
submitted to

Graz University of Technology

DOCTORAL THESIS

Dipl.-Ing. Harald Sporer, BSc.

Mechatronic System Development:
an Automotive Industry Approach for Small Teams

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Eugen Brenner

Institute of Technical Informatics
Head: Univ.-Prof. Dipl.-Inform. Dr.sc.ETH Kay Römer

to achieve the university degree of

 Doktor der technischen Wissenschaften

Supervisor

Graz, March 2016

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all material

which has been quoted either literally or by content from the sources used. The text

document uploaded to TUGRAZonline is identical to the present doctoral thesis.

Date Signature

Abstract

Nowadays 90% of all product innovations in the automotive industry are driven by elec-

tronics and software. Up to 40% of a vehicle’s development costs are determined by these

components. Due to recent major trends in this industry sector, such as autonomous

driving and green propulsion systems, there is further scope for this proportion to grow

even further. Even a modern low-end car has dozens of electronic control units integrated

which are connected to each other through fast communication techniques. Moreover,

new driver assistant functions and multimedia applications demand that the car is con-

nected to its environment. Away from the electronics and software view, functional

safety has been a major concern for several years now. With the trend of connecting

a vehicle to its environment comes the increased importance of security, requiring the

development of so-called dependable systems. The definition of sound engineering pro-

cesses, which is one of the major aspects of this thesis, is a vital basis for the production

of these systems.

To cope with the rising overall system complexity, many research projects have been

carried out to create adequate methodologies and tools to support the development of

electronic systems. Most of them agree on model-driven strategies as best practice when

designing the different development artefacts. One of the key challenges is to keep these

artefacts consistent and to ensure traceability between them, which is often approached

by a virtually automated model-to-model transformation and code generation. Usually

the focus of these methodologies is purely on solving the engineering task without con-

sidering non-technical aspects such as the size of the development team, even though

many of the companies involved in the product development cycle of a modern car can

be categorized as small and micro sized enterprises.

The research work described in this thesis aims to remedy this issue and proposes an

approach for the facilitation of mechatronic system development within small entities.

Thus, the target group includes the previously mentioned small enterprises, but is also

suitable for small and micro sized teams within a larger company too. The assumed

experience of the team that this pertains to is an existing high level of technical expertise

related to their particular product, but little experience with state-of-the-art engineering

processes. The support mentioned is the top level goal of the research work, which

is divided into the two sub-goals (i) support by providing a domain-specific modelling

i

approach for an easy system design, and (ii) support by providing a feasible engineering

process reference model.

Most of the established embedded automotive system design approaches, utilize some

kind of UML-based modelling within multi-purpose development environments such as

Eclipse. An industrial project revealed that for domain experts, who are not familiar

with the UML notation, creating a system architectural design is an awkward task

to perform. To enhance this situation, a meta-model for a domain-specific modelling of

mechatronic systems has been defined and exemplary implemented for custom-made tool

support. Moreover, an integration of this mechatronic system modelling methodology

into existing approaches has been shown. This enables, for example, software engineers

to design the particular components in a more detailed way using techniques that have

already been established.

The presented embedded mechatronic system design methodology also supports the

proposed engineering process reference model, which is composed of selected process

definitions from the de facto standard Automotive SPICE and of newly defined processes

for the hardware related development phase. Aside from the mentioned definitions,

sociological aspects of introducing engineering processes to small development entities

are discussed and a pattern for establishing the processes is outlined.

ii

Kurzfassung

Produktinnovationen in der automotiven Industrie werden mit einem Anteil von 90%

mittlerweile überwiegend von Hardware- und Software-basierten Applikationen getrieben.

40% der Entwicklungskosten eines modernen Fahrzeuges sind diesen Komponenten zuzu-

ordnen. Ein weiterer Anstieg ist auf Grund sich abzeichnender großer Trends, wie etwa

autonomes Fahren, absehbar. Bereits Kleinwagen sind mit Dutzenden untereinander

kommunizierenden Steuergeräten ausgestattet. Diese Kommunikation findet aber nicht

mehr ausschließlich innerhalb des Fahrzeuges statt; die Systemgrenze Fahrzeug verwischt

durch zahlreiche neue Funktionen immer mehr mit ihrer Umwelt. Durch die Realisierung

von sicherheitskritischen Funktionen mittels elektronischer Komponenten, ist die funk-

tionale Sicherheit seit vielen Jahren ein wesentlicher Faktor in der Automobilindustrie.

Die Vernetzung des Fahrzeugs bringt zudem das Thema Datensicherheit mit sich und

verlangt die Entwicklung einer neuen Generation von zuverlässigen Systemen. Für deren

Entwicklung ist die Implementierung von wohldefinierten Engineering Prozessen unab-

dingbar, was eines der zentralen Themen dieser Arbeit darstellt.

Um mit der weiter ansteigenden Komplexität in der Entwicklung umgehen zu können,

wurden zahlreiche Forschungsprojekte hinsichtlich neuer Methoden und Werkzeuge durch-

geführt. Im Bereich der elektrischen und elektronischen Systeme werden Modell-basierte

Entwicklungsmethoden weitestgehend als bester Ansatz gesehen. Typischerweise fokus-

sieren die in den Forschungsarbeiten dargestellten Ansätze auf rein technische Aspekte,

ohne weitere Einflussfaktoren wie etwa die Größe und Zusammensetzung des Entwick-

lungsteams, welches die Methoden und Werkzeuge verwenden soll, in Betracht zu ziehen.

Die vorliegende Arbeit versucht hier Abhilfe zu schaffen und zeigt mögliche Ansätze,

welche die Entwicklung von mechatronischen Systemen speziell für kleine Entwicklung-

steams erleichtern soll. Die Zielgruppe dieser Forschungsarbeit stellen jene Unternehmen

bzw. Teams dar, die ein hohes Maß an technischer Expertise hinsichtlich ihres Produk-

tes, jedoch wenig Erfahrung mit Engineering Prozessen aufweisen. Die Unterstützung

dieser Kategorie von Entwicklungseinheiten ist gleichzeitig das vorangestellte Ziel dieser

Arbeit, welches in die beiden Teilziele (i) Vereinfachung des System Designs durch einen

Domänen-spezifischen Modellierungsansatz, und (ii) Spezifikation eines Referenzmodells

für erforderliche Engineering Prozesse, aufgeteilt wird.

Existierende Ansätze für das Design von eingebetteten automotiven Systemen basieren

iii

meist auf einer Art UML-Notation. Ein durchgeführtes Industrieprojekt hat gezeigt,

dass das Erstellen eines Designs innerhalb solcher Umgebungen, für Domänen-Experten

ohne vertieftes Wissen im Bereich der UML-Modellierung eine meist mühsame Aufgabe

darstellt. Zur Verbesserung dieser Situation definiert die vorliegende Arbeit ein Meta-

Modell für die Domänen-spezifische Modellierung von mechatronischen Systemen und

stellt dieses anhand einer beispielhaften Implementierung vor. Darüber hinaus wird eine

mögliche Integration der aufgezeigten Methoden in bereits bestehende Ansätze präsen-

tiert. Dies ermöglicht unter anderem eine Detailbeschreibung der mittels Domänen-

spezifischer Sprache beschriebenen Komponenten in einer bereits etablierten Umgebung.

Die vorgestellte Methodik zum Erstellen des Designs von eingebetteten mechatron-

ischen Systemen unterstützt das vorgeschlagene Engineering Prozess Referenz Modell,

welches sich aus ausgewählten Prozessdefinitionen des Industriestandards Automotive

SPICE, sowie innerhalb dieser Arbeit neu definierten Hardware-Entwicklungsprozessen

zusammensetzt. Neben den zuvor genannten Definitionen werden soziologisch relevante

Aspekte hinsichtlich der Entwicklungstätigkeiten kleiner Einheiten diskutiert und unter

Berücksichtigung aller Faktoren ein Pattern zur Einführung der aufgezeigten Prozesse

vorgeschlagen.

iv

Danksagung

Im Laufe der letzten Jahre, in denen die vorliegende Dissertation entstand, gab es

viele Höhen und eine ausreichende Anzahl an Tiefen zu verzeichnen, was vermutlich

dem natürlichen Verlauf einer wissenschaftlichen Arbeit entspricht. Besonders in den

anspruchsvolleren Zeiten hatte ich das große Glück, mich auf meine Familie, Freunde

und Kollegen stützen zu dürfen. Vielen Dank für all die Geduld und die unzähligen

motivierenden Worte über viele Jahre hinweg an meine Familie - Friederike, Johann,

Johannes und Nina - und meine lieben Freunde.

Besonderer Dank gilt meinem Betreuer und Mentor Prof. Dr. Eugen Brenner für seine

tatkräftige Unterstützung, sowohl in fachlichen als auch administrativen Belangen. Mit

viel Freiraum zur Entfaltung eigener Ideen und Ansätze hat er mir auf großartige Art und

Weise neue Blickwinkel auf die unterschiedlichsten Herausforderungen nähergebracht.

Des Weiteren möchte ich mich bei Dr. Christian Kreiner bedanken, der mir Einblicke in

höchstinteressante Arbeitsgruppen ermöglichte und mich stets zum richtigen Zeitpunkt

aus meiner Komfortzone holte.

Vielen Dank für all die Unterstützung!

v

Extended Abstract

Modern passenger cars can be seen as highly complex compositions of powerful micro-

processor-based embedded systems on wheels. Many engineering challenges which are

drawn from a wide range of domains are combined in the automotive industry. That is,

electronic components in cars are often exposed to adverse environmental conditions such

as moisture or heat, and electromagnetic interference produced by high power inductive

loads. Their reliability and availability have to be high, they are expected to be both

safe and secure, they must take up little space and obviously these systems have to be

cheap. To establish these desired properties, huge efforts along the embedded system

development are needed. According to [3], up to 40% of a vehicle’s development costs

are actually determined by these hardware and software components. Due to major

trends, such as autonomous driving and green propulsion systems, a further increase in

this proportion in the next few years is most likely.

The range of numbers of electronic control units (ECUs) integrated in modern vehicles

starts at a few dozen in the case of low-end cars and tot up to about 100 pieces in the

luxury class category, with millions of lines of code implemented. Alfred Katzenbach,

former director of Information Technology Management at Daimler, mentioned that

in the fifth generation of the S-class Mercedes-Benz the radio and navigation system

requires more than 20 million lines of code [12], which is about 3 times the amount of

code used to operate the avionics and onboard support systems of the actual Boeing 787

Dreamliner.

Due to the shift of safety-relevant mechanics-based functionality to mechatronic-based

systems, functional safety has been one of the major concerns over the last few years.

New functionality, such as that needed for novel advanced driver assistant systems

(ADAS) and for linking smart devices to a car’s infrastructure, requires the engineers

to examine security threats carefully. The combination of the attributes of availability,

safety, and security leads to a new generation of systems to be developed, often referred

to as dependable systems. As a basis for the development of mechatronic products that

fulfil the mentioned properties, the implementation of sound engineering processes at

the particular company or team, which is one of the major aspects of this thesis, is

absolutely vital.

Many research projects have been carried out to create adequate methodologies and

vi

tools to cope with the overall system complexity of the development of modern passen-

ger cars. Usually the focus of these projects is purely on solving the engineering task

without considering non-technical aspects such as the size of the development team, even

though many of the companies involved in the product development cycle of a modern

car can be categorized as small and micro sized enterprises. This thesis attempts to

remedy this issue by setting its top level goal as facilitating the embedded mechatronic

system development carried out by small entities. Thus, the target group includes the

previously mentioned small enterprises, but is supposed to be suitable for small and

micro sized teams within a larger company too. The assumed maturity of the team that

is supported is an existing high level of technical expertise related to their particular

product, but little experience with state-of-the-art engineering processes. In relation to

the mentioned problem statement and the top-level goal, two major topics have been

identified and defined as sub-goals: (i) providing support by specifying a feasible engi-

neering process reference model, and (ii) providing support by creating a domain-specific

modelling approach for easy system design.

The proposed engineering process reference model (PRM) is composed of selected

process definitions from the de facto standard Automotive SPICE [58] and of newly

defined processes, which mainly represent a hardware development related extension to

the established definitions. In Figure 0.1 an overview of the new PRM is illustrated.

The green coloured elements depict the novel components of the process definitions that

are introduced in the course of this work. In addition to the hardware related topics,

processes for Mechanical Requirements Analysis and System Validation have been intro-

duced. Aside from the PRM definition, sociological aspects of introducing engineering

processes to small development entities are discussed and a pattern for establishing the

processes is outlined.

For an appropriated system design, most of the existing approaches agree on model-

driven strategies as best practice. Within the group of model-based design method-

ologies, typically UML or a form of UML derived modelling language is utilized. Ex-

tending UML-based diagrams through profiles, which are defined by using stereotypes,

constraints, and tag definitions, is a widely used technique. New model elements are de-

rived from existing ones and equipped with the specified attributes. An industrial project

revealed that for domain experts, who are not familiar with the UML notation, creating

a system architectural design most likely results in an awkward task. To enhance this

situation, a meta model for a domain-specific modelling of mechatronic systems has been

defined, which is illustrated in Figure 0.2. The meta model of the embedded mechatronic

system domain-specific modelling (EMS-DSM) provides different components that are

required for a system architectural design. Additionally, basis and application software

vii

Figure 0.1: Novel engineering process definitions aligned to Automotive SPICE [58]

components are defined to enable the design of a software architecture. The properties

of each component are derived from the meta model’s top node EMS-DSM Component.

Further properties are added for the particular components as required.

Special attention has been paid to the integration of the proposed methodology into

existing approaches. Consistency and bidirectional traceability as key aspects of the

previously described PRM, are fully supported by the EMS-DSM definition. Exemplary

implementations of the meta model are presented in the course of this research work,

which showcases the claimed traceability and also requirements management approaches

that are feasible for small entities. Further methodologies are proposed that allow the

transformation of the system and software architectural design created with EMS-DSM,

into the previously mentioned UML-based representation or directly into models belong-

ing to the software detailed design, such as Simulink models.

viii

Figure 0.2: Definition of the Embedded Mechatronic System Domain-Specific Modelling

(EMS-DSM) Meta Model

ix

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Small and Micro Sized Entities . 2

1.3 Challenges for Small Entities in the Automotive Industry 3

1.4 The Goals of this Thesis . 4

1.5 Thesis Organization . 5

2 Related Work 7

2.1 Standards & De Facto Standards . 7

2.1.1 Process Reference Models (PRMs) 7

2.1.2 Functional Safety . 10

2.1.3 Integrated View of Related Standards 11

2.2 Model-Driven Architecture . 12

2.3 Automotive E/E System Design Methodologies 14

2.4 Domain-Specific Modelling . 20

3 Embedded Mechatronic System Development in Small Entities 29

3.1 Sociological Aspects . 29

3.2 Engineering Processes . 31

3.2.1 Process Reference Model for the Embedded Mechatronic System

Development (EMS-PRM) . 32

3.2.2 Pattern for Establishing Engineering Processes in Small Entities . 49

4 Domain-Specific Modelling of Embedded Mechatronic Systems 51

5 Application of the PRM and DSM 54

6 Conclusion and Future Work 57

6.1 Summary and Conclusion . 57

6.2 Future Work . 58

x

Contents

7 Publications 59

Bibliography 132

xi

List of Figures

0.1 Novel engineering process definitions aligned to Automotive SPICE [58] . viii

0.2 Definition of the Embedded Mechatronic System Domain-Specific Mod-

elling (EMS-DSM) Meta Model . ix

1.1 2013 Aston Martin Hydrogen Race Car 1

1.2 SME Definition Thresholds [20] . 2

1.3 Allocation of the Publications to the Thesis’ Goals 6

2.1 Process and Capability Dimensions in Automotive SPICE [7] 8

2.2 Automotive SPICE PRM [58] . 10

2.3 E/E System Product Safety Life Cycle [25] 11

2.4 Incorporation of the Presented Approach and [34] 15

2.5 Major Steps in the Embedded System Design Process from [61] 17

2.6 Software Development Process for SMEs from [49] 18

2.7 Modelling Languages from General-Purpose to Completely Domain-Specific

from [60] . 21

3.1 EMS-PRM aligned to Automotive SPICE [58] 32

4.1 Definition of the Embedded Mechatronic System Domain-Specific Mod-

elling (EMS-DSM) meta model . 53

5.1 System Requirement at Redmine . 55

5.2 CNG Tank System Use-Case in EASy Design 56

xii

List of Tables

2.1 HIS Scope mapped to ASPICE 3.0, inspired by [21] 9

3.1 EMS-PRM HWE.1 - Hardware Requirements Analysis - Process Definition 33

3.2 EMS-PRM HWE.2 - Hardware Design - Process Definition 36

3.3 EMS-PRM HWE.3 - Hardware Design Verification - Process Definition . . 37

3.4 EMS-PRM HWE.4 - Hardware Assembly and Integration Test - Process

Definition . 39

3.5 EMS-PRM HWE.5 - Hardware Qualification Test - Process Definition . . 42

3.6 EMS-PRM MEE.1 - Mechanical Requirements Analysis - Process Definition 44

3.7 EMS-PRM SYS.6 - System Validation - Process Definition 47

xiii

Acronyms

ADAS Advanced Driver Assistance System

AQUA Knowledge Alliance for Training Quality and Excellence in Automotive

ARIS Architecture of Integrated Information Systems

ASPICE Automotive Software Process Improvement and Capability Determination

AUTOSAR Automotive Open System Architecture

BP Base Practice

BPMN Business Process Model and Notation

CAD Computer-Aided Design

CAM Computer-Aided Manufacturing

CASE Computer-Aided Software Engineering

CMMI Capability Maturity Model Integration

DSL Domain-Specific Language

DSM Domain-Specific Modelling

E/E System Electrical and/or Electronic System

EAST-ADL Electronics Architecture and Software Technology - Architecture Descrip-

tion Language

EEA Electric/Electronic Architecture

ECU Electronic Control Unit

EMF Eclipse Modeling Framework

EMS Embedded Mechatronic System

xiv

List of Tables

EU European Union

GEF Graphical Editor Framework

GME Generic Modeling Environment

GMF Graphical Modeling Framework

GMP Graphical Modeling Project

GOPRR Graph, Object, Property, Relationship, and Role

GP Generic Practice

GPL General Purpose Language

HIS Herstellerinitiative Software

HSI Hardware-Software Interface

MARTE Modeling and Analysis of Real-time Embedded Systems

MDA Model-Driven Architecture

MDD Model-Driven Development

MEE Mechanical Engineering

MSDN Microsoft Developer Network

OCL Object Constraint Language

OEM Original Equipment Manufacturer

OMG Open Management Group

PES Programmable Electronic System

PRM Process Reference Model

R&D Research and Development

RSA Rational Software Architect

SBVR Semantics of Business Vocabulary and Rules

SDK Software Development Kit

xv

List of Tables

SME Small and Medium Sized Enterprise

SMiE Small and Micro Sized Enterprise

SOA Service Oriented Architecture

SysML Systems Modeling Language

UML Unified Modeling Language

V&V Verification and Validation

VSM Viewpoint Specification Model

xvi

1 Introduction

1.1 Motivation

On a sunny day in July 2012 a meeting took place between the Aston Martin’s Special

Projects department, Alset GmbH, and the Institute of Technical Informatics from Graz

University of Technology, at Aston Martin’s headquarters in Gaydon, UK. The appoint-

ment led to a very unique project named AML-24HR, which was kicked-off only a few

weeks later. The overall goal of this project was defined as developing a hydrogen bi-fuel

race car and participating with this car at the 24-hour race at the Nürburgring in May

2013. Within 10 months the new propulsion system had been developed, installed and

tested. New propulsion system in this context means a conventional internal combustion

engine running on gasoline, retrofitted to an engine which is able to operate with both

kinds of fuel, gasoline and hydrogen. Due to the very short project duration it has to be

admitted that the longest test run was the 24 hour race itself. Nevertheless, the project

was a full success and for the first time in history a hydrogen racing car finished the 24

hour race at the famous Green Hell.

Figure 1.1: 2013 Aston Martin Hydrogen Race Car

1

1 Introduction

The way the AML-24HR project was carried out is a very good example for many other

development processes within small teams. Due to the characteristic of such small-scale

teams there are a lot of assets, but also many drawbacks during an automotive prototype

or product development. The intention of the research that led to this thesis has been

to analyse these advantages and disadvantages and to provide an approach for a more

sustainable development for small project teams or companies.

1.2 Small and Micro Sized Entities

According to the SME User Guide from the European Commission [20] small and

medium sized enterprises (SMEs) are the engine of the European economy. Nine out

of every ten enterprises is an SME and they generate two out of every three jobs. In

2013 the total number of this type of enterprise aggregated to over 21 million companies

and they provided close to 90 million jobs within the EU. The SME definition takes

the criteria Staff Headcount, Annual Turnover, and Annual Balance Sheet Total into

account. To be classified as an SME it must employ less than 250 persons and have

either an annual turnover not exceeding 50 million euro or an annual balance sheet total

not exceeding 43 million euro. The gradation within the category SME related to the

outlined criteria is illustrated in Figure 1.2.

Figure 1.2: SME Definition Thresholds [20]

A rigorous definition of this thesis’ target group, in terms of the enterprise categories

introduced by the European Commission, is not reasonable. This research work proposes

2

1 Introduction

an approach for the facilitation of mechatronic system development within small entities.

Thus, the target group includes small and micro sized enterprises as defined by the SME

User Guide, but the approach is supposed to be suitable for small and micro sized teams

within a larger company too. More important than the exact number of employees or

the annual turnover, is the current maturity level of the entity in terms of engineering

processes. The methodologies and techniques described in this work focus on teams that

have a high level of technical expertise related to their particular product, but little

experience with state-of-the-art engineering processes. Typically start-up companies

show these characteristics, but also enterprises which have been on the market for a long

period of time and want to capture new business fields related to mechatronic products,

may be supported by the ideas proposed in this thesis.

1.3 Challenges for Small Entities in the Automotive Industry

Nowadays 90% of all product innovation in the automotive industry is driven by elec-

tronics and software. Up to 40% of a vehicle’s development costs are determined by these

components [3]. Due to recent major trends in this industry sector, such as autonomous

driving and green propulsion systems, there is still scope for this percentage to increase.

Even a modern low-end car has dozens of integrated electronic control units (ECUs)

that are connected to each other using fast communication techniques. Furthermore,

premium cars can run with around 100 million lines of code, executed on about 100

microprocessor-based electronic control units, that’s 15 times the amount of software

implemented in the ECUs of a Boeing 787 Dreamliner. The current S-class Mercedes-

Benz requires over 20 million lines of code for the radio and navigation system alone.

Experts from the automotive industry predict that the software in cars will continue to

grow in both amount and complexity [12]. Moreover, new driver assistant functions and

multimedia applications demand that the car is connected to its environment. Away

from the electronics and software view, functional safety has been a major concern for

several years now, but with the trend of connecting the vehicle with its environment,

security also becomes more important and requires the development of so-called depend-

able systems.

The ever growing amount of software and complexity in modern passenger cars is

obviously a challenge for all parties involved in the development cycle of an embedded

automotive system, irrespective of a particular company’s size. But typically small and

micro sized entities are not supposed to develop a complete car on their own. Instead,

these small teams most likely have a high level of expertise in developing a certain compo-

nent, which may be delivered to a tier-1 supplier or an original equipment manufacturer

3

1 Introduction

(OEM).

In the author’s opinion, the small entities involved in the vehicle development cycle

should be aware of the mentioned complexity but do not have to cope with it directly.

Usually their customer (tier-1 or OEM) is responsible for integrating the system and

has to breakdown the complexity through well-defined requirements and interfaces for

the particular product. The definition of sound engineering processes, which is one of

the major aspects of this thesis, is crucial for being capable of delivering the mentioned

components and the related embedded automotive electrical and/or electronic systems

(E/E systems). Moreover, it is a vital basis for the development of the previously

mentioned dependable systems. Hence, one of the major challenges for small entities,

as they are characterized in 1.2, is to acquire a strategy to quickly enter into the world

of engineering processes. Unfortunately, this is not done with selecting an appropriated

process reference model. A for all parties involved practicable support, e.g. by means of

tools, has to be established.

Many research projects have been carried out to propose such adequate methodolo-

gies and tools to support the development of electronic systems. Most of them agree

on model-driven strategies as best practice when designing the different development

artefacts. One of the key challenges is to keep these artefacts consistent and to assure

traceability between them, which is often approached by a virtually automated model-

to-model transformation and code generation. Usually the focus of these methodologies

is purely on solving the engineering task without considering non-technical aspects such

as the size of the development team. The research work described in this thesis aims to

remedy this issue and proposes an approach for the facilitation of mechatronic system

development within small entities.

1.4 The Goals of this Thesis

The major goal of this thesis and the work that led to it can be stated as: small and micro-

sized embedded system development entities, which are entering into the engineering

process world, shall be equipped with some ideas that make their challenging life within

a fast, complicated and sometimes complex domain easier. The author does not claim

to provide a number of methodologies for the embedded automotive industry, which

will solve the day to day development problems for teams or companies involved in this

business domain, but hopes to facilitate the production of one or another development

artefacts through the proposed approach. The published methodologies and techniques

reflect the conclusion the author draws from the last few years that he spent in various

R&D projects, most of the time in very small teams. The range of items that were

4

1 Introduction

developed at these projects is a broad one, from small stand-alone control units, just

processing a handful of sensor data, to complete novel propulsion systems. The latter

type of projects led to great results as illustrated in Figure 1.1.

1.5 Thesis Organization

The structure of this thesis is as follows. Chapter 2 discusses the work related to this the-

sis’ key aspects Standards and Process Reference Models, Model-Driven Design Method-

ologies, and Domain-Specific Modelling, all from the view of automotive E/E system

development. In Chapter 3 an approach to the Embedded Mechatronic System Devel-

opment, with a special focus on small entities, is described. Thoughts on sociological

and engineering aspects are outlined before engineering processes, as an extension to an

established process reference model, are defined. The chapter concludes with a defini-

tion of a pattern for establishing engineering processes in small development entities.

Chapters 4 and 5 briefly introduce the definition of the domain-specific modelling meta

model and exemplary applications of the meta model. Moreover, both chapters establish

references to detailed information in the particular author’s publications related to the

outlined methodologies and techniques. These publications are presented in Chapter 7

and their allocation to the thesis’ goals is outlined in Figure 1.3. In Chapter 6 the thesis

concludes with a brief summary of the presented approach and a description of potential

future work.

5

1 Introduction

Figure 1.3: Allocation of the Publications to the Thesis’ Goals

6

2 Related Work

In this chapter, an analysis of work related to the thesis’ key topics Process Reference

Models, Automotive E/E-System Design Methodologies, and Domain-Specific Modelling

is conducted. Additionally, these topics are considered from the view of small develop-

ment teams and companies in the business area of automotive mechatronic systems.

2.1 Standards & De Facto Standards

Small entities, in particular start-up companies, do have specific needs regarding the

introduction of quality management and engineering processes. Often the need for this

kind of overhead is not visible for them and the clarification of technical aspects, e.g. how

the implementation of a prototype could look in detail, are classified with the highest

priority. It is by their nature that engineers most likely try to solve technical problems as

quickly as possible, but with the development of complex systems, design methodologies

are required in order to be capable of delivering quality products.

2.1.1 Process Reference Models (PRMs)

On the basis of their broad dissemination, the two most important reference models in

the automotive industry are Capability Maturity Model Integration (CMMI) [53] and Au-

tomotive Software Process Improvement and Capability Determination (ASPICE) [58].

Both pursue similar targets, which can be stated as

(1) determining the process capability & maturity, and

(2) to achieve continuous process improvement in the particular development entity.

Instead of specifying how the described processes have to be implemented, the reference

models define desired Process Outcomes (ASPICE) or Goals (CMMI). These definitions

are characterized in more detail by best practices (Base or Generic Practices at ASPICE,

and Specific or Generic Practices at CMMI).

ASPICE is widely used in Europe, especially by the German car manufacturers, as

well as in some parts of Eastern Asia. ASPICE is based on the international standard

7

2 Related Work

ISO 15504 [1], which consists of ten1 parts and provides a framework for the assessment

of processes in the field of information technology.

The CMMI reference model has been developed by the Software Engineering Institute

(SEI) at the Carnegie Mellon University. Different parts of CMMI are available for the

topics Acquisition, Development and Services. Owing to the fact that CMMI is not wide

spread in the European automotive industry, this work focuses on Automotive SPICE

(latest version 3.0, released in July 2015) as the relevant process reference model.

The Automotive SPICE process reference model contains on one hand the definition

of the processes including the related Base Practices (BPs), and on the other hand the

definition of Generic Practices (GPs) which are valid for all processes. If the goals of

the BPs of a particular process are fulfilled and the required work products are created,

capability level 1 can be achieved through an assessment of that single process (the

relationship between the process and capability dimensions of ASPICE is illustrated in

Figure 2.1). To achieve higher capability levels for the particular process, the GPs of

the certain level have to be implemented.

Figure 2.1: Process and Capability Dimensions in Automotive SPICE [7]

1The first part ISO/IEC 15504-1:2004 has been revised by ISO/IEC 33001:2015 [4]

8

2 Related Work

Though the Herstellerinitiative Software (HIS), a joint effort of Audi, BMW, Daimler,

Porsche and Volkswagen for consistent standards in the field of automotive software,

states that the required capability level is not defined, typically an average level of 2 to

3 is demanded if a company wants to act as a supplier and deliver their products. It

has to be noted that this demand is not related to all processes in the reference model.

HIS provides a list of processes to which their supplier should pay special attention. The

selection of these processes is called HIS Scope and can be found at [21]. Due to the

fact that this list is several years old it references the previous version of Automotive

SPICE. The information has been mapped to the processes of the new ASPICE version

3.0 by the author of this thesis and is shown in Table 2.1.

Table 2.1: HIS Scope mapped to ASPICE 3.0, inspired by [21]

Management ProcessGroup (MAN) System Engineering Process Group (SYS)

MAN.3 Project Management SYS.2 System Requirements Analysis

Supporting Process Group (SUP) SYS.3 System Architectural Design

SUP.1 Quality Assurance SYS.4
System Integration

and Integration Test

SUP.8 Configuration Management SYS.5 System Qualification Test

SUP.9
Problem Resolution

Management
Software Engineering Process Group (SWE)

SUP.10 Change Request Management SWE.1 Software Requirements Analysis

Acquisition ProcessGroup (ACQ) SWE.2 Software Architectural Design

ACQ.4 Supplier Monitoring SWE.3
Software Detailed Design and

Unit Construction

SWE.4 Software Unit Verification

SWE.5
Software Integration

and Integration Test

SWE.6 Software Qualification Test

From the view of the various process groups in Automotive SPICE, this thesis has

an emphasis on the engineering process groups which include the System Engineering

Process Group (SYS) and the Software Engineering Process Group (SWE). Other pro-

cess groups and the particular processes may be considered implicitly, e.g. the Change

Request Management process in the Supporting Process Group (SUP), but no special

attention will be paid. Due to this thesis’ focus on small- and micro-sized development

teams, a context where low process model implementation levels are assumed, the goal

is to support the achievement of ASPICE level 1 for the considered processes through

9

2 Related Work

Figure 2.2: Automotive SPICE PRM [58]

the presented methodologies and techniques.

2.1.2 Functional Safety

In the late 1990s the International Electrotechnical Commission released the first version

of the IEC 61508. The revised second edition was published in April 2010. This standard

sets out a generic approach for all activities related to the safety lifecycle of systems

comprised of electrical and/or electronic and/or programmable electronic components

(electrical/electronic/programmable electronic systems (E/E/PESs)) that are used to

perform safety functions [2]. Owing to the fact that the IEC 61508 is too generic for

many applications, it has been adopted for particular domains, such as the automotive

sector, and released as independent standards for these domains. For the application

sector of electrical and/or electronic (E/E) systems within road vehicles up to 3.5 tons,

the ISO 26262 was published in 2011 [26]. Part 2 of the ISO 26262 (Management of

functional safety) [25] requires the organisation that is involved in the execution of

the safety life cycle to have an operational quality management system complying with

a relevant standard like ISO 9001 or ISO/TS 16949. This safety life cycle not only

comprises of the concept and development phases but also the product life time after

10

2 Related Work

the release for production until decommissioning. Figure 2.3 illustrates the product life

cycle according to the safety standard.

Figure 2.3: E/E System Product Safety Life Cycle [25]

Functional Safety and ISO 26262 only have an indirect relevance for this thesis. The

focus is clearly to support the initial phase of engineering process implementation at

small entities, which is the basis for safety relevant product development. Functional

safety (ISO 26262 & IEC 61508) related publications, training and other material may

be obtained from other projects, such as SafEUr [38]. All methodologies and patterns

presented in this work are aligned to safety product life cycle development artefacts

wherever possible, but as mentioned previously, functional safety is not a fundamental

aspect of this thesis.

2.1.3 Integrated View of Related Standards

Kreiner et al. [33] mention that Automotive SPICE, Functional Safety, and Lean Six

Sigma form the quality backbone in the automotive industry. They present an integrated

view of these three standards/de facto standards, which is gained by extracting the

essence of specific topics, such as Capability and Product Life Cycle, from each of them

and by grouping the information into modules, so called Base Layer Modules. Further,

an interaction layer was developed within the research project, which is titled Knowledge

Alliance for Training Quality and Excellence in Automotive (AQUA) and funded with

11

2 Related Work

support from the European Commission. This layer acts as a linking module between

the base layer modules and the established knowledge related to the particular module,

which can be found in standards and other materials. As indicated by the research

project’s title, one of the major aspects is Training. Therefore, the acquired knowledge

has been prepared as learning material and courses has been conducted with participants

from the European automotive industry.

An integrated view of the intertwined methodologies of Automotive SPICE, Func-

tional Safety, and Lean Six Sigma is a good approach to coping with the complexity of

introducing these standards/de facto standards. From the view of this work, relevance is

given in a way that the herein proposed methodologies and techniques can be seen as the

basis for safety related development and for integrating advanced tools from Lean Six

Sigma such as the Design Failure Mode and Effect Analysis (DFMEA). As mentioned

in Section 2.1.2, the approach described in this thesis is aligned to Functional Safety in

terms of facilitating the extension of the methodologies and techniques towards safety

related development artefacts (incorporation of different levels of safety requirements,

defining a hardware-software interface with integrated safety attributes, etc.).

2.2 Model-Driven Architecture

Before digging into the design methodologies it has to be stated that this research work

focuses on model-driven architecture wherever applicable. That does not imply that

the approaches described in Chapters 3 and 4 cannot be applied to non-model-driven

development, but to gain the most benefit from the ideas in this contribution, modelling

is highly recommended.

Effective arguments for model-driven development (MDD) can be found in many

sources. Selic [52] states that models help us in understanding complex problems and

their possible solutions through abstraction. He sees MDD as potentially being the first

true generational leap in software development since the introduction of compilers. A

key characteristic of the MDD related methods is their reliance on automation and the

advantages that it brings. He further mentions that models are usually by far less bound

to the underlying implementation technology compared to the most popular program-

ming language. Therefore models are much closer to the problem domain and this makes

them easier to specify so that in some cases it is possible for domain experts rather than

computing technology experts to create systems. The latter is especially important for

the research work presented in this thesis. In small development entities that want to

create some kind of embedded mechatronic system, computing technology experts with

extensive knowledge of e.g. UML are often not available. Therefore the system modelling

12

2 Related Work

environment should be prepared to such an extent that domain experts without special

modelling language knowledge are also capable of creating models. Besides the described

benefits from Selic, he points out that model-driven development methods are only as

good as the models they help us construct. Moreover, he states that the full benefits

of MDDs can only be achieved, if their potential for automation is fully exploited (e.g.

automatically generating complete programs from models, and automatically verifying

the models on the computer).

Broy et al. [11] provide further benefits of the model-based design with a focus on the

field of embedded automotive software systems. In a survey, experts reported a simpli-

fication in communication because of the use of function models in the software design.

The communication within as well as outside the software development department, in-

cluding also colleagues who are not familiar with software engineering, was experienced

as much simpler due to the use of models. One interesting reason, which has nothing to

do with a primarily advantage, for using model-based development is according to 83%

of the individuals surveyed the trend in the industry to develop model-based. Suppliers

in particular mentioned that the Original Equipment Manufacturers (OEMs) demand

them to develop model-based, otherwise someone else would get the contract. Besides

the development aspects the authors also analysed the influence of model-based software

design on maintenance costs. Broy et al. surveyed reduced maintenance costs of 15%

on average compared to a classical development.

Attempts has been made to stick to the Model-Driven Architecture (MDA) Guide [45]

of the Object Management Group (OMG) during the creation of the herein presented

approach wherever possible. The guide explains the major concepts of MDA in a com-

pact but nonetheless comprehensive way. By defining the most important terms and

their role within the model-driven architecture methodology, a framework for prepar-

ing modelling languages and models for nearly every domain, for different architectural

layers (e.g. logical system models), and for various viewpoints is provided. The main

feature of Model-Driven Architecture is the definition of the model’s notation, structure

and semantics using industry standards. Models that comply with these definitions are

called MDA Models and can be used for the creation of documentation, specifications

and other development artefacts (e.g. source code). The OMG claims that MDA mod-

els facilitate the handling of the complexity of large systems as well as the cooperation

between companies and people. One of the most important properties of MDA models

is that information can be (automatically) extracted and utilized to prepare other de-

velopment artefacts, including different representations for various stakeholders (Model

Transformation and Execution, Viewpoints). In terms of modelling languages OMG

tends to favour UML and its derivations but also does not exclude other modelling stan-

13

2 Related Work

dards. As described later in this work, UML is only used for the platform-independent

modelling language definition. The model for e.g. the system architectural design is

based on a completely domain-specific approach (see also Figure 2.7, respectively [60]

for the gradation of domain-specific languages).

