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Abstract (English)

Many everyday life decisions are made in the context of groups. Such decisions range from crucial

investment decisions, for example, in the public sector, to the selection of the next restaurant for a

dinner with friends. The field of group decision support by means of recommenders represents a

new and upcoming area of research. Besides known challenges such as the cold start problem, group

recommender systems have to deal with several additional risk factors which can negatively affect

the decision outcome. A major type of risk which can significantly decrease the quality of decision

outcomes in group decision scenarios are decision biases. Decision biases describe situations where

humans tend to decide in certain (simplified) ways.

Examples of decision biases are anchoring effects and serial position (primacy/recency) effects.

Anchoring effects occur in situations where the final group decision is influenced by the first person

in the group who articulates his/her preferences. Primacy/recency effects explain situations where

individual preferences are affected by the sequence in which information units (e.g., description state-

ments of solution alternatives) are presented.

In this thesis we present CHOICLA, a novel group decision support environment which shows the

ability to counteract decision biases and thus has the potential to significantly increase the quality of

decision outcomes. CHOICLA advances the state-of-the-art by providing decision support for groups

of users in a domain-independent fashion. Existing technologies only provide support for specific

domains (e.g., coordinating appointments, selecting tourist destinations, music, ...) and are not open in

the sense that no functions for a domain-independent configuration of new decision tasks are provided.

Additionally, we present the results of several empirical studies that have been conducted with

the aim of getting feedback on the usability of CHOICLA as well as the acceptance and prediction

quality of our introduced group recommendation heuristics. Furthermore, the studies provide evidence

that the concepts introduced in CHOICLA have the potential to counteract decision biases such as

anchoring effects and serial position effects.

Finally, we present first insights on how specific recommendation heuristics can influence the com-

munication behaviour among group members during a decision process. Due to the fact that a higher

amount of information interchange can significantly increase the quality of a decision, we discuss

recommendation heuristics which have the potential to increase communication frequency.
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Abstract (German)

Eine Vielzahl an Alltagsentscheidungen betreffen eher Gruppen als Einzelpersonen. Beispielhafte

Gruppenentscheidungen reichen von heiklen Investitionsentscheidungen (beispielsweise in der öffent-

lichen Verwaltung) bis hin zu Restaurant-Entscheidungen für ein gemeinsames Abendessen mit Freun-

den. Empfehlungstechnologien zur Unterstützung von Gruppenentscheidungen stellen einen neuen

aufstrebenden Forschungsbereich dar. Zusätzlichen Risikofaktoren, welche die Entscheidungen nega-

tiv beeinflussen können, müssen neben den bekannten Herausforderungen (z.B.: ”cold start problem”)

berücksichtigt werden. Sogenannte ”decision biases” stellen dabei häufig autretende Beeinflussungen

dar. Decision biases beschreiben Situationen, in welchen Menschen nach bestimmten (vereinfachten)

Mustern handeln.

Anchoring Effekte und Serial Position (Primacy/Recency) Effekte repräsentieren häufig auftretende

decision biases. Anchoring Effekte triggern Entscheidungen, die von der ersten Person, welche inner-

halb der Gruppe Präferenzen artikuliert, beeinflusst werden. Primacy/Recency Effekte beschreiben

Situationen, in welchen die Reihenfolge der präsentierten Informationseinheiten (z.B.: Beschreibung-

stext einer Alternative) einen wesentlichen Einfluss auf die persönlichen Präferenzen ausübt.

In dieser Arbeit wird eine neue Umgebung zur Unterstützung von Gruppenentscheidungen präsen-

tiert. Das vorgestellte CHOICLA System zeigt die Fähigkeit, decision biases entgegenzuwirken und

somit die Entscheidungsqualität signifikant zu verbessern. CHOICLA erweitert den state-of-the-art, in-

dem es Unterstützung für Gruppenentscheidungen unabhängig von der zugrunde liegenden Domäne

anbietet. Existierende Technologien bieten lediglich Unterstützung für spezielle Domänen (z.B.:

Terminkoordinationen, Tourismusdestinationen, Musik, ...) und bieten keine Möglichkeit, Entschei-

dungsaufgaben domänenunabhängig zu konfigurieren.

Zusätzlich präsentiert diese Arbeit Resultate zahlreicher Benutzerstudien, welche Feedback sowohl

zur Benutzerfreundlichkeit des Systems als auch zur Akzeptanz und Empfehlungsqualität der ent-

wickelten Empfehlungsfunktionen liefern. Des Weiteren liefern die Ergebnisse einen Beweis dafür,

dass die in CHOICLA integrierten Technologien das Potential haben, decision biases wie Anchoring

Effekte und Primacy/Recency Effekte entgegenzuwirken.

Abschließend werden Ergebnisse bezüglich der Auswirkung von speziellen Empfehlungsfunkti-

onen auf das Kommunikationsverhalten innerhalb einer Gruppe während eines Entscheidungsprozesses
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diskutiert. Da die Entscheidungsqualität durch ein hohes Kommunikationsaufkommen signifikant

gesteigert werden kann, werden Empfehlungsfunktionen erörtert, welche den Informationsaustausch

innerhalb der Gruppe signifikant erhöhen können.
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Chapter 1
Introduction

1.1. Motivation

Recommendation technologies for the support of single user decisions are well studied but the sup-

port of group decision tasks by means of recommenders is a new and upcoming field of research (see,

e.g., Masthoff (2011)). There are a few applications with basic group recommendation approaches

included but these are restricted to very specific domains such as, software requirements engineering

(Felfernig et al. (2012b)), ambient intelligence (Perez et al. (2010)), interactive television (Masthoff

(2004)), and e-tourism (Jameson (2004); McCarthy et al. (2006)).

Due to the fact that group decision tasks differ in terms of their process design, a variety of config-

urable features is needed to support the design of decision tasks (Stettinger et al. (2014)). Such features

can be, for example, specific heuristics that support the recommendation of decisions, restriction of

participants who are allowed to introduce additional decision alternatives in the decision process, or

special preference visibilities during the decision process. The underlying domain of a group deci-

sion task has a major impact on the needed feature combination. Also the assessment criteria used

by recommender systems depend on the underlying domain. For example, personnel decisions need

assessment criteria different from decisions regarding a restaurant location or a cinema movie.

Recommendation technologies can be separated into collaborative filtering, content-based filtering,

knowledge-based recommendation, and group recommendation (Jannach et al. (2010)). Collabora-

tive filtering (CF) (Konstan et al. (1997)) calculates recommendations for single users on the basis of

other users with similar tastes. The first step is to define a measure for the similarity of users inside the

system. On the basis of similar users, behavioural patterns are used to recommend items of interest

to the current user. Recommendations based on Content-based Filtering (Pazzani and Billsus (2007))

present new items to the user which are similar to the ones the user has already rated. Also for content-

based filtering a measure of similarity is needed to find items which are similar to each other. Both
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Chapter 1. Introduction

collaborative filtering and content-based filtering show a cold start problem where the system can not

generate a ”useful” recommendation if new users or new items are added. In scenarios where col-

laborative filtering and content-based filtering can not be applied, knowledge-based recommendation

technologies can be used. Knowledge-based recommendation (Burke (2000); Felfernig and Burke

(2008)) is based on explicit knowledge about products (items) and the user preferences as well as

knowledge about the context-dependent item recommendation. The need to define the recommenda-

tion knowledge in an explicit fashion represents the drawback of knowledge-based recommendation

and triggers a knowledge acquisition bottleneck due to communication overloads between domain

experts and knowledge engineers. The major advantage of knowledge-based recommendation is that

due to the explicit recommendation knowledge no cold start problems occur (Jannach et al. (2010)).

Compared to recommendation scenarios for single users, group recommendation scenarios have to

cope with several new challenges due to the fact that the system has to generate recommendations that

take the individual preferences of all group members into account. Thus the recommended item(s) for

a group of users represent those which best fit the actual group preference.

Many everyday life decisions affect groups of users, for instance, decisions regarding the location

of the next skiing trip with friends or a decision regarding a new company name or logo. Some de-

cision tasks such as selecting a restaurant for a dinner with colleagues occur regularly in the same

group. Very often biases occur in the context of group decision scenarios which can lead to subopti-

mal decision outcomes. Cosley et al. (2003) and Adomavicius et al. (2013) describe decision biases

as undesirable for recommendation systems for different reasons. One major disadvantage can be, for

instance, that biases provide opportunities for manipulation of the recommender system. Furthermore,

biases significantly reduce the quality of recommendations because they deteriorate the input quality

of the recommender system (Cosley et al. (2003); Adomavicius et al. (2013)). Another negative con-

sequence of decision biases is that the user’s view of items relevance as well as the recommender’s

view of user preferences can be contorted (Cosley et al. (2003); Adomavicius et al. (2013)). For a

more detailed overview of decision biases we refer to Felfernig (2014).

Anchoring effects, for example, are responsible for decisions which are biased by the first prefer-

ence articulating person in a group (Adomavicius et al. (2011); Jacowitz and Kahneman (1995)). If

a recommender system does not disclose the preferences of other group members in early stages of

a decision process, the overall information exchange between the group members can be increased.

Due to this increase of information/knowledge exchange, the quality of the decision outcome can be

improved (Greitemeyer and Schulz-Hardt (2003); Mojzisch and Schulz-Hardt (2010)). The occur-

rence of anchoring effects in recommendation contexts is confirmed by several authors. Felfernig

et al. (2012b) analyzed bias-induced preference shifts in the context of requirements engineering and

confirmed the existence of anchoring effects. Similar to group decision scenarios also in collaborative

filtering scenarios anchoring effects are triggered by unfolding the ratings of similar users (Adomavi-

2



1.1. Motivation

cius et al. (2011, 2014)). Results regarding relationships between decision quality and degree of

preference disclosure are confirmed by social-psychological studies (Greitemeyer and Schulz-Hardt

(2003); Mojzisch and Schulz-Hardt (2010)).

Primacy/recency effects (serial position effects) describe situations where items at the beginning and

the end of an item list are recalled and evaluated more often than those in the middle of the list

(Felfernig et al. (2007a); Murphy et al. (2012)). In this context the increased evaluation probability

represents the behavioural aspect whereas the recall itself describes the cognitive aspect (Felfernig

et al. (2007a); Murphy et al. (2012)). The mentioned items can be, for instance, lists of links (Murphy

et al. (2012)), a menu plan in a restaurant (Bar-Hillel (2015)), products and their attribute descriptions

(Felfernig et al. (2007a)) as well as argumentations in product descriptions (Stettinger et al. (2015b)).

The popularity of an item or attribute has no influence on the occurrence of this effect – for example,

item properties presented at the beginning and the end of recommendation dialogs are recalled signif-

icantly more often independent of their relevance for the current user (Felfernig et al. (2007a)).

Serial position effects are among the most robust effects in psychology (Bar-Hillel (2015)). They are

known for decades, backed by hundreds of studies, and can be explained by the fact that humans dis-

like evaluating large lists of items to identify those that fit their preferences best (Bar-Hillel (2015)).

One possible approach to counteract such effects in the context of group decision scenarios is the

adaptation of the preference acquisition interface to motivate the participants to analyze the item de-

scriptions in more detail. To achieve this, the preference acquisition interface can be changed, for

example, from a star-based rating scale to a utility-based rating scale where items are evaluated on the

basis of a defined set of interest dimensions (Stettinger et al. (2015b)).

Often the decision outcome is not explained and in some cases even not all group members are in-

formed about the final decision. Explanations can be related to the group decision itself as well as to

individual items. Explanations for group decisions play an important role since they can have a posi-

tive impact on the overall acceptance of group decisions (Stettinger et al. (2015a)). Item explanations

(e.g., argumentations as to why an item is recommended to a group) can have a significant influence

on the decision outcome since they have an impact on the way items are perceived and also evaluated

(Tintarev and Masthoff (2007); Gkika and Lekakos (2014)). Finally, Stettinger et al. (2015b) showed

that even the ordering of the arguments used in an item explanation can have a significant impact on

the decision outcome. The lack of explanations in recommender systems can lead to a lower level of

trust in recommender systems (Felfernig et al. (2006); Pu and Chen (2007)).

The work presented in this thesis focuses on group recommender systems and also presents a de-

cision support system called CHOICLA1 where the gained knowledge of all user studies is integrated

in one tool. CHOICLA is a self-explanatory group decision support system with a special focus on

1http://www.choicla.com/
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Chapter 1. Introduction

the system’s usability. CHOICLA also takes into account the above mentioned risk factors and moves

group decision making one step further by providing:

1. Explanations in all phases of a group decision task (e.g., argumentations as to why an item

is recommended to a group). Explanations ensure that the decisions are transparent and the

participants are more likely to trust the system. Explanations as well as transparency have a

positive influence on the users trust in the system (Felfernig et al. (2006); Pu and Chen (2007)).

2. Configuration technology. Due to the configuration functionalities provided during the creation

process of a group decision task, the CHOICLA environment is open in the sense that one can

create group decision tasks independently from the underlying domain (Stettinger et al. (2014)).

3. Domain-dependent recommendation heuristics. Group recommendations in CHOICLA are cal-

culated on the basis of the individual preferences of the group members. Due to the fact that

there is no group recommendation heuristic that fits each and every group decision task, several

different group recommendation heuristics are available in the system (Masthoff (2011)).

4. Advanced level of usability. One major focus during the development of CHOICLA was to

assure usability. The system is now at a stage where it is easy understandable and easy to use by

people without information technology background. To achieve the largest degree of usability,

the user interfaces are dynamic and show only items and actions which should be accessible to

the user in the current state of the group decision process (Stettinger et al. (2014)).

5. Variable preference elicitation schemes. To achieve the highest level of flexibility of the system,

the creator of a group decision task can choose among different preference elicitation schemes.

These schemes reach from a simple five-star evaluation of the decision alternatives to utility-

based preference elicitation where the participants can articulate their preferences on basis of

interest dimensions which can be weighted. Utility-based preference elicitation interfaces show

the ability to counteract serial position effects (Felfernig et al. (2007a); Murphy et al. (2012)).

6. Intelligent preference visibility options. CHOICLA offers different preference transparency set-

tings. If preferences should be transparent during the decision task, users can – depending on

the decision task – select among different representation schemes which reach from a summary

of the individual preferences to full preference transparency. Intelligent preference visibility

settings help counteracting anchoring effects (Adomavicius et al. (2011); Jacowitz and Kahne-

man (1995); Greitemeyer and Schulz-Hardt (2003); Mojzisch and Schulz-Hardt (2010)).

1.2. Research Objectives

On the basis of the previous discussion we identified the following research issues:

1. Support groups of users in decision scenarios
Several everyday decisions rather arise in the context of groups than single individuals. For
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this reason we have to think further and advance the state of the art in recommender systems

by offering recommendation technologies for groups of users. Recommendation technologies

in the context of group decision scenarios is a new and upcoming field of research (Masthoff

(2011)). Existing technologies focus on specific domains such as interactive television (Mas-

thoff (2004)), ambient intelligence (Perez et al. (2010)), news access or e-tourism (Jameson

(2004); McCarthy et al. (2006)) but are not able to cover different kinds of decision scenarios.

Group decisions can be negatively influenced by various risk factors. For example, knowl-

edge about the preferences of other group members in early stages of the decision process can

have a negative impact on decision quality since such decisions are in most cases biased by

the first preference-articulating person(s) (Anchoring effect - see Jameson (2004); Nunamaker

et al. (1991); Adomavicius et al. (2011); Jacowitz and Kahneman (1995); Greitemeyer and

Schulz-Hardt (2003); Mojzisch and Schulz-Hardt (2010)). The non-inclusion of explanations

during and after the decision process can lead to suboptimal decision outcomes since missing

explanations can significantly decrease the user’s trust in the system (Felfernig et al. (2006)).

Also serial position effects can cause low quality decision outcomes (Jacowitz and Kahneman

(1995); Bar-Hillel (2015)). This brings us to the first research question:

(Q1) How to design a domain-independent decision support environment for groups of users?

2. Configuration of decision tasks
In most cases where configuration technologies are applied, one (or a small group of) knowl-

edge engineer(s) is in charge of knowledge base development and maintenance (Hoppenbrouw-

ers et al. (2009); Wagner (2006); Hayes-Roth et al. (1983)). In such scenarios it is also assumed

that only single users configure all the corresponding products and services. This assumption

leads to scalability problems due to the fact that the transformation of domain knowledge into

a configuration knowledge base as well as preference recording for a whole group are time-

intensive tasks (Hayes-Roth et al. (1983); Richardson and Domingos (2003)). Modern con-

figuration technologies should offer a possibility to cooperatively develop knowledge bases by

groups of users as well as to jointly configure products and services (Felfernig et al. (2014d)).

In such cases the construction of the knowledge base represents the decision task where a group

of knowledge engineers decides which constraints best describe the product knowledge. Since

decision tasks are unique and differ in terms of their corresponding process design, they re-

quire different combinations of features. Features in such contexts are, for instance, special

preference visibilities during the decision process, restriction of participants who are allowed

to enter additional decision alternatives or specific heuristics that support the recommendation

of decisions. In order to ensure the consistency of selected feature combinations for the creator

of a group decision task (in most cases a single user) it is essential to offer a corresponding

configuration functionality. This brings us to our second research question:
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(Q2) How to design the creation process of a group decision task as a configuration problem?

3. Personnel decisions
Literature shows that factors, such as interpersonal attraction, first impressions or the appear-

ance of a job applicant are very often responsible that no concrete structure is followed during

a job interview and this could lead to a subjective evaluation of a job candidate (Kobrynowicz

and Biernat (1997); Dougherty et al. (1994); Graves and Powell (1988)). In such cases often

no ”fair” and objective decision is taken due to the fact that the assessment criteria change

(Kobrynowicz and Biernat (1997); Dougherty et al. (1994); Graves and Powell (1988)). Since

hiring procedures often concern more than one single person we are faced with a group decision

problem. This results in the third research question:

(Q3) How to best support groups of users in the context of personnel decisions?

4. Fairness for all group members
An essential function of a group recommendation tool is the capability to collect and reuse infor-

mation from past decision scenarios. This information can be used in future decision scenarios

to achieve the best recommendation accuracy. One factor where information of past decision

scenarios can be exploited in future decision contexts is fairness among the group members in

the long run (Ariely and Zakay (2001)). Fairness is an important issue in group decision con-

texts – the degree of perceived fairness influences the willingness of group members to accept

compromises in the resolution of conflicting preferences and also their degree of trust in other

group members (Lind et al. (2001)). The research question is:

(Q4) How to achieve long term fairness in group decision tasks?

5. Decision biases in the context of group decision scenarios
Similar to single user decisions, decision biases can also affect group decisions. Without a

technical support, humans often apply simple decision heuristics which cause different types of

decision biases that lead to suboptimal decision outcomes. An example of a simple decision

heuristic is elimination by aspects (Bettman et al. (1998)) where people eliminate alternatives

which do not reach a minimum cut-off value for the most important attribute. This elimina-

tion process is repeated until a single option remains (Bettman et al. (1998)). A common form

of displaying a larger number of items is a list representation. Humans evaluate items at the

beginning and the end of a list significantly more often than those items which are placed in

the middle of a list (Murphy et al. (2012)). This decision bias is called primacy/recency ef-

fect (serial position effect). Serial position effects can be explained by the fact that users are

not interested in analyzing large item lists (Bar-Hillel (2015)). Another explanation for prima-

cy/recency effects is the perspective as cognitive phenomenon based on the fact that items at

the beginning and the end of a list are recalled more often (Felfernig et al. (2007a)). In the

context of recommender systems for single users these effects have been studied, for instance,
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by Felfernig et al. (2007a). The investigations clearly point out that item attributes which are

shown to a user at the beginning and the end of a recommendation dialog are recalled signifi-

cantly more often than those shown in the middle of a dialog.

Another specific type of decision biases are anchoring effects. Anchoring effects in group deci-

sion contexts cause decisions which are biased by the first preference-articulating person in the

group (Adomavicius et al. (2011); Jacowitz and Kahneman (1995); Greitemeyer and Schulz-

Hardt (2003); Mojzisch and Schulz-Hardt (2010)). The optimal time to disclose the preference

information of the other users is a key factor to counteract anchoring effects in group decision

contexts (Stettinger et al. (2015a)). This leads us to the following two research questions:

(Q5.1) How to counteract serial position effects in group decision support environments?

(Q5.2) How to counteract anchoring effects in group decision support environments?

1.3. Contributions

Highly flexible support of group decisions. One major contribution of this thesis is to present CHOICLA

which is a novel group recommendation support environment. CHOICLA advances the state-of-the-art

because it is able to handle group decision tasks independently from their underlying domain. Due to

the heterogeneity of decision tasks a key feature of such a software tool is a high degree of flexibility.

This flexibility is introduced by defining the design of a group decision task (the underlying problem)

as configuration problem (Stettinger et al. (2014)). Based on this technique we are able to build a

model that is flexible with regard to the generation of problem-specific decision applications.

Structured support of personnel decisions. Another focus of this thesis is to introduce an approach

to support groups of users in the context of personnel decisions. Personnel decisions are often not

structured and the evaluation of the job candidates is for most parts subjective due to the fact that

no concrete structure is followed and also evaluation criteria are not stable over the whole hiring

procedure (Kobrynowicz and Biernat (1997); Dougherty et al. (1994); Graves and Powell (1988)).

Switching from a star-based preference acquisition interface to a utility-based one, CHOICLA can of-

fer a structured evaluation of the candidates. In such contexts the job-candidates are evaluated along

dimensions which can be defined during the modeling phase of a decision task. Therefore the di-

mensions (evaluation criteria) are precisely tailored towards the current job-position because different

job-positions require in many cases also different assessment criteria. The developed recommenda-

tion approach is based on a modified version of group-based MAUT (Stettinger and Felfernig (2014))

where the attribute values are subjective and the weights are fixed which is different compared to a

typical group-based MAUT scenario (Dyer (2005)).

Fairness in the long run. Some group decision tasks such as selecting the appropriate restaurant
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location for a Christmas party or a monthly dinner with colleagues come up regularly. In recurring

decision tasks we can learn from past decisions and thus provide fair recommendations in future sce-

narios. Such recommendations can achieve a higher degree of fairness in the long run.

Measures to counteract decision biases. Furthermore we present techniques which help to coun-

teract decision biases. If a system presents decision alternatives by means of a list, users are biased by

the first and last items of the list. This can be explained by the fact that such edge items (first and last

few items of a list) are recalled and evaluated significantly more often than those in the middle of a

list (Felfernig et al. (2007a); Murphy et al. (2012)). We show how to counteract this kind of decision

bias (primacy/recency effects) by changing the preference acquisition interface to a utility-based one.

Providing insights to the preferences of the other participants before the individual evaluation is fin-

ished very often leads to anchoring effects. We found out that anchoring effects also exist in context

of group decision scenarios and provide techniques (based on the results of our user studies) that can

counteract such effects.

High degree of usability. CHOICLA represents one integrated tool where all the gained knowledge

from our empirical studies is integrated. During the development of the CHOICLA technologies we

spend a huge effort on making the system clear and understandable by end-users and therefore also

evaluated the systems usability multiple times.

A summary of the research questions and the related contributions can be found in Table 1.1.

Research Questions Contributions

(Q1) How to design a domain-

independent decision support

environment for groups of users?

In this contribution we give insights to CHOICLA which

represents a novel group decision support environment

with the vision of making group decisions in general more

efficient as well as not to restrict the systems functions to

specific application domains. As result of usability studies

we could gain a first evidence that users are willing to ap-

ply the system in various domains (Stettinger et al. (2013);

Stettinger (2014); Stettinger and Felfernig (2014)).
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(Q2) How to design the creation

process of a group decision task

as a configuration problem?

Due to the fact that different group decision tasks require

different features, a major requirement is a high degree

of decision process flexibility. To achieve the vision of

CHOICLA of providing a decision support environment

which is independent from the underlying domain, an es-

sential aspect is to integrate configuration knowledge into

the process design of a group decision task. This allows the

creator of a group decision task to fine-tune the settings and

features on a high level of granularity. To keep always an

eye on the perceived system’s usability, CHOICLA builds

upon an intelligent user interface which only displays fea-

tures which are available in the current configuration con-

text and which prevents users from finding him/herself

in an inconsistent state (Stettinger et al. (2014); Felfernig

et al. (2014d)).

(Q3) How to best support groups

of users in the context of person-

nel decisions?

Individual perceptions of decision makers differ and thus

often lead to subjective evaluations in the context of per-

sonnel decisions (Kobrynowicz and Biernat (1997); Graves

and Powell (1988); Dougherty et al. (1994)). Literature

shows that the assessment criteria are often not stable over

the whole hiring procedure and evaluations quickly get

subjective in case of interpersonal attraction, first impres-

sions or the appearance of a job candidate (Kobrynowicz

and Biernat (1997); Dougherty et al. (1994); Graves and

Powell (1988)). CHOICLA facilitates a more objective hir-

ing procedure by providing a flexible interface for defining

well structured and objective evaluation criteria suitable

for the current job position. In addition to that CHOICLA

builds upon a modified MAUT (Stettinger and Felfernig

(2014)) approach where the attribute values are subjective

and the weights are fixed which is different compared to a

typical MAUT scenario (Dyer (2005)).
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(Q4) How to achieve long term

fairness in group decision tasks?

Many decision tasks such as selecting a restaurant for a

dinner with friends once a month or finding a place for

a monthly meeting with a partner company occur regu-

larly in groups of users. If all past decision outcomes are

taken into account, fairness among the group members can

be achieved in the long run. If, for example, a group of

friends visits a cinema once every three months and the

decision regarding which movie to watch in the past three

decisions was not the favourite of one group member, the

preferences of this group member should have more influ-

ence on the current group recommendation. In this the-

sis we provide insights to one possible way of achieving

fairness among group members in recurring decision tasks

(Stettinger (2014)).

(Q5.1) How to counteract serial

position effects in group decision

support environments?

The way of presenting a set of decision alternatives has a

significant impact on the decision outcome. Items at the

beginning and the end of a list are recalled and evaluated

significantly more often than those in the middle of a list

(Felfernig et al. (2007a); Bar-Hillel (2015); Murphy et al.

(2012)). The same phenomenon can also be observed in

description texts where the ordering of the argumentation

items can have a significant impact on the evaluation. If a

system uses simple rating interfaces such as five-star scales

for the evaluation of the decision alternatives, the descrip-

tion text could have a significant impact on the decision

outcome. Our studies showed that if the description text

states all negative aspects at the beginning and the end, the

five star-based evaluation is on average 1.5 stars less than

if the exact same description presents all positive aspects

at the beginning and the end of the descriptive text. In this

thesis we present a possible way to counteract serial posi-

tion effects by adopting the preference acquisition interface

from a star-based scheme to an utility-based scheme (Stet-

tinger et al. (2015b)).
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(Q5.2) How to counteract an-

choring effects in the context of

group decision scenarios?

Anchoring effects describe situations in which a decision

is biased by the first person who articulates his/her pref-

erences (Adomavicius et al. (2011); Jacowitz and Kahne-

man (1995); Greitemeyer and Schulz-Hardt (2003); Mo-

jzisch and Schulz-Hardt (2010)). Results from social-

psychological studies state that preference visibility among

the group members in early stages of the decision process

can cause suboptimal decision outcomes (Greitemeyer and

Schulz-Hardt (2003); Mojzisch and Schulz-Hardt (2010)).

