
Daniel Fritzsch, BSc

Integration of a Fast & Stable Automated
UI Software Testing Solution into an

Established iOS Application

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s Degree Programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Institute of Software Technology

Graz, August 2016

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master‘s thesis dissertation.

Date Signature

iii

Abstract

Although the automation of UI Testing for mobile applications is a trending
software engineering topic today, various obstacles exist that need to be
avoided. Therefore, considerations should be made in order to integrate a
fast and stable automated UI Testing solution into complex iOS applications.

This thesis takes a fresh look at how to develop an optimized UI Automation
framework for iOS which can be easily integrated into existing and established
mobile applications. Tailored to the specific needs of the software project,
the popular open-source UI Automation framework KIF has been enhanced
and deployed for the distinctive UI Testing requirements.

The resulting automated UI Testing solution achieves a remarkably high
performance, while providing the most reliable testing results. Moreover, the
developed UI Automation framework is highly maintainable and reusable as
well, because it aims at being applicable to various iOS projects. In addition
to the desired high reliability and maintainability, the clear focus lies on
optimizing the overall UI Testing performance for iOS apps.

First of all, this thesis provides an introduction to the fields of software
testing and automated UI Testing for mobile iOS applications.

Afterwards, the concept of software testing is described in more detail,
providing the foundation knowledge for the automation of UI Testing.

After the definition of software testing, the term UI Testing is discussed,
including the automation of the corresponding UI Testing process.

Providing the required context, the project is summarized afterwards,
describing its architecture and its main aspects related to software testing.

Following this project introduction, all the practical achievements are high-
lighted, providing an overview of the significant optimizations and exten-
sions of the already well-established KIF UI Testing framework.

Finally, specific implementation details are illustrated that aim at providing
a visualization of the basic concepts and optimizations.

v

Kurzfassung

Obwohl die Automatisierung von UI-Tests ein populäres Thema im mo-
bilen Anwendungsbereich darstellt, existieren große Stolpersteine, die es zu
vermeiden gilt. Dies ist insbesondere dann der Fall, wenn ein schnelles und
stabiles automatisiertes UI-Testkonzept für komplexe iOS Apps benötigt wird.

Diese Arbeit behandelt die Entwicklung einer automatisierten und op-
timierten UI-Testumgebung für iOS, welche sich auf einfachste Weise in
etablierte mobile Anwendungen integrieren lässt. Aufgrund der spezifischen
Bedürfnisse des Projektes wurde die populäre Open Source UI-Testumgebung
namens KIF eingesetzt und in Folge erheblich erweitert und optimiert.

Die daraus resultierende verbesserte UI-Testumgebung ist erstaunlich
performant und liefert höchst zuverlässige Ergebnisse. Die gute Wart-
barkeit und Wiederverwendbarkeit ermöglicht zudem den Einsatz in wei-
teren Software-Projekten. Der klare Fokus liegt hierbei allerdings auf einer
möglichst hohen Geschwindigkeit, ohne die Stabilität und Verlässlichkeit
der Testresultate zu beeinträchtigen.

Zu Beginn führt die Arbeit in die Thematik der Softwaretests ein und
beinhaltet dabei auch die Automatisierung von UI-Tests für iOS Apps.

Im Anschluss wird das Konzept von Softwaretests beschrieben, um das
Basiswissen für UI-Tests und deren Automatisierung zu vermitteln.

Danach wird der Begriff UI-Testen erörtert, wobei insbesondere auf den
entsprechenden Prozess der UI-Automatisierung genauer eingegangen wird.

Das Projekt, inklusive der Projekt-Architektur und weiterer für das Soft-
waretesten relevanter Aspekte, wird im Anschluss beschrieben.

Des Weiteren werden die Erfolge der Entwicklung des UI-Testkonzeptes
beleuchtet, um die signifikanten Verbesserungen und Erweiterungen der
etablierten Testumgebung für iOS namens KIF aufzuzeigen.

Zu guter Letzt werden spezifische Implementierungsdetails präsentiert,
um die wichtigsten Konzepte und Optimierungen zu veranschaulichen.

vii

Contents

Abstract v

Figures xiii

Tables xv

Listings xvii

Acknowledgments xix

1. Introduction 1

I. Theoretical Part 5

2. Software Testing 7
2.1. What Is Software Testing? . 7

2.1.1. Definition of Terms . 8

Informal Definition . 8

Formal Definition . 9

2.1.2. When Does a Bug Occur? 11

2.1.3. Why Does a Bug Occur? 11

2.2. Why Testing Software? . 13

2.3. Important Aspects of Software Testing 15

2.3.1. Psychological Aspects 16

2.3.2. Economical Aspects . 17

ix

Contents

2.4. Software Development Process 19

2.4.1. Development Lifecycle Models 19

Big-Bang Model . 21

Code-and-Fix Model . 22

Waterfall Model . 23

Spiral Model . 25

2.4.2. Software Testing Process 27

Testing with Lifecycle Models 28

Who Should Test Software? 30

When Testing Software? 32

2.5. Software Testing Levels . 33

2.5.1. Black-Box Testing . 33

2.5.2. White-Box Testing . 34

2.5.3. Test Level Subdivision 35

Unit Testing . 35

Integration Testing . 36

System Testing . 36

Acceptance Testing . 37

2.6. Software Testing Principles . 39

3. UI Testing 43
3.1. What Is UI Testing? . 43

3.1.1. Definition of Terms . 44

3.1.2. UI Testing Categories 45

3.1.3. UI Testing Layers . 47

3.2. Why Testing the UI? . 49

3.3. Important Aspects of UI Testing 51

3.4. UI Testing Principles . 55

3.5. UI Test Automation . 57

3.5.1. About Automated UI Testing 57

3.5.2. Automation Tools . 59

Tool Requirements . 60

3.5.3. Supporting Patterns . 62

Dependency Injection 62

Doubles . 63

x

Contents

II. Technical Realization 65

4. Project Introduction 67
4.1. Project Architecture . 67

4.2. Testing Process . 69

4.3. Room for Improvement . 69

4.4. UI Testing Ambitions . 71

5. UI Automation in iOS 73
5.1. UI Automation Frameworks . 73

5.1.1. KIF - Keep It Functional 74

5.1.2. UI Testing . 75

5.1.3. KIF VS UI Testing . 75

5.2. KIF Integration . 77

5.2.1. Testing with KIF . 78

5.2.2. Framework Drawbacks 79

5.2.3. UI Test Optimization . 81

Performance & Reliability 82

Understandability & Maintainability 84

Additional Enhancements 86

5.2.4. Remaining Issues . 87

6. Implementation Details 89
6.1. Text Input & Stubbing . 91

6.2. Scrolling & Mocking . 93

III. Outlook & Conclusion 95

7. Future UI Automation in iOS 97

8. Concluding Remarks 99

Bibliography 103

xi

List of Figures

2.1. Bug Costs over Time . 18

2.2. Software Development Model: Big-Bang 21

2.3. Software Development Model: Code-and-Fix 22

2.4. Software Development Model: Waterfall 23

2.5. Software Development Model: Spiral 25

2.6. Software Testing Lifecycle . 27

2.7. Software Test Effort Optimum 40

6.1. Example iOS App for UI Testing 90

xiii

List of Tables

2.1. Formal Test Term Definition . 10

5.1. iOS UI Automation: KIF VS “UI Testing” 76

.1. Used Acronyms Overview . 109

xv

List of Listings

1. UI Test Example: Text Input & Stubbing 91

2. UI Test Example: Scrolling & Mocking 93

xvii

Acknowledgments

As it was not always easy for me to find the motivation and time to finish my
studies next to working full time, I want to thank everyone who supported
me while I was writing this Master’s Thesis.

Next to my family, close friends and co-workers, I want to especially high-
light the contribution of my sister Julia Fritzsch, because she did not only
read every single page, but she even created all the included images.

Moreover, special thanks go to Sandra Hassler for proofreading everything
in a very short time, while providing very detailed and helpful feedback.

Finally, I want to thank my advisor Wolfgang Slany for his support and
straightforward instructions which enabled me to finish in time.

Additionally, special mention goes to Keith Andrews and Karl Voit for
providing the structural foundation1 [1].

1LaTeX template provided by Karl Voit

xix

1. Introduction

This thesis explains how to automate the UI Testing process for iOS apps, while
focussing on an outstanding performance as well as on a very high reliability.

At the beginning, the scientific research of the respective field is sum-
marized within the theoretical part of the thesis (Chapters 2 and 3) which is
followed by the practical realization illustrated in Chapters 4–6. At the end,
an outlook on the future of automated UI Testing in iOS as well as a few
final concluding remarks are provided in Chapters 7–8.

First of all, the field of software testing is described in Chapter 2, including
an introduction to the topic, a motivational section and the most important
aspects that need consideration when testing software. Additionally, some
common software development lifecycle models and the according testing
process are illustrated, while explaining some of the major testing principles.

Afterwards, Chapter 3 discusses the more specific form of UI Testing,
including an introduction to the topic, a motivational section and the most
relevant aspects and principles. Moreover, the automation of UI Testing is
explained where automation tools and their requirements are discussed.
Additionally, supporting software development patterns are highlighted.

Chapter 4 introduces the project which has been used for automated UI
Testing. It provides an overview of its architecture and software testing
process. Furthermore, the room for improvement within this discipline is
highlighted, providing the foundation for the specific UI Testing ambitions.

Following the project introduction, Chapter 5 highlights all the main
achievements in the field of automating UI Testing in iOS. At the beginning,
the major UI Automation frameworks for iOS are discussed and compared.
Afterwards, the integration of the open-source framework KIF is explained,
including a description of its standard testing procedure, its major draw-
backs and potential optimizations. Especially the enhancements of this UI
Automation framework are illustrated in more detail subsequently.

1

Chapter 6 is illustrating some implementation details, aiming at visualizing
the optimized UI Testing approach by using the enhanced version of KIF.
Therefore, two test case examples are provided, which are indicating how
to properly test an iOS application in a very fast and reliable way.

At the very end of this thesis, Chapter 7 gives a future outlook of automated
UI Testing in iOS, which discusses the currently foreseeable trends in order
to make assumptions about the short-term evolution of UI Testing in iOS.

Finally, Chapter 8 is providing a rough retrospective overview of all the
main aspects that have been described within the scope of this thesis.

3

Part I.

Theoretical Part

5

2. Software Testing

The intent of this chapter is not only to explain the basics of software testing,
but also to motivate and persuade testing it properly. Additionally, it offers
some insight into the most important aspects and principles as well as into
the overall development and testing process of software.

2.1. What Is Software Testing?

The discipline of Software Testing has evolved over many decades, parallel to
Software Development [2, p. 3], [3, pp. 687-690]. The earliest article related
to testing was written by Alan Turing in 1949 [4], which describes what is
known as a so called “proof of correctness” today. The first article considered
to be about software testing itself was also written by Touring in 1950 [5]. It
described a special case of “How we would know that a program satisfies
the requirements?”, which could be seen as the foundation of software test-
ing. Since the publication of Turing’s article, hundreds of articles and reports
about software testing have appeared [3, p. 690].

From the early 1970s on the concept of software testing started becom-
ing more and more associated with a professional software development process,
which is going to be explained in Section 2.4 [3, pp. 687-689]. The main
reason for this significant gain of relevance was the steadily increasing number
of computer applications. This growing ubiquity of software has led to rising
development costs and therefore to a higher economic risk.

As even the earliest computer programs have been specified by exact input
and output requirements, the logical next step was to make use of this
aspect by enforcing a “test first” software development approach [6]. The re-
sulting introduction of Test-Driven Development (TDD) by Beck in 2002 is
another main reason for the renaissance of software testing in the recent past.

7

2. Software Testing

Although the term ’Software Testing’ has been discussed and redefined
several times, it is still seen as one of the “dark arts” of software development,
according to Myers, Sandler, and Badgett [7, p. IX].

However, there still exists a generally approved informal definition of soft-
ware testing. It is often described as the process of testing a program with the
intent of finding errors [7, pp. 6-7]. Quality assurance, reliability estimation,
validation and verification here illustrate the main purposes of testing [8,
p. 213]. As there is no realistic possibility to write any program code that is
completely free of bugs1, software always needs to be tested2.

Until today, “software testing has become more difficult and easier than ever.”
[7, pp. 1-2]. On the one hand there are intrinsic, well-tested routines and
sophisticated test tools are available, which simplify the overall testing pro-
cess described in Section 2.4.2. On the other hand, better development tools,
pretested Graphical User Interfaces (GUIs), tight deadlines and a complex
environment lead to an avoidance of the main testing protocols.

2.1.1. Definition of Terms

This section provides an overview of the most important terms related to
software testing. Although various names can be associated with software
testing, they only slightly differ in meanings, according to Patton [9, p. 14].

Informal Definition

The most generic terms related to software testing are ’bug’, ’error’ and ’problem’
[9, pp. 10-15]. The term ’bug’ originated in 1947 when a big room-sized
computer at Harvard called Mark II suddenly stopped working [10], because
of a moth stuck between the relays. Generally, a bug represents the differences
between the required and existing conditions of a product [8, p. 213]. The terms
’error’ or ’problem’ are used as synonyms for ’bug’.

1Term ’bug’ explained in Section 2.1.1
2Psychological aspects described in Section 2.3.1

8

2.1. What Is Software Testing?

Also other terms as ’fault’ and ’failure’ exist, which usually are related to a
more severe or even potentially dangerous bug. What is remarkable about
these two terms is that they also tend to blame someone to be responsible for
a specific problem. In contrast to the above terms, an ’incident’ generally has
a less negative meaning, rather inferring to an unintended execution than to a
complete failure of a software product.

“Just call it what it is and go on with it” [9, p. 14]. This quote tries to
tackle the problem of overcomplicating things through endless discussions
about the correct classification of a bug, without focussing on more relevant
aspects like considering how to actually handle an observed issue.

Formal Definition

Despite the fact that it is never good to think too much about how to name
something appropriately, it is still necessary to provide generally approved
standards for the most common terms and definitions.

Because of this, the Institute of Electronics and Electrical Engineers (IEEE)
developed two consensus international standards on professional test engineer-
ing [3, pp. 690-691]. The first was published in 1983 [11], specifying the
content of eight different test documents. Following this test documentation
standard, another standard was published in 1987 [12], defining the test
phases, activities, tasks and documents required for a sophisticated Unit
Testing process of software3.

In order to provide a more formal definition for the testing terms al-
ready mentioned earlier, the International Software Testing Qualification Board
(ISTQB) published an extensive glossary of testing terms4 [2, p. 3]. All ter-
minologies shortly summarized in Table 2.1.1 are compatible with the
standards established by the IEEE.

3Unit Testing described in Section 2.5.3
4http://www.istqb.org/downloads/glossary.html

9

http://www.istqb.org/downloads/glossary.html

2. Software Testing

Term Definition
Error People produce errors

Synonym for problem or mistake
Bug Error done while coding

Fault Result or representation of an error
Failure Code corresponding to a fault executes

Incident Symptom associated with a failure
Alerts user of occurrence

Test Act of executing software with test cases
Test Case Find failures or demonstrate correctness

Identity associated with program behavior
Set of inputs & expected outputs

Table 2.1.: Formal Test Term Definition
The formal definition of the most important terms associated with software
testing. The terminologies are compatible with the standards of the IEEE

established in 1983 [11], [2, p. 3].

Also, Patton mentions a supporting testing term in addition to the ones
explained in Table 2.1.1 [9, p. 15]. It is called the Product Specification, Prod-
uct Spec or just Spec. The Product Spec is a verbal or written agreement
among the software development team, defining the intended product in every
detail. On the one hand it describes the product itself, how it will work
and what it will do. On the other hand, it also explains what the product
is not designed to do, which is another important aspect for software testing.

From a tester’s perspective the Product Spec represents a very important
aspect of the software development and the related software testing process5.
The main reason for its high relevance is that the developer’s idea of what
the final product should look like in the end may be completely different
from the tester’s perception [9, p. 55].

5Software development & testing process explained in Section 2.4

10

2.1. What Is Software Testing?

2.1.2. When Does a Bug Occur?

According to Patton, bugs arise from one out of five different reasons [9, p. 15].
The following List 2.1.2 gives a rough overview of these five sources. Still,
the most important consideration to be made is, that everything that just does
not feel right, is a bug.

Product. . .
1. . . . does what the Spec says it should not
2. . . . does what is not specified
3. . . . does not what is specified
4. . . . does not what should be specified6

5. . . . does not feel right for any reason7

2.1.3. Why Does a Bug Occur?

What is quite interesting, is the fact that most bugs are generally not trig-
gered by programming errors [9, pp. 16-18]. However, the main reason for
their occurrence is usually related to the Product Spec8. Nevertheless, there are
still numerous other reasons triggering bugs, which are mainly related to the
design or to the development of a product.