2.3 Automotive E/E System Design Methodologies

The research field of electrical and/or electronic system design is many years old but

still an interesting and by far unexhausted topic. Specifically for embedded automotive

systems this longevity is mostly based on the increasing proportion of electronics and

software in the overall system Vehicle. To cope with the challenges emerging from the

increasing number of functions realized through hardware and software components, and

with the growing complexity of the integrated overall system, many methodologies and

techniques to support the various tasks along the product life cycle have been introduced.

In the present state of scientific knowledge, model-driven approaches have been proposed

to support the majority of these tasks. The benefits of establishing methodologies based

on modelling were discussed in 2.2. In this section, related work regarding system design

methodologies, with a focus on the automotive sector, is presented.

Macher [34] carried out a research project in the field of development of automotive

embedded systems and summarized the results in his PhD thesis titled Framework for the

Integrated Model-Based Development of Dependable Automotive Systems and Software.

The three major challenges his thesis focus on are (1) multi-core system development,

(2) extra-functional system attributes development, and (3) life-cycle wide model-based

development. As extra-functional system attributes he categorises system and product

aspects such as Functional Safety and IT Security. Consistent with Chemuturi [13], in

this thesis these kinds of attributes belong to the category of Ancillary Functions. In

the author’s opinion it is not that important if either the prefix Extra or Ancillary is

selected. Both are less misleading than the widespread term Non-Functional, which is

avoided throughout this work. Macher conducted his research work at the Graz Univer-

sity of Technology during almost the same period of time as the author of this thesis.

Therefore, several intersections can be found when comparing both projects. In some

parts, such as the incorporation of system and software architectural modelling, a devel-

opment cooperation has been established between the authors. The work of Macher is

directly related to this thesis and may be seen as the subsequent step, in terms of adding

methods and techniques to a company’s repertoire, after the herein described approach

is implemented as a sound basis. Like others in the field of model-driven embedded sys-

tem development ([6], [19], [46], [48]), the research work of Macher is based on methods

14

2 Related Work

utilizing a subset of SysML. In his related work [34], he presents an overview of the exist-

ing UML/SysML based approaches, such as MARTE and EAST ADL, and categorizes

them as General Purpose Meta-Model MBD. Macher focuses on this category throughout

his work, whereas this thesis concentrates on the second methodology category Domain

Specific Language MBD. Nevertheless, the decision for one of the mentioned method-

ology categories does not have to be exclusive. That is, within the herein presented

research work, integration endeavours have taken place to connect the two approaches

aided by an adapter. The incorporation of both methodologies is outlined in Figure 2.4,

whereby the approach proposed by Macher is labelled with Existing Approach, and the

methodology presented in this thesis is labelled with New DSM Approach.

Figure 2.4: Incorporation of the Presented Approach and [34]

Wolf [61] presents a good overview of basic design methodologies, which in general can

be utilized for most embedded system domains. As a rationale for design methodologies

he states that without them products cannot be reliably delivered. Sometimes thinking

about the sequence of steps which are necessary to build up a system may seem super-

fluous, but the fact is that everyone has their own idea about the design process. Since

many embedded systems are too complex to be built by one person it is necessary that

several people work together on a project. Therefore establishing a common understand-

15

2 Related Work

ing of how an embedded system shall be developed is crucial. He further states that a

good methodology is critical to building properly working systems and that delivering

buggy systems always causes dissatisfaction. Moreover, in some applications such as

automotive systems, bugs can lead to safety problems that can harm the user or people

around the system.

To agree with Wolf, high quality products and therefore an adequate development

including good design methodologies are vital for every company. Denying this fact

most likely leads either to disappointed customers and thus to a shrinking business or

in the case of safety-relevant applications to financial loss due to product liability, quite

apart from ethical matters.

As mentioned in the above paragraph Wolf also presents a good overview of design

methodologies for embedded system development. The major steps in the embedded

system design process as described by Wolf are reflected in Figure 2.5. The process

starting at the Requirements level and ending at the System integration level is called

Top-down design. The other way round, illustrated by dashed lines, he refers to as

Bottom-up design. Along the embedded system design the major goals Manufacturing

Cost, Performance (from overall speed as well as a deadline point of view), and Power

Consumption have to be considered continuously. Moreover, at each step the tasks

a) Analyze the design to decide how the systems specification can be met

b) Refine the design to add detail, and

c) Verify the design for fulfilment of the functional and non-functional goals

has to be carried through.

The main reason for introducing the work of Wolf as related work in this thesis, is the

simplicity and simultaneously the comprehensiveness of the presented general Embedded

System Design Process. As it will be apparent through the subsequent sections and

chapters, the established design process models at the various domains can be abstracted

towards this model.

For the architectural system design Wolf utilizes both, simple block diagrams and

Unified Modeling Language (UML) diagrams for a more formal description. Moreover,

he distinguishes between a structural description (UML class diagram), a behavioural

description (UML state diagram with optional sub states), and a temporal sequence

description (UML sequence diagram). In the thesis author’s view the UML diagrams,

in particular the UML class diagram, are not the best choice for designing an embedded

automotive system. The language’s elements are too versatile and thus the probability

that two system designers model the same system artefacts with different elements is

16

2 Related Work

Figure 2.5: Major Steps in the Embedded System Design Process from [61]

high. Considering the demand for a more formal way to design the system, this situation

is not optimal.

Reke [49] conducted a PhD thesis with the translated topic Model-based Development

of Automotive Control Systems in Small and Medium-sized Enterprises. He mentions

that small and medium enterprises (SMEs) are the industry’s backbone in term of inno-

vation. However, the cooperation between SMEs and large companies is hampered by

the comprehensive and strongly regulated processes which are necessary considering the

large number of employees and the distributed development scenario at large enterprises.

In contrast, SMEs usually have implemented a simple process landscape and are able

to act more flexibly in their daily business. Reke presents an approach that mitigates

the challenges resulting from these differences. His strategy is to use the development

process techniques utilized by large companies as a basis and to tailor the processes to

the special needs of SMEs. That is, to eliminate all aspects from the processes that were

introduced to facilitate distributed development and to keep those that contribute to the

achievement of high quality software. Moreover he appraises model-based development

as the best choice regarding the support of the described approach and presents a tool

chain for the model-based software development. Additionally, Reke claims that the

tailored processes fulfil the outcomes and practice demanded by Automotive SPICE.

To agree with Reke, implementing the complete set of a state-of-the-art process model

like Automotive SPICE overextends most small enterprises, at least if they are new to

the development process world. In the context of medium enterprises, the author of this

thesis takes a different view. The existing process models are not exclusively made for

large enterprises and groups. According to [20] the main criteria for an enterprise to be

17

2 Related Work

assigned to the category of SMEs are the number of employees, the annual turnover, the

balance sheet total, and resource attributes such as ownership and similar. To reflect the

detailed definition would go beyond the scope of this work, but solely from the number

of people a medium sized enterprise has between 50 and 249 employees. In the opinion

of the author a company with more than 50 employees has usually been in business for

several years and should have established the necessary processes. Thus, the focus of

this work is on the support of small- and micro-sized enterprises.

Aside from the concept phase, Reke places particular emphasis on the software devel-

opment. An overview of his tailored process is illustrated in the form of the Business

Process Model and Notation (BPMN)2) in Figure 2.6. He mentions that the design and

implementation of hardware and system is not described in his thesis, but takes place

temporally in parallel and out of the process’ view analogue to the software design and

implementation. In the author’s opinion, at the very least the system design and inte-

gration work cannot take place in parallel with those related to hardware and software.

However, the strategy presented by Reke is a good basis for small enterprises to start

from. The present thesis shall give more insights into the system design aspects at

embedded mechatronics-based system development.

Figure 2.6: Software Development Process for SMEs from [49]

Meyer [40] conducted a PhD study in the field of consistent model-based develop-

ment methodologies for the development of automotive control systems incorporating

2http://www.bpmn.org/

18

http://www.bpmn.org/

2 Related Work

the AUTOSAR3 standard. He states that AUTOSAR does not give any advice about

the description of dynamic system aspects and also that there is no relation between

requirements engineering and AUTOSAR. He claims to close this gap by combining

SysML/UML with the AUTOSAR standard and thus establishing a consistent automo-

tive control system development process, comprising of all artefacts from the architecture

to the implementation.

Meyer does not consider the verification and validation (V&V) of any artefact along the

product development life cycle. Furthermore he strongly focuses on the de facto standard

AUTOSAR, which is a widespread software reference architecture. By February 2016

there are nine core partners (Original Equipment Manufacturer and Tier-1 Suppliers)

and 198 other companies supporting the AUTOSAR project [8]. Nevertheless there are

still many other software architectures around and will remain to be over the next few

years. Mart́ınez-Fernández et al. [36] conducted a survey on the benefits and drawbacks

of AUTOSAR. Their target group were practitioners from the automotive industry with

AUTOSAR experience. The survey showed Standardization and Reuse as the biggest

advantages named by the experts. As experienced drawbacks they stated the Complexity,

the high Initial Investment, and the adverse Learning Curve. AUTOSAR is out of scope

of this thesis because the main focus lies on the system design, not on a detailed software

architecture. Moreover, V&V aspects are considered in contrast to [40].

Hillenbrand [22] pursues the incorporation of ISO 26262 and the model-driven archi-

tectural design, in his words the Electric/Electronic Architecture (EEA), of automotive

electric/electronic systems in his PhD thesis. As described previously, ISO 26262 is the

international standard for functional safety in the domain of road vehicles. Hillenbrand

strongly focuses on the modelling of the hardware components including the correspond-

ing safety aspects according to the ISO 26262. He defines the goals of his work as creating

a common understanding, respectively a common language of ISO 26262 and EEA mod-

elling, developing methods for the support of an optimized functional safety view within

the EEAs, facilitating the vehicle development by deployment of context-related data

from the EEA model for concurrent or subsequent development activities, and proposing

an approach for the specification and execution of queries related to the EEA models.

The methods presented by Hillebrand, which deal with the incorporation of ISO 26262

related artefacts and the EEA, are premised on model-based development techniques.

He describes the required features of potentially usable tools, such as the possibility

of domain-specific tailoring and execution of various algorithms on the created model.

Considering these constraints he comes to the conclusion that the tool PREEvision from

3http://www.autosar.org/

19

http://www.autosar.org/

2 Related Work

Aquintos, which is now fully owned by Vector Informatik GmbH 4, is the only tool in

the domain of EEA modelling which fulfils the stated requirements. PREEvision is

based on Eclipse and implements the Electric/Electronic Architecture - Architecture De-

scription Language (EEA-ADL). This language provides different abstraction layers, e.g.

Requirements, Logical Architecture, Electric Circuit, etc. for the EEA modelling. Thus,

EEA-ADL represents a meta model and defines about 1200 classes, 400 associations,

and 400 attributes in the version 3.0.

The topics of this thesis partly overlap with those from Hillebrand, but in general

the herein presented methodologies and techniques takes care of the design on a higher

system level including also mechanical items. Moreover the target group is completely

different. While Hillebrand’s methods tends to support development teams as they are

usually composed at medium and large companies as a complete vehicle development, i.e.

experts for the various domains such as electronics, basis software, application software,

mechanical engineering, system architecture, etc. are available, this work tries to support

small-sized development entities by providing a lightweight and methodical approach for

a continuous embedded system development.

2.4 Domain-Specific Modelling

A rigorous separation of the previous Chapter 2.3, where the related work concerning

Automotive E/E System Design Methodologies was presented, and this chapter, which

outlines the existing contributions in the field of Domain-Specific Modelling, is not possi-

ble. Many aspects of these two topics overlap, in particular when it comes to specifying

the model-based artefacts along the development lifecycle. Thus, the following part may

be also seen as a specialisation of the previous topic.

Within this research work, a Domain-Specific Language (DSL) that is combined

with Model-Driven Development (MDD) techniques is called Domain-Specific Modelling

(DSM). When dealing with DSLs or their model-driven counterpart DSM, sometimes

the question of whether a language may be called domain-specific or not arises. Andrew

Watson [60], Technical Director of the Object Management Group5, gives an answer to

this question. He mentions that there is a spectrum of standardisation from bespoke

domain-specific languages for particular applications, to standard language dialects, to

the strict use of general purpose languages (GPLs). He presents the levels as being

more or less domain-specific with focus on UML and UML profiles, but in this classifica-

tion, which is portrayed in Figure 2.7, UML may be substituted by any general purpose

4http://vector.com/
5http://www.omg.org/

20

http://www.omg.org/

2 Related Work

language.

Figure 2.7: Modelling Languages from General-Purpose to Completely Domain-Specific

from [60]

According to Mernik et al. [37], substantial gains in expressiveness and ease of use

are obtained for languages that are tailored to the needs of a specific domain, compared

to general-purpose languages. The application of DSLs facilitates analysis, verification,

optimization, parallelization, and transformation of the various work products related

to the DSL. Hudak [24] argues that programs written in a DSL are more concise, can be

written more quickly, and are easier to maintain. Additionally, they can often be written,

or in the case of a DSM modelled, by non-programmers. That is, DSLs and DSMs can

enable domain experts to develop programs and designs which helps to bridge the gap

between developers and users. Furthermore, Hudak defines basic steps for creating a

domain-specific language as

1) definition of the domain,

2) design of the language that captures the domain semantics,

3) creation of tool support for the DSL, and

4) application of the new DSL infrastructure.

These steps are fulfilled by the presented approach and described in Chapters 4 & 5,

and in the related publications which are referenced in these chapters.

Also Preschern et al. [47] present advantages of DSLs and state that the domain-

specific languages help to decrease system development cost by providing an effective

way of constructing systems for a particular domain. However, the benefit of developing

in a more effective way compared to using general purpose languages, has to be higher

than the investment of creating and establishing a DSL. Because of new tools which

21

2 Related Work

better support a domain-specific language creation, Preschern et al. claim that the

amount of this investment will decrease significantly over the next few years.

Tools for creating model-based domain-specific languages, as mentioned by [47], have

been available for several years now. Both, Kern et al. [30] and Kouhen et al. [32] evalu-

ate the benefits and drawbacks of the state-of-the-art Meta Meta Models. Interestingly,

the ranking of the tools resulting from their particular evaluation, with regard to which

is the most powerful expressive tool [30] and to which one is the most capable of fast

language development [32], is similar.

Kern et al. state that the definition of modelling languages is a cornerstone in Domain-

Specific Modelling and that meta modelling is a wide-spread approach for formalizing

DSM. In [30] they compare a set of meta modelling languages. The selection is based

on criteria such as the kind of language definition (Lightweight or Heavyweight) and

the concrete syntax (Graphical or Textual). In their work they focus on heavyweight

types of DSM meta meta models that enable graphical language definition with textual

annotation, and for which a tool support is available. Heavyweight in this context means

that the particular language is created by the definition of a meta model from scratch.

A well-known example of a lightweight approach is the stereotype mechanism of UML.

The approach presented in Chapter 4 complies to the term Heavyweight.

Based on their requirements towards the meta modelling definition, Kern et al. choose

the tools and meta meta models ARIS [50], Ecore [54], GME [17], GOPPRR [29], MS

DSL Tools [15], and MS Visio [10] for their evaluation. Kouhen et al. additionally se-

lected the tools and meta meta models IBM’s Rational Software Architect (RSA) [55] and

the Obeo Designer [27]. In their study they do not take ARIS, MS DSL Tools, and MS

Visio into account. Generally, for their evaluation they chose only tools which provide

Meta-CASE (Computer-Aided Software Engineering) characteristics. Tools belonging to

this category can generate CASE tools in a very short time, compared to conventional

development time scales, which support software development methods [5]. A descrip-

tion of the named tools and meta meta models including their particular relevance for

the herein presented work, can be found at the end of this section.

The evaluation of the meta meta models and the corresponding tools proposed by

Kouhen et al. is based on observing the process of customization for a sample DSM. For

the presented case study they prepared a simplified version of the Business Process Model

and Notation [44] meta model. Based on the work of Mohagheghi and Haugen[42], they

proposed evaluation metrics and criteria with regard to Customization Level, Graphical

Expressiveness and Completeness, Tool Openness, Tool Usability, Required Resources,

License Nature, and Produced Artefacts. To describe the selected criteria in detail goes

beyond the scope of this work and can be found in [32]. For the majority of criteria

22

2 Related Work

Eclipse GMF and Obeo Designer are evaluated as the best solution, but regarding the

required resources MetaEdit+ is clearly ahead with only 0.5 man-days followed by Obeo

Designer with 5 man-days.

As mentioned previously, Kern et al. propose an evaluation of the meta meta models

and tools too. In terms of the most powerful expressiveness they rate MetaEdit+ and

GME highest and MS Visio lowest. The evaluation results presented by Kern et al. and

Kouhen et al. are well prepared and informative, but every company or development

team has to find the environment which suits them best on their own, taking their

particular product they are to develop and available resources into account. Nevertheless,

the comparison of the meta meta model’s attributes, which are included at the presented

evaluations, may help to come to a decision regarding which model or tool should be

selected.

As mentioned previously, an overview of the available meta meta models and corre-

sponding tools is given in the remaining part of this section.

Architecture of Integrated Information Systems (ARIS)

According to Scheer and Nüttgens [51] the Architecture of Integrated Information Sys-

tems (ARIS) can be used as a cornerstone for both, business process re-engineering and

business process management. Together with the ARIS-House of Business Engineering

architecture it provides a framework for managing business processes, incorporating the

four levels Process Engineering, Process Planning and Control, Workflow Control, and

Application System.

Kern and Kühne [31] mention that the DSM definition relies on the ARIS method,

which can be configured according to the predefined instances of ModelType, ObjectType,

ConnectionType, AttributeType, and Symbol. The existing types can be renamed and new

ones can be derived from them.

ARIS strongly focusses on business processes and cannot be directly utilized to support

the presented research work.

Ecore

The Eclipse Modeling Framework (EMF) project is a modelling framework and code

generation facility for building tools and applications, based on a structured data model.

The framework provides a basic editor and other tools, including a runtime support, to

produce Java classes for the model. Aided by a set of adapter classes, viewing and

command-based editing of the model is enabled. Ecore is one of the three fundamental

pieces of EMF and represents a meta model for describing models and runtime support

23

2 Related Work

for the models. The other two main pieces of EMF are the EMF.Edit framework for

building editors for the models through generic classes, and EMF.Codegen for completing

the framework and the created editors with code generation capabilities [54].

While model-driven development approaches based on EMF are widespread in the

academic world, it has been chosen not to use it for this research work. Though sound

experience with software development and general purpose languages such as Java exists,

the effort for familiarization with the EMF concept to achieve a proper support of this

work’s approach has been classified as too high. This justification has been strengthened

through the feedback from mainly mechanical engineers, who were asked to build a

sample architectural design utilizing SysML within an Eclipse editor. Most of them

complained that the modelling environment was too complex and therefore too confusing.

Thus, other possibilities have been selected for the support of the approach described in

the subsequent chapters.

Generic Modeling Environment (GME)

Davis [17] describes the Generic Modeling Environment (GME) as an architecture for

creating domain-specific design environments. GME supports a variety of general mod-

elling principles which can be utilized to create a domain-specific language and a cor-

responding domain-specific modelling environment. Meta models in UML notation are

used to capture the syntax, semantics, and presentation and thus to specify the modelling

language for the particular target domain. In detail, the syntax is specified through UML

class diagrams, the semantics are described aided by the Object Constraint Language

(OCL), and the presentation and visualization information is captured using stereotypes

and predefined attributes of the UML classes and associations.

While the Generic Modeling Environment seems suitable for supporting the approach

in Chapter 3, it has not been applied yet. A difficult constraint to the utilization of a

meta meta model for the approach is the capability to provide a multi-level modelling

environment for the target domain, which is automotive mechatronics system design

in the case of this work. Multi-level means that a class defined in the meta model is

capable of containing itself and or other classes. Sometimes this feature is also titled

Subgraph. The modelling of hardware and software components described in Chapter 5

is an example of such a multi-level characteristic. It has not yet been clarified whether

GME is capable of producing a domain specific design environment with the required

features. This belongs to future work.

24

2 Related Work

IBM Rational Software Architect (RSA)

Swithinbank et al. [55] describe the Rational Software Architect as an integrated design

and development tool that leverages model-driven development with UML. The main

features of RSA with respect to MDD are a UML 2.0 editor, the support for UML 2.0

profiles, a pattern library, and a transformation infrastructure. With the combination of

these features they claim to being capable of providing the required level of customization

at RSA to support the automation of IT development processes according to the MDD

approach. To customize UML for use in particular domains and applications, UML

profiles are used. They are defined by introducing a set of stereotypes, which extend the

existing elements of UML. RSA is capable of generating editors for such profiles and can

be seen as representative for many other tools that utilize profiles as an UML extension

mechanism [32].

A utilization of one of these other tools is presented by Macher [34]. For the system

and software architectural design he uses Enterprise Architect6, based on the mentioned

UML customization mechanism through profiles. He conducted his research work at the

Graz University of Technology during the same period of time that this work was carried

out. Some topics were prepared and published together and points of intersection are

presented in Chapters 3, 4, and 5.

MetaEdit+ (GOPRR)

Starting in the early 1990s, the products from MetaCase are one of the oldest and most

widely used in the field of producing domain-specific languages.

MetaEdit stands for Metamodeling Editor and is based on the conceptual data model

GOPRR, which is an acronym for Graph, Object, Property, Relationship, and Role. Ob-

jects typically appear as shapes in diagrams and can have properties such as ID or

Name. Properties are attributes of objects and typically appear as text labels on items

in diagrams. Relationships are associations between objects and typically appears as

lines in diagrams. Like the objects, they also may have properties. Roles define how

objects participate in specific relationships. Typically, roles appear as the endpoints of

relationships in diagrams (e.g. as an arrowhead describing a particular data flow). The

Graph aggregates a certain set of objects and their relationships with specific roles. In

diagrams, graphs typically appear as a window containing objects, their relationships,

and roles including the particular properties. The concept of graphs facilitate the illus-

tration of one conceptual graph as multiple representational graphs. This also enables

a deconstruction of a parent graph into subgraphs [28].

6http://www.sparxsystems.com/

25

http://www.sparxsystems.com/

2 Related Work

Many of today’s E/E System design methodologies and techniques in the automotive

industry have been implemented into the MetaEdit environment. EAST-ADL, as an

representative of these methodologies, has been integrated with its different abstraction

levels. The models are verified according to the correctness, consistency, and complete-

ness rules and can be transformed to targets such as AUTOSAR Software Platforms

[39].

Baetens [9] describes some potential drawbacks. The meta model in MetaEdit is

spread among different tools and a complete display of the whole model is not available.

Furthermore the licenses are pretty expensive and the question of whether the investment

pays off in the particular application has to be considered properly.

Even if there is a lot of good marketing in the background, this meta meta model

may be a good choice for many DSL approaches. Nevertheless, the drawbacks presented

by Baetens should be taken into account. The approach presented in this thesis can

be supported by this tool without doubt. The main reasons for following a different

strategy in this work are on the one hand the tool’s price and on the other hand simply

the desire to show an alternative way of implementing a DSM.

Microsoft Modeling SDK for Visual Studio - Domain-Specific Languages

(MSDK-DSL)

The software development kit (SDK) for domain-specific languages is provided by the

Microsoft Developer Network (MSDN) [41]. Generally, the definition of the domain-

specific language is separated into two parts. Syntax and semantics are specified by

modelling Domain Classes and their Relationships in a UML notation. The relation-

ships can either be of type Embedding or Reference. Typically, a top node domain class,

representing a kind of container class for all other classes in the language definition, is

specified. Each domain class which shall be available in the DSM is connected to the

top node domain class by an embedding relationship. Domain classes which shall have

relationships to each other in the DSM are connected by a reference relationship. Do-

main classes can also be derived from a parent class. Domain Properties can be added

for each domain class and also for the relationships. The second part of the DSM def-

inition relates to the visualization. The modelling of this part typically starts with a

top node of type Diagram. This node is directly connected to the top domain class in

the syntax and semantics definition. Further elements of the visualization definition are

typically Connectors and GeometryShape. The allocation of domain classes and geome-

try shapes, and relationships and connectors takes place through associations. From the

DSM definition MSDK generates the model implementation, a graphical editor, a tree

26

2 Related Work

based explorer, and facilities for generating code or other artefacts by text templating.

Further information related to Microsoft Modeling SDK - Domain Specific Languages

can be found in [15].

A big advantage of the MSDK-DSL meta meta model and tool is the easy definition of

the DSM meta model elements, their relationship and properties they belong to. Further

customization of the DSM meta model can be realized by extensions of the generated

environment, written in a GPL such as C#, which is a potential drawback. A further

disadvantage is the need to purchase the Visual Studio software for each user of the

developed DSM due to the fact that VS is simultaneously the runtime environment.

Without the extensions, the MSDK-DSL is not suitable to support the approach

described in the subsequent chapters. Nevertheless, this meta meta model has been

utilized and the application is presented in Chapter 5.

Microsoft Visio

At first glance, Microsoft Visio has little to do with the meta meta models described so

far. However, a closer look reveals that there is potential to produce a DSM meta model.

This can be done by creating a new Stencil and adding a new Master for every element

in the DSM meta model. The master contains the visualization and the properties of

the element. Relationships between the elements can be implemented as master too.

With the command Create New Subprocess multi-level models can be introduced. More

effort is required to establish diagram validation rules. As described by Hopkins [23], a

specific validation API can be utilized to create and manage rule sets, using GPLs such

as VBA. Aided by the available data connections to external sources such as databases,

other development artefacts can be linked to the DSM. Diagram data can be exported

into spreadsheets or databases and prepared with an external generator for subsequent

data processing. Due to the fact that Visio has been developed for creating diagrams,

the editor is one of the major strengths. Further information related to Microsoft Visio

can be found in [10].

As mentioned before, Microsoft Visio may not be the first thing which comes to ones

mind if talking about DSM meta meta models and tools, but for certain applications it

may be a good choice. For features such as connection to databases, the professional

version is required. The costs for purchasing the tool are comparatively low and a viewer

is available for free. A drawback of this tool is the missing or at least hard to implement

feature of modelling constraints. This makes it less suitable for the approach described

in the remaining part of this thesis.

27

2 Related Work

Sirius/Obeo Designer

Vujović et al. [59] state that Sirius is a framework to create, visualize and edit models

using interactive editors called Modelers. The framework is based on the Graphical

Modeling Framework (GMF), which is a component of the Eclipse Graphical Modeling

Project (GMP) [56]. Vujović et al. mentions that producing a new DSM modelling

workbench graphically is one of the big advantages of Sirius. Skills in developing software

in Java and knowledge of Eclipse’s Graphical Editor Framework (GEF) and Graphical

Modeling Framework (GMF) is not required. The structure, appearance, and behaviour

of the DSM is described by a Viewpoint Specification Model (VSM), which stores the

five main concepts of Sirius Viewpoint, Representation, Mapping, Style, and Tool. The

creation of viewpoints using Obeo Designer is described by Juliot and Benois [27]. The

designer hides the complexity of GMF and utilizes MARTE [43], which is a UML profile

geared for usage in the field of real-time systems and embedded systems, for building an

embedded modelling tool. They claim that Obeo Designer is powered by Sirius, which

means that the viewpoint created by the designer is utilized by Sirius to create a DSM

modelling environment.

Even if the Obeo Designer in combination with Sirius provides an abstraction of

the GMP components there is still, from the author’s point of view, expert knowledge

in Eclipse environment development required. The development can become a time

consuming task very quickly, especially for certain DSM meta model customizations. As

mentioned in the paragraph above describing Ecore, for this research work the decision

has been made not to use methodologies based on Eclipse GMP. For someone who is

familiar with the Eclipse development environment, it is maybe a less time consuming

task to integrate the approach described in this work into Sirius, which is theoretically

feasible.

28

3 Embedded Mechatronic System

Development in Small Entities

The heading of this chapter and the challenge which comes along with it, is simultane-

ously the key issue of this thesis and was also one of the ulterior motives to starting the

research work in this field back in 2012. In every project conducted with only a small

number of developers - where the author was involved - the same kinds of challenges

always resurfaced. Some of these matters were usually of a non-technical nature, which

makes this thesis’ top level research question ”How to facilitate the interdisciplinary de-

velopment of embedded mechatronic systems within small development entities” into a

blend of engineering, management, and social aspects.

3.1 Sociological Aspects

The most important requirement, which affects all described steps towards a sound basis

for high quality development, is non-technical. DeMarco and Lister [18] claim that the

most serious problems, which harm the success of projects, are not of a technical nature,

but based on sociological issues. Over almost 20 years they analysed industrial devel-

opment projects that failed. 15 percent of small and medium projects were cancelled,

postponed or delivered results which have never been used. At large projects with 25

man-years of development effort or more, the failure rate is even higher and tot up to 25

percent. DeMarco and Lister conducted interviews with the parties concerned and came

to the result that in the overwhelming majority of failed projects no technological issues

could be found. As a reason for the failure of the particular project their interview part-

ners most frequently named Politics. This may be rather unfortunately worded since the

problems behind this term typically belong to issues such as communication problems,

personnel problems, difficulties with the direct supervisor or with the customer, lack of

motivation or high turnover.

The described major problems above are not limited to small entities, but have a

relatively greater impact compared to large companies due to their limited resource’s

flexibility. In the author’s opinion, the main difference is the worst case scenario which

29

3 Embedded Mechatronic System Development in Small Entities

can arise from these problems. For medium-sized or large enterprises the result may be

a project carried through without success and the loss of money and reputation, which

is a serious challenge but still manageable with adequate resources available. For small-

and micro-sized companies, e.g. start-ups, ignoring sociological issues may be a complete

knock out criteria for their business.

In one of the last projects the author was involved with, the situation had been as de-

scribed by DeMarco and Lister. A small development team composed of two mechanical

and two electronics/software engineers were supposed to build a prototype of an automo-

tive mechatronic system (project details and company name shall remain anonymous).

The management board included the founder and CEO, the CFO, and two vice presi-

dents who were supposed to lead the engineering team. For what reason four persons at

the management level are necessary at a total head count of nine (including the assistant

to the CEO), should not be discussed here. Most likely it was due to the fact that neither

the CEO nor the CFO had any experience in the automotive industry. To compensate

these deficits two people were hired as vice presidents for product development and op-

erations. The major problem in this constellation was that the vice presidents had no

clue about product development either, but had been relatively clever in terms of self

marketing. To hide their missing skills, they prevented the flow of information between

the engineers and the CEO. One of the side effects of their strategy was a big delay in ev-

ery development step. The engineers who had experience in the automotive domain and

developed various mechatronic systems before, talked to the CEO about the recognized

problem. He was grateful for the honest feedback and promised to take action, which

never happened. Unfortunately, this sociological problem ended in the bankruptcy of a

company, which, out of the technological view, would have been capable of developing

the desired products.

More than 35 years ago, Crosby [16] concluded that if the developers are allowed

to define their own quality standard, in return the company receives an increase in

productivity which can absorb the costs of additional efforts to obtain a higher quality

product.

Typically, an engineer is connected to the developed product in multiple ways. One

of them may be described as an emotional attachment which leads to the fact that

usually it is not necessary to urge an engineer to increase the quality of the developed

product. This emotional connection is one of the key factors for high quality and has to

be supported by the utilized methodologies and tools.

30

3 Embedded Mechatronic System Development in Small Entities

3.2 Engineering Processes

Unfortunately - at least sometimes from the view of a small development entity which

has to deal with the additional cost - the safety standards such as the ISO 26262 for the

automotive domain, represents the state of the art. This means that in the case of a

physical injury or damage to the health of a person caused by a malfunctioning behaviour

of the developed product, there is no room for excuses for the development team if they

did not follow the directives of these standards. Apart from the ethical issues it is also

a matter of product liability if a human suffers harm. Not least since the discovery of

the defective ignition switches installed in millions of General Motors vehicles, it has

become common currency that flaws arising during development can tragically lead to

many lives being lost, as well as to a financial loss of millions or even billions of euros.

Hence, independent of the respective manpower, every development team shall foster

high quality in all aspects of the product’s life cycle. Even if the item being developed

does not perform a safety-related function, high quality introduced by establishing well-

defined and practised engineering processes contributes to the product’s reliability and

therefore to customer satisfaction, which is vital for an economical survival.

An additional argument for having well-defined engineering processes implemented is

to avoid increased costs of debugging due to a late error recognition in the product’s life

cycle. Although these statistics are several years old, they are still valid. Most of these

well-known analysis results presenting 100 times higher relative costs to fix software

defects when the product has been already released for production compared to debug-

ging at the design phase. Altogether, it can be stated that well-defined development

processes are necessary for every organisation involved in the product’s development

cycle, irrelevant of whether it is a micro-sized or a large company. However, an im-

plementation of e.g. a requirements management process for a large entity will most

likely not be suitable for a small one. In the following subsections within this section

a possible engineering process model for small development entities is presented, which

should ease the entry into the engineering processes for them. Nevertheless, it has to

be clearly stated that in this work, as well as in all other serious contributions in the

field of embedded mechatronic system development, a From Zero to Hero strategy is

not, and cannot be provided. That is, teams and companies that are relatively new to

the field of performing engineering processes and functional safety, cannot be enabled

to being capable of developing a highly safety relevant mechatronic system, such as a

steer-by-wire system, within a short period of time. With this in mind, this work should

be understood as assistance to get into the relevant topics quickly and to avoid losing

precious time looking for the answer to the question Where should I start? Though

31

3 Embedded Mechatronic System Development in Small Entities

functional safety is not a key aspect of this thesis, the methodologies and techniques of

ISO 26262 have been taken into account when preparing the herein described approach.

Hence, the proposed models and patterns have been developed with the ulterior motive

to be a basis for a safety relevant development capability.

3.2.1 Process Reference Model for the Embedded Mechatronic System
Development (EMS-PRM)

As mentioned in Chapter 2, Automotive SPICE is used as the underlying process refer-

ence model throughout this research work. At the EU project AQUA [33], an integrated

view of Automotive SPICE, Functional Safety, and Six Sigma is proposed. Inspired by

that approach, the process reference model described in this chapter, the system archi-

tectural design methodology (see Chapter 4), and the tool support (see Chapter 5) of the

presented approach, are aligned to Automotive SPICE and set up for functional safety

relevant development artefacts whenever applicable.

Figure 3.1: EMS-PRM aligned to Automotive SPICE [58]

In Figure 3.1 the process reference model for the embedded mechatronic system devel-

opment is shown. The blue coloured elements are references to the Automotive SPICE

processes and can be used one to one. The green coloured elements represent new pro-

cesses proposed by the author, which are aligned to the Automotive SPICE engineering

processes. The methodology is briefly described as The Plug-in Concept in [58]. For

a seamless integration into the existing process reference model, it has been attempted

to describe the new processes in an identical way. The proposed process definitions to

extend the PRM:

32

3 Embedded Mechatronic System Development in Small Entities

• HWE.1 - Hardware Requirements Analysis (see Table 3.1)

• HWE.2 - Hardware Design (see Table 3.2)

• HWE.3 - Hardware Design Verification (see Table 3.3)

• HWE.4 - Hardware Assembly and Integration Test (see Table 3.4)

• HWE.5 - Hardware Qualification Test (see Table 3.5)

• MEE.1 - Mechanical Requirements Analysis (see Table 3.6)

• SYS.6 - System Validation (see Table 3.7)

The tables in the remaining part of this subsection present the detailed definition of

the new process reference model elements. The number given in front of the particular

items in the section Output work products of the process definition, represent the Work

product identifier and references to the more detailed information in Annex B Work

product characteristic in [58].

Table 3.1: EMS-PRM HWE.1 - Hardware Requirements Analysis - Process Definition

Process ID HWE.1

Process name Hardware Requirements Analysis

Process

purpose

The purpose of the Hardware Requirements Analysis Process is to

transform the hardware related parts of the system requirements into

a set of hardware requirements.

33

3 Embedded Mechatronic System Development in Small Entities

Process

outcomes

As a result of successful implementation of this process:

1) the hardware requirements to be allocated to the hardware el-

ements of the system and their interfaces are defined;

2) hardware requirements are categorized and analysed for cor-

rectness and verifiability;

3) consistency between the impact of the software requirements

on the hardware related parts of the operating environment

and the hardware requirements is examined;

4) prioritization for implementing the hardware requirements is

defined;

5) the hardware requirements are updated as needed;

6) consistency and bidirectional traceability are established be-

tween system requirements and hardware requirements; and

consistency and bidirectional traceability are established be-

tween system architectural design and hardware requirements;

7) the hardware requirements are evaluated for cost, schedule and

technical impact; and

8) the hardware requirements are agreed and communicated to all

affected parties.

Base

practices

HWE.1.BP1: Specify hardware requirements. Use the sys-

tem requirements and the system architecture, and changes to sys-

tem requirements and architecture to identify the required func-

tions and capabilities of the hardware. Specify functional and non-

functional hardware requirements in a hardware requirements speci-

fication. [Process Outcome 1, 5, 7]

HWE.1.BP2: Structure hardware requirements. Structure

the hardware requirements in the hardware requirements specification

by e.g. grouping to project relevant clusters, sorting in a logical order

for the project, categorizing based on relevant criteria for the project,

prioritizing according to stakeholder needs. [Process Outcome 2, 4]

34

3 Embedded Mechatronic System Development in Small Entities

HWE.1.BP3: Analyse hardware requirements. Analyse the

specified hardware requirements including their interdependencies to

ensure correctness, technical feasibility and verifiability, and to sup-

port risk identification. Analyse the impact on cost, schedule and the

technical impact. [Process Outcome 2, 7]

HWE.1.BP4: Analyse the impact of the software develop-

ment artefacts on the hardware requirements. Analyse the

impact that the software requirements and the software architectural

design will have on the hardware requirements to enable the avail-

ability of necessary resources. [Process Outcome 3, 7]

HWE.1.BP5: Develop verification criteria. Develop the verifi-

cation criteria for each hardware requirement that define the qualita-

tive and quantitative measures for the verification of a requirement.

[Process Outcome 2, 7]

HWE.1.BP6: Establish bidirectional traceability. Establish

bidirectional traceability between system requirements and hardware

requirements. Establish bidirectional traceability between the system

architecture and hardware requirements. [Process Outcome 6]

HWE.1.BP7: Ensure consistency. Ensure consistency between

system requirements and hardware requirements. Ensure consistency

between the system architecture and hardware requirements. [Pro-

cess Outcome 6]

HWE.1.BP8: Communicate agreed hardware requirements.

