
Florian Speiser-Reinfrank

Intelligent Supporting Technologies for
the Maintenance of Product

Configuration Systems

Doctoral Thesis

Graz University of Technology

Institute for Software Technology
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Supervisors:
Univ.-Prof. Dipl-Ing. Dr.techn. Alexander Felfernig and

Univ.-Prof. Dipl-Ing. Dr. techn. Franz Wotawa

Graz, October 2016

´

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz,

Datum Unterschrift

1 Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

iii

Abstract

Product configuration and knowledge-based systems are commercially
successful applications, because they are an excellent medium for bring-
ing products and services of companies and customer’s requirements to-
gether. Nowadays, they are used in many domains. The website http:

//www.configurator-database.com/ gives an overview of commercially
used product configuration systems and their underlying knowledge
bases.

Such knowledge bases have to be maintained over time because new
releases lead to new or updated features or customer preferences are chang-
ing over time. As stakeholders are not able to describe or communicate all
changes correctly, new knowledge engineers do not have a correct under-
standing of the knowledge base, or many knowledge engineers are working
on the same knowledge base at the same time, maintenance tasks can be
time-consuming and error prone. Such difficulties can lead to a knowledge
base which does not present the set of available variants and this may lead
to a low customer satisfaction and frustration with the system.

This thesis picks up the research question how intelligent techniques can
support knowledge engineers when they maintain a product configura-
tion knowledge base. We show that such techniques can help to receive
functional knowledge bases in terms of consistency, increase the under-
standability via reducing the content displayed to the knowledge engineer
(e.g., using recommendation techniques), and optimize the maintainability
of a knowledge base with an efficient anomaly management.

v

http://www.configurator-database.com/
http://www.configurator-database.com/

Kurzfassung

Produktkonfiguratoren und wissensbasierte Empfehlungssysteme sind
kommerziell äußerst erfolgreich. Sie ermöglichen eine optimale Abstim-
mung von Produkteigenschaften und Dienstleistungen mit Kundenpräferen-
zen. Heutzutage wird diese Eigenschaft in vielen Domänen erfolgreich
angewendet. Die Webseite http://www.configurator-database.com/ gibt
eine Auswahl von Online-Produktkonfiguratoren wieder.

Wissensbasen, die zur Repräsentation der zu konfigurierenden Produkte
und deren Eigenschaften verwendet werden, müssen häufig gewartet wer-
den, weil sich z.B. die Kundenanforderungen ändern oder die angebote-
nen Produkte neue Funktionen enthalten. Dabei können einige Probleme
auftreten. Z.B. können Informationen von Stakeholdern falsch aufbereitet
oder kommuniziert werden, neue Entwickler kennen die Wissensbasis noch
nicht vollständig oder es arbeiten gleichzeitig mehrere Ingenieure an der
gleichen Wissensbasis zur selben Zeit. Wenn ein Problem eintritt kann
nicht sicher gestellt werden, dass die überarbeitete Wissensbasis die Realität
widerspiegelt. Die Endanwender derartiger Systeme können wegen solcher
Fehler schnell frustriert sein.

Diese Dissertation zeigt, wie intelligente Technologien verwendet wer-
den können, um Ingenieure bei der Wartung von Konfigurationswissens-
basen zu unterstützen. Wir verwenden u.a. Empfehlungssysteme, damit
die verfügbaren Informationen in der Wissensbasis auf das Wesentliche
reduziert und die Verständlichkeit erhöht wird. Außerdem verwenden wir
Technologien, die Anomalien in der Wissensbasis nicht nur identifizieren,
sondern auch erklären und reparieren können.

vii

http://www.configurator-database.com/

Acknowledgements

I want to thank the team of the Insitute for Software Technology at the
Graz University of Technology. Especially the discussions with Gerald Nin-
aus, Martin Stettinger, Stefan Reiterer, Michael Jeran, and Harald Grabner
helped to get new ideas and evaluate existing research challenges. Franz
Wotawa helped to finalize this thesis with interesting hints for several sec-
tions of this thesis. The administrative tasks related to this thesis would be
irresolvable without the help of Petra Pichler. I also want to thank Alexan-
der Felfernig and the co-authors of the papers which are the basis for this
thesis.

Furthermore I also want to thank to my family for their great support.
I am very thankful to my mother Cäcilia and my wife Daniela for their
encouragement and understanding. Last but not least I want to thank
Waltraud Langmayr for her proof-reading of this thesis and Alexander
Hardt-Stremayr for interesting discussions related to this thesis.

ix

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Contributions . 2

1.3 Outline . 5

2 Related Work 7
2.1 Basic Techniques for Product Configuration Systems 7

2.2 Types of Product Configuration Systems 13

2.3 Maintaining Product Configuration Systems 22

3 Constraint-based Product Configuration Systems 33
3.1 Constraint Satisfaction Problems 33

3.2 Definitions . 38

3.3 Running Examples . 44

4 Anomaly Management for Constraint-based Product Configuration
Systems 55
4.1 Types of Anomalies in Constraint-based Product Configura-

tion Systems . 55

4.1.1 Conflicts and Diagnoses 55

4.1.2 Redundancies . 57

4.1.3 Well-formedness Violations 59

4.2 Anomaly Explanation . 60

4.3 Automated Repair of Scoring Rules 63

4.4 Visualization of Conflicts . 76

xi

Contents

5 Intelligent Supporting Techniques for Maintaining Constraint-based
Systems 89
5.1 Recommendation Techniques 90

5.2 Anomaly Management . 92

5.2.1 Inconsistencies . 93

5.2.2 Redundancies . 99

5.2.3 Well-formedness Violations 106

5.3 Dependency Detection . 109

5.4 A Goal-Question-Metrics Model for Product Configuration
Knowledge Bases . 115

5.4.1 Goals for Product Configuration Knowledge Bases . . 115

5.4.2 Questions for Product Configuration Knowledge Bases 117

5.4.3 Metrics for Product Configuration Knowledge Bases . 119

5.4.4 Discussion . 124

5.5 Test Case Generation . 128

5.6 Constraint-based Product Configuration system Development 131

6 Interfaces for the Maintenance of Constraint-based Systems 135
6.1 Current user Interfaces for the Maintenance of Constraint-

based Systems . 135

6.2 iCone: an Interface for the Maintenance of Constraint-based
Systems . 156

7 Conclusion 167
7.1 Summary . 167

7.2 Further Research . 169

Bibliography 171

xii

List of Figures

1.1 Intelligent support for the maintenance of product configura-
tion knowledge bases . 3

3.1 Different types of anomalies. 40

4.1 Graphical representation of all conflicts in Example 3.3 calcu-
lated with HSDAG and QuickXPlain. 57

4.2 Example financial service recommender applications 74

4.3 Notebook recommendation . 78

4.4 Presentation of 1 to n diagnoses denoted as ’change recom-
mendation’ . 79

4.5 Presentation of 1 to n conflicts 79

4.6 Presentation of 1 to n diagnoses and conflicts 80

4.7 Presentation of fitness values 80

4.8 Ranking of selected diagnosis / conflict 85

5.1 Number of consistency checks for calculating diagnoses . . . 100

5.2 Number of consistency checks of redundancy detection algo-
rithms . 103

5.3 Graphical representation for detecting redundant assignments 107

5.4 Detection of redundant assignments 108

5.5 Visualization of changes for the metric DEAD. 127

6.1 RecoMobile user interface for the representation of (adap-
tive) defaults. 146

6.2 Configuration comparison interface based on price ranking. . 147

6.3 Configuration comparison interface based on utility-based
ranking. 148

6.4 Configuration comparison interface based on utility-based
ranking. 148

xiii

List of Figures

6.5 Combeenation: integrated development and visualization of
configurators. 152

6.6 A prototype web-based bicycle configurator 156

6.7 Main screen of the icone interface 157

6.8 Presentation of constraints and recommendation techniques . 159

6.9 Presentation of anomalies in the iCone interface 161

6.10 Dependencies of constraints . 162

6.11 Dependencies of domain elements between two variables . . 163

6.12 Visualization of metrics . 165

xiv

List of Tables

2.1 Classification of configuration systems 14

2.2 Evaluation of constraint representations 17

2.3 Methods for KBS validation and timing in the life-cycle 29

2.4 Applicability of evaluation techniques to KBS development
artifacts . 31

3.1 Example customer variables . 47

3.2 Scoring rules for customer variable investment period 48

3.3 Scoring rules for customer variable goal 48

3.4 Example customer requirements 49

3.5 Interests of customer Robert . 49

3.6 Example set of financial services 50

3.7 Example product variables . 50

3.8 Recommendation result . 51

3.9 Scoring rules for product variable shares. 51

3.10 Scoring rules for product variable value fluctuation. 51

3.11 Product-specific scoring rules {up1, . . . , up6} 51

3.12 Product-specific scoring rules {up7, . . . , up12} 51

3.13 Example constraints . 52

3.14 Utilities of products regarding interest dimensions 52

3.15 Utilities of products for customer Robert. 52

3.16 Examples of intended service orderings. 52

4.1 Product configuration analysis operations, property checks,
and related explanations . 64

4.2 Utilities of products for customer Robert 73

4.3 Performance of the Minos solver 76

4.4 Overview of the user activities and scenarios 79

4.5 Inconsistency resolving time 83

xv

List of Tables

4.6 Inconsistency repair time . 84

4.7 Understandability of inconsistencies 86

4.8 Satisfaction with the product assortment 86

4.9 Satisfaction with the presented conflicts 87

5.1 Collaborative filtering example 91

5.2 Content-based recommendation example 92

5.3 Evaluation of FastDiag and HSDAG with the Car Selection FM 97

5.4 Evaluation of FastDiag and HSDAG with the SmartHome V
2.2 FM . 98

5.5 Evaluation of FastDiag and HSDAG with the Xerox FM . . . 99

5.6 Evaluation of CoreDiag with selected S.P.L.O.T. feature models102

5.7 Relations between goals and metrics 118

5.8 Relations between metrics and questions 125

5.9 Anomaly calculation time . 128

5.10 An example for randomly generated test cases. 129

5.11 An example case base for evaluating randomly generated test
cases. 130

6.1 Example of determining relevant questions on the basis of
collaborative filtering . 143

6.2 Example of determining default values for the paramaters of
the computer configurator on the basis of collaborative filtering 145

6.3 Example list of user preferences. 145

6.4 Example list of product utilities. 147

6.5 Example of determining relevant constraints on the basis of
collaborative filtering . 150

6.6 Design principles of configurator user interfaces and techno-
logical foundations. 154

xvi

List of Algorithms

1 QuickXPlain(CKB, CR):∆ . 93

2 QuickXPlain’(CKB, ∆, CR = {C1, ..., cr}):∆ 94

3 FastDiag(CR, C):∆ . 95

4 DIAG(∆, CR = {c1, ..., cr}, C):∆ 96

5 SEQUENTIAL(C): ∆ . 101

6 CoreDiag (C): ∆ . 101

7 CoreD(CKB, ∆, CR = {c1, c2, ..., cr}): ∆ 102

8 AssignmentSequential . 106

9 DeadDomainElement (V, D, C): ∆ 109

10 FullMandatory (V, D, C): ∆ . 110

11 UnnecessaryRefinement (C, V): ∆ 111

12 GibbsSampling . 112

xvii

List of abbreviations

CBS Constraint-based system
CSP Constraint satisfaction problem
FM Feature Model
FOL First order logic
GQM Goal, Questions, and Metrics
HSDAG Hitting set directed acyclic graph
KB Knowledge base
KBS Knowledge-based system
MAUT Multi attribute utility theory
OWL Web Ontology Language
PCS Product Configuration System
QX QuickXPlain
UC Utility constraint

xix

”Building Knowledge-based Systems
is something of an art.”

Preece, 1998

1 Introduction

1.1 Motivation

’I want to buy this car but the color should be black instead of blue.’ ’The notebook
should have 8GB RAM and not 4GB.’ ’We have to change our production line s.t.
we can also manufacture mountain bikes for children not only for adults.’

In today’s world many products are highly configurable because the
costs for offering such techniques have decreased, the usability of such
systems has got better, and the number of people having internet access has
also been increasing enormously for decades. Configurable products are
characterized by specific product attributes which are comparable. Examples
for configurable product domains are cars, notebooks, bikes, and financial
services.

Mass customization supports customers getting their individual products
based on a standardized basic model [Reichwald and Piller, 2009]. Especially
for highly customizable products the purchase of such products increases
when customers have greater confidence in their individual preferences
[Fogliatto et al., 2012; Bharadwaj et al., 2009]. A customized product can
be denoted as variant (economic term) or instance (technical term). Several
techniques have been developed to support mass customization strategies.
For example, constraint-based systems and configuration systems try to find
a configuration for a product which satisfies as many customer preferences
as possible [John and Geske, 2003]. The implementation process of a system,
which detects optimal product configurations, is denoted as knowledge

1

1 Introduction

base development. The development process contains requirements speci-
fication, implementation, and testing of the new created knowledge base
[Felfernig et al., 2014c; Studer et al., 1998].

While the process of creating a new knowledge base can be seen as a finite
process with a starting (e.g., a kickoff meeting) and a finishing point (e.g.,
first productive usage of the new knowledge base), the requirements for
such systems are changing over time. For example, new vendors for the cus-
tomizable product lead to new specification of the products, new customer
requirements lead to updates of the customer interface and the knowledge
base, and new requirements from the marketing team (e.g., introducing
mountain bikes for children) lead to new requirements. This means that
we have to adapt knowledge bases with thousands of product attributes
and the relations between these attributes. Such adaption processes are
time consuming and error prone. Gartner [2005] defines ten risks when
configuration knowledge bases will be introduced in companies. One of
these risks is the maintenance of the product configuration. If the product
knowledge base can not be updated correctly and in time, the system will
not be fit to the customers’ preferences.

1.2 Contributions

The maintenance task for product configuration systems subsumes the
following steps. First, a concrete semi-formal specification is necessary.
Therefore, the knowledge of all stakeholders for this maintenance task has
to be considered. Second, influences on the existing knowledge base have
to be observed and evaluated. Third, besides the functional requirements
beyond the specification knowledge engineers also have to consider non-
functional requirements like the performance of the system. If all changes
of the updated knowledge base are considered, the knowledge engineer
can bring the updates into the productive system. Since all of the tasks of
knowledge engineers are very complex, we are answering the following
research question in this thesis:

2

1.2 Contributions

How can we support knowledge engineers in their product
configuration knowledge base maintenance tasks?

To tackle this research issue we first analyzed the maintenance task and
its issues. For example, the complexity and size of a knowledge base leads
to unconsidered elements of a knowledge base and a misunderstanding of
anomalies can lead to invalid updates of the knowledge base. To tackle this
issues we take a look at possible intelligent support techniques for product
configuration knowledge bases. An overview of these techniques is given in
Figure 1.1.

Figure 1.1: Intelligent support for the maintenance of product configuration knowledge
bases. This thesis focuses on presenting recommendations, detecting anomalies
and dependencies, and calculating metrics [Wotawa et al., 2015a].

3

1 Introduction

The figure consists of five main parts. First, the knowledge base itself is
a representation interface of the configurable product in a formal represen-
tation (e.g., CSP). The knowledge base has to be saved (e.g., in a database)
and a solver can determine, if a configuration is consistent. The results of
the knowledge base - (in)consistent products and configurations - will be
presented to customers and knowledge engineers (interface).

Finally, our research focuses on the maintainability of constraint-based prod-
uct configuration knowledge bases for knowledge engineers and adaptability of
end-user preferences. With this technique we can configure and rank products
in constraint-based recommendations systems. Our research for end-users
consist of the optimal presentation technique of the no-solution-could-be-
found-dilemma in terms of satisfaction, time, and understandability.

For knowledge engineers we researched anomaly management which
is the detection, presentation, explanation, and repair action of inconsisten-
cies, redundancies, and well-formedness violations. Recommendation systems
divide information into relevant and unnecessary information. We use this
technique to present relevant information to knowledge engineers instead
of the whole information within a knowledge base. To generate reports for
variety management (e.g., ’How many bikes can be used for hill climbing?’)
we detect dependencies between product attributes. Finally, to predict the
future effort for maintaining the knowledge base, we also introduced a GQM
approach for product configuration knowledge bases to evaluate the quality
of a knowledge base in terms of understandability, maintainability, and
functionality.

With these techniques we help knowledge engineers in their maintenance
tasks. This thesis shows how we can increase the understandability and
maintainability of knowledge bases by using the techniques depicted in
Figure 1.1.

4

1.3 Outline

1.3 Outline

Chapter 2 gives an overview of current research in the context of product
configuration. Different concepts and types of product configuration systems
are presented in Section 2.1. An overview of related work in the context
of recommendation techniques [Felfernig et al., 2013b], basic approaches
for the detection of inconsistencies [Felfernig et al., 2013c, 2014e], the state-
of-the-art of simulation techniques, and related research in the context of
knowledge base evaluation is given in Section 2.3.

The next Chapter 3 describes constraint-based product configuration
systems. Therefore, we first describe principles of constraint satisfaction
problems (Section 3.1; Reinfrank et al. [2015a]). Section 3.2 introduces basic
definitions which will be used in this thesis [Reinfrank et al., 2015a]. To
explain the techniques, which are presented in this thesis, we introduce
running examples in Section 3.3.

The term anomaly management will be explained in detail in Chapter 4.
The different types of anomalies - inconsistencies (Section 4.1.1; Felfernig
et al. [2014e]), redundancies (Section 4.1.2; Felfernig et al. [2014d]), and
well-formedness violations (Section 4.1.3; Felfernig et al. [2013a]; Benavides
et al. [2013, 2010]) - are explicated in detail in Section 4.1. How an anomaly
can be explained to a user is described in Section 4.2 [Felfernig et al.,
2013a]. Possible repair actions for inconsistencies will be listed in Section 4.3
[Felfernig et al., 2013c]. Finally, Section 4.4 explains how inconsistencies can
be presented to end-users and it shows the influences of the representation
regarding understandability and satisfaction with the presentation [Wotawa
et al., 2015b].

Intelligent supporting techniques for knowledge engineers are described
in Chapter 5. Based on the description in Figure 1.1, we first explain how
we can divide the information within a knowledge base into relevant and

5

1 Introduction

unnecessary information for a specific maintenance task (Section 5.1; Felfer-
nig et al. [2013b]). Section 5.2 describes techniques to find anomalies in a
product knowledge base [Reinfrank et al., 2015a; Felfernig et al., 2012a; Schu-
bert et al., 2011]. We give a brief information about current inconsistency
and diagnosis algorithms, explain current and new redundancy detection
algorithms, and introduce algorithms for finding well-formedness violations.
How simulation techniques can be used to detect dependencies between
variables, is explained in Section 5.3 [Reinfrank et al., 2015a]. To measure
the quality of a knowledge base, we describe a GQM approach for evaluat-
ing a product configuration knowledge base (Section 5.4; Reinfrank et al.
[2015b]). A technique for automated test case generation and collaborative
verification of these test cases is presented in Section 5.5 [Reinfrank et al.,
2015c]. Besides the support for knowledge base maintenance tasks we give
a short overview of principles for product configuration knowledge base
development in Section 5.6 [Reinfrank et al., 2015c].

Apart from the calculation of anomalies and the implementation of intel-
ligent supporting techniques for knowledge engineers the presentation of
the information also plays an important role. Chapter 6 describes interfaces
for knowledge-based product configuration systems. Section 6.1 gives an
overview of current interfaces for such systems and describes requirements
regarding such systems [Felfernig et al., 2014a]. In Section 6.2 we introduce
our new web-based maintenance tool for product configuration knowl-
edge base and show how we have implemented the intelligent supporting
techniques for knowledge engineers presented in this thesis in our system
[Wotawa et al., 2015a].

Finally, Chapter 7 concludes this thesis with a summary (Section 7.1)
and gives hints for future research (Section 7.2) in the context of product
configuration knowledge bases.

6

2 Related Work

There is a long history of research on modeling constraints and improving
knowledge engineering processes. Early research focused on model-based
knowledge representations that allowed a separation of domain and problem
solving knowledge. An example of such a representation is the constraint
presentation which became extremely popular as a technological basis for
industrial applications [Freuder, 1997]. As the next step, graphical knowl-
edge representations [Felfernig et al., 2000] and intelligent techniques for
knowledge base testing and debugging have been developed [Felfernig
et al., 2004a]. The following sections describe the state-of-the-art in research
focusing on representing knowledge with constraint-based technologies and
supporting techniques for knowledge base maintenance.

2.1 Basic Techniques for Product Configuration
Systems

First, this section gives an overview about different concepts of product
configuration systems in general. Thereafter three basic techniques for
commercially successful configuration systems will be described: constraint-
based product configuration (one product can be customized), knowledge-
based product recommendation (many products can be compared based on
their quantitative product attributes, e.g., price), and MAUT (multi attribute
utility theory; many products can be compared based on their qualitative
product attributes, e.g., risk).

7

2 Related Work

Different Conceptualizations of Product Configuration
Systems1

The artificial intelligence community addresses a software tool when
speaking about configuration systems. Bourke [2000] defines a product
configuration system as ’...software modules with logic capabilities to create,
maintain, and use electronic product models that allow complete definition of all
possible product option and variation combinations, with a minimum of data entries
and maintenance’. The main technical component of the configuration system
is the knowledge base which consists of the database and configuration
logic. Whereas the database contains the total set of component types and
their instances, the configuration logic specifies the set of restrictions on
how components can be combined. In the following, different classifications
of product configuration systems are presented.

Classification according to the configuration knowledge. The conceptu-
alizations of configuration knowledge can be classified to (a) rule-based,
(b) case-based and (c) model-based approaches. Each approach relies on a
different ontology that is required to represent the domain knowledge and
describe the object types (variables and domain elements) and the relations
among object instances (constraints) [Sabin and Weigel, 1998].

• Rule-based approach: rule-based configuration systems work by exe-
cuting rules with the following form: “if condition then consequence”.
The product solutions are derived in a forward-chaining manner. At
each step, the system examines the entire set of rules and considers
only the set of rules that can be executed next. Furthermore, there is
no separation between directed relationships and actions. Thus, rules
contain both the domain knowledge such as compatibilities between
components and the control strategy that is necessary to compute the
solution to a specific configuration problem [Sabin and Weigel, 1998].
The main drawbacks of rule-based systems are ascribed to the prob-
lems encountered during knowledge acquisition, consistency checking,
knowledge maintenance, etc. [Günter and Kühn, 1999].

1This section is taken from Blecker et al. [2004].

