
Linear Temporal Logic -

in Theory and Industry

by

Karin Greimel

A PhD Thesis
Presented to the Faculty of Computer Science in Partial Fulfillment of the

Requirements for the PhD Degree

Assessors

Prof. Roderick Bloem (Graz University of Technology, Austria)
Prof. Werner Damm (Universität Oldenburg, Germany)

June 2016

Institute for Applied Information Processing and Communications (IAIK)
Faculty of Computer Science

Graz University of Technology, Austria

Abstract

Linear Temporal Logic specifications can be used for synthesis and formal verifi-
cation of reactive systems.

For Linear Temporal Logic synthesis a Linear Temporal Logic specification is
given as input and the output is a reactive system satisfying the specification. The
specifications we consider are guarantees that need to be satisfied by the system if
the inputs to the system satisfy a set of assumptions. In classic Linear Temporal
Logic synthesis the system is allowed to behave arbitrarily if the assumptions
are not satisfied. We argue that the system should be robust, it should try to
satisfy the guarantees as well as possible even if the assumptions are not satisfied.
We define two different notions of robustness, one for safety and one for liveness
properties. In both cases a system is robust if a small number of violations of the
assumptions lead to a small number of violations of the guarantees. For both,
safety and liveness, we show how to verify and synthesize robust systems. Our
work on synthesis of robust systems leads to new game theoretic results. For
the synthesis of robust systems from safety specifications we define and solve
ratio games. For the synthesis of robust systems from liveness specifications we
develop a faster algorithm to solve Generalized Reactivity games.

For formal verification a Linear Temporal Logic specification and a reactive
system are given as input and the output is a proof showing that the system sat-
isfies the specification. We show how to use model checking, a formal verification
technique, to verify specifications of smart cards. The proposed approach satisfies
the Common Criteria Certification requirements for high Evaluation Assurance
Levels. Common Criteria is a security certification scheme widely used in the
smart card industry. Especially for e-government and banking products such as
electronic passports, credit/debit cards, etc., high assurance of the security is of
great importance. We give two case studies of security policy models using model
checking. For the first case study we model a security IC. The model enabled the
first Evaluation Assurance Level 6 certification within the German certification
scheme. For the second case study we model the Java Card applet firewall. The
model uncovered contradictions in the security requirements that have been
overlooked for several years. We propose to integrate the formal verification
method into the product design process by using UML statecharts as input to the
model checker. UML is commonly known by engineers and thus allows a project
to maximize the benefits of formal methods in the product design process.

iii

Acknowledgements

I would like to thank my supervisor Roderick Bloem for introducing me to the field
of formal methods, particularly for introducing me to the research community. I
learned a lot about logic, automata, game theory and related topics but also how
to conduct and present research. I am looking forward to learning a lot more
and fruitful cooperation in the future.

I am grateful for all the fun and instructive times with my colleagues at the
university. Special thanks go to Barbara Jobstmann, who has been a role model
for me since I started working on my diploma thesis and who made me feel very
welcome during my stay in Lausanne where we started working on synthesizing
robust systems. I very much enjoyed working together. I would also like to
thank Krishnendu Chatterjee for his contribution to the game theoretic part
of synthesizing robust systems for liveness specifications. My thanks also go
to all the colleagues at the institute, but mostly to Georg Hofferek and Robert
Könighofer who are forthcoming and helpful and always open for discussions.

I would not have been able to finish my thesis without the support from
people at NXP, thanks to Martin Schaffer, Christoph Herbst, Ernst Haselsteiner,
Johannes Loinig, Hans-Gerd Albertsen and many others. I am also indebted to
people outside NXP. Gerd Beuster initiated our work on security policy modeling
and provided a first model. I got great technical support from Fraunhofer on
COSIDE, especially from Norman Seßler. My thanks also go to Franz Röck for a
first version of the Java Card OS firewall model. I hope for many more years of
working together.

The work of my thesis was funded by Graz University of Technology, NXP
Semiconductors, the European Commission with the projects COCONUT (FP7-
2007-IST-1-217069) and DIAMOND (FP7-2009-IST-4-248613), and the Austrian
Research Promotion Agency (FFG) with the project NewP@ss.

Last but not least I would like to thank my family for being there for me at
all times; most important Wolfgang Aigner.

Big thanks to all who encouraged and supported me,

Karin Greimel
Graz, June 2016

v

Table of Contents

Abstract iii

Acknowledgements v

List of Tables ix

List of Figures xi

Glossary xiii

Acronyms xv

1 Introduction 1
1.1 Outline . 3

2 Synthesizing Robust Systems 5
2.1 Problem Statement . 5
2.2 Contribution . 6
2.3 Preliminaries . 7

2.3.1 Systems . 7
2.3.2 Acceptance Conditions . 7
2.3.3 Automata . 8
2.3.4 Specifications . 9
2.3.5 Games and Strategies . 11
2.3.6 Synthesis . 13

2.4 Safety . 13
2.4.1 Defining Robustness . 14
2.4.2 Ratio Games . 18
2.4.3 Verifying and Synthesizing Robust Systems 21

2.5 Liveness . 26
2.5.1 Defining Measures of Robustness 28
2.5.2 Simplifying Combinations of Büchi Objectives 30
2.5.3 Solving Generalized Reactivity Games 33
2.5.4 Verifying and Synthesizing Robust Systems 35

2.6 Related Work . 36
2.6.1 Continuity . 36
2.6.2 Fault Tolerance . 37

vii

viii Table of Contents

2.6.3 Controllers . 38
2.6.4 Games . 40
2.6.5 Robustness Specifications 41
2.6.6 Environment Assumptions 42
2.6.7 Extensions . 42

2.7 Conclusions . 43

3 Security Policy Modeling for Smart Cards 45
3.1 Problem Statement . 45
3.2 Contribution . 47
3.3 Preliminaries . 48

3.3.1 Smart Cards . 48
3.3.2 Common Criteria . 51
3.3.3 Model Checking . 56
3.3.4 Unified Modeling Language Statechart Diagrams 57

3.4 Modeling Smart Cards . 59
3.4.1 Modeling Approach . 59
3.4.2 Common Criteria Requirements 60
3.4.3 Case Study - Security IC 63
3.4.4 Case Study - Java Card System 68

3.5 Modeling using UML Statecharts 78
3.5.1 Integration into the Design Process 79
3.5.2 Level of Abstraction . 80
3.5.3 Example . 81

3.6 Related Work . 88
3.6.1 Common Criteria . 88
3.6.2 Model Checking . 91
3.6.3 Model Driven Engineering 92
3.6.4 Formal Verification of UML Statecharts 93

3.7 Conclusions . 95

4 Conclusions 97

A Java Card Properties 99

Bibliography 117

Author Index 129

List of Tables

3.1 Certified Products by Assurance Level and Certification Date,
source: https://www.commoncriteriaportal.org/products/stats/ . 46

3.2 Target of Evaluation Modes Description (excerpt) 64
3.3 Operations (excerpt) . 65
3.4 Input Variables . 70
3.5 Bytecodes . 71
3.6 inputSharing . 71
3.7 inputJCREop . 72
3.8 inputCurrentlyActiveContext . 72
3.9 Internal Variables . 73

ix

https://www.commoncriteriaportal.org/products/stats/

List of Figures

2.1 Automata for A = G(¬(r1 ∧ r2)) and Gi = G(ri → X gi) 16
2.2 Cost automata CA, CGi , and C ′Gi

counting violations of A and Gi 17
2.3 Automatically constructed system for A→ (G1 ∧G2 ∧G3) . . . 17
2.4 A 2-robust and a 1-robust system 18
2.5 Automata A1 and A2 for calculating realizability and strict real-

izability.1 . 24
2.6 Game graph for 3SAT formula 32

3.1 Architecture of a smart card . 49
3.2 Components of a Typical Security Integrated Circuit (IC) . . . 50
3.3 Documentation Refinement in the Assurance Class Development 54
3.4 Evaluation Assurance Summary, source [38] 55
3.5 Process of Model Checking for Functional Specifications 60
3.6 Model of the Java Card Firewall 69
3.7 Access Control Policy Overview state diagram 83
3.8 Access Control Policy Card Manager state diagram 83
3.9 Access Control Policy Application1 state diagram 83
3.10 Visualization of counter example 86
3.11 Access Control Policy Card Manager state diagram without key

check . 87

xi

Glossary

applet An application running on a Java Card OS. 49, 50, 63, 68, 91

Bundesamt für Sicherheit in der Informationstechnik Common Criteria
certification body. 47, 51

Common Criteria Security certification scheme. 2, 3, 45, 47, 48, 51, 52, 59, 60,
73, 78–80, 88–92, 94, 95

Evaluation Assurance Level Assurance level of a Common Criteria certifica-
tion. 2, 3, 45, 47, 54, 61–63, 88–91, 95

flash A programmable non volatile memory. 49, 50
Functional Specification The functional specification of the product under
evaluation. 53, 54, 59, 60, 62, 63, 68, 90

Java Card OS An operating system that allows to run applications written in
Java on a smart card. v, 49–51, 63, 68

Protection Profile Template for a Security Target for a Common Criteria
certification. 48, 51, 53, 54, 72, 74, 77, 78

Security Function Policy Set of Security Functional Requirements that define
a policy. 74, 75, 77
Security Functional Requirement Security requirement stated in the Security
Target for a Common Criteria certification. 52, 59–63, 65, 68, 73–75, 78, 89
Security Policy Model Formal model of security policies for Common Criteria
certification. 2, 3, 45, 47, 48, 52–54, 59, 60, 63, 68, 88–90, 94, 95
Security Target Common Criteria document describing the Target of Evalua-
tion and listing the Security Functional Requirements. 51–54, 59–61, 63, 65, 67,
89
smart card An Integrated Circuit with memory and applications, for example
a credit card. xi, 2–4, 48, 49, 51, 56, 59, 68, 79–81, 92, 93
Special Function Register Register in an Integrated Circuit used to configure
the circuit. 61
statechart A graphical representation of a finite state machine, part of UML.
2–4, 48, 56–59, 61, 63, 78, 79, 82, 88, 95

Target of Evaluation Product under evaluation. ix, 51–54, 62–64, 67, 89

xiii

xiv Glossary

Target of Evaluation Design Design description of the product under evalua-
tion. 53, 54
Target of Evaluation Security Functionality Description of the security
functionality of the product under evaluation. 51–53, 62, 74, 75, 77
Target of Evaluation Security Functionality Interface Interface descrip-
tion of the security functionality of the product under evaluation. 53, 63

waterfall model The waterfall model is a sequential design process, used in
software development processes, in which progress is seen as flowing steadily
downwards (like a waterfall) through the phases of conception, initiation, analysis,
design, construction, testing, production, and maintenance.. 53

Acronyms

AIS Application Notes and Interpretation of the Scheme. 63
API Application Programming Interface. 50

CASE Computer Aided Software Engineering. 89
CNF Conjunctive Normal Form. 31
CPU Central Processing Unit. 49, 50, 64
CTL Computation Tree Logic. 9, 10, 56, 57, 62, 63, 77, 82, 95

DCB objective Disjunctions of Conjunctions of Büchi objectives. 30–33
DNF Disjunctive Normal Form. 31

EEPROM Electrically Erasable Programmable Read Only Memory. 49, 50

FSM Finite State Machine. 56, 57, 59, 61, 63

GR(1) Generalized Reactivity(1). 1, 3, 7, 11, 13, 27, 30, 33, 35, 39, 42, 43
GUI Graphical User Interface. 94

IC Integrated Circuit. xi, 45, 47–51, 54, 59, 61, 63–65, 68, 88, 95
ICAO International Civil Aviation Organization. 50
ISM Interactive State Machine. 89
IT Information Technology. 45, 52

JCRE Java Card Runtime Environment. 50, 68, 69, 71, 73, 76, 90
JCVM Java Card Virtual Machine. 50, 69, 70, 89, 90

LTL Linear Temporal Logic. 1, 2, 9, 10, 37, 41, 43, 56, 57, 62, 63, 82, 95, 97, 98

MMU Memory Management Unit. 3, 49, 50, 61, 64, 65, 67
MSCC Maximal Strongly Connected Component. 32, 33

RAM Random Access Memory. 49, 50
ROM Read Only Memory. 49, 50
RTL Register Transfer Level. 1, 2

UML Unified Modeling Language. 2–4, 48, 56–58, 61, 63, 78, 79, 88, 90, 93–95,
97

xv

1
Introduction

Linear Temporal Logic (LTL) is a formal language which was introduced by
Pnueli in [120] for specifying and verifying the correctness of reactive systems.
Reactive systems are continuously running systems that react to a given input.
Examples are operating systems, controllers, and protocols. Correctness for
such systems can not be defined in terms of the input-output relation at the
end of the computation but are defined in terms of the input-output relation
during computation. Temporal logic provides the means to define the correct
input-output relation during computation; it allows to define sets of computation
sequences.

A formal specification language can be used in the design of reactive systems
in different ways. From an automation perspective LTL synthesis [47] is the most
attractive application. The user provides a formal specification and the synthesis
tool generates a system that satisfies the specification. Instead of writing Register
Transfer Level (RTL) code the designer only needs to provide an LTL specification.
Since the system is constructed from the specification it is correct by construction,
assuming that the synthesis tool works correctly. Unfortunately LTL synthesis is
a very complex problem, it is 2EXPTIME-complete [125]. The complexity issue
can be circumvented by either considering small problems as in program repair
[96] or by considering a subset of LTL such as Generalized Reactivity(1) (GR(1))
[119]. Apart from the complexity issue, at the current state of the art, the
applicability of LTL synthesis for larger systems is also difficult because writing
a good specification is not an easy task. The specification must be complete
but should not over-constrain the system. Additionally we want the synthesized
systems to not only satisfy the specification but to also have properties like
minimum size, maximum speed, robustness and many more depending on the
application field. Although LTL synthesis has been theoretically solved for many

1

2 Chapter 1. Introduction

years there is still a lot of research necessary before it can be applied in an
industrial setting.

In contrast to LTL synthesis, LTL verification has found its way into industry
in some application fields. The most common formal verification technique
is model checking [50]. A model checker is a tool that takes a model and a
specification as input and returns true if the model satisfies the specification and
false otherwise. In this context a model is a finite state machine. A finite state
machine can have different representations. Examples are hardware description
languages such as Verilog and VHDL, proprietary model checking languages such
as NuSMV and AIGER, or graphical representations such as Unified Modeling
Language (UML) statecharts. A model checker gives a mathematical proof that
the model satisfies the specification. In contrast to testing methods, which test a
finite number of execution paths, a model checker shows that every execution
path in the model satisfies the specification. In the semiconductor industry model
checking is usually applied to RTL code on module level to verify parts of safety
or security critical products. Formally verifying a large system at RTL level is
usually too expensive since LTL model checking is in PSPACE [130].

The main advantage of having a formal specification independent of its usage
is that it gives a clear and unambiguous documentation of the design intent.
Specifications are often given in natural language, which is easier to understand
than a formal language but also easier to misinterpret. A formal language leaves
no room for interpretation, therefore it is a good addition to a natural language
specification.

Formal methods in general aim at providing more rigorous methods in system
design. They allow to find errors and contradictions in the specification early
in the design process. With the increasing complexity of todays systems it
becomes impossible to design a correct system without the help of such rigorous
methods. Unfortunately formal methods are quite expensive in terms of expertise,
time and computing power. Thus they are usually only applied to security or
safety critical systems, where the costs of a failure of the system exceeds the
costs of applying more rigorous design methods. Examples can be found in the
automotive, aviation, space, and smart card industry. These industries often have
to comply with standards or certification schemes which at some point require a
formal specification and/or proof for security or safety critical parts of a product.
An example of a security certification scheme which is widely accepted in the
smart card industry is Common Criteria [36]. Common Criteria provides different
Evaluation Assurance Levels. Higher Evaluation Assurance Levels require more
formal evidence from the developer.

The contribution of this thesis is twofold. One part advances the field of LTL
synthesis. The other part introduces new methods for Security Policy Models
for high assurance level Common Criteria certifications. A short introduction to
each is given below.

The first part of this thesis deals with the problem of synthesizing robust
systems. There are many correct solutions for every LTL synthesis problem.
Many different systems can realize a set of specifications, but the system we want

1.1. Outline 3

to synthesize should not only be correct but also be robust. We propose to define
robustness for such systems and to synthesize robust systems that are resilient
to errors. We consider GR(1) specifications, where the system has to satisfy a
set of guarantees if the environment satisfies a set of assumptions. A system is
robust if small deviations from the assumed environment behavior only leads to
small deviations in the guaranteed system behavior. There exist different ways of
measuring deviations from expected behavior. We propose two different measures
for two different types of properties, namely safety and liveness generalized
reactivity properties. Safety robustness specifications are based on counting
each error of the environment and the system. A system is more robust if the
ratio between environment errors and system errors is smaller. We define ratio
games to solve the synthesis problem for safety robustness specifications. We also
show how to solve the verification problem for safety robustness specifications.
Liveness robustness specifications are based on counting the number of violated
assumptions and guarantees. A system is more robust if less guarantees are
violated. We develop a new game theoretic algorithm to solve the synthesis
problem for liveness robustness specifications. We also show how to solve the
verification problem for liveness robustness specifications.

The second part of this thesis deals with security policy modeling for smart
cards. For high level Common Criteria certifications a Security Policy Model is
required. A Security Policy Model is a formal model of the security policies of
a security product such as a smart card. We show how such a Security Policy
Model can be realized with a model checker and describe two case studies. For the
first case study we model the access control policy of the Memory Management
Unit (MMU) of the NXP P60 Secure Smart Card Controller which was used for
the Evaluation Assurance Level 6 certification of the product. It was the first
certification in the German scheme that reached Evaluation Assurance Level
6. For the second case study we model the access control policy of the Java
Card firewall. The formal verification of the Java Card firewall requirements
uncovers contradictions. The case study demonstrates that without formal
analysis contradictions can stay undetected in a requirements specification for
several years. We also show how the implementation of a Security Policy Model
can be integrated into an industrial design process using UML statecharts as
modeling language.

The first part is a contribution to basic research of possible future synthesis
methods. It is based on logic, complexity theory, automata theory, and game
theory. The second part is a contribution to current industry methods and
processes. It is based on formal methods, certification standards, and industry
requirements. This thesis gives deep insights into the theoretical background of
formal methods but also shows how to apply formal methods in an industrial
setting.

1.1 Outline

The thesis is presented in two main parts.

4 Chapter 1. Introduction

The first part given in Chapter 2 deals with the synthesis of robust systems.
Starting with the problem statement in Section 2.1 and the description of the
contribution in Section 2.2. Section 2.3 gives the necessary definitions for the
subsequent sections. Section 2.4 presents a robustness definition for safety
specifications and describes a solution to the corresponding verification and
synthesis problem. Section 2.5 presents a robustness definition for liveness
specifications and describes the solution of the corresponding verification and
synthesis problem. Related work is given in Section 2.6 and the conclusions are
given in Section 2.7.

The second part given in Chapter 3 deals with security policy models for smart
cards. Starting with the problem statement in Section 3.1 and the description of
the contribution in Section 3.2, Section 3.3 gives the necessary definitions for the
subsequent sections. Section 3.4 describes the proposed security policy modeling
approach and gives two case studies which describe security policy models for
smart cards. Section 3.5 shows how security policy modeling can be integrated
into the design process of a smart card by using UML statecharts. Related work
is given in Section 3.6 and the conclusions are given in Section 3.7.

Chapter 4 gives an overall conclusion of the work.

2
Synthesizing Robust Systems

This chapter describes our work on synthesizing robust systems. It includes the
work of two publications: [27] and [22].

2.1 Problem Statement

Current verification and synthesis approaches consider the functional correctness
of a system as a Boolean question: either the specification is fulfilled, or it is
not. This approach is unsatisfactory in many situations [23]. In particular, many
specifications consist of environment assumptions and system guarantees. For
such specifications, the classical approach does not impose any restrictions on
the behavior of the system when the environment assumptions are not fulfilled.
We argue that (1) desirable systems act in some “reasonable” way, even if the
environment does not always fulfill the assumptions and (2) it is an undue
burden on the user to specify the proper behavior of the system for each and
every environment behavior. Desirable systems should fulfill a natural “graceful
degradation” property in the sense that the system should fulfill the guarantees
as well as it can, given any behavior of the environment.

Suppose that a system is required to accept up to 1000 requests per second
and to respond to each request within 0.1 seconds. What should the system
do when request number 1001 arrives? There are several options, including
terminating the system, dropping the extra request, or delaying a response.
Clearly, all of these approaches satisfy the specification, but some are better than
others. (Cf. [56].) Thus, a system should not only be correct, it should also be
robust, meaning that it “behaves ‘reasonably’, even in circumstances that were
not anticipated in the requirements specification [. . .]” [79].

5

6 Chapter 2. Synthesizing Robust Systems

2.2 Contribution

We define robustness for safety properties and for liveness properties of the form
A → G, where A is an environment assumption and G is a system guarantee.
For both safety and liveness properties we show how to verify and synthesize a
robust system.

Let us first discuss the difference between safety and liveness properties. Here
we only give an informal explanation and a small example, for a more detailed
discussion refer to [4]. Safety properties stipulate that “bad things” do not happen.
For example consider the controller of a traffic light. A possible safety property
could be: “Exactly one light must always be on”. In contrast, liveness properties
stipulate that “good things” do happen eventually. Considering the controller of
a traffic light again, a possible liveness property could be: “Eventually the green
light must be on”. The fundamental difference in verification and synthesis is
that for safety properties it is always (at any point in time) possible to determine
whether the property has been violated or not but for liveness properties this
is not possible. Consider the traffic light again, as long as only one light is on
at a time the above safety property is satisfied, but as soon as no light is on
or more than one light is on the above safety property is not satisfied anymore.
Now imagine the red light is on, currently we can not decide if the above liveness
property is violated or not. Because of this intrinsic difference between safety
and liveness properties we define two different notions of robustness.

Safety

For safety we define robustness as the ratio between the possible errors of the
environment and the resulting errors of the system. For safety specifications we
can define a measure to count how often/badly an assumption or a guarantee is
violated. An environment error corresponds to a violation of an assumption and
a system error corresponds to a violation of a guarantee. A system is robust if
finitely many environment errors never lead to infinitely many system errors, it
is k-robust if the ratio of environment errors to system errors is always smaller
than or equal to k.

We give a solution to the verification problem and the synthesis problem for
(k-)robust systems. The synthesis problem is solved through a novel type of
games, we call ratio games. An optimal robust system corresponds to the winning
strategy of a ratio game, where the system minimizes the ratio of system errors to
environment errors. We show that ratio games have optimal positional strategies
and show how to calculate an optimal positional strategy in pseudopolynomial
time.

Liveness

For liveness the notion of robustness that we suggest aims to maximize the
number of guarantees that are fulfilled for any number of assumptions that may

2.3. Preliminaries 7

be violated. Note that for liveness properties we can not count how often a
property is violated but only how many properties are violated.

We give different examples of robustness measures for Generalized Reactiv-
ity(1) (GR(1)) properties and show that they can all be reduced to Generalized
Reactivity formulas. We show how to verify such formulas and how to synthe-
size them to robust systems. For synthesis we develop a novel game-theoretic
algorithm that is faster than Zielonka’s, although it does produce strategies with
larger memory. Our algorithm can also be used for the synthesis of GR(1) prop-
erties, in which case it outperforms the algorithm of [119] when the state space
of the specification is larger than the number of assumptions and guarantees.

2.3 Preliminaries

We discuss the verification and synthesis of reactive systems. The language
of a reactive system consists of infinite words. For a word w = w1 . . . , let
|w| ∈ N ∪ {∞} be the length of the word, let w[..i] = w1 . . . wi be the prefix
of length i, and let w[i..] = wiwi+1 . . . be the suffix starting at position i. We
denote the set of all finite (infinite) words over the alphabet A by A∗ (Aω).

2.3.1 Systems

We consider systems with a set of input signals I and a set of output signals O.
We define AP = I ∪ O. We use the signals as atomic propositions in the
specifications defined below. Our input alphabet is thus ΣI = 2I , the output
alphabet is ΣO = 2O, and we define Σ = 2AP .

Moore machines

We use Moore machines to represent systems. A Moore machine with input
alphabet ΣI and output alphabet ΣO is a tuple M = (Q, q0, δ, λ), where Q is the
set of states, q0 ∈ Q is the initial state, δ : Q×ΣI → Q is the transition function,
and λ : Q→ ΣO is the output function. In each state, the Moore machine outputs
a letter in ΣO, then reads a letters in ΣI , and moves to the next state. The
run of M on a sequence x = x0x1 . . . ∈ ΣI

ω is a sequence ρ0ρ1 . . . ∈ Qω, where
ρ0 = q0 and ρi+1 = δ(ρi, xi). The corresponding word is λ(ρ) = w0w1 . . . ∈ Σω,
where wi = λ(ρi) ∪ xi. The language of M , L(M) ⊆ Σω, consists of the words
corresponding to the runs of M . We define L∗(M) = L(M) ∩ Σ∗.

2.3.2 Acceptance Conditions

The specifications we use are automata and we synthesize a system that realizes a
given specification using games. Both automata and games can have the following
acceptance conditions.

Let Q be a set of states, an acceptance condition is a predicate Acc : Qω → B,
mapping infinite runs to true or false (accepting and not accepting, or winning
and losing, respectively). The safety acceptance condition is Acc(ρ) = true iff

8 Chapter 2. Synthesizing Robust Systems

ρ never leaves F ⊆ Q, the set of safe states. The Büchi acceptance condition
is Acc(ρ) = true iff inf(ρ) ∩ F 6= ∅, where F ⊆ Q is the set of accepting states
and inf(ρ) is the set of elements that occur infinitely often in ρ. We abbreviate
the Büchi condition as B(F). A Generalized Reactivity acceptance condition is a

predicate
∧k
l=1(

∧ml

i=1 B(Al,i)→
∧nl

i=1 B(Gl,i)), where Al,i ⊆ Q are assumptions
and Gl,i ⊆ Q are guarantees. To simplify notation, we will assume that the ml

are all equal to some constant m, and similarly for nl and n. The acceptance
condition is a GR(1) acceptance condition if k = 1, it is a generalized Büchi
acceptance condition if k = 1 and m = 0, it is a Streett acceptance condition with
k pairs if m = n = 1.

2.3.3 Automata

A deterministic automaton over the alphabet Σ is a tuple A = (Q, q0, δ), where
Q is a finite set of states, q0 ∈ Q is the initial state, and δ : Q× Σ→ Q is the
transition function.

A run of an automaton A on a word w = w0w1 . . . ∈ Σ∗ ∪ Σω is the longest
sequence ρ(w) = ρ0ρ1 . . . ∈ Q∗ ∪Qω such that ρ0 = q0, and ρi+1 = δ(ρi, wi). An
automaton accepts a word if its run is accepting (see below). We call the set
L(A) of infinite words accepted by A the language of A.

The product automaton A = A1 ×A2 of two automata is defined as usual.

Safety automaton

A safety automaton A = (Q, q0, δ, F) is a complete deterministic automaton
(Q, q0, δ) together with a set F ⊆ Q of accepting states such that there are no
edges from non-accepting to accepting states. An infinite run is accepting if it
never leaves F . See Section 2.3.2 for a formal definition of the safety acceptance
condition.

Büchi automaton

A Büchi automaton A = (Q, q0, δ, F) is an automaton with a Büchi condition
with accepting state set F . An infinite run is accepting if a state in F is visited
infinitely often. See Section 2.3.2 for a formal definition of the Büchi acceptance
condition.

Single and Double Cost Automata

A single (double) cost automaton over the alphabet Σ is a tuple C = (Q, q0, δ, c)
consisting of a complete deterministic automaton (Q, q0, δ) and a cost function
c : Q×Σ→ N (c : Q×Σ→ N×N, respectively) that associates to each transition
a value in N (N × N, resp.) called cost. In a double cost automaton, we use
cs and ce to refer to the cost function of the first and the second component,
respectively. The maximal cost is the smallest W ∈ N ∀q ∈ Q, σ ∈ Σ : c(q, σ) ≤
W (ce(q, σ), cs(q, σ) ≤W). The cost of a word w ∈ Σ∗∪Aω, denoted by C(w), is

2.3. Preliminaries 9

the sum
∑|W |
i=0 c(ρ(w)i, wi), For double cost automata, we use Ce(w) and Cs(w)

to refer to the first and second component, respectively, of the cost of the word
w.

The sum of two cost automata A1 = (Q1, q01, δ1, c1) and A2 = (Q2, q02, δ2, c2)
is the cost automaton A = A1 + A2 = (Q, q0, δ, c), where A is the product of
the automata A1 and A2 with costs c = c1 + c2, i.e., c((q1, q2), σ) = c1(q1, σ) +
c2(q2, σ). The product of two single cost automata A1 = (Q1, q01, δ1, c1) and
A2 = (Q2, q02, δ2, c2) is a double cost automaton A = A1 × A2 = (Q, q0, δ, c),
where A is the product of the automata A1 and A2 with costs c = (c1, c2), i.e.,
c((q1, q2), σ) = (c1(q1, σ), c2(q2, σ)).

2.3.4 Specifications

We use safety automata for safety specifications and Büchi automata for liveness
specifications. In our examples, we also show Linear Temporal Logic (LTL)
formulas describing the discussed properties. Furthermore we use LTL and
Computation Tree Logic (CTL) specifications in Chapter 3 for model checking.

Temporal Logic

Temporal Logic is used to describe the behavior of reactive systems. LTL was
introduced by Pnueli in [120] and CTL was introduced by Ben-Ari in [15] to
describe properties of infinite computations where the specification of an end state
is not possible. We will give a short introduction to the syntax and semantics of
LTL future formulas. For further reading we recommend [106].

The syntax of an LTL formula over a set of atomic propositions AP is defined
as follows.

1. Every atomic proposition p in AP is an LTL formula,

2. if f and g are LTL formulas then ¬f and f ∧ g are LTL formulas, and

3. if f and g are LTL formulas then X f and f U g are LTL formulas.

The operators used in the definition are denoted as the elementary operators.
Other connectives can be seen as abbreviations: f ∨ g = ¬(¬f ∧ ¬g), f → g =
¬f ∨ g, f ↔ g = (f ∧ g) ∨ (¬f ∧ ¬g), F f = trueU f , and G f = ¬F¬f .

The semantics of an LTL formula over a set of atomic propositions P are
recursively defined over infinite words over the alphabet 2AP .

1. Atomic Propositions:

� p ∈ AP : w[i..] |= p iff p ∈ wi.

2. Boolean Operators:

� w[i..] |= ¬f iff not w[i..] |= f , and

� w[i..] |= f ∧ g iff w[i..] |= f and w[i..] |= g.

10 Chapter 2. Synthesizing Robust Systems

3. Temporal Operators:

� w[i..] |= X f iff w[i+ 1..] |= f , and

� w[i..] |= f U g iff ∃j ≥ i : w[j..] |= g and ∀k, i ≤ k < j : w[k..] |= f .

We refer to X as the next operator and to U as the until operator. The semantics
of the operators always (G) and eventually (F) can be derived from the semantics
of the elementary operators.

� w[i..] |= G f iff ∀j ≥ i : w[j..] |= f , and

� w[i..] |= F f iff ∃j ≥ i : w[j..] |= f .

A word w satisfies the formula f if w |= f . A Moore machine M satisfies or
realizes an LTL formula f (M |= f) if all possible words of the Moore Machine
satisfy the formula.

The syntax of an CTL formula over a set of atomic propositions AP is defined
as follows.

1. Every atomic proposition p in AP is an CTL formula,

2. if f and g are CTL formulas then ¬f and f ∧ g are CTL formulas, and

3. if f and g are CTL formulas then AX f , A(f U g), and E(f U g) are CTL
formulas.

The operators used in the definition are denoted as the elementary operators.
Other connectives can be seen as abbreviations: f ∨ g = ¬(¬f ∧ ¬g), f → g =
¬f ∨ g, EX f = ¬AX¬f , EF f = E(trueU f), and AG f = ¬EF¬f .

The semantics of an CTL formula over a set of atomic propositions AP are
recursively defined over the language of Moore Machines M = (Q, q0, δ, λ) with
the alphabet 2AP . Let q be a state of M (q ∈ Q) and let L(M, q) be the language
of the Moore Machine with initial state q.

1. Atomic Propositions:

� p ∈ AP : (M, q) |= p iff ∃w0w1 . . . ∈ L(M, q) : p ∈ w0.

2. Boolean Operators:

� (M, q) |= ¬f iff not (M, q) |= f , and

� (M, q) |= f ∧ g iff (M, q) |= f and (M, q) |= g.

3. Temporal Operators:

� (M, q) |= AX f iff ∀ runs qq1 . . . of M : (M, q1) |= f ,

� (M, q) |= A(f U g) iff ∀ runs qq1 . . . of M : ∃j ≥ i : (M, qj) |= g and
∀k, i ≤ k < j : (M, qk) |= f , and

� (M, q) |= E(f U g) iff ∃ a run qq1 . . . of M : ∃j ≥ i : (M, qj) |= g and
∀k, i ≤ k < j : (M, qk) |= f .

2.3. Preliminaries 11

We refer to E as the exists operator and to A as the for all operator. The
semantics of the operators EX, EF and AG can be derived from the semantics of
the elementary operators.

� (M, q) |= EX f iff ∃ a run qq1 . . . of M : (M, q1) |= f ,

� (M, q) |= EF f iff ∃ a run qq1 . . . of M : ∃j : (M, qj) |= f ,

� (M, q) |= AG f iff ∀ runs qq1 . . . of M : ∀j : (M, qj) |= f ,

Safety

Safety properties are properties stating that something bad will never happen or
equally that we always stay in a safe state. In temporal logic these properties are
usually defined using the G operator. We use safety automata to specify safety
properties. Given a safety automaton A, we say the Moore machine M satisfies
A, if L(M) ⊆ L(A). We use cost automata to specify the cost of an error for
robust systems satisfying a safety specification.

Liveness

Liveness properties are properties stating that eventually some property will hold.
We look at a special subset of properties, which can include safety and liveness.
The specifications we consider are GR(1) specifications. GR(1) specifications
consist of two parts: assumptions and guarantees [119]. They specify the interac-
tion between an environment (controlling the input variables ΣI) and a system
(controlling the output variables ΣO). The specification states that the system
must fulfill all guarantees whenever the environment fulfills all assumptions.

A GR(1) specification over the alphabet Σ consists of m Büchi automata
Aa1 , . . . , A

a
m for the environment assumptions and n Büchi automata Ag1, . . . , A

g
n

for the system guarantees [119]. Let AGR(1) = (Q, δ, q0,Acc) be the product of all
automata Aai and Agi , where the state space is Q = Qa1×· · ·×Qam×Qg1×· · ·×Qgn,
the transition function is δ((qa1 , . . . , q

g
n), σ) = (δa1 (qa1 , σ), . . . , δgn(qgn, σ)), and the

initial state is q0 = (qa0,1, . . . , q
g
0,n). Let Jai = {(qa1 , . . . , qgn) ∈ Q | qai ∈ F ai } be the

set of states that are accepting in Aai . Similarly, let Jgi be the set of all states
of AGR(1) that are accepting in Agi . The acceptance condition Acc is a GR(1)
condition with assumptions Jai and guarantees Jgi .

Note that the size of the state space of the specification grows exponentially
with the number of assumptions and guarantees (if the Büchi automata have
more than 2 states), whereas m and n grow linearly.

A system realizes a GR(1) specification AGR(1) if the language of the system
is part of the language of AGR(1).

2.3.5 Games and Strategies

A game graph is a finite directed graph G = (S, s0, E) consisting of a set of states
S, an initial state s0 ∈ S, and a set of edges E ⊆ S × S such that each state has

12 Chapter 2. Synthesizing Robust Systems

at least one outgoing edge. The states are partitioned into a set S1 of Player-1
states and a set S2 of Player-2 states. When the initial state is not relevant,
we omit it and write (S,E). A play ρ = s0s1 . . . ∈ Sω is an infinite sequence of
states such that for all i ≥ 0 we have (si, si+1) ∈ E. We denote the set of all
plays by Ω.

Given a game graph G = (S,E), a (finite memory) strategy for Player 1 is
a tuple (Γ, γ0, π), where Γ is some (finite) set representing the memory, γ0 ∈ Γ
is the initial memory content, and π : S1 × Γ→ S × Γ is a function mapping a
Player-1 state s and a memory content to a successor state s′ and an updated
memory content such that (s, s′) ∈ E. A Player-2 strategy is defined similarly.
We denote by Π1 and Π2 the set of all possible Player-1 and Player-2 strategies,
respectively. A strategy is positional if it depends only on the current state.
We represent a positional strategy π for player p as a function from Sp to S.
Let ρ((Γ1, γ0,1, π1), (Γ2, γ0,2, π2), s) denote the unique play starting at s when
Player 1 plays according to the strategy (Γ1, γ0,1, π1) and Player 2 plays according
to (Γ2, γ0,2, π2).