A general rule of thumb is that “if you can’t say it, you can’t do it.”, which
perfectly describes one of the most important aspects of today’s software
development and testing. Many of the various sources of bugs are related to
an insufficient or inadequate Product Spec, which simply means that the desired
product has not been clearly defined. Without a detailed specification, it is
almost impossible to verify if the intermediate or final product meets all of
its expectations.

Also, List 2.1.3 indicates some additional common pitfalls leading to software
bugs [9, pp. 17-18]. However, this should not be seen as a complete list, but
rather as a rough overview of the things that should be kept in mind.

6Catch up on forgotten specifications
7Product is slow, difficult to use or to understand. . .
8Product Spec described in Section 2.1.1

11

2. Software Testing

• Product Spec changes
Constantly changing
Not clearly communicated

• Design errors
Triggering programming errors

• Programming errors
Software complexity or poor documentation
Tight deadlines and pressure
Dumb mistakes

• Bug duplicates
Multiple bugs with same root cause

• False positives
Thought to be a bug, but is none

• Test errors
Leading to false positives

This listing clearly indicates, that it is not always fully obvious, which
failures can be classified as such and which fall under a different category
[9, p. 13]. There is always the possibility to detect duplicates or false positives,
which should be kept in mind when testing.

12

2.2. Why Testing Software?

2.2. Why Testing Software?

The importance of software testing has significantly evolved over time, be-
cause of the growing economic risk associated with software development9

[3, pp. 687-689]. The ubiquity of computing has lead to steadily increasing
complexity and costs which is why software testing has become such a crucial
factor within today’s development process.

One of the key apects that need to be considered in software testing is,
that everyone is fallible, which is why there will always be bugs [2, p. 3].
Software testing not only supports evaluating the acceptability and quality of a
product, but it also assists with identifying existing bugs.

Moreover, complex software usually leads to code that is hard to maintain
and to extend [6]. However, sophisticated testing approaches like TDD
encourage clean code and a simple software design, thus increasing the overall
confidence in a product. Either such a clean design is enforced from the
beginning of the development or it is achieved by code refactoring, where an
existing design is refined, potentially optimized and tested afterwards.

However, code refactoring can only safely be done if it is supported by
reliable testing processes, preventing potential issues that can for instance be
introduced by automatic merge features of modern version control systems.

Another important consideration is that software testing adds additional
value to a product [7, pp. 6-7]. Testing is not only about finding bugs, but
also about fixing previously discovered issues thus generally raising the
quality and reliability. Even products that apparently work fine may still
contain errors, which is why testing should never be neglected.

Patton [9, p. 13] mentioned that hardly any bugs are ever obvious. This is why
there is always the need to write sophisticated software tests which enable
developers as well as testers to handle change. The confidence resulting from
software tests fosters the improvement of a product, because the involved
people will notice weaknesses therein [13, p. 185].

9Economical aspects described in Section 2.3.2

13

2. Software Testing

Furthermore, computer programs should always be as predictable and
consistent as possible [7, p. 2]. Generally, software bugs can be categorized
in two levels. The first one consists of low-level impacts leading to user
inconvenience and the second of high-level bugs which lead to financial loss.
Additionally, high-level bugs can even be dangerous or harmful, which is
why they have to be prevented or fixed.

14

2.3. Important Aspects of Software Testing

2.3. Important Aspects of Software Testing

Osherove [13, pp. 151-152] makes clear that software tests are only of little
value if not all of the three highly relevant attributes do apply, which are
summarized within the following paragraphs.

Trustworthiness Test engineers should be confident that all tests verify
the predetermined things mentioned in Section 2.1.2, while remaining bug-free
themselves [13, p. 151]. If the according trust exists, it is easy to accept a test
result, independent from whether it indicates a success or a bug.

Maintainability Unmaintainable tests may ruin schedules or get sidelined in
case of very tight deadlines [13, p. 151]. As the maintaining of such tests
requires a vast amount of time and money10, developers might stop supporting
them if the tests change too frequently.

Readability This aspect is tightly connected to the other two key aspects
mentioned before [13, pp. 151-152]. Generally, there is just no way to trust a
test if it cannot be read. Additionally, if a test is unreadable, it also becomes
more difficult to maintain it, because it cannot be fully understood.

This is why it is extremely important to know that “people who can read
your tests can understand them and maintain them, and they also trust the
tests when they pass.” [13, pp. 184-185].

Another important consideration to be made is that software tests usually
grow and evolve with the tested product [13, pp. 184-185]. Therefore, profes-
sional software testers should always strive to adhere to good tests while
trying to get rid of bad tests, either by removing or optimizing them.

Without any doubt, software testing is a technical task [7, p. 5]. Never-
theless, it also involves many relevant psychological and economical aspects,
which are described in the following sections.

10Economical aspects described in Section 2.3.2

15

2. Software Testing

2.3.1. Psychological Aspects

In general, most software developers and testers have an individual testing
model in mind, because software testing is as old as the development of
software itself [3, p. 687]. For this reason, various definitions of the success of
testing exist, including its scope and corresponding objectives.

Nevertheless, the definition and the according mental model of testing
is a key factor of successful software testing [9, p. 19]. Software testers
should not aim to confirm that a tested product works perfectly, but their goal
should be to find bugs. Although these two definitions of successful testing
seem to be quite similar, there is a big distinction from a psychological
point of view. If testers mainly focus on verifying that a certain software
product works as expected, they usually tend to configure the tests in order
to succeed while missing critical bugs.

Myers, Sandler, and Badgett suggest to assume that every software does
contain bugs [7, pp. 5-7]. This is why it should be every tester’s main moti-
vation to find and fix as many errors as possible, and not to proof that the
product works as expected. Generally, human beings are known to perform
weakly when trying to solve infeasible or even impossible tasks. For this
reason, the correct definition of the purpose of testing is crucial, because it
circumvents this critical psychological flaw.

Moreover, this definition of successful testing is especially important,
because people are generally goal-oriented. Therefore, good testers tend to
have a rather destructive outlook in comparison to the developers creating
the product. Nevertheless, such a destructive mindset is one of the key tools
in order to enforce the observation of undiscovered bugs.

Additionally, there are other important factors that can be related to suc-
cessful testing [7, pp. 5-7]. According to the correct definition of a successful
test, it should aim to discover bugs. Therefore, a test case should only be
described as being successful if it finds errors that can be fixed. In case there
are no errors, a good test case would also indicate that no more bugs can be
found. Especially this description often gets misinterpreted, because many
people call it a successful test run if no bugs have been found [3, p. 691].

16

2.3. Important Aspects of Software Testing

2.3.2. Economical Aspects

In addition to the psychological aspects mentioned in Section 2.3.1, econom-
ical aspects play another very important role in software testing [7, p. 5].
Generally, it is economically infeasible to test a product completely, because it
would just require too many resources and therefore take too much time.
Nowadays, software development teams spend about 50% of the time on
testing, resulting in more than 50% of the costs in total [7, p. IX].

Figure 2.1 indicates that time plays a key role in software testing, because
discovering bugs sooner makes them cheaper to fix [9, p. 19]. This is why testers
should always ask themselves how to optimize the testing process11.

Myers, Sandler, and Badgett [7, p. 20] also clearly stress the fact that
testers should aim at finding bugs as early as possible. This way the costs
of correcting earlier observed bugs are much lower. Additionally, a sophis-
ticated solution for a specific problem is generally easier to find if it is
observed sooner in the development process12.

As already mentioned, it is usually not possible or just impractical to aim at
finding all existing errors [7, p. 8]. This is why software testers have to make
assumptions about the software in order to define a proper test case design.
Resulting from these assumptions, sophisticated testing strategies have to be
established. This factor will be discussed more thoroughly in Section 2.4.2.

11Testing process described in Section 2.4.2
12Software development process described in Section 2.4

17

2. Software Testing

$1000+

$100

$10

$1

C
os

ts
 to

 F
ix

 a
 B

ug

Specification Design Code Test Release

Time When a Bug Is Found

Figure 2.1.: The costs to fix a bug increase exponentially over time. For this reason, it is
important to discover and fix a bug as early as possible. [9, Image adapted
from p. 18]

18

2.4. Software Development Process

2.4. Software Development Process

Software development is usually a planned and well-structured process [9,
p. 18]. It starts with the initial idea, continues with planning, development
and testing. Still, each of these steps potentially introduces new bugs.

The development of software may only involve few, but it can include
hundreds or even thousands of people [9, p. 24]. If a lot of participants are
engaged with developing a product, there have to be more or less strictly
separated roles and phases in order to work together under potentially tight
deadlines. The development process defines what the individual members
do, how they interact and how they make decisions.

2.4.1. Development Lifecycle Models

Software lifecycle models primarily define the stages and the corresponding
order of stages concerning software development [14, p. 345]. Additionally,
the transition criteria13 between the stages gets predefined as well.

The following two main questions are addressed by every single of all the
different lifecycle models [14, p. 346].

1. What to do next?
2. How long to continue?

This section provides a rough overview about the main – more or less
structured – approaches defining the creation process of a software product
[9, pp. 30-31]. All these different models range from the initial conception
to the final public release of a product. However, there is no solution that fits
perfectly and would work for any kind of software project.

In the following subsections the four most common models are explained
[9, pp. 30-36]. Although better-known approaches exist, these can be consid-
ered mostly only as variations of these four. Still, it is always important
to consider the current requirements of a certain project and to tailor the
according testing process to the deployed development process14.

13Transition includes completion criteria for current & entrance criteria for next stage
14Testing process described in Section 2.4.2

19

2.4. Software Development Process

?

Product

Bang

Figure 2.2.: The Big-Bang Model is the simplest software development method. Either all
the effort put into it results in the desired product or it does not, where all
resources have just been wasted. [9, Image adapted from p. 31]

Big-Bang Model

The Big-Bang Model shown in Figure 2.2 describes the simplest software
development lifecycle [9, pp. 31-32]. Although this approach is so simple, it
still takes a lot of resources and effort to build a product15.

There is only little planning and scheduling involved and the development
process stays informal [9, pp. 31-32]. For this reason, there is no confidence
or certainty that this development model will result in the desired product,
because it is never clear what to expect or how the specifications look like.

This is why the Big-Bang Model usually gets adopted if the according
product requirements are not really understood.

Additionally, the corresponding customers need to be flexible, because they
will not know what to expect until the very end, when the product gets
finally launched [9, pp. 31-32].

15Big-Bang Model requires many people, time & money

21

2. Software Testing

Product Code Fix
Spec

Figure 2.3.: The Code-and-Fix Model of software development contains a cycle of coding
and fixing, which is repeated until someone decides it should stop. [9, Image
adapted from p. 32]

Code-and-Fix Model

Usually, the Code-and-Fix Model is used if there is no specific reason to use
another development lifecycle model instead [9, pp. 32-33]. In contrast to
the Big-Bang Model16, with this approach one at least needs a small amount
of knowledge about the product requirements.

Nevertheless, this lifecycle model describes yet another very code-driven
way to build a product, because the involved people first code and think
about all the other requirements later17 [14, p. 346].

“There’s never time to do it right, but there’s always time to do it over” [9,
p. 32]. This quotation of Patton perfectly summarized the essentials of the
Code-and-Fix Model, which are also abstractly illustrated in Figure 2.3.

Generally, a project team using this approach starts with a basic idea and
design, and later continues to iterate with development, testing and bug-fixing
[9, pp. 32-33]. However, this repeating cycle can take some time until the
team finally decides to release the product.

The Code-and-Fix Model is well-suited for smaller projects, because it re-
quires only very little planning and documentation [9, pp. 32-33]. Additionally,
it is very easy to quickly present results by creating prototypes or samples
of a product. Moreover, this software development approach has even been
used by largely adopted and successful products.

22

2.4. Software Development Process

Product

Idea

Analysis

Design

Development

Test

Figure 2.4.: The Waterfall Model defines a software development process flow from one
distinctive level to the next one. If this approach is strictly implemented, there
is no way to go back to a previous step. [9, Image adapted from p. 33]

Waterfall Model

The Waterfall Model has been around since the beginnings of software
development and is usually also the first one to be taught when becoming a
software developer [9, pp. 33-34]. Patton describes it as a simple and elegant
solution, which just makes sense.

Due to the recognition of some drawbacks concerning the software life-
cycle models already mentioned18, the Waterfall Model was introduced,
providing successive stages for the development process [14, pp. 346-347].

Figure 2.4 clearly indicates the basic flow of the Waterfall Model of software
development [9, pp. 33-34]. It specifies several independent steps, starting
from the initial idea to the resulting product.

Moreover, an important aspect is that the project team reviews the current
project state at the end of each step, deciding when it is time to continue
with the next level [9, pp. 33-34].

16Big-Bang Model described in Section 2.4.1
17Other requirements like design, testing & maintenance. . .
18The Big-Bang & Code-and-Fix Model described in Section 2.4.1

23

2. Software Testing

Additionally, Patton also indicates the three most important factors considering
the Waterfall Model, which are described in List 2.4.1 [9, p. 34].

1. Detailed Product Spec
2. No overlapping steps
3. No way back to previous19

Especially the aspect that there is no way back to a previous step is limiting,
because it requires a highly professional and disciplined project team to
constantly hold on to the predefined development flow [9, p. 34].

For this reason the team has to define every aspect of the product before
starting to write the first line of code. The problem is that the requirements
may already have changed until then. Especially this inflexibility illustrates
one of the main disadvantages of the static process of the Waterfall Model.

Nevertheless, nowadays fortunately some variations of the Waterfall Model
exist, which loosen the rules so a certain degree of step-overlapping while
additionally providing ways to step back is accepted [14, p. 347].

This loosening of the predefined development lifecycle could for example
be achieved by introducing feedback loops between stages or by an initial
adaption of software prototyping in parallel to the analysis and design phase.

However, even with all these possible refinements, there is no way to
eliminate all the fundamental issues related to the Waterfall Model20 [14,
p. 348]. This is the reason why alternative development models like the
Spiral Model21 were evolved, which aim to avoid these critical problems.

19Strict Waterfall Model does not allow to go back to previous step
20Waterfall Model requires detailed Spec as completion criteria
21Spiral Model described in Section 2.4.1

24

2.4. Software Development Process

Product

12

3

4 5

6

1. Objectives
 Alternatives
 Constraints

2. Identify & Resolve
 Risks

3. Evaluate
 Alternatives

4. Develop & Test

5. Plan Next

6. Decide Next

Figure 2.5.: The Spiral Model starts very small and continually expands by iterating through
predefined software development phases. This is why, the product becomes
more defined and stable over time. [9, Image adapted from p. 35]

Spiral Model

The Spiral Model of software development was introduced by Boehm in
1986 [15]. It does not only address some of the main issues inherent with
the models explained in the sections before, but it additionally includes some
major improvements22 [9, pp. 34-35].

The most noteworthy differentiation of the Spiral Model is, that it is a
rather risk-driven software development approach opposed to the other
more document-driven or code-driven variants [14, p. 345].

Figure 2.5 abstractly illustrates the basics of the spiral software development
process [9, p. 35]. An important aspect is that not every detail has to be
specified in the first stage of the product development lifecycle.

22Spiral Model improvement examples shown in List 2.4.1

25

2. Software Testing

The development team builds up the product in many iterations similar
to a spiral, which starts small and continues to grow [9, p. 35]. This is why
not every detail already gets defined in the first place. The team starts
small, decides about important features, builds and tries them, asks for the
customer’s feedback and moves on to the next level afterwards. This iterative
process is repeated until the team decides to launch the product.

Figure 2.5 illustrates all six steps around the spiral thus providing a ba-
sic overview [9, p. 36]. Obviously, many similarities to the models already
mentioned can be observed. The six spiral steps can be compared to the
Waterfall Model23, the spiral itself corresponds to the Code-and-Fix Model,
while the look from the outside brings the Big-Bang Model back to mind.

The Spiral Model provides various additional advantages in comparison to
the already illustrated lifecycle approaches [14, p. 359]. List 2.4.1 indicates
few examples to provide a deeper understanding regarding the potential of
the Spiral Model incorporation.

• Early focus on options & alternatives24

• Prepares for evolution & growth of product25

• Enables to include quality objectives26

• Eliminate errors & useless alternatives early27

However, there are generally no software projects that flawlessly follow the
specified principles and steps of this lifecycle model [9, p. 38]. The reason
for this is that the team members are usually never given a perfectly detailed
Product Spec, which meets all costumer’s expectations and desires.