8

2.1 Basic Techniques for Product Configuration Systems

• Case-based approach: case-based reasoning relies on the assumption
that similar problems have similar solutions. The required knowledge
for reasoning consists of cases that record a set of product config-
urations accepted by earlier customers. The current configuration
problem is solved by finding and adapting a previous solution to
similar customer requirements.

• Model-based approach2: The most important model-based representa-
tion for product configuration systems are: logic-based, resource-based
and constraint-based approaches [Sabin and Weigel, 1998]. The most
prominent family of logic-based approaches is based on description
logic. Description logics are formalisms for representing and reasoning
with knowledge. They are based on the notions of individuals (ob-
jects), concepts (unary predicates, classes), roles (binary relations) and
constructors that allow complex concepts and roles to be built from
atomic ones. The inference mechanism is based on subsumption. How-
ever, resource-based systems are based upon a producer-consumer
model of the configuration task. Each technical entity is characterized
by the amount of resources it supplies, uses and consumes. A prod-
uct configuration is acceptable when a resource balancing is realized
[Juengst and Heinrich, 1998]. In constraint-based reasoning compo-
nents are defined by a set of variables and their domain elements.
Constraints among domain elements restrict the ways components
can be combined [Tsang, 1993]. For example, a restriction can forbid
a combination of parts (domain element dom1 ∈ dom(va) cannot be
combined with dom2 ∈ dom(vb)) or can require a specific combination
(dom1 ∈ dom(va) requires dom2 ∈ dom(vb)).

Classification according to the business strategy. From the point of view
of mass customization, three main strategies with different requirements on
product configuration systems are distinguished, namely assemble-to-order,
fabricate-to-order and engineer-to-order. The assemble-to-order concept
enables customers to configure a product by combining a finite number of
standard domain elements. However, fabricate-to-order and engineer-to-
order may assume an infinite number of configuration possibilities. The

2The next section describes this technology in more detail.

9

2 Related Work

technical realization of configuration systems for fabricate- and engineer-
to order is more demanding than those for assemble-to-order because a
parametrization of component dimensions should be made possible.

Classification according to organization. The organization of a configu-
ration system can be either central or distributed. A central configuration
system works locally and its configuration knowledge is completely stored
in one unique system. All potential product instances that may represent a
solution to the customer configuration problem are derived from this local
data and one knowledge engineer maintains this knowledge base. How-
ever, the knowledge base of a distributed configuration system is locally
incomplete. It is integrated with other configuration systems (e.g. ,suppliers’
configuration system) in order to generate consistent product instances
for specific customer requirements and many knowledge engineers are
maintaining this knowledge base.

Internal vs. external configuration systems. Internal configuration sys-
tems are only implemented for a companies internal use. For example,
internal configuration systems support sales’ experts in capturing a cus-
tomer’s requirements and translating them into technical features without
errors. However, external configuration systems are designed to provide
customers with a direct assistance during product configuration. They are
equipped with front-end interfaces to facilitate the configuration task for
customers.

Classification of configuration systems according to the interaction nature.
Configuration systems can be classified according to the nature of inter-
action which can be either offline or online. Offline configuration systems
work independently from networks. The necessary data for configuration is
stored on a data carrier such as an USB-stick, CD-ROM, or DVD-ROM. After
product configuration, customers can send the specifications via e.g., e-mail
or fax. However, online configuration systems enable a communication with
customers over the internet. The configuration knowledge is stored on a
central web-server. Therefore, the knowledge base can be updated efficiently.

10

2.1 Basic Techniques for Product Configuration Systems

Online configuration systems can be further divided into two categories:
online configuration systems with central data processing and online con-
figuration systems with local data processing. Online configuration systems
with local data processing require the load of the configuration application
(Java Applets, Full Java Applications) onto the customer’s local unit. How-
ever, configuration systems with central data processing are characterized
by continuous communication between the supplier’s central server and the
customer’s local PC, notebook, tablet, or mobile phone.

Classification of configuration systems according to the updates’ execu-
tion. The updates’ execution can be either push or pull. A push mode is
realized when the supplier’s central server containing the product configu-
ration communicates product updates to the customer’s local device. In this
mode, the central server imposes the updates that have to be accepted by
the local device. In contrast, one speaks about a pull mode when the local
device retrieves the updates if required.

Classification of configuration systems according to the scope of use.
Configuration systems can be categorized as single-purpose and general-
purpose systems. A single-purpose system is developed to support the
sales-delivery process of a product or a set of products of only one com-
pany or business field. Single-purpose configuration systems are called
special-purpose configuration systems and may be designed for a particular
industry such as e.g., bike and car industry. However, general-purpose
systems are used to configure diverse product types in different compa-
nies (e.g., knowledge-based notebook and mobile phone recommendation
systems) [Tiihonen and Soininen, 1997].

Classification of configuration systems according to their complexity.
Product configuration systems can be classified according to their design
complexity. Tiihonen and Soininen [1997] distinguish between primitive,
interactive and automatic systems. Primitive product configuration systems
are the simplest ones. They merely record the configuration decisions made
by the user without checking the validity of decisions. However, interactive

11

2 Related Work

configuration systems are capable of checking as to whether the conjunction
of product knowledge with the customer requirements is valid. They also
guide users in making all of the necessary decisions. In addition to the
range of functions of interactive configuration systems, automatic ones are
able to provide full support and to automatically generate parts or even
entire configurations.

Classification of configuration systems according to their integration level.
At the integration level, we can distinguish between stand-alone, data-
integrative and application-integrative configuration systems. Stand-alone
configuration systems cannot be integrated because they do not dispose of
interfaces to other information systems. They just consist of an input for a
model, a solver, and an output for the result. Data-integrative configuration
systems enable one to store the model (see Figure 1.1). However, application-
integrative configuration systems enable the integration of whole appli-
cations. For example, when configuration systems and CAD-system are
integrated, drawings of new parts or components can be automatically
generated for customers.

Classification of configuration systems according to the solution searching
approach. There are two main solution-searching approaches: either by
technical elements or by features. Searching by technical elements means
that the configuration systems enables customers to start from a standard
product and then to specify step-by-step product options (defaults; e.g.,
Felfernig et al. [2014c]; Mandl et al. [2011a]).3 However, a configuration
system is working by attributes provided to customers with the possibility
to specify their requirements. Then, configuration systems search for product
variants that best fit to the attributes specified by customers (features).

Classification of configuration systems according to their support of the
product life cycle. The product life cycle support refers to product recon-
figuration. This is necessary when customers would like to upgrade the

3Critiquing-based recommendation systems work in this way [Chen and Pu, 2006].

12

2.2 Types of Product Configuration Systems

product by new or better attributes or to replace non-functioning parts
or modules for which identical replacements no longer exist [Sabin and
Weigel, 1998]. The different cases that can be encountered are: (a) configu-
ration system without reconfiguration, (b) separate configuration system
and reconfiguration system and (c) integrated configuration system with
reconfiguration.

We use a morphological box to sum up all possible combinations of clas-
sifications. The morphological box was introduced for the first time as an
efficient tool for creativity and structuring of ideas by Zwicky [1966]. The
main advantage of morphological boxes is that they present in a straightfor-
ward manner all of the possible solution alternatives for a specific problem.
Therefore, we present all of the results of the configuration systems’ classifi-
cation in a morphological box (see Table 2.1). This model should provide
software engineers and developers with the main dimensions to be con-
sidered when designing a configuration system. The decisions to be made
relate essentially to the values to be taken by each dimension. The high-
lighted fields in Table 2.1 show the relevant characteristics of the examples
in this thesis. In the following Section this thesis describes three different
types of model-based configuration systems.

2.2 Types of Product Configuration Systems

This section shows, how constraint-based configuration systems, knowledge-
based recommendation and MAUT-based systems can be used as product
configuration systems. We explain subtypes of those systems and lists pre-
liminaries for each system.

13

2 Related Work

K
now

ledge
base

R
ule-based

C
ase-based

M
odel-based

Strategy
A

ssem
ble-to-order

Fabricate-to-order
Engineer-to-order

O
rganization

C
entral

D
istributed

Internal/external
Internal

External
Interaction

nature
O

nline
central

O
nline

local
O

ffline
Interaction

nature
data

processing
data

processing
U

pdates’execution
push

pull
Scope

of
use

Single
purpose

G
eneralpurpose

C
om

plexity
Prim

itive
Interactive

A
utom

atic
Integration

level
Stand-alone

D
ata-integrative

A
pplication-integrative

Solution
searching

Technicalelem
ents

Features
approach
Product

life
C

onf.system
Separate

conf.system
Integrated

conf.
cycle

support
w

ithout
reconf.

and
reconf.system

system
w

ith
reconf.

Table
2.

1:C
lassifi

cation
of

confi
gu

ration
system

s.
T

he
highlighted

cells
in

this
table

show
the

characteristics
of

the
exam

ples
in

this
thesis

(see
section

3.
3).

14

2.2 Types of Product Configuration Systems

Constraint-based Product Configuration4

Product configuration systems are important enablers of the mass cus-
tomization paradigm: people can customize a product according to their
own needs [Pine, 1992]. They are considered to be among the most successful
applications of artificial intelligence technology.

Product configuration systems can be implemented at the interface be-
tween a supplier and its customers over the Internet in order to support
the configuration task. Given a set of customer requirements and a product
family description, the configuration task is to find a valid and completely
specified product structure among all alternatives that the generic structure
describes [Sabin and Weigel, 1998]. In this context, customers are provided
with the possibility to alter a basic product and to graphically visualize the
effects of these changes.

Several techniques exist to model product configuration knowledge in a
constraint-based system. In the following, we give a short introduction into
some of those systems.

Static CSP (SCSP). A static constraint satisfaction problem (CSP) is a tu-
ple (V, D, C) where V is a set of all variables. Those variables model product
attributes and customer requirements. The set D consists of all domain ele-
ments for each variable, s.t., D = {dom(v1) = {dom1, . . . , domn}, . . . , dom(vn) =
{dom1, . . . , domn}}. A set of constraints C restricts the number of consistent
assignments for the variables. This technique is used in this thesis and
therefore explained in detail in Section 3.1.

4This section is taken from Hotz et al. [2014].

15

2 Related Work

Satisfiability problems (SAT). A SAT problem is similar to static CSPs
except the variable domains are restricted to the Boolean values true and
f alse. It is to identify an assignment to the given Boolean variables in such
a way that the mentioned formula in conjunctive normal form evaluates to
true. This is the case if each clause has at least one literal that evaluates to
true. For a more detailed discussion of SAT solving and related algorithms,
we refer the reader to Claessen et al. [2008].

Dynamic constraint satisfaction (DCSP). Configuration tasks very often
include variables that do not have to be taken into account in specific con-
figuration contexts. For instance, in a notebook configuration, the variable
BlueTooth is not relevant if the user is not interested this technology. The
property of a new variable irrelevance is implemented in terms of variable
deactivation; that is, if BlueTooth is not part of the configuration, the value
of the variable irrelevance is set to 0 (f alse). Such a reasoning about activ-
ity states in DCSPs is based on predefined activity constraints. A formal
discussion of the properties of DCSPs can be found in Bowen and Bahler
[1991]. The concept of variable activation has also been applied in other
approaches. For example, generative constraint satisfaction (GCSP) based
systems [Stumptner et al., 1998] generalize the concept of variable activation
to the concept of component and constraint activation. The configuration
environment of SIEMENS is based on such a generative approach [Falkner
and Schreiner, 2014].

Generative constraint satisfaction (GCSP). Major drawbacks of static
(and dynamic) CSPs include representational limits in terms of dealing with
variables and variable values instead of component types and corresponding
components (instances). Another disadvantage is that static CSPs are limited
with regard to the description of configuration problems in which the size
and structure of configurations cannot be estimated beforehand. Generative
constraint satisfaction (GCSP) helps to overcome these problems by moving
variables and corresponding constraints to the level of component types
and meta-constraints (generic constraints). Generic constraints (constraint
schemata) help to identify and generate relevant additional components and

16

2.2 Types of Product Configuration Systems

Criteria SCSP SAT DCSP GCSP
Standard graphical modeling concepts? - - - -
Component-oriented modeling - - - +
Automated consistency maintenance ∼ ∼ ∼ ∼
Modularization concepts available - - - +
Support of easy knowledge base ∼ ∼ ∼ ∼
evolution and maintenance
Model-based knowledge representation + + + +
Efficient reasoning + + + +
Able to solve generative problem settings - - - +
Able to provide explanations + ∼ + +

Table 2.2: Evaluation of constraint representations [Hotz et al., 2014]. + = good support, ∼
= some support, - = no support

variables that are relevant in the current configuration context. A detailed
description of GCSPs can be found in Stumptner et al. [1998].

We now compare the configuration knowledge representations that have
been discussed within the scope of this section (SCSP = static constraint
satisfaction, SAT = SAT solving, DCSP = dynamic constraint satisfaction,
GCSP = generative constraint satisfaction). We provide an overview based
on nine criteria in Table 2.2. A detailed description of the criteria and an
overview of other representation techniques is given in Hotz et al. [2014].

This thesis shows how we can reduce the effort for maintaining constraint-
based product configuration systems via detecting anomalies (Section 4.1),
explaining the anomalies (Section 4.2), generating recommended items from
the knowledge base to a particular knowledge engineer (Section 5.1), and
calculate metrics to evaluate the difficulty for maintenance tasks (Section
5.4). Examples 3.2 and 3.3 represent constraint-based product configuration
systems.

17

2 Related Work

Knowledge-based Product Recommendation5

The main difference between constraint-based product configuration and
knowledge-based product recommendation is, that product configuration
systems have one configurable product (e.g., the brand Gol f of the manu-
facturer Volkswagen) whereas knowledge-based product recommendation
present a set of predefined products to a customer and she has to decide,
which product fits her needs.

Compared to other recommendation systems knowledge-based product
recommendation systems are characterized by the two knowledge aspects
not found in the other designs: namely user requirements and domain
knowledge. Obviously, there are collaborative and content-based recommen-
dation systems that allow users to pose queries or that have some forms of
heuristics with respect to their content. What distinguishes a knowledge-
based approach is that its emphasis: emphasis on the user’s situation and
how recommended items can meet that particular need.

If we consider the knowledge sources used in collaborative and content-
based recommendation, it is clear that the knowledge-based category itself is
something of an accident of history. Systems that used additional knowledge
sources came to be defined as ”knowledge-based” because they relied more
heavily on knowledge sources that were not being employed by the more
widely-used techniques.

There are two well-known approaches to knowledge-based recommenda-
tion: case-based recommendation [Burke, 2000; Mirzadeh et al., 2005; Ricci
and Nguyen, 2007; Smyth et al., 2004] and constraint-based recommendation
[Thompson et al., 2004; Felfernig et al., 2007b]. In terms of used knowledge
sources, both approaches are quite similar. Systems of both types must, for
example, collect the requirements of the current user in order to derive new

5This section is taken from Felfernig and Burke [2008].

18

2.2 Types of Product Configuration Systems

solutions, propose repairs in situations where no solution could be found
and support explanations for the recommended items.

Case-based recommendation treats recommendation as primarily a simi-
larity-assessment problem. How can the system find a product that is most
similar to what the user has in mind, with the understanding that what
counts as similar will often involve domain-specific knowledge and consid-
erations. Constraint-based recommendation takes into account explicitly
defined constraints (e.g., filter constraints or incompatibility constraints).
If no item really fits the wishes of a customer (the calculated similarity
value exceeds a certain threshold for all relevant products or the set of
constraints is inconsistent with the given set of customer requirements) both
knowledge-based approaches exploit mechanisms supporting the determi-
nation of minimal set of changes to the given set of customer requirements
such that a solution can be found - see, for example McSherry [2004];
Felfernig et al. [2007b].

The interaction with a knowledge-based recommendation application is
typically modeled in the form of a dialog (conversational recommender)
where users can specify their requirements in the form of answers to ques-
tions or rates for product attributes [Burke, 2000; Thompson et al., 2004;
Mirzadeh et al., 2005; Ricci and Nguyen, 2007; Felfernig et al., 2007b]. This
dialog can be modeled explicitly, for example, in the form of a finite state
automaton (see, e.g., Felfernig et al. [2007b]) or in a way which allows
the user to select interesting attributes (questions) on her own [Mirzadeh
et al., 2005]. Furthermore, user interaction with a recommender application
can be enriched with natural language interaction [Thompson et al., 2004]
which allows a more flexible interaction processes. For example, users can
specify component properties on a textual level without being forced to
answer a potentially larger number of questions. Another interesting aspect
of additional textual interfaces is the flexibility to support queries which
are not directly related to product search but to issues such as questions
regarding the functionality or technical questions.

19

2 Related Work

Many case-based recommendation applications support the concept of
critiquing (see, e.g., Burke [2000]; Smyth et al. [2004]; Chen and Pu [2006]),
in which the user responds to a recommended item by identifying how it
differs from their ideal. For example, a user presented with a restaurant
featuring a traditional style of food may apply the critique ”More Creative”
and obtain a more contemporary take on the same cuisine [Burke et al.,
1997]. Such an interface has the advantage of allowing the user to formulate
requirements on the fly, in response to examples. Critiquing interfaces
promise a faster identification of interesting recommendations in terms
of less decision effort, better decision accuracy, and increase of a user’s
confidence in a decision [Chen and Pu, 2006]. Recent research has moved
from unit critiques, in which the user identifies specific item properties
to critique (e.g., “I would prefer a camera with a lower price”), to more
complex compound critiques, that move along several feature dimensions at
once. Such critiques can be manually engineered (as in Burke et al. [1997])
or can be automatically generated from the existing product assortment by
mining association rules representing representative critique patterns in the
available assortment [Smyth et al., 2004].

This thesis uses the knowledge-based product recommendation technique
for explaining assignment-based redundancy detection (Section 5.2.2), de-
tecting dependencies between items in the knowledge base (Section 5.3),
and generating test cases (Section 5.5). Furthermore, the study in Section
4.4 is based on a knowledge-based product recommendation. Example 3.1
describes a knowledge-based product recommendation.

Multi-Attribute Utility Theory6

Products included in a recommendation have to be ranked according
to their relevance for the customer [Felfernig et al., 2006a; Felfernig and
Burke, 2008]. In the line of serial position effects which induce customers to

6This section is taken from Felfernig et al. [2013c].

20

2.2 Types of Product Configuration Systems

preferably take a look at and select items at the beginning of a list, the high-
ranking of the most relevant items is extremely important [Gershberg and
Shimamura, 1994; Lashley, 1951]. For the determination of such rankings
we apply the concepts of Multi-Attribute Utility Theory (MAUT) [Keeney
and Raiffa, 1976; Schmitt et al., 2003; von Winterfeldt and Edwards, 1986]
where each product is evaluated according to a predefined set of interest
dimensions which are abstract evaluation criteria for products. Profit and
availability are examples for such interest dimensions in the domain of fi-
nancial services. For example, if a customer is interested in high return rates
and long term investments, the dimension profit is very important. Conse-
quently, customer requirements influence the importance of corresponding
interest dimensions.

Basically, MAUT-based systems describe products in terms of n product
variables v1, . . . , , vn which can assume values from the domains dom(v1), . . . ,
dom(vn). A concrete product cp can be represented as a tuple cp = 〈dom1 ∈
dom(v1), . . . , domn ∈ dom(vn)〉. The overall utility for a product cp is defined
by

U(cp) =
n

∑
i=1

ωi × ui(domi ∈ dom(vi))with
n

∑
i=1

ωi = 1 (2.1)

where domi is cps concrete value for the ith variable vi, ωi is the importance
weight of vi as compared to the other attributes, and ui is a value function
representing the respective utility values of the various possible instantia-
tions of vi. That is, while the various ωi quantify the impact of a variable
on the user’s overall evaluation of an object, the functions ui represent the
user’s preferences regarding instantiations of product variables [Schmitt
et al., 2003].

We use MAUT to describe techniques to repair knowledge bases (Section
4.3) and to evaluate the presentation of products which do not fulfill all of
the customers’ requirements compared to the presentation of conflicts and
diagnoses in Section 4.4. Example 3.4 represents a MAUT system.

21

2 Related Work

2.3 Maintaining Product Configuration Systems

This section gives an overview of the state-of-the-art of several techniques
this thesis uses to create / enhance supporting tools for knowledge engineers
and end-users of product configuration systems.

Recommendation Techniques7

A recommendation technique is a set of knowledge sources and an algo-
rithmic approach to generate recommendations using those sources. There
are of course no a priori limitations on how these different sources of
knowledge can be combined, and in fact, the field of recommender sys-
tems has seen great diversity in approaches. However, certain approaches
have turned out to be practical and effective and are generally accepted
techniques. The following discussion is a brief overview of three common
types of recommendation techniques: collaborative filtering, content-based
recommendation, and knowledge-based recommendation.

Collaborative Filtering

The approach most closely associated with recommender systems since
the field’s inception is of course collaborative filtering or collaborative
recommendation.8 The knowledge sources here are collaborative opinion
profiles, demographic profiles, and user opinions. Of course one of the
strengths of this technique is that little else is required to implement it in its
pure form.

7This section is mainly taken from Felfernig et al. [2013b] and Felfernig and Burke
[2008].

8The ’filtering’ terminology is a legacy from an early application: filtering of interesting
Usenet messages [Konstan et al., 1997].

22

2.3 Maintaining Product Configuration Systems

Many algorithmic approaches have been applied to these knowledge
sources, but in general, the problem can be seen as a form of multi-way
classification task. It differs from classic classification tasks in that there is
no specific dependent class variable being predicted in all situations, but
rather the system may be called upon to make predictions about any item
for any user. Thus collaborative recommendation is not amenable to a strict
application of the tools of machine learning.

The most well-known approach is that of a nearest neighbor, in which
ratings are extrapolated by comparing the user opinion knowledge against
collaborative opinions and extrapolations made [Resnick et al., 1994]. The
popular item-based variant treats the collaborative information as features
associated with items rather than with users [Sarwar et al., 2001]. Model-
based techniques have been employed to compress the collaborative opinion
data, including clustering, singular value decomposition, and others [Sarwar
et al., 2001].

What all of these methods share is their sole reliance on opinions or rating
data as the knowledge source for recommendations. There are well-known
characteristics that result from this choice. First, there is positive benefit
that no other information about users or items is required. This makes the
approach attractive for hard to characterize items, like movies and music.

This technique can be said to be the most mature of the recommendation
technologies and the characteristics of these algorithms are well established.
Collaborative recommendation works best when there is a large amount of
collaborative knowledge available and when there is a substantial history
of user opinions. The density of the collaborative user-item matrix is a
substantial consideration.