A game is a game graph together with an objective. The game graph defines
the possible actions of the players. The objective describes the goal for the players.
Some games have a quantitative objective, for example mean payoff games. Other
games have qualitative objective, namely that of winning. Generalized Reactivity
games are games with quantitative objectives.

For quantitative objectives we define the value of a play, which is given by
a value function v : Ω→ R ∪ {−∞,∞}. The value of a state s under Player-1
strategy and Player-2 strategy, denoted by v((Γ1, γ0,1, π1), (Γ2, γ0,2, π2), s), is the
value of the play ρ((Γ1, γ0,1, π1), (Γ2, γ0,2, π2), s).

We consider complementary objectives for the two players: Player 1 tries
to minimize the value of a state and Player 2 tries to maximize it. (Note that
the converse is more usual.) The Player-1 value of a state s under the strategy
(Γ1, γ0,1, π1) is sup(Γ2,γ0,2,π2)∈Π2

(v((Γ1, γ0,1, π1), (Γ2, γ0,2, π2), s)), which is the
value Player 1 can guarantee with his strategy independent of the strategy
Player 2 plays. A strategy (Γ1, γ0,1, π1) is optimal for Player 1 in state s if the
Player-1 value of the state s under the strategy (Γ1, γ0,1, π1) is minimal. The
Player-2 value and Player-2 optimal strategies are defined correspondingly. The
value of a state s denoted by v(s) is the Player-1 value of the play starting in s,
in which both players play optimally.

A mean payoff game is described as a tuple ((S, s0, E), w), where (S, s0, E)
is a game graph and w : E → N is a payoff function. The value function for a
play ρ = s0s1 . . . in a mean payoff game is v(ρ) = lim supn→∞

1
n

∑n
i=0 w(ei) with

ei = (si, si+1).

The objectives for games with qualitative objectives are acceptance conditions.
Acceptance conditions are given in Section 2.3.2.

A Generalized Reactivity (GR) game is a tuple ((S,E),Acc), consisting of a
game graph (S,E) and a Generalized Reactivity acceptance condition Acc. A
play ρ is winning for Player 1 if it satisfies the objective of the game Acc(ρ) = true,
otherwise it is winning for Player 2. A strategy π1 is winning for Player 1 if for

2.4. Safety 13

all strategies π2 of Player 2 the play ρ((Γ1, γ0,1, π1), (Γ2, γ0,2, π2), s0) is winning.
A game is winning for Player 1 (Player 2) if there exists a winning strategy for
Player 1 (Player 2, resp.). A GR(1) game is a game with a GR(1) acceptance
condition. A Streett game is a game with a Streett acceptance condition.

Given a game graph G, two objectives are equivalent if all plays in G have
the same winner for both objectives. The objectives are equivalent if they are
equivalent for any game graph.

2.3.6 Synthesis

For synthesis we translate the specification into a game such that a winning strat-
egy for the game corresponds to a Moore machine that satisfies the specification.
In the following we describe how to translate automata into game graphs and
GR(1) specifications into GR(1) games.

An automaton A = (Q, q0, δ) over the alphabet Σ can be translated into
a game graph (S, s0, E) as follows. We define the set of Player-1 states as
S1 = {s(q,σi) | q ∈ Q and σi ∈ ΣI} ∪ {s0}. The Player-2 states S2 are given
by the set S2 = {s(q,σo) | q ∈ Q and σo ∈ ΣO}. The set of game states is
the set S = S1 ∪ S2. Every state of the game (except for the initial state)
represents a state of the automaton and an input or output label. Note that
this corresponds to moving from a transition-labeled to a state-labeled system.
Every outgoing transition of a state q in A is translated into two steps of the
game: first, Player 1 chooses a letter σo from ΣO by moving to the states s(q,σo),
then Player 2 chooses a letter σi from ΣI and moves according to the transition
relation to a new state s(q′,σi) such that δ(q, σo∪σi) = q′. Formally, we have that
E1 = {(s(q,σi), s(q,σo)) | q ∈ Q, σo ∈ ΣO, and σI ∈ ΣI} ∪ {(s0, sqo,σo

) | σo ∈ ΣO},
E2 = {(s(q,σo), s(q′,σI)) | q, q′ ∈ Q, σo ∈ ΣO, σI ∈ ΣI , and δ(q, σo∪σi) = q′}, and
E = E1 ∪ E2.

A GR(1) specification AGR(1) = (Q, q0, δ,Acc) over the alphabet Σ with
m environment assumptions and n system guarantees can be translated into a
GR(1) game ((S, s0, E), ((A1, . . . , Am), (G1, . . . , Gn))) as follows. The automaton
(Q, q0, δ) is translated into the game graph (S, s0, E) as described above. Let Jai
and Jgj be defined as described for GR(1) specifications, then the assumption sets
are Ai = {s(q,σo) | q ∈ Jai } and the guarantee sets are Gj = {s(q,σo) | q ∈ Jgj }.

2.4 Safety

This section proposes a formal notion of robustness through graceful degradation
for discrete functional safety properties: A small error by the environment should
induce only a small error by the system, where the error is defined quantitatively
as part of the specification, for instance, as the number of failures. Given such a
specification, we define a system to be robust if a finite environment error induces
only a finite system error. As a more fine-grained measure of robustness, we
define the notion of k-robustness, meaning that on average, the number of system
failures is at most k times larger than the number of environment failures. We

14 Chapter 2. Synthesizing Robust Systems

show that the synthesis question for robust systems can be solved in polynomial
time as a one-pair Streett game and that the synthesis question for k-robust
systems can be solved using ratio games. Ratio games are a novel type of graph
games in which edges are labeled with a cost for each player, and the aim is
to minimize the ratio of the sum of these costs. We show that ratio games are
positional, that the associated decision problem is in NP ∩ co-NP, and that they
can be solved in pseudopolynomial time. They can be solved in polynomial time
if the cost of a failure is assumed to be constant.

In the next subsection, we present our framework based on error functions,
and define robustness and k-robustness. In Section 2.4.2, we introduce ratio
games and show how to solve them. Section 2.4.3 shows how to use ratio games
to construct correct and robust systems.

2.4.1 Defining Robustness

In this section we introduce our notion of robustness based on error specifications.
We show how error specifications relate to classical specifications and the notion
of realizability. We conclude with an example.

Definition 1. An error function is a function d : Σ∗ ∪ Σω → N ∪ {∞}. The
function is monotonically increasing in the sense that if w′ is a prefix of w then
d(w′) ≤ d(w).

The error functions define a distance between allowed and observed behavior,
for instance, by measuring the number of failures in some appropriate sense.
Thus, d(w) = 0 indicates that w fulfills the specification, and a higher value
indicates a more serious violation of the specification.

Definition 2. An error specification is a pair of error functions (de, ds).

Error specifications provide a measure of “badness” for both the environment
behavior (using de) and the system behavior (using ds) and form the specifications
we use in the sequel. We assume that these specifications are provided by the
user.

Definition 3. A Moore machine M realizes an error specification (de, ds) if
∀w ∈ L(M) : de(w) = 0 implies ds(w) = 0.

Thus, an error specification induces a classical specification A→ G, where
A = {w ∈ Σω | de(w) = 0} and G = {w ∈ Σω | ds(w) = 0} are sets of infinite
words.

The following notion is an alternative to realizability, forbidding the system
to make mistakes before the environment does.

Definition 4. A Moore machine M strictly realizes an error specification (de, ds)
if ∀w ∈ L∗(M) : de(w[..|w| − 1]) = 0 implies ds(w) = 0. An error specification is
strictly realizable if there exists a Moore machine that strictly realizes it.

2.4. Safety 15

Example 1. An example of a specification that is realizable but not strictly
realizable is A1 ∧A2 → G1 ∧G2, where x is an input, y is an output, A1 requires
that x is always true (Gx), A2 says that x is initially equal to y (x ↔ y), G1

states that y is always true (G y), and G2 states that x in the first step and y
in the second step are different (x 6↔ (X y)). All Moore machines that realize
the specification start with setting y to false, which violates the guarantees but
forces the environment to do the same1.

Definition 5. A Moore machine M is robust with respect to an error specification
(de, ds) if ∀w ∈ L(M) : de(w) 6=∞ implies ds(w) 6=∞.

This means that a robust system can recover from a finite environment error.
Note that a system can be robust with respect to a specification that it does
not realize if it contains a word with a finite system error but no environment
error. Error specifications can forbid words by assigning infinite system costs.
(In particular, this is possible when such specifications are given by double cost
automata, as below.)

In order to calculate the quality of a robust system we want to calculate the
largest system error for every environment error.

Definition 6. A Moore machine M is k-robust with respect to an error specifi-
cation (de, ds) if ∃d ∈ N : ∀w ∈ L∗(M) : ds(w) ≤ k · de(w) + d.

Obviously, every k-robust system is robust, regardless of k. Also, every robust
system is k-robust for some finite k, see Theorem 6, i.e., for every finite Moore
machine, the growth of the system error is either linear with respect to the
environment error or unbounded. This motivates our choice of the robustness
measure as a linear function. The definition of k-robustness allows us to rank
Moore machines with respect to error specifications: A smaller k is better, it
means that the system error increases slowly with the environment error. The
constant d allows the system finitely many system failures independent of the
environment error. In this work, we focus on the infinite behavior of a machine,
and note that d can be bounded by the product of the size of the Moore machine
and the maximal weight. We leave minimization of d to future work.

Definition 7. A Moore machine (k-)robustly (and strictly) realizes an error
specification if it (strictly) realizes the specification and it is (k-)robust with
respect to the specification.

In the remainder, we use double cost automata to define error specifications.
The environment (system) error function associated with C maps each w ∈ Σ∗∪Σω

to its cost Ce(w) (Cs(w), respectively). Note that a double cost automaton can
be seen as the product of two single cost automata. We can construct an error
specification from a set of cost automata CAi

for the system and CGi
for the

environment. The error specification (a double cost automaton) is the product
of the sum of all CAi and the sum of all CGi .

1This specification is based on an example by Marco Roveri.

16 Chapter 2. Synthesizing Robust Systems

s0 s1

r̄2

r1r2

⊤

p0 p1 p2

ri

r̄igi

ḡi

r̄i rigi ⊤

Figure 2.1: Automata for A = G(¬(r1 ∧ r2)) and Gi = G(ri → X gi)

Example 2. Consider a system with two request signals r1 and r2 as inputs
and two grant signals g1 and g2 as outputs. We want the system to respond
to each request with a grant in the next step. Formally, we require that the
system satisfies Gi = G(ri → X gi) for i ∈ {1, 2}. The system should also
guarantee that grants are mutually exclusive, i.e., G3 = G¬(g1 ∧ g2). To avoid a
contradicting specification, we assume that requests are also mutually exclusive,
i.e., A = G¬(r1∧r2). Figure 2.1 shows two safety automata, one for A and one for
G1 and G2. Note that we summarize labels on edges with Boolean expressions over
ri and gi, where a horizontal alignment of two variables represents a conjunction
and a vertical alignment of two variables represent a disjunction. We use a bar
to denote negation and > to denote true. States depicted with two cycles are
accepting states. Note that the automaton for G3 is exactly the same as for A,
where r1 and r2 are renamed to g1 and g2, respectively.

Starting from the specification A→ (G1 ∧G2 ∧G3), we can define what it
means for the system and the environment to fail. In particular, the environment
violates assumption A if it raises r1 and r2 at the same time. This corresponds
to taking the edge from s0 to s1. The leftmost automaton CA in Figure 2.2 is
a cost automaton that counts every violation of the environment. Note that
once the environment “pays” for taking the edge r1r2, we go back to the initial
state, resetting the specification. Similarly, if the system violates Guarantee Gi
by choosing to go from p1 to p2, it also incurs cost 1 as shown in the second
automaton CGi

in Figure 2.2.
Note that it is up to the user to define the cost of a violation and the state in

which to continue after the specification is violated. A reset or a skip are two
natural alternatives. A reset corresponds to an edge to the initial state. For a
skip, we simply add a self-loop. The rightmost automaton C ′Gi

of Figure 2.2 is an
alternative cost automaton for Gi with i ∈ {1, 2}, which uses a mixture of reset
and skip. For the cost automaton CGi , the word (r1, ḡ1)(r1, ḡ1)(r̄1, ḡ1)ω has cost
1 whereas it has cost 2 for the cost automaton C ′Gi

. For the second automaton,
the cost corresponds to the number of unanswered requests.

The costs on the edges are given by the user. For instance, the user might
consider a violation of the mutual-exclusion properties G3 more severe and
associate with it a higher cost than a violation of the response properties G1

or G2.
Given cost automata CG1

, CG2
, and CG3

that describe the cost and the

2.4. Safety 17

s0

r̄1(0)
r̄2(0)
r1r2(1)

p0 p1

ri(0)

r̄igi(0)
ḡi(1)

r̄i(0) rigi(0)

p0 p1

ri(0)

r̄igi(0)
r̄iḡi(1)

rigi(0)
riḡi(1)r̄i(0)

Figure 2.2: Cost automata CA, CGi , and C′
Gi

counting violations of A and Gi

g1ḡ2

ḡ1g2

g1ḡ2

r1r2

r1r2

r1r̄2r̄1⊤

r̄1

r1r̄2

Figure 2.3: Automatically constructed system for A → (G1 ∧G2 ∧G3)

behavior associated with a violation of the corresponding property, we can
construct a cost automaton CG = CG1

+CG2
+CG3

for G = G1 ∧G2 ∧G3. The
automaton CG defines the error function of the system. The cost automaton for
the environment CA specifies the error function of the environment. The product
C = CA × CG is the error specification.

Figure 2.3 shows a system M (synthesized with Lily [94]) for the specification
A→ G. It is easy to see that M satisfies A→ G. As long as the environment
satisfies A, which means that it does not provide r1 and r2 simultaneously, the
system responds to each ri with the corresponding gi in the next step. However,
M is not robust with respect to C: The input sequence i = (r1r2)(r̄1r2)ω has
cost one, but the corresponding output o = (ḡ1g2)(g1ḡ2)ω of the system has cost
∞.

Figure 2.4 shows two systems that are robust with respect to the error
specification, for any word with finitely many environment errors the systems
produce finitely many system errors. The first system in Figure 2.4 is 2-robust
with respect to the error specification using C ′Gi

whereas the second system
in Figure 2.4 is 1-robust. For the input (r1r2)ω the output of the first Moore
machine is (ḡ1g2)(ḡ1ḡ2)ω and for the second it is (g1ḡ2)ω.

Note that out of the three systems given above (which all satisfy A→ G) the

18 Chapter 2. Synthesizing Robust Systems

ḡ1ḡ2

ḡ1g2

g1ḡ2

r1r2

r̄1

r1r2

r1r̄2

r1r̄2r̄1

r1r2

r̄1

r1r̄2

g1ḡ2 ḡ1g2

r̄1r2

r1
r̄2

r1
r̄2 r̄1r2

Figure 2.4: A 2-robust and a 1-robust system

last system is the most robust one. In our opinion, it is also the one most likely
to please the designer.

In Section 2.4.3 we show how to synthesize (strictly) realizing robust and
k-robust systems from an error specification. We also show how these notions
can be verified. The next section introduces Ratio games, which are crucial to
our synthesis algorithms.

2.4.2 Ratio Games

In this section we introduce ratio games, which we need to synthesize k-robust
systems. Intuitively, a system is k-robust if the ratio of the system error to the
environment error is smaller than or equal to k for every word of the system. An
optimal strategy for Player 1 in a ratio game minimizes this ratio.

Definition 8. A ratio game2 G is a tuple ((S, s0, E), w1, w2) consisting of a
game graph (S, s0, E) and two weight functions w1, w2 : E → N mapping edges
to non-negative integer values. The value function for a play ρ = s0s1 . . . ∈ Sω is

v(ρ) = lim
m→∞

lim sup
l→∞

∑l
i=m w1(si, si+1)

1 +
∑l
i=m w2(si, si+1)

(2.1)

Ratio games are a generalization of mean payoff games. If w2(e) = 1 for
all e ∈ E, then G is a mean payoff game. Note that the sequence of quotients
for l → ∞ might diverge, which requires the use of lim sup or lim inf. We
follow the definition of mean payoff games and take the lim sup. The outer-most
limit ensures that only the infinite behavior is relevant as in the definition of
k-robustness, i.e., if

∑∞
i=0 w1(ei) is finite, then v(ρ) = 0. The addition of 1 in

the denominator avoids division by zero. It does not influence the value of v(ρ)
if
∑∞
i=0 w2(ei) is infinite.

2Our graph-based ratio games should not be confused with those of [129], which represent
games in a normal form, enumerating all strategies. We cannot use that representation to
obtain a polynomial algorithm.

2.4. Safety 19

The maximal weight W in a ratio game ((S, s0, E), w1, w2) is defined by
W = max{wi(e) | e ∈ E, i ∈ {1, 2}}. The set of possible values v(ρ) of a play

ρ, where both players play positional strategies is V = {0, 1
|S|·W , . . . , |S|·W1 ,∞}.

Lemma 1 shows that ratio games have optimal positional strategies, which implies
that it suffices to consider positional strategies and that the value of every state
is in V .

Lemma 1. Ratio games have optimal positional strategies.

Proof. It suffices to show that the two one-player games (S2 = ∅, respectively
S1 = ∅) have optimal positional strategies [80]. Consider a game graph G with
S2 = ∅. Take in G a simple cycle with the minimum ratio r of all simple cycles.
We show that the positional strategy π1 that goes to this simple cycle and stays
within it forever is optimal. Note that the value v(ρ) of the play ρ induced by
the strategy π1 is r, since the outer-most limit in Eq. 2.1 allows us to ignore a
finite prefix of ρ.

If r = 0, the claim trivially holds. If r =∞, then in any simple cycle the sum
of the weights w2 is 0 and the sum of the weights w1 is strictly greater than 0.
This implies that all edges e on cycles have weight w2(e) = 0 and in every cycle
there is at least one edge e with w1(e) > 0, and so any infinite play has ratio ∞.

For 0 < r < ∞, let r be a
b for some integers a, b > 0 and let ρ′ be an

arbitrary play in the single player game. We decompose ρ′ into a sequence of
ratios a1

b1
, a2b2 . . . by the following procedure (cf. [140]): we put the states of ρ′

on a stack in the order of their appearance, once we encounter a state q that
is already on the stack, we remove the sequence from the first to the second
appearance of q and compute its ratio ai

bi
. Note that the sum of the weights w1

and w2 in this cycle can be ci-times larger than ai and bi, respectively, where
ci is some integer constant between 1 and W · |S|. Note that the height of the
stack is at most |S|. Due to the outer-most limit, we can ignore the part of ρ′

that is always left on the stack in the computation of the value v(ρ′). Then,

v(ρ′) = lim supl→∞

∑l
i=1 ci·ai

1+
∑l

i=1 ci·bi
for some constants 0 < ci ≤ W · |S|. Since

the minimum simple-cycle ratio is a
b , we know that ai

bi
≥ a

b for all i > 0 and
together with the fact that ci’s are positive integer constants, we know that

v(ρ′) ≥ lim supl→∞

∑l
i=1 a

1+
∑l

i=1 b
and therefore v(ρ′) ≥ a

b .

The proof for Player-2 games is analogous.

The decision problem of a ratio (mean payoff) game is, given a ratio r (mean
payoff v) decide if the value of the game is at least r (v). The decision problem for
mean payoff games is in NP ∩ co-NP [140]. We show how the decision problem
for ratio games can be reduced to the decision problem of mean payoff games.
The reduction shows that the decision problem for ratio games is in NP ∩ co-NP.
We also use this reduction to calculate the values of the states in a ratio game.
The reduction is similar to that used by Lawler [102] for the reduction of ratio
graphs to the minimal mean cycle problem.

20 Chapter 2. Synthesizing Robust Systems

Lemma 2. Let GR = ((S, s0, E), w1, w2) be a ratio game with maximal weight
W . Given a ratio a

b with 0 ≤ a ≤ |S| ·W and 0 < b ≤ |S| ·W , we can decide
whether a state has value v = a

b , v < a
b , or v > a

b in O(|S|3 ·W 2 · |E|) time.

Proof. We reduce the decision for the ratio game to a decision for the mean payoff
game GMP = ((S, s0, E), w) with payoff function w(e) = b · w1(e)− a · w2(e). In
the following, let vR (vR(ρ)) be the value (of run ρ) in GR and similarly for vMP.

We show that vR ≤ a
b implies vMP ≤ 0 and vR ≥ a

b implies vMP ≥ 0. The
decision whether vMP < 0, vMP = 0, or vMP > 0 can be made in O(|S|2 ·W ′ · |E|)
time, where W ′ is the maximal weight in the mean payoff game [140]. We have
W ′ ≤ b ·W ≤ |S| ·W 2, thus the decision for the ratio game can be made in
O(|S|3 ·W 2 · |E|) time.

Suppose vR ≤ a
b . We show that Player 1 can achieve a run of value at most

0 in GMP and thus vMP ≤ 0. Let π1 be a positional optimal Player-1 strategy
for GR and let π2 be a positional optimal strategy for Player 2 in GMP. Because
both strategies are positional, ρ(s0, π1, π2) consists of a stem and a simple cycle,
say ρ = (e′1, . . . , e

′
m) · (e1, . . . , en)ω. Note that

vR(ρ) =

∑n
i=0 w1(ei)∑n
i=0 w2(ei)

and vMP(ρ) =
b
∑n
i=0 w1(ei)− a

∑n
i=0 w2(ei)

n
.

Suppose
∑n
i=0 w1(ei) > 0, then, since vR ≤ a

b and is thus finite, we have∑n
i=0 w2(ei) > 0. It follows that∑n

i=0 w1(ei)∑n
i=0 w2(ei)

≤ a

b
implies

b
∑n
i=0 w1(ei)− a

∑n
i=0 w2(ei)

n
≤ 0.

If
∑n
i=0 w1(ei) = 0, then

b
∑n
i=0 w1(ei)− a

∑n
i=0 w2(ei)

n
=
−(a

∑n
i=0 w2(ei))

n
≤ 0.

The proof that vR ≥ a
b implies that vMP ≥ 0 is similar, using an optimal

strategy for Player 2 in GR.

Theorem 3. Given a ratio game ((S,E), w1, w2) with maximal weight W , the
value for every s ∈ S can be computed in O(|S|3 ·W 2 · |E| · log(|S| ·W)).

Proof. We use the decision procedure from Lemma 2 to perform a binary search
on the list of possible values V \ {∞}. If the ratio is greater than |S| ·W , it is
infinite. There are less than (|S| ·W)2 different ratios, thus we need at most
2 · log(|S| ·W) calls to the decision procedure.

Given an algorithm to find the values of the game we can use the “group
testing” technique from [140] to find optimal positional strategies.

Theorem 4. Given a ratio game ((S,E), w1, w2) with maximal weight W , posi-

tional optimal strategies for both players can be found in O(|S|4 · log(|E||S|) · |E| ·
log(|S| ·W) ·W 2).

2.4. Safety 21

Proof. Take a state q with more than one outgoing edge, remove half of the edges,
and calculate the values of the new game. If q still has the same value repeat the
procedure, else repeat the procedure on the game graph with the other half of the
outgoing edges. With this procedure we can successively eliminate the edges that
do not contribute to the optimal values. After

∑
q∈S log(|Eq|) steps, where |Eq|

is the number of outgoing edges from q, there is only one outgoing edge per state

left, which corresponds to a winning strategy. As
∑
q∈S log(|Eq|) ≤ |S| · log(|E||S|),

the complexity of the algorithm is O(|S|4 · log(|E||S|) · |E| · log(|S| ·W) ·W 2).

All our ratio game algorithms are polynomial in the size of the game graph
but pseudopolynomial in the weights. They are polynomial if W = 1.

2.4.3 Verifying and Synthesizing Robust Systems

This section describes the verification and synthesis algorithms for robust systems.
First, we establish the correlation between the ratio in Definition 8 and k-
robustness.

Any error specification C with cost functions ce and cs can be translated into
a ratio game G. The weight functions w1 and w2 are given by the cost functions
cs and ce respectively. Formally,

� w1((s(q,σi), s(q,σo))) = 0,

� w1((s(q,σo), s(q′,σi))) = cs(q, σo ∪ σi),
� w2((s(q,σi), s(q,σo))) = 0,

� w2((s(q,σo), s(q′,σi))) = ce(q, σo ∪ σi),
where (s(q,σi), s(q,σo)) ∈ E1 and (s(q,σo), s(q′,σi)) ∈ E2 (see Section 2.3.6). Every
play ρG = s0, s(q0,σo), s(q′,σi), s(q′,σ′

o) . . . of G corresponds to a run ρC = q0q
′ . . .

of C on w = (σo, σi)(σ
′
o, σ
′
i).

Lemma 5. Given a Moore machine M and an error specification C with cost
function ce and cs, M is k-robust iff for all words w ∈ L(M), the run ρ(w) =
q0 . . . of C on w = w0 . . . satisfies

v(w) = lim
m→∞

lim sup
l→∞

∑l
i=m cs(qi, wi)

1 +
∑l
i=m ce(qi, wi)

≤ k. (2.2)

Proof. Suppose M is k-robust. There exists a d ∈ N for any arbitrary word
w ∈ L(M) such that for all finite prefixes w′ = w0 . . . wn of w we have

n∑
i=0

cs(qi, wi) ≤ k ·
n∑
i=0

ce(qi, wi) + d.

The right hand side of the above inequality is equivalent to

k · (1 +

n∑
i=0

ce(qi, wi)) + d− k,

22 Chapter 2. Synthesizing Robust Systems

thus the above inequality can also be formulated as∑n
i=0 cs(qi, wi)

1 +
∑n
i=0 ce(qi, wi)

≤ k +
d− k

1 +
∑n
i=0 ce(qi, wi)

.

Adding limm→∞ lim supl→∞ on both sides of the inequality results in

lim
m→∞

lim sup
l→∞

∑l
i=m cs(qi, wi)

1 +
∑l
i=m ce(qi, wi)

≤ k.

To show the last step we consider two cases, lim supl→∞
∑l
i=0 ce(qi, wi) is either

some finite value d′ or infinite. In the first case,
∑n
i=0 cs(qi, wi) ≤ k · d′ + d for

any n ≥ 0 because M is k-robust. If
∑n
i=0 cs(qi, wi) is finite for any n ≥ 0, then

lim supl→∞
∑l
i=0 cs(qi, wi) is also finite. Since both lim supl→∞

∑l
i=0 ce(qi, wi)

and lim supl→∞
∑l
i=0 cs(qi, wi) are finite,

lim
m→∞

lim sup
l→∞

∑l
i=m cs(qi, wi)

1 +
∑n
i=m ce(qi, wi)

= 0 ≤ k.

In the second case, the term added to k on the right hand side of the inequality
is 0 in the limit:

lim
m→∞

lim sup
l→∞

d− k
1 +

∑l
i=m ce(qi, wi)

= 0.

For the other direction, consider the product CM of C and M . Then, for

all w ∈ L∗(M), Ce(w) = CMe(w) =
∑|w|−1
i=0 ce(qi, wi) and Cs(w) = CMs(w) =∑|w|−1

i=0 cs(qi, wi), where ρCM (w) = q0 . . . q|w| is the run of CM on w. Consider
an arbitrary finite word w ∈ L∗(M), if |w| ≤ |C| · |M |, then CMs(w) ≤ |C| ·
|M | ·W and Cs(w) ≤ k · Ce(w) + d holds for any k ≥ 0 and d = |C| · |M | ·W .
Otherwise, if |w| ≥ |C| · |M |, we can decompose the run ρCM (w) into simple
cycles c1, . . . , cm and a simple path p consisting of the remaining nodes. (See
proof of Lemma 1.) Now consider the infinite words u1, . . . , um that correspond
to the runs leading to the cycles c1, . . . , cm, respectively, and looping there forever.
We know that u1, . . . , um are in L(M) and, due to Eq. 2.2, that v(uj) ≤ k for
all 1 ≤ j ≤ m. Therefore, for every cycle, the sums of the weights ce and
cs in the cycle, are either both 0 or their ratio is smaller or equal to k. Let
k = a

b and let a1
b1
, . . . , ambm be the ratios of the cycles whose ratio is nonzero, then∑|w−1|

i=0 cs(qi, wi) = d′ +
∑m
j=1 dj · aj and

∑|w−1|
i=0 ce(qi, wi) = d′′ +

∑m
j=1 dj · bj

for some 0 ≤ d′, d′′ ≤ |C| · |M | ·W and 1 ≤ dj ≤ |C| · |M | ·W . Using the fact
that, if for all 1 ≤ j ≤ m,

aj
bj
≤ a

b holds then
∑m
j=1 dj · aj ≤ a

b

∑m
j=1 dj · bj holds,

we obtain
∑|w−1|
i=0 cs(qi, wi) ≤ a

b

∑|w−1|
i=0 ce(qi, wi) + d′, which proves that M is

k-robust.

Verification

We show that any robust system is k-robust.

2.4. Safety 23

Theorem 6. If a Moore machine M with nM states is robust with respect to
an error specification C with nC states and maximal system cost W , then M is
(nC · nM ·W)-robust.

Proof. Let CM be the product of C and M . Lemma 5 shows that M is k robust
if the ratio of all runs in CM is smaller or equal to k in the limit. Since one-player
ratio games are positional (Lemma 1), the largest ratio corresponds to the largest
ratio of a simple cycle in CM , which cannot be larger than nC · nM ·W because
M is robust.

Next, we show how to verify if a given Moore machine is robust or k-robust.

Theorem 7. Given a Moore machine M with nM states, and an error specifica-
tion C over the alphabet Σ, with nC states and maximal cost W , we can decide
if M is robust in O(nC · nM · Σ) time. Given a k, we can check if M is k-robust
in O(n3

C · n3
M · Σ) time.

Proof. Let CM be the product of C and M . M is not robust iff CM contains a
cycle that contains an edge with nonzero system cost and no edge with nonzero
environment cost. This can be checked in time linear in the number of edges in
CM , which is nC · nM · Σ. We have that M is k-robust if the maximum simple
cycle ratio in CM is smaller or equal to k. The maximum simple cycle ratio in a
graph with n states and m transitions can be found in O(n2 ·m) time [55], thus
we can find the maximum ratio in O(n3

C · n3
M · Σ) time.

Synthesis

Next we show how to use Streett games to synthesize (strictly) realizing and
robust systems and how to use ratio games to synthesize (strictly) realizing
k-robust systems with optimal k.

Lemma 8. Given an error specification C with n states and alphabet Σ, we can
decide if a robust system exists in O(n2 · Σ) time. If a robust system exists, it
can be synthesized in O(n2 · Σ) time.

Proof. We translate the specification into a one-pair Streett game, F1 is the set
of states with incoming transitions with system costs and F2 is the set of states
with incoming transitions with environment costs. One-pair Streett games can
be solved in O(n ·m), where n is the number of states and m is the number of
transitions [118].

Theorem 9. Given an error specification C with n states and alphabet Σ, we
can decide if a robust and (strictly) realizing system exists in O(n2 ·Σ) time. The
system can be synthesized in O(n2 · Σ) time.

Proof. In order to decide if a robust and realizing system exists, build the product
automaton CA1 = (Q× {q1, q2, q3}, q0, δ, c) of the error specification C and the
automaton A1 shown in Figure 2.5. Let CA′1 be CA1, where the system costs
of all transitions corresponding to the loop on state q2 of A1 in Figure 2.5 are

24 Chapter 2. Synthesizing Robust Systems

q1 q2

q3

cs = 0
ce = 0

cs 6= 0
ce = 0

ce 6= 0

ce = 0

ce 6= 0

true

q1

q3

q2

cs = 0
ce = 0

ce 6= 0

true

cs 6= 0
ce = 0

true

Figure 2.5: Automata A1 and A2 for calculating realizability and strict realizability.3

set to 1. Formally, the cost function of CA′1 is c′((q, x), σ) = (1, ce((q, x), σ))
if x = q2 and δ((q, x), σ) = q2, and c′((q, x), σ) = c((q, x), σ) in all other cases.
Next, translate CA′1 into a Streett game as above (proof of Lemma 8). We claim
that a robust and realizing system exists iff the game is winning, and the winning
strategy corresponds to a robust and realizing system.

First, assume there exists a winning strategy. No play in which Player 1
plays optimally visits a q2-state infinitely often, because such a play has an
infinite system error and zero environment error. Consequently, all words w =
(σo, σi)(σ

′
o, σ
′
i) . . . associated with a play ρ = s0, s(q0,σo), s(q′,σi), s(q′,σ′

o) . . . where
Player 1 plays optimally satisfy Ce(w) = 0 implies Cs(w) = 0. Thus, the Moore
machine corresponding to the winning strategy realizes the error specification.
Second, assume there exists no winning strategy. A play where Player 2 plays
optimally, has a finite environment cost and an infinite system cost. Either there
exists no robust system or the play visits a q2-state infinitely often. In the second
case no system realizes the specification.

Similarly, to check for a robust and strictly realizing system, we build a
Streett game from the product automaton CA′2 of C and the automaton A2

of Figure 2.5, where the system costs of all transitions corresponding to the
loop on state q2 are replaced by 1 and their environment costs are set to 0.
Then, again any Player-1 optimal play avoids q2-states. Consequently, for all
words associated with a play where Player 1 plays optimally, all finite prefixes
w′ satisfy Ce(w

′[..|w′| − 1]) = 0 implies Cs(w
′) = 0. Thus, the Moore machine

corresponding to a winning strategy strictly realizes the error specification.

Lemma 10. Given an error specification C with n states, input alphabet ΣI ,
output alphabet ΣO, and maximal cost W , if a robust system exists, a k-robust

3The transitions in the automata are annotated with guards, meaning that the transition is
taken if the condition in the guard evaluates to true.

2.4. Safety 25

system with minimal k can be synthesized in O(n5·(|ΣI |+|ΣO|)4·log((|ΣO|+n·|ΣI |)
|ΣI |+|ΣO|)·

(|ΣO|+ n · |ΣI |) · log(n · (|ΣI |+ |ΣO|) ·W) ·W 2).

Proof. We synthesize k-robust systems with ratio games. The game graph is
constructed from the double cost automaton C (see Section 2.3.6). Lemma 5
shows that a positional strategy with value k corresponds to a k-robust Moore
machine. An optimal positional strategy corresponds to a k-robust system with
smallest possible k and d ≤ |C| ·W .

The number of states in the game graph is n · |ΣI | + n · |ΣO|, the number
of edges is |E1|+ |E2|, where |E1| = n · |ΣO| and |E2| = n · n · |ΣI |. A winning

strategy for Player 1 can be found in O(n4 · (|ΣI |+ |ΣO|)4 · log(n·(|ΣO|+n·|ΣI |)
n·(|ΣI |+|ΣO|)) ·

n · (|ΣO|+ n · |ΣI |) · log(n · (|ΣI |+ |ΣO|) ·W) ·W 2).

Theorem 11. Given an error specification C with n states, input alphabet ΣI ,
output alphabet ΣO, and maximal cost W , if a robust and (strictly) realizing system
exists, a k-robust system with minimal k that (strictly) realizes the specification

can be synthesized in O(n5 · (|ΣI |+ |ΣO|)4 · log((|ΣO|+n·|ΣI |)
|ΣI |+|ΣO|) · (|ΣO|+ n · |ΣI |) ·

log(n · (|ΣI |+ |ΣO|) ·W) ·W 2).

Proof. For realizability translate CA′1 from the proof of Theorem 9 into a ratio
game. The system cost 1 for q2-states guarantees that for any word w with
Cs(w) 6= 0 and Ce(w) = 0 the ratio of the corresponding run has value ∞ in the
ratio game. The ratios of other plays are not changed. If a play visits a q2-state
finitely often, the ratio is not influenced because we only look at the ratio in the
limit.

For strict realizability translate CA′2 from the proof of Theorem 9 into a ratio
game. Since q2-states have system cost 1 and environment cost 0, any run with
a system failure before an environment failure has value ∞ in the ratio game.

A Moore machine corresponding to an optimal strategy of Player 1 is robust
and (strictly) realizes the error specification. If k is the value of the initial state
then M is k-robust.

Synthesizing from Reset Error Specifications

As shown in Example 2 reset error specifications are an intuitive kind of error
specification. We show here that every realizable reset error specification can be
realized by a 1-robust Moore machine.

Definition 9. A reset error specification is a double cost automaton with
maximal cost 1, such that for all transitions (q, σ) with ce(q, σ) = 1 or cs(q, σ) = 1
the next state is δ(q, σ) = q0.

Theorem 12. Given a realizable reset error specification C, a 1-robust system
can be synthesized in linear time.