Nevertheless, it is still quite essential to know how the ideal software
development process should look like in order to have something to aim for
[9, p. 38]. Generally, there are always compromises to be made, because a
sophisticated software development process should be tailored to the needs
of a specific project.

23Analysis, design, develop & test like in the Waterfall Model of Section 2.4.1
24Spiral Model simplifies consideration & reuse of existing software
25Objectives as major source of product change
26Identify various objectives & constraints
27Risk analysis & validation steps eliminate alternatives

26

2.4. Software Development Process

Testing

Spec

Design

Coding Classify

Isolate

Resolve

IncidentFault

Fault

Fault

Figure 2.6.: A lifecycle model for testing implies three opportunities for bugs to arise. Bugs
may be introduced within the Spec, the design or the coding phase, which are
propagated through the whole product lifecycle. [2, Image adapted from p. 4]

2.4.2. Software Testing Process

Software testing is not a single step, but rather a process on its own, which
colludes with the development process of a product [7, p. 2]. The understand-
ing of the importance of how to make software testing effective has grown
over time, caused by an evolution of the according process models [3, p. 687].

Figure 2.6 illustrates the basic scheme of a testing lifecycle, where all of the
development phases provide new opportunities for bugs to be introduced
[2, p. 4]. The faults planted in one phase usually propagate through all the
subsequent phases as well. Another important consideration is that also a
potential resolution of a fault may lead to new issues.

The process of testing itself can be subdivided into four steps, which are
summarized in List 2.4.2 [2, p. 4]. The steps named “Creation” and “Execu-
tion” are related to the construction and the execution of all predefined test
cases resulting from the test planning stage.

1. Planning
2. Creation
3. Execution
4. Evaluation

27

2. Software Testing

Myers, Sandler, and Badgett point out, likewise, that a sophisticated testing
process must include a thorough inspection of the results [7, p. 15]. Although
this should be obvious, it is still one of the main sources of missing clearly
indicated bugs. As already mentioned in Section 2.3.2, software testers
should always aim at finding bugs as early as possible. If this is not the case,
it gets increasingly more expensive to fix a bug later on.

Testing with Lifecycle Models

The following sections will roughly address the basic principles of the
individual testing processes corresponding to the development lifecycle
models mentioned in Section 2.4.1.

Big-Bang Model Concerning the Big-Bang Model28, there is only little
formal testing involved [9, p. 32]. If any testing happens at all, it is usually
only done at the very end, right before launching the final product.

Nevertheless, the big advantage considering the testing of a software
with the Big-Bang Model is that the product is already complete when testing
starts [9, p. 32]. Such a complete product can be considered the perfect test
specification, because there are no uncertainties that need to be thought of.

However, this advantage of having a complete product as a test specifica-
tion might also highlight a more negative aspect, because the dilemma is that
the tester’s job is mostly just to report bugs instead of fixing them directly. It
becomes very hard to do that, because the product has to get launched as
soon as possible. Therefore, software testing is unfortunately only viewed
as something that keeps the product from its final delivery.

28Big-Bang Model described in Section 2.4.1

28

2.4. Software Development Process

Code-and-Fix Model Although the software testing procedure is not specif-
ically mentioned within the name of the Code-and-Fix Model29, it plays a
significant role between coding and fixing [9, p. 33].

The central part of the Code-and-Fix testing process is defined by a cycle of
running tests, reporting bugs and continuing with the next test round. Because
of this, there is always the possibility that the testing of one round has not
been finished yet, when already the next product release is ready for testing.
In the meantime, the Product Spec or features may have changed, which
would require to adapt the tests accordingly. This is why software testers
should always be aware of this and keep it in mind during the testing.

There are three main disadvantages regarding the Code-and-Fix Model,
which are mentioned in the following listing [14, p. 346].

1. Often do not meet requirements
2. Hard to test & modify
3. Subsequent fixes expensive30

Waterfall Model From the perspective of using the Waterfall Model as a
software development lifecycle31, testing is usually straightforward, because
everything has already been carefully specified beforehand [9, p. 34].

Before the testing process starts, every detail has been defined and has
already turned into the current state of the product. This is why software
testers should know exactly what to test and there is no question whether
something is a feature or an issue.

On the other hand, testing at the very end of the development process
is also the main disadvantage when using the Waterfall Model [9, p. 34].
A certain bug could potentially be introduced in an early stage, without
being detected until the very end, which is the most expensive way of a
bug-observation32.

29Code-and-Fix Model described in Section 2.4.1
30Code-and-Fix Model unstructured & hard to maintain
31Waterfall Model described in Section 2.4.1
32Importance of early bug-detection described in Section 2.3.2

29

2. Software Testing

Spiral Model A software tester, who is involved in a spiral software devel-
opment lifecycle33 has the opportunity to influence the product in an early
stage of the product development34 [9, p. 36].

For this reason, software testers should know how the current product
has evolved and where it is heading to in the future. Another big advantage
is that no extreme time pressure before launching the final product is existent,
because not all testing has to be performed at the very end. Therefore, the
overall costs of finding bugs are lower32, which is an important aspect of a
sophisticated testing process.

Who Should Test Software?

According to Osherove [13, p. 184], good testers need discipline and imagina-
tion to excel at software testing. Furthermore, Jorgensen [2, p. 435] empha-
sizes this even more by mentioning additional key attributes like ingenuity,
curiosity and a “can-I-break-it mentality”.

This very destructive mentality35 is also highlighted by Myers, Sandler, and
Badgett [7, pp. 5-7]. However, this is usually the opposite to the perspective
of a software engineer, who wants to create something rather than destroy
it. For this reason, the developers of a certain product are usually not the
best people to consult for testing purposes36.

As already explained in Section 2.4.2, it should be every tester’s goal to
find bugs with the intent to discover them as soon as possible [9, p. 19]. In
addition to finding bugs, testers also have to make sure all the observed
issues get documented and fixed as well.

Another important aspect is that software testers generally act as the
customer’s eyes, because they are the first to try a certain product [9, p. 19].
Because of this test engineers must demand perfection, even if not all of their
requests may get fulfilled.

33Spiral Model described in Section 2.4.1
34Tester involved in preliminary Spiral Model design phases
35Destructive, even sadistic outlook of good software testers
36Not test own product principle described in Paragraph 2.4.2

30

2.4. Software Development Process

Obviously, some of the major testing principles are also tightly connected
to the question of who should test software37 [7, p. 13]. Two of the most
critical aspects are summarized in further detail within the next paragraphs.

Not Test Own Product As already mentioned, the testing of a product
should be done by someone who has not been involved in the product develop-
ment [7, pp. 14-15]. One of the reasons for this is that bugs could occur due
to an misunderstanding of the initial specification, which would lead to a
misinterpretation of the test requirements. In addition, if someone knows
how a certain product works, it is hard to detect any hidden bugs. Last but
not least, no one wants to discover errors which may have been introduced
by the observer in the first place.

Furthermore, the organization itself should not test its own products as
well [7, p. 15]. An organization faces similar psychological problems38 as an
individual regarding software testing. Additionally, companies are usually
largely evaluated on their ability to deliver by a given date while keeping
the costs low39. So, opposed to time and money, it is hard to quantify the
reliability of a product. This is why software testing is often perceived as
an annoying factor which should get limited in order to reach predefined
schedules or cost objectives.

More Bugs to Find Professional software testers must be aware of the
fact that usually always more bugs can be found [7, pp. 16-17]. Even after
extensively testing the whole product without finding any more issues, it
is generally safe to assume that there are still more errors to be detected.
Although this key aspect of successful software testing was already men-
tioned before38, it has to be emphasized once more.

Nevertheless, these general guidelines must still not be applied in all possi-
ble circumstances [6]. For example, if a product gets developed using TDD,
all resulting software tests are developed using a “test-first” approach, which
is why they must of course be created by the responsible software engineer,
because the tests are the foundation for the subsequent development.

37Testing principles described in Section 2.6
38Psychological aspects described in Section 2.3.1
39Economical aspects described in Section 2.3.2

31

2. Software Testing

Additionally, software developers may also be important test team mem-
bers, especially for code evaluations, debugging and the isolation of bugs [7,
p. 15]. Finally, observed and isolated bugs usually should get fixed as well,
which is also the developer’s job in an ideal world.

When Testing Software?

As already mentioned in Section 2.3.2, it is desirable to discover and fix
bugs as early as possible [9, pp. 53-55]. This is why the Product Spec does not
only describe the intended product, but it serves as the perfect test specifica-
tion as well40. Therefore, the Product Spec should also be considered as a
testable item in order to observe bugs even before writing the first line of code.
Unfortunately, it is usually not this simple for software testers to test the
Product Spec itself and therefore the discovery of bugs gets delayed41.

Section 2.4.1 clearly explaines why the testing process is tightly connected
to the established software development model. This is why it is crucial
to choose the right development approach beforehand, in order to allow
sophisticated testing procedures to be implemented.

“I love deadlines. I especially like the whooshing sound they make as
they go flying by.” by Adams [16]. This quote highlights one of the main
issues related to software testing today [7, p. 20]. An organization’s internal
pressure may be the main source for a miserable testing culture. Statements
like “Fix this bug as fast as possible” are unfortunately quite common
nowadays. Therefore, software testers are often under a remarkably high
pressure. This is yet another reason why it is so important to choose an
appropriate development model, because it reduces the pressure through
an early incorporation of testing methodologies.

40Product Spec described in Section 2.1.1
41Testers might join when product almost or completely finished

32

2.5. Software Testing Levels

2.5. Software Testing Levels

What is very essential is that sophisticated testing strategies have to be
established before starting to test [7, p. 8]. Nonetheless, it is important to
select the right strategy at the right time thus making testing efficient and
effective [8, p. 213]. Two high-level methods of testing are named Black-Box
& White-Box Testing, which will be explained in the following sections.

These two terms are commonly used to describe today’s most relevant
testing levels. Every single level has to precisely specify all objectives, which
have to be monitored throughout the testing process [2, p. 435].

According to Jorgensen, an application usually requires at least two testing
levels, named Unit Testing42 and System Testing43 [2, p. 435]. Furthermore,
the level of Integration Testing turns out to be well-suited for larger software.

2.5.1. Black-Box Testing

Myers, Sandler, and Badgett describe the approach of Black-Box Testing as a
data-driven or input/output-driven approach [7, pp. 8-10]. Software testers are
not concerned about the composition or the internal behavior of a product,
but they solely consider how the software under test should behave [9,
p. 55]. Obviously, this is where the name originates, because it is impossible
to look inside the “black box”.

For this reason, testers aim at verifying that a product behaves as required
by testing the inputs and expected outputs [7, pp. 8-10].

However, it is unthinkable to test every possible input combination, which
is known as exhaustive input testing44. This is why Black-Box Testing cannot
guarantee a program to be completely error-free. Furthermore, the testing
investment’s outcome has to be maximized by trying to discover a maximum
amount of bugs with a limited number of tests45.

42Unit Testing described in Section 2.5.3
43System Testing described in Section 2.5.3
44Exhaustive input testing economically infeasible
45Maximize output of testing investment relating to Section 2.3.2

33

2. Software Testing

2.5.2. White-Box Testing

In opposite to Black-Box Testing, White-Box Testing46 allows and even
requires to make reasonable assumptions about the program under test [7,
pp. 10-12]. Therefore, this form of logic-driven testing considers the internal
structure by inferring data from the program’s logic47.

Patton emphasizes this by explaining that testers using a White-Box Test-
ing approach have access to the program’s code which provides helpful testing
clues and simplifies to tailor the testing according to the needs of the project
[9, p. 56]. Because of this, programming know-how is essential too, because it
enables testers to understand how the program’s code works [8, p. 214].

Nevertheless, White-Box Testing approaches still face similar drawbacks as
Black-Box Testing alternatives [7, pp. 10-12]. The reason for this is the overall
goal to execute all program paths at least once48.

Similar to the exhaustive input-testing of Black-Box Testing, this form
uses exhaustive path-testing that is also highly inadequate or impossible to
accomplish. Furthermore, even if all paths have been covered, the tested
program could still contain errors, because of the unanswerable questions
summarized in List 2.5.2.

• Product Spec fulfilled?
• Absence of paths?
• Data-sensitivity issues?

Although exhaustive input testing is generally more practical than exhaus-
tive path testing, none of these approaches are economically feasible if
established individually [7, p. 12]. For this reason, it is usually the best to
combine Black-Box and White-Box Testing in order to deploy a sophisticated
testing strategy.

46White-Box Testing sometimes called clear-box testing
47White-Box Testing derives data, often at neglect of Product Spec
48Program path is one possible way of code execution

34

2.5. Software Testing Levels

2.5.3. Test Level Subdivision

Software testing levels relate to different subsets of a program under test
[17, p. 136]. Usually, different program scopes get tested in a predefined
order, thus providing the scheme and sequence for the overall testing process.

In general, software testing is subdivided into four distinct levels of test-
ing49 [8, p. 213]. The reason for this differentiation is that all of these levels
serve individual purposes, which are briefly summarized within this section.

Unit Testing

Unit Testing is considered to be the initial testing step, focussing on the
smallest building blocks of a program [7, pp. 85-116]. It aims at identifying
discrepancies between a program’s module and its specification50.

Although there are various definitions available, a unit can generally be
described as the smallest testable part of a program [8, p. 213]. Such a unit
usually relies on one or few inputs, while providing only a single output.

Myers, Sandler, and Badgett mention three major motivations for Unit Testing,
which are summarized in List 2.5.3 [7, p. 85]. It is important to indicate
that the other test level subdivisions of Integration and System Testing are
building up on top of these considerations.

1. Allow combined testing
2. Simplify debugging51

3. Introduce parallelism

Unit Testing is done by software developers who have the required insight and
knowledge to allow testing of individual parts of the software [8, p. 213].

Nonetheless, the Unit Testing level alone is not enough, because only a
form of higher-order software testing enables the observation of otherwise
non-observable bugs [7, p. 113].

49Four distinct levels of Unit, Integration, System & Acceptance Testing
50Unit Testing also known as module testing
51Detect bug located in a particular module

35

2. Software Testing

Integration Testing

According to Myers, Sandler, and Badgett, the development of software rep-
resents a process of communicating and translating information [7, p. 113].
This is why it is simply not enough to test solely the smallest, individual
parts of a software52, but they have to be tested during interaction.

Usually, Integration Testing is done after Unit Testing [8, p. 214]. Still, op-
posite to Unit Testing, the intent of Integration Testing is to verify that a
group of units is working together as expected. Therefore, the overall goal is
to expose a multitude of faults concerning the interaction between units.

Integration Testing is either done by the developers themselves or by other
completely independent testers [8, p. 214].

Nevertheless, Jorgensen mentions that the purpose of Integration Testing
is generally not well-understood, because it is often poorly realized in
practice [2, p. 229].

System Testing

In general, the level of System Testing is the next logical testing step after
Integration Testing [7, pp. 119-120], [8, p. 214]. Although this can be seen
as the testing process closest to an everyday experience, it is probably the
most misunderstood and most difficult one [2, p. 253]. As the name would
suggest, System Testing does not simply mean to test the functionality of a
system. However, the real purpose of this form of testing is to highlight the
discrepancies between a program and its initial objectives, thus evaluating
the system’s compliance to its specification.

For this reason, System Testing focuses on translation errors made within
the Product Spec creation process. Therefore it typically tends to be error-
prone, which is why the level of System Testing is such an essential element
of every sophisticated testing strategy.

System Testing is usually done solely by independent testers who are not
involved in the according software development process [8, p. 214].

52Unit Testing described in Section 2.5.3

36

2.5. Software Testing Levels

Acceptance Testing

Acceptance Testing is generally concerned with the acceptability of a system
[8, p. 214]. In opposite to System Testing, it verifies the compliance of a sys-
tem to its business requirements, not comparing it to the Product Specification.

Because of this, Acceptance Testing aims at verifying a program’s com-
patibility to its initial requirements and current user needs [7, pp. 131-132].

Therefore, Acceptance Testing evaluates whether a product is acceptable
and ready for its final delivery. Furthermore, no strict testing procedures must
be adhered in Acceptance Testing, but testers usually follow an ad-hoc
software testing approach.

However, Acceptance Testing is a rather unusual testing type, because
it mostly is not done by software developers or testers, but it is performed by
the product’s customers or end users [7, p. 131].

37

2.6. Software Testing Principles

2.6. Software Testing Principles

Patton describes these principles as the “rules of the road” or “facts for live”
for any software engineer or tester [9, p. 38].

Although, the guidelines firmly summarized in this section seem to be
quite obvious, they still get overlooked too often [7, p. 12]. Nonetheless, all of
the illustrated testing protocols result from a stripped-down combination of
the ones mentioned within the books The Art of Software Testing [7, pp. 12-18]
and Software Testing [9, pp. 38-43].