23

2 Related Work

Collaborative recommendation can theoretically be applied in any domain.
It places very little restriction on the types of items that can be recommended
and is highly suitable for items in which user tastes vary for reasons that
might be difficult to represent explicitly, such as music and movies. How-
ever, there are considerations that may make a collaborative approach less
attractive. One is opinion density. A user can listen to dozens of music
tracks in a day, and might watch dozens of movies a year, but she would
unlikely to live in dozens of apartments, own dozens of cars or have dozens
of different pets. In some areas it is simply more difficult to accumulate a
pattern of preference. It is possible to ask the user to venture a prospective
opinion without having actually experienced the item in question, but such
opinions will generally be quite speculative compared to those arrived at
through experience.

We use collaborative filtering to distinguish relevant information in a
knowledge base from unnecessary information related to a maintenance
task. The term ’information’ subsumes all objects in a knowledge base like
constraints and variables. A detailed description of this technique in the
context of supporting tools for knowledge engineers is given in Section
5.1.

Content-based Recommendation

Content-based recommendation [Pazzani and Billsus, 1997] is more like
a pure classification task in the machine learning sense. The task is to
learn a specific classification rule for each user on the basis of the user’s
rating information and the attributes of each item so that items can be
classified as likely to be interesting or not. No social knowledge is used. The
content-based problem has been tackled using a variety of machine learning
techniques. However, in general, some of the more sophisticated techniques
have been less successful, due to the sparsity problem. An individual user
profile may not, in many cases, have enough data for a reliable profile.
Simple techniques such as k-nearest neighbors and naive Bayes have often
proved effective here.

24

2.3 Maintaining Product Configuration Systems

Because a content-based recommender has access to item features (e.g.,
keywords or categories), it does not suffer from the new item problem: new
items look just like old items. The new user problem remains since users
must build up a sufficiently rich profile through the addition of multiple
ratings. Depending on the feature set and learning algorithm, however, a
small number of ratings may be sufficient.

Indeed, the quality of the data set becomes of primary importance in
a content-based system. The learned profiles of each user will only be as
good as the system’s level of detail in representing the distinctions that
matter in the domain. The creators of the music recommender Pandora (www.
pandora.com) first developed a highly-detailed representation of musical
form and expression before attempting to build a recommendation system.
Developers must make sure that all items in the catalog have a uniform,
detailed and complete representation: a combination which can be difficult
to achieve in many e-commerce contexts.

Based on variables and domain elements a constraint has, we can use
this technique to find similar constraints. This technique is denoted as
’dependencies between constraints’ and its practical use in the context of
supporting knowledge engineers will be described in Sections 5.1 and 6.2.

Knowledge-based Recommendation

This thesis described maintenance techniques for knowledge-based prod-
uct recommendation systems in the previous Section. We refer the reader to
that section and Mandl et al. [2011a]; Jannach et al. [2010]; Felfernig et al.
[2008a, 2007a, 2006a,c]; Burke [2000].

25

www.pandora.com
www.pandora.com

2 Related Work

Anomaly Management9

Anomalies can be characterized as parts of a knowledge base that conform
to a defined pattern of unintended structures [Chandola et al., 2009]. Current
research is focusing on automated testing and debugging of configuration
knowledge bases [Friedrich et al., 2014]. Anomaly management operations
are very important since configuration knowledge bases are often complex
and subject to frequent changes [Fleischanderl et al., 1998; Barker et al.,
1989].

The foundations for anomaly management are conflict detection and diag-
nosis algorithms that help to detect a) minimal subsets of constraints of the
knowledge base that are responsible for a faulty behavior [Felfernig et al.,
2013c, 2012b, 2004a; Junker, 2004] and b) minimal subsets of constraints which
resolves all conflicts in the knowledge base [Felfernig et al., 2004a; Felfer-
nig and Schubert, 2011b; Felfernig et al., 2013d]. More precisely, conflict
detection algorithms are able to determine minimal sets of constraints that
are inconsistent; that is, do not allow the determination of a solution (valid
configuration respectively no products can be found). In addition, diagnosis
algorithms can determine minimal sets of constraints in the configuration
knowledge base that have to be deleted or adapted such that the remaining
set of constraints is consistent [Friedrich et al., 2014]; that is, a solution can
be determined. Typically, diagnoses are determined from a given set of
(minimal) conflicts and, vice versa, minimal conflicts can be determined on
the basis of a given set of (minimal) diagnoses.

While conflict detection (e.g. QUICKXPLAIN) and diagnoses (e.g. FAST-
DIAG, see Section 4.1.1) algorithms are well discussed, this thesis extends the
work of anomaly management. On the one hand this thesis describes new
types of anomalies - redundancies (see Section 4.1.2) and well-formedness
violations (see Section 4.1.3) - and, on the other hand, extends the term
management with explanations (see Section 4.2) of these anomalies, repair

9This section is based on Felfernig et al. [2013c] and Felfernig et al. [2014e].

26

2.3 Maintaining Product Configuration Systems

of scoring rules (see Section 4.3), and the visualization of inconsistencies to
end-users (see Section 4.4).

Simulation

A simulation model is a computerized model that represents some dy-
namic system or phenomenon. One of the main motivations for developing
a simulation model or using any other modeling method is that it is an
inexpensive way to gain important insights when the costs, risks, or logistics
of manipulating the real system of interest are prohibitive. Simulation can
be used to deal with uncertainty (e.g., unknown dependencies between
elements in a configuration knowledge base), the dynamics of configuration
models (e.g., changes in a configuration knowledge base), and to have feed-
back on interacting with the model (e.g., getting information about effects
when the knowledge base is changed [Kellner et al., 1999]).10 At the moment,
no research has been done in the context of using simulation techniques
concerning developing and maintaining configuration knowledge bases.
Next, we give a short overview of usage scenarios for simulation in related
research areas and similar application scenarios.

Simulation for Requirements Engineering. Complex product configura-
tions are mainly used iteratively, s.t. the requirements are not available at
once. To generate a valid product Rabiser and Dhungana [2007] use the
simulation technology to complete a configuration. The simulator can be set
up using a default configuration for not yet taken decisions to allow its use
even if only few decisions have been taken. Feedback to the simulated con-
figuration help to a) get new requirements and b) get a deep understanding
of the requirements [Rabiser and Dhungana, 2007].

10A detailed description of the advantages of simulation is given in [Kellner et al., 1999].

27

2 Related Work

Simulation for production. In production management many decisions
have to be taken under uncertainty. The simulation technique can help to
reduce the uncertainty via planning product lines and logistics forecasting.
For example, the use of Monte Carlo simulations can predict the number of
produced goods and optimal buffers can be calculated to have an optimal
scalability with low costs for the buffers in mass customization manufactur-
ing processes [Daaboul et al., 2009; Rabe and Jäkel, 2002; Fisher and Ittner,
1999].11

In the context of configuration knowledge base development and main-
tenance we can adapt the application scenarios to approximate several
metrics, rank diagnoses (see Section 5.4), and approximate the possibility
that a combination of variable assignments is consistent (see Section 6.2).

Evaluation and Verification

Evaluation is the verification and validation of constraint-based systems
[Preece, 1998]. Verification is the process of checking whether the software
system meets the specified requirements of users, while validation is the
process of checking whether the software system meets the cuurent require-
ments of the users [Boehm, 1984]. A positively verified system has been built
in conformance with a number of well-defined properties, chiefly freedom
from logical conflict, redundancy, and deficiency [Preece et al., 1992].

O’Keefe and O’Leary [1993] give an overview of the state-of-the-art for
the evaluation of knowledge bases (see Table 2.3).12 Validators typically
use methods to investigate the components of a KBS (individual rules or
constraints, programmed heuristics, the knowledge or conceptual model),
and the entire KBS itself [O’Keefe and O’Leary, 1993].

11For a detailed overview of simulation in production we refer the reader to Olhager
and Persson [2007].

12Note that these authors are focusing on rule-based systems.

28

2.3 Maintaining Product Configuration Systems

General Specific approach timing
approach in process

Component Rule validation early
- manually investigate important rules
Heuristic middle
- compare performance to optimum
- worst case analysis
- distribution sampling
Meta-Models all
- construct and maintain conceptual

model of the knowledge base
System Case testing all

- KBS solves cases, performance
compared to expert

Turing test late
- KBS and experts solve cases,

performances evaluated by third-party
Simulation late
- KBS controls simulation model,

performance evaluated
Control group very late
- KBS implemented for test group,

performance compared to control group
Sensitivity analysis all
- cases altered and input / output

relationships evaluated
Other model late
- another model, e.g. quantitative or

induced
- Constructed and performance compared

to KBS
Line of reasoning middle
- line of reasoning on test cases compared to

elicitation material or export

Table 2.3: Methods for KBS validation and timing in the life-cycle [O’Keefe and O’Leary,
1993]

29

2 Related Work

A typical method for the verification of a KBS is the creation of test cases.
Knowledge engineers have to create and verify such test cases and a correct
KBS returns the expected correct result. There are many difficulties when
using this approach for testing a KBS. On the one hand, the knowledge
engineers have to know the correct behavior of the KBS. In complex domains
this prerequisite could be problematic when even the stakeholders do not
know the correct behavior of the KBS. On the other hand, the effort for
designing, implementing, and executing all test cases could be very time-
consuming and error-prone [Keefe and Preece, 1996].

Preece [1998] defined nine evaluation methods which have to be observed
when engineers want to evaluate knowledge bases successfully. Those arti-
facts can be observed in different phases of a knowledge base development
process:

• Requirements specification: typically in natural language written set
of desired user requirements

• Conceptual model: describes the knowledge content of the KBS in
terms of real-world entities and relations

• Design model: operationalizes the conceptual model into an executable
KBS

• Implemented system: this is the final product of the development
process: the KBS itself

• Inspection: human proof-reading is the most commonly-employed
technique

• Static verification: checking the knowledge base for anomalies like
conflicts and redundancies

• Formal proof: proof techniques can be employed to verify that the
formal artifacts meet the specified requirements

• Cross-reference verification: performs cross-checking between different
’levels’ of KBS descriptions (conceptual model and design model and
design model and implemented system)

• Empirical Testing: running the system with test cases [Preece, 1998]

30

2.3 Maintaining Product Configuration Systems

Table 2.4 gives an overview which evaluation method can be used with
which artifact.

Artifact Evaluation techniques
Conceptual Inspection, static verification (if formalised),

model cross-ref verification (against design model)
Design Inspection, static verification, formal proof,
model cross-ref verification (against conceptual model,

implemented system)
Implemented Inspection, static verification, testing,

system cross-ref verification (against design model)

Table 2.4: Applicability of evaluation techniques to KBS development artifacts [Prerau,
1987]

To sum up, there exist some overviews, for example, of rule-based systems
(see e.g., Keefe and Preece [1996]) but up to now, there does not exist an
overview of how to measure the quality of product configuration systems.
Based on the previous research for quality measurement in rule-based
systems this thesis gives an overview of quality measurement for product
configuration systems in Section 5.4.

31

3 Constraint-based Product
Configuration Systems

This chapter gives an overview of constraint-based systems. Section 3.1
introduces the concept of constraint satisfaction problems and Section 3.2 de-
scribes basic definitions for those systems. Section 3.3 lists running examples
for this thesis.

3.1 Constraint Satisfaction Problems1

We use constraint satisfaction problems (CSP; Tsang [1993]) to represent
constraint-based systems. A constraint satisfaction problem is defined as a
triple KB = {V, D, C}. The following section describes the sets variables V,
domains D, and constraints C.

Variables

V is a set of product and customer variables. Those variables can be
based on objective observations like the screen size of a mobile phone or
the capacity of a memory in a notebook. If product attributes can not be
described quantitatively, domain experts can try to abstract the characteristics
of a product from incomparable values into quantitative values. For example,
it is difficult to compare the uncertainty of financial products. Instead,

1This section is based on Reinfrank et al. [2015a].

33

3 Constraint-based Product Configuration Systems

domain experts can abstract the uncertainty of a financial product e.g., on a
10-point scale.

This abstraction can also be used, if users of configuration systems or
knowledge-based recommendation systems can not compare the value of
a product variable. For example, if a user wants to have a notebook for
writing texts, reading mails, and surfing in the internet, she possibly does
not know the differences of several graphic cards or the characteristics of
a card, which are necessary to fulfill her requirements. In such scenarios,
the system can replace the quantitative description of graphic cards with
subjective descriptions like a usage scenario for notebooks.

All variables have a selection strategy vsel = {singleselect, multipleAND,
multipleOR} which describes if a variable v can have more than one value.
vsel = singleselect shows that the variable v can have either zero or one
assignment. For example, the product variable price has one assignment
(e.g., price = 399). If a variable can have more than one value, we dif-
fer between multipleAND and multipleOR. vsel = multipleAND points
out that a variable can have more than one assignment. For example, a
notebook can have two wireless connections like bluetooth AND WLAN,
s.t. wireless connectionsel = multipleAND. On the other hand, a customer
wants to have a notebook with two OR four cpu cores. We denote such a
selection strategy as multipleOR, s.t. cpu coressel = multipleOR. How the
selection strategy can be considered in a configuration knowledge base will
be described in the following.

Domains

Each variable vi ∈ V has a domain dom(vi) ∈ D that contains a set of all
possible values (not only the assigned values). The domains can have the
following sets of domains:

34

3.1 Constraint Satisfaction Problems

• boolean domain: the domain has two elements. For example, a car
can have either automatic or manual gear shift. In feature models
[Benavides et al., 2010] each variable must have a domain with the
values {true, f alse}.

• finite elements: the common type of domains for knowledge-based rec-
ommendation contains a restricted number of elements. For example,
the brands for a bike are restricted to a finite number.

• interval: if a user of a configuration system has to insert the price
preferences, the system may offer intervals as a representation for the
price preferences.

• infinite elements: theoretically, a variable (e.g., size) can be infinite.
Such domains do not exist in product configuration systems in practice.
Hence, this thesis focuses on boolean and finite domains.

Another characteristic of domain elements is ordering. With respect to
relations between variables and domain elements we first have to define the
ordering of the domain elements. Boolean domains and textual domains
usually can not be ordered. In such cases we can reduce the number of
available relations to REL = {=, 6=}. On the other hand, numeric domain
elements can be ordered and we extend the set of relations to REL′ = {=
, 6=,<,≤,≥,>}.

Finally, we also have to define which of the values within the domain
should be preferred. For example, we assume that a low weight of a bike and
a long guarantee period will be preferred. McSherry [2003] denotes such sit-
uations as lower is better (LIB, e.g., for the weight) and more is better (MIB,
e.g., for the guarantee). A third situation is constituted, if we can not define
whether more or less is better. For example, a high number of gears is
necessary for mountain biking whereas a low number of gears is better for
street racing. Such situations are denoted as nearer is better (NIB; McSherry
[2003]).

35

3 Constraint-based Product Configuration Systems

Constraints

C describes a set of constraints. A constraint describes a relation be-
tween one or more variables and assignments. For example, constraints
define relationships between product variables (e.g., price ≤ 300 implies
f rame material = aluminium) or between product and customer variables
(e.g., customer size ≥ 190cm implies f rame size ≥ 60cm). Those constraints
can be divided into different subsets of constraints which are described in
the following.

Some types of constraint-based systems do not have an open space for
solutions but have products. For example, knowledge-based recommendation
systems are a subset of constraint-based systems and are typically based
on a set of predefined products. For example, mobile phones are typically
predefined and their components can not be changed. Within a constraint-
based system a product can be presented as a conjunctive constraint with all
product variables. The set of all product constraints is a disjunctive query,
s.t., CP = {product0 ∨ product1 ∨ ...∨ productn}.

The set CP can be used to differ between product configuration and
knowledge-based recommendation. Product configuration can be described
as knowledge-based configuration with predefined variables and domains
but it does not contain a specific set of predefined products, s.t., CP =
∅. Each possible combination of product variable assignments is a valid
configuration unless the variable assignments and their combination is not
in conflict with CKB. For example, the car manufacturer BMW offers 1017

different consistent configurations for a BMW series 7 [Hu et al., 2008]. On
the other hand, knowledge-based recommendation contains a set of products.
The products are defined in CP and CP 6= ∅. Typically, mobile phones can
not be configured, but potential customers can select a mobile phone from a
huge assortment based on product attributes (e.g., screen size).

36

3.1 Constraint Satisfaction Problems

Customer requirements represent the preferences of customers in the rec-
ommendation / configuration process. The set of customer preferences is
denoted as CR. For example, a customer can have the preference that a bike
should be cheaper than 599 EUR, s.t., {price < 599} ∈ CR.

Knowledge base constraints - which are denoted as filters in feature models
- in CKB define the relationship between variables and are defined in the set
CKB. For example, the relationship between the customers’ Usage and the
product attributes is c1 := Usage = Competition→ BikeType = RacerBike ∧
FrameSize = 60cm;. The aggregation of customer requirements, constraints,
and products represent the constraints, s.t. CR ∪ CKB ∪ CP = C.

Each constraint c can be divided into assignments. The set of assignments
within a constraint is denoted as A(c). An assignment a ∈ A(c) consists of
one variable v, one relationship rel ∈ REL respectively rel ∈ REL′, and one
value d which is an element of the domain dom(v). The different types of
available relationships depend on the values in the corresponding domain.

To consider the selection strategy of variables within the constraints, we
have to duplicate the variables. For example, if a customer wants to have a
bike for Competition and everydayLi f e, we replace the variable Usage ∈ V
by Usage1 ∈ V and Usage2 ∈ V and the domain will also be duplicated,
s.t., dom(Usage1) = dom(Usage2) = dom(Usage). We also have to extend
the affected constraints in C, such that we have to replace the affected
assignments in the example constraint Usage = Competition→ BikeType =
RacerBike ∧ FrameSize = 60cm;∈ CKB by (Usage1 = Competition∨ Usage2
= Competition) → BikeType = RacerBike ∧ FrameSize = 60cm; and the
customer requirements Usage1 = Competition ∧Usage2 = everydayLi f e for
the selection strategy Usagesel = multipleAND.

MAUT-based systems need further sets of constraints. The following list
gives an overview of the required sets for MAUT-based systems.

37

3 Constraint-based Product Configuration Systems

• Customer requirements (CR) define the requirements of a concrete
customer, for example, a medium term investment period and money
for rainy days (see Table 3.4).

• Constraints (CKB) define, for example, which products should be
recommended and which restrictions on combinations of requirements
exist (see Table 3.13).

• A product catalog (CP) defines the available product assortment (see
Table 3.8).

• Scoring rules (UC) determine a ranking in which items (products and
services) of a recommendation result are presented to the customer
(see Tables 3.2, 3.3, 3.9, 3.10).

• Repair constraints (R) expand a value for a product or customer
variable v.

• Example constraints (E) are, e.g., provided by the marketing depart-
ment and represent a correct behavior of the recommendation system
(see Table 3.16).

• Summing constraints (S) aggregate the customer utilities (see Table
3.14).

This section described CSPs for constraint-based configuration, know-
ledge-based recommendation systems, and MAUT-based systems. The next
section describes consistent and inconsistent knowledge bases and detects
several types of anomalies in constraint-based systems.

3.2 Definitions2

This section defines basic terms in the context of constraint-based config-
uration systems.

2This section is based on Reinfrank et al. [2015a].

38

3.2 Definitions

The constraint set C restricts the set of valid instances. While CKB and
CP remain stable during a user session, a potential customer adds her
preferences in the set CR. An instance is given if at least one customer
preference is added to CR. Definition 1 introduces the term ’instance’.

Definition 1 ’Instance’: An instance is given if at least one constraint is in the
set CR, s.t. CR 6= ∅.

In a complete instance all variables in the knowledge base have at least one
assignment. Definition 2 introduces the definition for a complete instance.

Definition 2 ’Complete Instance’: An instance is complete iff all variables have
an assignment, such that ∀v∈Vv is assigned.

Instances can either fulfill all constraints in the constraint set C (consistent)
or not (inconsistent). Definition 3 defines the term ’consistent instance’.

Definition 3 ’Consistent Instance’: An instance (complete or incomplete) is
consistent, if no constraint in C is violated.

Constraint-based systems can have some anomalies in terms of conflicts,
redundancies and well-formedness violations. Figure 3.1 gives an overview
of different types of anomalies. In the following, this thesis defines the
anomalies.

39

3 Constraint-based Product Configuration Systems

Figure 3.1: Different types of anomalies.

In constraint-based systems it can happen that the system can not offer
consistent instances to a user (inconsistency) because it is not possible to
satisfy all constraints (see Definition 3). Such a ’no solution could be found’
dilemma is caused by at least one conflict between a) the constraints in the
knowledge base CKB and the products CP on the one hand and the customer
requirements CR on the other hand (customer requirements can not be
fulfilled) or b) within the sets CP and CKB (knowledge base development
and maintenance problem). Definition 4 introduces a formal representation
of a conflict.

Definition 4 ’Conflict’: A conflict is a set of constraints CS ⊆ C which can not
be fulfilled by the CSP, s.t. CS is inconsistent.

If we have an inconsistency in our knowledge base, we can say that C
is always a conflict set. To have a more detailed information about the
inconsistency, we introduce the term ’minimal conflict’ which is described
in Definition 5.

Definition 5 ’Minimal Conflict’: A minimal conflict CS is a conflict (see Def-
inition 4) and the set CS only contains constraints which are responsible for the
conflict, s.t. @c∈CSCS \ {c} is inconsistent.

40

3.2 Definitions

A knowledge base can have more than one conflict. In such cases we can
help users to resolve all conflicts with diagnoses. A diagnosis ∆ is a set of
constraints. The removal of the set ∆ from C leads to a consistent knowledge
base, formally described in Definition 6.

Definition 6 ’Diagnosis’: A diagnosis ∆ is a set of constraints ∆ ⊆ C. When
removing the set ∆ from C, the knowledge base will be consistent, s.t. C \ ∆ is
consistent.

Assuming that CKB is consistent (see Definition 3) and CP contains zero
(product configuration) or at least one product (knowledge-based recom-
mendation), we can say that the knowledge base always will be consistent if
we remove CR. In Definition 7 we introduce the term ’minimal diagnosis’
which helps to reduce the number of constraints within a diagnosis without
losing the property of being a diagnosis.

Definition 7 ’Minimal Diagnosis’: A minimal diagnosis ∆ is a diagnosis (see
Definition 6) and there doesn’t exist a subset ∆′ ⊂ ∆ which has the same property
of being a diagnosis.

After having calculated at least one diagnosis and removed all constraints
from the knowledge base which are in one diagnosis, we can ensure a
consistent knowledge base that is necessary for calculating redundancies
and well-formedness violations.

