
Peter HASITSCHKA BSc.

Visualization and Analysis of
Recommendation Histories using WebGL

Master’s Thesis

to achieve the university degree of
Diplom-Ingenieur

Master’s degree programme: Software Development and Business Management

submitted to
Graz University of Technology

Supervisor
Dipl.Ing. Dr.techn. Vedran SABOL

Co-advisor
Dr.techn. Eduardo Enrique VEAS MSc.

Knowledge Technologies Institute

Graz, September 2016

Statutory Declaration

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master’s thesis dissertation.

Graz,

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen
als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene
Textdokument ist mit der vorliegenden Masterarbeit identisch.

Graz, am

Datum Unterschrift

ii

Abstract

Content-based recommender systems are commonly used to automatically
provide context-based resource suggestions to users. This work introduces
ECHO (Explorer of Collection HistOries), a visual tool supporting visualization
of a recommender system’s entire query history. It provides an interactive
three-dimensional scene resembling the CoverFlow layout to browse through
all collections in several Levels of Detail, compare collections, and find
similarities in previous result sets. The user has the possibility to analyze a
single collection through an intuitive visual representation of the results and
their metadata, which is embedded into the 3D scene. These visualizations
give insights into the metadata distribution of a collection and support
the application of faceted filters on the whole query-history. Search results
can be explored by the user in detail, organized in bookmark-collections
for a later usage, and may also be used in external tools such as editors.
The ECHO implementation supports graphics card acceleration to avoid
rendering performance issues and to provide smooth, animated transitions
by using the WebGL technology.

iii

Kurzfassung

Durch den Einsatz inhaltsbasierter Empfehlungssysteme können Benutzern
automatisiert kontextbasierte Empfehlungen geliefert werden. In dieser Ar-
beit wird mit ECHO (Explorer of Collection HistOries) ein Werkzeug vorgestellt,
welches es erlaubt, vollständige Such-Historien eines Empfehlungssys-
tems zu visualisieren. Es bietet eine dreidimensionale Szene, welche dem
CoverFlow Layout ähnelt. In dieser können Benutzer sämtliche Suchergebnis-
Sammlungen in verschieden Detaillierungsgraden durchsuchen, mehrere
Sammlungen vergleichen und weiters Ähnlichkeiten in vorhergehenden
Sammlungen aufspüren. Eine, in diese 3D-Szene eingebettete, intuitive vi-
suelle Repräsentation der Suchergebnisse und deren Meta-Daten erlaubt Be-
nutzern einzelne Sammlungen zu analysieren. Durch diese Visualisierungen
können Benutzer Einblicke in die Verteilung der Meta-Daten einer Samm-
lung erlangen und facettierte Filter auf die gesamte Such-Historie anwenden.
Die einzelnen Suchergebnisse können durch Benutzer im Detail erforscht,
in Lesezeichen-Sammlungen für den späteren Gebrauch gespeichert und in
externe Werkzeuge wie zum Beispiel Editoren eingebunden werden. Um
Leistungsprobleme zu verhindern, unterstützt ECHO grafikkartenbasierte
Hardwarebeschleunigung und erlaubt dadurch das Darstellen von flüssigen,
animierten Übergängen durch den Einsatz der WebGL-Technologie.

iv

Acknowledgments

After months of hard work I write these lines as the finalization of my thesis.
This wouldn’t have been possible without the support and expertise of my
supervisor Dr. Vedran Sabol. I want to express my thanks to him for his
great guidance and patience during this exciting time.

Furthermore I want to thank Dr. Eduardo Veas for his scientific advices and
my colleague Gerwald Tschinkel for supporting me during implementing
ECHO.

With finishing this thesis also my Master-Study at the Graz University of
Technology finds an end. This would not have been possible without the
most important people in my life. I want to express my deepest gratitude to
my parents who made this study possible for me and gave me all support I
needed through this time and I need to thank my wife Sarah for her love
and motivation whenever I needed it during the process of creating this
work.

v

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Overview . 2

1.3 Structure . 3

2 Related work 5
2.1 Recommender Systems . 5

2.1.1 Development of Recommender Systems Over the Years 5

2.1.2 Visualization For Recommender Systems 7

2.2 Graph Visualizations . 11

2.2.1 Comparing Graphs . 11

2.2.2 Comparing Document Collections 19

2.2.3 Time-Oriented Graphs 21

2.3 Further Related Work . 27

3 EEXCESS 29
3.1 Motivation . 29

3.2 Basic Challenges . 30

3.3 Recommendation Dashboard 31

3.3.1 Functionality Of The RD 32

3.3.2 Visualizations . 36

3.3.3 Micro-Visualizations . 42

3.3.4 VizRec . 42

3.4 Frontend Implementations . 44

3.4.1 While Reading Content 45

3.4.2 While Creating Content 45

3.5 Technical Background . 46

3.5.1 Code Structure . 46

3.5.2 EEXCESS API . 49

vi

Contents

3.5.3 Recommendation Dashboard 49

4 ECHO - Explorer of Collection Histories 52
4.1 Requirements . 52

4.1.1 Use Cases . 52

4.1.2 Functional Requirements 54

4.1.3 Non Functional Requirements 57

4.2 Features . 58

4.2.1 Visualization Layout . 58

4.2.2 Navigation & Levels Of Detail 72

4.2.3 Filtering . 79

4.2.4 Collection Summary (RingRepresentation) 84

4.2.5 Comparison Mechanism 89

4.2.6 Bookmark-Collections 92

4.2.7 Fulfilling the Non Functional Requirements 95

4.2.8 Summary . 97

5 Implementation-Details 98
5.1 Environment . 98

5.1.1 Plugin-System . 99

5.1.2 Programming-Language & OOP-Design 99

5.1.3 File Structure . 100

5.1.4 Libraries . 100

5.1.5 Technical Requirements 101

5.2 3D Rendering . 101

5.2.1 Camera . 102

5.2.2 WebGl-Renderer . 103

5.3 Initialization Of ECHO . 103

5.3.1 RD Plugin Architecture 104

5.3.2 Dynamic File Loading 104

5.3.3 Storing Query-Results 105

5.3.4 Creating the Scene . 107

5.4 Code-Structure Of Scene-Elements 109

5.4.1 Container Behaviour . 109

5.4.2 Encapsulating Variables 109

5.4.3 Dirty-Flags And Update 110

5.4.4 Initialization . 110

vii

Contents

5.5 Collections . 111

5.5.1 Functionality . 111

5.5.2 Visualization Data . 112

5.6 Recommendations . 113

5.6.1 Data Held by a Recommendation 113

5.7 Text-Elements . 114

5.8 Updating and Rendering . 115

5.8.1 The preRender-Method 115

5.8.2 The Animation-Loop . 115

5.8.3 Rendering the Scene . 116

5.9 Interactions . 116

5.10 Configuration . 116

6 Case Study 118
6.1 Research for Historical Images 118

6.1.1 Initial Position . 118

6.1.2 Finding Related Query-Collections 118

6.1.3 Investigating an Interesting Query-Collection 121

6.1.4 Discovering & Filtering a Third Query-Collection . . . 125

6.1.5 Usage of the Collected Results 125

7 Conclusion 128
7.1 Summary . 128

7.2 Lessons Learned . 129

7.2.1 Visual Design and Graph-Layout 129

7.2.2 Visual Design . 131

7.2.3 Implementation . 132

7.3 Future work . 133

7.3.1 Performance Tweaks . 133

7.3.2 Improving the Ring-Representation 134

7.3.3 Further Comparison Methods 134

7.3.4 Filtering . 134

7.4 Final Conclusion . 135

Bibliography 137

viii

List of Figures

1.1 Focusing a query-collection in ECHO 3

2.1 TalkExplorer . 9

2.2 Visualizing a movie-recommender with PeerChooser 10

2.3 Usage sample of the TreeJuxtaposer 13

2.4 Comparing two graphs with SGV 15

2.5 Example of two simple graphs and their difference map 16

2.6 Creating hierarchies for difference maps 16

2.7 Difference maps . 17

2.8 Summary Graph . 18

2.9 Comparing collections via layers in Donatien 20

2.10 Three time slices of a topic-graph visualized with GraphAEL . 23

2.11 A group discussion visualized through layers 24

2.12 Evolution of software in a CVS visualized with GEVOL 26

2.13 Timeslices visualizing the evolution of an email-network . . . 27

2.14 Knowminer Search Result Analysis 28

3.1 Schema of the CODE pipeline 30

3.2 Schema describing the federated recommender’s functionality 32

3.3 EEXCESS-Recommendation Dashboard 33

3.4 Brushing items in the Geo-View-visualization 34

3.5 Timeline-visualization in the RD 37

3.6 GeoView-visualization in the RD 38

3.7 A Bar-Chart with an applied brush 39

3.8 Landscape-visualization in the RD 40

3.9 uRank user interface . 41

3.10 The different Micro-Visualizations of the RD 43

3.11 VizRec workflow for recommending visualizations 44

3.12 EEXCESS-Chrome-Plugin . 46

ix

List of Figures

3.13 Usage example of the EXCESS GoogleDocs-Plugin 47

3.14 The architecture of EEXCESS 48

4.1 Comparing tree layouts . 61

4.2 Schema of further collection elements 62

4.3 Relevances in ECHO . 65

4.4 A focused recommendation node 66

4.5 A recommendation’s info-panel 68

4.6 Apple’s CoverFlow visualization 69

4.7 Query history Layouts depending on the focus 71

4.8 Overview over a query-collection in the query history 71

4.9 X, Y, and Z axes . 73

4.10 Camera position when focusing a collection or recommendation 77

4.11 Quality-difference inside the Ring-Representation 81

4.12 Micro-Visualizations with applied filter on the ”language”-facet 83

4.13 A typical Ring-Representation in ECHO 86

4.14 Detailed view of a selected query-collection 90

4.15 Comparing collections . 93

4.16 Dialog for visualizing bookmark-collections 94

5.1 Schema of a perspective projection in WebGL 103

6.1 Current search results on the keyword ”infanterie” (infantry)
in the RD . 119

6.2 Several searches over different topics 119

6.3 Activating the comparison through hovering 120

6.4 Keyboard-navigation while comparing collections 120

6.5 After moving to the collection with two same results 121

6.6 Focus on a query-collection to investigate 122

6.7 Three linked documents inside a query-collection 123

6.8 Document-preview on a focused recommendation 124

6.9 Connections to two collection in the overview mode 124

6.10 Activated document type filter 125

6.11 Detail window showing a recommendation 126

6.12 Bookmarking a result . 126

6.13 Opening a bookmark-collection created inside ECHO and
using uRank on it . 127

x

1 Introduction

The first chapter discusses the project’s motivation (Section 1.1), and pro-
vides a preview of the work discussed in the following chapters (Section
1.2) as well as an overview of this work’s structure (Section 1.3).

1.1 Motivation

Recommender systems help the user in finding resources from a network,
that match best depending on factors like user preferences or previous
results. EEXCESS (Chapter 3) is a project that supports people while using
their web-browser to read or create content by recommending documents
containing educational, cultural and scientific information from several
providers.

The project provides the possibility to analyze a single query by using the
built-in Recommendation Dashboard (RD) (Section 3.5.3). However, former
queries and their results are no longer accessible. Saving and listing previous
search-queries allows the user to access them, but “browsing through a
long list of documents to locate the information needed could be a mentally
exhausting task” (Chau, 2011, p. 2). Since the human visual system has
enormous power to perceive information from visualized data (Ware, 2012)
it leads to considerations about a proper visualization of EEXCESS’ query
history. Further it should be possible to visualize a set of the RD’s bookmark-
collection to allow analyze already stored results.

The user should not only be able to see the different query- or bookmark-
collections, but also to navigate through the graph to easily access specific
collections or their recommendations.

1

1 Introduction

The possibility to visualize relations between collections to show similarities
between different queries could help identify other interesting collections
during navigation.

Since recommendations contain several metadata-values, the user should
be able to see an intuitive summary of those values all over the results of
one collection. This summary could provide a visual characterization of the
collection. Metadata result should also be used to apply filters that help the
user to narrow down the result set, and find desired documents within all
collections.

1.2 Overview

To realize the ideas mentioned in Section 1.1, the Explorer of Collection
HistOries (ECHO) was developed.

It provides a 3D-visualization of the query history or a set of bookmark-
collections in the user’s browser, where the hardware-acceleration of the
graphic card is accessed through the WebGL-API. The user can easily browse
through the scene by using the keyboard or the mouse for navigation. It
is possible to access different Levels of detail (such as an overview over
the different queries or detailed result information) that provide different
information and interaction possibilities.

The recommendation results are visualized as a ring of icons surrounding
the collection node, which is placed in the center. The distance from the
center and size of the recommendation nodes represent their relevance
inside the collection. The space between the results and the center node is
used to show the results’ facet-values as a sunburst-diagram (Chapter 4.2.4)
and makes it possible to recognize the collection’s metadata distribution,
but it can also be used as an interface for applying filters at the same time.

Recommendation nodes that can contain a preview image of the underlying
document can be used to gain more information about the underlying doc-
ument or to access it through external tools for content-creation (Wordpress,
Google-Docs) that are linked to the RD.

2

1 Introduction

Figure 1.1: Focusing a query-collection in ECHO with an activated filter and the visualization of a
relation to another collection.

The user can activate a comparison mechanism that allows them to visualize
relations to other collections by linking the same documents over the whole
scene.

Figure 1.1 shows a demonstration of ECHO in use: a query-collection of
results was focused while its results are shown around its center. A filter
for the value ”de” on the language-facet is activate in the figure. The green
spline on the top refers to another collection that also shares the highlighted
recommendation.

1.3 Structure

This work is structured as follows:

• Chapter 2 provides an overview of related work on recommender
systems and graph visualization.

• Chapter 3 gives an introduction to the EEXCESS project and the RD.

3

1 Introduction

• Chapter 4 is the main chapter of this work, and it describes the func-
tionality of ECHO in detail.

• Chapter 5 goes into details of ECHO’s implementation and discusses
selected details of the implementation.

• Chapter 6 provides a case study to demonstrate the full functionality
of ECHO and its benefits in a typical scenario.

• Chapter 7 concludes this work by providing summary, a discussion
of lessons learned, and suggestions for potential future work.

4

2 Related work

Before discussing further details of this project, it is necessary to provide
some background information on the topics of recommender systems, graph
visualization and finally the visualization techniques for recommender systems in
the following chapter.

2.1 Recommender Systems

Recommender systems or recommendation systems (RSs) are built to automat-
ically (i.e. without an explicit user request) provide relevant items to the
users of specific systems, depending on their earlier behavior (like doing
search queries or buying specific items) on the system. Typical RSs work
with algorithms to suggest a personalized list of items to the user. Other
systems that do not personalize items, such as those that work by providing
the top ten list of bought books in an online-shop, may be more simple but
are usually not addressed by research on RSs (Ricci et al., 2010, p. 2).

2.1.1 Development of Recommender Systems Over the
Years

An initial motivation for developing RSs could be based on a simple hu-
man behavior: people tend to make their real-life decisions using rec-
ommendations (Ricci et al., 2010, p. 2). For instance, an employer uses
recommendation-letters as a decision-making aid. When deciding whether
or not to buy a book or watch a movie, recommendations can have a massive
influence on that decision.

5

2 Related work

When RSs began to evolve into an independent field of scientific research in
the 1990s, there was a high focus on letting other users of the same system
rate results, and on using simple algorithms by comparing the similarities of
users to retrieve accurate results. This approach is calledcollaborative filtering
(CF).

With the rise of e-commerce, users had to decide between hundreds of
products in online-shops. Thus, it became a more and more important task
to prevent an overload of products and to offer a small amount of best-
matching items. Scientists began to improve RSs by using more complex
algorithms and machine learning techniques, and started to track and use
more data about the user’s behavior. Thus, not only purchased items were
the base data for recommendations, but also the user’s navigation, product-
ratings, and reactions to previously recommended products like declining
or clicking on them.

(Konstan, 2004), mentions five works that influenced RSs in the first years
of the 21

st century.

• (Herlocker et al., 2004) investigated the similarities in the performance
of several published accuracy metrics on one content domain. First,
they came to the conclusion that those metrics do not measure the
same things explicitly but can be grouped into clusters with similar
measurements. Secondly, they found that not only those accuracy
measurements are important when rating a RS’s usefulness but also
factors like the novelty of a result.

• (Middleton, Shadbolt, and Roure, 2004), cover improvements of RSs
by creating profiles of the users’ interests using ontologies of research
article topics. This technology helps prevent the cold-start problem of
(new) RSs, which affects CF-based systems.

• In (Hofmann, 2004), “probabilistic latent semantic analysis and
expectation-maximization algorithms” (Konstan, 2004, p. 2) were used
to reduce dimensions and further build up a preference space. The
model describes independent factors that describe users’ preferences
as weighted vectors which leads to better predictions in RSs.

• The fourth article mentioned is (Huang, Chen, and Zeng, 2004),
which deals with sparse RSs. The authors investigate the influence of

6

2 Related work

spreading-activation algorithms to improve the recommender’s results
for new as well as for existing users.

• Finally, (Deshpande and Karypis, 2004), describes ways to find a list of
best matching items as is common in e-commerce systems. Therefore,
algorithms based on co-purchase are used.

Over the years, development of RSs have become a multi-discipline chal-
lenge: specialists for “Artificial intelligence, Human Computer Interaction,
Information Technology, Data Mining, Statistics, Adaptive User Interfaces,
Decision Support Systems, Marketing, or Consumer Behavior” (Ricci et al.,
2010, p. vii) are all involved in building different kinds of RSs.

Nowadays every internet user is faced with RSs. Well-known e-commerce
companies like Amazon.com or multimedia platforms such as Netflix, YouTube
and Spotify all recommend products, videos or music depending on the
user’s preferences. The value of a perfect RS can be illustrated by the Netflix
prize that offers $ 1 Million USD for significantly improving its RS (Ricci
et al., 2010, p. 3).

Even social-media platforms like Facebook and Twitter make use of RSs by
suggesting people to follow or to add as a friend. Dealing with user preferences
and connections to suggest other users in Web 2.0 emerged into a new sub-
topic called social RSs (Ricci et al., 2010, p. 646).

2.1.2 Visualization For Recommender Systems

This section gives an overview of possibilities for visualizing a recom-
mender’s data following a number of differently motivated approaches.

2.1.2.1 TalkExplorer

An approach for visualizing results of RSs was proposed by (Verbert et
al., 2013). Specifically, the authors created a tool to improve the Conference
Navigator 3 (CN3)1.

1Parra et al., 2012.

7

2 Related work

CN3 is a social platform created for academic conference attendees that
allows the users to browse through conferences and talks and find infor-
mation about other people related to a specific conference, like authors or
other attending users. It is possible to create personal schedules and add
tags to talks. Users can follow each other, as on other social networks, and
can browse lists of the most popular tags, most popular articles, most active
users, etc. CN3 can recommend conferences and talks to users based on the
collected information (”People who scheduled this presentation also scheduled
...”).

In order to visually connect all of this information, the authors developed
a component called TalkExplorer. Using the Aduna clustermap visualization
library, the tool allows interactive visualizations of CN3’s data which allow
explorations and control by the end user. In detail, the author’s goal was
to visualize the users’ interactions, tags and recommender agents. Figure
2.1 shows the neighborhood of different users and items they bookmarked
(yellow dots).

Finally, the user has the possibility to explore “both interrelationships
between users as well as interrelationships between agents and users (i.e.
which other users have bookmarked talks that are recommended to them by
one or more agents)” (Verbert et al., 2013, p. 5). Relations between users, tags,
and talks are also visualized to help users find relevant talks to attend.

2.1.2.2 PeerChooser

In RSs based on CF, sparsely populated matrices, which hold correlations
between rated items and users, can be a big problem for identifying similar
users or items to recommend due to a lack of ratings overlap. (O’Donovan et
al., 2008), tried to deal with that problem by visualizing similarities between
the actual user and other users and their preferences.

In particular, they described the problem through a movie-recommender
system where users can rate movies with specific genres. To visualize the
relations to other users and movie genres they like, the authors developed
PeerChooser. This Java and OpenGL based tool tries to support the user in

8

2 Related work

Figure 2.1: TalkExplorer (Verbert et al., 2013, p. 5)

finding other similar users by visualizing the mentioned connections and
by finding user-groups with similar interests, so called peer groups.

The visualization works within a force-directed graph where the actual user
is in the center, and the movie-genres are positioned around in a circle. Each
other user is visualized through an icon, whose position depends on that
user’s preferences. Thus, multiple users with similar interests are clustered
in similar positions. Figure 2.2 gives an example of how such relations
would look in PeerChooser.

PeerChooser also supports interaction: the user has the possibility to manipu-
late the visualized graph by deleting or moving elements. For example, if
the user moves a genre closer to the graph’s center its importance increases
and the positions of other users connected to the genre also change. Finally
the k-nearest users (orange icons in Figure 2.2) are used to calculate actual
recommendations of movies for the user.

9

2 Related work

Figure 2.2: Visualizing similar users of a movie-recommender with PeerChooser (O’Donovan
et al., 2008, p. 2)

10

2 Related work

2.2 Graph Visualizations

As this work focuses on visualizing multiple document collections and
providing interactive comparison mechanisms, the following section gives
an overview of different graph comparison techniques and comparison of
document collections particularly as well as background on visualizing time
oriented graphs.

2.2.1 Comparing Graphs

This section should provide an overview of some work on comparing graphs
in general. As every research and implementation focuses on domain-
specific data from different sources with different visualization goals, the
approaches vary greatly.

2.2.1.1 TreeJuxtaposer

An early work in the field of graph comparison was done by (Munzner
et al., 2003). It describes the TreeJuxtaposer tool, which was implemented to
compare huge trees with hundreds of thousands of nodes in a scalable way.
The tool faces the following challenges:

• Automatic identification of structural differences: Finding appropri-
ate algorithms for finding differences in trees.

• Differences characterization: It is not only necessary to know that
trees are different but also how they differ.

• Scalability in tree and display size: The work should support millions
of nodes in the future. Thus, it is necessary to consider such scales in
navigation and comparison.

To manage these problems, the authors made use of the following tech-
niques:

• Structural comparison: TreeJuxtaposer tries to find the most similar
node in another tree for each node. This makes it possible to highlight
the corresponding node when hovering over a node with the mouse.

11

2 Related work

The algorithm runs almost in linear preprocessing time and in almost
constant time during lookup.