Not Test Own Product It is usually a bad idea to test one’s own product
regardless of whether it concerns individuals or a whole organization53,
which is generally due to various psychological reasons54 [7].

Input & Expected Result Tests must define the input and correct output
[7]. Not only valid inputs must be checked, but also invalid or unexpected ones.
The results must be carefully inspected in order to not miss any bugs.

More Bugs to Find There is no way to verify a program is bug-free [7],
[9]. Therefore, a test can show a bug exists, but it cannot do otherwise. Testers
have to assume there are still bugs which have not been found yet55.

Bugs Follow Bugs Bugs tend to come in clusters, which is why some parts
are more error-prone than others56 [7], [9]. If software testing fails to discover
more bugs, there are only few or even none left to find.

Impossible to Test All It is usually not possible to test a certain product
completely57 [9]. There are just too many inputs/outputs and paths available.
Additionally, the Product Spec and according bugs are subjective.

53Not test own product described in Section 2.4.2
54Psychological aspects described in Section 2.3.1
55Correct test assumption/definition described in Section 2.3.1
56Testing should focus on parts more prone to bugs
57Economically infeasible to test all described in Section 2.3.2

39

2. Software Testing

Amount of Testing

Q
ua

nt
ity

Under Testing

Optimal Amount
of Testing

Over Testing

Cost of TestingMissed Bugs

Figure 2.7.: This graph indicates the relationship between the test effort and the observed
number of bugs. It clearly illustrates that “testing, like everything else, can be
either underdone or overdone” [3, p. 688]. [9, Image adapted from p. 40]

Risk-Based Task Testers have to take the risk of missing bugs [9]. Therefore,
risk-based decisions have to be made about what and how much should be
tested57. Figure 2.7 illustrates the optimal amount of software testing.

Creative & Intellectual Challenge Testing is challenging regarding the
creativity and intelligence [7]. Although there are certain methodologies, it
still requires a lot of creativity and experience to observe nontrivial bugs58.

“Pesticide Paradox” Introduced in 1990, clarifying that more testing leads
to an immunity of programs [9], [18]. Multiple reruns expose all observable
bugs. Therefore, new tests have to be created to discover more issues.

58Creative & intellectual challenge described in Section 2.4.2

40

2.6. Software Testing Principles

No Throwaway Tests Testing represents a valuable investment59 [7]. There-
fore, reinventing tests frequently must be avoided60. Test cases should be
saved in order to run them again later, which is known as regression testing.

Not All Bugs Fixed Not every bug gets fixed, because perfection is not
desirable59 [9]. Trade-offs have to be made that decide which bugs to fix. The
reason for this can be time-pressure, misunderstandings or high risk61.

In addition to these main principles, there are more specific testing guidelines
available at http://www.softwaretestingstandard.org/, providing a very
detailed overview regarding test organization and processes [19]. However,
these guidelines represent an internationally agreed set of principles, which
constitute a solid foundation for software testing.

59Economical aspects described in Section 2.3.2
60Test reinvention requires a lot of resources
61Bug-fixing risk to introduce even more critical errors

41

http://www.softwaretestingstandard.org/

3. UI Testing

The intent of this chapter is to explain the required basics of User Interface
(UI) Testing and UI Test Automation, including a motivational section dis-
cussing why an UI should be tested. Its main goal, however, is to provide
a summary of all major considerations, guidelines and tools, in general as
well as specificly to the iOS development platform.

Still, this thesis’ main intent is to focus on UI Testing in iOS, which involves
testing of mobile devices providing Graphical User Interfaces (GUIs). This is
why the two terms of GUI Testing1 and UI Testing are used interchangeably.

3.1. What Is UI Testing?

In general, UI Testing can be described as a System Testing approach2 fo-
cussing on the GUI perspective of an application1 [20, p. 55]. Additionally, it
is also used for Acceptance Testing, which means verifying the application
behavior through the user’s eyes [21, p. 11]. This is why UI Testing concen-
trates on the program’s behavior including device specific functionality like
gesture interactions [22, p. 50]. Important to note is that UI Testing is either
done manually or automatically by using special automation tools3 [23, p. 10].

According to this definition, performing interactions on a program’s GUI
marks the foundation of UI Testing [23, p. 10]. User interactions are encoded
as event sequences, which is a test requirement next to the input data. Event
sequences are performed in a certain order when testing, which gets prede-
fined by an application specific GUI Model4 [24, p. 1479].

1GUI described in Section 3.1.1
2System Testing described in Section 2.5.3
3UI Test Automation described in Section 3.5
4GUI Model described in Section 3.1.1

43

3. UI Testing

Moreover, UI Testing is often connected to the software’s logic, because there
is usually the need to analyse runtime properties while executing tests [25,
pp. 204-205]. This is due to the overall goal of navigating to every available
GUI page, while analyzing the internal states and outputs.

Nonetheless, as countless input possibilities exist, the number of event combi-
nations is infinite [23, p. 10]. This is why, UI Testing alone cannot cover all
possible scenarios of a program’s user interaction.

3.1.1. Definition of Terms

The purpose of this section is to provide an overview of the most important
terms related to the matter of UI Testing. These terms are used within the
succeeding sections to describe the process of UI Testing in further detail.

Graphical User Interface (GUI) Graphical User Interfaces are the most
common way to interact with a program today [23, p. 10]. GUIs represent a
collection of widgets like buttons or text boxes5, providing a familiar way for
users to interact with. Furthermore, user interactions trigger events which
can be evaluated and handled by an application.

GUI Model A GUI Model’s purpose is to illustrate the connected structure
of a GUI [26]. Generally, it consists of states and transitions between states,
where a state summarizes actions, while a transaction indicates moving from
one state to another. Such a transaction is triggered by a user interaction
event, which gets handled by the tested program.

Code Coverage Code Coverage is used to measure the effectiveness and
quality of a test case6 [20, pp. 55-56]. It is determined at statement, branch or
path level, thus evaluating the coverage of a business logic. Nevertheless, this
kind of quality assessment is based on the program’s assumptive determinism.

5Widget is a graphical element of a GUI
6Fault detection is another important test metric

44

3.1. What Is UI Testing?

Flakiness A test is called “flaky” when it is impossible to repeat the exact
same execution in a reliable way [24, p. 1479]. So, another test run may lead
to different results although neither the program nor the test have changed
[20, p. 56]. Generally, Flakiness does not only affect test results, but also the
experimentation on new approaches.

Invariant An Invariant is a high-level abstraction of the underlying pro-
gram’s implementation [20, p. 56]. However, as Invariants represent prop-
erties that are valid for all test cases, they should be consistent between test
runs in order to reduce the Flakiness of a test.

3.1.2. UI Testing Categories

There are three main categories of UI Testing, which are shortly summarized
within this section [26]. These categories range from completely random
testing to highly sophisticated learning-based UI Testing.

Random UI Testing The purpose of this category is to discover bugs by
randomly firing events on a program’s GUI [26]. Generally, random UI Tests
facilitate a higher Code Coverage and fault detection in comparison to the other
two approaches. Furthermore, it can be implemented very easily, because
there is no manual setup required7.

Nevertheless, as testing is completely random, there is a high probability
of testing the same scenarios multiple times. Additionally, there is no way to
save and replay the sequence of events triggering a bug8.

Model-Based UI Testing The foundation of Model-Based UI Testing is the
creation of the best possible GUI Model9, representing the visual structure
of a program [26]. The GUI Model is provided as a test input, allowing to
generate possible UI interaction event sequences.

However, as the need to manually define the GUI Model exists, Model-
Based UI Testing could be described as a semi-automatic way of testing.

7Random tests are fully automatic, described in Section 3.5
8Saving & replaying required for automation described in Section 3.5
9GUI Model explained in Section 3.1.1

45

3. UI Testing

Model Learning UI Testing Last but not least, learning model systems
provide an even more sophisticated testing approach, where the GUI Model
generation is completely automatic [26]. For this reason, there is no need to
manually create and update the underlying GUI Model10.

Nonetheless, Model Learning UI Testing is the most expensive way of
software testing concerning the necessary processing power and computing time.
Furthermore, event loops have to be avoided, which would lead to revisiting
and testing pages redundantly.

GUI Models11 are created by traversing a program’s GUI, thus represent-
ing a “correct” definition of the GUI [26]. This model generation process
includes the following two questions described in List 3.1.2.

1. Does the GUI Model converge to the actual GUI?12

2. How to decide if two GUI states are equivalent?13

However, there is always the possibility of overfitting when checking for
GUI state equivalency [26].

Furthermore, such GUI Models can be generated automatically, thus pro-
viding a way to generate UI Test cases [24, p. 1479]. This is why there are
tools available, which can extract, generate and run UI Tests automatically14.

10GUI Models must usually be updated
11GUI Model explained in Section 3.1.1
12GUI Model must converge as fast as possible
13State equivalency indicates correct GUI representation
14UI Test Automation described in Section 3.5

46

3.1. What Is UI Testing?

3.1.3. UI Testing Layers

Generally, UI Tests can be subdivided into three distinctive layers, which are
presented within the following paragraphs [20, pp. 55-57]. However, the
main purpose of this section is to provide only a rough overview of this
subdivision of testing layers.

External Layer The external layer is also called the User Interaction Layer,
because it represents the GUI of a program [20, p. 56]. UI Tests are performed
on top of it, because the overall goal is to test from the user’s perspective15.

Behavioral Layer The purpose of this layer is to summarize all behavioral
data of a program16, which can be mined and analyzed in order to infer
high-level code abstractions called Invariants17 [20, p. 56].

Code Layer The code layer is the lowest UI Testing level, representing the
layer where the source Code Coverage gets measured18 [20, p. 56]. For this
reason, the code layer is mainly used for quality assurance purposes.

However, not only the external but all of these three layers are involved
in the process of automated UI Testing19. Nevertheless, these levels are also
quite sensitive to certain influencing aspects20, which have to be considered.

15UI Testing basics described in Section 3.1
16Behavioral data may include runtime properties or function return values
17Invariant described in Section 3.1.1
18Code Coverage described in Section 3.1.1
19UI Test Automation described in Section 3.5
20UI Testing aspects described in Section 3.3

47

3.2. Why Testing the UI?

3.2. Why Testing the UI?

Nowadays, smartphones and tablets dominate our everyday communica-
tions [26]. This is one of the main reasons, why the demand for thorough
testing has increased significantly, especially regarding the GUI21. Due to
the intense competition today, software providers have to guarantee an ap-
plication meets its user’s expectations22. Nonetheless, many applications
nowadays are buggy or slow, which is why they usually cannot compete
with others, which are able to satisfy their user’s needs.

Although many mobile apps today look simple on the surface, most are
still complicated underneath [21, p. XI]. Therefore, there are generally a lot
of possibilities to introduce potential errors. Additionally, mobile devices
as well as installed mobile apps tend to be updated frequently, which is yet
another indicator for the importance of UI Testing [22, p. 46].

This is why engineers demand reusable and cost-effective testing environments,
which is one of the main reasons to automate UI Testing23 [20, p. 55]. Never-
theless, these test environments must provide a way to reliably repeat UI Tests,
producing the same test results unless either the program or the according
tests change24.

Because of these reasons an application has to be tested as a whole, thus
verifying its GUI is functioning as specified and expected [27, p. 190]. This
means that the functionality of all important UI controls should be checked,
while not forgetting about the big picture.

As already mentioned in Section 3.1, UI Testing is not only commonly
used for System Testing25, but also for Acceptance Testing26, because it
provides a great way to demonstrate that a certain feature works how it is
supposed to work [21, p. 11].

21GUI described in Section 3.1.1
22Economical aspects described in Section 2.3.2
23UI Test Automation described in Section 3.5
24Test result consisting of Code Coverage, Invariants & states
25System Testing described in Section 2.5.3
26Acceptance Testing described in Section 2.5.3

49

3.3. Important Aspects of UI Testing

3.3. Important Aspects of UI Testing

One of the most important aspects of UI Testing is the economical consider-
ation, because a setup of a sophisticated UI Test framework involves high
complexity, which is why it is very expensive27 [22, p. 54]. Especially to-
day’s common practice of frequently upgrading devices and applications is very
tedious and time-consuming, thus making testing even more challenging.

The goal of any professional software test suite must be to determinis-
tically discover bugs in the most reliable fashion [20, pp. 55-57]. However, all
the various devices and platforms available today make it very hard to achieve
this overall testing goal.

This is the reason why different test executions using exactly the same
program may lead to varying Code Coverage28 or Invariants29. Therefore,
the most critical factors must be carefully controlled to ensure a proper and
valuable way of UI Testing. If these aspects are not thoroughly observed, it
will lead to test Flakiness30, not only affecting the test results, but also the
experimentation with new UI Testing techniques [24, p. 1479].

Generally, the largest influencing factors can be observed at the top layer31

as well as at the bottom layer32, representing the GUI and the code state of
an application [20, p. 64].

According to Gao, Liang, Cohen, et al., there are four major groups of im-
portant aspects related to UI Testing [20, p. 57]. These critical factors are
summarized within the following paragraphs, illustrating what has to be
considered when testing an UI.

27Economical aspects described in Section 2.3.2
28Code Coverage described in Section 3.1.1
29Invariant described in Section 3.1.1
30Flakiness described in Section 3.1.1
31External layer described in Section 3.1.3
32Code layer described in Section 3.1.3

51

3. UI Testing

Execution Platform The platform where the UI Tests are performed on
marks a crucial testing factor, because discrete operating systems potentially
handle certain aspects differently33 [20, pp. 55-57]. This does not only relate
to completely different systems, but also to varying versions of the same
operating system.

App & Language Version Similar to the influencing aspect of the system
version34, the current app version indicates another UI Testing aspect, which
potentially causes test Flakiness35 [20, pp. 55-57].

However, a varying app version may simply handle events differently or
implement other thread policies, which could be due to code changes or
even due to the usage of another version of a programming language.

Initial State & Configuration Another impacting aspect for UI Testing is
the fact that preferences may influence the startup of a program36 [20, p. 57].
Furthermore, there is a possibility that currently running test cases adapt
existing settings, causing a modified setup for tests still to be executed.

Because of this, potentially influencing configurations must be identified
and restored before every single test case execution, thus providing a reliable
testing environment.

“Harness Factors” Harness Factors are related to automated UI Testing
using automation tools37 [20, p. 57]. However, these factors describe preferences
related to the automation tool38, not to the tested program. According values
may be set by default or heuristically specified by a test engineer.

Nonetheless, these factors are the reason, why there may occur too long
delays slowing down testing, or too short delays not allowing to finish certain
functionalities. Especially due to those delays, aspects like a program’s
memory or CPU power may impact the reliability of a UI Test.

33Systems may differ in rendering UIs, load times. . .
34System’s version influence described in Section 3.3
35Flakiness described in Section 3.1.1
36Preferences like config files, system settings. . .
37UI Automation tools described in Section 3.5.2
38Automation params like startup/step delays. . .

52

3.3. Important Aspects of UI Testing

There are even more aspects, which may have an impact on the reliability
of UI Testing [24, p. 1479]. This is why even changes which seem to be only
of low relevance39, may influence the GUI or Code Coverage, thus causing
Flakiness of a GUI-centric application.

As already mentioned, multi-threading may also change a system’s state,
while unpredictably delaying a task’s completion.

However, the following list illustrates some additional external dependencies,
which have not been covered so far [25, pp. 204-205], [21, p. XI]. This diver-
sity of influencing aspects clearly indicates why UI Testing is such a highly
complex process.

• System speed
• Storage/sensor access
• Networking
• Animations
• Pup-up windows
• Orientation changes
• . . .

According to Gao, Liang, Cohen, et al., it may just not be possible to obtain
multiple test runs, while guaranteeing a constant Code Coverage [20, pp. 55-
57]. The reason for this hypothesis is that there are too many uncontrollable
factors40. This is why test engineers cannot simply eliminate all potential
output variations. Nevertheless, the overall UI Testing goal must be to re-
duce these influences to a minimum.

In addition to all the aspects mentioned so far, also common consider-
ations regarding whether to make use of Black-Box or White-Box Testing
exist [23, p. 12]. Generally, Black-Box Testing indicates what can be tested41,
while White-Box Testing shows what should be tested42.

Usually, it is the best to make use of a combination of both approaches,
because Black-Box Testing may lead to irrelevant tests, while White-Box
Testing on the other hand may lead to non-executable ones.

