
from the robot or taken the object after it was delivered. These four explanations can be transferred
into diagnoses:

δ̄
(1) = [pickup(B),goto(R3),putdown(B)]

δ̄
(2) = [pickup′,goto(R2),putdown′]

δ̄
(3) = [pickup(B),snatch(B),goto(R2),putdown′]

δ̄
(4) = [pickup(B),goto(R2),putdown(B),somebodytook(B)]
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Note that a bar denotes a sequence of actions. The action putdown′ stands for a variant of the action
putdown(B) as the robot has nothing to put down in cases (2) and (3), because it was unable to
take the object or it was snatched on the way. Within the situation calculus there is no distinction
between actions and events, both are covered by the concept of actions. Though there may be more
explanations for the missing object B in room R2 than the ones mentioned, not all action sequences
explaining an observation are considered to be diagnoses. For example

ᾱ = [pickup(B),goto(R2),putdown(B),pickup(B),goto(R1),putdown(B)]

is not considered to be a diagnosis, because the robot actively moves object B to room R1, so it
would be no surprise to the robot that B is not in R2. Deliberate actions that are under the control of
the robot are no valid variations to a history. Therefore, we expect diagnoses to meet the following
requirements:

• form a possible history (based on the domain description)

• explain the observation

• incorporate the current history (all actions/events or variants, e.g. goto(R3) is a variation of
goto(R2))

• add additional events called insertions, e.g. snatch(O) or somebodytook(O)

2.3.1. Formal Definition

We use the abbreviation ᾱ.α = [α1,α2, ...,αn,α] for ᾱ = [α1,α2, ...,αn]. History based diagnoses
extends the basic action theory by the predicates Varia and Inser. Varia represents an action variation
axiom and Inser an insertion axiom. Syntactically they are similar to the predicate Poss.

Varia(a,A(x1,x2, ...,xn),s) ≡ΘA(a,x1,x2, ...,xn,s)

states that under condition ΘA(a,x1,x2, ...,xn,s) action a is a variation for action A(x1,x2, ...,xn) in
situation s. For example

Varia(a, putdown(x),s) ≡ a = putdownNothing

Analogous

Inser(a,s) ≡Θ(a,s)

defines that under condition Θ(a,s) action a is a valid insertion in situation s. For instance

Inser(a,s) ≡ ∃z.a = snatch(z)∧has_object(z,s)

A history is an action sequence η̄. An observation is a situation-suppressed formula φ. Diagnoses
explain an observation that is contradicted by the original history, i.e. D ⊧ ¬φ[η̄]. For the example
indicated above we have:

η̄
∗ = [pickup(B),goto(R2),putdown(B)]

φ
∗ = ¬at(B,R2)

D ⊧ at(B,R2,do(η̄
∗,S0)), which is equal to D ⊧ ¬φ

∗[η̄∗] though D ⊧ φ
∗[η̄∗] is expected to hold

according to η̄
∗. History based diagnoses build up on the concept of extended variations.
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Definition 1. An extended variation of a ground action sequence ᾱ= [α1,α2, ...,αn] is a ground action
sequence δ̄ = [δ1,δ2, ...,δm] such that:

• a mapping ι ∶ {1, ...,n}→ {1, ...,m} exists with ι(1) < ι(2) <⋯ < ι(n)
• for each i ∈ {ι(1),ι(2), ...,ι(n)} with i = ι( j):

δi is a valid variation of α j in the situation after the action sequence [δ1,δ2, ...,δn−1],
i.e., D ⊧ Varia(δi,α j,do([δ1,δ2, ...,δi−1],S0))

• for each i ∈ {1,2, ...,m}∖{ι(1),ι(2), ...,ι(n)}:
δi is a valid insertion in the situation after the action sequence [δ1,δ2, ...,δi−1],
i.e.,D ⊧ Inser(δi,do([δ1,δ2, ...,δi−1],S0))

This can be grouped by the predicate ExtVariation(δ̄, ᾱ)

ExtVariation([],[]) ≐True

ExtVariation([], ᾱ.α) ≐False

ExtVariation(δ̄.δ,[]) ≐Inser(δ,(δ̄,S0))∧ExtVariation(δ̄,[])
ExtVariation(δ̄.δ, ᾱ.α) ≐[Varia(δ,α,do(δ̄,S0))∧ExtVariation(δ̄,α)]∨

[Inser(δ,do(δ̄,S0))∧ExtVariation(δ̄, ᾱ.α)]

The first two equations define that an empty action sequence is only an extended variation of itself.
The next equation determines that, if the original sequence is empty only insertions are allowed to
form the extended variation. Finally, for a non-empty original action sequence, extended variations
are defined recursively after applying Varia or Inser.

Definition 2. An explanatory history-based diagnosis for an observation φ and a history η̄ is an ex-
tended variation δ̄ of η̄ such that δ̄ is executable and φ holds in the situation after the action sequence
δ̄, i.e., D ⊧ φ[do(δ̄,S0)].

ExplDiagnosis(δ̄,φ, η̄) ≐ ExtVariation(δ̄, η̄)∧executable(δ̄)∧φ[δ̄]
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Chapter 3
The robot delivery domain

Throughout this thesis we use the running example of an indoor delivery robot as presented in the
introduction. The robot is expected to pick up objects from a certain location, move the object from
room to room to a goal destination and put the objects down. This happens by applying the actions
pickup, goto and putdown. A map of our institute serves as layout for most of the experiments (see
Figure 3.1). Every room is named by an identifier, such as w1. Connections from room to room are
realized by an adjacent predicate (e.g. adjacent(w2,w3)). Equivalent to rooms, objects are listed by
constants (e.g. letter).

The challenge of delivering an object is called a task. The more actions a robot has to execute, the
more problems may occur. Therefore we increase the difficulty by always grouping three tasks into a
so-called mission. This reduces the likelihood of a lucky strike. In addition to situation-independent
properties, we use a set of fluents that is situation dependent as well. This set is formed by has_object,
is_at and at. has_object(o) stands for the robot holding object o, is_at(o,r) for object o being in
room r and at(r) for the robot being in room r. For ease of readability we use the situation and
situation-suppressed form of fluents synonymously; for example at(r,s) is written at(r). Unless stated
otherwise, the variables o, o1, o2, ..., on denote objects. Similarly, r, r1, r2, ..., rn are used for rooms.
The action preconditions are defined as follows:

• Poss(pickup(o),s) ≡ obj(o)∃r.∧ is_at(o,r,s)∧at(r,s)∧¬∃o1.obj(o1)∧has_object(o1,s)

• Poss(putdown(o),s) ≡ obj(o)∧has_object(o,s)

• Poss(goto(r),s) ≡ room(r)∧∃r1.at(r1,s)∧adjacent(r,r1)∧ room(r1)

The action pickup can be executed, if there is an object o in the same room r as the robot and the
robot is not holding an object yet. The execution of putdown is less restrictive. It is sufficient that the
robot holds the object to be set down. The precondition of the action goto ensures the target room r is
adjacent to the robot’s current location r1.

According to history based diagnoses we have a set of action variations and insertions. For simplic-
ity we often call the combined set of variations and insertions changes. Possible action variations are
pickupNothing, putdownNothing and pickupWrongObject(o), whereas snatch and exogMoveObject
are insertions:

• Varia(pickupNothing,pickup(o),⊺)
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Figure 3.1.: Floor layout of the Institute of Software Technology and its neighboring departments,
Graz University of Technology.

• Varia(putdownNothing,putdown(o),⊺)
• Varia(pickupWrongObject(o),pickup(o1),o ≠ o1∧at(r)∧ is_at(o,r))
• Inser(snatch(o),has_object(o))
• Inser(exogMoveObject(o,r),¬has_object(o))

pickupNothing describes if the robot fails to pickup the intended object. This may occur due to
an inaccurate action execution. There is no condition that restricts the occurrence of this variation.
Thus, whenever the robot executes action pickup, it may fail and end up executing pickupNothing. The
action variation putdownNothing is unrestricted too. Similar to the pickup case it describes a failed
putdown action. pickupWrongObject is somewhat more complicated. It describes the robot picking
up a wrong object. Therefore the wrong object o has to be different than the intended object o1 and
it has to be in the same room r as the robot. The insertion snatch indicates that someone steals an
object from the robot. It may happen every time the robot is holding an object o. Another insertion
is exogMoveObject, denoting that an object o is moved to a room r without the knowledge of the
robot. This can happen by another robot or some person. The condition that the robot does not hold
the object can be applied very often. The more objects and rooms the domain contains, the more
instantiations are possible. Thus, this very general insertion is difficult to handle.

The successor state axioms of the fluents described above are as follows:

• has_object(o,do(a,s)) ≡ a = pickup(o)∨ a = pickupWrongObject(o)∨ has_object(o,s)∧ a ≠
putdown(o)∧a ≠ snatch(o)

• is_at(o,r,do(a,s)) ≡ a = exogMoveObject(o,r)∨has_object(o,s)∧a = goto(r)∨ is_at(o,r,s)∧
¬∃r1.r1 ≠ r∧(a = goto(r1)∨a = exogMoveObject(o,r1))

• at(r,do(a,s)) ≡ a = goto(r)∨at(r,s)∧¬∃r1.r1 ≠ r∧a = goto(r1)
has_object(o) holds in situation do(a,s), if action a was the action pickup(o) or pickupWrongObject(o).

In this case it does not matter if the robot intended to pickup object o or not, the consequence is the
same. If has_object held in the previous situation, it holds also in the given situation, if action a is nei-
ther putdown(o) nor snatch(o). This means holding the object is only interrupted if the robots actively
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puts down the object, or the object is taken from the robot. is_at(o,r) holds in situation do(a,s), if
the object o was brought to room r by the action exogMoveObject(o,r) or if the robot held the object
and moved to room r in the action goto(r). Furthermore, is_at(o,r) holds if it held in the previous
situation and the object was not moved to another room r1 by goto(r1) or exogMoveObject(o,r1).
While is_at is used for objects, at describes the location of the robot itself. at(r) holds if the robot
moves to the room r by action goto(r) or if the robot was in the room and did not leave it with action
goto(r1) for another room r1. Please note that successor state axioms contain insertions and action
variations too.
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Chapter 4
Belief Management

The belief management system is responsible for providing the high level control with a consistent
knowledge base that serves for decision-making. Such a knowledge base is typically a logical one. In
our case we have the set of relational and functional fluents at a specific situation. The management
aspect comes into play when there are inconsistencies within this belief. Then, measurements are
needed to detect inconsistencies and repair the belief again. An inconsistency arises if a fluent leads
to contradicting values such as is_at(x,r1) and ¬is_at(x,r1) or additional general rules are violated.
Such a general rule might state that an object cannot be in two rooms at the same time. Therefore,
is_at(x,r1)∧ is_at(x,r2)∧ r1 ≠ r2, represents an inconsistency, where x is an object and r1 and r2 are
rooms. Inconsistencies are typically handled by a diagnosis and a repair step. Besides the execution
of these two steps, we present a formalism to administer results of it. The remainder of this chapter
is structured as follows. First, we give an overview of related research within this research area in
Section 4.1. In Section 4.2, we define inconsistencies formally, derive the belief management system
and present the integration of this belief management system into the IndiGolog framework. This
chapter is based on work published in Gspandl, Pill, Reip, and Steinbauer (2011) and Gspandl, Pill,
Reip, Steinbauer, and Ferrein (2011).

4.1. Related Research

Within the related research, we investigate in two directions. On the one hand, we analyze strategies
that concentrate on diagnosis or justifications as Horridge et al. (2009) call them. Whereas Lamperti
and Zanella (2003) define a diagnosis to be a set of behavioral modes assigned to components that
explain the observation, we adhere more to the looser definition of Pencolé and Cordier (2005) where
a diagnosis is defined to be the set of paths of the system explaining the observed behavior. On the
other hand, approaches that handle the belief as a whole are surveyed.

4.1.1. Action Sequence Based Diagnosis

McIlraith (McIlraith, 1999) was one of the first who turned her diagnosis interest towards "what
happened" as described above. The notion of explanatory diagnosis describes action sequences
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that result in a behavior that was not expected but observed. A system is described as a quadruple
(Σ,HIST,COMPS,OBS), where Σ roughly corresponds to the basis action theory D. HIST stands for
the history of performed ground actions [a1,a2, ...,ak] that were performed in S0. COMPS enumerates
the components in use, as a finite set of constants. Finally, OBSF is formula uniform in s. The task of
interest is to find a sequence of actions E = [α1,α2, ...,αn] that is added to the situation do(HIST,S0)
to satisfy an observation.

Σ ⊧ Poss([HIST.E],S0)∧OBSF(do([HIST.E],S0))

Poss is used as an abbreviation that corresponds to the definition of executable indicated above. Note
that actions are only added to the end of the current situation do(HIST,S0).
According to Occam’s Razor, shorter (simpler) explanations are preferred over longer ones. This
is clamped by the definition of simpler that uses the functions ACTS returning the set of actions
in use and LEN providing the length of the given action sequence. For given action sequences
HISTA(a1,a2, ...,an) and HISTB(b1,b2, ...,bm), situation sA = do(HISTA,S0) is simpler than situation
sB = (HISTB,S0) if and only if ACTS(HISTA) ⊆ ACTS(HISTB) and LEN(HISTA) < LEN(HISTB).
Based on the definition of simple, chronologically simple explanatory diagnosis are defined. The
definition ensures that two different chronologically simple explanatory diagnoses result in different
solutions to a given problem. This is achieved as it is not valid to extend a valid diagnosis by unnec-
essary actions. For a system (Σ,HIST,COMPS,OBS) a situation s = do([HIST.E],S0) and a situation
s′ = do([HIST],E ′), E is a chronologically simple explanatory diagnosis E, if and only if E is an
explanatory diagnosis and there is no explanatory diagnosis E’ with s′ simpler than s. Based on the
definition of chronologically simple explanatory diagnosis, the diagnosis problem can be cast into a
planning problem with the goal to find an action sequence fulfilling ∃s.OBSF(s) starting from situa-
tion do(HIST,S0). The verification of a diagnosis is simply done by regression and theorem proving
in the initial situation.

The idea of formulating the diagnosis problem as planning problem was extended by Sohrabi et al.
(2010). The approach extends and generalizes the presented one. While McIlraith (1999) requires
observations to hold in the final situation, this limitation is relaxed by defining intervals of situations
OBS[S0,s] denoting the interval from situation S0 to situation s. Furthermore, commonsense and
expert knowledge is incorporated into the belief. In contrast to McIlraith (1999) a system description
DS consists of (Σ,OBS[S0,s]) only, where Σ refers to the basic action theory. Action terms A within
Σ are parted into the sets Anormal and Afaulty to distinguish between normal and faulty system actions.
The sequence of recognized actions HIST is ignored completely. Incomplete initial knowledge is
handled by a formula H(S0) that combines assumptions on the initial situation. These assumptions
are expressed by sentences of the form [¬]F(c̄,S0) for a fluent F and a set of constants c̄. A diagnosis
for a system (Σ,OBS[S0,s]) is a tuple (H(S0), ᾱ) with ᾱ = [α1,α2, ...,αk] such that Σ∪H(S0) ⊧
∃s.s = do(ᾱ,S0)∧ executable(s)∧OBS[S0,s]. Additionally, Σ∪H(S0) is required to be consistent.
Based on a reflexive, transitive and preference relation ⪯ a diagnosis D is preferred if there is no
other diagnosis D′ with D′ ≺ D. Two classes for preference relations are presented. The first ones are
domain-independent relations such as minimal fault diagnosis. This means the smaller the set Afaulty
the better it is. The next criterion is shorter diagnoses (less actions in ᾱ) or simpler diagnoses (less
different actions in ᾱ). The other class of preference relations are domain dependent relations. They
can either be addressed by probability distributions that are hardly available or by domain knowledge.
Here, domain knowledge is encoded in the qualitative preference language LPP (Bienvenu et al.,
2006). LPP contains linear temporal language connectives to model temporal dependencies between
actions and fluents. After encoding preferences in LPP sentences, these sentences are put into a
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sequence to incorporate the needs of a preference relation. The diagnosis task is realized by planning.
Therefor the system description is transferred into a PDDL domain description according to Röger
et al. (2008). The incomplete initial situation is handled by assigning specific values to unknown
fluents. This leads to multiple initial situations with all fluent value combinations. Planning itself
is done by state-of-the-art planners. Besides the fact that scaling the initial situations is a serious
problem, ignoring the actively executed history brings drawbacks. For instance actions that do not
result in observations are ignored. In case such an action is necessary for executing another action,
the ignored action has to be executed again, as the robot has no knowledge about its execution.

Of course there are also other techniques to approach the diagnosis problem. Grastien in (Grastien
et al., 2007) shows the transformation into a propositional satisfiability problem. As they investigate
discrete event systems such as their running example, which is a computer system consisting of 20
identical components, the notion of “actions” is replaced by events. An event is either observable
(denoted by the set Σo) or unobservable (summarized by the set Σu). A system SD further consists
of A,δ and s0, where A is a finite set of state variables, s0 is the initial state and δ ⊆ Σo ∪Σu → 2L×2L

assigns each event a set of pairs ⟨φ,c⟩. A state is a function that takes a state variable and outputs
the constants 1 and 0 (s ∶ A→ 0,1). L is the set of all literals, where a literal is a state variable or its
negation. L indicates the language over A using standard logical connectives. The pair ⟨φ,c⟩ ∈ δ(e)
of an event instance e, denotes that if and only if φ holds in s, c becomes true. This idea is formalized
by specific successor state axioms. By examining the event instances, the problem is relaxed to a
partial order problem. If event instance e1 does not interfere with event instance e2 their mutual event
sequence is irrelevant. Queries to the SAT solver contain the system description, the observations and
a formula encoding the fault level i Φ∆i = ΦSD ∧ΦOBS ∧ΦFLi , where i defines the maximum number
of allowed faults. If i equals 0 the system worked correctly. Starting from 0, i is typically increased
to find diagnoses with as few faults as possible. As soon as the formula is satisfiable, the algorithm is
stopped due to the fact that a valid solution is found. A solution is a set of events with fault level i that
is consistent with the observations. The upper bound number of events can be derived from the number
of observations (p) and the maximum number of unobservable events between two observations (x).
The upper bound is (x+1)p. This number can be lowered by unobservable events that do not interfere
as they can be treated together.

4.1.2. Belief Revision

Scherl and Levesque (2003) use an explicit notion of knowledge. This is achieved by discriminating
between normal actions and knowledge-producing actions and fluents. While normal actions do not
influence knowledge fluents, knowledge-producing actions have no influence on normal fluents. If
some fluents are unknown or can take multiple possible values, they are realized by enumerating all
those values in multiple situations. For instance if the status of a relational fluent at(shop) is unclear, 2
situations are used. The first situation evaluates to at(shop), the second one to ¬at(shop). A relational
fluent F is known to be true, if and only if it is true in all situations. The same holds for the negative
case and equivalently for functional fluents. A binary accessibility relation establishes the connection
between situations, stating that if the robot is in situation s, it might be in a situation s′. In this manner
knowledge can be treated as a fluent. The special fluent K(s′,s) denotes that situation s′ is accessible
from situation s. Such as normal fluents, K takes a situation as last argument. The first argument can
be seen as an auxiliary variable. Based on the K fluent they introduce the abbreviation Knows(P,s)
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indicating that P is known to be true in situation s. E.g.

Knows(broken(y),s) ≐ ∀s′.K(s′,s) ⊃ broken(y,s′)

This approach can also be generalized for the equality predicate and for formulas. For instance

Knows(number(Bill) = number(Mary),s) ≐
∀s′.K(s′,s) ⊃ number(Bill,s′) = number(Mary),s′)

∃xKnows(∃y[next_to(x,y)∧¬broken(y)],s) ≐
∃x.∀s′.K(s′,s) ⊃ ∃y[next_to(x,y,s′)∧¬broken(y,s′)]

Two knowledge-producing actions are introduced. First, there are actions that make the truth value of
a formula known. For instance, senseP makes the truth value of P known. Kwhether abbreviates if the
value of a fluent P is known.

Kwhether(P,s) ≐Knows(P,s)∨Knows(¬P,s)

Second, there are actions that make the value of a term known. For instance readτ for a term τ makes
the value of τ known. Similar to Kwhether there is an abbreviation Kref (τ,s).

Kref (τ,s) ≐ ∃x.Knows(τ = x,s)

where x does not appear in τ. These knowledge-producing actions affect the accessibility relation
K from above. Imaging an initial situation with 2 fluents P and Q and three situations s1, s2 and s3
as shown in Figure 4.1. The fluent P is true in all situations, so Knows(P) holds. The fluent Q is
different in situation s2 to the situations s1 and s3, but they are assumed to be K-accessible. After
executing the action senseQ we remove the situation s2 from the K-accessible set, because its value
of Q contradicts the sensing result. In this manner Knows(Q,do(senseq,S0)) holds after executing
senseQ on the remaining K-accessible relation set (s1,s3). For normal actions, the K-relation stays the
same as long as the action can be executed (Poss) in all K-related situations. Based on these ideas of
knowledge-producing actions and normal actions, the successor state axiom of K is defined as follows:

K(s′′,do(a,s)) ≡ ∃s′.s′′ = do(a,s′)∧K(s,s′)∧Poss(a,s′)∧SR(a,s) = SR(a,s′)

The function SR subsumes all sensing functions for both action types, though they are insignificant for
normal actions. If and only if there is a situation s′ that is K-related to s and a predecessor of s′′, then
s′′ is K-related if and only if the action a is executable in s′ and the sensing result of a is the same in
s and s′. By separating knowledge-producing actions from normal actions, plus the fluent K together
with its successor state axiom, knowledge can be seen as a subpart of an adapted Basic Action Theory.

Grosskreutz and Lakemeyer (2001) tackle the problem of knowledge representation and its update
in a probabilistic setting. Furthermore they give insight into the pGolog framework, that is an exten-
sion to the high-level programming language Golog. The pGolog framework follows a classical three
tier architecture where the communication between low-level processes and high-level controllers is
carried out with a set of defined registers. If a high-level controller writes a value into a register, an
execution is triggered. Otherwise the robot receives some sensing information. During online execu-
tion time is modeled discretely by exogenous time update events. This time representation is essential
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Figure 4.1.: Knowledge-Producing Actions and the K relation (Scherl and Levesque, 2003)

to model the behavior of low-level processes. The special fluent ll(s,s′) characterizes low-level pro-
cesses in situation s if the robot thinks it is in situation s′. Their programs, so called belief-based
programs, condition the execution by epistemic tests on the robot’s belief. Inspired by Bacchus et al.
(1999), the execution is realized by a transPr(σ,s,δ,s′) function that returns the probability to reach
situation s′ with the remaining program δ starting from situation s with program σ. The probability
calculation is done by special function p. The tricky part is in formalizing the successor state axioms
for the fluents p and ll. Therefore a helper function adv&filter is used. In case of a normal action,
adv&filter returns the probability of the last situation times the transition probability. Otherwise, in
case of a sensing action, all inconsistent situations are removed. The successor state axioms for p and
ll read as follows:

p(s∗,do(a,s)) = p ≡ ∃ll∗.adv&filter(s∗, ll∗,do(a,s)) = p∧ p > 0∨
∀ll∗.adv&filter(s∗, ll∗,do(as)) = 0∧ p = 0

ll(s∗,do(a,s)) = ll∗ ≡ adv&filter(s∗, ll∗,do(a,s)) > 0∨
∀ll′.adv&filter(s∗, ll′,do(a,s)) = 0∧ ll∗ = nil

The first line of p tackles the case of an existing successor s∗ of s indicated by a positive probability. If
no such successor exists, the probability is zero (second line). Similarly the successor state axiom of
ll leads to a result if there is a legal transformation (first line). Otherwise the successor is nil (second
line).

The approach of Scherl and Levesque (2003) is limited in the sense that it allows for belief update
only. This means the belief of a robot is updated or extended by the actions it executes. If one situation
within the K-relation contradicts some sensing information it is abandoned. But there is no possibility
to revise the whole belief if it was wrong. If the world has not changed, but the robot discovered
new facts that contradict the actual belief, the approach fails by believing everything. This limitation
was tackled by Shapiro et al. (2000). They use the K-relation K(s′,s) of Scherl and Levesque (2003)
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defining situations s′ that are possible in situation s but call it B-relation. Furthermore, they introduce
the concept of plausibility levels. Every situation receives a plausibility (pl) enabling a ranking be-
tween different situations. A situation is said to be more plausible if the plausibility value is smaller.
Plausibilities are specified on initial situations and do not change during execution, as denoted by the
successor state axiom:

pl(do(a,s)) = pl(s)

In contrast to Scherl and Levesque (2003), the belief is not defined by all situations of the K-relation,
but only by those situations with the lowest plausibility. This is expressed by the belief operator Bel
for a formula φ:

Bel(φ,s) ≐ ∀s′.[B(s′,s)∧(∀s′′.B(s′′,s) ⊃ pl(s′) ≤ pl(s′′))] ⊃ φ[s′]

If the current belief contradicts a sensing information, the situation is dropped and the situation with
the lowest plausibility forms the new belief. This is shown by the following example in Figure 4.2.

Figure 4.2.: An example for belief update and belief revision (Shapiro et al., 2000).

There are three initial situations S,S1,S2 with S1 and S2 B-related to S. There are two rooms, namely
R1 and R2, with a light in each room that can be on or off. With the action leave, the robot moves
from one room to another. Using the sensing action senseLight, it is possible to check if the light in
the robot’s current room is on. In all initial situations, the robot thinks it is not in room R1, but has
different assumptions about the light in room R1. The plausibility of situation S1 is 0 and pl(S2) = 1.
Thus, the belief of the robot derives from situation S1. This is indicated by the circle around the
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situation. First the robot leaves room R2, entering R1. Though there is an update on the current room
of the robot, its belief is still determined by situation S1. After sensing that the light is on in room
R1, the B-relation between S′′1 and S′′ does not hold any more. S′′2 is still in a B-relation to S′′, so it
becomes the new favorite and revises S′′1 . By applying belief update and belief revision in arbitrary
order, the approach is able to handle iterated belief change.

Though Shapiro et al. (2000) is able to handle iterated belief change, the number of belief revisions
is limited to the number of initial situations. If a situation turns inconsistent with some sensing infor-
mation, it is dropped from the B-relation and the next best situation is selected. For k initial situations,
there are a maximum of k-1 belief revisions. It is expected that the agent has full knowledge about
all actions happening in the world and that sensing actions are always correct. Shapiro and Pagnucco
(2004) still expect sensing actions to be correct, but they loosen the requirement of a completely ob-
servable world by incorporating exogenous actions. Whereas endogenous actions are executed by
the robot and thus are observable by the robot itself, exogenous actions are executed by other robots
or the environment. The robot can only infer these actions by observations. If the robot detects an
inconsistency, the current situation is not necessarily dropped. It is extended by exogenous actions,
if they allow a consistent interpretation of the last sensing result. This leads to the observations that
situations with a B-relation contain the same endogenous actions, but may differ in their exogenous
actions. According to Occam’s razor simpler situations are preferred (situations with less exogenous
actions). This is achieved by a function height that returns the length of an action sequence. As the
number of actions for a sequence increase, the height increases as well an the situation becomes less
preferable. Building on the plausibility function of Shapiro et al. (2000) a situation s′ is preferred over
a situation s (s′ ⊑ s):

s′ ⊑ s ≐ pl(s′) < pl(s)∨(pl(s′) = pl(s)∧height(s′) ≤ height(s))

After having defined a preferable relation on situations, we further need a new successor state axiom
for the B-relation that incorporates exogenous actions. Exogenous actions are denoted by predicate
Exo(a) that holds if a is an exogenous action. An action is either endogenous or exogenous:

Endo(a) ≐ ¬Exo(a)

A sequence of exogenous actions between a situation s and a situations s′ is defined by:

ExoSeq(s,s′) ≐ s ⪯ s′∧∀a,s1.s ≺ do(a,s1) ⪯ s′ ⊃ Exo(a)

The last endogenous action a between situation s and situation s′ is defined by:

LastEndo(a,s,s′) ≐ Endo(a)∧ExoSeq(do(a,s),s′)

Equipped with the presented predicates, it is possible to derive the new B-relation. The function root
is a helper to derive the initial situation of a situation. The B-relation holds if both situations contain
only exogenous actions, or the B-relation holds on the subsituation after the last endogenous action
and the sensing result (SF) of the last endogenous action is the same.