A redundancy is a set of redundant constraints in the knowledge base. A
constraint c is redundant if a knowledge base KB′ without the constraint
c has the same semantics as the knowledge base KB which contains the
constraint. We use the term semantics to describe a knowledge base KB′ with
the same solution set as KB. Redundant constraints are formally described
in Definition 8.

41

3 Constraint-based Product Configuration Systems

Definition 8 ’Redundant constraint’: A constraint c is redundant iff the re-
moval of the constraint from CKB leads to the same semantics, s.t. CKB \ {c} |= c.

While conflicts, diagnoses, and redundancies focus on constraints, well-
formedness violations identify anomalies based on variables and domain
elements [Felfernig et al., 2013a]. We now introduce well-formedness viola-
tions in product configuration systems.

The first well-formedness violation focuses on dead domain elements. A
dead domain element is an element which can never be assigned to its
variable in a consistent instance (see Definition 3). Definition 9 introduces a
formal description of dead elements.

Definition 9 ’Dead domain elements’: A domain element val ∈ dom(v) is
dead iff it is never in a consistent instance, s.t. C ∪ {v = val; } is inconsistent.

On the other hand, we can have domain elements which are assigned to
each consistent instance. We denote such domain elements full mandatory
and therefore we introduce Definition 10.

Definition 10 ’Full mandatory’: A domain element val ∈ dom(v) is full manda-
tory iff there is no consistent (complete or incomplete) instance where the variable v
does not have the assignment val, s.t. C ∪ {v 6= val} is inconsistent.

Another well-formedness violation is called unnecessary refinement. Such
an unnecessary refinement consists of two variables. If the first variable
has an assignment, it is possible to predict the assignment of the second
variable because the second variable can only have exactly one consistent
assignment. A formal definition is given in Definition 11.

42

3.2 Definitions

Definition 11 ’Unnecessary refinement’: A knowledge base contains a variable
pair vi, vj. For each domain element val1 of variable vi, we can say that variable vj
always has the same assignment vj = val2, s.t. ∀val1∈dom(vi)

∃val2∈dom(vj)
C∪ {vi =

val1 ∧ vj 6= val2} is inconsistent.

To repair MAUT-based recommendation systems, we define a repair task
as constraint set adaptation problem, which is described in Definition 12.

Definition 12 ’Constraint Set Adaptation Problem’. A constraint set adap-
tation problem is defined by the tuple (V, D, UC, Con, Opt), where V is a set of
variables referred to by the constraints in Con = R∪ S∪ E. D contains the domain
definitions of the variables in V and UC represents the set of scoring roles incon-
sistent with the examples in E. Opt is the optimization function of the underlying
nonlinear optimization problem.

If a set of new assignments for all variables in a MAUT-based recommen-
dation problem is found - according to the constraints in C and examples
in E - we have a valid constraint set adaptation. Definition 13 describes a
constraint set adaptation.

Definition 13 ’Constraint Set Adaptation’. A constraint set adaptation for a
given constraint set adaptation problem (V, D, UC, Con, Opt) (see Definition 12)
is an assignment of the variables in V s.t. all constraints in Con are satisfied.

This section defined possible states of a product configuration system.
How this states can occur in knowledge bases will be described in the next
section.

43

3 Constraint-based Product Configuration Systems

3.3 Running Examples

This section introduces four different examples to explain how we can de-
tect anomalies in CSPs and help knowledge engineers in their maintenance
tasks.

Example 3.1 Simple consistent CSP product configuration3

The following example contains a simple notebook recommendation
system denoted as CSP. The example contains variables, domains, con-
straints, and also products in CP. This example will be used to explain
assignment-based redundancy detection (Section 5.2.2) and the iCone inter-
face (intelligent environment for the development and maintenance of configuration
knowledge bases) described in Section 6.2.

V = {price, cpu cores, usage scenario}

D = {
dom(price) = {399, 599, 799, 999}
dom(cpu cores) = {2, 4}
dom(usage scenario) = {o f f ice, multimedia, gaming}

}

CKB = {
c0 := usage scenario = o f f ice→ (price < 599∧ cpu cores = 2);
c1 := usage scenario = multimedia→ ((price < 999∧ cpu cores = 4)∨

price < 799);
c2 := usage scenario = gaming→ cpu cores = 4;

}

3This example is based on Reinfrank et al. [2015c].

44

3.3 Running Examples

CP = {
(price = 399 ∧ cpu cores = 2)∨ (p0)
(price = 599 ∧ cpu cores = 4)∨ (p1)
(price = 799 ∧ cpu cores = 2)∨ (p2)
(price = 999 ∧ cpu cores = 4); (p3)

}

CR = ∅
C = CKB ∪ CR ∪ CP
KB = V ∪ D ∪ C

Example 3.2 Consistent CSP product configuration4

The following example is denoted as CSP and shows a bike configuration
knowledge base. It contains product variables as well as customer require-
ments. Since this example is a configuration, the set CP is empty, s.t. each
consistent combination of variable assignments is also a valid configuration.
We use this example to explain redundancies (see Sections 4.1.2 and 5.2.2)
and well-formedness violations (see Sections 4.1.3 and 5.2.3).

V = {BikeType, FrameSize, eBike, TireWidth, UniCycle, Usage}

D = {
dom(BikeType) = {MountainBike, CityBike, RacerBike},
dom(FrameSize) = {40cm, 50cm, 60cm},
dom(eBike) = {true, f alse},
dom(TireWidth) = {23mm, 37mm, 57mm},
dom(UniCycle) = {true, f alse},
dom(Usage) = {Competition, EverydayLi f e, HillClimbing}

}

4This example is based on Reinfrank et al. [2015a].

45

3 Constraint-based Product Configuration Systems

CKB = {
c0 := BikeType = MountainBike→ TireWidth > 37mm∧

FrameSize ≥ 50cm;
c1 := BikeType = RacerBike→ TireWidth = 23mm ∧ FrameSize = 60cm;
c2 := BikeType = CityBike→ TireWidth = 37mm ∧ FrameSize ≥ 50cm;
c3 := ¬(BikeType 6= CityBike ∧ eBike = true);
c4 := Usage = EverydayLi f e→ BikeType = CityBike;
c5 := Usage = HillClimbing→ BikeType = MountainBike;
c6 := Usage = Competition→ BikeType = RacerBike∧

FrameSize = 60cm;
c7 := eBike = true→ TireWidth = 37mm;
c8 := UniCycle = f alse;

}

CR = CP = ∅

C = CKB ∪ CP ∪ CR

Example 3.3 Inconsistent CSP product configuration5

This example is based on the previous example except the set CR contains
three customer requirements.

CR = {
c9 : FrameSize = 50cm;
c10 : Usage = Competition;
c11 : eBike = true;

}

5This example is based on Felfernig et al. [2013a].

46

3.3 Running Examples

Example 3.4 Consistent MAUT-based product configuration6

We determine item orderings by using the concepts of Multi-Attribute
Utility Theory (MAUT; Schmitt et al. [2003]; von Winterfeldt and Edwards
[1986]; Keeney and Raiffa [1976]). The basic elements of MAUT are interest
dimensions such as profit or availability describing interest focuses of a cus-
tomer. For instance, profit denotes the performance of financial services in
terms of, for example, high return rates. Furthermore, availability is related
to aspects of accessibility of the invested sum within the targeted investment
period. The following tables present an example for a MAUT-based product
recommendation for financial services.

The degree to which a customer is interested in such dimensions can be
derived from the articulated requirements. For example, Table 3.1 shows that
our example consists of two customer variables: investment period and goal.
Tables 3.2 and 3.3 include typical scoring rules (utility constraints uci ∈ UC)
of reliable financial service providers. A customer interested in long term
investments (investment period = long term) typically has a lower interest
in availability than a customer who is interested in short term investments
(investment period = short term). Similarly, customers interested in speculations
(goal = speculation) have a lower interest in availability than those interested
in putting money aside for rainy days (goal = rainy days). For the purposes
of this example, we use the customer requirements specified in Table 3.4:
customer Robert is interested in medium term investments with the goal of
putting money aside for rainy days.

customer variable vc ∈ VC dom(vc)

vc1: investment period {long term, medium term, short term}
vc2: goal {rainy days, stable growth, speculation}

Table 3.1: Example customer variables VC = {vc1, vc2}

6This example is based on Felfernig et al. [2013c].

47

3 Constraint-based Product Configuration Systems

investment period profit availability
short term 4(uc1) 9(uc2)

medium term 6(uc3) 5(uc4)
long term 8(uc5) 1(uc6)

Table 3.2: Scoring rules {uc1, . . . , uc6} ⊆ UC for customer variable investment period.

goal profit availability
rainy days 2(uc7) 6(uc8)

stable growth 6(uc9) 4(uc10)
speculation 9(uc11) 2(uc12)

Table 3.3: Scoring rules {uc7, . . . , uc12} ⊆ UC for customer variable goal.

Interpreting the information of Tables 3.2, 3.3, and 3.4 we can figure out
to which extent Robert has a focus on the interest dimensions profit and avail-
ability. Robert requires a medium term investment solution which contributes
an importance of 6 to the interest dimension profit and an importance of
5 to the interest dimension availability (see Table 3.2). Furthermore, Robert
is interested in putting money aside for rainy days which contributes an
importance of 2 to the dimension profit and 6 to availability (see Table 3.3).
Table 3.5 summarizes Robert’s preferences.

On the basis of such customer preferences we are able to evaluate which
of a given set of alternative products (services) suits a customer’s wishes and
needs best. For the purpose of our simplified example we use the example
products in Table 3.6, the derived product variable domains described in
Table 3.7, and the recommendation result shown in Table 3.8.

We now define the dependencies between product attribute values and
the interest dimensions profit and availability. For instance, financial services
including shares support a higher profit (see Table 3.9) whereas a higher
value fluctuation leads to a higher profit utility value (see Table 3.10).
Furthermore, financial services without shares have a higher availability, and
those with a higher value fluctuation have a higher (potential) profit.

48

3.3 Running Examples

customer investment period goal
Robert medium term (r1) rainy days (r2)

Table 3.4: Example customer requirements CR = {r1, r2}.

customer profit availability
Robert 6 + 2 = 8 5 + 6 = 11

Table 3.5: Interests of customer Robert derived from the constraints in Tables 3.2, 3.3, and
3.4.

Interpreting the constraints of Tables 3.8, 3.9, and 3.10, we can derive
product assortment specific scoring rules upi ∈ UC (Tables 3.11 and 3.12).

Finally, our example also consists of some restrictions. Those restrictions
remove some of the products in CP for a recommendation task whereas
products with a low utility will be presented to a customer at the end
of the list of recommended products. Table 3.13 gives an overview of the
constraints in the example knowledge base and explains why the product
equity is not part of the resulting product list.

On the basis of these scoring rules we can determine the extent to which
our financial services contribute to the interest dimensions profit and avail-
ability (see Table 3.12). Exploiting the identified product utilities, we can
determine the customer-specific utility of each product prod which is con-
tained in the recommendation result (see Table 3.12). The utility of a product
or service can be determined on the basis of Equation 3.1

utility(x) =
n

∑
i=1

ini × coni(prod) (3.1)

where utility(prod) specifies the overall utility of a product/service prod
for a specific customer. The overall utility of prod is defined as sum over the
customer’s interest in dimension i (ini) times the contribution of product

49

3 Constraint-based Product Configuration Systems

constraint name shares value fluctuation
prod1 balanced funds 50% medium
prod2 bonds 0% medium
prod3 bonds2 0% high
prod4 equity 100% very high

Table 3.6: Example set of financial services represented by CP = {prod : prod1 ∨
prod2 ∨ prod3 ∨ prod4} where prod1 : name = balanced funds ∧ shares =
50% ∧ value fluctuation = medium; prod2 : name = bonds ∧ shares = 0% ∧
value fluctuation = medium; prod3 : name = bonds2 ∧ shares = 0% ∧
value fluctuation = high; and prod4 : name = equity ∧ shares = 100% ∧
value fluctuation = very high;.

product variable vp ∈ VP dom(vp)

vp1: name {balanced funds, bonds, bonds2, equity}
vp2: shares {0%, 50%, 100%}

vp1: value fluctuation {low, medium, high, very high}

Table 3.7: Example product variables VP = {vp1, vp2, vp3}

prod (in our case financial service) to dimension i (coni). In our example,
balanced funds have a higher utility for Robert than bonds and bonds2 (see
Table 3.15).

In order to test whether a given set of utility constraints calculates in-
tended rankings, a corresponding set of examples (test cases) can be provided
by marketing and sales experts (see, Table 3.16). In the case that the rankings
calculated by the utility constraint set are in contradiction with the rankings
of the given examples, we have to identify repairs such that the consistency
with the examples is restored. In our scenario, the examples E = {e1, e2, e3}
are partially contradicting the rankings (utilities) shown in Table 3.15 (e.g.,
the utility of bonds is lower than the utility of balanced funds if a customer
is interested in medium term investments for rainy days, the contrary is
specified in e1 : utility(bonds) > utility(balanced f unds)). Consequently, we
have to identify an adaptation of our utility constraints. An approach to
derive such adaptations automatically will be discussed in the following.

50

3.3 Running Examples

variable in V prod1 prod2 prod3

vc1: investment period medium term medium term medium term
vc2: goal rainy days rainy days rainy days

vp1: name balanced funds bonds bonds2

vp2: shares 50% 0% 100%
vp3: value fluctuation medium medium high

Table 3.8: Recommendation result for the constraint-based product recommendation
problem.

shares profit availability
0% 2 7

50% 5 5

Table 3.9: Scoring rules for product variable shares.

value fluctuation profit availability
medium 5 6

high 7 4

Table 3.10: Scoring rules for product variable value fluctuation.

name profit availability
balanced funds 5(up1) 5(up2)

bonds 2(up3) 7(up4)
bonds2 2(up5) 7(up6)

Table 3.11: Product-specific scoring rules {up1, . . . , up6} ⊆ UC for product attribute shares.

name profit availability
balanced funds 5(up7) 6(up8)

bonds 5(up9) 6(up10)
bonds2 7(up11) 4(up12)

Table 3.12: Product-specific scoring rules {up7, . . . , up12} ⊆ UC for product attribute value
fluctuation.

51

3 Constraint-based Product Configuration Systems

filter constraint c ∈ CKB

c1 : goal = rainy days→ shares 6= 100%;
c2 : investment period = shortterm→ value fluctuation 6= high;
c3 : ¬(goal = stable growth∧ investment period = short term;

c4 : ¬(goal = rainy days∧ investment period = long term);

Table 3.13: Example constraints CKB = {c1, c2, c3, c4}.

name profit availability
balanced funds 5 + 5 = 10 5 + 6 = 11

bonds 2 + 5 = 7 7 + 6 = 13
bonds2 2 + 7 = 9 7 + 4 = 11

Table 3.14: Utilities of products regarding interest dimensions (result of interpreting Tables
3.11 and 3.12.

customer product profit availability utility

Robert
balanced funds 8× 10 11× 11 201

bonds 8× 7 11× 13 199
bonds2 8× 9 11× 11 193

Table 3.15: Utilities of products for customer Robert.

example investment period goal ranking
e1 medium term for rainy days utility(bonds) >

utility(balanced f unds)
e2 medium term for rainy days utility(bonds2) >

utility(balanced f unds)
e3 medium term for rainy days utility(bonds) >

utility(bonds2)

Table 3.16: Examples E = {e1, e2, e3} of intended service orderings.

Now we have defined consistent (Examples 3.1 and 3.2) and inconsis-
tent (Example 3.3) constraint-based product configuration problems and
a MAUT-based product configuration (Example 3.4). We will use the last
example in Section 4.3 for the automated repair of scoring rules. The other

52

3.3 Running Examples

examples will be used in the next chapter to detect (Section 4.1), explain
(Section 4.2), and verify the understandability (Section 4.4) of anomalies.

53

4 Anomaly Management for
Constraint-based Product
Configuration Systems

In this chapter we give a detailed description of the term anomaly manage-
ment. Therefore, we first describe the different types of anomalies (Section
4.1). While detecting algorithms is a well-researched area, we extend the
term management by explaining anomalies (Section 4.2) and generate repair
actions for MAUT-based product configurations (section 4.3). Finally, we
give hints for presenting conflicts and diagnoses to users (Section 4.4).

4.1 Types of Anomalies in Constraint-based
Product Configuration Systems

In this section we describe the principles of anomalies. We explain con-
flicts and diagnoses (Section 4.1.1), redundancies (Section 4.1.2), and well-
formedness violations (Section 4.1.3).

4.1.1 Conflicts and Diagnoses1

In this section we give a detailed overview of principles of conflicts and
diagnoses. Based on the definitions in Section 3.2 we first give a detailed

1This Section is based on Felfernig et al. [2014e].

55

4 Anomaly Management for Constraint-based Product Configuration Systems

overview of conflicts and diagnoses and the calculation of all conflicts and
diagnoses based on HSDAG.

As explained in the previous Sections we are looking for consistent
configuration knowledge-bases (see Definition 3). If a knowledge base is
inconsistent, we can look for minimal conflicts (see Definition 5) and / or
minimal diagnoses (see Definition 7). To get useable conflicts and diagnoses
we have to differ between a set of constraints which can be diagnosed (e.g.,
customer requirements) and a set of constraints that shouldn’t be part of
diagnoses (e.g., the set of constraints which can not be changed during a
customer session). Therefore, we introduced the set CKB for not diagnosable
constraints and the set CR for constraints that can be part of conflicts and
diagnoses.

When we focus on the set CR and say that CKB is consistent, our example
3.3 contains two minimal conflict sets: CS1 = {c10} because it is not possible
to have an ebike for competition with a frame size of 50cm and CS2 =
{c9, c11} as bikes used for competition do not support eBikes with a frame
size of 50cm.

Note that we are only focusing on minimal sets of conflicts and diagnoses
because we assume that repair actions with minimal constraint sets a) have
the lowest impact on the behavior of the knowledge base and b) such sets
are mostly easier to understand and maintain for knowledge engineers and
customers.

To get many / all sets which have the property of being a diagnosis /
conflict we use the HSDAG algorithm [Reiter, 1987]. The algorithm uses the
output of a conflict / diagnosis detection algorithm and splits the output
(a set of constraints) into its constraints. Each of the constraints will be
shifted from CR to CKB and then the conflict / diagnosis detection algorithm
runs again. If the algorithm returns an empty set, we can say that there are
no further minimal conflict / diagnosis sets. The branches in the HSDAG

56

4.1 Types of Anomalies in Constraint-based Product Configuration Systems

algorithm can be expanded e.g., with breadth-first search, depth-first search
or iterative deepening. An example - based on our example in Section 3.3
- is given in Figure 4.1. A detailed discussion about HSDAG is given in
Felfernig and Schubert [2011b]; Reiter [1987].

Figure 4.1: Graphical representation of all conflicts in Example 3.3 calculated with HSDAG
[Reiter, 1987] and QuickXPlain [Junker, 2004].

If we can guarantee that a knowledge base is conflict-free, we can also
detect redundancies and well-formedness violations. The principles of these
violations will be explained in the next sections.

4.1.2 Redundancies2

In this Section we focus on situations where knowledge engineers are
defining redundant constraints that, when deleted from the constraint set,
do not change the semantics of the remaining constraints. This might happen
for performance reasons or due to the fact that knowledge engineers are not
aware of the redundancy. We focus on the latter situation.

2This Section is based on Felfernig et al. [2014d].

57

4 Anomaly Management for Constraint-based Product Configuration Systems

Formally, a redundancy can be described as follows: if C = {c1, c2, . . . , cn}
is a set of constraints and one constraint ci ∈ C is redundant, then C \
{ci} ∪ C is inconsistent. In this context, C is the negation3 of C: if C =
{c1, cn, . . . , cn} then C = {¬c1 ∨ ¬cn ∨ · · · ∨ ¬cn}.

Redundancy elimination in knowledge bases is a topic extensively in-
vestigated by AI research. Redundant constraints play a role, for example,
in the development and maintenance of configuration knowledge bases
[Sabin and Freuder, 1998]. The authors introduce concepts for the detection
of redundant constraints in conditional constraint satisfaction problems
(CCSPs). The approach is based on the idea of analyzing the solution space
of the given problem (on the level of individual solutions) in order to detect
different types of redundant constraints. Piette [2008] provides a discussion
of the role of redundancy elimination in SAT solving. The author intro-
duces an (incomplete) algorithm for the elimination of redundant clauses
and shows its applicability on the basis of an empirical study. The role of
redundancies in ontology development is analyzed by Fahad and Qadir
[2008]. The authors point out the importance of redundancy elimination
and discuss typical modeling errors that occur during ontology develop-
ment and maintenance. Grimm and Wissmann [2011] introduce algorithms
for redundancy elimination in OWL ontologies. The authors propose an
algorithm that computes redundant axioms by exploiting prior knowledge
of the concepts of minimal derivation trees which do not include any pair of
identical atoms where one is the predecessor of the other one.

All the mentioned approaches focus on the identification of redundant
constraints in centralized scenarios where one or a few knowledge engineers
are interested in identifying redundant constraints. In such scenarios it is
assumed that only a small subset of the given constraints is redundant
(this assumption is also denoted as low redundancy assumption; Grimm and
Wissmann [2011]). We go one step further and propose an algorithm that
is especially useful in distributed knowledge engineering scenarios where
we can expect a larger number of redundant constraints, due to the fact that

3We denote the negation of C(C) also the complement of C.

58

4.1 Types of Anomalies in Constraint-based Product Configuration Systems

different contributors add constraints that are related to the same topic (see
Section 5.2, Chklovski and Gil [2005]; Richardson and Domingos [2003]).
We denote the assumption of larger sets of redundant constraints the high
redundancy assumption. For example, we envision a scenario where a large
number of users propose constraints to be applied by a constraint-based
configuration recommendation engine [Felfernig and Burke, 2008] and the
task of an underlying algorithm is to identify minimal sets of constraints that
retain the semantics of the original constraint set. We denote such constraint
sets as minimal cores. Note that the following discussions are based on
the assumption of consistent constraint sets (see Definition 3). Methods for
consistency restoration are discussed in section 5.2.1.

In this thesis we extend current state-of-the-art in detecting redundant
constraints by detecting sets of redundant constraints. We call this algorithm
CoreDiag and explain the algorithm in section 5.2.2.

4.1.3 Well-formedness Violations4

Well-formedness violations focus on the variables and domains of a
knowledge base instead of constraints. Such anomalies are well-discussed
in other research disciplines like feature models but are not well researched
in the area of constraint-based product configuration. In the following, we
give an overview of violations in product configurations.