Proof. Translate C into a ratio game with a linear blowup, as in Lemma 10. We
show that for an optimal strategy the ratio is not greater than 1. Let π1 be

26 Chapter 2. Synthesizing Robust Systems

a strategy such that for all resulting plays ρ = q0q1 . . .,
∑∞
i=0 ce(qi, qi+1) = 0

implies
∑∞
i=0 cs(qi, qi+1) = 0. Thus, the system will not incur a cost from any

state reachable using π1 without environment cost. The only time a system cost
may be incurred is when the environment incurs a cost of 1, in which case the
system may also incur cost 1 and the system returns to the initial state.

2.5 Liveness

In the previous section we studied the verification and synthesis of robust systems
for safety specifications. In the case of safety, environment failures are immediately
apparent and the difficulty is how the system can best recover from them. A
violation of a liveness property, however, cannot be detected at any point in time
[4]. Thus, a system that is robust to liveness failures must attempt to fulfill its
guarantees under all circumstances, without knowing whether the environment
satisfies the assumptions.

In this section, we define several possible notions of robustness in the presence
of liveness, all aiming at maximizing the set of guarantees that is fulfilled for any
set of fulfilled assumptions. Suppose a specification has two assumptions and
two guarantees. In order for the specification to hold, both guarantees must be
met when both assumptions are. A system that meets both guarantees when
only one assumption is met is more robust than one that meets one (or zero)
guarantees when only one assumption is met.

Example 3. We consider a variant of the dining philosophers problem [58].
There are n philosophers sitting at a round table. There is one chopstick between
each pair of adjacent philosophers. Because each philosopher needs two chopsticks
to eat, adjacent philosophers cannot eat simultaneously. We are interested in
schedulers that use input variables hi signifying that philosopher i is hungry and
output variables ei signifying that philosopher i is eating.

We have the following requirements. First, an eating philosopher prevents
her neighbors from eating. Formally, G1i = G(ei → ¬e(i−1)modn ∧ ¬e(i+1)modn).
Second, an eating philosopher eats until she is no longer hungry: G2i = G(ei∧hi →
X ei). Third, every hungry philosopher eats eventually G3i = G(hi → F ei). We
add the assumption that an eating philosopher eventually loses her appetite:
A1i = G(ei → F¬hi). Our final specification consists of n assumptions and 3n
guarantees:

∧n
i=1A1i →

∧n
i=1(G1i ∧G2i ∧G3i).

We have synthesized a system realizing this specification for 5 philosophers
using our synthesis tool RATSY4. The system constructed by RATSY is not very
robust: When philosopher 1 violates the assumption by always being hungry,
then philosophers 1 and 3 eat forever, while the other philosophers starve. Thus
the three guarantees G(h2 → F e2), G(h4 → F e4), and G(h5 → F e5) are violated.
A more robust system would let philosopher 3 and 4 take turns, thus violating
only two guarantees.

4http://rat.fbk.eu/ratsy/index.php/Main/HomePage

http://rat.fbk.eu/ratsy/index.php/Main/HomePage

2.5. Liveness 27

In this section we consider GR(1) specifications. GR(1) is an expressive
specification formalism with a natural distinction between assumptions and
guarantees [119]. Efficient tools exist for GR(1) specifications, which have been
used to synthesize relatively large specifications [95, 26]. GR(1) specifications
are of the form ϕ → ψ. Here, ϕ represents the environment assumptions and
ψ represents the system guarantees and both ϕ and ψ are given as a set of
deterministic Büchi automata. These automata are combined into a product
automaton with state space Q, transition relation δ, and acceptance condition∧m
i=1 GF ai →

∧n
i=1 GF gi.

GR(1) specifications do not require any guarantees to be fulfilled when
some assumption is violated. We propose an intuitive notion of robustness
that prescribes, for any number of environment assumptions that is violated, a
minimal number of system guarantees that must still be fulfilled. We show that
this and related measures of robustness can be transformed to a specification of
the form

∧k
j=1(

∧m
i=1 GF aji →

∧n
i=1 GF gji), which is a Generalized Reactivity

(generalized Streett) formula of rank k. We address the problem of verification
and especially of synthesis of such formulas, which allows us to construct robust
systems.

The verification problem is a relatively straightforward generalization of
the verification problem for GR(1) (cf. [83]) and can be performed in time
O(m · n · |Q| · |δ|). Recall that m is the number of assumptions and n is the
number of guarantees, and |Q| and |δ| refer respectively to the size of the state
space and the transition relation of the product automaton.

The synthesis question is answered by solving a Generalized Reactivity game.
This can either be done through a specialization of Zielonka’s algorithm, or
through a novel algorithm presented in this work, both of which can be imple-
mented symbolically. Zielonka’s algorithm runs in time O(|Q|2·k · |δ| ·(m+n)k ·k!),
which we improve to O(|Q|k · |δ| · (m · n)k·(k+1) · k!). On the other hand, our
algorithm produces larger strategies and thus larger robust systems: the systems
produced by Zielonka’s algorithm have size |Q| · nk · k!, whereas our algorithm
produces systems of size |Q| · ((m+ 1) · (n+ 1))k · k!.

Our algorithm is a generalization of a game-theoretic algorithm for the impor-
tant class of GR(1) conditions based on a reduction (via a counting construction)
to Streett games with a single pair. The algorithm runs in time O(|Q|·|δ|·(m·n)2).
This bound improves the O(|Q|2 · |δ| ·m · n) time bound of the algorithm of [119]
for the case that Q is larger than m and n, which is typical in such applications
as GR(1) synthesis.

This part of the thesis is structured as follows. First we define several notions
of robustness in Section 2.5.1. In order to solve the synthesis problem for robust
systems, we introduce the necessary transformations on the formulas and game
theoretic algorithms in Sections 2.5.2 and 2.5.3. In Section 2.5.4 we return to
the questions of verification and synthesis of robust systems.

28 Chapter 2. Synthesizing Robust Systems

2.5.1 Defining Measures of Robustness

In this section we discuss how to compare systems with respect to robustness.
Usually, multiple systems satisfy a specification, but which one is most robust?
In Section 2.4 we answered this question for safety specifications: our measure of
robustness for a safety specification ϕ→ ψ is the ratio between how often the
environment violates ϕ and how often the system violates ψ. For specifications
with liveness properties, this approach does not work because we cannot count
the number of violations of a liveness property. Instead, we propose to count the
number of properties violated. In the following we show two different robustness
measures, the single and the multiple counting requirements measure. Then we
formally state the requirements a robustness measure has to satisfy.

Single Counting Requirements

Recall the dining philosophers example with n = 5 philosophers given in the
introduction. Suppose system D1 always lets one philosopher eat until she is
not hungry anymore and then moves to the next hungry philosopher in a round
robin manner. If one philosopher is hungry forever, then no other philosopher
gets to eat again. Thus, the violation of one assumption leads to the violation of
four guarantees.

Suppose system D2 lets two non-adjacent philosophers eat at the same time
until neither is hungry anymore. They take turns in the following order: first
philosopher 1 and 3 eat, then philosopher 2 and 4, and last philosopher 3 and
5 eat. If one of the currently eating philosopher is hungry forever, then the
two currently eating philosophers eat forever and no other philosopher gets to
eat again. Thus, the violation of one assumption leads to the violation of three
guarantees. System D2 is thus more robust than system D1.

An even more robust system (D3) is the one described in the introduction.
Two philosophers eat at the same time, as soon as one of them is not hungry
anymore another philosopher with free chopsticks is allowed to eat. If one
philosopher is hungry forever, she eats forever and the other philosophers that
are not her neighbors take turns eating. The violation of one assumption leads
to the violation of two guarantees.

We specify robust systems by adding restrictions to the original specifica-
tion. All three systems above satisfy the original specification ϕ =

∧n
i=1A1i →∧n

i=1(G1i ∧ G2i ∧ G3i), but only D2 and D3 guarantee that they violate at
most three system guarantees if the environment violates one of its assumptions.
Formally, D2 and D3 additionally satisfy

ψ1 =
(n∨
i=1

∧
j∈{1,...,n}\{i}

A1j

)
→
(
ϕS ∧

n∨
i=1

n∨
j=i+1

n∨
k=j+1

∧
l∈{1,...,n}\{i,j,k}

G3l

)
,

where ϕS =
∧n
i=1(G1i ∧ G2i). The antecedent of the formula states that the

environment satisfies n− 1 out of the n assumptions. The consequent says that
the system satisfies all the safety guarantees (G1i and G2i) but might violate
three of its liveness guarantees.

2.5. Liveness 29

Note that in general, a robust system cannot violate a safety guarantee in
response to a violation of a fairness assumption, since a violation of a fairness
assumption can not be detected in finite time.

Since D3 violates at most two system guarantees if one environment assump-
tion is violated, it also satisfies the following formula.

ψ2 =
(n∨
i=1

∧
j∈{1,...,n}\{i}

A1j

)
→
(
ϕS ∧

n∨
i=1

n∨
j=i+1

∧
k∈{1,...,n}\{i,j}

G3k

)
These two formulas allow us to distinguish between systems D1, D2, and D3,

which satisfy the same base specification but differ in how resilient they are with
respect to violated environment assumptions. We propose to use formulas of this
type, which relate the number of satisfied assumptions to a number of satisfied
guarantees to measure how robust a system is.

Suppose A is a set of assumptions and G is a set of guarantees. Let Ak =
{A ⊆ A | |A| = k} be the set of all subsets of A of size k and let Gk be
defined similarly. We can augment the specification with a restriction of the
form (

∨
A∈Ak

∧
Ai∈AAi) → (

∨
G∈Gl

∧
Gi∈GGi) to check if a system satisfies l

guarantees when k assumptions are satisfied. Naturally, a system that satisfies
more guarantees with the same number of satisfied assumptions is more robust.

Multiple Counting Requirements

In some cases we might want to have a more fine-grained measure of robustness,
which cannot be expressed by a single restriction of the form given above. Recall
again the dining philosophers example but this time assume there are n = 7
philosophers. Suppose system D4 allows two hungry philosophers to eat at the
same time. Then, even if one philosopher does not stop eating, the other non-
adjacent philosophers can still take turns eating. However, if two philosophers
misbehave and they both get to eat (i.e., they do not sit next to each other), they
will leave the other five philosophers to starve. Suppose another system D5 allows
three philosophers to eat at the same time. Now, if two philosophers misbehave
and they both get to eat, the system D5 still allows another philosopher to
eat and only four philosophers are left to starve. Both D4 and D5 realize the
specification ϕ. If we consider the restrictions from above, we see that both
systems satisfy the formula ψ1 and ψ2. Our previous measure of robustness
cannot distinguish between D4 and D5. Let’s add another restriction ψ3 to our
specification:

ψ3 =
(n∨
i=1

n∨
j=i+1

∧
k∈{1,...,n}\{i,j}

A1k

)
→
(
ϕS ∧

n∨
i=1

n∨
j=i+1

n∨
k=j+1

∧
l∈{1,...,n}\{i,j,k}

G3l

)
System D5 realizes ϕ ∧ ψ2 ∧ ψ3 but system D4 does not. We can measure the
number of satisfied guarantees for several numbers of satisfied assumptions. The
restrictions we add to the specifications are of the form∧

(k,l)∈L

((
∨

A∈Ak

∧
Ai∈A

Ai)→ (
∨

G∈Gl

∧
Gi∈G

Gi))

30 Chapter 2. Synthesizing Robust Systems

where L is a list of pairs (k, l), requiring l guarantees to be satisfied if k assump-
tions are satisfied.

Definitions

Both single and multiple counting requirements, as defined above, can be put in
the following form (as we will shown in Section 2.5.2).

Definition 10. Given a GR(1) specification AGR(1) with a set of m assumptions
{Ja1 , . . . , Jam} and a set of n guarantees {Jg1 , . . . , Jgn}, a robustness specification
for AGR(1) has the form

k∧
l=1

(
ml∧
i=1

B(Jal,i)→
nl∧
i=1

B(Jgl,i)

)
,

where Jal,i ∈ {Ja1 , . . . , Jam} and Jgl,i ∈ {J
g
1 , . . . , J

g
n}.

There is a natural partial order on robustness specifications: If, for each set
of satisfied assumptions, a specification S requires a superset of the guarantees
required by specification S′, then S is more robust than S′. Let us denote this
order by ≺.

Definition 11. A robustness measure for a GR(1) specification is a set of
robustness specifications together with a total order that respects ≺.

For example, consider again the ‘simple counting requirements’ robustness
specifications from above. A possible total order is (k = 0, l = |G|) > (k = 0, l =
|G| − 1) > . . . > (k = 0, l = 1) > (k = 1, l = |G|) > . . . > (k = |A|, l = 0), where k
is the number of satisfied assumptions and l the number of satisfied guarantees.
Another possible total order is (k = 0, l = |G|) > (k = 1, l = |G|) > . . . > (k =
|A| − 1, l = |G|) > (k = 0, l = |G| − 1) > . . . > (k = |A|, l = 0). A total order is
necessary to synthesize the most robust specification.

Section 2.5.4 shows how to verify and synthesize robust systems for a given
measure. To synthesize a robust system, we solve games with the robustness
specification as objective. Section 2.5.3 shows how to solve such games. In
the next section, we show how to translate combinations of Büchi objectives to
generalized Büchi objectives.

2.5.2 Simplifying Combinations of Büchi Objectives

In this section we present a simplification of Disjunctions of Conjunctions of Büchi
objectives (DCB objective) to conjunctions of Büchi objectives (generalized Büchi
objectives). This simplification is needed to transform counting requirements to
robustness specifications. The simplification (or reduction) incurs an exponential
blowup. Games with generalized Büchi objectives can be solved in polynomial
time, whereas we show that games with DCB objectives are coNP-complete. This
shows that the exponential blow up in the translation is probably inevitable.

2.5. Liveness 31

Simplification of DCB objectives

The simplification is done in two steps. First, we show how to translate DCB ob-
jectives to conjunctions of disjunctions of Büchi objectives. Second, we show that
conjunctions of disjunctions of Büchi objectives can be translated to generalized
Büchi objectives.

Lemma 13. Any winning condition ψ that is a DCB objective can be translated
into an equivalent winning condition ψ′ that is a conjunction of disjunctions of
Büchi objectives, such that |ψ′| = O(2|ψ|).

Proof. For any objective ψ =
∨m
i=1

∧n
j=1 B(Bij) there exists an equivalent ob-

jective ψ′ =
∧nm

i=1

∨m
j=1 B(B′ij) with B′ij ∈ {Bij | i ∈ {1 . . .m} and j ∈ {1 . . . n}}.

The translation is identical to that of changing Disjunctive Normal Form (DNF)
into Conjunctive Normal Form (CNF).

Lemma 14. Any winning condition ψ that is a conjunction of disjunctions of
Büchi objectives can be translated into an equivalent generalized Büchi objective
ψ′, such that |ψ′| = O(|ψ|).

Proof. Because a disjunction of Büchi conditions is again a Büchi condition
(B(B1) ∨B(B2) = B(B1 ∪B2)), objectives of the form

∧k
i=1

∨l
j=1 B(Bij) can be

reduced to a generalized Büchi objective
∧k
i=1 B(

⋃l
j=1Bij).

Corollary 15. Any winning condition ψ that is a DCB objective can be translated
into an equivalent generalized Büchi objective ψ′, such that |ψ′| = O(2|ψ|).

Complexity of solving DCB objectives

We first show that the problem of deciding whether Player 1 has a winning strategy
for a DCB objective is coNP-hard, and then we will argue coNP-completeness.

Lemma 16. Given a game graph with a DCB objective, deciding if Player 1 has
a winning strategy is coNP-hard.

Proof. We show that the problem of deciding whether Player 1 has a winning
strategy in a game with a DCB objective is at least as hard as deciding whether
a 3SAT formula is unsatisfiable. Consider a 3SAT formula ψ in CNF with
clauses C1, C2, . . . , Ck over variables {x1, x2, . . . , xn}, where each clause consists
of disjunctions of exactly three literals (a literal is a variable or its complement).
Given the formula ψ, we construct a game graph as shown in Figure 2.6. The
game graph is as follows: from the initial state, Player 1 chooses a clause, then
from a clause Player 2 chooses a literal that appears in the clause (i.e., makes the
clause true). From every literal the next state is the initial state. The winning
condition for Player 1 is

∨n
i=1(B(Xi)∧B(Xi)), where Xi is the set of states that

correspond to the literal xi and Xi is the set of states that correspond to the
complement literal ¬xi; in other words, Player 1 wants to visit some variable and
its complement infinitely often.

32 Chapter 2. Synthesizing Robust Systems

C1

C2

Ck

...

}
}
}

literal

literal

literal

Figure 2.6: Game graph for 3SAT formula

We now present two directions of the hardness proof.
Not satisfiable implies winning. We show that if ψ is not satisfiable, then

Player 1 has a winning strategy. The winning strategy is as follows: the strategy
is played in rounds; in round i Player 1 chooses the clauses C1, C2, . . . , Ck in
order, and then proceeds to round i + 1. Since ψ is not satisfiable, for every
round i there is at least one variable such that both the variable state and its
complement state is visited in round i. Since the number of variables is finite, it
follows that there must be some variable such that both the variable state and
its complement state appears infinitely often. The result follows.

Satisfiable implies not winning. We now show that if ψ is satisfiable, then
Player 2 has a winning strategy. Consider a satisfying assignment to ψ. A
memoryless winning strategy for Player 2 is as follows: for every clause Ci,
Player 2 chooses a literal from Ci that is set true by the satisfying assignment.
Given the strategy of Player 2, since the strategy is obtained from a valid
assignment, it follows that never a variable and its complement is visited.

Lemma 17. Given a game graph with a DCB objective, deciding if Player 1 has
a winning strategy can be achieved in coNP.

Proof. The proof is as follows: we have already shown that DCB objectives can be
translated to a generalized Büchi objective (which is an upward-closed objective).
It follows from the result of Zielonka [139] that there are memoryless winning
strategies for the complement of an upward-closed objective (in particular for
disjunction of coBüchi objectives). It follows that there always exist memoryless
winning strategies for Player 2. Hence to falsify that Player 1 has a winning
strategy, a memoryless strategy for Player 2 can be fixed (as the polynomial
witness) and the resulting one-player graph can be verified in polynomial time.
The polynomial time verification procedure uses the following fact: consider a
Maximal Strongly Connected Component (MSCC) in a one-player graph (only
Player 1), then the MSCC is winning if for some index i of the disjunction,
for every index j of the corresponding conjunction the MSCC contains at least
one Büchi state Bij . Using the above fact, MSCC decomposition of a graph,

2.5. Liveness 33

and reachability to winning MSCCs we obtain a polynomial time verification
procedure.

Lemma 16 and Lemma 17 yield the following result.

Theorem 18. Given a game graph with a DCB objective for Player 1, deciding
if Player 1 has winning strategy is co-NP complete.

2.5.3 Solving Generalized Reactivity Games

In this section, we first present a translation of GR(1) winning conditions to
one-pair Streett conditions (or parity {0, 1, 2} conditions). Our reduction is
based on a counting construction similar to the reduction of generalized Büchi
conditions to Büchi conditions. Second, we generalize the translation to reduce
games with Generalized Reactivity objectives to games with Streett objectives.

Reduction

Consider a GR(1) game G = ((S,E),Acc) with acceptance condition Acc =∧m
i=1 B(Ai)→

∧n
i=1 B(Gi), with Player 1 states S1, and Player 2 states S2. We

construct an equivalent one-pair Streett game G′ = ((S′, E′),B(A′1)→ B(G′1))
with Player 1 states S′1 and Player 2 states S′2 as follows.

1. The state space S′ = S × {0, 1, . . . ,m} × {0, 1, . . . , n}, with S′1 = S1 ×
{0, 1, . . . ,m} × {0, 1, . . . , n}, and S′2 = S2 × {0, 1, . . . ,m} × {0, 1, . . . , n}.

2. The set of edges E′ is defined as follows:

((s, i, n), (s, 0, 0)) ∈ E′ for 0 ≤ i ≤ m,
((s,m, j), (s, 0, j)) ∈ E′ if j 6= n, and
((s, i, j), (s′, i′, j′)) ∈ E′ if (s, s′) ∈ E, with

i′ = i+ 1 if s′ ∈ Ai+1 otherwise i′ = i, and
j′ = j + 1 if s′ ∈ Gj+1 otherwise j′ = j.

3. The Streett pair is (A′1 = {(s,m, j) ∈ S′ | j ∈ {0, . . . , n}}, G′1 = {(s, i, n) ∈
S′ | i ∈ {0, . . . ,m}}).

We present the intuition behind the construction. Initially i and j are zero. If
all the assumptions are visited such that, assumption A2 is visited after some
visit to assumption A1; assumption A3 is visited after some visits to assumptions
A1, A2; assumption A4 is visited after some visits to assumptions A1, A2, A3; and
so on, since the last reset, then i is reset to 0. If all the guarantees are visited,
such that guarantee G2 is visited after some visit to guarantee G1; guarantee G3

is visited after some visits to guarantees G1, G2; guarantee G4 is visited after
some visits to guarantees G1, G2, G3; and so on, since the last reset, then j is
reset to 0. In between resets, i and j denote the last assumption and the last
guarantee visited in the order described above, since the last reset.

The size of the new state space is |S′| = |S| · (m+ 1) · (n+ 1) = O(|S| ·m · n).
The new number of transitions is |E′| = |E|·(m+1)·(n+1)+2·|S| = O(|E|·m·n).

34 Chapter 2. Synthesizing Robust Systems

Lemma 19. There exists a winning strategy for G iff there exists a winning
strategy for G′.

Proof. Consider a play ρ in G and the corresponding play ρ′ in G′. We consider
two cases.

1. We consider the case where all guarantees appear infinitely often in ρ. If
all guarantees are visited infinitely often, then a state with third state
component with value n is visited infinitely often in ρ′ (i.e., G′1 is visited
infinitely often). Thus, if the play in G satisfies the GR(1) condition by
visiting all guarantees infinitely often, then the corresponding play in G′

visits G′1 infinitely often and satisfies the Streett condition.

2. We consider the case where some guarantee is not visited infinitely often in
ρ. In this case a state with third state component with value n is visited
only finitely often in ρ′. We consider two sub-cases.

(a) If all the assumptions are visited infinitely often in ρ, then a state
with second state component with value m is visited infinitely often
in ρ′. In this case the play in G does not satisfy the GR(1) condition,
and the corresponding play in G′ visits A′1 infinitely often and G′1
finitely often, which violates the Streett condition.

(b) If some assumption is not visited infinitely often in ρ, then a state with
second state component with value m is visited only finitely often in
ρ′ (i.e., A′1 is visited finitely often). In this case the play in G satisfies
the GR(1) condition, and the corresponding play in G′ satisfies the
Streett condition.

This completes the proof.

Theorem 20. Games with GR(1) objectives can be solved in O(|S| · |E| · (m ·n)2)
time.

Proof. One-pair Streett (or parity {0, 1, 2})) games with |S′| states and |E′| edges
can be solved in O(|S′| · |E′|) time [97]. From Lemma 19 we obtain the above
theorem.

It may also be noted that one-pair Streett games can be solved very efficiently
in practice [57] and also symbolically [68] (and implementing our counting
construction symbolically is standard). The previous best know algorithm to
solve GR(1) games was through the triple nested fix-point algorithm of [119]
which works in time O(|S|2 · |E| · n ·m). For the typical case that |S| is much
greater than m and n, our algorithm is faster.

Our algorithm can easily be generalized to Generalized Reactivity objectives.

Theorem 21. Games with Generalized Reactivity objectives can be solved in
O(|S|k · |E| · (m · n)k·(k+1) · k!) time.

2.5. Liveness 35

Proof. Turn all GR(1) objectives into Streett pairs, the Streett game has O(|S| ·
mk·nk) states, O(|E|·mk·nk) transitions, and k-Streett pairs. A Streett game with
k pairs, |E′| transitions and |S′| states can be solved in O(|E′| · |S′|k ·k!) [118].

A symbolic algorithm for Generalized Reactivity objectives can be obtained as
follows: use the standard symbolic implementation of the counting construction
along with the symbolic algorithm for Streett games from [118]. This gives us a
symbolic algorithm for solving games with Generalized Reactivity objectives.

Winning Strategy and Required Memory

A winning strategy for a GR(k) condition is obtained as follows: first we consider
an automaton A1 of size ((n+ 1) · (m+ 1))k to store the values of the counters
and follow the transition as given in the reduction to Streett games with k pairs
(essentially this mimics the reduction of the counting construction). Winning
strategies in Streett games with k pairs require at most k! memory, and a
winning strategy (automata A2 with k! memory) can be constructed from the
Streett game solving algorithms (such as [118] or [43]). The product automaton
A1 × A2 describes a winning strategy for the GR(k) condition and requires
((n+ 1) · (m+ 1))k · k! memory.

In the case of GR(1) conditions, our construction of winning strategies requires
(n+ 1) · (m+ 1) memory. The memory can be improved to n as follows: once the
winning set is computed, we can run Zielonka’s algorithm to compute a winning
strategy with n memory. However, as the winning set is already computed
we can get rid of the outer iteration of Zielonka’s algorithm and re-running
Zielonka’s algorithm to compute the winning strategy, given the winning set,
takes O(|S| · |E| · (n+m)) time.

2.5.4 Verifying and Synthesizing Robust Systems

First, we show how to verify whether a system has a certain level of robustness.
Then, we give an algorithm to synthesize the most robust system with respect to
a given robustness measure.

Verification

Verification of a robustness specification is similar to the verification of a GR(1)
specification.

Lemma 22. Given a GR(1) specification AGR(1) = (Q, δ, q0,Acc) with m as-
sumptions and n guarantees, and a system M , verification can be performed in
O(m · n · |Q|2 · |δ|) time.

Proof. Check if a trace in AGR(1) ×M satisfies
∧m
i=1 B(Ai) ∧ (

∨n
i=1 ¬B(Gi))

(the negation of the specification) using the µ-calculus formula µX .(pre(X) ∨∨n
j=1 νY .(¬Gj ∧

∧m
i=1 pre(µZ .(Y ∧ (Ai ∨ pre(Z)))))) [83]. The complexity of

the nested fix-points is in O(|Q|2 · |δ|) [69].

36 Chapter 2. Synthesizing Robust Systems

Theorem 23. Given a GR(1) specification AGR(1) = (Q, δ, q0,Acc), a robustness

specification
∧k
l=1(

∧m
i=1 B(Al,i)→

∧n
i=1 B(Gl,i)), and a system M , verifying that

M satisfies the robustness specification takes O(k ·m · n · |Q|2 · |δ|) time.

Proof. Check if a trace in AGR(1) ×M satisfies the negation of the specification∨k
l=1(

∧m
i=1 B(Al,i) ∧ (

∨n
i=1 ¬B(Gl,j))) by checking the k different GR(1) parts

(
∧m
i=1 B(Al,i)∧(

∨n
i=1 ¬B(Gl,j))) separately, one after the other, using the method

of Lemma 22.

Synthesis

The most robust system with respect to a given robustness measure can be
synthesized by synthesizing the greatest realizable robustness specification. Thus,
synthesis can be reduced to solving GR games.

Theorem 24. Given a GR(1) specification AGR(1) = (Q, δ, q0,Acc), and a

robustness measure with h robustness specifications rp =
∧k
l=1(

∧m
i=1 B(Al,i) →∧n

i=1 B(Gl,i)), with 1 ≤ p ≤ h, and a total order, synthesis of the most robust
system can be performed in O(h · |Q|k · |δ| · (m · n)k·(k+1) · k!) time. The size of
the resulting system is ((m+ 1) · (n+ 1))k · k! · |Q|.

Proof. The best system can be synthesized by trying the specifications in order.
Start with the largest robustness specification according to the given total
order. Try to synthesize a system satisfying the specification using the algorithm
given in Section 2.5.3. The translation of the specification into a game graph
is linear, hence synthesis of a robustness specification can be performed in
O(|Q|k · |δ| · (m ·n)k·(k+1) ·k!) time (see Theorem 21). The size of the synthesized
system is ((m+ 1) · (n+ 1))k · k! · |Q|, if the robustness specification is realizable.
If the robustness specification is not realizable proceed with the next specification
in the given order.

2.6 Related Work

A large number of diverse related work exists. We look at properties related to
robustness, namely continuity (Section 2.6.1) and fault tolerance (Section 2.6.2).
We consider synthesis of robust controllers (Section 2.6.3) which is usually not
game based, and games (Section 2.6.4). We discuss inherently robust specification
formalisms (Section 2.6.5), and work on how to handle environment assumptions
(Section 2.6.6). Last but not least we give a short overview of extensions of our
work (Section 2.6.7).

2.6.1 Continuity

In the continuous domain, it is natural to require systems to be continuous, which
guarantees robustness in the sense that a small output error can be guaranteed
by an appropriately small input error [90]. This notion is not appropriate in the

2.6. Related Work 37

discrete setting, as discrete functions are in general not continuous. Consider, for
example, a specification that requires that the value of the output g is always true
(false) if the initial input r is true (false, respectively): (r → G g) ∧ (¬r → G¬g).
Here, a minimal difference in the input, namely a change of the initial input,
causes a maximal difference in the output.

Doyen et al. [62] solve this problem for sequential circuits by leaving out
discontinuous parts of the circuit from the robustness analysis. In contrast to
our definition, their notion of robustness is independent of the specification. A
sequential circuit is ΣD robust if a finite number of changes in the disturbance
inputs (inputs that do not result in wanted discontinuous behavior) results in a
finite number of changes in the computed outputs. They characterize the class
of sequential circuits that are ΣD robust and provide an algorithm to decide
whether a sequential circuit is ΣD robust.

Similarly, Samanta et al. [127, 91, 92] analyze how changes in input sequences
incur changes in output sequences. A transducer is K-Lipschitz robust if for
all input sequences with a finite distance, the resulting output sequences have
a distance less than K times the distance of the input sequences. A possible
distance function could be the Hamming distance which counts the number
of positions in which the sequences differ. In [91] Samanta et al. consider
arbitrary nondeterministic transducers and arbitrary distance functions and in
[92] they extend their work to timed transducers. In comparison, our approach
is based on specifications and we show how to synthesize a robust system from
a robustness specification. We do not exclude discontinuous behavior but the
user has to explicitly specify the wanted robustness behavior. Additionally we
restrict ourselves to Moore machines.

Also a related robustness measure is the Input-Output stability defined by
Tabuada et al. [131, 132, 126]. Similarly to our work in Section 2.4 the user has
to specify a cost function for the inputs and the outputs respectively. One part
of the Input-Output stability is the robustness gain which relates the output
costs to the input costs. The second part of the Input-Output stability is the
rate of decay which measures the number of steps until the transducer returns to
its nominal behavior. Tabuada et al. show how to verify Input-Output stability
for a given transducer and given input and output costs. They also give an
algorithm to synthesize a controller such that a given transducer together with
the controller is Input-Output stable for given input and output costs. The
robustness gain is similar to our notion of robustness defined in Section 2.4. It is
not clear, how the rate of decay can be applied to LTL synthesis.

2.6.2 Fault Tolerance

Measures of robustness for different fault models, for example internal malfunc-
tions of circuits [74], have been studied. Classical notions of fault tolerance such
as self-stabilization [59] and the notions of closure and convergence suggested
in [8] focus on safety properties. Convergence requires that a system restores
its invariant after an error has occurred, and closure requires that the system
satisfies a second, larger invariant even when errors recur. Our approach can be

38 Chapter 2. Synthesizing Robust Systems

viewed as an extension of closure to liveness, where we require that some weaker
set of guarantees is fulfilled when the environment behaves unexpectedly.

Attie et al. [9] argue that fault-intolerant programs are often unrealistic.
They introduce a framework to specify fault-tolerant concurrent programs with
CTL formulas and different levels of tolerance, and show how to synthesize
such programs. Contrary to our work, this work considers closed systems and
requires the developer to specify possible faults explicitly. People have also
studied the problem of retrofitting fault tolerance to existing programs. (See,
e.g., [101, 64, 81, 44].)

A topic closely related to fault tolerance is the topic of error resilience as
considered in [66] and [138]. Ehlers and Topcu [66] show how to automatically
synthesize an error resilient system from a GR(1) specification. A system is
(k,b)-resilient, if the system can satisfy its guarantees, assuming that after k
environment safety violations there are b steps without environment violations
and the number of overall environment violations is finite. In contrast we look
at the infinite behavior, and at infinite safety violations. While error resilience
requires systems to continue satisfying their guarantees for a small number
of environment violations, robustness deals with the environment errors that
inevitably lead to system errors.

Wong et al. [138] extend the work of synthesizing error resilient systems, for
robot controllers. They automatically change the environment safety assumptions
if an error resilient behavior of the robot is not possible and synthesize a new
robot controller for the new environment assumptions. The intuition behind
this strategy is that the environment might change or that the environment was
not modeled correctly. The use case we consider does not allow a change of the
system at runtime (e.g if we synthesize hardware) and does not consider changing
environments as might be the case for a robot motion control.

2.6.3 Controllers

In general controller synthesis and reactive systems synthesis are two different
fields of research. Reactive system synthesis as considered in this work is based
on games, where the environment is an uncontrolled adversary. In contrast, in
classic controller synthesis no uncontrolled environment has to be considered.
Controller synthesis is usually based on language inclusion. This changes when
we want to synthesize a robust controller, a controller that reacts properly for
unexpected or undefined behavior of the controlled discrete event system. Several
notions of robustness have been defined in the field of controller synthesis. In
the following we make a comparison with our notion of robustness.

Cury and Krogh [51] consider synthesis of robust controllers for discrete event
systems, where a controller is optimal if it produces the correct behavior for
the original plant and produces behavior between an upper and lower bound
specification for a maximal set of plants. The method produces a controller that
is (i) correct with respect to a given plant and a specification and (ii) correct
for as many plants as possible for a slightly changed specification. Although
the solution to the problem is quite different, the main idea of the robustness

2.6. Related Work 39

definition is comparable to our synthesis approach for GR(1) specifications with
a robustness measure, described in Section 2.5. We synthesize a system that
satisfies the original GR(1) specification and satisfies similar guarantees with as
little environment assumptions as possible.

Topcu et al. [134] define robustness to uncertainties for discrete controllers.
They show how to synthesize a discrete controller such that the system satisfies a
given GR(1) specification even if some of the transitions in the transition system
are not known (modeled uncertainties). As for fault tolerant systems the faults
(uncertainties) have to be modeled by the user. In contrast, to synthesize robust
systems as described in this work, the user does not have to model the possible
faults directly.

Another work on the design of robust discrete controllers is [105]. Majumdar
et al. synthesize controllers from metric automata, automata with a distance
measure for states. The intuition is that a strategy that chooses states which are
close to each other results in behavior that satisfies related properties. Thus to
synthesize a controller which is robust with respect to disturbances one has to
choose a strategy with states close to the states of the original strategy. This
results in behavior close to the original behavior when disturbances occur. In
our work we do no define a metric on states, we let the user define an error
specification or robustness measure.

D’Souza and Gopinathan [63] consider specifications for controllers that are
built from a ranked set of requirements, which may be contradictory. The
requirements are “conflict tolerant”, i.e., when overruled, they continue giving
“advice.” This is achieved through means closely related to our weighted edges
given in Section 2.4. D’Souza and Gopinath describe how to synthesize controllers
in which advice from a requirement is alternately followed and ignored. The
question they answer is how to synthesize a system that always follows the highest
ranked advice. The approach differs from ours in the focus on contradictory
specifications rather than environment failures, and in the fact that the proper
action is chosen greedily, whereas we solve a global optimization problem to find
the appropriate behavior.

Also D’Ippolito et al. [61, 60] consider ranked sets of requirements with
incremental guarantees based on increasingly strengthened assumptions. They
define a stack of specifications with strong assumptions and guarantees on top
and weak assumptions and guarantees at the bottom. They propose to synthesize
a controller for each rank and follow the advice of the highest ranked controller
for the given environment actions. This results in graceful degradation when
the environment does not behave as expected (follow advice of a lower ranked
controller), and progressive enhancement when it does (follow advice of a higher
ranked controller). This notion of robustness is similar to our notion of robustness
in that for unexpected environment behavior the user has to specify the wanted
system/controller behavior. On the other hand, the environment in our case
of reactive system synthesis is only restricted by the environment assumptions
whereas it is given as environment model in the case of controller synthesis.

Damm and Finkbeiner [52] consider the combination of uncontrollable envi-

40 Chapter 2. Synthesizing Robust Systems

ronment variables and system requirements with different priorities. A strategy
is remorsefree if no other strategy satisfies a higher priority requirement for every
trace of uncontrollable environment variables. They answer the question whether
it is necessary to model an uncontrollable environment variable in order to find a
remorse free strategy. In contrast we do not prioritize requirements, and we do
not synthesize dominating strategies. Our robust systems satisfy the specification
and try to satisfy it as well as possible for unexpected environment behavior.