B(s′,s) ≡ [(ExoSeq(root(s),s)∧ExoSeq(root(s′),s′))∨
(∃s′1,s1,a.LastEndo(a,s′1,s

′)∧LastEndo(a,s1,s)∧(SF(a,s′1) ≡ SF(a,s1))∧B(s′1,s1))]

As plausibility values may be difficult to define, Demolombe and Pozos Parra (2005) presented
a rather theoretical approach to belief revision without plausibility levels. First, they propose two
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different successor state axioms for real situations and for imaginary ones. And second, if a sensing
action, or also called knowledge-producing action, contradicts a fluent in the actual belief, this fluent
is simply overwritten. Distinguishing between successor state axioms for real and for imaginary
situations accommodates the partial observability of the world. Thus, actions can only be added to the
robot’s situation if it observes the action. This is denoted by the successor state axiom definition of
the K-relation (equivalent to Shapiro et al. (2000) B-relation). The i stands for a robot:

K(i,s′′,do(a,s)) ≡ ∃s′.K(i,s′,s)∧((observe(i,a,s)∧ s′′ = do(a,s′))∨(¬observe(i,a,s)∧ s′′ = s′))

If the robot i observes the action a in situation s, it forms the successor situation, otherwise the suc-
cessor situation stays the same. Real situations are denoted by the predicate real. The successor state
axiom for a fluent F in real situations is extended to:

real(s) ⊃ F(x⃗,do(a,s)) ≡ γ
+

F(x⃗,a,s)∨F(x⃗,s)∧¬γ
−

F(x⃗,a,s)

The “subjective” successor state axiom for a robot i and fluent F is:

real(s) ⊃ (K(i,s′,s) ⊃
(F(x⃗,do(a,s′)) ≡ γ

+

F(i, x⃗,a,s′)∨(a = senseF(i)∧F(x⃗,s)∧
¬(γ

−

F(i, x⃗,a,s′)∨(a = senseF(i)∧¬F(x⃗,s)))))

For a K-related situation s’, the fluent F holds if (1) γ
+

F(i, x⃗,a,s′) holds or if (2) F holds in the real
situation and F is sensed by action a or if (3) the fluent F held in the predecessor situation and was
neither negated by γ

−

F(i, x⃗,a,s′) or (4) by its negation in the real situation and a corresponding sensing
action a. Successor state axioms can be different for different robots too. E.g. a baby might have a
different interpretation of actions in the world than its mother. This is achieved by the argument i in
γ
+

F(i, x⃗,a,s′) and γ
−

F(i, x⃗,a,s′). As sensing actions directly overwrite the sensed fluent, it is sufficient
to have only one possible (imaginary) situation to model the robots belief. In contrast to Shapiro et al.
(2000), this has the advantage that no plausibility values have to be defined, but with the clear draw-
back, that there is no possibility to model different hypotheses with connected fluents. For example a
robot might know that it is either in room R1 or in room R2. Furthermore, it knows that the light is on
in room R1 and off in room R2. Initially it believes that it is in room one (light on) and it senses no
light. According to Demolombe and Pozos Parra (2005) the revised belief would state that the robot
is incorrect in room one and the light is off, whereas in Shapiro et al. (2000) the robot would think
that it is correctly in room two and the light is off.

4.2. Formal Belief Management

According to the related research literature mentioned above we treat the robot’s belief as the (truth)
values of all of its fluents. Our belief is expressed by exactly one situation (initial situation plus action
sequence), but we keep a pool of different situations (hypotheses) in order to cope with unforeseen
events. Hypotheses are ranked according to a change value that resembles the amount and the severity
of adaptions that were applied to every hypothesis. The hypothesis with the lowest change value
defines the robot’s belief. We do not use an explicit binary notation between different hypotheses, but
provide a generation scheme together with a set of rules that unite all valid hypothesis. Belief update
is realized as usual by applying successor state axioms to the current belief. As said before, we keep
a pool of hypotheses, thus every hypothesis is updated (not only the belief-forming hypothesis). In
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contrast to the presented approaches above, we are able to handle arbitrary numbers of iterated belief
revisions. This is especially crucial in settings, where the robot is expected to do long shifts. Another
feature is the ability to handle incorrect sensing. Incomplete initial knowledge can easily be handled
by enumerating all hypotheses.

After giving an insight into the principles of our belief management, we will formalize the compo-
nents. A pool of consistent hypotheses builds the basis of the system and gives the robot the possibility
to recover from incorrect decisions. For instance if the robot chooses the most likely hypothesis, but
realizes later on that the decision was incorrect, the second most likely hypothesis is still available and
so on. The fittest hypothesis out of this pool forms the belief of the robot, where fitness is defined by
a low change value. After every action execution, hypotheses are updated according to the observed
actions. In case of an inconsistency, the affected hypothesis is replaced by a set of consistent substi-
tutions. Those substituents are derived pursuant to history-based diagnosis. Thus, we either replace
actions by one of its variations, or add extra actions to achieve consistency. Every adaption is penal-
ized by adding a strict positive value to the change value of a hypothesis. The number of hypotheses
within the pool is the result of the number of initial hypotheses, minus the number of inconsistent
ones, plus the number of newly generated hypotheses. The implementation uses a fixed threshold to
limit the total number of hypotheses.

The belief management algorithm is embedded in some execution system works as follows (Gspandl,
Pill, Reip, and Steinbauer, 2011). In Line 2 we update all hypotheses hi of our pool H through all
the newly executed actions. This does not include the favorite hypothesis h f , which is updated by
the execution system itself. Then, in Line 4 we check the consistency of our favorite h f . If it is not
consistent, we generate new hypotheses from the inconsistent one in Line 5 and select a new favorite
in Line 6.

Algorithm 1: beliefManagement

1 foreach hi ∈H ∖h f do
2 updateHypothesis(hi)
3 end
4 if ¬Cons(h f ) then
5 generateHypotheses(h f )
6 h f ← selectFavorite(H)
7 end

A central element within the presented system is the notion of consistency. On the one hand an
inconsistent situation triggers the diagnosis and repair process within the belief management, on the
other hand consistency is used as acceptance criteria for newly generated hypotheses (situations). We
have two criteria that define consistency. First, we call a situation inconsistent if a sensing action
contradicts its expected value. This means starting in the initial situation the robot has some idea
about itself and its environment. This idea is formed by all fluent values and is called belief. This
belief is updated according to successor state axioms by every action the robot executes itself or the
robot detects (exogenous actions). In case of a sensing action, the robot either has information or
has no information about the sensed fluent. In case the robot knows the fluent and the value differs
from the sensed value, we have an inconsistency. Second, we have a set of common sense rules that
describe basic properties of the domain. For instance if the robot senses that there is some weight on
its conveyor, has_object(o) must be correct for some object. This means, either the robot knows for
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object o, it is carrying this object, or there is an object o and the robot has no knowledge if is carrying
this object. We call those general rules invariants. Putting those two rules together we can formalize
a predicate consistent.

Definition 3. A history σ is consistent if and only if D∗ ⊧ Cons(σ) with Cons(⋅) inductively defined
as:

1. Cons(ε) ≐ Invaria(S0)

2. Cons(δ̄.α) ≐Cons(δ̄)∧ Invaria(δ̄.α)∧
[SF(α, δ̄)∧RealSense(α, δ̄)∨
¬SF(α, δ̄)∧¬RealSense(α, δ̄)]

The definition of Cons is recursive. In the base case of an empty history, there is no action and thus
no sensing action either. Therefore, we only have to check for invariants in the initial situation. In the
inductive case, we call Cons recursively on the previous situation and check the actual situation. This
includes the invariants check, plus the comparison between the modeled belief SF and the real world
values RealSense we receive from our sensors. RealSense(α, δ̄) returns true if the sensing action α

for a fluent F returns the value ⊺. This is similar to the definition of the modeled belief SF(α, δ̄)
(de Giacomo et al., 2009) that leads to the value of a fluent F according to the history δ̄. Ferrein
(2008) gives an overview of how to integrate real sensing values into IndiGolog.

Given the definition of a consistent history hypothesis, we take a step forward and provide a rating
for hypotheses. As explained above, the belief of our system is based on the most reasonable hypoth-
esis. Thus, we need a measurement function. Similar to the notion of consistency, this measurement
function iterates inductively over the given hypothesis. As a sum of all changes, we call cv the sum
of all variations and insertions. All remaining endogenous actions are not considered, as they do not
differ between hypothesis and its origin in terms of history-based diagnosis. This is a simple conse-
quence of history based diagnoses. The function val assigns costs to every insertion and variation.
In this manner we can distinguish the severity of different changes. Instead of summed values, one
can use probabilities too, but they may be difficult to determine, especially if some of them depend
on each other. Thus, in order to prevent misleading assessments we use the notion of change values.
For example a valid explanation based on a total break down of a robot is usually less probable than a
delocalized robot and thus holds a higher change value. The change value is a relative measurement
between a hypothesis and a situation (please note that both share the same syntax). If all hypotheses
originate from the same situation (typically this is the robot’s plain, perceived situation) it is possible
to compare an arbitrary number of hypotheses.

Definition 4. Let cv ∶ situation×situation→ IR+, cv(δ̄, ᾱ)= v with v≥ 0 evaluate the difference between
a diagnosis δ̄ and a history ᾱ. cv is called the change value and is inductively defined as:

1. cv(δ̄, δ̄) = 0

2. cv(δ̄.δ, ᾱ) = cv(δ̄, ᾱ)+val(Inser(δ, δ̄))

3. cv(δ̄.δ, ᾱ.α) = cv(δ̄, ᾱ)+val(Varia(δ,α, δ̄))

4. cv(δ̄.δ, ᾱ.δ) = cv(δ̄, ᾱ)

Inser and Varia are as indicated in Chapter 2.3. We assume standard axiomatization of integers
together with their standard operations.
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In the first line, we assign the change value of zero, if the hypothesis is equal to the situation. In
the second line, we handle the case if δ is an insertion. In this manner the value of the insertion is
simply added to the value of the remaining sequence. Equivalently, variations are handled in the same
way as insertions in the next line. If the current action δ does not differ between the two arguments,
the change value is reduced to the remaining action sequence. For example the change value for the
action sequence

[goto(warehouse),pickup(chocolate),exogMoveObject(candies,quality_control),
goto(shop),putdownNothing]

and the original situation of the robot

[goto(warehouse),pickup(chocolate),goto(shop),putdown(chocolate)]

with

val(Inser(exogMoveObject(o,r),s)) = 3 and

val(Varia(putdownNothing,putdown(o),s)) = 1

equals 4. A hypothesis containing only one instead of the two given changes would have a lower
change value. This is a common practice in ranking diagnoses (de Kleer and Williams, 1987).

Equipped with a definition of consistency and a cost function that assigns positive costs to hypothe-
ses, we are able to give a definition of a history-based diagnosis. A diagnosis is valid if and only if it
is executable and consistent. In this manner all generated hypothesis could potentially have happened.
Therefore, we have to focus on managing all hypotheses by selecting the best one.

Definition 5. Let δ̄ and ᾱ be histories. Let Diag(δ̄, ᾱ,v)≐ExtVariation(δ̄, ᾱ)∧Exec(δ̄)∧Cons(δ̄)∧v=
cv(δ̄, ᾱ), denoting that δ̄ is an extended variation of σ that is executable and consistent. δ̄ is a proper
history-based diagnosis (or diagnosis for short) based on ᾱ if and only if D∗ ⊧Diag(δ̄,σ,v).

Again we take the example from the cv. Given the original action sequence

σ = [goto(warehouse),pickup(chocolate),goto(shop),putdown(chocolate)]

followed by sensing no chocolate. This sensing obviously contradicts the expected sensing

RealSense(sense(chocolate),σ)) /≡ SF(sense(chocolate),σ)

Possible diagnoses are:

• [goto(warehouse),pickupNothing,goto(shop),putdownNothing]
• RealSense(sense(chocolate),σ)) ≡ SF(sense(chocolate),σ) (wrong sensing)

• [goto(warehouse),pickup(chocolate),goto(shop),putdown(chocolate),
exogMoveObject(chocolate,quality_control)]

Depending on the domain, the number of diagnoses can be very high. We provide an upper bound
for this number that is calculated from the length of the action sequence, the number of variations and
insertions and a variable k, that defines the maximum number of insertions between two successive
actions.

43



Chapter 4. Belief Management

Theorem 1. Let l be the length of the history σ, n be the number of different possible exogenous
events, k be the maximum number of insertions between two consecutive actions of σ, and m be the
maximum number of variations of an action. Then, the number H of potential diagnosis candidates is

H = ((m+1) ⋅
k

∑
i=0

ni)l.

Proof. For every action there are a maximum of m variations plus the action itself. Every action can
again be followed by 0 to k insertions. We use a helper variable i to sum over all numbers of insertions
to sum up before the next action occurs. The number of insertions is thus exponential in i. So far, we
have listed all enumerations for a history of size 1. The whole term is exponential in the history length
l.

The number H of potential diagnosis candidates is exponential in the number of allowed exogenous
events between two actions and furthermore exponential in the size of the history. In order to create
an applicable system that is able to operate with a given memory size, we handle the possible state
explosion by a fixed-size pool of diagnoses candidates. This pool holds n diagnoses that can be derived
from a situation. Assuming an enumerable number of insertions and variations this pool Pool can be
defined as a formula over all possible diagnoses. A Pool with fixed size n consists of n tuples of
diagnoses and their change values respectively.

Definition 6. Let σ be a history. Then Pool is defined as

Pool(σ) = ((δ̄1,v1),⋯,(δ̄n,vn)) ≐
Cons(σ)∧ δ̄1 = σ∧v1 = 0∧⋯∧ δ̄n = σ∧vn = 0∨
¬Cons(σ)∧Diag(δ̄1,σ,v1)∧⋯∧Diag(δ̄n,σ,vn)

Due to notational conventions, the pool always consists of exactly n situations. If the situation σ is
consistent, the Pool consists of n identical tuples in order to fill up the pool. This is the situation itself
together with the change value 0. If situation σ is inconsistent, the pools fills with n diagnoses. In the
IndiGolog implementation the pool is filled by the most plausible diagnoses, where plausible refers to
the change value of a diagnosis.

Out of this pool the belief defining diagnosis is chosen. Therefore we select the diagnosis with the
lowest change value and call it preferred diagnosis.

Definition 7. Let σ be a history. The preferred diagnosis prefDiag is defined as:

prefDiag(σ) = δ̄ ≐
∃δ̄1,v1, . . . , δ̄n,vn.Pool(σ) = ((δ̄1,v1),⋯,(δ̄n,vn))∧
[δ̄ = δ̄1∧v1 ≤ v2∧⋯∧v1 ≤ vn∨
δ̄ = δ̄2∧v2 ≤ v1∧v2 ≤ v3∧⋯∧v2 ≤ vn∨
⋮

δ̄ = δn∧vn ≤ v1∧⋯∧vn ≤ vn−1]
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We have seen that the number H of possible diagnoses can increase very quickly. On this account,
the number of diagnosis due to a given number of faults seems to be more interesting in the majority
of cases. For a number c of changes we can compute this amount of diagnosis τ. If the pool size is
greater or equal to τ the completeness of the approach can be guaranteed for c faults.

Theorem 2. Let σ be a history and p be the number of diagnoses of Pool(σ). Let c be the maximum
number of all insertions i and variations v to a history σ and let k, l, m and n be as indicated in
Theorem 1. Further, let

τ =
c

∑
c′=1

c′

∑
i=0,v=c′−i

(l
v
)mv(i+ l−1

i
)ni.

If c ≤ k, l then τ is the exact amount of possible hypotheses. τ is an upper bound for c > k, l. With p ≥ τ

we can guarantee that our approach is complete.

Proof. We have to sum up over all instantiations from one fault to c faults. The current index is
assigned to the variable c′. We consider variations v and insertions i separately. Their sum is equal
to the current number of faults c′. A maximum of m variations per actions can be arranged mv times
and be distributed over the history length l. Similarly the i insertions result in ni combinations and
can be distributed over the new length i+ l−1. The product of both terms leads to the combined set of
possible hypotheses. If the pool size is greater or equal to this maximum number of hypotheses, then
obviously all hypotheses can be considered to be in the pool.
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Chapter 5
Belief Management in a Guarded Action
Theory

The Basic Action Theory provides a proven axiom set in order to model dynamic changing worlds.
However, it does not address information retrieval by sensing as well as incomplete causal laws ex-
plicitly. This fact is tackled by Guarded Action Theories (Sardiña, 2000). For this reason, Guarded
Action Theories form the formal concept of IndiGolog. As Guarded Action Theories can be seen as
an extension to the Basic Action Theory, some IndiGolog statements differ from the formal defini-
tion in the Basic Action Theory. This chapter focuses on the application of our belief management
in IndiGolog based on the underlying Guarded Action Theory. After giving an overview of Guarded
Action Theories in Section 5.1, we describe IndiGolog’s successor state axioms and our notion of
inconsistency within the framework in Section 5.2. We close this chapter with IndiGolog’s main loop
that is responsible for executing user programs together with our extension to it in Section 5.3. Parts
of this chapter were published in Gspandl, Pill, Reip, and Steinbauer (2013).

5.1. Guarded Action Theory

Guarded Action Theory (GAT) extends the presented Basic Action Theory by explicitly handling in-
formation gathering through sensing and the capability to express incomplete causal laws (see Sardiña
(2000)). Instead of having to execute sensing actions continuously, sensors are treated as always be-
ing on, similar to a laser that continuously sends data. Sensing results are integrated into the situation
term, as described below. Incomplete causal laws make it possible to lose information. This means,
that though the value of a fluent is known in situation s (just one valid assignment), the fluent may be
unknown in the successor situation s′ = do(a,s) (many valid assignments). It can be necessary due for
two reasons. On the one hand, the effects of an action may be unknown. For instance, the result of
an action may depend on an unknown fluent, such as setting a desired speed on the motors can lead to
the desired velocity or to a stopped robot in case the emergency stop is pressed. If the robot does not
know the state of the emergency stop, it can not infer the resulting velocity. On the other hand, other
agents may change the world in an unobservable way (for example the state of a door in a multi-agent
environment might change eventually after some robot’s interaction with the door). As the Guarded
Action Theory is an extension to the Basic Action Theory, it contains all axioms of the Basic Action
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Theory except successor state axioms. These are replaced by more general guarded successor state
axioms. Guarded successor state axioms for a fluent F have the form (Sardiña, 2000):

α(x⃗,a,s) ⊃ [F(x⃗],do(a,s)) ≡ψ(x⃗,a,s)]

Guarded sensed fluent axioms for a fluent F that replace the SF predicate have the form:

β(x⃗,s) ⊃ [F(x⃗,s) ≡ ρ(x⃗,s)]

Here, β is a sensor-fluent formula, α and ψ are fluent formulas and ρ is a sensor formula. A sensor
fluent formula is a formula that contains a maximum of one situation term that is a variable. Similar
to the Basic Action Theory this situation term is only allowed as last argument of a fluent as well as
an argument of a sensing function. Sensing functions are unary functions with a situation as single
argument, e.g. loaded(s), for a boolean load sensor that signals if a robot is loaded with a container. A
sensor formula is a sensor-fluent formula without fluents. Finally, a fluent formula is a sensor-fluent
formula without any sensor function. They fall into the category of Reiter’s uniform formulas (see
Reiter (2001)). α and β are called guards that condition the formulas. Incorporating guarded successor
state axioms and guarded sensed fluent axioms leads to the guarded action theory DG:

• D0 the initial situation S0 axioms

• DPoss the action precondition axioms

• DGSSA the guarded successor state axioms, where each fluent can have none, one or many
axioms

• DGSFA the guarded sensed fluent axioms, where each fluent can have none, one or many axioms

• Duna the unique name axioms of actions

• DFUN foundational, domain-independent axioms

The solution to the frame problem as presented above is still applicable. Please see Sardiña (2000)
for details. Situation terms within the BAT contain all actions that have occurred since the initial
situation S0. In order to evaluate a formula in a given situation s, we have to ask what is the truth value
of the formula after executing a given action sequence. In the context of GAT the question behind
evaluating a formula φ(s) has to be extended to the following: what is the truth value of formula φ(s)
after executing a given action sequence and receiving a given sequence of sensor outcomes. As the
situation term is no longer sufficient to model everything that has happened, Sardiña (2000) introduces
the notion of history. As situations can easily be extracted from histories. The terms are sometimes
used synonymously.

Definition 8. A history σ is a sequence (µ⃗0 ⋅ (A1, µ⃗1) ⋅ (A2, µ⃗2)⋯(An, µ⃗n) with ground action terms
Ai with (0 ≤ i ≤ n), sensor readings vectors of (real) values µ⃗i = (µi1,µi2, . . . ,µim) with 0 ≤ i ≤ n and
0 ≤ j ≤m. Here, µi j corresponds to the j-th sensor after the i-th action (Sardiña, 2000).

This means, within the notion of a history, all received sensor values are added to the situation. The
information can be separated again by the application of end and Sensed.

Definition 9. Let σ be a history, then the ground situation term end[σ] is (Sardiña, 2000):

end[ε] = S0

end[σ ⋅(a,µ)] = do(a,end[σ])

where ε denotes the empty history.
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In case of the empty history end equals the initial situation. Otherwise we extract action by action
and add it recursively to the situation term. For example, for an object x and the origin and destination
rooms o and d and the sensing result µ1, ...,µ4, end[µ0 ⋅(goto(o),µ1) ⋅(pickup(x),µ2) ⋅(goto(d),µ3) ⋅
(putdown(x),µ4)] = do(putdown(x),do(goto(d),do(pickup(x),do(goto(o),S0)))).

Definition 10. Let σ be a history, then the ground sensor formula Sensed[σ] is (Sardiña, 2000):

Sensed[σ] =
n
⋀
i=0

m
⋀
j=1

h j(end[σi]) = µi j,

where σi denotes the subhistory from the initial situation till action i (σi = (µ⃗0 ⋅(A1, µ⃗1) ⋅(A2, µ⃗2)⋯(Ai, µ⃗i))
and h j stands for the sensor function of the j-th sensor.

Similarly to end, Sensed iterates over the history, separates actions from sensing results and com-
bines all sensing results into one formula.

Furthermore we have to extend the definition of executability from situations to histories. This is
done by applying the Poss predicate to all action of the sequence: a history σ is executable in a GATD
iff either σ= µ⃗0 or σ=σ

′ ⋅(A, µ⃗) and σ
′ is an executable history andD∪Sensed[σ′]⊧Poss(A,end[σ′]).

5.2. Inconsistency in IndiGolog

In a sense Guarded Action Theory serves as appetizer to IndiGolog. Let us recall from Chapter 2.2.1
how IndiGolog models the effect of actions. It uses causes(a, f ,v,w), where a fluent f takes value v,
after executing action a, if w holds. Here the condition w is made explicitly in form of a guard, as
presented above. Generally, if a fluent is not known for sure in IndiGolog, all possible instantiations
are stored to express the different possibilities. Multiple instantiations per fluent can be sharpened by
sensing actions that either invalidate a single instantiation, or all instantiations besides one. Besides
the guards in the successor state axioms, sensing results are also handled explicitly. However, every
action is followed by exactly one sensing result with the value 0 or 1, instead of a list of results with
one reading per sensor. In this way, sensing actions are required. Therefore, the definition of Sensed
is slightly different from the definition above (de Giacomo et al., 2009):

Definition 11. Sensed denotes a formula containing all sensing information of a given situation.

Sensed[ε] = True

Sensed[σ ⋅(a,1)] = Sensed[σ]∧SF(a,end[σ])
Sensed[σ ⋅(a,0)] = Sensed[σ]∧¬SF(a,end[σ])

In Chapter 4.2, we derived the definition of an inconsistency. A situation is said to be inconsistent
if either an invariant is violated or a sensing value contradicts the expected one. In order to evaluate
invariants it is sufficient to evaluate them for every situation. In case of sensing we have to apply
IndiGolog’s version of guarded sensed fluent axioms. As presented above, we have

settles(a,r, f ,v,w)
rejects(a,r, f ,v,w)
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In this case, after executing sensing action a with sensing result r, if condition w holds, the fluent f
is either fixed to value v in case of settles. Similarly, rejects abandons v as possible value of fluent f .
For instance, settles(perceiveObject(X),1, is_at(X ,R),True,at(R)) states that if the robot perceives
an object X and it is located in room R, then the location predicate is_at of object X in room R is set
to True.

In order to detect inconsistencies due to sensing we have to inspect the current situation after every
sensing action. This is done by investigating all applications of settles and rejects. By application
we mean that a sensing action a with sensing result r has occurred and condition w holds. In case of
rejects we have to ensure that the fluent value we reject is not the only possible instantiation of that
fluent, before the sensing action is executed. As a sensing action does not change the world, we do
not expect fluents to change due to sensing actions too.

Definition 12. check_rejects ensures that the sensing result r of sensing action a does not reject the
only valid fluent value v of fluent f .

check_rejects(σ) ≐ end[σ] = do(a,s′)∧Sensed[σ] = (µ0,µ1, . . . ,r)∧
[rejects(a,r, f ,v,w)∧w(x⃗,s′)] ⊃ ¬( f (x⃗,s′) = v)]

where, σ is a history that is split into its situation term and the sensing formula. If rejects is
applicable and w holds, we check that the rejected fluent value combination does not hold. As actions
in the situation calculus are required to have a strict order within the situation term, it is no limitation
to compare the fluent value before the sensing action is executed with the applied result of the sensing
action.

The inspection of settles applications works similar to rejects applications. Here we have to assure,
that there is no fluent value different to the settled value that holds before the execution of the sensing
action. Please note, that this is not necessarily the same as that the value itself has to be possible
before the sensing action. This follows the fact that a value is said to hold only if there is no other
fluent value entry than the examined one.

Definition 13. check_settles ensures that the sensing value r of sensing action a that leads to fluent
value v of fluent f is a valid instantiation of fluent f .

check_settles(σ) ≐ end[σ] = do(a,s′)∧Sensed[σ] = (µ0,µ1, . . . ,r)∧
[settles(a,r, f ,v,w)∧w(x⃗,s′)] ⊃ ¬(∃v′.( f (x⃗,s′) = v′))

So far, we are able to check the outcome of sensing actions by applying check_settles and check_rejects.
We can combine them with Invaria in order to have a single predicate check_last_action, that is re-
sponsible for the newly added action.

Definition 14. check_last_action ensures that the last action of situation σ does not lead to an incon-
sistency.

check_last_action(σ) ≐ check_rejects(σ)∧check_settles(σ)∧ Invaria(end[σ])

In order to evaluate a complete situation σ, we can apply check_history. It uses check_last_action
action by action:
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Definition 15. check_history ensures that a given history s is consistent.

check_history(ε) ≐ Invaria(S0)
check_history(σ ⋅(A,µ)) ≐ check_history(σ)∧check_last_action(σ ⋅(A,µ))

where ε resembles the empty history, A is an action with the corresponding sensing result µ. After
transferring the definition of consistency into the guarded IndiGolog world, we are equipped to extend
IndiGolog’s main loop with our belief management.