• dead domain elements: a domain element can never be part of a
consistent configuration (see Definition 9). Such domain elements can
be removed from the domain before doing any calculations.

• full mandatory domain element: contrary to dead domain elements,
a full mandatory domain element has to be in a consistent product
configuration (see Definition 10). If a domain element is full manda-
tory, we can say that all other domain elements of this variable are
dead. Such variables can be removed before doing consistency checks.

4This Section is based on Felfernig et al. [2013a] and Benavides et al. [2013, 2010].

59

4 Anomaly Management for Constraint-based Product Configuration Systems

Afterwards the variable and the consistent domain element can be
added again as a constant.

• unnecessary refinement: The third type of well-formedness violation
compares the occurrences of domain elements between two variables
(see Definition 11). For example, if only RacerBikes can have carbon
material and CityBikes and MountainBikes can only have aluminium
frames (and vice versa), we can say that the f ramematerial is an un-
necessary refinement of the Usage variable. We can say that we can
ignore the variable f ramematerial and the corresponding domain and
constraints in our algorithms, since that variable does not change the
behavior of the configuration knowledge base.

While some of the detected anomalies in a knowledge base are easy to
understand, others may are complex and difficult to understand. In the
next section we show, how we can explain anomalies to reduce the repair
time.

4.2 Anomaly Explanation5

How to explain the anomalies from Section 4.1 will be shown in this
Section. An overview of these anomalies and related property checks is
shown in Table 4.1. Note that we are using a product configuration exam-
ple in this section but we can also extent the presented explanations to
knowledge-based recommendation systems by adding the set CP to the set
of not diagnosable constraints.

Conflicts and Diagnoses. If constraints in the knowledge base CKB are in-
consistent (inconsistent(CKB)), we are interested in solutions to the product
configuration diagnosis. In this case we want to figure out which are the
minimal sets of constraints that are responsible for the given inconsistency
in the product configuration. The product configuration of our example 3.3

5This Section is based on Felfernig et al. [2013a].

60

4.2 Anomaly Explanation

is an example of a consistent product configuration. For conflicts we can say
that a diagnosis can explain a conflict. Our second example in Section 3.3
contains two conflict sets CS1 = {c9, c10} and CS2 = {c10, c11}. We can ex-
plain CS1 by calculating at least one diagnosis for our knowledge base CKB.
∆1 = {c1, c6} explains CS1 since those constraints forbid the combination of
RacerBikes with a FrameSize of 50cm.

Redundant constraint. In our working example the constraint c7 is redun-
dant since only CityBikes can be eBikes (c3) and have tires with a width
of 37mm (c2). If we check the consistency of CKB \ {c7} ∪ ¬CKB, we see
that c7 is redundant since the expression is inconsistent. In other words,
CKB \ {c7} |= c7, i.e., c7 logically follows from CKB \ {c7} – therefore it is
redundant. Consequently, the constraint set {c7} can be deleted from the
product configuration knowledge base without changing the underlying
semantics. To check why the constraint c7 is redundant, we have to compare
the set of constraints without the diagnosable constraint CKB \ {c7} with the
negation of the knowledge base CKB, s.t., CKB \ {c7} ∪ CKB = {c2, c3}.

Dead domain element. If a domain element di ∈ dom(vj) is not included
in any of the possible configurations (i.e., inconsistent(CKB, CR ∪ {vj = di});
see Definition 9), we are interested in solutions to the product configuration
diagnosis task (CKB, CR ∪ {vj = di}). We are able to figure out the minimal
sets of constraints that are responsible for the non-acceptance of vj = di.
The assignments FrameSize = 40cm and UniCycle = true; can never be
part of a consistent instance because MountainBikes and CityBikes require
at least 50cm and RacerBikes require a FrameSize of 60cm and our current
knowledge base does not support UniCycles. If we then want to make
UniCycle = true a domain element which is included in at least one config-
uration, the diagnosis for (CKB, CR ∪ {UniCycle = true}) is ∆1 = {c8}.

Full mandatory domain element. A domain element di ∈ dom(vj) is fully
mandatory if it is included in every possible solution (void configuration;
see Definition 10), i.e., inconsistent(CKB, CR ∪ vj = di). If we want to adapt
the product configuration in such a way that it also allows vj = di to be not

61

4 Anomaly Management for Constraint-based Product Configuration Systems

included, we can determine the corresponding (minimal) sets of responsible
constraints by solving the product configuration diagnosis task (CKB, CR ∪
{vj = di}). The knowledge base can never be consistent if UniCycle 6= f alse.
In that case we can say that the domain element f alse of the domain
dom(UniCycle) is full mandatory and UniCycle = true can never be in a
consistent knowledge base (dead domain element). If we want to allow
configurations where UniCycle 6= f alse is included, the only diagnosis for
(CKB, CR ∪ {UniCycle = true}) is ∆1 = c8.

Unnecessary refinement. Such an unnecessary refinement consists of two
variables. If the first variable has an assignment, it is possible to pre-
dict the assignment of the second variable because the second variable
can only have exactly one consistent assignment. A formal definition
is given in Definition 13. In our example the variable pair Usage and
BikeType is unnecessarily refined because whenever Usage = EverydayLi f e
the BikeType has to be CityBike, Usage = HillClimbing always leads to
BikeType = MountainBike, and Usage = Competition is always combined
with the assignment BikeType = RacerBike. If such a violation occurs, we
can recommend the knowledge engineer to remove the variable Usage and
replace it with the variable BikeType in the constraints. Adding a constraint
ci := ¬(Usage = EverydayLi f e → BikeType = CityBike) ∧ ¬(Usage =
HillClimbing → BikeType = MountainBike) ∧ ¬(Usage = Competition →
BikeType = RacerBike) to CKB and running QuickXPlain(CR, CKB), returns
a set of constraints which explains why other assignments for the variables
lead to inconsistencies. In our example a diagnosis for CR ∪ CKB would be
{c4, c5, c6}.

The two basic algorithms for determining diagnoses and redundancies are
FASTDIAG and FMCORE. FASTDIAG [Felfernig et al., 2012b] is a divide-
and-conquer algorithm that supports the efficient determination of minimal
diagnoses without the need of having conflict sets available. FMCORE is
an algorithm which focuses on the determination of minimal cores, i.e.,
redundancy-free subsets of a constraint set.

62

4.3 Automated Repair of Scoring Rules

In FASTDIAG (see Algorithm 3) the set CR represents the set of constraints
where a diagnosis should be searched. The set CKB contains all constraints
which can not be part of a diagnosis. For example, if we want to diagnose a
configuration (CKB ∪ CR is inconsistent – see Table 4.1), we will activate the
algorithm with FASTDIAG(CKB, CR).

Now we can explain anomalies to knowledge engineers and users of
constraint-based configuration and knowledge-based recommendation sys-
tems.

In this Section we described how we can calculate explanations for anoma-
lies to knowledge engineers and users of constraint-based product configu-
ration systems. The following section describes how repair actions can be
done automatically in MAUT based configuration systems.

4.3 Automated Repair of Scoring Rules6

Products included in a recommendation have to be ranked according
to their relevance for the customer [Felfernig et al., 2006a; Felfernig and
Burke, 2008]. In the line of serial position effects which induce customers
to preferably take a look at and select items at the beginning of a list, the
high-ranking of the most relevant items is extremely important [Lashley,
1951; Gershberg and Shimamura, 1994]. For the determination of such
rankings we apply the concepts of Multi-Attribute Utility Theory (MAUT)
[Winterfeldt and Edwards, 1986; Keeney and Raiffa, 1993; Schmitt et al.,
2003] where each product is evaluated according to a predefined set of
interest dimensions which are abstract evaluation criteria for products.
Profit and availability are examples for such interest dimensions in the
domain of financial services. For example, if a customer is interested in
high return rates and long term investments, the dimension profit is very

6This Section is based on Felfernig et al. [2013c].

63

4 Anomaly Management for Constraint-based Product Configuration Systems

A
nalysis

operation
Property

C
heck

Explanation
(D

iagnosis
Task)

Void
feature

m
odel

inconsistent(C
K

B
)?

FA
ST

D
IA

G
(∅

,C
K

B
)

D
ead

dom
ain

elem
ent

inconsistent(C
K

B
∪
{v

j
=

d
i }
)?

FA
ST

D
IA

G
({v

j
=

d
i },C

K
B
)

(d
i ∈

dom
(v

j))
Fullm

andatory
inconsistent(C

K
B
∪
{¬

v
j
=

d
i }
)?

FA
ST

D
IA

G
({¬

v
j
=

d
i },C

K
B
)

(d
i ∈

dom
(v

j))
U

nnecessary
refinem

ent
inconsistent(C

K
B
∪
{

FA
ST

D
IA

G
({

(v
i ,v

j)
¬
(v

i
=

vala ∧
v

j
=

vald)∨
¬
(v

i
=

a∧
v

j
=

d
)∧

¬
(v

i
=

valb ∧
v

j
=

vale)∨
···∨

¬
(v

i
=

b∧
v

j
=

e)∧
···∧

¬
(v

i
=

valc ∧
v

j
=

valf)}
)?

¬
(v

i
=

c∧
v

j
=

f)},C
K

B
)

R
edundant

(ci)
inconsistent((C

K
B
\
{ci }

)∪
C

K
B
)?

ci
/∈

F
M

C
ore(C

K
B
)

Table
4.

1:P
rod

u
ct

confi
gu

ration
analysis

op
erations,p

rop
erty

checks,and
related

exp
lanations.For

exam
p

le,fi
gu

ring
ou

t
w

hether
a

confi
gu

ration
is

inconsistent
(no

solu
tion

can
be

fou
nd

)
can

be
d

eterm
ined

on
the

basis
of

a
consistency

check
(inconsistent(C

)).A
related

exp
lanation

can
be

d
eterm

ined
by

solving
the

d
iagnosis

task
(C

K
B ,C

R).The
related

diagnosis
(FA

ST
D

IA
G

)
and

redundancy
detection

algorithm
(F

M
C

ore)
are

discussed
in

Section
5.

2.

64

4.3 Automated Repair of Scoring Rules

important. Consequently, customer requirements influence the importance
of corresponding interest dimensions.

The consistency between utility constraints (scoring rules) and a com-
pany’s marketing and sales strategy plays an important role for the suc-
cessful application of recommender technologies. These constraints have to
reflect marketing and sales strategies (in our example 3.4 those of financial
service providers). Experiences from commercial projects [Felfernig et al.,
2006a] show a remarkable need for a knowledge acquisition support that
alleviates the development and maintenance of utility constraint sets. The
manual adaptation of utility constraints is a time-consuming and error-
prone task since such constraints are strongly interdependent. Therefore, we
developed techniques which support knowledge engineers in the identifica-
tion and repair of faulty elements in utility constraint sets. In this section we
transform the table representation of the MAUT recommendation problem
into a CSP, present adaptation concepts which automatically identify the
sources of inconsistencies in utility constraint sets, and propose correspond-
ing repair actions. The presented approach has been implemented for a
commercial recommender environment [Felfernig et al., 2006a] and is in
the line of previous work [Felfernig and Shchekotykhin, 2006] related to
effective knowledge acquisition interfaces for recommender applications.

Utility Constraint Set

We now transform our utility constraint set (tabular representation; see
Example 3.4) into a corresponding constraint-based representation which is
used as input for solving a non-linear optimization problem (see Fourer et al.
[2002]). Regarding the definitions of Tables 3.2 and 3.3, we introduce the
following set of utility constraints related to the required investment period
and the customer’s personal goals. For instance, constraint uc1 denotes
the fact that for customers requiring financial services with short term
investment periods, the dimension profit is of medium importance on a
value scale of [1..10], whereas availability aspects play a significantly more

65

4 Anomaly Management for Constraint-based Product Configuration Systems

important role (uc2). {uc1, . . . , uc6} represent the utility definitions of Table
3.2, {uc7, . . . , uc12} represent the definitions of Table 3.3.

uc1 : pro f it(investmentperiodshort) = 4
uc2 : availability(investmentperiodshort) = 9
uc3 : pro f it(investmentperiodmedium) = 6
uc4 : availability(investmentperiodmedium) = 5
uc5 : pro f it(investmentperiodlong) = 8
uc6 : availability(investmentperiodlong) = 1
uc7 : pro f it(goalrainydays) = 2
uc8 : availability(goalrainydays) = 6
uc9 : pro f it(goalgrowth) = 6
uc10 : availability(goalgrowth) = 4
uc11 : pro f it(goalspeculation) = 9
uc12 : availability(goalspeculation) = 2

We denote each constraint defining such utility values as utility constraint
uci ∈ UC. Since we are interested in a utility constraint set which is con-
sistent with all the examples ei ∈ E, we have to check the consistency of
the given set of utility constraints with

⋃
ei. This type of consistency check

requires a representation where each example is described by a separate
set of finite domain variables. For instance, the contribution to profit pro-
vided by the customer attribute investment period in example e1 is stored
in the variable pro f it(investmentperiode1). The following representation of
examples can be directly interpreted by a non-linear optimization algorithm
[Fourer et al., 2002].

e1 : pro f it(investmentperiode1) = pro f it(investmentperiodmedium)∧
availability(investmentperiode1) = availability(investmentperiodmedium)∧
pro f it(goale1) = pro f it(goalrainydays)∧
availability(goale1) = availability(goalrainydays)∧
utility(balanced f undse1) < utility(bondse1)

e2 : pro f it(investmentperiode2) = pro f it(investmentperiodmedium)∧
availability(investmentperiode2) = availability(investmentperiodmedium)∧

66

4.3 Automated Repair of Scoring Rules

pro f it(goale2) = pro f it(goalrainydays)∧
availability(goale2) = availability(goalrainydays)∧
utility(balanced f undse2) < utility(bonds2e2)

e3 : pro f it(investmentperiode3) = pro f it(investmentperiodmedium)∧
availability(investmentperiode3) = availability(investmentperiodmedium)∧
pro f it(goale3) = pro f it(goalrainydays)∧
availability(goale3) = availability(goalrainydays)∧
utility(bonds2e3) < utility(bondse3)

The overall customer interest in the dimension profit is stored in pro f it(ei).
The values of these variables represent the sum over all defined contributions
of customer requirements of example ei to the dimension profit. This ap-
proach is analogously applied to the dimension availability (availability(ei)).
We denote constraints summing up customer utilities as si ∈ S. The follow-
ing constraints implement the definitions for e1, e2, and e3.

s1 : pro f it(e1) = pro f it(investmentperiode1) + pro f it(goale1)

s2 : availability(e1) = availability(investmentperiode1)+
availability(goale1)

s3 : pro f it(e2) = pro f it(investmentperiode2) + pro f it(goale2)

s4 : availability(e2) = availability(investmentperiode2)+
availability(goale2)

s5 : pro f it(e3) = pro f it(investmentperiode3) + pro f it(goale3)

s6 : availability(e3) = availability(investmentperiode3)+
availability(goale3)

67

4 Anomaly Management for Constraint-based Product Configuration Systems

For each service part of our example assortment we specify its contribu-
tion to the given interest dimensions. For instance, the shares percentage
specified for the service balanced funds defines an average interest in the
dimension profit. In our CSP, we define this fact as

pro f itshares(balanced f unds) = 5.

Analogously, we define the relationship between the interest dimension
availability and shares percentage as

availabilityshares(balanced f unds) = 5.

We denote each constraint defining a utility value for a certain product
(service) as utility constraint upi ∈ UC. The following constraints implement
the definitions of Tables 3.11 and 3.12.

up1 : pro f itshares(balanced f unds) = 5
up2 : availabilityshares(balanced f unds) = 5
up3 : pro f itshares(bonds) = 2
up4 : availabilityshares(bonds) = 7
up5 : pro f itshares(bonds2) = 2
up6 : availabilityshares(bonds2) = 7
up7 : pro f it f luctuation(balanced f unds) = 5
up8 : availability f luctuation(balanced f unds) = 6
up9 : pro f it f luctuation(bonds) = 5
up10 : availability f luctuation(bonds) = 6
up11 : pro f it f luctuation(bonds2) = 7
up12 : availability f luctuation(bonds2) = 4

For each uci ∈ UC (and each upi ∈ UC) we add a corresponding repair
constraint cri (pri) which specifies possible repairs for uci (upi). The idea
behind repair constraints is that if the utility constraint set is inconsistent
with the examples, a non-linear optimization process can identify minimal
repairs for uci (upi) which are within the boundaries defined by repair

68

4.3 Automated Repair of Scoring Rules

constraints. These repairs should change the original uci (upi) as little as
possible.7 Therefore, we define an interval for the accepted changes for each
uci ∈ C and each upi ∈ P. Each of the following example repair constraints
allows changes of the given evaluations by at most one unit. We denote⋃

cri ∪
⋃

pri as set of repair constraints R.

cr1 : pro f it(investmentperiodshort) ∈ {3, 4, 5}
cr2 : availability(investmentperiodshort) ∈ {8, 9, 10}
cr3 : pro f it(investmentperiodmedium) ∈ {5, 6, 7}
cr4 : availability(investmentperiodmedium) ∈ {4, 5, 6}
cr5 : pro f it(investmentperiodlong) ∈ {7, 8, 9}
cr6 : availability(investmentperiodlong) ∈ {0, 1, 2}
cr7 : pro f it(goalrainydays) ∈ {1, 2, 3}
cr8 : availability(goalrainydays) ∈ {5, 6, 7}
cr9 : pro f it(goalgrowth) ∈ {5, 6, 7}
cr10 : availability(goalgrowth) ∈ {4, 5, 6}
cr11 : pro f it(goalspeculation) ∈ {8, 9, 10}
cr12 : availability(goalspeculation) ∈ {1, 2, 3}
pr1 : pro f itshares(balanced f unds) ∈ {4, 5, 6}
pr2 : availabilityshares(balanced f unds) ∈ {4, 5, 6}
pr3 : pro f itshares(bonds) ∈ {1, 2, 3}
pr4 : availabilityshares(bonds) ∈ {6, 7, 8}
pr5 : pro f itshares(bonds2) ∈ {1, 2, 3}
pr6 : availabilityshares(bonds2) ∈ {6, 7, 8}
pr7 : pro f it f luctuation(balanced f unds) ∈ {4, 5, 6}
pr8 : availability f luctuation(balanced f unds) ∈ {5, 6, 7}
pr9 : pro f it f luctuation(bonds) ∈ {4, 5, 6}
pr10 : availability f luctuation(bonds) ∈ {5, 6, 7}
pr11 : pro f it f luctuation(bonds2) ∈ {6, 7, 8}
pr12 : availability f luctuation(bonds2) ∈ {3, 4, 5}

The profit of a financial service is defined by the sum of contributions of
the values of shares and value fluctuation. Availability of a service is as well

7Note that changes of at most one unit are only introduced for this example, the range
of possible changes is more flexible. In the current implementation it can be specified by
knowledge engineers.

69

4 Anomaly Management for Constraint-based Product Configuration Systems

defined by the sum of related contributions. We denote each rule summing
up service utility values as si ∈ S. The following constraints implement the
definitions of Table 3.14.

s7 : pro f it(balanced f unds) =
pro f itshares(balanced f unds) + pro f it f luctuation(balanced f unds)
s8 : pro f it(bonds) =
pro f itshares(bonds) + pro f it f luctuation(bonds)
s9 : pro f it(bonds2) =
pro f itshares(bonds2) + pro f it f luctuation(bonds2)
s10 : availability(balanced f unds) =
availabilityshares(balanced f unds)+
availability f luctuation(balanced f unds)
s11 : availability(bonds) =
availabilityshares(bonds) + availability f luctuation(bonds)
s12 : availability(bonds2) =
availabilityshares(bonds2) + availability f luctuation(bonds2)

The following constraints specify the calculation of product utilities, where
utility(prodei) specifies the utility of product prod in the context of example
ei.

s13 : utility(balanced f undse1) = pro f it(balanced f unds)× pro f it(e1)+
availability(balanced f unds)× availability(e1)
s14 : utility(bondse1) = pro f it(bonds)× pro f it(e1)+
availability(bonds)× availability(e1)
s15 : utility(bonds2e1) = pro f it(bonds2)× pro f it(e1)+
availability(bonds2)× availability(e1)
s16 : utility(balanced f undse2) = pro f it(balanced f unds)× pro f it(e2)+
availability(balanced f unds)× availability(e2)
s17 : utility(bondse2) = pro f it(bonds)× pro f it(e2)+
availability(bonds)× availability(e2)
s18 : utility(bonds2e2) = pro f it(bonds2)× pro f it(e2)+
availability(bonds2)× availability(e2)
s19 : utility(balanced f undse3) = pro f it(balanced f unds)× pro f it(e3)+
availability(balanced f unds)× availability(e3)

70

4.3 Automated Repair of Scoring Rules

s20 : utility(bondse3) = pro f it(bonds)× pro f it(e3)+
availability(bonds)× availability(e3)
s21 : utility(bonds2e3) = pro f it(bonds2)× pro f it(e3)+
availability(bonds2)× availability(e3)

Automated Repair of Scoring Rules

All the mentioned constraints are constituting elements of a corresponding
nonlinear optimization problem [Fourer et al., 2002] which represents a
Constraint Set Adaptation Problem (see Definition 12).

The constraints Con defined in the previous part of this section are the
basic elements of an optimization problem of minimizing repair distances
between original scoring values and corresponding repair values using the
following minimization function - see Equation 4.1.

Minimize :
m

∑
i=1
|val(uci)− val(cri)|+

n

∑
j=1
|val(upj)− val(prj)| (4.1)

In this formula |val(uci)− val(cri)| denotes the degree to which the origi-
nal value of the utility constraint (scoring value for customer requirements)
has been changed. Furthermore, |val(upj)− val(prj)| denotes the degree to
which the original value of the (product) utility constraint has been changed.
Now the Minos solver [Fourer et al., 2002] can calculate a solution to a
constraint set adaptation problem (see Definition 13).

If we want to restrict the proposed repair actions to the utility constraints
upi ∈ UC (uci ∈ UC), we have to include ∪uci (∪upi) in the set of constraint
definitions (Con). The following adaptations (repairs) to the original scoring
rules (utility constraints) in UC represent a constraint set adaptation for our
example constraint set adaptation problem.