• Guaranteed visibility: It is important that the user always sees the
currently highlighted tree, regardless of the current performed naviga-
tion.

• AccordionTree navigation: TreeJuxtaposer uses algorithms “based on
global rectangular Focus+Context distortion” (Munzner et al., 2003,
p. 2) adapted to phylogenetic trees to provide the user an appropriate
navigation.

The compared trees are visualized in two columns where similar subtrees
of both sides are highlighted in the same color. Trees are rendered in a
rectilinear layout where the root lays on the left side and the tree develops
to the right side of the column. TreeJuxtaposer supports several mechanisms
of interactions to identify nodes. The user can highlight a specific node
by mouse-over where the best matching node of the other tree is also
highlighted. Furthermore, it is possible to perform a search query to get
a node by its name. Highlighted nodes can be expanded by clicking on
them.

The system’s visualization underlies the Focus+Context “approach of show-
ing an area of distorted aggregate context around an easily changeable focus
point to allow a large overview integrated with details in limited screen real
estate.” (Munzner et al., 2003, p. 2)

Figure 2.3 shows a comparison-process of two different genetic trees using
TreeJuxtaposer.

2.2.1.2 Semantic Graph Visualiser

Another graph comparison tool is described by (Andrews, Wohlfahrt, and
Wurzinger, 2009), as Semantic Graph Visualiser (SGV) where the focus lies on
comparing two graphs which both visualize similar business models. Aside
from the comparison, the two graphs should be able to be merged into a
single graph.

The comparison using SGV works in six steps (Andrews, Wohlfahrt, and
Wurzinger, 2009, p. 3):

12

2 Related work

Figure 2.3: Usage sample of the TreeJuxtaposer comparing different genetic trees (Munzner
et al., 2003, p. 6).

13

2 Related work

• Reading two input graphs: Two graphs described in GraphML2 (Bran-
des, Eiglsperger, et al., 2010) are read and a similarity matrix for each
pair of nodes in the graphs is created.

• Finding matching nodes: Using the Hungarian Algorithm (Kuhn, 1955)
for each node, a matching node from the other graph is searched.

• Creating the merged graph: A new graph containing the nodes from
the first graph and the not-matching nodes from the second graph is
created and connected.

• Layouting: Either a layout-algorithm is applied to the new graph or
the user makes use of the possibility to adjust the layout by hand.

• Applying the layout to the old graphs: The newly calculated layout
of the merged graph is applied to both old graphs to make side-by-side
comparison easier.

• Manual editing: Finally, the user has the chance to edit the positions
or labels of the merged graph.

Figure 2.4 shows the usage of SGV in a sample of two graphs describing a
computer-buying-process.

2.2.1.3 Difference maps With Hierarchies

An interesting approach for comparing graphs is described by (Archambault,
2009). The underlying idea is to display graphs that contain the difference
of two graphs to compare (Figure 2.5). Those differences concern both
edges and vertices. Such difference maps may become very big and may
result in large computation effort and visualization problems. The authors
tried to solve that problem by introducing graph hierarchies. They allow
a difference map “to scale to larger graphs, as areas of the graph that the
user is not interested in are abstracted away, reducing visual complexity”
(Archambault, 2009, p. 1).

Graph hierarchies, which are defined as the recursive grouping of the
graph’s node, contain so-called Metanodes. They hold a subset of nodes and
connecting edges. It is important that hierarchies are path-preserving which
is fulfilled “if any path in a graph hierarchy level corresponds to one or

2http://graphml.graphdrawing.org/

14

2 Related work

Figure 2.4: Comparing two graphs describing a buying-workflow in SGV (Andrews,
Wohlfahrt, and Wurzinger, 2009, p. 2)

15

2 Related work

Figure 2.5: Example of two simple graphs (a),(b) and their difference map (c) (Archambault,
2009, p. 1)

Figure 2.6: Creating hierarchies by applying node- and edges-decompositions on the graph
(Archambault, 2009, p. 3)

more paths in the underlying difference map” (Archambault, 2009, p. 1). To
create hierarchies, decompositions by nodes and edges are applied to the
(combined) graph. This process is illustrated in Figure 2.6.

Finally, a technique called coarsening is applied to merge degree-1 nodes
(degree-1 coarsing) and to combine nodes with low betweenness-centrality-
difference within single meta nodes (betweenness coarsening) (Archambault,
2009, p. 3). Thus, only major differences in the graph are visualized.

Figure 2.7 shows difference maps of a graph with and without hierarchies
and coarsening.

2.2.1.4 Summary graph Visualization

One approach to handling multiple graphs, their differences, and similar
sub-graphs is to sum them up in summary graphs as (Koop, Freire, and Silva,
2013) introduced in their work. They described ideas to merge the data

16

2 Related work

Figure 2.7: Difference maps without a hierarchy (a), a hierarchy without coarsening (b),
Degree 1 coarsening (c) and Degree 1 coarsening & Betweenness coarsening (d)
(Archambault, 2009, p. 7)

17

2 Related work

Figure 2.8: A summary graph merging data and structures from four similar graphs (Koop,
Freire, and Silva, 2013, p. 3)

of more than two graphs but also tried to preserve the graphs’ structures
as well as possible. The user should have the possibility to influence the
changes of the merged structures by using break and join operations. This
allows them to bring out structures more evenly, if the corresponding nodes
of the graphs do not match perfectly.

Another focus of the authors was to provide good interaction methods for
easy exploring and manipulating of the summary graph. A summary graph
is calculated by computing pair wise graph matching using the Hungarian
Algorithm combined with similarity flooding (Melnik, Garcia-Molina, and
Rahm, 2002) to calculate the initial node substitution costs for improving
the result’s connectivity (Koop, Freire, and Silva, 2013, p. 4).

Figure 2.8 gives an example on how a summary graph may look if four
similar graphs were merged. To let the user recognize each source graph
in a summary graph, the authors make use of different colors if a node is
not the same on all graphs. The summary graph is editable, which means
that the user can influence the structure of the graph by breaking (splitting)
and joining nodes. This may be necessary if the nodes match but too much
crossing edges messes up the layout, for example.

18

2 Related work

2.2.2 Comparing Document Collections

One of the major goals of this work is to visualize several document collec-
tions: either the search history or bookmark-collections. The user should
have the possibility to easily find similarities and differences in those col-
lections. This section will provide a short overview of previous work on
visualizing the differences of document collections.

2.2.2.1 Donatien

A very interesting approach can be found in the work by (Hascoët and Drag-
icevic, 2011), which introduces a tool called Donatien. It was implemented to
demonstrate mechanisms for the visual comparison of document collections
and query histories which parallels the motivations of this work. The tool is
meant to fulfill the following needs:

• Combining collections
• Comparing collections
• Allowing interactions

To satisfy all three of these conditions, the authors decided to use different
layers for comparison. Each layer holds one collection and a layout is applied.
Layouts can be used on more layers to simplify comparing the underlying
collections. To make the comparison easier, the user can zoom and pan on
each layer. The nodes’ positions aren’t calculated by optimization based
algorithms like force-directed layouts, but are rather defined by so called
node signatures. A node’s signature is a property that may be calculated
through semantic data (e.g. the document’s content) or through structural
information, like its complexity-degree. The latter type of node signatures is
equivalent to node invariants. This type of positioning has several benefits:

• The layout is deterministic and predictive: the same set of documents
will produce the same layout every time it is calculated.

• The layout is stable: modifications of the data mostly lead to only
slight changes of the layout.

19

2 Related work

Figure 2.9: Comparing collections via layers in a label based layout (left) and multiple
zoom-factors on different layers (right) in Donatien (Hascoët and Dragicevic,
2011, p. 9)

• Ideal for superimposed comparing: documents with the same data
will have the same position in each layer. That means that if they are
the same in both graphs, they share the same positions.

Donatien supports two types of comparisons. As mentioned, users can su-
perimpose the layers. Due to the node signature layout, the same documents
share the same position and thus the user can easily identify them as the
same. Due to the possibility of interaction, errors can be corrected by drag
and drop. Such errors can occur due to little differences in metadata like
author, keywords, etc. A sample of superimposed comparing can be seen
in Figure 2.9. The second possibility to compare multiple collections is by
using a split-window view, where the graphs can be compared side by
side.

20

2 Related work

2.2.3 Time-Oriented Graphs

Sometimes a single set of data changes over time. To visualize those changes
is a challenge that also needs to be addressed in this work because different
collections of the query history are compared.

2.2.3.1 GraphAEL

One work that deals with changing graphs is (Erten et al., 2003). The authors
developed a software written in Java called GraphAEL with the goal of
visualizing evolving graphs. In particular, they provide an interface to query
results from a relational database, which stores documents related together
through their citations, topics, etc. When requesting a query, the user can
set a specific time-granularity. It results in citation-graphs, topic-graphs, or
co-authorship-graphs.

Once the data was collected, the graph can be visualized in GraphAEL. The
force-directed graph-drawing algorithm that is used to layout the graphs
uses a modification of the GRIP-algorithm (Gajer and Kobourov, 2001). Each
vertex has a timestamp attribute called timeslice. Only vertices with the same
timeslice attribute are connected within one force-directed layout.

Corresponding nodes with different timeslices need to be connected to
visualize the evolution of the graph. Those connections are made between
vertices with the same label on different timeslices. It is important to preserve
similar structures of the different connected groups to conserve the mental
map of the graph’s evolution.

The tool makes it possible to select from several visualizations: it is possible
to show a static representation of the timeslices in 2D or 3D where the con-
necting edges between the timeslices can be shown or hidden. Alternatively,
an animated representation can be selected. The interpolated values of edges
and vertices of two timeslices are animated instead of showing both sets.

To determine small changes within two timeslices, a difference graph can be
shown instead of the classic representation. It only visualizes the differences
between the two sets.

21

2 Related work

Figure 2.10 shows three time slices of a topic-graph visualized with GraphAEL.

2.2.3.2 Evolving Discourse Networks

(Brandes and Corman, 2003) also tried to find a good representation of
graphs, containing different states at a specific point of time. Although
the authors’ approach works on every kind of time-evolving graph, they
developed their tool to visualize information of different discourses, so that
the evolution of one or more persons’ discourse is visualized.

Typically, dynamic, animated graph drawing is used for visualizing changes
in graphs. This has the advantage that user can see the actual change and
his mental map is preserved. The problem is that when viewing a graph
at a specific state of time, the applied changes can’t be recognized (change
blindness (Nowell, Hetzler, and Tanasse, 2001)). This is the reason why
the authors introduced their layer-based model: they make use of semi-
transparent layers, each containing a graph of the current time stamp in a
3D space.

The tool was developed in JAVA using the Data Structures Library (JDSL)
and VRML for the 3D visualization. Using this approach has the advantage
of seeing changes on the graph at each state. Old states can be seen as
semitransparent in the top-view and fade out over time when as layers are
attached.

If a layer becomes populated new elements, they can be set on a suitable
position depending on the graph-layout, whereas nodes that already existed
in the layer remain in their positions. The change of the importance of a node
(in the authors model the importance of a discourse’s word) is visualized
through changing the nodes diameter in the graph.

This approach allows the analysis of the discourses of one, two or more
people, where each speaker gets their own color in the graph to help
distinguish between the different speeches. If a word is used by more than
one person frequently in a discourse, the overlap can be easily seen because
the different colored sub-graphs are connected at this node. Figure 2.11

gives an example of a group discussion using such layered visualization.

22

2 Related work

Figure 2.10: Three time slices of a topic-graph visualized with GraphAEL (Erten et al., 2003,
p. 9)

23

2 Related work

Figure 2.11: A group discussion visualized through layers (Brandes and Corman, 2003,
p. 6)

24

2 Related work

2.2.3.3 GEVOL

Software is typically developed with support of Concurrent Versions Systems
(CVS), where different authors can add, change, merge etc. shared source
code. (Collberg et al., 2003) tried to visualize the evolution of software in a
CVS system. They introduced GEVOL, a tool to show different representa-
tions of a software project’s chronological development as a dynamic graph
to address the following questions:

• When and where in the project were parts of the software created?
• When did heavy modifications of a software-part occur?
• Which part of the software may be unstable?

The tool is based on GRIP which “is designed to quickly layout graphs with
tens of thousands of vertices without assuming any information about the
underlying graphs” (Collberg et al., 2003, p. 3). There were two essential
challenges to manage:

• The drawing must be readable.
• The drawing must preserve the mental map when changing.

Therefore GRIP was extended with the support of node- and edge-weights
and the support of time slices.

The extracted data from a CVS are collected in time slices of one day and
can be represented in several visualizations:

• control flow graph
• inheritance graph
• call graph

Each graph lets the user find out interesting facts about the software. This is
sometimes necessary if, for example, a user has to extend, fix or rewrite some
software that is unfamiliar, which is badly written, or hardly documented,
in the worst case. Through those visualizations, the user can find out facts
about the structure, functionality and history of that program. When going
through the timeslices, the age of a modification is visualized through
different colors: new modifications are shown red and fade to a pale blue
over time. So, if a specific part of the graph is red all the time, it could mean
that there bugfixes are very frequently committed and the part may have to

25

2 Related work

Figure 2.12: Evolution of software in a CVS visualized with GEVOL. “Snapshots of the
SandMark call-graph. Nodes start out red. As time passes and a node does
not change, it turns purple and, finally, blue. When another change is affected
the node again becomes red.” (Collberg et al., 2003, p. 6)

be rewritten. Figure 2.12 gives an example of a visualization in GEVOL. The
user can click on an interesting node, and information about the authors is
shown.

2.2.3.4 Further Related Work on Time-Oriented Graphs

Further research about changes in dynamic graphs can be found in (Bach,
Pietriga, and Fekete, 2014). The authors used animations to help understand
changes in dynamic networks. Their tool “GraphDiaries relies on animated
transitions that highlight changes in the network between time steps, thus
helping users identify and understand those changes.” (Bach, Pietriga, and
Fekete, 2014, p. 1)
(Fu et al., 2007) describes a timeslice-based visualization of dynamic graphs
by using “a 2.5D visualization for temporal email networks to analyze the

26

2 Related work

Figure 2.13: Timeslices visualizing the evolution of an email-network (Fu et al., 2007, p. 5).

evolution of email relationships changing over time” (Fu et al., 2007, p. 1)
(see Figure 2.13).
(Ahn et al., 2011) introduce two prototype applications that propose five
principles of implementing temporal visualizations including encoding time
into visual properties.

(Wozelka, Kröll, and Sabol, 2015) introduced a “time-oriented graph visu-
alisation approach which maps temporal information to visual properties
such as size, transparency and position and, combined with advanced graph
navigation features, facilitates the identification and exploration of temporal
relationships.” (Wozelka, Kröll, and Sabol, 2015, p. 1)

2.3 Further Related Work

The Knowminer Search (Rauch et al., 2015) is a search tool that builds up on
the faceted search approach (Zheng et al., 2013), combined with interactive
visualizations and possibilities to organize search results (see Figure 2.14). It
shares similar ideas of visualizing results with the EEXCESS - Recommender

27

2 Related work

Figure 2.14: Knowminer’s web-based search interface (left), the graph-view on the top-right
and an information landscape (bottom-right) ((Rauch et al., 2015, p. 4)).

Dashboard (Section 3.3). Both share a representation of the results through
a Geo-visualization and an Information Landscape visualization (see Section
3.3.2).

28

3 EEXCESS

This work contributed to the EEXCESS (Enhancing Europe’s eXchange in
Cultural Educational and Scientific ReSources)1 recommender system project.
Its goal is to support the user during the consumption and creation of
content on the web (Granitzer et al., 2013, p. 2) by augmenting the current
browser window with educational, cultural and scientific resources from
the so-called long-tail.

This chapter gives an overview of the motivation and background of the
EEXCESS project, and provides technical details of the software used in
Section 3.5.

3.1 Motivation

With the enormous growth of content in the web over the last decades, it
has become a big challenge to find and retrieve valuable results. A few big-
players have emerged, like search engines or social-networks that support
finding and retrieving of relevant content. It is particularly difficult to find
scientific or cultural documents, as the results are often lost in the so-called
long-tail. The long-tail which is a synonym for the mass of potentially
relevant results that is rarely retrieved in searches, for instance, because they
are not at the head of the demand (not popular or out of the mainstream
for example) (Anderson, 2013).

The goal of EEXCESS was to bring these long-tail results with cultural,
educational or scientific context to the user, by creating an interface that
uses the current content of a browser window to extract information from

1http://www.eexcess.eu/

29

3 EEXCESS

Figure 3.1: Schema of the CODE pipeline for analyzing and the extracting of scientific data
embedded in publications (Mutlu and Sabol, 2015, p. 2)

it, infer the user’s interests and use this information as input for an RS that
retrieves the corresponding results.

Even if documents can be found by users, another challenge is it to extract
data from the content. An approach to support the user in both extracting
and visualizing this data automatically is the CODE Visualisation-Wizard
which was designed as “a tool to automatically extract data from scientific
publications and propose the appropriate means to visualise the facts and
data therein” (Mutlu, Hoefler, et al., 2014, p. 1). It helps the user in fulfilling
the following tasks (Tschinkel, Veas, et al., 2014, p. 1):

• selecting and configuring the visualizations
• aggregating datasets
• brushing and linking over multiple datasets

As Figure 3.1 illustrates, the Visualisation-Wizard is the last one of several
steps in a pipeline of the CODE project.

Similar ideas can also be found in the objectives of the EEXCESS Recommen-
dation Dashboard (see Section 3.3).

3.2 Basic Challenges

Due to the specific focus of the EEXCESS project, it was necessary to address
several research-based challenges (Granitzer et al., 2013, p. 2):

• The system should work both when the user consumes data, like
surfing the web but also if new content is created, like writing blog-
posts or Wikipedia articles (See Section 3.4.2).

30

3 EEXCESS

• It is necessary to implement EEXCESS within an thoughtful user
interface design to ensure a high rate of user acceptance.

• Every time a recommendation request is initiated, data about the
user’s current task is sent to a server. This fact means that privacy
considerations arise. Consequently, only a minimum of necessary user
data must be sent to the servers by interpreting the content on the
client locally as far as possible. The trade-off between privacy and
performance is mentioned as one of the largest challenges.

• To reduce immense costs by developing one large-scale RS it was
intended to build an RS-network instead. Each instance of this net-
work should provide specific content to a special user group. This
network was realized through a handful of external providers: “The
recommender retrieves results from various data sources, e.g. Euro-
peana for cultural heritage resources or Mendeley for scientific papers.”
(Tschinkel, Sciascio, et al., 2015, p. 2) Further providers were included
like the Deutsche Zentralbibliothek für Wirtschaftswissenschaften (ZBW)2.

• The communication with these providers is managed by the Federated
Recommender. It acts as a service to send queries to the different
providers through their APIs and to collect, harmonize and fill the
received results with metadata before passing them back to the client.
Figure 3.2 illustrates its functionality (also see Section 3.5.2 for a
technical discussion).

3.3 Recommendation Dashboard

One of the core-features of EEXCESS is the Recommendation Dashboard
(RD) (Figure 3.3). Due to the fact that the user hardly has control over the
search of the RS itself, getting an overview over the received results and
doing individual inspections of the documents may be very challenging for
the end-user (Tschinkel, Sciascio, et al., 2015).

The RD was developed to avoid these problems by augmenting user inter-
faces with visualizations and assisting users in analysis and exploration of
the recommendation space (Veas et al., 2015, p. 1). The dashboard provides

2http://www.zbw.eu/

31

3 EEXCESS

Figure 3.2: Schema describing the federated recommender’s functionality (Tschinkel, Scias-
cio, et al., 2015, p. 2)

different visualization that take advantage of the human visual system’s
capabilities to deal with a lot of data simultaneously, and recognize patterns
within (Tschinkel, Sciascio, et al., 2015, p. 2).

3.3.1 Functionality Of The RD

The dashboard allows to visualize result-items or recommendations hold-
ing metadata of their documents. These items can either be the result of
an EEXCESS query (query-collection) or a saved bookmark-collection (see
Section 4.2.6). Depending on the user’s needs and the content of the items,
a visualization can be chosen to represent the items’ data.

3.3.1.1 Brushing

Since the user may be interested in finding and visualizing subsets of the
items, brushing (Becker and Cleveland, 1987) can be used. Depending on
the chosen visualization, a brush defines a subset of the whole dataset
by using interactive methods like drawing a rectangular field on the Geo-
View-visualization’s map or by selecting a bar in the Bar-Chart-visualization
(Tschinkel, Hafner, et al., 2016). After setting a brush all not matching items

32

3 EEXCESS

Figure 3.3: EEXCESS-Recommendation Dashboard: On the top left (1) the user can choose
between the current search results and bookmarked collections. In the left panel
(2) the actual resources are listed. In the middle (3) the current visualization
is shown. The top right corner (4) provides possibilities to change settings, to
bookmark items and to change the current visualization. (5) The bottom right
panel holds the active Micro-Visualizations (see Section 3.3.3). (Tschinkel, Sciascio,
et al., 2015)

33

3 EEXCESS

Figure 3.4: Brushing items in the Geo-View-visualization: A shape is limiting the results
inside the brush. Results outside the brush are greyed-out in the item list on
the left side. The current brush is also shown as a Micro-Visualization on the
bottom-right side and can be applied there as a permanent filter by clicking on
the lock-icon.

are greyed-out in the list and in the current visualization to help the user
recognize the chosen subset (see Figure 3.4).

3.3.1.2 Filtering

The user may want to remove irrelevant items from the current query- or
bookmark-collection. Therefore a brush can be applied as a (permanent)
filter by clicking the lock-icon of the corresponding Micro-Visualization (see
Section 3.3.3) (Tschinkel, Hafner, et al., 2016). This leads to a removal of
all items that do not match the current brush. If the user changes the
visualization afterwards, only the filtered items are displayed. It is further
possible to apply multiple filters by brushing again on any visualization. All
applied filters are permanently visible in the filter-area. They can be each
removed by clicking the trash-icon.

34

3 EEXCESS

3.3.1.3 Bookmarking

An EEXCESS query-collection may contain interesting items that the user
want to keep. Therefore the RD provides a bookmarking functionality. The
current displayed - and maybe filtered - items (which can result from a
query or an already loaded bookmark-collection) can be added to an existing
collection or a completely new one can be created. Bookmark-collections are
stored in the user’s browser storage, which means they can be restored after
closing the browser window. It is possible to select a bookmark-collection
by using the dropdown in the top-left corner of the RD (Figure 3.3 (1)). A
set of bookmark-collections also can be visualized in ECHO (see Section
4.2.6).