5.3. IndiGolog’s extended main loop

In Chapter 2.2.2 we described the main loop of the IndiGolog interpreter. As it is implemented
in Prolog, the following formulas use the Prolog syntax. First, it integrates exogenous events into
the situation. Second, it progresses the initial situation if the history length exceeds a predefined
threshold. Third, it checks for termination by applying the Final predicate. And finally, it applies
the Trans predicate in order to execute the next step of the program. The interpreter loops until Final
holds or there is no longer a valid transition.
A typical transition either checks a condition in case of an if or while statement, or it checks the
precondition of a specific action. All this evaluations expect a consistent situation term. As we have
seen before, this situation term may turn inconsistent due to an incorrect initial situation, an execution
failure, a sensing failure or unobserved exogenous events.
Therefore, in order to provide the evaluation with a consistent situation term, we add another step to
the main cycle that checks the current history for consistency. If the situation is inconsistent, we apply
history-based diagnosis to generate new situations out of the current one and add the new situations
into our situation pool. Then the system takes the situation with the smallest change value and checks
it for consistency. If it is consistent, we can continue within the main cycle, otherwise we keep
generating history-based diagnoses, selecting the best one and checking it.
The extended IndiGolog’s main loop looks like this:

indigo(E,H) :- handle_exogenous(H,H2), !, indigo(E,H2).
indigo(E,H) :- handle_consistency(H,H2), !, indigo(E,H2).
indigo(E,H) :- handle_rolling(H,H2), !, indigo(E,H2).
indigo(E,H) :- catch(final(E,H), exog, indigo(E,H)).
indigo(E,H) :- catch(trans(e,H,E1,H1), exog, indigo(E,H)),
(var(H1) -> true ;
H1 = H -> indigo(E1,H);
H1 = [A|H] -> exec(A,S), handle_sensing(H,A,S,H2), indigo(E1,H2)).

We added the handle_consistency call to our belief management. It takes a possibly inconsistent his-
tory, and returns a consistent one, if one exists. If there is no consistent history, the same inconsistent
history is returned, in order to prevent the robot from canceling its order. Following the implementa-
tion of IndiGolog, using an inconsistent history means, that we use the last perceived values though
they might contradict previous expectations. This approach is inspired by humans. Quite often we
are not able to understand every facet of a scene, resolving every single inconsistency between our
expectations and our observations, but it many cases we can still perform the intended actions.
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handle_consistency(H,H1) :- most_plausible_situation(S),
must_check_history(H,S,N) ->
check_consistency_n(H,S,N,H1,S1) ; H1 = H.

The predicate handle_consistency takes the current action sequence H as input and provides an action
sequence H1 as output. The given argument H contains an action sequence only and does not contain
the initial situation. All entries of the Pool have an unique id (we call it index) that allows to retrieve
corresponding initial situation, action sequence and change value. Therefore we first extract this index
S of the current situation, which we refer to as most_plausible_situation. The most plausible situation
is a situation S of all possible situations (possible_situation). All entries of all initial situations are
stored in a database, and can be accessed by this index. Next by using must_check_history, we check
whether checking the given history is necessary. If no action was added since the last check, we simply
set the consistent history H1 to the given history H. If new actions were added, must_check_history
unifies the parameter N with the number of actions to be checked. This dramatically reduces the com-
putation costs, as we avoid evaluating the same subhistory over and over. Finally, check_consistency_n
takes the current history together with the situation index and the number of new actions to be checked
and unifies the new history favorite.

Before we present check_consistency_n, we will introduce extend_history. This clause adds a newly
executed action to all histories of our pool. The pool’s history indexes are enumerated by the clause
possible_situation. The corresponding histories are mapped through the clause history taking the
history’s index. In order to add newly executed actions, we simple iterate over all possible situations,
take the stored history H, append the given action A and store the merged history again. The usage
of the clause flatten simply ensures that the resulting history Merged is a list without sublists. In this
way the action A could be a list of actions as well.

extend_history(A) :- forall(possible_situation(S), (
retract(history(S,H)), flatten([A|H], Merged), assert(history(S,Merged)))).

The clause check_consistency_n checks the last N actions for consistency and adds all of the new N
actions to all histories. This is done recursively. The first line presents the base case with the number
N of new actions equal to 0. In that case no action is necessary, hence the output history and its
index (arguments four and five) are set to the input arguments one (history) and two (history index).
Otherwise, we reduce the number of actions to be checked by one, as shown by variable M and call
the clause recursively. After returning from the recursive call, we add the last action A that is split
from the remaining history R to all histories from our pool with the clause extend_history. Then we
call get_favorite_history that does the actual inspection returning the favorite situation index S1 and
finally retrieve the resulting history H1 from the updated index S1.

check_consistency_n(H,S,0,H,S) :- !.
check_consistency_n([A|R],S,N,H1,S1) :- M is N -1,
check_consistency_n(R,S,M,_,SOld), extend_history(A),
get_favorite_history(SOld,S1), history(S1,H1).

Now we introduce the clause handle_situation_to_be_removed that is used by get_favorite_history.
In case a situation turns out to be inconsistent, we have to remove this situation (S) from the pool and
select a new favorite hypothesis (Res).
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handle_situation_to_be_removed(S,Res) :-
setof(X, possible_situation(X),LX), length(LX,1), !, Res=S.

handle_situation_to_be_removed(S,Res) :- retract_situation(S),
most_plausible_situation(Next), get_favorite_history(Next,Res).

First, we check if the situation to be removed is the last one. We simply check if the size of the set
of all possible situations of the pool equals one. If this is the case, we keep the situation by setting
the result history index to the input index. Otherwise the situation is dropped from the hypothesis
pool by retract_situation, we select the next favorite situation by most_plausible_situation and again
call get_favorite_history. This call is necessary as there is no guaranty that all situations in our pool
are still consistent due to newly added actions. Of course it would be possible to check them all,
after every added action, but this would lead to an extreme computational overhead. Therefore, we
only check consistency on demand in a lazy fashion. Finally, we will discuss the get_favorite_history
clause, that selects the next belief-defining history:

get_favorite_history(S, S) :- history(S,H), check_history(H,S), !.
get_favorite_history(S,Res) :- generate_history_variations(S),
handle_situation_to_be_removed(S,Res), !.

The first clause retrieves the history from the pool and checks it for consistency, by calling check_history
as introduced in Chapter 5.2. If the check is valid, we can return the input situation. Otherwise, hy-
potheses are generated according to history-based diagnoses and are added to the pool by generate
history_variations. Then we drop the invalid situation in case we have a consistent one by handle
situation_to_be_removed.

Figure 5.1 sums up all given clauses and combines them in a callgraph that defines the presented
belief management system.
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Figure 5.1.: Callgraph belief management in IndiGolog
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Chapter 6
Robot Control Framework

After introducing a belief management formally, we will go one step further and apply it to a physical
robot. We propose a system architecture, describe the interfaces and take a closer look at exemplary
instantiations. Before this architecture is presented, we provide preliminaries that are crucial for this
chapter. We start by examining teleo-reactive (T-R) programs (Nilsson, 1994) in Chapter 6.1. T-
R programs are a popular way to program a robot and they provide useful properties in combination
with belief management. They offer the possibility to react to changes in the belief in a straightforward
manner. Chapter 6.2 gives an introduction into grounding. Grounding defines the connection between
a logical representation and its embodiment in reality (Russel and Norvig, 2003) that is relevant if we
want to execute actions on a real robot and sense the execution results. This is followed by Chapter 6.3
where all parts are put together to form a robot control framework that is able to cope with execution
and sensing failures, incomplete initial knowledge and exogenous events. This chapter is based on
work published in Gspandl, Podesser, Reip, Steinbauer, and Wolfram (2012), that was nominated for
the "Best Cognitive Robotics Paper" award.

6.1. T-R Programs

T-R programs, as described by Nilsson (1994), provide a convenient way to control robots, while re-
acting to continuous feedback from the environment. The approach tries to combine ideas from the
AI community with circuit-based systems such as GAPPS (Kaelbling, 1988; Kaelbling and Rosen-
schein, 1990). Therefore, we can find similarities to production systems as used by Nilsson (1984)
for the famous SRI robot Shakey, or the STRIPS planning as presented by Fikes et al. (1972). T-R
programs support parameter binding as well as recursion. Programs can evolve at run time, so it is
not essentially necessary to anticipate all possible situations at construction time. Another reason for
the popularity of the approach is that creating T-R programs is easy and very intuitive. This not only
supports human programmers but allows for automated planning and learning.

T-R sequences are robot programs that lead to a specific goal (teleo) while continuously taking the
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environment into account (reactive). They consist of productions:

K1→ a1

K2→ a2

. . .

Ki→ ai

. . .

Km→ am

Here Ki denote conditions, while ai are actions. Thus, if condition Ki holds, action ai is to be executed.
The program is always scanned from the top, searching for the first condition to hold. K1 denotes the
goal condition, thus a1 is typically a nil action. The condition Km is typically always true.

Rather than thinking in discrete actions, Nilsson views the system from a circuitry perspective as
shown in Figure 6.1. Conditions are continuously evaluated in order to achieve direct reactions to the
environment.

Figure 6.1.: TR Sequence in Circuitry (Nilsson, 1994)

The following example shows a T-R program named task that allows a robot to deliver an object
obj to a target dest. If the object is already at the desired target location (the goal condition) no action
is necessary. If the condition does not hold, the next condition is evaluated. In our case, we check
if we reached the target location while holding the object. If this holds, the object is put down. One
step before releasing the object at the target location, is to move to the target with the object. This
can be done after picking up the object. If the robot loses the object while moving, the condition

56



6.1. T-R Programs

has_object(obj)∧¬is_at(obj,dest) evaluates to false, so that the next condition is checked and the
robot tries to pick the object again. Thus a robot executing the given T-R program is able to react to
the environment while focusing on a given goal. The same holds if the object is brought to the target
location while the robot is approaching it. As soon as the object reaches the target location, the robot
stops by reaching the nil action. The last condition is the weakest one, it simply unifies the current
location of the object to be transported.

task(obj,dest)
¬has_object(obj)∧ is_at(obj,dest)→ nil

has_object(obj)∧ is_at(obj,dest)→ putdown(obj)
has_object(obj)∧¬at(obj,dest)→ goto(dest)

∃room.at(room)∧ is_at(obj,room)→ pickup(obj)
∃room.is_at(obj,room)→ goto(room)

A T-R program works backward from a specific goal, where each action is expected to achieve
the next higher condition. For instance action goto(t) that is executed if condition has_object(o)∧
¬is_at(o,t) holds, is expected to eventually achieve the condition has_object(o)∧ is_at(o,t), if it is
executed long enough. Formally, an action ai is supposed to reach a condition K j with j < i. Conditions
are regressions of higher conditions through actions (Nilsson, 1994). A T-R program is said to fulfill
the regression property if each condition Ki with i > 1 is the regression of a condition K j with j < i.
A completeness property states that all m conditions of a T-R program K1 ∨⋯∨Ki ∨⋯Km form a
tautology. This ensures that there is an action that can be executed. A T-R program is said to be
universal, if and only if it is complete and the regression property holds.

As shown in the example above, where a robot is instructed to deliver an object to a destination,
T-R programs can contain parameters. Their entries are not only restricted to primitive actions, but
can again be T-R programs. This way, recursions are enabled, as shown in the following example
(Nilsson, 1994). Here the goto routine is extended to a new program amble where the robot moves
straight if the path is clear, or avoids obstacles by adding new points to the path through the routine
newPoint. Alternatively to binding parameters in the condition part, the recursion example expects a
variable position to continuously being evaluated to the current position of the robot.

amble(dest)
at(dest)→ nil

clear_path(dest)→ goto(dest)
⊺→ amble(newPoint(position,dest))

Similarly to rule-based representation, T-R programs can also be represented as graphs. Nodes are
formed by conditions, whereas arcs between the nodes are realized by actions. The goal condition
forms the root node of the graph. Each action is expected to account for the next higher node. If more
than one action is necessary to achieve the node, then all subgraphs are added by the corresponding
action arc to the node. Instead of a one-path graph, this leads to a tree that is called teleo-reactive tree
(T-R tree). T-R trees are executed by identifying the shallowest true node and executing the action
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of the root-directed arc. If there is some notion of cost, the lowest-cost true node could be selected
instead of selecting the shallowest true one. The regression, completeness and universal properties are
transferred directly from T-R sequences to T-R trees.

at(dest)

heading_towards(dest)

⊺

rotate

move

Figure 6.2.: T-R-sequence graphical representation of goto (Nilsson, 1994)

Reaching the desired location (at(dest)) forms the goal condition of the T R graph in Figure 6.2. If
this property holds, the robot reached its goal and no action is necessary. If not, the robot checks if it
is already looking at the target. If yes, the robot starts its motors with the action move. Otherwise it
turns to the target.

To summarize, T-R programs can be represented in different ways. They are very easy to under-
stand, are goal directed and react immediately to the environment. This is why T-R programs were
chosen to act as execution control instance within our framework.

6.2. Symbol grounding

The symbol grounding problem (Harnad, 1990) accompanies the AI community since its beginning.
It deals with the problem of how to provide symbols with meanings. Symbols are any objects that
are part of a symbol system. This means a hole in a paper can be a symbol as well as a word in
a computing machine. There are syntactical rules that specify the manipulation of symbols. Their
interpretation falls in the area of grounding.

One of the first researchers who approached this problem was Alan Turing in his article Computing
Machinery and Intelligence (Turing, 1950), where he proposed the rather philosophical question “Can
machines think?”. He answered the question by a behavioral intelligence test (called Turing Test). In
this test a questioner interviewed its counterpart for five minutes. After the interview the questioners
had to answer the question whether they were communicating with a person or a machine. If the
interrogator is wrong in more than 30% of the the time the machine succeeds. Thus, in order to pass
the test a machine does not necessarily have to understand the scene and its symbols in use, it only
has to use them. In order to act as if it was intelligent forms the weak-AI hypothesis in philosophy. In
contrast to weak-AI stands the strong-AI hypothesis where a system is expected to really think instead
of simulated thinking (Russel and Norvig, 2003).
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The idea of weak-AI was continued by McCarthy et al. (1955) with the proposal for an AI summer
workshop. There, they stated that “Every aspect of learning or any other feature of intelligence can
be so precisely described that a machine can be made to simulate it.” At the rise of chat rooms many
chatbots successfully deceived humans. The chatbot CYBERLOVER was even smart enough to elicit
enough personal information, so that identities could be stolen and law enforcement started its work.

In contrast to this enthusiastic view of intelligent machines, Turing formulated some objections too.
A very strong objection is the argument disability where Turing creates a list of desirable characteris-
tics such as being friendly, making mistakes, learning from expertise, telling right from wrong, falling
in love, making someone fall in love with it, using words correctly, having the same level of diver-
sity of behavior as humans, doing something really new. Many of these properties can be assigned
to intelligent machines. For example learning and telling right from wrong to Deep Blue (Campbell
et al., 2002), the chess computer that won against the world chess champion Garry Kasparov, or TD-
Gammon that was able to play Backgammon at expert level (Tesauro, 1995) using artificial neural
networks that were trained by temporal difference learning. Machines like the teddy bear are also
known to make someone fall in love with it. Regarding the correct usage of words, the New York
Times describes iPhone’s virtual assistant Siri with the words unbelievable, performing an incredible
range of tasks or just mind-blowing (Pogue, 2011). Nevertheless, behaviors like falling in love are
still uncommon for machines.

Another objection raised by Turing is the mathematical objection. It is based on Gödel’s incom-
pleteness theorem (Gödel, 1931). It states that within a formal axiomatic system including arithmetic
F, a Gödel sentence G(F) with the following two properties can be created. First, G(F) is a sentence
of F, but cannot be proved within F. Second, if F is consistent, then G(F) is true (Russel and Norvig,
2003). Furthermore Turing stated the argument of informality. There he claims that human behavior
cannot be described by a set of rules. As machines can be seen as rule-executing systems, they are
unable to act like humans (Qualification problem).

In contrast to the notion of weak AI, the Turing test does not go far enough to representatives of
the strong AI community. They claim, that it is still a simulation of thinking. Machines passing the
test, miss the consciousness of passing it. This is formulated by Geoffrey Jefferson as: “Not until a
machine could write a sonnet or compose a concerto because of thoughts and emotions felt, and not
by the chance fall of symbols, could we agree that machine equals brain - this is, not only write it but
know that it had written it.” (see Russel and Norvig (2003); Jefferson (1949)).

6.3. Robot Control Framework

Equipped with knowledge of how to derive qualitative data from quantitative inputs and the ability
to reach a goal state using T-R programs, we put things together to describe a framework that allows
a robot to act in real life situations. This framework has to ensure that a robot is able to perceive
the world, process this data in order to provide a solid basis for decision-making and finally execute
this decision. In parallel, we seek to be invariant to external negative influences and incomplete or
incorrect initial knowledge. Furthermore, a robot acting according to this framework is expected to
overcome execution and sensing failures. In order to overcome these four threats already indicated
within the Sensing - Decision-Making - Execution cycle in Figure 1.5, the framework consists of
two layers. A low-level system is responsible for sensing and execution and is realized within the
Robot Operating System ROS. An introduction to ROS and relevant components that are necessary to
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control a mobile robot is given in the next section. The high-level system that is implemented in our
extended IndiGolog version covers decision-making and belief management as described within the
previous sections. T-R programs play a key role within the whole system, as they allow for reacting
immediately to changes in the robot’s belief. That means, it is irrelevant to the program execution
by T-R programs if the belief was changed. As the program execution always focuses on the current
favorite hypothesis, this hypothesis can be replaced without problems. This way we can optimize
belief management and program execution separately. Section 6.1 explains that T-R programs are goal
oriented and thus always execute the first executable action closest to the goal state. If the world state
changes, actions change seamlessly, keeping an uninterrupted emphasis to reach the goal. Between
the high-level and the low-level layers we find a sensing-decision-action loop. Sensing results are
propagated up, whereas actions are sent down. This complete setup is indicated in Figure 6.3.

Figure 6.3.: Robot Control Framework System Architecture

6.3.1. Low-Level System

The low-level system is responsible for sensing the environment and executing the decisions derived
by the high-level system. It consists of a set of subsystems that are examined one after the other. As
this low-level system is mainly realized within the prominent robotics framework ROS, we start with
a short introduction into ROS (see Quigley et al. (2009); Marder-Eppstein et al. (2010)).
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ROS

ROS consists of a communication system with implementations in C++ and Python. There exist fur-
ther, though not complete implementations in Java, Lua and many other languages. BSD was chosen
as license. This means it is open source, but can be used commercially without restrictions. This
way the framework has a broader scope of interest not limited to university but equally interesting to
industry. The communication system is augmented by a broad range of tools that allow for commu-
nication introspection or provide insight into data through visualizations. Such features are definitely
necessary for successful robotic developments, but the most important argument for the great success
story is the set of sophisticated algorithms. This includes core algorithms for localization and naviga-
tion, as well as many different algorithms for specific robotics applications. Most of them are written
as universal as possible, so they can be applied to a broad range of different robotic plattforms very
easily by setting the key parameters. But users still need a solid robotic background as they have to set
up the system, but they do not need to write all basic, essential algorithms on their own. Roboticists
unfamiliar to ROS need only a few days in order to get a robot running, before they can focus on the
topics of interest.

ROS was started in 2007 by the Stanford Artificial Intelligence Laboratory within the Stanford-AI-
Robot project (STAIR). It received an important boost through the initiative of Willow Garage. Willow
Garage was founded by a former Google employee and declares itself a robotic research institute for
non-military but personal robotics. Besides open-source software, open source hardware is a crucial
element within its company policy. In 2010 the company shipped the PR2 (personal robot two) to
eleven research institutes around the globe (see Figure 6.4). In return to receiving a robot, these
institutes committed themselves to release own developments to the global robotic community. The
capabilities of a PR2 are still impressive, but in 2010 they turned recent developments upside down.
Robots where able to fulfill a new range of activities such as fetching beer from a fridge or preparing
pancakes. A PR2 consists of a mobile platform with two arms, where each arm has seven degrees
of freedom. Several camera and laser systems can be found within the robot’s head. In combination
with microphones a lot of interesting human-robot interaction research was carried out. Another laser
is mounted on the base of the robot and serves for navigation. The impressive computation power of
two quad core i7 Xeon servers with eight cores each and 24GB of RAM is located within the base
as well. In addition to a 500 GB hard disk, it consists of a 1,5 TB disk that can be easily changed in
order to provide researchers with fast data analysis.

We can definitely say that Willow Garage and ROS lifted robotic research to a higher level, but
many problems still remain. On the one hand, it is very easy to set up a prototype that can do fancy
things in a demo setup, but it is very hard to receive a dependable system in a productive environ-
ment. Though communication can be inspected to some degree, it is not trivial to receive an overview
of the global system - this includes fundamental questions, such as: "Are all components running
correctly?". Furthermore most of the work concentrates on low-level activities, but there is only lit-
tle work on higher-level activities like the proposed framework. Recently the Open Source Robotics
Foundation sponsored by prominent names Bosch, Darpa, Google Atap or NASA, took over Willog
Garage’s activities and focusing on topics like multi-robot teams, real time systems, non-ideal net-
works. Those efforts definitely attract less public interest, but are a major step towards widespread
usage of robotic applications.
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Figure 6.4.: Personal Robot 2 (PR2) fetching beer from a fridge

Robot Driver

Opposite of high-level decision-making and belief management instances and within the low-level
system we find the robot driver. It is responsible for hardware communication and abstracts the hard-
ware as much as possible in order to reduce the influence of different platforms to the remaining of the
system. This means transforming information from sensors as well as forwarding appropriate com-
mands to execution systems such as motor controllers, load-carrying devices or simple commands like
shutting down the system. Similar to operating systems, hardware abstraction is a crucial requirement
for successful deployment of a system to different platforms. For example apart from specific param-
eter sets and a few special implementations, incubed IT, a company developing robotics navigation
solutions, runs their navigation system with the same code on various robots. Starting from a robot
transporting special goods with a weight of 15 kg, to a robot carrying standard totes for 600 times
400 mm with up to 50 kg, to a bigger robot that carries a weight of 200 kg and finally a big robot that
carries euro pallets (see Figure 6.5).

Sensor Services

The information read from the robot driver is forwarded to a set of sensor services that process this in-
formation. For the delivery domain that serves as running example, we have four main sensor sources.
First, we derive odometry information from the wheels of the robot. Similar to a car, we count the
turns and can therefore guess the current position based on our last position. If the kinematics of
the robot is similar to a differential drive, odometry information of turns is very noisy. So we could
additionally use a gyroscope to stabilize the turn information. Nevertheless, a position estimate based
on odometry information is nothing more than a guess, that becomes worse and worse as time goes
on due to slippage, rough terrain or a systematic error if not calibrated. Second, there is the laser
scanner that provides distance information for a given scan range. Third, there is a camera that pro-
duces images and three-dimensional depth information. And fourth, we receive information from the
robot’s load-handling device. While the information from the load-handling device is usually handled
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Figure 6.5.: Robot group shot

Figure 6.6.: Robot position estimates and corresponding covariance on a rectangular path without
correction (Gutmann, 2000)

63



Chapter 6. Robot Control Framework

on its own (a set of light barriers denote if the robot is loaded or not), position calculation (called
localization) is a more complex task that requires multiple sensors. Therefore, even for odometry that
acts as a first guess of the robots position with a high frequency we do not use raw values, but a sensor
combination. This first guess is corrected by laser information with a lower frequency. A setup where
multiple sources are used to receive a better result than from a single source is called filter. Localiza-
tion is typically based on either a Kalman Filter (Kalman, 1960; Maybeck, 1990) or a particle filter
(Gordon et al., 1993).

The Kalman Filter is a highly efficient filter that keeps one single instance of its state vector of
dimension n plus a covariance matrix of dimension n times n. The state vector clearly represents the
value to be filtered, whereas the covariance matrix represents the uncertainty of the state vector. The
filter works in two steps. The first step is a prediction, where steering inputs are used to predict the
future state of the system. In its basic form the Kalman Filter allows linear prediction functions which
can be computed by a matrix multiplication. More complex functions require the extended form of the
filter. The variance of a prediction has to be known and is simply added. Thus, the prediction increases
the covariance of our state. In the extended version the Jacobian of the prediction function is used.
The second step is the correction step, where a measurement is used to correct the current state and to
reduce the covariance. Similar to before, this is computed by an efficient matrix multiplication. Again
the variance of the measurement has to be known. The lower the sensor’s variance in comparison to the
covariance of the state, the higher is the influence of this measurement on the state vector. Typically,
a prediction is followed by a correction and again a prediction, so the whole filter consists of only a
few matrix operations. As computation power is always limited in mobile robotics this is an attractive
argument. Nevertheless, practical applications show that Kalman filters are difficult to apply as most
of the systems are non-linear and therefore require an extended Kalman Filter that again requires a
set of differentiations, which may be quite difficult to derive. Furthermore all movements and sensor
readings have to be normally distributed. This leads to two problems. First, it might be difficult to
derive the normal distributions of every filter participant and second, non-normally distributed inputs
might deviate the filter. If applications of the Kalman Filter in mobile robotics always require high
level experience and quite often a lot of corrections as well. Figure 6.6 shows a robot on a rectangular
path with the corresponding covariance denoted by ellipses. As there is no correction, the uncertainty
increases and increases.

Computationally more complex but a lot easier to apply is the particle filter (see Thrun et al. (2000)).
Instead of holding a single instance of the state to be filtered in conjunction with a covariance matrix,
the particle filter holds many instantiations of the state vector together with a weighting factor. Instead
of describing the uncertainty in every dimension and dimension combination, we have a single factor
that states the quality of a single state vector that we call particle. Again we have the two steps of
prediction and correction. Within the prediction, we apply the control commands to every particle.
As odometry is more precise than control commands, odometry information is used for prediction.
In order to increase robustness, we do not only move the particles by the control commands but add
some noise to every move. The motivation in behind is that if we have enough particles many might
guess the correct movement. If we plot the particles on a two dimensional plane before and after
prediction, we see an increase of the hull in the majority of cases. The bigger this hull, the bigger is
the uncertainty of the state. As every particle is a guess of the state, the distribution of the samples
models the uncertainty. In the correction phase, we apply the sensor input to every particle and check
the fit at every particle’s position. This fit is used to update the weight of the particle (the better the
fit, the higher the weight increase). After a full circle of prediction and correction, the particles for the
next round are typically sampled by their weight. This means, particles with a higher weight have a
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higher chance of occurring once or more often within the particle set of the next round. This way more
and more particles center around the true state, though it is necessary to ensure some diversity across
the particles. The simplest strategy for deriving a single state estimate from the set of all particles,
is taking the particle with the highest weight. This strategy has the clear drawback that best particle
might jump along time. A more elaborated strategy is to cluster particles, calculate the weight of each
cluster and calculate a weighted average of the cluster weighted highest. This leads to a much stabler
system with affordable additional computation effort. All in all, in contrast to the Kalman filter, the
particle filter is relatively simple to implement and can be applied to non-linear and non-gaussian
problems with a arguable amount of additional computational costs. Furthermore, if the number of
particles is high enough, it can be applied to the global localization problem, where a robot does not
know the initial position. Figure 6.7 shows the case where the robot does not know its initial pose
and thus spread all particles over the complete map. The longer the robot drives and thus the more
observations are available, the less particle clusters remain. Finally, the true pose of the robot is found
in the right picture.