71

4 Anomaly Management for Constraint-based Product Configuration Systems

pro f it(investmentperiodshort) = 4
availability(investmentperiodshort) = 9
pro f it(investmentperiodmedium) = 5
availability(investmentperiodmedium) = 4
pro f it(investmentperiodlong) = 8
availability(investmentperiodlong) = 1
pro f it(goalrainydays) = 2
availability(goalrainydays) = 5
pro f it(goalgrowth) = 6
availability(goalgrowth) = 4
pro f it(goalspeculation) = 9
availability(goalspeculation) = 2
pro f itshares(balanced f unds) = 5
availabilityshares(balanced f unds) = 4.99
pro f itshares(bonds) = 2
availabilityshares(bonds) = 6.33
pro f itshares(bonds2) = 2
availabilityshares(bonds2) = 7
pro f it f luctuation(balanced f unds) = 5
availability f luctuation(balanced f unds) = 5
pro f it f luctuation(bonds) = 5
availability f luctuation(bonds) = 6.22
pro f it f luctuation(bonds2) = 6
availability f luctuation(bonds2) = 4.67

The application of these repairs results in the new rankings depicted in
Table 4.2. These rankings are now consistent with the set E.

Evaluation

Experiences from Commercial Projects. On the basis of our experiences
from commercial recommender projects (see, e.g., Felfernig et al. [2006a])
we identified a clear need for more effective engineering techniques in

72

4.3 Automated Repair of Scoring Rules

customer item utility ranking ranking
after repair before repair

Robert
balanced funds 160.004 3 1

bonds 162.004 1 2

bonds2 161.004 2 3

Table 4.2: Utilities of products for customer Robert (before and after the repair process).
The utilities are now consistent with the examples shown in Table 3.16.

the context of utility constraint development and maintenance. The invest-
ment recommender of an Austrian financial service provider (see Figure
4.2) has been implemented without the repair functionalities presented in
this Section. The system comprises 15 parameters for specifying customer
requirements, 10 item variables and about 150 scoring rules (interest di-
mensions: availability, profit, risk) . The recommender application has been
designed, developed, and deployed with an overall effort of about 12 man
months. Before deploying the first version of the application, new versions
of the utility constraint set have been released every third week and tested
by domain experts. About 15 adaptation cycles were needed before deploy-
ing the utility constraint set in the productive environment. Adaptation
efforts related to the utility constraint set consumed about 12 hours per
adaptation cycle. This results in 180 hours of development and maintenance
efforts specifically related to the adaptation of the utility constraint set. In
each adaptation cycle the knowledge engineer tried to adapt the current
utility constraint set to be consistent with the example rankings provided
by domain experts. The process was error-prone and time-consuming and
triggered requirements to automate the adaptation process. The major prob-
lem was the task of manually detecting a set of repair actions that make
a utility constraint set consistent with the set of examples. Exploiting the
presented repair functionalities, a reduction of the overall development and
maintenance efforts related to utility constraint sets by about 60% (effort
directly related to the adaption of the utility constraints) can be expected
which means more than 100 hours of time savings in projects similar to the
described case.

73

4 Anomaly Management for Constraint-based Product Configuration Systems

Figure 4.2: Example financial service recommender applications: users (customers and
sales representatives) can specify requirements (a). In the case that no solution
can be found by the recommender application, possible repair alternatives are
presented (b). Solutions (results) are presented in the form of a recommendation
list (c) where each entry in the recommendation list is associated with a set of
explanations as to why this item has been recommended (d).

Optimality and Performance. Optimality properties of solutions to op-
timization problems are depending on the used optimization approach
[Neumaier et al., 2005]. We had to deal with a non-linear optimization
problem since non-linear constraints are part of the constraint set adaptation
problem. Non-linear optimization solvers can not guarantee the optimality
of an identified solution [Neumaier et al., 2005]. For this reason we had to

74

4.3 Automated Repair of Scoring Rules

evaluate the quality (degree of optimality) of results calculated by the Minos
Solver [Fourer et al., 2002] which we used for calculating solutions to a
constraint set adaptation problem. For our evaluations we used commercial
utility constraint sets from the product domains of refrigerators (refrig14),
financial services (finserv1-4), and computer monitors (mon1-4) (see Table
4.3). For each of the above mentioned application domains we have defined
four different settings which differ in the number of examples (#e) and the
number of products (#p). For example, in finserv4 #e=20 examples were
defined for #p=71 products. The corresponding utility constraint set com-
prised #su=503 constraints (scoring rules). In order to make the 20 examples
consistent with the given set of scoring rules, #so=340 rules have been
adapted with an average change distance avg(d)=0.056 where each scoring
rule is defined over the domain [0..10]. The time needed by the Minos solver
[Fourer et al., 2002] to calculate the adaptations for finserv4 was t=9464 mil-
liseconds. The Minos solver is capable of calculating adaptations for faulty
utility constraint sets within a reasonable time span acceptable for utility
constraints engineering scenarios. In such scenarios the system uses either
examples defined by marketing and sales experts or examples automatically
derived from existing user interaction logs. In our test settings we used
examples which have been specified manually, the automated derivation
of examples is the goal for future work. For a detailed discussion of the
handling of constraint set adaptation problems without a corresponding
solution (e.g., the set of provided examples is inconsistent) the reader is
referred to the work of Felfernig et al. [2008b] and Junker [2004].

If repair actions should be done by users of configuration systems, we
have to decide if conflicts or diagnoses should be presented to end-users. In
the next section we give insights into advantages and disadvantages when
conflicts and / or diagnoses and / or utility functions will be presented to
end-users.

75

4 Anomaly Management for Constraint-based Product Configuration Systems

rec. #e #p #su #so avg(d) t(msec)
refrig1 5 16 39 39 < 0.001 761

refrig2 10 30 69 55 0.085 1221

refrig3 15 43 80 62 0.082 1998

refrig4 20 55 100 74 0.077 2252

finserv1 5 19 266 160 0.070 1622

finserv2 10 37 396 244 0.054 5599

finserv3 15 53 439 288 0.055 6389

finserv4 20 71 503 340 0.056 9464

mon1 5 22 109 40 0.046 731

mon2 10 42 177 75 0.041 1813

mon3 15 61 214 105 0.044 1540

mon4 20 80 246 125 0.047 2063

Table 4.3: Performance of the Minos solver [Fourer et al., 2002] for the calculation of
solutions for our example test settings in three different domains (refrigerators,
financial services, and computer monitors) where #e = no. of examples, #p = no.
of products, #su = no. of scoring rules (utility constraints), #so = no. of scoring
rules adapted by the non-linear optimization process, avg(d) = average distance
to the original scoring values (before the repair process has been started), t(msec)
= calculation time in milliseconds.

4.4 Visualization of Conflicts8

In Section 4.1 we described inconsistencies in terms of conflicts and
diagnoses. How users of knowledge-based recommendation systems deal
with conflicts, diagnoses, and fitness values will be evaluated in this section.
Therefore, we first describe the term fitness value. Thereafter, we present an
online notebook recommendation system, define hypotheses, and evaluate
and discuss them based on an empirical study.

8This Section is based on Wotawa et al. [2015b].

76

4.4 Visualization of Conflicts

Fitness function

We are able to evaluate similarities between products in CP, the customer
preferences in CR, and the knowledge base CKB. If the customer preferences
can not be fulfilled, we can either calculate conflicts and diagnoses or
calculate the similarity by using the fitness function given in Equation 4.2.

f it(p, CR) = ∑
c∈CR

u(p, c)×ω(maxrelevance, c) (4.2)

In Equation 4.2, p defines a product in CP. CR is the set of customer
preferences. For each customer preference we calculate the utility value
u(p, c) and the weighting ω(maxrelevance, c). For the utility value we are
using McSherry’s similarity metrics for each variable [McSherry, 2003]. For
example, a lower price value is better (less is better) customer value

product value , a higher

RAM value is better (more is better) product value
customer value , and for the optical drive

a nearer value is better (nearer is better) = [0, 1]. The weighting function
ω(maxrelevance, c) evaluates a weighting for the constraint c by calculating the
relative importance relevance(c)

maxrelevance
. Note that the application upgraded all fitness

values to a percentile value. The best value was the number of fulfilled
preferences divided by the number of all the user’s preferences.

Notebook Recommendation System

In the preferences screen of our notebook recommendation system (see
Figure 4.3) the user is asked for at least three preferences which are described
in terms of product variables. Each of the specified preferences must be
weighted on a six-point scale.

77

4 Anomaly Management for Constraint-based Product Configuration Systems

Figure 4.3: Notebook recommendation: definition and weighting of user preferences. Each
relevance can only be selected once.

The next step was to remove all products c ∈ CP which are consistent with
the user preferences CR to assure that the participants were confronted with
a situation where her preferences were inconsistent with the underlying
product assortment, i.e., CR is inconsistent with CP.

In the following, participants received a visualization of the conflict. Each
participant was assigned to one of four scenarios (see Table 4.4). In the first
scenario the participants got minimal diagnoses as change recommendations
(see Figure 4.4). Scenario 2 presents minimal conflicts to the participants (see
Figure 4.5). Scenario 3 contains both, minimal diagnoses and minimal conflicts,
as explanations (see Figure 4.6). Scenario 4 shows the fitness values for
all products (see Figure 4.7). For the differentiation between experts and
novices we used two questions in the questionnaire at the end of the study.
The first question asked for a self-assessment and the second question asked
for expert knowledge. In our study 111 participants are experts and 90

participants are novices.

Next, we try to find the best approach for presenting inconsistencies
in constraint-based recommendation systems. For the evaluation we have
measured three general characteristics: a) the time which is used to repair an

78

4.4 Visualization of Conflicts

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Step 1 Insert preferences
Step 2 apply dissolve apply

diagnoses conflicts diagnoses
Step 3 select a product
Step 4 answer a questionnaire (2 pages)

Table 4.4: Overview of the user activities and scenarios

Figure 4.4: Presentation of 1 to n diagnoses denoted as ’change recommendation’

Figure 4.5: Presentation of 1 to n conflicts. Each ’change recommendation’ is a conflict set.
The user has to remove one constraint from any conflict set.

79

4 Anomaly Management for Constraint-based Product Configuration Systems

Figure 4.6: Presentation of 1 to n diagnoses and conflicts. The user has to apply one
diagnosis (’change recommendation’). The diagnoses are explained by the
underlying conflict sets.

Figure 4.7: Presentation of fitness values

80

4.4 Visualization of Conflicts

inconsistency, b) the understandability of conflicts and diagnoses, and c) the
satisfaction with the support for the ’no solution could be found’ dilemma.

Hypotheses

Having selected a diagnosis (in Scenarios 1 and 3), the participant (user)
receives a list of notebooks. In Scenario 2 the user a) removed at least
one of her preferences from each conflict set or b) at least one conflict
set still contains all constraints and the participant additionally has to
remove another preference. We call the number of preferences, which are
removed until the user receives products, interaction cycles. For example, an
interaction cycle of two means that the user removed two of her preferences
until products could be presented. Therefore we expect that the time, which
is necessary for resolving the conflict, will be lower when diagnoses are
presented to the participant:

Hypothesis 1: Study participants will solve inconsistencies faster when they
receive diagnoses.

The study participants received all diagnoses in a preferred order. We
expect that the first diagnosis will be selected most frequently.

Hypothesis 2: The first diagnosis will be selected by the majority of the
users for adapting their preferences.

A conflict occurs if a set of preferences can not be fulfilled (see Definitions
4 and 5). Scenario 3 uses the minimal conflict sets (see Definition 5) as
a description for the minimal diagnoses (see Definition 7). We expect a
positive impact on the understandability by the diagnoses:

Hypothesis 3: Participants will understand their conflicts more easily if
they receive explanations.

81

4 Anomaly Management for Constraint-based Product Configuration Systems

When the participants do not receive products after having inserted the
preferences, the satisfaction with the recommendation system will decrease
and we expect that the satisfaction with the product assortment of our
recommendation system will be higher if products are offered (Scenario 4),
even if they do not fulfill all of the participants’ preferences.

Hypothesis 4: The participants will have a higher satisfaction with the
product assortment when they receive fitness values (Scenario 4, see Figure
4.7).

Due to the stability of preferences [Tversky et al., 1990], the participants
are less willing to adapt their preferences. When the recommendation
system asks for more than one adaption of preferences, the participants
will have a lower satisfaction with the system. This leads to the following
hypothesis:

Hypothesis 5: More interaction cycles lead to a lower satisfaction with the
anomaly support.

Evaluation

For evaluating our hypotheses, we conducted a study at the Graz Univer-
sity of Technology and the University of Klagenfurt. 240 users participated
in our study. The students’ average age is 25 years (std. dev.: 5.52 years).
The participants are studying technical sciences (117), cultural sciences (63),
economics (29), and other sciences (n = 31). We have tested our results
with a two-tailed Mann-Whitney U-test and removed all participants with
contradictory answers to the SUS (system usability scale) questionnaire
[Brooke, 1986]. Finally, we divided 201 participations into the scenarios with
diagnoses (n = 56), conflicts (n = 50), diagnoses and conflicts (n = 38), and
fitness function (n = 57).

82

4.4 Visualization of Conflicts

Hypothesis 1 focuses on the time which is required to resolve inconsisten-
cies. Therefore, we measured the time between the first conflict notification
and the product presentation (see Table 4.5).

Scenario 1 2 3 4

D C D&C Fit
conflict solving time 16.64 21.16 20.05 0.00

product selection time 26.09 27.52 18.72 43.82

total 42.73 48.68 38.77 43.82

Table 4.5: Average time (in sec.) to resolve inconsistencies and to select a product (in sec.;
D = diagnoses, C = conflicts, Fit = fitness)

The result shows that the time for removing conflicts with diagnoses is
lower (16.64 sec.) than with conflicts (21.16 sec.) or selecting the diagnoses
with a corresponding explanation (20.05 sec.). This is because there is only
one interaction cycle for resolving inconsistencies with a diagnosis whereas
the average number of interaction cycles to resolve inconsistencies with
conflicts is 1.66. Reading the explanation of a diagnosis also increased the
time to resolve an inconsistency (20.05 sec.), compared to the diagnoses
without explanations (p < 0.1). The time for resolving the conflicts is 0 in
Scenario 4 since they are not resolved. Since these results are statistically
significant, these results confirm Hypothesis 1.

The time to select a product was nearly the same in the scenarios with
diagnoses (Scenario 1) and conflicts (Scenario 2). The third scenario performs
best in terms of the time which is required to select a product (18.72 sec.).
This can be explained by the fact that dealing with diagnoses and conflicts
helps to receive a deep understanding of the problem. Participants in the
fourth scenario required 43.82 sec. for selecting a product. The higher effort
for selecting a product can be explained by the missing explanations of the
conflict, and the participants may get confused that not all preferences are
fulfilled by the offered products. All differences in the product selection
time are statistically significant (p < 0.001).

83

4 Anomaly Management for Constraint-based Product Configuration Systems

We also researched the influences of the number of conflicts and diagnoses
(see Table 4.6).

of presented n satisfaction repair time
diagnoses / conflicts
1 diagnosis: 11 4.55 11.18 sec.
2 diagnoses: 11 4.14 10.71 sec.
> 2 diagnoses: 38 4.37 19.32 sec.
1 conflict: 56 4.09 22.29 sec.
2 conflicts: 23 4.04 45.48 sec.
>2 conflicts: 4 1.75 62.00 sec.

Table 4.6: Average time to repair inconsistencies regarded to the number of presented
diagnoses and conflict sets (1 represents the lowest and 5 represents the highest
possible value)

The number of diagnoses presented to the participant does not have an
impact on the satisfaction of the anomaly presentation. If a participant re-
ceives more than two diagnoses, the time for applying a diagnosis is nearly
two times higher. On the other hand, the satisfaction with the anomaly
presentation decreases enormously if a participant has to remove more than
two conflicts. Also the time to remove one constraint from a conflict set is
much higher than to applay a diagnosis. The decreasing satisfaction can be
explained by the user interaction. While applying a diagnosis (one interac-
tion cycle) resolves all conflict sets, many conflict sets lead to many different
repair actions (many interaction cycles) and we expect that especially more
than two interaction cycles lead to a high participants’ frustration. All values
are not statistically significant (p > 0.1).

Hypothesis 2 is looking at the ordering of preferred diagnoses and con-
flicts. Therefore we measured the position of the selected conflict / diagnosis
(see Figure 4.8). Note, there are only those participants considered out of
Scenarios 1 and 3 whose number of offered diagnoses is greater than one.

84

4.4 Visualization of Conflicts

Figure 4.8: Ranking of selected diagnosis / conflict

We can confirm Hypothesis 2 since 81 of the participants (82.65%) se-
lected the first diagnosis. The second diagnosis was selected by 11 (11.22%),
the third one by 5 (5.10%) participants and the fourth recommendation by
one participant (1.02%). Reasons for applying the first diagnosis are that the
first diagnosis contains only unimportant preferences9, the primacy-effect
[Felfernig et al., 2007a], and preference reversals [Tversky et al., 1990].

For measuring Hypothesis 3 we asked the participants of the Scenarios
1-3 if the diagnoses/conflicts were understandable. Answers were given on
a 5 point Likert-scale (5 represents the highest understandability).

Results show that the highest understandability is given when diagnoses
are presented (Scenario 1) followed by diagnoses explained with conflicts
(Scenario 3) and conflicts (Scenario 2, see Table 4.7). The difference between
the understandability of conflicts (4.40, Scenario 2) and the other scenarios
(Scenario 1 with 4.55 and Scenario 3 with 4.45) is statistically significant
(p < 0.05). The degree of understandability is higher for experts than for
novices (p > 0.1). We can partially confirm Hypothesis 3 since experts have
a higher understanding of the conflict, when conflicts and diagnoses are

9The preferences are initially ranked by all participants. Since the ranking is based on a
six point scale, we aggregated the values of those preferences that are in a diagnosis.

85

4 Anomaly Management for Constraint-based Product Configuration Systems

presented, whereas novices can not deal with much information. Due to the
cognitive processes (trial-and-error of novices versus analytical processing
of experts [Hong and Liu, 2003]), it is easier to deal with diagnoses when the
cognitive process is more analytical. When participants use a trial-and-error
process and they do not expect the visualization of conflicts, it is harder to
adapt the preferences.

Scenario 1 2 3

D C D&C
Total: 4.55 4.40 4.45

Experts: 4.62 4.38 4.67

Novices: 4.46 4.42 4.18

Table 4.7: Understandability of inconsistencies

Hypothesis 4 evaluates the satisfaction with the recommended products.
The average values are from 2.62 up to 3.3 (see Table 4.8) which is worse
and can be explained by the removal of all products that are conform to the
participants’ preferences at the beginning of the process.

Scenario 1 2 3 4

D C D&C Fit
Total 2.62 3.30 2.80 3.30

Experts 2.44 3.12 2.33 3.19

Novices 2.88 3.50 3.35 3.48

Table 4.8: Satisfaction with the product assortment

The results show that conflicts (Scenario 2) and the fitness function (Sce-
nario 4) lead to the highest satisfaction with the product assortment. A
differentiation between experts and novices does not influence the signif-
icance. As conflicts and the fitness values lead to the same satisfaction,
we can not confirm Hypothesis 4. An interesting result is that novices,
compared to experts, have an overall higher satisfaction with the product
assortment. This can be explained by the fact that they are more happy to

86

4.4 Visualization of Conflicts

get any products recommended. On the other hand, experts know that there
are products which fit with their preferences.

Hypothesis 5 will be evaluated by Table 4.9. There is a significant differ-
ence when participants had more than two interaction cycles. A statistically
significant difference between experts and novices is not constituted. A
differentiation between the interaction cycles of diagnoses and conflicts also
does not lead to a significant difference between all interaction cycles or
between conflict and diagnoses visualization. Since a higher satisfaction is
given if participants have only one or two interaction cycles, we can confirm
Hypothesis 5.

interaction cycles n satisfaction
1 34 4.44

2 10 4.30

3 3 2.67

≥ 4 3 3.00

Table 4.9: Satisfaction with the presented conflicts regarding interaction cycles

A comparison between the number of conflicts / diagnoses and satisfac-
tion, understandability, or time to resolve the inconsistency is not statistically
significant.

Discussion

This section gave an overview of conflict visualization in constraint-based
recommendation systems. If we can not present products that fit to the
user’s preferences, the user has to adapt her preferences. Such preference
reversals always result in a low satisfaction of users. The degree of dissatis-
faction depends on how often the preferences have been fulfilled in the past
[Tversky et al., 1990].

87

4 Anomaly Management for Constraint-based Product Configuration Systems

If users have positive experience with their preferences, it can happen
that the participants have well-established anchoring affects [Tversky and
Kahneman, 1974]. In such scenarios the participants may have stable pref-
erences but preference reversals are necessary to get notebooks. It can be
more problematic if there are many conflicts / diagnoses shown because
it could be the case that a representation of all conflicts / diagnoses leads
to a manifestation of the current preferences and the user is less willing
to accept any conflicts / diagnoses. Such an effect is called status-quo bias
[Kahneman et al., 1991; Samuelson and Zeckhauser, 1988].

Another important aspect is the cognitive processing task. While novices
tend to use trial-and-error processes, experts tend to use heuristic and
analytic cognitive processes [Hong and Liu, 2003]. That means that novices
tend to adapt their preferences unless they receive products. Our results
confirm the usage of the trial-and-error process since the satisfaction of
novices is high if they can adjust their preferences arbitrarily or receive
similar products (see Hypothesis 4). On the other hand, experts try to
understand the modifications and analyze them. Therefore, they prefer the
visualization of diagnoses (see Hypothesis 3).

This chapter described how we can support knowledge engineers and
end-users when they have to deal with different types of anomalies. Besides
anomalies there are also several techniques to reduce the complexity of a
constraint-based knowledge base or to give new insights into the knowledge
base. Such techniques will be described in the following chapter.

88

5 Intelligent Supporting
Techniques for Maintaining
Constraint-based Systems

In this chapter we describe supporting techniques for knowledge en-
gineers who have to maintain a constraint-based product configuration
knowledge base. First, we show how we can divide the information of a
knowledge base into relevant and irrelevant information (Section 5.1). Since
anomaly management is a critical task when maintaining product config-
uration knowledge bases, Section 5.2 gives an overview of algorithms for
detecting conflicts, diagnoses, redundancies, and well-formedness violations
based on constraints and assignments. Detecting dependencies between
variables and constraints is a crucial task for the maintenance. Therefore,
Section 5.3 gives an overview of dependency detection and introduces a
simulation technology for approximating the consistency rate of a knowl-
edge base. If a knowledge engineer wants to know the complexity of a
knowledge base, it is possible to approximate the complexity with our eval-
uation techniques in Section 5.4. Finally, we also take a look at automated
test case generation (Section 5.5) and the development of knowledge bases
(Section 5.6) as supporting techniques for the development and maintenance
of product configuration systems.