On the other hand research from the field of recommender

systems points out that in some cases some kind of pref-

erence transparency could be a useful functionality of a

recommendation system (Jameson (2004)). Visible prefer-

ences could help users who are unsure regarding the eval-

uation and/or could improve user’s understanding of the

recommendation itself (Jameson (2004); Masthoff (2011)).

Preference visibility settings have also a significant impact

on the overall amount of information exchange among the

participants. In this thesis we initially show the existence

of anchoring effects in context of group decision scenarios

as well as possibilities of counteracting anchoring effects.

In addition to that we discuss results from our user study

which confirm that explanations for group decisions play

an important role since they can have a positive impact

on the overall acceptance of group decisions (Stettinger

et al. (2015a)). For this work we received the James Chen

Best Student Paper Award on the 23rd Conference on User

Modelling, Adaptation and Personalization (UMAP 2015).

Table 1.1.: Contributions of this thesis with regard to the research questions.

1.4. Thesis Outline

The thesis contains nine chapters which are organized as follows.

Chapter 1 provides an introduction and motivation of this thesis. In addition to that we summa-
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rize our research questions as well as the contributions of this thesis which are related to the field of

group recommender systems. A description of the structure of the thesis concludes this chapter.

In Chapter 2 we introduce the research field of recommender systems. In this context we provide an

overview of different recommendation approaches such as colloborative filtering, content-based filter-

ing, knowledge-based recommendations, group recommender systems as well as hybrid approaches.

Chapter 3 gives an overview of knowledge-based recommenders. We show how knowledge-based

recommenders can be developed in the context of a Human Computation (von Ahn (2005)) based

knowledge acquisition environment called PEOPLEVIEWS. This method can reduce the scalability

problems that are likely to occur during the development of knowledge-based recommenders. Fur-

thermore we show in this chapter how the resulting recommendation knowledge can be exploited in a

competition-based e-Learning environment called STUDYBATTLES. The presented knowledge acqui-

sition technique could be very helpful for groups of knowledge engineers who have to decide about

the structure of constraints.

Chapter 4 provides an introduction to state-of-the-art configuration systems as well as their strengths

and limitations. Typical application environments of configuration technologies are ”closed” which

means that one single or a small group of knowledge engineer(s) is responsible for the development

and maintenance of the knowledge bases. In this chapter features are presented which help to achieve

”open” configuration environments where it should be possible to jointly configure products and ser-

vices as well as to cooperatively develop knowledge bases.

In Chapter 5 we illustrate how to design the creation process of a group decision task as configu-

ration problem. This configuration functionality is needed for finding the right features for a decision

task out of a large number of feature combinations. The fragment of the CHOICLA feature model

depicted in Figure 5.1 results in 29 valid instances of different decision tasks.

In Chapter 6 we provide an overview of CHOICLA where feedback concerning features as well as

usability aspects from already conducted user studies is integrated. We exemplify the application of

CHOICLA in the context of personnel decisions where we introduce new techniques in terms of a

modified MAUT (Stettinger and Felfernig (2014)) approach that could achieve more transparent, fair,

and structured personnel decisions. As an increment we also show possible approaches to achieve

fairness among the group members in the long run. The chapter concludes with the results of a user

study which showed that the system is accepted by users and has great potential in various domains.

Chapter 7 focuses on serial position effects which are a special form of decision bias. We present the

results of a user study where we investigated the correlation between voting strategies and decision
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biases and point out the potential of special voting strategies to counteract serial position (primacy/

recency) effects.

In Chapter 8 we concentrated on anchoring effects which represent another specific decision bias.

On the basis of the conducted user study we discuss the optimal time for disclosing individual prefer-

ences and also show that explanations have the potential to increase the satisfaction of group members

with various aspects of a group decision process.

Chapter 9 concludes this thesis and presents an outlook on future work.
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Chapter 2
Basic Approaches in Recommender
Systems

This chapter is based on the results documented in Felfernig et al. (2014c). The author of this thesis

provided major parts of this chapter in terms of writing and literature research.

2.1. Abstract

Recommendation systems support users in finding items of interest. In this chapter, we introduce the

basic approaches of collaborative filtering, content-based filtering, and knowledge-based recommen-

dation. We first discuss principles of the underlying algorithms based on a running example. There-

after, we provide an overview of hybrid recommendation approaches which combine basic variants.

We conclude this chapter with a discussion of newer algorithmic trends, especially critiquing-based

and group recommendation.

2.2. Introduction

Recommendation systems (Burke et al. (2011); Jannach et al. (2010)) provide suggestions for items

that are of potential interest for a user. These systems are applied for answering questions such as

which book to buy? (Linden et al. (2003)), which web site to visit next? (Pazzani and Billsus (1997)),

and which financial service to choose? (Felfernig et al. (2007b)). In software engineering scenarios,

typical questions that can be answered with the support of recommendation systems are, for exam-

ple, which software changes probably introduce a bug? (Bachwani (2012)), which requirements to

implement in the next software release? (Felfernig et al. (2012b)), which stakeholders should partic-

ipate in the upcoming software project? (Lim et al. (2010)), which method calls might be useful in
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the current development context? (Tsunoda et al. (2005)), which software components (or APIs) to

reuse? (McCarey et al. (2005)), which software artifacts are needed next? (Sahm and Maalej (2010)),

and which effort estimation methods should be applied in the current project phase? (Peischl et al.

(2010)). An overview of the application of different types of recommendation technologies in the

software engineering context can be found in Robillard et al. Robillard et al. (2010).

The major goal of this thesis chapter is to shed light on the basic properties of the three major rec-

ommendation approaches of (a) collaborative filtering (Ekstrand et al. (2011b); Goldberg et al. (1992);

Konstan et al. (1997)), (b) content-based filtering (Pazzani and Billsus (1997)), and (c) knowledge-

based recommendation (Burke (2000); Felfernig et al. (2006)). Starting with the basic algorithmic

approaches, we exemplify the functioning of the algorithms and discuss criteria that help to decide

which algorithm should be applied in which context.

The remainder of this chapter is organized as follows. In Section 2.3 we give an overview of

collaborative filtering recommendation approaches. In Section 2.4 we introduce the basic concepts of

content-based filtering. We close our discussion of basic recommendation approaches with the topic of

knowledge-based recommendation (see Section 2.5). In Section 2.6, we explain example scenarios for

integrating the basic recommendation algorithms into hybrid ones. Hints for practitioners interested

in the development of recommender applications are given in Chapter 2.7. A short overview of further

algorithmic approaches is presented in Chapter 2.8. This chapter is concluded with Chapter 3.7.

2.3. Collaborative Filtering

The itemset in our running examples is software engineering related learning material offered, for

example, on an e-learning platform (see Table 2.1). Each learning unit is additionally assigned to a

set of categories, for example, the learning unit l1 is characterized by Java and UML.

Collaborative filtering (Ekstrand et al. (2011b); Konstan et al. (1997); Takacs et al. (2009)) is based

on the idea of word-of-mouth promotion: the opinion of family members and friends plays a major

role in personal decision making. In online scenarios (e.g., online purchasing – Linden et al. (2003)),

family members and friends are replaced by so-called nearest neighbors who are users with a similar

preference pattern or purchasing behavior compared to the current user. Collaborative filtering (see

Figure 2.1) relies on two different types of background data: (a) a set of users and (b) a set of items.

The relationship between users and items is primarily expressed in terms of ratings which are provided

by users and exploited in future recommendation sessions for predicting the rating a user (in our

case user Ua) would provide for a specific item. If we assume that user Ua currently interacts with

a collaborative filtering recommendation system, the first step of the recommendation system is to

identify the nearest neighbors (users with a similar rating behavior compared to Ua) and to extrapolate

from the ratings of the similar users the rating of user Ua.

The basic procedure of collaborative filtering can best be explained based on a running example
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learning unit (LU) name Java UML Management Quality
l1 Data Structures in Java yes yes
l2 Object Relational Mapping yes yes
l3 Software Architectures yes
l4 Project Management yes yes
l5 Agile Processes yes
l6 Object Oriented Analysis yes yes
l7 Object Oriented Design yes yes
l8 UML and the UP yes yes
l9 Class Diagrams yes
l10 OO Complexity Metrics yes

Table 2.1.: Example set of software engineering related learning units (LU) – this set will be exploited
for demonstration purposes throughout this chapter. Each of the learning units is addition-
ally characterized by a set of categories (Java, UML, Management, Quality), for example,
the learning unit l1 is assigned to the categories Java and UML.

(see Table 2.2) which is taken from the software engineering domain (collaborative recommendation

of learning units). Note that in this chapter we focus on so-called memory-based approaches to collab-

orative filtering which – in contrast to model-based approaches – operate on uncompressed versions of

the user/item matrix (Billsus and Pazzani (1998)). The two basic approaches to collaborative filtering

are user-based collaborative filtering (Konstan et al. (1997)) and item-based collaborative filtering

(Sarwar et al. (2001)). Both variants are predicting to which extent the active user would be interested

in items which have not been rated by her/him up to now.

LU name U1 U2 U3 U4 Ua

l1 Data Structures in Java 5.0 4.0
l2 Object Relational Mapping 4.0
l3 Software Architectures 3.0 4.0 3.0
l4 Project Management 5.0 5.0 4.0
l5 Agile Processes 3.0
l6 Object Oriented Analysis 4.5 4.0 4.0
l7 Object Oriented Design 4.0
l8 UML and the UP 2.0
l9 Class Diagrams 3.0
l10 OO Complexity Metrics 5.0 3.0

average rating (rα) 4.33 3.625 4.0 3.75 3.67

Table 2.2.: Example collaborative filtering data structure (rating matrix): learning units (LU) and re-
lated user ratings (we assume a rating scale of 1–5).

User-based Collaborative Filtering. User-based collaborative filtering identifies the k-nearest neigh-

bors of the active user (see Formula 2.1)1 and – based on these nearest neighbors – calculates a predic-

1For simplicity we assume k=1 throughout this thesis.
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Figure 2.1.: Collaborative filtering (CF) dataflow: users are rating items and receive recommenda-
tions for items based on the ratings of users with a similar rating behavior – the nearest
neighbors (NN).

tion of the active user’s rating for a specific item (learning unit). In the example of Table 2.2, user U2

is the nearest neighbor (k=1) of user Ua (based on Formula 2.1) and his/her rating of learning unit l3

will be taken as a prediction for the rating of Ua (rating = 3.0). The similarity between a user Ua (the

current user) and another user Ux can be determined, for example, based on the Pearson correlation

coefficient Jannach et al. (2010) (see Formula 2.1) where LUc is the set of items that have been rated

by both users, rα,li is the rating of user α for item li, and rα is the average rating of user α. Similarity

values resulting from the application of Formula 2.1 can take values on a scale of [-1 .. +1].

similarity(Ua,Ux) =
∑li∈LUc(ra,li− ra)× (rx,li− rx)√

∑li∈LUc(ra,li− ra)2×
√

∑li∈LUc(rx,li− rx)2
(2.1)

The similarity values for Ua calculated based on Formula 2.1 are shown in Table 2.3. For the

purposes of our example we assume the existence of at least two items per user pair (Ui, U j) (i 6= j) in

order to be able to determine a similarity. This criterion holds for users U2 and U3.

U1 U2 U3 U4

Ua - 0.97 0.70 -

Table 2.3.: Similarity between user Ua and the users U j 6= Ua determined based on Formula 2.1. If
the number of commonly rated items is below 2, no similarity between the two users is
calculated.

A major challenge in the context of estimating the similarity between users is the sparsity of the

rating matrix since users are typically providing ratings for only a very small subset of the set of

offered items. For example, given a large movie dataset that contains thousands of entries, a user

will typically be able to rate only a few dozens. A basic approach to tackle this problem is to take
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into account the number of commonly rated items in terms of a correlation significance (Herlocker

et al. (1999)), i.e., the higher the number of commonly rated items, the higher is the significance of

the corresponding correlation. For further information regarding the handling of sparsity we refer the

reader to Herlocker et al. (1999); Jannach et al. (2010).

The information about the set of users with a similar rating behavior compared to the current user

(nearest neighbors NN) is the basis for predicting the rating of user Ua for an item that has not been

rated up to now by Ua (see Formula 2.2).

prediction(Ua, item) = ra +
∑U j∈NN similarity(Ua,U j)× (r j,item− r j)

∑U j∈NN similarity(Ua,U j)
(2.2)

Based on the rating of the nearest neighbor of Ua, we are able to determine a prediction for user Ua

(see Table 2.4). The nearest neighbor of Ua is user U2 (see Table 2.3). The learning units rated by U2

but not rated by Ua are l3 and l8. Due to the determined predictions (Formula 2.2), item l3 would be

ranked higher than item l8 in a recommendation list.

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

U2 - - 3.0 5.0 - 4.5 - 2.0 - -
Ua - - - 4.0 - 4.0 - - 3.0
prediction f or Ua - - 3.045 - - - - 2.045 - -

Table 2.4.: User-based collaborative filtering based recommendations (predictions) for items that have
not been rated by user Ua up to now.

Item-based Collaborative Filtering. In contrast to user-based collaborative filtering, item-based

collaborative filtering searches for items (nearest neighbors – NN) rated by Ua that received similar

ratings as items currently under investigation. In our running example, learning unit l4 has already

received a good evaluation (4.0 on a rating scale of 1–5) by Ua. The item which is most similar to l4

and has not been rated by Ua is item l3 (similarity(l3, l4) = 0.35). In this case, the nearest neighbor of

item l3 is l4 (this calculation is based on Formula 2.3).

If we want to determine a recommendation based on item-based collaborative filtering, we have to

determine the similarity (using the Pearson correlation coefficient) between two items la and lb where

U denotes the set of users who both rated la and lb, ru,li denotes the rating of user u on item li, and rli

is the average rating of the i-th item.

similarity(la, lb) =
∑u∈U(ru,la− rla)× (ru,lb− rlb)√

∑u∈U(ru,la− rla)
2×

√
∑u∈U(ru,lb− rlb)

2
(2.3)

The information about the set of items with a similar rating pattern compared to the item under

consideration (nearest neighbors NN) is the basis for predicting the rating of user Ua for the item (see
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Formula 2.4). Note that in this case NN represents a set of items already evaluated by Ua. Based on

the assumption of k=1, prediction(Ua, l3) = 4.0, i.e., user Ua would rate item l3 with 4.0.

prediction(Ua, item) =
∑it∈NN similarity(item, it)× ra,it

∑it∈NN similarity(item, it)
(2.4)

For a discussion of advanced collaborative recommendation approaches we refer the reader to Ko-

ren et al. (2009); Sarwar et al. (2001).

2.4. Content-based Filtering

Content-based filtering (Pazzani and Billsus (1997)) is based on the assumption of monotonic personal

interests. For example, users interested in the topic Operating Systems are typically not changing their

interest profile from one day to another but will also be interested in the topic in the (near) future. In

online scenarios, content-based recommendation approaches are applied, for example, when it comes

to the recommendation of websites Pazzani and Billsus (1997) (news items with a similar content

compared to the set of already consumed news).

Content-based filtering (see Figure 2.2) relies on two different types of background data: (a) a set

of users and (b) a set of categories (or keywords) that have been assigned to (or extracted from) the

available items (item descriptions). Content-based filtering recommendation systems calculate a set

of items that are most similar to items already known to the current user (Ua).

Figure 2.2.: Content-based filtering (CBF) dataflow: users are rating items and receive recommenda-
tions of items similar to those that have received a good evaluation from the current user
(Ua).

The basic approach of content-based filtering is to compare the content of already consumed items

(e.g., a list of news articles) with new items that can potentially be recommended to the user, i.e.,

to find items that are similar to those already consumed (positively rated) by the user. The basis
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for determining such a similarity are keywords extracted from the item content descriptions (e.g.,

keywords extracted from news articles) or categories in the case that items have been annotated with

the relevant meta-information. Readers interested in the principles of keyword extraction are referred

to Jannach et al. Jannach et al. (2010). Within the scope of this chapter we focus on content-based

recommendation which exploits item categories (see Table 2.1).

Content-based filtering will now be explained based on a running example which relies on the

information depicted in Tables 2.1, 2.5, and 2.6. Table 2.1 provides an overview of the relevant items

and the assignments of items to categories. Table 2.5 provides information on which categories are of

relevance for the different users. For example, user U1 is primarily interested in items related to the

categories Java and UML. In our running example, this information has been derived from the rating

matrix depicted in Table 2.2. Since user Ua already rated the items l4, l6, and l10 (see Table 2.2), we

can infer that Ua is interested in the categories UML, Management, and Quality (see Table 2.5) where

items related to the category UML and Management have been evaluated two times and items related

to Quality have been evaluated once.

category U1 U2 U3 U4 Ua

Java 3 (yes) 1 (yes)
UML 3 (yes) 4 (yes) 3 (yes) 3 (yes) 2 (yes)
Management 3 (yes) 3 (yes) 2 (yes)
Quality 1 (yes) 1 (yes)

Table 2.5.: Degree of interest in different categories, for example, user U1 accessed a learning unit
related to the category Java three times. If a user accessed an item at least once, it is
inferred that the user is interested in this item.

LU rating name Java UML Management Quality similarity
(Ua) (Ua, li)

l1 Data Structures in Java yes yes 2
5

l2 Object Relational Mapping yes yes 2
5

l3 Software Architectures yes 2
4

l4 4.0 Project Management yes yes –
l5 Agile Processes yes 2

4
l6 4.0 Object Oriented Analysis yes yes –
l7 Object Oriented Design yes yes 2

5
l8 UML and the UP yes yes 4

5
l9 Class Diagrams yes 2

4
l10 3.0 OO Complexity Metrics yes –
user Ua yes yes yes

Table 2.6.: Example of content-based filtering: user Ua has already consumed the items l4, l6, and l10
(see Table 2.2). The item most similar (see Formula 2.5) to the preferences of Ua is l8 and
is now the best recommendation candidate for the current user.
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If we are interested in an item recommendation for the user Ua we have to search for those items

which are most similar to the items that have already been consumed (evaluated) by the Ua. This

relies on the simple similarity metric shown in Formula 2.5 (Dice coefficient which is a variation of

the Jaccard coefficient ”intensively” taking into account category commonalities – see also Jannach et

al. Jannach et al. (2010)). The major difference to the similarity metrics introduced in the context of

collaborative filtering is that in this case similarity is measured using keywords (in contrast to ratings).

similarity(Ua, item) =
2∗ |categories(Ua)∩ categories(item)|
|categories(Ua)|+ |categories(item)|

(2.5)

2.5. Knowledge-based Recommendation

Compared to the approaches of collaborative filtering and content-based filtering, knowledge-based

recommendation (Burke (2000); Felfernig et al. (2007a, 2006); Felfernig and Shchekotykhin (2006);

Mandl et al. (2010)) does not primarily rely on item ratings and textual item descriptions but on

deep knowledge about the offered items. Such deep knowledge (semantic knowledge Felfernig et al.

(2006)) describes an item in more detail and thus allows for a different recommendation approach (see

Table 2.7).

LU name obligatory duration semester complexity topics eval

l1
Data Structures

in Java
yes 2 2 3 Java,UML 4.5

l2
Object

Relational
Mapping

yes 3 3 4 Java,UML 4.0

l3
Software

Architectures
no 3 4 3 UML 3.3

l4
Project

Management
yes 2 4 2 UML,Management 5.0

l5 Agile Processes no 1 3 2 Management 3.0

l6
Object Oriented

Analysis
yes 2 2 3 UML,Management 4.7

l7
Object Oriented

Design
yes 2 2 3 Java,UML 4.0

l8
UML and the

UP
no 3 3 2 UML,Management 2.0

l9 Class Diagrams yes 4 3 3 UML 3.0

l10
OO Complexity

Metrics
no 3 4 2 Quality 5.0

Table 2.7.: Software engineering learning units (LU) described based on deep knowledge, for example,
obligatory vs. non-obligatory, duration of consumption, recommended semester, com-
plexity of the learning unit, associated topics, and average user rating (eval).
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Knowledge-based recommendation (see Figure 2.3) relies on the following background data: (a)

a set of rules (constraints) or similarity metrics and (b) a set of items. Depending on the given user

requirements, rules (constraints) describe which items have to be recommended. The current user

(Ua) articulates his/her requirements (preferences) in terms of item property specifications which are

internally as well represented in terms of rules (constraints). In our example, constraints are rep-

resented solely by user requirements, no further constraint types are included (e.g., constraints that

explicitly specify compatibility or incompatibility relationships). An example of such a constraint is

topics = Java. It denotes the fact that the user is primarily interested in Java-related learning units.

For a detailed discussion of further constraint types we refer the reader to Felfernig et al. Felfernig

et al. (2006). Constraints are interpreted and the resulting items are presented to the user.2 A detailed

discussion of reasoning mechanisms that are used in knowledge-based recommendation can be found,

for example, in Felfernig et al. Felfernig et al. (2006, 2009, 2013e).

Figure 2.3.: Knowledge-based recommendation (KBR) dataflow: users are entering their preferences
and receive recommendations based on the interpretation of a set of rules (constraints).

In order to determine a recommendation in the context of knowledge-based recommendation sce-

narios, a recommendation task has to be solved.

Definition (Recommendation Task). A recommendation task can be defined by the tuple (R,I) where

R represents a set of user requirements and I represents a set of items (in our case: software engi-

neering learning units li ∈ LU). The goal is to identify those items in I which fulfill the given user

requirements (preferences).

A solution for a recommendation task (also denoted as recommendation) can be defined as follows.

Definition (Solution for a Recommendation Task). A solution for a recommendation task (R,I) is a

set S⊆ I such that ∀li ∈ S : li ∈σ(R)I where σ is the selection operator of a conjunctive query (Felfernig

et al. (2009)), R represents a set of selection criteria (represented as constraints), and I represents an

2Knowledge-based recommendation approaches based on the determination of similarities between items will be discussed
in Section 2.8.
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item table (see, e.g., Table 2.7). If we want to restrict the set of item properties shown to the user

in a result set (recommendation), we have to additionally include projection criteria π as follows:

π(attributes(I))(σ(R)I).

In our example, we show how to determine a solution for a given recommendation task based on

a conjunctive query where user requirements are used as selection criteria (constraints) on an item

table I. If we assume that the user requirements are represented by the set R = {r1 : semester ≤ 3,r2 :

topics = Java} and the item table I consists of the elements shown in Table 2.7 then

π(LU)(σ(semester≤3∧topics=Java)I) = {l1, l2, l7}, i.e., these three items are consistent with the given set

of requirements.

Ranking items. Up to this point we only know which items can be recommended to a user. One

wide-spread approach to rank items is to define a utility scheme which serves as a basis for the appli-

cation of multi attribute utility theory (MAUT).3 Alternative items can be evaluated and ranked with

respect to a defined set of interest dimensions. In the domain of e-learning units, example interest di-

mensions of users could be time effort (time needed to consume the learning unit) and quality (quality

of the learning unit). The first step to establish a MAUT scheme is to relate the interest dimensions

with properties of the given set of items. A simple example of such a mapping is shown in Table 2.8.

In this example, we assume that obligatory learning units (learning units that have to be consumed

within the scope of a study path) trigger more time efforts than non-obligatory ones, a longer duration

of a learning unit is correlated with higher time efforts, and low complexity correlates with lower

time efforts. In this context, lower time efforts for a learning unit are associated with a higher utility.

Furthermore, we assume that the more advanced the semester, the higher is the quality of the learning

unit (e.g., in terms of education degree). The better the overall evaluation (eval), the higher the quality

of a learning unit (e.g., in terms of the used pedagogical approach).

We are now able to determine the user-specific utility of each individual item. The calculation of

item utilities for a specific user Ua can be based on Formula 2.6.

utility(Ua, item) = ∑
d∈Dimensions

contribution(item,d)×weight(Ua,d) (2.6)

If we assume that the current user Ua assigns a weight of 0.2 to the dimension time effort (weight(Ua,time

effort)=0.2) and a weight of 0.8 to the dimension quality (weight(Ua,quality)=0.8) then the user-

specific utilities of the individual items (li) are the ones shown in Table 2.9.

Dealing with Inconsistencies. Due to the logical nature of knowledge-based recommendation

problems, we have to deal with scenarios where no solution (recommendation) can be identified

for a given set of user requirements, i.e., σ(R)I = /0. In such situations we are interested in pro-

posals for requirements changes such that a solution (recommendation) can be identified. For ex-

3A detailed discussion of the application of MAUT in knowledge-based recommendation scenarios can be found in Ardis-
sono et al. (2003); Felfernig et al. (2006, 2008).
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item property time effort [1–10] quality [1–10]
obligatory = yes 4 -
obligatory = no 7 -
duration = 1 10 -
duration = 2 5 -
duration = 3 1 -
duration = 4 1 -
complexity = 2 8 -
complexity = 3 5 -
complexity = 4 2 -
semester = 2 - 3
semester = 3 - 5
semester = 4 - 7
eval = 0–2 - 2
eval = >2–3 - 5
eval = >3–4 - 8
eval = >4 - 10

Table 2.8.: Contributions of item properties to the dimensions time effort and quality.

ample, if a user is interested in learning units with a duration of 4 hours, related to management,

and a complexity level > 3, then no solution can be provided for the given set of requirements R =

{r1 : duration = 4,r2 : topics = management,r3 : complexity > 3}.

User support in such situations can be based on the concepts of conflict detection (Junker (2004))

and model-based diagnosis (Falkner et al. (2011); Felfernig et al. (2004); Reiter (1987)). A conflict

(or conflict set) with regard to an item set I in a given set of requirements R can be defined as follows.

Definition (Conflict Set). A conflict set is a set CS ⊆ R such that σ(CS)I = /0. CS is minimal if there

does not exist a conflict set CS’ with CS’ ⊂ CS.

In our running example we are able to determine the following minimal conflict sets CSi: CS1 :

{r1,r2}, CS2 : {r2,r3}. We will not discuss algorithms that support the determination of minimal

conflict sets but refer the reader to the work of Junker Junker (2004) who introduces a divide-and-

conquer based algorithm with a logarithmic complexity in terms of the needed number of consistency

checks.

Based on the identified minimal conflict sets, we are able to determine the corresponding (minimal)

diagnoses. A diagnosis for a given set of requirements which is inconsistent with the underlying item

table can be defined as follows.

Definition (Diagnosis). A diagnosis for a set of requirements R = {r1,r2, ...,rn} is a set ∆⊆ R such

that σ(R−∆)I 6= /0. A diagnosis ∆ is minimal if there does not exist a diagnosis ∆′ with ∆′ ⊂ ∆.