Figure 6.7.: Global localization using a Particle filter: from a complete unknown pose to a known
one (Thrun et al., 2001). In the left picture, the robot does not know where it is. All
particles are distributed over the whole map. In the middle, most of the particles have
centered around possible poses. Finally, in the right picture, there remains one cluster
around the true pose of the robot. The corresponding video can be found at https:
//www.youtube.com/watch?v=nWvLX6xmoAw

The next capability that is necessary for our system is object recognition. This can be realized
by augmented reality AR tags (Azuma, 1997). We have a camera that captures pictures, tries to
identify AR tags and calculates the AR tag position in world coordinates. An AR tag is defined by a
special layout (typically black and white) that can be extracted by vision algorithms (see Figure 6.8).
If the size of the tag is known, it can be placed in three dimensional space originating from the
camera. The position of the camera itself can be retrieved by the position of the robot within its
application scenario and the transformation from the robot’s base coordinate system to the camera’s
camera system. Transformations from one coordinate system to another are simply done by matrix
multiplications (Gentle, 2007). The quality of the position recognition depends directly on the quality
of the localization. A simple implementation would use the last reading as the position of the object.
More sophisticated approaches use averages or filters as described above. Both approaches have to
ensure that object motions are treated correctly. For example if the robot stands still and it can watch
the moving object, an average with a fixed number of samples would delay the object’s motion as old
and thus wrong measurements are incorporated into the result.

Additionally the environment recognition for navigation comprises the laser sensor and the three
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Figure 6.8.: A milk box labeled with AR tags (Wolfram, 2011)

dimensional picture of the RGB-D camera. The aim of this sensor fusion is a map that serves as the
robot’s decision base for motion commands. The laser delivers a quite reliable view of the environ-
ment, but this view is limited to a plane. Objects that lie below or above this plane cannot be detected
by the laser. This three-dimensional part is a specialty of RGB-D cameras. Figure 6.9 shows an office
chair that is very difficult to detect by a two dimensional laser, but is easily detected by the camera.
Similar conclusions are drawn in Quigley et al. (2009). So the combination of those two systems can
be used to guide robots through dynamic environments.

Figure 6.9.: An office chair from the view point of a RGB-D camera (Wolfram, 2011). The projection
on the ground is shown by white points.

World Model Cache

All the processed information from the sensor services is fed to the World Model Cache. This World
Model Cache is responsible for storing quantitative and qualitative information. This means the com-
ponent plays a key role within the architecture as incorrect information leads to incorrect decisions
and or to incorrect executions respectively. In contrast to a rather general description of the sensor
services in the previous section, we will take a closer look at this part of the systems. The design
and implementation was part of Máté Wolfram’s master project, so an extended documentation can
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be found in this master thesis (Wolfram, 2011).

The storing task can be refined in storing object data, their attributes, relations and aliases. Every
object within the system has a unique ID. Additionally to this unique ID, an object may have several
aliases. The aim of such aliases is to offer every module access data based on its internal name instead
of converting the ID each time the world model is accessed. For example the augmented reality tag
discovery system may be interested in AR tag ids only, whereas the AR does not make a difference
for the reasoning system, but it is interested in the name and type of the object. Tag #64 could be a
calculator within the reasoning system and this connection is stored in the World Model by aliases.
This corresponds to the symbol grounding problem. A central management was chosen in order to
ease interaction between modules and reduce error-proneness. Adding and removing aliases is done
by standard ROS communication techniques.

Attached to an unique object ID, we find object data. In the simplest form this can be the pose of
the object in any coordination system. Similar to resolving aliases, the World Model is responsible
for doing coordinate transformations. Using ROS this is a relatively simple task, as there is a rather
powerful transformation library (Foote, 2013). It keeps track of transformation matrices between
coordination systems over time and offers methods to transform poses from one coordinate system
into another coordinate system at any given time. By setting a fixed coordinate frame and a target
time one can also transform from one frame into the same frame taking the movement of other frames
into account. This is very convenient for filtering sensor measurements, such as read AR tags while
the robot is moving. Additional object information is stored by attribute entries, where each attribute
consists of a name and a value. An additional time stamp gives insight when the attribute was changed
the last time. This time stamp can be used to ensure that only the latest information is stored (network
latencies could mix up sequences between different observation sources) and to give every module
the possibility to assess the value of the information. A special token not_set is used to store the
information that no value is available. This feature is used by the belief management system in order
to overwrite faulty observations.

Whereas attribute entries store information of one object, relations between objects are tackled by
relation entries. Relation entries follow the subject, predicate, object triple, though the subject is not
directly part of an relation entry but is implicitly available as the subject holds its relation entries.
Typical predicate values are in, closeTo or attachedTo but of course they are not limited to spatial
relations. An additional relation property allows for refining the relation. This could be a distance for
closeTo or a side for attachedTo. Again there is a timestamp ensuring that only the latest assignment
is stored. The services for retrieving information from the World Model are more or less straight
forward. They provide the possibility to retrieve an object’s pose in any coordinate frame, retrieve its
attributes and relations and view a list of all aliases. Equivalently to retrieving information from the
component, it offers services to add or update information. Every access either contains the unique
ID of an object or an alias.

Though the world model is realized within the ROS framework, its internals are decoupled from
ROS. It is implemented in Java and offers two kinds of visualization. First there is a tabular graphical
user interface that lists all attributes and relations. Additional markers of the object’s poses are pub-
lished and can be visualized using ROS’ standard visualization tool called rviz (see http://wiki.ros.org/
rviz/UserGuide for details). This allows for fast online observation of execution (see Figure 6.11).
The internal design of the World Model follows the model, view, controller principle and is shown in
Figure 6.10.

Typically information is not fed directly into the World Model, but takes its route via an information
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Figure 6.10.: The world model’s internal design (Wolfram, 2011)

Figure 6.11.: A robot and a group of objects in visualization and reality (Wolfram, 2011)
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translator. Such an information translator takes raw information from the sensor services and brings
them into a format the World Model can process. Those modules are placed between sensor services
and World Model forming a sensor pipeline as shown in Figure 6.12.

Figure 6.12.: Sensor pipeline from object into its world model representation (Wolfram, 2011)

Actuator Services

After describing the sensor pipeline, we cut short the typical data flow to the high-level system and
back to the low-level system. This way we assume that some oracle will send the right decision at the
right time and we can thus continue our system description of the low-level layer with the actuator
services. Of course this module highly depends on the type of robot in use, but assuming we have a
mobile robot within the delivery domain, we can identify several main tasks. Namely, have the robot
drive from A to B, grasp objects and release them at certain target. Though different instantiations of
this capabilities are necessary for different objects and transport routes, thinking in terms of standard
containers and a standard procedure for picking up and putting down these containers, robots have the
possibility to take over a broad range of transport tasks.

So, first we need the ability to pick or drop items. As they are highly interconnected we seek for a
common solution for both of them. Disregarding the manual transfers where a human places objects
onto a robot manually, we are interested in automatic object transfers. There are many different
solutions for achieving this goal. The most common ones are grippers as we can find at the pioneer
robots of the institute or a kind of a conveyor system that is mounted on the robot such as the robots
of incubed IT. In presence of a conveyor it is easy to unload objects from the robot. If the counterpart
does not provide active support to unload the object, it is sufficient to move the object off the conveyor
by using the conveyor’s motor. As soon as the object’s center of mass is beyond the robot’s footprint,
the object is moved by gravity. If the counterpart is automated as well, some kind of signal exchange
is used in order to start the transfer. The most elaborate way to transfer objects is to use a robotic
hand that grasps the object on its own and moves it from the robot to the storage or vice versa.
Depending on the degrees of freedom, this leads to a multi-dimensional planning problem. This is
a complex problem but leads to the biggest flexibility in carrying out transfers. An overview of all
of the transfer/hardware setups is shown in Figure 6.13. All setups have in common that a certain
degree of fine positioning is necessary for the robot to be in the right spot when starting the transfer.
This requires accurate information from the World Model and the right controlling algorithm behind
it. During the transfer we typically use additional sensors such as light barriers or pressure sensors in
order to back the execution.

The second important task besides transferring objects is to move from A to B. This task is required
for different occasions. First, before picking an object, the robot has to move to its target location.
Second, after picking the object we have to move to the target location. And optionally third, the
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Figure 6.13.: Robots with different transfer capabilities

robot has to move to service locations such as charging stations when its battery is low. As charging
stations may be located at transfer points this third move is optional. Another optional target could
be a labeling machine. Typically, the navigation task is solved by two planners. A global planner is
responsible for calculating a complete path from the robots current position to its desired target. The
task of the local planner is to compute a motion command that is optimal for the local surroundings
and the received path of the global planner. As in every planning problem, the representation of the
environment plays a key role. In mobile robotics, costmaps have shown to be very useful. They
represent the environment in a grid where each cell of the grid contains a cost value. The higher
the cost, the less attractive this cell is to the robot and the more the robot will try to avoid this cell.
The costs of the cells are received by the different sensors of the system. There are numerous ways
to merge the sensors. A very efficient way to combine different sensors was developed within the
ROS ecosystem. Here, different sensors serve different layers in a costmap. A set of different layer
implementations exist in order to store and prepare the information as efficiently as possible. On
a constant frequency the layers are merged to form a single costmap interface that is used by the
planners. Special values within the costmap can be used to denote cells that must not be traversed
such as walls or other obstacles, or cells that should not be traversed as there is no information about
them, because they could not be reached during the mapping process. A map does not necessarily
exist at the beginning of the robot’s task, but can instead be created during the robots driving task.
Yet, as map creation is done very quickly and the environment of the robot is known in the majority of
cases, mapping is carried out before the robot starts driving. Figure 6.14 shows the costmap within a
narrow environment. Light regions denote obstacles, whereas dark spots can be traversed by a robot.
The descent from dark to light can be traversed, but is less preferable. The green dots refer to the
current laser measurement of the robot. The robot itself is located in the lower and darker part of the
image and is painted by a green polygon. The green line originating from the robot is the current
global path of the robot.

Assuming that a more or less circular robot with radius r can turn on the spot, we can increase
all obstacles by this radius r and thus reduce the global path-finding problem to finding a path of
connected cells from the cell that contains the current location of the robot to the cell that contains the
robot’s goal position. Inflating the map by a fixed radius is much easier than checking the correct robot
footprint at every position during the search process. So the search itself can be done by a standard
search algorithm. Equipped with a path, we need to handle the path execution. In the simplest case
this could be a controller function that keeps the robot on the path and stops in case of an obstacle. As
this behavior does not resemble the expected behavior of an intelligent mobile robot, we need to come
up with a more sophisticated solution. The next step could be an elastic band (Quinlan and Khatib,
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Figure 6.14.: Global Costmap with robot, path and laser points.

1993) implementation where a set of artificial forces is used to adopt the global path in a local window.
The path starts with the global path generated by the path planner. Artificial forces that originate from
obstacles are used to deform the path. The result is a collision-free, smooth path that can serve as
input to a controller function. Another quite popular strategy for deriving velocity commands based
on a given map and additional sensor input is the Dynamic Window Approach (Fox et al., 1997) or,
with small differences in configuration, called Trajectory Rollout (Gerkey and Konolige, 2008). This
approach takes the current velocity of the robot and calculates the reachable upper and lower velocity
borders within a small time frame. Within those velocity borders a discrete (equally distributed) set
of velocities is taken and applied to the current position and velocity of the robot for some time. The
resulting trajectories are assessed according to a cost function and the velocity of the best trajectory
is applied to the robot. Typical inputs to the cost function are distances to obstacles, the goal and
the global path. Though the configuration of the cost function may not be easy, the method is very
popular because this comprehensible method is very easy to implement and provides quick results in
terms of an appealing robot navigation behavior.

6.3.2. IndiGolog Interface

Armed with knowledge about the high-level and the low-level system, we can now concentrate on the
interface between the two layers. In Figure 6.3 this interface is denoted by a horizontal bar named
IndiGolog Interface. The interface is responsible for communication between the layers. Therefore,
it is split into three sub-components namely (1) an interface to trigger low-level action executions, (2)
an interface to return abstract sensing results and (3) an interface to manipulate the continuous World
Model Cache.

The action execution interface holds a mapping of IndiGolog actions to a concrete action server.
Action servers are implemented in ROS and are responsible for execution in real world, where an
execution can consist of many substeps. For example, the action pickup(ob ject) is executed by an
action server by first, moving to an approach position that is stored within the World Model Cache
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relative to the object. Second, opening the gripper, third, moving closer to the object till the robot
touches the object, which can be identified through light barriers and finally closing the gripper again
and lifting the object. Lifting the object is important so that the object is not missed during driving.
The Action Server again forwards the sub tasks to the actuator services. As soon as the action is
finished, its return value is sent back to the high-level system, which continues with consistency
checking and decision-making.

The abstract sensing results interface is responsible for supplying the high-level system with qual-
itative information such as is_at(chocolate,quality_control). The grounding can be as sophisticated
as described in Section 6.2, though practice shows that simple thresholds provide a good solution for
a wide range of cases. Still we have to take care of imprecise measurements that lead to jumping
values. For instance if the chocolate is located at the border between quality_control and warehouse
its logical location may change quite often between the two rooms due to system noise. This problem
was tackled by Steinbauer et al. (2005) by applying predicate hysteresis. In contrast to a threshold,
the output of a hysteresis not only depends on the input but on the current output value as well. This
concept is wide-spread in control theory and leads to delayed output reaction.

The World Model Module has a special instance within its system, the World Model Logic that
is responsible for translating quantitative into qualitative information. Based on the sensor informa-
tion that reaches the World Model via the Sensor Services a set of calculation instances derives many
additional facts such as approach positions for a grasp. As the spatial context is crucial to the exe-
cution of the robot, most calculations are geometric ones. Next, all available information is fed into
a set of conditions, that simplifies the available information into predicates, which can be used by
the high-level system. Figure 6.15 gives an overview of the internal structure of the World Model
Logic. New evaluations are forwarded to the high-level system. In order to be used by the high-level
system, we further extend the IndiGolog main loop by handle_exogenous_sensing. The predicate
handle_exogenous_sensing checks if there exists some sensing information provided by the low-level
system but not actively triggered. If such a sensing information exists, the information is added to the
history by sensing actions, similar to actively triggered sensing. The complete extended IndiGolog
main loop looks as follows:

indigo(E,H) :- handle_exogenous(H,H2), !, indigo(E,H2).
indigo(E,H) :- handle_exogenous_sensing(H,H2), !, indigo(E,H2).
indigo(E,H) :- handle_consistency(H,H2), !, indigo(E,H2).
indigo(E,H) :- handle_rolling(H,H2), !, indigo(E,H2).
indigo(E,H) :- catch(final(E,H), exog, indigo(E,H)).
indigo(E,H) :- catch(trans(e,H,E1,H1), exog, indigo(E,H)),
(var(H1) -> true ;
H1 = H -> indigo(E1,H);
H1 = [A|H] -> exec(A,S), handle_sensing(H,A,S,H2), indigo(E1,H2)).

Finally, the continuous World Model Cache manipulation interface is responsible for returning
high-level conclusions back to the low-level system. For example, if an object was believed to be
in the warehouse, but belief management corrected the location and stated that the object is within
quality_control, the low-level system has to be informed about this change. Qualitative information
can be seen as an abstraction of quantitative information, therefore the correct quantitative value can
only be generated in the minority of cases. For this reason we try to generate a value that is as good as
possible. Of course such functions could be arbitrary complex, but we seek for simple solutions that
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Figure 6.15.: Transforming quantitative into qualitative information by World Model Logic (Wolfram,
2011)

can be applied to the majority of cases. If an object is found to be in a room, we place the object at
the center of the room. Besides adding new facts or negating existing ones, the high-level system can
also conclude that there is no valid information about an object attribute. In this case the attribute is
simply set to the special token not_set.
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Chapter 7
Diagnosis Templates

Belief Management as presented in Chapter 4 uses a pool of possible hypotheses to find the correct
belief. This pool is created by applying every exogenous action and every action variation. Obvi-
ously, the resulting number of hypotheses to be checked for consistency is very high (see Theorem 1).
Furthermore consistency checks require a high number of computations as the initial state has to be
checked for consistency, in addition, for every action we have to check if it is executable and if all
invariants hold. The longer the history, the more computation is necessary for a single action, as prop-
erty checking is done by regression. This means, every hypothesis, for which we can safely omit the
consistency check is a big gain in terms of runtime. This chapter is based on work published in Reip,
Steinbauer, and Ferrein (2012).

We have seen that most of the time just a single fault caused a system to be inconsistent, but
also hypotheses with a high number of faults were generated. This observation is consistent with
experiences the authors made in Mies et al. (2008). Equally, most of the generated (inconsistent)
hypotheses have nothing to do with the observed inconsistency. For example we check if a missed
grab of a container1 can be repaired by moving a totally uncorrelated container2 from one room to
another. The larger the basic action theory and the more variations and exogenous actions exist, the
more hypotheses are generated. Fritz (2009) states "We often face a lot of unpredictable exogenous
events, most of which are unrelated to the problem the agent is facing and thus do not matter."

We think we can do a better job than the presented brute-force search. Every inconsistency we
detect differs in at least the value of one predicate. For example, is_at(container1,quality_control) is
sensed to be true but was expected to be false. So we are interested in actions that have an influence
on the is_at predicate bound to the objects container1 and quality_control. The effect of actions is
defined within the basic action theory. This way we can precalculate all exogenous actions and action
variations that can eventually lead to a change of the is_at predicate. The result of such a precalcula-
tion are action sequences that contain exactly one exogenous action or one action variation, which we
call diagnosis templates. During runtime we simply fetch diagnosis templates that correspond to the
current inconsistency, generate all hypotheses based on the templates and check them for consistency.

Before having a closer look on diagnosis templates, we examine the different fields of related
research in Section 7.1. Then, in Section 7.2, we will define the diagnosis templates formally and
present an algorithm to generate them. We will end the chapter with diagnosis template application in
Section 7.3.
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7.1. Related Research

First we will examine the field of plan diagnosis. Similar to our system, within plan diagnosis research
a robot or an agent receives sensor input over time and has to compare the input to expected sensor
inputs. In plan diagnosis, the input is a plan, typically in STRIPS notation (see Fikes et al. (1972))
or a similar representation. From this plan, the robot can calculate the expected outcomes after each
action. A plan is typically seen as a system of components. So it is possible for every plan state to
indicate whether this plan state is a normal state or an abnormal state as conventional model-based
diagnosis (see Reiter (1987)). de Jonge et al. (2009) differentiate between two directions. First,
primary plan diagnosis deals exactly with the problem of identifying health states for all plan states,
where the set of different health states can be larger than just normal and abnormal. Second, secondary
plan diagnosis aims at detecting the underlying reasons for misbehaving actions. They differentiate
between agent, equipment and environment to be the cause of the problem. If an equipment is said to
behave abnormally and the use of this equipment occurs in the remaining plan, a problem may occur.

Similar to classical model-based diagnosis one tries to find minimal diagnosis. This means one tries
to find the set with a minimal number of abnormally qualified plan steps. Roos and Witteveen (2009)
go one step beyond and define the notion of mini-maxi diagnosis. Whereas mini refers to the minimal
diagnosis, maxi states that maximal informative plan diagnoses are demanded. Maximal informative
refers to diagnoses with maximal predictive content. As the outcome of an abnormally qualified plan
step is undefined, maximal predictive content is advantageous. The combination of the two criteria is
done as follows: from all maxi diagnoses they chose the minimal one.

Very often plan diagnosis does not capture a single robot or agent but a team of them. In this case
each agent is expected to monitor and diagnose its own actions. As the results of actions may not
be directly observable or execution results of actions performed by other agents are not available yet,
every agent has to keep a set of different possible action sequences (called trajectories) (see Micalizio
and Torasso (2008)). Therefore every definition of an action explicitly contains a set of status variables
that is used to define the preconditions and effects of an action.

Although plan diagnosis attempts health qualification for every plan step in contrast to a consistent
action sequence that resembles all observations in diagnosis templates, there are a few similarities
to diagnosis templates and their application. In plan diagnosis one needs to infer over action effects
in order to find a minimal diagnosis, whereas in diagnosis templates we need this investigation to
repair the current belief state. Furthermore due to partial observability in plan diagnosis and a set of
consistent hypotheses in diagnosis templates both need to manage a pool of candidates.

Within the notion of fluent calculus, that is related to situation calculus, Fichtner et al. (2003) pre-
sented a formalization to derive explanations for unexpected situations. Their approach employs active
sensing to minimize the impact of such events. Sensing actions and uncertainty is in the focus of Weld
et al. (1998) as well. They extended GraphPlan to handle sensing actions and uncertainty, but they
do not maintain the consistency of a system’s belief. A similar approach was taken by Dearden and
Boutilier (1994). They combined planning and uncertainty. Murphy and Hershberger (1999) provide
another example for handling sensing failures. Hardware failures in general, are tackled by Muscet-
tola et al. (1998). Based on model-based reasoning, their architecture detected failures in the hardware
of the space probe Deep Space One and recovered from them. This system finds the best current op-
eration based on model-based programming. The idea is to define only safe operation requirements
rather than hand coding all recovery strategies. Especially in dynamic real-time environments the
combination of planning and uncertainty is crucial. For example Ferrein et al. (2004) propose a sys-
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Figure 7.1.: Fast forward’s base system architecture (Hoffmann and Nebel, 2001)

tem which keeps a few alternatives and chooses the best one according to a performance measure.
Another robot-related diagnosis approach was presented by Liu and Coghill (2004). They introduced
a qualitative model of a planar robot’s kinematics which can be used for diagnosis purposes.

Within model-based diagnosis, diagnosis templates share a relation to kernel diagnoses. A kernel
diagnosis is a partial diagnosis with the property that the only partial diagnosis which it covers is itself
(De Kleer et al., 1992). Thus, kernel diagnoses can be seen as compact descriptions that cover incon-
sistent observations. Similar diagnosis templates describe the root causes to unexpected observations.
This means every diagnosis template consists of one action that was not intended by the executing
agent or robot. In Williams and Ragno (2007) kernel diagnoses are combined with best-first search.
Enumerating all diagnoses is very expensive in terms of computation costs. For this reason a minimal
number of solutions is computed with the goal to identify them as quickly as possible.

Diagnosis Templates exploit domain specific properties in a general form, so that the robot’s belief
can be corrected much faster than without taking the domain into account. The idea is not limited to
belief management, but is already used heavily in planning. In both heuristics select relevant actions
for the particular problem instead of taking all actions into account. The first successful application
was done within the fast forward planning system (Hoffmann and Nebel, 2001), that won the AIPS-
2000 planning competition. It should be noted that besides the authors exceptional knowledge of
planning algorithm, the design of the algorithm was driven by observing the planner’s behavior doing
benchmark tasks instead of theoretical considerations. The architecture (see Figure 7.1) consists of
two main parts. Starting from the current state, an optimized relaxed version of graphplan serves as
heuristic method. It provides a goal distance and a set of helpful actions. The main search algorithm
uses enforced hill-climbing. The goal distance is used as heuristic value in a natural way. The helpful
actions are used for pruning to keep the observed search space as small as possible. The interplay
between hill-climbing and graphplan is continued until the search succeeds or fails.

The idea of exploiting domain specific properties for heuristic based planning was extended in the
fast downward algorithm in (Helmert, 2006). The name of the algorithm still contains the "fast" from
(Hoffmann and Nebel, 2001). The "downward" derives from a hierarchical strategy where top-level
goals decompose the problem until every subproblem is a basic graph search task. The algorithm
carries out three steps, (1) translation, (2) knowledge compilation and (3) search as shown in Fig-
ure 7.2. The translation part converts the planning problem that is given in PDDL2.2 (see Fox and
Long (2003); Edelkamp and Hoffmann (2004)) into an internal structure, namely a multi-valued plan-
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Figure 7.2.: Fast downward’s execution steps (Helmert, 2006)

ning task as presented in Edelkamp and Helmert (2000). This means instead of having multiple binary
state variables such as container1_in_a, container1_in_b, . . . , container1_in_z they use one variable
container1 ∈ {a,b, . . . ,z}. Based on this translation, the multi-valued planning task is defined as a
5-tupel Π = ⟨V,s0,s∗,A,O⟩, where V is a finite set of state variables, each with its finite domain Dv,
s0 is the initial state, s∗ the goal, A is a set of multi planning task axioms over V and finally O the set
of operators over V with preconditions and effects. The knowledge compilation forms a kind of pre-
processing step. It converts the planning task into data structures that are useful during search. First,
we have domain transition graphs for each state variable. A domain transition graph contains the
dependencies between the values of one state variable. Second, similar to domain transition graphs,
causal graphs contain the dependencies between different variables. Third, successor generators are
data structures that compute the set of applicable operators in a given world state. Fourth, the values
of derived variables are computed by axiom evaluators. The search itself can be done by three dif-
ferent search algorithms, which are scheduled in parallel. First, Greedy best-first search orientates on
the algorithm with same name from (Russel and Norvig, 2003) with a few adaptions to incorporate
the data structures from the knowledge compilation step. Second, multi-heuristic best-first search is
a variation of the first algorithm where multiple heuristics are combined to guide the search. Third,
focused iterative-broadening search is an experimental algorithm that does not use heuristics, but
instead narrows the set of operators by applying causal graphs. To this extend, the fast downward
algorithm is important to diagnosis templates as the knowledge compilation step inspired a similar
step for diagnosis templates.

7.2. Diagnosis Template Definition

Diagnosis Templates can be seen as patterns that guide the hypotheses generation process and prune
hypotheses that have no effect on the current belief inconsistency. Figure 7.3 gives an overview of
the different hypothesis categories. The dimensions of each category do not relate to any calculation
and differ from domain to domain, but they reflect the personal assessment based on experiences.
The large category in blue corresponds to all hypotheses. This category, contains every possible
combination of action variations and exogenous actions, irrespective of whether the hypothesis is
consistent or not. A subset of all hypotheses is the set of consistent hypotheses. This set is generally
much smaller, but nevertheless can be very large, especially if the domain contains a lot of exogenous
action with very specific effects, like within an in-house delivery domain the movement of airplanes
has no influence on any delivery action, but can be inserted after every action execution. This set
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Figure 7.3.: Overview of hypotheses categories. The desired set of minimal consistent hypotheses is
just a small subset of all hypotheses.

contains valid hypotheses, but most of the entries may over-explain the given inconsistency. Our
goal set are consistent hypotheses that are minimal in the sense that for every hypothesis there is no
consistent hypothesis that is an action subset. Diagnosis Templates do not approach the task from the
consistency side, but from a problem-oriented side. Thus, they allow for generating hypothesis that
all center around the given inconsistency. Still many of them may be inconsistent, so our solution is
only a subset of all hypotheses generated by diagnosis templates.

Please note the small discrepancy between the set of minimal consistent hypotheses and the inter-
section of hypotheses derived by diagnosis templates and consistent hypotheses. This originates from
the fact that hypotheses generated from diagnosis templates contain exactly one change, that is either
exactly one action variation or exactly one action insertion. If there are inconsistencies that are due to
two or more changes, such cases are not handled by diagnoses templates. For this reason, an approach
driven by diagnosis templates is incomplete. However, this limitation is not so hard. First, the diag-
nosis templates approach can easily be extended to handle multiple enumerable faults. And second,
of course this depends on the domain, but it is not very often that two or more connected faults arise
at the same time, which makes it possible to differentiate them.

So, after sketching the motivation of diagnosis templates and determining their place within the
space of all hypotheses, we seek for a formal definition. Therefore, we will provide a few definitions
that in conjunction will provide the definition of diagnosis templates. Diagnosis templates form a set
of explanations, how to derive some fluent F in terms of action sequences. The dependencies between
actions and fluents are extracted from the basic action theory that contains a domain description. These
dependencies can be exploited to form general explanations for a fluent. Consecutively, we define the
dependencies formally (see Reip et al. (2012)).