89

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

5.1 Recommendation Techniques1

Constraint-based knowledge bases can have hundreds or thousands of
variables, domain elements, and constraints. If there is a maintenance task
(e.g., inserting new tire sizes), recommendation techniques help to differen-
tiate between relevant and not relevant information within the knowledge
base related to the maintenance task. For example, the tires of a bike proba-
bly have an influence on the frame of a bike but do not influence the bell
of a bike. In such cases recommendation techniques detect items (variables,
domain elements, constraints, test cases) which are influenced by the tires
and the knowledge engineer can focus on these items. We describe four
different types of recommendation to support knowledge engineers in their
maintenance tasks [Felfernig et al., 2013b].

The first recommendation approach is the most viewed recommendation
which is user-independent. It can be useful for new engineers of a product
domain.

Second, recently added lists new items (products, product variables, ques-
tions, and constraints) in the knowledge base. It is user-dependent since
it considers the knowledge engineer’s last log in and helps to get a fast
understanding of the previous changes in the knowledge base.

The next type of recommendation is collaborative filtering. This type of
recommendation takes the ratings for items into account and looks for
knowledge engineers with similar ratings. In our case we do not have
ratings but we use the interaction with items as ratings. If a knowledge
engineer looks at products, she ’rates’ the item with 1. 2 will be added by the
knowledge engineer if she is editing an item. Table 5.1 shows an example for
a collaborative filtering recommendation for knowledge engineer u0 based
on our example 3.2.

1This Section is based on Felfernig et al. [2013b].

90

5.1 Recommendation Techniques

c0 c1 c2 c3 c4 c5 c6 c7 c8
u0 1 1 2 1 ?
u1 1 1 1 1 1
u2 1 2 1 2 2
u3 1 1 2

Table 5.1: An example for collaborative filtering. 1 means that the item ci is viewed by the
user uj, 2 means that the item is edited and ’ ’ means that the item is neither
viewed nor edited by the user.

In Table 5.1 we try to find out if we should recommend item c7 to knowl-
edge engineer u0. The common process to find recommendable items is
twofold. First, we try to find knowledge engineers with similar interests. In
our example u1 and u2 have nearly the same items viewed or edited. Second,
we have to evaluate if the similar knowledge engineers are interested in
the item. Therefore, we use the Pearson correlation [Felfernig et al., 2014a;
Jannach et al., 2010]. In our example u1, and u2 have viewed / edited item
c7 and we should recommend c7 to knowledge engineer u0.

Another recommendation approach is the usage of content-based filtering.
The basic idea is to find similar items compared to a reference item. We take
the variable names and domain values from a constraint and evaluate the
similarities between the reference item and all other items. The similarities
are measured by the TF-IDF (term frequency and inverse document fre-
quency) algorithm [Jannach et al., 2010; Pazzani and Billsus, 2007] where the
item is the document and the terms are the variables and domain elements.
Table 5.2 shows the similarity values between constraint c7 as reference
constraint with the other constraints.

With this approach we can say that there is a high relationship between
constraint c7 with the constraints c0 and c2 and a weak relationship with the
constraints c6 and c1.

91

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

constraint similarity
c0 0.50

c1 0.17

c2 0.50

c3 0.00

c4 0.00

c5 0.00

c6 0.33

c8 0.00

Table 5.2: Similarities between constraint c7 with the other constraints based on content
based recommendation

This section described the relationship of elements within a knowledge
base based on the relationship of elements (e.g., the variables within a
constraint) or knowledge engineers. Another relationship can be based
on anomalies (e.g., two constraints are within a conflict set). How we can
calculate anomalies efficiently will be described in the next section.

5.2 Anomaly Management2

Anomalies are patterns in data that do not conform to a well defined notion of
normal behavior [Chandola et al., 2009]. We describe and evaluate the de-
tection of inconsistencies (Section 4.1.1). Thereafter, we present algorithms
for the detection of redundancies (Section 4.1.2) and introduce an exam-
ple for assignment-based redundancy detection. Finally, we also present
algorithms for the detection of well-formedness violations (Section 4.1.3) to
support knowledge engineers in terms of increasing the understandability
of knowledge bases in this section.

2This Section is based on Reinfrank et al. [2015a]; Felfernig et al. [2012a]; Schubert et al.
[2011].

92

5.2 Anomaly Management

5.2.1 Inconsistencies

Inconsistencies are probably the most discussed type of anomaly. A
knowledge base is inconsistent if there does not exist a consistent and
complete solution (i.e., a valid instance, see Definition 3) to the constraint
satisfaction problem (CSP) defined by the knowledge base. In such situations
we have to identify at least one conflict set which is a set of constraints of
the knowledge base.

If an inconsistency exists in the configuration knowledge base, we are able
to identify all conflict sets CS ⊆ CKB [Felfernig and Schubert, 2011b] which
do not allow the determination of a solution. A conflict set CS is minimal
if there does not exist a conflict set CS′ with CS′ ⊂ CS (see Definition 5).
The standard algorithm for detecting a minimal conflict set is QuickXPlain
[Junker, 2004]. QuickXPlain is based on the idea of divide-and-conquer
where the basic strategy of the algorithm is to filter out constraints - which
are not part of a minimal conflict - as soon as possible (see Algorithms 1

and 2).

The following algorithms have two sets as parameters which are repre-
senting the knowledge base: the set CKB is a set of constraints which can not
be part of a conflict set because, for example, they have already been tested
by the knowledge engineer. CR is a set of constraints which can contain a
conflict set because, for example, errors during the last update are inserted.
The union of both sets CKB ∪ CR represents all constraints C = CKB ∪ CR.

Algorithm 1 QuickXPlain(CKB, CR):∆
. C : KB: set of not diagnosable constraints

. CR: set of diagnosed constraints
if isEmpty(C) or consistent(CKB ∪ CR) then

return ∅;
else

return QuickXPlain′(CKB, CKB, CR);
end if

93

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

If CKB ∪ CR is inconsistent and CR 6= ∅, the preconditions of applying
QuickXPlain are fulfilled and Algorithm 2 will detect a minimal conflict.
This algorithm divides CR into C1 and C2 and checks whether CKB ∪ C1 is
inconsistent. If it is inconsistent, an empty set will be returned, otherwise
C1 will be divided and tested again. If singleton(C) is true, constraint c ∈ C
will be part of the minimal conflict set and inserted into ∆1. ∆2 receives a
constraint set which will also be a part of the minimal conflict and can be
∅ or ∆2 ⊆ C1. All constraints in ∆1 and ∆2 are part of the minimal conflict
set and returned by the algorithm. ∆1 ∪ ∆2 = ∅ means that all conflict sets
are in CKB and the knowledge base can not be consistent without removing
constraints from CKB.

Algorithm 2 QuickXPlain’(CKB, ∆, CR = {C1, ..., cr}):∆
. CKB: Set of diagnosed constraints which are not part of a diagnosis

. ∆: Set of diagnosed constraints which are part of a diagnosis
. CR: Set of constraints which will be diagnosed

if ∆ 6= ∅ and inconsistent(CKB) then
return ∅;

end if
if singleton(CR) then

return CR;
end if
k← d r

2e;
C1 ← {c1, ..., ck};
C2 ← {ck+1, ..., cr};
∆1 ← QuickXPlain′(CKB ∪ C1, C1, C2);
∆2 ← QuickXPlain′(CKB ∪ ∆1, ∆1, C1);
return(∆1 ∪ ∆2);

Where minimal conflict sets represent minimal sets of constraints which
do not allow the calculation of a solution, diagnoses are minimal sets of
constraints which have to be deleted from the knowledge base such that a
solution can be identified for the remaining set of constraints. More formally,
a diagnosis ∆ ⊆ CR is a set of constraints such that CR \ ∆ is consistent,
i.e., there exists at least one solution for CR \ ∆. A diagnosis ∆ is minimal if
there does not exist a diagnosis ∆′ with ∆′ ⊂ ∆.

94

5.2 Anomaly Management

In contrast to QuickXPlain the FastDiag algorithm [Felfernig et al., 2012b]
(see Algorithms 3 and 4) calculates one minimal diagnosis ∆ ⊂ CR s.t. CR \∆
is consistent. Similar to QuickXPlain [Junker, 2004] FastDiag [Felfernig
et al., 2012b] exploits a divide-and-conquer strategy. However, the focus
is different: it determines a minimal diagnosis as opposed to a minimal
conflict set determined by QuickXPlain.

Similar to QuickXPlain Algorithm 3 receives a set CR which contains all
diagnosable constraints. Contrary to QuickXPlain Junker [2004], the second
set is denoted as C and contains all constraints. If CR is an empty set, Fast-
Diag has no diagnosable set and the algorithm skips all further steps. It also
stops if the set C \CR is inconsistent because this set contains inconsistencies
but it will not be diagnosed. If both preconditions are fulfilled, Algorithm 4

will diagnose C.

Algorithm 3 FastDiag(CR, C):∆
. CR: Set of constraints which will be diagnosed

. C: inconsistent configuration knowledge base including all constraints
if CR = ∅ ∨ inconsistent(C \ CR) then

return ∅;
else

return DIAG(∅, CR, C)
end if

First of all, DIAG checks whether C is consistent. If it is consistent, each
subset of C is also consistent and no constraint in C will be a part of the
diagnosis. CR will be divided into two subsets C1 and C2. Each subset will
be removed from C separately and within a recursion which means that the
subsets will be further divided if an inconsistency is still given. If C− C1
is consistent, we can say that C2 is consistent and an empty set will be
returned. If it is inconsistent, at least one constraint in C1 must be part of the
diagnosis and therefore C1 will be divided and tested again unless |C| = 1.
In this case DIAG returns this constraint as a part of the diagnosis. The
algorithm returns a set ∆1 ∪ ∆2 of constraints which represent a minimal
diagnosis.

95

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

Algorithm 4 DIAG(∆, CR = {c1, ..., cr}, C):∆
. ∆: Set of diagnosed constraints which are part of a minimal diagnosis

. CR: Set of constraints which will be diagnosed
. C: Set of diagnosed constraints which are not part of a diagnosis

if ∆ 6= ∅ and consistent(C) then
return ∅;

end if
if singleton(CR) then

return CR;
end if
k← d r

2e;
C1 ← {c1, ..., ck};
C2 ← {ck+1, ..., cr};
∆1 ← DIAG(C2, C1, C \ C2);
∆2 ← DIAG(∆1, C2, C \ ∆1);
return(∆1 ∪ ∆2);

In order to analyze the performance of QuickXPlain (Algorithm 1) and
FASTDIAG (Algorithm 3), we conducted a performance analysis for both
algorithms on the basis of different feature models provided by the S.P.L.O.T.
repository. The results of this analysis are presented in the following.

Performance evaluation For evaluation purposes we selected different
feature models offered by the S.P.L.O.T. repository: Car Selection (Table 5.3),
SmartHome V. 2.2. (Table 5.4), and Xerox (Table 5.5). In order to evaluate the
performance of FASTDIAG, we randomly inserted additional constraints
in the knowledge bases for inducing inconsistencies which could then be
exploited for determining minimal diagnoses. For a systematic evaluation
we generated different versions of the (inconsistent) feature models that
differed in terms of their inconsistency rate (see Formula 5.1) which was
categorized in {2%, 5%, 7%}. We used a random variable to control the
degree of generated inconsistencies (the number of conflicts) in a feature
model. As reasoning engine we used the CHOCO constraint solving library.3

3www.emn.fr/z-info/choco-solver

96

www.emn.fr/z-info/choco-solver

5.2 Anomaly Management

In order to import feature models to our environment, we implemented
a parser that generated CHOCO knowledge bases from S.P.L.O.T. SXFM
based feature models.

Inconsistency Rate =
#con f licts in C

#constraints in C
(5.1)

Feature Model: Car Selection
Variables: 72

Constraints: 96

#D
Inconsistency Rate

2% (8 diagoses) 5% (64 diagnoses) 7% (182 diagnoses)
FastDiag HSDAG FastDiag HSDAG FastDiag HSDAG

1 452 874 561 1888 858 5366

2 749 890 920 1891 1638 5382

3 1045 921 1294 2138 2059 5506

4 1373 936 1653 2143 2324 5522

5 1529 968 1872 2262 2464 5544

10 - - 2511 2418 2932 5709

20 - - 2964 2450 3806 6162

all 1632 1027 4383 3339 11856 8860

Table 5.3: Evaluation of FastDiag and HSDAG with the Car Selection feature model from
S.P.L.O.T. (#D = number of diagnoses).

The performance tests were executed within a Java application running
on a 64bit Windows 7 desktop PC using 8GB RAM and an Intel(R) Core(TM)
i5-2320 CPU with 3.0GHz. Each run of the diagnosis algorithm for a specific
setting has been repeated 10 times were in each run the ordering of the
constraints was randomized. For each setting we evaluated the runtime (in
ms) of both, the standard hitting set based approach to the termination of
diagnoses (HSDAG; Reiter [1987]) and FASTDIAG. As scenario we chose
the diagnosis of void feature models where we induced different degrees of
inconsistency (based on the inconsistency rate measure - see Formula 5.1). The

97

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

Feature Model: SmartHome V. 2.2
Variables: 61

Constraints: 63

#D
Inconsistency Rate

2% (8 diagoses) 5% (12 diagnoses) 7% (77 diagnoses)
FastDiag HSDAG FastDiag HSDAG FastDiag HSDAG

1 297 920 312 952 577 2683

2 427 967 452 968 951 2684

3 609 983 592 983 1341 2686

4 734 998 733 1139 1762 2699

5 843 1014 842 1155 2090 2671

10 - - 967 1529 2792 2715

20 - - - - 3369 2746

all 1155 1061 1606 1545 6224 3151

Table 5.4: Evaluation of FastDiag and HSDAG with the SmartHome V 2.2 feature model
from S.P.L.O.T. (#D = number of diagnoses).

upper bound for the evaluation time was set to 100.000 ms – in the case that
this upper limit was exceeded, the search was stopped.

Next, we used three different set-ups for the performance analysis, dif-
fering in the number of diagnoses which are calculated to give a detailed
description when conflict detection and HSDAG perform better than Fast-
Diag. Figure 5.1 presents results for calculating 1, 5, and all diagnoses. For
the calculation of diagnoses with the QuickXPlain algorithm (Algorithm 1

and 2) and for getting more than one diagnosis from FastDiag (Algorithm
3 and 4) we have used Reiters’ HS-tree [Reiter, 1987]. With this tree it is
possible to calculate all conflicts and diagnoses for a given configuration
knowledge base by transferring each constraint from the result of QuickX-
Plain / FastDiag separately from the set of diagnosable constraints CR to the
set of not diagnosable constraint set CKB. For a more detailed description of
the HS-tree we refer the reader to [Reiter, 1987].

98

5.2 Anomaly Management

Feature Model: Xerox
Variables: 172

Constraints: 205

#D
Inconsistency Rate

2% (140 diagoses) 5% (84 diagnoses) 7% (55 diagnoses)
FastDiag HSDAG FastDiag HSDAG FastDiag HSDAG

1 1638 3354 1260 2996 1740 3023

2 2013 6646 1710 3167 2050 3203

3 2262 12106 1970 9454 2330 9544

4 2434 12355 2180 9536 2580 9654

5 2637 28111 2341 12044 2790 12165

10 3417 69950 2921 64631 3330 65240

20 4758 75317 3911 90715 5010 91726

all 46785 >100000 17301 >100000 10541 >100000

Table 5.5: Evaluation of FastDiag and HSDAG with the Xerox feature model from S.P.L.O.T.
(#D = number of diagnoses).

Results show that the FastDiag approach has an advantage compared to
the QuickXPlain algorithm if one diagnosis has to be calculated. The reason
for that is that the calculation of a diagnosis in the HS-tree, when using the
FastDiag approach, is done when the first node in the HS-tree is calculated.
On the other hand, the conflict set approach must expand a path from the
root to a leaf before having a diagnosis. This approach has an advantage if
many diagnoses have to be calculated.

Finally, if all diagnoses have to be calculated, QuickXPlain performs better,
because the reuse of previously calculated conflict sets within the HS-tree
increases and the number of expanded nodes in the HS-tree is lower.

5.2.2 Redundancies

Redundancies are anomalies which do not influence the behavior of
the knowledge base. A constraint ca is redundant if the deletion of the

99

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

Figure 5.1: Number of consistency checks for calculating diagnoses

constraint will not influence the behavior of the configuration knowledge
base, more formally described as C \ {ca} |= ca. A constraint ca is said to be
non-redundant if the negation of C (i.e. C) is consistent with C− {ca}. The
redundancy detection algorithms can be applied only if C is consistent and
no inconsistencies are in C.

The first approach to the detection of redundancies has been proposed
by Piette [Piette, 2008]. The approach is the following: a knowledge base
with its negotiation must be inconsistent, formally described as C ∪ C = ∅.
By removing each constraint ca separately from C, the algorithm checks
whether the result of C \ {ca} ∪ C is still inconsistent. If this is the case, then
the constraint is redundant and can be removed.

After each constraint has been checked separately, Ct is a non-redundant
constraint set (minimal core) which means that ∆ = C \ Ct is a set of
redundant constraints in C and these are returned.

An alternative approach (CoreDiag) has been proposed by Felfernig et al.
[2011b]. Instead of a linear approach they adapt the QuickXPlain algorithm.
The divide-and-conquer approach of this algorithm checks whether remov-
ing a set of constraints leads to an inconsistency, formally described as
C \ ∆ ∪ C = ∅. If it is not inconsistent, C must be further divided and

100

5.2 Anomaly Management

Algorithm 5 SEQUENTIAL(C): ∆
. C: configuration knowledge base

. C: the complement of C
. ∆: set of redundant constraints

Ct ← C;
for all ci in Ct do

if isInconsistent(Ct − ci ∪ C) then
Ct ← Ct − {ci};

end if
end for
∆← C − Ct;
return ∆;

tested again. Similar to SEQUENTIAL the CoreDiag algorithm also has C
as input.

Algorithm 6 CoreDiag (C): ∆
. C = {c1, c2, ..., cn}

. C: the complement of C
. ∆: set of redundant constraints

C ← {¬c1 ∨ ¬c2 ∨ ...∨ ¬cn};
return(C \CoreD(C, C, C));

CoreD (see Algorithm 7) checks if CKB ⊆ CR is inconsistent. An inconsis-
tency of CKB ∪ CR means that the subset is not redundant and no constraint
of CKB will be a part of ∆. singleton(CR) is true means that this constraint
is part of the diagnosis and will be returned. Otherwise the constraint set
CR will be further divided and the subsets will be checked recursively.

Which algorithm should be used and which preconditions influence the
selection of the algorithm, will be described in an empirical study in the
next Section.

101

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

Algorithm 7 CoreD(CKB, ∆, CR = {c1, c2, ..., cr}): ∆
. CKB: Set of diagnosed constraints which are not part of a diagnosis

. ∆: Set of diagnosed constraints which are part of a diagnosis
. CR: set of constraints to be checked for redundancy

if ∆ 6= ∅ and inconsistent(CKB) then
return ∅;

end if
if singleton(CR) then

return(CR);
end if
k← d r

2e;
C1 ← {c1, c2, ..., ck};
C2 ← {ck+1, ck+2, ..., cr};
∆1 ← CoreD(CKB ∪ C2, C2, C1);
∆2 ← CoreD(CKB ∪ ∆1, ∆1, C2);
return(∆1 ∪ ∆2);

Performance evaluation We evaluated the performance of the redundancy
detection algorithm CoreDiag (see Table 5.6). We measured redundancy in
the terms of the redundancy rate (see Formula 5.2).

Redundancy rate =
#redundant constraints in FM

#constraints in FM
(5.2)

Feature Model # Variables #Constraints Redundancy Runtime
rate (ms)

Car Selection 72 96 0.64 5070

SmartHome V. 2.2 61 63 0.29 1907

Xerox 172 205 0.71 3261

Table 5.6: Evaluation of CoreDiag with selected S.P.L.O.T. feature models

The outcome of this analysis was that all the investigated knowledge bases
showed quite different degrees of redundancy (see Table 5.6). Note that

102

5.2 Anomaly Management

the CoreDiag algorithm is especially useful in situations where models are
developed by one or a few engineers. In this case the degree of redundant
constraints in the model is low. For scenarios with high redundancy rate,
alternative algorithms have already been developed (see, e.g., Felfernig et al.
[2011b]).

Next, we conducted a study to check when CoreDiag performs better com-
pared to SEQUENTIAL. Therefore we tested both algorithms with different
redundancy rates (see Figure 5.2). If the number of redundant constraints
r in relation to the total number of constraints n is high, the CoreDiag
algorithm performs better and has an approx. 40% runtime advantage.

Figure 5.2: Number of consistency checks of redundancy detection algorithms

The SEQUENTIAL approach performs better if the redundancy rate is
lower than 50% and loses the performance advantage if the configuration
knowledge base contains between 50% and 75% redundant constraints. This
confirms the complexity of CoreDiag (2r× log2(n

r) + 2r) and SEQUENTIAL
(n) where r is the number of redundant constraints and n is the number of
all constraints in the knowledge base. Beginning with a redundancy rate
r
n > 0.6, the CoreDiag algorithm has a performance advantage compared to
SEQUENTIAL.

103

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

Each model is calculated 20 times and the configuration knowledge bases
differ in the ordering of the constraints. Comparing the difference between
the maximum and minimum number of consistency checks spent for the
calculation of CoreDiag and SEQUENTIAL, we find out that the standard
deviation between the minimal number of checks spent for the calculation
of redundancies is higher when using the CoreDiag (38.67%) compared to
the SEQUENTIAL algorithm (19.34%). The reason for that is the influence
of the constraint order in CoreDiag and its divide-and-conquer strategy.

Assignment-based anomaly management Anomaly management research
describes different approaches to detect and explain anomalies [Reinfrank
et al., 2015a; Wotawa et al., 2015a]. For example, QuickXplain can detect
conflicts [Junker, 2004], FastDiag finds minimal diagnoses for these conflicts
[Felfernig and Schubert, 2011b], Sequential [Piette, 2008] and CoreDiag
[Felfernig et al., 2011b] can remove maximal sets of constraints without
changing the semantics of the knowledge base (redundancy detection).
Well-formedness violations can detect domain elements which can never
be selected (dead elements), or have to be selected (full mandatories), or can
only exit if specific domain elements of other variables are selected as well
(unnecessary refinements) [Reinfrank et al., 2015a].

While all of these algorithms focus on constraints, little attention has been
paid to the context of assignment-based anomaly detection. Compared to
constraint-based perspectives, an assignment-based view can a) find out
which assignments within a constraint lead to the anomaly and b) detect
more redundancies when one assignment within a constraint with more
than one assignment can not be detected with common algorithms.