In other words, a diagnosis (hitting set) is a minimal set of requirements that have to be deleted from

R such that a solution can be found for R - ∆. The determination of the complete set of diagnoses
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LU time effort quality utility
l1 14 13 2.8+10.4=13.2
l2 7 13 1.4+10.4=11.8
l3 13 15 2.6+12.0=14.6
l4 17 17 3.4+13.6=17.0
l5 25 10 5.0+8.0=13.0
l6 14 13 2.8+10.4=13.2
l7 14 11 2.8+8.8=11.6
l8 16 7 3.2+5.6=8.8
l9 10 10 2.0+8.0=10.0
l10 16 17 3.2 + 13.6 = 16.8

Table 2.9.: Item-specific utility for user Ua (utility(Ua, li)) assuming the personal preferences for time
effort = 0.2 and quality = 0.8. In this scenario, item l4 has the highest utility for user Ua.

for a set of requirements inconsistent with the underlying item table (the corresponding conjunctive

query results in /0) is based on the construction of hitting set trees (Reiter (1987)). An example of the

determination of minimal diagnoses is depicted in Figure 2.4. There are two possibilities of resolving

the conflict set CS1. If we decide to delete the requirement r2, σ({r1,r3})I 6= /0, i.e., a diagnosis has

been identified (∆1 = {r2}) and – as a consequence – all CSi have been resolved. Choosing the other

alternative and resolving CS1 by deleting r1 does not result in a diagnosis since the conflict CS2 is

not resolved. Resolving CS2 by deleting r2 does not result in a minimal diagnosis, since r2 already

represents a diagnosis. The second (and last) minimal diagnosis that can be identified in our running

example is ∆2 = {r1,r3}. For a detailed discussion of the underlying algorithm and analysis we refer

the reader to Reiter Reiter (1987). Note that a diagnosis provides a hint to which requirements have to

be changed. For a discussion of how requirement repairs (change proposals) are calculated, we refer

the reader to Felfernig et al. Felfernig et al. (2009).

Figure 2.4.: Determination of the complete set of diagnoses (hitting sets) ∆i for the given conflict sets
CS1 = {r1,r2} and CS2 = {r2,r3}: ∆1 = {r2} and ∆2 = {r1,r3}.
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2.6. Hybrid Recommendations

After having discussed the three basic recommendation approaches of collaborative filtering, content-

based filtering, and knowledge-based recommendation, we will now present some possibilities to

combine these basic types.

The motivation for hybrid recommendation is the opportunity to achieve a better accuracy (Burke

(2002)). There are different approaches to evaluate the accuracy of recommendation algorithms.

These approaches can be categorized into predictive accuracy metrics such as the mean absolute

error (MAE), classification accuracy metrics such as precision and recall, and rank accuracy metrics

such as Kendall’s Tau. For a discussion of accuracy metrics we refer the reader also to Gunawardana

and Shani Gunawardana and Shani (2009) and Jannach et al. Jannach et al. (2010).

We now take a look at example design types of hybrid recommendation approaches (Burke (2002);

Jannach et al. (2010)) which are weighted, mixed, and cascade (see Table 2.10). These approaches

will be explained on the basis of our running example. The basic assumption in the following is

that individual recommendation approaches return a list of five recommended items where each item

has an assigned (recommender-individual) prediction out of {1.0, 2.0, 3.0, 4.0, 5.0}. For a more

detailed discussion of hybridization strategies we refer the reader to Burke Burke (2002) and Jannach

et al. Jannach et al. (2010).

method description example formula

weighted

predictions (s)
of individual

recommenders
are summed up

score(item)=Σrec∈RECS s(item,rec)

mixed

recommender-
individual

predictions (s)
are combined
into one rec-
ommendation

result

score(item) = zipper-function(item, RECS)

cascade

the prediction
of one

recommender
is used as input

for the next
recommender

score(item) = score(item,recn)

score(item,reci)=

{
s(item,rec1), if i = 1
s(item,reci)∗ score(item,reci−1), otherwise.

Table 2.10.: Examples of hybrid recommendation approaches (RECS = set of recommenders, s =
recommender-individual prediction, score = item score).

Weighted. Weighted hybrid recommendation is based on the idea of deriving recommendations by

combining the results (predictions) computed by individual recommenders. A corresponding example
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is depicted in Table 2.11 where the individual item scores of a collaborative and a content-based

recommender are summed up. Item l8 receives the highest overall score (9.0) and is ranked highest

by the weighted hybrid recommender.4

items l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

s(li, collaborative filtering) 1.0 3.0 - 5.0 - 2.0 - 4.0 - -
s(li, content-based filtering) - 1.0 2.0 - - 3.0 4.0 5.0 - -
score(li) 1.0 4.0 2.0 5.0 0.0 5.0 4.0 9.0 0.0 0.0
ranking(li) 7 4 6 2 8 3 5 1 9 10

Table 2.11.: Example of weighted hybrid recommendation: individual predictions are integrated into
one score. Item l8 receives the best overall score (9.0).

Mixed. Mixed hybrid recommendation is based on the idea that predictions of individual recom-

menders are shown in one integrated result. For example, the results of a collaborative filtering and a

content-based recommender can be ranked as sketched in Table 2.12. Item scores can be determined,

for example, on the basis of the zipper principle, i.e., the item with highest collaborative filtering

prediction value receives the highest overall score (10.0), the item with best content-based filtering

prediction value receives the second best overall score, and so forth.

items l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

s(li, collaborative filtering) 1.0 3.0 - 5.0 - 2.0 - 4.0 - -
s(li, content-based filtering) - 1.0 2.0 - - 3.0 4.0 5.0 - -
score(li) 4.0 8.0 5.0 10.0 0.0 6.0 7.0 9.0 0.0 0.0
ranking(li) 7 3 6 1 8 5 4 2 9 10

Table 2.12.: Example of mixed hybrid recommendation: individual predictions are integrated into
one score conform the zipper principle (best collaborative filtering prediction receives
score=10.0, best content-based filtering prediction receives score=9.0 and so forth).

Cascade. The basic idea of cascade-based hybridization is that recommenders in a pipe of rec-

ommenders exploit the recommendation of the upstream recommender as a basis for deriving their

own recommendation. The knowledge-based recommendation approach presented in Section 2.5 is

an example of a cascade-based hybrid recommendation approach. First, items that are consistent with

the given requirements are preselected by a conjunctive query Q. We can assume, for example, that

s(item,Q) = 1.0 if the item has been selected and s(item,Q) = 0.0 if the item has not been selected. In

our case, the set of requirements {r1 : semester ≤ 3,r2 : topics = Java} in the running example leads

to the selection of the items {l1, l2, l7}. Thereafter, these items are ranked conform to their utility for

the current user (utility-based ranking U). The utility-based ranking (U) would determine the item

order utility(l1) > utility(l2) > utility(l7) assuming that the current user assigns a weight of 0.8 to the

interest dimension quality (weight(Ua,quality) = 0.8) and a weight of 0.2 to the interest dimensions

4If two or more items have the same overall score, a possibility is to force a decision by lot; where needed, this approach
can also be applied by other hybrid recommendation approaches.
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time effort (weight(Ua,time effort) = 0.2). In this example the recommender Q is the first one and the

results of Q are forwarded to the utility-based recommender.

Other examples of hybrid recommendation approaches are the following (Burke (2002)). Switching

denotes an approach where – depending on the current situation – a specific recommendation approach

is chosen. For example, if a user has a low level of product knowledge, then a critiquing-based

recommender will be chosen (see Section 2.8). Vice-versa, if the user is an expert, an interface will be

provided where the user is enabled to explicitly state his/her preferences on a detailed level. Feature

combination denotes an approach where different data sources are exploited by a single recommender.

For example, a recommendation algorithm could exploit semantic item knowledge in combination

with item ratings (see Table 2.7). For an in-depth discussion of hybrid recommenders we refer the

reader to Burke (2002); Jannach et al. (2010).

2.7. Hints for Practitioners

2.7.1. Usage of Algorithms

The three basic approaches of collaborative filtering, content-based filtering, and knowledge-based

recommendation exploit different sources of recommendation knowledge and have different strengths

and weaknesses (see Table 2.13). Collaborative filtering (CF) as well as content-based filtering (CBF)

are easy to set up (only basic item information is needed, e.g., item name and picture) whereas

knowledge-based recommendation requires a more detailed specification of item properties (and in

many cases also additional constraints). Both, CF and CBF are more adaptive in the sense that new

ratings are automatically taken into account in future activations of the recommendation algorithm. In

contrast, utility schemes in knowledge-based recommendation (see, for example, Table 2.9) have to

be adapted manually (if no additional learning support is available Felfernig et al. (2013d)).

Serendipity effects are interpreted as a kind of accident of being confronted with something useful

although no related search has been triggered by the user. They can primarily be achieved when using

CF approaches. Due to the fact that content-based filtering does not take into account the preferences

(ratings) of other users, no such effects can be achieved. Achieving serendipity effects for the users

based on KBR is possible in principle, however, restricted to and depending on the creativity of the

knowledge engineer (who is able to foresee such effects when defining recommendation rules). The

term ramp-up problem denotes a situation where there is the need to provide initial rating data before

the algorithm is able to determine reasonable recommendations. Ramp-up problems exist with both,

CF as well as CBF: in CF users have to rate a set of items before the algorithm is able to determine

the nearest neighbors. In CBF, the user has to specify interesting/relevant items before the algorithm

is able to determine items that are similar to those that have already been rated by the user.

Finally, transparency denotes the degree to which recommendations can be explained to users. Ex-

planations in CF systems solely rely on the interpretation of the relationship to nearest neighbors, for
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example, users who purchased item X also purchased item Y. CBF algorithms explain their recom-

mendations in terms of the similarity of the recommended item to items already purchased by the

user: we recommend Y since you already purchased X which is quite similar to Y. Finally – due to the

fact that they rely on deep knowledge – KBR are able to provide deep explanations which take into

account semantic item knowledge. An example of such an explanation are diagnoses which explain

the reasons as to why a certain set of requirements does not allow the calculation of a solution. Other

types of explanations exist: why a certain item has been included in the recommendation and why a

certain question has been asked to the user (Felfernig et al. (2006,?)).

Typically, CF and CBF algorithms are used for recommending low-involvement items5 such as

movies, books, and news articles. In contrast, knowledge-based recommender functionalities are used

for the recommendation of high-involvement items such as financial services, cars, digital cameras,

and apartments. In the latter case, ratings are provided with a low frequency which makes these

domains less accessible to CF and CBF approaches. For example, user preferences regarding a car

could significantly change within a couple of years without being detected by the recommender sys-

tem whereas such preference shifts are detected by collaborative and content-based recommendation

approaches due to the fact that purchases occur more frequently and – as a consequence – related

ratings are available for the recommender system. For an overview of heuristics and rules related to

the selection of recommendation approaches we refer the reader to Burke and Ramezani Burke and

Ramezani (2010).

algorithm CF CBF KBR
easy setup yes yes no
adaptivity yes yes no
serendipity effects yes no no
ramp-up problem yes yes no
transparency no no yes
high-involvement items no no yes

Table 2.13.: Summarization of the strengths and weaknesses of collaborative filtering (CF), content-
based filtering (CBF), and knowledge-based recommendation (KBR).

2.7.2. Recommendation Environments

Recommendation is an Artificial Intelligence (AI) technology successfully applied in different com-

mercial contexts (Felfernig et al. (2013b)). As recommendation algorithms and heuristics are regarded

as a major intellectual property of a company, recommender systems are often not developed on the

basis of standard solutions but are rather based on proprietary solutions that are tailored to the specific

5The impact of a wrong decision (selection) is rather low, therefore users invest less evaluation efforts in a purchase
situation.
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situation of the company. Despite this situation, there exist a couple of recommendation environments

that can be exploited for the development of different recommender applications.

Strands6 is a company that provides recommendation technologies covering the whole range of

collaborative, content-based, and knowledge based recommendation approaches. MyMediaLite7 is an

open-source library that can be used for the development of collaborative filtering based recommender

systems. LensKit8 (Ekstrand et al. (2011a)) is an open source toolkit that supports the development

and evaluation of recommender systems – specifically it includes implementations of different collab-

orative filtering algorithms. A related development is MovieLens9 which is a non-commercial movie

recommendation platform. The MovieLens dataset (user × item ratings) is publicly available and

popular dataset for evaluating new algorithmic developments. Apache Mahout10 is a machine learn-

ing environment that also includes recommendation functionalities such as user-based and item-based

collaborative filtering.

Open source constraint libraries such as Choco11 and Jacop12 can be exploited for the implemen-

tation of knowledge-based recommender applications. WeeVis13 is a Wiki-based environment for the

development of knowledge-based recommender applications – resulting recommender applications

can be deployed on different handheld platforms such as iOS, Android, and Windows 8. Finally,

Choicla14 is a group recommendation platform that allows the definition and execution of group rec-

ommendation tasks (see Section 2.8).

2.8. Further Algorithmic Approaches

2.8.1. Critiquing-based recommendation

There are two basic approaches to support item identification in the context of knowledge-based rec-

ommendation.

First, search-based approaches require the explicit specification of search criteria and the recom-

mendation algorithm is in charge of identifying a set of corresponding recommendations Felfernig

et al. (2006); Tiihonen and Felfernig (2010) (see also Section 2.5). If no solution can be found for

a given set of requirements, the recommendation engine determines diagnoses that indicate poten-

tial changes such that a solution (recommendation) can be identified. Second, navigation-based ap-

proaches support the navigation in the item space where in each iteration a reference item is presented
6strands.com
7www.mymedialite.net
8lenskit.grouplens.org
9www.movielens.org

10mahout.apache.org
11www.emn.fr
12jacop.osolpro.com
13www.weevis.org
14choicla.com
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to the user and the user either accepts the (recommended) item or searches for different solutions by

specifying critiques. Critiques are simple criteria that are used for determining new recommendations

that take into account the (changed) preferences of the current user. Examples of such critiques in the

context of our running example are less time efforts and higher quality (see Figure 2.5). Critiquing-

based recommendation systems are useful in situations where users are not experts in the item do-

main and prefer to specify their requirements on the level of critiques (Knijnenburg et al. (2011)). If

users are knowledgeable in the item domain, the application of search-based approaches makes more

sense. For an in-depth discussion of different variants of critiquing-based recommendation we refer

the reader to Burke et al. (1997); Chen and Pu (2012); Grasch et al. (2013); Mandl and Felfernig

(2012); McCarthy et al. (2004); Ricci and Nguyen (2007).

Figure 2.5.: Example of a critiquing scenario: an entry item (l7) is shown to the user. The user specifies
the critique ”less time effort”. The new entry item is l9 since it is consistent with the
critique and the item most similar to l7.

2.8.2. Group recommendation

Due to the increasing popularity of social platforms and online communities, group recommendation

systems are becoming an increasingly important technology (Hennig-Thurau et al. (2012); Masthoff

(2011)). Example application domains of group recommendation technologies include tourism Mc-

Carthy et al. (2006) (e.g., which hotels or tourist destinations should be visited by a group?) and

interactive television Masthoff (2004) (which sequence of television programs will be accepted by a

group?). In the majority, group recommendation algorithms are related to simple items such as hotels,

tourist destinations, and television programs. The application of group recommendation in the context

of our running example is shown in Table 2.14 (selection of a learning unit for a group).
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items l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

alex 1.0 3.0 1.0 5.0 4.0 2.0 4.0 2.0 1.0 4.0
dorothy 5.0 1.0 2.0 1.0 4.0 3.0 4.0 2.0 2.0 3.0
peter 2.0 4.0 2.0 5.0 3.0 5.0 4.0 3.0 2.0 2.0
ann 3.0 4.0 5.0 2.0 1.0 1.0 3.0 3.0 3.0 4.0
least misery 1.0 1.0 1.0 1.0 1.0 1.0 3.0 2.0 1.0 2.0

Table 2.14.: Example of group recommendation: selection of a learning unit for a group. The recom-
mendation (l7) is based on the least misery heuristic.

The group recommendation task is it to figure out a recommendation that will be accepted by the

whole group. The group decision heuristics applied in the context is least misery which returns the

lowest voting for alternative li as group recommendation. For example, the least misery value for al-

ternative l7 is 3.0 which is the highest value of all possible alternatives, i.e., the first recommendation

for the group is l7. Other examples of group recommendation heuristics are most pleasure (the group

recommendation is the item with the highest individual voting) and majority voting (the voting for an

individual solution is defined by the majority of individual user votings - the group recommendation is

the item with the highest majority value). Group recommendation technologies for high-involvement

items (see Section 2.7) are the exception of the rule (see, e.g., Jameson (2004); Stettinger et al. (2013)).

First applications of group recommendation technologies in the software engineering context are re-

ported in Felfernig et al. Felfernig et al. (2012b). An in-depth discussion of different types of group

recommendation algorithms can be found in Masthoff O’Connor et al. (2001); Jameson and Smyth

(2007); Masthoff (2011).

2.9. Conclusions

This chapter provides an introduction to the recommendation approaches of collaborative filtering,

content-based filtering, knowledge-based recommendation, and different hybrid variants thereof. While

collaborative filtering based approaches exploit ratings of nearest neighbors, content-based filtering

exploits categories and/or extracted keywords for determining recommendations. Knowledge-based

recommenders should be used, for example, for products where there is a need to encode the recom-

mendation knowledge in terms of constraints. Beside algorithmic approaches, we discussed criteria

to be taken into account when deciding about which recommendation technology to use in a certain

application context. Furthermore, we provided an overview of environments that can be exploited for

recommender application development.
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Chapter 3
Human Computation Based Acquisition Of
Financial Service Advisory Practices

This chapter is based on the results documented in Felfernig et al. (2015). The author of this thesis

provided major contributions to this chapter in terms of user interface design and literature analyses.

3.1. Abstract

Knowledge-based recommenders support an easier comprehension of complex item assortments (e.g.,

financial services and electronic equipment). In this chapter we show (1) how such recommenders can

be developed in a Human Computation based knowledge acquisition environment (PEOPLEVIEWS)

and (2) how the resulting recommendation knowledge can be exploited in a competition-based e-

Learning environment (STUDYBATTLE).

3.2. Introduction

Knowledge-based recommenders (Burke (2000)) support users on the basis of semantic knowledge

about the item (product) domain.1 One variant of knowledge-based recommenders are constraint-

based recommenders (Felfernig and Burke (2008)) which exploit explicit constraints (rules) that en-

code the recommendation knowledge. Another variant are critiquing-based recommenders (Burke

et al. (1997)): new items are presented to the user as long as the user is unsatisfied and articulates

critiques (e.g., an item should be cheaper). In critiquing-based recommendation, new items are de-

termined by similarity functions. For a detailed overview of recommendation approaches we refer to

Burke et al. (2011); Jannach et al. (2010).
1The terms item and product are used synonymously throughout the chapter.
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In this chapter we focus on constraint-based recommenders, i.e., recommenders that are based on

explicit recommendation rules (constraints). The development of such recommenders is often a time-

consuming and error-prone process which can be primarily explained by the knowledge acquisition

bottleneck: in the formalization of product domain and recommendation knowledge, misunderstand-

ings can occur and as a result knowledge engineers encode this knowledge in an unintended fashion.

The more recommenders have to be developed and maintained the higher the risk that the organization

runs into a scalability problem where additional resources are needed to be able to perform knowledge

engineering and maintenance.

An alternative to the hiring of additional staff for development and maintenance of recommendation

knowledge bases is to change the underlying knowledge engineering paradigm. The idea of PEOPLE-

VIEWS is to engage domain experts more deeply into knowledge engineering tasks. We do not want

to ”convert” them into technical experts but to define basic tasks (micro tasks) that are easy to un-

derstand and complete even for domain experts without the corresponding technical expertise. Micro

tasks completed by users provide knowledge chunks that can be aggregated into a PEOPLEVIEWS

recommender knowledge base.

The resulting PEOPLEVIEWS recommenders support customers (and especially in the financial ser-

vices domain also sales representatives) in finding products that fit their wishes and needs. Using

such a recommender, items are retrieved within the scope of a dialog (these systems are often also

denoted as conversational) where users articulate their requirements and the system tries to identify

corresponding solutions. Major advantages of such systems are reduced error rates in the phase of or-

der acquisition, more time that can be invested in contacting new customers due to fewer errors, more

satisfied customers, and also pre-informed customers due to the fact that recommender applications

can be made publicly available.

Knowledge-based recommender systems have been applied in various item domains – due to the

diversity of applications, we can only give some examples of applications of these systems. In the

financial services domain, for example, the following applications of knowledge-based recommen-

dation technologies are reported in the literature. Felfernig et al. (Felfernig et al. (2007b); Felfernig

and Kiener (2005)) show an application in the context of investment decisions where recommenders

are provided to sales representatives who exploit the recommenders in sales dialogs. Time savings

are reported as one of the major improvements directly related to the application of recommendation

technologies. Another application of knowledge-based technologies in financial services is presented

by Fano and Kurth (Fano and Kurth (2003)) who introduce a simulation environment that can directly

visualize the effects of financial decisions on the financial situation of a family.

Felfernig et al. (Felfernig et al. (2006)) present a digital camera recommender deployed on a large

Austrian product comparison platform. Peischl et al. (Peischl et al. (2010)) show the application

of constraint-based recommendation technologies in the domain of software effort estimation. WEE-
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VIS(Reiterer et al. (2013))2 is a MediaWiki3 based environment for the development and maintenance

of constraint-based recommender applications – a couple of freely available recommenders have al-

ready been deployed. Knowledge-based technologies for the recommendation of business plans are

introduced by Jannach and Bundgaard-Joergensen (Jannach and Bundgaard-Joergensen (2007)). The

recommendation of equipment configuration in the context of smarthomes is introduced by Leitner et

al. (Leitner et al. (2012)). Technologies that recommend changes in software development practices

are introduced by Pribik and Felfernig (Pribik and Felfernig (2012)). Finally, Burke and Ramezani

(Burke and Ramezani (2010)) show how to select recommendation algorithms by introducing rules

for recommending recommenders.

In PEOPLEVIEWS, principles of Human Computation (von Ahn (2005)) are included into the de-

velopment of knowledge-based recommenders. The idea of Human Computation is to let persons

perform tasks in which they are better than computers, for example, the identification of product

properties from a website. In the context of knowledge base development and maintenance the idea

is to let domain experts perform tasks they are much better in compared to knowledge engineers who

typically have less knowledge about the product domain and thus relieve the work of knowledge engi-

neers. MATCHIN (Hacker and VonAhn (2009)) is based on the idea of preference elicitation by asking

users what a person would typically prefer when having to choose between alternatives. Compared

to this work, PEOPLEVIEWS allows to derive constraint-based recommenders which are the basis

for intelligent user interfaces that support, for example, deep explanations (Friedrich (2004)) and the

diagnosis and repair of inconsistent requirements (Felfernig et al. (2009, 2013e)).

The major contributions of this chapter are the following. First, we show how financial service

recommender knowledge bases can be developed by a community of domain experts. Second, we

sketch how such knowledge bases can also be exploited for teaching advisory practices on the basis

of games (STUDYBATTLE environment). Third, we provide a discussion of major issues for future

research.

The remainder of this chapter is organized as follows. In Section 3.3 we introduce basic concepts

of Human Computation based knowledge construction. To give an impression of the PEOPLEVIEWS

and the STUDYBATTLE user interface, we present example screenshots in Section 3.4. Preliminary

results of empirical evaluations are shortly discussed in Section 3.5. In Section 3.6 we provide an

overview of issues for future work. We conclude the chapter with Section 3.7.

3.3. Developing PEOPLEVIEWS Recommenders

The PEOPLEVIEWS environment supports two basic modes of interaction. First, recommender ap-

plications can be created in the modeling mode and second, the applications can be executed in the

2www.weevis.org.
3www.mediawiki.org.
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user email pwd
Andrea andrea@... ****
Mary mary@... *****
Luc luc@... ******

Torsten torsten@... ****

Table 3.1.: Example users of PEOPLEVIEWS environment.

id item name
Φ1 Investment Fund A
Φ2 Investment Fund B
Φ3 Building Loan
Φ4 Bond
Φ5 Savings Book

Table 3.2.: Example set of items used in working example.

recommendation mode. In this chapter we discuss different tasks to be performed in order to create a

PEOPLEVIEWS recommender. Table 3.1 provides an overview of the users of our working example.

These users will jointly develop a PEOPLEVIEWS recommender.

Table 3.2 contains an overview of items (financial services) that are used in our working example.

The Investment Funds (A and B) have a higher risk of loss and require that customers have a high

willingness to take risks, otherwise these services will not be recommended. Building Loan, Bond,

and Savings Book are lower-risk items. In the current version of PEOPLEVIEWS, items can be charac-

terized by additional item attributes, however, these attributes are not used by recommendation rules

constructed from micro contributions.

In PEOPLEVIEWS, user requirements reqi ∈ REQ are specified as assignments of user attributes.

For our financial services recommender we define a set of user attributes which are enumerated in

Table 3.3. In the current version of the system, user attributes are defined by the creators of a recom-

mender application, i.e., attribute definitions can not be extended by other users who contribute to the

further development of the application on the basis of micro tasks.

In the PEOPLEVIEWS recommendation mode, user attributes can be used to specify user (customer)

requirements reqi ∈ REQ. In the modeling mode, user attributes represent a central element of a micro

task: given a certain item, users are asked to estimate which values of user attributes are compatible

with the item, i.e., are a criteria for selecting and recommending the item. The evaluation of items

with regard to user attributes is the central micro task implemented in the current PEOPLEVIEWS

prototype. A detailed evaluation of the example items (Table 3.2) regarding the user attributes goal,

runtime, and risk is provided in Table 3.4.

Each row of Table 3.4 specifies a so-called user-specific filter constraint (Felfernig et al. (2014a)),

i.e., a filter constraint (specified by a user) regarding a specific item. For example, user Luc specified
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user
attribute

question to
user

attribute domain

goal (gl)

What are
your

personal
goals?

{Studies, Pension,
Speculation, Car, House,

World trip, noval}

runtime
(rt)

When is the
money

needed?

{in 1 year, in 2 years, in
3-5 years, in 5-10 years,
in 10-20 years, in more
than 20 years, noval}

risk (ri)
Prepared-

ness to take
risks?

{low, medium, high,
noval}

Table 3.3.: User attributes u ∈U of example financial services recommender.

Pension and Speculation as possible goals that lead to an inclusion of the item Investment Fund B into

a recommendation. Furthermore, Luc believes that a user should have a high preparedness to take

risks (attribute risk) and should need the payment in 3-5 years, 5-10 years or 10-20 years from now

on. Semantically, an item X is selected by a user-specific filter constraint if all the preconditions are

fulfilled.

In order to derive recommendation-relevant filter constraints (recommendation rules) (Felfernig

et al. (2014a)), user-specific filter constraints have to be aggregated. An example of this aggregation

step is depicted in Table 3.5. For each item all related user-specific filter constraints are integrated into

one constraint. Each row in this table has to be interpreted as a filter constraint for a specific item, for

example, the constraint in the first row of Table 3.5 is the following. The item Φ1 (Investment Fund A)

is included (recommended) if the user requirements regarding goal (gl), runtime (rt), and risk (ri) are

consistent with the condition of the recommendation-relevant filter constraint gl ∈ {Studies, Pension,

Speculation, noval} ∧ rt ∈ {in 5-10 year, in 10-20 years, noval} ∧ ri ∈ {medium, high, noval} →
include(Φ1).