39Minor changes due to the current time, system load. . .
40Uncontrollable, because too specific or sensitive to minor changes
41Black-Box Testing described in Section 2.5.1
42White-Box Testing described in Section 2.5.2

53

3.4. UI Testing Principles

3.4. UI Testing Principles

In addition to all the aspects mentioned in Section Important Aspects of UI
Testing, there are practices leading to more consistency, thus reducing the Flak-
iness of tests43 [20, p. 55]. As already explained, it must be a test engineer’s
main desire to advocate more reliable UI Testing, thus enabling tests to be
repeatable and automatable.

According to Arlt and Gao, Liang, Cohen, et al., there are four main principles
that should be followed in order to enable more stable and goal-oriented UI
Testing [20, p. 64], [23, p. 11]. These main guidelines are shortly summarized
within the next few paragraphs.

Share Information As there is no realistic way to eliminate all possible test
variations44, important configurations and platform states45 must be reported
and shared in combination with the test outcomes [20, p. 64].

Multiple Test Runs UI Tests must be executed multiple times before
expecting them to deliver reliable results [20, p. 64]. Additionally, averages
and variances have to be reported while explaining how the test environment
may influence on UI Tests.

App Domain Information Providing app specific domain information helps
to reduce Flakiness as well44 [20, p. 64]. Therefore, it is necessary to identify
all influencing factors in order to filter them when evaluating the test results.

Executability & Relevance Test engineers need to identify event sequences
that are executable and relevant at the same time46 [23, p. 11]. Nevertheless,
sophisticated UI Testing must be concentrated on executable and relevant
user interactions, while covering as much code as possible [23, p. 33].

43Flakiness described in Section 3.1.1
44UI Testing aspects described in Section 3.3
45Infos like system or language version, starting state. . .
46Irrelevant sequences like Paste & Copy (instead of Copy & Paste)

55

3.5. UI Test Automation

3.5. UI Test Automation

The purpose of this section is not only to explain the basics of the automation
of UI Testing, but also to describe all necessary aspects related to such
automation tools. Nevertheless, as this thesis deals with automated UI
Testing in iOS, the main focus naturally lies on the test automation of mobile
applications, while focussing on iOS apps.

3.5.1. About Automated UI Testing

“Testing software involves a lot of repetitive work, and repetitive work is
excellent work for a computer to do.” [21, p. 1]. This quotation by Penn
perfectly illustrates the fundamentals of test automation in general, as well
as regarding the automation of UI Tests. Basically, test automation aims
at making tests automatically repeatable, without the necessity of additional
human interactions.

However, a study from 2012 predicts an increase in overall mobile test-
ing tool revenues from $200 million in 2012 up to $800 million by the end of
2017 [28]. Especially the growing demand for automation of software testing
seems to be the predominant reason for this significant raise. Additionally,
the importance of making excellent first impressions in today’s highly com-
petitive markets makes rigorous automated testing indispensable47.

As already mentioned in Section Why Testing the UI?, most test engi-
neers today have to consider frequent device, system and technology upgrades
[22, p. 46]. This is yet another reason for the continuously growing need of
reusable and cost-effective ways of UI Testing.

Furthermore, all the various development and maintenance tasks cause
a high demand for reliable and repeatable UI Testing [20, p. 55]. Therefore,
specialized tools are required in order to provide a decent way to generate,
execute and repeat test cases [24, p. 1479].

47Intense competition described in Section 3.2

57

3. UI Testing

UI Test Automation describes a guided application traversal by automatically
interacting with an application’s GUI48 [26]. According to this definition,
app runtime properties get recorded while internal app states and test out-
comes are systematically analyzed [25, pp. 204-206].

Nevertheless, the automation of UI Testing should not be considered as a
total replacement for human testers, but it should rather be perceived as
a supporting testing tool [21, pp. IX-X]. Generally, the idea is to automate
mundane tasks, thus allowing test engineers to focus on other, intellectually
challenging aspects49. Furthermore, it is economically not feasible to auto-
mate every single testing procedure which is why human testers must always
be involved when testing software50.

Still, even people with only very basic software development skills have the
possibility to create or edit UI Tests if a state-of-the-art test automation tool
is used51 [27, p. 190]. Furthermore, automated UI Testing can be performed
in various ways, ranging from running it on an emulator or simulator, to
testing on real world gadgets like smartphones or tablets [26].

48GUI described in Section 3.1.1
49Psychological aspects described in Section 2.3.1
50Economical aspects described in Section 2.3.2
51Automation tools described in Section 3.5.2

58

3.5. UI Test Automation

3.5.2. Automation Tools

Nowadays, there are a multitude of UI Automation tools available, which
aim at supporting test engineers to automate certain UI Testing procedures
[20, p. 55]. Nevertheless, many of these tools are platform dependent, which is
why they cannot be used for cross-platform UI Testing [24, p. 1479].

As already explained in Section About Automated UI Testing, a UI Test
Automation tool runs either on a real device, an emulator or simulator, while
extracting an application’s UI structure [25, pp. 205-206]. However, in certain
cases the tested app must be instrumented to enable test automation while
other tools simply work with the unmodified version of an application52.

Nonetheless, some tools run completely automatically – with no need of
any human interactions – while others still require a significant amount of
manual input [23, p. 11]. As a matter of course, it is the overall testing goal
to generate test cases in a completely automatic fashion.

Usually, “semi-automatic” tools facilitate the manual recording of UI Tests
with the support of Capture-Replay tools. In case of using such a tool, testers
have to perform manual interactions on the GUI53 which are simultaneously
mapped into an according UI Test case54. After this test recording, previously
captured test cases can be replayed any number of times, thus enabling an
automatic requirement verification.

Despite the possibility to rearrange or edit these generated UI event se-
quences, their maintenance is still a tedious and time-consuming task [23,
p. 11]. The main reason for this is that captured UI Tests are generally very
vulnerable to code changes, due to a tight coupling between the UI Tests and
the application’s GUI [21, p. 41].

Nevertheless, although the automation of software testing is steadily be-
coming more important, there is still a lack of standardization concerning test
infrastructures, scripting languages and app interfaces for testing [22, p. 54].

52Instrumentation requires code changes
53GUI described in Section 3.1.1
54Event sequence usually defined in requirements

59

3. UI Testing

Tool Requirements

The following paragraphs illustrate additional tool requirements considering
the automation of UI Testing. Nevertheless, as the automation of UI Testing
is tightly coupled to the project’s environment55, there is no all-round solution
available yet which is fitting every project’s needs.

Property Support As the process of UI Test Automation is build up on
the analysis of runtime attributes56, an according automation tool needs to
support various high-level UI properties [25, p. 206]. This is why a predefined
set of attributes must be available, abstracting an applications’s GUI.

App State Access In addition to having access to UI properties, an au-
tomation tool must also allow to access other arbitrary app states [25, p. 206].
Accordingly, additionally automation tools must not only provide access to
certain system states57, but also to internal app states and preferences.

Exploration Flexibility An automation tool has to provide a way to cus-
tomize the UI exploration, providing high flexibility in testing [25, p. 206].
Therefore, it has to support editable event sequences, allowing to decide which
steps should be initiated next and how to verify a certain UI state.

Trigger Actions In order to guarantee a reliable and stable UI Automation,
the app’s robustness to environmental changes must be verified58 [25, pp. 206-
207]. Another important aspect is that an automation tool must additionally
allow the injection of exceptional inputs59 [26].

Scripting Language The readability and maintainability of UI Tests indicates
another important aspect, because understandable tests allow us to verify
a whole system [21, p. 41]. Anyway, if a tool requires the know-how of an-
other programming language, it might be difficult to motivate people to test.

55UI Testing aspects described in Section 3.3
56UI Test Automation described in Section 3.5.1
57System states like network connection, CPU usage. . .
58Environmental changes like change of network connection. . .
59Exceptional inputs like login/registration texts, push notifications. . .

60

3.5. UI Test Automation

As already mentioned in Section Automation Tools, the overall automation
goal is to generate test cases fully automatically [23, p. 11]. However, such a
fully autonomous testing solution is difficult to implement, because all generated
event sequences must be both executable and relevant at the same time60.

Although all of the mentioned requirements summarize only the main
aspects of UI Test Automation, still many open research questions and chal-
lenges exist [25, pp. 206-207].

60UI Test principles described in Section 3.4

61

3. UI Testing

3.5.3. Supporting Patterns

Nowadays, professional test engineers and software developers usually
adopt common programming patterns in order to enable an application for
test automation61 [13, p. 47]. Therefore, this section’s purpose is to shortly
describe some of these core techniques of software testing, thus providing a
way to break app dependencies.

First of all, it is important to describe the common term ’dependency’, as it
marks the foundation of all the following pattern definitions [13, pp. 49-50].
Basically, if a program interacts with an object – not directly controlled by the
program itself – this object is called an external app dependency or simply
a dependency62.

Dependency Injection

Usually, fake implementations are injected into an app in order to instrument it
for testing63, which is commonly known as Dependency Injection [13, p. 57].
According to Osherove, there are three approved ways to inject dependencies,
which are shortly summarized in the following List 3.5.3.

1. Constructor Injection
2. Property Injection
3. Method Injection

Nevertheless, it is important to know that there are several ways of injecting
such external dependencies [13, pp. 57-74]. Still, regardless of which form
of Dependency Injection is used64, the main aspect is that external depen-
dencies have to be split up in order to enable automated testing.

Furthermore, a Dependency Injection additionally describes a commonly
accepted pattern to decouple software components in general, even when not
focussing on specific test automation needs [13, pp. 57-74].

61Pattern is a reusable solution for a common development problem
62Dependencies like a web service, threading, memory access. . .
63Doubles explained in Section 3.5.3
64Forms of Dependency Injection with different pros & cons

62

3.5. UI Test Automation

Doubles

Generally, Doubles represent simplified code replacements, which are usually a
requirement for test automation65 [29, p. 1]. Their main purpose is substi-
tuting unready components or isolating certain components from other app
parts or from the test code. Additionally, Doubles provide an interface to
control side effects like for instance return values, while some may even allow
to verify requirements.

Nonetheless, the generic term ’Doubles’ can be subdivided into two more
specific terms, which are explained in the following paragraphs [13, p. 78].

Stubs A major issue of software testing is that test cases have no control
over external dependencies including what to return or how to behave66 [13,
pp. 49-50], [29, p. 1]. Therefore, Stubs represent a simplified and controllable
replacement for such dependencies, simulating according behavior by return-
ing the same outputs as the imitated components. According to this, Stubs
are only static replacements67, being very closely bound to the related test
cases. Therefore, this pattern is limited in functionality, because Stubs often
have to be modified if a test case changes.

Mocks Generally, the purpose of Mocks is to be a simplified and controllable
replacement for objects68. This typically is useful when a complex object cannot
be easily considered for testing69 [13, pp. 75-77], [29, p. 1].

Although this definition seems to be similar to the one of a Stub70, Mocks
can additionally decide whether a test succeeds or fails by asserting against
specified requirements71. Therefore, even if an object does not return or save
anything, it can still be verified, due to providing an external Application
Programming Interface (API) for testing purposes.

65Doubles also known as Fakes
66Dependencies described in Section 3.5.3
67Stubs not interacting with other components
68Mocks limited to object-oriented programming
69Might be impractical or impossible to include an object
70Stubs described in Section 3.5.3
71Mocks assert against called methods or properties

63

3. UI Testing

Nevertheless, it is very important to not over-use Mocks, in order to prevent
a potentially significant increase in maintenance needs [29, p. 1]. Further-
more, Mocks must be as accurate as possible to produce no misleading results,
which can be very difficult to achieve72.

Professional software engineers should be aware of how to differentiate
Stubs from Mocks [13, p. 78]. However, as these terms are often used inter-
changeably by mistake, many people tend to be confused, while remaining
unaware of these noticeable distinctions. The main difference is that a Mock
can actively fail tests, which cannot be done by a Stub.

72Mocked object may be from different developer/project, not even existing. . .

64

Part II.

Technical Realization

65

4. Project Introduction

In order to be able to understand the general motivation behind most of the
specific UI Automation decisions made in course of the technical realization,
it is important to have at least a basic knowledge of the most important
aspects and considerations. Therefore, it is this section’s main purpose to
provide the necessary overview, while focussing on the things most relevant
for the automation of UI Testing regarding the iOS platform.

4.1. Project Architecture

The project has been developed over several years, using an agile development
approach – where the software was developed in short cycles – with a mix-
ture of two different development languages1 [7, pp. 175-176]. This simultaneous
development with two languages is the main reason why it could not only
be described as well-established, but also as very complex2.

As this thesis is mainly concerned with the UI Automation process of
iOS applications, the according project is targeting devices supporting a
version greater than iOS 7, which is Apple’s mobile system version that
was released in the end of 2013 [30]. Here, not only iPhones and iPads are
targeted, but also other platforms like Apple TV3 or OS X4, which is yet
another reason for the project’s high complexity.

Nevertheless, this thesis’ focus mainly lies on mobile iOS applications
developed for iPhones as well as for iPads. However, all decisions concern-
ing the automation of testing where still made while keeping all of these
differentiating platforms in mind.

1Project developed using Objective-C & Swift
2Mixture of two languages requires bridging & trade-offs
3http://www.apple.com/tv
4http://www.apple.com/osx/what-is

67

http://www.apple.com/tv
http://www.apple.com/osx/what-is

4.2. Testing Process

4.2. Testing Process

Until the start of writing this thesis, one of the overall goals was to guarantee
a high product quality through manual code reviews done by other software
engineers. Additionally, the application was internally and externally tested
by developers as well as by specialized software testers. So, all testing was
done completely manually, which is why there was no automated testing
process involved.

Every feature was manually tested during the product development and
usually right after the completion of a certain feature. Furthermore, the
whole application was regularly checked by several team members shortly
before every product release or update.

All necessary test requirements had been documented by the responsible
test engineers, including a detailed summary of all the necessary testing
steps as well as of the required guidelines for testing5. These detailed
test specifications were copied and saved for each of the release candidates,
allowing to manually reproduce previously developed test scenarios.

4.3. Room for Improvement

Obviously, there was enough room for improvement, not only regarding the
whole app structure, but especially concerning the overall testing process.
This section summarizes all the major considerations related to the project’s
quality assurance and enhancement.

However, as already described in Section Psychological Aspects, one of
the main issues of regular manual software testing is, that humans make
more errors if they have to do exactly the same repetitive tasks over and
over again6. Therefore, relying solely on manual testing is generally not recom-
mended, but it should rather be used in combination with a sophisticated
automated testing solution7.

5Test guidelines like the specific device or iOS version. . .
6Iterative manual testing is commonly known as regression testing
7UI Test Automation described in Section 3.5.1

69

4. Project Introduction

In addition to the high error-proneness, the totally manual software testing
approach was also very time-consuming and did cost a lot of money.

As already mentioned in Section About Automated UI Testing, all repet-
itive and redundant tasks should be ideally done by test automation tools
rather than by human testers [21]. The main reason for this is that it saves
a tremendous amount of time, while one is able to focus on other relevant
and more challenging tasks of testing.

Furthermore, the project’s code base was not optimized for automated testing
purposes at this time. Especially, the various deeply integrated external
dependencies represented one of the most critical aspects regarding the intro-
duction of a sophisticated test automation process8. Additionally, executing
the program involved many asynchronous tasks9, which also strongly influ-
enced the overall testing routine10.

Another issue was related to data tracking, because all the manual test-
ing was done by using applications installed on real devices with real API
connections. Because of this, manual test actions were tracked like real user
interactions and thus falsifying the according tracking data.

Furthermore, as the manual testing results were depending on the live
API connection, some potential bugs could only be narrowed down to the
server-side, which was not developed in-house. On the one hand this is
good, because the product gets tested as a whole – including the API and
other external dependencies – but on the other hand, potential app bugs
were debugged by the app development team. From an economical point
of view this was a critical issue, because a lot of time for searching bugs was
required, while the bugs could not be found after all11.

8Dependencies described in Section 3.5.3
9Asynchronous tasks like threading, file/database access. . .

10UI Testing aspects described in Section 3.3
11Economical aspects described in Section 2.3.2

70

4.4. UI Testing Ambitions

4.4. UI Testing Ambitions

According to the main weaknesses of the project’s setup and testing process
illustrated in Section Room for Improvement, this section aims at explaining
all the derived testing goals referring to these weak spots.

The main goal was to introduce an UI Test Automation solution12 which
could be implemented using both, the latest Swift and Objective-C develop-
ment languages13. The reason for this decision was that many core parts of
the application were still relying on the former Objective-C language, which
is why it had to be supported in combination with Swift.

The overall ambition was to hand-off redundant and repetitive testing tasks
to this optimized UI Test Automation approach, thus allowing the test
engineers to focus on exploratory and more challenging testing.