3.3.1.4 User Interface

The dashboard is visually structured as follows (see Figure 3.3)

• In the top left corner (1) the user can choose between stored bookmark-
collections and current search result to display.

• On the left side (2), all results of the current query- or bookmark-
collection are listed showing the result’s title, a preview image, the
provider, the language, a link to the resource, and a bookmark-icon.
Clicking on this icon opens a bookmark-form where the user can add
that item to an existing or new bookmark-collection.

• The main-view (3) is shown in the middle where the selected visual-
ization is rendered.

• In the top-right corner (4), the control panel can be found, where the
user can choose between the available visualizations, can set different
options and can bookmark the current items.

• In the bottom-right corner (5), the currently applied filters are shown
in the filter-area as Micro-Visualizations. If a an active brush exists, or a
filter is applied, it is visualized as a Micro-Visualization (Section 3.3.3)
in the corresponding filter-box. Here the user has the possibility to
delete the filter or to make a brush permanent as a filter.

35

3 EEXCESS

3.3.2 Visualizations

The current version of the RD supports five different visualizations. Each of
those has a different way of showing information from the results by making
use of the result-items’ metadata: the results contain a title, description, and
a thumbnail, but also geo-references, timestamps, the language, the name of
the data-provider, mime-type, and the underlying license of the document
(Tschinkel, Sciascio, et al., 2015, p. 2) The latter are summed up as the
results’ facets (for a detailed list, see Section 5.6.1). All of the visualizations
described below are realized within the plugin system (see Section 3.5.3.2)
of the RD.

3.3.2.1 Timeline

The Timeline visualization makes use of the results’ timestamps (x-axis)
to visualize recommendations, their timestamps and categorical metadata
(provider or language) using the y-axis and a color-mapping. It is possible
to switch between those two facets using the color-mapping button. The
different values of the selected facet type can be distinguished by different
color representations. The other facet is described by a result’s position on
the y-axis. Figure 3.5 gives an example of a timeline-visualization with the
providers encoded using colors and languages positioned along the y-axis.
At the bottom of this view it is possible to define a time-range and apply it
as a brush.

3.3.2.2 GeoView

Many results contain geographical information, represented by coordinates.
This makes it possible to visualize those results on a map using the GeoView
visualization. As with the timeline visualization, the user again has the
possibility to choose the categorical facet that describes the results via
different colors on the map.

This view can also deal with rendering many results in a small area on
the map: “When the density of single data items on screen becomes too

36

3 EEXCESS

Figure 3.5: Visualizing the results’ providers on a timeline in the EEXCESS-RD.

high for displaying them separately they will be aggregated into a single
symbol – a ”donut chart” – representing the distribution of the categorical
metadata and displaying the number of the underlying items in the centre.”
(Tschinkel, Sciascio, et al., 2015, p. 3)

Figure 3.6 shows results in the GeoView with the data-provider mapped onto
color. If the user wants to limit the result to a specific region, a rectangular
brush tool can be used to select resources depending on their geo-reference
metadata.

3.3.2.3 Bar-Chart

Another possibility for visualizing the results is to use the Bar-Chart. It
renders all values of the selected facet on the x-axis and the number of their
occurrences on the y-axis. Clicking on a bar applies this value as a brush.
The Bar-Chart only supports the categorical filters provider and language.
One of those facets can be chosen to be shown on the x-axis, the other one is

37

3 EEXCESS

Figure 3.6: Results represented via their geographical information on a map with different
colors, encoding the data-providers.

38

3 EEXCESS

Figure 3.7: A Bar-Chart with an applied brush on a value of the language-facet, which is
represented on the x-axis.

represented through a color. Figure 3.7 shows a Bar-Chart with an applied
brush on a specific language-facet value. It also shows that the Bar-Chart’s
categorical Micro-Visualization is represented through hexagons (Tschinkel,
Hafner, et al., 2016).

3.3.2.4 Information Landscape

The Information Landscape visualization provides an approach for visual-
izing an overview of dominant topical clusters, relationship between them
and for identifying topical outliers, using a geographic map metaphor. It
renders a topical landscape model and computes the x/y-position of the
results, depending on their extracted keywords using force-directed placement
(Fruchterman and Reingold, 1991). As Figure 3.8 shows, this leads to an
easily recognizable representation of the resulting clustering of the different
documents. Results with similar keywords are positioned closer than those
with completely different keywords.

The Information Landscape makes use of metaphors based on map reading
to enable visual thinking in the exploratory phase. (Ulbrich et al., 2015).
“An information landscape conveys similarity of topics in a data set through
spatial proximity and density of topics as elevation in the visualization.
Hills represent groups (clusters) of topically related documents separated

39

3 EEXCESS

Figure 3.8: Landscape-visualization of the RS’s results in the RD

by areas represented as sea. Higher hills group more documents than lower
ones.” (Ulbrich et al., 2015, p. 3)

The user has the possibility to perform zoom and pan operations on the
map to navigate. On the right side of the landscape a tag-cloud can be
found holding the sorted keywords of the results. Hovering a keyword
leads to highlighting the matching items on the map. Brushing elements in
the Information Landscape works by clicking on one or multiple keywords
which hence appear in the keyword-Micro-Visualization.

3.3.2.5 uRank

An extensive visualization included in the RD is uRank. The plugin pro-
vides “interactive methods for understanding, refining and reorganizing
documents on-the-fly as information needs evolve” (Sciascio, Sabol, and
Veas, 2015, p. 1).

40

3 EEXCESS

Figure 3.9: uRank user interface integrated int to RD. The left side of the RD shows the
(re-ranked) recommender results (1) and the left side of the visualization-area
(2) shows the Ranking View. They both “present a list with augmented document
titles and stacked bars indicating relevance scores” (Sciascio, Sabol, and Veas,
2016, p. 4). The Tag-Box (3) holds the extracted and ranked keywords of the
results. The Query Box (4) holds the keywords selected by the user. The keyword-
Micro-Visualization (5) shows the current brush and gives the user a possibility
to apply the selected keywords as a filter on the current items

It is an interactive user-driven tool that supports exploration of textual
document recommendations through:

• an automatically generated overview of the document collection de-
picted as keyword tags

• a drag-and-drop-based mechanism for refining search interests
• a transparent stacked-bar representation to convey document ranking

and scores, plus the query term contribution

Figure 3.9 shows the current implementation of uRank inside the RD.

The keywords are extracted from the title and descriptions of the retrieved
recommendations using a combination of part-of-speech tagging (Brill, 1992),
the Porter Stemmer method (Porter, 2006) and TF-IDF (term frequency - inverse
document frequency) (Salton and McGill, 1986). The keywords provide a
topical overview of the result set and also makes it possible to refine the
ranking (Sciascio, Sabol, and Veas, 2015, p. 2). To manipulate the list, the
user can make use of the tag-box which can be found on the top. Possible
manipulations are the additions of new keywords, their removal, or the

41

3 EEXCESS

change of weight. The latter can be done by using the built in weight slider
of each keyword. Adding keywords works through a simple drag-and-
drop mechanism. Hovering over the keywords highlights the corresponding
documents. Next to the keyword-list, the ranking visualization can be found. It
is divided into a list of document titles and matching keywords, represented
as stacked bars, which visualize the importance of the selected keywords to
the corresponding recommendations.

3.3.3 Micro-Visualizations

The RD further provides so called Micro-Visualizations (Tschinkel, Hafner,
et al., 2016). Since the user has the possibility to filter results on each
visualization through brushing, the Micro-Visualizations give an overview of
the current set filters on the right side of the RD.

“The visual design is data type-specific to convey the filter information
in an adequate, natural manner. As we focus on reducing the user load
and minimising the use of screen area, the design includes just enough
information to represent the filters.” (Tschinkel, Hafner, et al., 2016, pp. 4-5)
Figure 3.10 provides a sample of different Micro-Visualizations. It can be seen
that only the Keywords provides the lock-icon due to already applied filters
on the other visualizations.

3.3.4 VizRec

The user has the possibility to visualize the EEXCESS results with any of the
visualizations above. The RD itself does not support the user in finding the
most meaningful visualization depending on the underlying data. Therefore
a visualization recommender called VizRec was integrated in the RD, that
suggests the best visualization for the given data. VizRec has two ways to
recommend proper visualizations (Mutlu et al., 2015a, p. 2):

• It automatically identifies the set of appropriate visualizations using
a rule-based algorithm to analyze compatibility between visuals and
input data.

42

3 EEXCESS

Figure 3.10: The different Micro-Visualizations of the RD

43

3 EEXCESS

Figure 3.11: VizRec workflow for recommending visualizations (Mutlu et al., 2015b, p. 3)

• It filters and ranks a subset based on user’s preferences to be recom-
mended as the list of top-n visualizations that best reflect the user’s
information needs.

Figure 3.11 illustrates VizRec’s general workflow (Mutlu et al., 2015b, p. 3).

If the VizRec feature, which can be activated optionally, is turned on, the
received EEXCESS recommender results and a unique User-ID are sent
to a VizRec server. Depending on the user’s preferences and the received
data VizRec replies with a ranked list of visualizations. Each recommended
visualization also holds the most relevant mapping (a Bar-Chart with the
providers on the x-axis for example).

3.4 Frontend Implementations

The development of EEXCESS has resulted in several prototypes over the
last few years that can be used 3. As mentioned above, it is necessary to
distinguish between the usage of EEXCESS while reading content on the
web, and while writing content.

3https://github.com/eexcess

44

3 EEXCESS

3.4.1 While Reading Content

Using the EEXCESS Chrome-Extension, the user retrieves recommended
documents while surfing the web. With the current version installed via
Chrome Web Store, keywords are extracted from the content the user is
currently reading. This not only means that the current website is analyzed,
but also that the extension tries to identify the paragraph that is most likely
being read at the moment in order to get the best fitting keywords.

The keywords extracted are shown in a discreet bar at the bottom of the page,
where they can be removed or set as the main-topic by dragging one keyword
into a box. Every change in the keywords starts a new recommendation
request on the Federated Recommender. While waiting for the results after
requesting, the user gets visual feedback that the search is underway via the
animation of the EEXCESS-logo at the injected EEXCESS-bar at the bottom
of the page. After retrieving results, the user can open the extension’s result
list where the documents are listed in a grid view. The user now has the
option to open the RD.

Figure 3.12 shows the EEXCESS Chrome-Plugin while browsing a Wikipedia
article. The current paragraph the user is focusing on is detected and is
highlighted by a green frame. At the bottom, the extracted keywords are
listed with Technische Universität Graz manually set as main-topic.

3.4.2 While Creating Content

As mentioned above, one of the goals of EEXCESS was not only to provide
results when reading content but also to allow their injection while creating
content. Therefore plugins for several browser-based systems were created,
that allow the user to enrich content during writing, by getting additional
cultural, educational or scientific resources from EEXCESS providers for
use as reference in their written content.

Plugins are currently available for Wordpress, Moodle and GoogleDocs.
An example of use with the GoogleDocs Plugin can be seen in Figure 3.13.

45

3 EEXCESS

Figure 3.12: Screenshot of the EEXCESS-Chrome-Plugin used while browsing a Wikipedia
article

3.5 Technical Background

As can be seen in Figure 3.14, EEXCESS consists of a lot of sub projects,
used on the server- or client side. The following sections describe structures,
modules and interfaces to provide some technical background about their
usage that is necessary for further understanding.

3.5.1 Code Structure

The code of each EEXCESS sub project is managed via GitHub4. To connect
the modules, GIT-Submodules are used where only a commit of a foreign
repository is stored to prevent redundant copying and updating from foreign
repositories. This work was implemented as a submodule inside a fork of
the EEXCESS/visualization-widgets repository.

4https://github.com/EEXCESS/

46

3 EEXCESS

Figure 3.13: Usage example of the EXCESS GoogleDocs-Plugin

47

3 EEXCESS

Figure 3.14: The architecture of EEXCESS (Source: https://github.com/EEXCESS/eexcess)

48

3 EEXCESS

3.5.2 EEXCESS API

One core-functionality of EEXCESS is its recommender-service, the so-called
Federated Recommender Service. The API5 can be called up through a URL,
whereas the POST-method is used and keywords are sent within the POST
Payload.

The JSON-response contains data of the received results from the different
providers. A single result contains a unique ID, the URL to the document,
a date, a preview-image and metadata like the provider, the license, its
language and the media type. The latter are called facets in the following
chapters.

A second possibility to get the results from the EEXCESS-API is using the
Privacy Proxy Services: Its request- and response structure is nearly the
same as the one of the Federated Recommender Service. There are two main
reasons why the Privacy Proxy Service should be used instead of calling the
Federated Recommender Service directly:

• Privacy: As mentioned in Section 3.2, privacy was one of the basic
challenges to address. To send as little data as possible from the
client’s browser to the Federated Recommender Service, a proxy service
was implemented to be set between the client and the recommender
server. Thus, the recommender does not get information about who
sent the request containing sensitive data like keywords.

• Logging: The privacy proxy allows to log information for internal us-
age. Each query and response is logged implicitly by the proxy server.
But it also has the possibility of explicit logging through different
API-calls such as moduleOpened, itemRated, itemCitedAsText etc.

3.5.3 Recommendation Dashboard

The RD (described in Section 3.3) is responsible for providing different visu-
alizations of the recommender-results. It is mainly written in JavaScript with
some additional html and CSS-files, typical for frontend-web-applications.

5https://github.com/EEXCESS/eexcess/wiki/Federated-Recommender-Service

49

3 EEXCESS

3.5.3.1 Used Libraries

The RD makes use of the power of different well known JavaScript libraries.
Some of them are provided in the following list:

• For modifying and manipulating the HTML page’s DOM JQuery6

is used, since it provides an extensive set of manipulation methods
(Miles, 2016).

• Since JavaScript does not support a native dynamic loading of source-
code files, requireJS7 and Modernizr8 are used to load files on demand,
because of a lot of different modules and external libraries used within
the dashboard.

• The D39-library, which provides a lot of visualization methods is used
by most of the visualization widgets that are included as plugins.

• The GeoView visualization uses the Leaflet10-library to provide an
interactive map based on OpenStreetMap11 data.

3.5.3.2 Plugin Structure

The EEXCESS RD provides a plugin-system for easily including new vi-
sualizations without touching the core-code. By registering a plugin in
the plugins.js file and after adding a button in the index.html, it can be
accessed through the frontend.

Each plugin has to have at least the following methods in its main file located
under Dashboard/Plugins: initialize, finalize and draw. The plugin’s
entire code can be located at an arbitrary location inside the project.

6https://jquery.com/
7http://requirejs.org/
8https://modernizr.com/
9http://d3js.org/

10http://leafletjs.com/
11http://www.openstreetmap.org

50

3 EEXCESS

3.5.3.3 Communication Between Modules

To help different plugins and modules of the RD communicate, such
as when a query was triggered, results arrived or were rated, they use
the window.postMessage method of the browser, to send a message and
window.onmessage to listen for specific messages.

51

4 ECHO - Explorer of Collection
Histories

This chapter first elaborates on the requirements from several use cases in
Section 4.1 and further discusses all features derived from them in Section
4.2.

4.1 Requirements

Before defining ECHO’s features, it was necessary to identify the require-
ments in order to identify them. They can be devided into functional re-
quirements (Section 4.1.2) and non functional requirements (Section 4.1.3).
The requirements were derived from a list of possible use cases use cases
(Section 4.1.1)

4.1.1 Use Cases

The following use cases were conceived in order to to identify which re-
quirements were necessary for ECHO.

4.1.1.1 Visualizing a Collection of Recommended Documents

ECHO should support the user while using the EEXCESS-Recommendation
Dashboard (see Section 3.3). Thus, the user wants an easy way to visualize a
data-collection containing representations of recommended documents. The
documents’ available metadata should be visible and easy to understand.

52

4 ECHO - Explorer of Collection Histories

Since the collections may contain a lot of results, the user may want to see
this data summarized in a way that is easy to understand. Depending on the
media type, a preview image can help the user to identify and categorize
the underlying content.

4.1.1.2 Finding and Using Interesting Results

The visualization of a collection should allow the user to search and find
interesting results. The recommended documents may contain textual con-
tent, images, videos, or sound files. Thus, a logical conclusion would be
that the user wants to discover recommended documents by their file type.
However, the documents’ further metadata (language, license, provider, type,
year) may also provide a valuable opportunity to find other interesting
recommendations. The user wants to interact with the visualization to select
and filter recommendations by their metadata.

Furthermore, the user may want to use the documents discovered in the
collection. They may simply want to open the corresponding document, or
they may want to use it as a reference externally: The RD makes it possible
to use recommended results in external tools, depending on the current
underlying EEXCESS frontend implementation (see Section 3.4). The user
might also want to make use of this functionality in ECHO.

4.1.1.3 Visualizing the Query History

One basic motivation behind ECHO is the desire to explore former queries.
This feature is not available in other RD plugins as of yet. Thus, the user
may want to use ECHO to visualize the entire query history. Users may also
want to navigate through a timeline of queries without much effort, and also
want to have the possibility to access former queries and investigate them as
described before. The user wants to easily identify former queries by specific
characteristics, such as the number of results or the query keywords.

Queries are represented by query-collections. Each of them holds results
from search queries.

53

4 ECHO - Explorer of Collection Histories

Finally, one motivation for ECHO was to allow comparisons between dif-
ferent query-collections (see the motivation in Section 1.1). Thus, a clever
method for comparing results across multiple queries is necessary.

4.1.1.4 Organizing Recommendations

Since the user may be interested in multiple results from different query-
collections, it must be necessary to bookmark them, as is possible in other RD
plugins. These bookmarks are stored in bookmark-collections. Bookmark-
collections are created by the user to store individual results on demand.

The user might also be very interested in visualizing them in the same
way as the query-collections are visualized. This may help to refine the
bookmarks by using the power of ECHO’s visualization techniques.

————-

4.1.2 Functional Requirements

Having defined simple the use cases in Section 4.1.1, ECHO’s functional
requirements can be derived. They will help to determine the proper ways
of designing and implementing ECHO afterwards.

4.1.2.1 Visualizing a Query-Collection Containing Results of
Recommended Documents

Consideration of the use cases in Section 4.1.1.1 lead to the following
requirements:

• FR1.1: Proper visualization of an EEXCESS search query and its re-
sults.

• FR1.2: A clear layout that lets the user easily identify different results.
It must be possible to deal with dozens of results without causing a
loss of overview.

54

4 ECHO - Explorer of Collection Histories

4.1.2.2 Visualizing Results of Cultural, Historical and Scientific Data

When focusing on the type of data of which the results consist, further
requirements can be derived from the Sections 4.1.1.1 and 4.1.1.2:

• FR2.1: Since the underlying documents of the results have different me-
dia types (text, image, audio, video, etc.), a good preview is necessary
in order easily to identify their content.

• FR2.2: Each result has a set of metadata values (including the file type).
These facets have to be visualized in such a way that the user can
easily distinguish between and recognize them.

• FR2.3: A summary of a collection’s facets should be visible in order to
see its character and to be able to distinguish it from other collections
(see Section 4.1.2.3).

• FR2.4: Since the collections can contain a lot of results, a filtering
method is a must. By interacting with the visualization, the user
should be able to filter the results by their facets.

• FR2.5: The relevance of each result must be easily recognizable by
the user, allowing them to find the most valuable results inside a
collection.

• FR2.6: Results should be usable in external tools, defined in the EEX-
CESS implementation, and it should also be possible to open them
externally.

4.1.2.3 Dealing with Multiple Data Collections from a Search History

The use case regarding visualizing the query history (Section 4.1.1.3) leads
to the following requirements:

• FR3.1: EEXCESS search queries and their results need to be stored for
later usage.

• FR3.2: This resulting query history needs to be visualized. Thus, mul-
tiple collections must be visible at once.

• FR3.3: To see how the search queries developed over time, each query-
collection has to be visualized in such a way that it can clearly be

55

4 ECHO - Explorer of Collection Histories

identified and distinguished from others by taking the results into
account.

• FR3.4: The user should be allowed to show differences, relations and
similarities between different query-collections. Therefore, a visual-
ization technique must be available to compare multiple collections
to show them. It should be kept in mind that documents can occur
in multiple collections. Thus, the visualization must allow connec-
tions between those documents to show their occurrence in different
query-collections over time.

• FR3.5: To allow the user to extend research on interesting results to
multiple query-collections, it is important that they be able to locate
them by their facets. This is possible by extending a potential filtering
method (mentioned in Section 4.1.2.2) to all collections.

4.1.2.4 Navigation & LODs

Combining the requirements above, it is important to consider the navigation
and representations on different Levels Of Detail (LOD) offered by ECHO:

• FR4.1: It is necessary to visualize single results (Section 4.1.2.2), single
collections (Section 4.1.2.1), and the whole query history (Section
4.1.2.3) simultaneously. Thus, it is necessary to deal with different
LODs, in order to prevent clutter and user overload.

• FR4.2: A seamless transition between those LODs is necessary.
• FR4.3: Furthermore, navigation is a big challenge. The user will want

to navigate easily through the query history and be able to discover a
collection or single results.

4.1.2.5 Organize Results & Bookmarking

As discussed in the use case above (Section 4.1.1.4), it should be possible to
visualize the EEXCESS bookmark-collections.

Dealing with bookmark-collections leads to the following requirements:

56

4 ECHO - Explorer of Collection Histories

• FR5.1: ECHO should allow users to bookmark single results. The user
needs to be able to either choose an existing bookmark-collection or
create a new one.

• FR5.2: There should be the option to switch between visualizing
the query history and a selected set of bookmark-collections. The
bookmark-collections should be visualized in the same way as query-
collections.

• FR5.3: It must be possible to use different results from collections in
external tools.

4.1.3 Non Functional Requirements

In addition to the functional requirements (Section 4.1.2), other important
prerequisites have to be defined:

Performance In contrast to other RD visualizations, ECHO has to deal
with multiple collections, which means that the performance has to be
considered.

It is necessary to consider the rendering technique used. Current visual-
izations are based on HTML5-Canvas rendering using the 2D API, which
may or may not be hardware accelerated. The potential usage of a GPU-
supported rendering has to be taken into account (NFR1.1). Performance
has to be kept in mind during the implementation process in general, so as
to avoid bottlenecks later on (NFR1.2).