Table 3.5 includes the complete set of recommendation-relevant filter constraints (recommendation

rules). Exactly these conditions are applied by PEOPLEVIEWS to determine recommendations for a

user. In PEOPLEVIEWS, each item has exactly one related recommendation-relevant filter constraint;

each such filter constraint is represented by one row in Table 3.5. The general logical representation of

a recommendation-relevant filter constraint f for an item Φ is shown in Formula 3.1. In this context,

values(Φ,u) is the set of supported domain values of user attribute u∈U (see Table 3.4). The constant

noval denotes the fact that no value has been selected for the corresponding user attribute.

f (Φ) :
∧

u∈U

u ∈ values(Φ,u)∪{noval}→ include(Φ) (3.1)
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user item name (id) goal runtime risk
An-
drea

Investment Fund A
(Φ1)

Studies, Pension,
Speculation

in 5-10 years, in 10-20
years

high

Luc
Investment Fund A

(Φ1)
Pension, Speculation

in 5-10 years, in 10-20
years

high

Mary
Investment Fund A

(Φ1)
Pension, Speculation

in 5-10 years, in 10-20
years

medium, high

Torsten
Investment Fund B

(Φ2)
Pension, Speculation

in 3-5 years, in 5-10
years, in 10-20 years

high

Luc
Investment Fund B

(Φ2)
Pension, Speculation

in 3-5 years, in 5-10
years, in 10-20 years

high

Mary Building Loan (Φ3)
Studies, Pension, Car,

House
in 5-10 years, in 10-20

years
low, medium,

high
An-
drea

Building Loan (Φ3)
Studies, Pension, Car,

House
in 5-10 years low, medium

Luc Building Loan (Φ3)
Studies, Pension, Car,

House
in 5-10 years low, medium

Mary Bond (Φ4) Studies, Car, House
in 2 years, in 3-5

years, in 5-10 years
low, medium

An-
drea

Savings Book (Φ5)
Studies, Car, House,

World trip

in 1 year, in 2 years, in
3-5 years, in 5-10

years
low

Torsten
Savings Book (Φ5)

Studies, House, World
trip

in 1 year, in 2 years, in
3-5 years, in 5-10

years
low

Table 3.4.: Example of user-specific filter constraints (= micro contributions).

item name
(id)

goal runtime risk

Investment
Fund A (Φ1)

Studies, Pension,
Speculation

in 5-10 years, in 10-20
years

medium, high

Investment
Fund B (Φ2)

Pension, Speculation
in 3-5 years, in 5-10
years, in 10-20 years

high

Building
Loan (Φ3)

Studies, Pension, Car,
House

in 5-10 years, in 10-20
years

low, medium, high

Bond (Φ4) Studies, Car, House
in 2 years, in 2-5

years, in 5-10 years
low, medium

Savings
Book (Φ5)

Studies, Car, House,
World trip

in 1 year, in 2 years, in
3-5 years, in 5-10

years
low

Table 3.5.: Example of recommendation-relevant filter constraints which are the result of integrating
user-specific filter constraints (see Table 3.4).
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For each pair (Φ,val ∈ values(Φ,u)), PEOPLEVIEWS determines a corresponding support value

(see Formula 3.2). In this context, occurrence(Φ,val) denotes the number of times, value val occurs

in a user-specific filter constraint for item Φ and occurrence(Φ) denotes the number of times an item

Φ is referred in a user-specific filter constraint. For example, support(Φ1,Studies) = 1
3 .

support(Φ,val) =
occurrence(Φ,val)

occurrence(Φ)
(3.2)

The complete set of support values is depicted in Table 3.6. In PEOPLEVIEWS, an item Φ can

have an associated rating (rating(Φ)) which represents an item evaluation with regard to quality and

related services. Such a rating can be determined, for example, by calculating the average of the

individual user item ratings.4 For simplicity, we do not take into account user ratings in the utility

function discussed below (see Formula 3.3).

Depending on the requirements articulated by the current user (see, e.g., Table 3.7), PEOPLEVIEWS

determines and ranks a set of relevant items as follows. First, recommendation-relevant filter con-

straints are applied to pre-select items that fulfill the user requirements REQ = {req1,req2, ...,reqk}. In

our example, the set {Investment Fund A, Building Loan} would be selected by the recommendation-

relevant filter constraints (see Table 3.5).

The determined recommendation set must be ranked before being presented to the user. In PEO-

PLEVIEWS, item ranking is based on the following utility function (see Formula 3.3). The utility of

each item is derived from the support values of individual requirements (see Formula 3.2).

utility(Φ,REQ) = Σreq∈REQ support(Φ,req) (3.3)

The item ranking of our working example as a result of applying Formula 3.3 is depicted in Table

3.8. For example, utility(Φ3,REQ = {goal = Studies, goal = Pension, runtime = in 5-10 years, risk =

medium}) = support(Φ3, goal = Studies) + support(Φ3, goal = Pension) + support(Φ3, runtime = in

5-10 years) + support(Φ3, risk = medium) = 1.0 + 1.0 + 1.0 + 1.0 = 4.0.

3.4. User Interface

3.4.1. PEOPLEVIEWS

In this chapter we discuss the PEOPLEVIEWS user interface5 and also show how PEOPLEVIEWS rec-

ommendation knowledge can be exploited by the STUDYBATTLE learning environment. The PEO-

PLEVIEWS homescreen is depicted in Figure 3.1. For applying PEOPLEVIEWS recommenders, there

4Similar to ratings provided by platforms such as amazon.com.
5The user interface is currently only available in German.
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item
name (id)

attribute:value
support
value

Invest-
ment

Fund A
(Φ1)

goal: Studies 0.33

goal: Pension, Speculation 1.0
runtime: in 5-10 years, in

10-20 years
1.0

risk: medium 0.33
risk: high 1.0

Invest-
ment

Fund B
(Φ2)

goal: Pension, Speculation 1.0

runtime: in 3-5 years, in
5-10 years, in 10-20 years

1.0

risk:high 1.0
Building

Loan
(Φ3)

goal: Studies, Pension, Car,
House

1.0

runtime:in 5-10 years 1.0
runtime:in 10-20 years 0.33

risk:low, medium 1.0
risk:high 0.33

Bond
(Φ4)

goal: Studies, Car, House 1.0

runtime:in 2 years, in 3-5
years, in 5-10 years

1.0

risk:low, medium 1.0
Savings
Book
(Φ5)

goal: Studies, House, World
trip

1.0

goal:Car 0.5
runtime:in 1 year, in 2 years,

in 3-5 years, in 5-10 years
1.0

risk:low 1.0

Table 3.6.: Support values (see Formula 3.2) derived from user-specific filter constraints (see Table
3.4).
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id requirement
req1 goal = Studies
req2 goal = Pension
req3 runtime = in 5-10 years
req4 risk = medium

Table 3.7.: Example set of user requirements (reqi ∈ REQ).

item name (id) utility rank
Building Loan (Φ3) 4.0 1

Investment Fund A (Φ1) 2.66 2

Table 3.8.: Utility-based ranking of items in the recommendation set.

is no explicit need for being logged in. Recommenders can be selected and activated directly from the

homescreen (see the tag cloud in Figure 3.1).

If users are logged in, they are allowed to contribute to the development of PEOPLEVIEWS rec-

ommender applications. Only the creators of a recommender application are allowed to define user

attributes. Other users can complete micro tasks in terms of evaluating items with regard to a defined

set of user attributes. The list of user attributes used in our working example is depicted in Figure 3.2

(corresponds to the entries of Table 3.3).

Logged-in users are also allowed to enter new items to the recommender product catalog. The

PEOPLEVIEWS representation of product catalogs is exemplified in Figure 3.3 (corresponds to the list

of items shown in Table 3.2).

The interface for evaluating an item with regard to a set of user attributes is depicted in Figure 3.4.

The screenshot depicts the evaluation of Building Loan with regard to the user attribute goal. After

having completed the definition of a PEOPLEVIEWS recommender, the recommender can directly be

executed. The user interface of our financial services recommender is depicted in Figure 3.5.

3.4.2. STUDYBATTLE

Recommendation-relevant filter constraints can be further exploited for generating different learning

applications that are part of the STUDYBATTLE environment. STUDYBATTLE is a game-based learn-

ing environment which can be utilized as an environment for learning product knowledge and sales

practices. Examples of STUDYBATTLE games are the following.

Assign Properties. Figure 3.6 depicts an example user interface of a STUDYBATTLE application

that implements a quiz related to knowledge about the relationship between user attributes and items.

In the example, users have the task to assign items on the left hand side to user attribute values on the

right hand side where each product has to be assigned to at least one attribute value and vice-versa.
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Figure 3.1.: PEOPLEVIEWS homescreen – the current version of the user interface is provided in
German. The homescreen explains the basic functionalities of the system (development,
maintenance, and execution of recommender applications).

Figure 3.2.: PEOPLEVIEWS: example user attributes.
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Figure 3.3.: PEOPLEVIEWS: example of an item list.

Figure 3.4.: PEOPLEVIEWS: example of an item evaluation user interface (evaluation of item Building
Loan with regard to the user attribute goal).
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Figure 3.5.: PEOPLEVIEWS: example of a recommender application (Financial Services).

Find Items. A different version of the game depicted in Figure 3.6 is to ask for products that fulfill

certain criteria (represented by a combination of user attribute settings).

Find Incompatibilities. This game focuses on combinations of user attribute values that do not lead

to a solution, i.e., users have to specify combinations of user attribute values from which they think

that no corresponding solution could be found.

Maximize Requirements. The task is to identify minimal sets of requirements (from a given set

of requirements REQ) that have to be deleted from REQ such that the remaining requirements lead

to at least one solution. This game type reflects the principles of model-based diagnosis (de Kleer

et al. (1992); Reiter (1987)), i.e., support users in learning and improving repair behavior in situations

where no solution can be identified.

Maximize Items. A similar task is focused on the repair of item sets; in this context the task of

users is to identify a maximal set of items from a given set of items such that there exists at least

one combination of user attribute values that lead to these items (not necessarily exclusively). An

additional criteria could be that at least n items from the original item list must remain in the result

set.
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Figure 3.6.: STUDYBATTLE ”Assign Properties” learning application. The task of the user is to relate
items with corresponding attribute values.

3.5. Preliminary Evaluation Results

Human Computation based Knowledge Acquisition. Applying Human Computation concepts (von

Ahn (2005)) in the context of recommender application development and maintenance has the poten-

tial to lift the burden of enormous engineering and maintenance efforts from the shoulder of knowl-

edge engineers. Micro tasks as sketched in this chapter can be structured in a way that they are

understandable for domain experts without a computer science background. Knowledge gained from

completed micro tasks can be easily integrated into a corresponding recommender knowledge base.

Due to the increasing size and complexity of knowledge bases, the development of such technologies

is crucial since they help to tackle scalability issues which otherwise could cause a complete failure

with regard to a company-wide recommender deployment. As such, PEOPLEVIEWS technologies can

be considered as a first step towards more scalable development methods that will also help to further

increase the popularity of knowledge-based (recommendation) technologies.

Usability. An initial user study has been conducted with an early version of PEOPLEVIEWS at the

Graz University of Technology (Felfernig et al. (2014a)). N=161 (15% female and 85% male) students

interacted with the system with the goal to develop different recommender applications. After having

completed the development, the study participants had to complete a questionnaire which was based

on the system usability scale (SUS) (Bangor et al. (2008)). Evaluation results regarding the SUS

aspects are summarized in Figure 3.7. Besides usability questions, further feedback has been provided

by the study participants, for example, the majority of the participants (69% of all study participants)
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Figure 3.7.: Results of a SUS-based usability study Bangor et al. (2008) of the PEOPLEVIEWS

environment.

would like to further contribute to PEOPLEVIEWS recommenders. 56% out of those participants who

wanted to contribute agreed to contribute within a time frame of less than 30 minutes per week.

3.6. Future Work

The major goal of this chapter was to provide an overview of the PEOPLEVIEWS recommendation

environment. There are many issues for future work that we want to tackle and integrate corresponding

solutions in upcoming PEOPLEVIEWS versions.

Weighting of Item Evaluations. In the current PEOPLEVIEWS version it is possible to assign user

attribute values to items, i.e., to specify which criteria are relevant for the selection of a certain item.

In future versions of PEOPLEVIEWS it will be possible to integrate weights into item evaluations.

This maybe does not play a major role in financial service related recommender applications but can

be important in other domains were nuances and personal tastes play a more important role. For

example, in the context of recommending digital cameras, it can be important to specify degrees

regarding certain camera properties, for example, the degree to which a camera is able to support

sports photography.

Further Micro Tasks. In the current system version, the only micro task to be completed is to define

the relationship (compatibility properties) between items and corresponding user attribute values. In

48



3.6. Future Work

name description

item quality
check

check whether a certain item
belongs to a specific

recommender (is an existing
recommender-related item)

attribute quality
check

check whether a certain
attribute belongs to to a

specific recommender (user
attribute or item attribute
exists in the item domain)

attribute value
quality check

check whether a certain
value belongs to the domain
of an attribute (user attribute

or item attribute)

graphic check
check whether a certain

figure belongs to a certain
item

evaluate item
assign user attribute values

to items

attribute value
utility check

derive a ranking that shows
which items best support a

user attribute value

Table 3.9.: Example list of micro tasks to be integrated in PEOPLEVIEWS.

future versions of PEOPLEVIEWS we will extend this list of micro tasks (see Table 3.9).

User Selection for Micro Tasks. An important enhancement will be the inclusion of methods that

automatically select users for a given set of micro tasks and also take into account fairness in the

distribution of micro tasks. As detected in our initial studies, users are willing to contribute to the

further development of PEOPLEVIEWS recommenders. An important issue in this context is to find

the users with the right expertise for certain tasks and also to not overload users. Our approach in

this context will be to maintain user profiles which are derived from observing the activities of a user

within PEOPLEVIEWS. For example, if a user selects a certain item when interacting with the financial

services recommender, the keywords extracted from the corresponding item description are stored in

the user profile. If (in the future) micro tasks related to similar items (items with a similar description)

have to be completed, users with expertise regarding such items will be the preferred contact persons.

Games. Games will be another mechanism for data collection in the PEOPLEVIEWS modeling

mode. A single user game will be included that is quiz-based. The overall goal is to guess user

attribute settings correctly that best describe a certain item. In a second game two users will jointly try

to figure out user attribute values that best describe shown items. The more matching item evaluations

exist the better the team performs.

Dependencies between User Attributes and Item Attributes. An extension of the current PEOPLE-
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VIEWS version will be the possibility to identify direct relationships between user attribute values

and technical product properties. This is not the case in the current PEOPLEVIEWS version since

dependencies are only defined between user attribute values and items.

Recommendation Algorithms. The current version of PEOPLEVIEWS relies on the discussed

recommendation-relevant filter constraints – item ranking is based on a utility-based evaluation (see

Formula 3.3). In future versions of PEOPLEVIEWS we will extend the quality of recommendation

algorithms by, for example, adapting the determination of support values. If, for example, additional

information about the performance of a certain user is available (e.g., performance with regard to cor-

rectly completed micro tasks in the past), this information can be used to increase/decrease the weight

of a user when determining support values. Finally, when users are specifying their requirements,

future versions of PEOPLEVIEWS will allow the specification of preferences (weights) which indicate

user preferences regarding certain requirements. This will also include approaches to the learning of

weights (users should not have to specify all weights explicitly).

Inconsistency Management. Given a set of customer requirements it could be the case that no

solution can be presented to the user. In upcoming versions of PEOPLEVIEWS we will focus on in-

tegrating state-of-the-art diagnosis algorithms that help to automatically determine repair actions in

such inconsistent situations (Felfernig et al. (2011)). These repairs will take into account user weights

(preferences) and thus minimize the number of interaction cycles needed to find a reasonable solu-

tion. In addition to this more intelligent management of inconsistent requirements, we will integrate

mechanisms that help to consolidate the set of user-specific filter constraints in order to make the re-

sulting recommendation-relevant filter constraints more compact. Consolidation will be achieved, for

example, on the basis of redundancy detection algorithms (Felfernig et al. (2011)).

Quality Management. The major task of quality management is to assure the quality of the dataset

collected on the basis of different micro tasks. Quality assurance must be capable of detecting and

preventing manipulations of the dataset (also under the assumption that anonymous users are allowed

to complete micro tasks), it must also identify changes to the given set of user-specific filter con-

straints that help to improve the prediction quality of recommendation algorithms. Quality assurance

is also responsible for the generation of micro tasks that need to be completed in order to improve the

overall quality of the PEOPLEVIEWS datasets. The micro tasks generated by quality assurance are

summarized as an agenda – this agenda is forwarded to micro task scheduling that is responsible for

distributing micro tasks to the PEOPLEVIEWS user community.

3.7. Conclusions

In this chapter we gave an overview of the PEOPLEVIEWS recommendation environment which ex-

ploits concepts of Human Computation to integrate domain experts more deeply into knowledge base

development and maintenance processes. PEOPLEVIEWS knowledge bases can be exploited to gen-
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erate learning applications which can be used in the STUDYBATTLE environment. A major focus of

this chapter was to show how PEOPLEVIEWS can be applied in the context of financial service recom-

mendation. The concepts presented in this chapter have the potential to avoid scalability issues which

already exist in many knowledge-based environments due to the increasing size and complexity of

knowledge bases.
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Chapter 4
Towards Open Configuration

This chapter is based on the results documented in Felfernig et al. (2014d). Major parts in terms of

writing and literature research have been provided by the author of this thesis.

4.1. Abstract

Configuration technologies are typically applied in closed settings where one (or a small group of)

knowledge engineer(s) is in charge of knowledge base development and maintenance. In such settings

it is also assumed that only single users configure the corresponding products and services. Nowadays,

a couple of scenarios exist that require more openness: it should be possible to cooperatively develop

knowledge bases and to jointly configure products and services, even by adding new features or con-

straints in a flexible fashion. We denote this integration of groups of users into configuration-related

tasks as open configuration. In this chapter we introduce features of open configuration environments

and potential approaches to implement these features.

4.2. Introduction

Configuration (Felfernig et al. (2014b); Hvam et al. (2007); Stumptner (1997)) is one of the most

successful technologies of Artificial Intelligence (AI). It is applied in many domains such as telecom-

munication (Fleischanderl et al. (1998)), furniture (Haag (1998)), and financial services (Felfernig

et al. (2007b)). Most configuration-related functionalities are assuming closed settings where knowl-

edge bases are developed by a single (or a small group of) knowledge engineer(s) and the corre-

sponding configurators are applied by single users. Implementing configurator applications this way

entails drawbacks which become manifest in terms of scalability problems in knowledge engineering
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(Richardson and Domingos (2003)) and suboptimal decisions if a single user decides for the whole

group (Felfernig et al. (2012b)).

Scalability Problems. The transformation of domain knowledge into a configuration knowledge

base is an effortful process often characterized by a knowledge acquisition bottleneck (Hayes-Roth

et al. (1983)) that is considered as a major obstacle for a sustainable application of knowledge-based

technologies (Hoppenbrouwers et al. (2009); Wagner (2006)). To tackle this bottleneck, efficient ap-

proaches have been developed that support graphical knowledge engineering (Felfernig et al. (2000a);

Hotz et al. (2013)) and intelligent debugging (Felfernig et al. (2004, 2012a); Schubert et al. (2010)).

These approaches help to improve the efficiency of knowledge engineering but still do not solve

the problem of missing scalability: the increasing amount and complexity of configuration knowledge

bases exceeds the resources available for performing the corresponding development and maintenance

operations (Huang et al. (2008); Richardson and Domingos (2003)). In order to assure scalability, fu-

ture configuration technologies have to support a deeper integration of a wider group of users (e.g.,

product developers, marketing experts, sales representatives, and knowledge engineers) into knowl-

edge engineering. Related solutions should go beyond state-of-the-art approaches that are focusing on

experienced knowledge engineers and programmers (Hvam et al. (2007)) by allowing the completion

of knowledge engineering tasks by the mentioned groups. We denote this approach as community-

based knowledge engineering.

Suboptimal Decisions. A basic assumption of existing configuration systems is that products and

services are typically configured by single users. However, many scenarios exist where not a single

user but a group of users is in charge of configuring a product (see Section 4.4). Existing configuration

environments do not take into account such scenarios which often leads to situations where a single

user has to ”encode” the requirements and preferences of a whole group. This can lead to suboptimal

configurations (decisions) that do not reflect the group preferences in an optimal fashion. Future con-

figuration technologies should take into account the fact that groups of users can be engaged in con-

figuration processes and provide group decision mechanisms that help the group to jointly configure

a product in a consensual fashion. We denote this type of configuration as group-based configuration.

Especially in scenarios where multiple stakeholders define and configure products, enhanced flexibil-

ity is required: configurator users may request to add or refine product features and constraints which

can be seen, for example, in open innovation (Chesbrough (2003)) or postponement scenarios (Forza

et al. (2008); Yang and Burns (2003)). We subsume such activities under the term flexible product

enhancement.

The concepts of community-based knowledge engineering, group-based configuration, and flexible

product enhancement can be summed up under the notion of open configuration. In this chapter we

sketch functionalities which have to be provided by open configuration environments. In Section

4.3 we introduce features and potential technological solutions to tackle the issue of scalability in

knowledge engineering scenarios. In Section 4.4 we discuss features of group-based configuration. In
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micro task topic description
variables definition/evaluation of variables included in V
questions definition/evaluation of questions related to vi ∈V

dialog sequences definition/evaluation of question sequences
constraints definition/evaluation of constraints in C
examples definition/evaluation of test cases in T
diagnoses evaluation of conflict resolution alternatives for C

Table 4.1.: Community-based knowledge engineering: example micro tasks.

Section 4.5 we discuss aspects of product enhancement in open configuration. With Section 4.6 we

provide a discussion of related work. We conclude the chapter with Section 4.7.

4.3. Community-based Knowledge Engineering

In the following we will discuss aspects that become relevant if we want to integrate a larger group

of users into configuration knowledge engineering. For the sake of simplicity and without loss of

generality we assume that a configuration knowledge base is represented in terms of a constraint

satisfaction problem (CSP) (Mackworth (1977)) consisting of a set of variables V = {v1, ...,vn} with

corresponding domain definitions (dom(vi)), and a set of constraints C = {c1, ...,cm}. We base our

discussions on the following simplified financial services configuration knowledge base.

• V = {willingness to take risks (wr), expected return rate (rr), investment period (ip)}

• dom(wr)= {low, medium, high}, dom(rr)={<6%, 6-9%,>9%}, dom(ip) = {shortterm, medi-

umterm, longterm}

• C = {c1 : wr = medium→ ip 6= shortterm,

c2 : wr = high→ ip = longterm,

c3 : ip = longterm→ rr =<6%∨ rr = 6-9%,

c4 : rr =>9%→ wr = high,

c5 : rr = 6-9%→ wr 6= low∧wr 6= medium}

In cases where one or a small group of knowledge engineers is in charge of developing and main-

taining a configuration knowledge base, attributes (component types), domains, and related constraints

are typically formalized on the basis of examples and textual descriptions provided by domain experts

(Hvam et al. (2007)). If the product domain knowledge has to be adapted, the whole process is

restarted, i.e., domain experts articulate the change requests in an informal fashion and knowledge

engineers implement the needed adaptations.

The correctness of changes performed on a knowledge base can be evaluated, for example, on the

basis of regression tests where positive and negative test cases are used to figure out whether the
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knowledge base shows the intended behavior (Felfernig et al. (2004)). Positive test cases (examples)

are a specification of an intended behavior of the knowledge base and negative test cases exemplify

unintended behavior. Existing approaches to configuration knowledge base testing and debugging

exploit positive test cases to detect errors/deficiencies by inducing conflicts in the incorrect configura-

tion knowledge base. Such conflicts are minimal sets of constraints that are responsible for the faulty

behavior of the knowledge base and therefore have to be adapted by knowledge engineers.

Figure 4.1.: Sketch of a user interface for game-based knowledge acquisition. The overall goal of
the game is that both players agree on the set of incompatible value combinations of a
given set of variables. This user interface can be regarded as a micro task template for the
acquisition of incompatibility constraints.

Community-based Knowledge Engineering. Intelligent testing and debugging (Felfernig et al.

(2004)) is an important contribution to the improvement of knowledge engineering processes. How-

ever, the growing size and complexity of configuration knowledge bases often makes it hard for indi-

vidual knowledge engineers to keep track of new developments and adaptations. As a consequence,

more time is needed to provide a new production version of the configuration knowledge base and the

probability of including erroneous constraints increases. In order to assure scalability, it is important

to integrate end-users more deeply into knowledge base development and maintenance and thus to

exploit unemployed knowledge engineering potentials.

In the following we discuss issues that have to be taken into account when integrating groups into

community-based knowledge engineering processes. An in-depth integration of a larger group of

users allows knowledge engineers to delegate basic engineering tasks (so-called micro tasks). Table

4.1 provides an overview of micro task topics. For each topic a couple of different concrete micro

tasks can be defined, for example, a variable can be defined but also evaluated with regard to the

appropriateness of it’s domain definition.

In order to figure out variables (component types) relevant for the configuration knowledge base,

users should be allowed to enter proposals for variables and component types (including the corre-

sponding domain definitions) on their own. Variables are often associated with questions posed to the
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Figure 4.2.: Group-based diagnosis of a faulty configuration knowledge base. Diagnoses are selected
by taking into account the expertise of users/knowledge engineers: the higher the personal
score (value derived from his/her personal contributions), the higher the weight given to
his/her opinion.

user of a configurator application – alternative formulations of such questions and also the sequences

in which these questions are posed should be defined and evaluated by users. In addition to struc-

tural properties typically defined in terms of variables or component types and their relationships,

constraints define additional restrictions on possible combinations of variable values (components).

Especially in community-based scenarios, where a larger number of users interacts with the knowl-

edge engineering environment, engineering practices will change in the sense that users are providing

knowledge chunks in a collaborative fashion and the knowledge engineering environment is in charge

of aggregating this information. In this context, it is necessary to have mechanisms that automatically

distribute knowledge acquisition tasks among users in a systematic fashion (e.g., depending on the

workload, knowledge level, and preferences of users). Such tasks can be represented in a more-or-less

traditional form of todo-lists but can also be represented in terms of so-called games with a purpose

(von Ahn (2006)) which is an upcoming trend also in the knowledge engineering field (Siorpaes and

Hepp (2008)).

A simple example of such a knowledge acquisition interface is depicted in Figure 4.1. In this

example game, the users Ann and Paul have the task to cooperatively figure out combinations of

customer requirements that are incompatible, i.e., induce an inconsistency with the knowledge base.

The players have successfully completed their task if they, for example, selected the same set of

assignments as candidates for incompatibilities. The underlying assumption of this game is that Ann

does not know the input of Paul and vice-versa.

Further examples of gamification-based interfaces for configuration knowledge acquisition are: co-

operative definition of relevant variables (including their domains), the estimation of intuitive dialog

sequences (which questions should be asked in which order), the derivation of further constraint types

(e.g., filter constraints that match user requirements to corresponding technical product properties),

and the estimation of accepted repair rankings in situations where no solution could be found. Such

scenarios can be supported by input templates that represent micro-tasks (see Figure 4.1).
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Testing and Debugging. The definition and evaluation of (positive and negative) test cases is a

crucial issue since the correctness of a test suite directly influences the correctness of the results

determined by a configurator. In Felfernig et al. (2004) positive and negative examples are exploited

for debugging knowledge bases on the basis of the concepts of model-based diagnosis (Reiter (1987)).