The basic idea was to verify every single code change before and iteratively
after it was integrated into the main application code base14. For this reason,
software engineers should only be allowed to integrate any of their imple-
mentations if every aspect had been tested accordingly, without breaking
any already existing test cases.

Nonetheless, the overall goal was not only to enable UI Automation, but
also to set it up to be as fast and stable as possible in order to guarantee most
reliable test results. Additionally, the UI Test Automation suite had to be
very understandable and maintainable to enable a long-term utilization. Fur-
thermore, the reusability of the automation framework marked another key
factor, because the core testing structures could potentially be established
within other or future iOS projects as well.

Also, in order to guarantee a high quality of the integrated UI Automation
framework – and of the existing product – the idea was to introduce an auto-
matic code style verification process in addition to the manual code reviews14.
Therefore, it should not be possible to integrate any product or test code
changes, which do not conform the predefined code style guidelines.

12UI Test Automation described in Section 3.5.1
13Objective-C is the precursor language of Swift
14Automatic verification with Continuous Integration (CI) mechanisms

71

5. UI Automation in iOS

First of all, this chapter provides a rough overview of the main automation
tools available, which have been considered for automating the project’s
individual UI Testing process. Additionally, the key differences between
these tools are illustrated1, while explaining the reasons for the selection
of the automation framework which has been embedded and optimized
afterwards. Furthermore, some tool-specific details are provided concerning
the UI Testing process, its remaining issues and potential optimization steps.

5.1. UI Automation Frameworks

Generally, various possibilities to tackle the problem of automating the UI
Testing process in iOS exist [31]. Nevertheless, most of the available solu-
tions aim at interacting with an application as a real user would do. For any
third-party automation tools, this is only possible through leveraging the
iOS accessibility infrastructure2, allowing tools to interact with an application
through a special “VoiceOver” interface [32].

After an automation tool is successfully integrated within the Apple’s
software development environment called Xcode, the testing procedure usu-
ally launches the application, while the automation tool attaches to the
executing app’s process [21, p. 2].

Additionally, automation frameworks can usually be easily integrated into
Continuous Integration (CI) systems, which provide the support for a com-
pletely automatic UI Testing approach, without any need of human interac-
tions [13, pp. 126-129]. Generally, CI describes an automatically build and
integration process running continuously on a specialized CI server.

1UI Automation tools described in Section 3.5.2
2http://www.apple.com/accessibility/ios

73

http://www.apple.com/accessibility/ios

5. UI Automation in iOS

Nonetheless, after doing an extensive research into the field of UI Automa-
tion, only very few automation tools turned out to be commonly accepted and
supported by a significant community3. However, these popular tools could
be narrowed down to a subset of two, which are explained and compared in
more detail within the following sections.

5.1.1. KIF - Keep It Functional

KIF describes a popular open-source iOS Integration and Acceptance Testing
framework, which was created by Square in 2011 [33], [34]. It supports
Objective-C and Swift with a minimum version of iOS 5 which is reducing
the overall learning and adaption curve of software testing.

Nonetheless, as KIF makes use of Xcode’s default XCTest target, all built-
in test functionality is available for UI Test Automation purposes4 [34].
Therefore, the setup of the automation process requires only minimal effort5,
without the need to install additional dependencies to begin testing.

KIF tests run synchronously on the main thread, while constantly looping
through the available view hierarchy to explore the GUI6 [34].

Nevertheless, this third-party framework is dependent on undocumented
Apple APIs, which are generally considered to be safe for testing but not
for production usage. This is why it is important to not include test code
within any final app store builds, because otherwise Apple will deny the
app’s public submission.

Additionally, the KIF structure can be easily extended with custom func-
tionality and integrated into CI systems7, which enables all UI Tests to be
executed completely autonomically [34]. Especially, the fact that KIF is
considered to be very extensible is the main reason for its popularity and
well-established open-source community.

3Automation tools like UI Testing, KIF, Appium. . .
4Xcode build tools, test navigator & reports. . .
5KIF setup includes integration and basic Xcode configuration
6GUI described in Section 3.1.1
7CI shortly described in Section 5.1

74

5.1. UI Automation Frameworks

5.1.2. UI Testing

UI Testing is the name of Apple’s official UI Automation tool which was intro-
duced with Xcode 7 in September 2015 [35], [36]. Nonetheless, the UI Testing
framework is also concerned with Integration and Acceptance Testing while
targeting any mobile applications supporting iOS 9 or later and even the
OS X desktop system with a minimum version of OS X 10.11.

Additionally, the framework’s main APIs have Swift interfaces that can
be used within projects supporting both Swift and Objective-C [31], [32].
Nevertheless, the according XCUI namespace just serves as a minimalistic
and limited UI Testing interface, which strictly separates the testing target
from the tested mobile application. This is the reason why test cases are only
able to interact with an application via three special proxy elements provided
by the automation framework8.

Last but not least, UI Testing provides a test recording functionality9, which is
able to capture manual UI interactions after pressing the according record
button in Xcode [32]. Therefore, the process of the UI Test creation is much
easier and faster in comparison to any third-party automation tools like KIF10,
where all tests have to be created programmatically. Furthermore, the possi-
bility to record UI Tests enables people with limited development skills to
create UI Tests themselves.

5.1.3. KIF VS UI Testing

Table 5.1.3 clearly summarizes all the distinctive properties of KIF in compari-
son with Apple’s default UI Testing framework. This simplified overview
also served as the foundation of the decision making process, determining
which automation framework to use for the specific project11.

Therefore, this section’s purpose is to highlight the main aspects which
lead to the final automation tool selection. It is very important to consider the
individual project context when analyzing the final decision.

8XCUIApplication, XCUIElementQuery & XCUIElement
9Capture-Replay tools described in Section 3.5.2

10KIF framework described in Section 5.1.1
11Project described in Section 4.1

75

5. UI Automation in iOS

KIF UI Testing
release 2011 2015

offer third-party official
source open-source closed-source
targets iOS iOS & OS X

min version iOS 5 iOS 9 & OS X 10.11
setup minimal integrated
APIs undocumented official

API limits VoiceOver XCUI proxies
extensibility unrestricted limited

Capture-Replay no recording recording
community established & large young & growing

Table 5.1.: iOS UI Automation: KIF VS “UI Testing”
This table illustrates the main differences between the two iOS UI

Automation tools KIF and UI Testing. Similar properties are omitted and
special traits are highlighted in order to focus on the most relevant aspects.

Generally, it was a relatively straightforward decision-making process to
select KIF as the more appropriate solution for the specific project12.

However, the most important consideration was that only KIF allows to
automate UI Testing for iOS devices using iOS 7 or higher, which was one of
the project’s main predefined testing requirements.

Furthermore, KIF tests are executed attached to the application process,
thus allowing to extend and optimize the existing framework functionality.

Finally, the large open-source community marked another important factor
as well as the aspect that UI Testing was still relatively young in comparison
to KIF, which is why KIF was generally better documented and supported.

Nevertheless, UI Testing might still be well-suited for UI Testing of other
iOS or OS X applications, which do not require a backward compatibility
below a version of iOS 9. Especially, the aspect that UI Testing is the offi-
cially integrated automation tool – providing additional features like UI
Test recording – indicates its significant UI Automation potential.

12Project described in Section 4.1

76

5.2. KIF Integration

5.2. KIF Integration

This section summarizes all the main findings, which have been gathered
within the scope of the integration and optimization of the well-established UI
Automation framework called KIF13.

First of all, the basics of KIF’s UI Automation process are illustrated,
including an overview of the major shortcomings when testing with this
open-source automation framework. Afterwards, potential modification and
optimization steps are explained, highlighting all inherent considerations.

Although this potential optimization is tailored to the actual needs of the
previously described project14, most of the specified enhancements can
still be used within different projects as well, depending on the individual
testing philosophy of the responsible software testing team15.

Nevertheless, the high complexity of the project marked a critical influencing
factor for many decisions related to the automation of UI Testing.

However, as the project has been developed over several years, naturally
code parts exist that do not conform to the latest iOS design principles. Be-
cause of this, some restructuring was required in order to allow an integration
of sophisticated automated testing routines. Nonetheless, this optimization
was relatively time-consuming and challenging to achieve, because some of
these code parts were deeply integrated within the core of the according
iOS application.

The combined usage of Objective-C and Swift is representing another limiting
factor, because not all language constructs are portable between both of
these programming languages16.

Furthermore, the initial lack of experience in the fields of test automation
and Continuous Integration must be considered as well. However, although
this is obviously a limiting factor, it pushed the research team forward and
motivated them to consider the latest tools and optimizations available.

13KIF framework described in Section 5.1.1
14Project described in Section 4.1
15Trade-offs required to increase performance, stability. . .
16Objective-C does not handle Swift Structs, Tuples, Generics. . .

77

5. UI Automation in iOS

5.2.1. Testing with KIF

Generally, the basic setup of the KIF framework requires only a very minimal
effort until being able to automate UI Tests, because there is no need for any
additional dependencies17. As already mentioned before, KIF makes use of
the default XCTest target, thus allowing to use all built-in tools of Xcode18.

However, the KIF automation framework is synchronously looping the GUI
hierarchy, providing a way to visualize the current app structure and making
assertions on it, which is necessary for automated UI Testing [34].

Nonetheless, at least some knowledge of the underlying app structure is
required, which is why KIF is commonly known as a Grey-Box Testing tool19,
where certain parts of the application have to be considered for testing [37].

KIF tests are running attached to the application process, allowing testers to
modify the underlying application code, while an additional compile time
code verification functionality is provided as well [21, p. 196].

However, such runtime app manipulations should generally be avoided, be-
cause it is a common practice to separate the test code from the application
code whenever it is possible. Furthermore, the test code must be excluded
from potential app release candidates, because Apple prohibits to make use
of its undocumented APIs within any published iOS applications.

Nevertheless, the overall goal is not only to verify an app’s functional-
ity from the perspective of a user, but KIF additionally aims at enforcing the
accessibility of an application for people with visual disabilities [38].

Thus, the basic UI Automation framework is providing two alternatives
for accessibility handling, called accessibility label and accessibility identifier.
However, only accessibility labels are visible to the users, which may there-
fore enhance the overall accessibility of an iOS application.

This is why, a special extension pack is required in order to activate UI
Testing with accessibility identifiers. Nevertheless, the main advantage of
using accessibility identifiers over the according labels is that there is no
need to translate them, because they are invisible for real users.

17KIF framework described in Section 5.1.1
18Xcode functionality like build tools, Code Coverage, test reports. . .
19Grey-Box Testing is mixture of Black-Box & White-Box Testing

78

5.2. KIF Integration

In addition to the already mentioned aspects, the KIF UI Automation frame-
work includes a special test setup and teardown functionality, providing a
way to reset the application state for testing. Therefore, it is possible to
establish an optimized UI Testing structure, where individual test cases are
completely independent from each other, which is one of the overall goals
of software testing20.

Last but not least, as there is no test recording functionality available, the
whole test suite has to be manually developed entirely, which is usually a very
time-consuming process21. Therefore, test engineers should define priorities,
describing which app functionality has to be tested, while also specifying
on a concrete test priority order.

5.2.2. Framework Drawbacks

Generally, it was a very satisfying decision to construct the tailored UI Au-
tomation process on the foundations of KIF22, because the default framework
already provides a large set of the necessary UI Automation functionality.

Nevertheless, due to the special requirements of the project23, the basic
functionality provided by KIF was just not enough.

According to Patton, the fact that there are many invasive automation tools,
may result in software failures being related to the testing tool itself instead
of the software under test [9, p. 239]. This general observation has of course
also to be applied to the usage of KIF.

Nevertheless, the relatively tight coupling between the testing and the appli-
cation code marks another critical aspect, because even minor app changes
may require significant changes of the according UI Tests [21, p. 41]. Obvi-
ously, this consideration is not only related to this specific UI Automation
framework, but it does still indicate one of the major drawbacks of setting
up an automated testing process using KIF.

20UI Testing aspects described in Section 3.3
21Economical aspects described in Section 2.3.2
22KIF framework described in Section 5.1.1
23Project described in Section 4.1

79

5. UI Automation in iOS

Generally, software testers have to expect various asynchronous operations
when testing comparably complex mobile applications24.

Nevertheless, as KIF is relying on hard-coded timeouts to wait for certain UI
elements to appear, it is very prone to non-determinism, which is leading to
unreliable results and Flakiness [7, p. 214], [39]. The reason for this is that KIF’s
static default timeouts may lead to unnecessary long waiting – slowing
down the overall testing performance – or even to occasionally failing UI
Tests caused by timeouts that are too short.

As already explained, KIF is synchronously looping through the current
GUI hierarchy when executing its according UI Tests25 [39]. Nonetheless,
this illustrates the main reason for the very slow performance of KIF, because
it takes a tremendous amount of time to constantly update the underlying
GUI Model26, which is required for automated UI Testing.

However, it is a common software testing goal to make individual test
cases independent from each other, thus providing more reliable results [34].
Nonetheless, as KIF is executing the test cases in an alphabetical order, this
independence cannot be easily guaranteed. As there is no obvious answer
to the question of why KIF does not randomly execute test cases, this aspect
indicates another drawback for its usage in UI Testing.

Another inconvenience of KIF is related to the accessibility infrastructure
provided by Apple, because it is not easily feasible to specify an accessibility
label or identifier for all the various UI elements. Therefore, custom utilities
are required to cover most of the app’s functionality27.

Although the KIF framework is supported by a relatively large open-source
community, still crucial bugs which have not been identified or resolved
so far exist28 [34]. Additionally, there is no functionality available for now,
which allows to interact with some of the main UI elements of iOS.

24UI Testing aspects described in Section 3.3
25GUI described in Section 3.1.1
26GUI Model described in Section 3.1.1
27Utilities for navigation buttons, toolbar items, alerts. . .
28KIF is error-prone when scrolling, swiping. . .

80

5.2. KIF Integration

Finally, KIF’s integration into Xcode does not always work reliably. Although
the according UI Tests are managed as a built-in Unit Testing target29, certain
functionalities are usually not working as expected30. Nevertheless, this
issue seems to be related to Xcode rather than to KIF, but it still marks
another negative aspect for the overall UI Automation.

5.2.3. UI Test Optimization

This section summarizes all the main aspects regarding the tailored opti-
mization of the well-established UI Automation framework called KIF while
considering all the specific project requirements31 [34].

All according explanations aim at illustrating the underlying fundamental
considerations and concepts, without going into every single detail. How-
ever, a few handpicked and more specific examples are illustrated within
the following chapter Implementation Details.

For such a complex and well-established project, it is essential to setup
a high-performance and reliable testing structure, because tests get usually
executed dozens of times [9, pp. 220-239].

Still, test engineers must be aware that software changes frequently, which
is why flexibility and maintainability are very essential, too32. Furthermore,
the quality standards and guidelines of software development should also
be applied to all tests in order to guarantee an overall high product quality.

Therefore, the overall goal was to construct and establish a reusable testing
toolbox by hiding complex implementation details behind understandable
and simple testing interfaces [21, pp. 41-58]. This additional abstraction layer
was also intended to enable test engineers to think about the system as a
whole instead of focussing on any minor details.

“Growing a test suite is just like growing production code. Small steps
are better. Build often. Refactor and reorganize for clarity.” [21, p. 58]. This
statement clearly explains the applied automation optimization approach.

29Unit Testing described in Section 2.5.3
30Xcode tools like test runner, test reports. . .
31Project described in Section 4.1
32UI Testing aspects described in Section 3.3

81

5. UI Automation in iOS

Performance & Reliability

The purpose of this section is to illustrate the main extensions of KIF regard-
ing its performance and reliability. However, every aspect is only explained
briefly, without presenting any specific implementation details.

First of all, it is very important to implement a GUI caching functional-
ity to always remember the latest state of the underlying GUI Model33.
Therefore, the crucial performance deficiency of constantly looping through
the current GUI hierarchy can be reduced significantly [39].

Nevertheless, for some special cases it is essential to provide a possibility
to clear this GUI cache in order to enforce a complete reconstruction of the
GUI Model. This cache cleanup functionality is also crucial in order to reset
the app and testing state to improve the overall reliability.

Despite of the fact that the next relevant optimization step is obviously
very controversial34, it still illustrates an extraordinary factor to improve
the overall UI Automation performance and reliability [39]. Nonetheless, in
order to avoid making use of KIF’s default waiting functionality – leading
to unreliable and slow UI Tests35 – the default notification handling of iOS
can be utilized to broadcast special testing events36.

Basically, the idea is to immediately inform a running test case about
potentially relevant state changes, which often relate to asynchronous app
operations. For this reason, such test cases only have to wait exactly as long
as necessary. Additionally, this concept allows to trigger app actions, which is
simplifying the commonly desired app cleanup and reset.