2.6.4 Games

Closely related to the question of what should happen in reactive system synthesis
if the environment does not behave as expected is the question of what should
happen if a game is lost. We discuss two works that consider appropriate behavior
when a game is lost. Additionally, we shortly discuss Büchi ranking games used
for synthesis of prioritized requirements and lexicographic mean-payoff games
used for synthesis of quantitative objectives.

Faella [71] considers the question of the appropriate behavior when a game
is lost. He considers two notions, one based on dominating strategies and
one based on a probability distribution over the input. In the former setting,
he maximizes the set of inputs for which the game is won, and in the latter
setting, the probability that the game is won. In contrast, we consider realizable
specifications and propose to extend the specifications for the parts where the
realizability depends on the environment behavior. It could be an interesting
alternative approach for future investigation to synthesize robust systems by
removing environment assumptions from the specification and then synthesizing
a system that satisfies the guarantees for as many inputs as possible, while still
realizing the original specification. Such an approach would have the advantage
that less user input is required than in our approach. On the other hand it is
not clear if the resulting system exhibits the robustness behavior one wishes for.

Chatterjee at al. [41] also consider lost games. For an unrealizable specification
G, which corresponds to a lost synthesis game, they search for a maximally weak
environment assumption A such that the specification A → G is realizable.
In a way we also try to synthesize systems that depend as little as possible
on the environment assumptions (are robust with respect to unanticipated
environment behavior). In contrast to the work of Chatterjee at al. [41] we
consider realizable specifications and let the user specify robustness for the case
of failing assumptions.

Alur, Kanade, and Weiss [5], consider prioritized requirements and present an
efficient way to synthesize the highest priority requirement using Büchi ranking
games. Our robust liveness specifications described in Section 2.5 can also be
considered as prioritized requirements. We try to synthesize the most robust
system by synthesizing the greatest realizable robustness specification, see Section
2.5.4. Future work could consider to optimize our synthesis algorithm for robust
liveness specifications by combining it with the ranking games described in [5].

Bloem et al. [23] define lexicographic mean-payoff games to synthesize reactive
systems with quantitative objectives. Quantitative objectives are objectives

2.6. Related Work 41

where the user can specify rewards for wanted behavior. For example, an arbiter
should avoid unnecessary grants or long waiting times. In contrast, our work on
robustness allows the user to specify errors for the environment and the system
for behavior outside the wanted behavior (failing assertions and assumptions).
Where we solve ratio games, the work of Bloem et al. solves lexicographic mean-
payoff games. Common for both works is the general idea of adding quantitative
objectives for the synthesis of reactive systems to achieve better quality for the
resulting system.

2.6.5 Robustness Specifications

Peled [116] looks at the robustness of specifications. A specification formalism
is robust if it can not distinguish between equivalent behavior. For example,
considering stutter equivalence, a specification formalism is robust if it can not
distinguish between behavior where a state (output) repeats. LTL without the
X operator is robust with respect to stutter equivalence. The goal of the work
is to exploit robustness properties of the specification for verification. The goal
of our work is to synthesize robust systems. Synthesizing systems form robust
specifications as defined in [116] would simplify the synthesis algorithm but the
expressive power of the specification language is restricted and the resulting
system does not necessarily satisfy any robustness criteria as we defined it.

Tabuada and Neider [133] take a different approach to robust specifications.
They define robust LTL which defines a new semantic for LTL formulas. They use
a many-valued semantic, assigning not only true and false to an LTL formula. For
example a formula G p is true if p holds in every time step and it is false if (1) p
does not hold for finitely many time steps, (2) p does not hold for infinitely many
time steps, or (3) p does not hold for all time steps. The semantics of rLTL assigns
different values to the three different possibilities of violating G p. Intuitively
a system is more robust in the first case than in the second or third case, and
more robust in the second case than in the third. Looking at the semantics of an
rLTL implication, the approach is similar to our definition of robustness given in
Section 2.4.1, in requiring that finitely many environment errors only result in
finitely many system errors. Our approach allows the user to specify the wanted
robustness behavior in a lot more detail. This can be seen as an advantage or
disadvantage. The additional expressive power of our way of specifying robust
systems comes with additional effort on the user side, whereas rLTL formulas
are LTL formulas with added semantics. The many-valued semantic is defined
for all LTL operators and Tabuada and Neider show that the expressive power
of rLTL is equivalent to LTL. Thus rLTL can also be seen as a short hand for
LTL to specify robust systems. Our notion of measuring robustness defined in
Section 2.5 is quite different in that we count the number of satisfied guarantees
and do not look at how “badly” a guarantee is violated if it can not be satisfied.

42 Chapter 2. Synthesizing Robust Systems

2.6.6 Environment Assumptions

A good discussion on how assumptions can be handled in synthesis can be found
in [24]. The paper compares different work on synthesizing systems that are

1. correct (if the assumptions are fulfilled, the guarantees are fulfilled),

2. not lazy (if possible, the guarantees are fulfilled even if the assumptions
are not),

3. never give up (the guarantees are fulfilled when possible, even if they can
not be fulfilled for all environment behavior), and

4. cooperate (help the environment to fulfill its assumptions).

Our robust systems are correct and not lazy, they try to satisfy the system
guarantees even when the environment assumptions fail. They give up if they
can not fulfill the guarantees for the worst case behavior of the environment.

The work of Bloem et al. [25] targets all four properties (correct, not lazy,
never give up, and cooperate). They synthesize maximally cooperative reactive
systems, meaning that the synthesized system should satisfy the guarantees and
assumptions as far as possible. This is in line with our specification of robustness
in the sense that the system should try to satisfy its guarantees even when the
environment assumptions are violated. The advantage of cooperative reactive
systems is that the user does not have to specify robustness, on the other hand the
notion is more abstract. Considering Example 2 from Section 2.4, we can make
two observations. First, the environment assumptions are independent of the
system behavior, thus the system can not cooperate to satisfy the environment
assumptions. Second, to satisfy the system guarantees, the system relies on the
environment assumptions, thus the system can not satisfy its guarantees without
the cooperation of the environment. Thus I claim that all systems that realize
the specification of Example 2 can only reach the lowest level of cooperation.
Still we show that realizing systems with different levels of robustness exist.

Eisner considers properties in CTL of the form f = AG g (g always holds)
and calls a system robust if f holds in all states, not just in the reachable states.
This implies that the system does not depend on environment assumptions and
that it behaves well in the presence of environment failures. Eisner states that
control-intensive applications are typically not robust [67].

2.6.7 Extensions

The work presented in [21] extends the work presented here by combining the
two notions of robustness for GR(1) properties. Given a double cost automaton
defining the error specification as defined in Section 2.4.1, a liveness robustness
specification as defined in Section 2.5.1, and a ratio k, the problem of synthesizing
a system that is at least k-robust can be solved with a mean payoff parity game.

The games we consider look for an optimal/winning strategy for the worst
case behavior of the environment. Chatterjee et al. [42] also consider probabilistic

2.7. Conclusions 43

environments. In addition to a qualitative and a quantitative objective the user
provides a distribution of the inputs and the synthesis algorithm tries to find the
optimal system with respect to the average across system behaviors.

In addition to the theoretical combination of safety and liveness robustness,
Bloem et al. [21] also present an implementation and a case study for the synthesis
of liveness-correct and safety-robust systems. Liveness-correct and safety-robust
systems are systems that realize the liveness specification and are robust with
respect to an error specification. The synthesis problem can be solved with a two
pair Streett game, where one Streett pair encodes the safety-robustness objective
and the other Streett pair encodes the liveness correctness objective. The case
study shows that the robustness requirement is quite costly with respect to the
size of the resulting system and the synthesis time.

Ehlers presents another extension of our work in [65]. He extends the speci-
fications to generalized Rabin specifications and adds a time bound for safety
violations.

2.7 Conclusions

We define robustness for reactive systems in the context of LTL synthesis. The
specifications we consider are of the form A → G, where A is an environment
assumption and G is a system guarantee. If A and G are safety specifications, a
system is robust if the ratio of the number of environment errors to system errors
is small. Intuitively this means that the number of errors the system makes must
be proportional to the number of errors the environment makes. If A and G are
liveness specifications, the number of violations can not be counted. For liveness
specifications we count how many of the assumptions in A and guarantees in G
are violated. A system is robust if it satisfies as many guarantees as possible for
any number of satisfied assumptions. Intuitively this means that the system tries
to satisfy its guarantees even if the environment does not satisfy its assumptions.
Both, in the safety and the liveness case, the system behaves reasonable even
when the environment behaves unexpectedly.

Work presented in this chapter shows how to verify if a given system satisfies
an error specification (safety) or a robustness specification (liveness), and we give
a synthesis algorithm to synthesize a robust system from an error specification
(safety) or robustness specification (liveness). The development of the synthesis
algorithms led to new game theoretic results. First we define ratio games, show
that they have optimal positional strategies, and show how to calculate an
optimal positional strategy in pseudopolynomial time. Second we develop a novel
game-theoretic algorithm to solve games with GR(1) objectives.

In order to be able to apply LTL synthesis it is crucial that the synthesized
systems exhibits certain quality properties like minimal size or robustness. In
addition the user must not be burdened with the task to specify the full behavior
in detail. Our method relieves the user from specifying the system behavior in
case of environment failures and at the same time allows the user to define an
error specification or robustness measure which gives the flexibility to decide

44 Chapter 2. Synthesizing Robust Systems

what is best suited for the system to be synthesized.

3
Security Policy Modeling for Smart Cards

This chapter discusses security policy modeling as required by Common Criteria
version 3.1 [36] for certifications with Evaluation Assurance Level 6 and Evaluation
Assurance Level 7. It includes the work of two publications: [16] and [84].

3.1 Problem Statement

For high security Integrated Circuit (IC)s, a security evaluation by an independent
institution is of great importance to strengthen the confidence in the security of
the product. Common Criteria is a widely used evaluation method for security
products. In many countries, Common Criteria evaluations are required by law
for certain Information Technology (IT) products such as passports or identity
cards. For high Evaluation Assurance Levels, Common Criteria requires a formal
model of the implemented security policies. Since formal modeling is not widely
spread in industry, a Security Policy Model usually needs to be done in addition
to the established design and documentation process. Additionally it requires
expertise in the field of formal methods, which is not always easily available.

Not many Common Criteria certifications have reached high evaluation levels
Evaluation Assurance Level 6 and Evaluation Assurance Level 7. Before 2012
only seven Common Criteria certificates were issued with an evaluation assurance
level higher than 6. Figure 3.1 shows the statistics taken from the Common
Criteria portal https://www.commoncriteriaportal.org/products/stats/. In the
‘ICs, Smart Cards and Smart Card-Related Devices and Systems’ category the
first Evaluation Assurance Level 6 certification was reached by STMicroelectronics
in 2009 in the French scheme, where they modeled a dynamic Memory Access
Control Policy for the ST23 platform. Unfortunately no detailed description of

45

https://www.commoncriteriaportal.org/products/stats/

EAL 1999 - 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Total
EAL1 2 10 3 1 0 1 10 2 2 2 33
EAL1+ 1 17 0 2 11 2 0 1 2 0 36
EAL2 4 29 5 10 2 11 2 12 17 6 98
EAL2+ 7 27 14 18 15 17 32 27 36 26 219
EAL3 3 18 7 3 26 33 23 11 12 4 140
EAL3+ 4 40 11 16 18 34 46 27 23 5 224
EAL4 3 35 6 9 5 6 2 7 3 0 76
EAL4+ 16 149 63 74 65 68 106 69 51 17 678
EAL5 0 6 3 2 0 1 0 0 0 0 12
EAL5+ 3 50 27 31 43 35 29 58 55 15 346
EAL6 0 0 0 0 0 0 0 0 0 0 0
EAL6+ 0 0 0 2 3 0 4 8 6 4 27
EAL7 0 0 0 1 0 0 0 4 0 0 5
EAL7+ 0 0 0 0 1 0 0 0 0 0 1
Basic 0 0 0 0 0 0 0 0 0 0 0
Medium 0 0 0 0 0 0 0 0 0 0 0
US Standard 0 0 0 0 0 0 0 0 0 0 0
None 0 0 0 0 0 0 1 9 51 33 94
Totals: 43 381 139 169 189 208 255 235 258 112 1989

Table 3.1: Certified Products by Assurance Level and Certification Date,
source: https://www.commoncriteriaportal.org/products/stats/

https://www.commoncriteriaportal.org/products/stats/

3.2. Contribution 47

the model or the used method is publicly available.

In 2011 NXP aimed for an Evaluation Assurance Level 6 certification of
the P60 Secure Smart Card Controller in the German scheme, certified by the
Bundesamt für Sicherheit in der Informationstechnik. The certification is based
on the Common Criteria assurance requirements [38] and the guidelines [2] and
[3], but no best practices or established processes are available.

The main challenge is to develop an efficient method for security policy
modeling that satisfies the Common Criteria requirements and guidelines and
is suitable for hardware and software. Additionally the method should allow to
leverage the advantages of a formal model to decrease time to market, decrease
costs in late bug fixes and increase product quality and security. To maximize
the benefits of a formal model the modeling has to be integrated into the
development process of the product. To allow integration it is necessary to
have a comprehensive and intuitive modeling method. Such a method must be
supported by user-friendly tooling that is quickly accepted by the engineers using
it. Currently it is often hard to convince engineers to use formal methods due to
bad usability of the relevant tools and because considerable effort needs to be
invested on first use and before first results are visible. For most formal methods
tools, an expert is needed to use it to its full extend.

In their review of industrial practice in formal methods Bicarregui et al. state
“Significant challenges remain in providing usable tools that can be integrated into
established development processes; in education and training; in taking formal
methods from first use to second use, and in gathering and evidence to support
informed selection of methods and tools.” [17].

3.2 Contribution

In the first part of this chapter (Section 3.4) we show how a formal security
policy model based on temporal logic and model checking can be developed for
the real world evaluation of a Security IC. We argue that temporal logic and
model checking is suitable for the formal requirements of a Common Criteria
Evaluation Assurance Level 6 evaluation, see Section 3.4.2. Model checking is an
efficient method because modeling the functional specification and formalizing
the security requirements can be done by anybody with moderate knowledge of
formal methods. Additionally, proofs (or refutations) are generated automatically
which is a big advantage compared to theorem proving where proofs often need to
be guided by the user. Previous work proposed to use theorem provers for security
policy modeling, see Section 3.6.1. Our work is the first to provide a Security
Policy Model for an Evaluation Assurance Level 6 certification based on model
checking. This work led to the first Evaluation Assurance Level 6 certificate for an
IC in the German scheme, see https://www.commoncriteriaportal.org/products/.

In addition to describing the used method, we provide descriptions of two
security policy models. First we describe the Security Policy Model of the access
control policy of the NXP Secure Smart Card Controller P60x144/080PVA. The
model was part of the evaluation evidence of the first Evaluation Assurance

https://www.commoncriteriaportal.org/products/

48 Chapter 3. Security Policy Modeling for Smart Cards

Level 6 certificate for an IC in the German scheme. Second we describe the
model of the firewall access control policy of the Java Card specification. The
second model revealed inconsistencies between the Java Card specification and
the Protection Profile. This shows that errors in product requirements which are
not detected for several years can easily be uncovered with our Security Policy
Modeling method. Following our request these inconsistencies in the Java Card
Protection Profile will be resolved in the next version of the Protection Profile.

In the second part of this chapter (Section 3.5) we show how Security Policy
Modeling can be integrated into a design process of a smart card in an industrial
context by formally verifying Unified Modeling Language (UML) statecharts.
We argue that modeling with UML statechart diagrams is generally feasible
for non formal methods experts and the diagrams can be used both as part
of the documentation and in formal verification for security policy modeling.
Additionally the UML statecharts can be used for test case generation closing the
gap between the formally verified specification and the implementation (test case
generation is part of related work see Section 3.6.3, building on work described
here).

Integrating Security Policy Modeling into the design process of a product
eliminates inconsistencies in the documentation and removes ambiguities in the
specification of modeled parts. Security holes in the specification can be detected
and fixed before the implementation is started. This increases the quality of the
documentation and the security of the product.

We present possible tooling and an example Security Policy Model to illustrate
the process. Our goal is to move formal verification from an isolated task done
by an expert in formal methods to the center of the design process by proposing
easy-to-use tooling support. The work presented here is a first step into this
direction.

3.3 Preliminaries

This section will give a general introduction on smart cards, Common Criteria,
model checking, and UML statecharts.

3.3.1 Smart Cards

Smart cards are small devices usually in a card form factor that are present in
our daily lives. We use them

� for payment in the form of credit/debit cards,

� for loyalty programs like frequent flyer,

� for ticketing to access public transportation for example with a prepaid
card,

� for accessing buildings or rooms as for example often used in hotels in form
of an access card,

3.3. Preliminaries 49

� for identification in the form of an electronic passport or identity card,

� for secure information storage in the form of health/insurance cards.

The number of devices in the field grows rapidly, for example the number of
payment cards has grown from 880 million devices shipped in 2010 to 2050
million devices shipped in 2014 according to Eurosmart (http://www.eurosmart.
com/publications/market-overview). Not only the number of cards grows but
also the complexity of the devices, moving from dedicated hardware for one
application to flexible programmable hardware supporting multiple applications.

A general architecture of a modern smart card is given in Figure 3.1. It
consists of an underlying security IC platform, some native applications, a Java
Card OS, and applets. The four components will be described in more detail in
the following.

Applet Applet Applet

Java Card Operating System

Native
Application

IC Platform

Figure 3.1: Architecture of a smart card

Security IC Platform

A typical security IC is a micro controller with

� a Central Processing Unit (CPU) that executes the operations,

� an Memory Management Unit (MMU) that manages and controls the access
to the memories,

� the memories, with Read Only Memory (ROM) to store software, Random
Access Memory (RAM) to store data and code during execution, Electrically
Erasable Programmable Read Only Memory (EEPROM) and/or flash to
store data and software,

� contact or contactless communication interfaces to communicate with a
reader,

� a random number generator to support key generation and other crypto-
graphic operations,

� cryptographic coprocessors to speed up cryptographic operations such as
encryption, decryption, signing, signature verification etc., and

� security circuitry like sensors to detect fault attacks.

Figure 3.2 shows the typical components of a security IC. The security circuitry
is not part of the figure, it is spread over the whole circuit. A more detailed
description can be found in [32].

http://www.eurosmart.com/publications/market-overview
http://www.eurosmart.com/publications/market-overview

50 Chapter 3. Security Policy Modeling for Smart Cards

I/O Interface

Random
Number

Generator

Crypto
Processor

-

CPU

-

MMU

ROM EEPROM or flash RAM

Figure 3.2: Components of a Typical Security IC

Native Application

A native application is software that runs directly on the security IC platform. Its
functionality can be accessed by the end user directly. Examples are applications
of the MIFARE family such as MIFARE Plus and MIFARE DESFire which
are used for electronic fare collection, stored value card systems, access control
systems, and loyalty cards.

Java Card OS

A Java Card OS is an operating system that runs directly on the security IC
platform. It provides a (restricted) Java interface to the applet developer. The
definition of the Java Card Application Programming Interface (API) can be
found in [113]. The standardized interface is one of the big advantages of the
Java Card OS. It allows to port applets from one Java Card to another.

A Java Card OS consists of the Java Card Virtual Machine (JCVM) defined
in [115] and the Java Card Runtime Environment (JCRE) defined in [114].
Additionally most Java Card OS implement card management as defined by
GlobalPlatform [82].

Like the classic Java Virtual Machine, the Java Card Virtual Machine executes
bytecode. It only supports a subset of the classic bytecodes and optimizes for
space in order to allow execution on a small platform with restricted resources.

The JCRE supports logical channels, applet selection, transient objects, applet
isolation, and object sharing among other management functionality. The most
important security feature defined in the JCRE is the applet firewall. The firewall
ensures that data of one applet can not leak to another applet.

Applet

An applet is a Java Card application that runs on the Java Card OS. Typical
examples are banking applets as defined in [70], or e-government applets as
defined by the International Civil Aviation Organization (ICAO).

3.3. Preliminaries 51

3.3.2 Common Criteria

Not only the complexity of smart cards grows but also the demand on secu-
rity, applications become more security critical and hacking techniques more
sophisticated. Especially for banking and e-government a high assurance of the
implemented security is essential.

Common Criteria is a security certification scheme that allows to compare
the security level of different smart card implementations and gives the user
confidence in the certified product. The certificate is issued by an independent
third party. The certification authority is usually a governmental organization
such as the Bundesamt für Sicherheit in der Informationstechnik.

There are three parties involved in a certification, the developer, the evaluator,
and the certification authority. The developer (for example NXP Semiconductors)
provides the Target of Evaluation with all the required documentation. The
evaluator examines the Target of Evaluation and the documentation according to
the Common Criteria methodology [39] and writes a report for the certification
authority. After reviewing the evaluation report the certification authority issues
the certificate. A lengthy introduction to Common Criteria can be found in [35].

The main idea of the Common Criteria certification scheme is to have com-
parable and standardized security requirements and assurance requirements.
The Security Target is the central document of the certification, it states the
security requirements that are evaluated (‘what’ is evaluated) and the assurance
requirements that are applied in the evaluation (‘how’ is it evaluated). Both
security requirements and assurance requirements are taken from a standardized
catalog of requirements, [37] and [38] respectively.

Below we list the security requirement classes that are available in [37]. The
list gives an overview of the security concerns considered by Common Criteria.
Not all of them are relevant for this work. For example, for a security IC the main
threads are manipulation or disclosure of data stored on the IC and manipulation
of the functionality of the IC. These threads lead to different security requirements.
For example a security IC needs to provide physical protection against tampering
(for example fault attacks) to counter physical manipulation. This requirement
is part of the security requirement class for the protection of the Target of
Evaluation Security Functionality. Another security requirement for a security
IC could be the separation of memory defined by an access control policy to
counter disclosure and manipulation of data. Access control policies are part of
the security requirement class for user data protection. More details on threads
and security requirements for security ICs can be found in the Protection Profile
[33] or the Security Target [110] which we use in our case study in Section 3.4.3.
For a Java Card OS the main threads are similar to the threads for a security
IC. The security requirements differ a bit but they belong to the same security
requirement classes. A description can be found in the Protection Profile [122]
which we used in our case study in Section 3.4.4.

The following security requirement classes are available in [37]:

� security audit (recognizing, recording, storing, and analyzing information
related to security relevant activities),

52 Chapter 3. Security Policy Modeling for Smart Cards

� communication (assuring the identity of a party participating in a data
exchange),

� cryptographic support (key management and cryptographic operation),

� user data protection (within a Target of Evaluation, during import, export,
and storage),

� identification and authentication (establish and verify a claimed user iden-
tity),

� security management (management of security attributes, Target of Evalu-
ation Security Functionality data and functions),

� privacy (user protection against discovery and misuse of identity by other
users),

� protection of the Target of Evaluation Security Functionality (integrity and
management of the mechanisms that constitute the Target of Evaluation
Security Functionality and integrity of the Target of Evaluation Security
Functionality data),

� resource utilization (availability of required resources),

� Target of Evaluation access (controlling the establishment of a user’s
session), and

� trusted path/channels (trusted communication path between users and the
Target of Evaluation Security Functionality and a trusted communication
channel between the Target of Evaluation Security Functionality and other
trusted IT products).

Every security requirement class defines a list of Security Functional Require-
ments. The requirements in the Security Target are taken from these lists. Note
that Security Functional Requirements might have dependencies, which means
that an Security Functional Requirement might require to include other Security
Functional Requirements, for example to define a policy (see Section 3.4.4 for an
example). The main policies are the access control policy and information flow
control policy, they are defined in the assurance class for user data protection.

Below we list the assurance requirement classes that are available in [38].
Common Criteria defines requirements for the whole development cycle. Docu-
mentation and evidence needs to be provided by the developer to the evaluator
to show that the development follows the required processes from design to test.
For example life cycle support requires a configuration management system to
be used in the development. For the work presented here we only consider the
assurance requirements for the Security Policy Model as listed in Section 3.4.2.

The following assurance requirement classes are available in [38], the text
copied from [38] is given in italics:

3.3. Preliminaries 53

� Development (ADV) - The requirements of the Development class provide
information about the Target of Evaluation. The knowledge obtained by this
information is used as the basis for conducting vulnerability analysis and
testing upon the Target of Evaluation, as described in the AVA (vulnerability
assessment) and ATE (tests) classes.

� Guidance Documents (AGD) - The guidance documents class provides
the requirements for guidance documentation for all user roles. For the
secure preparation and operation of the Target of Evaluation it is necessary
to describe all relevant aspects for the secure handling of the Target of
Evaluation. The class also addresses the possibility of unintended incorrect
configuration or handling of the Target of Evaluation.

� Life-cycle support (ALC) - Life-cycle support is an aspect of establishing dis-
cipline and control in the processes of refinement of the Target of Evaluation
during its development and maintenance. Confidence in the correspondence
between the Target of Evaluation security requirements and the Target of
Evaluation is greater if security analysis and the production of the evidence
are done on a regular basis as an integral part of the development and
maintenance activities.

� Security Target evaluation (ASE) - Evaluating an Security Target is required
to demonstrate that the Security Target is sound and internally consistent,
and, if the Security Target is based on one or more Protection Profiles
or packages, that the Security Target is a correct instantiation of these
Protection Profiles and packages. These properties are necessary for the
Security Target to be suitable for use as the basis for a Target of Evaluation
evaluation.

� Tests (ATE) - Testing provides assurance that the Target of Evaluation
Security Functionality behaves as described (in the functional specification,
Target of Evaluation design, and implementation representation).

� Vulnerability assessment (AVA) - The vulnerability assessment class ad-
dresses the possibility of exploitable vulnerabilities introduced in the devel-
opment or the operation of the Target of Evaluation.

The Security Policy Model is part of the assurance class development. Figure
3.3 illustrates the relationships between different parts of the assurance class
development. As can be seen in the figure, the development class follows the
waterfall model. First the functional requirements stated in the Security Tar-
get are refined into the functional specification which describes the Target of
Evaluation Security Functionality Interfaces. This first refinement step is part of
the Functional Specification assurance family. In the next step the functional
specification is refined into the design description which describes the modules
and internal structure of the design. This second refinement step is part of the
Target of Evaluation Design assurance family. The last refinement step maps
the design description to the implementation representation (IMP). Together the

54 Chapter 3. Security Policy Modeling for Smart Cards

three refinement steps ensure that the requirements stated in the Security Target
are implemented in the Target of Evaluation.

The policy model formalizes the first refinement step from functional require-
ments of the Security Target to the functional specification. The Security Policy
Model requires a mapping both to the functional requirements and the functional
specification. A list of the requirements for the Security Policy Model is given in
Section 3.4.2.

ST FSP TDS IMP
SPM

Figure 3.3: Documentation Refinement in the Assurance Class Development

An Security Policy Model is not required for all Evaluation Assurance Levels.
Every Evaluation Assurance Level requires a certain list of assurance components.
Figure 3.4 shows the required assurance components for each Evaluation Assur-
ance Level. For each assurance family, assurance component ‘1’ is the lowest
assurance component, meaning that it includes the minimum assurance require-
ments for this assurance family. With increasing assurance component numbers
more assurance requirements are added for the respective assurance family. For
example Functional Specification.4 requires a complete functional specification,
Functional Specification.5 a complete semi-formal functional specification, and
Functional Specification.6 a complete semi-formal functional specification with
additional formal specification. With increasing Evaluation Assurance Level also
the necessary assurance component numbers increase. For example Evaluation
Assurance Level 5 requires Functional Specification.5, no Security Policy Model,
and Target of Evaluation Design.4 whereas Evaluation Assurance Level 6 requires
Functional Specification.5, Security Policy Model.1, and Target of Evaluation
Design.5. Note that the Functional Specification component does not change
from Evaluation Assurance Level 5 to Evaluation Assurance Level 6 but Evalua-
tion Assurance Level 6 adds the Security Policy Model.1 component and moves
from Target of Evaluation Design.4 to Target of Evaluation Design.5. Note that
the Security Policy Model has only one component which is only required for
Evaluation Assurance Level 6 and Evaluation Assurance Level 7. The require-
ments for all components are given in [38]. A methodology description for the
evaluation is given in [39]. Additional guidance for high Evaluation Assurance
Level certifications and formal methods is given in [2] and [3].

For certain product families a template for the Security Target exists, a so
called Protection Profile. The Protection Profile defines the minimum functional
requirements and assurance requirements for a product family. The intention is to
increase comparability. Examples are [32] for Security IC Platforms, and [122] for
Java Cards. Although the minimum required assurance level for security ICs is
Evaluation Assurance Level 4 augmented with AVA VAN.5 and ALC DVS.2, the
established standard in the industry is Evaluation Assurance Level 5 augmented
with AVA VAN.5 and ALC DVS.2. Only few products have reached Evaluation
Assurance Level 6 and higher.

3.3. Preliminaries 55

Figure 3.4: Evaluation Assurance Summary, source [38]

56 Chapter 3. Security Policy Modeling for Smart Cards

3.3.3 Model Checking

Model checking is a formal verification technique that allows to fully automatic
check if a finite state system fulfills certain properties. The results are based on
a systematic exhaustive inspection of all states of the mathematical model, the
so-called state space [50]. The application of model checking consists of three
tasks:

� Modeling is the creation of a formal model of the system as a Finite State
Machine (FSM) (for example Moore Machine see Section 2.3.1) with the
input language of a model checker.

� Formalizing is the derivation of properties in terms of temporal logic
formulas from functional or security requirements.

� Verification is the task of running the model checker which carries out the
check whether the properties are valid on the given model. If the model
satisfies a property the model checker outputs true, otherwise a counter
example is presented to the user. The counter example shows how the
model violates the given property.

Model checking is typically applied to sequential hardware circuits or commu-
nication protocols [10]. In contrast we apply it to abstract specifications of smart
cards, in particular to specifications of hardware and software components.

We use the model checker NuSMV [48]. NuSMV has a proprietary input
language to describe the FSM model. The following items need to be defined in
NuSMV to describe a FSM:

� Variables - The variables define the state space of the model. They can be
input variables which are set non-deterministically by the environment, or
internal/output variables which are set deterministically as defined by the
state transitions. Optionally the values of input variables can be restricted
using invariants (INVAR).

� Initial state - The initial state is an assignment to all variables in the first
time step.

� Transitions - The state transitions define the internal/output variable
assignment in the next time step depending on the current assignment of
all variables.

The diameter of a NuSMV model is the longest run such that no state appears
twice in the run. For more details we refer to the NuSMV user manual [73].

We use Linear Temporal Logic (LTL) (LTLSPEC), Computation Tree Logic
(CTL) (CTLSPEC), and invariant specifications (INVARSPEC) to formalize the
requirements. Refer to Section 2.3.4 for a description of temporal logic.

For the work described in Section 3.5 we use the statechart modeling and
formal verification feature of COSIDE. COSIDE provides a front end to NuSMV.
The input to COSIDE is an UML statechart diagram as described in Section

3.3. Preliminaries 57

3.3.4 and a specification file with LTL properties, CTL properties, and invariants.
It translates the UML statechart diagrams into NuSMV models, and runs the
model checker NuSMV on the models and the specification file. If a counter
example is generated by NuSMV, COSIDE provides the possibility to run it on
the UML statechart diagram.

When reading the size of our models in the following sections, note that there
is not a one to one mapping from the states of a UML statechart to the states of
a NuSMV model. The states in a UML statechart are a graphical representation
of a subset of internal variables of an FSM, whereas the state space in a NuSMV
model is the set of all possible variable assignments.

3.3.4 Unified Modeling Language Statechart Diagrams

The UML defines a standard for the modeling of statecharts [112]. It offers a
definition of the graphical notation, the abstract syntax as well as an informal
description of the semantics. Statecharts describe the dynamic behavior of a
system as a state transition system, i.e., the relation between inputs and outputs
based on the internal state.

UML models are used in model driven engineering and model based testing.
We use them for formal verification of specifications because they are a widely
known and common tool for modeling specifications.

We use the design environment COSIDE [76] for statechart modeling and
formal verification. For a full description of the UML modeling features supported
by COSIDE refer to [75]. Here we only describe the features we use in our example
in Section 3.5.3.

� Input, internal, and output variables:

Input variables are set non-deterministically by the environment, internal
and output variables are determined by the statechart. We use Boolean
and integer variables with a given range.

� Simple states:

Simple states can include entry or exit activities. The activity assigns
values to internal and output variables if the state is entered, respectively
exited. A state is entered when a transition leading to that state is taken,
a state is exited when a transition leaving that state is taken.

� The initial state:

Every statechart (also substatechart) has to have exactly one initial state.
The initial state has exactly one outgoing transition. The initial transition

58 Chapter 3. Security Policy Modeling for Smart Cards

of the statechart has to assign initial values to all internal and output
variables. This is done with the activity element of the transition, see the
transition description below. The initial transition has no trigger and no
guard. Since there is only one transition it has the highest priority (1).

� Submachine states:

A submachine state is a state that includes a substatechart. This is a
graphical element that helps to structure the statechart by allowing to have
a submachine state representing a whole statechart at an upper level. The
substatechart has an initial state. If a transition leads to the submachine
state at the upper level then the substatechart starts execution in the initial
state. The submachine state can also have an outgoing transition. This
is a transition that is taken from any state of the substatechart. If the
priority of the outgoing transition is 0 then it has higher priority than all
other transitions in the substatechart.

� Transitions:

Transitions connect the current state with the next state. Transitions have
a priority, a trigger, a guard, and an activity:

– The priority is an integer that gives the order in which the transitions
are evaluated. This is a not a standard UML feature. It helps to
simplify the transitions since it allows to specify ‘else’ transitions, for
example if a transition with priority one can only be taken if “var” is
true and transition with priority two has no guard, then the second
transition can be taken if “var” is false. Additionally the priorities
remove non-determinism from the transitions. If for two transitions
the guard evaluates to true then the one with higher priority is taken.

– The trigger is an input variable which triggers the transition, meaning
that the transition is taken if the input variable is true.

– The guard is a propositional formula consisting of input and internal
variables. If the propositional formula of the guard evaluates to true
the transition is taken.

– The activity assigns values to internal and output variables if the
transition is taken, for example if the transition is the transition with
the highest priority where the trigger is true and the guard evaluates
to true.

3.4. Modeling Smart Cards 59

If a transition is taken the statechart moves to the next state and continues
evaluation there.

The statechart is executed with an abstract notion of time in the form of
steps. In each step the statechart is in exactly one active simple state. The
transitions between states and the execution of activities take no time. If no
transition is taken, there is an implicit self-loop for simple states.

3.4 Modeling Smart Cards

This chapter shows how model checking can be used for formal security policy
modeling of a smart card. First we give a description of the general approach and
show how this satisfies the Common Criteria requirements for the Security Policy
Model. Then we describe two case studies. The first case study describes a security
policy formalization of a security IC that was developed for a concrete product
evaluation. The second case study describes a security policy formalization of a
Java Card System. For an introduction to smart cards refer to Section 3.3.1.

3.4.1 Modeling Approach

This section describes the general approach we use for security policy modeling
for high assurance level Common Criteria certifications. Compared to other
approaches which often use theorem proving (see Section 3.6.1), our approach
builds on model checking.

The main reason we decided to use model checking for security policy modeling
is because model checking does not require manual proofs or manual assistance
in the proof. A model checker proves that the model satisfies the specification
without any interaction with the user, and in case a property does not hold
the model checker returns a counter example. The counter example helps in
debugging the model or localizing the error in the specification. Additionally a
model (FSM) is easier to understand and review by engineers without formal
methods background than complicated mathematical definitions and proofs as
used in theorem proving. Effectiveness and usability were the main factors in
our decision.

A model checker takes (1) a model and (2) a set of properties as input and
proves that the model satisfies the properties or gives a counter example. Refer
to Section 3.3.3 for an introduction to model checking.

We propose the following approach.

1. The model is derived from the functional specification. The model formalizes
the security-critical parts of the Functional Specification, it describes the
behavior of the product at a high level of abstraction.

2. The properties we want to prove with the model checker are derived from
the Security Functional Requirements of the Security Target.

60 Chapter 3. Security Policy Modeling for Smart Cards

Figure 3.5 illustrates the process of model checking functional specifications.
The requirements on the left hand side of the figure are the Security Functional
Requirements from the Security Target. On the right hand side of the figure the
Functional Specification is modeled.

Requirements

CTL/LTL
Properties

Satisfied

Functional
Specification

Formal
System Model

Violated:
Counterexample

ModelingFormalizing

Model Checking

Figure 3.5: Process of Model Checking for Functional Specifications

If the model checker returns true we have a formal proof that the model of
the Functional Specification satisfies the formalization of the Security Functional
Requirements of the Security Target. If a counter example is returned, it can be
evaluated if the model is wrong or the underlying specification itself is ambiguous
and/or erroneous.