System Requirements ECHO and the RD, as well as EEXCESS in general,
should be usable through a common web browser. Thus, there are no special
system requirements for using ECHO:

• NFR2.1: No special software should be necessary except a modern
web browser.

• NFR2.2: ECHO also has to be usable without depending on special
hardware and drivers.

• NFR2.3: ECHO should work on multiple operating systems.

57

4 ECHO - Explorer of Collection Histories

Extensibility The implementation design should take extensibility with
further features in future into account. Thus, well-documented, and clean
code is necessary, as well as well-defined object-oriented modules (NFR3).

4.2 Features

After describing all functional and non-functional requirements in Section
4.1, ECHO’s functional features can now be derived.

The following section begins with the design of a proper visual layout
(Section 4.2.1) and navigation mechanism (Section 4.2.2).

Further features derived from the requirements are worked out in the
following sections:

• filtering (Section 4.2.3)
• comparing collections (Section 4.2.5)
• collection summary (Section 4.2.4)
• bookmarking functionality (Section 4.2.6)

4.2.1 Visualization Layout

As a result of the requirements in the Sections 4.1.2.1, 4.1.2.2, and 4.1.2.3
this section deals with the layout of ECHO’s visualization.

In this section, first, the basic concept of the layout is discussed. Next,
different ideas for the visual appearance of collections and results are
discussed (Sections 4.2.1.2 and 4.2.1.3. This is followed by a concept for
visualizing multiple collections at once (Section 4.2.1.4).

4.2.1.1 Basic Concept

As described in Section 4.1.2.1, the results of an EEEXCESS search query
need to be visualized.

58

4 ECHO - Explorer of Collection Histories

It seems likely that search results may be listed, ranked from the top to the
bottom, with a clickable title and a short abstract, as people are familiar
with from search engines like Google1.

Since the documents behind the EEXCESS search results may contain images
and videos, a representation of the documents in a grid, where their preview
image is shown, may help the user to identify their content more easily.

Both of these approaches may be suitable for a simple visualization of
simple collections, but representing multiple collections, as required in
Section 4.1.2.3 may be difficult. Finally, when considering comparison and
analysis of the query history, other methods of showing the results have to
be taken into account.

Section 2.2.3 introduced different systems and approaches that visualize
time-oriented graphs. Even if the concepts and underlying data differ, they
all show that it is possible to find proper ways of visualizing the chronolog-
ical evolution of graphs. Especially the idea of visualizing different states
of the graph as timeslices and connecting the same nodes (see Figures 2.13

and 2.10) may help solve problems regarding the comparison on different
query-collections. Thus, the decision was made to design the visual layout
of collections and the query history based on of graph visualization.

4.2.1.2 Collection Design

Possible Network Layouts One basic idea is to represent the recommended
documents as nodes in a graph. Since the nodes in a graph are connected
to each other, there are two different ways to represent a collection as a
network of nodes:

• make connections between all result nodes
• connect the recommendations only with a center node, representing

the collection as a single element

Directly linking recommendations that share same metadata could help
users find similar recommendations. However, since there are multiple types

1https://www.google.com

59

4 ECHO - Explorer of Collection Histories

of metadata, connecting the nodes could cause clutter, and the graph could
confuse the user. Furthermore, when considering the requirement to allow
the user to compare different collections (see Sections 4.1.2.3 and 4.2.5), this
comparison could be very challenging, since the graphs may differ greatly.
Finally, Section 4.1.2.2 discusses the requirement to show a summary of the
collection’s results’ metadata and to provide methods to filter on them. An
unordered graph that may vary a lot, depending on the number and content
of the results, could cause problems with visualizing such features, which
are further described in Section 4.2.4. This resulted in the choice of the the
so-called RingRepresentation.

Rooted Tree To avoid these problems, a more simple method of visualiz-
ing a collection of recommended results was conceived: a graph.

• the collection itself is presented as a central node in the graph
• the recommended results are connected as sub nodes of this central

node

This structure results in a tree graph with the height 1: Thus, the collection
node is the root and the recommendations are its leaves.

The next challenge was to find a proper layout for the graph, in order to
best fulfill the requirements. The traditional way to visualize rooted trees
is to place the root node on the top and the further nodes underneath. In
the case of a tree with a height of one, the graph may look like the figure in
the left hand side of Figure 4.1. Such a tree visualization typically makes it
possible to easily recognize hierarchy structures and other characters of the
graph. However, a tree with the height 1 does not contain further hierarchy
levels. Thus, another layout may be more suitable for representing a result
collection and its recommendation nodes.

Circular Layout Considering the requirement of dealing with multiple
collections (Section 4.1.2.3), a more space saving layout is preferable. One
possibility is to place the nodes on an imaginary circle around the cen-
ter node (see Figure 4.1 on the right). This approach has the following
benefits:

60

4 ECHO - Explorer of Collection Histories

Figure 4.1: Comparing a common tree layout with a circular layout structure both rep-
resenting a rooted tree with the height 1. On the left the root node is on the
top and the leaves on the bottom. The right visualization orders the leaf nodes
around the root

• It saves space compared to a top-down layout. In general, placing
the nodes on a circle around the root node is a very efficient way to
approach space usage.

• The space occupied by a collection is independent from the number of
results, which helps when dealing with multiple collections.

• The basic length of the edges is the same for all nodes in contrast to
the top-down layout (see Figure 4.1). This makes it possible to encode
a visual variable into the edge length (as described in Section 4.2.4).

• The space between the two node levels can be used to represent
different kinds of information regarding the collection and its nodes
(see also Section 4.2.4 for further details).

These arguments led to the decision to use the circular layout to represent a
single collection, which contains a center node and shows the recommended
results as sub nodes evenly distributed around it.

Further Collection Elements The collection graph is augmented with the
collection ID in the top left. In the case of a query-collection, its search key-
words are listed on the right side. When visualizing bookmark-collections,
a given name is shown (see Section 4.2.6). These keywords provide the pos-
sibility to identify matching results: when hovering over a single keyword,
all recommendation nodes which have those keywords in their document’s

61

4 ECHO - Explorer of Collection Histories

Figure 4.2: Schema of further (query-)collection elements: On the top left the collection ID
is displayed (1). On the right side the keywords are listed (2) . The space in
between the results and the center node is used for the RingRepresentation (see
Section 4.2.4) (3).

title are highlighted in a specific color.

The place between the recommendation nodes and the collection node
is further used by the RingRepresentation (Section 4.2.4), which shows a
summary of the collection and allows the results to be filtered. Figure
4.2 outlines a collection containing the mentioned elements. A collection
containing 20 recommendations and 10 search keywords can be seen in
Figure 4.8.

4.2.1.3 Recommendation Nodes

Section 4.2.1.2 discussed the fact that the results are represented as nodes
around the collection center. Those nodes are called recommendation nodes
or just recommendations in the further text. This section discusses the
layout and features of the recommendations with a focus on fulfilling the
following requirements:

• defined in Section 4.1.2.2:

62

4 ECHO - Explorer of Collection Histories

– the user should be able to find relevant recommendations in the
collection

– depending on the document type, a preview may be necessary
– each recommendation’s underlying document must be usable,

e.g. as a reference
– the results must be easily distinguishable by their facet values

• defined in Section 4.1.2.5:

– a bookmark function must be available for the results

• defined in Section 4.1.2.3

– the user should be allowed to use the result’s facet values as
filters in order to find other similar recommendations

Position Around the Collection Given the fact that the recommendation
nodes result from a ranked list of results from the EEXCESS recommender,
it is crucial that this ranking be also easily recognizable for the user.

Anticipating the concept of the RingRepresentation in Section 4.2.4, the rec-
ommendations are not ordered by their relevance when a collection is in
focus, since their position depends on their facet combinations.

However, if a collection is not focused, the recommendation nodes are
ordered by their relevance around the collection. They are ordered clockwise,
beginning with the most relevant recommendation at the top. For further
details on the different navigation levels, see Section 4.2.2.

Since the nodes are not ordered by their relevance on the collection focus
level, this value needs to be represented in another way: The distance of
the recommendation node to the collection center thus correlates with its
relevance. The higher the distance, the higher the relevance. Distance as a
metaphor for relevance is further underpinned by another representation of
the relevance used on the recommendation navigation level, where a greater
relevance results in a bigger node. This second representation is necessary,
since the distance of the node is not visible on this navigation level.

63

4 ECHO - Explorer of Collection Histories

Layout Since it is typical to represent single nodes in a graph, recommen-
dations are represented as filled circles. This makes it possible to use the
same representation, independent of the current navigation level (outer
navigation, collection focus, recommendation focus - see Section 4.2.2), since
other representations, such as complex visualizations, encode different val-
ues in it, which may only work on specific navigation levels due to the
different sizes of the node on the user’s screen.

The circle representation also provides the opportunity to fill it with other
important information about the node when the user zooms in. As defined
in the requirements (Section 4.1.2.2), the preview should help the user
identify recommendations by their content. Depending on the media type,
EEXCESS results already contain a URI to a preview image. If this image
exists, it is loaded by ECHO and used inside the node’s circle to allow the
user to get an idea of the recommendation’s content (see Figure 4.4). If no
preview image exists, the EEXCESS logo is used as a placeholder. On the
outer navigation level, where the user navigates through the query history,
the recommendation nodes appear too small to show a meaningful preview
image. Thus, on this level, the preview image is not shown, and only the
node as a circle, appears.

According to Section 4.1.2.2, the user should be able to find relevant results
in a query collection. As described above, a result’s relevance is already
stored in the EEXCESS results, since it is also used in the RD. The relevance
is represented as the distance between the recommendation node and the
collection center. When focusing on a recommendation, this connection
is not visible anymore, and thus, another representation of the result’s
relevance is necessary. For this purpose, the size of the node is used. The
more relevant a node is, the bigger it is, whereas the preview image always
remains the same size. The variable area between the outer rim of the node
and the preview image can thus easily be recognized, and the user can
identify the relevance of the node even when only the recommendation
node is visible on the screen. Figure 4.3 sketches the two representation of
the recommendation nodes’ relevance.

In addition to the relevance, another variable of the recommendation nodes
is encoded in their visual appearance: the node’s color represents a value
of a specific facet. The facet can be configured in ECHO’s configuration file

64

4 ECHO - Explorer of Collection Histories

Figure 4.3: Relevances in ECHO: A higher relevance results in bigger recommendation
nodes and a higher distance to the collection center.

(see Section 5.10). The color value itself is defined in the RingRepresentation
settings. For further information on the RingRepresentation and its color
encoding see Section 4.2.4.

Recommendation Details Looking at Figure 4.4, several buttons can be
seen around the preview image: These appear when a single recommenda-
tion is in focus. The other two navigation levels (see Section 4.2.2) do not
show them. The buttons are equally distributed between the outer rim of
the node and the preview image. Their purpose is to fulfill the requirements
of the external usage of the underlying document (see Section 4.1.2.2) and
the need for a bookmarking functionality (see Section 4.1.2.5).

• Star: Gives the user the possibility to bookmark this document. The
RD’s bookmark window opens to select an existing or a new bookmark-
collection to add. (See Section 4.2.6)

• Arrow: Lets the user open the link, guiding them to the document in
a new browser-tab.

• i: This buttons opens the info-panel, which is described below in
detail.

• Chain: As the RD allows integration into content creating applications
like Wordpress or Google-Drive (see Chapter 3.4.2), this button was

65

4 ECHO - Explorer of Collection Histories

Figure 4.4: A focused recommendation node, showing its content’s preview and four
interaction buttons.

66

4 ECHO - Explorer of Collection Histories

included to enable an external callback that integrates this document
in such a tool (e.g. insert link) by clicking on it.

To help the user understand the buttons’ functionality, a mouse-hover shows
a short text below the button.

After clicking the i-button of a recommendation node, its info-panel opens.
This window is visualized through a superimposing HTML-element (see
Figure 4.5) that can be closed by clicking anywhere outside of the window
or by using the X-Button in the upper-right corner. It provides more details
about the recommendation node’s document. Its title, the preview-image
and the facets can be seen. The user has the option to open the document in
a new browser-tab. The facets are listed on the right side of the panel. If the
document’s license contains a link it can be opened in a new tab right from
the panel, in order to get more information about it.

The info-panel not only summarizes a document’s data, it also provides
methods to apply filters (which are described in detail in Section 4.2.3)
on the scene. Each row describing a facet and its value contains a funnel-
symbol. Clicking on it adds or removes a filter for that facet, containing the
corresponding value. Further below the facet- table the user can apply or
remove all facet-values as filters with a single click. Applying all facet-values
also means that only those recommendations that contain exactly the same
facet-values remain totally visible.

4.2.1.4 Query History

ECHO’s layout is finalized by specifying how multiple collections from the
query history should be represented in the entire visualization.

As defined in the requirements (Section 4.1.2.3) it must be possible not only
to show multiple collections, but also to allow the user to easily recognize a
specific search query and its results when navigating through the history.
For that reason, the collections contain their search query keywords and an
ID (see Section 4.2.1.2).

67

4 ECHO - Explorer of Collection Histories

Figure 4.5: A recommendation’s info-panel overlays the scene and provides further infor-
mation and interaction possibilities

Layout A layout has to be chosen that is able to show the collections in
such a way that they also fulfill the requirement of being comparable (which
is described in detail in Section 4.2.5). It is possible that a lot of search
queries will be made that all have to be visualized. When trying to visualize
them all, the following challenges have to be considered:

• multiple collections at any position of the query history need to be
comparable.

• Comparison means that the corresponding elements need to be visi-
ble.

• Thus, it must be possible to show different collections of the history at
the same time, independent of their amount or position in the query
history.

To allow the user to recognize the chronological order of the query-collections,
a basic approach is to visualize them from left to right. This is a typical
way of showing a chronological graph (Harris, 2000, p. 417). However,
just putting the collections on a line from left to right would increase the
challenge to have multiple collections visible at the same time.

68

4 ECHO - Explorer of Collection Histories

Figure 4.6: Apple’s CoverFlow visualization of items used on mobile devices (Chaudhri,
2010)

CoverFlow One famous approach to deal with a visualization of ordered
items, where previous and next elements should be visible is Apple’s
CoverFlow (Chaudhri, 2010) (see Figure 4.6, left). Its basic idea is to show
the current element in the center and to stack the other ones behind it, so
they are visible, but do not take up too much space.

As mentioned, elements hiding each other may cause problems with regard
to their comparability. However, since CoverFlow may solve problems when
dealing with a lot of collections, it is worth trying to modify its layout to
fulfill all requirements.

Circular Arc Layout A first solution to deal with the space problem could
be to change the collections’ orientation. If they are positioned on an imag-
inary circle and all face away from its center, they use less space in the
field of view, the further they are from the center collection. As Figure 4.7
(left) illustrates, all collections can be positioned in an area that is relatively
narrow, but allows the user to see them all. To avoid hiding collections that
are on the opposite side of the circle, it remains open. This also helps to
prevent annoyance when viewing the closest collection by not positioning
others behind it.

Thus, the concept for a layout that allows the user to get an overview of the
collections in the query history can be summarized as follows:

• All collections should be positioned on a horizontal circular arc. The
first and the last collection are not directly connected to allow the user

69

4 ECHO - Explorer of Collection Histories

to easily identify the beginning and end of the chronological ordered
elements.

• Not closing the ring may also help prevent disturbing collections in
the background when viewing one in the front. However, this depends
on the camera’s angle of view and distance.

• All collections face to the outside of the ring. Thus, a collection directly
in front of the user’s view is oriented directly towards the camera.
Other collections face away from the camera. This has the effect that
collections that are farther away need less space in the field of view.

• The user is allowed to navigate around this ring (for details on naviga-
tion, see Section 4.2.2).

Field of View Problem These definitions provide a clean solution for
visualizing the entire query history but the ability to view all collections at
the same time results in a relatively small representation of each individual
collection.

Since, in WebGL, the user’s view is defined by the camera, which has a
position, a zoom-factor, and an angle of view, several experiments regarding
the combination of these three factors were done to both gain a good
overview of the collections as well as to show a single, selected collection as
big as possible so as to allow the visualization of many details. Solutions
that met these requirements led to a trade-off that resulted in a very strong
fish-eye effect, known from real life cameras with a very short focal length.
More details were visible due to the larger field of view, and elements in
the center appeared larger than those near the edges, but the whole scene
was heavily distorted.

This challenge led to the idea of splitting up the query history view and the
collection view. Thus, the camera changes its variables, mentioned above,
to allow the detailed visualization of a single collection. This idea was also
combined with changes to the collections’ rendering, and thus, different
Levels Of Detail (LODs) are provided, depending on the current focus.
These LODs and the entire navigation are described in detail in Chapter
4.2.2.

70

4 ECHO - Explorer of Collection Histories

Figure 4.7: Query history Layouts depending on the current focus. Left: No focus set
(overview). Right: The focus lies on a specific collection and comparing is
activated (see Section 4.2.5)

Figure 4.8: Overview over a query-collection in the query history

71

4 ECHO - Explorer of Collection Histories

4.2.2 Navigation & Levels Of Detail

After discussing different solutions that were able to fulfill the require-
ments for the combination of navigating on three different levels, the final
approach used for ECHO is described in detail in the current section. In
addition to the navigation in the scene and between the different LODs,
different input methods are also discussed below.

Initial Challenges According to Section 4.1.2.4, three challenges need to be
managed:

• the user needs to be able to operate on three different levels:

– in the query history
– on a single collection
– on a collection’s result

• Single collections may show a lot of details and the recommended
results’ nodes may go into detail even more. Thus, different LODs that
show, remove, or replace elements, depending on the current user’s
navigational needs may be possible. This helps to remove clutter and
to improve the performance.

• The different levels lead to different requirements regarding the navi-
gation. It must be possible to navigate easily through the query history.
However, investigating a collection or recommendation node may need
a more fixed behavior, that helps keep the focus on the element.

Basic Navigation Concept Considering a case of typical use, the user
mostly starts by searching a collection in the history. According to Section
4.2.1.4, all collections are positioned equally on a circular arc from left to
right (see Figure 4.8).

Two scenarios have to be kept in mind before deciding on a navigation
approach:

• The user wants to scroll through the collections before selecting one.
• The user knows exactly which collection is the desired one and wants

to select it, regardless of its position relative to the camera.

72

4 ECHO - Explorer of Collection Histories

Figure 4.9: The X-, Y-, and Z-axis in ECHO’s three dimensional space

Thus, navigation by means of clicking on a collection must be possible, as
well as free navigation.

Since the scene lies in a three dimensional space, navigation is not as simple
as it would be on a two dimensional plane. One basic idea is to allow the
user (or, more precisely, the camera) to move on the outer side of the circular
arc, keeping the view on its center (see Figure 4.7, left). This allows access
to every collection in the history. However, the following questions are still
open:

• The navigation happens in the X-Z plane (see Figure 4.9), where the
circular arc lies. Which Y-position should be chosen? Should the user
be allowed to change it?

• Which input devices can be used to navigate (mouse, keyboard) and
how does the interaction with the scene work exactly (fixed steps, or
free movement around the arc)?

• Is it useful to allow the user to navigate freely in the three dimensional
space in order to view the query history from any position or distance?

A clear way to design the navigation would be to restrict the Y-position
completely. The user only could navigate around the circle containing
the collections, navigating left and right. This concept would be the most
intuitive and easy to use since there is only one axis. However, according to

73

4 ECHO - Explorer of Collection Histories

requirements of Section 4.1.2.3, documents that occur in different collections
should be connected. Since these connections, which are described in detail
in Section 4.2.5, should be visible, this solution is not optimal, due to the
fact that the connections on the inner side of the circular arc are hidden by
the collections in front of the camera. Figure 4.7 shows a sketch of those
connections on the right.

The Navigation Sphere (Level 1) To solve that problem, a fixed Y-position
could help the user to look beyond the collections into the circular arc, as
shown in Figure 4.8. It is hard to find an optimal Y-value, since the connec-
tions and number of collections can differ. Thus, the following solution was
designed and chosen for implementation:

• The user can navigate around the circular arc from a fixed distance.
• There is no initial Y-value that allows the user to look beyond the

collections in the inner part of the circular arc.
• However, the user can also navigate up and down on an imaginary

sphere.
• This means that the camera also can reach the highest point on that

sphere directly on the top of the circular arc’s center, but can also
move below the collections to watch them from the bottom of the arc.

• This gives the user a high level of non-restricted navigation on the
one hand, but also prevents them from getting irritated by a too free
navigation and getting lost in the scene.

Focusing a Collection (Level 2) The user can navigate through the col-
lections, as discussed in the last paragraphs. If an interesting collection is
found, it can be selected for further exploration.

A click on a collection’s graph should set a focus on it. Therefore, a change
in the camera’s attributes is necessary to allow the visualization of more
details of the collection.

There are two basic ways to modify the camera to allow a collection to take
more space in the field of view:

• move the camera towards the collection

74

4 ECHO - Explorer of Collection Histories

• increase the zoom factor (focal length)

Both possibilities lead to similar results: the collection in focus takes more
space on the screen, while other collections disappear outside the canvas’
edges. However, another problem also arose: since collections should be
comparable, especially when one of them is in focus (see Section 4.2.5),
a maximum number of them should be visible, even on this navigation
level. Since focusing on the collection, by zooming in or moving the camera,
moves other collections out of the field of view, comparison becomes very
difficult.

To circumvent this problem, a third method was conceived which provides a
better view of the collection, while also showing as much of other collections
as possible:

• The camera does not change its distance to the circular arc or its focal
length when the user triggers a collection focus.

• The camera moves directly in front of the collection center.
• The focused collection moves toward the camera.
• This method keeps the field of view on the other collections.
• Nevertheless more details of the collection can be seen due to the

increased proximity of the camera.
• Unfocusing the collection results in it moving back to its initial position.

According to the CoverFlow idea, only the focused collection should be
seen from the front. The other collections have their orientation in another
direction, depending on their position in the circular arc. However, since the
selected collection finally moves when it is in focus, a further improvement
is possible by making further changes to the layout:

After solving the problem regarding the visibility of other collections when
performing a collection focus, the following approach helps make the con-
tent of these collections more visible:

• When a collection focus is triggered, the camera moves to a position
directly in front of the focused one.

• All other collections’ front sides turn to the direction of the camera
(see Figure 4.8 on the right). This allows the user to see all collections
from the front, regardless if in focus or not.

75

4 ECHO - Explorer of Collection Histories

• Since a lot of changes occur simultaneously, all of those including the
movement of the focused collection are animated to allow the user to
recognize all the current changes.