Communicate the agreed hardware requirements and updates to

hardware requirements to all relevant parties. [Process Outcome 8]

Output work 13-04 Communication record [Process Outcome 8]

products 13-19 Review record [Process Outcome 6]

13-21 Change control record [Process Outcome 5, 7]

13-22 Traceability record [Process Outcome 1, 6]

15-01 Analysis report [Process Outcome 2, 3, 4, 7]

17-08 Interface requirements specification [Process Outcome 1]

17-12 System requirements specification [Process Outcome 1, 3]

17-50 Verification criteria [Process Outcome 2]

The Hardware Design process definition in the following Table 3.2 is comparable with

the process SWE.3 Software Detailed Design and Unit Construction. An architectural

design as it shall be created during the software development cycle, is not necessary for

35

3 Embedded Mechatronic System Development in Small Entities

the hardware because an architectural view of the hardware components is already given

by the system architectural design.

Table 3.2: EMS-PRM HWE.2 - Hardware Design - Process Definition

Process ID HWE.2

Process name Hardware Design

Process

purpose

The purpose of the Hardware Design Process is to establish a detailed

design for the hardware, and to identify which hardware requirements

are to be allocated to which hardware components.

Process

outcomes

As a result of successful implementation of this process:

1) a detailed design is developed that describes the composition of

all required hardware components;

2) the hardware requirements are allocated to the hardware com-

ponents;

3) a detailed description of each hardware component and its in-

terface is available;

4) the dynamic behaviour and resource consumption objectives of

the software elements related to the particular hardware com-

ponent are analysed; and

5) consistency and bidirectional traceability are established be-

tween hardware requirements and hardware design.

Base

practices

HWE.2.BP1: Develop hardware design. Develop a hardware

design, typically established through schematics, PCB design, inte-

grated circuit design, and similar artefacts, that represents a com-

position of all required hardware components, and that enables the

fulfilment of the established functional and non-functional hardware

requirements. [Process Outcome 1]

HWE.2.BP2: Allocate hardware requirements. Allocate the

hardware requirements to the components of the hardware design.

[Process Outcome 2]

HWE.2.BP3: Define interfaces of hardware units. Identify,

specify and document the interfaces of each hardware component.

[Process Outcome 3]

36

3 Embedded Mechatronic System Development in Small Entities

HWE.2.BP4: Describe dynamic behaviour. Evaluate and doc-

ument the timing and dynamic interaction of hardware components

to meet the required dynamic behaviour of the system. [Process Out-

come 3, 4]

HWE.2.BP5: Analyse resource consumption objectives. De-

termine and document that the resource consumption objectives for

the software elements related to the particular hardware component

can be met. [Process Outcome 4]

HWE.2.BP6: Establish bidirectional traceability. Establish

bidirectional traceability between hardware requirements and com-

ponents of the hardware design. [Process Outcome 5]

HWE.2.BP7: Ensure consistency. Ensure consistency between

hardware requirements and the hardware design. [Process Outcome

1, 2, 5]

Output work 04-00 Design - Hardware Design [Process Outcome 1, 2, 3, 4, 5]

products 13-19 Review record [Process Outcome 4, 5]

13-22 Traceability record [Process Outcome 5]

17-08 Interface requirement specification [Process Outcome 3]

Table 3.3: EMS-PRM HWE.3 - Hardware Design Verification - Process Definition

Process ID HWE.3

Process name Hardware Design Verification

Process

purpose

The purpose of the Hardware Design Verification Process is to verify

the hardware design to provide evidence for compliance of the design

with the hardware requirements, and to review the hardware design

for early design failure detection.

37

3 Embedded Mechatronic System Development in Small Entities

Process

outcomes

As a result of successful implementation of this process:

1) a hardware design verification strategy is developed to verify

the hardware design;

2) criteria for hardware design verification are developed according

to the hardware design verification strategy that are suitable to

provide evidence for compliance of the hardware design with

the hardware requirements;

3) the hardware design is verified according to the hardware design

verification strategy and the defined criteria for hardware design

verification and the results are recorded;

4) consistency and bidirectional traceability are established be-

tween hardware design, criteria for verification and verification

results;

5) the hardware design is agreed and communicated to all affected

parties; and

6) intermediate hardware development artefacts according to the

verified hardware design are produced.

Base

practices

HWE.3.BP1: Develop hardware design verification strategy.

Develop a strategy for verification of the hardware design including

a regression strategy for re-verification if a component in the hard-

ware design is changed. The verification strategy shall define how

to provide evidence for compliance of the hardware design with the

hardware requirements. [Process Outcome 1]

HWE.3.BP2: Develop criteria for hardware design verifica-

tion. Develop criteria for the hardware design verification that are

suitable to provide evidence for compliance of the hardware design

with the hardware requirements according to the verification strat-

egy. Evaluate the hardware design in terms of interoperability, inter-

action, criticality, technical complexity, risks and testability. [Process

Outcome 2]

38

3 Embedded Mechatronic System Development in Small Entities

HWE.3.BP3: Perform static verification of the hardware

design. Verify the hardware design for correctness using the defined

criteria for verification. Record the results of the static verification.

[Process Outcome 3]

HWE.3.BP4: Establish bidirectional traceability. Establish

bidirectional traceability between the hardware design and static ver-

ification results. [Process Outcome 4]

HWE.3.BP5: Ensure consistency. Ensure consistency between

the hardware design and the static verification results. [Process Out-

come 4]

HWE.3.BP6: Communicate agreed hardware design. Com-

municate the agreed hardware design and updates to the hardware

design to all relevant parties. [Process Outcome 5]

HWE.3.BP7: Produce intermediate hardware development

artefacts. Produce intermediate hardware development artefacts,

such as printed circuit-boards, according to the hardware design.

[Process Outcome 6]

Output work 08-50 Test specification [Process Outcome 2]

products 08-52 Test plan [Process Outcome 1]

11-00 Product [Process Outcome 6]

13-04 Communication record [Process Outcome 5]

13-19 Review record [Process Outcome 3, 4]

13-22 Traceability record [Process Outcome 4]

13-25 Verification results [Process Outcome 3]

13-50 Test result [Process Outcome 3]

15-01 Analysis report [Process Outcome 3]

Table 3.4: EMS-PRM HWE.4 - Hardware Assembly and Integration Test - Process

Definition

Process ID HWE.4

Process name Hardware Assembly and Integration Test

39

3 Embedded Mechatronic System Development in Small Entities

Process

purpose

The purpose of the Hardware Assembly and Integration Test Process

is to assemble the individual hardware components and the interme-

diate hardware development artefacts (e.g. printed circuit boards)

into the complete integrated hardware (hardware device), consistent

with the hardware design and to ensure that the hardware device is

tested to provide evidence for compliance with the hardware design,

including the interfaces between the hardware components within the

hardware device.

Process

outcomes

As a result of successful implementation of this process:

1) hardware components and hardware intermediate development

artefacts are assembled into a complete hardware device accord-

ing to the hardware design;

2) a hardware device test strategy including a regression test strat-

egy is developed to test the hardware device and the interaction

between the hardware components;

3) a specification for the hardware device test according to the

hardware device test strategy is developed that is suitable to

provide evidence for compliance of the hardware device with the

hardware design, including the interfaces between the hardware

components;

4) Test cases included in the hardware device test specification are

selected according to the hardware device test strategy, and the

release plan;

5) the hardware device is tested using the selected test cases and

the results of the hardware device test are recorded;

6) consistency and bidirectional traceability are established be-

tween the elements of the hardware design and the test cases

included in the hardware device test specification and between

test cases and test results; and

7) results of the hardware device test are summarized and com-

municated to all affected parties.

40

3 Embedded Mechatronic System Development in Small Entities

Base

practices

HWE.4.BP1: Assemble hardware components and interme-

diate hardware development artefacts. Assemble the hardware

components and the intermediate hardware development artefacts

according to the hardware design. [Process Outcome 1]

HWE.4.BP2: Develop hardware device test strategy includ-

ing regression test strategy. Develop a strategy for testing the

hardware device. This includes a regression test strategy for re-

testing the hardware device if components are changed. [Process

Outcome 2]

HWE.4.BP3: Develop specification for hardware device

test. Develop the test specification for a hardware device test in-

cluding the test cases according to the hardware device test strategy.

The test specification shall be suitable to provide evidence for com-

pliance of the hardware device with the hardware design. [Process

Outcome 3]

HWE.4.BP4: Select test cases. Select test cases from the hard-

ware device test specification. The selection of test cases shall have

sufficient coverage according to the hardware device test strategy and

the release plan. [Process Outcome 4]

HWE.4.BP5: Perform hardware device test. Perform the

hardware device test using the selected test cases. Record the test

results and logs. [Process Outcome 5]

HWE.4.BP6: Establish bidirectional traceability. Establish

bidirectional traceability between elements of the hardware design

and test cases included in the hardware device test specification. Es-

tablish bidirectional traceability between test cases included in the

hardware device test specification and hardware device test results.

[Process Outcome 6]

HWE.4.BP7: Ensure consistency. Ensure consistency between

elements of the hardware design and the test cases included in the

hardware device test specification. [Process Outcome 6]

HWE.4.BP8: Summarize and communicate results. Summa-

rize the hardware device test results and communicate them to all

affected parties. [Process Outcome 7]

Output work 08-50 Test specification [Process Outcome 3, 4]

products 08-52 Test plan [Process Outcome 2]

41

3 Embedded Mechatronic System Development in Small Entities

11-00 Product [Process Outcome 1]

13-04 Communication record [Process Outcome 7]

13-19 Review record [Process Outcome 6]

13-22 Traceability record [Process Outcome 6]

13-50 Test result [Process Outcome 5, 7]

Table 3.5: EMS-PRM HWE.5 - Hardware Qualification Test - Process Definition

Process ID HWE.5

Process name Hardware Qualification Test

Process

purpose

The purpose of the Hardware Qualification Test Process is to ensure

that the hardware device, which has been assembled from the indi-

vidual hardware components and intermediate hardware development

artefacts such as printed circuit boards, is tested to provide evidence

for compliance with the hardware requirements.

42

3 Embedded Mechatronic System Development in Small Entities

Process

outcomes

As a result of successful implementation of this process:

1) a hardware qualification test strategy including regression test

strategy consistent with the project plan and release plan is

developed to test the hardware device;

2) a specification for a hardware qualification test of the hardware

device according to the hardware qualification test strategy is

developed that is suitable to provide evidence for compliance

with the hardware requirements;

3) test cases included in the hardware qualification test specifica-

tion are selected according to the hardware qualification test

strategy and the release plan;

4) the hardware device is tested using the selected test cases and

the results of the hardware qualification test are recorded;

5) consistency and bidirectional traceability are established be-

tween hardware requirements and hardware qualification test

specification including test cases and between test cases and

test results; and

6) results of the hardware qualification test are summarized and

communicated to all affected parties.

Base

practices

HWE.5.BP1: Develop hardware qualification test strategy

including regression test strategy. Develop a strategy for hard-

ware qualification testing consistent with the project plan and the

release plan. This includes a regression test strategy for re-testing

the hardware device if a hardware component is changed. [Process

Outcome 1]

HWE.5.BP2: Develop specification for hardware qualifica-

tion test. Develop the specification for hardware qualification test

including test cases based on the verification criteria, according to

the hardware qualification test strategy. The test specification shall

be suitable to provide evidence for compliance of the hardware device

with the hardware requirements. [Process Outcome 2]

43

3 Embedded Mechatronic System Development in Small Entities

HWE.5.BP3: Select test cases. Select test cases from the hard-

ware qualification test specification. The selection of test cases shall

have sufficient coverage according to the hardware qualification test

strategy and the release plan. [Process Outcome 3]

HWE.5.BP4: Test hardware device. Test the hardware device

using the selected test cases. Record the hardware qualification test

results and logs. [Process Outcome 4]

HWE.5.BP5: Establish bidirectional traceability. Establish

bidirectional traceability between hardware requirements and test

cases included in the hardware qualification test specification. Es-

tablish bidirectional traceability between test cases included in the

hardware qualification test specification and hardware qualification

test results. [Process Outcome 5]

HWE.5.BP6: Ensure consistency. Ensure consistency between

hardware requirements and test cases included in the hardware qual-

ification test specification. [Process Outcome 5]

HWE.5.BP7: Summarize and communicate results. Summa-

rize the hardware qualification test results and communicate them to

all affected parties. [Process Outcome 6]

Output work 08-50 Test specification [Process Outcome 2, 3]

products 08-52 Test plan [Process Outcome 1]

13-04 Communication record [Process Outcome 6]

13-19 Review record [Process Outcome 5]

13-22 Traceability record [Process Outcome 5]

13-50 Test result [Process Outcome 4, 6]

19-00 Strategy [Process Outcome 1]

Table 3.6: EMS-PRM MEE.1 - Mechanical Requirements Analysis - Process Definition

Process ID MEE.1

Process name Mechanical Requirements Analysis

Process

purpose

The purpose of the Mechanical Requirements Analysis Process is to

transform the mechanical related parts of the system requirements

into a set of mechanical requirements.

44

3 Embedded Mechatronic System Development in Small Entities

Process

outcomes

As a result of successful implementation of this process:

1) the mechanical requirements to be allocated to the mechanical

elements of the system are defined;

2) mechanical requirements are categorized and analysed for cor-

rectness;

3) prioritization for implementing the mechanical requirements is

defined;

4) the mechanical requirements are updated as needed;

5) consistency and bidirectional traceability are established be-

tween system requirements and mechanical requirements; and

consistency and bidirectional traceability are established be-

tween system architectural design and mechanical require-

ments;

6) the mechanical requirements are evaluated for cost, schedule

and technical impact; and

7) the mechanical requirements are agreed and communicated to

all affected parties.

Base

practices

MEE.1.BP1: Specify mechanical requirements. Use the sys-

tem requirements and the system architecture, and changes to system

requirements and architecture to identify the required functions and

capabilities of the mechanical components. Specify functional and

non-functional mechanical requirements in a mechanical requirements

specification. [Process Outcome 1, 4, 6]

MEE.1.BP2: Structure mechanical requirements. Structure

the mechanical requirements in the mechanical requirements speci-

fication by e.g. grouping to project relevant clusters, sorting in a

logical order for the project, categorizing based on relevant criteria

for the project, prioritizing according to stakeholder needs. [Process

Outcome 2, 3]

45

3 Embedded Mechatronic System Development in Small Entities

MEE.1.BP3: Analyse mechanical requirements. Analyse the

specified mechanical requirements including their interdependencies

to ensure correctness, technical feasibility and verifiability, and to

support risk identification. Analyse the impact on cost, schedule and

the technical impact. [Process Outcome 2, 6]

MEE.1.BP4: Establish bidirectional traceability. Establish

bidirectional traceability between system requirements and mechan-

ical requirements. Establish bidirectional traceability between the

system architecture and mechanical requirements. [Process Outcome

5]

MEE.1.BP5: Ensure consistency. Ensure consistency between

system requirements and mechanical requirements. Ensure consis-

tency between the system architecture and mechanical requirements.

[Process Outcome 5]

MEE.1.BP6: Communicate agreed mechanical require-

ments. Communicate the agreed mechanical requirements and up-

dates to mechanical requirements to all relevant parties. [Process

Outcome 7]

Output work 13-04 Communication record [Process Outcome 7]

products 13-19 Review record [Process Outcome 5]

13-21 Change control record [Process Outcome 4, 6]

13-22 Traceability record [Process Outcome 1, 5]

15-01 Analysis report [Process Outcome 2, 3, 6]

17-12 System requirements specification [Process Outcome 1]

From the author’s experience of previous mechatronic projects, it is not expedient

to define additional Mechanical Engineering (MEE) processes in the way they are de-

scribed for the system, software, and hardware processes. Typically the design approach

for mechanical components differs significantly from the E/E system design approach.

The mechanical engineering design methodology is innately model-driven by utilizing a

Computer-Aided Design (CAD) software. Usually, a workshop drawing is automatically

generated from the CAD design, or the necessary data for the manufacturing process

is directly generated aided by a CAD/CAM interface (Computer-Aided Manufacturing

(CAM). Safety relevant requirements are given by e.g. the Directive on Machinery [57],

and domain specific standards. In the field of mechanical engineering, the verification

of mechanical components is also carried out in a quite different way compared to E/E

system verification. Hence, the development of verification criteria etc. is out of scope

46

3 Embedded Mechatronic System Development in Small Entities

of the EMS-PRM and subject to the established verification processes of mechanical

engineering. The interface between the E/E system and the mechanical world are the

defined mechanical requirements, which are derived from the system requirements. Con-

sistency and bilateral traceability between these artefacts have to be assured throughout

the whole product life cycle.

Table 3.7: EMS-PRM SYS.6 - System Validation - Process Definition

Process ID SYS.6

Process name System Validation

Process

purpose

The purpose of the System Validation is to ensure that the system,

which has been successfully verified according to the system integra-

tion and qualification tests, is tested to provide evidence for compli-

ance with the customer requirements, and that the system is ready

for delivery.

Process

outcomes

As a result of successful implementation of this process:

1) a system validation strategy including regression test strategy

consistent with the project plan and release plan is developed;

2) a specification for system validation according to the system

validation strategy is developed that is suitable to provide evi-

dence for compliance with the customer requirements;

3) test cases included in the system validation specification are

selected according to the system validation strategy and the

release plan;

4) the system is tested using the selected test cases and the results

of the system validation are recorded;

5) consistency and bidirectional traceability are established be-

tween customer requirements and test cases included in the

system validation specification and between test cases and test

results; and

6) results of the system validation are summarized and communi-

cated to all affected parties.

47

3 Embedded Mechatronic System Development in Small Entities

Base

practices

SYS.6.BP1: Develop system validation strategy including

regression test strategy. Develop a strategy for system validation

consistent with the project plan and the release plan. This includes

a regression test strategy for re-testing the system if a system item is

changed. [Process Outcome 1]

SYS.6.BP2: Develop specification for system validation. De-

velop the specification for system validation including test cases ac-

cording to the system validation strategy. The test specification shall

be suitable to provide evidence for compliance of the system with the

customer requirements. [Process Outcome 2]

SYS.6.BP3: Select test cases. Select test cases from the system

validation specification. The selection of test cases shall have suffi-

cient coverage according to the system validation strategy and the

release plan. [Process Outcome 3]

SYS.6.BP4: Test system. Test the system using the selected

test cases. Record the system validation results and logs. [Process

Outcome 4]

SYS.6.BP5: Establish bidirectional traceability. Establish

bidirectional traceability between customer requirements and test

cases included in the system validation specification. Establish bidi-

rectional traceability between test cases included in the system vali-

dation specification and system validation results. [Process Outcome

5]

SYS.6.BP6: Ensure consistency. Ensure consistency between

customer requirements and test cases included in the system valida-

tion specification. [Process Outcome 5]

SYS.6.BP7: Summarize and communicate results. Summa-

rize the system validation results and communicate them to all af-

fected parties. [Process Outcome 6]

Output work 08-50 Test specification [Process Outcome 2, 3]

products 08-52 Test plan [Process Outcome 1]

13-04 Communication record [Process Outcome 6]

13-19 Review record [Process Outcome 5]

13-22 Traceability record [Process Outcome 5]

13-50 Test result [Process Outcome 4, 6]

48

3 Embedded Mechatronic System Development in Small Entities

3.2.2 Pattern for Establishing Engineering Processes in Small Entities

When establishing an implementation of the proposed engineering process model, the

sociological aspect described in 3.1 is best integrated through an open mindset towards

the cross-domain issues. Hardware and software engineers do have a similar language

when talking about their development and also the processes are typically established

in an analogous manner. The working practices of mechanical engineers and hard-

ware/software engineers are usually quite different. Often the same wording is used in a

completely different context (e.g. Design). Thus, the most important point for establish-

ing engineering processes successfully, is to integrate the whole team in this operation.

The communication channels in small entities are rather short and therefore the partici-

pation of the whole team is typically manageable. In medium-sized and large companies,

which are out of scope of this thesis, this is certainly not the case, but concepts such as

Key Users can be utilized to achieve the same results.

The major steps for small and micro-sized teams for establishing a basis for high

quality product development can be stated as follows:

(a) Select an engineering process model such as EMS-PRM

(b) Customize the process model to the specific needs of the domain, company, prod-

uct, etc.

(c) Communicate the customized process model to the whole team

(d) Get feedback related to (c) from the whole team

(e) Integrate feedback from (d) and define the engineering processes

(f) Get proposals for the tools to be used from the parties concerned

(g) Create a toolchain proposal aligned to (e) and (f)

(h) Communicate the toolchain concept to the whole team

(i) Get feedback related to (h) from the whole team

(j) Integrate feedback from (i) and specify the toolchain (see also related process

SUP.8 Configuration Management in [58])

(k) Determine possible improvements regarding (e) and (j) after each project comple-

tion

49

3 Embedded Mechatronic System Development in Small Entities

In the author’s opinion it is important to try not to define a bunch of processes and

introduce them all at once, in a worst case scenario without coordinating the subjects

with the parties concerned. This most likely leads directly to a dead process landscape

which is not adhered to.

Successfully implementing an engineering process can sometimes be a laborious task,

but (1) as mentioned previously it is necessary to create a basis for an appropriate

product quality, and (2) the persons in charge of this task may keep in mind that doing

something is always better than doing nothing in this context. That is, if there are, at

the present state at the small entity, e.g. no resources left for creating a seamless and

fully automatic tool support, simple strategies may be chosen to create as many work

products of the defined processes as possible. Independent of the level of the established

processes, in 99% of cases there is always room for improvement. Hence, in the author’s

opinion it is better to establish a low level of engineering processes than to do nothing.

50

4 Domain-Specific Modelling of Embedded

Mechatronic Systems

In Chapter 2 related work in the field of meta models and meta meta models includ-

ing the particular supporting tools, which are available on the market, were presented.

In Chapter 3 various aspects related to the embedded mechatronic system (EMS) de-

velopment in small entities were highlighted, a hardware development extension to an

established process reference model was introduced, and a pattern for the EMS devel-

opment in small development entities was proposed. In this chapter, the definition of

a meta model for domain-specific modelling (DSM) in the field of automotive embed-

ded mechatronic systems is introduced. The meta model and its different aspects were

presented at several conferences and published in the particular proceeding. Hence, this

chapter is prepared as a road map to the detailed information in the publications, which

can be found in Chapter 7.

The meta model of the EMS-DSM has been defined in UML notation and is depicted

in Figure 4.1. As mentioned previously, the main focus of the defined language is to

support engineers at creating designs of the different architectural design levels related

to a embedded automotive system development life cycle.The goal has been to enable

all parties concerned in the system development to contribute to the system architecture

design process. That is, independent of the engineer’s particular software development

skills, such as more or less experience in creating structural UML diagrams, developing a

component model consisting of the most important mechanical, hardware, and software

parts including their basic properties, shall be made possible. A detailed description of

the defined model-based language and its features can be found in Paper A.

Another key aspect of the presented system modelling approach in this thesis is that

established design methodologies, such as the proposed system and software level mod-

elling methods of Macher [34], should not be replaced. Instead, a bidirectional trans-

formation between the design models in EMS-DSM and SysML notation shall enhance

the possibilities of the approaches. A proposal related to this bidirectional transfor-

mation can be found in Paper F. Hence, other important system properties, such as

the dynamic behaviour, can be modelled by an expert within the classical development

51

4 Domain-Specific Modelling of Embedded Mechatronic Systems

environments outlined in Chapter 2.

As the generation of further development artefacts is one of the major aspects of

a domain-specific modelling, not only a methodology of the transformation between

the two architectural design notations is proposed. Moreover, in Paper G and H an

approach for fostering the transformation between a software architectural design and a

framework for the software detailed design in Simulink1/TargetLink2 is presented. The

methodology has been developed in cooperation with Macher [35], who integrated the

transformation strategy into the software architectural design notated in SysML. In the

course of this research work, the transformation between the software architectural design

and the system detailed design, has also been enabled in the EMS-DSM development

environment.

In Paper B the integration of requirements management capabilities is described. Out

of the view of the EMS-DSM, an interface to development artefacts such as requirements,

verification criteria, and test case specifications, is provided by the adopted project

management tool (see Chapter 5), which establishes a direct access to the artefact’s

database.

Special attention has been paid to the support of the Hardware-Software Interface

(HSI) definition. In the author’s opinion, this interface is a fundamental artefact and

central point throughout the product development life cycle. The HSI is the connection

between the hardware and software components in the meta model (see Figure 4.1) and

details about this interface, also with a view to safety-critical applications, can be found

in Paper E.

1http://www.mathworks.com/
2https://www.dspace.com/

52

http://www.mathworks.com/
https://www.dspace.com/

4 Domain-Specific Modelling of Embedded Mechatronic Systems

Figure 4.1: Definition of the Embedded Mechatronic System Domain-Specific Modelling

(EMS-DSM) meta model

53

5 Application of the PRM and DSM

In Chapter 3 the hardware and mechanical extensions for a complete mechatronic sys-

tem development to a state-of-the-art engineering process reference model (Automotive

SPICE) were presented. In Chapter 4 the meta model to facilitate the process of creating

the system and software architectural design was introduced. To enhance an application

of the outlined methodologies and techniques, an adequate tool support has been created

in the course of this research work and was presented at different conferences. Hence,

this chapter is prepared as a road map to the detailed information in the proceedings of

these conferences, which can be found in Chapter 7.

The application of the methodologies introduced in Chapter 3 and 4 may be sepa-

rated into the two categories (1) document-centric development artefact support and

(2) model-based development artefact support. The first category comprising of the

management of all artefacts that are textually notated, such as the various types of re-

quirements and specifications along the product life cycle. The second category supports

the management of the model-based development artefacts, such as the architectural de-

signs at system and software level. For an application of the methodologies related to

the first category, the open source and web based project management tool Redmine1

(see Figure 5.1 has been used. The required customization of this tool and the inter-

face towards the model-based toolchain is described in Paper B. For the application

of the methodologies related to the second category, an open source diagram editor [14]

has been chosen as a basis to start the tool development from. The EMS-DSM meta

model described in Chapter 4 has been implemented in the custom-made tool, which

was named EASy Design (see Figure 5.2). Paper C presents the implementation of the

meta model in EASy Design. Moreover the utilization of the Microsoft Modeling SDK

for Visual Studio - Domain-Specific Languages (MSDK-DSL) (see Section 2.4) for the

herein described approach is presented in this publication. Paper D outlines a con-

cept called Open Toolbox Access, which proposes a tool support approach that enables

the small development entity to easily customize the object library comprising of the

instantiated EMS-DSM meta model components.

In addition to the general description of the approach’s application in the publications

1http://www.redmine.org/

54

http://www.redmine.org/

5 Application of the PRM and DSM

mentioned in the previous paragraph, for every aspect of the approach presented in this

thesis, a use-case has been prepared to demonstrate the application of the particular

methodology.

Figure 5.1: System Requirement at Redmine

So far, the methodologies presented in this thesis have been applied at two compa-

nies, both complying to the category of small development entities. The first one is a

small-sized enterprise with less than ten employees (Company A). The second one is a

large enterprise, but with no experience at hardware and software development so far

(Company B). A small-sized team was set up a few weeks ago to develop mechatronic

systems for a new business segment of the company. Therefore well-defined processes in

terms of quality management, such as ISO 9001, are established at the latter company,

but out of the E/E system development view, the situations of the two companies are

similar.

At Company A approximately half of the processes of the PRM have been introduced.

For the non-model-based part of the work-products, such as the various kinds of require-

ments, Redmine was installed on the company’s server.

At Company B the process reference model has been tailored to the specific needs

and is under review now. For the management of requirements, test case specifications,

reports, etc. the software tool JIRA including the document management application

Confluence has been selected and recently installed. Both, Redmine and JIRA provide

a web-based interface that allow the developers easy access to these tools. The tools

have been adapted to the PRM needs as described in Paper B.

At both companies the tool support for the presented DSM meta model is in progress.

Due to the time an establishment of the proposed methodologies and techniques in a

55

5 Application of the PRM and DSM

Figure 5.2: CNG Tank System Use-Case in EASy Design

productive environment takes, the evaluation through an industrial case study is out of

scope of this thesis.

56

6 Conclusion and Future Work

This chapter concludes this thesis by briefly summarizing the presented methodologies

and techniques and outlines potential future work.

6.1 Summary and Conclusion

The presented approach tackles the major objective - facilitating the embedded mecha-

tronic system development carried out by small entities - from two starting points. First,

a complete process reference model for embedded systems has been presented. Combined

with non-technical aspects related to small teams, a pattern for establishing these engi-

neering process definitions has been specified. Second, special attention has been paid to

enhancing the system architectural design for domain-experts who are not very familiar

with UML-based modelling, which represents the backbone of the majority of the exist-

ing approaches in this field. This has been achieved by the definition of a meta model for

domain-specific modelling in the context of mechatronic system development, with spe-

cific attention to automotive needs. Moreover, an integration of the research work into

existing approaches has been described and shown by various use cases. For instance,

the mentioned UML-based methodologies and techniques for embedded automotive sys-

tem design are not ignored or decried by this work. Instead, potential transformation

strategies between the domain-specific models of this work and UML-based models of

other contributions has been proposed.

As a counterpart to the system architectural design, special focus has also been laid

upon the management of the different types of requirements along the product devel-

opment cycle. There is a big gap between managing the requirements at micro/small

and medium/large sized development entities. In terms of Return of Investment it is

often hard for small teams or companies to argue for the utilization of state of the art

requirements management tools, which are available on the market but are in most cases

too expensive by far for small entities. Feasible alternatives has been integrated to the

overall approach and shown in this work.

Implementing engineering processes and appropriated tools from scratch is never an

easy task. From the author’s experience there is no such thing as the for everyone most

57

6 Conclusion and Future Work

suitable procedure. The development team or company where the processes shall be

established may be seen as a dynamic framework and thus the detailed strategy for

implementing the particular processes has to be flexible too. As already mentioned in

Chapter 3, doing something is always better than doing nothing in this context. For

example, if there are in the short term no resources left for creating a seamless and

fully automatic tool support, simple strategies may be chosen to create as many work

products from the defined processes as possible.

6.2 Future Work

While initially focussed on the automotive sector, further industrial projects have shown

that the proposed ideas in this research work are compatible with other industry branches

too. Some of the aspects seems to be even more suitable for the mechatronic system

development in non-automotive engineering domains, simply due to the lower dissemi-

nation of the presented kinds of methodologies and techniques. This may be seen as an

opportunity for sound research and subsequently provide support in other domains.

As mentioned previously, so far the methodologies presented in this thesis have been

applied in two companies, both complying to the category of small development entities,

but with a different history related to their time in business. Company A is a small-

sized enterprise with less than ten employees, whereas Company B represents a large

enterprise, but with no experience of hardware and software development so far. The

latter has slight advantages in terms of the established ISO 9001 quality management

system, but out of the E/E system development view, the situations of the two companies

are similar.

At Company A approximately half of the processes of the PRM have been introduced.

For the non-model-based part of the work-products, such as the various kinds of require-

ments, Redmine is utilized. At Company B the process reference model has been tailored

to the specific needs and is under review now. For the management of requirements,

test case specifications, reports, etc. the software tool JIRA including the document

management application Confluence has been selected and recently installed. At both

companies the tool support for the presented DSM meta model is in progress. Due to

the time an establishment of the proposed methodologies and techniques in a productive

environment takes, the evaluation through an industrial case study is out of scope of

this thesis and shall be presented in future publications.

58

7 Publications

This chapter quotes publications that have been peer reviewed and presented by the

author at international conferences. They are sorted according to their content starting

from a more general towards a specific view on the approaches introduced mainly in the

Chapters 4 and 5.

Paper A: H. Sporer. A Model-Based Domain-Specific Language Approach for the

Automotive E/E-System Design. In International Conference on Research in Adaptive

and Convergent Systems, pages 357-362, RACS ’15, Prague, Czech Republic, ACM New

York, 2015.

Paper B: H. Sporer, G. Macher, C. Kreiner, and E. Brenner. A Lean Automotive E/E-

System Design Approach with Integrated Requirements Management Capability. In D.

Weyns, et al., editors, Software Architecture, volume 9278 of Lecture Notes in Computer

Science, pages 251-258. 9th European Conference on Software Architecture, ECSA ’15,

Dubrovnik/Cavtat, Croatia, Springer International Publishing, 2015.

Paper C: H. Sporer and E. Brenner. An Automotive E/E System Domain-Specific

Modelling Approach with Various Tool Support. Applied Computing Review (ACR),

16(1), ACM Digital Library, 2016. in press.

Paper D: H. Sporer. A Lean Automotive E/E-System Design Approach with Open

Toolbox Access. In R. V. O’Connor et al., editors, Proceedings of the 22nd European

Conference EuroSPI 2015, Ankara, Turkey, September 30 - October 2, 2015, volume 543

of Communications in Computer and Information Science, pages 41-50. EuroAsiaSPI

’15, Ankara, Turkey, Springer International Publishing, 2015.

Paper E: H. Sporer, G. Macher, C. Kreiner, and E. Brenner. Resilient Interface Design

for Safety-Critical Embedded Automotive Software. In J. Zizka et al., editors, Sixth

International Conference on Computer Science and Information Technology, CCSIT ’16,

59

7 Publications

Zurich, Switzerland, pages 183-199. Academy & Industry Research Collaboration Center

(AIRCC), 2016.

Paper F: H. Sporer, G. Macher, C. Kreiner, and E. Brenner. A Model-to-Model Trans-

formation Approach at Mechatronics-Based E/E-System Design. In 41st EUROMICRO

Conference on Software Engineering and Advanced Applications, Session on ”Work in

Progress”, SEAA ’15, Funchal, Madeira, Portugal, pages 21-22. EUROMICRO, 2015.

Paper G: H. Sporer, G. Macher, E. Armengaud, and C. Kreiner. Incorporation of

Model-based System and Software Development Environments. In 41st EUROMICRO

Conference on Software Engineering and Advanced Applications, SEAA ’15, Funchal,

Madeira, Portugal, pages 177-180. IEEE, 2015.

Paper H: H. Sporer, G. Macher, A. Höller, and C. Kreiner. Bidirectional Crosslinking

of System and Software Modeling in the Automotive Domain. In A. Fantechi and P.

Pelliccione, editors, Software Engineering for Resilient Systems, volume 9274 of Lec-

ture Notes in Computer Science, pages 99-113. SERENE ’15, Paris, France, Springer

International Publishing, 2015.

60

A Model-Based Domain-Specific Language Approach for
the Automotive E/E-System Design

Harald Sporer
Institute of Technical Informatics
Graz University of Technology

Inffeldgasse 16/1
Graz, Austria

sporer@tugraz.at

ABSTRACT
The electrical and electronic systems (E/E-Systems) in the
automotive world have been getting more and more com-
plex over the past decades. New functionality, which is
mainly realized through embedded E/E-Systems, as well
as the growing connectivity (Car2X-Communication), will
keep this trend alive in the upcoming years. Additionally,
new standards and regulations have been released during
the last years (e.g. ISO 26262), which leads to an even
higher system complexity. Therefore, well-defined develop-
ment processes are crucial to manage this complexity and
achieve high quality products. To accomplish an appro-
priated guidance through these processes, a tool chain has
to be established, which supports each phase of the E/E-
System development. However, it isn’t enough to provide
a stand-alone solution for the assistance at each phase. A
smooth transition of the development artefacts between the
different levels as well as their bilateral traceability is cru-
cial. Common approaches utilize tools like Enterprise Archi-
tect or Artisan Studio to model the E/E-System design in
SysML or a kind of UML2 profile. Usually, several abstrac-
tion layers are designed with these tools, starting from the
system architectural design down to the software architec-
tural design. Although, in the majority of cases the design
should represent a mechatronics-based system, the hardware
as well as the mechanics view is not considered. The aim of
this work is to remedy the deficiencies regarding the missing
representation of hardware and mechanics artefacts within
the E/E-System design. Therefore, a model-based domain-
specific language was developed that describes the system in
a more comprehensive way. Additionally, it makes it easier
for domain experts, who are not that familiar with UML
or SysML, to create an architectural design. Furthermore,
the already existing SysML models are not ignored at the
presented methodology, but supported through a translator,
which converts the DSL model into a SysML representation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RACS ’15, October 09-12, 2015, Prague, Czech Republic
c⃝ 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3738-0/15/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2811411.2811533

CCS Concepts
•Computer systems organization → Embedded sys-
tems; •Software and its engineering → Software de-
sign engineering;

Keywords
automotive embedded systems; system architectural design;
domain-specific modeling; E/E-Systems

1. INTRODUCTION
The number of functionalities realized through E/E-Systems

at modern cars, and therefore the overall complexity, will
keep increasing over the next years. Connecting the cars
with their environment, as well as new propulsion technolo-
gies will foster this trend. The potential concerning product
differentiation between competing companies as well as the
possibility to optimize existing E/E-System functionalities
is enormous.

High quality standards along the whole product life cycle
are crucial to cope with the upcoming challenges. To achieve
this, methods and techniques from concepts like Automotive
SPICE [2] are strongly recommended. Some of the key as-
pects of these concepts are bilateral traceability, as well as
consistency between the different design abstraction levels,
starting from a system design down to a detailed software
component design.

In the embedded automotive sector, system design mod-
els are usually created with techniques based on the Uni-
fied Modeling Language (UML). Either the meta-model is
extended, or a profile is created to enable the UML-based
approach for the embedded automotive system design. A
wide-spread example of an UML2 profile is SysML, which
reuses many of the original diagram types (State Machine
Diagram, Use Case Diagram, etc.), uses modified diagram
types (Activity Diagram, Block Definition Diagram, etc.),
and adds new ones (Requirement Diagram, Parametric Dia-
gram) [6].