The two rather high abstraction levels are chosen for formalizing and modeling
to satisfy the Common Criteria requirements for Security Policy Modeling. Section
3.4.2 gives a detailed explanation on how this modeling approach satisfies Common
Criteria.

3.4.2 Common Criteria Requirements

This section shows how the modeling approach defined in 3.4.1 satisfies the
Common Criteria assurance requirements for the Security Policy Model.

For the Security Policy Model, Common Criteria requires a formal model
which shows that the Functional Specification is (i) consistent, (ii) correct and, (iii)
complete with respect to the Security Policies. The Security Policy Model formal-
izes the refinement step from the Security Target to the Functional Specification.
See Section 3.3.2 for an introduction on Common Criteria.

In the following we list the Security Policy Model requirements given in [38]
and for each requirement we give a rationale how we satisfy the requirement with
our approach.

3.4. Modeling Smart Cards 61

The following developer action elements are part of ADV SPM.1:

� ADV SPM.1.1D The developer shall provide a formal security policy model
for the [assignment: list of policies that are formally modeled].

Rationale: This developer action element requires to list the policies that
are modeled. The scope of the model is determined by the Security Target
and the state of the art of the chosen modeling method. At least one policy
must be modeled. Model checking is best suited for modeling access control
policies because usually access control policies can easily be described by a
state FSM. Examples of access control policies are

– the access control policy of the MMU which describes the access to
memories and Special Function Register for security ICs, see [110] and
Section 3.4.3,

– the MIFARE Plus access control policy that describes the access to
blocks and cryptographic keys, see [111],

– the MIFARE DESFire access control policy that describes the access
to data, applications, data files, values and cryptographic keys, see
[111],

– the firewall access control policy which is the main access control
policy for Java Cards, see [122] and Section 3.4.4.

� ADV SPM.1.2D For each policy covered by the formal security policy model,
the model shall identify the relevant portions of the statement of Security
Functional Requirements that make up that policy.

Rationale: A policy is a list of Security Functional Requirements. The
list of Security Functional Requirements that define a policy is given by
the Security Target. All Security Functional Requirements of the Security
Target that explicitly mention the policy plus all Security Functional
Requirements that they depend on are part of the policy. Not all parts of
an Security Functional Requirement can always be modeled. We map the
Security Functional Requirements to the formal properties and add textual
explanation to identify the relevant portions of the statement of Security
Functional Requirements that are modeled.

� ADV SPM.1.3D The developer shall provide a formal proof of correspon-
dence between the model and any formal functional specification.

Rationale: For Evaluation Assurance Level 6 only ADV FSP.5 is required
(see Figure 3.4) which does not require a formal functional specification.
Thus the item is vacuously satisfied. For Evaluation Assurance Level 7,
ADV FSP.6 requires a formal functional specification. In this case the
model (FSM) itself could be used as the formal functional specification,
especially when using UML statecharts (see Section 3.5). Thus also in this
case the item would be vacuously satisfied because the model is the formal
functional specification.

62 Chapter 3. Security Policy Modeling for Smart Cards

� ADV SPM.1.4D The developer shall provide a demonstration of correspon-
dence between the model and the functional specification.

Rationale: We link the model to the functional specification with a table
that maps the variables and transitions of the model to the semi-formal
functional specification. In case Evaluation Assurance Level 7 is targeted
and a formal functional specification is given the linking can be omitted
since the model is the formal functional specification.

The following content and presentation of evidence elements are part of
ADV SPM.1:

� ADV SPM.1.1C The model shall be in a formal style, supported by ex-
planatory text as required, and identify the security policies of the Target
of Evaluation Security Functionality that are modeled.

Rationale: The model is given in NuSMV and temporal logic (LTL and
CTL), which are formal languages. Explanatory text is given as shown
in Section 3.4.3 and Section 3.4.4. The security policies are identified as
described above.

� ADV SPM.1.2C For all policies that are modeled, the model shall define
security for the Target of Evaluation and provide a formal proof that the
Target of Evaluation cannot reach a state that is not secure.

Rationale: Security is defined for the policy through the Security Func-
tional Requirements. The model checker proves that the model satisfies
the Security Functional Requirements thus showing that the model of the
security policy of the Target of Evaluation can not reach a state that is not
secure.

� ADV SPM.1.3C The correspondence between the model and the functional
specification shall be at the correct level of formality.

Rationale: For Evaluation Assurance Level 6 the correspondence between
the model and the functional specification needs to be semi-formal. We
cover this with a table that maps the variables of the model to the semi-
formal description of the Functional Specification (see Section 3.4.3 and
3.4.4 for examples). For Evaluation Assurance Level 7 such a mapping
would not be necessary if we would use the model itself as formal description
in the Functional Specification.

� ADV SPM.1.4C The correspondence shall show that the functional specifi-
cation is consistent and complete with respect to the model.

Rationale: We give a mapping for every variable used in the model
and all transitions in the model to the Functional Specification. If every
variable and every transition can be mapped, the Functional Specification
is consistent and complete with respect to the model.

3.4. Modeling Smart Cards 63

This completes the list of developer action elements and content and pre-
sentation of evidence elements of ADV SPM.1, but the Application Notes and
Interpretation of the Scheme (AIS) 34 [2] gives further requirements that need to
be considered in the evaluation. The AIS 34 requests a formal proof of internal
consistency of the Target of Evaluation Security Policy Model. Internal consis-
tency is the absence of contradictions within the Target of Evaluation Security
Policy Model. In our approach the formal proof of internal consistency is given
implicitly. If the model would not be internally consistent the model checker
NuSMV would not accept the model and generate proofs. Since the model
checker accepts the model and generates proofs, the model is internally consistent.
Furthermore we can define additional properties to check if the model behaves
as expected. The property of internal consistency is more relevant for theorem
proving. For theorem proving contradictions within the Target of Evaluation
Security Policy Model can easily lead to vacuously true properties.

Note that the AIS 34 [2] uses the terms security principles, characteristics,
properties and features. We interpret the security principles to be the Security
Functional Requirements stated in the Security Target, and the characteristics
to be the behavior of the Target of Evaluation Security Functionality Interfaces
described in the Functional Specification. The formal counterparts are the security
properties written in LTL/CTL, and the features given as FSM respectively. With
this interpretation all evaluator action elements stated in AIS can be fulfilled.

While developed for a concrete product evaluation of a security IC, our
approach for security policy modeling is suitable for generalization to other
products and product types such as native applications, Java Card OSs, and
applets.

The approach was successfully applied for Evaluation Assurance Level 6 certi-
fications, we argue that it can also be efficiently applied for Evaluation Assurance
Level 7 certifications. Evaluation Assurance Level 7 has the same Security Policy
Model component as Evaluation Assurance Level 6, the difference lies in other
components that are related to the Security Policy Model. With respect to formal
modeling Evaluation Assurance Level 7 requires a formal functional specification
(ADV FSP.6) and a formal subsystem description (ADV TDS.6). Both should
be easy to provide (at least in parts) as FSM using for example UML statecharts
as described in 3.5.

3.4.3 Case Study - Security IC

This section describes the Security Policy Model of the NXP Secure Smart
Card Controller P60x144/080PVA. The Security Target [110] of the product is
compliant to the Security IC Platform Protection Profile [33]. This Protection
Profile defines a number of security policies, only the Access Control Policy is
shown here.

In the next subsection a short description of the formal model (the formaliza-
tion of the functional specification) is given. The following subsection describes
the formal properties (the formalization of the requirements). We conclude with
a discussion of the results.

64 Chapter 3. Security Policy Modeling for Smart Cards

Formal Model

This section describes parts of the model of the access control policy of the NXP
Secure Smart Card Controller P60x144/080PVA. The model is based on Modes.
Specific access rights to IC components are associated with every mode, like
access to certain memory areas or coprocessors. The modes are modeled by a
state variable “CPU”. The range of this variable is shown in Table 3.2.

System State Description
SystemM Mode for execution of application programs. In this mode, all

resources available to application programs are accessible.
UserM Restrictive mode for execution of application programs. Acces-

sibility of resources is configurable in System Mode. Memory
access is moderated by the MMU.

FirmwareM Mode for emulating other Security Smart Card products. The
memory used in this mode is completely separated from the
memory available in System Mode and User Mode.

Table 3.2: Target of Evaluation Modes Description (excerpt)

In all CPU modes, the IC controls access to memories through the MMU.
The MMU translates virtual to physical addresses. Access is controlled in two
ways. First, the firmware firewall splits the memory into two parts. One part is
available in Firmware Mode. The other is available in System Mode and User
Mode. Second, memory can be segmented into smaller areas and access rights
(readable, writable or executable) can be defined for these segments in the MMU
Table.

The MMU Table stores memory access rights. Note that the MMU Table
itself is stored in memory. Therefore it is possible to store an MMU Table in
memory writable in User Mode. In this case a User Mode process may manipulate
the MMU Table, possibly circumventing restrictions.

Modeling Memory Segmentation: MMU Tables - In order to abstract from
the implementation details and the complexity of multiple tables and processes
at arbitrary memory addresses, the following model is used: We explicitly
model two user processes (process 0 and process 1) and one memory segment
only. We also do not use explicit memory addresses, but Boolean variables
(“mmuTableInSeg[0]”, and “mmuTableInSeg[1]”) indicating that the process’
MMU table is in the modeled segment or somewhere else. Also, details of the
MMU table data structure are not modeled. Only the access rights are given
by the variables “MMUtable[0]” for process 0 and “MMUtable[1]” for process 1,
which can be subsets of {r,w,x}. The values represent read, write, and execute
access, respectively.

Modeling Memory Partitioning: Firmware Firewall - The mechanism separat-
ing Firmware Mode from System and User Mode is called “Firmware Firewall”.
The Firmware Firewall is modeled similar to the MMU. A state variable “FM-
canAccessSegment” indicates if Firmware Mode processes have access to the

3.4. Modeling Smart Cards 65

modeled memory segment.
Modeling Operations - State transitions are triggered by operations. Opera-

tions can be triggered by software running on the IC (for example memory write
operations), external events (for example an attacker manipulating the IC), or
internal events. The operations used in the formal properties in the next section
are shown in Table 3.3.

Operation Description
OpProc0SegmentWrite,
OpProc1SegmentWrite

User Mode process 0/1 writes to modeled memory
segment.

OpProc0SegmentAccess,
OpProc1SegmentAccess

User Mode process 0/1 accesses modeled memory
segment.

OpSMmemoryAccess System Mode process accesses modeled memory
segment.

Table 3.3: Operations (excerpt)

Formal Properties

This section shows an excerpt of the formalizations of the Security Functional
Requirements defining the Access Control Policy for the memory given in [110].
The Security Target states: “The Access Control Policy comprises the follow-
ing Security Functional Requirements: FDP ACC.1[MEM], FDP ACC.1[SFR],
FDP ACF.1[MEM], FDP ACF.1[SFR] with the associated dependencies. Further
the secure state as required by FDP FLS.1 is included in the security policy
model. In addition parts of the life cycle control as required by FMT LIM.2 are
part of the model.”

The two main Security Functional Requirements FDP ACC.1[MEM] and
FDP ACF.1[MEM] with the associated dependencies define the Access Control
Policy for the memory. Parts of its formalization is given below. For the
certification in the German scheme all policies need to be modeled. For any parts
of a policy that can not be modeled an argument must be given by the developer.
Below, all properties are given in the NuSMV specification language [73]. We
only show formulas for process 0, for process 1 the formulas are similar.

All User Mode memory accesses are moderated by the MMU. In User Mode,
memory access is possible only when the MMU Table allows it (MMUtable[0] 6=
none). Note that here we do not distinguish between read, write, and execute
accesses to simplify the model.

INVARSPEC
((CPU = UserM) & OpProc0SegmentAccess) −>

(MMUtable [0] != none)

In the following formulas, the property that memory content does not change
is represented by the statement

mmuTableInSeg [0] & (MMUtable [0] = next (MMUtable [0])) .

66 Chapter 3. Security Policy Modeling for Smart Cards

While this statement explicitly talks about changes in the MMU Table of
process 0, it can be interpreted as any change in the memory segments accessible
by process 0.

When the CPU is in User Mode and the MMU Table is in none of the memory
segments where the User Mode has access then the MMU Table of a process does
not change. Note that we do not model changing an MMU Table in System Mode,
because the Access Control Policy requires isolation of User Mode processes from
each other only.

INVARSPEC
((CPU = UserM) & (next (CPU) = UserM) &
(! mmuTableInSeg [0]) & (! mmuTableInSeg [1])) −>

((MMUtable [0] = next (MMUtable [0])) &
(MMUtable [1] = next (MMUtable [1])))

In User Mode, even if the MMU Table is in a segment where the User Mode
has access, the MMU Table of a process does not change unless it is writable by
one of the user processes.

INVARSPEC
((CPU = UserM) & (next (CPU) = UserM) &

mmuTableInSeg [0] &
! (MMUtable [0] in {w, rw , wx , rwx}) &
! (MMUtable [1] in {w, rw , wx , rwx})) −>

(MMUtable [0] = next (MMUtable [0]))

User Mode Processes are isolated from each other, for example one process
cannot write memory assigned to another process unless explicitly permitted.

INVARSPEC
((CPU = UserM) & (next (CPU) = UserM) & mmuTableInSeg [0]
& ! (MMUtable [1] in {w, rw , wx , rwx})) −>

((MMUtable [0] = next (MMUtable [0])) |
OpProc0SegmentWrite)

The second part of the security properties of the Access Control Policy define
the separation between memory assigned to Firmware Mode and memory assigned
to the other modes.

When a memory segment is accessible in User Mode, it is not accessible in
Firmware Mode.

INVARSPEC
((OpProc0SegmentAccess) | (OpProc1SegmentAccess)) −>

! FMcanAccessSegment

When a memory segment is accessible in System Mode, it is not accessible in
Firmware Mode.

INVARSPEC
OpSMmemoryAccess −> ! FMcanAccessSegment

3.4. Modeling Smart Cards 67

When a memory segment is accessible in Firmware Mode, it is not accessible
in System Mode.

INVARSPEC
FMcanAccessSegment −> ! OpSMmemoryAccess

When a memory segment is accessible in Firmware Mode, it is not accessible
in User Mode.

INVARSPEC
FMcanAccessSegment −>

! ((OpProc0SegmentAccess) | (OpProc1SegmentAccess))

Last, we show that default values should be as restrictive as possible. For
User Mode MMU tables, that means that User Mode processes should have no
access rights at all after a reset.

INVARSPEC
(CPU = ResetM) −>

((next (MMUtable [0]) = none) &
(next (MMUtable [1]) = none))

Results

NuSMV [49] has been used for model checking. The model consists of 860 lines
of code. 17 state variables may assume about 225 distinct states. Note that only
an excerpt of the variables is described here.

In the development of the formal model and preliminary runs of the model
checker, nearly all proof obligations could be proven. The proof obligations that
failed initially fell into two categories: Some of them identified attack paths that
are available before deployment of the Target of Evaluation only. These attack
paths depend on certain activities while the Target of Evaluation is in Test Mode.
In practice, these attacks are not relevant, because in the deployment phase, Test
Mode is no longer available. For other products, the problem of these spurious
proof fails was solved by modeling the TOE life cycle explicitly. The second class
of spurious proof fails was due to simultaneous access of MMU configuration
parameters. Since these conditions can occur only when two processes with the
same access rights interfere with each other, and since no privilege escalation may
result from these racing conditions, the security policy is not violated in these
cases. Therefore no redesign of the Target of Evaluation was necessary, even in
the cases where proofs failed initially. In these cases additional requirements for
the Target of Evaluation environment (for example, the Target of Evaluation
must be completely configured before leaving the factory) suffice to satisfy all
security requirements. Additional proof obligations not directly related to security
functionality lead to new insights into the working of the Target of Evaluation
and helped to improve the Target of Evaluation documentation.

With good documentation the modeling is quite straight forward. The scope
of the model is defined by the Security Target and the level of abstraction is

68 Chapter 3. Security Policy Modeling for Smart Cards

mostly given by the Functional Specification. Some additional abstractions were
done to simplify the model, such additional abstractions need to be analyzed
to show that they do not influence the results. A discussion on the level of
abstraction is given in Section 3.5.2.

To sum up, we showed that the functional specification does not allow the
security IC to reach a state that is not secure, using a model checker. The model
checker proved that the formal model of the IC implements the security policies.
Developing a Security Policy Model requires consistent, unambiguous, and com-
plete documentation (see Section 3.4.2). Thus, it does not only add assurance in
terms of mathematical proof but also in enforcing accurate documentation.

3.4.4 Case Study - Java Card System

In this section we describe a Security Policy Model for the firewall access control
policy of a Java Card OS. The Security Policy Model is compliant to the Java
Card System Protection Profile [122].

A Java Card System is an operating system that runs on a security IC. It
allows a developer to install and run applets on a smart card. One of the main
security features of a Java Card System is the applet firewall which separates
the memory of the installed applets from each other. Section 3.3.1 gives an
introduction to smart cards and the Java Card OS.

In the following we first describe the formal model derived from the functional
specification of the Java Card firewall [114], then we give a complete list of
formal properties derived from the Security Functional Requirements of the
Firewall Access Control Policy taken from [122]. Last we discuss the modeling
and verification results.

Formal Model

The model of the Java Card firewall is derived from the JCRE specification [114].
All the Java Card related terms used in this section are defined in the the JCRE
specification. Chapter 6 of the JCRE specification describes applet isolation and
object sharing, which includes the applet firewall.

The applet firewall ensures that an applet can not access private data of
another applet. To do so, every applet is assigned to an execution context,
the currently active context. The JCRE is assigned to a separate context
(“CurrentlyActiveContext = 0”). For every access to an object, the firewall
checks if the currently active context is equal to the owner of the object. If this
is not the case access is denied. Data of another applet context can only be
accessed if the data has the attribute shareable. The shareable attribute makes
data available to another context. It can only be set by the applet that owns the
data. The JCRE can define JCRE entry point objects and global arrays which
can be accessed by every applet. JCRE entry point objects are the entry points
to privileged JCRE system services. They allow applets to switch to the JCRE
context. Global arrays are used for data that needs to be shared across applets,

3.4. Modeling Smart Cards 69

for example the communication buffer. For a more detailed description we refer
to the JCRE specification [114].

Next we give a high level description of the firewall model. A schematic graph
of the model is given in Figure 3.6. The model has two main states: “idle” and
“locked”. The “idle” state is the initial state, it represents the “normal” operating
state for the JCVM. If an access is allowed by the firewall a self loop is taken
and the JCVM stays in state “idle”. If an access is denied by the firewall, the
JCVM moves into the state “locked”, which corresponds to an exception thrown
by the JCRE.

idle locked

access denied

access allowed

reset

Figure 3.6: Model of the Java Card Firewall

The model captures two parts of the JCRE. First, the execution of the
bytecodes with the firewall checks as described in Section 6.2.8 Class and Object
Access Behavior of [114]. Second, it captures firewall related management
functions of the JCRE such as context switching, object creation, and applet
installation and removal.

In the following we describe the input and internal variables used in the model.
The input variables are non-deterministic variables. Non-deterministic variables
can take any value in the defined range at any point in time. They model the
unknown behavior of the environment. For the Java Card Firewall model the
input variables model the bytecodes that are executed in the virtual machine, the
operations executed by the JCRE, and the object attributes that are set when
creating an object. Table 3.4 describes the input variables of the model.

Variable Description
bytecode[0:13] Defines the bytecode for the firewall

check, see Table 3.5.
inputJCREop Models the management functions of

the JCRE as described in Table 3.7.
inputCurrentlyActiveContext[0:2] New current context when the cur-

rent context is switched. See Table
3.8.

inputSelectedAppletContext[0:2] New selected applet context when the
selected applet context is changed.
See Table 3.8.

70 Chapter 3. Security Policy Modeling for Smart Cards

inputIsReferenceType If true, the field/component being
stored is a reference type.

inputLCSelectionStatus If the variable is set to “multise-
lectable”, the object is owned by a
multiselectable applet instance. If
the variable is set to “nonmultise-
lectable”, the object is owned by a
non-multiselectable applet instance.

inputIsTransientObject If true, a standard transient object
is created. If false, a standard non
transient object is created.

inputLifetimeTransient If the variable is set to “clearonreset”,
the object is of CLEAR ON RESET
type. If the variable is set to
“clearondeselect”, the object is of
CLEAR ON DESELECT type.

inputIsArray If true, an array is created. If false,
the created object is not an array.

inputSharing Sets the sharing parameter at cre-
ation of an object. See Table 3.6.

inputAccessShareableInterface If true, the interface being accessed
extends the Shareable interface. If
false, the interface being accessed is
not shareable.

inputLifetimeJCREEntryPointObject If the variable is set to “temporary”,
a temporary Java Card RE Entry
Point Object is created. If the vari-
able is set to “permanent”, a per-
manent Java Card RE Entry Point
Object is created.

inputInCtxOfCurSelApplet If false, the object is owned by an
applet instance that is not in the con-
text of the currently selected applet
instance.

inputActiveOnOtherLC If true, the object is owned by an ap-
plet instance that is active on another
logical channel.

inputJCVMisRequester If true, the JCVM is the requester
for changing the currently active con-
text.

Table 3.4: Input Variables

The bytecodes are encoded as shown in Table 3.5. Only bytecodes that require
a firewall check are modeled.

3.4. Modeling Smart Cards 71

Value Description
0 no bytecode. It is used in combination with inputJCREop to perform

JCRE operations like context switching.
1 getstatic
2 putstatic
3 getfield
4 putfield
5 invokevirtual
6 invokeinterface
7 athrow
8 aload
9 xastore (this stands for all variants of the bytecodes astore (bstore,

iastore,...) except aastore, which is listed separately in this table)
10 arraylength
11 checkcast
12 instanceof
13 aastore

Table 3.5: Bytecodes

The “inputSharing” attribute is encoded as shown in Table 3.6.

Value Description
sio Sharable Interface Object
jcreentrypoint JCRE entry point object
standard standard object

Table 3.6: inputSharing

The “inputJCREop” is encoded as shown in Table 3.7. It models management
operations of the JCRE. When no management operation is active (“inputJCREop
= noop”) then the model does the firewall checks for the bytecodes.

Value Description
noop no JCRE operation. It is used in combination

with bytecode to execute bytecode.
currentlyactivecontextswitch currently active context switch
selectedappletcontextswitch select applet context switch
makeglobalarray makeGlobalArray call
createobject create object
storeobjectinval store object in Val
installapplet1 install Applet 1
installapplet2 install Applet 2
removeapplet1 remove Applet 1

72 Chapter 3. Security Policy Modeling for Smart Cards

removeapplet2 remove Applet 2

Table 3.7: inputJCREop

The encoding of the context is shown in Table 3.8.

Value Description
0 JCRE context
1 context containing Applet 1
2 context containing Applet 2

Table 3.8: inputCurrentlyActiveContext

The internal variables are set deterministically in the model. They store the
security attributes of the created objects. The security attributes play a major
role in the security attribute based access control policy defined in the Protection
Profile. Most access control rules rely on the security attributes. Table 3.9
describes the internal variables of the model.

Object attributes
Variable Description
Owner Owner of the object. Set at creation of the

object.
isGlobal If true, the array is designated global. Set

at creation of the global array.
isJCREEntryPointObject If true, the object is designated a Java

Card RE Entry Point Object. Set at cre-
ation of the object.

LifetimeJCREEntryPointObject If the variable is set to “temporary”, the
Java Card RE Entry Point Object is “tem-
porary”. If the variable is set to “per-
manent”, the Java Card RE Entry Point
Object is “permanent”. Set at creation of
the object.

isShareableInterfaceObject If true, the object is a sharable interface
object. Set at creation of the object.

isTransientObject If true, the object is standard transient. If
false, the object is standard non transient.
Set at creation of the object.

LifetimeTransient If the variable is set to “clearonreset”, the
object is of CLEAR ON RESET type. If
the variable is set to “clearondeselect”, the
object is of CLEAR ON DESELECT type.
Set at creation of the object.

3.4. Modeling Smart Cards 73

isArray If true, the object is an array. Set at cre-
ation of the object.

Table 3.9: Internal Variables

The model also includes an invariant that restricts the input variables. The
invariant ensures that either a bytecode or a JCRE operation is executed in one
time step.

INVAR
(inputJCREop = noop | bytecode = 0)

The formula is part of the specification file. Note that in contrast to INVAR-
SPEC formulas which are proof obligations, INVAR formulas are assumptions
on the input variables.

Formal Properties

The Firewall Access Control Policy consists of the following Security Functional
Requirements. We include all Security Functional Requirements that explicitly
mention the policy and all dependencies. The dependencies are defined in the
Common Criteria part 2 [37], also see Section 3.3.2 for an explanation. The list
shows all the Security Functional Requirements that need to be formalized and
proven on the model.

� FDP ACC.2[FIREWALL]
(definition of the policy, depends on FDP ACF.1[FIREWALL])

� FDP ACF.1[FIREWALL]
(depends on FDP ACC.2[FIREWALL] and FMT MSA.3[FIREWALL])

� FDP ROL.1[FIREWALL]
(explicitly mentions the policy, depends on FDP ACC.2[FIREWALL])

� FIA UID.2[AID]
(no dependencies)

� FMT MSA.1[JCRE]
(depends on FDP ACC.2[FIREWALL], FMT SMF.1, and FMT SMR.1)

� FMT MSA.1[JCVM]
(depends on FDP ACC.2[FIREWALL], FMT SMF.1, and FMT SMR.1)

� FMT MSA.2[FIREWALL JCVM]
(explicitly mentions the policy, depends on FDP ACC.2[FIREWALL],
FMT MSA.1[JCRE], FMT MSA.1[JCVM], and FMT SMR.1)

� FMT MSA.3[FIREWALL]
(depends on FMT MSA.1[JCRE], FMT MSA.1[JCVM], FMT SMR.1)

74 Chapter 3. Security Policy Modeling for Smart Cards

� FMT SMF.1
(no dependencies)

� FMT SMR.1
(depends on FIA UID.2[AID])

For every Security Functional Requirement of the Firewall Access Control
Policy we either give a formal proof that the model satisfies the Security Functional
Requirement or we give a reason why such a proof can not be given. Here we
discuss the excerpt of the policy which shows the contradictions we found in the
Java Card Protection Profile. The full input file to the model checker is given in
Appendix A. In the following, the Security Functional Requirements are given in
italics, the arguments or formalized properties are given in standard type setting.
FDP ACC.2/FIREWALL
FDP ACC.2.1[FIREWALL] The Target of Evaluation Security Functionality shall
enforce the FIREWALL access control Security Function Policy on S.PACKAGE,
S.JCRE, S.JCVM, O.JAVAOBJECT and all operations among subjects and objects
covered by the Security Function Policy. Refinement: The operations involved in the
policy are:

� OP.CREATE,

� OP.INVK INTERFACE,

� OP.INVK VIRTUAL,

� OP.JAVA,

� OP.THROW,

� OP.TYPE ACCESS

FDP ACC.2.2[FIREWALL] The Target of Evaluation Security Functionality shall

ensure that all operations between any subject controlled by the Target of Evaluation

Security Functionality and any object controlled by the Target of Evaluation Security

Functionality are covered by an access control Security Function Policy.

The Security Functional Requirement FDP ACC.2[FIREWALL] defines the
operations of the policy. The operations are mapped to the model as follows:

� OP.CREATE is modeled by inputJCREop = createobject;

� OP.INVK INTERFACE is modeled by bytecode = invokeinterface;

� OP.INVK VIRTUAL is modeled by bytecode = invokevirtual;

� OP.JAVA is modeled by OP.ARRAY ACCESS or OP.INSTANCE FIELD
or OP.INVK VIRTUAL or OP.INVK INTERFACE or OP.THROW or
OP.TYPE ACCESS;

� OP.ARRAY ACCESS is modeled by bytecode = aload or bytecode =
aastore or bytecode = xastore;

� OP.INSTANCE FIELD is modeled by bytecode = getfield or bytecode =
putfield;

3.4. Modeling Smart Cards 75

� OP.THROW is modeled by bytecode = athrow;

� OP.TYPE ACCESS is modeled by bytecode = checkcast or bytecode =
instanceof.

FDP ACF.1/FIREWALL
FDP ACF.1.1[FIREWALL] The Target of Evaluation Security Functionality shall en-

force the FIREWALL access control Security Function Policy to objects based on the

following:
Subject/Object Security attributes

S.PACKAGE LC Selection Status

S.JCVM Active Applets, Currently Active Context

S.JCRE Selected Applet Context

O.JAVAOBJECT Sharing, Context, LifeTime

The Security Functional Requirement FDP ACF.1.1[FIREWALL] defines the
subjects, the objects and the security attributes of the policy. They are mapped
to the model as follows:

� S.PACKAGE is modeled by CurrentlyActiveContext != 0;

� S.JCVM is modeled by inputJCVMisRequester;

� S.JCRE is modeled by CurrentlyActiveContext = 0;

� S.PACKAGE.LC Selection Status is modeled by inputLCSelectionStatus;

� S.JCVM.Active Applets is modeled by inputActiveOnOtherLC;

� S.JCVM.Currently Active Context is modeled by CurrentlyActiveContext;

� S.JCRE.Selected Applet Context is modeled by SelectedAppletContext;

� O.JAVAOBJECT.Sharing is modeled by isGlobal or isJCREEntryPointOb-
ject or isShareableInterfaceObject, set by inputSharing at creation of an
object;

� O.JAVAOBJECT.Context is modeled by Owner;

� O.JAVAOBJECT.LifeTime is modeled by isTransientObject and Lifetime-
Transient.

FDP ACF.1.2/FIREWALL The Target of Evaluation Security Functionality shall en-
force the following rules to determine if an operation among controlled subjects and
controlled objects is allowed:

� R.JAVA.1: S.PACKAGE may freely perform OP.ARRAY ACCESS,
OP.INSTANCE FIELD, OP.INVK VIRTUAL, OP.INVK INTERFACE,
OP.THROW or OP.TYPE ACCESS upon any O.JAVAOBJECT whose Sharing
attribute has value “JCRE entry point” or “global array”.

76 Chapter 3. Security Policy Modeling for Smart Cards

First we show the property for the four operations OP.INVK VIRTUAL,
OP.INVK INTERFACE, OP.THROW, and OP.TYPE ACCESS. We show that
S.PACKAGE (CurrentlyActiveContext != 0) can invoke the given bytecodes on a
JCRE entry point object or a global array without moving to the “locked” state.
Thus the operations are allowed.

LTLSPEC
G(Current lyAct iveContext != 0 & (isJCREEntryPointObject

| i sG loba l) & ((bytecode >= 5) & (bytecode <= 7) |
(bytecode >= 11) & (bytecode <= 12)) & (s t a t e = i d l e
) −> X(s t a t e = i d l e))

For OP.INSTANCE FIELD we can not prove the requirement. The speci-
fication for “getfield” and “putfield” (Section 6.2.8.3 Accessing Class Instance
Object Fields of [114]) does not allow access to JCRE entry point objects or
global arrays. We can prove the following property on our model. The model
moves into state “locked”, meaning that the access is not allowed.

LTLSPEC
G(Current lyAct iveContext != 0 & (isJCREEntryPointObject

| i sG loba l) & (bytecode = 3 | bytecode = 4) & (
s t a t e = i d l e) −> X(s t a t e = locked))

For OP.ARRAY ACCESS the requirement can only be partly shown. We can
show the property for global arrays for the bytecodes “aload” and “xastore”.

LTLSPEC
G(Current lyAct iveContext != 0 & i sG loba l & (bytecode =

8 | bytecode = 9) & (s t a t e = i d l e) −> X(s t a t e = i d l e
))

The specification for “aastore” (Section 6.2.8.2 Accessing Array Objects of
[114]) does not allow access to global arrays. The following property can be
proven on our model.

LTLSPEC
G(Current lyAct iveContext != 0 & i sG loba l & bytecode =

13 & (s t a t e = i d l e) −> X(s t a t e = locked))

The JCRE specification requires for “astore” and “aload” that the accessing
context is either the JCRE or the owner of the object if the object is not a global
array. Only the JCRE can designate JCRE entry point objects. Thus there are
no JCRE entry point objects that do not belong to the JCRE. The following
property can be proven on our model.

LTLSPEC
G(Current lyAct iveContext != 0 & isJCREEntryPointObject

& ! i sG loba l & (bytecode = 8 | bytecode = 9 |
bytecode = 13) & s t a t e = i d l e −> X(s t a t e = locked))

3.4. Modeling Smart Cards 77

This concludes our list of properties for R.JAVA.1. We show that the property
is not true for OP.INSTANCE FIELD and that the property is only partly true
for OP.ARRAY ACCESS. We propose to remove OP.INSTANCE FIELD and
OP.ARRAY ACCESS from rule R.JAVA.1 and add separate rules for these
operations.

� R.JAVA.5: S.PACKAGE may perform OP.CREATE only if the value of the
Sharing parameter is “Standard”.

First we show that S.PACKAGE may perform OP.CREATE if the value of
the Sharing parameter is “Standard”. We use CTL to show that there is a path
which allows access, thus S.PACKAGE may perform OP.CREATE.

CTLSPEC
EF(Current lyAct iveContext != 0 & inputJCREop =

c r e a t e o b j e c t & inputShar ing = standard & s t a t e =
i d l e & EX(s t a t e = i d l e))

Next we try to prove the only if direction of the requirement with the formula
given below. But the proof fails because S.PACKAGE is allowed to e.g. create a
shareable interface object (Section 6.2.4 Shareable Interfaces of [114]).

LTLSPEC
G(Current lyAct iveContext != 0 & inputJCREop =

c r e a t e o b j e c t & s t a t e = i d l e & X(s t a t e = i d l e) −> (
inputShar ing = standard))

The Protection Profile provides a footnote for the operation OP.CREATE
stating that shareable transient objects are not allowed. We prove this on our
model with the following property.

LTLSPEC
G(i s S h a r e a b l e I n t e r f a c e O b j e c t −> ! i sTrans i en tOb jec t)

This concludes our proof of R.JAVA.5. We show that the ‘only if’ direction
can not be proven. We assume that the rule was supposed to state that shareable
transient objects are not allowed, which we prove with the last formula given
above. We propose to change R.JAVA.5 in the Protection Profile.
FMT MSA.3[FIREWALL]
FMT MSA.3.1[FIREWALL] The Target of Evaluation Security Functionality shall

enforce the FIREWALL access control Security Function Policy to provide restrictive

default values for security attributes that are used to enforce the Security Function

Policy.

At creation of an object the context attribute is set to the creators context.

LTLSPEC
G(inputJCREop = c r e a t e o b j e c t & s t a t e = i d l e & X(s t a t e =

i d l e) −> X(Owner = Current lyAct iveContext))

FMT MSA.3.2[FIREWALLEditoriallyRefined] The Target of Evaluation Security Func-

tionality shall not allow any role to specify alternative initial values to override the

default values when an object or information is created.

78 Chapter 3. Security Policy Modeling for Smart Cards

We show this by claiming that there exists a path where an object is created
with a context attribute different to the creators context, see property below.
The property is proven false, thus we show that all objects are created with the
creators context as the objects context.

CTLSPEC
EF(inputJCREop = c r e a t e o b j e c t & s t a t e = i d l e & EX(s t a t e

= i d l e) & EX(Owner != Current lyAct iveContext))

Note that the last two formal properties are semantically equivalent. They
look different because they are translated from two different properties. With the
abstraction level of our model we can not distinguish between the two Security
Functional Requirements. In essence we can only show that the context attribute
is always set to the creators context at creation of an object.

Results

The model is generated with COSIDE, which translates an UML statechart
diagram into NuSMV model. The diameter of the NuSMV model is 17. The
model has roughly 235 reachable states out of roughly 253 states. The NuSMV
model checker is used for verification.

The verification only takes a few seconds. It shows that all properties except
for two are true. Both failing properties are discussed above. Not all false
properties must necessarily point to a contradiction between requirements and
implementation. Failing properties can be used to show that a certain path does
not exist. Still, there are some Security Functional Requirements that we could not
prove, in fact we proved that parts of the given Security Functional Requirements
are not true for our model. We claim that two rules of FDP ACF.1.2/FIREWALL
contradict the Java Card specification [114]:

� R.JAVA.1 for OP.INSTANCE FIELD and OP.ARRAY ACCESS, and

� R.JAVA.5.

We propose to refine the contradicting rules in the Protection Profile. A first
draft of the new Protection Profile already contains refined and new rules to
remove the contradictions.

Again we see that informal specifications and semi formal requirements can be
ambiguous and misleading. The formal model uncovers imprecise requirements
that contradict the specification.