Focusing a Recommendation (Level 3) Recommendation nodes, which
are described in detail in Section 4.2.1.3, also can be focused (see Figure 4.4).
This results in the third navigation level, after the query history navigation
and the collection focus.

Instead of moving the camera on the virtual sphere as is done when focusing
on a collection, it is positioned directly in front of the recommendation.
Figure 4.10 illustrates the position of the camera in this navigation level on
its right side. Since the collection’s plane is tangent to the collection-circle
and the recommendation node is also displayed as a plane, moving the
camera on to the intersection of the connection between the sphere-center
and the node with the sphere itself would result in a view of the node
slightly from the side. Furthermore, the camera also changes its distance to
the node. Thus, it appears larger on the screen.

Input Methods and Navigation Level Transition After having described
the different navigation levels above, this section explains different input
methods, how the user can interact with the scene, and which possibilities
exist to focus on collections or recommendations and easily change the
navigation level.

ECHO allows the user to navigate through the graph by using the keyboard
or the mouse. Both have their own advantages and peculiarities:

• Typically, the user intuitively tries to use the mouse in the browser to
navigate through interactive two- or three-dimensional visualizations,
such as maps, for example. Thus, mouse-navigation was necessary to
implement.
The user can move around the camera-sphere by dragging the mouse,
which means that the horizontal and vertical distances between a
mouse-down-event and a mouse-up-event affect the camera’s move-
ment.

76

4 ECHO - Explorer of Collection Histories

Figure 4.10: Illustration of the camera positions when focusing on a collection (left) and
when focusing on a recommendation (right) where the camera leaves its path
on the virtual sphere to ensure an orthogonal view on the recommendation
node

• Further, the user can use the cursor keys of the keyboard to move
the camera. This may be necessary if a comparison (see Section 4.2.5)
is active and the user wants to avoid losing the splines between the
collections. In this case, using the cursor-keys allows them to move
around the scene and to investigate the compared collections.
Moving the camera to the top of the scene gives a good overview of
the comparison splines’ paths.

• To easily change the navigation-level, the mouse-wheel can be used.
While it is possible to go deeper into details by clicking on a collec-
tion or recommendation, it is not possible to return to the previous
navigation level through mouse-clicks.
Scrolling down with the mouse-wheel changes the current navigation
level if a collection or a recommendation is active, by zooming out to
the next outer level.
Otherwise, scrolling up has the same effect as clicking the left mouse-
button. Thus, this operation only works when the mouse is hovering
over a collection or a recommendation. (Depending on the current

77

4 ECHO - Explorer of Collection Histories

level).
Summarizing these two navigation options, combined with the two
possibilities of moving the camera, the user can navigate through the
three-dimensional graph and its navigation levels easily and quickly.

Except for the movement on the navigation sphere on the outer navigation
level, all changes to the camera’s position and navigation level are animated.
This helps the user to keep track of changes that have been initiated by the
interaction. For example, if a click on a collection occurs while navigating
through the query history, the following happens:

• ECHO calculates the shortest path from the camera’s current position
to the point in front of the selected collection.

• The camera starts to move until this point is reached, while always
pointing to the center of the circular arc that holds the collections. The
movement slows down at the end to provide the user the feedback
that the desired collection has been reached.

• At the moment the collection focus is initiated, the collections begin
to change their orientation and the focused collection begins to move
towards the camera to reveal more detail.

If a collection focus is initiated while another collection was focused, the pro-
cess is completely the same, with the additional movement of the previously
selected collection back to the collection arc.

Different Levels Of Detail As mentioned above, the three navigation levels
correlate with different Levels Of Detail (LODs). They are necessary to fulfill
the following non-functional requirements mentioned in Section 4.1.3.

• performance:

– Each object, visible in the scene consists at least of one WebGL
primitive, which is stored in the client’s RAM.

– Especially when a lot of collections with many recommendation
nodes exist, the number of vertices used to represent the objects
increases.

78

4 ECHO - Explorer of Collection Histories

– Therefore, since the THREE.js framework makes it possible to
set the number of nodes that define a circle, the recommenda-
tion nodes are visualized as simple circle primitives with only
a few vertices in the first navigation level, where the user can
navigate through the query history, and the appearance of the
small recommendation nodes is insignificant.

– In the case of a collection focus (level 2) or a recommendation fo-
cus (level 3), the objects representing them in the focused element
are destroyed and replaced with circles that have more vertices,
to prevent a polygonal visualization of the nodes. This results in
smooth circles. Furthermore they contain the preview image in
their center.

– Similar to the recommendation nodes, the RingRepresentation (see
Section 4.2.4) only appears when a collection is in focus. Upon
unfocusing it, all elements are deleted and recreated again on
demand to save memory.

• clarity:

– It is important to prevent visual overload that causes irritation
and a loss of focus on important scene elements.

– Thus, the recommendation buttons are only shown on level 3,
since they are too small to use in the outer levels.

– The preview images are only shown while a collection or recom-
mendation is in focus (see Figure 4.14 as an example).

– As mentioned above, the RingRepresentation would also be too
small to identify specific facet values in the outer level. Thus, it is
only shown on both inner levels.

4.2.3 Filtering

One crucial requirement was to allow the user to filter the recommendations
of all visualized collections (see Section 4.1.2.2). For that purpose, the facets,
a set of properties each result has, are used. The different facets (language,
license, provider, type, year) are described in detail in Section 5.6.1.

79

4 ECHO - Explorer of Collection Histories

Filtering the recommendation nodes can help the user to find similar rec-
ommendations over multiple collections easily. The following section first
describes the data used for filtering and then discusses the visual appearance
of filters and how filtering works in ECHO. Finally, possible connections
between ECHO’s filters and those of the RD and its Micro-Visualizations are
described.

4.2.3.1 Filtered Data

As mentioned above, every recommended document contains a set of proper-
ties summarized as facets. Since all recommendations share those properties
and contain interesting information that characterize the documents, they
are ideal for filtering.

Data Quality As mentioned in Section 3.2, EEXCESS retrieves its results
from different providers. This fact can lead to variations in the results’ facet-
values. Especially when visualizing all values of the results’ facets through
the Ring-Representation, these differences are clearly visible:

• Different date-formats: the values of the year-facet often differ be-
tween simple years (”2016”) and full dates (”2016-02-03”). Also
timestamps containing hours and minutes are retrieved sometimes
(”2016-02-03-1950”). Even completely internal time-codes of specific
providers or completely corrupted strings can be retrieved. Improve-
ments were made during ECHO’s implementation inside the RD to
prevent most of the malformed values. The date should be displayed
as a four digit year-string. Since the problem is significant, it may be
taken up by a future work (see Section 7.3). Figure 4.11 shows a screen-
shot of an earlier state of ECHO that did not yet include mechanisms
to identify and fix malformed values.

• Interpretation of the date: some dates refer to the creation of the
underlying original document. Others describe the date that it was
added to the library. However, we currently do not receive the exact
semantics from the EEXCSS recommender.

• No value: some values are not even set. They are displayed as unknown
values.

80

4 ECHO - Explorer of Collection Histories

Figure 4.11: Different quality of facet-values visible inside the Ring-Representation in an
earlier version of ECHO. The year-facet contains wrong (”0001-01-01”) and
not-set (”unknown”) values.

81

4 ECHO - Explorer of Collection Histories

4.2.3.2 Visual Appearance Of Filters

All recommendation nodes are positioned around their collection (see Sec-
tion 4.2.1.3). Depending on a potential focus on the collection, their distance
to the collection-center may vary due to their relevance.

If one or more filters are applied, all recommendations that do not match
the values of the filters are faded so that they cannot be mixed up with the
matching results, but are also visible and can be clicked. In detail, a faded
recommendation node has the following characteristics:

• The nodes are collapsed: a node that was filtered out (”negative”
node) decreases its distance to the collection-center to a minimum.
Thus, it can easily be distinguished from the positive nodes.

• Lower opacity: the nodes are faded out until they are semi-transparent.
Background-color and preview-image are still visible but not as bright
and noticeable as the ”positive” nodes.

4.2.3.3 Filtering-Methods in ECHO

Inside ECHO, the user has the possibility of using two methods to set or
modify filters:

• Using the Ring-Representation: The Ring-Representation is the easi-
est way to set, modify or identify filters. Each possible value of a
collection’s results’ facets is represented in a sunburst-diagram and
is clickable to set or unset the filters. More details about using the
Ring-Representation for filtering can be found in Section 4.2.4.

• Using the info-panel: After focusing on a recommendation node, the
user has the possibility to show more information about the document
in a separate panel. There it is possible to set or unset the document’s
facet-values as filters. See Section 4.2.1.3 for further details.

82

4 ECHO - Explorer of Collection Histories

Figure 4.12: Micro-Visualizations with applied filter on the ”language”-facet

4.2.3.4 Using the Micro-Visualizations

Depending on the plugin, the RD already supports brushing and filtering in
different ways (see Section 3.3). The brushed or filtered values are displayed
inside the Micro-Visualizations (see Section 3.3.3) on the right side of the
dashboard. The big difference between the existing filtering & brushing
mechanisms and the filtering in ECHO is that the existing ones are only
applied on the current collection loaded in the RD.

This led to a challenge to connect existing filters from the RD with those from
ECHO. Applying an ECHO-filter, like the language, for example, does not
make sense if those filtered languages do not occur in the actual collection
of the RD. Thus, a direct connection has not been implemented so far, and
may be a task for future work (see Section 7.3.4).

On the other hand, this fact does not mean that the Micro-Visualization
was not usable inside ECHO. The Categorical Metadata Micro-Visualization
allows users to visualize filters, set on the language-facet or the provider-
facet, depending on the setting made in the RD. It also visualizes the ratio
between the different values of the corresponding facet. If the facet, currently

83

4 ECHO - Explorer of Collection Histories

represented within that Micro-Visualization, is used as a filter inside ECHO,
the filter is also applied within that visualization. Figure 4.12 shows the
”category”-Micro-Visualization with applied filters.

4.2.4 Collection Summary (RingRepresentation)

The following requirements were defined in Sections 4.1.2.2 and 4.1.2.3:

• (1) the recommendations’ facets need to be visualized in such a way
that the user can easily interpret and distinguish them.

• (2) a collection’s character, derived from its results’ facets should be vi-
sualized to allow an appreciation on first sight, and to show differences
to other collections in an intuitive way.

• (3) further, filtering the facets (see Section 4.2.3) has to be possible to
find recommendations of interest easily.

These three requirements lead to considerations of a single functionality,
which realizes a combined solution. At first, the ideas of the RD were picked
up by providing an interactive tool in the sidebar that shows data, but also
allows the user to interact with the visualization by filtering it.

However, during the process of designing the collection’s layout (see Sec-
tion 4.2.1.2), the idea arose of using the space in the graph between the
collection’s center node and its recommendation sub nodes.

The resulting approach (see Figure 4.14) underlies the following basic con-
cept:

• Each of the facets is visualized as a ring around the collection’s center
node.

• All values are visualized as labeled ring segments.
• The recommendation nodes’ connections to the center node cross the

ring segments of each facet. Each crossing represents the exact value
of the recommendation node’s facet data, which fulfills requirement
(1).

• The ring segments need to be clickable to enable a filtering (see Section
4.2.3) of the results, which satisfies requirement (2).

84

4 ECHO - Explorer of Collection Histories

• The overall visualization of the rings and their segments should allow
the distribution and diversity of the facets’ values (the collection’s
character) to be visible to fulfill requirement (3).

As one of the most eye-catching and outstanding features of ECHO, the
RingRepresentation not only makes it possible to get the results’ facet infor-
mation, but also offers a way to filter the recommendations of all collections
through simple mouse-clicks. It’s background, usage, and features are de-
scribed in detail in this section.

4.2.4.1 Creation & Appearance

When focusing a collection (see Section 4.2.2), the camera navigates in front
of that collection and gives it the whole space on the canvas. As soon as
the camera starts focusing on the collection, the Ring-Representation gets
initialized.

Depending on a configuration order, all facet-values of the current collec-
tion’s recommendations are collected to build up an internal tree-structure.
Beginning with the first facet, the recommendations are grouped by their
values. Each of these groups is sub-divided again by the second facet in the
next step of the algorithm. This step is repeated until the separation is com-
pleted through all facets. The resulting tree-structure holds the facet-values
as inner nodes and the recommendations as leaves. While each level of the
tree describes the different values of a specific facet, a value could occur
multiple times due to different parents.

Finally the tree is visualized as a sunburst-diagram: beginning with the center
of the collection, a first ring consisting of ring-segments is created. Depend-
ing on the configuration, this ring describes the first facet. Each ring-segment
corresponds to one of its values. The more recommendations that exist with
this value, the longer the arc of the segment. After finishing creating the
first facet-ring, the algorithm is repeated on each of the segments, where
the sub-segments fill the space of their parent-segment.

The recommendations are attached as leaves in the last level of the tree.
Each recommendation can be found by going through a unique path from
the root to the bottom. The length of the Ring-Representation’s segments

85

4 ECHO - Explorer of Collection Histories

Figure 4.13: A typical Ring-Representation in ECHO with the facets type, language, provider,
license and year. Filters are applied to get results that only contain ”text” and
have their source in the ”Deutsche Digitale Bibliothek”.

86

4 ECHO - Explorer of Collection Histories

correlate with the number of elements they hold, and the sub-elements
share the same angle of their parent-segment. Thus, it is possible to create a
path to a recommendation by following a straight line from the center to an
outer segment.

Therefore, the recommendations need to be moved to the matching position.
This reordering is performed directly after creating the rings. Since the user
needs to recognize that the order of the recommendation nodes has changed,
this process is animated, and the nodes are moved along the shortest path
around the collection.

However, the length of the recommendations’ connections to the center
node still vary according to their relevance, described in Section 4.2.1.3.

4.2.4.2 Colors & Labels

Each ring-segment has a unique background-color. There are two ways to
set these colors using ECHO’s configuration:

• Each facet has a base color where its values vary in the saturation and
brightness. Thus, the whole ring shares the same tint but the segments
are still easily distinguishable.

• The colors for a specific value of a facet are set explicitly in the con-
figuration. This option allows the user to follow the color-schemes of
other RD-plugins, for example.

Each ring-segment also holds a label to allow an identification of the un-
derlying facet-value. These labels are rendered using IHQN.Text-objects (see
Section 5.7 for details about their implementation). Their center is posi-
tioned at half of the ring-segment’s length. Since the space is limited and
especially combinations between long facet-values and short ring-segments
could cause overlaps, some preprocessing of specific labels are necessary:

The license-facet’s value varies between simple names of the document’s
license and long URLs that refer to their license-description. Those URLs are
too long to display, since they often need the whole width of the collection’s
visualization. Since there is a large number of different licenses containing
different versions it is nearly impossible to map all those URLs to short

87

4 ECHO - Explorer of Collection Histories

names. The current solution is to use only the last part of the license’s URL,
separated by its slash-characters. As this short string often just describes
the version of a license, it does not provide a lot of information to the user.
Thus, this problem still has to be addressed in future work (7.3). Varying
data from different providers is discussed in Section 4.2.3.1.

4.2.4.3 Filtering & Interactions

While the Ring-Representation allows the user to easily analyze the collec-
tion’s data, it is also possible to use it to apply filters on the whole scene.
Filters, which are described in detail in Section 4.2.3, are responsible for
showing or hiding recommendations, depending on their facet-values.

While it is possible to set filters from the recommendation’s detail info-panel,
the Ring-Representation provides another opportunity to set and unset them.
This is possible by clicking on the ring-segments, which each of represent
a single facet-value. A click on such a segment leads to an immediate
change of the filter and all affected collections in the whole graph. If a
filter containing exactly the clicked value, was already applied, the filter is
removed from the global filter-list. This means that the user can toggle a
specific filter by clicking on a ring-segment.

The Ring-Representation can also help the user identify already applied filters.
Even if the collection was just focused, matching filters can be recognized
by a more saturated color of the corresponding ring-segment’s background
color. If the user defocuses the collection and the Ring-Representation is
removed, the filters stay applied on the whole scene.

Figure 4.13 gives a sample of a collection with two filters set: One on the
”type”-facet, with the value ”text”, and another on the ”provider”-facet. This
results in filtering documents that are text-files and have their source in the
”Deutsche Digitale Bibliothek”.

4.2.4.4 Benefits of the Ring-Representation

The full power of the Ring-Representation can be summarized as follows:

88

4 ECHO - Explorer of Collection Histories

• Finding results by facet-value-combinations: by going through a
path from the center to the outside of the Ring-Representation it is
possible to find results easily. Navigating through that tree on a path
of interesting values results in matching recommendations. Since the
order of the facets is important in this case, the success of finding
results depends on the facet-order in ECHO’s configuration.

• Discovering a result’s values: the user might want to know details
about a recommendation very quickly without changing the scope.
Following the recommendation’s edge, all of the document’s facet-
values can easily be found since the edge cuts each of them.

• Filter-Feedback: as described below, the Ring-Representation can be
used to apply and remove filters easily. It also can provide visual
feedback about the currently applied filters. If a facet-value that also
occurs in the current collection is set as a filter, its ring-segment is
highlighted. Thus, especially if filtering was applied in the current
collection, the current filter can easily be recognized - and manipulated.
Recommendations that are filtered out are shown as semi-transparent
and collapsed (see Section 4.2.3).

• The collection’s character: considering the Ring-Representation as the
collection’s overview, different characteristics can be read out of it. A
first look already shows the user the homogeneity of the collection’s
facet-values. The longer the ring-segments are, the less different the
recommendations.
Furthermore, relations between the facets are also easily discoverable:
for example, connections between the results’ media-type and their
language distribution can be found out without much effort.

4.2.5 Comparison Mechanism

Section 4.1.2.3 defines the requirement to allow the comparison of collec-
tions in the query history. The user already gets support in finding similar
recommendations by the usage of filters (see Section 4.2.3). However, it also
should be possible to compare whole collections to see if different search
queries have resulted in similar results.

The concept of representing the results and different collections as a graph

89

4 ECHO - Explorer of Collection Histories

Figure 4.14: Detailed view of a selected query-collection. Results containing the keyword
”austria” in their title are highlighted as purple nodes (see Section 4.2.1.2).

90

4 ECHO - Explorer of Collection Histories

structure (see Section 4.2.1.1) led to the idea of showing similarities between
multiple collections as connections inside the graph.

As mentioned in the requirements, the graph can contain the same docu-
ment, represented by a recommendation node, multiple times. Thus, the
concept of showing similarities between the collections is based on multiple
occurrences of results. This section describes ECHO’s comparison approach
in detail.

4.2.5.1 Comparing Multiple Collections

ECHO’s comparison mechanism allows the user to compare all collections
in the entire query-collection history or in a selected set of bookmark-
collections. In particular, the user can choose a single collection to be com-
pared with all the other ones.

Every single recommendation of this source-collection is compared with the
results of the other collections. If one of them contains the same document
as the one to which it is compared, they get connected. The same recom-
mendations are not directly connected with the recommendation in the
comparing collection, but they are linked to each other in a historical order.
This means that if a result appears in two collections before the comparing
one, those results are connected in a row: the older one is connected to the
newer one which finally is linked to the recommendation of the collection
that triggered the comparison. Figure 4.7 illustrates this mechanism.

In the case of visualizing search queries, this method allows the user to see
how the queries develop over the time relating to the current collection.
Depending on the number of connections, the user can intuitively recognize
similarities between collections. As an example, the scene in 4.15 allows the
user to understand that there is one single collection, that has a lot of the
same results as the one currently being compared. To further investigate
that collection, the user could focus on it with a single click (see Section
4.2.2).

The same results are connected through extruded splines in different colors.
Using splines has the advantage of preventing sharp corners if more than
two recommendation nodes are connected. This allows the user to follow the

91

4 ECHO - Explorer of Collection Histories

spline on a comprehensible path. A static color for each recommendation
node also helps to distinguish different paths.

The splines have a relatively high diameter. This is caused by the fact that
other collections may be far away. Combined with the fish-eye-effect of the
camera (see Section 4.2.2) a thin line would not be visible in the distance.

4.2.5.2 Functionality

The comparison-method in ECHO can theoretically be used in every naviga-
tion level. Practically, it is only useful in the both outer levels that let the
user navigate through the collections and investigate a single collection.

A comparison to a specific collection is activated by moving the mouse
over the collection’s center node. As long as the mouse is left hovering over
the node, the splines are visible. To move across the scene while having
a comparison activated, the user can use the keyboard’s cursor-keys to
navigate.

4.2.5.3 Future Work

Since comparing the collections and their results was one of the main
motivations of ECHO, future implementations may focus on further com-
parison methods and improvements to the current mechanism. Section 7.3.3
discusses ideas for useful implementations in the future.

4.2.6 Bookmark-Collections

Section 4.1.2.5 defines the requirement of allowing the user to organize
interesting results in their own collections, so-called bookmark-collections.
The user has the option to build individual collections, stored as bookmarks,
which contain selected results from different queries and a bookmark name.
It should also be possible to visualize bookmark-collections, whereas it is
not relevant if the collection was created inside ECHO or in the RD.

92

4 ECHO - Explorer of Collection Histories

Figure 4.15: Comparing collections

93

4 ECHO - Explorer of Collection Histories

Figure 4.16: Dialog for visualizing bookmark-collections

The bookmark-collections differ from query-collections in the following
way: Typically, the RD shows results from a search query. Thus, this type of
collection contains a list of query keywords beside the results, and can be
found in the stored search query history. In contrast to a query-collection, a
bookmark-collection does not contain a list of query keywords, but can be
identified by a unique name.

4.2.6.1 Bookmarking a result

When focusing a recommendation, multiple buttons appear (see Section
4.2.2). One of them (the star-button), opens the native bookmark dialog of
the RD (see Figure 6.12). The user then has the option to either select one of
the existing bookmark-collections or to create a new one to store the active
result.

4.2.6.2 Visualizing existing bookmark-collections

In the RD, the user has the choice to select whether the query history or
multiple bookmark-collections should be displayed. In the latter case, a
popup appears (see Figure 4.16) that allows the user to select a subset of
bookmark-collections.

After selecting and pressing the ”Visualize selected bookmarks” button, the
collections are visualized in the same way the query history is shown. The

94

4 ECHO - Explorer of Collection Histories

order of the collections depends on the order in which they were created in
the RD or in ECHO.

4.2.7 Fulfilling the Non Functional Requirements

In Section 5.2, several non functional requirements were defined. This section
discusses how they were solved in ECHO.