In this context, positive examples are exploited for inducing conflicts in a configuration knowledge

base. A negative example is assumed to be integrated in negated form into the knowledge base in the

case that it has not been rejected by the knowledge base. On the basis of the following two test cases

(examples) we can show how positive examples are used to find errors in the knowledge base. Both

test cases are in conflict with constraints in the configuration knowledge base introduced in Section

4.3.

• t1 : wr = high∧ rr =>9%

• t2 : rr = 6-9%∧wr = medium

A conflict between a test case t and a set of constraints in the configuration knowledge base can be

defined as a conflict set CS ⊆C: CS∪ t inconsistent. Such a conflict set CS is minimal if there does

not exist another conflict set CS′ with CS′ ⊂CS. To resolve a minimal conflict, only one element has

to be deleted from CS. In our example, the test case t1 is in conflict with the constraints c2 and c3 and

test case t2 is in conflict with the constraint c5. Consequently we have two different (and minimal)

conflict sets which are CS1: {c2,c3} and CS2: {c5}. Resolving these conflicts results in two different

diagnoses, namely D1 = {c2,c5} and D2 = {c3,c5}, i.e., a diagnosis is a hitting set (Reiter (1987))

which includes at least one constraint from each of the given conflict sets.

Typically, there are many alternative diagnoses and the question has to be answered which of these

is acceptable for the users engaged in testing and debugging. Figure 4.2 depicts a basic approach of

integrating knowledge about the users expertise in the determination of a diagnosis. For the conflict

CS1 = {c2,c3}, the majority of users prefers to keep c2 as-is and to delete or change c3 to resolve

the conflict. Since CS2 is a singleton, no alternatives exist for resolving the conflict, i.e., c5 must be

selected. Overall, the elements in the diagnosis D2 = {c3,c5} have a lower community support and

therefore will be changed or deleted by the users in order to restore the consistency with the test-suite

{t1, t2}.

4.4. Group-based Configuration

An assumption of existing configuration environments is that there is no need for additional config-

uration support in scenarios where groups of users are jointly configuring their preferred product or

service. A major consequence of this assumption is that single users are forced to encode the prefer-

ences of a group which is often done in a suboptimal fashion.

Within the scope of an industry study with representatives of N=25 companies applying configu-

rators we figured out that none of the existing configuration environments provides technologies that

58



4.4. Group-based Configuration

ID
domain for group-based
configuration

components and constraints decision makers

1 software release plans
requirements, releases,
dependencies, preferences

stakeholders in software
project

2
product line scoping and
open innovation

(new) features, constraints
between features,
preferences

representatives from
different departments,
customers

3
bundle configuration (e.g.,
hotel, flight, tour, etc.)

(new) destinations, hotels,
sightseeing tours, (resource)
constraints, preferences

travel group

4
stakeholder selection for a
new software project

(new) persons, constraints
regarding competences and
resources, preferences

(initial) team members

5
architectural design in
software development

components, interfaces,
technologies, constraints
between components,
preferences

(distributed) software project
members

6
financial service
configuration

financial services, resource
constraints, preferences

family members

7
building configuration (e.g.
smart home, office block)

rooms, furniture, light
control equipment,
constraints between
components, preferences

family members, suppliers,
company representatives

8 funding decisions
project proposals, resource
constraints, preferences

evaluators, consultants,
decision makers

Table 4.2.: Application scenarios for group-based configuration identified within the scope of a study
with N=25 companies applying configuration systems.

support groups of users in jointly configuring a solution. However, there is a strong agreement on the

fact that such technologies have to be included in future configurators. The study participants reported

different scenarios for the application of group-based (socially aware) configuration technologies. So-

cial awareness in this context denotes the fact that specific properties of group decision processes are

explicitly taken into account by the configuration environment (e.g., the need to achieve consensus

among group members). Examples of such scenarios are depicted in Table 4.2.

In these scenarios a group of users is in charge of jointly configuring a product or service, for exam-

ple, when configuring a holiday trip (bundle configuration) for a group of friends (Jameson (2004)),

the requirements and preferences of all group members should be taken into account. When config-

uring a software release plan, the preferences of individual stakeholders regarding the assignment of

requirements to releases have to be taken into account (Ninaus et al. (2014)).

Taking into account requirements and preferences of group members requires decisions regarding

trade-offs. In the context of holiday trips such a trade-off could be the acceptance of a lower-quality
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destination Lindwurm Großglockner Pyramidenkogel Isonzo Valley
Ben 1 1 0 0
John 1 1 0 0
Kate 0 0 1 1

least misery 1 0 1 0
majority voting 1 1 0 0

Table 4.3.: Example set of tourist destinations (in the Alps-Adriatic area). The assumption in this
example is that each person is allowed to articulate at most two preferences and the trip
must include at least two destinations.

hotel which is much nearer to the sightseeing destination preferred by a specific user. When config-

uring software release plans, a trade-off could concern the postponement of a specific requirement to

a later release while increasing the importance level of this requirement (to avoid further postpone-

ments).

The determination of trade-offs must be based on preference aggregation mechanisms (Masthoff

(2011)) that take into account the preferences of all group members as far as possible. For example,

the least misery strategy avoids massive discriminations of individual group members by minimizing

the maximum number of trade-offs to be accepted by an individual. In contrast, majority voting

follows the opinions of the majority of the group members which can lead to discriminations against

individuals.

An example of the application of the least misery strategy in the context of deciding about a com-

mon sightseeing trip is depicted in Table 4.3. In this simplified example, each person is allowed to

select at most two destinations and the corresponding trip must include two destinations. Since Ben

and John have similar preferences, majority voting would discriminate Kate. In contrast, least misery

tries to find a trade-off that has the potential to create group consensus. For a detailed discussion of

preference aggregation mechanisms we refer the reader to Masthoff (2011).

A major issue for future research is the consideration of longer time periods. For example, if a

group of friends jointly configures a holiday trip every year, the aggregation mechanisms used by

the group-based configuration environment should take into account (as far as possible) the degree to

which individuals had to accept trade-offs in the past and use this information for the recommendation

of fair trade-offs in future configuration sessions.

On the technical level the above mentioned properties require basic research in the following areas.

First, constraint-based search methods have to be extended with mechanisms that help to predict

(partial) configurations which are of relevance for the group. This requires learning methods for search

heuristics (Schrijvers et al. (2013)) that help to predict relevant configurations in an efficient fashion.

Furthermore, it is important that configurators are able to determine similar and diverse configurations

efficiently which could also be achieved on the basis of the mentioned heuristics.
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Second, the determination of trade-offs for inconsistent requirements and preferences has to be

based on efficient diagnosis methods integrated with intelligent preference aggregation mechanisms

(Masthoff (2011)) that can help to better predict trade-offs acceptable for all group members. These

aggregations must take into account the histories stored in interaction logs in order to guarantee deci-

sion fairness in the long run.

Third, negotiation and argumentation mechanisms have to be developed which support individuals

to express acceptable trade-offs. In our holiday configuration scenario an example of such a statement

is ”I accept to visit Greece this year if we agree to organize a trip to Italy next year”. Such arguments

cannot be expressed on the basis of existing preference representations.

4.5. Flexible Product Enhancement

The ability to include additional variables (component types), values (components), and constraints

in a flexible fashion is important for the implementation of open configuration.

Product line scoping (John et al. (2006)) (in the context of software product line engineering) is in

the need of such a flexibility since the features and constraints element of the product line are not com-

pletely predefined at the beginning of the engineering process. A larger group of users has to jointly

decide which components (features) and constraints should be part of the product line. Thus, prod-

uct line scoping can be interpreted as open configuration where new alternatives and constraints (and

preferences) can be integrated within the scope of the configuration (product line scoping) process.

Open innovation (Chesbrough (2003)) reflects the idea of integrating customer communities into

new product development processes of a company. In this context, variability modeling for product

lines also requires the support of an easy integration of new component types, components, and con-

straints which reflect features to be supported by future products. In both scenarios, the integration of

new items has to be supported by corresponding group decision processes (see Section 4.4), for exam-

ple, before a new feature is integrated into the model, the group has to perform the needed validation

steps and decide about the inclusion of the feature. This also holds for the afore mentioned scenarios

of release planning and holiday trip configuration.

A further example of the need for flexible enhancements are postponement strategies (Forza et al.

(2008); Yang and Burns (2003)). An example is the automotive industry, where basic car configura-

tions are delivered to dealers who can then integrate additional components such as MP3 players and

tow-bars, i.e., are enabled to integrate their own products and services into the basic configuration

delivered by car producers. Conform to the definition given in Forza et al. (2008), the mentioned sce-

nario is of type-III where customers are allowed to specify additional equipment when they already

have a more precise idea of the interior of the car. The corresponding configuration model has to

provide flexible interfaces that allow an easy integration of new component types, components, and

constraints. A knowledge representation concept that can be exploited in this context are contextual
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models (Felfernig et al. (2000b)) which allow a systematic extension of existing base diagrams with

additional items relevant in a specific context (e.g., the car dealer context). In such scenarios, devel-

opers of configurator solutions also have to take into account that – depending on the additional items

introduced – search heuristics (Schrijvers et al. (2013)) have to be adapted in order to assure efficient

search.

4.6. Related and Future Work

Intelligent testing and debugging methods for configuration knowledge bases have been introduced

in Felfernig et al. (2004) where positive test cases can detect errors by inducing conflicts in a con-

figuration knowledge base. Conflicts are then resolved on the basis of model-based diagnosis (Reiter

(1987)). In open configuration scenarios, testing and debugging approaches have to be adapted to

group-based settings where diagnosis discrimination has to take into account group preferences.

Bessiere et al. (Bessiere et al. (2007)) introduced basic mechanisms to the learning of constraint

sets. In this context, knowledge bases are learned on the basis of positive and negative examples.

Generated examples are presented to users who have to decide whether the examples are positive or

negative. Learning is based on a so-called bias that is a knowledge base generated from a vocabulary

(variables, domains, and operators). The bias is systematically reduced on the basis of the information

included in the examples, for instance, all conflicts induced in the bias by a positive example have to

be resolved. In the case of a negative example, at least one conflict must be preserved which guaran-

tees the rejection of the negative example. Approaches to the application of association rule mining

for configuration knowledge discovery are discussed in Huang et al. (2008). An important research

issue in this context is to assure the understandability and manageability of the derived configuration

knowledge (Felfernig et al. (2013c)).

Human Computation is based on the idea of passing those tasks to humans which are easy to solve

for them but are not solvable by computers (von Ahn (2005)). Related research has already been

conducted in the areas of ontology construction (concept learning) (Siorpaes and Hepp (2008)) and

sentiment analysis in text documents (Musat et al. (2012)). A major idea of the work presented in this

chapter is to exploit the concepts of Human Computation as a central mechanism for configuration

knowledge base construction and maintenance. These mechanisms go beyond concept learning (Sior-

paes and Hepp (2008)) and include tasks such as diagnosis discrimination, test case classification and

evaluation, and configuration dialog design.

Preferences are not known beforehand but are constructed within the scope of a decision process

(Bettman et al. (1998); Teppan and Felfernig (2009)). As a result, biases occur which often lead to

suboptimal decisions. Concepts to deal with (group) decision problems in recommender systems are

discussed in Felfernig et al. (2010, 2006); Jameson (2004); Mandl et al. (2010); Ninaus et al. (2014).

A major issue for future research in this context is an in-depth investigation of decision biases in group
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decision making. An important question is to which extent biases are compensated or become more

intense when groups decide.

4.7. Conclusions

In this chapter we introduced central ideas and research questions related to open configuration. Open-

ness in this context is related to the idea of a closer integration of end-users into configuration knowl-

edge base development and maintenance operations and of supporting decision processes in scenarios

where groups of users are in charge of configuring a product or service. Furthermore, open con-

figuration is often characterized by the need of being able to integrate new items (e.g., component

types, components, and constraints) ”on the fly”. On the basis of the results of a first industry study

we reported example application domains and discussed related research challenges. The concepts

presented in this chapter can be applied in a broad range of scenarios which go beyond open con-

figuration. Further example application domains are (constraint-based) scheduling (Baptiste et al.

(2001)), recommender systems (Jannach et al. (2010)), and utility evaluation where user groups are in

charge of evaluating alternatives (Felfernig et al. (2013d)).
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Chapter 5
Configuring Decision Tasks

This chapter is based on the results documented in Stettinger et al. (2014). The author of this thesis

wrote most parts of this chapter.

5.1. Abstract

In most cases, decision tasks are individual and different decision tasks require different combinations

of features. Features can be, for instance, special preference visibilities during the decision process

or specific heuristics that support the recommendation of decisions. To find the right features for

a decision task it is essential to offer a corresponding configuration functionality. In this chapter

we illustrate how the design of a decision task can be represented as a configuration problem. The

underlying configuration knowledge is already integrated in a tool called CHOICLA.

5.2. Introduction

Decisions have to be taken in different situations - for example a decision about the destination for

the next holidays or a decision about which restaurant to choose for a dinner with friends. Decision

scenarios can differ from each other in terms of their process design. Some decision scenarios rely on

a preselected decision heuristic that defines the criteria for taking the decision, for example, a group

decides to use majority voting for deciding about the next restaurant visit. Furthermore, the visibility

of the preferences of other users is an important feature that can be configured by the creator of a

decision task.

In this chapter we show how the design of decision tasks (the underlying process) can be defined as

a configuration problem. The major advantage of this approach is that making the process design of

decision tasks configurable introduces the flexibility that is needed due to the heterogenity of decision
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problems. This way we are able to build a model that is flexible with regard to the implementation

(generation) of problem-specific decision applications. The knowledge representations introduced in

the following are included in the CHOICLA decision support environment (see www.choicla.com).

The remainder of this chapter is organized as follows. In the next section (Section 5.3) we discuss

features that are essential to the design of a decision task. In Section 5.4 we introduce dependencies

that exist between features. In Section 5.5 we provide insights into group recommendation approaches

integrated in the CHOICLA environment. We then discuss related and future work and thereafter

conclude the chapter.

5.3. Configuring a decision task

In the following we discuss different features that are relevant when designing (configuring) a decision

task. On a formal level, we represent a decision task configuration problem as a constraint satisfaction

problem Mackworth (1977) and (Felfernig et al. (2014b)) (CSP – see Definition 1).

Definition 1 (Constraint Satisfaction Problem). A CSP consists of (1) a set of finite-domain vari-

ables X = {x1,x2, ...,xn} and (2) a set of constraints C = {c1,c2, ...,cm}. For each variable xi out of

X there exists a finite set Di (domain of the variable) of possible assignments. Possible variable as-

signments can be limited via constraints. A complete assignment (every variable has a corresponding

value) which is consistent with the constraints in C is denoted as a solution for a CSP.

For the purpose of better understandability we use a feature model notation to express variability

properties of decision tasks. A feature model (FM) represents a set of possible features and rela-

tionships between them. Features are arranged hierarchically which is basically a tree structure with

one root feature (Benavides et al. (2010)). Within this tree structure the nodes are the features and

the edges are the relationships (constraints). A more detailed discussion of different feature model

representations can be found in Batory (2005), Benavides et al. (2010) and Felfernig et al. (2013a).

Six different types of constraints (relationships) are typically used for the construction of feature

models (Batory (2005), Benavides et al. (2010)): mandatory, optional, alternative, or, requires and

excludes. Feature models are representing configurable products which can be formalized in the form

of a CSP. A feature f is included if the value is set to 1 - otherwise it is said to be excluded. We will

exemplify this formalization on the basis of feature model depicted in Figure 5.1. Figure 5.1 shows a

fragment of the CHOICLA feature model 1.

The CSP representation of the feature model depicted in Figure 1 is the following:

V = { f1, f2, ..., f21}

1A more in-depth discussion of the CHOICLA decision support environment can be found in Stettinger et al. (2013).
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Figure 5.1.: Fragment of the CHOICLA feature model. In this model, fi are used as abbreviation for
the individual features, for example, f1 is the short notation for feature Decision Task
(Application).

dom( f1) = dom( f2) = ...= dom( f21) = {0,1}

c1 : f1↔ f2

c2 : f1↔ f3

c3 : f1↔ f4

c4 : f1↔ f5

c5 : f6→ f1

c6 :( f7↔ (¬ f8∧ f3))∧ ( f8↔ (¬ f7∧ f3))

c7 :( f9↔ (¬ f10∧¬ f11∧ f4))∧ ( f10↔ (¬ f9∧¬ f11∧ f4))∧ ( f11↔ (¬ f9∧¬ f10∧ f4))

c8 :( f12↔ (¬ f13∧ f5))∧ ( f13↔ (¬ f12∧ f5))

c9 : f14↔ f10

c10 : f15→ f10

c11 : f16↔ f10

c12 : f17→ f10

c13 : f18→ f10

c14 : f14→ f15

c15 : f16→ f17

c16 : f16→ f18

c17 :¬( f16∧ f12)

c18 :( f19↔ (¬ f20∧¬ f21∧ f15))∧ ( f20↔ (¬ f19∧¬ f21∧ f15))∧ ( f21↔ (¬ f19∧¬ f20∧ f15))
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We will now discuss different basic properties of decision task configuration problems. In this context

we explain the individual features and constraints depicted in Figure 5.1.

Basic properties. Each decision task is characterized by a name, a corresponding description, and a

picture that represents the decision task (summarized in the feature Basic Properties for simplification

purposes).

Management of alternatives. There are different possibilities to support alternative management

within the scope of a decision task. First, only the creator of a decision task is allowed to add alterna-

tives – this could be the case if a person is interested to know the opinions of his/her friends about a

certain set of alternatives (e.g., alternative candidates for the next family car). Another related scenario

are so-called ”Micro-Polls” where the creator is only interested in knowing the preference distribution

of a larger group of users. Second, in some scenarios it should be possible that all decision makers

can add alternatives – a typical example of such a scenario is the group-based decision regarding a

holiday destination or a hotel Jameson (2004). In this context, each user should be allowed to add

relevant alternatives. An example scenario of the third case (only external users can add alternatives)

is the support of group-based personnel decisions – in this context it should be possible that persons

apply for a certain position (the application itself is interpreted as the addition of a new alternative to

the decision task).

Scope. The scope of a decision task denotes the external visibility. The scope ”private” allows

only invited users to participate, i.e., the task is not visible for other users except those who have been

invited. If the scope is ”public”, the decision task is visible to all users – this is typically the case

in the context of so-called Micro-Polls. The selection of the scope has an impact on other features –

related aspects will be discussed in Section 5.4.

Preference visibility. The visibility of individual preferences of the other participants involved

in a decision process can have an impact on decision quality (see Felfernig et al. (2012b), Jameson

(2004), and Jameson and Smyth (2007)). There occur some decision scenarios where all participants

should exactly know which person articulated a rating of an alternative. If, for example, a date for a

business meeting is the topic of the decision task it is very essential to find a date where all division

managers can attend the meeting and therefore it is important to know the individual preferences of

the participants in that case. But there are of course decision scenarios where preference visibility can

lead to disadvantages for some participants but still some kind of transparency of the preferences is

helpful to come to the best decision. In such cases a summary of all given preferences of an alternative

is a good way to support the participants best during the decision process. A summary prevents all

participants from statistical inferences but still can help participants who are not sure about which

rating to select.

Email notification. If this feature is set, emails can be used to exchange information about the cur-

rent state of the decision process. For example, the status update interval specifies in which intervals

participants of a decision process receive a summary of the current status of the decision process. The
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restaurant Martin Dave George Ben
Clocktower 5 3 5 4

Häuserl im Wald 3 3 5 3
La Botte 5 3 3 3

El Gaucho 4 3 4 4

Table 5.1.: Examples of user-specific ratings with regard to the available decision alternatives
(restaurants).

active participation reminder is a feature which helps to trigger need for closure. If this feature is set,

a maximum inactive time (without looking at the current status of the decision task) for the partici-

pants can be set. After this time is elapsed an email will be sent to the corresponding participants to

encourage an active participation at the decision task.

Recommendation support. In context of group decision tasks another very essential aspect is the

aggregation function (recommendation heuristic). Aggregation functions can help to foster consensus

in a group decision process, furthermore, user studies show that these functions also help to increase

the degree of the perceived decision quality (see, for example Felfernig et al. (2012b)). Preferences

of individual users can be aggregated in many different ways and there exists no standard heuristic

which fits for every decision scenario. To support groups of users in different scenarios the selection

of recommendation heuristics is a necessary feature which has to be configured by the creator of a

decision task. Some basic aggregation heuristics which can be used in such cases are described below.

For an in-depth discussion of basic types of aggregation heuristics see, for example, the overview of

Masthoff (Masthoff (2011)). The example given in Table 5.1 represents the individual ratings of the

participants for the defined alternatives. The results of applying the decision heuristics discussed

below are depicted in Table 5.2.

Majority Voting (see Formula 5.1) determines the value (d) that a majority of the users selected as

voting for a specific solution s where eval(u,s) denotes the rating for solution s defined by user u. For

example, the majority of votings for Clocktower is 5 (see Table 5.2).

MAJ(s) = maxarg(d∈{1..5})(#(
⋃

u∈Users

eval(u,s) = d)) (5.1)

Least Misery (see Formula 5.2) returns the lowest voting for solution s as group recommendation. For

example, the LMIS value for the s = Clocktower is 3.

LMIS(s) = min(
⋃

u∈Users

eval(u,s)) (5.2)

Most Pleasure (see Formula 5.3) returns the highest voting for solution s as group recommendation.
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solution MAJ LMIS MPLS GDIS ENS

Clocktower 5 3 5 5 5
Häuserl im Wald 3 3 5 3 3

La Botte 3 3 5 3 3
El Gaucho 4 3 4 4 4

Table 5.2.: Results of applying the aggregation functions to the user preferences shown in Table 5.1.
MAJ = Majority Voting; LMIS = Least Misery; MPLS = Most Pleasure; GDIS = Low-
est Group Distance; ENS = Ensemble Voting. This example is based on the preference
information in Table 5.1.

For example, the MPLS value for the s = Clocktower is 5.

MPLS(s) = max(
⋃

u∈Users

eval(u,s)) (5.3)

Group Distance (see Formula 5.4) returns the value d as group recommendation which causes the low-

est overall change of the individual user preferences. For example, the GDIS value for s = Clocktower

is 5 (or, alternatively 4).

GDIS(s) = minarg(d∈{1..5})( ∑
u∈Users

|eval(u,s)−d|) (5.4)

Finally, Ensemble Voting (see Formula 5.5) determines the majority of the results of the individual

voting strategies H = {MAJ, LMIS, MPLS, GDIS}. For example, the ensemble-based majority voting

for Clocktower is 5.

ENS(s) = maxarg(d∈{1..5})(#(
⋃

h∈H

eval(h,s) = d)) (5.5)

Explanations. Explanations can play an important role in decision tasks since they are able to

increase the trust of users in the outcome of a decision process (Felfernig et al. (2006)). When config-

uring a decision task in CHOICLA, explanations can be selected as a feature of the decision process.

In the current version of CHOICLA, explanations are supported by simply allowing the creator of the

decision process to include textual argumentations as to why a certain decision alternative has been

selected as ”the final decision”. If this feature is selected, the administrator of a decision task has to

enter some explanatory text, if not, the entering of such a text remains just an option.
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5.4. Dependencies among features

We now discuss examples of constraints that restrict the combinations of features as shown in the

feature model of Figure 5.1. The constraint-based representation of these constraints is shown in the

CSP definition of the feature model given in Section 5.3.

Figure 5.2.: CHOICLA: definition of a decision task. Basic settings & further configurable features in
case the decision makers are allowed to contribute own alternatives during the decision
process.

Scope of a decision. If a decision task is public, there are restrictions regarding the support of

message interchange (e.g., via email) and the visualization of the preferences of other users. In the

case that a decision task is private, it is in both cases possible to choose. Preferences can (but must

not) be made visible to other users and the type of possible message interchange can be specified. The

differentiation between public and private decision tasks also has an impact on other system properties.

For example, if a decision task is defined as private, the corresponding decision application can not be

reused by other users, i.e., found as a result via the CHOICLA search interface.

Preference visibility. A dependency of type ’requires’ exists between the feature preference visi-

bility and the corresponding notation of visibility. Preference visibility denotes a functionality where

the individual preferences of other users are made visible for the current user. The type of visualiza-

tion can only be selected in the case that the preference visibility feature is has been selected by the

designer of a decision task.

Email notification. Similar to the visibility of preferences, the type of supported message exchange

(e.g., via email) can only be specified in the case that the creator of the decision task decided to support

email notifications. As already mentioned, email communication is only supported if the scope of the

decision task is private.

These simple examples already show the need to manage decision task related variability in a struc-

tured fashion. Our knowledge representation approach allows for a product line oriented development
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of decision support functionalities and makes systems much more flexible for future requirements and

corresponding extensions.

5.5. Configuring decision tasks in CHOICLA

In the following we give an example of how a decision task can be configured in the CHOICLA decision

support environment (www.choicla.com). The application knowledge base of CHOICLA is currently

rule-based. For reasons of easier maintenance and adaptability we apply reasoning and CSP for future

versions of CHOICLA.

Parts of the user interface that supports a creator of a decision task are depicted in Figure 5.2. The

possible parametrizations correspond to the features in the model of Figure 5.1. If, for example, a

specific feature A depends on the inclusion of another feature B, this is taken into account in the user

interface, i.e., such a feature (feature A) can only be selected, if the other feature (feature B) is also

selected. In the example of Figure 5.2, the scope of the decision task is private (only invited users can

participate), all decision makers are allowed to add alternatives, and for all participants of the decision

process the preferences of other users are visible (names as well as preferences). Note that in the

CHOICLA environment there are many additional features that can be selected within the scope of a

decision task configuration process.

For understandability reasons we kept our working example simple and focused on aspects that

give the reader an impression of the basic underlying configuration problem. The user interface for

the inclusion of alternatives is depicted in Figure 5.3.

Figure 5.3.: CHOICLA: user interface for addition of decision alternatives. The dots in the upper right
corner of every symbol indicate whether there is an information in this category available
or not. The meaning of the used symbols is (from left to right): edit, delete, geographical
information, files, links and comments.

Figure 5.4 shows how the decision alternatives can be voted by the individual users of a decision

task.

72



5.6. Related and Future Work

Figure 5.4.: CHOICLA: user interface for individual voting of decision alternatives. Each alternative
can be voted by a five-star scale. The tab Places shows the geographical distribution of
the decision alternatives (if available). In tab Group Preferences the actual group recom-
mendation as well as the individual preferences of the other users (if feature f 14 is set) is
presented to the users. The process where the ”final decision” can be set is triggered by
the button Finalize Choicla.