3.5 Modeling using UML Statecharts

The above described method is an efficient method for security policy model-
ing that satisfies the Common Criteria requirements. But to leverage all the
advantages of applying formal methods in an early design phase, for example the
specification phase, the method needs to be integrated into the design process of

3.5. Modeling using UML Statecharts 79

a product. In order to do so the benefits must be clear to all parties in a project.
To apply formal methods in an early design phase has numerous advantages
apart from satisfying Common Criteria requirements:

1. Generation of a precise understanding of the specification, since there is no
room for interpretation in a formal model.

2. Improvement of the documentation. The model and properties formally
link the functional specification to the requirements and offer a consistent
and unambiguous documentation.

3. Mathematical proof that the functional specification satisfies the require-
ments.

Avoiding errors early and a clear communication of the specification to the
engineer are key features for a short time to market and high quality products.

The next section gives a short description of how to integrate formal modeling
of specifications into the design process. Different levels of integration are
described. Section 3.5.2 details the possibilities of formally modeling specifications.
Not every part of a specification is suitable for being modeled and for efficiency
it is necessary to find the right level of abstraction. The last section shows an
example model using UML statecharts.

3.5.1 Integration into the Design Process

The least impact on the design process is achieved if the formal verification is done
separately. After the requirements have been written down and the specification
has been finished, the formal verification engineer gets the documents as input
to carry out the formal verification. If the model is written in an uncommon
language like NuSMV [48], the model can not even be reviewed by the architect
who is responsible for the specification. Apart form the work presented here, all
the published formal verification done for Common Criteria in the smart card
industry is separated form the design process of the product (see Section 3.6.1).

A first step towards integrating the formal verification into the design process
is to use UML statechart diagrams as modeling language. This enables the
architect to review the model and it eases the communication between the
architect and the verification engineer. A second step is to use UML statecharts
as specification language. This requires training of the architect who is responsible
for writing the specification to generate awareness of the restrictions of a model
checker.

The first two steps allow us to integrate the modeling part into the design
process. The second input to the model checker, the properties, are derived by
formalizing functional and security requirements. Currently, they have to be
translated manually to temporal logic formulas. For future work, we plan to offer
templates to allow non-experts in formal methods to formalize requirements.

The formal modeling and formal verification of abstract specifications is a
team effort. If the model is required for Common Criteria certification, the

80 Chapter 3. Security Policy Modeling for Smart Cards

Common Criteria evaluation engineer defines the scope of the model and the
requirements that need to be proven, the (security) architect defines the model
and the formal methods expert supports in formalization of the requirements
and model.

3.5.2 Level of Abstraction

The main limitation of model checking is the so called state space explosion
problem. The size of the state space is exponential in the number of variables
defining the states. Thus, large numbers and big data structures should be
avoided. Only being able to deal with a finite state space and considering the
state space explosion problem entails the following restrictions:

� It is not feasible to model all physical properties of a hardware. Conse-
quently, it is not state of the art to formally verify at the physical level if a
system is resistant to physical attacks such as inherent information leakage
(for example power analysis attacks), physical probing, malfunction due to
environmental stress, or physical manipulation.

� It is not feasible to model complex algebraic functions. Thus, it is not
state of the art to formally verify if a cryptographic function like a random
number generator, encryption, or decryption works correctly.

The level of abstraction of a formal model is not only restricted by the state space
explosion problem. The following considerations should also be taken into account.
First, it is only necessary to model details that are relevant to prove interesting
requirements. We do not want to crowd the model with unrelated details. Second,
if the model has too much detail, it may become too complex. The complexity
of the model may make the results of the proofs hard to understand and hence
make the model less useful.

The guideline for formal security policy modeling for Common Criteria [3]
(Section 5.2 Determination of the Degree of Abstraction) states “Generally finding
the right abstraction degree can not be done schematically. A creative process is
needed during which such a construction is usually adapted several times”. The
following examples show some possible abstractions:

� Often an induction argument can be used to only model a small number
of a possible large number of items. For example, if a smart card can
have a large number of similar applications installed, and the security
requirement is not influenced by the interaction of the applications, then it
is sufficient to only model one application, see Section 3.5.3 for an example.
In case the security requirement to be proven concerns the interaction of
the application, it may be sufficient to model two applications and argue
that the requirement holds for all applications using induction.

� Usually data structures are not modeled because they do not contribute
to the logical behavior of a system. Modeling data structures leads to an
enormous increase in the state space but since they do not contribute to

3.5. Modeling using UML Statecharts 81

the logical behavior of a system, they do not change the verification result,
and thus add no value to the model. In our example (Section 3.5.3) we do
not model the data structure of the keys, the commands, the application,
the memory, etc.

� In most models it is helpful to carry out some additional abstractions on
the functionality. In our example (Section 3.5.3), we only modeled the
increment and decrement of the value by 1. Extending the model to allow
an increment or decrement up to the maximal respectively minimal value
is trivial, but it would only make the model more complex without adding
any real new value with respect to the requirements we want to prove.

Finding the right level of abstraction is one of the most challenging tasks of
applying formal verification. If the model is too abstract, it will not help to
improve the quality of the product. Having a too detailed model is not efficient.
The optimum between vacuity and effectiveness has to be assessed for every
model individually. Naturally for security relevant parts or complex functional
parts of a product, having a more detailed model pays off. Modeling straight
forward functionality may make sense on a higher level of abstraction in order to
have an unambiguous specification.

Having explained the limitations of model checking and the challenge of
finding the right level of abstraction for a model, we conclude this section by
describing what can be modeled. Our method is tailored to modeling complex
behavior and security relevant functionality. We use it to model security policies,
especially access control policies, see Section 3.5.3.

3.5.3 Example

In this section we present an illustrative example modeling a simplified access
control policy specification as it could be implemented for a smart card. For
smart cards deployed in security critical applications, such as banking (e.g. ATM
card, credit card), e-government (e.g. health card, passport) and access control
(e.g. access to buildings, transportation) it is important to ensure that only
authorized users have access to certain functionality. For example, only users
that know the PIN are allowed to withdraw money with an ATM card; only an
authorized administrator can write data onto a passport (generate a passport);
only an authorized person is allowed to read data from a passport.

The model we present here is a simplified version of the DESFire Access
Control Policy as defined in [111]. The original model has a system diameter of
14, it has roughly 274 reachable states out of roughly 296 states. We defined 146
properties which take about 30 minutes to prove. As a comparison, the model we
present here has a system diameter of 16, it has roughly 211 reachable states out
of roughly 218 states and the verification of the properties takes about 2 seconds.

The simplified model we present here has a card manager that is able to
create and delete application(s). For example, a public transport company can
create an application on the card to allow a customer to load the card and then
use the card as a ticket. For this example we only model one application for

82 Chapter 3. Security Policy Modeling for Smart Cards

simplification without loss of generality since the properties we want to prove do
not depend on the interaction between applications. The application we model
has a value that can be incremented and decremented. Considering a public
transport card again, the increment and decrement functions of the application
can be seen as an abstraction of the loading functionality and the ticket use.

We use the following notation: Capital letters are used for input variables.
Variables with lower case letters are internal or output variables.

Figure 3.7 shows the overview state diagram of our formal system model. The
initial state is the “Idle” state. From this state it is possible to either select the
card manager or the application, if it is active. The card manager is chosen to
manage the card, to delete or create applications. The application is chosen to
use the application, for example load or use the card.

The card manager and the application are each modeled in a substatechart.
Figure 3.8 and Figure 3.9 show the statecharts of the card manager and the
application, respectively. If the card manager is selected (the state “CardManager”
is active) then the statechart moves into the “CM NotAuthenticated” state of the
substatechart. By issuing the “AUTHENTICATE” command with “KEY== 0”,
it is possible to authenticate the card manager. The card manager is then allowed
to create or delete an application. To create an application, the “CREATE”
command and the number of the application to be created (“APP==1”) has to
be issued to the card. Then the application is set to active and the value is set
to 0. Deleting an application works similarly. If neither the delete nor the create
transition are triggered, then there is an error and the authentication state is
lost.

The order in which the transitions are tried is given by the priorities of
the transitions. In this case the create transition has priority 1 and the delete
transition has priority 2. Since their guards are mutually exclusive the priorities
do not have an impact on the taken transition. But the transition with priority
3 has no guard and the least priority, thus it is taken in all cases not covered by
the other two transitions.

The application statechart is similar to the card manager statechart, except
that the application user can increment or decrement the internal variable “value”
between 0 and 5.

Beside the state diagram, a specification file is needed as input to COSIDE. In
this file, the CTL and LTL properties, and the restrictions on the input variables
are given. Every property has to be preceded by the formula type “CTLSPEC”
or “LTLSPEC”. These formulas are a translation of the requirements of the
security policy we want to prove. CTL and LTL are temporal logic languages
that are used to formalize the temporal properties of systems (see Section 3.3.3).

Assumptions on the input variables are preceded by the keyword “INVAR”.
We use these invariants to restrict the input variables of the model. For example,
an assumption has been added to model that it is only possible to send one
command to the card in each time step. The “RESET” signal is an exception
because a reset can occur anytime, when the card is removed from the reader. The
following invariant describes this behavior and is copied from our specification

3.5. Modeling using UML Statecharts 83

init

Idle

State1 T:TCardManager

State2 T:TApplication1

/App1ActiveT=Tfalse;
valueT=T0;
errorT=Tfalse;

1

SELECT[APPT==T0]

1

SELECT[APP==1T&&TApp1Active]

2

RESET 0

RESET 0

Figure 3.7: Access Control Policy Overview state diagram

CM_init

CM_NotAuthenticated

exit / error = false;

CM_Authenticated1
AUTHENTICATE[KEY==0]1

/error=true; 3

CREATE[RAPP==1RvvR App1Active]/App1ActiveR=Rtrue;RvalueR=R0;

1

DELETE[RAPP==1RvvRApp1Active]/App1ActiveR=Rfalse;RvalueR=R0;

2

Figure 3.8: Access Control Policy Card Manager state diagram

App1_init

App1_NotAuthenticated

exit / error = false;

App1_Authenticated1
AUTHENTICATE[KEY==1]1

/errorR=Rtrue; 3

INCREMENT[value<5]/valueR=Rvalue21;

1

DECREMENT[value>0]/valueR=Rvalue-1;

2

Figure 3.9: Access Control Policy Application1 state diagram

84 Chapter 3. Security Policy Modeling for Smart Cards

input file. The function “count(var1, var2, ...) = 1” is true if and only if exactly
one of the variables “var1, var2, ...” is true.

INVAR
count (SELECT, AUTHENTICATE, CREATE, DELETE, INCREMENT,

DECREMENT) = 1

First we prove that it is only possible to create or delete an application if
authenticated with the card manager key (“KEY==0”). We only show the
formulas for creating, the formulas for deleting are similar. The property is build
up in three steps with the three SPEC formulas given below. The first formula
shows that the right hand side of the implication in the third formula is not false.
If the right hand side of an implication is false then the implication is vacuously
true which could lead to wrong conclusions. The second and the third formula
together give the property we want to show.

// A path e x i s t s (E) such that even tua l l y (F) ,
// App1Active i s f a l s e and
// in the next s t a t e (X) App1Active i s t rue
// − thus i t i s p o s s i b l e to c r e a t e an a p p l i c a t i o n
CTLSPEC
EF(! App1Active & EX App1Active)

// Always (G) ,
// when the s t a t e changes to CM Authenticated
// then the au then t i c a t i on key i s the card manager key (

KEY=0)
// − thus s t a t e=CM Authenticated −> authent i ca ted with

the card manager key
LTLSPEC
G(s t a t e !=CM Authenticated & X(s t a t e=CM Authenticated) −>

KEY=0)

// Always (G) ,
// when an a p p l i c a t i o n i s c r ea ted
// then the s t a t e i s CM Authenticated
// − thus i t i s only p o s s i b l e to c r e a t e an a p p l i c a t i o n

when authent i ca ted with the card manager key
LTLSPEC
G(! App1Active & X(App1Active) −>

s t a t e=CM Authenticated)

The next two formulas check that the authentication state is lost when an
error occurs.

// Always (G) ,
// when e r r o r i s t rue
// then the s t a t e i s not CM Authenticated

3.5. Modeling using UML Statecharts 85

LTLSPEC
G(e r r o r −> s t a t e !=CM Authenticated)

// Always (G) ,
// when e r r o r i s t rue
// then the s t a t e i s not App1 Authenticated
LTLSPEC
G(e r r o r −> s t a t e != App1 Authenticated)

Last we want to show that it is only possible to increment or decrement the
value if authenticated with the application key. Again we try to show this in
three steps. First we prove that the value can be changed. Again this property
is necessary to ensure that the right hand side of our implication in the third
formula is not false.

// A path e x i s t s such that eventua l ly ,
// the value i s 0 and in the next s tep the value i s
// not 0 or . . . (the same f o r a l l va lue s up to 5)
// − thus i t i s p o s s i b l e to change the value

(increment or decrement the value)
CTLSPEC
EF(value=0 & EX(value !=0) | value=1 & EX(value !=1) |

value=2 & EX(value !=2) | . . .)

Next we show that state “App1 Authenticated” can only be reached when
authenticated with the application key.

// Always (G) ,
// when the s t a t e changes to CM Authenticated
// then the au then t i c a t i on key i s the a p p l i c a t i o n key (

KEY=1)
// − thus s t a t e = CM Authenticated −> authent i ca ted with

the a p p l i c a t i o n key
LTLSPEC
G(s t a t e != App1 Authenticated & X(s t a t e=App1 Authenticated)

−> KEY=1)

The next formula does not hold. It cannot be shown that the value can only
change when authenticated with the application key. The model checker returns
false and a counter example.

// Always (G) ,
// when the value changes
// then the s t a t e i s App1 Authenticated
// − thus the value can only change when authent i ca ted

with the a p p l i c a t i o n key
LTLSPEC
G((value=0 & X(value !=0) | value=1 & X(value !=1) |

value=2 & X(value !=2) | . . .) −>

86 Chapter 3. Security Policy Modeling for Smart Cards

s t a t e=App1 Authenticated)

COSIDE offers the possibility to visualize counter examples on the model.
See Figure 3.10 for a screen shot of the visualization of the counter example.
The visualization shows the currently active state as well as the transitions that
were taken before. Moreover, transitions can be step-wise executed forward and
backward to ease debugging.

Figure 3.10: Visualization of counter example

The visualization shows that deleting the application can also change the value.
Thus the value can also change when not authenticated with the application
key. Since the deletion requires authentication with the card manager key, this
behavior is not a security risk. With this information the specification can be
improved and the following formula can be derived, which holds on the model.

// Always (G)
// when the value changes
// then the s t a t e i s App1 Authenticated or
// CM Authenticated
// − thus the value can only change when authent i ca ted

with the a p p l i c a t i o n key or the card manager key

3.5. Modeling using UML Statecharts 87

LTLSPEC
G((value=0 & X(value !=0) | value=1 & X(value !=1) |

value=2 & X(value !=2) | . . .) −>
(s t a t e=App1 Authenticated |

s t a t e=CM Authenticated))

The above example shows how the specification can be debugged using the
counter examples of the model checker. Next we give an example showing how
the model checking fails if the model is not correct. Assume the guard on the
authentication transition of the card manager is missing, see Figure 3.11.

Figure 3.11: Access Control Policy Card Manager state diagram without key check

This is a big security issue since the authentication state can be reached
without the correct key. When we run the model checker on the modified model
the following property fails.

// Always (G) ,
// when the s t a t e changes to CM Authenticated
// then the au then t i c a t i on key i s the card manager key (

KEY=0)
// − thus s t a t e=CM Authenticated −> authent i ca ted with

the card manager key
LTLSPEC
G(s t a t e !=CM Authenticated & X(s t a t e=CM Authenticated) −>

KEY = 0)

The counter example shows that a switch to state “CM Authenticated” is
possible with “KEY = 1”. With this knowledge it is easy to find the bug in the
model and correct it.

The generation and visualization of counter examples can help in two ways.
For formulas that we expect to be true, but which are false, the counter example
can help to understand the problem and find a solution. Additionally the
visualization can also be used to check if the model works as expected. For
example, if we want to see how the state “App1 Authenticated” can be reached
we add the formula given below. The visualization of the counter example will
show how the state can be reached.

88 Chapter 3. Security Policy Modeling for Smart Cards

// Always (G) s t a t e i s not App1 Authenticated
// − thus the s t a t e App1 Authenticated can never be

reached
LTLSPEC
G(s t a t e != App1 Authenticated)

The example given in this section is only a very small model but it demon-
strates the current possibilities of model checking UML statechart diagrams with
COSIDE. Being able to model with a widely known and understood language
is a first step towards integrating formal verification of specifications into an
industrial design process.

3.6 Related Work

We split the related work into four categories. First we describe work related
to Security Policy Models according to Common Criteria. Then we describe
work related to model checking and work on integrating formal methods into
the development process. The last section describes related work on formal
verification of UML statecharts.

3.6.1 Common Criteria

The first Evaluation Assurance Level 6 certificate was received by STMicroelec-
tronics for the ST23YR80. The Dynamic Memory Access Control Policy of the
security IC was modeled. It was certified by the French certification body [1].
Unfortunately no publications can be found describing the used method.

Most of the publications describing a Security Policy Model for Common
Criteria use theorem provers. Below we give examples for four different theorem
provers: ACL2, Isabelle, Coq, and PVS.

ACL2 The ACL2 theorem prover was used to develop and prove a formal
security policy model for the INTEGRITY-178B real-time operating system [107].
The main policy proven for INTEGRITY-178B was a policy about separating
operating system kernels called “GWV policy” [85], which is very similar to the
Access Control Policy described in Section 3.4.3.

The ACL2 theorem prover was also used in the evaluation of the Rockwell
Collins’ AAMP7G microcontroller to show that the microcontroller satisfies the
GWV kernel separation criteria [124]. In the AAMP7G project two different
abstraction layers were modeled: the formal abstract model and the formal
detailed model. First a proof is given showing that the abstract model satisfies
the security policy, then a proof is given showing that the detailed model is a
refinement of the abstract model. Eventually a detailed code to model review
is conducted to guarantee that the implementation corresponds to the detailed
model. ALC2 is well fitted for such a layered approach, but the additional layer
requires additional modeling and proving effort. This additional effort is not
necessary for certification, see discussion in [123].

3.6. Related Work 89

With our approach we only model one abstraction layer and prove that the
model satisfies the security policy, which is less effort and satisfies the Common
Criteria requirements for high evaluation assurance levels. Note that the work in
[123] refers to Common Criteria version 2.1 whereas our work refers to Common
Criteria version 3.1. Version 2.1 requires a high level and a low level design which
are merged into one required design in version 3.1. In [123] the authors give a
high level description how Common Criteria high evaluation assurance levels can
be reached with ALC2. We show how Common Criteria high evaluation assurance
levels can be reached with model checking, giving very detailed rationales in
Section 3.4.2.

Our approach is tailored to efficiently develop an abstract Security Policy
Model for Common Criteria. Compared to our approach, the work using ALC2
is much more elaborate, requiring a big effort to manually guide the proofs. The
paper [124] states that “Nearly all the time on the project was spent constructing
the proofs . . . ”. This is not required when a model checker is used.

Isabelle The Isabelle theorem prover was used to verify the security model of
Infineons SLE 88 Smart Card Memory Management [136]. The security model
uses Interactive State Machine (ISM)s to model the memory management of the
SLE 88. From a conceptual point of view the security model of the SLE 88 is
quite similar to our model of the access control policy of the NXP Secure Smart
Card Controller P60x144/080PVA given in Section 3.4.3. Also, ISMs can be
defined graphically using the Computer Aided Software Engineering (CASE) tool
AutoFocus. Using a converter, the graphical representation can be translated to
the Isabelle/HOL representation. The main difference to our approach is that the
proofs conducted by Isabelle need manual guidance, for example invariants need
to be defined and proven and assumptions need to be defined. The article [135]
states “Much more involved is the proof of our final theorem . . . : we need an
invariant This in turn requires two assumptions . . . such that the invariant
is maintained”. We argue that our model checking push-button approach is much
more user friendly and the additional expressive power provided by Isabelle is not
necessary for Security Policy Modeling. The conclusions of the Security Policy
Model work in the article [135] are quite similar to our results provided in Section
3.4.3, the model provides new insights in the working of the Target of Evaluation
and helps identify the relevant assumptions on the system environment.

Coq The theorem prover Coq was used for security policy modeling of the
Java Card firewall [46]. Chetali and Nguyen propose a method that satisfies
the requirements of the formal components for Evaluation Assurance Level 7
of Common Criteria version 2.2 (see Security Target [78]). For the Security
Policy Model the security objectives stated in the Security Target are formalized
into properties represented as Firewall Virtual Machine state machine, and the
Security Functional Requirements are formalized into the Security Policy Model
represented as JCVM state machine. The Firewall Virtual Machine state machine
is based on Chapter 6 of [114] like our formal model given in Section 3.4.4. The
JCVM state machine models the card state which is composed of the installed
applets, the runtime data (frame, stack, heap), the static data, and others. A

90 Chapter 3. Security Policy Modeling for Smart Cards

refinement proof between the Firewall Virtual Machine state machine and the
JCVM state machine is given to show that the JCVM satisfies the firewall rules.
This shows that there can be quite different interpretations of the Common
Criteria assurance requirements for the Security Policy Model.

The link to the Functional Specification is formal since the work targets
Evaluation Assurance Level 7. The Functional Specification and High Level
Design are represented as Formal Internal Virtual Machine state machine and
another refinement proof is given to show that it satisfies the firewall rules. Like
in the work using ALC described in [123] refinement proofs are given down to
the Low Level Design. The last step from the Concrete Virtual Machine state
machine which is the most detailed formal representation to the implementation
is done by manual review as in [123].

Compared to our work the work described in [46] was a much bigger effort
but the target was also a different one, aiming for Evaluation Assurance Level 7
in Common Criteria version 2.2 compared to Evaluation Assurance Level 6 in
Common Criteria version 3.1. Independent of the different target our approach
has the advantage of automated model checking. The authors of [46] mention
that about 10% of the proofs needed user-defined tactics and that maintenance of
these proofs has high costs. Both user defined proofs and the related maintenance
can be avoided with model checking. Additionally we think that it is not efficiently
feasible for a non expert to review/understand the model used in [46] which is
certainly possible with our UML modeling approach described in Section 3.5.

PVS The theorem prover PVS was used in [88] for the Common Criteria
certification of an Embedded System. The front end TAME [7] was used to
formalize the top level specification of the separation kernel of the Embedded
System. TAME is a tool that translates state machine models into PVS and
offers proof support. A data separation policy is proven for the model of the
separation kernel. The main effort on this part of the project was spent on
conducting the proofs which can be avoided with our model checking approach.

The authors of [88] emphasize that for communication between the formal
methods team and the development team it is necessary to have a representation
of the top level specification that can be understood by all parties. They use
a natural language representation. In Section 3.5 we propose to use the UML
statecharts as common representation. This avoids maintenance effort to keep
the formal and the natural language representation synchronized.

Apart from the theorem provers different specification languages were pro-
posed. The two most popular specification languages used for security policy
modeling are B and Z. We give some examples below.

B The B Method is based on refinement, an abstract model is refined into
a more detailed model, possibly down to the implementation. The correctness
of the refinement step is usually proven with a theorem prover. Motre and Teri
[109] propose to use UML for an informal model and the B Method for the formal
model of a high assurance level Common Criteria evaluation. They evaluate their
method on a model of the JCRE. One big advantage of our approach is that we
do not have an informal model but use the UML model directly for the Security

3.6. Related Work 91

Policy Model.
Z Z is a similar specification language to B. Morimoto et al. [108] propose

to use Z for formalization and verification for security specifications based on
common criteria. Z is also used in the work of Hall and Chapman [87], where
they propose a development process based on formal methods. Requirements
from certification schemes are one motivation to use formal methods but the
main goal of the work described in [87] is to reduce development costs especially
in costly bug fixing.

Generally, Common Criteria certifications are not the main motivation to
formalize a specification. Below we give some examples of publications describing
formalizations of parts of the Java Card Specification. Although their main
goals are different they argue that their work is suitable for Common Criteria
evaluations. Examples are

� The formalization of the Virtual Machine and the firewall with Coq pre-
sented in [11]. The main goal of this work is to formally verify security
properties of applets.

� The formalization of the bytecode verifier with Isabelle/HOL presented
in [99]. They prove the correctness of the bytecode verifier, which again
guarantees security properties of the applets.

� The formalization and verification of the GlobalPlatform Card Specification
using the B Method [13].

All the above referenced methods for high assurance level Common Criteria
certifications require an interactive theorem prover to prove the security policies.
In contrast we propose to use model checking. We argue that model checking is
more efficient because the input language is easier to understand for non experts
and the mathematical proofs are done fully automatic.

3.6.2 Model Checking

We use the model checker NuSMV. NuSMV has been used in a number of projects
to proof security and safety properties. For example in formal modeling the FCS
5000 flight control system and the ADGS-2100 Adaptive Display and Guidance
System, Operational Flight Program (OFP) [107]. Another example is the work
of Chan et al. [40] on model checking large software specifications, where they
verify a state-based system requirements specification of a Traffic Alert and
Collision Avoidance System II (TCAS II). Chan et al. describe a translation form
statecharts to SMV based on the TCAS II example and show that is is possible
to prove different properties for that specification. Conceptually their work is
quite similar to ours but since their publication in 1998 the tooling improved
considerably in power and automation. COSIDE translates statecharts directly
to NuSMV and specifications of considerable size can be verified in a few minutes.
In contrast to their work, our main contribution is to show how model checking
can be used for Common Criteria Evaluation Assurance Level 6 certifications
and how model checking specifications can be integrated into the design process.

92 Chapter 3. Security Policy Modeling for Smart Cards

NuSMV is also used to model check Formal Tropos Specifications in the
T-Tool. The tool is build on a software methodology for model checking early
requirements specifications [77]. The proposed methodology seems close to the
method we propose, but it is tailored to agent-oriented software engineering,
concentrating on understanding the environment of the software.

In [104], the usability of NuSMV is analyzed and a tool is proposed to improve
the usability of the model checker with the goal to integrate it effectively into the
development process. Unfortunately the tool never seemed to reach industrial
level, but we follow their advice and use a graph based input language for
modeling.

3.6.3 Model Driven Engineering

In Section 3.5 we make a proposal on how to integrate model checking into the
design process of a smart card. Also the work in [137] describes how to integrate
formal analysis into a model-based software development process. They argue
that formal verification of the model should be done at the beginning of the
development process to find bugs early in the project and save costs in bug
fixing later. They also give guidelines on where to use formal and how. The
paper states that “To use formal methods most effectively, some changes must
be made to the traditional development cycle, and formal analysis should be
considered when creating requirements and designing models”. We agree with
these statements; to get the most benefits out of formally analyzing requirements
and specifications, the formal modeling and analysis should be considered as
part of the development process from the start of the project. In contrast to
our work, the proposal of [137] is based on Simulink/StateFlow models used in
the avionics industry. They verify functional and safety requirements, where
we verify security functional requirements for Common Criteria certifications of
smart cards.

The SPES modeling framework [30] is a more recent model-based development
framework that supports the use of models as main development artifacts in all
phases of the development process. It deals with a broad range of application
fields (automation, automotive, avionics, energy, and healthcare) and a broad
range of viewpoints (requirements, functional, logical, technical) for system
modeling. Campetelli et al. [34] apply the model based SPES development
method to an industrial case study from the automation domain. Similar to
our work they formally verify a specification against requirements in an early
development phase. They also aim for integration of modeling and automatic
verification with the development process.

Modeling and verification of the specification is only a first step towards model
driven engineering. One of the main drawbacks of our method is the missing
formal link to the actual implementation. Such a formal link is not required by
Common Criteria [12]. We assume that formal verification of the implementation
is not required by Common Criteria because for many products it might not be
feasible. Still such a link would be very useful to increase the confidence that the
implementation satisfies the requirements.

3.6. Related Work 93

Several works propose to establish a link between the formal model and the
implementation by generating test cases from the formal model and to run them
on the implementation e.g. [45], [31], [28], and [29]. In [28] we generate test cases
for the Java Card firewall model described in Section 3.4.4. The generated tests
increased the test coverage of the standard Java Card test suite (JCTCK) and
uncovered an inconsistency between the tested implementation and the modeled
specification. An interesting discussion on model-based test case generation for
smart cards can be found in [117].

For some products not only test case generation is feasible but also code
generation. For example for logic controllers. The work presented in [86] proposes
to synthesize logic from a formal model of a controller based on UML activity
diagrams. For smart cards there are two main obstacles for automatic code
generation. First, code has to be highly optimized in size, speed, and power
consumption. Second, for security products countermeasures against hardware
attacks have to be implemented. Both are interesting fields for further research.

Some projects even establish a formal link between the formally verified
specification and the implementation. For example the seL4 OS Kernel project
[98]. First, they formally verify that the abstract model of the specification
satisfies the functional properties. Then, they give a formal refinement proof
from the abstract model of the specification down to the C implementation of
the microkernel. The theorem prover Isabelle/HOL is used for the formal proofs.
This is the most rigorous approach with respect to formal verification in model
driven engineering that has been applied in an industrial sized project. It is also
the approach which requires the greatest changes in the design process and thus
is the most risky. Our approach described in Section 3.5 only requires small
changes in the design process and is thus more likely to be accepted as a first
step towards the integration of formal verification in an industrial project.

3.6.4 Formal Verification of UML Statecharts

The idea to use a graphical representation of the specification to analyze and
formally verify the specification is already more than 20 years old [89]. Helbig
et al. [89] provide a development environment for VHDL designs based on
timing diagrams, statecharts, and temporal logic. Both VHDL and statecharts
are translated into transition systems and verified against timing diagrams and
temporal logic formulas by a model checker. Our approach operates at a higher
level of abstraction using UML statecharts.

In this section we give a few examples of different tools that use model checkers
to verify UML diagrams.

HUGO [128] is a prototype tool that uses the model checker SPIN [93]. HUGO
can check whether the interactions expressed by a UML collaboration diagram
are realized by a set of state machines. Unfortunately, the tool is not mature
enough to be used in an industrial project.

vUML [103] is another tool using the model checker SPIN. vUML detects
common design errors in UML state diagrams such as deadlocks, reaching an
invalid state, constraint violations, and more. Apart from the fact that the set of

94 Chapter 3. Security Policy Modeling for Smart Cards

properties that can be verified is limited, the major issue again is usability. To
our knowledge, no user-friendly graphical user interface exists.

The STATEMATE Verification Environment [20] is a tool to formally verify
STATEMATE statecharts. The formal semantics of STATEMATE statecharts
is described in [53]. To enable industrial usage, the tool hides the underlying
formal verification technology from the user and supports the user by offering,
among other features, a library of patterns for typical verification properties, a
simulator and a waveform representation for counterexamples. The tool was used
in several industrial projects in the avionics, automotive and railway industry to
establish safety critical properties. We give some examples below.

An example from the avionics industry is described in [19]. A store manage-
ment system of the British Aerospace is modeled using STATEMATE statecharts.
The requirements are expressed as symbolic timing diagrams which provide a
graphical interface to temporal logic. The STATEMATE Verification Environ-
ment gives a formal proof that the statecharts satisfy the requirements defined
by the symbolic timing diagrams.

An example form the automotive industry is described in [18]. The controller of
a brake management system for BMW is modeled with STATEMATE statecharts
and activity charts. The requirements are formalized with symbolic timing
diagrams. As in our models, to run the formal verification some abstractions are
necessary, especially for large integers and real values.

An example from the railway industry is described in [54]. The radio-based
signaling system is modeled with live sequence charts and activity charts. The
requirements are captured with symbolic timing diagrams. Again, some variables
need to be abstracted in order to be able to prove all properties.

To the best of our knowledge, the STATEMATE Verification Environment is
not developed and not available anymore.

TOPCASED [72, 121] is an Eclipse-based toolkit. It includes a UML editor,
and supports the mapping of requirements to UML diagrams and documentation
generation. There exists a proof of concept implementation (AGATE) that
translates from UML diagrams to the input language of the model checking tool
UPPAAL [14]. Again this verification flow is not applicable for industrial use
since it requires using three independent tools without an adequate Graphical
User Interface (GUI), and the translation tool is not mature.

In more recent work Aoki and Matsuura [6] use UML activity diagrams
and the model checker UPPAAL [14] to analyze the specification of a learning
management system. Use cases are specified using activity diagrams and then
translated to UPPAAL. The security requirements of an access control policy
are specified in a table and then translated into formal properties. The approach
probably also meets the Common Criteria assurance requirements for the Security
Policy Model but the authors only describe the translation from the UML activity
diagrams to the UPPAAL model based on the given example and it is not clear
if a tool exists and at which level of maturity.

Unfortunately none of the above tools fits our purpose. We decided to use
COSIDE as described in Section 3.5, which was used before to formally verify

3.7. Conclusions 95

the UML statecharts for programmable logic controllers [100].

3.7 Conclusions

Model checking is an efficient method for high Evaluation Assurance Level
Common Criteria Security Policy Modeling. In Section 3.4.2 we show how the
method we propose satisfies the Common Criteria assurance requirements for
Security Policy Modeling. In Section 3.4.3 we describe a Security Policy Model of
a Security IC that led to the first Common Criteria Evaluation Assurance Level
6 certificate in the German Common Criteria certification scheme. Our method
is more efficient than previously proposed methods because model checking does
not require any manual guidance to conduct proofs. In addition Security Policy
Models made of UML statecharts can be understood and reviewed by engineers
without formal methods background and the UML diagrams can be used as part
of the specification. In Section 3.6.1 we give an overview of previously published
work related to Security Policy Modeling and compare it to our method. To put
it in a nutshell, our Security Policy Modeling method based on model checking
is less time consuming, more user friendly, and still sufficient to uncover bugs in
requirements (see Section 3.4.4).

The Security Policy Model required by Common Criteria proves that the
functional specification satisfies security functional requirements. There is no
direct link from the formally proven model to the implementation. We propose to
generate test cases from the formal model and run them on the implementation
to close this gap. First work on test case generation from a formal model for
certification is published in [28]. A short discussion on related work can be found
in Section 3.6.3.

In Section 3.5 we propose to integrate the Security Policy Modeling into the
design process of a product by using UML statecharts for modeling. The idea to
integrate the formal analysis of specifications and requirements into the design
process by using a graphical statechart representation is not new. Several similar
proposals have been made in the last 20 years, see Section 3.6.4. The most
prominent example is the STATEMATE Verification Environment [20], which
was used in safety critical areas such as the automotive, railway, or aerospace
industries. In contrast we propose to use UML statecharts to verify security
critical properties for banking and e-government products to satisfy the Common
Criteria requirements for the Security Policy Model.

We think that a low initial barrier and good usability of the tools are important
factors for the successful integration of formal verification into the design process.
In our approach the security functional requirements have to be translated into
LTL/CTL formula. This can be improvement, for example by providing templates
for commonly used requirements or a pool of predefined properties. Other options
could be an automatic translation from a predefined representation such as a table
as defined in [6] into formal properties or the use of symbolic timing diagrams as
used in [20].

As long as no easy integration into existing processes is possible formal analysis

96 Chapter 3. Security Policy Modeling for Smart Cards

of requirements will only be applied where required from external parties such as
certification authorities. The additional costs of training engineers and developing
tools, and the additional risks added to a project when changing the design process
will not pay off in most projects. Only for complex, security or safety critical
designs a formal model for the specification is clearly beneficial. In such cases
the formal model can help to clarify the specification by removing ambiguities
and uncovering inconsistencies or bugs early in the design process. Already the
process of formalizing the specification helps to get a better understanding of the
specification. In our experience problems in the specification are only confirmed
by the formal proof, they are found in the formalization step.

Especially in combination with verification, a formal model of the specification
can increase the quality and security of a product. For example, test cases can
be generated from the model and run on the implementation. Linking the formal
model to the implementation is an important step to increase the assurance that
the implementation satisfies its requirements.

4
Conclusions

Linear Temporal Logic (LTL) was defined for specifying the behavior of reactive
systems in the 1970s. At first only used in basic research it slowly found its
way into industry. Nonetheless there are many open research topics both in the
theoretical and the industrial area.

In the theoretical part of this thesis we work on synthesizing robust systems.
Robustness is a property that is hard to specify with LTL but is obviously
desirable. We show how robustness can be formally specified and verified and
how a robust system can be synthesized from a robustness specification. We think
that non-functional properties like robustness are a key factor for the success of
LTL synthesis.

A lot of work remains to be done before LTL synthesis is applicable in an
industrial use case. At the same time LTL verification in the form of model
checking is already mature enough for industrial use.

In the industry related part of this work we introduce a new approach for
formal security policy modeling. We use a model checker to show that the
functional specification satisfies the security functional requirements. Two case
studies demonstrate the industrial application of the new approach. Working on
these two case studies showed that the main advantage of the formalization is
to get a better and clearer understanding of the specification. Thus misunder-
standings and contradictions in the specification can be removed before they are
implemented.