4.2.7.1 Performance

Since both the RD and ECHO run as JavaScript Web Applications, perfor-
mance is a big challenge. The following possible bottlenecks have to be
considered:

• JavaScript code gets optimized through sophisticated compiling tech-
nologies in modern browsers. Nevertheless it does not approach the
speed of C/C++ code.

• Several items are loaded through asynchronous calls from web re-
sources. Possible delays must be kept in mind when designing the
implementation.

• Rendering graphs may cause performance issues, since it may be quite
CPU intensive.

To improve the performance related to rendering ECHO’s graph, WebGL
technology was used that calculates the rendering process on the user’s
graphic card. Further details regarding WebGL and the used framework
THREE.js can be found in Section 5.2.

Further improvements could be made by using a dirty-flag based design,
which prevents calculations on unchanged objects during rendering (see
Section 5.8 for details).

95

4 ECHO - Explorer of Collection Histories

4.2.7.2 Low System Requirements

To allow as many users as possible to use ECHO, it should rely on existing
state-of-the-art web technologies. Since every modern web browser supports
JavaScript execution, and the RD in which ECHO was implemented as a
sub project was written in JavaScript, this problems seems trivial. Only the
support of WebGL in the user’s browser is not assured. However, most of
modern desktop browsers do support it nowadays.

4.2.7.3 Extensibility

It should be possible to extend ECHO for future work. As described in
Chapter 5, ECHO’s code structure makes it possible to add further features
and modify existing code easily through well documented classes and
methods.

4.2.7.4 Usability

Animations help to track changes to elements and the navigation and thus
improve the tool’s usability.

Animations ECHO’s scene is not a static graph. Focusing a collection
reorders the results around the collection’s circle, for example, and applying
a filter changes the result nodes’ appearance. If some content of a scene
changes, the user must be able to follow those changes. Therefore, an
animation-framework was built for ECHO, that allows value-changes such
as node positions, opacities, camera positions, etc. to be smoothly animated.
Every kind of float-value and even objects containing multiple values can
be animated through some simple parameters. This leads to a smooth user
experience and improved usability when navigating and interacting with the
graph, and thus helps to fulfill the requirement defined in Section 4.1.3.

96

4 ECHO - Explorer of Collection Histories

4.2.8 Summary

As a result of the use cases in Section 4.1.1, the requirements of Section
4.1.2 and 4.1.3 were evaluated, and a detailed graph layout was designed
(Section 4.2.1). The tool allows the user to navigate through the scene in
three different levels (Section 4.2.2) and to filter (Section 4.2.3) and compare
collections (Section 4.2.5). The RingRepresentation (Section 4.2.4) helps the
user understand a collection’s character and further allows them to apply
filters. The bookmarking function (Section 4.2.6) allows to organize and
visualize interesting results.

ECHO makes it possible to visualize a complex three dimensional graphs
in the user’s browser by means of support from the user’s graphic card,
through the WebGL technology.

97

5 Implementation-Details

This chapter provides a deeper insight into ECHO’s technical background
and functionality.

The beginning of this chapter is structured as follows:

• Section 5.1 discusses the RD’s plugin-system, the used programming
language and the tool’s file structure, the used libraries and technical
requirements.

• Since WebGL and its framework THREE.js are used extensively in
ECHO’s implementation, they are discussed in the separate Section
5.2.

The next sections describe ECHO’s implementation in detail. They are
ordered by the point of their occurrence in the process from starting ECHO
up to its detailed usage. Beginning with the Initialization in Section 5.3
where ECHO’s loading as a RD plugin is described, similarities in the
code-structure of ECHO’s scene elements (container behavior, dirty-flags
etc.) is introduced in Section 5.4. Next, the Collection and Recommendation
classes are described in the Sections 5.5 and 5.6. After a short introduction
of the Text-Elements (Section 5.7), the updating and rendering process is
introduced in Section 5.8 followed by discussing ECHO’s interactions in
Section 5.9. The chapter concludes with an introduction of the configuration
system used in ECHO (Section 5.10).

5.1 Environment

This section will give a short abstract of the used programming language
and technology, the tool’s file-structure, and the libraries used.

98

5 Implementation-Details

5.1.1 Plugin-System

ECHO was implemented within the Recommendation-Dashboard (RD), which
represents different views on results of the EEXCESS recommender in a
web-browser (see Section 3.5.3) as a plugin. Different to other existing RD
plugins, the ECHO not only handles the current collection, but focuses
on visualizing the entire EEXCESS search history or multiple bookmark-
collections at the same time. For details on how the ECHO relates to the
Plugin-System see Section 5.3.1.

5.1.2 Programming-Language & OOP-Design

ECHO was built for use within the RD, which is written in JavaScript, and
can be accessed through different frontends in a client’s web-browser. Thus,
ECHO is written in JavaScript as well, since it is integrated directly into the
RD as a plugin. Typical for web-applications written in JavaScript, ECHO
also contains HTML and CSS-Files. Both are necessary to provide structure
and a visual layout.

JavaScript was initiated as a Script-Language but nevertheless provides the
possibility to perform object-oriented-programming (OOP) nowadays. Since
JavaScript does not support classes in general, prototyping can be used
to define, create and use objects. For easier understanding the term class
is also used in this work for objects used in an OOP way. The usage of
namespaces is also possible, although they are not explicitly specified in
JavaScript. Therefore, simple objects are used for encapsulating code, as in a
namespace known from other OOP-languages.

The following code-snippet demonstrates the usage of namespaces as they
are used in ECHO, and a simple definition of an object with a method.

var ECHO = ECHO | | { } ;
ECHO. MyObject = function () {

/ / C o n s t r u c t o r
} ;

ECHO. MyObject . prototype . someMethod = function (param){

99

5 Implementation-Details

/ / Method i m p l e m e n t a t i o n
} ;

5.1.3 File Structure

The code used to launch ECHO is stored in two locations inside the RD’s
root folder: the plugin file for initializing ECHO is located within the
Dashboard/Plugins folder. The functionality of the plugin is described
in Section 5.3.1. The entire code of ECHO, however, can be found within the
WebGlVisualization folder. Its structure is as follows:

• css: ECHO’s CSS file for layouting the used canvas and several HTML-
Elements.

• js: containing ECHO’s JavaScript code in several subfolders holding
about 50 files.

• lib: folder for the libraries used by ECHO (see Section 5.1.4 below).
• media: images, mostly icons, used within ECHO.

5.1.4 Libraries

ECHO makes use of some well-known JavaScript-libraries:

• THREE.js: The WebGL-API itself does not provide a lot of high-level
operations on primitives, cameras, the entire scene etc. Thus, THREE.js
is there to help perform manipulations and interactions on the scene
much more easily by making methods for movements and transfor-
mations available, instead of using complex mathematical operations
(also see Section 5.2).

• jQuery: this library is well known for easy manipulations of a web-
page’s HTML-DOM. ECHO makes use of some of its tools and also
loads the jQuery-Fancybox-Plugin, which makes it possible to super-
impose the current web-page with a window-like element, containing
specific content (info-panel; see Section 4.2.1.3).

100

5 Implementation-Details

• Underscore.js is a powerful library with a lot of useful tools for such
as filtering lists or providing foreach-like loops. Even if _.each()

loops seem to be more aesthetic they should be used with caution
because they are slower than typical native JavaScript iterations over
arrays.

• Modernizr: although this library was originally built to test and load
files depending on the user’s browser, it is used both in the RD and
in ECHO to load files dynamically when needed. Originally Require.js
was used to support dynamic loading, but was replaced by Modernizr
due to problems running the library in both systems simultaneously.

• lz-string: this library is responsible for compressing the query-result
data before storing it inside the (size-limited) localStorage with the goal
of being able to store more query-results (see Section 5.3.3).

5.1.5 Technical Requirements

To be able to run ECHO, it is necessary to use a web-browser which supports
both WebGL and localStorage. While the latter is provided by all modern
browsers nowadays, the support of WebGL also depends on the user’s
hardware. Older PCs or cheaper notebooks often do not have a graphic card
offering Hardware-Acceleration.

Even if a lot of calculations are performed by the GPU, ECHO consumes
more CPU than other visualizations. Thus, the user’s hardware should at
least be average for smooth usage of ECHO. More discussion of the tool’s
performance can be found in Section 7.3.1.

5.2 3D Rendering

Existing RD-plugins use 2D-visualization libraries which are sufficient for
visualizing a single collection. But, ECHO should be able to handle dozens
of collections at the same time, while preserving the overview and pre-
venting a visual overload. Furthermore, each of the history’s collections
may contain up to 100 results. That fact may lead to performance issues if

101

5 Implementation-Details

2D-libraries were used for the visualization, because they typically just paint
on an HTML-Canvas. Thus, they do not use the graphic card’s hardware-
acceleration.

These two challenges resulted in the usage of WebGL (Congote et al., 2011),
a web-browser implementation of the well-known OpenGL-API (Woo et al.,
1999). The possibility to easily use three-dimensional renderings offers more
freedom in visualizing information, and the accessibility of the hardware-
acceleration helps to prevent performance problems. Similar to OpenGL,
good frameworks for WebGL exist that make the usage of primitives, cam-
eras, scenes etc., much easier. Finally, the decision was made to make use of
THREE.js (Danchilla, 2012) - one of the most used WebGL-frameworks.

THREE.js holds all objects like primitives, cameras, lights, etc. in a instance
of THREE.Scene. This object is held by the ECHO.WebGlHandler which is
responsible for the basic THREE.js objects.

5.2.1 Camera

WebGL allows the use of different kinds of cameras to provide the right
projection and view of the scene. Cameras can be orthographic, for instance,
but a perspective projection is also possible. Since ECHO makes use of a
three-dimensional graph, a perspective camera could visualize the depth
of the scene in a better way. Thus, a THREE.PerspectiveCamera is added to
the THREE.Scene object.

When creating a perspective camera, some parameters must be set (also see
Figure 5.1):

• fov: The camera’s (vertical) field of view in degrees. To provide a wide
camera-angle in order to see most of the scene at once, a relatively
large value of 120° was taken for ECHO.

• aspect: The aspect-ratio of the camera. Thus, the scene’s width divided
by its height is taken.

• near: Distance of the Near-Plane which is close to the camera’s eye.

102

5 Implementation-Details

Figure 5.1: Schema of a perspective projection in WebGL (Wright, Lipchak, and Haemel,
2007, p. 86)

• far: Distance of the Far-Plane. A too large value could cause flickering
or other unwanted effects due to inaccuracy. A too small value would
cut objects that are too far away.

5.2.2 WebGl-Renderer

The entire rendering process in WebGL is performed by an instance of the
THREE.WebGLRenderer class. Every time the ECHO.WebGlHandler.preRender

method is called, the preRender method of the THREE.WebGLRenderer starts,
taking the THREE.Scene and the THREE.Camera as parameters (further de-
tails in Section 5.8). At each render-step, the power of WebGl’s Hardware-
Acceleration comes up by letting the GPU calculate the graphical output
that is finally painted on the canvas element.

5.3 Initialization Of ECHO

Using the RD allows the user to analyze the current results of an EEXCESS
query through clicking on one of the Visualization-buttons on the right

103

5 Implementation-Details

hand-side of the main window. After clicking on the button for ECHO, the
search-history is loaded from the database. Another method to access ECHO
is to select bookmark-collections to visualize. This can be performed by
using a button in the left column of the RD to further select one or more
existing bookmark-collections to visualize. The following section gives an
overview of how the initialization of ECHO as a plugin works.

5.3.1 RD Plugin Architecture

As mentioned in Section 3.5.3.2, RD-plugins are configured in a single file
inside the plugin-folder and contain a class with requiring the following
methods:

• initialize: is called directly after the RD was loaded. For example,
ECHO creates the button for visualizing the bookmarks at this stage.

• finalize: used to clean up the visualization space after unloading the
current visualization by removing some CSS-classes or resetting some
flags, for instance and to restore the RD’s result-list.

• draw: this method is the link between the RD and ECHO when loading
the plugin. It calls the static method
ECHO.InitHandler.init() that is responsible for loading all neces-
sary files and creating the scene.

After calling the ECHO.InitHandler.init() method, a container for adding
the rendering-canvas is added to the HTML-root-element provided of the
RD’s plugin-system. This container also holds a loading-GIF and a message
to communicate the loading-status to the user.

5.3.2 Dynamic File Loading

Before creating the entire scene that contains the graph, several internal and
external JavaScript files need to be loaded within the
ECHO.InitHandler.init() method. Since each RD plugin requires a lot
of different files, it loads them on demand when it is initialized the first
time. ECHO requests all its internal classes and external libraries right

104

5 Implementation-Details

before rendering. At first all external libraries (see Section 5.1.4) are loaded,
followed by internal configurations, tools, the database handler etc. up to
the entire file containing the ECHO.Scene class.

All necessary files are loaded using the Modernizr-plugin (Watson, 2012),
mentioned above. The files are loaded in an order that fulfills their internal
dependencies. Modernizr provides possibilities to define callbacks that are
performed after the correspondent file is loaded. Nevertheless, dependency-
errors when initializing the JavaScript classes may occur even if the next file
is not loaded until the complete-callback is performed. This is caused by
the fact that a file is indeed loaded, but the contained JavaScript class still
may not be initialized by the browser’s JavaScript-engine. Adding a minimal
timeout of a few milliseconds during the complete-callback avoids such
problems since the client’s browser has enough time to interpret the file
before loading the next one.

5.3.3 Storing Query-Results

Since ECHO visualizes the entire query history, all queries and their re-
sults from the EEXCESS-recommender need to be stored in a database. If
the user triggers a new query and the results arrive, the onDataReceived

method inside the starter.js is getting called. Inside this method, the
saveReceivedData was placed which uses the QueryResultDb class to save
the results in the browser’s localStorage database. QueryResultDb is the only
class in this project, besides the plugin-class, which was placed outside the
WebGlVisualization folder because it is not called within the plugin, but
rather directly inside the starter.js.

Before being up to store the results in a database, it was necessary to decide
which technology should be used. Since the RD is a client-side application,
there are no meaningful possibilities for saving the data inside a server-side
SQL database, as would be common for server-side web-applications.

It was necessary to choose between the following APIs, used for client-side
data-storing within the browser:

105

5 Implementation-Details

• Web SQL: The Web SQL database was made for storing data using a
variant of SQL. Since it is not supported by InternetExplorer or Firefox,
and work on its W3C specification was stopped years ago, it was not
considered for use in ECHO.

• LocalStorage: LocalStorage, or DOM Storage, makes it possible to store
data within a simple key-value system. A big advantage over other
systems is that it has been widely implemented in all modern browsers
for years. But, localStorage also has a big limitation: the size of data that
can be stored by one domain is usually limited to about 5-10 Megabyte
depending on the browser used.

• IndexedDB: IndexedDB is a more complex and powerful database
API. In contrast to localStorage its usage is more complicated due
to its asynchronous design, but it offers indexation and much more
space. IndexedDB is relatively new. Thus, it is not yet supported by all
browsers, and is only available in newer versions.

Due to the fact that localStorage was already used in the RD for storing the
user’s bookmark-collections, the decision was made to use this API. It was
easier to handle and has the big advantage of its wide support.

To avoid problems with the API’s storage-limit, the idea of compressing the
data came up. Therefore, the lz-string-library1 was included, which uses a
LZW-compression algorithm to reduce the size of a given string. Finally it
was possible to compress the JSON-string of the result-data before storing it.
While it was possible to save the results of a few dozens of queries without
any compression, the usage of lz-string allowed hundreds of queries and its
results to be stored, and hence solved the big disadvantage of localStorage.

Compressing the results is no guarantee of completely avoiding space prob-
lems inside the localStorage database. The decision was made, that it was
better if an old entry was deleted to free space, instead of not being able to
save new query-results. Thus, when catching QuotaExceededError Excep-
tions while storing the results, the oldest set of results in the localStorage
is deleted. That means that a whole collection and its result do not appear
in ECHO anymore. But, as mentioned, that only occurs if there are already
hundreds of collections stored.

1https://github.com/pieroxy/lz-string

106

5 Implementation-Details

When reading the results from the localStorage, the stored data can easily
be decompressed by lz-string again to get back the JSON-object. Finally,
there were no significant performance issues measurable while using this
compression-method.

5.3.4 Creating the Scene

After all files are were successfully loaded, the static
ECHO.InitHandler.initScene method is responsible for creating the scene,
and for adding the collections to the graph, depending on whether they
come from the search-history-database or from bookmark-collections.

If the scene should visualize a set of bookmark-collections, their keys
are passed to the ECHO.BookmarkHandler which loads the data from the
browser’s localStorage, where the RD saves the bookmarks and creates col-
lection nodes and recommendation nodes that are injected into the scene.

Otherwise, if the query-collection-history needs to be visualized, the
ECHO.DbHandlerLocalStorage has to load the stored search-results from
the localStorage.

Independent from their data sources, both methods underlie the same
procedure to successfully create a scene with collections and results. The
procedure to visualize a collection is as follows:

At first, an object of the type ECHO.Collection is created and some metadata,
such as the title, are set. The title may be the query-string or the name of the
bookmark. This object is called Collection (see Section 5.5) in ECHO. Each
Collection has a parent-collection, except if it is the very first one to visualize.
When visualizing query-collections, the last query-collection before the
actual one is set as parent. When showing bookmark-collections, the parent
does not have such a significance and just describes the position inside the
graph. Thus, the order appears as the selected bookmarks are stored within
the localStorage.

After creating a collection, objects representing the query’s results are cre-
ated. Each of the results is stored as objects of the type ECHO.Recommendation.
Each Recommendation (see Section 5.6) holds information about the entire

107

5 Implementation-Details

result including the facets (provider, language, license, date), title, preview-
image, and URL but also its weight inside the collection and its keywords.
At the end, a Recommendation is added to its Collection.

Finally, the Collections are added to the ECHO.Scene object which not only
holds the graph, but also references every other component used by ECHO.
When creating the Scene object, instances of the following classes are created.
Details are described in further Sections:

• ECHO.NavigationHandler: responsible for navigation within the graph.
• ECHO.FilterHandler: manages the application of filters on the collec-

tions.
• ECHO.RecDashboardHandler: link between the Scene and (outer) HTML-

elements in the RD.
• ECHO.WebGLHandler: holds the THREE.js scene, camera and renderer.

Responsible for the basic WebGL-setup. For further details see Section
5.2.2.

• ECHO.InteractionHandler: used for handling different interactions
like mouse-clicking and dragging or keyboard actions.

• ECHO.CollectionPosCircular: calculates the Collections’ positions.
• ECHO.Forms: creates HTML-Forms, used for filters and bookmarks for

example.
• ECHO.Animation: animation-Framework used by registering anima-

tions with different parameters, defining callbacks etc.
• ECHO.DirectCompare: used for comparing similarities of neighboring

collections.
• ECHO.RecConnector: connects Recommendations that represent the same

result by rendering splines over the whole scene.

5.3.4.1 Animation-Loop

After creating all those components, the graph needs to be initialized by
calling the ECHO.Scene.initCollectionNetwork.
The ECHO.CollectionPosCircular calculates the positions of the collec-
tions and their connections. Finally, the whole scene is shown, and the
ECHO.Scene.animation-method is triggered for the first time. This method

108

5 Implementation-Details

performs a loop as long as ECHO is running. For more details on the
animation-loop, see Section 5.8.2.

5.4 Code-Structure Of Scene-Elements

There are a lot of classes that represent a visual element inside the scene, like
collections, recommendations, different connections, the Ring-Representation,
its sub-elements, etc. All of these classes share a similar structure and some
principles. Those are summarized in the following section.

5.4.1 Container Behaviour

Many objects in ECHO work as a logical container for one or more visual
components (THREE.js-primitives). Values like the position or rotation-
degrees, are stored outside the primitives, and are applied during the
rendering call if necessary. All of these values, responsible for the visual
appearance including the THREE.js-primitives, are encapsulated in a con-
tainer object, called vis data . This encapsulation prevents from mixing
up logical/meta/semantic-data with information necessary for the visu-
alization, and from misusing the THREE.js-primitives with wrong values.
Another benefit of holding the values outside the primitives is that some-
times reproducing values like a rotation or a relative position on a circle
is impossible or at least hard to calculate precisely. If the values are stored
outside the primitives, easier access to them is possible. As a sample, in
Section 5.5 the vis data -object is described in detail.

5.4.2 Encapsulating Variables

Most variables inside the ECHO-classes are defined as private, and thus,
when inspecting the code, a lot of getter- and setter-methods appear. Even
if JavaScript does not support a strict separation between public and private
members inside the ECHO project, direct access to the variables of most
objects was avoided as much as possible and the usage of getter and setter

109

5 Implementation-Details

was preferred to guarantee a good code quality, by ensuring control over
the values when they are accessed from outside.

5.4.3 Dirty-Flags And Update

Instances of the ECHO-classes that represent visual elements, may have a lot
of values that could change and then affect the THREE.js-objects, but also
cause computations, each time the own preRender-method was called. To
prevent unnecessary computations, each of those objects holds a dirty-flag
that ensures that the preRender method only performs if the flag is dirty,
which happens only if specific values (positions, textures, visibilities, ...)
have been changed since the last preRender-call of the object. This flag
also guarantees that sub-objects (like ECHO.Recommendation objects inside
a ECHO.Collection) are not rendered if the dirty-flag of the parent is not
set, because each preRender-method calls the preRender-method of its sub-
objects if necessary.

This means, that changing a sub-object’s data through a setter method must
ensure a dirty-flag change on the parent-object. This is usually done inside
the corresponding setIsDirty()-method, which triggers a dirty-flag up to
the object’s parent’s dirty-flag-setter.

5.4.4 Initialization

The visual objects in ECHO have a method (mostly initGlNode) where
all THREE.js objects are created and initialized. Those objects are finally
added directly to the THREE.Scene or to a container object, which groups
several objects together to easily perform transformations on more than one
object.

110

5 Implementation-Details

5.5 Collections

The ECHO.Scene object holds each loaded collection. They could be the
results of the EEXCESS query history (query-collections) or several loaded
bookmark-collections. As described in Section 5.4, the ECHO.Collection-
class acts as a container for its primitives but also contains other sub-objects
and methods described below.

5.5.1 Functionality

In the ECHO.Collection-class’s constructor, which passes the metadata of
the collection, the initialization of the sub-elements is called and the type of
positioning of the recommendations is set
(ECHO.RecommendationPosDistributed).