5.6. Related and Future Work

There exist a couple of online tools which support different types of decision scenarios. The Decider2

is a tool that allows the creation of issues and decision alternatives – the corresponding recommenda-

tion is provided to users who are articulating their preferences regarding the given decision alterna-

tives. Rodriguez et al. (Rodriguez et al. (2007)) introduce Smartocracy which is a decision support

tool which supports the definition of tasks (issues or questions) and corresponding solutions. Solution

selection (recommendation) is based on exploiting information from an underlying social network

which is used to rank alternative solutions. Dotmocracy3 is a method for collecting and visualizing

the preferences of a large group of users. It is related to the idea of participatory decision making – it’s

major outcome is a graph type visualization of the group-immanent preferences. Doodle4 focuses on

the aspect of coordinating appointments – similarly, VERN (Yardi et al. (2005)) is a tool that supports

the identification of meeting times based on the idea of unconstrained democracy where individuals

are enabled to freely propose alternative dates themselves. Compared to CHOICLA these tools are not

able to customize their decision processes depending on the application domain and are also focused

on specific tasks. Furthermore, no concepts are provided which help to improve the overall quality of

group decisions, for example, in terms of integrating explanations, recommendations for groups, and

consistency management for user preferences.

The support of group decision processes on the basis of recommendation technologies is a new and

upcoming field of research (see, e.g., Masthoff et al. (Masthoff (2011))). The application of group

recommendation technologies is still restricted to specific domains such as interactive television (Mas-

thoff (2004)), e-tourism (Jameson (2004); McCarthy et al. (2006)), software requirements engineering

(Felfernig et al. (2012b)), and ambient intelligence (Perez et al. (2010)).
2labs.riseup.net.
3dotmocracy.org.
4doodle.com.
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Future Work. Our future work will focus on the analysis of further application domains for the

CHOICLA technologies. Our vision is to make the design (implementation) of group decision tasks

as simple as possible. The resulting decision task should be easy to handle for users and make group

decisions in general more efficient. Within the scope of our work we will also focus on the analysis

of decision phenomena within the scope of group decision processes. Phenomena such as decoy

effects (Huber et al. (1982)) and anchoring effects (Jacowitz and Kahneman (1995)) are well known

for single-user cases but are not investigated in group-based decision scenarios. Finally, we will also

focus on the development of further group recommendation heuristics. In this context, our major goal

is to make the CHOICLA datasets available to the research community in an anonymized fashion for

experimentation purposes.

5.7. Conclusions

In this chapter we have shown how to represent the design of decision tasks as a configuration problem.

In this context, we gave a short introduction to the CHOICLA group decision environment which

supports the flexible design and execution of different types of group decision tasks. Compared to

existing group decision support approaches, CHOICLA provides an end user modelling environment

which supports an easy development and execution of group decision tasks.
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Chapter 6
Choicla: Intelligent Decision Support for
Groups of Users in the Context of Personnel
Decisions

Parts of this chapter have been published in Stettinger (2014), Stettinger and Felfernig (2014), and

Stettinger et al. (2013). Imperative parts of this chapter, such as literature research, algorithmic

approaches as well as the user study have been provided by the author of this thesis.

6.1. Abstract

Group recommendation technologies have been successfully applied in domains such as interactive

television, music, and tourist destinations. Existing technologies are focusing on specific domains

and do not offer the possibility of supporting different kinds of decision scenarios. The Choicla

group decision support environment advances the state of the art by supporting decision scenarios in a

domain-independent fashion. In this chapter we present an overview of the Choicla environment and

exemplify it’s application in the context of personnel decisions.

6.2. Introduction

Decisions in everyday life often come up in groups, for example, a decision about the destination

for the next holidays or a decision about which restaurant to choose for a dinner. Knowledge about

the preferences of other users in early phases of a decision process can lead to sub-optimal decision

outcomes (Mojzisch and Schulz-Hardt (2010)). Missing explanations can lead to a lower level of trust
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in recommendations (Felfernig et al. (2006)). So-called anchoring effects (Jacowitz and Kahneman

(1995)) are responsible for decisions which are biased by the voting of the first preference-articulating

person. If single persons have to take a decision in place of persons who are not available for a meet-

ing, the outcome of the decision can also be negatively influenced. Decision processes are often not

open in the sense that it is impossible to easily integrate new decision alternatives or change the in-

dividual preferences within the scope of a decision process - both aspects can lead to low-quality

decision outcomes (see Molin et al. (1997)). In many cases, the criteria for the decision remain un-

clear since there is no explanation of the outcome of ”the final decision”. All these mentioned threats

can negatively influence the quality of group decisions.

One major goal of the Choicla environment is to facilitate group decision making and improve the

overall quality of decision outcomes. The idea of this environment is to support definitions of dif-

ferent types of decision tasks in a domain-independent fashion while taking into account the above

mentioned risk factors. In order to achieve this goal, Choicla builds upon different group recom-

mendation algorithms (Masthoff (2011)) which are used for determining alternative solutions for the

participants of a group decision process.

One example of the application of Choicla is to support groups of users in context of personnel deci-

sions with the aim of achieving a more structured, fair, and transparent way of job interviews as well

as to find the most suitable candidate for the job advertisement. Other typical scenarios for the appli-

cation of Choicla technologies are the decision about which restaurant to select for a dinner or - in a

scientific community - a decision regarding the selection of the destination of next year’s conference.

The remainder of this chapter is organized as follows. In Section 6.3 we provide insights to (1) the

Choicla modelling process where participants can design decision tasks from scratch and (2) the in-

telligent management of already created decision apps. In Section 6.4 we give an overview of the

personnel decision scenario. We then discuss related & future work (Section 6.6) and thereafter con-

clude the chapter.

6.3. Choicla Decision Support

Because decision scenarios differ from each other in their process design, a variety of parameters

is needed to specify all relevant properties of a decision task. We will now discuss basic features

(parameters) which can be configured (modelled) by the creator of a decision task. In this context we

refer to the example features depicted in Figure 6.1.

6.3.1. Design of Decision Apps

Because decision scenarios differ from each other, some decision scenarios rely on a preselected de-

cision heuristic that defines the criteria for taking the decision, for example, a group decides to use

majority voting for deciding about the next restaurant or cinema visit. The design of decision tasks
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Figure 6.1.: Choicla: definition of a decision task. Basic settings & further configurable features.

(the underlying process) can be interpreted as a configuration problem (see Stettinger et al. (2014)).

The achieved flexibility of making the process design of a decision task configurable is needed due to

the heterogeneity of decision problems. This way the Choicla components are organized as a kind of

a software product line that is open in terms of the implementation (generation) of problem-specific

decision applications.

Explanations. Explanations can have an important role in decision tasks since they are able to in-

crease the trust of users in the outcome of a decision process (Felfernig et al. (2006)). When designing

a decision task in Choicla, explanations can be selected as a feature of the decision process. If this

feature is selected, the administrator of a decision task has to enter some explanatory text, if not, the

entering of such a text remains just an option.

Administration of Decision Alternatives. The administration of decision alternatives within the

scope of a decision task can be supported in different ways. First, only the initiator of a decision task

is allowed to add alternatives – this could be desired if a person is interested in knowing the opinions

of his/her friends about a concrete set of alternatives (e.g., alternative candidates for the next family

car). Another related scenario are so-called ”Micro-Polls” where the initiator is only interested in

knowing the preference distribution of a larger group of users. Second, in some scenarios it is impor-

tant that all decision makers can add alternatives during the decision task by themselves – a common

example of such a scenario is the group-based decision regarding a holiday destination or a hotel

(Jameson (2004)). In such a context, each participant should be allowed to add relevant alternatives.

The support of group-based personnel decisions can be seen as an example scenario of the third case

(only external users can add alternatives) – in this context it should be possible that candidates apply

for a certain job position (the application itself is interpreted as the addition of a new alternative to

the decision task). The selection of the next conference location where proposers can submit their

material is another example.

Preference Visibility. The scope ”private” allows only invited users to participate, i.e., the decision
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task is only accessible for invited users and not accessible for other users. If the scope is ”public”, the

decision task is accessible for all users – this is typically the case in the context of so-called Micro-

Polls. The decision quality can be influenced if the individual preferences of the other participants

are visible during the decision process (see Felfernig et al. (2012b) and Jameson (2004)). There exist

decision scenarios where all participants profit from the knowledge of who entered which rating. If,

for example, the decision task is to find a date for a business meeting it is essential to find a date where

all managers can attend the meeting and therefore it is important to know the individual preferences

of the participants. On the other hand there are decision scenarios where full preference visibility can

lead to disadvantages for some participants but some kind of transparency of the individual prefer-

ences is helpful to achieve a reasonable decision. In such cases a summary of all given preferences is

a feasible way to support decision makers (participants). A summary prevents the participants from

statistical inferences to the individual preferences but still can help participants who are unsure about

how to rate.

Recommendation Support. In the context of group decision tasks, an essential aspect is the ag-

gregation function (recommendation heuristic). In a group decision process aggregation functions can

help to foster consensus. User studies show that these functions also help to increase the degree of the

perceived decision quality (see, for example Felfernig et al. (2012b)). Individual user preferences can

be aggregated in many different ways and there exists no default heuristic which fits for every deci-

sion scenario. To provide a support for groups of users in different decision scenarios, the selection

of recommendation heuristics is a key feature which has to be configured by the initiator of a decision

task. Due to space limitations we only describe selected aggregation heuristics below. Masthoff (Mas-

thoff (2011)) gives an overview of basic aggregation heuristics such as Majority Vote (MAJ), Average

Vote (AVV), Least Misery (LMIS), and Most Pleasure (MPLS) which are also available in the Choicla

environment.

Group Distance (GD) (see Formula 6.1) returns the value d as group recommendation which causes

the lowest overall change of the individual user preferences where eval(u,s) denotes the rating for a

solution s defined by user u.

GD(s) = minarg(d∈{1..5})( ∑
u∈Users

|eval(u,s)−d|) (6.1)

Ensemble Voting can be seen as an example of a meta-aggregation function included in Choicla.

Ensemble Voting (see Formula 6.2) determines the majority of the results of the individual voting

strategies H = {MAJ, AVV, LMIS, MPLS, GD} where eval(h,s) denotes the result of an individual

voting strategy for a solution s.

ENS(s) = maxarg(d∈{1..5})(#(
⋃

h∈H

eval(h,s) = d)) (6.2)
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To achieve fairness among all group members in long term scenarios (e.g., recurring decision tasks),

we developed a modified version of the Group Distance algorithm (see Formula 6.4), where all past

decisions influence the actual recommendation. A user-weighting w(u) is used to ensure that users

whose individual ratings often differ from related decisions (represented by distance(u)), are privi-

leged.

w(u) =
1
1

∑distances(u)+1

(6.3)

GD′(s) = minarg(d∈{1..5})( ∑
u∈Users

w(u)∗ |eval(u,s)−d|) (6.4)

North&
South

Trattoria
El
Gaucho

La
Botte

Dec.
Sit. 1

Martin 5 3 4 4
Dave 2 3 5 3

George 5 3 3 3
Ben 4 3 4 4

Rec. GD 5 3 4 4

Dec.
Sit. 2

Martin 5 2 2 4
Dave 3 3 4 2

George 4 3 3 3
Ben 4 4 3 5

Rec. GD 4 3 3 4

Dec.
Sit. 3

Martin 5 3 4 3
Dave 3 5 3 3

George 4 3 4 5
Ben 4 4 5 5

Rec. GD′ 4 5 4 3

Table 6.1.: User-specific ratings with regard to the available decision alternatives (restaurants) in re-
curring decision situations. The group recommendation is marked bold in the correspond-
ing decision situation.

If we look at the example in Table 6.1 we notice that in Dec. Sit. 3 the group recommendation is

Trattoria although the individual aggregation heuristics (Masthoff (2011)) would calculate a different

group recommendation. Dec. Sit. 1 and 2 are responsible for a user-weighting in Dec. Sit. 3 which

leads to this recommendation. The used weights of the participants calculated by Formula 6.3 in Dec.

Sit. 3 are the following: Martin: 1, Dave: 6, George: 2, and Ben: 3. Dave has the highest weight

in Dec. Sit. 3. This approach allows to achieve fairness among the group members in long term

decisions.
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6.3.2. Choicla Decision Apps

After the design process has been finished, the creator of the decision task as well as all invited partic-

ipants (after accepting the invitation) see a corresponding decision app directly on the personal home

screen (see Figure 6.2).

Figure 6.2.: Choicla: Home screen of a registered user. The symbols within the tiles trigger actions
which can be performed in the current state of the decision app. Possible actions are
(from left to right): configuration, evaluation (only possible if the decision app is publicly
available over the store), and delete.

The tab DecisionApp Store contains publicly available decision apps which can be searched and in-

stalled on the personal Home Screen. This method prevents a creation from scratch every time for

frequent decision tasks such as, for example, scheduling decision tasks. In such a case the decision

process can be triggered right after the download of a decision app. This reuse technique has the

potential to reduce the entry barrier for using Choicla and keep the interaction simple – especially for

people who want to start a decision process quickly. The tab Create DecisionApp allows a user to

design a completely new decision app from scratch.

Due to the fact that many decision tasks occur regularly – for example, a group of friends go for dinner

once a month – a concept is needed to manage a potentially large number of decision tasks. To keep

the potentially large number of decision tasks manageable, every decision app consists of a variable

number of instances. A concrete instance of a decision app can be accessed within the corresponding

decision app - all instances of a concrete decision app will be loaded when the decision app is opened.

The created instance of the example depicted in Figure 6.1 is accessible in the ”Personnel-decision”

app (see Figure 6.2). This mechanism offers the possibility of an exact documentation of all past

decisions and is also a basis for supporting recurring decision tasks.

6.4. Choicla Personnel Decisions

6.4.1. Users View

Personnel decisions are often influenced by various factors. Such factors are, for example, if a candi-

date has physical handicaps, in most cases no concrete structure is followed during the job interview
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and the evaluation often gets subjective. In such a case the assessment criteria of the candidates

change and no ”fair” and objective decision can be made. Another important factor is that in most

cases personnel decisions come up in groups of users which means that often more than one person is

affected by the hiring procedure.

To prevent groups from unsystematic reviews, Choicla offers a structured and fair way to evaluate

candidates of a job position. Figure 6.3 shows the evaluation of the candidates in context of our work-

ing example (new receptionist) for a particular decision maker.

Figure 6.3.: Choicla: example of individual ratings. Each user can take a look at the current recom-
mendation and adapt his/her preferences if needed.

To keep the screen understandable, only the line with the aggregated information of a candidate is

visible - by clicking on this line, several dimensions including their actual ratings show up for the

corresponding candidate (only visible for first candidate in Figure 6.3). In order to avoid misunder-

standings in context of evaluation the sliders of the first candidate are automatically displayed if the

screen is loaded. Due to the fact that depending on the advertised job position different assessment

criteria are needed, the dimensions on which a candidate can be evaluated can be chosen by the creator

of a decision task. If we look at the example in Figure 6.3 we can see that for the ”New Receptionist”

the dimensions English skills, Communication, Friendliness, and Punctuality are chosen.

In situations where there are candidates for whom not all criteria (dimensions) have been evaluated

or there exists a discrepancy between individual evaluations, special markers are used to point out

open issues. This approach creates need for closure (see, e.g., Ninaus et al. (2014)), i.e., users are

additionally motivated to make the candidate evaluations complete and consistent.

If a candidate should be excluded from the application procedure in early phases (e.g., some criteria

are not met), this can be achieved by using the ”Manage Candidates” button (a new menu shows up).

The early exclusion of an unsuitable candidate supports more clarity since only the ”relevant” candi-

dates are displayed.

The tab Group Preference presents the current group recommendation, after a predefined number (the

threshold) of participants articulated their preferences. This threshold prevents from statistical infer-

ences to the individual preferences of other participants (only in combination with a ”private” decision
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scope - see Section 6.3). The group recommendation in context of personnel decisions is based on

the MAUT-principle (multi-attribute-utility-theory (Dyer (2005))). A group recommendation based

on the MAUT-principle (see Formula 6.5) returns the average value of all individual MAUT values of

all participants as group recommendation for one candidate (solution s). A group member’s individual

MAUT value represents the weighted average of all personal ratings of the dimensions of an alterna-

tive. This means that the attribute values are subjective and the weights are fixed which is different in

a typical MAUT scenario.

MAUT (s) = ∑
u∈Users

∑d∈s eval(u,d)∗weight(d)
|dimensions|

(6.5)

If we look at the individual ratings in Figure 6.3 we notice the values 8, 5, 8, and 5 for the dimensions.

For simplification purposes we assume in our example that all dimensions have the same weight

(wd1 = wd2 = wd3 = wd4 = 5). Due to Formula 6.5, the individual MAUT value for the actual user of

the first alternative is 32.5. To present the evaluation of a solution (candidate) within a five star scale,

these values have to be normed.

6.4.2. Candidates View

All previous described options and screens can only be accessed by the decision makers of the decision

task itself and can of course not be seen by the applicants of the job position. During the design phase

of a decision task the input fields (e.g., name, age, and application text) which are then visible by the

applicants during the application process can be defined. Figure 6.4 shows the view of an applicant in

our running example ”New Receptionist”.

Figure 6.4.: Choicla: example of the entering of application data. Each applicant can insert his/her
personal data needed for the advertised job position.

All the added information of the candidates is then prepared and accessible for the decision makers
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during the assessment phase - see Figure 6.3. This way of adding solutions to a decision process shifts

the burden of entering candidate information by a single person - in most cases a secretary - to the

applicants.

6.5. User Study

In order to evaluate the Choicla group decision environment, we conducted a first small-scale user

study. In this study we made the software accessible to ten persons outside our university who were

not aware of the fact that the system has been developed at our university. Each of these participants

defined a decision task with the support of the Choicla environment and then made accessible the

decision task to a group of other persons. The average number of persons participating in a decision

scenario was around 5. The overall number of users who interacted with Choicla within the scope of

our study was N=48 (38% female, 62% male). Within the scope this empirical study we could gain a

first evidence that users consider the current version of the system applicable and can imagine to apply

Choicla functionalities in various domains. For an in-depth discussion of this user study we refer to

Stettinger et al. (2013).

6.6. Related & Future Work

There exist a couple of online tools supporting decision scenarios. Rodriguez et al. (Rodriguez et al.

(2007)) describes a system called Smartocracy. Smartocracy is a decision support tool which supports

the definition of tasks in terms of issues or questions and corresponding solutions. The recommenda-

tion (solution selection) is based on exploiting information from an underlying social network which

is used to rank alternative solutions. Dotmocracy1 includes a method for collecting and visualizing

the preferences of a large group of users. It is related to the idea of participatory decision making –

it’s major outcome is a graph type visualization of the group-immanent preferences. Doodle2 is an

internet calendar tool with the focus on coordinating appointments. VERN (Yardi et al. (2005)) is

(very similar to doodle) a tool that supports the identification of meeting times. VERN is based on

the idea of unconstrained democracy where individuals are enabled to freely propose alternative dates

themselves. A major advantage of Choicla3 compared to these tools is that users of Choicla are able

to customize their decision processes depending on the application domain and can also focus on spe-

cific tasks. Furthermore, the mentioned tools provide no concepts which help to improve the overall

quality of group decisions, for example, in terms of integrating explanations, recommendations for

groups, and consistency management for user preferences.

Recommendation approaches in the line of Choicla are also presented in Sangeetha et al. (Kutty et al.

1dotmocracy.org.
2doodle.com.
3www.choicla.com.
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(2012)) and Malinowski et al. (Malinowski et al. (2008)). Sangeetha et al. (Kutty et al. (2012)) intro-

duce recommendation approaches that support people-to-people recommendation (detection of latent

relationships between similar users) whereas Malinowski et al. (Malinowski et al. (2008)) discuss

approaches (based on fitness measures) that support the pre-selection of candidates for existing teams

(groups). In contrast, Choicla focuses on supporting a group decision where parameters such as the

fit of a candidate with an existing group are represented in terms of MAUT dimensions.

Our future work will focus on the analysis of further application domains for the Choicla technologies.

Our vision is to make the design (implementation) of group decision tasks as simple and straightfor-

ward as possible. The resulting decision task should be easy to handle for users and make group

decisions in general more efficient. Our focus will also be on the analysis of decision phenomena

within the scope of group decision processes. Phenomena such as decoy effects (Huber et al. (1982),

Teppan and Felfernig (2009)) and anchoring effects (Jacowitz and Kahneman (1995)) have been well

studied for single-user cases, however, in group-based decision scenarios no studies have been con-

ducted.

Biases can be induced if a system is open in the sense that new decision alternatives can be added dur-

ing the decision process. However, such a feature is imperative in cases where all possible decision

alternatives are not available from the beginning. The group preferences can also be influenced by the

order of the incoming individual preferences due to the fact that the participants of a group will per-

ceive already selected alternatives more attractive than new options (Neale et al. (2004)). If consensus

out of discussion is reached in early phases, literature shows that this consensus is cognitive resistant

to changes. That means that additional information which is added later in a decision process will

be adapted to already defined consensus and due to this it is very unlikely that another alternative is

chosen (Lind et al. (2001)). Such a phenomenon can be explained by the assimilating effect which is

ascribable to the dissonance theory (Festinger (1957)). The assimilating effect states that individuals

are motivated to reduce psychological incongruity or discrepancy that is very likely to arise if new

information is added to a present perception (Neale et al. (2004)). A high group cohesion intensifies

this effect, because within such a group the fear of exclusion is higher (see Lind et al. (2001)). Future

versions of Choicla will reduce this effect by providing a special way of preference visibility which,

for example, only shows the preferences of other users for those participants who completed their

individual ratings of the alternatives. Another research direction in this context is if such mechanisms

can increase the willingness of participants to articulate their real preferences.

Another research direction is the support of long term decisions (Ariely and Zakay (2001)) (see Sec-

tion 6.3.1). Fairness is an important issue in this context - the degree of perceived fairness influences

the willingness of group members to accept compromises in the resolution of conflicts of opinions

and also their trust in other group members (Lind et al. (2001)). A further issue for future work is to

figure out which group recommendations help to achieve consensus more quickly.

We want to emphasize that one of our major goals is to make the Choicla datasets available to the

research community in an anonymized fashion for experimentation purposes.
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6.7. Conclusions

In this chapter we gave a short introduction to Choicla which supports the flexible design and execu-

tion of different types of group decision tasks with a focus on personnel decisions. With the help of

Choicla it is possible to achieve more transparent, fair, and structured personnel decisions. Compared

to existing group decision support approaches, Choicla provides an end user modelling environment

which supports an easy development and execution of group decision tasks. We also discussed further

research directions which can help to extend the available functionality of the Choicla environment.
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Chapter 7
Counteracting Serial Position Effects in the
CHOICLA Group Decision Support
Environment

This chapter is based on the results documented in Stettinger et al. (2015b). The author of this thesis

provided major contributions in terms of literature research, intelligent preference acquisition

interfaces as well as the user study and wrote major parts of this chapter.

7.1. Abstract

Decisions are often suboptimal due to the fact that humans apply simple heuristics which cause dif-

ferent types of decision biases. CHOICLA is an environment that supports decision making for groups

of users. It supports the determination of recommendations for groups and also includes mechanisms

to counteract decision biases. In this chapter we give an overview of the CHOICLA environment and

report the results of a user study which analyzed two voting strategies with regard to their potential of

counteracting serial position (primacy/recency) effects when evaluating decision alternatives.

7.2. Introduction

Several decisions in everyday life occur in the context of groups, for example, a decision regarding

the restaurant to choose for a dinner with business partners or a decision regarding the cinema movie

to watch with a group of friends. There exist various decision biases which can negatively influence

the quality of group decisions (Mandl et al. (2010)). Anchoring effects (Jacowitz and Kahneman

(1995)) are responsible for decisions which are biased by a shown reference value. For example,
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the average rating of other users in the context of rating an item in collaborative filtering scenarios

(Adomavicius et al. (2011)) or the evaluation of an item by the first group member shown to other

group members can trigger anchoring effects (Felfernig et al. (2012b); Mojzisch and Schulz-Hardt

(2010)). Anchoring biases in collaborative filtering scenarios can be counteracted with an adaptation

of the preference acquisition interface, for example, by an adaptation of the underlying rating scale

visualization (Adomavicius et al. (2014)). In the context of group decision scenarios, anchoring effects

can be controlled by not completely disclosing the preferences of other group members in early stages

of a decision process (Felfernig et al. (2012b)).

Another example of decision biases are decoy effects which denote the fact that irrelevant (inferior)

items in an item set significantly influence the selection behavior of users (Tversky and Simonson

(1993)). In the context of recommendation scenarios, decoy effects can occur in the item selection

process, i.e., if a set of candidate items is recommended to a user (Teppan and Felfernig (2012)).

Decoy effects can be detected and counteracted on the basis of predictive models that estimate dom-

inance relationships between items in a candidate (consideration) set and propose to remove items

from the candidate set before showing it to the user (Teppan and Felfernig (2012)).

In this chapter we focus on primacy/recency effects (serial position effects) that represent situations

in which items presented at the beginning and the end of the list are evaluated signficantly more

often than items in the middle of a list (Murphy et al. (2012)). An explanation of this effect is that

users are not interested in evaluating large lists to identify those items that best fit their preferences.

Primacy/recency effects are also explained as a cognitive phenomenon since items at the beginning and

the end of a list are also recalled more often (Felfernig et al. (2007a)). In recommendation scenarios

these effects have been investigated, for example, by Felfernig et al. (Felfernig et al. (2007a)). The

results of their studies clearly show that item properties shown to a user at the beginning and the end

of a recommendation dialog are recalled significantly more often than properties in the middle of a

dialog.

There exist a couple of online tools that support group decision scenarios. SMARTOCRACY provides

support for voting scenarios in social network contexts where information from the social network is

applied to rank recommendations (Rodriguez et al. (2007)). DOODLE1 focuses primarily on the aspect

of coordinating meetings and does not include additional mechanisms to determine recommendations

for groups of users. Similarly, VERN (Yardi et al. (2005)) is a tool that supports the identification of

meeting times based on the idea of unconstrained democracy where individuals are enabled to freely

propose alternative dates themselves. DOTMOCRACY2 deals with larger groups of users and provides

a method for collecting and visualizing group preferences. The system is based on the idea of par-

ticipatory decision making – it’s major outcome is a graph type visualization of the group-immanent

preferences. Compared to CHOICLA, these tools focus on specific scenarios, i.e., do not allow a

flexible definition of decision functionalities depending on the scenario at hand. Furthermore, exist-

1doodle.com.
2dotmocracy.org.

88



7.2. Introduction

ing tools do not include recommendation and explanation functionalities which can help to increase

trust in recommendations (Felfernig et al. (2006)) and improve the perceived decision support quality

(Felfernig et al. (2012b)).

Typical CHOICLA scenarios range from industrial settings (e.g., selection of conference locations,

selection of new employees, and evaluation of project proposals) to decision scenarios in private

settings (e.g., selection of a restaurant for a dinner with friends, selection of a hotel for a holiday trip

with friends, and the selection of a movie to watch with friends in a cinema). The contributions of this

chapter are the following. (1) we present CHOICLA which is a novel domain-independent decision

support tool for groups of users and (2) we show how to counteract primacy/recency effects occurring

in the evaluation of decision alternatives.

The remainder of this chapter is organized as follows. In Section 7.3 we provide insights to the

CHOICLA design process where users (creators of decision apps) can model decision tasks from

scratch. In Section 7.4 we provide an overview of the intelligent management of already created

decision apps. In Section 7.5 we report the results of an empirical study which focused on (1) usabil-

ity aspects and (2) possibilities to counteract serial position (primacy/recency) effects in the evaluation

of decision alternatives. Finally, we discuss issues for future work and conclude the chapter.