Even if the UML-based methodologies are valuable for
projects with emphasis on software, for the embedded au-
tomotive system design, sometimes they are too powerful
due to the numerous representation options. In particular
for domain experts who have no or limited knowledge about
software development, the high number of elements available
for modeling, turns the system architectural design into an
awkward task. However, it is not the intention of this work
to decry the SysML approaches created so far. They are a

357

good choice for a multitude of tasks.
Instead, this paper showcases an extension to these SysML

approaches, to ease the architectural design of embedded
mechatronics system designs for UML-non-natives. There-
fore, a model-based domain-specific language, respectively
a domain-specific modeling (DSM) for the specific needs of
embedded automotive mechatronics systems, has been de-
veloped. Additionally, a software tool has been created to
support the new DSM.

By linking development artefacts like requirements (e.g.
technical system requirements, software requirements, etc.),
and verification criteria to the design model, the earlier men-
tioned traceability is assured.

In the course of this document, section 2 presents an
overview of the related approaches, as well as of domain-
specific modeling and integrated tool chains. In section 3,
a description of the proposed DSM approach for the model-
based system engineering is provided. An application of the
described methodology is presented in section 4. Finally,
this work is concluded, with an overview of the presented
work, in section 5.

2. RELATED WORK
In recent years, a lot of effort has been made to improve

the automotive model-based E/E-System design methods
and techniques. Traceability, as well as consistency, be-
tween the development artefacts has always been an im-
portant topic. However, due to the increasing number of
electronic- and electric-based functionality, these properties
have become vital.

If it comes to safety-critical functionalities, according to
the 2011 released international standard ISO 26262, trace-
ability between the relevant artefacts is mandatory [9]. A
description of the common deliverables along an automo-
tive E/E-System development, and a corresponding process
reference model is presented by the de-facto standard Au-
tomotive SPICE [2]. Neither the functional safety standard
nor the process reference model enforces a specific method-
ology, how the development artefacts have to be linked to
each other. However, connecting the various work products
manually is a tedious and error-prone task.

In [11] the authors describe a seamless model-based tool
chain orchestration for the automotive system and software
engineering domain. As at other contributions in this field
([3], [1], [7], [10], [13]), SysML is utilized for the system
architectural design.

To agree with Broy et al. [4], the drawbacks of the UML-
based design are still the low degree of formalization, and
the lack of technical agreement regarding the proprietary
model formats and interfaces. The numerous possibilities
of how to customize the UML diagrams, to get a language
for embedded system design, drive these drawbacks. On
the one hand, the meta model can be extended, and on the
other hand, a profile can be defined [13]. Even if there is an
agreement to utilize a common UML profile like SysML, a
plenty of design artefact variations are feasible.

Another long term research project in the field of sys-
tem design is the Ptolemy Project [15]. Together with the
related open source and simulation tool Ptolemy II, the
project provides an environment for the modeling of hetero-
geneous cyber-physical systems. With the four integrated
syntax classes block diagrams, bubble-and-arc diagrams, im-
perative programs, and arithmetic expressions various design

domains can be addressed. This general purpose aspect is
the major strength, but simultaneously also a weakness as
it is at the UML approaches. Moreover, the bidirectional
traceability to requirements and other development artefacts
is missing.

The scenario described in this section so far, doesn’t pro-
vide an optimal base for the engineer who has to design the
embedded automotive system from a mechatronics point of
view. Ideally, the tool should be intuitive and easily oper-
ated also without specific UML knowledge. These findings
led the authors to the idea to create a more tailored model-
based language for the stated domain.

Mernik et al. [12] describe a domain-specific language as a
language that is tailored to the specific application domain.
Enhanced by this tailoring, substantial gains in expressive-
ness and ease of use, compared to general-purpose languages,
should be given. Even if a gain regarding the expressiveness
is achieved by the utilization of SysML-based modeling tech-
niques, the ease of use regarding an embedded automotive
mechatronics system design is out of sight.

Preschern et al. [14] claim that DSLs help to decrease
system development costs by providing developers with an
effective way to construct systems for a specific domain. The
benefit in terms of a more effective development has to be
higher than the investment for creating or establishing a
DSL at a company or department. Supplementary, the au-
thors argue that in the next years the mentioned DSL de-
velopment cost will decrease significantly, due to new tools
supporting the language creation like the Eclipse-based Sir-
ius1.

Vujović et al. [16] present a model-driven engineering ap-
proach to create a domain-specific modeling (DSM). Sirius
is the framework for developing a new DSM, respectively the
DSM graphical modeling workbench. The big advantage of
this tool is that the workbench for the DSM is developed
graphically. Therefore, knowledge about software develop-
ment with Java, the graphical editor framework (GEF) or
the graphical modeling framework (GMF) is not needed.

According to Hudak [8], programs written in a DSL are
more concise, can be written more quickly, are easier to
maintain and reason about. In the authors opinion, this
list of advantages is also valid for domain-specific modeling.
Furthermore, Hudak determines the basic steps for devel-
oping a own domain-specific language as (a) Definition of
the domain, (b) Design of the DSL capturing the domain
semantics, (c) Provide support through software tools, and
(d) Create use-cases for the new DSL infrastructure. The
approach described in this paper is highlighted, according
to theses steps, in section 3 and 4.

3. APPROACH
The main goal of this contribution is to provide a lean

approach for engineers to facilitate an embedded automo-
tive mechatronics system modeling on a high abstraction
level. The focus of the described approach is on the model-
based structural description of the E/E-System under de-
velopment. Additionally, the signals and interfaces are es-
sential parts of the modeling. The described methods and
techniques at section 2 are well-defined basis for this work.

The existing SysML-based design method is extended by
the newly developed Embedded Mechatronics System Domain-

1https://eclipse.org/sirius/

358

Specific Modeling (EMS-DSM) for the automotive embedded
system design. It is not intended to replace the SysML-based
solution created so far. Instead, the EMS-DSM is integrated
into the existing approach, and the whole tool-chain, start-
ing from the SysML-based system architectural design tool,
down to the software / hardware architectural design, can
be utilized if desired. An overview of the tool integration is
shown in figure 1.

Figure 1: Tool-Chain Integration of DSM and Ex-
isting SysML Model Approach (based on [11])

For topics like project management and requirements man-
agement, the web-based open source application Redmine2 is
used at this approach. Owing to its high flexibility through
configuration, new trackers, which also reflect the engineer-
ing process, are added:

• Functional System Requirement

• Technical System Requirement

• Hardware Requirement

• Software Requirement

• System Test Case

• Hardware Test Case

• Software Test Case

The test case and requirement items are connected to each
other by their unique identifier. The relationship between
them is shown in figure 2. For a safety-critical development
according to ISO26262, additional issue types like Func-
tional Safety Requirements are added.

2http://www.redmine.org/

Figure 2: Requirements Hierarchy and Test Case
Relationships

3.1 Definition of the Domain
This work focus on the Embedded Mechatronics E/E-System

Design in the automotive field. This can be seen as the
meta-domain of the model-based language. The EMS-DSM
itself is tailored to the needs of the domain at the particular
project or company. E.g. the domain of the presented ap-
plication in section 4 is Embedded Mechatronics E/E-System
Design for Compressed Natural Gas (CNG) Fuel Tank Sys-
tems.

3.2 Design of the EMS-DSM
The definition of the newly developed model-based domain-

specific language is divided into four levels as shown in figure
3. These levels were introduced for a categorization of the
derivations only. They do not depict any order of the com-
ponent instances at the design model.

EMS-DSM Level 1
The EMS-DSM Component at level 1 is the origin of all
other classes at the language definition. The five properties
of this class are

• ID: unique identifier of the particular instance at the
design model, set automatically

• Name: name or short description of the particular in-
stance, chosen by the design engineer

• Requirement: in this approach, a link to the Redmine
requirements database is set by the designer

• Verification Criteria: similar to the Requirement, a
link to the Redmine verification criteria artefact is set
by the designer

• Specification: link to further information about the
actual component, e.g. a CAD drawing or a data sheet

The abstract EMS-DSM Component serves as the base
node of the EMS-DSM definition, and declares the common
properties of the derived classes at the lower levels. There-
fore this component is not instanced.

EMS-DSM Level 2
At the second level, the following component classes are
available:

• Mechanical Components: used by all mechanical, domain-
specific components, e.g. the Mechanical Pressure Reg-
ulator class at the use-case shown in section 4

• Compartment Components: gives the opportunity to
specify areas or compartments, where mechanical and
hardware components are installed

359

Figure 3: EMS-DSM Definition (UML)

• E/E Item Components: an abstract component class
definition, which serves as basis for the hard- and soft-
ware components at the lower levels. Additionally, the
property ASIL, corresponding to the ISO 26262, is de-
clared

EMS-DSM Level 3
At this level, the abstract classes Hardware Component and
Software Component are defined as basis for the derived
classes at level 4. The property Timing is added at the
software component class, which defines the scheduling of
the software components at the subsequent level.

EMS-DSM Level 4
The majority of the non-abstract component classes are de-
fined at this level. From the hardware component derived
classes are:

• Sensor Component: used for all domain-specific sensor
components

• Control Unit Component: used for all domain-specific
control unit components

• Actuator Component: used for all domain-specific ac-
tuator components

• External Control Unit Component: special class, to
make signals from an external system available at the
considered system

All hardware components, respectively their instances at
the system design model, exempt the External Control Unit
Component, are capable of creating a software design model.
That is, any kind of software component instance is only al-
lowed to be implemented at a software design model which
belongs to an instance of a hardware component. In view of
smart sensors / actuators, not only the Control Unit Com-
ponent, but also the Sensor and Actuator Components were
enabled for this procedure.

To conclude the EMS-DSM level description, from the
software component derived classes are:

• Basis Software Component: used for all low-level, hardware-
dependent software components

• Application Software Component: used for all func-
tional software components

3.3 EMS-DSM Features
In this paper an overview of the novel domain-specific

modeling definition is presented. The features, as well as
the benefits compared to other approaches in this field, are
described in detail in further publications. Nevertheless, a
short overview over the main features shall be given:

• Integrated Requirements Management Capability - Core
Functionality Requirements and Ancillary Functional-
ity Requirements are specified and stored at a MySQL
database. By utilizing the ADO.net driver for MySQL,
one or more requirements can be linked to each com-
ponent at the architectural design.

• Incorporation of System and Software Development En-
vironments - The system as well as the software archi-
tectural design can be created in the provided environ-
ment. Supported by both, an export and an import
functionality, the software architectural design at the
EMS-DSM model can be transferred to an Simulink
framework model, and can also be created from an
Simulink model.

• Model-to-Model Transformation at the System Design
Level - As mentioned in the previous section, the EMS-
DSM shall not replace the established SysML approach.
Instead, it can be seen as an extension and the models
can be bidirectionally transformed into the different
representations.

360

• Open Modeling Toolbox Access - Utilizing a library ed-
itor, the modeling toolbox can be adapted to the needs
of the respective company or project easily.

3.4 EMS-DSM Tool Support
Generally speaking, the EMS-DSM can be supported by a

various number of tools, but at the time when the research
project was initiated, a highest possible flexibility, as well as
full access to the tools source code was desired.

To avoid an application development from scratch, the
open source project WPF Diagram Designer has been cho-
sen as a basis to start the tool development from [5]. The
corresponding documentation has close to 500.000 views and
the source code has been downloaded more than 20.000
times. Therefore, it’s a quite good reviewed source which
provides standard functionality like file handling and ba-
sic graphical modeling. The source code is written in C#
and provides good expandability. New functionalities have
been implemented at the diagram designer, named EASy-
Design (Embedded Automotive System-Design), to facilitate
the EMS-DSM engineering.

However, EASy-Design is just one possibility for an EMS-
DSM tool support. The methodology, respectively its C#
implementation can be ported to e.g. Enterprise Architect3

by the provided Add-in mechanism. Another alternative is
the already mentioned Eclipse4 project Sirius, which enables
the creation of an graphical modeling workbench, by facil-
itating the Eclipse modeling technologies, without writing
code. Instead, the DSM is implemented by graphical mod-
eling.

4. APPLICATION
At section 3, the first three steps towards developing a

DSL / DSM, as defined by Hudak, are shown. Below, the
last step Create use-cases for the new DSL infrastructure is
described. Therefore, the EMS-DSM approach is applied to
the development of an automotive fuel tank system for com-
pressed natural gas (CNG). For an appropriate scale of the
use-case, only a small part of the real-world system is uti-
lized. The application should be recognized as an illustrative
material, reduced for internal training purpose for students.
Therefore, the disclosed and commercially non-sensitivity
use-case is not intended to be exhaustive or representing
leading-edge technology.

In figure 4 the EMS-DSM tool EASy-Design including the
System Design Model is shown. The CNG fuel tank system
consists of seven mechanical components (coloured blue):

• Tank Cylinder

• Filter

• Mechanical Pressure Regulator

• Gaseous Injector Rail

• 3 x Tubing

The medium flow between mechanical components, which
is CNG in this use-case, is displayed by blue lines with an
arrow at the end.

Furthermore, five hardware components (coloured yellow)
are placed at the System Design Model level:

3http://www.sparxsystems.com/
4http://eclipse.org/

• In-Tank Temperature (Sensor Component)

• CNG High Pressure (Sensor Component)

• On-Tank Valve (Actuator Component)

• Tank ECU (Control Unit Component)

• Engine ECU (External Control Unit Component)

The signal flow between the components is displayed by yel-
low lines, ending with an arrow. Between the Control Unit
and the External Control Unit component, a communication
bus is inserted, characterized by the double compound line
type and arrows on both ends.

In figure 3, dependencies are defined between Mechani-
cal Components and Sensor Components, respectively Hard-
ware Components. These relationships enable the direct
connection between e.g. the On-Tank Valve Acutator (as
a hardware component) and the Tank Cylinder (as a me-
chanical component).

Software Components can not be placed on the System
Design Level. With a double-click on a Hardware Compo-
nent, the next modeling level is opened (named E/E Item
Design Level). Here, the green coloured Basis Software
Components and Application Software Components are put
in place.

By double-clicking a connection between two components,
a dialogue is opened and the signal, or in case of a commu-
nication bus, the signals can be specified. The properties
of each component, like the name or the link to the corre-
sponding requirement, are easily set by selecting the partic-
ular with a single click, and entering the data at the Element
Properties toolbox.

5. CONCLUSIONS
The described model-to-model transformation approach

combines the advantages of the lean domain specific mod-
eling technique, which is best suitable for a rough system
design by automotive domain experts with limited SysML
skills, and the established SysML system modeling method-
ology.

The overall cost efficiency is an further advantage of this
approach, which especially makes it interesting for a lean de-
velopment at small companies or project teams. Redmine, as
the project and requirements management tool, and EASy-
Design are open source tools. For the SysML system model
design, Enterprise Architect is used, which is also reasonable
priced.

Although the adapter is currently in a first trial phase for
industrial project applicability, evidences of the approaches
benefits are already present. Moreover, important topics for
future work, like the transformation of the SysML model
into the DSM representation (also for consistency check fea-
tures), and the transformation of a system of systems model
in one step, have been identified.

6. REFERENCES
[1] E. Andrianarison and J.-D. Piques. SysML for

embedded automotive Systems: a practical approach.
In Conference on Embedded Real Time Software and
Systems. IEEE, 2010.

[2] Automotive SIG. Automotive SPICE R⃝Process
Assessment Model. Technical report, The SPICE User
Group, May 2010. Version 2.5.

361

Figure 4: EASy-Design System Model

[3] R. Boldt. Modeling AUTOSAR systems with a
UML/SysML profile. Technical report, IBM Software
Group, July 2009.

[4] M. Broy, M. Feilkas, M. Herrmannsdoerfer,
S. Merenda, and D. Ratiu. Seamless Model-Based
Development: From Isolated Tools to Integrated
Model Engineering Environments. Proceedings of the
IEEE, 98(4):526–545, 2010.

[5] Code Project. WPF Diagram Designer - Part 4.
Online Resource, March 2008.
http://www.codeproject.com/Articles/24681/WPF-
Diagram-Designer-Part, accessed Mar
2015.

[6] S. Friedenthal, A. Moore, and R. Steiner. OMG
Systems Modeling Language (OMG SysMLTM)
Tutorial. In INCOSE International Symposium, 2006.

[7] H. Giese, S. Hildebrandt, and S. Neumann. Model
Synchronization at Work: Keeping SysML and
AUTOSAR Models Consistent. LNCS 5765, pages 555
–579, 2010.

[8] P. Hudak. Domain-specific languages. Handbook of
Programming Languages, 3:39–60, 1997.

[9] ISO 26262, Road vehicles - Functional safety.
International standard, International Organization for
Standardization, Geneva, CH, November 2011.

[10] R. Kawahara, H. Nakamura, D. Dotan, A. Kirshin,
T. Sakairi, S. Hirose, K. Ono, and H. Ishikawa.
Verification of embedded system’s specification using
collaborative simulation of SysML and simulink
models. In International Conference on Model Based
Systems Engineering (MBSE’09), pages 21–28. IEEE,

2009.

[11] G. Macher, E. Armengaud, and C. Kreiner. Bridging
Automotive Systems, Safety and Software Engineering
by a Seamless Tool Chain. In 7th European Congress
Embedded Real Time Software and Systems
Proceedings, pages 256–263, 2014.

[12] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
computing surveys (CSUR), 37(4):316–344, 2005.

[13] J. Meyer. Eine durchgängige modellbasierte
Entwicklungsmethodik für die automobile
Steuergeräteentwicklung unter Einbeziehung des
AUTOSAR Standards. PhD thesis, Universität
Paderborn, Fakultät für Elektrotechnik, Informatik
und Mathematik, Paderborn, Germany, July 2014.

[14] C. Preschern, N. Kajtazovic, and C. Kreiner. Efficient
development and reuse of domain-specific languages
for automation systems. International Journal of
Metadata, Semantics and Ontologies, 9(3):215–226,
2014.

[15] C. Ptolemaeus, editor. System Design, Modeling, and
Simulation using Ptolemy II. Ptolemy.org, 2014.

[16] V. Vujović, M. Maksimović, and B. Perǐsić. Sirius: A
rapid development of DSM graphical editor. In 18th
International Conference on Intelligent Engineering
Systems (INES), pages 233–238. IEEE, 2014.

362

A Lean Automotive E/E-System Design
Approach with Integrated Requirements

Management Capability

Harald Sporer(B), Georg Macher, Christian Kreiner, and Eugen Brenner

Institute of Technical Informatics, Graz University of Technology,
Inffeldgasse 16/1, 8010 Graz, Austria

{sporer,georg.macher,christian.kreiner,brenner}@tugraz.at
http://www.iti.tugraz.at/

Abstract. Replacing former pure mechanical functionalities by mecha-
tronics-based solutions, introducing new propulsion technologies, and
connecting cars to their environment are only a few reasons for the
still growing E/E-System complexity at modern passenger cars. Smart
methodologies and processes are necessary during the development life
cycle to master the related challenges successfully. In this paper, a lean
approach for a model-based domain-specific E/E-System architectural
design is presented. Furthermore, an integrated requirements manage-
ment methodology is shown, satisfying the needs for a full traceability
between the requirements and design artifacts. The novel model-based
language allows domain experts, with limited knowledge of the de-facto
system design standard SysML, to describe the mechatronics-based sys-
tem easily and unambiguously. The lean tool chain orchestration makes
the presented approach, especially but not limited to, interesting for
small project teams.

Keywords: Automotive embedded E/E-systems · System architectural
design · Domain-specific modeling · Requirements management

1 Introduction

The number of functionalities realized through electrical and/or electronic sys-
tems (E/E-Systems) at modern cars, and therefore the overall complexity, will
keep increasing over the next years. Connecting the cars with their environ-
ment, as well as new propulsion technologies will foster this trend. The potential
concerning product differentiation between competing companies as well as the
possibility to optimize existing E/E-System functionalities is enormous.

High quality standards along the whole product life cycle are crucial to cope
with the upcoming challenges. To achieve this, methods and techniques from
concepts like Automotive SPICE [1] are strongly recommended. Some of the key
aspects of these concepts are bidirectional traceability, as well as consistency
between the different development artifacts. Regardless what kind of tool chain

c© Springer International Publishing Switzerland 2015
D. Weyns et al. (Eds.): ECSA 2015, LNCS 9278, pp. 251–258, 2015.
DOI: 10.1007/978-3-319-23727-5 20

252 H. Sporer et al.

is chosen to facilitate the product development life cycle, these key concepts
must be supported.

In the automotive industry, the E/E-System design models are usually cre-
ated with techniques based on the Unified Modeling Language (UML). To enable
this de facto standard for the embedded automotive system design, either the
meta-model is extended or a profile is created. A wide-spread example of an
UML2 profile is the Systems Modeling Language (SysML), which reuses many of
the original diagram types (State Machine Diagram, Use Case Diagram, etc.),
uses modified diagram types (Activity Diagram, Block Definition Diagram, etc.),
and adds new ones (Requirement Diagram, Parametric Diagram) [2].

Even if the UML-based methodologies are valuable for projects with empha-
sis on software, for the embedded automotive system design, sometimes they
are too powerful due to the numerous representation options. In particular for
domain experts who have no or limited knowledge about software development,
the high number of elements available for modeling, turns the system architec-
tural design into an awkward task. However, it is not the intention of this work
to decry the SysML approaches created so far. They are a good choice for a
multitude of tasks. Instead, this paper showcases an extension to these SysML
approaches, which eases the architectural design of embedded mechatronics sys-
tem designs for UML-non-natives, and provides a comfortable integration of the
requirements management processes at the different design abstraction levels. To
achieve these goals, a domain-specific modeling (DSM) for the particular needs
at the embedded automotive mechatronics-based system development has been
created. Moreover, the described design approach has been complemented by a
lean requirements management strategy.

In the course of this document, Section 2 presents an overview of the related
approaches, as well as of domain-specific modeling and requirements manage-
ment. In Section 3, a description of the proposed modeling approach with inte-
grated requirements capability is provided. An application of the described
methodology is presented in Section 4. Finally, this paper is concluded with
an overview of the presented work in Section 5.

2 Related Work

In recent years, a lot of effort has been made to improve the automotive model-
based E/E-System design methods and techniques. Traceability, as well as con-
sistency, between the development artifacts has always been an important topic.
However, due to the increasing number of electronic- and electric-based func-
tionality, these properties have become vital.

If it comes to safety-critical functionalities, according to the 2011 released
international standard ISO 26262, traceability between the relevant artifacts is
mandatory [9]. A description of the common deliverables along an automotive
E/E-System development, and a corresponding process reference model is pre-
sented by the de facto standard Automotive SPICE [1]. Neither the functional

A Lean Automotive E/E-System Design Approach 253

safety standard nor the process reference model enforces a specific methodol-
ogy, how the development artifacts have to be linked to each other. However,
connecting the various work products manually is a tedious and error-prone task.

In [4] a seamless model-based tool chain orchestration for the automotive sys-
tem and software engineering domain is described by the authors. As in other
contributions in this field ([5], [6], [7]), SysML is utilized for the system archi-
tectural design.

To agree with Broy et al. [8], the drawbacks of the UML-based design are still
the low degree of formalization, and the lack of technical agreement regarding
the proprietary model formats and interfaces. The numerous possibilities of how
to customize the UML diagrams, to get a language for embedded system design,
drive these drawbacks. This scenario does not provide an optimal base for the
engineer who has to design the embedded automotive system from a mecha-
tronics point of view. Ideally, the tool should be intuitive and easily operated
also without specific UML knowledge. These findings led the authors to the idea
to create a more tailored model-based language for the stated domain. In [3] a
detailed description of this domain specific modeling approach can be found.

Regarding the needs for an appropriate requirement handling, Mäder et al.
[10] provide evidence that standards like the ISO 26262, which demand full
traceability, are not the only argument for implementing a proper requirements
management strategy. They conducted an experiment with more than 50 sub-
jects performing maintenance tasks on two projects. Half of the tasks with and
the other half without traceability. The result was unambiguous: the subjects
with requirements traceability performed on average 21% faster and delivered
60% more correct solutions.

Based on functionality classification, Chemuturi [11] primarily categorize
requirements into Core Functionality Requirements and Ancillary Functionality
Requirements, instead of the in the automotive field wide-spread types Functional
Requirements and Non-Functional Requirements. In his opinion, the term Non-
Functional connotes that the corresponding requirements do not function or do
not serve any function. However, even if they may not serve a business process
function directly, they are serving a useful purpose in the product. Therefore,
he labels requirements corresponding to topics like Safety, Response Time, and
Memory Constraints as ancillary functionality requirements. At this approach,
the requirements classification of Chemuturi is utilized and adapted to the needs
of mechatronics-based systems.

Herrmann et al. [12] depict requirement attributes for different phases during
the product development cycle. Additionally, recommendations on their usage
are given, supported by the categorization of the attributes into mandatory,
reflective, optional, and not required. Most of the presented attributes are also
used at comprehensive requirements management (RM) tools like IBM Rational
DOORS1 and PTC Integrity Lifecycle Manager2. In this work, the recommen-

1 http://www.ibm.com/
2 http://www.ptc.com/

254 H. Sporer et al.

dations of Hermann et al. are taken into account and necessary adjustments,
evoked by the automotive E/E-System development domain, are made.

3 Approach

In this section, the domain specific modeling methodology for automotive mecha-
tronics-based system development, with a focus on the integrated requirements
management capability, is presented. As mentioned in Section 2, details on the
domain specific modeling can be found in [3]. Therefore, just a quick overview
is given in the following subsection.

3.1 Domain Specific Modeling Approach

The established SysML-based design method from [4] is extended by the newly
developedEmbeddedMechatronics SystemDomain-SpecificModeling (EMS-DSM)
for the automotive embedded system design. The main goal of this methodology
is to provide a lean approach for engineers to facilitate an embedded automotive
mechatronics system modeling on a high abstraction level. The focus of the app-
roach is on the model-based structural description of the E/E-System under devel-
opment. Additionally, the signals and interfaces are an essential part of the mod-
eling.

The definition of the newly developed model-based domain specific language
is shown in Figure 1. The top node EMS-DSM Component is the origin of all
other classes at the language definition. Therefore, each of the derived classes
inherits the five properties (ID, Name, Requirement, Verification Criteria, and
Specification) from the base class.

The language definition in Figure 1 represents the meta-domain of the model-
based language. Subsequently, the EMS-DSM is tailored to the needs of the
domain at the particular project or company. That is, design elements of possible
types Mechnical, Compartment, Sensor, Control Unit, Actuator, External Control
Unit, Basis Software, and Application Software, are specified for the particular
field of application. E.g. the domain of the presented application in Section 4 is
Embedded Mechatronics E/E-System Design for Compressed Natural Gas (CNG)
Fuel Tank Systems.

The EMS-DSM can be supported by a various number of tools, but at the
time when the research project was initiated, a highest possible flexibility, as
well as full access to the tools source code was desired. To achieve this, an own
model editor (Embedded Automotive System Design) has been developed, based
on the open source project WPF Diagram Designer [13].

3.2 Requirements Classification and Attributes

As mentioned in Section 2, the requirements are primarily categorized into Core
Functionality Requirements and Ancillary Functionality Requirements. Typical

A Lean Automotive E/E-System Design Approach 255

Fig. 1. EMS-DSM Definition (UML)

examples for ancillary functionality topics are Software Footprint, Memory Con-
straints, Response Time, Reliability, and Safety [11]. By introducing new require-
ment (issue) attributes, the utilized web-based tool Redmine3 can be adapted to
these needs for requirements categorization easily.

The de facto standard Automotive SPICE [1] defines three different types of
requirements at the engineering process group: Customer Requirements, System
Requirements, and Software Requirements. Out of the embedded E/E-System
view, at least the hardware focus is missing. Additionally, requirements and
design items regarding the mechanical components, have to be introduced for
the design of an embedded mechatronics-based E/E-System. Similar to the Auto-
motive SPICE methodology on system and software level, engineering processes
has been defined for these missing artifacts. Summing up, the available require-
ment and test case types at this work are: Customer Req, System Req, System
TC, System Integration TC, Software Req, Software TC, Software Integration
TC, Hardware Req, Hardware TC, Mechanics Req, and Mechanics TC.

By reconfiguring the project management tool Redmine, all mentioned
requirement types have been implemented. The most important attributes which
have been added are Core Functionality (artifact can be marked as contributing
to the products core functionality), ASIL (shows the automotive safety integrity
level of the artifact), and Verification criteria. In Figure 2 a system requirement
at Redmine is shown. The link to the corresponding costumer requirement is
located at the top of the definition. At Subtasks the subsequent requirements,
e.g. software requirements are listed and to satisfy the demand for full traceabil-
ity, a link to the corresponding test cases can be added at Related issues.

3 http://www.redmine.org/

256 H. Sporer et al.

Fig. 2. System Requirement at Redmine

3.3 Bridging the Gap between Design and Requirements

Section 3.1 contains the description of how the different types of designs (system
level, software level, etc.) are created corresponding to the novel domain specific
modeling. To achieve full traceability, these designs, respectively the various com-
ponents at the designs, have to be linked to the corresponding requirements. This
can be done by the Requirements Linker at EASy Design, which establishes a con-
nection to the MySQL database, and therefore has full access to the requirements
data at Redmine. By utilizing the ADO.Net driver for MySQL4, the Requirements
Linker can easily execute all kinds of MySQL commands on the database.

4 Application

In this section, the EMS-DSM approach with integrated requirements manage-
ment capability, is applied to the development of an automotive fuel tank sys-
tem for compressed natural gas (CNG). For an appropriate scale of the use-case,
only a small part of the real-world system is utilized. The application should be
recognized as an illustrative material, reduced for internal training purpose for
students. Therefore, the disclosed and commercially non-sensitivity use-case is
not intended to be exhaustive or representing leading-edge technology.

In figure 3 the EMS-DSM tool EASy-Design including the System Design
Model, as well as the Requirements Linker dialogue is shown. The CNG fuel
tank system consists of seven mechanical components, which are blue coloured
(Tank Cylinder, Filter, etc.) The medium flow between mechanical components,
which is CNG in this use case, is displayed by blue lines with an arrow at the end.
Furthermore, five hardware components are placed at the System Design Model
level, which are yellow coloured (In-Tank Temperature Sensor, Tank ECU, etc.)
The signal flow between the components is displayed by yellow lines, ending with
an arrow. Between the Control Unit and the External Control Unit component,

4 https://dev.mysql.com/

A Lean Automotive E/E-System Design Approach 257

Fig. 3. Self-developed tool EASy Design with Integrated Requirements Management
Capability

a communication bus is inserted, characterized by the double compound line
type and arrows on both ends.

Software Components can not be placed on the System Design Level. With
a double-click on a Hardware Component, the next modeling level is opened
(named E/E Item Design Level). Here, the green coloured Basis Software Com-
ponents and Application Software Components are put in place.

By double-clicking a connection between two components, a dialogue is
opened and the signal, or in case of a communication bus, the signals can be spec-
ified. By selecting a model element and a click on the button Link Requirements,
the elements requirements dialogue is opened (shown in Figure 3). Already linked
requirements from the Redmine database are listed with their ID, Type, Title,
ASIL, and Core functionality attribute. By a click on the button Add Req, a
connection to the database is established as described in Section 3.3 and a new
requirement from the database can be added.

5 Conclusions

In the previous sections, a lean method for the design of embedded automotive
mechatronics-based E/E-Systems, with full requirements traceability character-
istic, was presented. This approach has the potential to bring together the dif-
ferent engineering disciplines along the E/E-System development. Moreover, it’s
feasible for automotive domain experts with limited knowledge of UML/SysML.

258 H. Sporer et al.

First use case implementations show promising results. However, there are
at least two important functionalities which has to be implemented in a next
step. On the one hand, the M2M-Transformator between the EMS-DSM and the
SysML model has to be developed. On the other hand, the so far hard coded tool
box at EASy Design has to be transferred to a library file that can be adapted
also during run time.

References

1. Automotive SIG: Automotive SPICE R©Process Assessment Model. Technical
report, Version 2.5, The SPICE User Group (2010)

2. Friedenthal, S., Moore, A., Steiner, R.: OMG systems modeling language (OMG
SysMLTM) tutorial. In: INCOSE International Symposium. INCOSE, Orlando
(2006)

3. Sporer, H., Macher, G., Kreiner, C., Brenner, E.: A model-based domain-specific
language approach for the automotive E/E-System design. In: International
Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) (2015) (under review)

4. Macher, G., Armengaud, E., Kreiner, C.: Bridging automotive systems, safety and
software engineering by a seamless tool chain. In: 7th European Congress Embed-
ded Real Time Software and Systems Proceedings, pp. 256–263, Toulouse, France
(2014)

5. Boldt, R.: Modeling AUTOSAR systems with a UML/SysML profile. IBM Software
Group (2009)

6. Andrianarison, E., Piques, J.: SysML for embedded automotive Systems: a prac-
tical approach. In: Conference on Embedded Real Time Software and Systems,
Toulouse, France (2010)

7. Giese, H., Hildebrandt, S., Neumann, S.: Model synchronization at work: keeping
SysMLandAUTOSARmodels consistent. In: Engels,G., Lewerentz,C., Schäfer,W.,
Schürr, A., Westfechtel, B. (eds.) Graph Transformations and Model-Driven Engi-
neering. LNCS, vol. 5765, pp. 555–579. Springer, Heidelberg (2010)

8. Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S., Ratiu, D.: Seamless
model-based development: from isolated tools to integrated model engineering envi-
ronments. Proceedings of the IEEE 98(4), 526–545 (2010)

9. International Organization for Standardization: ISO 26262. Road vehicles - Func-
tional safety. International Standard, Geneva, Switzerland (2011)

10. Mäder, P., Egyed, A.: Assessing the effect of requirements traceability for software
maintenance. In: 28th IEEE International Conference on Software Maintenance
(ICSM), pp. 171–180. IEEE (2012)

11. Chemuturi, M.: Requirements Engineering and Management for Software Devel-
opment Projects. Springer Science & Business Media (2012)

12. Herrmann, A., Knauss, E.: Requirements Engineering und Projektmanagement.
Xpert.press, Springer (2013)

13. Code Project - WPF Diagram Designer - Part 4. http://www.codeproject.com/
Articles/24681/WPF-Diagram-Designer-Part

An Automotive E/E System Domain-Specific Modelling
Approach with Various Tool Support

Harald Sporer
Institute of Technical Informatics
Graz University of Technology

Inffeldgasse 16/1
Graz, Austria

sporer@tugraz.at

Eugen Brenner
Institute of Technical Informatics
Graz University of Technology

Inffeldgasse 16/1
Graz, Austria

brenner@tugraz.at

ABSTRACT
The electrical and electronic systems (E/E Systems) in the
automotive world have been getting increasingly complex
over the past decades. New functionality, which is mainly re-
alized through embedded E/E Systems, as well as the grow-
ing connectivity (Car2X-Communication), will keep this trend
alive in the upcoming years. Additionally, new standards
and regulations have been released during the last few years
(e.g. ISO 26262), which improve system properties such as
dependability, but also lead to an even higher system com-
plexity. Therefore, well-defined development processes are
crucial to manage this complexity and achieve high quality
products. To accomplish an appropriated guidance through
these processes, a tool chain has to be established, which
supports each phase of the E/E System development. How-
ever, it is not enough to provide a stand-alone solution for
the assistance at each phase. A smooth transition of the
development artefacts between the different levels as well as
their bilateral traceability is crucial. Common approaches
utilize tools such as Enterprise Architect or Artisan Stu-
dio to model the E/E System design in SysML or a kind
of UML2 profile. Usually, several abstraction layers are
designed with these tools, starting from the system archi-
tectural design down to the software architectural design.
Although, in the majority of cases the design should rep-
resent a mechatronics-based system, the hardware and the
mechanics view are not considered. The aim of this work is
to remedy the deficiencies regarding the missing representa-
tion of hardware and mechanics artefacts within E/E System
design. Therefore, a model-based domain-specific language
was developed that describes the system in a more compre-
hensive way. It makes it easier for domain experts, who are
not that familiar with UML or SysML, to create an archi-
tectural design. The methodology presented does not ignore
existing SysML models, but rather supports them by means
of a translator, which converts the DSL model into a SysML
representation. As well as the domain-specific language def-
inition itself, a feasible tool support is presented. To show-
case that the language definition can be implemented easily
in different ways, a custom-made tool written in C# as well
as a tool generated from a UML definition is shown.

Copyright is held by the authors. This work is based on an ear-
lier work: RACS’15 Proceedings of the 2015 ACM Research in Adap-
tive and Convergent Systems, Copyright 2015 ACM 978-1-4503-3738-0.
http://dx.doi.org/10.1145/2811411.2811533

CCS Concepts
•Computer systems organization → Embedded sys-
tems; •Software and its engineering→ Software design
engineering;

Keywords
automotive embedded systems, system architectural design,
domain-specific modelling, E/E Systems

1. INTRODUCTION
The number of functionalities realized through E/E Systems
in modern cars, and therefore the overall complexity, will
keep increasing over the next few years. The connection of
cars with their environment and new propulsion technolo-
gies will foster this trend. There is enormous potential for
product differentiation between competing companies and
for optimizing existing E/E System functionalities.

High quality standards along the whole product life cycle
are crucial for coping with the upcoming challenges. To
achieve this, methods and techniques from concepts such as
Automotive SPICE [2] are strongly recommended. Some of
the key aspects of these concepts are bilateral traceability,
as well as consistency between the different design abstrac-
tion levels, starting from a system design down to a detailed
software component design.

In the automotive sector, embedded system design models
are usually created with techniques based on the Unified
Modelling Language (UML). Either the meta-model is ex-
tended, or a profile is created to make it possible to use
the UML-based approach for the embedded automotive sys-
tem design. A wide-spread example of an UML2 profile is
SysML, which reuses many of the original diagram types
(State Machine Diagram, Use Case Diagram, etc.), uses
modified diagram types (Activity Diagram, Block Definition
Diagram, etc.), and adds new ones (Requirement Diagram,
Parametric Diagram) [6].