Since all WebGL-elements within the collection should be transformable
at once without touching or calculating each element, a THREE.Object3D

container is created that holds all element. To move the whole collection,
for example, only the container needs to be transformed. Every sub-element
stays at its relative position within that container. This container is initially
filled with the following ECHO elements: center node, the plane, and the
text-labels, including the collection-name and keywords (see Section 5.5.2).

The collection has methods that can control sub-elements on several interac-
tions. It can:

• toggle the Ring-Representation
• create and visualize splines from its recommendations to other recom-

mendations inside the scene
• focus the camera on this collection
• turn the visualization of its recommendations’ relevance on and off

As can be seen, the ECHO.Collection has powerful possibilities to change
the visualization but does not affects the logic too much. It’s main purpose
is to provide functions to call from outside and to hold and update its
recommendations.

111

5 Implementation-Details

The preRender-method of the collection calls the preRender-method of
all its elements inside the gl objects-object (see below), but also on its
recommendations and a possible Ring-Representation. The decision, if a
rendering of the sub-elements is necessary, is not made by the collection. It
just calls the sub-element’s preRender-function which decides if the render-
calculations should be performed on the basis of its object’s dirty-flag.

5.5.2 Visualization Data

Data and objects representing the node and its visual appearance are again
encapsulated in a sub-object (vis data) of ECHO.Collection. This data,
made up of the following elements, also gives an example of how the
vis data -object would look in other container-classes:

• position: Absolute position inside the 3D-space.
• initial-position: Calculated by ECHO.CollectionPosCircular.
• rotation: Degree-value of rotation around the y-axis. It needs to be

stored, since it can not be reproduced after applying transformations
on the objects.

• initial-rotation: Calculated by ECHO.CollectionPosCircular.
• gl objects: Container holding the entire THREE.js objects.

– center node: ECHO.CollectionCenterNode, containing a circle ob-
ject representing the center of the collection.

– parent connection: ECHO.ConnectionCollectionCollection

holding a THREE.Line-Geometry to visualize the connection to a
potential parent-collection.

– plane: ECHO.CollectionPlane-object holding a
THREE.CircleGeometry to show a semi-transparent plane between
the inner node and the recommendation nodes.

– compare bar: Optional object (ECHO.DirectCompare) for display-
ing a bar containing the percentage of how much the current
collection has the same results as the parent collection.

• mesh container: A simple THREE.Object3D-object that acts as a parent
object for the THREE.js objects held by the classes above (see Section
5.5.1).

112

5 Implementation-Details

Furthermore, the vis data object contains some flags used for the visual-
ization.

5.6 Recommendations

Recommendations represent references to documents retrieved by EEXCESS
belonging to a search query or a manually created bookmark-collection
and are implemented within the ECHO.Recommendation-class. The following
section deals with the recommendations’ data, their visual appearance, and
the possibility to retrieve and use their information within a separated
detail-window.

5.6.1 Data Held by a Recommendation

Since the retrieved documents are not downloaded or processed by any
of the EEXCESS modules, only some metadata is available to perform
visualizations, comparisons or interactions.

The following relevant data can be found within the results retrieved from
EEXCESS:

• title: The document’s title.
• description: Short description of the document.
• icon: Optional link to a small image that can be used as thumbnail.
• URI: Link to the document for reading or viewing it.

Additionally, the so called facets are retrieved. These metadata consist of
the following values:

• language: Two-character-code of the language the document is written
in.

• license: Any kind of string describing the license of the document.
Since this is often just a URL to the underlying license-description,
visualizing the license inside the Ring-Representation (Section 4.2.4) is
difficult due to its length. A perfect representation of the language
string is still an open task in future work (see Section 7.3.2).

113

5 Implementation-Details

• provider: A provider delivers the results to EEXCESS, depending on
the query. The provider can be identified through this string, which
could be ”Deutsche Digitale Bibliothek” or ”ZBW” for example (see
Section 3.2).

• type: Describes the type of document which could be ”text”, ”image”
or ”sound”, for instance.

• year: Should hold a date related to the document. Since there is no
clear specification regarding how this date should look like, the values
may vary from ”2015” to ”2014-10-02”. Many documents do not even
have a date set (”unknown”) and some dates may have wrong values
(”17881788”).

If a facet is empty its value is set to ”unknown”.

5.7 Text-Elements

Since THREE.js does not provide native methods to render text inside the
scene, it was necessary to implement a particular solution. The ECHO.Text-
class provides a simple method to create text-elements with variations
on their appearance like colors, background, size etc. When creating an
ECHO.Text-object, a DIV-element with the specific visual values, set as CSS-
properties, is created with the text as content. It is rendered on a HTML-
canvas element, and the result is used as a texture of a
THREE.PlaneBufferGeometry element, which is then added to the scene.

Since the text is not available as a vector-graphic, but rather as a rendered
image, different distances of the camera to the element could lead to an-
noying pixel-artifacts on the scene. Therefore, each text-element can be
created in a variable resolution. A factor value makes it possible to render
the element with a bigger size, which is afterwards reduced by transforming
the rendered element.

It is also possible to define the visual appearance of the text-element while
hovering (a different background-color, for example), or to define methods
for interactions like mouse-over or a click (see Section 5.9).

114

5 Implementation-Details

5.8 Updating and Rendering

In ECHO most of the objects, containing THREE.js-elements, hold a
preRender-method. They are used to bring internal values like positions,
flags, etc. on the screen through a process described in this section.

5.8.1 The preRender-Method

If properties of scene-elements are set, changes on its visual appearance
may also have to be made. For example, if the rotation of a collection
is set through its setter, a single float-value is modified at this moment.
Further, the collection’s dirty-flag is set to true. This does not result in a
visual change yet: every time the preRender-method of the object is called,
the value of the dirty-flag is checked. If it is not set, the method is left
immediately.

However, in the case of the example above, the preRender-method continues.
It has to apply the single rotation-degree-value on the THREE.js-object,
that holds all primitives. The preRender-methods are also responsible for
triggering the render-process to potential sub-elements. After finishing, the
dirty-flag is reset to false.

5.8.2 The Animation-Loop

The rendering first starts through calling the ECHO.Scene.animate-method.
It runs in a loop until the scene is deleted.

To prevent unnecessary calculations, while the browser window or tab is
not active, the method not only calls itself, but also uses a
requestAnimationFrame-call. This ensures that the JavaScript-engine only
recalls the method again if the window is active.

The ECHO.Scene.render-method is called inside this method.

115

5 Implementation-Details

5.8.3 Rendering the Scene

After calling the ECHO.Scene.render-method, and checking the dirty-flag
(see Section 5.8.1), the preRender-method of each collection is called. Each
collection performs its calculations and further necessary manipulations on
the THREE.js-objects it manages. The collections call preRender-methods
on each of their sub-elements (recommendations, labels). Those objects may
perform the same process on their sub-elements, etc.

After all THREE.js-elements are set in the way they should be, the
ECHO.WebGlHandler calls the preRender-method of the
THREE.WebGLRenderer object it holds. This finalizes one step of the animation-
loop by performing the entire WebGL-rendering.

5.9 Interactions

The ECHO.InteractionHandler is responsible not only for forwarding mouse-
events to the corresponding elements, but also for processing key-events and
for transferring values to the NavigationHandler. If the mouse is moved
over the scene, the mouse-wheel is used, or a click is performed, the
InteractionHandler uses an instance of THREE.Raycaster to retrieve all
objects that are in an area of influence of the mouse-cursor.

Those THREE.js objects may hold an object that was created by their ECHO-
parent-object. It refers to different methods (mostly held by the parent-
object), such as handleClick or handleMouseover. Depending on the type
of interaction, and if such a method was set, it is called to perform an
interaction on that object.

5.10 Configuration

The visualizations, animations, and the performance of ECHO depends
on hundreds of variables. One principle while developing was to prevent
leaving any value that is used for configurating ECHO inside the code.

116

5 Implementation-Details

Variables like sizes, positions, as well as colors etc. can be found within the
ECHO.config-object.

117

6 Case Study

6.1 Research for Historical Images

This chapter will demonstrate the benefits of ECHO through the following
scenario: the user Alice, who is working as a librarian, is doing research
on a historical topic (WWI) over a long period of time. After navigating
over many documents and retrieving a lot of recommendations through
several searches, she decides to find and collect images of WWI locations
in Europe. Instead of attempting to generate similar searches again, she
wants to make use of the already existing queries and results, which are
conveniently tracked and saved by ECHO.

6.1.1 Initial Position

Alice has been investigating the WWI events for a long time. Most of the
topics relate to WWI. However, other searches from other fields also occur.
Since her research has taken place over a long period of time, she no longer
remembers every query or result. Alice just previously performed a search
with the keyword ”infanterie” (infantry) (Figure 6.1) . Instead of performing
new searches, she wants to investigate the already stored results. Therefore,
she starts ECHO to access past queries and their results (Figure 6.2).

6.1.2 Finding Related Query-Collections

Alice wants to know if results from the current query (”infanterie”) also occur
in past queries. Therefore, she hovers over the center of that query-collection.

118

6 Case Study

Figure 6.1: Current search results on the keyword ”infanterie” (infantry) in the RD.

Figure 6.2: Several searches over different topics with a focus on WWI. The last search was
”infanterie” (infantry).

119

6 Case Study

Figure 6.3: Hovering over the query-collection’s center activates the comparison: splines to
same results in previous query-collections are shown.

Figure 6.4: After hovering, the keyboard-cursor-keys allow movement around the scene
from the last query-collection (right) to the collection containing two same
results (left).

120

6 Case Study

Figure 6.5: After moving to the collection with two same results

In fact, two results also occur in another query-collection (Figure 6.3). Since
both results end up in the same query-collection, it may be interesting to
investigate the previous result set. Alice could now click directly on the
query-collection where the splines end, or she could move to it while leaving
the splines intact. She decides to move through the keyboard’s cursor-keys
to see which results of the other query-collection the splines connect to
(Figure 6.4). That brings her to an interesting query-collection (Figure 6.5),
generated by the query-term ”artillerie” (artillery).

6.1.3 Investigating an Interesting Query-Collection

Due to the interesting query-term (”artilliere”), Alice decides to investigate
that query-collection further. She clicks the query-collection node to activate
the Ring-Representation (see Figure 6.6). After investigating its results, she
wants to know if there are further related queries in the search history.
By hovering over the collection’s center, she can see the two matching
recommendations from the base-collection before (Figure 6.7). On the top-

121

6 Case Study

Figure 6.6: Focus on a query-collection to investigate

right of the query-collection, two results are linked to another result set.
They are those that also occurred in the later ”infanterie” query-collection.

Alice discovers a third recommendation on the bottom-left that links to
another query-collection. She decides to take a closer look. Therefore, she
clicks on the recommendation node, which is immediately focused on (see
Figure 6.8). The preview-image, which shows a theater of war, seems to
be very interesting. Since she hopes to find similar documents in the other
query-collection, Alice decides to follow the link. Since she wants to get an
idea of where in the history the other query was performed, she wants to
return to the overview first by scrolling down with her mouse-wheel two
times, she first reaches the level of the collection-focus, and then the outer
level that allows free navigation. To find the desired query-collection, she
hovers over the center of the ”artillerie” collection again. The connections
appear and she can clearly see the one that leads to the still unknown one
(Figure 6.9). Alice wants to focus that query-collection and clicks on it.

122

6 Case Study

Figure 6.7: After hovering the query-collection’s center node, three documents are linked
to other queries. Two (upper right corner) link back to the previous viewed
query-collection, one (bottom left) to a still unknown query-collection.

123

6 Case Study

Figure 6.8: Focusing on a recommendation by clicking on it zooms in and shows a preview
of the underlying document and several buttons: Reference (left) for external
usage.
textitInfo & Filter (bottom) for opening the detail window, Open (right) for
opening the document in the browser and Bookmark for storing the document in
a bookmark-collection.

Figure 6.9: Hovering over the query-collection’s center shows a connection to another
collection on the right side in the overview mode.

124

6 Case Study

Figure 6.10: Filtering for documents with the type ”IMAGE” on another collection

6.1.4 Discovering & Filtering a Third Query-Collection

After clicking on the query-collection, the camera focuses on it. Alice reads
that the search query was ”1.weltkrieg” (WWI). At first sight, she realizes that
it contains some pictures. To find all documents that are classified as images,
she clicks on the IMAGE-segment of the inner circle (type) of the Ring-
Representation. Only documents that are declared as images, independently
of whether they have preview-images or not, are shown now (Figure 6.10).
Alice finally begins to investigate the interesting results. To check the title
and further details of a result, she clicks on the node’s i-button (see Figure
6.8, bottom) which opens the detail-window (Figure 6.11). She decides to
create a user-defined bookmark-collection on WWI, to save and organize
relevant results. To do this, she clicks the node’s star-button which allows her
to bookmark different results and organize them into bookmark-collections
(Figure 6.12).

6.1.5 Usage of the Collected Results

Finally Alice got a bookmark-collection containing a lot of relevant docu-
ments. For further investigations of the documents’ metadata she decides

125

6 Case Study

Figure 6.11: Detail window showing a recommendation (info-panel)

Figure 6.12: Bookmarking a result

126

6 Case Study

Figure 6.13: Opening a bookmark-collection created inside ECHO and using uRank on it

to make use of the RD’s visualizations. She is interested about the docu-
ments’ keywords in particular and thus opens the uRank-visualization (see
Section 3.3.2). She opens the bookmark-collection by clicking on the RD’s
bookmark-dropdown and selects the entry with the name she has chosen
for the bookmark-collection before.

Now, after bundling the relevant documents from all her previous queries
in a single bookmark-collection making use of ECHO, she can further refine
and investigate them in uRank (see Figure 6.13).

127

7 Conclusion

This work concludes with the following chapter. Beginning with a summary,
followed by a collection of lessons learned during this project, it finishes
with suggestions for possible future work on ECHO and a final conclusion.

7.1 Summary

After an overview of related work in Chapter 2 on the topics of recommender
systems, graph-comparing, and dynamic-graphs, EEXCESS and its RD were
introduced in Chapter 3.

Chapter 4 introduced ECHO, which is the tool generally described in this
work. Before discussing its features in Section 4.2, it was necessary to list
functional and non functional requirements in Section 4.1, which were
derived from use cases before designing ECHO.

At first, considerations about the visual layout were made in Section 4.2.1.
The general design of the collection and recommendation nodes was elab-
orated and a layout for the query history was designed. Section 4.2.2 dis-
cussed the navigation and the concepts of LODs used in ECHO, followed
by the description of filtering in Section 4.2.3. As a key feature of ECHO,
the RingRepresentation was introduced next in Section 4.2.4. This section
included a short introduction to its creation-algorithm, its appearance, and
its functionality and its benefits. The next sections discussed ECHO’s com-
parison mechanisms (Section 4.2.5) and the usage of bookmark-collections
(Section 4.2.6). Finally fulfilling the non functional requirements were dis-
cussed, followed by a short summary of the chapter.

128

7 Conclusion

Chapter 5 went deeper into the implementation of ECHO. This was neces-
sary to provide a good understanding of ECHO’s code and functionality.

At first, the general implementation-environment, such as the used pro-
gramming language and the RD’s plugin-system was discussed. Further,
Section 5.2 gave a more detailed explanation of WebGL and THREE.js and
how they are used within ECHO.

The next Sections (5.3, 5.4) introduced how ECHO is initialized as a plugin
and as the described scene. Its internal components which work in the
background and how the code is structured were described in detail. The
next aections showed two essential element-classes of the graph: Section
5.5 and Section 5.6 described the structure, data, and functionality of the
ECHO.Collection and ECHO.Recommendation-classes.

Technical details about the internal rendering-process were described in
Section 5.8, followed by an introduction to the usage of ECHO’s interaction
mechanism (5.9) and the ECHO.Text-class (5.7). The chapter concluded with a
short section about the storage of variables inside a configuration-object.

The work was concluded by providing a case study (Chapter 6). It demon-
strated ECHO’s benefits by describing a task a user might want to complete,
supported by screenshots for a better understanding. It summarized all of
the major features described in Chapter 4.

7.2 Lessons Learned

During this work, some challenges came up, which were not expected
at the beginning. The lessons learned through mastering those problems,
regarding the visual design and implementation, are summarized in this
section.

7.2.1 Visual Design and Graph-Layout

This section discusses challenges in designing the graph’s layout and the
general visualization of its elements, as well as what was learned through

129

7 Conclusion

facing those problems.

7.2.1.1 Camera & Graph layout

The graph-layout was originally designed with the idea of visualizing the
collections in a Cover-Flow representation, known from many music players
(see Section 4.2.1.4). The basic idea supported the requirement of visualizing
most of the scene at the same time continuously, even if a single collection
was selected.

7.2.1.2 Problems Discovered

While implementing the visualization, the following problems regarding
the camera and its position occurred:

• Positioning the collections on a hyperbolic curve, that lies in the x/z-
plane, with the apex pointing towards the camera would help show
all data easily in the field of view, but would lead to an overlapping
of the collections.

• The solution was to set the collections on a circular arch. This helped
provide enough space between the collections, but a trade-off between
the camera’s distance and the camera-angle had to be made: a higher
distance of the scene to the camera allowed the use of a narrower
angle, which does not distort the scene, but also leads to fewer details
that can be seen. Otherwise, if the angle of view is high, the collections
can be set nearer to the camera. Thus, more details in the middle of
the camera’s field of view can be recognized, but collections on the
left and right side of the canvas are distorted.
Nevertheless, the latter concept was used for visualization because of
a preference of showing details over preventing a fisheye-effect. This
concept, with a higher fish-eye-effect, also led to the side-effect that
comparing splines (see Section 4.2.5) needed to be made thicker to be
visible in the far distance.

130

7 Conclusion

7.2.1.3 Lessons Learned

• These problems lead to the question of whether positioning the collec-
tions on a (flat) ring was the optimal solution.

• The benefits of using a three-dimensional representation were not
optimally used by leaving out a whole dimension (Y).

• The camera’s navigation was implemented to allow a movement
around a sphere surrounding the collections, but the collections were
positioned only in the x/z-plane. Properly using the whole sphere
could have helped prevent the problems mentioned above and could
have helped visualize more data at the same time.

7.2.2 Visual Design

While implementing the layout of the collections, several limitations came
up, which are outlined below.

7.2.2.1 Collection Layout

• The layout was planned in a state of the EEXCESS project, where
the received results were limited to 20 recommendations. Thus, the
place around the two-dimensional plane seemed to be enough.

• After implementing the collection-visualization that limit was dropped.
Thus, it was hard to procure additional space for more results.

• It resulted in an internal limit of 40 recommendations around the
collection node.

The following lessons were learned from that problems:

• An a priori assumption of limits of data is dangerous during an on-
going project consisting of different working-groups and sub projects.

• Similar to the ideas regarding the graph-layout, a different approach
would be to not only use a vertical plane, but to allow a position of
the nodes all around the collection in a three-dimensional space.

131

7 Conclusion

7.2.2.2 Ring-Representation

• During planning of the Ring-Representation (Section 4.2.4), not enough
considerations about placing the segments’ labels were made.

• This resulted in long, overlapping labels.
• To solve this problem, particularly long strings, like URLs, were cut.
• This lead to the loss of meaning of some labels.

These problems resulted in the following ideas that may be considered in
future projects and in potential future work on this project:

• A dynamic way of displaying labels as text may be necessary. If there
is enough space inside a segment, the size of the label may be different
than a long text in a smaller segment.

• Segments on the left and right of the collection, in particular those
which are vertically aligned, do not provide enough space for horizon-
tal labels.

• The usage of icons, especially for a known subset of values, may help
save space, and also help the user to recognize values more easily.

• An interactive possibility (hovering) may be found to provide more
detailed information on a value if the user is explicitly interested.

7.2.3 Implementation

The implementation led to problems, especially regarding ECHO’s perfor-
mance.

7.2.3.1 Performance

As discussed in the Sections 1.1 and 4.1 possible performance problems
due to a lot of data should be prevented by using WebGL, which makes use
of the client’s graphic card’s hardware-acceleration.

During implementation, it became clear that the graphical rendering was
not the only bottle neck to expect. Even the usage of WebGL lead to a high
usage of the CPU and an especially high amount of memory-usage.

132

7 Conclusion

The problem may be identified in ECHO’s structure of how elements are
held and calculated (see Section 5.4). Decisions were made to separate
the logical elements that internally represent the scene’s objects from the
THREE.js-elements. This helped not to mix up the methods and values of
a library’s object with own code. However, it may have lead to redundant
data. Optimized methods to calculate values may have been missed through
that strict separation, which may result in performance issues.

Finally, ECHO’s usage is limited to machines containing a proper graphic
card and at least an average CPU. Scenes containing a lot of collections
may lead to high memory and CPU usage, which may cause a juddering
scene.

For future work, considerations may have to be made to make more use of
WebGL’s features and structures to gain better performance through its
internal optimizations.

7.3 Future work

Concluding this work, some challenges and ideas remain open to be resolved
and implemented in the future. This section gives an outlook of possible
future work on ECHO.

7.3.1 Performance Tweaks

As mention in Section 7.2.3, one of the remaining problems is the perfor-
mance of ECHO. Although WebGL is being used, the tool consumes a more
than average amount of CPU and memory.

In the best case scenario, it should be possible to also use ECHO on comput-
ers with moderate power. This could be possible if a detailed investigation
is carved out to optimize algorithms and find calculations that may can be
performed by the GPU instead of the CPU.

133

7 Conclusion

7.3.2 Improving the Ring-Representation

The Ring-Representation (Section 4.2.4) is one of the most essential parts of
this work. Thus, it was necessary to provide an implementation that works
well and is easy to use.

Although there was a high focus on working out the Ring-Representation,
some problems need to be solved in the future:

• As discussed above (Section 7.2.2), the values of the Ring-Segments
are not visualized in an optimal way. A lot of the values’ labels use
more space than the segment provides. This leads to overlapping.

• It is necessary to find a way to let the user recognize the value on the
one hand, but also to prevent overlapping values.

• Some of the facets that appear as Ring-Segments do not contain proper
values. Often they are empty and currently shown as ”unknown”. Oth-
ers, especially the year-facet, do not provide consistent values every
time (see Section 4.2.3.1). Future developments may concentrate on
better preparation of those values before loading them into ECHO.

7.3.3 Further Comparison Methods

The current comparison mechanism compares several collections and con-
nects similar results. Since this method is a basic way of showing similarities
between collections, further methods may be found in the future to extract
and visualize relationships between different collections.