Definition 16. Let F(x⃗,s), be a fluent and a(z⃗) be an action. Then, we define DepActF(x⃗,a(z⃗),s)
indicates whether or not fluent F directly depends on action a(z⃗) in situation s.

DepActF(x⃗,a(z⃗),s) ≐ Poss(a(z⃗),s)∧¬F(x⃗,s)∧F(x⃗,do(a(z⃗),s)).
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So action a(z⃗) leads to fluent F(x⃗). This is true, iff fluent F(x⃗) holds after but not before executing
action a(z⃗).

For example, if the action pickup(obj) is executable in some situation s and the robot is not in
possession of the object as indicated by ¬has_object(obj,s), then DepActhas_object(obj,pickup(obj),s)
holds in situation s, because the robot possesses the object after picking it up (has_object(obj,s′) with
s′ = (pickup(obj,s))). For reasons of readability we omit the negative fluent cases in these definitions.
They are defined analogously. Next, we apply the definition from above to a set of fluents.

Definition 17. Let F1(x⃗1,s), . . . ,Fn(x⃗n,s), be fluents and a(z⃗) be an action. Then the fluents F1, . . . ,Fn

directly depend on an action a(z⃗) in situation s iff at least one of the fluents F1(x⃗1), . . . ,Fn(x⃗n) depend
on action a(z⃗):

DepAct⊕F1,...,Fn
(χ⃗,a(z⃗),s) ≐

n
⋁
i=1

DepActFi
(x⃗i,a(z⃗),s)

The vector χ⃗ serves as abbreviation for x⃗1, . . . , x⃗n.

For example, the predicate at(r,s) directly depends on the action goto(r). This means, every set
containing the predicate at(r,s) directly depends on the action goto(r). After defining if a fluent
depends on an action, we change the direction and investigate under which circumstances an action
or the execution of an action depends on a fluent.

Definition 18. Let F(x⃗,s), be a fluent and a(z⃗) be an action. Then, DepPossF depends if the execution
of action a(z⃗) depends on fluent F(x⃗).

DepPossF(x⃗,a(z⃗),s) ≐ Poss(a(z⃗),s)∧F(x⃗,s)∧
¬Poss(a(z⃗),do(switch_valF ,s))

A set of special actions switch_valF for every fluent F is assumed to be part of the basic action theory.
These actions alter the value of the fluent F. The dependency holds if action a(z⃗) can be executed in
the presence of fluent F(x⃗) but not in the absence of the fluent, which is enabled by the special action
switch_valF .

This dependency is true for action putdown(obj) that depends on the fluent has_object(obj). The
next dependency relation to be examined is the dependency of a fluent E(y⃗) on fluent F(x⃗) via action
a(z⃗).

Definition 19. Let E(y⃗,s) and F(x⃗,s), be fluents and a(z⃗) be an action. Then, DepEffectE,F denotes
iff fluent E(y⃗) is an effect of action a(z⃗) and depends on fluent F(x⃗):

DepEffectE,F(y⃗, x⃗,a(z⃗),s) ≐ F(x⃗,s)∧
E(y⃗,do(a(z⃗),s))∧¬E(y⃗,do([switch_valF ,a(z⃗)],s)).

For example, the predicate is_at(obj,r,s′) for an object obj, a room r and a situation s′ is changed by
the action goto(r) if the predicate has_object(obj,s) holds in the preceding situation (s′ = do(goto(r),
s)). Thus DepEffectis_at,has_object(obj,r,obj,goto(r),s) holds. This effect dependency can again be
generalized to a set of fluents. This means the predicate becomes true if one fluent out of a set of
fluents depends on the given fluent F(x⃗) via action a(z⃗).
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Definition 20. Let E1(y⃗1,s), . . . ,En(y⃗n,s),F(x⃗,s) be fluents and a(z⃗) be an action. Then,
DepFlE1,...,En,F(y⃗1, . . . , y⃗n, x⃗,a(z⃗),s) states that the fluents E1, . . . ,En are an effect of action a(z⃗) and
depend on F(x⃗).

DepFlE1,...,En,F(y⃗1, . . . , y⃗n, x⃗,a(z⃗),s) ≐DepPossF(x⃗,a(z⃗),s)∨
DepEffectE1,F(y⃗1, x⃗,a(z⃗),s)∨ . . .∨DepEffectEn,F(y⃗n, x⃗,a(z⃗),s)

Equal to the previous is_at example, we can add any predicate any(y⃗) and
DepFlis_at,any,has_object(obj,r, y⃗,obj,goto(r),s) holds.

Equipped with a set of dependency definitions between fluents and actions, we are ready to define a
dependency tree for a fluent F . A dependency tree contains all action sequences, starting with exactly
one action variation or one action insertion that explains this fluent.

Definition 21. An edge-labeled and node-labeled non-recursive, fully expanded tree TF is a fluent
dependency tree for fluent F iff the following properties hold:

1. The root is labeled F.

2. If n is a node of TF with label F1, . . . ,Fn, then every edge from node n to successor node nsucc is
labeled with an action term a with ∃s, x⃗1, . . . , x⃗n, z⃗.DepAct⊕F1,...,Fn

(x⃗1, . . . , x⃗n,a(z⃗),s).

3. The successor node nsucc with edge a of an arbitrary node n labeled E1, . . . ,Em in the tree is
labeled the following way:

nsucc =
⎧⎪⎪⎨⎪⎪⎩

$ ∃s,a1, z⃗.Varia(a,a1(z⃗),s)∨ Inser(a,s))
F1, . . . ,Fn Φ

where F1, . . . ,Fn contain all fluents with Φ abbreviating the formula

∃x⃗1, . . . , x⃗m, y⃗1, . . . , y⃗n, z⃗,s.DepFlE1,...,Em,F1
(x⃗1, . . . , x⃗m, y⃗1, z⃗,a,s)

∧ . . .∧DepFlE1,...,Em,Fn
(x⃗1, . . . , x⃗m, y⃗n, z⃗,a,s)

(7.1)

4. If n is labeled with $, it is a leaf.

5. Let n be a node in TF . Then, define H(n) as the set of edge labels from n to the root.

We assume a finite number of actions. The fluent dependency tree T¬F is defined analogously.

Every edge is labeled by an action. Edges to the root node, are labeled with actions that directly
lead to the root fluent. The preconditions of these actions are achieved by the fluents that label the
next node level. The algorithm for generating a fluent dependency tree for fluent F directly follows
the definition and is shown in Algorithm 2 (Reip et al., 2012). The main input is the target fluent.
The initially empty sets of edges E and vertices V form the resulting tree. Additionally, we feed the
algorithm with a few additional sets that tremendously facilitate the readability of the algorithm. The
set Actions and the set Fluents can be directly derived from the basic action theory. Please note that we
assume finite domains here. The set Changes combines all variations and insertions (see Chapter 4)
into a single set. The set DepAct⊕(E1, . . . ,En) follows from the corresponding predicate and contains
all actions that lead to E1 ∨ . . .∨En. Equally, the set DepFl(E1, . . . ,En,a) enumerates all fluents, so
that action a leads to E1∨ . . .∨En. This again is derived from the identically-named predicate.
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Algorithm 2: gen_dependency_tree(root, V,E)
input : parent (root) node (E1, . . . ,En)

the initially set V of vertices
the initially empty set E of labeled edges

V ×V ×Label
a set Actions of all actions
a set Fluents containing all fluent formulas
a set Changes containing all variations and insertions
a set DepAct⊕(E1, . . . ,En) containing all actions on which fluents E1, . . . ,En depend
a set DepFl(E1, . . . ,En,a) containing all fluents on which fluents E1, . . . ,En depend through action a

1 foreach a ∈ Actions do
2 if a ∈ DepAct⊕(E1, . . . ,En) then
3 if a ∈ Changes then
4 V ← V ∪{new_node$};
5 E← E∪{root,new_node$,a};
6 continue;
7 end
8 child←∅ ;
9 foreach f ∈ Fluents do

10 if f ∈ DepFl(E1, . . . ,En,a) then
11 child← child∪{ f};
12 end
13 end
14 if child ≠∅∧¬Cycle(child) then
15 V ← V ∪{nodechild};
16 E← E∪{root,nodechild ,a};
17 gen_dependency_tree(nodechild ,V,E);
18 end
19 end
20 end
21 if ∣root∣ = 1 then // no child node
22 delete root;
23 end

The algorithm starts with the target fluent as first node caption, e.g. gen_dependency_tree(
is_at(obj,r),[],[]) for generating the fluent dependency tree of fluent is_at. This node is expanded
recursively in a depth-first manner until a valid leaf is found, a cycle is detected by means of node
captions or there is no further valid expansion. A cycle can be interpreted as follows: in order to reach
a specific (set of) fluent(s) the same set of fluents has to occur already before. Thus, in case of a cycle,
the node is deleted. Due to the recursive nature of the algorithm, it is possible that the parent node
including its whole branch is deleted as well. The algorithm starts by probing every action if it leads
to at least one of the fluents of interest (Lines 1-2). If the action is already a variation or insertion
(Line 3), it is added to the tree by adding a new leaf node with label $ to the set of nodes and a vertex
from the current node to the leaf node labeled with the current action to the set of actions. Then the
next action is checked. Otherwise we create an initially empty label for the new child node in Line 8.
Next, we check every fluent if it dominates the action’s precondition (Line 10). If yes, the fluent is
added to the child label (Line 11). After checking all fluents, the child’s label is finished. In order to
be added to the tree it has to pass two tests. First, the label must not be empty and second, the label
has to differ from all its parents’ labels (Line 14). If the criteria are met, the label is added to the tree
and the algorithm is called recursively in Line 17. After returning from the recursive call, it is checked
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if the node could be successfully expanded. If not, the node itself is also deleted (Line 21).

In order to clarify the algorithm, we will show the fluent dependency tree generation based on the
example of the fluent is_at(obj,r). So we start with a root label is_at(obj,r). Then we check all
actions if they fit. Within the action check, the action goto(r) is the first action that influences the root
predicate (DepAct⊕is_at(obj,r,goto(r),s) holds). As goto(r) is neither a variation nor an insertion, we
try to create a child label and can identify has_object(obj) as the only influencing fluent - is_at(obj,r)
which is only influenced by action goto(r) if the robot is carrying the object obj. Thus, we add a new
node has_object(obj) that connects to the root node via an edge labeled goto(r). This intermediate
step is shown in Figure 7.4.

is_at(obj,r)

has_object(obj)

goto(r)

Figure 7.4.: Dependency tree after the first node expansion.

After successfully adding the node has_object(obj) to the tree, we continue the depth-first search
and try to expand the new node. The first influencing action we can find on this node is
pickupWrongObject(obj). This action is already a variation of the action pickup(obj) and thus a
change action. Therefore, we add a new leaf with the caption $. The edge between the leaf and the
has_object(obj) node is labeled with the action name, namely pickupWrongObject(obj). This state
of the algorithm is shown in Figure 7.5.

is_at(obj,r)

has_object(obj)

$

pickupWrongObject(obj)

goto(r)

Figure 7.5.: Dependency tree after first leaf is found.

The action pickupWrongObject(obj) was successfully added with a new leaf, so we can continue
checking further actions. The next action that influences our current node has_object(obj) is the
action pickup(obj). This action is no variation or insertion, so we look for enabling fluents. And we
find them as the conditions below hold.

• DepFlhas_object,is_at(obj,obj,r1,pickup(obj),s),

• DepFlhas_object,at(obj,r2,pickup(obj),s) and

• DepFlhas_object,¬has_object(obj,obj,pickup(obj),s).

A label consisting of three predicates is clearly not empty and furthermore this label does not oc-
cur within the current branch yet. We can again add a new node with label is_at(obj,r1),at(r2),
¬has_object(obj) connected to the previous node by edge pickup(obj). The result of this step is
shown in Figure 7.6.
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is_at(obj,r)

has_object(obj)

$

pickupWrongObject(obj)

is_at(obj,r1),at(r2),
¬has_object(obj)

goto(r)

pickup(obj)

Figure 7.6.: Fluent Dependency Tree after expanding to the second level.

In the next step, we try to expand the new node is_at(obj,at(r1),¬has_object(obj). Again we
check all actions for its influence on the given predicate set. First in an arbitrary order, we iden-
tify the action exogMoveObject(obj). As the action is an insertion, we can add a second leaf with
caption $ attached through an edge exogMoveObject(obj). The next identified action is goto(r1)
that leads to the fluent has_object(obj). Though this child caption does not pass the cycle test, as
the same caption already occurs at the parent of the current node. Therefore, this child is not ap-
pended. Another fitting action is putdown(obj) that leads to the child label has_object(obj) through
DepFlis_at,at,¬has_object,has_object(obj,r1,r2,obj,obj,putdown(obj),s). This potential child node meets
the same fate as the child node before. It does not pass the cycle test and therefore is not added.
Figure 7.7 shows this intermediate step with our new leaf. The two rejected child nodes are indicated
by dashed ellipses.

is_at(obj,r)

has_object(obj)

$

pickupWrongObject(obj)

is_at(obj,r1),at(r2),
¬has_object(obj)

$

exogMoveObject(obj)

has_object(obj)

goto(r1)

has_object(obj)

putdown(obj)

goto(r)

pickup(obj)

Figure 7.7.: Fluent Dependency Tree after adding the second leaf. Rejected nodes are drawn with
dashes.

Now, there is no other valid expansion for node is_at(obj,r1), at(r2), ¬has_object(obj) so the
recursive call returns to node has_object(obj). As there is no valid expansion for this node as well,
we return to the root node is_at(obj,r). This node is not fully expanded yet. There is one more
influencing action namely exogMoveObject(obj,r). This action is an insertion so we can add a third
leaf. Now as the root node cannot be further expanded, the algorithm finishes. The complete fluent
dependency tree Tis_at(obj,r) is shown in Figure 7.8.

Generating fluent dependency trees that form explanations for a given fluent is an important subtask
on the way to generating diagnosis templates. For a node n of TF(x⃗), H(n) is defined to be the sequence
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is_at(obj,r)

has_object(obj)

$

pickupWrongObject(obj)

is_at(obj,r1), at(r2),
¬has_object(obj)

$

exogMoveObject(obj)

pickup(obj)

goto(r)

$

exogMoveObject(obj,r)

Figure 7.8.: Fluent dependency tree for fluent is_at(obj,r).

of edge labels on the path in TF(x⃗) from node n to the root. If n is a leaf, H(n) contains exactly one
variation or insertion (cf. Definition 21 in (Reip et al., 2012)). The following definition shows that
diagnosis templates can be directly inferred from fluent dependency trees.

Definition 22. Let TF(x⃗) be a dependency tree for fluent F(x⃗). For every leaf node n1, . . . ,nm of TF(x⃗),

dtF(x⃗)
i = H(ni) with i ∈ {1, . . . ,m} is a Diagnosis Template. DT F(x⃗) denotes the set of all Diagnosis

Templates for a fluent F.

The fluent dependency tree Tis_at(obj,r) from the previous example leads to three Diagnosis Tem-
plates:

• [pickupWrongObject(obj),goto(r)],
• [exogMoveObject(obj),pickup(obj),goto(r)] and

• [exogMoveObject(obj)].
For Diagnosis Template [a1, . . . ,an], by definition, action a1 is always a variation or an inser-

tion. Actions [a2, . . . ,an] act as a kind of condition or enabler for action a1 to possibly fulfill F(x⃗).
For instance, if is_at(obj,r) does not hold, it is achieved through pickupWrongObject(obj) only if
pickupWrongObject(obj) is followed by the action goto(r). In the following theorem we show that
every action sequence that consists of exactly one variation or insertion and leads to a fluent F(x⃗)
can be reduced to a Diagnosis Template dtF(x⃗)

i ∈ DT F(x⃗). The theorem guarantees that all possible
explanations for F(x⃗) occur in the Diagnosis Templates.

Such a sequence is called a minimal explanation, if it is derived in the following way: an ex-
ecutable and consistent action sequence [a1, . . . ,an] deriving fluent F(x⃗) with ∃s.¬F(x⃗,s)∧ F(x⃗,
do([a1, . . . ,an],s)) is first reduced to [ak, . . . ,am] with k ≥ 1∧m ≤ n. ak is further required to be
an insertion or a variation and am has to lead to the fluent (∃s.¬F(x⃗,do([a1, . . . ,am−1],s))∧ F(x⃗,
do([a1, . . . ,am],s))). Second, we remove all actions ai with i from m to k that are not necessary
to achieve fluent F(x⃗), denoted by ∃s.F(x⃗,do([ak, . . . ,ai−1,ai+1, . . . ,am],s)). The resulting sequence
must still be executable and consistent. m is chosen in a way that the final length of the sequence is
minimal. Thus, such sequences start with an insertion or variation and consist only of actions that
are necessary to fulfill fluent F(x⃗). These sequences form exactly the diagnosis templates. So the
important question is, do we miss any hypotheses if we restrict our search to diagnosis templates.
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Theorem 3. The set of Diagnosis Templates DT F(x⃗) contains all minimal action sub-sequences with
exactly one insertion or variation leading to situations s∗, where F(x⃗,s∗) holds. Thus, every action
sequence a1, . . . ,an with ∃s.¬F(x⃗,s)∧F(x⃗,do([a1, . . . ,an],s) and exactly one variation or insertion
is a super-sequence of one dtF(x⃗)

i ∈DT F(x⃗).

Proof. The proof is by contradiction. We try to find an executable and consistent action sequence
[a1, . . . ,an] with exactly one variation or insertion that leads to fluent F(x⃗) without any sub-sequence
being a Diagnosis Template. We show that the sequence [a1, . . . ,an] already assumed to be a mini-
mal explanation either contains an action that is not part of the fluent dependency tree TF(x⃗) or that
[a1, . . . ,an] does not cover a full path within TF(x⃗).

The root of the fluent dependency tree is labeled F(x⃗) (rule 1 of Definition 21). The last action an

directly leads to F(x⃗), so it fulfills ∃s.DepAct⊕F(x⃗,an,s). Thus, there is an edge from the tree root
labeled an (rule 2 of Definition 21). The node following this edge is labeled with fluents that either
enable an’s precondition or an’s effect F(x⃗) (rule 3 of Definition 21). Analogously, we know from the
action sequence that an−1 is necessary so that an can be executed (precondition), or it effects F(x⃗).
Hence, we know that action an−1 is a valid edge label of the tree, too. Equivalently we know for every
action ai with i = n−2, . . . ,1 that there is an action a j with j > i whose precondition or effect is enabled
by ai. Thus, every action ai ∈ {a1, . . . ,an−2} is also part of the diagnosis tree. As a1 is an insertion
or variation, we derive from rule 3 and 4 of Definition 21 that it leads to a leaf n. So H(n) forms a
full valid path through the fluent dependency tree. Hence, this contradicts the assumption, as there
is no consistent executable action sequence leading to fluent F(x⃗) that is not a super-sequence of an
Diagnosis Template. ◻

Proving, that we can reduce every minimal and valid hypothesis to a diagnosis template, gives us the
possibility to reduce the search space for a valid hypothesis tremendously. If we recall the hypotheses
categories from Figure 7.3 and add the restriction of single faults, we can see that the overlap of
diagnosis template hypotheses and the valid hypotheses form the set of minimal valid hypotheses. So
instead of checking all hypotheses, we can narrow our search to the subspace of diagnosis template
hypotheses. Please note that the difference in size depends on the domain and in an specially designed
domain there may be no difference. Although quite often we see that the bigger the domain, the fewer
the interconnections, like the English language. Generally, natural language processing matrices are
very sparse (see Jurafsky and Martin (2000)).

7.3. Diagnosis Template Application

Equipped with the generation of diagnosis templates we will investigate how these diagnosis templates
can be used to diagnose inconsistent situations. A situation is denoted by the initial situation plus an
action sequence. An inconsistent situation can be repaired by replacing an action by its variation or
inserting exogenous actions (Gspandl, Pill, Reip, Steinbauer, and Ferrein, 2011).

Following a single fault policy, we allow exactly one change. Examining the definition of consis-
tency (Definition 3) we see that an inconsistency either results from a mismatch between the expected
and real sensing values or from a violated invariant. In the former case, we have two possibilities
in order to diagnose the inconsistency. First, if there exists a sensing variation, we can change the
sensing result. That is a trivial task with no implication to the remaining action sequence. Second, we
can alter the action history, so that the sensed fluent provides the same result as in the sensing result.
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This means we have to change a fluent value. In the latter case of an invalid invariant, we can refor-
mulate the invariant formula into conjunctive normal form (CNF), which is a conjunction of clauses.
In order to fulfill the conjunction every clause has to be true. As in CNF every clause is required to be
a disjunction of literals it is rather simple to identify all the literals that may let the formula fail. To
sum it up, beside the simple case where we have to change a sensing result, we can correct a situation
to be consistent by fulfilling a fluent (or a set of fluents).

Recalling the normal form of successor state axiom

F(x⃗,do(α,s)) ≡ ϕ
+(α, x⃗,s)∨F(x⃗,s)∧¬ϕ

−(α, x⃗,s)

we can fulfill a fluent either by an action that leads to the fluent or by maintaining the fluent value
by omitting the action (or the effects of the action) that negates the fluent. Two designated algo-
rithms are presented that lead to the described behavior. Whereas algorithm fulfill changes an ac-
tion sequence in order to lead to a fluent, algorithm maintain keeps the value of a fluent. So the
resulting hypotheses set is the sensing variation, plus the result of algorithm fulfill and algorithm
maintain. This behavior for finite domains is shown in Algorithm 3, which is called each time an
inconsistency is detected. The current situation forms the input. It is split into the action sequence
(a⃗) and the initial situation S0. First, the set H of hypotheses is initialized empty. Afterwards, the
set of fluents that create the inconsistency is identified in Line 2. If the inconsistency is due to
a mismatch between expected and real sensing value, we add the real fluent value. In case of an
invariant we reformulate the invariant as conjunctive normal form and add all literals of disjunc-
tions of literals that evaluate to false. Consider an initial situation where the robot is located in
the quality_control (at(quality_control)), holding the object container1 (has_object(container1)).
The current action sequence is [putdown(container1),goto(shop)]. In the shop, the robot senses the
container1 (sense(container1)), which was expected to be in the quality_control. A possible sensing
variation could be sense_nothing that is added if applicable in Line 4. Then for every conflicting flu-
ent we generate the hypotheses by applying the algorithms fulfill (Line 7) and maintain (Line 8). The
details of those algorithms follow immediately.

Algorithm 3: generate(a⃗,S0)

1 H ←∅
2 [F1, . . . ,Fn]← identifyFluents
3 if IsSensingAction(am) then
4 H ←H ∪applySensingVariation(am,[a1, ...,am−1],S0)
5 end
6 foreach f (x⃗) ∈ [F1, ...,Fn] do
7 H ←H ∪ fulfillF(x⃗)(DT F(x⃗), a⃗,∅,S0)
8 H ←H ∪maintainF(x⃗)(a⃗,∅,S0)
9 end

10 return H

Algorithm fulfill (Alg. 4) tries to apply diagnosis templates as shown in Fig. 7.8. In this case we
had three diagnosis templates, namely

• [pickupWrongObject(obj),goto(r)],
• [exogMoveObject(obj),pickup(obj),goto(r)] and
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Algorithm 4: fulfillF(x⃗)(DT F(x⃗), a⃗, v⃗,S0)

1 H ←∅
2 dtSet←∅
3 s← do([a1, . . . ,am],S0)
4 s−1← do([a1, . . . ,am−1],S0)
5 foreach dti ∈DT F(x⃗) do
6 l← ∣dti∣
7 if l > 1 then
8 if unify(dti.αl,am) then
9 dtSet← dtSet∪{dti∖dti.αl}

10 else
11 dtSet← dtSet∪dti
12 end
13 else if ∣dti∣ = 1 then
14 if ∃x⃗.Varia(dti.α1,am(x⃗),s−1) then
15 H ←H ∪applyVaria(s−1,dti.α1, v⃗)
16 else if Inser(dti.α1,do(am,s−1)) then
17 H ←H ∪applyInser(s−1,dti.α1, v⃗)
18 end
19 end
20 end
21 if ∣a⃗∣ > 1 then
22 H ←H ∪ fulfillF(x⃗)(dtSet,[a1, . . . ,am−1],[am, v⃗],S0)
23 end
24 return H

• [exogMoveObject(obj)].

Every diagnosis template consists of one action variation or insertion plus an optional list of actions
that follows the change. This non-change list can be seen as condition, so that the variation or insertion
can be applied successfully. Thus, first we check if this non-change list occurs in the current action
sequence and if yes, we try to apply the change action (variation or insertion). The algorithm takes the
initial situation together with the current action sequence, the set of diagnosis templates explaining the
current inconsistency and an initially empty set of visited actions, that is used for completing diagnosis
candidates within the algorithm. We will explain the algorithm based on the inconsistency of the pre-
vious example, where the initial situation is defined by [at(quality_control),has_object(container1)]
and the action sequence is [putdown(container1),goto(shop)]. This was followed by the sensing the
container1 in the shop. So we try to make is_at(container1,shop) hold.

The algorithm iterates recursively over the current action sequence and within each call it iterates
over all diagnosis templates. We try to unify the last action (al) of diagnosis templates that are longer
than one action with the current action in Line 7f. So the diagnosis template [pickupWrongObject(
obj), goto(r)] can be applied as goto(r) and goto(shop) can be unified. Therefore, we can reduce the
non-change condition list by this one goto action and append the shortened diagnosis template to the
diagnosis template list for the next iteration (Line 9). [exogMoveObject(obj),pickup(obj),goto(r)]
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can be applied equally as the previous template. The third template, namely [exogMoveObject(obj)],
is different, as it contains only the change action, so we have to check if this action can be applied. This
results in the first diagnosis [putdown(container1),goto(shop),exogMoveObject(container1,shop)]
derived by Line 17 that applies the given exogenous action. After iterating over all diagnosis tem-
plates, it is checked if the current action sequence is longer than one. If yes, we have further actions
to be checked and call the algorithm recursively (Line 22). Within the next call we have two remain-
ing diagnosis templates ([pickupWrongObject(obj)] and [exogMoveObject(obj),pickup(obj)]) and
the current action sequence is [putdown(container1)]. The first diagnosis template cannot be applied
as pickupWrongObject(obj) is no valid variation for the action putdown(container1) and the second
template cannot be applied because pickup(obj) cannot be unified with putdown(container1). The
remaining action sequence is not greater than one, so no further recursive call is made. After return-
ing from the recursive call, all hypotheses from the recursive call are added to the current hypotheses
set. Finally, this hypothesis set is returned as result.

After having a possibility to change an action sequence in order to lead to a fluent, we investigate
the second case where a fluent is expected to maintain its value. We do this by preventing the fluent
from being altered by an action. For this purpose we check every action if it changes the relevant
fluent. After identifying the action we either try to change it by a variant of it, or we try to prevent
this fluent changing effect by changing the situation before the execution of the identified action, so
that the effect can not take place. This is shown in algorithm 5. Similarly to Algorithm 4, it takes the
initial situation S0, the current action sequence a1, . . . ,am and the sequence of visited actions v1, . . . ,vp

(initially empty) as input. First, the hypothesis set is initialized, followed by abbreviations for the
current and the predecessor situation s and s1. Then we check if the current action changes the fluent
value F(x⃗,s) to false (Line 5). If there is an executable action variation that prevents this change it is
added to the hypotheses set (Line 6). Here the set of visited actions is necessary to complete the action
sequence of the new hypothesis. Furthermore we try to avoid the effect of the fluent negating action.
Therefore, relevant fluents to enable the effect are identified in Line 10. If such a fluent is found, it
is prevented by maintaining the negative fluent in Line 11 and furthermore by fulfilling the negative
fluent in Line 12. The results of both cases are added to the hypotheses set. If the main fluent F(x⃗,s)
is not negated by the current action and the remaining action sequence is not empty, the algorithm is
called recursively (Line 17). Finally the generated hypotheses set is returned in Line 20. Please note
that returned hypotheses are not necessarily consistent. Such a consistent check is expected to happen
after all hypotheses are generated. This is simply due to the fact that the same hypothesis may be
generated from both fulfill and maintain algorithms. So if we store the resulting hypotheses in a set
before checking them for consistency, we can omit an expensive double check.