Finally, the internally specified broadcast guideline was to send such notifi-
cations as often as possible, but only if minor code changes were required
and thus not manipulating any application logic.

Although, there is already an alternative available37 – providing a very
similar waiting interface – it turned out to be slower compared to the
custom-built implementation working based on notifications.

33GUI Model described in Section 3.1.1
34Contradicts the principle of separating app & tests
35KIF drawbacks described in Section 5.2.2
36Notify changes of visibility, animations, scrolling, data retrieval. . .
37Default functionality called “waitForExpectationsWithTimeout”

82

5.2. KIF Integration

Generally, complex applications base on external dependencies, which cannot
be inspected or controlled38 [21, pp. 147-151]. This is why, automated tests
may unexpectedly fail, although the observed app behavior is functioning
as expected. However, as it is usually not desirable to verify the accuracy of
these external services as well, there has to be an effortless way to fake all
the related service responses39.

According to this explanation, the predefined goal was to provide a simple
way to fake networking responses. Nonetheless, as different possibilities to
decouple an application from its external server exist40, the individual
project architecture has to be carefully taken into account.

However, in the case of the specific project41, a minimalistic HTTP server
was used in order to intercept real network communications, while returning
static responses for testing purposes. Nevertheless, as such fake responses
cannot be easily differentiated from real API responses, an app usually
behaves exactly the same, which is required for a reliable UI Automation.

Last but not least, the iOS system allows KIF to make use of special process
environment variables, providing an additional way to trigger app changes [21,
p. 135]. Therefore, an according test target can specify custom environment
values42, notifying the app to perform certain actions.

However, one of the various cases for this app environment modification
is to increase the animation speed of an application which does significantly
reduce the overall UI Testing time-consumption43 [40].

Although it is also possible to disable animations altogether, it is generally
not recommended to do so. The main reason for this is that according
transitions are most often necessary in order to prevent an application
from misbehaving due to the replacement of asynchronous animations with
completely synchronous code handling.

Furthermore, commonly many bugs are triggered by animations which is
why they should be involved within a reliable UI Automation process.

38Dependencies described in Section 3.5.3
39Supporting patterns described in Section 3.5.3
40Intercept calls of networking protocol, fake server. . .
41Project described in Section 4.1
42Environment specifying fake server usage, device orientation. . .
43Increase the speed of the system core animation functionality

83

5. UI Automation in iOS

Understandability & Maintainability

First of all, the optimized UI Automation framework includes tailored cus-
tom base classes for testing, providing the necessary core functionality used by
most of the test cases. Although this aspect is obviously also related to the
previous Section Performance & Reliability, it still significantly increases
the long-term maintainability of the whole test suite as well.

Especially the custom-built automatic test setup and teardown functional-
ity has to be highlighted, because it allows the responsible test engineers to
completely focus on UI Testing, without having to be concerned about how
to appropriately reset the entire application state44. Nevertheless, without
providing such an essential core testing functionality, test cases would have
to consider unpredictable scenarios like left open alerts45, modified prefer-
ences or other similar threats.

As already mentioned before46, it was not only a predefined goal to develop
a highly maintainable but also a very reusable testing solution. Therefore, the
encapsulation of all the various testing modules indicates another major
influencing factor for many decisions which have been made within the
development process of the optimized UI Automation framework.

This is why, it was one of the logically derived requirements to provide
very simple and comprehensible interfaces for all the UI Testing functionality,
including custom base and utility classes as well as extensions47.

Furthermore, this encapsulation of the implementation details potentially
simplifies a framework exchange, because in such a scenario solely the central-
ized delegation code for the underlying UI Automation framework has to
be modified, while most of the testing code remains untouched.

Nevertheless, in order to optimize the overall usability of the UI Automa-
tion framework, trade-offs have to be made between the simplicity and com-
prehensibility of interfaces, because a completely reduced interface might
compromise the understandability and vice versa.

44UI Testing aspects described in Section 3.3
45Open alerts due to previous failures, test error. . .
46UI Testing ambitions described in Section 4.4
47Extensions for accessibility, waiting, scrolling. . .

84

5.2. KIF Integration

In addition to the already mentioned ground rules, the entire project team
has verbally agreed on certain additional guidelines, which are mainly con-
cerning the maintainability and reusability of the UI Automation test suite.

First of all, accessibility identifiers should generally be favored over according
accessibility labels48, especially when considering the individual project
requirements. As already mentioned, accessibility identifiers must not be
localized, which saves time that can instead be used for testing purposes,
while minimizing the localization maintenance efforts.

However, another rule specifies that it is generally preferred to construct
fake data by using common development patterns, instead of simply reading
in the static data from a file49. Despite the fact that it is possible to record
API responses, the resulting fake data still has to be maintained. This is why,
it is usually the best approach to record the data, then translate it into
application code, which is generally easier to manage in future.

The aspect that the resulting UI tests are extremely clean and understandable
leads to another very important consideration, because there is no more need
to document any inline code [6]. Furthermore, this form of documentation
has the significant advantage that it is executable itself, which is why the
UI tests are instantly indicating if the “documentation” has to be updated,
thus strongly increasing the documentation maintainability and trustability.

Additionally, one guideline describes the need to precisely document all
the available testing interfaces, thus enabling Xcode to provide functionality
previews and explanations. However, this is one of the main reasons why the
initial time to get familiar with the optimized framework has significantly
decreased. Nevertheless, the obvious drawback is related to the overall
maintainability, because such code documentations occasionally have to be
updated according to certain functionality changes.

Last but not least, the predefined file structure indicates another important
aspect, because all test files have to fit appropriately into the scheme, which
additionally enforces the desirable module encapsulation.

48Accessibility handling explained in Section 5.2.1
49Best practices for construction called builder or factory pattern

85

5. UI Automation in iOS

Furthermore, specific naming conventions have been introduced to guaran-
tee a high level of maintainability and overall application code quality50.

Nevertheless, as humans tend to not always follow such informal rules,
many of these conventions have also been verified by manual code reviews as
well as by specialized tools for static code style analysis [41].

Additional Enhancements

In addition to all the aspects already mentioned in the sections before, an
enhanced debugging functionality was also predefined as one of the main goals
for testing. However, the best UI Testing suite would be useless, if there was
no supportive debugging and logging functionality available.

First of all, a slow testing mode got introduced, which is adding a time
delay between every single testing step of KIF. The reason for this is, that
the optimized UI Tests run exceptionally fast, which is why the human eye
cannot follow them anymore. Nevertheless, this mode is more important for
the initial test development than for the test execution afterwards.

Furthermore, most of the simplified testing interfaces are configured to
delegate important debug information to the underlying implementation51, thus
enforcing failing test cases to stop where the error actually occurred.

Additionally, it was an overall guideline to keep Xcode’s console output as
clean as possible, thus avoiding the effort to browse through a very cluttered
presentation of runtime information when debugging.

As already roughly explained52, the specific project has been developed us-
ing an agile development model, which describes one of the most well-known
and modern forms of software development lifecycles53 [7, pp. 175-176].

Generally, such an agile software development approach is based on short
iterative development cycles, in which all the previously existing functionality
has to be verified54, while new implementations must be tested as well.

50Naming conventions for files, variables, interfaces. . .
51Debug information like file name, line number. . .
52Project described in Section 4.1
53Development lifecycle models described in Section 2.4.1
54Iterative manual testing is commonly known as regression testing

86

5.2. KIF Integration

This is the main reason, why a Continuous Integration system has been
installed55, providing a simple way to completely automate the execution of
UI Tests. However, the remote CI server is configured to check every single
code change, where it does not only run all existing test cases but where it
also triggers a static code style analysis to verify the software quality [41].

For this reason, it was possible to reduce the time frame for each of the
individual development cycles, allowing to release faster and more frequently,
because an overall high product quality could be guaranteed at any time.

5.2.4. Remaining Issues

Although the KIF framework has been enhanced in various ways, still some
optimization potential exists. Nevertheless, this section summarizes all the
major remaining issues, considering the specific project requirements56.

First of all, even the optimized version of KIF can still not perfectly imitate
certain iOS UI interactions [34]. This is why it is occasionally difficult or
even impossible to test specific UI elements, especially concerning custom views
or relatively new iOS widgets57.

Furthermore, it is often frustrating to be involved with UI Testing in iOS,
because Xcode provides a very unreliable test tool functionality58, at least when
using the KIF automation framework. For this reason, it is generally really
difficult to run all existing UI Tests simultaneously, because Xcode will just
not completely index all of them at once. Additionally, the individual test
selection is usually very unreliable too, because of the same reason.

As already mentioned before59, the default KIF framework can already
be described as a Grey-Box UI Testing tool, where there is no strict separation
of the application from the test code. Nevertheless, some of the optimization
steps reduced this separation even more, which obviously indicates a very
controversial aspect of some of the potential framework enhancement.

55CI shortly described in Section 5.1
56Project described in Section 4.1
57KIF issues when scrolling, swiping, using gestures. . .
58Unreliable Xcode tools for building, test running. . .
59Testing with KIF described in Section 5.2.1

87

5. UI Automation in iOS

Furthermore, as it is usually also necessary to adapt the according appli-
cation code for UI Testing purposes, the initial learning curve to start writing
tests has slightly raised. However, this is obviously one of the trade-offs to be
made in order to test with a high reliability and tremendous speed.

Finally, the current optimized UI Testing framework is not testing against the
production API of the application. Therefore, all involved engineers always
have to keep in mind, that according fake responses may be outdated. This
is why, the according UI Tests might be succeeding, although the already
published application is not functioning as expected.

88

6. Implementation Details

As none of the other chapters is providing any particular examples of how
the optimized KIF UI Tests may look like in the end, this chapter delivers
insight into a few very selective UI Testing details.

The goal is not to get lost in any too specific structural elements of the
underlying framework. This is why the given examples aim at highlighting
only the most relevant aspects of UI Testing using the optimized version of
KIF, which is discussed in Section UI Test Optimization.

First of all, a major aspect of the provided examples is to emphasize the uti-
lization of the default notification handling functionality of iOS for UI Testing
purposes1. This is why there is no need to wait with any predefined static
timeouts, which would lead to flaky and unreliable UI Tests2. Therefore,
the example test cases are highly performant and reliable in comparison to an
according implementation using KIF’s default testing interfaces.

Furthermore, the following examples demonstrate how clean the accord-
ing optimized UI Test cases look like, leading to very understandable and
maintainable UI Tests3. Obviously, all framework implementation details are
hidden under a very simple interface, wrapping the underlying UI Test
framework functionality. Additionally, there is no need for nesting certain UI
Testing actions, which increases the readability of these test cases even more.

Last but not least, in addition to the other already mentioned highlights of
the UI Test example implementation, a few common software development
patterns are also provided, including the Factory, Stub and Mock patterns4.

1Performance & reliability optimization described in Section 5.2.3
2Flakiness described in Section 3.1.1
3Understandability & maintainability optimization described in Section 5.2.3
4Stubs & Mocks described in Section 3.5.3

89

6. Implementation Details

Start

animate animate

Password

User

Login

Link

Home

Server Website

X X

Login

Scroll

Figure 6.1.: This image illustrates the basic UI of an iOS application, which is used to
demonstrate simple UI Testing examples. The iOS app contains two screens,
where the first one provides a basic login functionality, which leads to the
second screen that is representing the scrollable home interface.

90

6.1. Text Input & Stubbing

6.1. Text Input & Stubbing

The following List 1 demonstrates an example of how to reliably test the UI
of a successful login flow of the application illustrated in Figure 6.1.

1 func testLoginSuccess() {

2 wait(for: .AnimationEnd, of: "Login")

3 wait(for: .Label, withID: "Login", andText: "Login")

4 wait(for: .Button, withID: "Login", andText: "Login")

5

6 enter("Daniel Fritzsch", into: "User")

7 enter("Master’s Thesis", into: "Password")

8

9 let response = ResponseFactory.loginSuccess()

10 stub(method: "POST", path: "/login", response: response)

11

12 perform(tap("Login"), waitFor: "Home")

13 }

Listing 1: UI Test Example: Text Input & Stubbing

First of all, the test case waits for the initial screen animation to finish (2).

Afterwards, the screen title label and the login button are tested, including
their visibility and a verification of the displayed texts (3–4).

The next steps are to insert test inputs into the two required login text
fields that would lead to a failing test if the UI elements to verify would not
be available on the screen (6–7).

After the text insertion, the Factory pattern is utilized to construct a fake login
response, which is used to stub the login API request afterwards, preventing
the app from addressing the real server (9–10).

Finally, the test is aiming at tapping the login button, while it is synchronously
waiting for the home screen to appear (12).

91

6.2. Scrolling & Mocking

6.2. Scrolling & Mocking

List 2 provides an example of how to reliably scroll to and verify an UI
element, which is at first not visible on the screen, as shown in Figure 6.1.

1 func testHomeWebLink() {

2 wait(for: .AnimationEnd, of: "Home")

3 wait(for: .Label, withID: "Home", andText: "Home")

4

5 perform(scrollDown("Scroll"),

6 waitFor: .ScrollDidEnd, of: "Scroll")

7

8 // Demonstrate two ways of verifying a clicked link

9 if useMock {

10 let linkHandlerMock = LinkHandlerMock()

11 homeScreen().inject(linkHandlerMock)

12

13 tap("Link")

14 linkHandlerMock.verifyURL("http://www.example.com")

15 } else {

16 perform(tap("Link"),

17 waitFor: .URLOpened, of: "http://www.example.com")

18 }

19 }

Listing 2: UI Test Example: Scrolling & Mocking

First of all, the test case waits for the initial screen animation to finish (2).

Afterwards, the screen title label is checked, including its availability, visibil-
ity and a verification of the displayed text (3).

The next testing step is to scroll down to the initially unavailable UI ele-
ment that is located at the very bottom of the scroll view, while waiting for
the scroll transition to finish in order to be able to click the link (5–6).

93

6. Implementation Details

Afterwards, the test splits up in two branches which is only done for demon-
stration purposes, because it does not conform to any best testing practice.

On the one hand, the first branch illustrates an underlying code verifica-
tion by injecting a Mock object5, while on the other hand the same goal is
achieved by making use of the optimized KIF iOS notification handling.

Nevertheless, it is usually not very common to test the underlying app
implementation within the scope of an UI Test, but it is still the only way to
achieve this if no alternative testing process like Unit Testing is involved6.

As already mentioned, such a basic verification of the underlying func-
tionality can be done by injecting Mock objects (10–14). In this specific case,
a Mock object is created, which gets injected into the application code af-
terwards. Therefore, it is possible to assert against the URL in order to verify
that the correct website would have been opened after clicking the link.

Nevertheless, the default way of achieving such a verification with the
optimized KIF UI Testing framework would be to tap the web link, while
waiting for the notification of the URL afterwards (16–17).

The advantage of this method of verification is that it does only require
very minimal code changes of the underlying application. This is why this
approach is perfectly suitable for complex iOS apps, where an according
restructuring would not be economically feasible otherwise7.

Also, the manipulation of the tested iOS application by specifying a special
iOS environment variable needs to be considered8. The reason for this is,
that the according iOS app has to be prevented from actually opening any
website, because otherwise the UI Test session would get interrupted.

5Mocks described in Section 3.5.3
6Unit Testing described in Section 2.5.3
7Economical aspects described in Section 2.3.2
8Environment variables described in Section 5.2.3

94

Part III.

Outlook & Conclusion

95

7. Future UI Automation in iOS

This chapter aims at predicting the short-term future of the UI Automation of
iOS applications. This is why all the described aspects are only assumptions
and not based on any additional scientific research in the respective field.

Although KIF and Apple’s UI Testing are focussing on the same field
of application, both are still providing quite distinctive UI Testing approaches
for iOS apps1. Therefore, a potential coexistence of these two UI Automation
tools is very probable within the next few years.

The main reason for this assumption is that KIF admits more freedom and
flexibility in comparison to Apple’s limited UI Testing interfaces. Moreover,
Apple does not seem to be improving the current UI Testing implementation,
which is why KIF will potentially stay competitive in the near future.

Nonetheless, KIF is split up into various distinctive implementations today,
closely related to its open-source development nature [34].

As KIF is available for the public use and for further improvement,
anybody has the possibility to contribute2. This is why some of the currently
existing separated optimizations and extensions will most likely be integrated
back into the main project, contributing to the open-source community [39].

In fact, even the optimized implementation that has been developed in
the scope of this thesis was partly reintegrated into the official KIF project3.

Nevertheless, UI Testing has evolved since the day where it was released in
2015

1. Furthermore, as it is deeply integrated within Xcode and the underlying
development kit, it has the possibility to provide a very similar functionality
to the optimized KIF version that is described within this thesis4.