One possibility could be to use the received keywords of the recommenda-
tions. ECHO is designed to also allow other visualizations of relations, and
is not only limited to connecting results through splines.

7.3.4 Filtering

ECHO’s applied filters are currently summarized in the RD’s micro-
visualization in the right column. However, they are not connected to the
filtering mechanism of the RD, due to the following problems:

134

7 Conclusion

• Applying filters from ECHO on the RD’s data may lead to problems
because of the different underlying data: the RD only handles one
collection, while ECHO holds multiple collections. Thus, if filters are
applied, it is possible, that those filtered values will not occur in the
RD. Currently, it cannot handle this case and would throw an error.

7.4 Final Conclusion

ECHO realized a way to visualize and analyze recommender result histo-
ries. It was possible to fulfill the requirements set out in Section (4.1) and
to provide a graph that allows the user to navigate, manage, analyze and
compare collections and results.

The navigation (Section 4.2.2) allows easy movement between collections,
as well as access to them and their results. Comparison (Section 4.2.5) and
Ring-Representation (Section 4.2.4) allow an easy and productive way of
finding recommendations within multiple collections. The usage of the
RD’s bookmarking system gives possibilities to organize recommendations.
Furthermore, the user has the option of visualizing bookmark-collections
through ECHO. Several interaction mechanisms finally allow the user to
open and use recommendations in external tools (see Section 4.2.1.3). An
example of the practical use of ECHO was finally proved in Chapter 6.

135

Appendix

136

Bibliography

Ahn et al. (2011). “Temporal visualization of social network dynamics:
Prototypes for nation of neighbors.” In: Social computing, behavioral-
cultural modeling and prediction. Springer, pp. 309–316 (cit. on p. 27).

Anderson (2013). The long tail. Nieuw Amsterdam (cit. on p. 29).
Andrews, Wohlfahrt, and Wurzinger (2009). “Visual Graph Comparison.”

In: Proceedings of the 2009 13th International Conference Information Visual-
isation. IV ’09. Washington, DC, USA: IEEE Computer Society, pp. 62–
67. isbn: 978-0-7695-3733-7. doi: 10.1109/IV.2009.108. url: http:
//dx.doi.org/10.1109/IV.2009.108 (cit. on pp. 12, 15).

Archambault (2009). “Structural Differences Between Two Graphs Through
Hierarchies.” In: Proceedings of Graphics Interface 2009. GI ’09. Kelowna,
British Columbia, Canada: Canadian Information Processing Society,
pp. 87–94. isbn: 978-1-56881-470-4. url: http://dl.acm.org/citation.
cfm?id=1555880.1555905 (cit. on pp. 14, 16, 17).

Bach, Pietriga, and Fekete (2014). “GraphDiaries: animated transitions
andtemporal navigation for dynamic networks.” In: Visualization and
Computer Graphics, IEEE Transactions on 20.5, pp. 740–754 (cit. on p. 26).

Becker and Cleveland (1987). “Brushing scatterplots.” In: Technometrics 29.2,
pp. 127–142 (cit. on p. 32).

Brandes and Corman (2003). “Visual Unrolling of Network Evolution and
the Analysis of Dynamic Discourse.” In: Information Visualization 2.1,
pp. 40–50. issn: 1473-8716. doi: 10.1057/palgrave.ivs.9500037. url:
http://dx.doi.org/10.1057/palgrave.ivs.9500037 (cit. on pp. 22,
24).

Brandes, Eiglsperger, et al. (2010). Graph markup language (GraphML). Citeseer
(cit. on p. 14).

137

http://dx.doi.org/10.1109/IV.2009.108
http://dx.doi.org/10.1109/IV.2009.108
http://dx.doi.org/10.1109/IV.2009.108
http://dl.acm.org/citation.cfm?id=1555880.1555905
http://dl.acm.org/citation.cfm?id=1555880.1555905
http://dx.doi.org/10.1057/palgrave.ivs.9500037
http://dx.doi.org/10.1057/palgrave.ivs.9500037

Bibliography

Brill (1992). “A Simple Rule-based Part of Speech Tagger.” In: Proceedings of
the Workshop on Speech and Natural Language. HLT ’91. Harriman, New
York: Association for Computational Linguistics, pp. 112–116. isbn: 1-
55860-272-0. doi: 10.3115/1075527.1075553. url: http://dx.doi.org/
10.3115/1075527.1075553 (cit. on p. 41).

Chau (2011). “Visualizing Web Search Results Using Glyphs: Design and
Evaluation of a Flower Metaphor.” In: ACM Trans. Manage. Inf. Syst.
2.1, 2:1–2:27. issn: 2158-656X. doi: 10.1145/1929916.1929918. url:
http://doi.acm.org/10.1145/1929916.1929918 (cit. on p. 1).

Chaudhri, Imran (2010). Animated graphical user interface for a display screen or
portion thereof. US Patent D624,932 (cit. on p. 69).

Collberg et al. (2003). “A System for Graph-based Visualization of the
Evolution of Software.” In: Proceedings of the 2003 ACM Symposium on
Software Visualization. SoftVis ’03. San Diego, California: ACM, 77–ff.
isbn: 1-58113-642-0. doi: 10.1145/774833.774844. url: http://doi.
acm.org/10.1145/774833.774844 (cit. on pp. 25, 26).

Congote et al. (2011). “Interactive Visualization of Volumetric Data with
WebGL in Real-time.” In: Proceedings of the 16th International Conference
on 3D Web Technology. Web3D ’11. Paris, France: ACM, pp. 137–146.
isbn: 978-1-4503-0774-1. doi: 10.1145/2010425.2010449. url: http:
//doi.acm.org/10.1145/2010425.2010449 (cit. on p. 102).

Danchilla (2012). “Beginning WebGL for HTML5.” In: Berkeley, CA: Apress.
Chap. Three.js Framework, pp. 173–203. isbn: 978-1-4302-3997-0. doi:
10.1007/978-1-4302-3997-0_7. url: http://dx.doi.org/10.1007/
978-1-4302-3997-0_7 (cit. on p. 102).

Deshpande and Karypis (2004). “Item-based top-N Recommendation Algo-
rithms.” In: ACM Trans. Inf. Syst. 22.1, pp. 143–177. issn: 1046-8188. doi:
10.1145/963770.963776. url: http://doi.acm.org/10.1145/963770.
963776 (cit. on p. 7).

Erten et al. (2003). “GraphAEL: Graph Animations with Evolving Layouts.”
In: Graph Drawing. Ed. by Giuseppe Liotta. Vol. 2912. Lecture Notes
in Computer Science. Springer, pp. 98–110. isbn: 3-540-20831-3. url:
http://dblp.uni-trier.de/db/conf/gd/gd2003.html#ErtenHKWY03

(cit. on pp. 21, 23).
Fruchterman and Reingold (1991). “Graph drawing by force-directed place-

ment.” In: Software: Practice and experience 21.11, pp. 1129–1164 (cit. on
p. 39).

138

http://dx.doi.org/10.3115/1075527.1075553
http://dx.doi.org/10.3115/1075527.1075553
http://dx.doi.org/10.3115/1075527.1075553
http://dx.doi.org/10.1145/1929916.1929918
http://doi.acm.org/10.1145/1929916.1929918
http://dx.doi.org/10.1145/774833.774844
http://doi.acm.org/10.1145/774833.774844
http://doi.acm.org/10.1145/774833.774844
http://dx.doi.org/10.1145/2010425.2010449
http://doi.acm.org/10.1145/2010425.2010449
http://doi.acm.org/10.1145/2010425.2010449
http://dx.doi.org/10.1007/978-1-4302-3997-0_7
http://dx.doi.org/10.1007/978-1-4302-3997-0_7
http://dx.doi.org/10.1007/978-1-4302-3997-0_7
http://dx.doi.org/10.1145/963770.963776
http://doi.acm.org/10.1145/963770.963776
http://doi.acm.org/10.1145/963770.963776
http://dblp.uni-trier.de/db/conf/gd/gd2003.html#ErtenHKWY03

Bibliography

Fu et al. (2007). “Visualization and analysis of email networks.” In: Visual-
ization, 2007. APVIS’07. 2007 6th International Asia-Pacific Symposium on.
IEEE, pp. 1–8 (cit. on pp. 26, 27).

Gajer and Kobourov (2001). “GRIP: Graph dRawing with Intelligent Place-
ment.” In: Proceedings of the 8th International Symposium on Graph Drawing.
GD ’00. London, UK, UK: Springer-Verlag, pp. 222–228. isbn: 3-540-
41554-8. url: http://dl.acm.org/citation.cfm?id=647552.729406
(cit. on p. 21).

Granitzer et al. (2013). “Unfolding Cultural, Educational and Scientific Long-
Tail Content in the Web.” In: Late-Breaking Results, Project Papers and
Workshop Proceedings of the 21st Conference on User Modeling, Adaptation,
and Personalization., Rome, Italy, June 10-14, 2013. url: http://ceur-
ws.org/Vol-997/umap2013_project_1.pdf (cit. on pp. 29, 30).

Harris, Robert L (2000). Information graphics: A comprehensive illustrated refer-
ence. Oxford University Press (cit. on p. 68).

Hascoët and Dragicevic (2011). Visual Comparison of Document Collections
Using Multi-Layered Graphs. Tech. rep. RR-11020, p. 10. url: http://hal-
lirmm.ccsd.cnrs.fr/lirmm-00601851 (cit. on pp. 19, 20).

Herlocker et al. (2004). “Evaluating Collaborative Filtering Recommender
Systems.” In: ACM Trans. Inf. Syst. 22.1, pp. 5–53. issn: 1046-8188. doi:
10.1145/963770.963772. url: http://doi.acm.org/10.1145/963770.
963772 (cit. on p. 6).

Hofmann (2004). “Latent Semantic Models for Collaborative Filtering.” In:
ACM Trans. Inf. Syst. 22.1, pp. 89–115. issn: 1046-8188. doi: 10.1145/
963770.963774. url: http://doi.acm.org/10.1145/963770.963774
(cit. on p. 6).

Huang, Chen, and Zeng (2004). “Applying Associative Retrieval Techniques
to Alleviate the Sparsity Problem in Collaborative Filtering.” In: ACM
Trans. Inf. Syst. 22.1, pp. 116–142. issn: 1046-8188. doi: 10.1145/963770.
963775. url: http://doi.acm.org/10.1145/963770.963775 (cit. on
p. 6).

“Introduction to Recommender Systems: Algorithms and Evaluation” (2004).
In: ACM Trans. Inf. Syst. 22.1. Ed. by Konstan, pp. 1–4. issn: 1046-8188.
doi: 10.1145/963770.963771. url: http://doi.acm.org/10.1145/
963770.963771 (cit. on p. 6).

Koop, Freire, and Silva (2013). “Visual summaries for graph collections.”
In: IEEE Pacific Visualization Symposium, PacificVis 2013, February 27

139

http://dl.acm.org/citation.cfm?id=647552.729406
http://ceur-ws.org/Vol-997/umap2013_project_1.pdf
http://ceur-ws.org/Vol-997/umap2013_project_1.pdf
http://hal-lirmm.ccsd.cnrs.fr/lirmm-00601851
http://hal-lirmm.ccsd.cnrs.fr/lirmm-00601851
http://dx.doi.org/10.1145/963770.963772
http://doi.acm.org/10.1145/963770.963772
http://doi.acm.org/10.1145/963770.963772
http://dx.doi.org/10.1145/963770.963774
http://dx.doi.org/10.1145/963770.963774
http://doi.acm.org/10.1145/963770.963774
http://dx.doi.org/10.1145/963770.963775
http://dx.doi.org/10.1145/963770.963775
http://doi.acm.org/10.1145/963770.963775
http://dx.doi.org/10.1145/963770.963771
http://doi.acm.org/10.1145/963770.963771
http://doi.acm.org/10.1145/963770.963771

Bibliography

2013-March 1, 2013, Sydney, NSW, Australia, pp. 57–64. doi: 10.1109/
PacificVis . 2013 . 6596128. url: http : / / dx . doi . org / 10 . 1109 /

PacificVis.2013.6596128 (cit. on pp. 16, 18).
Kuhn (1955). “The Hungarian method for the assignment problem.” In:

Naval research logistics quarterly 2.1-2, pp. 83–97 (cit. on p. 14).
Melnik, Garcia-Molina, and Rahm (2002). “Similarity flooding: A versatile

graph matching algorithm and its application to schema matching.” In:
Data Engineering, 2002. Proceedings. 18th International Conference on. IEEE,
pp. 117–128 (cit. on p. 18).

Middleton, Shadbolt, and De Roure (2004). “Ontological User Profiling in
Recommender Systems.” In: ACM Trans. Inf. Syst. 22.1, pp. 54–88. issn:
1046-8188. doi: 10.1145/963770.963773. url: http://doi.acm.org/10.
1145/963770.963773 (cit. on p. 6).

Miles (2016). jQuery Essentials. Packt Publishing Ltd (cit. on p. 50).
Munzner et al. (2003). “TreeJuxtaposer: Scalable Tree Comparison Using

Focus+Context with Guaranteed Visibility.” In: ACM Trans. Graph. 22.3,
pp. 453–462. issn: 0730-0301. doi: 10.1145/882262.882291. url: http:
//doi.acm.org/10.1145/882262.882291 (cit. on pp. 11–13).

Mutlu, Hoefler, et al. (2014). “Suggesting visualisations for published data.”
In: Information Visualization Theory and Applications (IVAPP), 2014 Interna-
tional Conference on, pp. 267–275 (cit. on p. 30).

Mutlu and Sabol (2015). “Visual Analysis of Scientific Content.” In: The
Special Technical Community on Social Networking (STCSN) E-Letter on
Science 2.0, May 2015. (Cit. on p. 30).

Mutlu et al. (2015a). “User Modeling, Adaptation and Personalization: 23rd
International Conference, UMAP 2015, Dublin, Ireland, June 29 – July
3, 2015. Proceedings.” In: ed. by Francesco Ricci et al. Cham: Springer
International Publishing. Chap. Towards a Recommender Engine for
Personalized Visualizations, pp. 169–182. isbn: 978-3-319-20267-9. doi:
10.1007/978-3-319-20267-9_14. url: http://dx.doi.org/10.1007/
978-3-319-20267-9_14 (cit. on p. 42).

Mutlu et al. (2015b). “VizRec: A Two-Stage Recommender System for Per-
sonalized Visualizations.” In: Proceedings of the 20th International Con-
ference on Intelligent User Interfaces Companion. IUI Companion ’15. At-
lanta, Georgia, USA: ACM, pp. 49–52. isbn: 978-1-4503-3308-5. doi:
10.1145/2732158.2732190. url: http://doi.acm.org/10.1145/
2732158.2732190 (cit. on p. 44).

140

http://dx.doi.org/10.1109/PacificVis.2013.6596128
http://dx.doi.org/10.1109/PacificVis.2013.6596128
http://dx.doi.org/10.1109/PacificVis.2013.6596128
http://dx.doi.org/10.1109/PacificVis.2013.6596128
http://dx.doi.org/10.1145/963770.963773
http://doi.acm.org/10.1145/963770.963773
http://doi.acm.org/10.1145/963770.963773
http://dx.doi.org/10.1145/882262.882291
http://doi.acm.org/10.1145/882262.882291
http://doi.acm.org/10.1145/882262.882291
http://dx.doi.org/10.1007/978-3-319-20267-9_14
http://dx.doi.org/10.1007/978-3-319-20267-9_14
http://dx.doi.org/10.1007/978-3-319-20267-9_14
http://dx.doi.org/10.1145/2732158.2732190
http://doi.acm.org/10.1145/2732158.2732190
http://doi.acm.org/10.1145/2732158.2732190

Bibliography

Nowell, Hetzler, and Tanasse (2001). “Change blindness in information
visualization: A case study.” In: infovis. IEEE, p. 15 (cit. on p. 22).

O’Donovan et al. (2008). “PeerChooser: Visual Interactive Recommendation.”
In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI ’08. Florence, Italy: ACM, pp. 1085–1088. isbn: 978-1-60558-
011-1. doi: 10.1145/1357054.1357222. url: http://doi.acm.org/10.
1145/1357054.1357222 (cit. on pp. 8, 10).

Parra et al. (2012). “Conference Navigator 3: An Online Social Conference
Support System.” In: (cit. on p. 7).

Porter (2006). “An algorithm for suffix stripping.” In: Program 40.3, pp. 211–
218. doi: 10.1108/00330330610681286. eprint: http://www.emeraldinsight.
com/doi/pdf/10.1108/00330330610681286. url: http://www.emeraldinsight.
com/doi/abs/10.1108/00330330610681286 (cit. on p. 41).

Rauch et al. (2015). “Knowminer Search - a Multi-Visualisation Collaborative
Approach to Search Result Analysis.” In: Information Visualisation (iV),
2015 19th International Conference on. IEEE, pp. 379–385 (cit. on pp. 27,
28).

Ricci et al. (2010). Recommender Systems Handbook. 1st. New York, NY, USA:
Springer-Verlag New York, Inc. isbn: 0387858199, 9780387858197 (cit. on
pp. 5, 7).

Salton and McGill (1986). “Introduction to modern information retrieval.”
In: (cit. on p. 41).

Sciascio, di, Sabol, and Veas (2015). “uRank: Exploring Document Recom-
mendations through an Interactive User-Driven Approach.” In: Pro-
ceedings of the Joint Workshop on Interfaces and Human Decision Making
for Recommender Systems, IntRS 2015, co-located with ACM Conference on
Recommender Systems (RecSys 2015), Vienna, Austria, September 19, 2015.
Pp. 29–36. url: http://ceur-ws.org/Vol-1438/paper5.pdf (cit. on
pp. 40, 41).

Sciascio, di, Sabol, and Veas (2016). “Rank As You Go: User-Driven Explo-
ration of Search Results.” In: Proceedings of the 21st International Conference
on Intelligent User Interfaces. IUI ’16. Sonoma, California, USA: ACM,
pp. 118–129. isbn: 978-1-4503-4137-0. doi: 10.1145/2856767.2856797.
url: http://doi.acm.org/10.1145/2856767.2856797 (cit. on p. 41).

Tschinkel, Hafner, et al. (2016). “Using Micro-Visualisations to Support
Faceted Filtering of Recommender Results” (cit. on pp. 32, 34, 39, 42).

141

http://dx.doi.org/10.1145/1357054.1357222
http://doi.acm.org/10.1145/1357054.1357222
http://doi.acm.org/10.1145/1357054.1357222
http://dx.doi.org/10.1108/00330330610681286
http://www.emeraldinsight.com/doi/pdf/10.1108/00330330610681286
http://www.emeraldinsight.com/doi/pdf/10.1108/00330330610681286
http://www.emeraldinsight.com/doi/abs/10.1108/00330330610681286
http://www.emeraldinsight.com/doi/abs/10.1108/00330330610681286
http://ceur-ws.org/Vol-1438/paper5.pdf
http://dx.doi.org/10.1145/2856767.2856797
http://doi.acm.org/10.1145/2856767.2856797

Bibliography

Tschinkel, di Sciascio, et al. (2015). “The Recommendation Dashboard: A
System to Visualise and Organise Recommendations.” In: 19th Interna-
tional Conference on Information Visualisation, IV 2015, Barcelona, Spain,
July 22-24, 2015, pp. 241–244. doi: 10.1109/iV.2015.51. url: http:
//dx.doi.org/10.1109/iV.2015.51 (cit. on pp. 31–33, 36, 37).

Tschinkel, Veas, et al. (2014). “Using Semantics for Interactive Visual Analy-
sis of Linked Open Data.” In: Proceedings of the 2014 International Con-
ference on Posters; Demonstrations Track - Volume 1272. ISWC-PD’14. Riva
del Garda, Italy: CEUR-WS.org, pp. 133–136. url: http://dl.acm.org/
citation.cfm?id=2878453.2878487 (cit. on p. 30).

Ulbrich et al. (2015). “Reading Through Graphics: Interactive Landscapes to
Explore Dynamic Topic Spaces.” In: Human Interface and the Management
of Information. Information and Knowledge Design. Springer, pp. 127–137

(cit. on pp. 39, 40).
Veas et al. (2015). “Visual Recommendations for Scientific and Cultural

Content.” In: Proceedings of the 6th International Conference on Information
Visualization Theory and Applications (VISIGRAPP 2015), pp. 256–261. isbn:
978-989-758-088-8. doi: 10.5220/0005352802560261 (cit. on p. 31).

Verbert et al. (2013). “Visualizing Recommendations to Support Exploration,
Transparency and Controllability.” In: Proceedings of the 2013 International
Conference on Intelligent User Interfaces. IUI ’13. Santa Monica, California,
USA: ACM, pp. 351–362. isbn: 978-1-4503-1965-2. doi: 10.1145/2449396.
2449442. url: http://doi.acm.org/10.1145/2449396.2449442 (cit. on
pp. 7–9).

Ware (2012). Information visualization: perception for design. Elsevier (cit. on
p. 1).

Watson (2012). Learning Modernizr. Packt Publishing Ltd (cit. on p. 105).
Woo et al. (1999). OpenGL Programming Guide: The Official Guide to Learning

OpenGL, Version 1.2. 3rd. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc. isbn: 0201604582 (cit. on p. 102).

Wozelka, Kröll, and Sabol (2015). “Exploring Time Relations in Semantic
Graphs.” In: SIGRAD 20155 (the Swedish Chapter of Eurographics). Stock-
holm, Sweden (cit. on p. 27).

Wright, Lipchak, and Haemel (2007). Opengl®Superbible: Comprehensive Tuto-
rial and Reference, Fourth Edition. Fourth. Addison-Wesley Professional.
isbn: 9780321498823 (cit. on p. 103).

142

http://dx.doi.org/10.1109/iV.2015.51
http://dx.doi.org/10.1109/iV.2015.51
http://dx.doi.org/10.1109/iV.2015.51
http://dl.acm.org/citation.cfm?id=2878453.2878487
http://dl.acm.org/citation.cfm?id=2878453.2878487
http://dx.doi.org/10.5220/0005352802560261
http://dx.doi.org/10.1145/2449396.2449442
http://dx.doi.org/10.1145/2449396.2449442
http://doi.acm.org/10.1145/2449396.2449442

Bibliography

Zheng et al. (2013). “A survey of faceted search.” In: Journal of Web engineering
12.1&2, pp. 041–064 (cit. on p. 27).

143