A final remark has to be made about the unrelated single-fault assumption that is made throughout
this chapter. This means, every time an inconsistency occurs, this inconsistency can be repaired if it is
due to a single fault. It is no problem to repair two consecutive faults if there is sufficient sensing. For
instance, the first sensing action unveils the first fault that can be repaired by our belief management.
Then, immediately afterwards, the next action is again a sensing action that unveils another fault. Here
again, belief management can repair the resulting inconsistency. The unrelated part of an unrelated
single-fault addresses exactly this part, namely that every single fault has to be repairable by one
change. It is no problem to handle multiple faults one by one, which can be done if the faults are
unrelated.
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Algorithm 5: maintainFluentF(x⃗)(a⃗, v⃗,S0)

1 H←∅
2 a⃗l← [a1, . . . ,am−1]
3 s← do([a1, . . . ,am],S0)
4 s−1← do([a1, . . . ,am−1],S0)
5 if F(x⃗,s−1)∧¬F(x⃗,s) then
6 if ∃α, y⃗.Varia(α,am(y⃗),s−1)∧Exec(α,s−1) then
7 H←H∪ [a1, . . . ,am−1,α,v1, . . . ,vp]
8 end
9 foreach f ∈ Fluents do

10 if ∃y⃗, z⃗.DepEffectF, f (x⃗, y⃗,am(z⃗),do(a⃗,S0)) then
11 H←H∪maintain¬ f (y⃗)(a⃗l,[am, v⃗],S0)
12 H←H∪ fulfill

¬ f (y⃗)(DT¬ f (y⃗), a⃗l,[am, v⃗],S0)
13 end
14 end
15 else
16 if ∣a⃗∣ > 1 then
17 H←H∪maintainF(x⃗)(a⃗l,[am, v⃗],S0)
18 end
19 end
20 return H
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Chapter 8
Efficient Belief Management

After defining diagnosis templates in Chapter 7 that ensure great progress in terms of efficiency, we
look more closely at efficiency and present a few add-ons that have proven to be useful. We present
two heuristics that deal with the problem of when to investigate which hypothesis. This is especially
useful if the domain consists of fluents that allow multiple different instantiations. The combination
of these heuristics is quite important to the performance of the whole system.

8.1. Hypothesis Compression

Within Chapter 7, we tried to reduce the amount of generated hypotheses that have to be checked for
consistency. Furthermore, we know that we generate hypotheses for inconsistent situations. After this
generation we have to choose a new favorite as the old one has become inconsistent (see Algorithm 1).
The new favorite is again kept until it becomes inconsistent. This means only if exactly one hypothesis
results from every repair process, or if we always choose the incorrect hypothesis, we will be able to
use all hypotheses from the pool to form the belief. As this coincidence might happen, but is very
unlikely to happen the question arises if we need to generate all valid hypotheses or whether we
can restrict the resulting hypotheses set without loss of generality or performance. So the idea is to
compress a set of hypotheses into one hypothesis. Parts of this chapter were published in Gspandl,
Podesser, Reip, Steinbauer, and Wolfram (2012).

Assuming that the possibility of compressing a set of hypotheses into a single hypothesis exists, we
take a look at the decompression process first. Obviously, we would like to decompress the hypothesis
set just in case it is really necessary. As needed the definition directly depends on the favorite selection
policy, we have to take this into account. In Section 4.2, costs were presented as selection criteria. So,
if we can compress the hypothesis set in a way that the compression result itself forms a hypothesis we
do not need to alter the remaining belief management system. Furthermore, if all hypotheses share the
same costs, we can easily place the decompression process around the selection of the new favorite.

So coming back to the compression itself, we were already able to identify two requirements. First,
all hypotheses of a compression set have to share the same costs. Furthermore, if the compressed set
itself is a normal hypothesis, the decompression algorithm needs to operate without any additional
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knowledge. Imagine the following action sequences that are all followed by the sensing result indi-
cating containerX is in the shop. All action sequences are supposed to start in an equal initial state
and all of them form a consistent situation.

• [goto(storage),pickup(container1),goto(shop),exogMoveObject(containerX ,shop)]

• [goto(storage),pickup(container1),exogMoveObject(containerX ,shop),goto(shop)]

• [goto(storage),exogMoveObject(containerX ,shop),pickup(container1),goto(shop)]

• [exogMoveObject(containerX ,shop),goto(storage),pickup(container1),goto(shop)]

As the costs of hypotheses resulting from summing up the cost value of each change, all four hy-
potheses share the same costs, as they share the same insertion exogMoveObject(containerX ,shop).
Furthermore, we see that all action sequences consist of the same actions. They only differ in
the position of the insertion, where the change moves further to the front in every example. This
means we can derive the second action sequence from the first sequence by moving the change of
one position towards the beginning of the sequence. The same holds for the third and the second,
as well as the fourth and the third sequence. From a human perspective it makes no difference
if the containerX was brought to the shop a few minutes earlier or later, because we can decou-
ple the action sequence of the robot and the exogenous action. According to Occam’s Razor, we
prefer the very last position for a change, as the effects of the change can influence less other ac-
tions. An action can only influence another action if it occurs before. For instance, in the sequence
pickup(container1),goto(shop) the action pickup(container1) might influence the action goto(shop).
If the sequence is goto(shop),pickup(container1), then the action pickup(container1) has no influ-
ence on the action goto(shop). Thus, for action sequences with the same endogenous actions and
the same change that occurs in different positions, we found an exemplary solution that allows us to
represent a set of hypotheses as a single correct hypothesis and to decompress them, when needed.
After outlining the idea we will now formally define this compression.

First, we will start with the definition of a function that returns the position of an action within a
given action sequence. If the action occurs more often than once the function will return the position
of the last occurrence. In case the action sequence does not contain the action, the function will return
∞.

Definition 23. Let α, denote an action, while a1, . . . ,an is an arbitrary action sequence. For some
situation term s, action α occurs at position p in the action sequence a1, . . . ,an, iff

pos(α,do([a1, . . . ,an],s)) = p ≐
p = n∧α = an∨

p = n−1∧α = an−1∧α ≠ an∨
p = n−2∧α = an−2∧α ≠ an∧α ≠ an−1∨

⋮
p =∞∧α ≠ an∧α ≠ an−1∧⋯∧α ≠ a1

Equipped with a function that gives us the position of an action within an action sequence, we can
define a position relation within an action sequence, denoting that action α1 occurs before α2 in action
sequence a1, . . . ,an. In case the action sequence does not contain α2 but contains α1 the predicate will
evaluate to true. In case α1 is not present the predicate will always evaluate to false.
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Definition 24. Let α1 and α2 be two actions and a1, . . . ,an an action sequence. α1 is defined to be
before α2, iff

before(α1,α2,do([a1, . . . ,an],s) ≐
∃p1.pos(α1,do([a1, . . . ,an],s) = p1∧

∃p2.pos(α2,do([a1, . . . ,an],s) = p2∧ p1 < p2

The next predicate checks if two action sequences consist of the same endogenous actions. If
both action sequences consist of the same actions, the test is trivial and we can stop. Otherwise, we
step through all actions recursively. If action sequence a1, . . . ,an ends with an action variation or an
insertion, the last action is cut and the predicate is evaluated with the remaining sequence. The same
is true for action sequence b1 . . .bm. If neither action sequence a1 . . .an nor action sequence b1 . . .bm

ends with a change, the last action in both sequences has to be equal and the remaining sequences are
evaluated.

Definition 25. Let a1, . . . ,an and b1 . . .bm be action action sequences. They are said to be equal
regarding endogenous actions, iff

EndogEquality(do([a1, . . . ,an],s),do([a1, . . . ,an],s)) ≐ ⊺
EndogEquality(do([a1, . . . ,an],s),do([b1, . . . ,bm],s)) ≐

(Inser(an,do([a1, . . . ,an−1],s))∨ Varia(an,bm,do([a1, . . . ,an−1],s)))∧
EndogEquality (do([a1, . . . ,an−1],s),do([b1, . . . ,bm−1],s))

EndogEquality(do([a1, . . . ,an],s),do([b1, . . . ,bm],s)) ≐
(Inser(bm,do([a1, . . . ,bm−1],s))∨ Varia(bm,an,do([b1, . . . ,bm−1],s)))∧

EndogEquality (do([a1, . . . ,an−1],s),do([b1, . . . ,bm−1],s))
EndogEquality(do([a1, . . . ,an,α],s),do([b1, . . . ,bm,α],s)) ≐

EndogEquality (do([a1, . . . ,an],s),do([b1, . . . ,bm],s))

Provided with a set of definitions, we put them together in order to define if two action sequences
consist of the same endogenous actions that are in the same order and the same changes that are
in the same order as well. So, first the same order of all changes is checked action by action in
both sequences by applying the predicate before to every change. This is followed by the predicate
EndogEquality that checks the equality of all endogenous actions.

Definition 26. Two action sequences a1, . . . ,an and b1, . . .bm are said to be change equal for the action
variations or insertions α1, . . . ,αk, iff

ChangeEquality(α1, . . . ,αk,do([a1, . . . ,an],s),do([b1, . . . ,bm],s)) ≐
⋀

i=1,...,k−1
before(αi,αi+1,do([a1, . . . ,an],s)∧

before(αi,αi+1,do([b1, . . . ,bm],s)∧
EndogEquality(do([a1, . . . ,an],s),do([b1, . . . ,bm],s))
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After having defined an equality between two action sequences with regard to change actions, we
define a certain order between action sequences. As the endogenous actions are the same in both
sequences, we concentrate on the change actions. Two action sequences are said to be sorted if every
change action in the first action sequence occurs in the second action sequence at the same position or
later. So, after applying the predicate ChangeEquality we compare the positions of all change actions.
As noted in the introduction of this section, we prefer changes to occur as late as possible within an
action sequence, as it can influence less other actions.

Definition 27. Let a1, . . . ,an and b1, . . . ,bm action sequences and α1, . . .αk a sequence of action vari-
ations or insertions, then the action sequences are said to be Sorted, iff

Sorted([],do([a1, . . . ,an],s),do([b1, . . . ,bm],s)) ≐ ⊺
Sorted([α1, . . . ,αk],do([a1, . . . ,an],s),do([b1, . . . ,bm],s)) ≐

ChangeEquality([α1, . . . ,αk],do([a1, . . . ,an],s),do([b1, . . . ,bm],s))∧
∃pa.pos(α1,do([a1, . . . ,an],s)) = pa∧
∃pb.pos(α1,do([b1, . . . ,bm],s)) = pb∧

(pa ≥ pb∧Sorted(α2, . . . ,αk,do([a1, . . . ,an],s),do([b1, . . . ,bm],s)))

So, finally we are able to define the compression function. The idea behind this is to take a set of
action sequences that fulfill the ChangeEquality predicate and to represent them by a single action
sequence. We do this by sorting all action sequences and select the first one. This means the resulting
action sequence fulfills the Sorted predicate with every other action sequence from the compression
set. For space reasons we further abbreviate action sequences by vectors, such as the abbreviated
action sequence a1, . . .an is written as a⃗.

Definition 28. Let a⃗1, a⃗2, . . ., a⃗m be action sequences and α⃗ be a sequence of change actions, then the
compression function compress takes all the sequences and results in action sequence z⃗ as follows:

compress([α⃗],do([a⃗1],s),do([a⃗2],s), . . .do([a⃗m],s)) = do([z⃗],s) ≐
(z⃗ = a⃗1∧Sorted([α⃗],do([a⃗1],s),do([a⃗2],s))∧ . . .∧Sorted([α⃗],do([a⃗1],s),do([a⃗m],s)))∨

⋮
(z⃗ = a⃗m∧Sorted([α⃗],do([a⃗m],s),do([a⃗1],s))∧ . . .∧Sorted([α⃗],do([a⃗m],s),do([ ⃗am−1],s)))

So we are able to compress a set of action sequences into a single action sequence. Let us move
the perspective to the hypothesis generation side and assume that we want to insert an insertion into
an action sequence in order to generate the respective hypotheses. Then it is easy to see, that all
hypotheses will form a set of hypotheses that can be compressed. Furthermore we can easily compute
the result of the compression set, without generating all the hypotheses before. This helps a lot as
there is less load on the pool of our belief management system. Furthermore, it might happen that
this action sequence is never selected to be the favorite one. As all hypotheses of the compression set
share the same cost value, no hypotheses of the compression set would have been selected as well. So
we can save a potentially high number of evaluations that is crucial to the performance of the belief
management system. As the number of hypotheses within the belief management pool may be very
large, quite a high number of hypotheses is never selected to be the favorite hypotheses that forms the
belief of the robot.

94



8.1. Hypothesis Compression

The better the selection strategy, the less (incorrect) hypotheses are selected as favorites. Neverthe-
less we expect hypotheses to be selected, because otherwise it would not make sense to store them in
our hypotheses pool. In case a compressed action sequence is selected to be the favorite hypothesis,
we have to answer two questions. First, which hypothesis should form the robot’s belief and second,
what is to be done if this favorite hypothesis turns inconsistent again. The first question could be an-
swered by any hypothesis out of the compression set, though as they are equal regarding changes and
as the result of the compression function follows Occam’s razor, there is no motivation to select any
other hypothesis than the result of the compression function. The initial situation for the second ques-
tion is as follows: if the favorite turns inconsistent we have a compression set of hypotheses and the
result of the compression function is inconsistent. So, although the result of the compression function
is inconsistent, there may be another hypothesis within the compression set that is consistent. Again,
as all hypotheses within this set share the same cost value, any hypothesis from this set is a potential
candidate to be the new favorite. For that purpose we need to have a strategy that is able to recover
the compression set from the result of the compression function.

Taking the initial example of this section, this means we want to recover the set

• [goto(storage),pickup(container1),goto(shop),exogMoveObject(containerX ,shop)]
• [goto(storage),pickup(container1),exogMoveObject(containerX ,shop),goto(shop)]
• [goto(storage),exogMoveObject(containerX ,shop),pickup(container1),goto(shop)]
• [exogMoveObject(containerX ,shop),goto(storage),pickup(container1),goto(shop)]

from the result of the compression function, namely the action sequence

• [goto(storage),pickup(container1),goto(shop),exogMoveObject(containerX ,shop)]

Generally this process is referred as decompression. In our case this is a rather trivial process, as we
only have to shift the positions of insertions and action variations. Accordingly, to the definition of the
compression function, we have to preserve the order of change actions (insertions and action varia-
tions) and endogenous actions separately. Based on the definitions of compressing and decompressing
a set of change equal actions two interesting questions arise. First, how many action sequences can
be compressed into one action sequence and second, how many change equal action sequences can be
decompressed from one action sequence respectively.

Theorem 4. Let n be the length of the action sequence σ, k be the sum of insertions and action
variations occurring in σ. Then, the number of decompressed action sequences u from σ is bounded
by

u ≤ (n
k
)

Proof. Assuming that every action is an insertion, we can assign all k actions a position within the

n slots. This leads to
n!

(n−k)!
different action sequences. As there exists a fixed order within the

insertions, we have to reduce the number by k! leading to
n!

(n−k)!×k!
= (n

k). An action variation

cannot be placed as freely as an insertion, because they are bound to an endogenous action in the
original action sequence. So we have less possibilities to choose a position for action variations, thus
(n

k) is the upper bound for all decompressed action sequences resulting from a compressed action
sequence of length n with k changes.
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8.2. Hypotheses Management

We have seen that taking all possible hypotheses into account to form an explanation for an existing
inconsistency poses a few challenges. First we were able to reduce the number of hypotheses that have
to be checked for inconsistency by applying diagnosis templates in Section 7.3. Next, we moved the
focus to the pool itself that contains all valid hypotheses. In Theorem 2 we defined the upper bound for
the pool size. This rather huge number was already tackled by compressing multiple hypotheses into
one representative. The bigger the pool size of our system the more inconsistencies can be explained,
but the more calculation time is necessary to manage the pool. Please keep in mind, that if the pool
is too small, the correct hypothesis might be thrown out of the pool. So, of course within a fail-safe
system where the robot is allowed to spend as much time as necessary to execute every task, the pool
size will be chosen as high as possible. However, almost all robots cannot afford taking such liberty
and are expected to behave as efficiently as possible similar to other machines. So, we are interested
in providing explanations for as many inconsistencies as possible in a pool that is as small as possible.

In Section 4 we defined a function val that assigned a positive cost value to every change. Summing
up these change values gives an indicator of the plausibility of a hypothesis: the smaller this value,
the more plausible the hypothesis. This approach works fine, if all costs are calculated at the same
time, but has clear drawbacks if not. Costs are calculated during generation. Recalling Algorithm 1,
we stay with one hypothesis as long as it is consistent. If it is inconsistent, we apply history-based
diagnosis and check the next favorite hypothesis (lowest costs) for consistency.

Imagine the following situation (see Figure 8.1): we start with a hypothesis H_0 that turns incon-
sistent, where the number denotes the costs. By applying the presented approach, we are able to fill
the hypothesis pool with the hypotheses H_1, H_6 and H_7. As H_1 shares the lowest costs, it forms
the new favorite. After executing a few more actions, H_1 turns inconsistent again and H_2, which is
generated from H_1 is the new favorite and so forth. The salient point is that while hypothesis after
hypothesis turns inconsistent, old uninteresting hypotheses stay within the pool. We call a hypothesis
uninteresting, if it was generated many cycles before and never formed the favorite, such as H_6 and
H_7 in our example. So after detecting an inconsistency in H_5 that leads to H8 we have to check
H_6 and H_7 first as they share lower cost values than the newly generated hypothesis H_8. They
might explain the current situation, though this is unlikely as they were generated four inconsistencies
earlier.

Therefore, we seek for a better selection strategy. To this extent we approach our hypothesis pool
as a search problem. This means that the pool can be seen as a sorted open list that is processed
till a valid hypothesis is found. Inconsistent hypothesis can again generate new hypotheses that are
inserted into the open list. On the other hand, we can state that an inconsistency can emerge for two
reasons. First, it might arise from a new issue, or second it can result from a wrong previous decision.
Please note that multiple consistent hypotheses can coexist, so that the real action sequence can only
be detected after additional (sensing) actions.

In case of a new issue, the situation is as follows. The belief of the robot that is encoded by an
initial situation and an action sequence is consistent until something happens. Then the belief turns
inconsistent. So, assuming that the extended Basic Action Theory is able to describe the situation,
we can apply history-based diagnosis to the last consistent situation in order to incorporate the new
issue. All resulting hypotheses from history-based diagnosis on the last consistent favorite hypothesis
are included in the open list. This procedure resembles exactly the basic management algorithm we
presented in Algorithm 1, but instead of a cost-sorted open list, we prefer an open list that is sorted by
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H_0

H_1

H_2

H_3 H_4

H_5

H_8

H_6 H_7

Figure 8.1.: Exemplary hypothesis generation over time, where time evolves on the vertical axis from
top to bottom. This means H_1, H_6 and H_7 are generated at the same time and all of
them are generated before H_2. The hypothesis cost is part of the name. For instance,
H_5 owns cost 5. A child node is added to the parent node if the parent turns inconsistent
and the child node hypothesis was generated out of the parent node. For example, if H_4
turns inconsistent, H_5 is generated. The default selection strategy always selects the
hypothesis with the lowest cost. If H_5 turns inconsistent, H_8 is generated and H_6
becomes the next favorite although it was already generated 4 inconsistencies earlier!

age first.

On the other hand we saw that a hypothesis can turn inconsistent because we made the wrong
choice in a previous selection process. This means many hypotheses were able to describe the world
consistently one or more actions ago, but new actions revealed further discrimination potential. So no
new hypothesis has to be generated, we simply have to correct one of the last selections. Assuming an
identical distribution of sensing actions over all actions and an identical coverage of directly percep-
tible fluents by sensing actions, we can infer that wrong selections are more likely to occur later than
earlier. For instance, if we take the last selection, it is easy to see that it is followed by less or equal
actions that allow for discrimination than any selection before.

So now, we can sum up our requirements. If we made an incorrect decision in selecting a new
favorite, no new hypotheses have to be generated. It is enough to revisit the last decisions and probe
the hypothesis with the next lowest cost: this is a rather fast process. On the other hand, if something
unexpected happened, we have to generate new hypotheses and if such hypotheses can be generated
from the last favorite, we would like to select one of these as new favorite. This can easily be achieved
by two open lists. The first open list contains all hypotheses from the last generation and is sorted by
costs. We call it fast open list. The second open list forms the previously described hypothesis pool,
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but is sorted by age and is called pool. In case of an inconsistency we process the fast open list and
check if it contains a consistent hypothesis. If yes, the hypothesis is selected as the new favorite and
the execution can continue. If not, we process the pool and check if it contains a consistent hypothesis.
Inconsistent hypotheses are removed from the pool and history-based diagnosis is applied. In this way
we can reduce the number of unnecessary generation steps.

This behavior is realized by the algorithms selectFromFastOpenList and efficientBeliefManagement.
Algorithm selectFromFastOpenList (see Algorithm 6) is a helper algorithm that is applied by Algo-
rithm efficientBeliefManagement (see Algorithm 7). It takes the fast open list and the hypothesis pool
as input. The algorithm iterates over the fast open list and checks if the given hypothesis is consistent.
If it is inconsistent, it is removed from the fast open list and from the pool (see Lines 6-8). If it is
consistent, the hypothesis is returned in Line 11. If the fast open list is initially empty (see Line 2) or
if none is found (see Line 13), it returns nil.

Algorithm 6: selectFromFastOpenList
input : A cost sorted fast open list of hypotheses O

An age sorted pool of hypotheses H
output: A hypothesis h f or nil

1 if ∣O∣ = 0 then
2 return nil
3 end
4 h f ← selectFavorite(O)
5 while ∣O∣ ≥ 1∧¬Cons(h f ) do
6 O←O∖h f

7 H ←H ∖h f

8 h f ← selectFavorite(O)
9 end

10 if Cons(h f ) then
11 return h f

12 end
13 return nil

Algorithm 7 is an extension of the basic belief management Algorithm 1. The update step in Line 2
is equal to the basic algorithm. If the current hypothesis h f is inconsistent, it checks if the fast open
list contains a consistent hypothesis. If this is true, we are done. If there is no consistent hypothesis
on the fast open list a set of new hypothesis is generated in Line 7. This set defines the new fast
open list and is added to the pool additionally. If this new set contains a consistent hypothesis, such a
hypothesis is selected in Line 10. If no hypothesis can be found, the new hypothesis is selected from
the pool, similar to the basic algorithm (see Line 12).
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Algorithm 7: efficientBeliefManagement

1 foreach hi ∈H ∖h f do
2 updateHypothesis(hi)
3 end
4 if ¬Cons(h f ) then
5 h f ← selectFromFastOpenList(O,H)
6 if h f = nil∨¬Cons(h f ) then
7 N ← generateHypotheses(h f )
8 O←N
9 H ←H ∪N

10 h f ← selectFromFastOpenList(O,H)
11 if h f = nil∨¬Cons(h f ) then
12 h f ← selectFavorite(H)
13 end
14 end
15 end
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Chapter 9
Evaluation

After presenting a belief management that provides a robot with a consistent belief under harsh condi-
tions, we will investigate if this belief management is useful for a robot. It has to cope with execution
and sensing faults, incomplete initial belief and exogenous events. We are interested whether the
robot can execute the given tasks or not together with the corresponding runtimes. Instead of different
domains, we stay with the robot delivery domain and change the difficulties the robot has to master.
Furthermore, we interpret the results, so that conclusions are possible for different domains. The con-
tents of this chapter have been published in the papers Gspandl, Pill, Reip, and Steinbauer (2011),
Gspandl, Pill, Reip, Steinbauer, and Ferrein (2011), Wolfram, Gspandl, Reip, and Steinbauer (2011),
Gspandl, Podesser, Reip, Steinbauer, and Wolfram (2012), Gspandl, Pill, Reip, and Steinbauer (2013)
and Reip, Steinbauer, and Ferrein (2012).

We start by asking ourselves if a belief management system makes sense for a robot. For this
purpose, we compare the performance of an agent provided with a belief management with an agent
without in a simple simulated environment. Next, after having shown that a robot can benefit from
belief management, we increase the complexity of the scenario and add additional threats. Then we
leave the simulated world and apply the presented system to a real world robot. Here, we show that the
robot is able to cope with all four different types of threats and additionally we let the robot execute a
long term test. Finally, we examine the effect of the presented efficiency measures on runtimes.

9.1. Belief Management System - Useful or Not?

In order to evaluate the benefit of a robot equipped with a belief management system, we compared the
performance of an agent with and an agent without belief management system in a delivery domain.
The contestant equipped with a belief management system used a simple implementation without
any optimizations such as diagnosis templates, compression or a special hypothesis management as
described in Section 8.2. The simulated environment resembles the institute’s map and consists of 24
rooms that are connected by 5 hallways. The map is shown in Figure 9.1. For every task the robot had
to move to the task’s initial location, pick up the requested object, move to the task’s destination and
put down the object there. The robot was able to accomplish this by choosing between goto(room),
pickup(obj) and putdown(obj) actions. The goto action moves the robot between adjacent rooms. The
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Figure 9.1.: Floor layout of the Institute of Software Technology, Graz University of Technology

action pickup(obj) lets the robot hold the given object if the robot is not already holding an object, and
the action putdown(obj) sets down the given object from the robot at the requested location. Besides
the robot’s actuators, it had two sensors. The first sensor was a vision sensor that detects objects that
are in the same room as the robot. The second sensor was a pressure sensor, that indicated if the robot
is loaded or not. The sensing was carried out continuously. This means according to an adjustable
parameter n the robot received sensing information every n actions. This continuous sensing feature
resembled the typical way a robot behaves. We added this kind of sensing to the IndiGolog framework
as a new feature.

We call a group of three transportation tasks a mission. The robot received the tasks of the mission
in advance and executed them until no further tasks are open. In order to reduce the influence of
the high-level program on the robot to a minimum, the robots used simple T-R programs as shown
in Section 6.1. This means the task was finished whenever the object was located at the required
destination and the robot was not holding it. Otherwise if the robot was in possession of the object
and at the destination, it put the object down, or if the robot held the object, but was not at the
destination yet, it moved towards the destination and so on.

During execution, the robot was faced with sensing and execution faults. We grouped them into
three fault scenarios. Scenario F1 consisted of execution faults. With a probability of 40%, the robot
failed to pick up an object. With a probability of 20% it picked the wrong object. In scenario F2
we added another execution fault, namely a putdown fault with a probability of 30%. Scenario F3
introduced a sensing fault with a probability of 5%, where the vision of the robot failed. Independent
of sensing and execution faults, we defined different sensing rates. Here we differentiated between
three sensing scenarios. S1 represented sensing after every execution action. Sensing after every
second and after every third execution action respectively was denoted by S2 and S3.

The success of the robot was measured by successful missions, where a mission was called success-
ful if all three objects were located at the correct destination. The mission failed if objects were mis-
placed, the execution exceeded a two minute timeout, or if the interpreter aborted, because there was
no further executable action. A typical execution trace consisted of about 40 actions. We compared
a base robot with no belief management system against a robot equipped with a belief management
system. Both had to execute 50 different missions. The missions were generated randomly. In order
to reduce the influence of outliers, each mission had to be executed ten times with different seeds that
controlled the random number generation which in turn controlled the occurrence of faults.