Even if the UML-based methodologies are valuable for pro-
jects with an emphasis on software, they are sometimes too
powerful for embedded automotive system design due to the
numerous representation options. In particular for domain
experts who have no or limited knowledge about software de-
velopment, the high number of elements available for mod-
elling, turns system architectural design into an awkward

task. However, it is not the intention of this work to criti-
cize the SysML approaches created so far. They are a good
choice for a multitude of tasks.

Instead, this paper showcases an extension to these SysML
approaches, to make the architectural design of embedded
mechatronics systems easier for UML non-natives. There-
fore, a model-based domain-specific language and domain-
specific modeling have been developed to meet the specific
needs of embedded automotive mechatronics systems. There-
fore, a model-based domain-specific language, respectively
a domain-specific modelling (DSM), has been developed to
meet the specific needs of embedded automotive mechatron-
ics systems. Additionally, this contribution demonstrates
that a tool support of the defined language can be estab-
lished in different ways. In Section 3 and Section 4 two vari-
ants for a EMS-DSM tool support are described. The first
one is a self developed application which has been written
in C#. To speed up the application development process,
an open source diagram editor project has been used as a
basis for the self-written parts of the implementation. The
second presented tool utilizes the Modeling SDK for Visual
Studio - Domain-Specific Languages [14], which contains de-
velopment kits for domain-specific languages and architec-
ture tools. With the aid of this SDK, the DSL definition
is implemented by modelling the language specification in
UML notation. In both cases, the traceability mentioned
earlier is assured by linking development artefacts such as
requirements (e.g. technical system requirements, software
requirements, etc.), and verification criteria to the automo-
tive E/E System architectural design model.

In the course of this document, Section 2 presents an overview
of the related approaches, as well as of domain-specific mod-
elling and integrated tool chains. In Section 3, a description
of the proposed DSM approach for the model-based system
engineering is provided. An application of the described
methodology is presented in Section 4. Section 5 concludes
the work with an overview of the work presented.

2. RELATED WORK
In recent years, a lot of effort has been made to improve
the automotive model-based E/E System design methods
and techniques. Traceability and consistency between the
development artefacts has always been an important topic.
However, due to an increase in electronic and electric-based
functionality, these properties have become vital.

According to international standard ISO 26262, which was
released in 2011, traceability between the relevant artefacts
is mandatory for safety-critical functionalities [9]. A de-
scription of the common deliverables along an automotive
E/E System development, and a corresponding process ref-
erence model is presented by the de-facto standard Auto-
motive SPICE [2]. Neither the functional safety standard
nor the process reference model enforces a specific method-
ology of how the development artefacts have to be linked to
each other. However, connecting the various work products
manually is a tedious and error-prone task.

In [11] the authors describe a seamless model-based tool
chain orchestration for the automotive system and software
engineering domain. As in other contributions in this field

([3], [1], [7], [10], [13]), SysML is utilized for the system
architectural design.

To agree with Broy et al. [4], the drawbacks of the UML-
based design are still the low degree of formalization, and
the lack of technical agreement regarding the proprietary
model formats and interfaces. The numerous possibilities
for customizing the UML diagrams to get a language for
embedded system design, drive these drawbacks. On the
one hand, the meta model can be extended, and on the
other hand, a profile can be defined [13]. Even if there is an
agreement to utilize a common UML profile such as SysML,
plenty of design artefact variations are feasible.

Another long term research project in the field of system
design is the Ptolemy Project [16]. Together with the re-
lated open source and simulation tool Ptolemy II, the project
provides an environment for the modelling of heterogeneous
cyber-physical systems. With the four integrated syntax
classes block diagrams, bubble-and-arc diagrams, imperative
programs, and arithmetic expressions, various design domains
can be addressed. It is general purpose, something which is
both its major strength and its weakness, as is the case with
UML approaches. Moreover, the bidirectional traceability
to requirements and other development artefacts is missing.

The scenario described in this section so far, does not pro-
vide an optimal base for engineers who have to design the
embedded automotive system from a mechatronics point of
view. Ideally, the tool should be intuitive and easy to oper-
ate, even without specific UML knowledge. These findings
led the authors to the idea to create a more tailored model-
based language for the stated domain.

Mernik et al. [12] describe a domain-specific language as
a language that is tailored to the specific application do-
main. Enhanced by this tailoring, there should be substan-
tial gains in expressiveness and ease of use, compared to
general-purpose languages. Even if SysML-based modelling
techniques do increase expressiveness, there is no improve-
ment in ease of use for embedded automotive mechatronics
system design.

Preschern et al. [15] claim that DSLs help to decrease system
development costs by providing developers with an effective
way to construct systems for a specific domain. The benefit
in terms of a more effective development has to be higher
than the investment for creating or establishing a DSL at a
company or department. In addition, the authors argue that
the DSL development cost mentioned will decrease signifi-
cantly over the next few years due to new tools supporting
language creation such as Eclipse-based Sirius1.

Vujović et al. [21] present a model-driven engineering ap-
proach to creating a domain-specific modelling (DSM). Sir-
ius is the framework for developing a new DSM and the
DSM graphical modelling workbench. The big advantage of
this tool is that the workbench for the DSM is developed
graphically. Therefore, knowledge about software develop-
ment with Java, the graphical editor framework (GEF) or
the graphical modelling framework (GMF) is not needed.

According to Hudak [8], programs written in a DSL are more
concise, can be written more quickly, are easier to maintain

1https://eclipse.org/sirius/

and reason about. In the author’s opinion, this list of ad-
vantages is also valid for domain-specific modelling. Fur-
thermore, Hudak determines the basic steps for developing
a domain-specific language as (a) Definition of the domain,
(b) Design of the DSL capturing the domain semantics, (c)
Provide support through software tools, and (d) Create use-
cases for the new DSL infrastructure. The approach de-
scribed in this paper is highlighted, according to these steps,
in Section 3 and 4.

3. APPROACH
The main goal of this contribution is to provide a lean ap-
proach for engineers to facilitate embedded automotive mecha-
tronics system modelling on a high abstraction level. The
focus of the described approach is on the model-based struc-
tural description of the E/E System under development.
Additionally, the signals and interfaces are essential parts
of the modelling. The described methods and techniques in
Section 2 form a well-defined basis for this work.

The existing SysML-based design method is extended by the
newly developed Embedded Mechatronics System Domain-
Specific Modelling (EMS-DSM) for the automotive embed-
ded system design. It is not intended to replace the SysML-
based solution created so far. Instead, the EMS-DSM is
integrated into the existing approach, and the whole tool-
chain, starting with the SysML-based system architectural
design tool, down to the software / hardware architectural
design, can be utilized if desired. An overview of the tool
integration is shown in Figure 1.

Figure 1: Tool-Chain Integration of DSM and Ex-
isting SysML Model Approach (based on [11])

For topics such as project management and requirements
management, the web-based open source application Red-

mine2 is used. Owing to its high flexibility through con-
figuration, new trackers, which also reflect the engineering
process, are added:

• Functional System Requirement

• Technical System Requirement

• Hardware Requirement

• Software Requirement

• System Test Case

• Hardware Test Case

• Software Test Case

The test case and requirement items are connected to each
other by their unique identifier. The relationship between
them is shown in Figure 2. For a safety-critical development
according to ISO 26262, additional types of issues such as
Functional Safety Requirements are added.

Figure 2: Requirements Hierarchy and Test Case
Relationships

3.1 Definition of the Domain
This work focusses on the Embedded Mechatronics E/E Sys-
tem Design in the automotive field. This can be seen as the
meta-domain of the model-based language. The EMS-DSM
itself is tailored to the needs of the domain at the particu-
lar project or company. E.g. the domain of the presented
application in Section 4 is Embedded Mechatronics E/E Sys-
tem Design for Compressed Natural Gas (CNG) Fuel Tank
Systems.

3.2 Design of the EMS-DSM
The definition of the newly developed model-based domain-
specific language is divided into four levels as shown in Fig-
ure 3. These levels were only introduced to categorize the
deviations. They do not depict any order of the component
instances in the design model.

EMS-DSM Level 1

The EMS-DSM Component at level 1 is the origin of all
other classes in the language definition. The five properties
of this class are

• ID: unique identifier of the particular instance in the
design model, set automatically

2http://www.redmine.org/

Figure 3: EMS-DSM Definition (UML)

• Name: name or short description of the particular in-
stance, chosen by the design engineer

• Requirement: in this approach, a link to the Redmine
requirements database, set by the designer

• Verification Criteria: similar to the Requirement, a
link to the Redmine verification criteria artefact, set
by the designer

• Specification: link to further information about the
actual component, e.g. a CAD drawing or a data sheet

The abstract EMS-DSM Component serves as the base node
of the EMS-DSM definition, and declares the common prop-
erties of the derived classes at the lower levels, meaning that
this component is not instanced.

EMS-DSM Level 2

At the second level, the following component classes are
available:

• Mechanical Components: used by all mechanical, domain-
specific components, e.g. the Mechanical Pressure Reg-
ulator class at the use case presented in Section 4

• Compartment Components: gives the opportunity to
specify areas or compartments, where mechanical and
hardware components are installed

• E/E Item Components: an abstract component class
definition, which serves as a basis for the hardware and
software components at the lower levels. Additionally,
the property ASIL, corresponding to the ISO 26262, is
declared

EMS-DSM Level 3

At this level, the abstract classes Hardware Component and
Software Component are defined as a basis for the derived
classes at level 4. The property Timing is added at the
software component class, which defines the scheduling of
the software components at the subsequent level.

EMS-DSM Level 4

The majority of the non-abstract component classes are de-
fined at this level. Classes derived from the hardware com-
ponent are:

• Sensor Component: used for all domain-specific sensor
components

• Control Unit Component: used for all domain-specific
control unit components

• Actuator Component: used for all domain-specific ac-
tuator components

• External Control Unit Component: special class, to
make signals from an external component available at
the considered system without modelling the complete
control unit in the actual design

With the exception of the External Control Unit Compo-
nent, all hardware components, and their instances in the
system design model, are capable of creating a software de-
sign model. Any kind of software component instance is only
allowed to be implemented at a software design model which
belongs to an instance of a hardware component. Regarding

smart sensors / actuators, not only the Control Unit Com-
ponent, but also the Sensor and Actuator Components were
enabled for this procedure.

To conclude the EMS-DSM level description, the classes de-
rived from the software component are:

• Basis Software Component: used for all low-level, hardware-
dependent software components

• Application Software Component: used for all func-
tional software components

3.3 EMS-DSM Features
In this paper, an overview of the novel domain-specific mod-
elling definition is presented. The features, as well as the
benefits compared to other approaches in this field, are de-
scribed in detail in further publications. Nevertheless, a
short overview of the main features shall be given:

• Integrated Requirements Management Capability - Core
Functionality Requirements and Ancillary Functional-
ity Requirements are specified and stored in a MySQL
database. By utilizing the ADO.net driver for MySQL,
one or more requirements can be linked to each com-
ponent in the architectural design [19].

• Incorporation of System and Software Development En-
vironments - The system and the software architec-
tural design can be created in the environment pro-
vided. Supported by both an export and an import
functionality, software architectural design in the EMS-
DSM model can be transferred to a Simulink frame-
work model, and can also be created from a Simulink
model [18].

• Model-to-Model Transformation at the System Design
Level - As mentioned in the previous section, the EMS-
DSM is not a replacement for the established SysML
approach. Instead, it can be seen as an extension and
the models can be bidirectionally transformed into the
different representations [20].

• Open Modelling Toolbox Access - Utilizing a library
editor, the modelling toolbox can be easily adapted to
the needs of the respective company or project [17].

3.4 EMS-DSM Tool Support
At the time when the research project was initiated, the
aims were the highest possible flexibility and full access to
the tool’s source code. Therefore, the decision was taken to
write a custom-made tool which implements the modelling
language definition. Nevertheless, in different publications
the authors mentioned that the EMS-DSM language def-
inition can also be implemented using other technologies.
To deliver a proof of concept of this statement, the mod-
elling language definition has been integrated into the Visual
Studio environment, aided by Microsoft’s Modeling SDK. In
the following subsections, as well as in Section 4, the initial
custom-made tool support as well as the approach based on
Visual Studio is described.

3.4.1 Custom-made Tool
To avoid having to develop an application from scratch, the
open source project WPF Diagram Designer [5] has been
chosen as the basis of the start of tool development. The
corresponding documentation has more than 500.000 views
and the source code has been downloaded more than 25.000
times. It is therefore a relatively well reviewed source, which
provides standard functionality such as file handling and ba-
sic graphical modelling. The source code is written in C#
and provides good expandability. To facilitate EMS-DSM
engineering, new functionalities have been implemented in
the diagram designer. To express the initially strong rela-
tion to the automotive industry, the newly developed tool
was named EASy-Design (Embedded Automotive System-
Design).

The advantages of the custom-made tool implementation
for the domain-specific modelling language are (a) (a) that
it provides a stand-alone application without any need for
purchasing an IDE (Integrated Development Environment)
which serves as a runtime environment, (b)that it is easier
to use due to a reduction of the number of user interface
elements compared to off-the-shelf software approaches, and
(c) that it provides full access to all parts of the source code
(e.g. implementation of an architectural design multi-level
view is much easier compared to other approaches). The
disadvantages are (a) the huge tool development efforts, and
(b) the missing (external) tool maintenance.

3.4.2 Modeling SDK-based Tool
Model-based development tools, which are integrated into
Visual Studio, can be created aided by the Modeling SDK
for Visual Studio. The software development kit (SDK) is
provided by the Microsoft Developer Network [14], and is
available for different versions of Visual Studio, whereby the
domain-specific modelling presented here is based on Version
2013, which was published in November 2013.

The language definition illustrated in Figure 3 has been
implemented in the DSL Definition environment at Visual
Studio. All defined components (EMS-DSM Component,
Mechanical Component, etc.) are represented by Domain-
Class elements. The component properties have been added
as Domain Properties and are inherited downwards start-
ing from the abstract top-level class EMS-DSM Component.
The modelling of Level 1 and Level 2 (see Subsection 3.2)
of the defined language is shown in Figure 4. It has to
be stated that the illustrated DSL definition belongs to the
EMS-DSM language as presented in Figure 3. For a more
specific domain such as Embedded Mechatronics E/E System
Design for Compressed Natural Gas (CNG) Fuel Tank Sys-
tems, which is presented as a use case in Section 3, additional
classes are inherited (e.g. Tank Cylinder class from Me-
chanical Components class) and provided at the designer’s
toolbox.

Like the custom-made variant, the Visual Studio based tool
can be used to model embedded mechatronic system archi-
tectures and the medium (e.g. gas) as well as the signal flow
between the modelled elements. The full traceability be-
tween development artefacts such as Technical System Re-
quirements and the Architectural System Design can also be

Figure 4: Excerpt of the EMS-DSM Definition Transferred to the Visual Studio Environment

established by utilizing the component properties. For an
easy distinction between the custom-made tool and the Vi-
sual Studio based tool, the latter was named EASy-Design
VS.

The advantages of implementing the EMS-DSM language
definition in the Visual Studio environment are (a) fast im-
plementation aided by a specialized domain-specific language
SDK, (b) built-in code generator, which can be simply tai-
lored for customer needs, and (c) instant validation of the
DSL definition. The disadvantages are (a) the need to pur-
chase the development software (e.g. Visual Studio), which
serves as a runtime environment for each user who is to
design the embedded system or parts of it, and (b) limited
tailoring of the domain-specific modelling environment (with
regard to the DSL Definition modelling).

3.4.3 Other Technologies
The tool support possibilities described in the previous sub-
sections are exemplary and not restrictive. The methodol-
ogy and its C# implementation can also be ported to e.g.
Enterprise Architect3 aided by the provided Add-in mech-
anism. Another alternative is the Eclipse4 project Sirius
mentioned in Section 1, which enables the creation of a
graphical modelling workbench, by facilitating the Eclipse
modelling technologies without writing any line of code. Sim-
ilar to the Visual Studio-based approach, the domain-specific
modelling environment is created by means of graphical mod-
elling. An advantage of Sirius is the free Eclipse IDE, which
serves as the domain-specific modelling tool development
platform, as well as the runtime environment for the DSM
tool itself.

3http://www.sparxsystems.com/
4http://eclipse.org/

4. APPLICATION
In Section 3, the first three steps towards developing a DSL /
DSM, as defined by Hudak, are shown. Below, the last step
Create use cases for the new DSL infrastructure is described.
In the following part of this section, the use case scenario
is modelled by means of two different tools. These are the
custom-made variant EASy-Design and its Microsoft Visual
Studio based counterpart EASy-Design VS, both mentioned
in Section 3.

4.1 General Use Case Description
For an appropriate scale of the use case, only a small part
of the real-world system is utilized. The application is to be
recognized as an illustrative material, reduced for internal
training purposes for students. Therefore, the disclosed and
commercially non-sensitive use case is not intended to be
exhaustive or to represent leading-edge technology.

As previously mentioned, both tools - EASy-Design and
EASy-Design VS - have been utilized for an application of
the use case. It shall be shown that, apart from the particu-
lar pros and cons of each of the approaches, the architectural
system design can be created with both. The design of a fuel
tank system for compressed natural gas (CNG) was selected
as an appropriated automotive use case. In the remaining
part of this subsection the tool-independent system proper-
ties are described.

The CNG fuel tank system consists of seven mechanical com-
ponents:

• Tank Cylinder

• Filter

• Mechanical Pressure Regulator

• Gaseous Injector Rail

• 3 x Tubing

At both system designers, the mechanical components are
coloured blue. The medium flow between the components,
which is CNG in this use case, is displayed using blue lines
with an arrow on one end (on the sink side).

Furthermore, five hardware components shall be placed on
the System Design Model level:

• In-Tank Temperature (Sensor Component)

• CNG High Pressure (Sensor Component)

• On-Tank Valve (Actuator Component)

• Tank ECU (Control Unit Component)

• Engine ECU (External Control Unit Component)

The signal flow between the components is shown using yel-
low lines, ending with an arrow on the signal sink. A com-
munication bus is inserted between the Control Unit and the
External Control Unit component.

In Figure 3, dependencies are defined between Mechanical
Components and Sensor Components, and Hardware Com-
ponents. These relationships enable the direct connection
between e.g. the On-Tank Valve Actuator (as a hardware
component) and the Tank Cylinder (as a mechanical com-
ponent).

4.2 EASy-Design
In Figure 5, the EMS-DSM supporting tool EASy-Design is
illustrated. The system architectural design of the CNG fuel
tank use case with the mechanical and hardware elements
listed in Subsection 4.1 is embedded in the System Design
Model area.

The five hardware components are coloured yellow. A com-
munication bus is inserted between the Control Unit and
the External Control Unit component, and is shown by the
double compound line type and arrows on both ends.

The Software Components cannot be placed on the System
Design Level. With a double-click on a Hardware Compo-
nent, the next modelling level is opened (named E/E Item
Design Level). Here, the green coloured Basis Software
Components and Application Software Components are put
in place.

By double-clicking a connection between any two compo-
nents, a dialogue is opened and the signal, or signals in
the case of a communication bus, can be specified. The
properties, such as the name or the link to the correspond-
ing requirements, are easily set by selecting the particular
component with a single click and entering the data in the
Element Properties toolbox.

4.3 EASy-Design VS
In Figure 6, the EMS-DSM tool EASy-Design VS is illus-
trated. The system architectural design of the CNG fuel
tank use case with the mechanical and hardware elements

listed in Subsection 4.1 is embedded in the System Design
Model area.

The colour selection for the model components is similar
to the one described in the previous subsection. Only the
colour gradation of the components of the class Hardware
Component varies from yellow for the sensor components,
to dark yellow for the control unit components, to orange
for the actuator components. Another difference is the pre-
sentation of the signal bus between the control unit and the
external control unit. At EASy-Design VS a signal bus is
visualised by a dash-dot-dot line instead of the double com-
pound line.

All the components (e.g. Mech - Tank Cylinder), their
relationship and the respective signal or medium connec-
tions (e.g. Medium Link), as available at the toolbox win-
dow left of the system design area in Figure 6, have been
implemented just by modelling the graphically represented
DSL Definition in Visual Studio. Theoretically, the soft-
ware components could be modelled on the same diagram,
e.g. as nested items within the particular hardware compo-
nent, but with a growing number of system architectural
design elements, the model would quickly get confusing.
Hence, the source code of the multi-level handling from the
fully custom-made tool EASy-Design has been transferred to
EASy-Design VS. Thus a new diagram level can be opened
by double-clicking one of the hardware components at the
system architectural model, where items of class Basis Soft-
ware and Application Software can be utilized to create a
software architectural design.

Similar to the multiple diagram level feature, the C# code
for the signal specification procedure has also been trans-
ferred to this approach. Thus by double-clicking a connec-
tion between two components a dialogue is opened and the
signal can be specified.

The properties of each element at the system or software
architectural design can be entered by selecting the desired
item in the diagram and filling the lines at the property
window, shown on the lower left section in Figure 6.

5. CONCLUSIONS
In the previous sections, the current embedded automotive
system development challenges have been described. To
overcome the problem of often incomplete or incoherent de-
velopment artefacts, which represents one of the main chal-
lenges in this research field, an approach has been shown
for a seamless development from engineering and managing
the various types of requirements, to creating the system
and software architectural design, to generating model-based
software frameworks for further implementations.

The key concepts of the presented methodology foster the
linking of each development artefact with its predecessor
and successor wherever applicable, and provide an architec-
tural design strategy by providing a domain-specific mod-
elling language definition that can be implemented into var-
ious development environments. In Sections 3 and 4, two of
these possibilities have been shown.

Generally speaking, the overall effort in terms of money and
manpower needed to create an appropriate domain-specific

Figure 5: System Model Designed in EASy-Design

Figure 6: System Model Designed in EASy-Design VS

development environment for the system architectural de-
sign, which also provides full traceability to other develop-
ment artefacts, is more or less the same for both presented
approaches, independent of the decision whether to create
a full self-developed tool or to build on a available technol-
ogy like Modeling SDK for Visual Studio - Domain-Specific
Languages. None of the approaches based on the consid-
ered technologies - this also includes the previously men-
tioned Eclipse project Sirius - work without customization
by means of writing code. For instance, the multi-level de-
sign feature as it is provided by EASy-Design and described
in Subsection 4.2, cannot be established in a feasible way by
merely modelling the domain-specific tool. Which approach
is best strongly depends on the structure of the E/E Sys-
tem development team or company and cannot be generally
stated.

Although the EMS-DSM definition and its implementation
EASy-Design, is currently in a first trial phase for industrial
project applicability, there is already evidence of the benefits
of the approach. Moreover, important topics for future work,
such as the automatic validation of the system and software
architectural designs, and the transformation of a system of
systems model in one step, have been identified.

6. REFERENCES
[1] E. Andrianarison and J.-D. Piques. SysML for

embedded automotive Systems: a practical approach.
In Conference on Embedded Real Time Software and
Systems. IEEE, 2010.

[2] Automotive SIG. Automotive SPICE R©Process
Assessment Model. Technical report, The SPICE User
Group, May 2010. Version 2.5.

[3] R. Boldt. Modeling AUTOSAR systems with a
UML/SysML profile. Technical report, IBM Software
Group, July 2009.

[4] M. Broy, M. Feilkas, M. Herrmannsdoerfer,
S. Merenda, and D. Ratiu. Seamless Model-Based
Development: From Isolated Tools to Integrated
Model Engineering Environments. Proceedings of the
IEEE, 98(4):526–545, 2010.

[5] Code Project. WPF Diagram Designer - Part 4.
Online Resource. retrieved March 23, 2015, from
http://www.codeproject.com/Articles/24681/WPF-
Diagram-Designer-Part.

[6] S. Friedenthal, A. Moore, and R. Steiner. OMG
Systems Modeling Language (OMG SysMLTM)
Tutorial. In INCOSE International Symposium, 2006.

[7] H. Giese, S. Hildebrandt, and S. Neumann. Model
Synchronization at Work: Keeping SysML and
AUTOSAR Models Consistent. LNCS 5765, pages 555
–579, 2010.

[8] P. Hudak. Domain-specific languages. Handbook of
Programming Languages, 3:39–60, 1997.

[9] ISO 26262, Road vehicles - Functional safety.
International standard, International Organization for
Standardization, Geneva, CH, November 2011.

[10] R. Kawahara, H. Nakamura, D. Dotan, A. Kirshin,
T. Sakairi, S. Hirose, K. Ono, and H. Ishikawa.
Verification of embedded system’s specification using

collaborative simulation of SysML and simulink
models. In MBSE’09, pages 21–28. IEEE, 2009.

[11] G. Macher, E. Armengaud, and C. Kreiner. Bridging
Automotive Systems, Safety and Software Engineering
by a Seamless Tool Chain. In 7th European Congress
Embedded Real Time Software and Systems
Proceedings, pages 256–263, 2014.

[12] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
computing surveys (CSUR), 37(4):316–344, 2005.

[13] J. Meyer. Eine durchgängige modellbasierte
Entwicklungsmethodik für die automobile
Steuergeräteentwicklung unter Einbeziehung des
AUTOSAR Standards. PhD thesis, Universität
Paderborn, Fakultät für Elektrotechnik, Informatik
und Mathematik, Paderborn, Germany, July 2014.

[14] Microsoft Developer Network. Modeling SDK for
Visual Studio - Domain-Specific Languages. Online
Resource. retrieved January 19, 2016, from
https://msdn.microsoft.com/en-
us/library/bb126259.aspx.

[15] C. Preschern, N. Kajtazovic, and C. Kreiner. Efficient
development and reuse of domain-specific languages
for automation systems. International Journal of
Metadata, Semantics and Ontologies, 9(3):215–226,
2014.

[16] C. Ptolemaeus, editor. System Design, Modeling, and
Simulation using Ptolemy II. Ptolemy.org, 2014.

[17] H. Sporer. A Lean Automotive E/E-System Design
Approach with Open Toolbox Access. In Systems,
Software and Services Process Improvement - 22nd
European Conference, EuroSPI 2015, EuroAsiaSPI
’15, Ankara, Turkey, pages 41–50, 2015.

[18] H. Sporer, G. Macher, A. Höller, and C. Kreiner.
Bidirectional Crosslinking of System and Software
Modeling in the Automotive Domain. In 7th
International Workshop on Software Engineering for
Resilient Systems, SERENE ’15, Paris, France, 2015.

[19] H. Sporer, G. Macher, C. Kreiner, and E. Brenner. A
Lean Automotive E/E-System Design Approach with
Integrated Requirements Management Capability. In
9th European Conference on Software Architecture
(ECSA 2015), ECSA ’15, Dubrovnik/Cavtat, Croatia,
2015.

[20] H. Sporer, G. Macher, C. Kreiner, and E. Brenner. A
Model-to-Model Transformation Approach at
Mechatronics-Based E/E-System Design. In 41st
EUROMICRO Conference on Software Engineering
and Advanced Applications, Session on ”Work in
Progress”, SEAA ’15, Funchal, Madeira, Portugal.
EUROMICRO, 2015.

[21] V. Vujović, M. Maksimović, and B. Perǐsić. Sirius: A
rapid development of DSM graphical editor. In 18th
International Conference on Intelligent Engineering
Systems (INES), pages 233–238. IEEE, 2014.

A Lean Automotive E/E-System Design
Approach with Open Toolbox Access

Harald Sporer(B)

Institute of Technical Informatics,
Graz University of Technology, Inffeldgasse 16/1, 8010 Graz, Austria

sporer@tugraz.at

http://www.iti.tugraz.at/

Abstract. Replacing former pure mechanical functionalities by mecha-
tronics-based solutions, introducing new propulsion technologies, and
connecting cars to their environment are only a few reasons for the still
growing electrical and electronic systems (E/E-Systems) complexity at
modern passenger cars. Smart methodologies and processes are necessary
during the development life cycle to master the related challenges success-
fully. One of the key issues is to have an adequate environment for creat-
ing architectural system designs, and linking them to other development
artifacts. In this paper, a novel model-based domain-specific language for
embedded mechatronics-based systems, with focus on the support of dif-
ferent automotive sub-domains, is presented. With the described method-
ology, the domain-specific modeling (DSM) approach can be adapted to
the needs of the respective company or project easily. Though, the model-
based language definition can be implemented using various platforms
(e.g. Eclipse Modeling Framework), also a custom-made open source edi-
tor supporting the DSM technique, is presented.

Keywords: System architectural design · Domain-specific modeling ·
Automotive embedded systems · E/E-Systems

1 Introduction

The electrical and/or electronic systems (E/E-Systems) in the automotive
domain have been getting more and more complex over the past decades. New
functionality, mainly realized through embedded E/E-Systems, as well as the
growing connectivity (Car2X-Communication), will keep this trend alive in the
upcoming years. Well-defined development processes are crucial to manage this
complexity and to achieve high quality products. Wide-spread standards and
regulations, like Automotive SPICE R© and ISO 26262, give a guidance through
the development life cycle.

Best practice for the E/E-System development process is still to refer to
some kind of the V-Model. Starting with an initialization and analyzing phase,
via the subdivided system elements, down to the implementation, and back up
by integration and test phases towards the completed system, a multitude of

c© Springer International Publishing Switzerland 2015
R.V. O’Connor et al. (Eds.): EuroSPI 2015, CCIS 543, pp. 41–50, 2015.
DOI: 10.1007/978-3-319-24647-5 4

42 H. Sporer

work products arises and have to be managed properly. Trying to keep all of the
artifacts consistent manually, is an error-prone and tedious task. Therefore, a
lot of effort has been made through the last years to increase the quality by an
adequate and highly automated tool support.

To create the system design, most of the existing approaches utilize some kind
of UML profile (e.g. SysML1). Though these techniques have a lot of advantages,
in some scenarios they are not best choice. On the one hand, the possibility to
include mechanical parts or the flow of fluids and forces is missing, and on the
other hand, a possible lack of UML skills, especially in small project teams,
which wants to carry out a lean development, makes the UML-based design to
an awkward task.

The main goal of this work is to contribute to the improvement of the existing
system architectural design methods. The herein presented approach has been
created for the development of embedded mechatronics-based E/E-Systems in
the automotive field mainly. However, the techniques are also suitable for other
domains. The mentioned improvement is accomplished by extending the wide-
spread and common UML-based methods by domain-specific modeling (DSM)
techniques. It’s crucial to state that the existing design techniques shall not be
replaced by the presented work.

Similar to the previous mentioned de facto standard Automotive SPICE, full
traceability and consistency between the development artifacts are also one of
the main objectives of this work. Various types of requirements are linked to the
system architectural design elements, and in the case of requirement changes the
affected system parts can be determined easily. Moreover, supported by the DSM
definition, a software architectural design can be either created within the same
environment as the system design, or a established seamless tool chain can be
facilitated after a domain-specific model to UML-based model transformation.
In both cases, a Simulink R©2 software framework model can be generated from
the software architectural design.

In this contribution the highlighted aspect of the novel DSM approach is
the methodology of creating new modeling toolboxes for a particular project or
company. The definition of the domain-specific language in combination with
the support from the newly developed designer tool, allows a straight forward
and intuitive procedure for customizing the DSM to the specific needs. A big
advantage of this solution is that the customization can be conducted by the
user easily and without coding.

In the course of this document, Section 2 presents an overview of the related
approaches, as well as of domain-specific modeling. In Section 3, a detailed
description of the proposed modeling approach with a focus on the tailoring
for specific (sub-)domains is provided. An application of the described method-
ology is presented in Section 4. Finally, this paper is concluded with an overview
of the presented work in Section 5.

1 http://www.omgsysml.org/
2 http://www.mathworks.com/products/simulink/

A Lean Automotive E/E-System Design Approach 43

2 Related Work

In recent years, a lot of effort has been made to improve the model-based auto-
motive E/E-System design methods and techniques. Nowadays, the advantages
of a model-based approach are clear and without controversy. Meseguer [12]
grants much more reliability, reusability, automatisation, and cost effectiveness
to software that is developed with modeling languages. However, model trans-
formation within or also across different languages is crucial to achieve all these
benefits.

Traceability, as well as consistency, between the development artifacts has
always been an important topic. However, due to the increasing number of
electronic- and electric-based functionality, these properties have become vital.
If it comes to safety-critical functionalities, according to the 2011 released inter-
national standard ISO 26262 [8], traceability between the relevant artifacts is
mandatory. A description of the common deliverables along an automotive E/E-
System development, and a corresponding process reference model is presented
by the de facto standard Automotive SPICE [2]. Neither the functional safety
standard nor the process reference model enforces a specific methodology, how
the development artifacts have to be created or linked to each other. However,
connecting the various work products manually is a tedious and error-prone task.

One of the early work products along the engineering process, is the archi-
tectural system design. In the field of automotive E/E-System development, a
wide-spread and common approach is to utilize a UML-based technique for this
design, like the UML2 profile SysML. Andrianarison and Piques [1], Boldt [3],
and many other publications (e.g. [6], [9], [13]) present their SysML methodolo-
gies for the system design.

To agree with Broy et al. [4], the drawbacks of the UML-based design are still
the low degree of formalization, and the lack of technical agreement regarding
the proprietary model formats and interfaces. The numerous possibilities of how
to customize the UML diagrams, to get a language for embedded system design,
drive these drawbacks. On the one hand, the meta model can be extended, and on
the other hand, a profile can be defined [13]. Even if there is a agreement to utilize
a common UML profile like SysML, a plenty of design artifact variations are
feasible. This scenario doesn’t provide an optimal base for the engineer who has
to design the embedded automotive system from a mechatronics point of view.
Ideally, the tool should be intuitive and easily operated also without specific
UML knowledge. These findings led the author to the idea to create a more
tailored model-based language for the stated domain. The definition and other
details of this language can be found at [16].

Mernik et al. [11] describe a domain-specific language as a language that is
tailored to the specific application domain. Enhanced by this tailoring, substan-
tial gains in expressiveness and ease of use, compared to general-purpose lan-
guages, should be given. Even if a gain regarding the expressiveness is achieved
by the utilization of SysML-based modeling techniques, the ease of use regarding
an embedded automotive mechatronics system design is out of sight.

44 H. Sporer

Preschern et al. [14] claim that DSLs help to decrease system development
costs by providing developers with an effective way to construct systems for a
specific domain. The benefit in terms of a more effective development has to
be higher than the investment for creating or establishing a DSL at a company
or department. Supplementary, the authors argue that in the next years the
mentioned DSL development cost will decrease significantly, due to new tools
supporting the language creation like the Eclipse-based Sirius3.

Vujović et al. [17] present a model-driven engineering approach to create a
domain-specific modeling (DSM). Sirius is the framework for developing a new
DSM, respectively the DSM graphical modeling workbench. The big advantage of
this tool is that the workbench for the DSM is developed graphically. Therefore,
knowledge about software development with Java, the graphical editor frame-
work (GEF) or the graphical modeling framework (GMF) is not needed.

According to Hudak [7], programs written in a DSL are more concise, can be
written more quickly, are easier to maintain and reason about. In the authors
opinion, this list of advantages is also valid for domain-specific modeling. Fur-
thermore, Hudak determines the basic steps for developing a own domain-specific
language as

– Definition of the domain
– Design of the DSL capturing the domain semantics
– Provide support through software tools
– Create use-cases for the new DSL infrastructure

The approach described in this paper is presented according to theses steps in
Section 3 and 4.

3 Approach

In this section, the domain specific modeling methodology for automotive mecha-
tronics-based system development, with a focus on the open toolbox strategy,
is presented. As mentioned in Section 2, details on the definition of the domain
specific modeling can be found in [16]. Therefore, just a brief description is given
in the following subsection.

3.1 Domain-Specific Modeling Language

The established SysML-based design method from [10] is extended by the newly
developed Embedded Mechatronics System Domain-Specific Modeling (EMS-
DSM) for the automotive embedded system design. The main goal of this
methodology is to provide a lean approach for engineers to facilitate an embedded
automotive mechatronics system modeling on a high abstraction level. The focus
of the approach is on the model-based structural description of the E/E-System
under development. Additionally, the signals and interfaces are an essential part
of the modeling.

3 https://eclipse.org/sirius/

A Lean Automotive E/E-System Design Approach 45

The definition of the newly developed model-based domain specific language
is shown in Figure 1. The top node EMS-DSM Component is the origin of all
other classes at the language definition. Therefore, each of the derived classes
inherits the five properties (ID, Name, Requirement, Verification Criteria, and
Specification) from the base class.

Fig. 1. EMS-DSM Definition (UML)

The language definition in Figure 1 represents the meta-domain of the model-
based language. Subsequently, the EMS-DSM is tailored to the needs of the
domain at the particular project or company. That is, design elements of possible
types Mechnical, Compartment, Sensor, Control Unit, Actuator, External Control
Unit, Basis Software, and Application Software are specified for the particular
field of application. E.g. the domain of the presented application in Section 4 is
Embedded Mechatronics E/E-System Design for Compressed Natural Gas (CNG)
Fuel Tank Systems.

The EMS-DSM can be supported by a various number of tools, but at the
time when the research project was initiated, a highest possible flexibility, as
well as full access to the tools source code was desired. To achieve this, an own
model editor (Embedded Automotive System Design) has been developed, based
on the open source project WPF Diagram Designer [5].

3.2 Traceability Between the Design and Other Artifacts

To achieve a lean development environment for automotive E/E-Systems, the
whole engineering life cycle has to be supported. Therefore, not only the sys-
tem architectural design, but also other artifacts, like requirements and test

46 H. Sporer

case specification, are in the scope of this work. For topics like project man-
agement and requirements management, the web-based open source application
Redmine4 is used in this project. The de facto standard Automotive SPICE [2]
defines three different types of requirements at the engineering process group:
Customer Requirements, System Requirements, and Software Requirements. Out
of the embedded E/E-System view, at least the hardware focus is missing. Addi-
tionally, requirements and design items regarding the mechanical components,
have been introduced for the design of an embedded mechatronics-based E/E-
System. Similar to the Automotive SPICE methodology on system and software
level, engineering processes has been defined for these missing artifacts.