Integrating formal verification into the design process of a smart card is still not
state of the art although the increasing complexity and the need for security are
a big challenge for commonly used design methodologies. Using Unified Modeling
Language (UML) statecharts, a widely accepted design language, as input for
the formal verification enables non-experts in formal methods to understand

97

98 Chapter 4. Conclusions

the functional specification input to the formal verification tool without further
training. In addition to having a formal proof, the formal model can help to
improve the documentation and generate a common, unambiguous understanding
of the specification. Such an approach contributes to a first time right product
development and increases the assurance of security and correctness, enabling
Common Criteria certifications with Evaluation Assurance Level 6. We think, the
adaptation of formal modeling in the specification phase will largely depend on
the usability of the tools and the possible effort and cost reduction in verification.

All in all LTL offers a wide range of beautiful research topics which will
eventually raise our methods in design and verification to the next level of
maturity.

A
Java Card Properties

This appendix shows the input file to the model checker for the Firewall Access
Control Policy of a Java Card, see Section 3.4.4 for a description of the model.

Every line starting with // is a comment and will be ignored by the model
checker.

Note that formulas of the form

LTLSPEC
G(premises −> conc lu s i on)

can be vacuously true if “premises” is false. Thus for every formula of that form
we check that “premises” can evaluate to true with a formula of the form

CTLSPEC
AG EF(premises) .

1

2 INVAR
3 (inputJCREop = noop | bytecode = 0)
4

5 //−−−
6

7 // FDP ACF . 1 . 2 [FIREWALL]
8 // The TSF s h a l l e n f o r c e the f o l l o w i n g r u l e s to

determine i f an
9 // opera t ion among c o n t r o l l e d s u b j e c t s and c o n t r o l l e d

o b j e c t s i s a l lowed :
10

99

100 Appendix A. Java Card Properties

11 // + R.JAVA. 1
12 // S .PACKAGE may f r e e l y perform OP.ARRAY ACCESS, OP.

INSTANCE FIELD, OP. INVK VIRTUAL, OP.INVK INTERFACE,
13 // OP.THROW or OP.TYPE ACCESS upon any O.JAVAOBJECT whose

Sharing a t t r i b u t e has value
14 // ”JCRE entry po int ” or ” g l o b a l array ” .
15

16 // Show requirement f o r OP. INVK VIRTUAL, OP.
INVK INTERFACE, OP.THROW, and OP.TYPE ACCESS.

17

18 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

19 CTLSPEC
20 AG EF(Current lyAct iveContext != 0 & (

isJCREEntryPointObject | i sG loba l) & ((bytecode >= 5)
& (bytecode <= 7) | (bytecode >= 11) & (bytecode <=
12)) & (s t a t e = i d l e))

21

22 LTLSPEC
23 G(Current lyAct iveContext != 0 & (isJCREEntryPointObject

| i sG loba l) & ((bytecode >= 5) & (bytecode <= 7) | (
bytecode >= 11) & (bytecode <= 12)) & (s t a t e = i d l e)
−> X (s t a t e = i d l e))

24

25 // For OP. INSTANCE FIELD the requirement can not be shown
.

26 // g e t f i e l d and p u t f i e l d i s not p o s s i b l e f o r JCRE entry
po int o b j e c t s or g l o b a l a r rays .

27

28 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

29 CTLSPEC
30 AG EF(Current lyAct iveContext != 0 & (

isJCREEntryPointObject | i sG loba l) & (bytecode = 3 |
bytecode = 4) & (s t a t e = i d l e))

31

32 LTLSPEC
33 G(Current lyAct iveContext != 0 & (isJCREEntryPointObject

| i sG loba l) & (bytecode = 3 | bytecode = 4) & (s t a t e =
i d l e) −> X (s t a t e = locked))

34

35 // For OP.ARRAY ACCESS the requirement can only be pa r t l y
shown .

36

37 // The formula shows that the l e f t hand s i d e o f the

101

i m p l i c a t i o n in the formula below can eva luate to t rue .
38 CTLSPEC
39 AG EF(Current lyAct iveContext != 0 & i sG loba l & (bytecode

= 8 | bytecode = 9) & (s t a t e = i d l e))
40

41 LTLSPEC
42 G(Current lyAct iveContext != 0 & i sG loba l & (bytecode = 8

| bytecode = 9) & (s t a t e = i d l e) −> X (s t a t e = i d l e))
43

44 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

45 CTLSPEC
46 AG EF(Current lyAct iveContext != 0 & i sG loba l & bytecode

= 13 & (s t a t e = i d l e))
47

48 // aa s to r e o f a g l o b a l array i s not p o s s i b l e
49 LTLSPEC
50 G(Current lyAct iveContext != 0 & i sG loba l & bytecode = 13

& (s t a t e = i d l e) −> X (s t a t e = locked))
51

52 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

53 CTLSPEC
54 AG EF(Current lyAct iveContext != 0 &

isJCREEntryPointObject & ! i sG loba l & (bytecode = 8 |
bytecode = 9 | bytecode = 13) & (s t a t e = i d l e))

55

56 // The Java Card s p e c i f i c a t i o n r e q u i r e s f o r a s t o r e and
aload that the a c c e s s i n g context i s e i t h e r JCRE or the
owner o f the ob j e c t i f the ob j e c t i s not a g l o b a l

array .
57 // Only the JCRE can des i gna t e JCRE Entry Point Objects .

Thus there are no JCRE Entry Point Objects that do not
belong to the JCRE.

58 LTLSPEC
59 G(Current lyAct iveContext != 0 & isJCREEntryPointObject &

! i sG loba l & (bytecode = 8 | bytecode = 9 | bytecode =
13) & (s t a t e = i d l e) −> X (s t a t e = locked))

60 //−−
61

62 // + R.JAVA. 2
63 // S .PACKAGE may f r e e l y perform OP.ARRAY ACCESS, OP.

INSTANCE FIELD, OP. INVK VIRTUAL, OP.INVK INTERFACE
64 // or OP.THROW upon any O.JAVAOBJECT whose Sharing

a t t r i b u t e has va lue ” Standard” and whose

102 Appendix A. Java Card Properties

65 // L i f e t ime a t t r i b u t e has va lue ”PERSISTENT” only i f O.
JAVAOBJECT’ s Context a t t r i b u t e has the

66 // same value as the a c t i v e context .
67

68 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

69 CTLSPEC
70 AG EF (Current lyAct iveContext != 0 & (bytecode >= 3 &

bytecode <= 9 | bytecode = 13) & ! (Va l i sGloba l |
ValisJCREEntryPointObject |
V a l i s S h a r e a b l e I n t e r f a c e O b j e c t) & (!
Va l i sTrans i entObjec t | ValL i f e t imeTrans i ent =
c l e a r o n r e s e t) & ! (i sG loba l | isJCREEntryPointObject |
i s S h a r e a b l e I n t e r f a c e O b j e c t) & (! i sTrans i en tObjec t |
Li f e t imeTrans i en t = c l e a r o n r e s e t) &
Current lyAct iveContext = Owner & s t a t e = i d l e)

71

72 LTLSPEC
73 G (Current lyAct iveContext != 0 & (bytecode >= 3 &

bytecode <= 9 | bytecode = 13) & ! (Va l i sGloba l |
ValisJCREEntryPointObject |
V a l i s S h a r e a b l e I n t e r f a c e O b j e c t) & (!
Va l i sTrans i entObjec t | ValL i f e t imeTrans i ent =
c l e a r o n r e s e t) & ! (i sG loba l | isJCREEntryPointObject |
i s S h a r e a b l e I n t e r f a c e O b j e c t) & (! i sTrans i en tObjec t |
Li f e t imeTrans i en t = c l e a r o n r e s e t) &
Current lyAct iveContext = Owner & s t a t e = i d l e −> X (
s t a t e = i d l e))

74

75 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

76 CTLSPEC
77 AG EF (Current lyAct iveContext != 0 & (bytecode >= 3 &

bytecode <= 9 | bytecode = 13) & ! (Va l i sGloba l |
ValisJCREEntryPointObject |
V a l i s S h a r e a b l e I n t e r f a c e O b j e c t) & (!
Va l i sTrans i entObjec t | ValL i f e t imeTrans i ent =
c l e a r o n r e s e t) & ! (i sG loba l | isJCREEntryPointObject |
i s S h a r e a b l e I n t e r f a c e O b j e c t) & (! i sTrans i en tObjec t |
Li f e t imeTrans i en t = c l e a r o n r e s e t) &
Current lyAct iveContext != Owner & s t a t e = i d l e)

78

79 // only i f
80 LTLSPEC
81 G (Current lyAct iveContext != 0 & (bytecode >= 3 &

103

bytecode <= 9 | bytecode = 13)& ! (Va l i sGloba l |
ValisJCREEntryPointObject |
V a l i s S h a r e a b l e I n t e r f a c e O b j e c t)& (! Va l i sTrans i entObjec t
| ValL i f e t imeTrans i ent = c l e a r o n r e s e t) & ! (i sG loba l |
isJCREEntryPointObject | i s S h a r e a b l e I n t e r f a c e O b j e c t)

& (! i sTrans i en tObjec t | Li f e t imeTrans i en t =
c l e a r o n r e s e t) & Current lyAct iveContext != Owner &
s t a t e = i d l e −> X (s t a t e = locked))

82 //−−
83

84 // + R.JAVA. 3
85 // S .PACKAGE may perform OP.TYPE ACCESS upon an O.

JAVAOBJECT whose Sharing a t t r i b u t e has va lue
86 // ”SIO” only i f O.JAVAOBJECT i s being ca s t i n to (

checkcas t) or i s be ing v e r i f i e d as being an
87 // in s t anc e o f (i n s t a n c e o f) an i n t e r f a c e that extends the

Shareable i n t e r f a c e .
88

89 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

90 CTLSPEC
91 AG EF (Current lyAct iveContext != 0 & (bytecode = 11 |

bytecode = 12) & i s S h a r e a b l e I n t e r f a c e O b j e c t &
inputAcce s sSha r eab l e In t e r f a c e & s t a t e = i d l e)

92

93 LTLSPEC
94 G (Current lyAct iveContext != 0 & (bytecode = 11 |

bytecode = 12) & i s S h a r e a b l e I n t e r f a c e O b j e c t &
inputAcce s sSha r eab l e In t e r f a c e & s t a t e = i d l e −> X (
s t a t e = i d l e))

95

96 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

97 CTLSPEC
98 AG EF (Current lyAct iveContext != 0 & Owner !=

Current lyAct iveContext & (bytecode = 11 | bytecode =
12) & i s S h a r e a b l e I n t e r f a c e O b j e c t & !
i npu tAcce s sSha r eab l e In t e r f a c e & s t a t e = i d l e)

99

100 // only i f ho lds when the c u r r e n t l y a c t i v e context i s not
the Owner

101 LTLSPEC
102 G (Current lyAct iveContext != 0 & Owner !=

Current lyAct iveContext & (bytecode = 11 | bytecode =
12) & i s S h a r e a b l e I n t e r f a c e O b j e c t & !

104 Appendix A. Java Card Properties

i npu tAcce s sSha r eab l e In t e r f a c e & s t a t e = i d l e −> X (
s t a t e = locked))

103 //−−
104

105 // + R.JAVA. 4
106 // S .PACKAGE may perform OP.INVK INTERFACE upon an O.

JAVAOBJECT whose Sharing a t t r i b u t e has the value
107 // ”SIO” , and whose Context a t t r i b u t e has the value ”

Package AID” , only i f the invoked i n t e r f a c e
108 // method extends the Shareable i n t e r f a c e and one o f the

f o l l o w i n g c o n d i t i o n s a p p l i e s :
109 // a) The value o f the a t t r i b u t e S e l e c t i o n Status o f the

package whose AID i s ”Package AID” i s ” M u l t i s e l e c t a b l e
” ,

110 // b) The value o f the a t t r i b u t e S e l e c t i o n Status o f the
package whose AID i s ”Package AID” i s ”Non−
m u l t i s e l e c t a b l e ” , and e i t h e r ”Package AID” i s the
value o f the c u r r e n t l y s e l e c t e d app le t or o the rwi se ”
Package AID” does not occur in the a t t r i b u t e Act ive
Applets .

111

112 // + R.JAVA. 4 (a)
113 // The formula shows that the l e f t hand s i d e o f the

i m p l i c a t i o n in the formula below can eva luate to t rue .
114 CTLSPEC
115 AG EF (Current lyAct iveContext != 0 & bytecode = 6 &

i s S h a r e a b l e I n t e r f a c e O b j e c t &
inputAcce s sSha r eab l e In t e r f a c e & inputLCSe lec t ionStatus
= m u l t i s e l e c t a b l e & s t a t e = i d l e)

116

117 LTLSPEC
118 G (Current lyAct iveContext != 0 & bytecode = 6 &

i s S h a r e a b l e I n t e r f a c e O b j e c t &
inputAcce s sSha r eab l e In t e r f a c e & inputLCSe lec t ionStatus
= m u l t i s e l e c t a b l e & s t a t e = i d l e −> X (s t a t e = i d l e))

119

120 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

121 CTLSPEC
122 AG EF (Current lyAct iveContext != 0 & Owner !=

Current lyAct iveContext & bytecode = 6 &
i s S h a r e a b l e I n t e r f a c e O b j e c t & !
i npu tAcce s sSha r eab l e In t e r f a c e & s t a t e = i d l e)

123

124 // only i f ho lds when the c u r r e n t l y a c t i v e context i s not

105

the Owner
125 LTLSPEC
126 G (Current lyAct iveContext != 0 & Owner !=

Current lyAct iveContext & bytecode = 6 &
i s S h a r e a b l e I n t e r f a c e O b j e c t & !
i npu tAcce s sSha r eab l e In t e r f a c e & s t a t e = i d l e −> X (
s t a t e = locked))

127

128 // + R.JAVA. 4 (b)
129 // The formula shows that the l e f t hand s i d e o f the

i m p l i c a t i o n in the formula below can eva luate to t rue .
130 CTLSPEC
131 AG EF (Current lyAct iveContext != 0 & bytecode = 6 &

i s S h a r e a b l e I n t e r f a c e O b j e c t &
inputAcce s sSha r eab l e In t e r f a c e & inputLCSe lec t ionStatus
= n o n m u l t i s e l e c t a b l e & (inputInCtxOfCurSelApplet | !

inputActiveOnOtherLC) & s t a t e = i d l e)
132

133 LTLSPEC
134 G (Current lyAct iveContext != 0 & bytecode = 6 &

i s S h a r e a b l e I n t e r f a c e O b j e c t &
inputAcce s sSha r eab l e In t e r f a c e & inputLCSe lec t ionStatus
= n o n m u l t i s e l e c t a b l e & (inputInCtxOfCurSelApplet | !

inputActiveOnOtherLC) & s t a t e = i d l e −> X (s t a t e =
i d l e))

135

136 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

137 CTLSPEC
138 AG EF (Current lyAct iveContext != 0 & Owner !=

Current lyAct iveContext & bytecode = 6 &
i s S h a r e a b l e I n t e r f a c e O b j e c t &
inputAcce s sSha r eab l e In t e r f a c e & inputLCSe lec t ionStatus
= n o n m u l t i s e l e c t a b l e & ! inputInCtxOfCurSelApplet &

inputActiveOnOtherLC & s t a t e = i d l e)
139

140 // only i f ho lds when the c u r r e n t l y a c t i v e context i s not
the Owner

141 LTLSPEC
142 G (Current lyAct iveContext != 0 & Owner !=

Current lyAct iveContext & bytecode = 6 &
i s S h a r e a b l e I n t e r f a c e O b j e c t &
inputAcce s sSha r eab l e In t e r f a c e & inputLCSe lec t ionStatus
= n o n m u l t i s e l e c t a b l e & ! inputInCtxOfCurSelApplet &

inputActiveOnOtherLC & s t a t e = i d l e −> X (s t a t e =

106 Appendix A. Java Card Properties

locked))
143 //−−
144

145 // + R.JAVA. 5
146 // S .PACKAGE may perform OP.CREATE only i f the va lue o f

the Sharing parameter i s ” Standard ” .
147

148 // S .PACKAGE may perform OP.CREATE i f the value o f the
Sharing parameter i s ”Standard ” .

149 CTLSPEC
150 EF(Current lyAct iveContext != 0 & inputJCREop =

c r e a t e o b j e c t & inputShar ing = standard & s t a t e = i d l e
& EX (s t a t e = i d l e))

151

152 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

153 CTLSPEC
154 AG EF (Current lyAct iveContext != 0 & inputJCREop =

c r e a t e o b j e c t & inputShar ing = standard & (
inputL i f e t imeTrans i en t = c l e a r o n r e s e t |
Current lyAct iveContext = SelectedAppletContext) &
s t a t e = i d l e)

155

156 // S .PACKAGE may always perform OP.CREATE i f the value o f
the Sharing parameter i s ” Standard” and

157 // the l i f e t i m e i s CLEAR ON RESET or the c u r r e n t l y a c t i v e
context i s the s e l e c t e d app le t context .

158 LTLSPEC
159 G(Current lyAct iveContext != 0 & inputJCREop =

c r e a t e o b j e c t & inputShar ing = standard & (
inputL i f e t imeTrans i en t = c l e a r o n r e s e t |
Current lyAct iveContext = SelectedAppletContext) &
s t a t e = i d l e −> X (s t a t e = i d l e))

160

161 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

162 CTLSPEC
163 AG EF (Current lyAct iveContext != 0 & inputJCREop =

c r e a t e o b j e c t & s t a t e = i d l e & EX(s t a t e = i d l e))
164

165 //The formula below i s f a l s e .
166 //The only i f d i r e c t i o n can not be proven because S .

PACKAGE i s a l lowed to e . g . c r e a t e a SIO .
167 LTLSPEC
168 G(Current lyAct iveContext != 0 & inputJCREop =

107

c r e a t e o b j e c t & s t a t e = i d l e & X(s t a t e = i d l e) −> (
inputShar ing = standard))

169

170 // The PP a l s o s t a t e s the f o l l o w i n g :
171 // Footnote f o r OP.CREATE: This r u l e e n f o r c e s that

sha reab l e t r a n s i e n t o b j e c t s are not a l lowed .
172 LTLSPEC
173 G(i s S h a r e a b l e I n t e r f a c e O b j e c t −> ! i sTrans i en tOb jec t)
174 //−−
175

176

177 // FDP ACF . 1 . 3 [FIREWALL]
178 // The TSF s h a l l e x p l i c i t l y a u t h o r i s e a c c e s s o f s u b j e c t s

to o b j e c t s based on the f o l l o w i n g a d d i t i o n a l r u l e s :
179 // 1) The s u b j e c t S .JCRE can f r e e l y perform OP.JAVA() and

OP.CREATE, with the except ion given in
180 // FDP ACF. 1 . 4 /FIREWALL, provided i t i s the Current ly

Act ive Context .
181

182 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

183 CTLSPEC
184 AG EF (Current lyAct iveContext = 0 & (bytecode >= 3 &

bytecode <= 9 | bytecode >= 11 & bytecode <= 13) & (
L i f e t imeTrans i en t != c l e a r o n d e s e l e c t | !
i sTrans i en tObjec t | Owner = SelectedAppletContext &
SelectedAppletContext = Current lyAct iveContext) &
s t a t e = i d l e)

185

186 // Add i t i ona l l y f o r t r a n s i e n t CLEAR ON DESELECT o b j e c t s
the s e l e c t e d app le t context has to be the c u r r e n t l y
a c t i v e context (JCRE S p e c i f i c a t i o n 6 . 5 . 1) .

187 LTLSPEC
188 G(Current lyAct iveContext = 0 & (bytecode >= 3 & bytecode

<= 9 | bytecode >= 11 & bytecode <= 13) & (
L i f e t imeTrans i en t != c l e a r o n d e s e l e c t | !
i sTrans i en tObjec t | Owner = SelectedAppletContext &
SelectedAppletContext = Current lyAct iveContext) &
s t a t e = i d l e −> X (s t a t e = i d l e))

189

190 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

191 CTLSPEC
192 AG EF (Current lyAct iveContext = 0 & inputJCREop =

c r e a t e o b j e c t & (inputL i f e t imeTrans i en t !=

108 Appendix A. Java Card Properties

c l e a r o n d e s e l e c t | ! i nput I sTrans i entObjec t |
Current lyAct iveContext = SelectedAppletContext) &
inputShar ing != s i o & s t a t e = i d l e)

193

194 // Add i t i ona l l y the JCRE can not c r e a t e sharab l e
i n t e r f a c e o b j e c t s .

195 LTLSPEC
196 G(Current lyAct iveContext = 0 & inputJCREop = c r e a t e o b j e c t

& (inputL i f e t imeTrans i en t != c l e a r o n d e s e l e c t | !
i nput I sTrans i entObjec t | Current lyAct iveContext =
SelectedAppletContext) & inputShar ing != s i o & s t a t e =

i d l e −> X (s t a t e = i d l e))
197 //−−
198

199 // 2) The only means that the s u b j e c t S .JCVM s h a l l
prov ide f o r an a p p l i c a t i o n to execute nat ive code i s

200 // the invoca t i on o f a Java Card API method (through
OP.INVK INTERFACE or OP.INVK VIRTUAL) .

201

202 // Native code i s not modeled because i t i s not part o f
the JCRE s p e c i f i c a t i o n regard ing the f i r e w a l l .

203 //−−
204

205 // FDP ACF . 1 . 4 [FIREWALL]
206 // The TSF s h a l l e x p l i c i t l y deny a c c e s s o f s u b j e c t s to

o b j e c t s based on the f o l l o w i n g a d d i t i o n a l r u l e s :
207 // 1) Any s u b j e c t with OP.JAVA upon an O.JAVAOBJECT whose

LifeTime a t t r i b u t e has value ”CLEAR ON DESELECT” i f
208 // O.JAVAOBJECT’ s Context a t t r i b u t e i s not the same as

the Se l e c t e d Applet Context .
209

210 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

211 CTLSPEC
212 AG EF ((bytecode >= 3 & bytecode <= 9 | bytecode >= 11 &

bytecode <= 13) & Li f e t imeTrans i en t = c l e a r o n d e s e l e c t
& i sTrans i en tOb jec t & Owner != SelectedAppletContext &

s t a t e = i d l e)
213

214 LTLSPEC
215 G ((bytecode >= 3 & bytecode <= 9 | bytecode >= 11 &

bytecode <= 13) & Li f e t imeTrans i en t = c l e a r o n d e s e l e c t
& i sTrans i en tOb jec t & Owner != SelectedAppletContext &

s t a t e = i d l e −> X(s t a t e = locked))
216 //−−

109

217

218 // 2) Any s u b j e c t attempting to c r e a t e an ob j e c t by the
means o f OP.CREATE and a ”CLEAR ON DESELECT” LifeTime
parameter

219 // i f the a c t i v e context i s not the same as the
Se l e c t ed Applet Context .

220

221 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

222 CTLSPEC
223 AG EF (inputJCREop = c r e a t e o b j e c t &

inputL i f e t imeTrans i en t = c l e a r o n d e s e l e c t &
input I sTrans i entObjec t & Current lyAct iveContext !=
SelectedAppletContext & s t a t e = i d l e)

224

225 LTLSPEC
226 G(inputJCREop = c r e a t e o b j e c t & inputL i f e t imeTrans i en t =

c l e a r o n d e s e l e c t & input I sTrans i entObjec t &
Current lyAct iveContext != SelectedAppletContext &
s t a t e = i d l e −> X (s t a t e = locked))

227

228 //−−−
229

230 // FDP ROL . 1 . 1 [FIREWALL]
231 // The TSF s h a l l e n f o r c e the FIREWALL a c c e s s c o n t r o l SFP

and the JCVM informat ion f low
232 // c o n t r o l SFP to permit the r o l l b a c k o f the ope ra t i on s

OP.JAVA and OP.CREATE on the ob j e c t O.JAVAOBJECT.
233

234 // Rol lback i s not modeled s i n c e r e s t o r e i s e i t h e r
performed be f o r e the VM i s s t a r t e d or

235 // an i n v o k e s t a t i c occurs (which runs out s id e o f the
F i r e w a l l) .

236 //−−
237

238 // FDP ROL . 1 . 2 [FIREWALL]
239 // The TSF s h a l l permit ope ra t i on s to be r o l l e d back

with in the scope o f a s e l e c t () , d e s e l e c t () ,
240 // proce s s () , i n s t a l l () or u n i n s t a l l () c a l l ,

notwithstanding the r e s t r i c t i o n s g iven in [2 8] , 7 . 7 ,
241 // with in the bounds o f the Commit Capacity ([2 8] , 7 . 8) ,

and those de s c r ibed in [1 8] .
242

243 // Rol lback i s not modeled s i n c e r e s t o r e i s e i t h e r
performed be f o r e the VM i s s t a r t e d or

110 Appendix A. Java Card Properties

244 // an i n v o k e s t a t i c occurs (which runs out s id e o f the
F i r e w a l l) .

245

246 //−−−
247

248 // FIA UID . 2 . 1 [AID]
249 // The TSF s h a l l r e q u i r e each user to be s u c c e s s f u l l y

i d e n t i f i e d be f o r e a l l ow ing any other TSF mediated
250 // a c t i o n s on beha l f o f that user .
251

252 // The c u r r e n t l y a c t i v e context i s always 0 (S .JCRE) , or
1 or 2 (S .PACKAGE) .

253 LTLSPEC
254 G((Current lyAct iveContext >= 0) & (Current lyAct iveContext

<= 2))
255

256 //−−−
257

258 // FMT MSA. 1 . 1 [JCRE]
259 // The TSF s h a l l e n f o r c e the FIREWALL a c c e s s c o n t r o l SFP

to r e s t r i c t the a b i l i t y to modify the s e c u r i t y
260 // a t t r i b u t e s S e l e c t e d Applet Context to the Java Card RE

.
261

262 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

263 CTLSPEC
264 AG EF (inputJCREop = s e l e c t e d a p p l e t c o n t e x t s w i t c h &

Current lyAct iveContext != 0 & s t a t e = i d l e)
265

266 // A reques t to change the s e l e c t e d app le t context that
i s not i s s u e d by the JCRE lead s to the locked s t a t e .

267 LTLSPEC
268 G (inputJCREop = s e l e c t e d a p p l e t c o n t e x t s w i t c h &

Current lyAct iveContext != 0 & s t a t e = i d l e −> X (s t a t e
= locked))

269

270 // The JCRE i s ab le to switch the s e l e c t e d app le t context
.

271 CTLSPEC
272 AG EF (inputJCREop = s e l e c t e d a p p l e t c o n t e x t s w i t c h &

Current lyAct iveContext = 0 & s t a t e = i d l e −> EX(s t a t e
= i d l e))

273

274 //−−−

111

275

276 // FMT MSA. 1 . 1 [JCVM]
277 // The TSF s h a l l e n f o r c e the FIREWALL a c c e s s c o n t r o l SFP

and the JCVM informat ion f low
278 // c o n t r o l SFP to r e s t r i c t the a b i l i t y to modify the

s e c u r i t y a t t r i b u t e s Current ly Act ive Context
279 // and Active Applets to the Java Card VM (S .JCVM) .
280

281 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

282 CTLSPEC
283 AG EF (inputJCREop = c u r r e n t l y a c t i v e c o n t e x t s w i t c h & !

inputJCVMisRequester & s t a t e = i d l e)
284

285 // A reques t to change the c u r r e n t l y a c t i v e context that
i s not i s s u e d by the JCVM lead s to the locked s t a t e .

286 LTLSPEC
287 G (inputJCREop = c u r r e n t l y a c t i v e c o n t e x t s w i t c h & !

inputJCVMisRequester & s t a t e = i d l e −> X (s t a t e =
locked))

288

289

290 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

291 CTLSPEC
292 AG EF (inputJCREop = c u r r e n t l y a c t i v e c o n t e x t s w i t c h & !

inputJCVMisRequester & Current lyAct iveContext = 0 &
s t a t e = i d l e)

293

294 CTLSPEC
295 AG EF (inputJCREop = c u r r e n t l y a c t i v e c o n t e x t s w i t c h & !

inputJCVMisRequester & Current lyAct iveContext = 1 &
s t a t e = i d l e)

296

297 CTLSPEC
298 AG EF (inputJCREop = c u r r e n t l y a c t i v e c o n t e x t s w i t c h & !

inputJCVMisRequester & Current lyAct iveContext = 2 &
s t a t e = i d l e)

299

300 // I f the r e q u e s t e r i s not the JCVM, the c u r r e n t l y a c t i v e
context does not change .

301 LTLSPEC
302 G (inputJCREop = c u r r e n t l y a c t i v e c o n t e x t s w i t c h & !

inputJCVMisRequester & Current lyAct iveContext = 0 &
s t a t e = i d l e −> X (s t a t e = locked &

112 Appendix A. Java Card Properties

Current lyAct iveContext = 0))
303

304 LTLSPEC
305 G (inputJCREop = c u r r e n t l y a c t i v e c o n t e x t s w i t c h & !

inputJCVMisRequester & Current lyAct iveContext = 1 &
s t a t e = i d l e −> X (s t a t e = locked &
Current lyAct iveContext = 1))

306

307 LTLSPEC
308 G (inputJCREop = c u r r e n t l y a c t i v e c o n t e x t s w i t c h & !

inputJCVMisRequester & Current lyAct iveContext = 2 &
s t a t e = i d l e −> X (s t a t e = locked &
Current lyAct iveContext = 2))

309

310

311 // I f the r e q u e s t e r i s the JCVM, the c u r r e n t l y a c t i v e
context can be changed .

312 CTLSPEC
313 AG EF (inputJCREop = c u r r e n t l y a c t i v e c o n t e x t s w i t c h &

inputJCVMisRequester & Current lyAct iveContext = 0 &
s t a t e = i d l e −> EX(s t a t e = i d l e &
Current lyAct iveContext != 0))

314

315 CTLSPEC
316 AG EF (inputJCREop = c u r r e n t l y a c t i v e c o n t e x t s w i t c h &

inputJCVMisRequester & Current lyAct iveContext = 1 &
s t a t e = i d l e −> EX(s t a t e = i d l e &
Current lyAct iveContext != 1))

317

318 CTLSPEC
319 AG EF (inputJCREop = c u r r e n t l y a c t i v e c o n t e x t s w i t c h &

inputJCVMisRequester & Current lyAct iveContext = 2 &
s t a t e = i d l e −> EX(s t a t e = i d l e &
Current lyAct iveContext != 2))

320

321 // The l i s t o f a c t i v e app l e t s i s not modeled , we only
model i f an ob j e c t i s owned by an app le t that

322 // i s a c t i v e on another l o g i c a l channel us ing a
nonde t e rm in i s t i c input v a r i a b l e (inputActiveOnOtherLC)
.

323 // Nondetermin i s t i c input v a r i a b l e s can change at every
time step .

324

325 //−−−
326

113

327 // FMT MSA. 2 . 1 [FIREWALL JCVM]
328 // The TSF s h a l l ensure that only s ecure va lue s are

accepted f o r a l l the s e c u r i t y a t t r i b u t e s
329 // o f s u b j e c t s and o b j e c t s de f ined in the FIREWALL a c c e s s

c o n t r o l SFP and the
330 // JCVM informat ion f low c o n t r o l SFP .
331 // −> s ee AppNote
332

333 // The Context a t t r i b u t e o f an O.JAVAOBJECT must
correspond to that o f an i n s t a l l e d

334 // app le t or be ”Java Card RE” .
335 LTLSPEC
336 G (Owner = 0 | (Owner = 1 & A p p l e t 1 i n s t a l l e d) | (Owner =

2 & A p p l e t 2 i n s t a l l e d))
337

338 // An O.JAVAOBJECT whose Sharing a t t r i b u t e i s a Java Card
RE entry po int or a g l o b a l

339 // array n e c e s s a r i l y has ”Java Card RE” as the value f o r
i t s Context s e c u r i t y a t t r i b u t e .

340

341 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

342 CTLSPEC
343 AG (EF (isJCREEntryPointObject | i sG loba l))
344

345 LTLSPEC
346 G ((isJCREEntryPointObject | i sG loba l) −> (Owner = 0))
347

348 // An O.JAVAOBJECT whose Sharing a t t r i b u t e va lue i s a
g l o b a l array n e c e s s a r i l y has

349 // ” array o f p r i m i t i v e type ” as a JavaCardClass s e c u r i t y
a t t r i bu t e ’ s va lue .

350

351 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

352 CTLSPEC
353 AG EF (i sG loba l)
354

355 LTLSPEC
356 G (i sG loba l −> i sArray)
357

358 // Any O.JAVAOBJECT whose Sharing a t t r i b u t e value i s not
” Standard” has a

359 // PERSISTENT−LifeTime a t t r i bu t e ’ s va lue .
360

114 Appendix A. Java Card Properties

361 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

362 CTLSPEC
363 AG EF (isJCREEntryPointObject | i sG loba l |

i s S h a r e a b l e I n t e r f a c e O b j e c t)
364

365 // The PP s t a t e s the f o l l o w i n g :
366 // Footnote o f L i f e t ime : Trans ient o b j e c t s o f type

CLEAR ON RESET behave l i k e p e r s i s t e n t o b j e c t s in that
367 // they can be acce s s ed only when the Current ly Act ive

Context i s the object ’ s context .
368 LTLSPEC
369 G ((isJCREEntryPointObject | i sG loba l |

i s S h a r e a b l e I n t e r f a c e O b j e c t)−> (! i sTrans i en tObjec t |
Li f e t imeTrans i en t = c l e a r o n r e s e t))

370

371 // Any O.JAVAOBJECT whose LifeTime a t t r i b u t e va lue i s not
PERSISTENT has an array

372 // type as JavaCardClass a t t r i bu t e ’ s va lue .
373

374 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

375 CTLSPEC
376 AG EF (i sTrans i en tObjec t & Li f e t imeTrans i en t =

c l e a r o n d e s e l e c t)
377

378 LTLSPEC
379 G (i sTrans i en tObjec t & Li f e t imeTrans i en t =

c l e a r o n d e s e l e c t −> i sArray)
380

381 //−−−
382

383 // FMT MSA. 3 . 1 [FIREWALL]
384 // The TSF s h a l l e n f o r c e the FIREWALL a c c e s s c o n t r o l SFP

to prov ide r e s t r i c t i v e d e f a u l t
385 // va lue s f o r s e c u r i t y a t t r i b u t e s that are used to

e n f o r c e the SFP .
386 // see App−Notes
387

388 // The formula shows that the l e f t hand s i d e o f the
i m p l i c a t i o n in the formula below can eva luate to t rue .

389 CTLSPEC
390 AG EF(inputJCREop = c r e a t e o b j e c t & s t a t e = i d l e & EX(

s t a t e = i d l e))
391

115

392 LTLSPEC
393 G (inputJCREop = c r e a t e o b j e c t & s t a t e = i d l e & X(s t a t e =

i d l e) −> X(Owner = Current lyAct iveContext))
394 //−−
395

396 // FMT MSA. 3 . 2 [FIREWALLEditoriallyRefined]
397 // The TSF s h a l l not a l low any r o l e to s p e c i f y

a l t e r n a t i v e i n i t i a l va lue s to o v e r r i d e
398 // the d e f a u l t va lue s when an ob j e c t or in fo rmat ion i s

c r ea ted .
399

400 // The formula i s f a l s e , because the re e x i s t s no path
such that an ob j e c t i s c r ea ted with a Context that

401 // i s not the c u r r e n t l y a c t i v e context .
402 CTLSPEC
403 EF(inputJCREop = c r e a t e o b j e c t & s t a t e = i d l e & EX(s t a t e =

i d l e) & EX(Owner != Current lyAct iveContext))
404

405 //−−−
406

407 // FMT SMF. 1 . 1
408 // The TSF s h a l l be capable o f per forming the f o l l o w i n g

management f u n c t i o n s :
409 // * modify the Current ly Act ive Context , the S e l e c t ed

Applet Context and the Active Applets
410

411 CTLSPEC
412 AG EF(Current lyAct iveContext = 0 & EX(

Current lyAct iveContext != 0))
413

414 CTLSPEC
415 AG EF(Current lyAct iveContext != 0 & EX(

Current lyAct iveContext = 0))
416

417 CTLSPEC
418 AG EF(SelectedAppletContext = 0 & EX(

SelectedAppletContext != 0))
419

420 CTLSPEC
421 AG EF(SelectedAppletContext != 0 & EX(

SelectedAppletContext = 0))
422

423 // The l i s t o f a c t i v e app l e t s i s not modeled , we only
model i f an ob j e c t i s owned by an app le t that

424 // i s a c t i v e on another l o g i c a l channel us ing a

116 Appendix A. Java Card Properties

nonde t e rm in i s t i c input v a r i a b l e (inputActiveOnOtherLC)
.