Table 9.1 shows the results of both contestants in a simulated environment with sensing after every
executed action. In the easiest fault setting F1, both implementations were able to finish all missions
successfully. These numbers are not surprising since every execution fault is sensed immediately.
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F1 F2 F3
Base Agent 100% 51% 18%
Belief Management Agent 100% 100% 96%

Table 9.1.: Simulation results for base agent versus belief management agent with sensing rate S1
(sensing after every action execution)

T-R programs do not include a state, so all action selections depend on the environment only and
thus are always correct. So actually one would expect the same results for fault setting F2, but the
base implementation did not meet the expectations. The reason for this can be found in the pressure
sensor, which works in detail as follows: if a robot holds an object, it receives the corresponding
sensor information; if the robot does not hold anything, it receives no sensing information. This
knowledge is represented by an invariant and can be used to detect putdown faults. This resembles a
typical example how belief management is able to derive additional value out of sensing information
respectively some action sequence. The salient issue is, as soon as the complete observability of the
environment is no longer given, the robot equipped with a belief management system outperforms a
robot without a belief management system. The introduction of sensing faults in F3 increased the gap
between the two contestants even more.

We can see that belief management does not provide any advantages in settings close to complete
observability. As soon as the observability decreases belief management can lead to substantial im-
provements. This is achieved by two features: the first deals with inconsistency detection and the
second with the handling of inconsistencies. On the one hand, the belief management can help to
detect inconsistencies. For instance, invariants can reveal inconsistencies that again can be corrected
and thus the robot can make better decisions due to a correct belief. On the other hand we have to
think how we can cope with inconsistencies. The detection of inconsistencies is easy as sensing con-
tradicts the expectations, but what can we do as soon as inconsistencies are revealed. Basic strategies
could either stick to sensing all the times, or prefer the most plausible situation, but it is obvious that
choosing the correct hypothesis is difficult at all times. Here, belief management gives us the chance
to make incorrect decisions on best effort basis and correct them later on.

Next, we further examined the influence of sensing on the belief. We saw that the less the en-
vironment is observable, the more a robot profits from a belief management. We further decreased
observability by increasing the sensing step from S1 to S2 and S3. The corresponding results are
shown in Table 9.2 and Table 9.3. We start our observation with the base agent. In F3 we can ob-
serve a base success rate of roughly 20% more or less regardless of the sensing step. This 20% can
be achieved due to a fortunate course of events even in the more difficult settings. In contrast to the
constant success rate in the occurrence of all faults, we can see a continuous decrease of the success
rate from 100% to 38% to 31% in F1 and 51%, 24% and 20% in F2 respectively. While the base agent
faced a steady decrease, the belief management agent handled more or less all execution faults with-
out problems (F1 and F2) and finished nearly all missions successfully. Compared to execution faults,
sensing faults are a somewhat more difficult to handle. This follows the fact that the less correct sens-
ing information is available, the less information we have in order to repair inconsistent situations. We
can observe this fact by comparing S3/F3 and S2/F2. The belief management agent faced a decrease
in success rates also in the presence of sensing. Although there is still a substantial gap to the base
agent (54 percentage points in the most difficult setting).

After execution and sensing faults, the next natural step is to handle exogenous events. In case of
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F1 F2 F3
Base Agent 38% 24% 15%
Belief Management Agent 100% 100% 80%

Table 9.2.: Simulation results of base agent versus belief management agent with sensing rate S2
(sensing after every two actions)

F1 F2 F3
Base Agent 31% 20% 17%
Belief Management Agent 99% 99% 71%

Table 9.3.: Simulation results base agent versus belief management agent with sensing rate S3 (sens-
ing after every three actions)

an action or sensing fault, we can place an action or sensing variation at the position of the action or
sensing action itself. Exogenous events can be much more difficult, because there is no limitation in
their position within an action sequence. This means whenever their preconditions are valid, exoge-
nous events can be inserted into the respective action sequence. This can lead to a huge number of
hypotheses that might exceed the size of the pool. For this reason we started with a relatively simple
exogenous event snatch. While the robot was carrying the object, the object was snatched and was left
in the same room. We applied this exogenous event with a probability of 20% in a new fault scenario
F4. In addition to this new exogenous event F4 contained all faults used in F3.

Again we compared the performance of a robot with belief management with the performance of
a robot without belief management. Except the additional exogenous event, the setup remained the
same. Due to a higher complexity of the environment, we increased the timeout to 120 minutes. The
results are given in Table 9.4. Clearly, the base agent was overstrained with all the given threats. A
success rate of only 6 % with sensing after every action execution is very low. This value is more than
twelve times higher in systems with belief management. We can see a decrease in S2, although it still
solved more than 50% of all missions in the very adversarial scenario S3/F4.

S1 S2 S3
Base Agent 6% 4% 3%
Belief Management Agent 77% 65% 52%

Table 9.4.: Simulation results of base agent versus belief management agent in fault scenario F4.

The timeout in F1-F3 was two minutes, so the runtime was no big issue. In F4, we had to increase
the timeout by an order. So, we used 120 minutes to evaluate the performance of the belief manage-
ment system. For this reason we take a closer look at the run times of our belief management system.
The base agent serves again as base value. As this agent strictly followed its tasks regardless of in-
consistencies in its belief the runtimes were constant with the drawback of low success rates. One
could call the robot an "all or nothing" robot. The average runtime of this all or nothing robot was
29.4 seconds.

Comparing the runtimes of Table 9.5, we see that no setup sensor/fault scenario of the belief man-
agement agent was able to beat the runtime of the base agent. Of course this is no surprise, though
it is surprising that the overhead of the belief management system is very small throughout the sce-
narios F1 to F3. This is interesting as the benefit of the belief management is very high in these

104



9.1. Belief Management System - Useful or Not?

F1 F2 F3 F4
S1 38s ± 7s 44s ± 8s 75s ± 25s 845s ± 444s
S2 48s ± 10s 56s ± 11s 83s ± 22s 644s ± 190s
S3 57s ± 27s 67s ± 16s 87s ± 21s 771s ± 237s

Table 9.5.: Runtime in seconds of the belief management agent in fault scenarios F1 to F4

Figure 9.2.: Runtime in seconds of the belief
management agent in fault sce-
narios F1 to F4

Figure 9.3.: Runtime in seconds of the belief
management agent in fault sce-
narios F1 to F3

scenarios. Albeit the overhead for F1 to F3 is justifiable, it is less justifiable in the scenarios F4 where
the runtimes increase dramatically. For a better understanding the data is also shwon in Figure 9.2.
As the runtimes dramatically increase in F4, the differences between F1, F2 and F3 are difficult to
see. Therefore, Figure 9.3 plots the values F1 to F3, where the upper and lower border represents the
average value plus respectively minus the standard deviation.

So we try to compare the performance gain of the belief management system to its runtime loss.
Therefor, we introduce performance increase as division of belief management success rate divided
by base agent success rate. This ratio is shown in Table 9.6. In scenario S1/F1 there is no potential
for improvements as the success rate of the base agent was already 100%. The value increased with
higher complexity due to less sensor information in S2 and S3 as well as more faults in F2 and F3.
The increase was followed by a short drop in S3/F3, where even the belief management agent had to
face a lower success rate of 71 percent. Finally, in F4 the gain was high as the base agent’s success
rate converged to zero.

F1 F2 F3 F4
S1 1.0 1.96 5.33 12.83
S2 2.63 4.17 5.33 16.25
S3 3.19 4.95 4.18 17.33

Table 9.6.: Performance gain of the belief management system compared to the base agent. For exam-
ple, 2 means that the belief management system could successfully finish twice as much
missions as the base agent.

Controversial to the gain in performance we have also seen a loss in runtime when comparing our
belief management robot to a base robot. This loss is presented in Table 9.7. The table’s entries are
formed by the division of the belief management runtime by base agent runtime: this means the lower
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the number, the more efficient the belief management. While S1/F1 is very efficient, we see a steady
increase up to S3/F3. As expected, the values of F4 are very high as the runtimes are very long.

F1 F2 F3 F4
S1 1.29 1.50 2.55 28.74
S2 1.63 1.90 2.82 21.90
S3 1.94 2.28 2.96 26.22

Table 9.7.: Runtime performance of the belief management system compared to the base agent. For
instance, 2 means that the runtime of the belief management system is twice the runtime
of the base agent.

Now, equipped with a measurement for performance increase and a measurement for runtime loss
we put them together. The underlying question is quite simple, namely "How much runtime am I
willing to sacrifice for an improved performance?" A pragmatic approach to this question is a n to n
relation, e.g. for twice the performance I am accepting the double amount of runtime (on average!).
Although one may prefer a customized approach, we continue with the presented one and use exactly
this n to n relation. The corresponding data is shown in Table 9.8. Values above one denote an overall
benefit of the system. The bigger the value the higher the reward.

As we have seen before, scenario S1/F1 differs from the remaining ones. Here the setup was
relatively simple and the robot could perfectly observe the whole environment. As the base agent
finished all missions successfully, it makes no sense to opt for a belief management system that even
takes longer in terms of runtime. This drawback is denoted by a system benefit value smaller than
one. However, as soon as the setup becomes slightly more complex the belief management has an
advantage again. In S2/F2,S3/F2 and S1/F3 the system benefit value is even above two. This means,
while the base agent had already difficulties, the belief management agent was able to deliver good
results and runtimes. In F4 the runtimes of the belief management agent were too high to receive a
system gain value above one.

F1 F2 F3 F4
S1 0.77 1.31 2.09 0.45
S2 1.61 2.19 1.89 0.74
S3 1.65 2.17 1.41 0.66

Table 9.8.: System benefit: performance benefit times runtime loss of the belief management system
compared to the base agent

In a nutshell, we can say that the belief management makes sense as soon as a robot has to execute
tasks that are not completely trivial. While action faults and sensing faults can be handled relatively
efficiently, exogenous events have a huge negative impact on the agent’s runtime. This results from
the fact that a significantly higher number of checks is required for exogenous events than for action
or sensing variations. While an exogenous event could be placed at any position within an action
sequence, variations can only be placed at their endogenous correspondent’s position. Theoretically,
the O-notation (Tenenbaum, 1995) of application checks is the same, as every action variation might
be a variation to every endogenous action. However, please note that this is a rather unrealistic case.
For action faults, sensing faults and exogenous events we can state that if runtime is not a key factor,
basic belief management should be applied. If either runtime or success rate is essential, we need
better strategies.
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9.2. Belief Management System on a physical robot?

Besides the details of our belief management in Chapter 4 and 5, we showed in the previous section
that a belief management system is helpful for a simulated robot. Within this section we extend this
question and evaluate if a belief management system is useful to a real-world robot as well. We
evaluate this by posing two subquestions. First, is the robot able to finish a mission while being
exposed to all four different kinds of threats as incorrect knowledge, execution failures, exogenous
events and sensing failures. Second, we examine the robot’s performance on long-term runs.

We executed both experiments with a Pioneer 3-DX robot (MobileRobots, 1999). This robot had
a relatively small footprint and was able to turn on the spot thanks to its differential drive. The robot
was very agile and thus predestinated for indoor navigation. A gripper allowed for grabbing objects
by closing its paddles and lifting the objects. For localization and obstacle avoidance the robot was
equipped with a Sick laser range finder. As this laser is limited to obstacles on a plane, we extended
the robots perception capabilities by a Microsoft Kinect (Microsoft, 2010) sensor in order to detect
obstacles in three-dimensional space. An additional camera allowed for AR tag recognition in order
to identify known objects. The setup of the robots strictly followed the description of the robot control
framework as depicted in Chapter 6. This setup is shown in Figure 6.3, and a picture of the robot in
use in Figure 6.13 on the left side. We used the same T-R-program to find the correct decision for the
robot in every situation as in the simulation runs.

9.2.1. Real world robot opposed to four kinds of threats

In the first experiment we tested our robot’s capability to handle all four kinds of threats correctly as
presented in Section 6.3: (1) incomplete or incorrect knowledge, (2) execution failures, (3) exogenous
events and (4) sensing failures. The institute’s laboratory served as execution environment for the
experiment. It mainly consists of four relevant rooms, namely a seminar room, an aisle containing a
kitchen unit (we refer to it as kitchen), an office room and finally a large open space office containing
the field of the middle size team, which we refer to as field. Field, office and seminar room are
connected to the kitchen as shown in Figure 9.4. Two milk boxes were placed within the environment
- a box of unskimmed milk abbreviated by U and and a box of low fat milk abbreviated by L. The
robot had the task of delivering these two objects into specified rooms in a given order. While the
robot executed these tasks, we altered manually the environment in order to resemble the different
threats.

Initially, the robot and the unskimmmed milk were located in the kitchen and the low fat milk was
located in the office room. First, the robot had to bring the low fat milk to a specified position in the
field. The second task, which had to be executed afterwards, was to bring the unskimmed milk to the
office room. Initially, the robot was equipped with two distinct hypotheses regarding the position of
the low fat milk. A higher rated but incorrect hypothesis stated that the low fat milk was in the seminar
room and another lower ranked hypothesis states the correct position in the office room. This setup
resembled incomplete initial knowledge. As soon as the robot received its first task it rushed into the
seminar room where it expected to find the low fat milk. Although, when it arrived in the seminar
room, there was no sign of the low fat milk. The robot abandoned the hypothesis and selected the next
best one, which is in our case the correct one. As the position of the object to be delivered changed,
the robot changed its plan and moved to the office room, where it successfully picked up the low fat
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Figure 9.4.: Institute’s laboratory that serves as environment for the real world experiment. In the
initial situation, the robot and the unskimmed milk are located in the kitchen (K) and the
low fat milk is in the office (O).

Figure 9.5.: Threat 1: Incomplete knowledge regarding the position of the low fat milk (L). The robot
drove from the kitchen (K) to the seminar room (S), where it expected the low fat milk to
be, but it is in the office (O) in reality.

108



9.2. Belief Management System on a physical robot?

milk. The steps so far are shown in Figure 9.5, where incorrect object locations are denoted by dashed
circles.

After successfully picking up the low fat milk the robot proceeded to its target destination on the
field. While it was trying to release the object, we tricked it again by holding the gripper so it would
not open. The robot was unable to release the object, which resembles an execution failure. This
failure is labeled EXEC in Figure 9.6. In contrast to the expected positive execution result, the light
barrier still signaled an object within the robot’s gripper. The sensing formula of the light barrier states
that if the sensor is blocked, then the robot holds an object (lightBar(sf )⇔ ∃o ∶ hasOb ject(o,sf )).
As there is no object o with the property has_object the robot faced another inconsistency. This means
that the current hypothesis was dropped, history-based diagnosis was applied and the next favorite was
selected. In our case, the new favorite was a descendent of the dropped hypothesis. The new hypothe-
sis contained an action variation, namely putdown(lowfatmilk) was replaced by putdownNothing. So
the robot continued its plan by retrying to execute another putdown(lowfatmilk) action. This time we
did not not disturb the robot, so it was able to execute this action successfully and finish the first task.

Figure 9.6.: Threat 2: Execution failure - the gripper of the robot is blocked, so it cannot release the
low fat milk (F).

The second task was to bring the unskimmed milk to the office room. This task starts with a diffi-
culty, because the initial position of the unskimmed milk was unknown. The location was narrowed
down to the kitchen while executing the first task, where the robot traversed the kitchen and sensed
the object. In expectation of the unskimmed milk to be found in the kitchen, the robot started moving
to this location. In the meantime we manually moved the unskimmed milk from the kitchen into the
seminar room (labeled EXOG in Figure 9.7). Hence the robot could not discover any unskimmed milk
in the kitchen after its arrival from the field. The sensor result differs from the expectation, which we
call an inconsistency by definition. Again the favorite is dropped, history based diagnosis started and
a new favorite is selected. Here, history-based diagnosis generates a few equally weighted hypothe-
ses. By applying the exogenous action exogMoveObject, which moves an object from one room into
another we receive a hypothesis for every room. Therefore, the robot followed the first but incorrect
hypothesis into the first room, but it was not successful. Again, it generated a new hypothesis set,
however the new hypotheses are ranked worse than the set before, because they contain two exoge-
nous events in contrast to the previous hypotheses that contain one. The hypothesis selected next
was generated at the same time as the previous one. It consists of the same actions, but with a differ-
ent grounding of the exogMoveObject exogenous event. The current situation believes the unskimmed
milk to be in another room. After some trials the robot chose the correct room and successfully picked
up the object.

109



Chapter 9. Evaluation

Figure 9.7.: Threat 3: Exogenous event - the robot expected the unskimmed milk (U) to be in the
kitchen (K), but it was brought to the seminar room (S). So the robot generated an ex-
ogenous event exogMoveObject for every room and started driving from room to room,
eliminating one wrong hypothesis after the other until it sticked to the correct one.

Three threats are prevented successfully, just one threat is missing. After picking the unskimmed
milk successfully, the robot needed to deliver it. The delivery target of this task was the office room.
The robot moved to the office room, where it put down the object. Directly after the putdown action,
we triggered the light barrier in order to simulate a sensing failure. At the same time the AR unit was
able to detect the unskimmed milk standing on the floor. The belief management system came up with
two explanations for this inconsistency. First, an execution failure of the putdown action, followed
by a sensing failure of the AR unit. Second, a sensing failure of the gripper light barrier. As the
second case is more plausible the belief management system selected this concept as the new favorite
hypothesis. This means that the belief was repaired and the robot was able to finish its mission by
moving to the final destination the kitchen. The situation is depicted in Figure 9.8.

Figure 9.8.: Threat 4: Sensing failure - the robot senses a triggered light barrier due to the unskimmed
milk (U) standing on the floor

To sum it up, we can state that the robot solved its first challenge. Confronted with four different
kinds of threats, it was able to solve all inconsistencies within its belief and finish its mission. Incorrect
initial knowledge, action failure and sensing failure were solved relatively easily, but the exogenous
event was very difficult. Here, the robot had to check room by room until it found the object. It has
to be noted that this instantiation of an exogenous event is much harder than the snatch action in the
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earlier examples, because it can be applied much more often (every combination of an object and a
room in nearly every situation).

9.2.2. Real world robot long term experiment

While the first experiment was quite artificial, as all four kinds of threats were introduced manually,
we attempted for a more natural setup in the second experiment. In this experiment we verified that
the robot is able to handle threats to its belief management system that arise from natural execution
over a long period of time. So the question behind this hypothesis is "Is a robot that is equipped with
a belief management system a reliable robot?". This experiment was executed on the soccer field of
our institute’s laboratory. We defined five locations, where four objects were placed that the robot had
to move around. This means, the robot was asked to pick up object by object and bring it to the empty
location. These tasks were continually executed for a typical shift period of eight hours. As one shift
is already a good indicator for the reliability of robot, we repeated this experiment three times. As
the robot had no ability to charge itself, it started beeping when the battery was low. While beeping,
we stopped the robot by a keystroke. Then we did a hot swap of the robot battery and continued
the execution with another key stroke. At the same time the battery of the controller notebook was
changed. Figure 9.9 gives an impression of this battery change. The execution of the experiment was
strenuous, as any human error that led to a power loss, required the experiment to be restarted again
on the next day. Details can be found in (Wolfram, 2011).

Figure 9.9.: Battery hot swap during long term robot experiment (Wolfram, 2011)

On average, the robot executed 627 actions per run and finished 147 tasks. As watching a robot
moving milk boxes from one location to another is not very thrilling, we had to find another way
to indicate whether a task is successful. As the tasks are repetitive and consecutive tasks depend on
each other, we opted for a recursive validation. We define that tasks of the last round are finished
successfully if the final configuration is correct. This means all spots are occupied by one box, except
the next one to be handled. Every task before the last round is defined as successful if the next task with
the same box is successful. This follows from the fact that the preceding task fulfills the precondition
of the proceeding task. Of course this definition is very restrictive and pessimistic. Although this is
no problem, as we are interested in building a stable system that can handle tight deadlines in terms
of success rates without problems. This definition allows the executing staff to focus only on the final
configuration. In order to reduce the influence of human errors, all numbers of this experiment were
retrieved from log-files. The experiment was successfully carried out three times for eight hours, with
an average of 5.5 corrections per run.
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9.3. Evaluation Diagnosis Templates

So far, we can state that a belief management system can boost the performance of a virtual robot
in an adversary environment. Furthermore, we were able to show that it is not only possible to use
the proposed system in simulation but on real robots as well. On the one hand our robot successfully
coped with numerous of human interventions and on the other hand it was able to execute transfer tasks
of milk boxes for several days. Although those results sound very promising, we need to mention
the runtime. For example, the exogenous event in Section 9.2.1 forced the robot into a pause of
approximately twenty seconds for reflection. So we are interested now, if the presented Diagnosis
Templates can rise up to the expectations and boost the runtimes. Therefore, we go back to simulation
and carry out comprehensive tests.

Although the execution logic cannot be neglected, it is not our main interest. Hence we continue
with the same kind of tasks and let the robot deliver objects from A to B. In order to accomplish such
a task, the robot had to go to the source location, pick up the object, move to the destination where
it then put down the object. Again three tasks in a row build a mission. Our objective was to make
the setup very difficult. Hence we used the same threats as the most difficult example in Section 9.1,
where a robot picked up an incorrect object with a probability of 20% or failed to pick it up totally with
a probability of 20%, was unable to put down an object with a probability of 30%, or the object was
snatched from the robot with a probability of 15%. The robot received sensing information every three
actions, which again equaled the most difficult setting mentioned above. On top of these difficulties,
we added another exogenous event namely exogMoveObject(obj,room) that moved an object obj from
its current location to a room named room with a probability of 2% without being sensed by the robot.
This event is very difficult as the only condition constraining this exogenous action is that the object
is not carried by the robot. Furthermore, this event directly depends on the number of objects and
rooms. Within the real robot experiments we have seen that such an exogenous event causes long
runtimes even if the number of rooms is small. On average, the probability of 2% per object results
in one undetected movement every step in case of 50 objects involved. As our robot received sensing
information every third action, three objects were moved on average.

So we selected four different scenarios with an increasing number of objects and rooms. In the
first scenario we have three objects in twenty rooms. This is followed by ten objects in 29 rooms,
29 objects in 50 rooms and finally 60 objects in 71 rooms. We name the scenarios according to
the number of rooms (20 rooms, 29 rooms, 50 rooms and 71 rooms). These scenarios were set up
to compare two contestants. The contestant BM implemented a belief management as presented in
Section 5.1. Its competitor T used diagnosis templates as presented in Section 7. The diagnosis
system was able to handle one fault per repair. In order to provide fair conditions contestant BM’s
implementation was also altered to handle single faults only. We start with the main comparisons such
as the number of successful missions and runtimes and underpin them afterwards with numbers such
as number of generated diagnoses. We ran every scenario 100 times per contestant. As the complexity
of the scenarios is significantly more difficult than before, the timeout was raised to two hours.

Taking the first results from Table 9.9, we see a clear advantage of diagnosis templates. Over all
four scenarios contestant T accomplished around 90 of 100 settings. On the other hand, contestant
BM solved only 50 percent of the settings in the easiest scenario. Please note that the easiest scenario
here is far more challenging than the most difficult example in Section 9.1. 50 rooms and 29 objects
were already difficult enough to let the simple belief management robot fail in nearly every setting
due to timeouts. A few lucky strikes could be finished relatively quickly.
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20 rooms 29 rooms 50 rooms 71 rooms
BM 0.50±0.50 0.29±0.42 0.03±0.06 0.05±0.10
T 0.90±0.18 0.92±0.14 0.88±0.22 0.90±0.17

Table 9.9.: Successful missions plus standard deviations - basic belief management (BM) versus di-
agnosis templates (T) (Reip et al., 2012)

Next, we reinforce the presented results by examining the sub-results of missions, namely success-
ful tasks. In order to successfully finish a mission, the robot had to finish three tasks successfully.
Hypothetically, it is possible that the basic belief management agent was able to successfully finish
two tasks in every run, but failed to finish the third one. Although this is clearly not satisfying, the
performance difference to diagnosis template robot would not be as high as indicated in Table 9.9.
The results of the task comparison are shown in Table 9.10.

20 rooms 29 rooms 50 rooms 71 rooms
BM 2.18±0.83 1.88±0.75 0.52±0.68 0.46±0.65
T 2.89±0.20 2.90±0.18 2.85±0.26 2.89±0.20

Table 9.10.: Successful tasks plus standard deviations - basic belief management (BM) versus diag-
nosis templates (T) (Reip et al., 2012)

Similar to the mission success results, these results show a constant performance of the diagnosis
template agent over all examples. On the other hand, the performance of the basic belief management
agent declines as soon as the difficulty of the setting increases. Whereas in setting 20 rooms the basic
belief management agent was able to fail in less than one task on average, these results could not be
held in setting 29 rooms. The settings 50 and 71 were even less successful. In this case contestant
BM could not even finish a single task on average. This can either be due to the timeout of 7200s or
that no executable action is left.

After investigating the performance of the diagnosis template robot versus the basic belief man-
agement robot, we are interested in the runtimes. Does the diagnosis template robot require longer
execution times in order to solve the examples, that its predecessor base belief management robot
could not solve? First, we only compared the runtimes of successful missions. This means timeouts
are not included. The results are shown in Table 9.11. Generating the diagnosis templates that are
used during the execution runs is carried out quickly, it takes less than a second. Hence we generate
all diagnosis templates at the beginning of every run and therefore the total runtime of a diagnosis
template robot run includes the runtime for diagnosis generation.

20 rooms 29 rooms 50 rooms 71 rooms
BM 417.5s±303.9s 2770.3s±2314.7s 27.7s±4.3s 314.0s±472.0s
T 28.9s±16.2s 39.6s±32.1s 164.8s±204.8s 274.4s±176.7s

Table 9.11.: Runtimes plus standard deviations in seconds of successful missions - basic belief man-
agement versus diagnosis templates with standard deviations (Reip et al., 2012).

The runtimes of the diagnosis template agent roughly follow a linear increase in the number of
objects. However, this is completely different with the basic belief management agent. Here we
see a steep increase in runtime from 20 to 29 rooms, followed by an incredible runtime boost with

113



Chapter 9. Evaluation

50 rooms and a reasonable runtime with 71 rooms. The question is, what is the dominator of the
basic belief management agent’s runtimes. This leads to a twofold answer. First, the runtimes are
clearly dominated by the complexity increase of the examples. This explains the increase between 20
and 29 rooms. As soon as 50 rooms are reached, we have seen that the basic agent was completely
overloaded and was only able to solve easiest setups. And in case the setup was easy enough the basic
agent solved it pretty fast. Therefore the deviation is also small. In the setting of 71 rooms, the basic
agent again solved only simple setups very quickly, plus a few where it took much longer to solve
them. So we see again an increase in the average runtime, but in the deviation as well.

In order to get a better picture of the runtimes of the basic agent we compare all runtimes of suc-
cessful and unsuccessful runs in Table 9.12. Now, basic agent runtimes also follow a steady increase.
With 20 rooms, the difference between all runtimes and successful runtimes is only 71 seconds on
average. This sounds reasonable because the basic agent is able to solve a good number of the 20
room setups. We have seen before that the performance declines with 29 rooms. This relates with an
increase of runtimes of nearly 1000 seconds per run. Finally, the runtimes of 50 and 71 rooms are the
combination of timeouts plus a few easy setups that can be solved quickly.