Section 3.1 contains the description of how the different types of designs (sys-
tem level, software level, etc.) are created corresponding to the novel domain spe-
cific modeling. To achieve full traceability, these designs, respectively the various
components at the designs, have to be linked to the corresponding requirements.
This is accomplished by the Requirements Linker at EASy Design, which estab-
lishes a connection to the MySQL database, and therefore has full access to the
requirements data at Redmine. More details about the requirements manage-
ment capability of the presented project can be found at [15].

3.3 Open Toolbox Approach at the DSM

The main objective of the open toolbox strategy is to provide a possibility for
the user to tailor the modeling item set to their particular needs. Every non-
abstract EMS-DSM class from Figure 1 can be instantiated and utilized as type
for a new toolbox item. By selecting one of the provided types, the behaviour of
the new toolbox item is defined. E.g. if a new Application Software Component
is created at the toolbox, the aggregation ”1..* 0..*” between Hardware and
Software Components guarantees that the item can be used at the model within
a Hardware Component only. These constraints contributes to the easy and intu-
itive handling of the modeling language. As mentioned previously, the defined
modeling language and all presented features can be implemented on various
modeling framework platforms, but at this project a self-made C# implementa-
tion has been preferred to achieve a highest possible grade of independence from
third-party platforms.

To support the open toolbox methodology, additional functionality has been
added to the custom-made software tool EASy Design. By selecting the command
Open Library Editor at the menu bar, a new window (see Figure 2 in Section 4)
is opened, offering toolbox modification options. At the window area Create New
Toolbox Item the properties of the new toolbox item can be set. The drop down
menu Type provides all non-abstract classes from the language definition. Name
is a freely selectable identifier for the item, and Mask prompts the user to enter
the path of a Portable Network Graphic (PNG), which determines the graphical
representation of the toolbox item and its later appearance at the model. At the

4 http://www.redmine.org/

A Lean Automotive E/E-System Design Approach 47

window area Delete Existing Toolbox Item the no longer required item can be
removed by choosing the respective name.

All library items are stored in an Extensible Markup Language (XML) file,
corresponding to the following structure:

<EASyDesignLib>

<LibItem>

<Type></Type>

<Name></Name>

<Mask></Mask>

</LibItem>

</EASyDesignLib>

4 Application

In this section the EMS-DSM approach with an open toolbox strategy is applied
to the development of an automotive fuel tank system for compressed natural
gas (CNG). For an appropriate scale of the use-case, only a small part of the
real-world system is utilized. The application should be recognized as an illus-
trative material, reduced for internal training purpose for students. Therefore,
the disclosed and commercially non-sensitivity use-case is not intended to be
exhaustive or representing leading-edge technology.

To model the CNG fuel tank system, several mechanical, hardware, and soft-
ware components are needed. As the main mechanical components, the following
items being assumed to exist in the EMS-DSM library: Tank Cylinder, Mechan-
ical Pressure Regulator, Filter, Engine Rail, and some Tubing. Moreover, four
hardware components have already been added to the library: In-Tank Temper-
ature Sensor, CNG High Pressure Sensor, On-Tank Valve (Actuator), and Tank
ECU (Control Unit). So far, there are no software components at the library.

For a first draft of the system architectural design, an external control
unit component Engine ECU, and a basis software component CAN Driver
is needed. Therefore, the steps described in Subsection 3.3 are carried out for
these new library items. The corresponding Library Editor windows are shown in
Figure 2. The new library items are added at the EASy Design Library Browser,
and the library file EMS-DSM-Lib.xml is extended by the following entries:

<LibItem>

<Type>External Control Unit Component</Type>

<Name>Engine ECU</Name>

<Mask>"..\images\EASyLibExtEngECU.png"</Mask>

</LibItem> <LibItem>

<Type>Basis Software Component</Type>

<Name>CAN Driver</Name>

<Mask>"..\images\EASyLibCANDriver.png"</Mask>

</LibItem>

48 H. Sporer

Fig. 2. Library Editor Windows for New Modeling Items

By adding these model items to the library, the system architectural design
of the presented use-case can be created as shown in Figure 3. The CNG fuel
tank system consists of seven mechanical components, which are blue coloured
(Tank Cylinder, Filter, etc.) The medium flow between mechanical components,
which is CNG in this use case, is displayed by blue lines with an arrow at the end.
Furthermore, five hardware components are placed at the System Architectural
Design Model level, which are yellow coloured (In-Tank Temperature Sensor,

Fig. 3. CNG Tank System Architectural Design

A Lean Automotive E/E-System Design Approach 49

Tank ECU, etc.) The signal flow between the components is displayed by yellow
lines, ending with an arrow. Between the Control Unit and the External Control
Unit component, a communication bus is inserted, characterized by the double
compound line type and arrows on both ends.

As previously mentioned, the EMS-DSM definition requires at least one hard-
ware component at the model to implement a software component. In this use-
case the created basis software component CAN Driver shall be integrated at
the CNG Tank ECU. With a double-click on the hardware component, the next
modeling level is opened (named E/E Item Design Level), and the CAN Driver
can be put in place.

5 Conclusions

In the previous sections, a lean method for the design of embedded automotive
mechatronics-based E/E-Systems, with a focus on the open toolbox strategy,
was presented. This approach has the potential to bring together the different
engineering disciplines along the E/E-System development. Many artifacts like
requirements, verification criteria, and various specifications can be linked to the
models, created with the novel domain-specific modeling language. Supported by
the linking of the artifacts, the vital traceability can be established. Depending
on the respective tool chain and the organizations process landscape, the EMS-
DSM models can also facilitate a single point of truth strategy.

By the model-to-model transformation mentioned in Section 2, a decision
between the established SysML design techniques and the presented approach is
not necessary. Instead, the EMS-DSM methodology can be utilized as an exten-
sion for mechatronics-based system designs to the existing tool chain. However,
the possibility of modeling not only the system level, but also the software archi-
tectural level enables the presented work to be a standalone solution as well.

First use case implementations show promising results. However, there are
several features on the open issue list, which have to be implemented in a next
step. On the one hand, the options for describing the systems behavior, like
e.g. some kind of task scheduling definition, shall be introduced. On the other
hand, an advanced methodology for managing, as well as importing/exporting
the signal interfaces has to be developed.

References

1. Andrianarison, E., Piques, J.-D.: SysML for embedded automotive Systems: a prac-
tical approach. In: Conference on Embedded Real Time Software and Systems.
IEEE (2010)

2. Automotive SIG. Automotive SPICEProcess Assessment Model. Technical report,
The SPICE User Group, Version 2.5 (May 2010)

3. Boldt, R.: Modeling AUTOSAR systems with a UML/SysML profile. Technical
report, IBM Software Group (July 2009)

50 H. Sporer

4. Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S., Ratiu, D.: Seamless
Model-Based Development: From Isolated Tools to Integrated Model Engineering
Environments. Proceedings of the IEEE 98(4), 526–545 (2010)

5. Code Project. WPF Diagram Designer - Part 4. Online Resource (March 2008).
http://www.codeproject.com/Articles/24681/WPF-Diagram-Designer-Part
(accessed March 2015)

6. Giese, H., Hildebrandt, S., Neumann, S.: Model Synchronization at Work: Keeping
SysML and AUTOSAR Models Consistent. In: Engels, G., Lewerentz, C., Schäfer,
W., Schürr, A., Westfechtel, B. (eds.) Graph Transformations and Model-Driven
Engineering. LNCS, vol. 5765, pp. 555–579. Springer, Heidelberg (2010)

7. Hudak, P.: Domain-specific languages. Handbook of Programming Languages 3,
39–60 (1997)

8. ISO 26262, Road vehicles - Functional safety. International standard, International
Organization for Standardization, Geneva, CH (November 2011)

9. Kawahara, R., Nakamura, H., Dotan, D., Kirshin, A., Sakairi, T., Hirose, S., Ono,
K., Ishikawa, H.: Verification of embedded system’s specification using collabo-
rative simulation of SysML and simulink models. In International Conference on
Model Based Systems Engineering (MBSE 2009), pp. 21–28. IEEE (2009)

10. Macher, G., Armengaud, E., Kreiner, C.: Bridging Automotive Systems, Safety
and Software Engineering by a Seamless Tool Chain. In: 7th European Congress
Embedded Real Time Software and Systems Proceedings, pp. 256–263 (2014)

11. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys (CSUR) 37(4), 316–344 (2005)

12. Meseguer, J.: Why Formal Modeling Language Semantics Matters. In: Dingel, J.,
Schulte, W., Ramos, I., Abrahao, S., Insfran, E. (eds.) International Conference
on Model-Driven Engineering Languages and Systems, MODELS 2014, Valencia,
Spain. LNCS. Springer International Publishing Switzerland (2014)

13. Meyer, J.: Eine durchgängige modellbasierte Entwicklungsmethodik für die auto-
mobile Steuergeräteentwicklung unter Einbeziehung des AUTOSAR Standards.
PhD thesis, Universität Paderborn, Fakultät für Elektrotechnik, Informatik und
Mathematik, Paderborn, Germany (July 2014)

14. Preschern, C., Kajtazovic, N., Kreiner, C.: Efficient development and reuse of
domain-specific languages for automation systems. International Journal of Meta-
data, Semantics and Ontologies 9(3), 215–226 (2014)

15. Sporer, H., Macher, G., Kreiner, C., Brenner, E.: A Lean Automotive E/E-System
Design Approach with Integrated Requirements Management Capability. In: 9th
European Conference on Software Architecture (ECSA 2015), Dubrovnik/Cavtat,
Croatia (in press, 2015)

16. Sporer, H., Macher, G., Kreiner, C., Brenner, E.: A Model-Based Domain-Specific
Language Approach for the Automotive E/E-System Design. In: International Con-
ference on Research in Adaptive and Convergent Systems, RACS 2015, Prague,
Czech Republic (2015) (under review)

17. Vujović, V., Maksimović, M., Perǐsić, B.: Sirius: A rapid development of DSM
graphical editor. In: 18th International Conference on Intelligent Engineering Sys-
tems (INES), pp. 233–238. IEEE (2014)

RESILIENT INTERFACE DESIGN FOR SAFETY-
CRITICAL EMBEDDED AUTOMOTIVE SOFTWARE

Harald Sporer, Georg Macher, Christian Kreiner and Eugen Brenner

Institute of Technical Informatics, Graz University of Technology, Graz, Austria
{sporer,georg.macher,christian.kreiner,brenner}@tugraz.at

http://www.iti.tugraz.at/

ABSTRACT
The replacement of the former, purely mechanical, functionality with mechatronics-based solutions, the
introduction of new propulsion technologies, and the connection of cars to their environment are just a
few reasons for the continuously increasing electrical and/or electronic system (E/E system) complexity in
modern passenger cars. Smart methodologies and techniques have been introduced in system
development to cope with these new challenges. A topic that is often neglected is the definition of the
interface between the hardware and software subsystems. However, during the development of safety-
critical E/E systems, according to the automotive functional safety standard ISO 26262, an unambiguous
definition of the hardware-software interface (HSI) has become vital. This paper presents a domain-
specific modelling approach for mechatronic systems with an integrated hardware-software interface
definition feature. The newly developed model-based domain-specific language is tailored to the needs of
mechatronic system engineers and supports the system’s architectural design including the interface
definition, with a special focus on safety-criticality.

KEYWORDS
Embedded Automotive Systems, Hardware-Software Interface, Model-Based Design, Domain-Specific
Modelling, Functional Safety

1. INTRODUCTION
Electrical and/or electronic systems (E/E systems) in the automotive domain have grown
increasingly complex over the past decades. New functionality, mainly realized through
embedded E/E systems, as well as the growing connectivity (Car2X-Communication), will keep
this trend alive in the upcoming years. Well-defined development processes are crucial for
managing this complexity and achieving high quality products. Wide-spread standards and
regulations, such as Automotive SPICE® and ISO 26262, provide guidance through the
development life cycle. Some of the key aspects of these concepts are full traceability and
consistency between the different development artifacts.

In the automotive industry, the E/E system architectural design models are usually created with
techniques based on the Unified Modeling Language (UML). Either the meta-model is extended,
or a profile is created to make it possible to use the UML-based approach in embedded
automotive system design. A wide-spread example of an UML2 profile is the Systems Modeling
Language (SysML), which reuses many of the original UML diagram types (State Machine
Diagram, Use Case Diagram, etc.), uses modified diagram types (Activity Diagram, Block
Definition Diagram, etc.), and adds new ones (Requirement Diagram, Parametric Diagram)
[1].

Even if the UML-based methodologies are valuable for projects with an emphasis on software,
they are sometimes too powerful for embedded automotive system design, due to the numerous
representation options. Particularly for domain experts who have no or limited knowledge of

software development, the large number of elements available for modelling, turns system
architectural design into an awkward task. However, it is not the intention of this work to decry
the SysML approaches created so far. They are a good choice for a multitude of tasks. Instead,
this paper showcases an extension of these SysML approaches, which makes the architectural
design process easier, placing a special focus on the specification of the hardware-software
interface for UML non-natives.

A model-based domain-specific language and domain-specific modelling (DSM) has been
developed for the specific needs of embedded automotive mechatronics systems. Additionally, a
software tool has been created to support the new modelling techniques. By linking
development artifacts such as requirements (e.g. technical system requirements, software
requirements, etc.), and verification criteria to the design model, the traceability mentioned
earlier is assured.

The main goal of this work is to contribute to the improvement of the existing system
architectural design methods by facilitating the specification of the hardware-software interface.
The approach presented has mainly been created for the development of embedded
mechatronics-based E/E systems in the automotive field. However, the techniques are also
suitable for other domains. Improvements have been made by extending the system modelling
approach presented in previous publication using HSI specification capabilities.

Section 2 presents an overview of related approaches, domain-specific modelling and integrated
tool chains. Section 3 provides a description of the proposed hardware-software interface
specification approach for the model-based system engineering. An application of the
methodology described is presented in Section 4. Finally, this work is concluded in Section 5,
which gives an overview of the presented work.

2. RELATED WORK
In recent years, a lot of effort has been made to improve the model-based automotive E/E
system design methods and techniques. Today, the advantages of a model-based approach are
clear and without controversy. Meseguer [2] grants much more reliability, reusability,
automatisation, and cost effectiveness to software that is developed with modelling languages.
However, model transformation within or across different languages is crucial to achieve all
these benefits.

Traceability and consistency between the development artifacts have always been important
topics. However, these properties have become even more important due to the increasing
number of electronic and electric-based functionalities. According to the international standard
ISO 26262 [3], released in 2011, traceability between the relevant artifacts is mandatory for
safety-critical systems. A description of the common deliverables relevant to automotive E/E
system development, and a corresponding process reference model is presented by the de facto
standard Automotive SPICE [4]. Neither the functional safety standard nor the process reference
model enforces a specific methodology for how the development artifacts have to be created or
linked to each other. However, connecting the various work products manually is a tedious and
error-prone task.

One of the early work products found in the engineering process is the system architectural
design. In the field of automotive E/E system development, a wide-spread and common
approach is to utilize a UML-based technique for this design, such as the UML2 profile SysML.
Andrianarison and Piques [5], Boldt [6], and many other publications (e.g. [7], [8], [9]) present
their SysML methodologies for system design. As stated by Broy et al. [10], the drawbacks of
the UML-based design are still the low degree of formalization, and the lack of technical

agreement regarding the proprietary model formats and interfaces. The numerous possibilities of
how to customize the UML diagrams and how to get a language for embedded system design,
are behind these drawbacks. Even if there is an agreement to utilize a common UML profile
such as SysML, there are plenty of design artifact variations. This scenario does not provide an
optimal base for the engineer who has to design the embedded automotive system from a
mechatronics point of view. Ideally, the tool should be intuitive and it should be possible to use
it easily without specific knowledge of UML.

Mernik et al. [11] describe a domain-specific language as a language that is tailored to the
specific application domain. This tailoring should lead to a substantial increase in
expressiveness and ease of use, compared to general-purpose languages. Even if expressiveness
is increased by the utilization of SysML-based modelling techniques, the ease of use for
embedded automotive mechatronics system design has not been improved.

Preschern et al. [12] claim that DSLs help to decrease system development costs by providing
developers with an effective way to construct systems for a specific domain. The benefit in
terms of a more effective development has to be greater than the investment needed to create or
establish a DSL at a company or in a department. In addition, the authors argue that the
mentioned DSL development cost will decrease significantly over the next few years, due to
new tools that support language creation such as the Eclipse-based Sirius1.

Vujovic et al. [13] present a model-driven engineering approach to creating domain-specific
modelling (DSM). Sirius is the framework used to develop a new DSM and the DSM graphical
modelling workbench. The big advantage of this tool is that the workbench for the DSM is
developed graphically. Therefore, knowledge about software development with Java, the
graphical editor framework (GEF) or the graphical modelling framework (GMF) is not needed.

Although it is obvious that an unambiguous specification of the various signals between the
items of an embedded automotive system design is vital, publications on embedded automotive
hardware-software interface definition are rare. This contribution aims to extend a model-based
development approach for an ISO 26262 aligned hardware-software interface definition
presented by the authors of [14]. More background on the origin of HSI characteristics is
presented and the model-based support is shifted from a classic SysML-based methodology to a
domain-specific modelling methodology for the E/E system architectural design of
mechatronics-based systems. The domain-specific modelling (DSM) language definition is
presented in [15].

3. APPROACH
The main goal of this contribution is to convey the importance of the hardware-software
interface for today's Embedded Automotive Systems and how it is supported by the approach
described. Moreover, the key driving factors for establishing a well-defined interface, which is
also suitable for safety-critical applications, will be shown within this section. Before describing
the HSI specification approach in detail, the utilized domain-specific model-based system
architectural design technique shall be introduced. This domain-specific modelling method has
been developed to outline mechatronics-based system architectures in the automotive sector and
therefore serves as a basis for the specification of the hardware-software interface found in our
approach.

3.1. Embedded Mechatronics System Domain-Specific Modelling

1 https://eclipse.org/sirius/

The key objective of domain-specific modelling is to provide a lean approach for engineers to
facilitate embedded automotive mechatronics system modelling on a high abstraction level. The
approach described focusses on the model-based structural description of the E/E system under
development. Additionally, the signals and interfaces are an essential part of modelling.

The existing SysML-based design method (see also [14]) is extended by the newly developed
Embedded Mechatronics System Domain-Specific Modeling (EMS-DMS) for automotive
embedded system architectural design. It is not intended to replace the SysML-based solution
created so far. Instead, the EMS-DSM is integrated into existing methods. Hence, the whole
tool-chain, starting from the SysML-based system architectural design tool and finishing at
software / hardware architectural design, can be utilized if desired. An overview of the tool
integration is shown in Figure 1.

Figure 1. Tool-Chain Integration of DSM and SysML Model Approach (based on [16])

The definition of the newly developed model-based domain-specific language is shown in
Figure 2. The EMS-DSM Component is the origin of all other classes regarding language
definition. The six attributes of this class are

 ID - unique identifier of the particular instance in the architectural design model, set
automatically.

 Name - name or short description of the particular instance, chosen by the design
engineer.

 Mask - graphical representation of the particular instance, set by the engineer
responsible for the design tool.

 Requirement - in this approach, a link to the Redmine requirements database is set by
the designer.

 Verification Criteria - similar to Requirement, a link to the Redmine verification criteria
artifact is set by the designer.

 Specification - link to further information about the actual component, e.g. a CAD
drawing or a data sheet.

The EMS-DSM Component serves as the base node of the EMS-DSM definition, and declares
the common attributes of the derived classes at the lower levels. Therefore, this component is
not instanced for the design process. At the next language definition level, the following
component classes are available:

 Mechanical Components - used by all mechanical, domain-specific components, e.g. the
Mechanical Pressure Regulator class in the use-case shown in Section 4.

 Compartment Components - gives the opportunity to specify areas or compartments,
where mechanical and hardware components are installed.

 E/E Item Components - an abstract component class definition, which serves as a basis
for the hardware and software components at the lower levels. Additionally, the
property ASIL, corresponding to the ISO 26262, is stated.

The majority of the non-abstract component classes are derived from the hardware component
class:

 Sensor Component - used for all domain-specific sensor components.

 Control Unit Component - used for all domain-specific control unit components.

 Actuator Component - used for all domain-specific actuator components.

 External Control Unit Component - special class, to make signals from an external
system available in the considered system.

All hardware components and their instances in the system design model, with the exception of
the External Control Unit Component, are capable of containing a software design model. This
means that any kind of software component instance is only allowed to be implemented in a
software design model which belongs to an instance of a hardware component. This special
language characteristic is defined by the Aggregation relationship between hardware and
software components, which also implies the hardware-software interface.

The last part of the EMS-DSM definition description is related to the classes (derived from the
software component):

 Basis Software Component - used for all low-level, hardware-dependent software
components.

 Application Software Component - used for all functional software components.

Figure 2. EMS-DSM Language Definition

As mentioned in Section 2, a more detailed description of the domain-specific modelling
language can be found in [15].

3.2. Influence of Process Reference Model on HSI Specification

Due to their broad dissemination in the automotive sector, the two most important reference
models are Automotive SPICE [4] and CMMI [17]. Both pursue similar targets: they (a)
determine the process capability/maturity, and (b) aspire a continuous process improvement in
the particular development team and/or company. The reference models do not exist in order to
specify how processes have to be implemented. Instead, desired process outcomes (Automotive
SPICE) or goals (CMMI) are defined and described in more detail by best practice
characterisation (base or generic practices at Automotive SPICE, and specific or generic
practices at CMMI). The Automotive S(oftware) P(rocess) I(mprovement) and C(apability)
(D)e(termination) reference model is based on the international standard ISO 15504 and is
primarily used in Europe, as well as in some parts of Eastern Asia. The latest version, which
was analysed for this approach, is 3.0 and was released in July 2015. The C(apability)
M(aturity) M(odel) I(ntegration) reference model has been developed by the Software
Engineering Institute (SEI) at Carnegie Mellon University. CMMIs currently exist for
Acquisition, Development, and Services. As CMMI is not widespread in the European
automotive sector, the remaining part of this section will focus on Automotive SPICE as the
relevant process assessment and reference model. The model does not address the demand for a
hardware-software interface directly, but some guidance on HSI specification can be extracted
from general interface topics.

Table 1 lists the elements of the Automotive SPICE reference model that provide information
about interfaces between system components. As expected, interface work products are needed
for Architectural Design and the Integration topics. In addition to the Process ID and the
Process Name, the corresponding Base Practice IDs are indicated. These give more detailed
information on what the outcome should look like. In SYS.3.BP3, the definition (identify,
develop, and document) of system element interfaces is stipulated. This equally applies to the
hardware-software interface. In SYS.3.BP4, a description of the dynamic behaviour of and
between the system elements is provided. The possible operating modes of the system, which
determine the dynamic behaviour, have to be taken into account in the HSI definition. Base

Practice SYS.4.BP3 postulates that the interfaces between system items have to be covered by
the system integration test to show consistency between the real interfaces and the architectural
design. With regard to the HSI, SWE.2.BP3 and SWE.2.BP4 can be interpreted in a similar way
to their system level counterparts (SYS.3.BP3, SYS.3.BP4). SWE.2.BP5 claims the
determination and documentation of the resource consumption objectives of all relevant
software architectural design elements. To support this using the hardware-software interface
definition, information on resource consumption shall be included in the description of the
signals, wherever applicable. An interface definition is also demanded at process SWE.3 -
Software Detailed Design and Unit Construction. However, in this case, the specification
belongs to the signals communicated between the components on the lowest (most detailed)
software level. Hence, this communication specification does not directly belong to the
hardware-software interface, and will not be taken into consideration in this approach. The last
process/base practice in Table 1 is SWE.5.BP3. It demands a description of the interaction
between relevant software units and their dynamic behaviour. Again, this base practice can be
interpreted in a similar way to its system level counterpart (SYS.4.BP3).

Table 1. HSI Accompanying Automotive SPICE Processes.

Process ID Process Name Base Practice ID
SYS.3 System Architectural Design BP3, BP4
SYS.4 System Integration and Integration Test BP3
SWE.2 Software Architectural Design BP3, BP4, BP5
SWE.5 Software Integration and Integration Test BP3

In the Automotive SPICE reference model, Output Work Products are also defined and linked to
the base practices previously stated. From this contribution’s point of view, the relevant work
products are:

 System Architectural Design - the main aspects to consider regarding the HSI are
memory/capacity requirements, hardware interface requirements, security/data
protection characteristics, system parameter settings, system components operation
modes, and the influence of the system’s and system component’s dynamic behaviour.

 Interface Requirement Specification - the main aspects to consider regarding the HSI
are definition of critical timing dependencies or sequence ordering and physical
interface definitions.

3.3. Influence of Automotive Functional Safety on HSI Specification

The international standard ISO 26262 for Functional Safety in the automotive electrical and/or
electronic system domain was released in 2011. Since then, many best practice articles and
books have been published on how to develop according to the standard. However, with the
exception of the safety-critical view, the hardware-software interface has rarely been
highlighted in these publications.

According to ISO 26262, the HSI is to be specified during the phase Product Development at
the System Level (see Figure 3), which is described in Part 4 of the standard. As a prerequisite
for specifying the hardware-software interface, a system design has to be established. While
preparing the system architectural design, the technical safety and non-safety requirements are
allocated to the hardware and software. Subsequent to this allocation, an initial interface
description can be prepared. The HSI shall be continuously refined in the ensuing hardware and
software product development phases, which are described in Parts 5 & 6 of the ISO 26262.

Figure 3. Development Phases According to [3]

The majority of information concerning how to specify the interface aligned to functional safety
can be found in Clause 7.4.6 of Part 4 of the standard. In our approach, most of the HSI
characteristics demanded by this clause, such as operation modes of the hardware device and
shared/exclusive use of the hardware resource, are described in the Detailed Hardware
Specification (DHS) documents, which are linked to the main HSI document. A detailed
description of the various development artifacts and their relationships is presented in
Subsection 3.4. Additionally, the informative Annex B of Part 4 of ISO 26262 provides
information concerning the possible content of the interface definition.

3.4. Incorporated Hardware-Software Interface Specification

Two main objectives have to be achieved when developing a new HSI specification approach:

1. identification, development and documentation of the essential HSI specification
attributes & characteristics, and

2. support for the linking of related information to ensure full traceability.

The principle of the hardware-software interface specification approach described here is based
on three origins, two of which have been described in the previous subsections:

a. the process reference and assessment model Automotive SPICE,

b. the automotive functional safety standard ISO 26262, and

c. the industrial experience of authors in past automotive E/E system development
projects.

It is important to note that the hardware-software interface specification does not only consist of
a single spreadsheet with a description of all signals between hardware and software. Further
information belonging to the HSI specification can also be found in various development
artifacts. Figure 4 shows the different aspects of our HSI specification approach:

 Hardware-Software Interface Signal List - spreadsheet with data of all signals between
hardware and software. The attributes describing each signal have been derived from
sources (a) - (c), which were mentioned at the beginning of this subsection.

 Resource Consumption Objectives - depending on the particular project, the objectives
are described in spreadsheet(s) and/or free text document(s). Regardless of the type, the
documents are linked to the software components in software architectural design (see
attribute Specification <<Link>> Software Component class in the EMS-DSM
language definition in Figure 2).

 Detailed Hardware Specification - depending on the particular project, the objectives
are described in spreadsheet(s) and/or free text document(s). Regardless of the type, the
documents are linked to the hardware components in system architectural design (see
attribute Specification <<Link>> Hardware Component class in the EMS-DSM
language definition in Figure 2).

 Model-based Architectural Design - this item represents the central source of
information. The defined domain-specific modelling language facilitates the creation of
the system and the software architectural design within the same design environment
and allows the linking of all other relevant development artifacts. From a HSI
specification perspective, the three previous items in this list are the most important
development artifacts to be linked to the architectural design models.

Figure 4. Distributed Hardware-Software Interface Specification

Establishing full traceability between the Resource Consumption Objectives, the Detailed
Hardware Specification, and the Model-based Architectural Design is an easy task,
accomplished by linking the related documents in the architectural design.

The integration of the Hardware-Software Interface Signal List data into the design model is
more technically challenging. In [14] the authors described the functionality of the HSI
Definition Exporter and Importer, which was developed to achieve a seamless transformation of
the HSI representation between the SysML-based architectural design and the spreadsheet tool.
The HSI Definition Exporter is an extension (dynamic link library) for the model-based
development (MBD) tool, which is written in C# and allows the modelled HSI to be exported to

a spreadsheet document (either in csv or xls format). The HSI Definition Importer is the
counterpart of the HSI Definition Exporter, which is also implemented as a dynamic link library
using the spreadsheet tool’s API. It allows the import of all HSI information from the
spreadsheet document or a selective update of the HSI model artifacts. Using both the export
and import functionality leads to a round-trip engineering capability regarding the HSI signal
list and the HSI signals modelled in the architectural design. In this approach, the libraries of the
exporter and importer extensions are slightly adapted to the needs of the domain-specific
modelling language.

To conclude the description of our approach, the HSI signal attributes and their origins are listed
in Table 2.

Table 2. HSI Signal List Attributes.

Attribute Comments Origin

Signal Direction
Input or Output, out of the
controllers view

Author’s Experience

Signal Description
A short signal description or the
signals name

ISO 26262-4 (Annex B)

Sensor / Actuator
Type or identifier of signals
source/sink

Author’s Experience

Supply Voltage - Author’s Experience
Physical Min Value - ASPICE SYS.4.BP3
Physical Max Value - ASPICE SYS.4.BP3
Accuracy In % of range of values ISO 26262-4 (Annex B)

Physical Unit E.g. V, A, ...
ISO 26262-4 (Annex B)
ASPICE SYS.4.BP3

HW Interface Type
E.g. Digital In, Analog Out, CAN,
...

ISO 26262-4 (Annex B)
ASPICE WP 17-08

HW Pin #
Pin number or identifier at e.g.
ECU

ISO 26262-4 (Annex B)

Message ID
In case of bus communication Author’s Experience

Start Bit

Internal Cycle Time E.g. 10 ms
ISO 26262-4 (Section 7.4.6)
ASPICE SYS.4.BP3,
SWE.5.BP3, WP 17-08

External Cycle Time Only applicable for digital signals Author’s Experience
HW Timer / Interrupt /
Watchdog

Identifier of triggered e.g.
interrupt

ISO 26262-4 (Section 7.4.6)

Operating Modes
Information if signal is needed
special operating modes (e.g. start
up, calibration, ...)

ISO 26262-4 (Annex B)
ASPICE SYS.3.BP4,
SWE.2.BP4, WP 04-06

HW Diagnostic
Feature

E.g. short circuit detection, ... ISO 26262-4 (Section 7.4.6)

Memory Type E.g. RAM, EEPROM, ... ISO 26262-4 (Annex B)
Security/Data
Protection

Information on special security
issues

ASPICE WP 04-06

Critical Timing
Dependencies or
Sequence Ordering

- ASPICE WP 17-08

Signal Name @ SW
Identifier of signal as used in
application software

Author’s Experience

Initial Value - Author’s Experience
Data Type E.g. UInt16, Float, ... ASPICE SYS.4.BP3, SWE.5.BP3
Scaling LSB Scaling information in case of

fixed-point arithmetic
ASPICE SYS.4.BP3, SWE.5.BP3

Scaling Offset
Min Value @ SW - ASPICE SWE.5.BP3
Max Value @ SW - ASPICE SWE.5.BP3
Accuracy @ SW In % of range of values ISO 26262-4 (Annex B)
Physical Unit @ SW E.g. km/h, Nm, ... ASPICE SWE.5.BP3

Default Value @ SW
Default value in case of an invalid
input signal

Author’s Experience

Detection Time Time until a fault is diagnosed ISO 26262-4 (Section 7.4.6)

Reaction Time
Admissible reaction time after a
fault was detected

ISO 26262-4 (Section 7.4.6)

ASIL
Automotive Safety Integrity Level
classified A - D, or QM if no
safety-relevance is given

ISO 26262-4 (Annex B)

Signal ID Identifiers required for the support
of the domain-specific modelling
approach

Author’s Experience
HW Device ID

4. APPLICATION
In this section, the HSI specification approach is applied to the development of an automotive
fuel tank system for compressed natural gas (CNG). For an appropriate scale of the showcase,
only a small part of the real-world system is utilized. The application should be seen as
illustrative material, reduced for internal training purposes for students. Therefore, the disclosed
and commercially non-sensitivity use-case is not intended to be exhaustive or representative of
leading-edge technology. Before the showcase is illustrated, tool support regarding both
domain-specific modelling and requirements management shall be explained briefly.

4.1. EMS-DSM Language Tool Support

Generally speaking, the EMS-DSM language can be supported by various tools, but at the time
when the research project was initiated, the highest possible flexibility was desired, as was full
access to the tool’s source code. To avoid developing an application from scratch, the open
source project WPF Diagram Designer (see [18]) was chosen as a basis for tool development.
The corresponding documentation has about 540,000 views and the source code has been
downloaded more than 24,000 times. Therefore, the source, which provides standard
functionality such as file handling and basic graphical modelling, is well reviewed. The source
code is written in C# and provides good expandability. New functionalities have been
implemented for the diagram designer, named EASy-Design (Embedded Automotive System-
Design), to facilitate engineering with EMS-DSM models. However, EASy-Design is just one
possibility for EMS-DSM tool support. The methodology and its C# implementation can be
ported to e.g. Enterprise Architect2 by the provided Add-in mechanism. Another alternative is
the Eclipse3 framework, or rather the Eclipse-based project Sirius, which enables the creation of
a graphical modelling workbench, by facilitating the Eclipse modelling technologies without
writing code.

4.2. Project and Requirements – Management Tool Support

2 http://www.sparxsystems.com/
3 http://eclipse.org/

The web-based open source application Redmine4 is used for topics such as project management
and requirements management in this approach. Owing to its high flexibility through
configuration, new trackers have been added for development according to the de facto standard
Automotive SPICE [4]. The process reference model already mentioned in Section 3 defines
three different types of requirements of the engineering process group: Customer Requirements,
System Requirements, and Software Requirements. The hardware focus is missing from the
embedded E/E system view. Additionally, requirements and design items for mechanical
components have to be introduced for the design of an embedded mechatronics-based E/E
system. Similar to the Automotive SPICE methodology on a system and software level,
engineering processes have been defined for these missing artifacts. To sum up, the available
requirement and test case types for this approach are: Customer Req, System Req, System TC,
System Integration TC, Software Req, Software TC, Software Integration TC, Hardware Req,
Hardware TC, Mechanics Req, and Mechanics TC.

The test case and requirement items are connected to each other by their unique identifier. For a
safety-critical development according to ISO 26262, additional issue types such as Functional
Safety Requirements have been added. By reconfiguring the project management tool Redmine,
all requirement types mentioned have been implemented.

4.3. CNG Tank System Showcase

Figure 5 illustrates the EMS-DSM tool EASy-Design with the system architectural design model
of the simplified showcase. The CNG fuel tank system consists of seven mechanical
components, which are blue coloured (Tank Cylinder, Filter, etc.) The medium flow between
mechanical components, which is CNG in this case, is displayed by blue lines with an arrow at
the end. Furthermore, five hardware components are placed at the system design model level,
which are yellow coloured (In-Tank Temperature Sensor, Tank ECU, etc.) The signal flow
between the components is displayed using yellow lines ending with an arrow. A
communication bus is inserted between the Control Unit and the External Control Unit
component, shown by the double compound line type and arrows at both ends.

By selecting a model element and clicking the button Link Requirements, the elements
requirements dialogue is opened and a link between the selected element and an item from the
requirements database (e.g. System Requirement, see Subsection 4.2) can be established.
Already linked requirements from Redmine’s MySQL database are listed with their ID, Type,
Title, ASIL, and Core functionality attribute. With a click on Link Specifications, various
documents, such as detailed hardware specifications and datasheets, can be linked to the
selected model element.

The Hardware-Software Interface Specification emphasis of this contribution is also supported
by EASy-Design. Again, a hardware element of the model has to be selected and can be defined
with a subsequent click on the button Edit Hardware-Software Interface in the Element
Properties group, the interface of the selected hardware item. In Figure 5, the Tank ECU has
been selected and in Figure 6, the newly opened HSI definition dialogue for the Tank ECU is
illustrated. Within this dialogue, all operations needed to add, modify or delete signals can be
triggered by clicking the relevant button:

 Add New Signal - a new dialogue window is opened and a signal can be created by
entering the properties described in Table 2 (see Figure 7).

 Add Connected Signal - the hardware elements in the architectural system design can be
connected by (yellow) lines as described in Subsection 4.1. Every output signal from
any connected hardware element can be added as an input signal in the HSI signal
definition in the actual hardware element.

4 http://www.redmine.org/

 Modify Signal - at the HSI signal definition main dialogue (illustrated in Figure 6), a
signal has to be selected, for which the modification dialogue will be opened after a
click on Modify Signal. The signal modification dialogue is similar to the Add New
Signal dialogue.

 Import Signal(s) - the HSI Definition Importer, as described in Subsection 3.4, is
selected, and signals from a HSI signal definition stored in spreadsheet format can be
added to the system architectural design model.

 Export Signal(s) - the HSI Definition Exporter, as described in Subsection 3.4, is
selected and signals from the HSI signal definition in the system architectural design
model can be exported to a HSI signal definition in spreadsheet format.

 Delete Signal(s) - the signals have to be selected from the main HSI signal definition
dialogue and are removed from the interface when the button is clicked.

Figure 5. Self-developed tool EASy Design with a Simplified CNG Tank System Architectural
Design

Figure 6. Hardware-Software Interface Dialog at EASy Design

Figure 7. Hardware-Software Interface Add New Signal Dialog at EASy Design

As can be seen in Figure 5, no Software Components are modelled at this level (System Design
Model). With a double-click on a Hardware Component (e.g. Tank ECU), the next modelling
level is opened (named E/E Item Design Level). The (green coloured) Basis Software
Components and Application Software Components can be placed here. At each basis software
component, the input and output signals from the HSI definition in the particular hardware
component can be used and therefore connected to the software.