1KIF VS UI Testing described in Section 5.1.3
2Contributions get verified before being integrated
3https://github.com/kif-framework/KIF/pull/869
4KIF optimizations described in Section 5.2.3

97

https://github.com/kif-framework/KIF/pull/869

7. Future UI Automation in iOS

However, as Xcode has access to all the required iOS functionality, ad-
ditional application code adaptions would not be necessary anymore, which
describes a tremendous advantage over all third-party iOS UI Testing tools.
Therefore, this official UI Automation solution provided by Apple has
theoretically more potential than any of its competitors, regardless of their
supporting community.

Today, more and more iOS applications are increasing their minimum tar-
get version, because of the simplified development by omitting the backward
compatibility for older iOS devices. This is why the adoption rate of UI Testing
will increase with a high probability, because plenty of projects can start
to make use of it by supporting a minimum target version of iOS 9 or higher5.

In addition to the already mentioned aspects, only Apple’s UI Testing
automation solution supports the testing of other development platforms like
tvOS or OS X as well, which indicates yet another very important aspect
that has to be considered for its future evolution.

Furthermore, Xcode does only allow to record UI Test cases when using
its own UI Testing solution5, which is why solely the testing approach with
Apple’s default UI Automation tool is able to deliver such a powerful and
time-saving extra functionality, where not every single UI Test case has to be
programmed completely manually.

Finally, due to KIF’s dependency on undocumented Apple APIs, it cannot be
assured that it will always be possible to test with such third-party UI
Automation tools in the future. The reason for this is that Apple could stop
to support these APIs, which would prevent all third-party UI Automation
solutions from being able to interact with the UI of an iOS application.

5KIF VS UI Testing described in Section 5.1.3

98

8. Concluding Remarks

This thesis summarized my research in the field of automated UI Testing
in iOS. Starting with an introduction to the respective field, followed by
Chapter 2 and Chapter 3, covering the topics of software testing in general
as well as the subcategory of UI Testing.

After this theoretical part, the technical realization was presented, including
an introduction to the specific project in Chapter 4 as well as a summary of
the optimized UI Automation process described in Chapter 5. Additionally,
more specific implementation details got illustrated in Chapter 6.

Finally, Chapter 7 outlined my prediction of the future of UI Automation in
iOS based on an analysis of the currently foreseeable trends.

99

Appendix

101

Bibliography

[1] K. Andrews, Writing a Thesis: Guidelines for Writing a Master’s Thesis
in Computer Science, Graz University of Technology, Austria, Dec.
2011. [Online]. Available: http://ftp.iicm.edu/pub/keith/thesis/
(cit. on p. xix).

[2] P. C. Jorgensen, Software Testing: A Craftman’s Approach, 4th ed. Auer-
bach Publications, 2013, p. 494, isbn: 9781466560680 (cit. on pp. 7, 9,
10, 13, 27, 30, 33, 36).

[3] D. Gelperin and B. Hetzel, “The Growth of Software Testing,” Commu-
nications of the ACM, vol. 31, no. 6, pp. 687–695, 1988, issn: 00010782.
doi: 10.1145/62959.62965 (cit. on pp. 7, 9, 13, 16, 27, 40).

[4] A. Turing, “Checking a Large Routine,” in Report of a Conference on
High Speed Automatic Calculating Machines, AMT, 1949, pp. 67–69 (cit.
on p. 7).

[5] A. M. Turing, “Computing Machinery and Intelligence,” Mind, vol.
59, no. 236, pp. 433–460, 1950 (cit. on p. 7).

[6] K. Beck, Test-Driven Development: By Example, 1st ed. Addison-Wesley,
2002, p. 192, isbn: 9780321146533 (cit. on pp. 7, 13, 31, 85).

[7] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing,
3rd ed., December. John Wiley & Sons, 2011, p. 256, isbn: 9781118031964.
[Online]. Available: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-
1118031962.html (cit. on pp. 8, 13–17, 27, 28, 30–37, 39–41, 67, 80, 86).

[8] G. Gupta and P. Kaur, “Software Testing – Levels, Methods and
Types,” International Journal of Advanced and Innovative Research, pp. 213–
216, 2013. [Online]. Available: http://ijair.jctjournals.com/jan2013/
t32.pdf (cit. on pp. 8, 33–37).

[9] R. Patton, Software Testing. Sams Publishing, 2000, p. 408, isbn: 9780672319839

(cit. on pp. 8–13, 16–19, 21–26, 28–30, 32–34, 39–41, 79, 81).

103

http://ftp.iicm.edu/pub/keith/thesis/
http://dx.doi.org/10.1145/62959.62965
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118031962.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118031962.html
http://ijair.jctjournals.com/jan2013/t32.pdf
http://ijair.jctjournals.com/jan2013/t32.pdf

Bibliography

[10] H. H. Aiken, “Description of a Relay Calculator (Mark II),” Annals of
the Computation Laboratory of Harvard University, Bd, vol. 24, (cit. on
p. 8).

[11] S. E. T. Committee, “ANSI/IEEE STD 829 – Standard for Software Test
Documentation,” Institute of Electrical and Electronic Engineers Computer
Society, 1983 (cit. on pp. 9, 10).

[12] ——, “ANSI/IEEE STD 1008 – Standard for Software Unit Testing,”
Institute of Electrical and Electronic Engineers Computer Society, 1987

(cit. on p. 9).

[13] R. Osherove, The Art of Unit Testing: With Examples in C#, 2nd ed.,
December. Manning Publications, 2013, p. 266, isbn: 9781617290893

(cit. on pp. 13, 15, 30, 62–64, 73).

[14] R. W. Selby, Software Engineering: Barry W. Boehm’s Lifetime Contribu-
tions to Software Development, Management, and Research, 1st ed. John
Wiley & Sons, 2007, p. 832, isbn: 9780470148730 (cit. on pp. 19, 22–26,
29).

[15] B. Boehm, “A Spiral Model of Software Development and Enhance-
ment,” SIGSOFT Softw. Eng. Notes, vol. 11, no. 4, pp. 14–24, Aug.
1986, issn: 0163-5948. doi: 10.1145/12944.12948. [Online]. Available:
http://doi.acm.org/10.1145/12944.12948 (cit. on p. 25).

[16] D. Adams, The Salmon of Doubt: Hitchhiking the Galaxy, Reprint. 2009,
p. 292, isbn: 9781439568255 (cit. on p. 32).

[17] Y. Labiche, P. Thevenod-Fosse, H. Waeselynck, and M.-H. Durand,
“Testing Levels for Object-Oriented Software,” 22nd International Con-
ference on Software Engineering (ICSE), no. 2, pp. 136–145, 2000, issn:
0270-5257. doi: 10.1109/ICSE.2000.870405 (cit. on p. 35).

[18] B. Beizer, Software Testing Techniques, 2nd ed. Van Nostrand Reinhold
Co., 1990, p. 550, isbn: 9781850328803 (cit. on p. 40).

[19] WG26, ISO/IEC/IEEE 29119 – Standard for Software Testing, 2013. [On-
line]. Available: http://www.softwaretestingstandard.org/ (visited
on 08/19/2016) (cit. on p. 41).

104

http://dx.doi.org/10.1145/12944.12948
http://doi.acm.org/10.1145/12944.12948
http://dx.doi.org/10.1109/ICSE.2000.870405
http://www.softwaretestingstandard.org/

Bibliography

[20] Z. Gao, Y. Liang, M. B. Cohen, A. M. Memon, and Z. Wang, “Making
System User Interactive Tests Repeatable: When and What Should We
Control?” 37th International Conference on Software Engineering (ICSE),
vol. 1, pp. 55–65, 2015, issn: 02705257. doi: 10.1109/ICSE.2015.28
(cit. on pp. 43–45, 47, 49, 51–53, 55, 57, 59).

[21] J. Penn, Test iOS Apps with UI Automation: Bug Hunting Made Easy,
1st ed. Pragmatic Bookshelf, 2013, p. 200, isbn: 9781937785529 (cit. on
pp. 43, 49, 53, 57–60, 70, 73, 78, 79, 81, 83).

[22] J. Gao, X. Bai, W.-T. Tsai, and T. Uehara, “Mobile Application Testing:
A Tutorial,” Computer, vol. 47, no. February, pp. 46–55, Jan. 2014, issn:
00189162. doi: 10.1109/MC.2013.445. [Online]. Available: http://

ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6693676 (cit.
on pp. 43, 49, 51, 57, 59).

[23] S. Arlt, “Program Analysis and Black-Box GUI Testing,” no. January,
p. 83, 2014. [Online]. Available: https://www.freidok.uni-freiburg.
de/fedora/objects/freidok:9425/datastreams/FILE1/content (cit.
on pp. 43, 44, 53, 55, 59, 61).

[24] A. M. Memon and M. B. Cohen, “Automated Testing of GUI Appli-
cations: Models, Tools, and Controlling Flakiness,” 35th International
Conference on Software Engineering (ICSE), pp. 1479–1480, May 2013,
issn: 02705257. doi: 10.1109/ICSE.2013.6606750 (cit. on pp. 43, 45,
46, 51, 53, 57, 59).

[25] S. Hao, B. Liu, S. Nath, W. G. J. Halfond, and R. Govindan, “PUMA:
Programmable UI-Automation for Large-Scale Dynamic Analysis of
Mobile Apps,” 12th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys), pp. 204–217, Jun. 2014. doi: 10.
1145/2594368.2594390 (cit. on pp. 44, 53, 58–61).

[26] M. Özlem and Y. Mete, “Automated Black-Box GUI Testing for Re-
vealing System Bugs in Mobile Applications,” International Journal of
Scientific Research in Information Systems and Engineering (IJSRISE), vol.
1, no. 2, pp. 65–70, 2015 (cit. on pp. 44–46, 49, 58, 60).

[27] T. Nadu, “Automation Testing Using Coded UI Test,” International
Journal of Scientific Engineering and Applied Science (IJSEAS), vol. 2, no.
4, pp. 190–194, Apr. 2016, issn: 23953470 (cit. on pp. 49, 58).

105

http://dx.doi.org/10.1109/ICSE.2015.28
http://dx.doi.org/10.1109/MC.2013.445
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6693676
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6693676
https://www.freidok.uni-freiburg.de/fedora/objects/freidok:9425/datastreams/FILE1/content
https://www.freidok.uni-freiburg.de/fedora/objects/freidok:9425/datastreams/FILE1/content
http://dx.doi.org/10.1109/ICSE.2013.6606750
http://dx.doi.org/10.1145/2594368.2594390
http://dx.doi.org/10.1145/2594368.2594390

Bibliography

[28] ABIresearch, Mobile Application Test Market Boost, 2012. [Online]. Avail-
able: https://www.abiresearch.com/press/200-million-mobile-application-
testing-market-boos/ (visited on 08/19/2016) (cit. on p. 57).

[29] M. Kucharski, E. Kolawa, P. Pepek, P. Franczak, J. Labenski, and
M. Zielinski, “Dynamically Configurable Test Doubles for Software
Testing and Validation,” 20 150 378 880, Dec. 2015. [Online]. Avail-
able: http://www.freepatentsonline.com/y2015/0378880.html (cit.
on pp. 63, 64).

[30] Apple Inc., Apple iOS 7 Release Notes, 2013. [Online]. Available: https:
//support.apple.com/kb/dl1682 (visited on 08/19/2016) (cit. on p. 67).

[31] G. Lodi, Xcode 7 UI Testing, A First Look, 2015. [Online]. Available:
http://www.mokacoding.com/blog/xcode-7-ui-testing (visited on
08/19/2016) (cit. on pp. 73, 75).

[32] J. Sherman, UI Testing in XCode 7, Part 1: UI Testing Gotchas, 2015. [On-
line]. Available: https://www.bignerdranch.com/blog/ui-testing-
in-xcode-7-part-1-ui-testing-gotchas (visited on 08/19/2016) (cit.
on pp. 73, 75).

[33] E. Firestone, iOS Integration Testing, 2011. [Online]. Available: https://
corner.squareup.com/2011/07/ios-integration-testing.html (vis-
ited on 08/19/2016) (cit. on p. 74).

[34] Keep It Functional – An iOS Functional Testing Framework. [Online]. Avail-
able: https://github.com/kif-framework/KIF (visited on 08/19/2016)
(cit. on pp. 74, 78, 80, 81, 87, 97).

[35] Xcode 7.0 Release Notes, 2015. [Online]. Available: https://developer.
apple.com/library/ios/releasenotes/DeveloperTools/RN-Xcode/Chapters/

xc7_release_notes.html#//apple_ref/doc/uid/TP40001051-CH5-SW29

(visited on 08/19/2016) (cit. on p. 75).

[36] Apple User Interface Testing. [Online]. Available: https://developer.
apple.com/library/mac/documentation/DeveloperTools/Conceptual/

testing_with_xcode/chapters/09-ui_testing.html (visited on 08/19/2016)
(cit. on p. 75).

[37] D. Knott, iPhone Test Automation Using KIF, 2011. [Online]. Available:
http://adventuresinqa.com/2011/12/02/iphone-test-automation-

using-kif-keep-it-functional (visited on 08/19/2016) (cit. on p. 78).

106

https://www.abiresearch.com/press/200-million-mobile-application-testing-market-boos/
https://www.abiresearch.com/press/200-million-mobile-application-testing-market-boos/
http://www.freepatentsonline.com/y2015/0378880.html
https://support.apple.com/kb/dl1682
https://support.apple.com/kb/dl1682
http://www.mokacoding.com/blog/xcode-7-ui-testing
https://www.bignerdranch.com/blog/ui-testing-in-xcode-7-part-1-ui-testing-gotchas
https://www.bignerdranch.com/blog/ui-testing-in-xcode-7-part-1-ui-testing-gotchas
https://corner.squareup.com/2011/07/ios-integration-testing.html
https://corner.squareup.com/2011/07/ios-integration-testing.html
https://github.com/kif-framework/KIF
https://developer.apple.com/library/ios/releasenotes/DeveloperTools/RN-Xcode/Chapters/xc7_release_notes.html#//apple_ref/doc/uid/TP40001051-CH5-SW29
https://developer.apple.com/library/ios/releasenotes/DeveloperTools/RN-Xcode/Chapters/xc7_release_notes.html#//apple_ref/doc/uid/TP40001051-CH5-SW29
https://developer.apple.com/library/ios/releasenotes/DeveloperTools/RN-Xcode/Chapters/xc7_release_notes.html#//apple_ref/doc/uid/TP40001051-CH5-SW29
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
http://adventuresinqa.com/2011/12/02/iphone-test-automation-using-kif-keep-it-functional
http://adventuresinqa.com/2011/12/02/iphone-test-automation-using-kif-keep-it-functional

Bibliography

[38] KIF Accessibility Handling: Identifier VS Label. [Online]. Available: https:
//github.com/kif-framework/KIF/issues/243 (visited on 08/19/2016)
(cit. on p. 78).

[39] J. Suliga, UI Automation: Keep It Functional and Stable, 2016. [On-
line]. Available: https://engineering.linkedin.com/blog/2016/01/
ui-automation--keep-it-functional--and-stable- (visited on 08/19/2016)
(cit. on pp. 80, 82, 97).

[40] P. Steinberger, Running UI Tests on iOS with Ludicrous Speed, 2016.
[Online]. Available: https://pspdfkit.com/blog/2016/running-ui-
tests-with-ludicrous-speed (visited on 08/19/2016) (cit. on p. 83).

[41] Realm Inc., SwiftLint: Static Code Style Analysis. [Online]. Available:
https://github.com/realm/SwiftLint (visited on 08/19/2016) (cit.
on pp. 86, 87).

107

https://github.com/kif-framework/KIF/issues/243
https://github.com/kif-framework/KIF/issues/243
https://engineering.linkedin.com/blog/2016/01/ui-automation--keep-it-functional--and-stable-
https://engineering.linkedin.com/blog/2016/01/ui-automation--keep-it-functional--and-stable-
https://pspdfkit.com/blog/2016/running-ui-tests-with-ludicrous-speed
https://pspdfkit.com/blog/2016/running-ui-tests-with-ludicrous-speed
https://github.com/realm/SwiftLint

Acronyms

The following Table 8 gives an overview of all the acronyms used through-
out this Master’s Thesis. However, all indicated acronyms are also defined
and described at the place of their first occurrence within the Thesis.

Acronym Meaning
TDD Test-Driven Development

UI User Interface
GUI Graphical User Interface

IEEE Institute of Electronics and Electrical Engineers
ISTQB International Software Testing Qualification Board

API Application Programming Interface
KIF Keep It Functional

CI Continuous Integration

Table .1.: Used Acronyms Overview

109