Figure 7.1.: Fragment of the CHOICLA feature model. fi is used as abbreviation for the individual
features, for example, f3 is the short notation for feature Recommendation Support.
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Figure 7.2.: Example set of parameters which can be selected when creating a new CHOICLA decision
app.

7.3. Choicla Environment

7.3.1. Configurability of Decision Apps

Since decision scenarios differ in terms of their process design, a variety of parameters (features) is

needed to make decision processes configurable (see Figure 7.1). CHOICLA offers a variety of features

that represent user interface elements (and corresponding functionalities) that can be included in a

decision process. For example, the creator of a new CHOICLA decision app can select (set) the feature

f21 which indicates that in the new decision app preferences of other users will be shown in terms of

a basic summary (individual user preferences will not be displayed).

In order to make decision processes (and corresponding user interface elements) configurable in

an intelligent fashion, a configuration model is needed that expresses the set of features and their

relationships (Benavides et al. (2013); Stumptner (1997)). This configuration model is an integrative

part of CHOICLA. An example of such a relationship is the requires constraint between the features

f14 and f15 expressing the fact that the selection of the first one also requires the selection of the latter.

An example fragment of the CHOICLA feature model is depicted in Figure 7.1. We will not discuss

this feature model in detail but rather explain major properties on the basis of selected features.3 An

example screenshot of the CHOICLA user interface for defining the parameters of a decision app is

depicted in Figure 7.2.

3More details on the CHOICLA feature model can be found in Stettinger et al. (2014).
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CHOICLA includes different types of group recommendation heuristics that can be selected to be

used within the scope of a group decision process. Figure 7.1 includes the heuristics Majority and

Maut (see Dyer (2005)). The first one is a basic implementation of majority voting, the second one

implements Multi Attribute Utility Theory (MAUT) for group-based settings. Both approaches to ag-

gregate group preferences are discussed in Paragraph Recommendation Support. Solution alternatives

can be managed in different ways, for example, if feature f9 has been selected, only the creator of the

corresponding CHOICLA decision app is allowed to add decision alternatives. The scope of a decision

app (see also Section Choicla Decision Apps) can be public or private. If it is private, the app cannot

be reused by other other users, otherwise it can be reused.

7.3.2. Recommendation Support

CHOICLA includes different group recommendation heuristics (e.g., majority voting and group-based

MAUT) that can foster consensus in group decision making (see, e.g., Felfernig et al. (2012b); Mas-

thoff (2011)). The degree of perceived decision quality of the participants can be significantly in-

creased by using such aggregation functions – see, for example, Masthoff (2011); Stettinger et al.

(2013). In the following we exemplify group recommendation heuristics (aggregation functions) that

can be selected by the creator of a decision app during the corresponding configuration process.

For the explanation of CHOICLA aggregation functions we use a working example which is related

to the task of restaurant selection by a group of friends. Table 7.1 represents the individual restaurant

ratings of the participants. For these ratings, group recommendations can be derived on the basis of

the CHOICLA group decision heuristics (see Table 7.2).

restaurant Martin Rene Philip Stefan
Aphrodite 4 3 4 4

Zeus 5 3 5 4
Hermes 5 3 3 3

Poseidon 3 3 5 3

Table 7.1.: Examples of individual user ratings with regard to the available decision alternatives
(restaurants).

Majority Voting (see Formula 7.1) determines the value (d) that a majority of the users selected as

voting for a specific solution s where eval(u,s) denotes the rating for solution s defined by user u. For

example, the majority of votings for Aphrodite is 4 (see Table 7.2).

MAJ(s) = maxarg(d∈{1..5})(#(
⋃

u∈Users

eval(u,s) = d)) (7.1)

Least Misery (see Formula 7.2) returns the lowest voting for solution s as group recommendation. For
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solution MAJ LMIS MPLS GDIS ENS

Aphrodite 4 3 4 4 4
Zeus 5 3 5 5 5

Hermes 3 3 5 3 3
Poseidon 3 3 5 3 3

Table 7.2.: Results of applying the aggregation functions to the individual preferences shown in Table
7.1. MAJ = Majority Voting; LMIS = Least Misery; MPLS = Most Pleasure; GDIS =
Lowest Group Distance; ENS = Ensemble Voting. This example recommendation values
are based on the preference information in Table 7.1.

example, the LMIS value for s = Aphrodite is 3.

LMIS(s) = min(
⋃

u∈Users

eval(u,s)) (7.2)

Most Pleasure (see Formula 7.3) returns the highest voting for solution s as group recommendation.

For example, the MPLS value for the s = Aphrodite is 4.

MPLS(s) = max(
⋃

u∈Users

eval(u,s)) (7.3)

Group Distance (see Formula 7.4) returns the value d as group recommendation which causes the low-

est overall change of the individual user preferences. For example, the GDIS value for s = Aphrodite

is 4.

GDIS(s) = minarg(d∈{1..5})( ∑
u∈Users

|eval(u,s)−d|) (7.4)

Finally, Ensemble Voting (see Formula 7.5) determines the majority of the results of the individual

voting strategies H = {MAJ, LMIS, MPLS, GDIS}. For example, the ensemble-based majority voting

for Aphrodite is 4.

ENS(s) = maxarg(d∈{1..5})(#(
⋃

h∈H

eval(h,s) = d)) (7.5)

Figure 7.3 depicts a CHOICLA user interface where a 5-star rating scale can be used to evaluate

alternatives. In some cases there is a need for a more detailed evaluation of decision alternatives in

terms of interest dimensions – this is typically the case in a MAUT-based scenario (Dyer (2005)).

Evaluation criteria (MAUT dimensions) differ from decision task to decision task and therefore can

be modeled during the creation process of a decision app. A MAUT-based group recommendation
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Figure 7.3.: Evaluation of the decision alternatives based on a 5-star scale.

Figure 7.4.: Dimension-based evaluation of the decision alternatives in CHOICLA.

for a specific solution s represents the sum of individual MAUT values of participants of the group

decision task. A weighted average of all personal ratings of the dimensions of an alternative represents

the individual MAUT value of a group member. In our current implementation the attribute values

are subjective and the weights of the dimensions are fixed (predefined) which is different in a typical

MAUT scenario.

MAUT (s) = ∑
u∈Users

∑d∈s eval(u,d)∗weight(d)
|dimensions|

(7.6)
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If we look at the individual ratings of the dimensions of the restaurant Zeus in Figure 7.4 we notice

the values 9, 7, 8, and 10. For simplification purposes we assume in our example that all dimensions

have the same weight (wd1 = wd2 = wd3 = wd4 = 5). The current user’s individual MAUT value of

the restaurant Zeus is (9∗5+7∗5+8∗5+10∗5)/4 which results in 42.5. To display the MAUT-based

evaluation of a solution (restaurants in our working example), utility (MAUT) values are transformed

to a 5-star scale.

CHOICLA also offers a modified version of the Group Distance algorithm (see Formula 7.8). This

modified version of the Group Distance algorithm (GD′) takes into account past decision outcomes.

A user-weighting w(u) is used to ensure that users whose individual ratings often differ from related

decisions (represented by distance(u)), are privileged. This user-weighting w(u) considers the total

sum of all the distances between the individual ratings of a user to the ”final decision” in the par-

ticular decision situation (see Formula 7.7). If a history of past decision outcomes is available, the

recommendation is influenced by these user-weightings.

w(u) = ∑distance(u)+1 (7.7)

GD′(s) = minarg(d∈{1..5})( ∑
u∈Users

w(u)∗ |eval(u,s)−d|) (7.8)

7.3.3. Decision Alternatives

In CHOICLA, there are different ways in which decision alternatives can be entered into the system.

(1) only the creator of a decision task can add/modify decision alternatives – this is needed if a person

is interested in the opinions of his/her friends about the given alternatives (e.g., alternative candidates

for the next digital camera). Another example are so-called ”Micro-Polls” where the creator is only

interested in knowing the preference distribution of a large group of users. (2) all decision makers

are allowed to add decision alternatives – a typical example of such a scenario is the group-based

decision regarding a restaurant or a hotel Jameson (2004). (3) only external users are allowed to add

alternatives, i.e., users who do not participate in the decision process. For example, job applicants

should be able to add a bundle consisting of the application documents as decision alternative to a

(personnel) decision task (the application itself is interpreted as a new alternative - see Stettinger and

Felfernig (2014)). Another related example is the selection of next year’s conference location where

proposers submit their material in a similar fashion.

7.3.4. Evaluation of Decision Alternatives

As shown in Figure 7.4 we used Ambience, Price, Quality and Location as dimensions in our working

example. The stars in Figure 7.4 show the average evaluation based on the values given for the
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different dimensions of the decision alternatives. To keep the screen in Figure 7.4 comprehensible, per

default only the accumulated ratings of the decision alternatives are shown – the detailed evaluation

of the dimensions is hidden and only displayed if users click on the corresponding alternative. The tab

Places contains, if available, the geographical information of the decision alternatives. The third tab

Group Preferences only shows up if a (predefined) threshold in terms of the number of participations is

reached. It displays the actual group recommendation based on the selected recommendation heuristic

(see Section 7.3) in terms of a bar chart. This threshold prevents the participants from statistical

inferences to the individual user preferences, especially if no complete preference visibility is wanted

at all. Figure 7.5 visualizes the current group recommendation.

Figure 7.5.: Actual group recommendation based on the Group Distance recommendation function
(see Formula 7.4). The group recommendation is highlighted with bold font as well as an
green arrow.

7.3.5. Explanations

To increase the trust of the participants in the outcome of a decision process, explanations are indis-

pensable (Felfernig et al. (2006)). During the design of a CHOICLA decision app explanations can be

selected as a feature (see Figure 7.1).

CHOICLA supports explanations by allowing the creator of a decision task to attach argumentations

as to why an alternative has been selected as group decision. If this feature is selected, the creator

has to enter an explanatory text, if not, the entering of such a text remains just an option. If the

creator selects the recommended alternative as the ”final decision”, CHOICLA generates an explana-

tion according to the selected recommendation function. For example, if majority voting is selected,

CHOICLA generates the following explanatory text for the group recommendation Zeus: 5-star eval-

uations were selected more often than other possible evaluations.
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Figure 7.6.: CHOICLA: personal home screen of an registered user. In this setting, the user has in-
stalled four different CHOICLA decision apps which are the selection of a location, a
meeting time for a jour-fixe meeting, new hardware as well as personnel decisions.

7.3.6. Preference Visibility

The insight to the individual preferences of all participants involved in a decision process can have a

significant impact on decision quality (see Jameson (2004) and Nunamaker et al. (1991)). There exist

decision tasks where the detailed insight into the preferences of all participants is an advantage and of

course others where an opposite effect can occur. If, for example, the decision task deals with finding

an appointment for a management meeting it is essential to find a date where all heads of different

departments can attend the meeting and therefore it is important to know the individual preferences of

the participants.

In some decision scenarios full preference visibility can lead to disadvantages for some participants

but some kind of transparency of the preferences is helpful to achieve a reasonable decision. In

such cases CHOICLA can support the decision makers by offering the possibility to display solely a

summary of all given preferences regarding an alternative. A summary prevents all participants from

statistical inferences but still can help participants who are unsure about their preferences. All the

mentioned features (see Figure 7.1) can be configured during the modeling process of a decision app.

The interface of a CHOICLA app is automatically generated conform the selected features (see Figure

7.6).

7.4. Choicla Decision Apps

After all features relevant for a new CHOICLA decision app have been selected, the corresponding de-

cision app can be generated automatically. Figure 7.6 depicts the personal home screen of a CHOICLA
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user who created four group decision apps (selecting a location, determining an appointment, select-

ing new hardware, and deciding about new employees). Within each of these apps a user can create

new decision tasks (instances) and invite (potential) group members (participants) via email. After a

participant has accepted the invitation, the decision app also shows up on the personal home screen of

the participant.

The tab DecisionApp Store (see Figure 7.6) contains all publicly available decision apps. Decision

apps can be searched and directly installed to the individual home screen. This mechanism can save a

lot of effort for very common decision tasks because the creator can reuse/modify an already created

decision app instead of creating a new one from scratch. This kind of reuse makes the interaction

more intuitive and can also reduce barriers for using CHOICLA. The third tab Create DecisionApp

offers the possibility to create a completely new decision app from scratch.

Figure 7.7.: Evaluations of the decision alternative Zeus on basis of a 5-star scale. The dotted lines
show the average voting value of the alternative. Description 1 states the negative aspects
at the very beginning and the end (negative salient) and Description 2 states the positive
aspects at the very beginning and the end (positive salient).

7.5. User Study

We conducted a user study with the goals (1) to evaluate the usability of the current version of

CHOICLA and (2) to investigate whether specific evaluation methods for decision alternatives can

counteract serial position (primacy/recency) effects. In this context, the term item refers to individ-

ual arguments/explanations in descriptions (the difference between descriptions shown to user is the

ordering of argumentations, i.e., the same individual argumentations were included in both descrip-

tions). In this study we made CHOICLA accessible to N=44 persons outside our university who were

interested in applying a group decision support software but were not aware of the fact that the system

has been developed at our university. The participants (34% female, 66% male) had no computer
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Figure 7.8.: Evaluations (scale: [1..5]) of the decision alternative Zeus on basis of MAUT dimensions.
The dotted lines show the average voting value of the alternative. Description 1 states
the negative aspects at the very beginning and the end (negative salient) and Description
2 states the positive aspects at the very beginning and the end (positive salient).

science oriented technical background knowledge.

The participants of the study were organized into groups of 5–6 persons who had the task of eval-

uating restaurants they would like to visit for a dinner. For this study, the restaurants were made

anonymous, i.e., the names used in our working example (Hermes, Aphrodite, Poseidon, and Zeus)

were not disclosed. N=23 participants (groups 1–4: 3 groups with 6 participants and 1 group with 5

participants) had to articulate their preferences on the basis of a 5-star scale, the remaining participants

(N=21, groups 5–8: 1 group with 6 and 3 groups with 5 participants) rated the restaurants with re-

gard to the predefined MAUT dimensions (Ambience, Price, Quality and Location). We anonymized

all restaurants in terms of their name and also made no statement on the type of food (for example

”italian”, ”asian”, ”steak”, ...) to prevent a bias triggered by favorite food tastes. Our major goal was

to figure out whether the evaluation based on MAUT (Dyer (2005)) can counteract primacy/recency

effects (if such effects exist). Before evaluating an alternative (restaurant), each participant had to read

the corresponding description which focused on the four mentioned interest dimensions (see Figure

7.4).

solution 5-star scale MAUT dimensions
groups 1–2 ns (Description 1) -
groups 3–4 ps (Description 2) -
groups 5–6 - ns (Description 1)
groups 7–8 - ps (Description 2)

Table 7.3.: Study setting: assignment of groups to different types of preference definition support (5-
star scale vs. MAUT dimensions) and descriptions of alternatives (ns: negative salient =
Description 1 vs. ps: positive salient = Description 2).
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For each restaurant, two descriptions were available which only differ in terms of the ordering

of individual argumentations: (1) the negative salient description where negative properties of the

alternative were positioned at the beginning and the end of the description (Description 1) and (2)

the positive salient description where positive properties of the alternative were positioned at the

beginning and the end of the description (Description 2 – see Table 7.3).

An example of a positive salient description (restaurant Zeus) is depicted in Table 7.4, Table 7.5

shows the corresponding negative salient description. With the help of these alternative descriptions

we wanted to figure out whether primacy/recency effects exist when evaluating decision alternatives.

We hypothesized that the higher effort which comes with an evaluation using MAUT helps to coun-

teract primacy/recency effects. This leads to better decision outcomes because biases such as the

primacy/recency effects can be significantly reduced if evaluations are performed more accurately.

Positive salient description (Zeus)
Breathtaking view over the city center. Easily
accessible via the highway, plenty of parking

opportunities. Terrific ambiente with an
open-view kitchen. Side dishes and sauces can
be freely customized. Friendly service. Upper

price segment. Food quality does not justify the
price. Personel leaves the impression of
unkemptness. Poor cleanliness. Elegant
furniture and a good place for relaxing.

Table 7.4.: Positive salient description (= Description 2) of a restaurant.

Negative salient description (Zeus)
Upper price segment. Food quality does not

justify the price. Breathtaking view over the city
center. Easily accessible via the highway, plenty
of parking opportunities. Terrific ambiente with
an open-view kitchen. Side dishes and sauces
can be freely customized. Friendly service.

Elegant furniture and a good place for relaxing.
Personel leaves the impression of unkemptness.

Poor cleanliness.

Table 7.5.: Negative salient description (= Description 1) of a restaurant.

As shown in Figure 7.5, every decision alternative is represented by a bar. To make an easy com-

parison to the individual preferences possible, the group recommendation displays the alternatives in

the same order as the individual preferences (see Figure 7.3). The bars of the chart in Figure 7.5

contain also the individual rating information of all participants (displayed by moving the cursor over

a corresponding bar). This information is only available if the preference visibility feature has been
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Figure 7.9.: Results of the SUS-based usability study of the second group (MAUT-based evaluation
of alternatives) (N=21).

set correspondingly when creating the decision app.

Results of the User Study The study shows that the restaurants with negative aspects at the begin-

ning and at the end of the description are rated lower than those with positive aspects at the beginning

and the end of the description. This was the case when 5-star ratings were used (on an average 1.5

stars less – see Figure 7.7). The outcome of a two-sample t-test confirms that the two sample sets have

different corresponding mean evaluations (p < 0.05). With 5-star rating scales, in 83.2% of the cases

restaurants with a positive salient description were chosen.

If MAUT dimensions were used to evaluate the alternatives there was no significant difference

between the two versions in terms of the average evaluation (see also Figure 7.8). In this case 53.6%

of the participants selected a restaurant with with a positive salient description (46.4% selected a

restaurant with a negative salient description).

Consequently, a MAUT-based evaluation of the decision alternatives can counteract serial position

(primacy/recency) effects. Figures 7.7 and 7.8 show the results of one decision alternative (Zeus)

based on a 5-star scale (Figure 7.7) and on a MAUT dimension evaluation (Figure 7.8).

After the participants finished their evaluation we asked them whether or not they felt comfortable

during the evaluation process on the basis of the systems usability scale (SUS) (Bangor et al. (2008)).

This is an important information for us because the MAUT-based evaluation needs more effort and

time because all dimensions have to be evaluated separately (see Figure 7.4).
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The usability feedback was very positive and provides a good motivation to continue our work on

the extension and improvement of the CHOICLA functionalities. A detailed description of the results

and the questionnaire for the evaluation can be found in Figure 7.9. We did not detect significant

differences in the SUS results between the 5-star version and the MAUT-based version. The results

indicate that participants spend more time for evaluating alternatives and thus are less susceptible to

serial position effects.

7.6. Conclusions and Future Work

In this chapter we gave an overview of the CHOICLA environment which supports different types of

group decision scenarios. Decision apps can be defined on the basis of a feature model that supports

the flexible configuration (definition) of decision apps. Within the scope of a user study we detected

primacy/recency effects in the evaluation of decision alternatives and figured out that a MAUT-based

item evaluation approach can help to counteract these effects. Our future work will include the devel-

opment of group decision technologies for complex products and services, the development of further

group decision heuristics which especially focus on fostering consensus among group members, and

the investigation of further decision biases that play a role in the context of group decision making.
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Chapter 8
Counteracting Anchoring Effects in Group
Decision Making

This chapter is based on the results documented in Stettinger et al. (2015a). The author of this thesis

provided major parts of this chapter in terms of literature research, de-biasing strategies as well as

the user study and wrote major parts of this chapter. For this work we received the James Chen Best

Student Paper Award on the 23rd Conference on User Modelling, Adaptation and Personalization

(UMAP 2015).

8.1. Abstract

Similar to single user decisions, group decisions can be affected by decision biases. In this chapter we

analyze anchoring effects as a specific type of decision bias in the context of group decision scenar-

ios. On the basis of the results of a user study in the domain of software requirements prioritization

we discuss results regarding the optimal time when preference information of other users should be

disclosed to the current user. Furthermore, we show that explanations can increase the satisfaction of

group members with various aspects of a group decision process (e.g., satisfaction with the decision

and decision support quality).

8.2. Introduction

Many decisions in everyday life occur in the context of groups, for example, a decision regarding the

restaurant to choose for a dinner with friends or a decision regarding the next years’ conference or

workshop location. A major objective of the CHOICLA1 group decision support environment is to
1www.choicla.com.
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support different types of group decision scenarios in an efficient fashion. CHOICLA includes func-

tionalities that determine recommendations on the basis of individual preferences of group members.

When dealing with group decisions, one has to cope with different types of decision biases which

can deteriorate decision quality. We will first provide a short overview of such biases and then focus

on the aspect of how to counteract anchoring effects in group decision making. For a more detailed

overview of such biases we refer to Felfernig (2014).

Serial position effects occur in situations where items at the beginning and the end of a list are eval-

uated more often (behavioural aspect) and also recalled (cognitive aspect) more often (Felfernig et al.

(2007a); Murphy et al. (2012)) than items in the middle of a list. Such items can be argumentations in

product descriptions (Stettinger et al. (2015b)), products and their attributes (Felfernig et al. (2007a)),

and lists of links (Murphy et al. (2012)). Such effects can occur independent of the popularity of an

attribute or item, for example, item properties presented at the beginning and the end of a recommen-

dation dialog are recalled more often independent of their popularity (Felfernig et al. (2007a)). A

possibility to counteract serial position effects in group-based recommendation is to change the pref-

erence acquisition interface, for example, from a star-based rating to a utility-based rating (items are

evaluated with regard to a predefined set of interest dimensions) which encourages users to analyze

item descriptions in more detail (Stettinger et al. (2015b)).

Decoy effects cause shifts in preference construction since decisions are taken depending on the

context in which alternatives are presented to the user (Tversky and Simonson (1993)). For example,

including a completely inferior alternative (e.g., with the lowest overall utility compared to all other

alternatives in a list of recommended items) can change a user’s evaluation of the remaining items in

the list. In the context of recommenders, such effects have been analyzed by Teppan et al. (Teppan

and Felfernig (2012)) who showed the existence of decoy effects on the basis of real-world financial

services datasets. Counteracting decoy effects can be based on predictive models that predict decoy

items which could be eliminated from a result set (Teppan and Felfernig (2012)).

Explanations can have a significant impact on the way that items are perceived/evaluated and – as

a consequence – on the corresponding decision. Thus, explanations play an important role in recom-

mender systems (Gkika and Lekakos (2014); Tintarev and Masthoff (2007)), for example, a digital

camera will be purchased or not, a movie will be watched or not, a car feature will we included or

not, a project proposal will be accepted or not, and a software requirement will be regarded as impor-

tant or not. Stettinger et al. (Stettinger et al. (2015b)) analyze the impact of argument orderings of

item explanations on the decision outcome, Felfernig et al. (Felfernig et al. (2006)) and Pu et al. (Pu

and Chen (2007)) show the (positive) influence of explanations on a user’s trust in recommender sys-

tems, and Herlocker et al. (Herlocker et al. (2000)) discuss different explanation-relevant dimensions

in recommender systems where beside justification, user involvement, and education, acceptance is

mentioned as a major relevant factor.

Anchoring effects cause decisions which are influenced by the group member who first articulated
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his/her preferences (Adomavicius et al. (2011); Jacowitz and Kahneman (1995)) – these results in the

context of decision support environments are confirmed by social-psychological studies that point out

the relationship between decision quality and the visibility of individual preferences for other group

members (Greitemeyer and Schulz-Hardt (2003); Mojzisch and Schulz-Hardt (2010)). Interestingly,

hidden preferences in early phases of group decision scenarios can increase the overall amount of

information exchange between group members and the higher the amount of information exchange

the higher the quality of the decision outcome. In collaborative filtering scenarios, anchoring effects

can be triggered by disclosing, for example, the average rating of other (similar) users. An adaptation

of the preference acquisition interface (e.g., a rating scale adapted from a 5-star to a binary one) can

help to counteract such biases in collaborative filtering (Adomavicius et al. (2011, 2014)).

The existence of anchoring effects in group decision scenarios has also been shown in Felfernig et

al. (Felfernig et al. (2012b)) who analyzed bias-induced preference shifts in the context of require-

ments engineering. In this scenario, the task of the project team was to make decisions regarding

different technical and organizational aspects of their software project. Examples of such decisions

are the way in which their software project should be evaluated and the type of technology that should

be used for implementing the requirements. Masthoff and Gatt (Masthoff and Gatt (2006)) discuss

algorithmic approaches to satisfaction prediction in group decision scenarios where conformity (judg-

ments are influenced by the judgements already articulated by other group members) and emotional

contagion (influence of an individual’s affective state on that of other group members) are mentioned

as influence factors. Compared to Masthoff and Gatt (Masthoff and Gatt (2006)), we did not analyze

emotional states of group members and focused on the impacts of different degrees of judgement

visibility. An analysis of intra-group dynamics in CHOICLA decision scenarios is within the scope

of future work. Our major focus in this chapter is to show in which way anchoring effects can be

counteracted in the context of group decision making. In this context, we focus on a requirements

prioritization scenario where groups of students (teams) had to agree on the set of additional require-

ments (and their priority) they are willing to implement in their software project. In addition, we

investigated the impact of explanations in group decision scenarios (explanations textually entered af-

ter a final decision has been taken). In this context we were interested on the impact that explanations

can have on the overall acceptance of a group decision by individual group members.

As a basis for completing the requirements prioritization task the teams of our study used the

CHOICLA group decision support environment. Example CHOICLA scenarios for industrial settings

are the selection of new employees, the selection of conference locations, and the evaluation of project

proposals. In the private context, CHOICLA can, for example, support the selection of a restaurant for

a dinner with friends, the selection of a hotel for a holiday trip, and the selection of a cinema movie to

watch with friends. In addition to CHOICLA, there exist many other group decision support environ-

ments. DOODLE2 focuses primarily on the aspect of coordinating meetings and does not include addi-

tional mechanisms to determine recommendations for groups of users. Similarly, VERN (Yardi et al.

2doodle.com.
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(2005)) is a tool that supports the identification of meeting times based on the idea of unconstrained

democracy where individuals are enabled to freely propose alternative dates themselves. SMARTOC-

RACY provides support for voting scenarios in social network contexts where information from the

social network is applied to rank recommendations (Rodriguez et al. (2007)). DOTMOCRACY3 deals

with larger groups of users and provides a method for collecting and visualizing group preferences.

The system is based on the idea of participatory decision making – it’s major outcome is a graph type

visualization of the group-immanent preferences. Compared to CHOICLA, these tools focus on spe-

cific domains and do not offer the possibility for a flexible definition of domain-independent decision

scenarios.

The contributions of this chapter are the following: (1) we provide a short overview of the CHOICLA

group decision support environment on the basis of a working example from the area of software

requirements prioritization, (2) we show (a) the existence of anchoring effects and (b) possibilities of

counteracting these effects in the context of group decision making, and (3) we show that explanations

in group decision scenarios can have a positive impact on the overall acceptance of group decisions.

The remainder of this chapter is organized as follows. In Section 8.3 we provide an overview of

the CHOICLA decision support environment. In Section 8.4 we report the results of an empirical

study which focused on (a) anchoring effects within group decision scenarios and (b) the impact of

explanations. The chapter is concluded with Section 8.5.