5. CONCLUSION
Previous sections described the factors influencing the development of our hardware-software
interface specification approach as well as the supporting tools. A domain-specific modelling
method for the design of embedded automotive mechatronics-based E/E systems formed the
basis for this work. This approach has the potential to bring together the different engineering
disciplines involved in E/E system development by facilitating the HSI specification process.
Additionally, many artifacts such as requirements, verification criteria, and various
specifications can be linked to the models, created with the new, domain-specific modelling
language. With the help of the linked artifacts, vital traceability can be established. Depending

on the respective tool chain and the organisation’s process landscape, the EMS-DSM models
can also facilitate a single point of truth strategy.

First use case implementations show promising results. However, there are several features that
still need to be implemented. Options for describing the system’s behaviour, e.g. a kind of task
scheduling definition, are to be introduced. Furthermore, the Model-to-Model-Transformer
between the domain-specific and traditional SysML system architectural design model has to be
extended to achieve an automatic transformation of the HSI signal definition between the
different modelling strategies.

REFERENCES
[1] S. Friedenthal, A. Moore, and R. Steiner, “OMG Systems Modeling Language (OMG

SysMLTM) Tutorial,” in INCOSE International Symposium, 2006.

[2] J. Meseguer, “Why Formal Modeling Language Semantics Matters,” in Model-Driven
Engineering Languages and Systems, ser. Lecture Notes in Computer Science, J. Dingel, W.
Schulte, I. Ramos, S. A. ao, and E. Insfran, Eds., vol. 17th International Conference, MODELS
2014, Valencia, Spain, no. 8767. Springer International Publishing Switzerland, 2014, keynote.

[3] “ISO 26262, Road vehicles - Functional safety,” International Organization for Standardization,
Geneva, CH, International Standard, November 2011.

[4] VDA QMC Working Group 13 / Automotive SIG, “Automotive SPICE Process Assessment /
Reference Model,” Tech. Rep. Revision ID: 470, July 2015, version 3.0.

[5] E. Andrianarison and J.-D. Piques, “SysML for embedded automotive Systems: a practical
approach,” in Conference on Embedded Real Time Software and Systems. IEEE, 2010.

[6] R. Boldt, “Modeling AUTOSAR systems with a UML/SysML profile,” IBM Software Group,
Tech. Rep., July 2009.

[7] H. Giese, S. Hildebrandt, and S. Neumann, “Model Synchronization at Work: Keeping SysML
and AUTOSAR Models Consistent,” LNCS 5765, pp. 555 –579, 2010.

[8] R. Kawahara, H. Nakamura, D. Dotan, A. Kirshin, T. Sakairi, S. Hirose, K. Ono, and H.
Ishikawa, “Verification of embedded system’s specification using collaborative simulation of
SysML and simulink models,” in International Conference on Model Based Systems
Engineering (MBSE’09). IEEE, 2009, pp. 21–28.

[9] J. Meyer, “Eine durchgängige modellbasierte Entwicklungsmethodik für die automobile
Steuergeräteentwicklung unter Einbeziehung des AUTOSAR Standards,” Ph.D. dissertation,
Universität Paderborn, Fakultät für Elektrotechnik, Informatik und Mathematik, Paderborn,
Germany, July 2014.

[10] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, and D. Ratiu, “Seamless Model-Based
Development: From Isolated Tools to Integrated Model Engineering Environments,”
Proceedings of the IEEE, vol. 98, no. 4, pp. 526–545, 2010.

[11] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop domain-specific
languages,” ACM computing surveys (CSUR), vol. 37, no. 4, pp. 316–344, 2005.

[12] C. Preschern, N. Kajtazovic, and C. Kreiner, “Efficient development and reuse of domain-
specific languages for automation systems,” International Journal of Metadata, Semantics and
Ontologies, vol. 9, no. 3, pp. 215–226, 2014.

[13] V. Vujovic, M. Maksimovic, and B. Perisic, “Sirius: A rapid development of DSM graphical
editor,” in 18th International Conference on Intelligent Engineering Systems (INES). IEEE,
2014, pp. 233–238.

[14] G. Macher, H. Sporer, E. Armengaud, E. Brenner, and C. Kreiner, “Using Model-based
Development for ISO26262 aligned HSI Definition,” in Critical Automotive applications:
Robustness & Safety, ser. CARS@EDCC2015, Paris, France, 2015.

[15] H. Sporer, “A Model-Based Domain-Specific Language Approach for the Automotive E/E-
System Design,” in International Conference on Research in Adaptive and Convergent Systems
(RACS 2015), ser. RACS ’15, Prague, Czech Republic, 2015.

[16] G. Macher, E. Armengaud, and C. Kreiner, “Bridging Automotive Systems, Safety and Software
Engineering by a Seamless Tool Chain,” in 7th European Congress Embedded Real Time
Software and Systems Proceedings, 2014, pp. 256–263.

[17] Software Engineering Institute, “CMMI for Development, Version 1.3,” SEI, Carnegie Mellon,
Tech. Rep. CMU/SEI-2010-TR-033, ESCTR-2010-033, November 2010.

[18] Code Project, “WPF Diagram Designer - Part 4,” Online Resource, March 2008,
http://www.codeproject.com/Articles/24681/WPFDiagram-Designer-Part, accessed Mar 2015.

Authors

Harald Sporer received a MSc. degree in
Telematics from Graz University of
Technology. He worked as software
development engineer on Hardware-in-
the-Loop (HIL) systems at AVL List
GmbH and as functional software
developer for embedded automotive
systems at Magna Powertrain AG &
Co KG. Currently he is working on his
PhD at the Institute of Technical
Informatics at Graz University of
Technology. Parallel to his PhD thesis
he is also active in the field of
embedded automotive system design,
engineering process improvement, and
functional safety engineering.

Georg Macher received a MSc. degree in
Telematics and worked as software
development engineer on prototype
vehicles at AVL List GmbH. Currently
he joined the R&D department of

AVL's powertrain engineering branch
and is working on his PhD at Institute
for Technical Informatics at Graz
University of Technology. Parallel to
his PhD thesis is also active in the field
of system, software, and functional
safety engineering.

Dr. Christian Kreiner graduated and received
a PhD degree in Electrical Engineering
from Graz University of Technology in
1991 and 1999 respectively. 1999-2007
he served as head of the R&D
department at Salomon Automation,
Austria, focusing on software
architecture, technologies, and
processes for logistics software
systems. He was in charge to establish
a company-wide software product line
development process and headed the
product development team. During that
time, he led and coordinated a long-
term research programme together with
the Institute for Technical Informatics
of Graz University of Technology.
There, he currently leads the Industrial
Informatics and Model-based
Architectures group. His research
interests include systems and software

engineering, software technology, and
process improvement.

Prof. Dr. Eugen Brenner is Associate
Professor at the Institute for Technical
Informatics of the Graz University of
Technology. He completed his master
in Electrical Engineering 1983 in Graz.
His PhD in Control Theory was
finished 1987 also in Graz, dealing
with optimal control in systems with
limited actuating variables. He joined
the institute in 1987, being the first
scientific staff member. His post-
doctoral lecture qualification in
Process Automation was achieved in
1996.He has been member of the
senate, of the curricula commission for
Bachelor and Master-Programs, and
Dean of Studies for Telematics. He
currently is head of the Study
Commission and Vice-Dean of Studies
for Telematics. Eugen Brenner's
primary research interests developed
from FPGA-based hardware extension
to parallel systems, real-time systems
and process control systems. The most
recent focus targeting embedded
systems is on modelling, software-
development, systems engineering and
systems security, including agile
programming methods and smart
service engineering.

A Model-to-Model Transformation Approach at
Mechatronics-Based E/E-System Design

Harald Sporer, Georg Macher, Christian Kreiner, and Eugen Brenner
Institute of Technical Informatics

Graz University of Technology
Inffeldgasse 16/1, 8010 Graz, Austria

Email: {sporer, georg.macher, christian.kreiner, brenner}@tugraz.at

1. Introduction
High quality standards along the whole E/E-System

development are crucial to cope with the growing complexity
at modern passenger cars in the upcoming years.To achieve
this, methods and techniques from concepts like Automotive
SPICE [1] are strongly recommended. Some of the key
aspects of these concepts are bilateral traceability, as well
as consistency between the different development artefacts,
like the designs at the various abstraction levels.

In the automotive industry, the E/E-System design mod-
els are usually created with techniques based on the Unified
Modeling Language (UML). To enable this de facto standard
for the embedded automotive system design, either the meta-
model is extended or a profile is created. A wide-spread ex-
ample of an UML2 profile is the Systems Modeling Language
(SysML).

As a finding of recent E/E-System development projects
in the automotive field, the authors recognized that in some
scenarios a SysML approach is not the best suitable one,
for creating a system design. This may be the case, if a
system design with focus on mechanical components should
be created, or if an automotive domain expert with limited
skills in SysML modeling is supposed to prepare a rough
architectural design. To improve the development process in
such scenarios, a domain specific modeling (DSM) language
for embedded mechatronics-based automotive systems was
defined.

In this paper a methodology is presented that incorpo-
rates the DSM and the SysML system design environment.
By the implementation of the model-to-model transformation
adapter, the advantages of both techniques can be combined.

2. Related Work
In recent years, a lot of effort has been made to improve

the automotive model-based E/E-System design methods and
techniques. Traceability, as well as consistency, between the
development artefacts has always been an important topic. If
it comes to safety-critical functionalities, traceability between
the relevant artefacts is mandatory, according to the 2011
released international standard ISO 26262 [2]. Moreover,
here the benefits of a model-based development compared
to a code-based development are described.

The common deliverables along an automotive E/E-
System development, and a corresponding process reference

model are presented by the de facto standard Automotive
SPICE [1]. Neither the functional safety standard nor the
process reference model enforces a specific methodology,
how the development artefacts have to be linked to each
other. However, connecting the various work products man-
ually is a tedious and error-prone task, and has to be done in
an automatic manner. Therefore an adequate seamless tool
support, like presented by the authors in [3], [4], and [5],
is needed. As in other contributions in this field (e.g. [6]),
SysML is utilized for the system architectural design.

To agree with Broy et al. [7], the drawbacks of the UML-
based design are still the low degree of formalization, and
the lack of technical agreement regarding the proprietary
model formats and interfaces. The numerous possibilities of
how to customize the UML diagrams, to get a language for
embedded system design, drive these drawbacks.

According to Mernik et al. [8], a domain specific lan-
guage (DSL) gains the expressiveness and ease of use, com-
pared to general-purpose languages. To achieve this enhance-
ments in the field of embedded automotive mechatronics-
based system designs, the authors defined a domain specific
modeling language, which is presented in [9].

3. Approach

The goal of this work is to transfer the relevant informa-
tion from the embedded mechatronics system model (DSM
representation) to the SysML model in a fully automatic
manner, as outlined in Figure 1. The whole DSM model
data is stored in an extensible markup language (XML) file.
Therefore, not only the various components like Control Unit
and Application Software Unit are retained, also the interface
signals between the model elements are available by parsing
the particular file. For creating the SysML system design
model, the wide-spread software tool Enterprise Architect1

(EA) is used for this approach. The model data are stored in
a proprietary repository object and can be accessed through
the Enterprise Architects Automation Interface.

The adapter’s functionality is integrated into the DSM
development environment EASy Design. The routines are
implemented in C# and can be ported to other software
tools easily. By utilizing the EA interfaces dynamic library,
the class Repository is available and provides the necessary

1. http://sparxsystems.com.au/

methods and properties in order to gain full access to the
new SysML model.

Due to the definition of the domain specific language,
an arbitrary number of control units can be implemented
in the system model. Therefore, the DSM model can also
depict system of systems (SoS) instead of a single system.
The approach at the adapters first version is to transform
only one (sub)system per generation cycle. By selecting the
particular control unit and executing the command Generate
SysML Model, the transformation process is enabled for the
respective system.

Once the transformation process is triggered, the DSM
model at EASy Design is analysed and the relevant elements
are created in the new SysML model:

• Usually, the SysML model consists of different
abstraction levels like Vehicle, System, etc. There-
fore, the engineer executing the transformation is
prompted for selecting the proper category for the
new model.

• For each signal at the selected control units interface,
an object of the class ConnectorPin is created and
added to the HSI Structure view at the SysML
model. If this hardware signal is connected to a Basis
Software Component at the DSM model, an object
of type DataSignal is added at the HSI Structure
view and linked to the corresponding ConnectorPin
instance.

• All software items from the DSM model (Basis
Software Components & Application Software Com-
ponents), which belong to the selected control unit
component, are created at the SysML SW Compo-
nents view as objects of type AUTOSARComponent.

• According to the Timing property of the DSM model
software component, an AUTOSARComponent with
trigger characteristic is connected to the software
module at the SysML model.

• All signals between the software components at the
DSM model, are created as objects of type AU-
TOSARPort at the particular module and linked by
AUTOSARConnector items.

With the steps described above, the DSM model is
transformed into the SysML representation. Of course, nu-
merous properties, like Name, ASIL, and Data Type, are set
automatically while creating the SysML objects. However,
to describe the transformation of each property would go
beyond the scope of this paper.

4. Conclusions

The described model-to-model transformation approach
combines the advantages of the lean domain specific mod-
eling technique, which is best suitable for a rough system
design by automotive domain experts with limited SysML
skills, and the established SysML system modeling method-
ology. Although the adapter is currently in a first trial
phase for industrial project applicability, evidences of the
approaches benefits are already present. Moreover, important
topics for future work, like the transformation of the SysML

Figure 1. Incorporation of DSM & SysML design

model into the DSM representation (also for consistency
check features), and the transformation of a system of
systems model in one step, have been identified.

References

[1] Automotive SIG, “Automotive SPICE R©Process Assess-
ment Model,” The SPICE User Group, Tech. Rep., May
2010, version 2.5.

[2] “ISO 26262, Road vehicles - Functional safety,” Inter-
national Organization for Standardization, Geneva, CH,
International Standard, November 2011.

[3] G. Macher, E. Armengaud, and C. Kreiner, “Automated
Generation of AUTOSAR Description File for Safety-
Critical Software Architectures,” in 12. Workshop Auto-
motive Software Engineering (ASE), ser. Lecture Notes in
Informatics, 2014, pp. 2145–2156.

[4] G. Macher, H. Sporer, E. Armengaud, and C. Kreiner,
“A Versatile Approach for ISO26262 compliant Hardware-
Software Interface Definition with Model-based Develop-
ment,” in SAE Technical Paper. SAE International, 2015.

[5] G. Macher, M. Atas, E. Armengaud, and C. Kreiner, “Au-
tomotive Real-time Operating Systems: A Model-Based
Configuration Approach,” in ACM SIGBED Review Special
Interest Group on Embedded Systems, ser. CEUR Work-
shop Proceedings, vol. 1291, 2014.

[6] R. Boldt, “Modeling AUTOSAR systems with a
UML/SysML profile,” IBM Software Group, Tech.
Rep., July 2009.

[7] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda,
and D. Ratiu, “Seamless model-based development: From
isolated tools to integrated model engineering environ-
ments,” Proceedings of the IEEE, vol. 98, no. 4, pp. 526–
545, 2010.

[8] M. Mernik, J. Heering, and A. M. Sloane, “When and how
to develop domain-specific languages,” ACM computing
surveys (CSUR), vol. 37, no. 4, pp. 316–344, 2005.

[9] H. Sporer, G. Macher, C. Kreiner, and E. Brenner, “A
Model-Based Domain-Specific Language Approach for the
Automotive E/E-System Design,” in International Confer-
ence on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2015, under review.

Incorporation of Model-based System and Software Development Environments

Harald Sporer∗, Georg Macher∗†, Eric Armengaud† and Christian Kreiner∗

∗Institute of Technical Informatics, Graz University of Technology, AUSTRIA
Email: {sporer, georg.macher, christian.kreiner}@tugraz.at

†AVL List GmbH, Graz, AUSTRIA
Email: {georg.macher, eric.armengaud}@avl.com

Abstract—Development of dependable embedded automotive
systems faces many challenges arising from increasing com-
plexity, criticality, and demand of certifiability. Efficient and
consistent development models along the entire development
life cycle needs to be ensured. So far, existing solutions are
still frequently insufficient when transforming system models
with higher level of abstraction to more concrete engineer-
ing models (such as software engineering models). De facto
industry standards aims to standardize frameworks and to
facilitate the exchange of information. However, refinement of
system designs into hardware and software implementations
is still a tedious task. The aim of this work is to enhance
an automotive model-driven system engineering framework
with software architecture design capabilities and a model
transformation framework to enable a seamless description of
safety-critical systems, from requirements at the system level
down to software component implementation in a bidirectional
way.

Keywords-ISO 26262, automotive, Model-based development,
real-time systems, reuse, traceability, model-based software
engineering.

I. INTRODUCTION

The trend of replacing traditional mechanical systems
with modern embedded systems enables the deployment of
more advanced control strategies, which provide additional
benefits for the customer and environment, but at the same
time the higher degree of integration and criticality of
the control application raise new challenges. To handle
upcoming issues with modern real-time systems, also in re-
lation to ISO 26262, model-based development is utilized to
support the description of the system under development in a
more structured way. Model-based development approaches
enable different views for different stakeholders, different
levels of abstraction, and central storage of information. This
improves the consistency, correctness, and completeness of
the system specification and thus supports the demands
of time-to-market. Nevertheless, such seamless integrations
of model-based development are rather exception than the
rule and often fall short due to the lack of integration of
conceptual and tooling levels [2].

The aim of this paper is to bridge the existing gap
between model-driven system engineering tools and software
engineering tools. More specifically, the approach is based
on the enhancement of an model-driven system-engineering

framework with software-architecture design capabilities.
Furthermore, a model transformation framework enables a
seamless description of safety-critical software, from re-
quirements at the system level down to software compo-
nent implementation, in a bidirectional way. The model
transformation framework automatically generates software
architectures in Matlab/Simulink R©, described via high level
control system models in SysML format. The main goals of
this contribution are: (a) to support a consistent and trace-
able refinement from the early concept phase to software
implementation, and (b) to establish the bidirectional update
function of the transformation framework, gaining mutual
benefits for basic software and application software devel-
opment from the coexistence of both information within the
central database.

II. RELATED WORKS

Broy et al. [2] mention concepts and theories for model-
based development of embedded software systems. The au-
thors also claim model-based development the best approach
to manage the large amount of information and complexity
of modern embedded systems with safety constraints. The
paper illustrates why seamless solutions have not been
achieved so far, they mention commonly used solutions, and
arising problems by using an inadequate tool chain (e.g.
redundancy, inconsistency and lack of automation).

Holtmann et al. [5] claim the lack of automation for
those linking tasks and missing guidance, which model
should to be used at which specific development stage,
as crucial drawback of model-driven development (MDD).
The very specific and non-interacting tools requiring manual
synchronization, are often inconsistent or rely on redundant
information.

An issue is also addressed by Giese et al. [4]. System
design models have to be correctly transferred to the soft-
ware engineering model, and later changes must be kept
consistent. The authors propose a model synchronization
approach consisting of tool adapters between SysML models
and software engineering models in AUTOSAR representa-
tion. A drawback of this approach, each transformation step
implies potential sources for ambiguous mapping and model
mismatching.

2015 41st Euromicro Conference on Software Engineering and Advanced Applications

978-1-4673-7585-6/15 $31.00 © 2015 IEEE

DOI 10.1109/SEAA.2015.65

177

Kawahara et al. [7] propose an extension of SysML which
enables description of continuous time behaviour. Their tool
integration is based on Eclipse and couples SysML and
Matlab/Simulink via API.

An automotive tool-chain for AUTOSAR is also presented
by Voget [12]. The work focuses on ARTOP, a common
platform for innovations which provides common base func-
tionality for development of AUTOSAR compliant tools.
Unfortunately the Eclipse based ARTOP platform serving
only as a common base for AUTOSAR tool development, is
not a tool solution, and also requires time-consuming initial
training to even get started to develop a desired tool.

The approach of bridging the gap between model-based
system engineering and software engineering models based
on EAST-ADL2 architecture description language and a
complementary AUTOSAR representation is also very com-
mon in the automotive software development domain [3],
[9], [11]. EAST-ADL represents an architecture description
language using AUTOSAR elements to represent the soft-
ware implementation layer of embedded systems [1]. More
recently the MAENAD Project1 is also focusing on this
approach.

Tool support for automotive engineering development
is still organized as a patchwork of heterogeneous tools
and formalisms [1]. On the one hand, general-purpose
modeling languages (such as UML or SysML) provide
modeling power suitable to capture system wide constraints
and behaviour, but lack in synthesizability. On the other
hand, special-purpose modeling environments (such as Mat-
lab/Simulink and ASCET) are optimized for fine granular
design and being less efficient in high-level design.

The approach presented in this work and the work of
Mader et al. [9] base on similar concepts, but in contrast
to their work, our contribution support automatic generation
of whole software architectures, interface definition, timing
setting, and auto-routing of signals in addition to their auto-
matic generation of a software model. For a more detailed
overview of the whole tool chain orchestration see [8].

III. MODEL-TRANSFORMATION APPROACH BRIDGE

The basic concept behind this work is to have a consistent
information repository as central source of information, to
store all information of all involved engineering disciplines
of embedded automotive system development in a structured
way. The concept focus on allowing different engineers to
do their job in their specific manner, but providing traces
and dependency analysis of features concerning the overall
system, e.g. safety, security, or dependability. Furthermore,
the proposed approach is intended as an affordable, versa-
tile, and tool independent method. This makes the method
especially attractive for small and micro-sized companies or
small projects with limited resources.

The proposed contribution is part of the framework pre-
sented in [8], towards software development in the automo-

1http://maenad.eu/

TOOL-BRIDGETOOL-

SYSTEM REQUIREMENTS

SAFETY REQUIREMENTS

SYSTEM ARCHITECTURE

HW ARCHITECTURESW ARCHITECTURE

SYSTEM MODELING TOOL

SYSTEM DEVELOPMENT SOFTWARE DEVELOPMENT

SYSTEM ARCHITECTURE

HHHHWWWW AAAARRRRCCCCHHHHIIIITTTTEEEECCCCTTTTUUUURRRREEEESSSSWWWW AAAARRRRCCCCHHHHIIIITTTTEEEECCCCTTTTUUUURRRREEEE

MODEL ADDON
C# CLASS LIBRARY (DLL)

MATLAB / SIMULINK

SOURCE CODE

Figure 1. Portrayal of the Bridging Approach Transferring System
Development Artefacts to SW Development Phase

tive context. More specifically, our contribution consists of
the following parts:

• UML software modeling framework: Enhancement of
an UML profile for the definition of software devel-
opment artefacts, more precisely, for the definition of
the components interfaces and SW architecture compo-
sition. Required for consistent SW system description,
see Figure 1 – model addon.

• SW architecture exporter: Exporter to generate the
designed SW architecture in the third party tool Mat-
lab/Simulink for further detailed development, see Fig-
ure 1 – tool bridge.

• SW architecture importer: Importer to integrate refined
SW architecture and interfaces from the software devel-
opment tool (e.g. as a result of round-trip engineering),
see Figure 1 – tool bridge.

This approach closes the gap, also mentioned by Giese et
al. [4], Holtmann et al. [5], and Sandmann and Seibt [10],
between system-level development at abstract UML-like rep-
resentations and software-level development modeling tools
(e.g. Matlab/Simulink). The bridging supports consistency of
information transfer between system engineering tools and
software engineering tools and minimizes redundant manual
information exchange between these tools. This contributes
to simplify seamless safety argumentation according to
ISO 26262 [6] for the developed system. Benefits of this
development approach are highly noticeable in terms of re-
engineering cycles, tool changes, and reworking of devel-
opment artefacts with alternating dependencies. As can be
seen in Figure 1, the lack of supporting tools for information
transfer between system development tools and software
development tools can be dispelled by our approach. The
implementation of the bridge, based on versatile C# class
libraries (dll) and Matlab COM Automation Server, ensures
tool independence of the general-purpose UML modeling
tool (such as Enterprise Architect or Artisan Studio) and
version independence of Matlab/Simulink through API com-
mand implementation.

178

The first part of the approach is the development of
a specific UML modeling framework within a state-of-
the-art system development tool (in this case Enterprise
Architect). This EA profile makes the UML representa-
tion more manageable for the needs of the design of an
automotive software architecture by taking advantage of
an AUTOSAR aligned abstraction layer. Furthermore, the
profile enables an explicit definition of components, com-
ponent interfaces, and connections between interfaces. This
provides the possibility to define software architecture and
ensures proper definition of the communication between
the architecture artefacts, including interface specifications.
Hence, the SW architecture representation within EA can
be linked to system development artefacts, and traces to
requirements can be easily established. This further benefits
in terms of constraints checking, traceability of development
decisions (e.g. for safety case generation), and reuse.

The second part of the approach is an software architec-
ture exporter, which is able to export the SW architectural
design, component containers, and their interconnections
specified in SysML, to the software development tool Mat-
lab/Simulink. The implementation of the exporter is based
on Matlab COM Automation Server and generates models
through API command implementation. Per user input, the
software architecture representation to be transferred is
selected and a background task generates a corresponding
Matlab/Simulink model. Each model artefact, parameter, and
connection is transferred to Matlab/Simulink, blocks are
arranged and sized in correct manner, and also unique links
to the EA representation and assigned safety-criticality of
the artefact are established.

The last part of the approach is the software architecture
import functionality add-on for the system development
tool. This functionality, in combination with the export
function, enables bidirectional update of software archi-
tecture representation in the system development tool and
the software modules in Matlab/Simulink. The importer
identifies the unique links to the EA representation and
thereby differentiate new and modified model artefacts.

Triggered via user input, an user interface within the sys-
tem development tool depicts modifications between the two
representations (classified as added, deleted, or updated),
and enables selective update of the UML based software
architecture representation.

On the one hand, this ensures consistency between system
development artefacts and changes done in the software de-
velopment tool. On the other hand, the import functionality
enables reuse of available software modules, guarantees con-
sistency of information across tool boundaries, and shares
information more precisely and less ambiguously.

IV. APPLICATION OF THE PROPOSED APPROACH

This section illustrates the utilization of the framework by
applying the methodology to the 3-layer monitoring concept
[13]. This use-case is an illustrative material, reduced for
internal training purpose of both, students and engineers.

Figure 2. System and Software Model Use-Case Excerpt

Therefore, the disclosed and commercially non-sensitivity
use-case is not intended to be exhaustive or representing
leading-edge technology.

The definition of the software architecture is usually done
by a software architect within the software development
tool Matlab/Simulink. With our approach this work package
is transferred to the system development tool. This does
not hamper the work of the software architect, but enables
constraint checking features and helps to improve system
maturity in terms of consistency, completeness, and correct-
ness of the development artefacts. Beside this, the change
offers a significant benefit for development of safety-critical
software in terms of traceability, replicability of design
decisions, visualizes dependencies unambiguously, and puts
visual emphasis on view-dependent constraints (such as
graphical safety-criticality highlighting of SW modules in
Figure 2).

The software architectural design of the use-case consists
of 41 model artefacts with 361 configuration parameters,
and 30 relations between the elements. This small example
already indicates that relations between the model elements
and number of model elements become confusing. There-
fore, manual transformation of the information represented
within the models is cumbersome and error-prone and would
inherit lots of additional work to ensure consistency of both
models in terms of safety-critical software development.

With our approach these information and model artefacts
are checked for consistency constraints (such as point-to-
point consistency of interface configurations) before auto-
matically transferred via 212 lines of auto-generated Mat-
lab API code. This auto-generation of Matlab API code
provides evidence and ensures completeness of the model
transformation. Furthermore, the SW import functionality
enables round-trip engineering and bi-directional updates,
and supports evidence for consistency of both models.

According to the presented bridge approach in Section
III, the first step during the transformation is the decom-
position of the software architectural design. Each software

179

subsystem (like the Composition EGasCtrl in Figure 2) is
analysed and the comprised software modules are extracted.
An essential information at the software module architecture
is the trigger definition, representing the later task timing
property of the module at the integrated system.

With the gathered architectural, timing, and interface
information the Simulink model is generated by the previ-
ously described utilization of the Matlab COM Automation
Server. During this process, a new Simulink root model
is created and for each trigger type, which appears at the
architectural design, an own subsystem is placed at the
models top level. Afterwards, each software subsystem is
transferred to the appropriate timing subsystem or even split
up into multiple tasks if necessary. E.g. the subsystem E-
GasSystem::EGasCtrl contains software modules with dif-
ferent timing attributes. Therefore, the EGasCtrl-Subsystem
is available at multiple timing subsystems at the Simulink
model. To facilitate a multi developer scenario, a separate
model file is created for each software subsystem and linked
as a reference model at the root model. To complete the
Simulink model subsystem generation, all software modules
are transferred into their appropriated software subsystem.

The transformation process described so far, generates a
software framework out of the Composition and Application
blocks at the design. To provide a complete model frame-
work, which serves as a basis for the subsequent software
unit development, the interfaces as well as their connections
are transferred to Simulink in the next step. For an efficient
and dependable handling of the signals, a Data Dictionary
and the related tool Data Dictionary Manager is used. Every
signal from the architectural design is stored at the data
dictionary, including all available attributes like value limits,
scaling, etc. Moreover, the exporter algorithm simply link
this entry wherever the signal occurs in the Simulink model.

If the Simulink model already exists when the Software
Architecture Exporter is triggered, the Software Architecture
Importer is started automatically in the background to check
the consistency between the architectural design and the
software model. If all artefacts at the model are available at
the design, and new items exist at the design, the software
model is updated by the exporter analogue to the procedure
described above for completely new Simulink models. If
there are new or deleted artefacts at the software model,
a notification is displayed and the user is prompted to
determine the further procedure.

V. CONCLUSION

This paper presented an approach to avoid the risk of
introducing errors while developing the software according
to the architectural design, by creating the software model
framework fully automated. Moreover, the concept facili-
tates bidirectional traceability, as well as consistency. These
properties are elemental key factors for a high quality de-
velopment and postulated by the widespread quasi standard
Automotive SPICE. Additionally, the shown techniques facil-
itates round-trip engineering by the presented import/export

functionality regarding the models on different development
levels and tools.

The application of the presented approach has been
demonstrated utilizing a simplified version of the well-
known E-Gas concept, which is intended to be used for
training purpose of students and engineers and not repre-
senting an exhaustive or commercial sensitive project.

REFERENCES

[1] H. Blom, H. Lönn, F. Hagl, Y. Papadopoulos, M. O. Reiser,
C. J. Sjöstedt, J. Chen, and R. T. Kolagari. EAST-ADL - An
Architecture Description Language for Automotive Software-
Intensive Systems. White paper, 2013.

[2] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, and
D. Ratiu. Seamless Model-Based Development: From Iso-
lated Tools to Integrated Model Engineering Environments.
Proceedings of the IEEE, 98(4):526–545, 2010.

[3] D. Chen, R. Johansson, H. Lönn, Y. Papadopoulos, A. Sand-
berg, F. Törner, and M. Törngren. Modelling Support for
Design of Safety-Critical Automotive Embedded Systems. In
SAFECOMP 2008, pages 72–85, 2008.

[4] H. Giese, S. Hildebrandt, and S. Neumann. Model Synchro-
nization at Work: Keeping SysML and AUTOSAR Models
Consistent. LNCS 5765, pages 555 –579, 2010.

[5] J. Holtmann, J. Meyer, and M. Meyer. A Seamless Model-
Based Development Process for Automotive Systems. In
Software Engineering (Workshops), pages 79–88, 2011.

[6] ISO 26262, Road vehicles - Functional safety. Interna-
tional standard, International Organization for Standardiza-
tion, Geneva, CH, November 2011.

[7] R. Kawahara, H. Nakamura, D. Dotan, A. Kirshin, T. Sakairi,
S. Hirose, K. Ono, and H. Ishikawa. Verification of embed-
ded system’s specification using collaborative simulation of
SysML and simulink models. In MBSE’09, pages 21–28,
2009.

[8] G. Macher, E. Armengaud, and C. Kreiner. Bridging Automo-
tive Systems, Safety and Software Engineering by a Seamless
Tool Chain. In ERTS’14, pages 256–263, 2014.

[9] R. Mader, G. Griessnig, E. Armengaud, A. Leitner,
C. Kreiner, Q. Bourrouilh, C. Steger, and R. Weiss. A
Bridge from System to Software Development for Safety-
Critical Automotive Embedded Systems. SEAA’12, pages 75–
79, 2012.

[10] G. Sandmann and M. Seibt. AUTOSAR-Compliant Develop-
ment Workflows: From Architecture to Implementation-Tool
Interoperability for Round-Trip Engineering and Verification
and Validation. Technical report, SAE, 2012.

[11] C.-J. Sjöstedt, J. Shi, M. Törngren, D. Servat, D. Chen,
V. Ahlsten, and H. Lönn. Mapping Simulink to UML in
the Design of Embedded Systems: Investigating Scenarios
and Structural and Behavioral Mapping. In OMER 4 Post
Workshop Proceedings, April 2008.

[12] S. Voget. SAFE RTP: An open source reference tool platform
for the safety modeling and analysis. In ERTS’14, 2014.

[13] T. Zurawka and J. Schaeuffele. Method for checking the
safety and reliability of a software-based electronic system,
January 2007.

180

Bidirectional Crosslinking of System
and Software Modeling in the Automotive

Domain

Harald Sporer(B), Georg Macher, Andrea Höller, and Christian Kreiner

Institute of Technical Informatics, Graz University of Technology,
Inffeldgasse 16/1, 8010 Graz, Austria

{sporer,georg.macher,andrea.hoeller,christian.kreiner}@tugraz.at
http://www.iti.tugraz.at/

Abstract. Replacing former pure mechanical functionalities by mecha-
tronics-based solutions, introducing new propulsion technologies, and
connecting cars to their environment are only a few reasons for the still
growing E/E-System complexity at modern passenger cars. Hence, for
an engineering company in the automotive embedded system domain it
is vital to establish mature development processes, including a smart
tool chain orchestration. Starting from the customer requirements until
the final release of the product, traceability and consistency between all
development artifacts shall be given. However, achieving this by linking
the development items manually is a tedious and error-prone task. The
aim of this work is to enhance the development process by introducing
a fully automatic transformation of a system design model into a soft-
ware framework model and vice versa. With this novel approach, the
full traceability, between the system and software architectural levels, is
guaranteed.

Keywords: Automotive · Model-based development · Embedded
systems · Traceability · Model-based software engineering

1 Introduction

Embedded systems are already integrated into our everyday life and play a
central role in all domains including automotive, aerospace, healthcare, indus-
try, energy, or consumer electronics. In 2010, the embedded systems market
accounted for almost 852 billion dollar, and is expected to reach 1.5 trillion
by 2015 (assuming an annual growth rate of 12 %) [17]. Current premium cars
implement more than 90 electronic control units (ECU) with close to 1 Gigabyte
software code [6], are responsible for 25 % of vehicle costs and an added value
between 40 % to 75 % [22].

The trend of replacing traditional mechanical systems with modern embed-
ded systems enables the deployment of more advanced control strategies pro-
viding additional benefits for the customer and environment, but at the same

c© Springer International Publishing Switzerland 2015
A. Fantechi and P. Patrizio (Eds.): SERENE 2015, LNCS 9274, pp. 99–113, 2015.
DOI: 10.1007/978-3-319-23129-7 8

100 H. Sporer et al.

time, the higher degree of integration and criticality of the control application
raise new challenges. To cope with this situation, smart methods and techniques
have to be applied starting from the very beginning of a systems development.
Some kind of guidelines, like the functional safety standard for E/E-Systems at
modern passenger cars ISO 26262, has been introduced in recent years.

To handle upcoming issues with modern real-time systems, also in relation
to ISO 26262, model-based development supports the description of the sys-
tem under development in a more structured way. Model-based development
approaches enable different views for different stakeholders, different levels of
abstraction, and central storage of information. This improves the consistency,
correctness, and completeness of the system specification and thus supports the
demands of time-to-market (first time right). Nevertheless, such seamless inte-
gration of model-based development are rather exception than the rule and often
fall short due to the lack of integration of conceptual levels and tooling levels [3].

The aim of this paper is to bridge the existing gap between model-driven
system engineering tools and software engineering tools. More specifically, the
approach is based on the enhancement of a model-driven system-engineering
framework with software-architecture design capabilities. Furthermore, a model-
transformation framework enables a seamless description of safety-critical
software, from requirements at the system level down to software component
implementation in a bidirectional way. The model-transformation framework
automatically generates software architectures in Matlab/Simulink described via
high level control system models in SysML format. The goal is, on one hand, to
support a consistent and traceable refinement from the early concept phase to
software implementation. On the other hand, the bidirectional update function
of the transformation framework enables facilitation of gaining mutual benefits
for basic software and application software development from the coexistence of
both information within the central database.

The document is organized as follows: In the course of this paper, Sect. 2
presents an overview of related approaches as well as model-based development
and integrated tool chains. In Sect. 3 a description of the proposed bridging
approach for the refinement of the model-based system engineering model to
software development is provided. An application and evaluation of the approach
is presented in Sect. 4. Finally, this work is concluded in Sect. 5 with an overview
of the presented approach.

2 Related Works

Model-based systems and software development, as well as tool integration are
engineering domains and research topics aimed at moving the development steps
closer together and thus improving the consistency of the system over the exper-
tise and domain boundaries. In Pretschner’s roadmap [18], the authors highlight
the benefits of a seamless model-based development tool-chain for automotive
software engineering.

Broy et al. [3] mention concepts and theories for model-based development
of embedded software systems. The authors claim model-based development the

Bidirectional Crosslinking of System and Software Modeling 101

best approach to manage the large amount of information and complexity of
modern embedded systems with safety constraints. The paper illustrates why
seamless solutions have not been achieved so far, they mention commonly used
solutions, and arising problems by using an inadequate tool-chain (e.g. redun-
dancy, inconsistency and lack of automation).

Nevertheless, the challenge of enabling a seamless integration of models into
model-chains is still an open issue [19,20,24]. Often, different specialized models
for specific aspects are used at different development stages with varying abstrac-
tion levels. Traceability between these different models is commonly established
via manual linking due to process and tooling gaps. Holtmann et al. [8] claim
this lack of automation for those linking tasks and missing guidance which model
should to be used at which specific development stage as crucial drawback of
model-driven development (MDD). The very specific and non-interacting tools
requiring manual synchronization, are often inconsistent or rely on redundant
information.