425 // Nondetermin i s t i c input v a r i a b l e s can change at every
time step .

426 CTLSPEC
427 AG EF (inputActiveOnOtherLC & EX (! inputActiveOnOtherLC))
428

429 CTLSPEC
430 AG EF (! inputActiveOnOtherLC & EX (inputActiveOnOtherLC))
431

432 //−−−
433

434 // FMT SMR. 1 . 1
435 // The TSF s h a l l maintain the r o l e s :
436 // * Java Card RE (JCRE) ,
437 // * Java Card VM (JCVM) .
438

439 CTLSPEC
440 EF (Current lyAct iveContext = 0)
441

442 // The JCVM i s modeled with a nonde t e rm in i s t i c input
v a r i a b l e that can change at every time step .

443 CTLSPEC
444 EF (inputJCVMisRequester)
445 //−−
446

447 FMT SMR. 1 . 2
448 // The TSF s h a l l be ab le to a s s o c i a t e u s e r s with r o l e s .
449

450 // Package AIDs are ass igned , the JCRE has context 0 .

Bibliography

[1] Agence nationale de la sécurité des systèmes d’information. Rapport de
certification ANSSI-CC-2009/50 Microcontrôleurs sécurisés ST23YR48A
et ST23YR80A, 2009.

[2] Application Notes and Interpretation of the Scheme (AIS 34), Evaluation
Methodology for CC Assurance Classes for EAL5+ (CC v2.3 & v3.1) and
EAL6 (CC v3.1), September 2009.

[3] Application Notes and Interpretation of the Scheme (AIS 39), Formal Meth-
ods - Guideline for the Development and Evaluation of the formal security
policy models in the scope of ITSEC and Common Criteria, September
2009.

[4] B. Alpern and F. B. Schneider. Defining liveness. Information Processing
Letters, 21:181–185, Oct. 1985.

[5] R. Alur, A. Kanade, and G. Weiss. Ranking automata and games for
prioritized requirements. In Computer Aided Verification, pages 240–253,
2008.

[6] Y. Aoki and S. Matsuura. Verifying security requirements using model
checking technique for uml-based requirements specification. In 1st IEEE
International Workshop on Requirements Engineering and Testing, RET
2014, Karlskrona, Sweden, August 26, 2014, pages 18–25, 2014.

[7] M. Archer. Tame: Using pvs strategies for special-purpose theorem proving.
Annals of Mathematics and Artificial Intelligence, 2000.

[8] A. Arora. Closure and convergence: A foundation of fault-tolerant comput-
ing. IEEE Transatcions of Software Engineering, 19:1015–1027, 1993.

[9] P. Attie, A. Arora, and E. A. Emerson. Synthesis of fault-tolerant concurrent
programs. ACM Transactions on Programming Languages and Systems
(TOPLAS), 26:125–185, 2004.

[10] C. Baier and J. Katoen. Principles of model checking. The MIT Press,
2008.

[11] G. Barthe and G. Dufay. Formal methods for smartcard security. In Foun-
dations of Security Analysis and Design III, FOSAD 2004/2005 Tutorial
Lectures, pages 133–177, 2005.

117

118 Bibliography

[12] B. Beckert, D. Bruns, and S. Grebing. Mind the gap: Formal verification and
the common criteria (discussion paper). In 6th International Verification
Workshop, VERIFY-2010, Edinburgh, UK, July 20-21, 2010, pages 4–12,
2010.

[13] S. Z. Béguelin. Formalisation and verification of the globalplatform card
specification using the B method. In Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices, Second International Workshop,
CASSIS 2005, Nice, France, March 8-11, 2005, Revised Selected Papers,
pages 155–173, 2005.

[14] G. Behrmann, A. David, K. G. Larsen, O. Moller, P. Pettersson, and W. Yi.
Uppaal – present and future. In Proc. 40th IEEE Conf. Decision and
Control, pages 2881–2886, 2001.

[15] M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching time.
In Proceedings of the Eight ACM Symposium on Principles of Programming
Languages, pages 164–176, 1981.

[16] G. Beuster and K. Greimel. Formal security policy models for smart card
evaluations. In International Symposium on Applied Computing (SAC),
2012.

[17] J. Bicarregui, J. S. Fitzgerald, P. G. Larsen, and J. C. P. Woodcock.
Industrial practice in formal methods: A review. In FM 2009: Formal
Methods, Second World Congress, Eindhoven, The Netherlands, November
2-6, 2009. Proceedings, pages 810–813, 2009.

[18] T. Bienmüller, J. Bohn, H. Brinkmann, U. Brockmeyer, W. Damm, H. Hun-
gar, and P. Jansen. Verification of automotive control units. In Correct
System Design, Recent Insight and Advances, (to Hans Langmaack on the
Occasion of His Retirement from His Professorship at the University of
Kiel), 1999.

[19] T. Bienmüller, U. Brockmeyer, W. Damm, G. Döhmen, C. Eßmann, H. Hol-
berg, H. Hungar, B. Josko, R. Schlör, G. Wittich, H. Wittke, G. Clements,
J. Rowlands, and E. Sefton. Formal verification of an avionics application
using abstraction and symbolic model checking. In Towards System Safety
– Proc. 7th Safety-critical Systems Symposium, pages 150–173, 1999.

[20] T. Bienmüller, W. Damm, and H. Wittke. The Statemate verification
environment. In Proc. Int. Conf. Computer-Aided Verification, volume
1855 of LNCS, pages 561–567, 2000.

[21] R. Bloem, K. Chatterjee, K. Greimel, T. Henzinger, G. Hofferek, B. Job-
stmann, B. Könighofer, and R. Könighofer. Synthesizing robust systems.
Acta Inf., 51(3-4):193–220, 2014.

Bibliography 119

[22] R. Bloem, K. Chatterjee, K. Greimel, T. Henzinger, and B. Jobstmann.
Robustness in the presence of liveness. In Computer Aided Verification,
22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19,
2010. Proceedings, pages 410–424, 2010.

[23] R. Bloem, K. Chatterjee, T. Henzinger, and B. Jobstmann. Better quality
in synthesis through quantitative objectives. In Int. Conf. Computer Aided
Verification (CAV), pages 140–156, 2009.

[24] R. Bloem, R. Ehlers, S. Jacobs, and R. Könighofer. How to handle
assumptions in synthesis. In Proceedings 3rd Workshop on Synthesis,
SYNT 2014, Vienna, Austria, July 23-24, 2014., pages 34–50, 2014.

[25] R. Bloem, R. Ehlers, and R. Könighofer. Cooperative reactive synthesis.
In Automated Technology for Verification and Analysis - 13th Interna-
tional Symposium, ATVA 2015, Shanghai, China, October 12-15, 2015,
Proceedings, pages 394–410, 2015.

[26] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Wei-
glhofer. Automatic hardware synthesis from specifications: A case study.
In In Proceedings of the Design, Automation and Test in Europe, pages
1188–1193, 2007.

[27] R. Bloem, K. Greimel, T. Henzinger, and B. Jobstmann. Synthesizing
robust systems. In Proceedings of 9th International Conference on Formal
Methods in Computer-Aided Design, FMCAD 2009, 15-18 November 2009,
Austin, Texas, USA, pages 85–92, 2009.

[28] R. Bloem, K. Greimel, R. Könighofer, and F. Roeck. Model-based MCDC
testing of complex decisions for the java card applet firewall. In The Fifth
International Conference on Advances in System Testing and Validation
Lifecycle VALID 2013, Venice, Italy, October 27 - November 1, 2013, pages
1–7, 2013.

[29] R. Bloem, D. M. Hein, F. Roeck, and R. Schumi. Case study: Automatic
test case generation for a secure cache implementation. In Tests and Proofs
- 9th International Conference, TAP 2015, Held as Part of STAF 2015,
L’Aquila, Italy, July 22-24, 2015. Proceedings, pages 58–75, 2015.

[30] M. Broy, W. Damm, S. Henkler, K. Pohl, A. Vogelsang, and T. Weyer.
Introduction to the spes modeling framework. In K. Pohl, H. Hnninger,
R. Achatz, and M. Broy, editors, Model-Based Engineering of Embedded
Systems, pages 31–49. Springer Berlin Heidelberg, 2012.

[31] A. D. Brucker, A. Feliachi, Y. Nemouchi, and B. Wolff. Test program
generation for a microprocessor - A case-study. In Tests and Proofs -
7th International Conference, TAP 2013, Budapest, Hungary, June 16-20,
2013. Proceedings, pages 76–95, 2013.

120 Bibliography

[32] Security IC Platform Protection Profile with Augmentation Packages Ver-
sion 1.0, 2014.

[33] Security IC Platform Protection Profile Version 1.0, June 2007.

[34] A. Campetelli, M. Junker, B. Böhm, M. Davidich, V. Koutsoumpas, X. Zhu,
and J. Wehrstedt. A model-based approach to formal verification in early
development phases: A desalination plant case study. In Gemeinsamer
Tagungsband der Workshops der Tagung Software Engineering 2015, Dres-
den, Germany, 17.-18. März 2015., pages 91–100, 2015.

[35] Common Criteria for Information Technology Security Evaluation Ver-
sion 3.1 Revision 4, Part 1: Introduction and general model, September
2012.

[36] Common Criteria for Information Technology Security Evaluation Ver-
sion 3.1 Revision 4, September 2012.

[37] Common Criteria for Information Technology Security Evaluation Ver-
sion 3.1 Revision 4, Part 2: Security functional components, September
2012.

[38] Common Criteria for Information Technology Security Evaluation Ver-
sion 3.1 Revision 4, Part 3: Security assurance components, September
2012.

[39] Common Methodology for Information Technology Security Evaluation
Version 3.1 Revision 4, Evaluation methodology, September 2012.

[40] W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin,
and J. D. Reese. Model checking large software specifications. IEEE
Transactions on Software Engineering, 24(7):498–520, July 1998.

[41] K. Chatterjee, T. Henzinger, and B. Jobstmann. Environment assump-
tions for synthesis. In International Conference on Concurrency Theory
(CONCUR), pages 147–161, 2008.

[42] K. Chatterjee, T. Henzinger, B. Jobstmann, and R. Singh. Measuring and
synthesizing systems in probabilistic environments. J. ACM, 62(1):9:1–9:34,
2015.

[43] K. Chatterjee, T. Henzinger, and N. Piterman. Generalized parity games.
In 10th International Conference on Foundations of Software Science and
Computation Structures, pages 153–167. Springer, 2007. LNCS 4423.

[44] C. Cheng, H. Rueß, A. Knoll, and C. Buckl. Synthesis of fault-tolerant
embedded systems using games: From theory to practice. In Verification,
Model Checking, and Abstract Interpretation - 12th International Confer-
ence, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings,
pages 118–133, 2011.

Bibliography 121

[45] B. Chetali. Security testing and formal methods for high levels certification
of smart cards. In Tests and Proofs, Third International Conference, TAP
2009, Zurich, Switzerland, July 2-3, 2009. Proceedings, pages 1–5, 2009.

[46] B. Chetali and Q. Nguyen. Industrial use of formal methods for a high-level
security evaluation. In FM 2008: Formal Methods, 15th International Sym-
posium on Formal Methods, Turku, Finland, May 26-30, 2008, Proceedings,
pages 198–213, 2008.

[47] A. Church. Logic, arithmetic and automata. In Proceedings International
Mathematical Congress, 1962.

[48] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. Nusmv 2: An opensource
tool for symbolic model checking. In Computer Aided Verification, 14th
International Conference, CAV 2002,Copenhagen, Denmark, July 27-31,
2002, Proceedings, pages 359–364, 2002.

[49] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: A new
symbolic model verifier. In Computer Aided Verification, 11th International
Conference, CAV ’99, Trento, Italy, July 6-10, 1999, Proceedings, pages
495–499, 1999.

[50] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press,
1999.

[51] J. E. R. Cury and B. H. Krogh. Robustness of supervisors for discrete-event
systems. IEEE Transactions on Automatic Control, 44(2):376–379, 1999.

[52] W. Damm and B. Finkbeiner. Does it pay to extend the perimeter of a world
model? In FM 2011: Formal Methods - 17th International Symposium on
Formal Methods, Limerick, Ireland, June 20-24, 2011. Proceedings, pages
12–26, 2011.

[53] W. Damm, B. Josko, H. Hungar, and A. Pnueli. A compositional real-
time semantics of statemate designs. In Compositionality: The Significant
Difference, pages 186–238. Springer-Verlag, 1998.

[54] W. Damm and J. Klose. Verification of a radio-based signaling system using
the STATEMATE verification environment. Formal Methods in System
Design, 19(2):121–141, 2001.

[55] A. Dasdan, S. S. Irani, and R. K. Gupta. Efficient algorithms for optimum
cycle mean and optimum cost to time ratio problems. In Proceedings of
the Design Automation Conference, pages 37–42, 1999.

[56] A. M. Davis. Software Requirements — Analysis and Specification. Prentice
Hall, 1990.

122 Bibliography

[57] L. de Alfaro and M. Faella. Accelerated algorithms for 3-color parity games
with an application to timed games. In Nineteenth International Conference
on Computer Aided Verification (CAV’07), pages 108–120, Berlin, 2007.
Springer-Verlag. LNCS 4590.

[58] E. Dijkstra. Cooperating sequential processes. In Genuys, editor, Program-
ming Languages, pages 43–112. Academic Press, 1968.

[59] E. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-
munications of the ACM, 17:643–644, 1974.

[60] N. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel. Synthesizing
nonanomalous event-based controllers for liveness goals. ACM Trans. Softw.
Eng. Methodol., 22(1):9, 2013.

[61] N. D’Ippolito, V. Braberman, D. Sykes, and S. Uchitel. Robust degradation
and enhancement of robot mission behaviour in unpredictable environments.
In Proceedings of the 1st International Workshop on Control Theory for
Software Engineering, CTSE@SIGSOFT FSE 2015, Bergamo, Italy, August
31 - September 04, 2015, pages 26–33, 2015.

[62] L. Doyen, T. Henzinger, A. Legay, and D. Nickovic. Robustness of sequential
circuits. In 10th International Conference on Application of Concurrency
to System Design, ACSD 2010, Braga, Portugal, 21-25 June 2010, pages
77–84, 2010.

[63] D. D’Souza and M. Gopinathan. Conflict-tolerant features. In Computer
Aided Verification (CAV), pages 227–239, 2008.

[64] A. Ebnenasir, S. S. Kulkarni, and A. Arora. Ftsyn: a framework for
automatic synthesis of fault-tolerance. Software Tools for Technology
Transfer, 10:455–471, 2008.

[65] R. Ehlers. Generalized rabin(1) synthesis with applications to robust system
synthesis. In NASA Formal Methods - Third International Symposium,
NFM 2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings, pages
101–115, 2011.

[66] R. Ehlers and U. Topcu. Resilience to intermittent assumption violations
in reactive synthesis. In 17th International Conference on Hybrid Systems:
Computation and Control (part of CPS Week), HSCC’14, Berlin, Germany,
April 15-17, 2014, pages 203–212, 2014.

[67] C. Eisner. Using symbolic model checking to verify the railway stations of
Hoorn-Kersenboogerd and Heerhugowaard. In CHARME, pages 97–109,
1999.

[68] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy.
In Proc. 32nd IEEE Symposium on Foundations of Computer Science, pages
368–377, Oct. 1991.

Bibliography 123

[69] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the
propositional mu-calculus. In Proceedings of the First Annual Symposium
of Logic in Computer Science, pages 267–278, June 1986.

[70] EMV. Integrated Circuit Card Specifications for Payment Systems, Book 3,
Application Specification, Version 4.3, November 2011.

[71] M. Faella. Games you cannot win. In Workshop on Games and Automata
for Synthesis and Validation, 2007.

[72] P. Farail, P. Goutillet, A. Canals, C. Le Camus, D. Sciamma, P. Michel,
X. Cregut, and M. Pantel. The TOPCASED project: a toolkit in open
source for critical aeronautic systems design. In Proc. Embedded Real Time
Software and Systems, 2006.

[73] FBK-irst. NuSMV 2.5 User Manual.

[74] G. Fey and R. Drechsler. A basis for formal robustness checking. In ISQED,
pages 784–789, 2008.

[75] Fraunhofer. IDE:StateCharts for Formal verification.

[76] Fraunhofer IIS/EAS. Coside - SystemC AMS Design Environment, 2012.
available online at http://www.eas.iis.fraunhofer.de/en/business_areas/

microelectronic_systems/system_development/coside.html.

[77] A. Fuxman, J. Mylopoulos, M. Pistore, and P. Traverso. Model checking
early requirements specifications in tropos. In 5th IEEE International
Symposium on Requirements Engineering (RE 2001), 27-31 August 2001,
Toronto, Canada, pages 174–181, 2001.

[78] gemalto. Formal Assurance on the JavaCard Virtual Machine embedded in
Usimera Protect, Security Target, September 2007.

[79] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software
Engineering. Prentice-Hall, 1991.

[80] H. Gimbert and W. Zielonka. Games where you can play optimally without
any memory. In CONCUR, pages 428–442, 2005.

[81] A. Girault and É. Rutten. Automating the addition of fault tolerance
with discrete controller synthesis. Formal Methods in System Design,
35(2):190–225, 2009.

[82] GlobalPlatform. GlobalPlatform Card Specification, Version 2.2.1, January
2011.

[83] K. Greimel, R. Bloem, B. Jobstmann, and M. Vardi. Open implica-
tion. In Proc. Int. Colloquium on Automata, Languages and Programming
(ICALP’08), pages 361–372, 2008. LNCS 5126.

http://www.eas.iis.fraunhofer.de/en/business_areas/microelectronic_systems/system_development/coside.html
http://www.eas.iis.fraunhofer.de/en/business_areas/microelectronic_systems/system_development/coside.html

124 Bibliography

[84] K. Greimel, N. Seßler, and T. Klotz. Model checking specifications of smart
cards. In Annual Conference of the IEEE Industrial Electronics Society
(IECON), 2013.

[85] D. Greve, M. Wilding, R. Richards, and W. Vanfleet. Formalizing security
policies for dynamic and distributed systems. In Systems and Software
Technology Conference (SSTC 2005), 2005.

[86] I. Grobelna, M. Grobelny, and M. Adamski. Model checking of uml
activity diagrams in logic controllers design. In Proceedings of the Ninth
International Conference on Dependability and Complex Systems, DepCoS-
RELCOMEX, 2014.

[87] A. Hall and R. Chapman. Correctness by construction: Developing a
commercial secure system. IEEE Software, 19(1):18–25, 2002.

[88] C. Heitmeyer, M. Archer, E. Leonard, and J. McLean. Formal specification
and verification of data separation in a separation kernel for an embedded
system. In Proceedings of the 13th ACM Conference on Computer and
Communications Security, CCS ’06, 2006.

[89] J. Helbig, R. Schlör, W. Damm, G. Döhmen, and P. Kelb. VHDL/S -
integrating statecharts, timing diagrams, and VHDL. Microprocessing and
Microprogramming, 38(1-5):571–580, 1993.

[90] T. Henzinger. Two challenges in embedded systems design: Predictability
and robustness. Philosophical Transactions of the Royal Society, 2008.

[91] T. Henzinger, J. Otop, and R. Samanta. Lipschitz robustness of finite-state
transducers. In 34th International Conference on Foundation of Software
Technology and Theoretical Computer Science, FSTTCS 2014, December
15-17, 2014, New Delhi, India, pages 431–443, 2014.

[92] T. Henzinger, J. Otop, and R. Samanta. Lipschitz robustness of timed
I/O systems. In Verification, Model Checking, and Abstract Interpretation
- 17th International Conference, VMCAI 2016, St. Petersburg, FL, USA,
January 17-19, 2016. Proceedings, pages 250–267, 2016.

[93] G. J. Holzmann. The model checker spin. IEEE Transactions on Software
Engineering, 23(5):279–295, 1997.

[94] B. Jobstmann and R. Bloem. Optimizations for LTL synthesis. In 6th
Conference on Formal Methods in Computer Aided Design (FMCAD’06),
pages 117–124, 2006.

[95] B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem. Anzu: A tool for
property synthesis. In Computer Aided Verification, pages 258–262, 2007.

[96] B. Jobstmann, S. Staber, A. Griesmayer, and R. Bloem. Finding and fixing
faults. Journal of Computer and System Sciences, 78(2):441460, 2012.

Bibliography 125

[97] M. Jurdziński. Small progress measures for solving parity games. In STACS
2000, 17th Annual Symposium on Theoretical Aspects of Computer Science,
pages 290–301, Lille, France, Feb. 2000. Springer. LNCS 1770.

[98] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood. sel4: Formal verification of an os kernel. In Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,
SOSP ’09, 2009.

[99] G. Klein and T. Nipkow. Verified bytecode verifiers. Theoretical Comput.
Sci., 298:583–626, 2003.

[100] T. Klotz, E. Fordran, B. Straube, and J. Haufe. Formal verification of UML-
modeled machine controls. In Proc. IEEE Conf. Emerging Technologies
and Factory Automation, pages 1–7, 2009.

[101] S. S. Kulkarni and A. Ebnenasir. Complexity issues in automated synthesis
of failsafe fault-tolerance. IEEE Transactions on Dependable and Secure
Computing, 2:1–15, 2005.

[102] E. Lawler. Combinatorial Optimization: Networks and Matroids. Courier
Dover Publications, 1976.

[103] J. Lilius and I. Paltor. vUML: A tool for verifying UML models. In Proc.
Int. Conf. Automated Software Engineering, pages 255–258, 1999.

[104] K. Loer and M. D. Harrison. Towards usable and relevant model checking
techniques for the analysis of dependable interactive systems. In 17th IEEE
International Conference on Automated Software Engineering (ASE 2002),
23-27 September 2002, Edinburgh, Scotland, UK, pages 223–226, 2002.

[105] R. Majumdar, E. Render, and P. Tabuada. Robust discrete synthesis against
unspecified disturbances. In Proceedings of the 14th ACM International
Conference on Hybrid Systems: Computation and Control, HSCC 2011,
Chicago, IL, USA, April 12-14, 2011, pages 211–220, 2011.

[106] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems *Specification*. Springer-Verlag, 1991.

[107] S. P. Miller. Will this be formal? Theorem Proving in Higher Order Logics,
pages 6–11, 2008.

[108] S. Morimoto, S. Shigematsu, Y. Goto, and J. Cheng. Formal verification
of security specifications with common criteria. In Proceedings of the 2007
ACM Symposium on Applied Computing, SAC ’07, 2007.

[109] S. Motre and C. Teri. Using b method to formalize the java card runtime
security policy for a common criteria evaluation, 2000.

126 Bibliography

[110] NXP Semiconductors. NXP Secure Smart Card Controller
P60x144/080PVA, Security Target Lite, May 2012.

[111] NXP Semiconductors. NXP Secure Smart Card Controller
P60D080/052/040yVC(Z/A)/yVG, Security Target Lite, August
2014.

[112] Object Management Group. Unified modeling language specification vers.
2.3, 2010.

[113] Oracle. Java Card 3 Platform, Application Programming Interface, Classic
Edition, Version 3.0.4, September 2011.

[114] Oracle. Java Card 3 Platform, Runtime Environment Specification, Classic
Edition, Version 3.0.4, September 2011.

[115] Oracle. Java Card 3 Platform, Virtual Machine Specification, Classic
Edition, Version 3.0.4, September 2011.

[116] D. Peled. Verification for robust specification. In Theorem Proving in
Higher Order Logics, 10th International Conference, TPHOLs’97, Murray
Hill, NJ, USA, August 19-22, 1997, Proceedings, pages 231–241, 1997.

[117] J. Philipps, A. Pretschner, O. Slotosch, E. Aiglstorfer, S. Kriebel, and
K. Scholl. Model-based test case generation for smart cards. Electr. Notes
Theor. Comput. Sci., 80:170–184, 2003.

[118] N. Piterman and A. Pnueli. Faster solutions of Rabin and Streett games.
In Logic in Computer Science, pages 275–284, 2006.

[119] N. Piterman, A. Pnueli, and Y. Sa´ar. Synthesis of reactive(1) designs. In
7th International Conference on Verification, Model Checking and Abstract
Interpretation, pages 364–380. Springer, 2006. LNCS 3855.

[120] A. Pnueli. The temporal logic of programs. In IEEE Symposium on
Foundations of Computer Science, pages 46–57, Providence, RI, 1977.

[121] N. Pontisso and D. Chemouil. TOPCASED Combining formal methods
with model-driven engineering. In Proc. Int. Conf. Automated Software
Engineering, pages 359–360, 2006.

[122] Java Card Protection Profile - Open Configuration Version 3.0, May 2012.

[123] R. Richards, D. Greve, and M. Wilding. The common criteria, formal
methods and acl2. In In Fifth International Workshop on the ACL2
Theorem Prover and its Applications (ACL2-2004), 2004.

[124] R. Richards, D. Greve, and M. Wilding. A summary of intrinsic partitioning
verification. In In Fifth International Workshop on the ACL2 Theorem
Prover and its Applications (ACL2-2004), 2004.

Bibliography 127

[125] R. Rosner. Modular Synthesis of Reactive Systems. PhD thesis, Weizmann
Institute of Science, 1992.

[126] M. Rungger and P. Tabuada. Discounting the past in robust finite-state
systems. In 53rd IEEE Conference on Decision and Control, CDC 2014,
Los Angeles, CA, USA, December 15-17, 2014, pages 842–847, 2014.

[127] R. Samanta, J. Deshmukh, and S. Chaudhuri. Robustness analysis of string
transducers. In Automated Technology for Verification and Analysis - 11th
International Symposium, ATVA 2013, Hanoi, Vietnam, October 15-18,
2013. Proceedings, pages 427–441, 2013.

[128] T. Schäfer, A. Knapp, and S. Merz. Model checking UML state machines
and collaborations. Electrical Notes in Theoretical Computer Science,
55(3):357–369, 2001.

[129] R. G. Schroeder. Programming solutions to ratio games. Operations
Research, 18(2):300–305, 1970.

[130] A. P. Sistla and E. M. Clarke. The complexity of propositional linear
temporal logic. J. ACM, 3(32):733–749, 1985.

[131] P. Tabuada, A. Balkan, S. Caliskan, Y. Shoukry, and R. Majumdar. Input-
output robustness for discrete systems. In Proceedings of the 12th Inter-
national Conference on Embedded Software, EMSOFT 2012, part of the
Eighth Embedded Systems Week, ESWeek 2012, Tampere, Finland, October
7-12, 2012, pages 217–226, 2012.

[132] P. Tabuada, S. Caliskan, M. Rungger, and R. Majumdar. Towards robust-
ness for cyber-physical systems. IEEE Trans. Automat. Contr., 59(12):3151–
3163, 2014.

[133] P. Tabuada and D. Neider. Robust linear temporal logic. arXiv preprint
arXiv:1510.08970, 2015.

[134] U. Topcu, N. Ozay, J. Liu, and R. Murray. On synthesizing robust discrete
controllers under modeling uncertainty. In Hybrid Systems: Computation
and Control (part of CPS Week 2012), HSCC’12, Beijing, China, April
17-19, 2012, pages 85–94, 2012.

[135] D. v. Oheimb, V. Lotz, and G. Walter. Analyzing SLE 88 memory manage-
ment security using interacting state machines. Int. J. Inf. Sec., 4(3):155–
171, 2005.

[136] D. v. Oheimb, G. Walter, and V. Lotz. A Formal Security Model of the
Infineon SLE 88 Smart Card Memory Managment. In ESORICS, pages
217–234, 2003.

128 Bibliography

[137] M. W. Whalen, D. D. Cofer, S. P. Miller, B. H. Krogh, and W. Storm.
Integration of formal analysis into a model-based software development
process. In Formal Methods for Industrial Critical Systems, 12th Interna-
tional Workshop, FMICS 2007, Berlin, Germany, July 1-2, 2007, Revised
Selected Papers, pages 68–84, 2007.

[138] K. Wong, R. Ehlers, and H. Kress-Gazit. Correct high-level robot behavior
in environments with unexpected events. In Robotics: Science and Systems
X, University of California, Berkeley, USA, July 12-16, 2014, 2014.

[139] W. Zielonka. Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theoretical Computer Science, 200(1-2):135–183,
1998.

[140] U. Zwick and M. Paterson. The complexity of mean payoff games on graphs.
Theoretical Computer Science, 158:343–359, 1996.

Author Index

Adamski, M. 93
Aiglstorfer, E. 93
Alpern, B. 6, 26
Alur, R. 40
Anderson, R. J. 91
Andronick, J. 93
Aoki, Y. 94, 95
Archer, M. 90
Arora, A. 37, 38
Attie, P. 38

Baier, C. 56
Balkan, A. 37
Barthe, G. 91
Beame, P. 91
Beckert, B. 92
Béguelin, S. Z. 91
Behrmann, G. 94
Ben-Ari, M. 9
Beuster, G. 45
Bicarregui, J. 47
Bienmüller, T. 94
Bloem, R. 1, 5, 17, 27, 35, 40, 42, 43,

93, 95
Böhm, B. 92
Bohn, J. 94
Braberman, V. 39
Brinkmann, H. 94
Brockmeyer, U. 94
Broy, M. 92
Brucker, A. D. 93
Bruns, D. 92
Buckl, C. 38
Burns, S. 91

Caliskan, S. 37

Campetelli, A. 92
Canals, A. 94
Chan, W. 91
Chapman, R. 91
Chatterjee, K. 5, 35, 40, 42, 43
Chaudhuri, S. 37
Chemouil, D. 94
Cheng, C. 38
Cheng, J. 91
Chetali, B. 89, 90, 93
Church, A. 1
Cimatti, A. 56, 67, 79
Clarke, E. M. 2, 56, 67, 79
Clements, G. 94
Cock, D. 93
Cofer, D. D. 92
Cregut, X. 94
Cury, J. E. R. 38

Damm, W. 39, 92–95
Dasdan, A. 23
David, A. 94
Davidich, M. 92
Davis, A. M. 5
de Alfaro, L. 34
Derrin, P. 93
Deshmukh, J. 37
Dijkstra, E. 26, 37
D’Ippolito, N. 39
Döhmen, G. 94
Doyen, L. 37
Drechsler, R. 37
D’Souza, D. 39
Dufay, G. 91

Ebnenasir, A. 38

129

130 Author Index

Ehlers, R. 38, 42, 43
Eisner, C. 42
Elkaduwe, D. 93
Elphinstone, K. 93
Emerson, E. A. 34, 35, 38
Engelhardt, K. 93
Eßmann, C. 94

Faella, M. 34, 40
Farail, P. 94
Feliachi, A. 93
Fey, G. 37
Finkbeiner, B. 39
Fitzgerald, J. S. 47
Fordran, E. 95
Fuxman, A. 92

Galler, S. 27
Ghezzi, C. 5
Gimbert, H. 19
Girault, A. 38
Giunchiglia, E. 56, 79
Giunchiglia, F. 56, 67, 79
Gopinathan, M. 39
Goto, Y. 91
Goutillet, P. 94
Grebing, S. 92
Greimel, K. 5, 27, 35, 42, 43, 45, 93, 95
Greve, D. 88–90
Griesmayer, A. 1
Grobelna, I. 93
Grobelny, M. 93
Grumberg, O. 2, 56
Gupta, R. K. 23

Hall, A. 91
Harrison, M. D. 92
Haufe, J. 95
Hein, D. M. 93
Heiser, G. 93
Heitmeyer, C. 90
Helbig, J. 93
Henkler, S. 92
Henzinger, T. 5, 35–37, 40, 42, 43
Hofferek, G. 42, 43
Holberg, H. 94

Holzmann, G. J. 93
Hungar, H. 94

Irani, S. S. 23

Jacobs, S. 42
Jansen, P. 94
Jazayeri, M. 5
Jobstmann, B. 1, 5, 17, 27, 35, 40, 42,

43
Josko, B. 94
Junker, M. 92
Jurdziński, M. 34
Jutla, C. S. 34

Kanade, A. 40
Katoen, J. 56
Kelb, P. 93
Klein, G. 91, 93
Klose, J. 94
Klotz, T. 45, 95
Knapp, A. 93
Knoll, A. 38
Kolanski, R. 93
Könighofer, B. 42, 43
Könighofer, R. 42, 43, 93, 95
Koutsoumpas, V. 92
Kress-Gazit, H. 38
Kriebel, S. 93
Krogh, B. H. 38, 92
Kulkarni, S. S. 38

Larsen, K. G. 94
Larsen, P. G. 47
Lawler, E. 19
Le Camus, C. 94
Legay, A. 37
Lei, C.-L. 35
Leonard, E. 90
Lilius, J. 93
Liu, J. 39
Loer, K. 92
Lotz, V. 89

Majumdar, R. 37, 39
Mandrioli, D. 5

Author Index 131

Manna, Z. 9
Matsuura, S. 94, 95
McLean, J. 90
Merz, S. 93
Michel, P. 94
Miller, S. P. 88, 91, 92
Modugno, F. 91
Moller, O. 94
Morimoto, S. 91
Motre, S. 90
Murray, R. 39
Mylopoulos, J. 92

Neider, D. 41
Nemouchi, Y. 93
Nguyen, Q. 89, 90
Nickovic, D. 37
Nipkow, T. 91
Norrish, M. 93
Notkin, D. 91

Otop, J. 37
Ozay, N. 39

Paltor, I. 93
Pantel, M. 94
Paterson, M. 19, 20
Peled, D. 2, 41, 56
Pettersson, P. 94
Philipps, J. 93
Pistore, M. 56, 79, 92
Piterman, N. 1, 7, 11, 23, 27, 34, 35, 39
Pnueli, A. 1, 7, 9, 11, 23, 27, 34, 35, 94
Pohl, K. 92
Pontisso, N. 94
Pretschner, A. 93

Reese, J. D. 91
Render, E. 39
Richards, R. 88–90
Roeck, F. 93, 95
Rosner, R. 1
Roveri, M. 56, 67, 79
Rowlands, J. 94
Rueß, H. 38
Rungger, M. 37

Rutten, É. 38

Sa´ar, Y. 1, 7, 11, 27, 34
Samanta, R. 37
Schäfer, T. 93
Schlör, R. 94
Schneider, F. B. 6, 26
Scholl, K. 93
Schroeder, R. G. 18
Schumi, R. 93
Sciamma, D. 94
Sebastiani, R. 56, 79
Sefton, E. 94
Seßler, N. 45
Sewell, T. 93
Shigematsu, S. 91
Shoukry, Y. 37
Singh, R. 42
Sistla, A. P. 2
Slotosch, O. 93
Staber, S. 1
Storm, W. 92
Straube, B. 95
Sykes, D. 39

Tabuada, P. 37, 39, 41
Tacchella, A. 56, 79
Teri, C. 90
Topcu, U. 38, 39
Traverso, P. 92
Tuch, H. 93

Uchitel, S. 39

v. Oheimb, D. 89
Vanfleet, W.M. 88
Vardi, M. 27, 35
Vogelsang, A. 92

Walter, G. 89
Wehrstedt, J. 92
Weiglhofer, M. 27
Weiss, G. 40
Weyer, T. 92
Whalen, M. W. 92
Wilding, M. 88–90

132 Author Index

Winwood, S. 93
Wittich, G. 94
Wittke, H. 94, 95
Wolff, B. 93
Wong, K. 38
Woodcock, J. C. P. 47

Yi, W. 94

Zhu, X. 92

Zielonka, W. 19, 32

Zwick, U. 19, 20

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acronyms
	Introduction
	Outline

	Synthesizing Robust Systems
	Problem Statement
	Contribution
	Preliminaries
	Systems
	Acceptance Conditions
	Automata
	Specifications
	Games and Strategies
	Synthesis

	Safety
	Defining Robustness
	Ratio Games
	Verifying and Synthesizing Robust Systems

	Liveness
	Defining Measures of Robustness
	Simplifying Combinations of Büchi Objectives
	Solving Generalized Reactivity Games
	Verifying and Synthesizing Robust Systems

	Related Work
	Continuity
	Fault Tolerance
	Controllers
	Games
	Robustness Specifications
	Environment Assumptions
	Extensions

	Conclusions

	Security Policy Modeling for Smart Cards
	Problem Statement
	Contribution
	Preliminaries
	Smart Cards
	Common Criteria
	Model Checking
	Unified Modeling Language Statechart Diagrams

	Modeling Smart Cards
	Modeling Approach
	Common Criteria Requirements
	Case Study - Security IC
	Case Study - Java Card System

	Modeling using UML Statecharts
	Integration into the Design Process
	Level of Abstraction
	Example

	Related Work
	Common Criteria
	Model Checking
	Model Driven Engineering
	Formal Verification of UML Statecharts

	Conclusions

	Conclusions
	Java Card Properties
	Bibliography
	Author Index