8.3. The CHOICLA Environment

Decision tasks often differ in their basic properties, for example, decision heuristics (Masthoff (2011))

such as majority voting or least misery should be preselected or not, alternatives can only be defined

by the administrator (also denoted as creator) of a decision task (app), preferences of other group

members should be visible (or not), and decisions should be explained or not (by the creator of a

decision task). Due to the many existing options, decision tasks must be configured before being

provided to a group of users – for details see Stettinger et al. (Stettinger et al. (2014)). An example

of a definition (configuration) of a CHOICLA decision app is depicted in Figure 8.1. In this exam-

ple, a group of users (stakeholders) should decide about the priority of requirements that should be

additionally implemented in a software project. In this context, all group members are allowed to

add their own alternatives (software requirements), to add additional material (links and files), and to

see the preferences of other users (regarding the prioritization of requirements). Making the process

design of decision tasks configurable introduces the flexibility that is needed due to the heterogeneity

of decision problems. The achieved flexibility provides the basis for organizing the CHOICLA com-

ponents in a kind of a software product line that is open in terms of the generation (implementation)

of problem-specific decision applications.

3dotmocracy.org.
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Figure 8.1.: Interface for configuring CHOICLA decision apps.

After a CHOICLA decision app configuration has been completed, the corresponding decision app

is automatically generated and installed on the home screen of the decision app creator. The creator

can now invite relevant users (in our case stakeholders) to participate in the decision process – this

is currently possible via email. Figure 8.2 depicts examples of already configured and generated

CHOICLA decision apps: requirements prioritization (our working example), appointment scheduling,

hardware procurement, and personnel decision4.

Figure 8.2 includes two more tabs which are denoted as DecisionApp Store and Create Decision-

App. The former can be used for searching and installing new decision apps (this is only possible

if a decision app has been defined as public and therefore been made reusable by the app creator),

the latter can be used for creating (configuring) your own decision app (for details see Stettinger et

al. (Stettinger et al. (2014))). CHOICLA decision apps can entail an arbitrary number of decision

instances, for example, if a requirements prioritization decision has to be taken for a new project or a

new set of requirements, the same decision app can be used by simply creating a new instance inside

the given decision app. Also after completion of the decision process, each individual instance of the

decision app is accessible in a decision history (documentation).

8.4. User Study

As already mentioned in Section 8.2, our major goal is to analyze anchoring effects in group decision

scenarios. In a requirements prioritization scenario (team members had to select additional require-

ments they had to implement within the scope of their project) we wanted to investigate the existence

of anchoring effects and also to figure out when to best disclose individual preferences (evaluations)

to other users (in our case stakeholders). In this context we were also interested in the impact of pref-

erence invisibility on the degree of information exchange between individual stakeholders. Finally,

4The CHOICLA personnel decision app is already applied by an Austrian university.
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Figure 8.2.: Examples of defined (configured) and generated CHOICLA decision apps.

we wanted to investigate factors such as the impact of the existence of explanations for group deci-

sions on the degree of satisfaction with the decision support and the perceived understandability of

the group decision. In the remainder of this chapter we will first present the CHOICLA decision app

generated for the purposes of requirements prioritization (software requirements for an online game)

and then discuss the design of our user study and the corresponding study results in detail.

The generated requirements prioritization decision app supports the prioritization of requirements

on the basis of a multi-utility based evaluation scheme (Dyer (2005)). Team members (subjects of

the study) were enabled to evaluate each requirement with regard to the dimensions Risk, Effort, and

Profit. Note that such dimensions are freely definable in CHOICLA if a MAUT-based aggregation

function (group recommendation heuristic) has been selected. An example of the evaluation of the

requirement Change Background is depicted in Figure 8.3.

Figure 8.3.: Evaluation interface of the requirements in CHOICLA. Participants can enter their ratings
by selecting a value for the dimensions Risk, Effort, and Profit.

This requirement is linked to a detailed textual description – in our case, the background style
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should be changeable in an online game. Note that in utility-based scenarios CHOICLA supports a

group-based MAUT approach, where individual ratings defined for interest dimensions are aggregated

using arithmetic mean and then added up (for details see Stettinger et al. (Stettinger et al. (2015b))).

The utility of each individual alternative (requirement) is then transposed to a five-star rating scale as

depicted in Figure 8.3. Since the goal of our study was to investigate anchoring effects in the context

of group decision scenarios, the visibility of the preferences of other group members was one of the

major variation points in the user study.

Figure 8.3 includes a CHOICLA user interface version where the preferences of other users are not

disclosed to the current user. In contrast, Figure 8.4 depicts an interface version were the prefer-

ences (priorities) of the individual stakeholders are visible (the height of each bar corresponds to the

corresponding MAUT value (Dyer (2005); Stettinger et al. (2015b)) of a requirement, individual pref-

erences are visible when moving the mouse pointer over the corresponding bar). If all stakeholders

have articulated their requirements, the creator of a decision app can close the decision process, i.e.,

no further changes/adaptations of the individual user preferences are possible from that time on. Clos-

ing the decision process means that one or more options are selected by the administrator and these

alternatives altogether then represent the final decision. The selected alternatives may not correspond

with the alternatives proposed by the aggregation heuristic (in our case MAUT).

Figure 8.4.: Group recommendation (on the basis of MAUT values) for the prioritization of require-
ments within CHOICLA. Preferences of individual stakeholders are disclosed when mov-
ing the mouse pointer over the bar.

In our working example, the creator of the decision app selected only one requirement (Global

Highscore) as an additional requirement to be implemented in the project (see Figure 8.5). In this

case, the creator follows the group recommendation and also explains the reason for the final decision.

Note that the possibility of explaining final decisions is another major variation point in the user study,

109



Chapter 8. Counteracting Anchoring Effects in Group Decision Making

Figure 8.5.: Representation of a final decision in CHOICLA in terms of a bar chart.

i.e., some versions included this option, some versions not.

We conducted a user study with computer science students at the Graz University of Technology

(N=229 participants, 16% female, and 84% male) who took a course on object oriented analysis and

design. Students formed software teams with 5–6 participants (in total 45 teams) who had then to

implement an online game environment. Each team had to develop the same set of basic requirements

but could choose 5 out of a set of 10 additional requirements using CHOICLA as the sole decision and

communication platform.5 The 45 software teams (groups) were assigned to different categories as

follows (see also Table 8.1). First, 23 groups were confronted with a CHOICLA user interface which

enforced the explanation of final decisions, the remaining 22 groups had the option to explain their

decisions but this was not mandatory. Second, the individual CHOICLA versions differed in terms as

of when individual preferences are made public to all group members (after one, two, three, or all

group member(s) has(have) articulated his/her(their) preferences).

explanation mandatory explanation not mandatory
after 1. after 2. after 3. after all after 1. after 2. after 3. after all

6 groups 6 groups 5 groups 6 groups 6 groups 6 groups 5 groups 5 groups

Table 8.1.: Assignment of versions to groups in the user study, for example, ”explanation manda-
tory+after 1.” denotes a CHOICLA version with mandatory explanations and individual
preferences were disclosed after one group member defined his/her preferences.

The hypotheses as input for our user study were the following. First, we assumed that anchoring

effects occur especially in cases were preference information of individual users is disclosed although

this information has not been provided by all group members, i.e., the lower the number of completed

preference definitions the higher the probability of anchoring effects (H1).

Second, we assumed that the best time to disclose individual preferences is a situation where each

5Due to space limitations we limited our example set to 3 requirements.
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group member has already articulated his/her requirements (H2). This strategy should lead to the best

results regarding (a) the satisfaction with the final group decision as well as (b) the perceived degree

of decision support, (c) perceived understandability of the final group decision, and (d) consideration

of one’s personal preferences. In our study, data to answer (a)–(d) were collected in a post-decision

questionnaire. The rating scale for questions (a)–(b) was [very satisfied (5) .. very unsatisfied (1)], for

question (c) it was [understood immediately (5) .. no chance to understand without asking a couple of

times (1)], and for (d) it was [excellent (5) .. very bad (1)].

In the line of decision psychological experiments (Greitemeyer and Schulz-Hardt (2003); Mojzisch

and Schulz-Hardt (2010)) we assume that the later individual preferences are disclosed the higher will

be the number of comments in the CHOICLA forum (H3). A higher degree of information exchange

also has a direct positive impact on decision quality – see also (Greitemeyer and Schulz-Hardt (2003);

Mojzisch and Schulz-Hardt (2010)). Hypothesis H3 is related to the fact that groups tend to focus

on the preferences of other group members if this information is available but otherwise focus on

information exchange to gain a better understanding of the problem setting (Greitemeyer and Schulz-

Hardt (2003); Mojzisch and Schulz-Hardt (2010)).

With hypothesis H4 we want to express the assumption that the explanation of a final decision

can increase (a) the satisfaction with the final group decision as well as (b) the perceived degree of

decision support, (c) perceived understandability of the final group decision, and (d) consideration of

one’s personal preferences.

The results of our user study were the following. We can confirm hypothesis H1, i.e., anchoring

effects are triggered by an earlier disclosure of preference information to other group members. In this

context, we analyzed the standard deviations of the individual user ratings (i.e., we used the standard

deviation of ratings as an indicator of anchoring effects) depending on the time of the disclosure of the

ratings (preferences) of individual group members. Figure 8.6 depicts the standard deviations of user

ratings depending on the time of preference disclosure; standard deviations increase monotonously

in the number of anonymously articulated preferences. The series of standard deviations related to

versions after 1. and after 2. (and above) significantly differ in terms of their mean values (p < 0.05,

t-test).

We can also confirm hypothesis H2. The later the time of preference disclosure (the more group

members have articulated their preferences without viewing the preferences of other users), the higher

the evaluation with regard to the dimensions (a) satisfaction with the final group decision, (b) per-

ceived degree of decision support, (c) perceived understandability of the final group decision, and (d)

consideration of one’s personal preferences. Figure 8.7 depicts, for example, the user evaluations with

regard to (a) satisfaction with final group decision and (b) perceived degree of decision support. The

average evaluations of all dimensions, i.e., (a) .. (d), are depicted in Table 8.2.

T-tests also confirm significant user evaluation improvements with an increasing number of defined

but undisclosed preferences. The average user evaluations regarding (a) and (b) related to versions
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Figure 8.6.: Standard deviations of user ratings of alternatives (requirements) depending on preference
disclosure time (after 1..3, or all users articulated preferences).

after 1. and after 3. (and above) differ in terms of their mean value (p < 0.05, t-test, see also Figure

8.7). Significant results (p < 0.05, t-test) could also be observed for average user evaluations regarding

(c) and (d) related to versions after 1. and after all.

Figure 8.7.: Satisfaction with final group decision and perceived degree of decision support depending
on preference disclosure time (after 1..3, or all users articulated preferences).

We can confirm hypothesis H3: the later individual preferences are disclosed to other users, the

higher the amount of comments/discussions in the CHOICLA forum. The number of comments de-

pending on the degree of already available preference definitions not disclosed to other users is shown
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All
after 1. after 2. after 3. after all

a 2.87(1.67) 3.01(1.5) 3.31(1.19) 3.73(0.73)
b 1.75(1.77) 2.2(1.62) 2.83(1.59) 3.72(1.02)
c 3.44(1.65) 3.54(1.54) 3.79(1.22) 4.04(0.81)
d 3.02(1.77) 3.55(1.75) 3.91(1.46) 4.16(1.04)

Table 8.2.: Avg. evaluations and std.dev. regarding (a) satisfaction with the final group decision, (b)
perceived degree of decision support, (c) perceived understandability of the final group
decision, and (d) consideration of one’s personal preferences.

in Figure 8.8.

Figure 8.8.: Number of comments in the CHOICLA discussion forum depending on preference disclo-
sure time (after 1..3, or all users articulated preferences).

Finally, we can also confirm hypothesis H4: groups with (enforced) explanation support for group

decisions have significantly higher evaluations in terms of the dimensions (a) satisfaction with the

final group decision, (b) perceived degree of decision support, (c) perceived understandability of the

final group decision, and (d) consideration of one’s personal preferences. This is confirmed by cor-

responding t-tests (p<0.05) when comparing groups with and without (enforced) explanation support

(average evaluations are depicted in Table 8.3).

8.5. Conclusions and Future Work

With the work presented in this chapter we have shown the existence of anchoring effects in group

decision scenarios: the earlier individual user preferences are disclosed to other group members,

the higher the probability of the occurrence of anchoring effects. The time of preference disclosure
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Explanations Enforced
after 1. after 2. after 3. after all

a 3.67(1.27) 4.01(1.15) 4.31(0.89) 4.93(0.23)
b 1.95(1.66) 2.5(1.51) 3.45(1.19) 4.69(0.82)
c 3.84(1.35) 3.94(1.24) 4.29(0.92) 4.87(0.41)
d 3.62(1.37) 3.95(1.15) 4.41(0.66) 4.86(0.31)

Explanations Not Enforced
after 1. after 2. after 3. after all

a 2.4(1.76) 2.87(1.66) 3.17(1.47) 3.22(1.33)
b 1.63(1.94) 2.02(1.82) 2.67(1.63) 3.18(1.47)
c 3.12(1.72) 3.25(1.78) 3.57(1.58) 3.73(1.22)
d 2.88(1.96) 3.17(1.81) 3.29(1.73) 3.87(1.4)

Table 8.3.: Avg. evaluations and std.dev. regarding (a) satisfaction with the final group decision, (b)
perceived degree of decision support, (c) perceived understandability of the final group
decision, and (d) consideration of one’s personal preferences.

also has a direct impact on the perceived quality of the decision outcome and the perceived decision

support. Furthermore, late preference disclosure can lead to a higher discussion intensity inside a

group which can have a direct positive impact on the quality of the decision outcome. It is important

to take into account these aspects in application development; especially one has to analyze the need

of preference disclosure since non-disclosed preferences can help to significantly improve decision

quality. The analysis of further decision biases and their impact on group decision making is within

the major focus of our future work since this will help to further advance the quality of group decision

support in the CHOICLA environment. With regard to anchoring effects we want to analyze in further

detail the impact of different representation types of user preferences (e.g. aggregated representations

vs. user-specific representations) on evaluation dimensions such as perceived decision quality and

quality of decision support. Finally, we are also interested in a deeper understanding of intra-group

dynamics that can potentially help to further improve the quality of group decisions.
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To offer decision support with the goal to make group decisions in general more efficient and in-

crease the quality of decision outcomes it is essential to consider factors such as the quality of the

recommendation algorithms, intelligent preference acquisition interfaces as well as results from latest

decision psychology research. This thesis presents CHOICLA, a novel domain-independent group de-

cision support environment in which groups of users are supported in making high quality decisions.

In this chapter we reflect on our research questions and contributions as well as the limitations of the

approaches. An outlook for future research concludes this chapter.

9.1. Conclusions

In the following we present a summary of the answers to the research questions we defined in

Section 1.2.

Research Question Q1:

How to design a domain-independent decision support environment for groups of users?
At the time when we started focusing on the investigation of group decision support technologies we

did not find any work where an integrated tool for supporting groups of users in a domain-independent

fashion was presented. In Section 6.3 we present our group decision support environment called

CHOICLA which advances the state-of-the-art by providing decision support for groups of users inde-

pendent from the domain of the decision task. In order to evaluate the pilot version of CHOICLA we

conducted a first small-scale user study where we made the software accessible to a total number of

48 persons. Section 6.5 presents the results of our empirical study where we could gain first evidence

that people consider the system suitable for a wide range of applications and can imagine to apply the

system in various domains.
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Research Question Q2:

How to design the creation process of a group decision task as a configuration problem?
To create a group decision support environment which is independent from the domain of the decision

task it is essential to offer possibilities for customizing the decision process (on the basis of features

such as recommendation heuristic, preference visibility options as well as settings concerning the

management of decision alternatives). In the context of this work we show how to represent the crea-

tion of a group decision task as a configuration task. In Section 5.3 we introduce a feature model that

expresses the diverse features (properties) of decision tasks. By taking into account the dependencies

among the features (for a detailed discussion see Section 5.4) we show how group decision tasks can

be configured in the CHOICLA environment (see Section 5.5).

Research Question Q3:

How to best support groups of users in the context of personnel decisions?
First impressions, interpersonal attraction or the appearance of job applicants are often responsible

for subjective evaluations which can lead to suboptimal decision outcomes due to the fact that in such

cases often no concrete structure is followed and the assessment criteria are not stable over time (Ko-

brynowicz and Biernat (1997); Dougherty et al. (1994); Graves and Powell (1988)). In this thesis we

present first steps towards a more structured and objective hiring procedure. Section 6.4.1 presents the

evaluation technique integrated in the CHOICLA group decision support environment which shows the

ability to counteract subjective evaluations by providing pre-defined evaluation dimensions which are

tailored towards the current job position. In addition we introduce a group recommendation approach

which is based on a modified MAUT (Stettinger and Felfernig (2014)) approach.

Research Question Q4:

How to achieve long term fairness in group decision tasks?
Many group decision tasks such as a decision regarding the location of next year’s annual company ex-

cursion or a decision regarding which restaurant to choose for a dinner with friends, occur repetitively.

Available decision support tools do not offer functionalities where past decision outcomes can be used

to extract knowledge for future scenarios. In this thesis we present an intelligent approach where past

decision outcomes can directly influence future group recommendations. With the help of the knowl-

edge gained out of past decision outcomes we are able to introduce an algorithmic approach (see

Section 6.3.1) which facilitates long term fairness (and thus satisfaction) among group participants.
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Research Question Q5.1:

How to counteract serial position effects in group decision support environments?
Suboptimal decision outcomes are often caused by decision biases which occur before and during the

decision process. Serial position effects (primacy/recency) (Felfernig et al. (2007a); Murphy et al.

(2012)) occur in situations where users have to evaluate large item sets and lead to more popularity

of the items which are presented at the beginning and at the end of such item sets (Bar-Hillel (2015)).

In Section 7.5 we focus on the investigation of serial position effects in descriptive texts of decision

alternatives. Section 7.5 presents the results of our empirical study which clearly point out that the

individual preferences are strongly influenced by the description of decision alternatives. Additionally

we compared different preference acquisition interfaces (see Section 7.3.4) for evaluating the decision

alternatives (star-based rating scales vs. utility-based rating scales). As key result of our user study we

could introduce an intelligent utility-based preference acquisition interface with the ability to coun-

teract serial position effects. In addition to that we also present the results of the feedback concerning

the system’s usability which was very positive and provided the motivation to continue our work to

further improve the CHOICLA technologies (Stettinger et al. (2015b)).

Research Question Q5.2:

How to counteract anchoring effects in context of group decision scenarios?
Anchoring effects represent another frequently occurring decision bias which leads to suboptimal de-

cision outcomes by triggering decisions which are biased by the first person who articulated his/her

preferences (Adomavicius et al. (2011); Jacowitz and Kahneman (1995)). In this thesis we present the

results of our empirical study which show that anchoring effects – comparable to single user decision

scenarios – also occur in the context of group decision making. In Section 8.4 we discuss the optimal

time for disclosing the preferences of the other group members to counteract anchoring effects. In ad-

dition to that we also introduce the results of a user study which show that communication behaviour

is also affected by the time when individual preferences are disclosed to the other group members.

Less discussions are the result of presenting the individual preferences of the other group members

in early stages of the decision process. A detailed discussion on the communication behaviour can

be found in Section 8.4. We see our contribution as an important one towards intelligent decision

support systems for groups of users for different reasons. First, we offer innovative techniques that

take into account that counteracting decision biases such as anchoring effects and serial position ef-

fects can significantly increase the quality of decision outcomes. In addition to that the quality of

decision outcomes can be further increased by providing techniques that trigger a higher amount of

communication among the group members during the decision process.
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Limitations

The usability studies as well as the developed recommendation heuristics presented in this thesis have

limitations. The results of the conducted usability studies give a first impression of the perceived

usability of the system but show limitations in terms of the small number of participants. The in-

troduced recommendation heuristic for achieving long term fairness only considers the individual

distance to the final decision and does not take other dimensions (e.g., individual tastes or individual

domain-specific preferences) into account which is a limitation of this approach. Compared to the

large number of possible decision biases (Felfernig (2014)) the small number of investigated decision

biases (anchoring effects (Adomavicius et al. (2011); Jacowitz and Kahneman (1995)) and serial posi-

tion effects (Felfernig et al. (2007a); Murphy et al. (2012))) represent another limitation of this thesis.

Further limitations of the CHOICLA decision support environment are (1) no support for complex al-

ternatives, (2) no support for strategic decisions as well as (3) no support for combined decisions (e.g.,

time and restaurant).

9.2. Future Work

One major focus for future work is the continuous extension of the CHOICLA technologies where

we focus on the detailed analysis of further application domains. We focus on both (1) the design

(implementation) of group decision tasks with the aim to make the creation process as simple and

straightforward as possible and on (2) the resulting group decision task with the aim to raise the qual-

ity of decision outcomes and make group decisions in general more efficient. To further advance the

quality of decision outcomes in the CHOICLA group decision support environment, a deeper under-

standing of further decision biases as well as their impact on group decision making is a key factor.

In order to achieve the vision of raising group decision making to the next level, one essential future

research direction is the implementation and development of further group recommendation heuris-

tics (for already implemented group recommendation heuristics see Section 7.3.2). Another area of

future research will include the development of group decision technologies for complex products and

services. In the following we discuss additionally relevant topics for future research.

Further decision biases in the context of group decision scenarios

Further decision biases are induced if a system is open in the sense that there exists a functionality

which allows decision makers to add new decision alternatives during the decision process. In cases

where not all decision alternatives are available/known during the creation process of a decision task

it is essential that new decision alternatives can be added during the decision process itself. If new

decision alternatives arise during the decision process, additional decision biases can be induced due

to the fact that members of a group will perceive already rated (selected) decision alternatives more
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attractive than new ones (Neale et al. (2004)). Research in the field of decision psychology states that

if consensus about alternatives is formed out of discussion in early stages of a decision process, this

consensus is cognitive resistant to changes. It is very unlikely that by adding additional information

during an ongoing decision task a different alternative will be chosen because such additional informa-

tion will be adapted to already defined consensus (Lind et al. (2001)). This effect can be explained by

the dissonance theory and the underlying assimilating effect (Festinger (1957)). Due to the assimilat-

ing effect people try to minimize psychological incongruities which are the result of adding additional

information to a present perception (Neale et al. (2004)). In groups with a high cohesion this effect

is intensified because in such groups the fear from exclusion is higher (see Lind et al. (2001)). To

counteract such effects in future versions of the CHOICLA environment, intelligent presentations of

the individual preferences of the other group members will be developed. One possible approach

to do that is, for example, be a mechanism which only discloses the preferences of the other group

participants at a stage of the decision process where no new alternatives could be added anymore and

the decision makers have already articulated their individual preferences. Out of this discussion the

question if such intelligent preference presentations can increase the willingness of group participants

to articulate their real preferences will be within the scope of future research.

By taking into account the results of our study concerning anchoring effects (see Section8.4) we

want to analyze in more detail the consequence of changing the representation types of individual

user preferences on the evaluation dimensions such as, perceived quality of decision support as well

as decision quality. One example of changing the individual preference representation types is the

comparison of user-specific representations versus aggregated representations.

An in-depth research of further decision phenomena within the scope of group decision processes

is another future research issue. For single-user cases there exist several investigations on decision

phenomena such as decoy effects (Huber et al. (1982), Teppan and Felfernig (2009)) but in group

decision contexts nearly no studies have been conducted. Group polarization (Zuber et al. (1992)) as

well as cognitive dissonance reduction (Festinger (1957)) are essential aspects in the context of group

decision scenarios which have to be investigated in more detail. Finally, a detailed understanding

of intra-group dynamics (Masthoff and Gatt (2006)) seems promising for achieving higher quality

group decisions.

Further recommendation approaches

Up to now our research focused more on the consequences of different degrees of judgement visi-

bility and did not include an analysis of emotional states of the group members. Masthoff and Gatt

(Masthoff and Gatt (2006)) present algorithmic approaches which are able to predict the satisfaction in

group decision scenarios. Mentioned influence factors in this context are Emotional Contagion as well

as Conformity (Masthoff and Gatt (2006)). Emotional contagion describes a phenomenon in which
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an individual’s emotional state influences the emotional states of other group members. Conformity

explains situations in which the judgements of a group participant are influenced by judgements which

were already articulated by other group members (Masthoff and Gatt (2006)). A research issue of fu-

ture work in this context is an investigation of intra-group dynamics in CHOICLA decision scenarios.

A different approach of applying advanced hybrid recommendation technologies in future versions

of the CHOICLA technologies could be the inclusion of collaborative filtering (see Section 2.3) as

well as content-based filtering (see Section 2.4) approaches into group decision tasks. On the basis

of the entered decision task title, the knowledge of the individual preferences of the group mem-

bers (e.g. gained from former group decision processes) and an optional location information (e.g.

GPS position on a mobile device) the system could present precise recommendations for relevant

decision alternatives.

Long term fairness

The support of repeating decisions (Ariely and Zakay (2001)) in CHOICLA is another area of future

research. Fairness is an essential aspect in this context since it has a direct impact on the conflict

resolution procedure. The degree of perceived fairness of the participants has an influence on both

the trust in other group members as well as the willingness to accept compromises in the resolution

of conflicts of opinions (Lind et al. (2001)). Further detailed investigations are needed to improve

the algorithmic approach we presented in Section 6.3.1 with the aim of achieving long term fairness

among group members in recurring decision scenarios.

Preference acquisition interface

One essential part of the vision of the CHOICLA group decision support environment is an intuitive

user interface. To meet this requirement we are currently in the planning phase of a user study where

we focus on the investigation of different preference acquisition interfaces on mobile devices. One

research question of this study is whether the presented rating technique (star-evaluation vs. smiley-

evaluation vs. drag & drop list ordering) has an influence on the perceived user experience on a mobile

device. Another research question we want to address in this study is whether the reduced granularity

of the preference information we have to accept when using drag & drop list ordering compared to a

five-point scale still leads to an accurate recommendation. Figure 9.1 sketches the preliminary inter-

face versions we are going to use in the mentioned future user studies.
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Figure 9.1.: Example of different preference acquisition interfaces on a mobile device (star-evaluation,
smiley-evaluation, and drag & drop list ordering). The star-evaluation as well as the
smiley-evaluation assigns a value (like resp. dislike) to each alternative whereas the drag
& drop list ordering puts the alternatives in relation to each other (most preferred, second
most preferred, ...).

Communication behaviour

Research from decision psychology points out that a higher degree of information exchange during

the decision process has a direct positive impact on the decision quality (see, for instance, Greitemeyer

and Schulz-Hardt (2003); Mojzisch and Schulz-Hardt (2010)). By taking into account the results we

already got from our empirical study (see Section 8.4) another research focus for future work is the

development and evaluation of further group recommendation heuristics which increase information

exchange among the group members during the decision process. A higher degree of information

interchange during the decision process helps group members to gain a better understanding of the

decision problem and thus can increase the quality of decision outcomes (Greitemeyer and Schulz-

Hardt (2003); Mojzisch and Schulz-Hardt (2010)).
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