20 rooms 29 rooms 50 rooms 71 rooms
BM 488.0s±386.6s 3523.0s±2588.2s 6647.2s±1046.7s 6826.9s±731.8s
T 28.7s±15.8s 38.5s±30.0s 187.8s±249.8s 348.9s±300.4s

Table 9.12.: Runtimes plus standard deviations in seconds of successful and unsuccessful missions
with a timeout of two hours (7200 seconds) - basic belief management (BM) versus di-
agnosis templates (T) with standard deviations (Reip et al., 2012)

The timeouts are investigated separately in Table 9.13. Up to 60 objects in 71 rooms combined with
a load of injected failures and exogenous events can give an agent a hard time to finish its mission,
especially when the objects to be delivered are moved across the execution environment. In such cases
the agent has to browse room by room in order to locate the true position of an object. Additionally
while moving from room to room, new problems may arise. This can explain long execution times.
Nevertheless the diagnosis template agent was far from running into timeouts regularly. Only in the
biggest setup a timeout happened once in hundred runs. This was completely different to the basic
belief management agent. Confronted with huge amount of inappropriate hypotheses that had to be
checked for consistency without success or evaluating hypotheses that came up with more or less the
same explanation cost this agent a lot of processing time. Even a rather large timeout of two hours
troubled this agent, as nearly every fifth execution in the setup of 50 rooms led to a timeout. This
number increased to over 90% as soon we had 50 rooms or more.

20 rooms 29 rooms 50 rooms 71 rooms
BM 0%±0% 19%±31% 91%±17% 93%±13%
T 0%±0% 0%±0% 0%±0% 1%±1%

Table 9.13.: Timeouts (7200 seconds) plus standard deviations - basic belief management (BM) versus
diagnosis templates (T) with standard deviations (Reip et al., 2012)

After investigating the most important numbers as runtimes and success rates, we can clearly state
that the diagnosis template agent outperforms the basic belief management agent and is in a league
of its own. Regarding the number of successful missions, the diagnosis template agent is completely
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out of reach. It is able to solve scenarios with satisfying success rates where the basic agent can score
only lucky strikes. This tremendous increase in performance is accompanied by improved runtimes
too. There is such a difference that is difficult to compare the two instances. In the last scenario with
71 rooms the runtime of the base belief management agent is nearly 20 times higher than the runtime
of the diagnosis template agent. And this number is already limited by the timeout. We have seen that
a belief management is helpful in contrast to a system without belief management, but as soon the
setups get harder a sophisticated strategy is necessary. Diagnosis templates can be identified as such a
sophisticated strategy. As it is very difficult to compare a diagnosis template agent with a basic belief
management agent, we continue by comparing different setups of diagnosis template agents in order
to receive a better understanding of the system.

We keep the setup of 20, 29, 50 and 71 rooms but use a different number of objects. We call the
room - objection combination mentioned above scenario A and the additional combination scenario
B. Table 9.14 gives an overview of the combinations in use. It is the same combination that was used
in (Gspandl, Podesser, Reip, Steinbauer, and Wolfram, 2012) for the scalability experiments.

20 rooms 29 rooms 50 rooms 71 rooms
Scenario A 3 10 29 60
Scenario B 5 18 32 90

Table 9.14.: Object room combinations for the diagnosis template agent (Gspandl, Podesser, Reip,
Steinbauer, and Wolfram, 2012).

The runtimes of scenario A were already shown in Table 9.12. In Table 9.15 we include the run-
times of scenario B and show additionally the maximum values. Especially the maximum values are
interesting as they are relatively high in scenarios with 50 rooms or more. So we have to ask if these
max values are outliers or if they occur regularly. Especially in Scenario A 50 rooms, where the
runtime is longer than in the corresponding Scenario B, which has more objects. The high standard
deviation already let us assume that the influence of peak(s) is essential. In order to evaluate these
assumptions, the runtimes of setup A 50 rooms can be found in Figure 9.10. Here we can clearly see
that the majority (88%) of runtimes is below 100 seconds and just a few of them are above. As the gap
between the different runtimes per setup is very high, the logarithmic scale allows for better reading.
We can see that peaks have a high influnce on average runtimes.

20 rooms 29 rooms 50 rooms 71 rooms
Scenario A 28.9±16.2(190) 39.6±32.1 (588) 164.8±204.8(7047) 274.4±176.7(5735)
Scenario B 28.2±16.1(263) 31.1±14.7 (537) 101.7±76.8(2598) 392.9±209.42(4668)

Table 9.15.: Runtimes in seconds of diagnosis template agent with standard deviation and max value

Apart from a few outliers the average runtime increase of the diagnosis template agent over all
scenarios in Table 9.15 is linear. This can be supported by linear regression. The coefficient for
objects is 3.86 and the coefficient for rooms is 0.85. In combination the two coefficients are able to
explain 95 percent of the data. But of course the runtime is the sum of many subparts such as decision
making, execution, consistency checks, hypothesis generation and hypothesis selection. Execution
itself can almost be neglected as we act in a simulated environment. Decision-making in combination
with execution depends on the action sequence length. The longer the sequence, the more decisions
have to be made. Every decision is built on regression calls that take some time. From the first
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Figure 9.10.: Diagnosis Template runtimes 50 rooms, 29 objects. Please note the algorithmic scale.

experiment with an agent without belief management, we know that it takes about 29 seconds in order
to finish a mission. The more complex a scenario becomes, the more time is required for the belief
management part. In this context the most time consuming part is to generate new hypotheses and
to check them for consistency. We extracted the sub runtimes for hypotheses generation and their
consistency checks. The average runtimes are listed in Table 9.16. Maximum values can be found in
Table 9.17.

20 rooms 29 rooms 50 rooms 71 rooms
Scenario A 0.21s±0.11s 0.36s±0.18s 1.99s±0.9s 9.29s±4.5s
Scenario B 0.18s±0.08s 0.44s±0.16s 3.76s±3.00s 15.12s±6.07s

Table 9.16.: Average diagnosis generation and consistency check runtimes in seconds of diagnosis
template agent with standard deviation

20 rooms 29 rooms 50 rooms 71 rooms
Scenario A 0.75s 5.24s 14.6s 140.48s
Scenario B 0.59s 2.04s 234.65s 91.64s

Table 9.17.: Maximum diagnosis generation and consistency check runtimes in seconds of diagnosis
template agent

For diagnosis generation and consistency checking it is easier to imagine a dependency on the
number of rooms and objects than for the complete runtime. In the simplest case, the exogenous event
exogMoveObject leads to more instances the more rooms exist. The higher the number of objects, the
higher is the chance to encounter objects in unexpected rooms. Again we applied linear regression in
order to investigate the relation between generation runtimes and the number of objects and rooms.
In this case we can explain even 97% with the coefficients 0.22 for objects and −0.06 for rooms. The
increase in explicable data might be explained as follows. The complete runtime depends heavily on
the run of events. For example if an object was moved to the last room within the universe, the robot
has to search room for room till it finds the object to be delivered. This means, the total number of
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executed actions has an influence on the runtime. On the other hand, the diagnosis generation has to
generate all possible hypotheses according to the encountered inconsistencies. This number does not
depend on a specific run of events.

Next we investigate the number of executed actions. The values have very high deviations. Not
even if we remove a portion of 10 percent of outliers, this fact still remains. Table 9.18 and 9.19 show
the number of total actions and actively executed actions (excluding exogenous events and sensing
actions) per run respectively. The number of actively executed actions in Table 9.19 is relatively
stable across all scenarios. On the other hand, the number of total executed actions increases. This
can be explained by a rising number of sensing actions. At each sensing step every object in the same
room as the robot was sensed by a single sensing action. Thus, the more objects were seen, the more
actions occurred. Although, the number of executed actions does not reveal any new information.

20 rooms 29 rooms 50 rooms 71 rooms
Scenario A 149±48(379) 138±29 (263) 152±25(217) 175±25(250)
Scenario B 145±33(302) 139±22 (198) 154±23(213) 184±29(252)

Table 9.18.: Average total number of executed actions including sensing and exogenous events after
removing 10 percent of outliers. The numbers are given with standard deviation and max
value.

20 rooms 29 rooms 50 rooms 71 rooms
Scenario A 49±16(124) 41±9 (78) 43±7(62) 48±7(67)
Scenario B 45±10(94) 40±6 (56) 43±6(58) 47±7(63)

Table 9.19.: Average number of actively executed actions (endogenous actions) after removing 10
percent of outliers. The numbers are given with standard deviation and max value.

As a summary, we have seen that belief management can boost the performance of a robot. Further-
more, we could show that diagnosis templates are a crucial element regarding the runtime of the belief
management. Besides improving runtimes, the performance was enhanced as well. This follows the
basic idea of diagnosis templates, namely continuing with relevant hypotheses instead of evaluating
worthless traces. A number of key value evaluations allows a deeper insight in the behavior of these
diagnosis templates.

Throughout the evaluation we stick to the delivery domain. From a decision-making perspective
this may be a narrow view. However, the diagnosis perspective is completely different. We started
with a relatively simple scenario and made it more and more difficult. In the first step we added
additional failures and exogenous events. This could be tackled by introducing diagnosis templates.
When using diagnosis templates we saw that creating templates is relatively easy and the difficulty
lies in its application. A template can be seen as a change together with its condition. This condition is
the action sequence that follows the change action. We call it condition as the action sequence has to
occur within the situation to be repaired. This occurrence check is done by unification and thus is very
efficient as well, similar to inserting change actions into a given action sequence. The most expensive
task is the consistency check for a given hypothesis. Therefore we applied several strategies in order
to reduce the amount of consistency checks.

Based on this we know that templates with a specific condition are easy to handle. In contrast
if the conditioning action sequence is empty, the change is difficult to handle as it can be applied
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very often. This difficulty can even be increased if the change action allows multiple different object
instantiations. Exactly this circumstance is realized by the exogenous event exogMoveObject. It
comes without conditional action sequence and takes a room and additionally an object as argument.
So the final scenario to be diagnosed is completely different from the initial one.
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Chapter 10
Domain Knowledge generation

Building up domain knowledge is very time consuming and error-prone, which is a hurdle for using
knowledge based systems. Therefore, we are interested in automatic generation processes that allow
more people and domains to use knowledge based systems. Here, every approach that is more effi-
cient than writing domain knowledge by hand is welcome. There is a broad range of approaches in
generating domains and additional ones in knowledge sharing such as (Waibel et al., 2011). Another
approach within the same funding project was taken by Mühlbacher and Steinbauer (2014b). They
proposed to reuse existing common-sense knowledge bases. This reuse of knowledge is realized by a
mapping between the IndiGolog-based high-level control and the common sense ontology Cyc (Guha
and Lenat, 1990). Specifically Mühlbacher and Steinbauer (2014b) use Cyc to specify invariants. In
addition to a proof-of-concept implementation they discuss the circumstances when such a mapping
is valid and successful. Though the runtime performance is low, the system is able so improve the
detection and diagnosis of inconsistencies in an agent’s belief. The contents of this chapter have been
published in the papers Gspandl, Monichi, Reip, Steinbauer, Wolfram, and Zehenter (2007), Gspandl,
Hechenblaickner, Reip, Steinbauer, Wolfram, and Zehentner (2012) and Gspandl, Reip, Steinbauer,
and Wotawa (2010).

In the reminder of this chapter we present two strategies in order to generate domain knowledge.
The first approach in Section 10.1 generates agent plans out of soccer tactics sketches. The second
approach in Section 10.2 takes tactics descriptions in natural language and translates them into an
ontology. In a further step this ontology used to do high-level control of a simulated soccer agent.

10.1. From Sketch to Plan

In (Gspandl, Reip, Steinbauer, and Wotawa, 2010) we presented a methodology to translate soccer
tactics sketches or drawn strokes into agent plans that define the behavior of RoboCup Simulation
League agents. The inputs are tactics graphs as indicated in Figure 10.1. Sketches like this one are
easy to understand for humans. Here the two strikers, as represented by outlined circles, try to create a
scoring situation against three defenders drawn by filled circles. The sketch consists of multiple facts
and relations such as striker1 is marked and it cannot pass by the defense line, but can dribble along it.
The difficult task is to discriminate between relevant and irrelevant facts. For example, nobody cares
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Figure 10.1.: Exemplary soccer tactics sketch that is automatically transformed into a soccer agent
plan.

about the exact distance between striker1 and its closest defender. In order to meet domain-specific
tasks, a pipeline was installed to meet the requirements of the resulting transformation.

The first step of the transformation pipeline is the extraction of spatial-temporal representation.
This representation is domain independent and consists of primitives such as circles, boxes or strokes.
The next step takes this domain independent representation and adds domain specific interpretations.
In soccer, this relates to discriminating between own and opponent players, assigning different strokes
to different actions and so forth. The example in Figure 10.1 leads to the following quantitative facts:

• agent(a1).

• own(a1).

• pos(a1, 28.07, -13.04).

• field(f1, 52.5, -34, 52.5, 34, -52.5, 34, -52.5, -34). // the field is defined by its corners

• action(d1, dribble, 28.07, -13.04, 28.71, -3.59). // an action has a type plus start/end

• ...

The next step, called sketch interpretation transforms the domain-specific recognition results into
a domain-specific data structure (plan) that can be used by the agents. This starts by converting the
quantitative information into qualitative information. Therefor, we apply several qualitative rules.
This results in the following qualitative statements:

• defensive(opponent1) ∧
defensive(opponent2) ∧
defensive(opponent3) ∧
offensive(own1) ∧
offensive(own2) ∧
pos(own1, outside penalty left) ∧
...

• hasBall(own1) ∧
dribbleFreeSector(own1, right) ∧
marking(opponent1,own1) ∧
...
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In the next step we generate one Plan Tree per sketch. A Plan Tree is the abstracted behavior of
several agents describing the given sketch. The resulting Plan Tree for the running example is shown
in Figure 10.2. A Plan Tree is generated in four sub-steps. The first sub-step derives possible action
templates. This includes the action preconditions, its invariant and its effects. For the action pass this
would be the possession of the ball as precondition. The movement of the ball from its origin to the
pass partner defines the invariant and the possession of the ball by the pass partner is the postcon-
dition. The second sub-step defines the Plan Tree precondition by the set of qualitative statements.
In the third step every action in the Plan Tree is specified. The precondition of every action is the
postcondition of the previous action. If it is the first action of an agent, the precondition is equal to the
Plan Tree precondition. The invariant of the action is equal to the invariant of the action template. The
postcondition is derived by the progression of the action effects on the action’s precondition. After
defining the precondition, invariant and postcondition, the action is inserted into the Plan Tree accord-
ing to the executing player and the temporal sequence. Finally in a fourth sub-step, the plan invariants
are derived by the combination of all action invariants.

Figure 10.2.: The plan resulting from the transformation of the tactics graph in Figure 10.1 (Gspandl,
Reip, Steinbauer, and Wotawa, 2010).

Typically, several plans are used together in order to define the behavior of an agent. This transfor-
mation process is represented in Figure 10.5. For the evaluation we applied the presented system to
twelve sketches and received a corresponding plan set. On 15 games in RoboCup Soccer Simulation
League we evaluated the coverage and the quality of this plan set. The plan coverage defines how
many of all offensive situations can be described by the generated plan set. The quality of the plan set
evaluates if the identified situation resembles the the correct sketch. The resulting coverage of 30%
is shown in Figure 10.3. There we can see that most of the coverage is due to five or six sketches.
Figure 10.4 shows the plan quality with an average value of 44%. Although, this number is not very
high, it is able to automatically label a considerable number of situations.

After investigating the coverage and the quality of the plan set, we tested if the generated plan
set is able to improve the performance of a RoboCup Soccer Simulation League team. Thereto, we
measured the the performance of a team consisting of simple agents and the same team enhanced by
the generated plan set against a common opponent. Each team had to play 25 games. While the basic
team was able to score only 2.65 goals per game on average, the enhanced team scored 2.8 goals
on average. This indicates, that enhancing the behavior of a simple agent team by an automatically
generated plan set increases the scoring quality of a team.
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Figure 10.3.: The accumulated coverage of twelve
plans in 15 games over all offensive
situations (Gspandl, Reip, Steinbauer,
and Wotawa, 2010).

Figure 10.4.: The quality of each of the twelve plans
in percentage of correctly classified
situations (Gspandl, Reip, Steinbauer,
and Wotawa, 2010).

Figure 10.5.: The process of automatically deriving a behavioral model from several tactics graphs or
sketches (Gspandl, Reip, Steinbauer, and Wotawa, 2010).

10.2. Ontology population from text

In (Gspandl, Hechenblaickner, Reip, Steinbauer, Wolfram, and Zehentner, 2012) the overall goal was
the same, namely to create behavioral plans for a RoboCup Soccer Simulation League team. But in
contrast to tactics sketches we used natural language processing. The input to this generation process
is soccer literature as represented in Figure 10.6. In order to facilitate human understanding a sketch
is added to the description similar to the one we provided before as shown in Figure 10.7. Populating
knowledge bases of any kind by natural language processing (Jurafsky and Martin, 2000) is very
popular, since a huge amount of natural language is available (see Cimiano (2006); Chen and Mooney
(2008)). The presented transformation consists of several steps that are shown in Figure 10.8.

First, we start with a preprocessing that applies several natural language processing techniques;
within this preprocessing step, we split up text into atomic action descriptions by detecting stop words
such as "and" and "like". Next, we apply the Stanford part of speech tagger (Toutanova and Manning,
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Figure 10.6.: Natural Language description of opponent field penetration (Fascetti and Scaia, 1998).

Figure 10.7.: Accompanying sketch of opponent field penetration (Fascetti and Scaia, 1998).

2000) that provides the lexical category to each word. Based on this analysis we can remove unnec-
essary lexical categories and create tupels of subject, predicate and object (SPO). After identifying
subjects we can replace pronouns such as "who" by the real actor. For instance, the text (’5 passes the
ball to 9’) is replaced by the SPO {5; pass; 9}, or the pronouns from (’who has come towards him’)
are substituted by ’9’ and ’5’. Next, we apply temporal corrections to order the tuples by identifying
tenses and temporal keywords such as "while". In the last preprocessing step we resolve synonyms by
looking up every subject, predicate and object in the WordNet (Miller, 1995) dictionary and replace it
by a base form.

After preprocessing we have a set of temporal sorted subject, predicate, object tupels that are
mapped to unique base forms. The next step is the population of the ontology itself. To this ex-
tend, we generate test strings from the ontology concepts and compare them to the input tuples. For
instance, the ontology contains a taxonomy tree ("-" represents a subclass) Object - GameEntity -
Player - Wing - Left Wing. Here, every taxonomy entry can consist of multiple test strings. In our
case we simply use the names of the entries and compare them to the incoming tuples. Comparison
is rated by an adapted version of the Levenshtein distance (see Levenshtein (1966)) on word level.
Then we iterate over subject, object, predicate tuples and create an action compound for the new tac-
tic in the ontology. Every action is mapped to a new subclass. Then the temporal context is applied
by either creating parallel actions or action sequences. The precondition is not given by the text. It
is set in a parallel step by processing the accompanying sketch (e.g. geometric relations). Finally a
postprocessing step ensures that the resulting action compound can be executed. For example we have
to ensure that the action crisscross is part of both players’ plans although just one player is used as
subject in the description (10 criss-cross 9).
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Figure 10.8.: Transformation pipeline from natural text to an ontology ready for execution (Gspandl,
Hechenblaickner, Reip, Steinbauer, Wolfram, and Zehentner, 2012)

The presented methodology was evaluated by transferring sixteen tactics descriptions with a total
of 129 actions. The results were checked by an expert with the successful result that 71 percent of the
actions was perfectly recognized. Another 20 percent was close to being identified, which means that
after applying a few additional rules, they could be correctly identified. The temporal sequence was
identified correctly in all cases. After checking the transformation we additionally checked if Simula-
tion League Agents are able to execute the transformed plans. We corrected incorrectly transformed
plans by hand and set the players automatically to their original positions. Finally, the execution was
started without execution noise. This means one test per scenario is sufficient in order to check the
success of the execution. After the execution of the run we checked the geometric relations of all
players and the ball in order to validate if the run is successful. The results show that 86 percent of
the executions were carried out successfully (Gspandl, Hechenblaickner, Reip, Steinbauer, Wolfram,
and Zehentner, 2012).
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Chapter 11
Conclusion

This chapter starts with a summary of the previous chapters and outlines key findings of this thesis.
This is followed by Chapter 11.2, where suggestions for further research are offered.

11.1. Summary

The aim of this thesis is to provide a robot with a consistent description of the current world state in
order to ensure that a robot can make the correct or optimal decision. This world state description is
normally realized by some kind of World Model. World Models in the classical sense are able to store
and provide properties as well as providing reasoning. However, the fact that the knowledge base
may consist of contradicting facts represents a common problem in robotics. In order to overcome
such contradicting facts or inconsistencies we extended the World Model with a component called
belief management. Such a belief management is expected to provide the remaining system with a
consistent description of the world along the task-execution by the robot. Providing a consistent world
description can be done by consistency checking, diagnosis and repair. If the belief of a robot turns
inconsistent, we have to identify the underlying problem by applying a diagnosis and repair the belief.
The thesis shows that such a belief management system is a crucial component for truly autonomous
robots.

A belief management system gives robots the possibility to overcome several types of threats. These
threats are caused by action and sensing failures, incomplete or wrong initial knowledge, or exogenous
events and have the potential to turn a robot’s belief inconsistent. Whereas different domains offer
strategies to handle inconsistencies locally, handling inconsistencies is rather difficult for robots that
act in the same environment as humans. Imagine an electronic circuit where the result of a logical
gate contradicts the expectation. By applying model based diagnosis we can identify a subset of all
involved gates and mark them as abnormal. This works well, because all components involved can
be identified easily. However, this is not true for real world scenarios where people might enter the
scene, do something and leave it again without giving robots the chance to notice the people. Humans
are interesting for a robot if they do something that changes the world. It is very difficult to describe
the possible influence of a human to the world. If a person would be marked as working abnormal,
we would have no idea about action outcomes of this person. This means, that if we know the person
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tried to achieve something, nearly everything could have happened. The same is true for the robot
itself, as it can actively change the environment by taking different (unwanted) actions, the actions’
outcome are unclear if the robot is marked abnormal.

An explicit notion of action is used by the situation calculus. This first order language uses a
description of an initial situation plus a sequence of actions to describe the environment. We found
out that this kind of notion works well with robots, as actions are basic concepts of robots and the
situation calculus. This action-driven formulation presents new challenges to the diagnosis process of
the belief management. Rather than describing components as abnormal, we are interested in the true
progression of the world. This again can be described by an action sequence, which exactly leads to
history-based diagnosis. For example if a robot arrives at the destination of a transport task without
the object to be transported and it figures out that the object might have been lost during the move, it
does not only know that the object is not at the destination, but it also knows that the object must be
in one of the rooms along the delivery path. Therefore, information on the exact action sequence can
reveal additional and important knowledge.

Building up on history-based diagnosis (Iwan, 2002) we start with an initial version of a belief
management component. We created a formal description of the belief management. In a further step
an IndiGolog implemention was realized. This first version was already able to outperform simulated
robots without belief management system in terms of scenarios that could be finished successfully. In
a next step we designed a framework for a real robot system that incorporates this belief management
system. In this test we found that this system is able to manage all threats that are described above.
Though the success rate of this system is satisfying the runtime performance is clearly not. Even
in small scenarios, the robot takes a substantial amount of time to identify inconsistent situations,
diagnose these situations and repair the belief. As incomprehensible robot behavior clearly lowers
the acceptance rate, an intensive investigation of the runtime was undertaken. This investigation
showed that a robot needs the greatest part of the time to calculate multiple fault combinations that
explain the current situations, though in most of the times an inconsistency is due to a single fault.
As a consequence we focused on unconnected single faults. This means we try to explain every
inconsistency by a single fault. Numerous single faults may occur during a robot’s lifetime.

Furthermore we improved the uninformed search for those single faults by a directed search and
introduced the concept of diagnosis templates. Diagnosis templates explain a specific fluent value to-
gether with a condition that is necessary to achieve this fluent value. Diagnosis templates can be pre-
computed efficiently based on a domain description and are simply applied at runtime. History-based
diagnosis with diagnosis templates works as follows: if an inconsistency is detected, the inconsistent
fluents are identified first. In case of an inconsistency that arises from a sensing action, this is the set
of fluents where the expected value differs from the (indirectly) measured one. Second, we select all
templates that explain the inconsistent fluent set. Third, we apply the diagnosis templates and check
the resulting explanations for consistency. Using this approach we significantly reduce the number
of consistency checks for explanations that have nothing to do with the real cause (e.g. failing to put
down an object does not explain why the robot is carrying nothing though it is expected to do so).
This led to a breakthrough in terms of runtime. In order to ensure that this directed search does not
miss any explanations, we proved this circumstance.

In the end we have an efficient system that is able to cope with a variety of threats that are typical in
real world environments. The system is embedded in a robot control framework that was successfully
tested in numerous simulated experiments as well as on a real robot.
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11.2. Further research

Apart from the findings of this thesis, there are several suggestions of further research that should be
investigated. A straight-forward direction is to extend the work on diagnosis templates and expand
these diagnosis templates to multiple faults. This implies that, during template generation one does
not stop the search as soon a change action is found. Equally to non-change actions the search is
continued based on the preconditions of change actions. In large domains a maximum number of
faults might still be necessary. Similar to template generation, template application also needs to
continue after the application of the first change action.

The more hypotheses are generated, the more hypotheses have to be stored within the hypothesis
pool. This is no big issue regarding memory, as hard-discs grow larger and larger and cloud storage is
an omnipresent term. The limitation results from the management work that is necessary to keep the
pool up-to-date and the search for new favorites. Chapter 8 provides first steps into an efficient pool
management. This could be realized by recognizing hypotheses that can be removed from the pool
without checking them for consistency. Every time an inconsistency arises, we generate new hypothe-
ses - the correct one, plus a possibly empty set of alternatives that explain the same inconsistency.
So, as soon we recognize the correct hypothesis we could eliminate the alternative ones from the pool
without a time-consuming consistency check.

Similar to the question of which hypotheses to keep, is the question of which inconsistency to
investigate. For example imagine the robot’s task is to deliver coffee cups from the kitchen to the
dining room and it discovers a milk box close to the kitchen sink instead within the fridge. If delivering
coffee cups is the robot’s only task the position of the milk box is completely irrelevant to the robot
and inconsistencies regarding the milk box can be neglected. On the other hand, if the coffee cup
delivery task is followed by a milk box delivery task the position of the milk is relevant. Apart from
the general halting problem, Indigolog offers a few constructs that make forward checks very difficult
like non-deterministic choice of arguments (see Section 2.2.1). The authors of (Podesser et al., 2012)
take the upcoming primitive actions as input and infer if the current inconsistency is relevant for
further execution. A related strategy is active diagnosis. After explaining an inconsistency by multiple
diagnosis, the aim of active diagnosis is to select further sensing actions that allow for decreasing the
size of the explaining diagnosis set (Mühlbacher and Steinbauer, 2014a; Kuhn et al., 2008). A similar
strategy was proposed by Alur et al. (1995). They discuss discrimination strategies in the context of
non-deterministic and probabilistic state machines.

No matter which system, runtime is an issue in the majority of cases. Though the different algo-
rithms for belief management have led to a tremendous gain in runtime performance, the remaining
potential is still high. First order logic is very convenient to program, even so the runtime of its al-
gorithms is generally bad. In case of enumerable domains, the user should be given the chance to
express its ideas in first order logic, but the execution and computation should take place in some kind
of multi-valued representation that can provide fast implementations similar to achievements within
the field of planning (Helmert, 2006). The same is true for the regression property of the situation
calculus (Reiter, 2001). It is very convenient for theoretic evaluations, but during execution the same
things are evaluated over and over. Improving those two factors can speed up the system significantly
and hence contribute to the acceptance of this and similar systems.

One very important topic regarding the practicability of the present approach is knowledge gen-
eration. Although, first findings were presented in Chapter 10, this process needs to be much more
convenient. If a specialist is necessary in order to create a domain description, it is very likely that the
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system will only be used on rare occasions. The goal is to have a simple strategy, that allows users to
apply the system without any worries of how to get started.
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