An issue is also addressed by Giese et al. [7]. System design models have to be
correctly transferred to the software engineering model, and later changes must
be kept consistent. The authors propose a model synchronization approach con-
sisting of tool adapters between SysML models and software engineering models
in AUTOSAR representation. A drawback of this approach, each transformation
step implies potential sources for ambiguous mapping and model mismatching.

An important topic to deal with is the gap between system architecture and
software architecture - especially while considering component-based approaches
such as UML and SysML for system architecture description and AUTOSAR
for SW architecture description. Using SysML [2,7,10,12,15] or X-MAN [11] for
architectural description and AUTOSAR for software system description are two
common variants in the automotive domain. Buchmann et al. [4] present an app-
roach of another domain, based on bi-directional and incremental transformation
between XML class diagrams and Java source code. The authors also highlight
the crucial importance of powerful tool support for model-driven software engi-
neering. Boldt [2] proposed the use of a tailored Unified Modeling Language
(UML) or System Modeling Language (SysML) profile as the most powerful and
extensible way to integrate an AUTOSAR method in company process flows.

An automotive tool-chain for AUTOSAR is also presented by Voget [25].
The work focuses on ARTOP, a common platform for innovations which pro-
vides common base functionality for development of AUTOSAR compliant tools.
Unfortunately, the Eclipse-based ARTOP platform serves only as a common base
for AUTOSAR tool development and is not a ready-to-use tool-solution. More-
over, ARTOP also requires time-consuming initial training before a tool can be
developed.

The approach of bridging the gap between model-based system engineering
and software engineering models based on EAST-ADL2 architecture description
language and a complementary AUTOSAR representation is also very com-
mon in the automotive software development domain [5,14,23]. EAST-ADL
represents an architecture description language using AUTOSAR elements to

102 H. Sporer et al.

represent the software implementation layer of embedded systems [1]. More
recently the MAENAD Project1 is also focusing on this approach.

Pagel et al. [16] mention the benefit of generating XML schema files directly
from a platform-independent model (PIM) for data exchange via different tools.
Performing extra transformation steps would only add potential sources for error
and ambiguous mappings could result in unwanted side-effects.

Kawahara et al. [10] propose an extension of SysML which enables descrip-
tion of continuous time behavior. Their tool integration is based on Eclipse and
couples SysML and Matlab/Simulink R© via API .

Tool support for automotive engineering development is still organized as a
patchwork of heterogeneous tools and formalisms [1]. On the one hand, general-
purpose modeling languages (such as UML or SysML) provide modeling power
suitable to capture system wide constraints and behavior, but lack in synthe-
sizability. On the other hand, special-purpose modeling languages (such as C,
Assembler, Matlab, Simulink, ASCET) are optimized for fine granular design
and being less efficient in high-level design.

2.1 The Underlying Framework of the Proposed Approach

This section gives a brief overview of the underlying framework and related pre-
liminary work which supports the proposed approach. The basic concept behind
this framework is to have a consistent information repository as a central source
of information, to store all information of all involved engineering disciplines
of embedded automotive system development in a structured way. The concept
focuses on allowing different engineers to do their job in their specific manner, but
providing traces and dependency analysis of features concerning the overall sys-
tem, e.g. safety, security, or dependability. Furthermore, the proposed approach
is intended as an affordable, versatile, and tool independent method. This makes
the method especially attractive for limited resources of small and micro-sized
companies or small projects. Especially such projects or start-up companies often
struggle with setting up their development processes or achieving adequate qual-
ity with limited resources (such as time or manpower). Therefore this approach
stir out of common AUTOSAR based approaches and force a direct model trans-
formation from SysML representation to Matlab/Simulink. The reason to make
the decision of not fostering an AUTOSAR approach is based on one hand on
focusing not only on AUTOSAR but rather generally on Matlab/Simulink based
automotive software development. On the other hand, experiences we made with
our previous approach [12] confirm the problem mentioned by Rodriguez et al.
[20]. Not all tools fully support the whole AUTOSAR standard, because of its
complexity, which leads to several mutual incompatibilities and interoperability
problems.

The approach presented in this work and the work of Mader et al. [14] are
based on similar concepts, but in contrast to their work, our technique supports
automatic generation of whole software architectures, interface definition, timing

1 http://maenad.eu/.

Bidirectional Crosslinking of System and Software Modeling 103

Fig. 1. Portrayal of the bridging approach transferring system development artefacts
to SW development phase

setting, and auto-routing of signals in addition to their automatic generation of a
software model. Figure 1 shows an overview of this approach and the embedded
bridging of abstract system development and concrete software development
models. For a more detailed overview of orchestration of the whole tool-chain
see [13].

3 Model-Transformation Bridge

As mentioned in the previous section, the fundamental concept behind this
framework is to have a consistent information repository as central source of
information, to store all information of all involved engineering disciplines of
embedded automotive system development in a structured way. This affordable,
versatile, and tool independent approach forces a direct model transformation
from SysML representation to Matlab/Simulink and is especially attractive for
software development without full orchestration of AUTOSAR toolchain or non-
AUTOSAR based development.

The contribution proposed in this work is part of the framework presented in
[13] towards software development in the automotive context. More specifically,
our contribution consists of the following parts:

– UML Software Modeling Framework : Enhancement of an UML profile for the
definition of software development artifacts, more precisely, for the definition
of the components interfaces and SW architecture composition. Required for
consistent SW system description, see Fig. 1 – model addon.

– SW Architecture Exporter : Exporter to generate the designed SW architecture
in the third party tool Matlab/Simulink for further detailed development, see
Fig. 1 – tool bridge.

104 H. Sporer et al.

– SW Architecture Importer : Importer to integrate refined SW architecture and
interfaces from the software development tool (e.g., as a result of round-trip
engineering), see Fig. 1 – tool bridge.

This proposed approach closes the gap, also mentioned by Giese et al. [7],
Holtmann et al. [8], and Sandmann and Seibt [21], between system-level devel-
opment at abstract UML-like representations and software-level development
modeling tools (e.g. Matlab/Simulink or Targetlink R©). The bridging supports
consistency of information transfer between system engineering tools and soft-
ware engineering tools and minimizes redundant manual information exchange
between these tools. This contributes to simplify seamless safety argumentation
according to ISO 26262 [9] for the developed system. Benefits of this development
approach are highly noticeable in terms of more efficient re-engineering cycles,
and easy reuse of development artifacts with changing dependencies. As can
be seen in Fig. 1, the lack of supporting tools for information transfer between
system development tools and software development tools can be dispelled by
our approach. The implementation of the bridge, based on versatile C# class
libraries (dll) and Matlab COM Automation Server, ensures tool independence of
the general-purpose UML modeling tool (such as Enterprise Architect or Artisan
Studio) and version independence of Matlab/Simulink through API command
implementation. This makes the method especially attractive for projects and
companies with limited resources (such as manpower or finances). Especially
small projects or start-up companies often struggle with setting up their devel-
opment processes to achieve adequate quality.

3.1 UML Software Modeling Framework

The first part of the approach is the development of a specific UML modeling
framework enabling software architecture design in AUTOSAR like representa-
tion within a state-of-the-art system development tool (in this case Enterprise
Architect). This EA profile makes the UML representation more manageable
for the needs of the design of an automotive software architecture by taking
advantage of an AUTOSAR aligned abstraction layer. Furthermore, the profile
enables an explicit definition of components, component interfaces, and con-
nections between interfaces. This provides the possibility to define software
architecture and ensures proper definition of the communication between the
architecture artifacts, including interface specifications (e.g. upper limits, initial
values, formulas). In addition this profile ensures the versatilely to also enable
AUTOSAR aligned development as proposed in [12].

Hence, the SW architecture representation within EA can be linked to sys-
tem development artifacts and traces to requirements can be easily established.
This further benefits in terms of constraints checking, traceability of develop-
ment decisions (e.g. for safety case generation), and reuse. Figure 2 shows an
example of software architecture artifacts and interface information represented
in Enterprise Architect.

Bidirectional Crosslinking of System and Software Modeling 105

Fig. 2. Snapshot of the SW architecture representation within the system development
tool and representation of the interface information

3.2 SW Architecture Exporter

The second part of the approach is an exporter which is able to export the soft-
ware architecture, component containers, and their interconnections designed in
SysML to the software development tool Matlab/Simulink. The implementation
of the exporter is based on Matlab COM Automation Server and generates
models through API command implementation. This ensures tool version-
independence of the presented approach. Per user input the software architecture
representation to be transferred is selected and a background task generates
a corresponding Matlab/Simulink model. Listing 1.1 shows some excerpts of
the automatically generated Matlab API commands. As can be seen in this
listing, each model artifact, parameter, and connection is transferred to Mat-
lab/Simulink, blocks are arranged and sized in correct manner and also unique
links to the EA representation and assigned safety-criticality of the artifact
(Listing 1.1 line 3 and 8) are established.

Listing 1.1. Excerpts of Matlab API commands
addpath (genpath (’C:\ EGasSystem ’))
add block (’ Simulink /Ports & Subsystems/Model ’ , ’ EGasSystem/EGasCtrl ’)
set param (’ EGasSystem/EGasCtrl ’ , ’ ModelNameDialog ’ , ’ EGasCtrl ’ , \

. . . ’ Descr ipt ion ’ , ’ EA ObjectID@1969 ;ASIL@QM’)
set param (’ EGasSystem/EGasCtrl ’ , ’ Pos i t ion ’ , [2 5 0 50 550 250])

.

.

.
add block (’ Simulink /Ports & Subsystems/In1 ’ , ’ EGasSystem/APedl2 ’)
set param (’ EGasSystem/APedl2 ’ , ’ Pos i t ion ’ , [5 0 200 80 215])
set param (’ EGasSystem/APedl2 ’ , ’ Outmin ’ , ’ 0 ’ , ’Outmax ’ , ’ 5 ’ , \

. . . ’ OutDataTypeStr ’ , ’ s i n g l e ’ , ’ Descr ipt ion ’ , ’ EA ObjectID@1966 ;\

. . . ASIL@B ’) ;

.

.

.
add l i n e (’ EGasSystem ’ , ’ APedl1 /1 ’ , ’EGasMonr/1 ’ , ’AUTOROUTING’ , ’ON’)

.

.

.
save system (’ EGasSystem ’)

106 H. Sporer et al.

c l o s e sy s t em (’ EGasSystem ’)
cd . .
cd C:\ EGasSystem

If dSpace2 tools are used for the subsequent C code generation instead of the
Simulink CoderTM, the software architecture can be exported into a TargetLink
model optionally. In this case, the Matlab API command generator simply uses
the TargetLink common blockset for creating the software framework model.

Furthermore, the signals from the software architecture design are analysed
and transferred to the Simulink/TargetLink data dictionary by the exporter.
This guarantees a consistent handling of the defined component interfaces as
well as the connections between the interfaces throughout the development.

3.3 SW Architecture Importer

The last part of the approach is the import functionality add-on for the system
development tool. This functionality, in combination with the export function,
enables bidirectional update of software architecture representation in the system
development tool and the software modules in Matlab/Simulink. The importer
identifies the unique links to the EA representation (shown in Listing 1.1 line 3
and 8) and thereby differentiates new and modified model artifacts.

On the one hand, this ensures consistency between system development arti-
facts and changes done in the software development tool. On the other hand,
the import functionality enables reuse of available software modules, guarantees
consistency of information across tool boundaries, and shares information more
precisely and less ambiguously.

Triggered via user input, a user interface within the system development
tool (shown in Fig. 3) depicts modifications between the two representations and
enables selective update of the UML based SW representation. As can be seen
in Fig. 3, also a highlighting of the type of change (see Table 1) is provided.

Table 1. SW architecture importer indicators of type of change

Indicator Type of change

A Model artifact added

AC Interface connection added

D Model artifact deleted

DC Interface connection deleted

U Model artifact updated

UC Interface connection updated

2 http://www.dspace.com/.

Bidirectional Crosslinking of System and Software Modeling 107

Fig. 3. SW architecture importer user interface

4 Application of the Proposed Approach

This section demonstrates the benefits of the introduced approach for the devel-
opment of automotive embedded systems. To provide a comparison of the
improvements of our approach, we use the 3 layer monitoring concept [26] as
evaluation use-case. This elementary use-case is well-known in the automotive
domain and because of this reason representative. This use-case is an illustrative
material, reduced for internal training purpose of both, students and engineers.
Therefore, the disclosed and commercially non-sensitive use-case is not intended
to be exhaustive or representing leading-edge technology. An overview of the
use-case is given in Table 2.

Table 2. Overview of the evaluation use-case SW architecture

Object type Element-count Configurable attributes per element

SW modules 7 3

SW interfaces 34 10

Connections 30 0

The definition of the software architecture is usually done by a software archi-
tect within the software development tool (Matlab/Simulink). With our app-
roach, this work package is included in the system development tool (depicted
in Fig. 4). This does not hamper the work of the software system architect but
enables constraint checking features and helps to improve system maturity in
terms of consistency, completeness, and correctness of the development artifacts.
Beside this, the change offers a significant benefit for development of safety-
critical software in terms of traceability, replicability of design decisions, visual-
izes dependencies unambiguously, and puts visual emphasis on view-dependent

108 H. Sporer et al.

Fig. 4. Top-level representation of demonstration use-case in enterprise architect

constraints (such as graphical safety-criticality highlighting of SW modules in
Fig. 4).

The presented use-case amounts to a total count of 41 model artifacts with
361 configuration parameters and 30 relations between the elements. This small
example already indicates that relations between the model elements and number
of model elements become confusing. Therefore, manual transformation of the
information represented within the models is cumbersome and error-prone and
would inherit lots of additional work to ensure consistency of both models in
terms of safety-critical software development.

With our approach these information and model artifacts are checked for
consistency constraints (such as point-to-point consistency of interface configu-
rations) before automatically transferred via 212 lines of auto-generated Mat-
lab API code. This auto-generation of Matlab API code provides evidence and
ensures completeness of the model transformation. Furthermore, the SW import
functionality enables round-trip engineering and bi-directional updates of both
models and therefore supports evidence for consistency of both models.

According to the presented bridge approach in Sect. 3, the first step during
the transformation is the decomposition of the software architectural design.
Each software subsystem (like the AUTOSAR Composition EGasCtrl in Fig. 4)
is analysed and the comprised software modules (e.g. EGasCtrl::InpPreProc in
Fig. 5) are extracted. An essential information at the software module architec-
ture is the trigger definition, representing the later task timing property of the
module at the integrated system.

With the gathered architectural, timing, and interface information the Simu-
link/TargetLink model is generated by the previously described utilization of the
Matlab COM Automation Server. During this process, a new Simulink root model
is created and for each trigger type, which appears at the architectural design,

Bidirectional Crosslinking of System and Software Modeling 109

Fig. 5. Software module representation at the demonstrated use-case

an own subsystem is placed at the models top level. Afterwards, each software
subsystem is transferred to the appropriate timing subsystem or even split up
into multiple tasks if necessary. E.g. the subsystem E-GasSystem::EGasCtrl con-
tains software modules with different timing attributes. Therefore, the EGasCtrl -
Subsystem is available at multiple timing subsystems at the Simulink/TargetLink
model. To facilitate a multi developer scenario, a separate model file is created
for each software subsystem and linked as a reference model at the root model.
To complete the Simulink/TargetLink model subsystem generation, all software
modules are transferred into their appropriated software subsystem.

The transformation process described so far, generates a software framework
out of the Autosar Composition and Autosar Application blocks at the design.
To provide a complete model framework, which serves as a basis for the sub-
sequent software unit development, the interfaces as well as their connections
are transferred to Simulink/TargetLink in the next step. For an efficient and
dependable handling of the signals, a Data Dictionary and the related tool Data
Dictionary Manager is used. Again, to facilitate a multi developer scenario, a
data dictionary file is created for each software subsystem and included at a data
dictionary root file. Every signal from the architectural design is stored at the
appropriate data dictionary, including all available attributes like value limits,
scaling, etc. Furthermore, the exporter algorithm simply link this entry wherever
the signal occurs in the Simulink/TargetLink model (see Fig. 6).

110 H. Sporer et al.

Fig. 6. Link to the signal at the data dictionary, set by the exporter

Fig. 7. Architectural design to Simulink/TargetLink model transformation workflow

Bidirectional Crosslinking of System and Software Modeling 111

The process workflow Architectural Design to Simulink/TargetLink Model
Transformation is shown in Fig. 7, with the blue-coloured subsystem creation
path, and the green-coloured signal creation path. Although, the chosen use-case
example is not too complex, presenting all generated artifacts would go beyond
the scope of this contribution. Therefore, the illustration showcases the creation of
the Simulink/TargetLink root model, the software subsystem EGasCtrl including
the signals from and to the basis software, and the software module InpPreProc,
which was already presented in Fig. 5.

If the Simulink/TargetLink model already exists when the Software Archi-
tecture Exporter is triggered, the Software Architecture Importer is started auto-
matically in the background to check the consistency between the architectural
design and the software model. If all artifacts at the model are available at
the design, and new items exist at the design, the software model is updated
by the exporter analogue to the procedure described above for completely new
Simulink/TargetLink models. If there are new or deleted artifacts at the soft-
ware model, a notification is displayed and the user is prompted to determine
the further procedure, like shown in Fig. 3, Sect. 3.

5 Conclusion

Dependable system development is an emerging trend in automotive industry,
aiming to provide a convincing argumentation that the system under develop-
ment has achieved a certain level of maturity. Without an adequate tool chain,
which enables a smooth transition between the different levels along the system
development, it is hard to obtain this demanded maturity.

Especially creating a software model from the architectural design manually
is exhausting and error-prone. The risk to e.g. connect signals incorrect, set
wrong attributes or simply overlook a changed parameter is very high.

This paper presented an efficient approach to avoid the risk of introducing
errors while developing the software according to the architectural design, by cre-
ating the software model framework fully automated. Furthermore, the concept
facilitates bidirectional traceability as well as consistency. These properties are
elemental key factors for a high quality development and postulated by the wide-
spread quasi-standard Automotive SPICE. Additionally, the shown techniques
facilitate round-trip engineering by the presented import/export functionality
regarding the models on different development levels and tools.

In terms of safety-critical development and reuse the presented approach
features are crucial to transfer information between separated tools and link
supporting safety-relevant information. Moreover, the approach eliminates the
need of manual information rework without adequate tool support, ensuring
reproducibility, and traceability argumentation.

The application of the presented approach has been demonstrated utilizing
a simplified version of the well-known E-Gas concept, which is intended to be
used for training purpose of students and engineers and not for representing an
exhaustive or commercial sensitive project.

112 H. Sporer et al.

References

1. Blom, H., Loenn, H., Hagl, F., Papadopoulos, Y., Reiser, M.-O., Sjoestedt, C.-J.,
Chen, D., Kolagari., R.: EAST-ADL - an architecture description language for
automotive software-intensive systems. White Paper 2.1.12 (2013)

2. Boldt, R.: Modeling AUTOSAR systems with a UML/SysML profile. Technical
report, IBM Software Group (2009)

3. Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S., Ratiu, D.: Seamless
model-based development: from isolated tool to integrated model engineering envi-
ronments, IEEE Magazin (2008)

4. Buchmann, T., Westfechtel, B.: Towards incremental round-trip engineering using
model transformations. In: 2013 39th EUROMICRO Conference on Software Engi-
neering and Advanced Applications (SEAA), pp. 130–133, Sept 2013

5. Chen, D.J., Johansson, R., Lönn, H., Papadopoulos, Y., Sandberg, A., Törner, F.,
Törngren, M.: Modelling support for design of safety-critical automotive embedded
systems. In: Harrison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol.
5219, pp. 72–85. Springer, Heidelberg (2008)

6. Ebert, C., Jones, C.: Embedded software: facts, figures, and future. IEEE Comput.
Soc. 0018–9162(09), 42–52 (2009)

7. Giese, H., Hildebrandt, S., Neumann, S.: Model synchronization at work: keep-
ing SysML and AUTOSAR models consistent. In: Engels, G., Lewerentz, C.,
Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765,
pp. 555–579. Springer, Heidelberg (2010)

8. Holtmann, J., Meyer, J., Meyer, M.: A seamless model-based development process
for automotive systems (2011)

9. ISO - International Organization for Standardization. ISO 26262 Road vehicles
functional safety, Part 1–10 (2011)

10. Kawahara, R., Dotan, D., Sakairi, T., Ono, K., Kirshin, A., Nakamura, H.,
Hirose, S., Ishikawa, H.: Verification of embedded system’s specification using col-
laborative simulation of SysML and Simulink models. In: Proceedings of Second
International Conference on Model Based Systems Engineering, pp. 21–28, March
2009

11. Lau, K.-K., Tepan, P., Tran, C., Saudrais, S., Tchakaloff, B.: A holistic
(Component-based) approach to AUTOSAR designs. In: 2013 39th EUROMI-
CRO Conference on Software Engineering and Advanced Applications (SEAA),
pp. 203–207, Sept 2013

12. Macher, G., Armengaud, E., Kreiner, C.: Automated generation of AUTOSAR
description file for safety-critical software architectures. In: 12. Workshop Auto-
motive Software Engineering (ASE), Lecture Notes in Informatics (2014)

13. Macher, G., Armengaud, E., Kreiner, C.: Bridging automotive systems, safety and
software engineering by a seamless tool chain. In: 7th European Congress Embed-
ded Real Time Software and Systems Proceedings, pp. 256–263 (2014)

14. Mader, R., Griessnig, G., Eric, A., Andrea, L., Christian, K., Bourrouilh, Q.,
Steger, C., Weiss, R.: A bridge from system to software development for safety-
critical automotive embedded systems. In: 38th Euromicro Conference on Software
Engineering and Advanced Applications, pp. 75–79 (2012)

15. Meyer, J.: Eine durchgaengige modellbasierte Entwicklungsmethodik fuer die auto-
mobile Steuergeraeteentwicklung unter Einbeziehung des AUTOSAR Standards.
Ph.D thesis, Universitaet Paderborn, Fakultaet fuer Elektrotechnik, Informatik
und Mathematik, July 2014

Bidirectional Crosslinking of System and Software Modeling 113

16. Pagel, M., Brörkens, M.: Definition and generation of data exchange formats
in AUTOSAR, process independent model. In: Rensink, A., Warmer, J. (eds.)
ECMDA-FA 2006. LNCS, vol. 4066, pp. 52–65. Springer, Heidelberg (2006)

17. Petrissans, A., Krawczyk, S., Veronesi, L., Cattaneo, G., Feeney, N., Meunier, C.:
Design of future embedded systems toward system of systems - trends and chal-
lenges. European Commission, May 2012

18. Pretschner, A., Broy, M., Kruger, I.H., Stauner, T.: Software engineering for auto-
motive systems: a roadmap. In: 2007 Future of Software Engineering, FOSE 2007,
Washington, DC, USA, pp. 55–71, IEEE Computer Society (2007)

19. Quadri, I.R., Sadovykh, A.: MADES: a SysML/MARTE high level methodology
for real-time and embedded systems (2011)

20. Rodriguez-Priego, E., Garcia-Izquierdo, F., Rubio, A.: Modeling issues: a survival
guide for a non-expert modeler. Models 2010(2), 361–375 (2010)

21. Sandmann, G., Seibt., M.: AUTOSAR-compliant development workflows: from
architecture to implementation - tool interoperability for round-trip engineering
and verification and validation. In: SAE World Congress and Exhibition 2012,
(SAE 2012–01-0962) (2012)

22. Scuro, G.: Automotive industry: innovation driven by electronics (2012).
http://embedded-computing.com/articles/automotive-industry-innovation-driven-
electronics/

23. Sjoestedt, C.-J., Shi, J., Toerngren, M., Servat, D., Chen, D., Ahlsten, V.,
Loenn, H.: Mapping simulink to UML in the design of embedded systems: investi-
gating scenarios and structural and behavioral mapping. In: OMER 4 Post Work-
shop Proceedings, April 2008

24. Thyssen, J., Ratiu, D., Schwitzer, W., Harhurin, E., Feilkas, M., München, T.U.,
Thaden, E.: A system for seamless abstraction layers for model-based development
of embedded software. In: Software Engineering Workshops, pp. 137–148 (2010)

25. Voget, S.: SAFE RTP: an open source reference tool platform for the safety mod-
eling and analysis. In: Embedded Real Time Software and Systems Conference
Proceedings (2014)

26. Zurawka, T., Schaeuffele, J.: Method for checking the safety and reliability of a
software-based electronic system, January 2007

Bibliography

[1] ISO/IEC 15504, Information technology - Process assessment, 2004.

[2] IEC 61508, Functional safety of electrical/electronic/programmable electronic

safety-related systems, April 2010.

[3] 10 Years AUTOSAR: The Worldwide Automotive Standard for E/E Systems. ATZ

extra. Springer Vieweg, October 2013.

[4] ISO/IEC 33001:2015 - Information technology - Process assessment - Concepts and

terminology, 2015.

[5] A. Alderson. Meta-CASE Technology. In Software Development Environments and

CASE Technology, volume 509 of Lecture Notes in Computer Science, pages 81–91.

Springer, 1991.

[6] L. Apvrille and A. Becoulet. Prototyping an Embedded Automotive System from its

UML/SysML Models. In Proceedings of Embedded Real Time Systems and Software

(ERTSS 2012), pages 87–96, 2012.

[7] Automotive SIG. Automotive SPICE R©Process Assessment Model. Technical re-

port, The SPICE User Group, May 2010. Version 2.5.

[8] AUTOSAR. Current Partners. Online Resource. retrieved February 09, 2016, from

http://www.autosar.org/partners/current-partners/.

[9] N. Baetens. Comparing graphical DSL editors: AToM3, GMF, MetaEdit+. Uni-

versity of Antwerp, 2011.

[10] B. Biafore. Visio 2007 Bible. John Wiley & Sons, 2007.

[11] M. Broy, S. Kirstan, H. Krcmar, B. Schätz, and J. Zimmermann. What is the benefit

of a model-based design of embedded software systems in the car industry? Soft-

ware Design and Development: Concepts, Methodologies, Tools, and Applications:

Concepts, Methodologies, Tools, and Applications, page 310, 2013.

132

Bibliography

[12] R. N. Charette. This car runs on code. Online, February 2009. retrieved March

14, 2016, from http://spectrum.ieee.org/transportation/systems/this-car-runs-on-

code.

[13] M. Chemuturi. Requirements Engineering and Management for Software Develop-

ment Projects. Springer New York, 2013.

[14] Code Project. WPF Diagram Designer - Part 4. Online Resource. re-

trieved March 23, 2015, from http://www.codeproject.com/Articles/24681/WPF-

Diagram-Designer-Part.

[15] S. Cook, G. Jones, S. Kent, and A. C. Wills. Domain-Specific Development with

Visual Studio DSL Tools. Microsoft .NET Development Series. Addison-Wesley

Longman, Amsterdam, May 2007.

[16] P. B. Crosby. Quality Is Free: The Art of Making Quality Certain. Penguin Put-

nam mass, 1980.

[17] J. Davis. GME: The Generic Modeling Environment. In Companion of the 18th

annual ACM SIGPLAN conference on Object-oriented programming, systems, lan-

guages, and applications, OOPSLA ’03, pages 82–83. ACM, 2003.

[18] T. DeMarco and T. Lister. Wien wartet auf Dich! The original English edition:

Peopleware - Productive Projects and Teams. Carl Hanser Verlag München Wien,

second edition, 1999.

[19] H. Dubois, M.-A. Peraldi-Frati, and F. Lakhal. A Model for Requirements Trace-

ability in a Heterogeneous Model-Based Design Process: Application to Automo-

tive Embedded Systems. In 15th IEEE International Conference on Engineering of

Complex Computer Systems (ICECCS), pages 233–242. IEEE, 2010.

[20] European Union. User guide to the SME definition. Publications Office of the Euro-

pean Union, Luxembourg, 2015. ISBN 978-92-79-45322-9, Ref. Ares(2015)1914862

- 06/05/2015.

[21] Herstellerinitiative Software . HIS - Working Group Assessment. HIS Arbeitskreis

”Process Assessment”, (V.31), June 2008.

[22] M. Hillenbrand. Funktionale Sicherheit nach ISO26262 in der Konzeptphase der

Entwicklung von Elektrik/Elektronik Architekturen von Fahrzeugen. PhD thesis,

Karlsruher Institut für Technologie, Institut für Technik der Informationsverar-

beitung, November 2011.

133

Bibliography

[23] C. R. Hopkins. Creating custom validation rules in visio

2013. Online Resource. retrieved February 23, 2016, from

http://blogs.msdn.com/b/chhopkin/archive/2013/01/03/creating-custom-

validation-rules-in-visio-2013.aspx.

[24] P. Hudak. Domain-specific languages. Handbook of Programming Languages, 3:39–

60, 1997.

[25] ISO 26262-2, Road vehicles - Functional safety - Part 2: Management of Func-

tional safety. International standard, International Organization for Standardiza-

tion, Geneva, CH, November 2011.

[26] ISO 26262, Road vehicles - Functional safety. International standard, International

Organization for Standardization, Geneva, CH, November 2011.

[27] E. Juliot and J. Benois. Viewpoints creation using Obeo Designer or how to build

Eclipse DSM without being an expert developer? Obeo Designer Whitepaper, 2010.

[28] S. Kelly, K. Lyytinen, and M. Rossi. MetaEdit+ A Fully Configurable Multi-User

and Multi-Tool CASE and CAME Environment. In P. Constantopoulos, J. My-

lopoulos, and Y. Vassiliou, editors, Advanced Information Systems Engineering,

volume 1080 of Lecture Notes in Computer Science, pages 1–21. Springer Berlin

Heidelberg, 1996.

[29] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full Code Gen-

eration. Wiley-IEEE Computer Society Press. John Wiley & Sons, March 2008.

[30] H. Kern, A. Hummel, and S. Kühne. Towards a Comparative Analysis of Meta-

Metamodels. In Proceedings of the compilation of the co-located workshops on

DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11 & VMIL’11, pages 7–12.

ACM, 2011.

[31] H. Kern and S. Kühne. Model Interchange between ARIS and Eclipse EMF. In 7th

OOPSLA Workshop on Domain-Specific Modeling at OOPSLA ’07, 2007.

[32] A. E. Kouhen, C. Dumoulin, S. Gerard, and P. Boulet. Evaluation of Modeling

Tools Adaptation. HAL archives-ouvertes.fr, (hal-00706701), June 2012.

[33] C. Kreiner, R. Messnarz, A. Riel, D. Ekert, M. Langgner, D. Theisens, and

M. Reiner. Automotive Knowledge Alliance AQUA - Integrating Automotive

SPICE, Six Sigma, and Functional Safety. In F. McCaffery, R. V. O‘Connor, and

134

Bibliography

R. Messnarz, editors, Systems, Software and Services Process Improvement, vol-

ume 364 of Communications in Computer and Information Science, pages 333–344.

Springer Berlin Heidelberg, 2013.

[34] G. Macher. Framework for the Integrated Model-Based Development of Dependable

Automotive Systems and Software. PhD thesis, Graz University of Technology,

November 2015.

[35] G. Macher, H. Sporer, E. Armengaud, E. Brenner, and C. Kreiner. A Seamless

Model-Transformation between System and Software Development Tools. In 8th

European Congress Embedded Real Time Software and Systems, ERTS ’16, Toulouse

(France), January 27 - 29, 2016. in press.

[36] S. Mart́ınez-Fernández, C. P. Ayala, X. Franch, and E. Y. Nakagawa. A Survey on

the Benefits and Drawbacks of AUTOSAR. In Proceedings of the First International

Workshop on Automotive Software Architecture, pages 19–26. ACM, 2015.

[37] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-specific

languages. ACM computing surveys (CSUR), 37(4):316–344, 2005.

[38] R. Messnarz, C. Kreiner, O. Bachmann, A. Riel, K. Dussa-Zieger, R. Nevalainen,

and S. Tichkiewitch. Implementing Functional Safety Standards - Experiences from

the Trials about Required Knowledge and Competencies (SafEUr). In F. McCaffery,

R. V. O‘Connor, and R. Messnarz, editors, Systems, Software and Services Process

Improvement, volume 364 of Communications in Computer and Information Sci-

ence, pages 323–332. Springer Berlin Heidelberg, 2013.

[39] MetaCase. EAST-ADL for automotive embedded architectures. Online Re-

source. retrieved February 22, 2016, from http://www.metacase.com/solution/east-

adl.html.

[40] J. Meyer. Eine durchgängige modellbasierte Entwicklungsmethodik für die automo-

bile Steuergeräteentwicklung unter Einbeziehung des AUTOSAR Standards. PhD

thesis, Universität Paderborn, Fakultät für Elektrotechnik, Informatik und Mathe-

matik, Paderborn, Germany, July 2014.

[41] Microsoft Developer Network. Modeling SDK for Visual Studio - Domain-

Specific Languages. Online Resource. retrieved January 19, 2016, from

https://msdn.microsoft.com/en-us/library/bb126259.aspx.

135

Bibliography

[42] P. Mohagheghi and Ø. Haugen. Evaluating Domain-Specific Modelling Solutions.

In Advances in Conceptual Modeling - Applications and Challenges, volume 6413

of Lecture Notes in Computer Science, pages 212–221. Springer Berlin Heidelberg,

2010.

[43] Object Management Group. The UML Profile for MARTE: Modeling and Analysis

of Real-Time and Embedded Systems. Online Resource. retrieved February 23,

2016, from http://www.omgmarte.org/.

[44] Object Management Group. Business Process Model and Notation (BPMN). BPMN

Specification, Normative Documents formal/2011-01-03, January 2011.

[45] Object Management Group. Model Driven Architecture (MDA) - MDA Guide rev.

2.0. Technical Report ormsc/14-06-01, Object Management Group, Inc., June 2014.

[46] J.-D. Piques and E. Andrianarison. SysML for embedded automotive Systems:

lessons learned. Interfaces, 3:3b, 2011.

[47] C. Preschern, N. Kajtazovic, and C. Kreiner. Efficient development and reuse of

domain-specific languages for automation systems. International Journal of Meta-

data, Semantics and Ontologies, 9(3):215–226, 2014.

[48] I. R. Quadri, A. Sadovykh, and L. S. Indrusiak. MADES: A SysML/MARTE high

level methodology for real-time and embedded systems. In Proceedings of the 10th

Embedded Realtime Software and Systems Conference, 2012.

[49] M. Reke. Modellbasierte Entwicklung automobiler Steuerungssysteme in kleinen und

mittelständischen Unternehmen. PhD thesis, Fakultät für Mathematik, Informatik

und Naturwissenschaften, RWTH Aachen University, 2012.

[50] A.-W. Scheer. ARIS - Modellierungsmethoden, Metamodelle, Anwendungen.

Springer-Verlag Berlin Heidelberg, third edition, 2013.

[51] A.-W. Scheer and M. Nüttgens. ARIS Architecture and Reference Models for Busi-

ness Process Management. In W. van der Aalst, J. Desel, and A. Oberweis, editors,

Business Process Management, volume 1806 of Lecture Notes in Computer Science,

pages 376–389. Springer Berlin Heidelberg, 2000.

[52] B. Selic. The Pragmatics of Model-Driven Development. IEEE Software, IEEE

Computer Society, 20(5):19, 2003.

136

Bibliography

[53] Software Engineering Institute. CMMI R© for Development, Version 1.3. Technical

Report CMU/SEI-2010-TR-033, ESC-TR-2010-033, SEI, Carnegie Mellon, Novem-

ber 2010.

[54] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling

Framework. the eclipse series. Addison-Wesley, second edition, 2008.

[55] P. Swithinbank, M. Chessell, T. Gardner, C. Griffin, J. Man, H. Wylie, and

L. Yusuf. Patterns: Model-Driven Development Using IBM Rational Software Ar-

chitect. Number SG24-7105-00 in IBM Redbooks. International Business Machines

Corporation, first edition, December 2005.

[56] The Eclipse Foundation. Graphical Modeling Project (GMP). Online Resource.

retrieved February 23, 2016, from http://www.eclipse.org/modeling/gmp/.

[57] The European Parliament and the Council of the European Union. Directive

2006/42/EC of the European Parliament and of the Council of 17 May 2006 on

Machinery, and Amending Directive 95/16/EC (Recast). European Union Law L

157/24, Official Journal of the European Union, 2006.

[58] VDA QMC Working Group 13 / Automotive SIG. Automotive SPICE Process

Assessment / Reference Model. Technical Report Revision ID: 470, July 2015.

Version 3.0.

[59] V. Vujović, M. Maksimović, and B. Perǐsić. Sirius: A rapid development of DSM

graphical editor. In 18th International Conference on Intelligent Engineering Sys-

tems (INES), pages 233–238. IEEE, 2014.

[60] A. Watson. UML R© vs. DSLs: A false dichotomy. Butler Group Review, (omg/08-

09-03), April 2007.

[61] W. Wolf. Computers as Components - Principles of Embedded Computing System

Design. Morgan Kaufmann, Waltham, Mass., USA, third edition, 2012.

137

	Introduction
	Motivation
	Small and Micro Sized Entities
	Challenges for Small Entities in the Automotive Industry
	The Goals of this Thesis
	Thesis Organization

	Related Work
	Standards & De Facto Standards
	Process Reference Models (PRMs)
	Functional Safety
	Integrated View of Related Standards

	Model-Driven Architecture
	Automotive E/E System Design Methodologies
	Domain-Specific Modelling

	Embedded Mechatronic System Development in Small Entities
	Sociological Aspects
	Engineering Processes
	Process Reference Model for the Embedded Mechatronic System Development (EMS-PRM)
	Pattern for Establishing Engineering Processes in Small Entities

	Domain-Specific Modelling of Embedded Mechatronic Systems
	Application of the PRM and DSM
	Conclusion and Future Work
	Summary and Conclusion
	Future Work

	Publications
	Bibliography