Alternatively, we can check the assignments within a constraint instead
of the constraint itself for anomalies. Algorithm 8 gives an example for an
assignment-based algorithm. This algorithm extends the Sequential algorithm
introduced by Piette [2008]. First of all, we have to generate the negation
of all constraints in the knowledge base. We denote the negation C̄ and
define a disjunctive query of the original knowledge base ¬c1 ∨ ¬c2 ∨ ¬c3.

104

5.2 Anomaly Management

If the negation of the knowledge base in combination with the original
knowledge base is inconsistent, s.t. C ∪ C̄ is inconsistent, the knowledge
base has not changed its semantics. If a constraint will be removed from the
knowledge base (but not from the negation of the knowledge base) and the
combination is still inconsistent, we can say that the knowledge base has
kept its semantics and the removed constraint is redundant.

While the Sequential algorithm removes constraint by constraint from C,
we divide the constraint into its assignments and remove assignment by
assignment. Therefore, we introduce the set A(c) which describes the set of
assignments of constraint c ∈ C. When we remove an assignment from A(c),
we next have to consider the relations between the assignments. Figure 5.3
shows the graphical representation of all constraints and their assignments
in our example knowledge base 3.1 in a conjunctive order. When we remove
an assignment a from A(c), we will further replace the upper relation.
For example, the removal of the assignment usage scenario = o f f ice of
constraint c1 replaces the upper implication→ with the top node of those
elements which will not be connected to the conjunctive constraint. In our
case this is relation ’∧’.

Algorithm 8 introduces an approach to detect redundant assignments
within a knowledge base. The approach is straight forward: First we have to
generate the negation of C̄. Then we select constraint by constraint. For each
constraint we remove assignment by assignment a. Finally we check if the
knowledge base with the changed constraint c is still inconsistent with C̄. If
it is inconsistent, we can say that the removed assignment a is redundant.

Figure 5.4 shows the redundant assignments of our example knowledge
base. In the first row we see the original constraints and the result for the
usage scenario variable (green box). Then we remove assignment by assign-
ment and see the result of the constraints in the column result. The yellow
boxes suggest that the adapted constraints lead to the same semantics as
the original knowledge base. We can remove cpu cores = 2 from constraint

105

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

Algorithm 8 AssignmentSequential
function AssignmentSequential(KB): R

. KB: knowledge base
C̄ = ¬c1 ∨ ¬c2 ∨ ¬c3
R = ∅
for all c ∈ C do

for all a ∈ A(c) do
A.remove(a)
if (C ∪ C̄)isinconsistent then

R.add(a)
else

A.add(a)
end if

end for
end for
return R

end function

c1 and the assignments price < 999 and cpu cores = 4 from filter constraint
c2 without changing the semantics of the knowledge base.

Similar adaptations can also be done, e.g., for QuickXPlain Junker [2004],
FastDiag Felfernig et al. [2012b], and CoreDiag Felfernig et al. [2011b]. As
these algorithms use a divide and conquer approach based on constraints,
future research can also consider assignments instead of constraints to
calculate the anomalies.

5.2.3 Well-formedness Violations

Next, we describe the algorithms to detect well-formedness violations.
First, we detect dead domain elements (Definition 9) with Algorithm 9. The
algorithm takes sets of constraints (C), variables (V), and their domains
(D) as input parameters and returns a set of variable assignments. Each

106

5.2 Anomaly Management

Figure 5.3: Graphical representation for detecting redundant assignments: conjunctive
query of all constraints c ∈ C in our example knowledge base. In Algorithm 8

we remove assignment by assignment from the knowledge base and check the
consistency instead of the whole constraint (c1, c2, c3).

of the assignments can never be consistent with C. The suggestion for the
knowledge engineer is that the domain elements, which will be returned by
the algorithm, can be deleted.

While we can evaluate if a domain element can never be in a consistent
instance, we can also check if a domain element must be in a consistent
instance of a knowledge base. We denote such domain elements as full
mandatory (see Definition 10). Algorithm 10 checks whether the knowledge
base will be inconsistent if the domain element domj is not selected.

If variable vi contains a full mandatory domain element, we can say that
each other domain element of vi is a dead element. If a domain element
is full mandatory, we suggest the knowledge engineer to delete all other
domain elements or to remove the variable itself.

107

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

Figure 5.4: Detection of redundant assignments. The columns c1, c2, and c3 show the
constraints when one assignment will be removed. The first row shows the
results (green background) of the original constraints. The yellow background
suggests that the removal of the assignments leads to the same results.

Finally, we introduce an algorithm to detect unnecessary refinements be-
tween variables (see Definition 11). Algorithm 11 returns a set of constraints.
Each of these constraints describe one unnecessary refinement between two
variables and each domain element between both variables. The assignments
between the variables are conjunctive and each domain element of variable
vi is in a disjunctive order, e.g. (vi = vali1 ∧ vj = valj1) ∨ (vi = vali2 ∧ vj =
valj2) ∨ (vi = vali3 ∧ vj = valj3).

The performance of this algorithm depends on the number of variables,
their domain size, the number of unnecessary refinements, and the per-
formance of the solver. In our study with 14 knowledge bases (up to 34

variables and domain sizes from two to 47) the detection of unnecessary
refinements requires up to 375 ms (with 42 unnecessary refinements) for the
detection of all possible unnecessary refinements (Intel Xeon @ 2.4Ghz, 6

cores, 24GB RAM).

108

5.3 Dependency Detection

Algorithm 9 DeadDomainElement (V, D, C): ∆
. V: knowledge base variables
. D: knowledge base domains

. C: knowledge base constraints
. ∆ set with inconsistent variable assignments

for all vi ∈ V do
for all domj ∈ dom(vi) do

C′ = C ∪ {vi = domj}
if inconsistent(C′) then

∆← {vi = domj}
end if

end for
end for
return ∆

Besides the detection of dependencies between elements within a con-
straint-based knowledge based on collaborative and content-based recom-
mendations (Section 5.1) and anomalies, we can also evaluate how variables
(and constraints) are influencing each other. How to measure the interference
of two variables or constraints will be described in the next section.

5.3 Dependency Detection4

To increase the understandability of a knowledge base for knowledge
engineers we can evaluate the influence between variables. For example, if
a knowledge engineer adds a new domain element ’8’ to variable cpucores
she is maybe also interested in relationships to the variable RAM.

In this section we present Gibbs’ sampling to measure the intensity of
relationships between variables. Based on randomly generated constraints
we use consistency checks (see Definition 3) to determine the relationship

4This Section is based on Reinfrank et al. [2015a].

109

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

Algorithm 10 FullMandatory (V, D, C): ∆
. V: knowledge base variables
. D: knowledge base domains

. C: knowledge base constraints
. ∆ set with inconsistent variable assignments

for all vi ∈ V do
for all domj ∈ dom(vi) do

C′ = C ∪ {vi 6= domj}
if inconsistent(C′) then

∆← {vi 6= domj}
end if

end for
end for
return ∆

between variables. We measure the relationship of va and vb based on the
number of consistent checks compared to the overall number of consistency
checks and each consistency check contains an assignment for variable va
and vb. While doing all possible consistency checks for constraint-based
product configuration systems is possible in an acceptable time period,
constraint-based configuration systems needs an unacceptable time period
to evaluate all possible consistency checks. How Gibbs’s sampling can be
used for dependency detection in product configuration knowledge bases
will be described in the following.

The general purpose is the following: when we want to determine the
relationship between two variables va and vb, we generate assignments for
all possible combinations of their domain elements and add one of these
assignments to CKB. An assignment is a constraint which contains one
variable v, one domain element d ∈ dom(v), and a relationship between
variable and domain element vr (see Section 3.1). Examples for assign-
ments are eBike = true and BikeType = MountainBike. Additionally, we
generate further randomly generated assignments for other variables in the
knowledge base and check, if the knowledge base is consistent. When we cal-
culate consistentchecks/(consistentchecks + inconsistentchecks), we can say,

110

5.3 Dependency Detection

Algorithm 11 UnnecessaryRefinement (C, V): ∆
. V: knowledge base variables
. D: knowledge base domains

. C: knowledge base constraints
. ∆ set with constraints

for all vi ∈ V do
for all vj ∈ V|vi 6= vj do

A = ∅; . set with assignments
for all domk ∈ dom(vi) do

dompair = f alse;
C′ ← C ∪ {vi = domk}
for all doml ∈ dom(vj) do

C′′ ← C′ ∪ {vj 6= doml}
if inconsistent(C′′) ∧ dompair = f alse then

dompair = true;
A← A ∪ {vi = domk ∧ vj = doml}

end if
end for

end for
if |A| = |dom(vi)| then

∆← ∆ ∪ disjunctive(A)
end if

end for
end for
return ∆

that values near to 0 means a weak relationship, because whenever va and
vb have a specific assignment, the knowledge base becomes inconsistent. 5

A value nearer to 16 means also a weak dependency between both domain
elements because the assignments of the domain elements of both variables
seems not to have any influence on the consistency of the knowledge base.

5Note, that a check for dead domain elements should be done before doing a depen-
dency detection.

6Note, that the value 1 is only possible, if no constraint in the knowledge base influences
the variables. In practice, we can use the coverage metric (see Section 5.4.3) as the maximum
for the relationship between two variables.

111

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

If the value is in the middle of the range, we can say, that there is a high
influence of the combination of these two assignments and we have to
consider this relationship when we have to maintain one of this domain
elements in the knowledge base.7.

Algorithm 12 describes Gibbs’ sampling, shows the basic algorithm for
estimating the consistency rate for a set of assignments, and is divided into
three functions.

Algorithm 12 GibbsSampling
1: function Gibbs(KB, A): ∆
2: CC = ∅ . set of consistency check results {0, 1}
3: mincalls = 200 . constant
4: threshold = 0.01 . constant
5: consistent = 0
6: veri f y = Double.Max Value
7: while n < mincalls ∨ veri f y > threshold do
8: randA = A ∪ generateRandAssign(KB)
9: C.addAll(randA) . C ∈ KB

10: if isConsistent(KB) then
11: consistent ++
12: CC.add(1)
13: else
14: CC.add(0)
15: end if
16: C.removeAll(randA)
17: veri f y = verifyChecks(CC)
18: n ++
19: end while
20: return consistent/n
21: end function

7An example for the graphical representation of the results is given in Figure 6.11.

112

5.3 Dependency Detection

The function Gibbs(KB, A) is the main function of this algorithm. It has a
knowledge base KB and a set of assignments A as input. The knowledge
base contains sets of variables V ∈ KB and constraints C ∈ KB. The set CC
(checks) contains all results from consistency checks. A consistency check
is either consistent (1) or inconsistent (0). The number of minimum calls
is constant and given in variable mincalls. The total number of consistent
checks is given in variable consistent. threshold is a constant and required
for testing if the current set of consistency checks has a high accuracy. If the
variable veri f y is greater than the threshold we can not guarantee, that the
current result is accurate. Therefore, we have to execute the loop again. In
the while-loop we first have to generate a set of new random assignments.
Since assignments are also special types of constraints, we add them to
the set C ∈ KB and do a consistency check again. If randA ∪ C ∈ KB is
consistent, we add 1 to the set CC and increment the variable consistent.
Otherwise we add 0 to the set CC. Finally, we verify all previous consistency
checks. If the variable veri f y is lower than the variable threshold and we
have more consistency checks than mincalls, we can return the number of
consistent checks divided by the total number of checks.

22: function generateRandAssign(KB):A
23: A = ∅ . A: set of assignments
24: n = 0 < Random(C) ≤ |C|: . generate n assignments
25: for i = 0; i < n; i ++ do
26: av = Random(V) . V ∈ KB
27: ar = Random(R)
28: ad = Random(dom(av))
29: A.add(a)
30: end for
31: return A
32: end function

The function generateRandAssign(KB) is responsible for the generation of
new assignments. Random(C) returns the number of assignments which has
to be generated randomly. Random(V) takes a variable from the knowledge
base. If the variable is already part of another assignment, the variable
will not be used again. Random(R) selects a relation between the variable

113

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

and the domain elements. In our case, variables can have textual domain
elements (e.g. the brand of a bike) or numeric domain elements (e.g. the
price of a bike). While the set of relations for textual domain elements is
R = {=, 6=}, the set is extended to R = {=, 6=,<,≤,>,≥} for numerical
domain elements. Finally, Random(dom(av)) selects a domain element from
dom(av) randomly (see Section 3.1).

33: function verifyChecks(CC):∆
34: CC1 = CC.split(0, |CC|/2)
35: CC2 = CC.split((|CC|/2) + 1, |CC|)
36: mean1 = mean(CC1)
37: mean2 = mean(CC2)
38: if mean1 ≥ mean2 then
39: return mean1−mean2
40: else
41: return mean2−mean1
42: end if
43: end function

Function veri f yChecks(CC) tests if the number of consistent and inconsis-
tent checks is normally distributed. Therefore, we first divide the set with
the consistency check results CC into two parts. We evaluate the mean of
both sets CC1 and CC2 and test if both mean values are near to each other.
If they have nearly the same value, we can say that the consistent checks are
normally distributed in both sets and return the difference between mean1
and mean2.

In this section we presented a usage scenario for Gibbs’ sampling for
detecting the dependencies between variables. Basically, we can say, that
Gibbs’ sampling can be used whenever an exact calculation is not necessary
and calculating a metric is to expensive (e.g., consistency checks for all
variants in constraint-based product configuration systems). For example,
with Gibbs’ sampling we can . . .

114

5.4 A Goal-Question-Metrics Model for Product Configuration Knowledge Bases

. . . generate test cases for boundary value analysis [Reinfrank et al.,
2015c].
. . . rank diagnoses and conflicts (assuming that a knowledge base with
nearly the same coverage compared to the current knowledge base is
preferred).
. . . generate reports for variety management (e.g. ’How many bikes
can be used for Competition, EverydayLi f e, and HillClimbing?’).
. . . estimate the coverage (number of consistent instances compared to
all instances) and evaluate the knowledge base which will be described
in the next section.

5.4 A Goal-Question-Metrics Model for Product
Configuration Knowledge Bases8

For the overview of the metrics for configuration knowledge bases we
use the GQM method. For each goal we use a set of questions to define the
achievement of each goal. It is also necessary that the goals, questions, and
metrics can be calculated automatically and with explanations [Bagheri and
Gasevic, 2011; Salvetto et al., 2004].

In this section we first give an overview of the possible goals for configu-
ration knowledge bases. Thereafter we give an overview of the questions
concerning (configuration) knowledge bases. Finally we operationalize the
questions by listing metrics for configuration knowledge bases.

5.4.1 Goals for Product Configuration Knowledge Bases

Nabil et al. [2008] define five basic goals for knowledge bases. Reusabil-
ity means that the knowledge base can be reused in another application
area. The flexibility defines the possibility to change the semantics of the
configuration knowledge base. Understandability defines the possibility that
knowledge engineers have correct assumptions. Functionality describes the

8This Section is based on Reinfrank et al. [2015b].

115

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

applicability of the knowledge base. For example, if the model does not de-
scribe the real product assortment, the knowledge base has no functionality.
Extendability describes the possibility to extend the knowledge base. In our
example (see Section 3.3) we can extend the model by adding the bike type
(V′ = V ∪ {Gears}; D′ = D ∪ {dom(Gears) = {1, 6, 18, 21, 24, 27}};).

Lethbridge [1998] identifies three goals for knowledge bases. First, it is
necessary that knowledge engineers can monitor their work. Therefore it is
necessary to offer baselines for its continous improvement. Another aspect
is the support for knowledge engineers when they maintain a knowledge
base. Finally, Lethbridge also focuses on the understandability of knowledge
bases.

From the perspective of software product lines there are three goals:
Analyzability focuses on the capability of a system to be diagnosed for
anomalies. Changeability is the possibility and ease of change in a model
when modifications are necessary. Understandability also means the likeli-
hood that knowledge engineers and designers understand the knowledge
base [Bagheri and Gasevic, 2011].

To sum up, we define the following goals for product configuration
knowledge bases:

• A configuration knowledge base must be maintainable, such that it
is easy to change the semantics of the knowledge base in a desired
manner [Bagheri and Gasevic, 2011; Nabil et al., 2008].

• A configuration knowledge base must be understandable, such that
the effort for a maintainability task for a knowledge engineer can be
evaluated [Bagheri and Gasevic, 2011; Nabil et al., 2008; Lethbridge,
1998].

• A configuration knowledge base must be functional, such that it
represents a part of the real world (e.g. a bike configuration knowledge
base) [Nabil et al., 2008].

116

5.4 A Goal-Question-Metrics Model for Product Configuration Knowledge Bases

5.4.2 Questions for Product Configuration Knowledge Bases

Having defined the goals for configuration knowledge bases, we now
describe the questions relating to one or more goals. The concordance
with the application will be defined by the completeness. It suggests the
applicability of the current state of the knowledge base for representing the
application area. For instance, in our example 3.2 a Bike can be used for
either Competition or EverydayLi f e. If it is not possible to combine those
Usages, the coverage is high. If a bike can be used for both usage scenarios,
the model does not represent the application area and the coverage will be
low.

Q1: Is the configuration knowledge base complete?

Anomalies are a well researched area in the context of configuration knowl-
edge bases [Preece, 1998]. The term anomalies is used synonymously for
errors and subsumes the terms inconsistencies, redundancies, and well-
formedness violations. Errors can have an impact on each of the goals, since
they have negative impacts on reusability, maintainability, and understand-
ability. They can also have a negative impact on the functionality, if there
exists an inconsistency in the knowledge base.

Q2: Does the configuration knowledge base contain anomalies?

The performance describes the time which is required to calculate charac-
teristics of a knowledge base. These characteristics are, e.g., error checking,
calculating consistent configurations, and generating user recommendations.
This performance mainly influences the functionality of a system (latency)
and the reusability.

Q3: Does the configuration knowledge base have an admissible performance?

117

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

If it is necessary to develop and maintain the knowledge base, a high
modifiability will help to reduce the effort for the update operation. The
modifiability has a positive impact on the reusability and maintainability
of a knowledge base. For example, when updating redundant constraints
in a knowledge base (e.g. constraint c7 in the example 3.2, it is probably
necessary to update the redundant constraints (c2), too. This may lead to
a low functionality because the knowledge base does not have the correct
behavior.

Q4: Is the configuration knowledge base modifiable?

The development effort describes the effort when updating a configuration
knowledge base. This effort contains the time for the update operation. It
includes the update of the semantics of the knowledge base and the time,
which is required to remove all new errors. This effort has an impact on
the maintainability and reusability of a knowledge base and is mainly
influenced by the understandability of a configuration knowledge base.

Q5: Is the configuration knowledge base understandable?

Not every goal has a relationship with every question. In Table 5.7 we
give an overview of the relationship between goals and questions.

Question / Goal MT US FT
Q1 (completeness) +
Q2 (anomalies) - - -
Q3 (performance) +
Q4 (modifiability) +
Q5 (understandability) +

Table 5.7: Relations between goals and metrics (MT = maintainability, US = usability, FT =
functionality)

118

5.4 A Goal-Question-Metrics Model for Product Configuration Knowledge Bases

5.4.3 Metrics for Product Configuration Knowledge Bases

The metrics are based on a literature review focusing on knowledge
engineering [Felfernig et al., 2012a; Nabil et al., 2008; Baumeister et al.,
2004; Mehrotra et al., 2002; Blythe et al., 2001a; Lethbridge, 1998; Preece,
1998; Barr, 1997; Preece et al., 1997; Preece and Shinghal, 1994; van Melle
et al., 1984] as well as on software product line engineering [Bagheri and
Gasevic, 2011; Benavides et al., 2010; Hartmann and Trew, 2008; Lauenroth
and Pohl, 2007]. The assumptions in this section are based on the literature
of configuration knowledge bases and other research areas like feature
models and software product lines, software engineering, and rule-based
knowledge bases.

Having defined the questions for configuration knowledge bases, the next
task is to quantify the metrics. Therefore, we describe possible metrics for
configuration knowledge bases. Most of the metrics require a consistent
product configuration knowledge base. Therefore, we use example 3.2.
Example 3.3 is used to describe metrics for inconsistencies. The metrics
are based on literature study in configuration, feature model, and software
engineering research areas.

The next list shows some metrics derived from MOOSE and function
point analysis [Bagheri and Gasevic, 2011; Salvetto et al., 2004; Lethbridge,
1998; Chidamber and Kemerer, 1994]:

• Number of variables |V|: |V| = 6.

• Average domain size: domsize =
∑vi∈V |dom(vi)|

|V| = 2.66̇
• Number of constraints: |C| = 9

The number of minimal conflicts |CS| is the first anomaly metric. In
our example 3.3 (see Section 3.3) we have two minimal conflict sets (see
Section 4.1), such that |CS| = 2. We can also evaluate the smallest number of
constraints in a conflict set. The lowest number of constraints in a conflict set

119

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

CS is the minimal cardinality of conflict sets MCCS and can be defined as
@CSj : |CSj| < |CSi|. The example has a minimal cardinality MCCS = 1.

We can also evaluate diagnoses for knowledge bases. For example, with
the FastDiag algorithm [Felfernig et al., 2012b; Felfernig and Schubert,
2011b] we can calculate the number of diagnoses |∆| and the number of
constraints in a minimal cardinality diagnosis MC∆. A minimal cardinality
diagnosis ∆i is a minimal diagnosis which has the property of having the
smallest number of constraints in the diagnosis, such that, @∆j : |∆j| < |∆i|.
Example 3.3 described in Section 3.3, contains 2 minimal diagnoses (∆1 =
{c9, c10}, ∆2 = {c10, c11}, |∆| = 2) and a minimal cardinality diagnosis of
(MC∆ = 2).

The number of redundant constraints can also be used as a measure for
knowledge bases [Felfernig et al., 2011b; Piette, 2008; Preece, 1998; Preece
and Shinghal, 1994] if the configuration knowledge base is consistent.9 The
number of sets of redundant constraints is denoted as |R| and the maxi-
mum cardinality of a redundancy set Ri = 2. We calculate the maximum
cardinality for Ri by checking if there exists another set Rj which has a
bigger cardinality, such that Ri has the property of having the maximum car-
dinality, iff @Rj |Rj| < |Ri|. Example 3.2 in Section 3.3 contains one set with
redundant constraints (R1 = {c3, c7}, |R| = 1) and the maximum cardinality
of these sets is 2 (MCR = |2|).

A domain element domi ∈ dom(vj) is a dead domain element iff there
does not exist a valid configuration with this assignment, such that C∪{vj =
domi; } is inconsistent [Benavides et al., 2010; Baumeister et al., 2004]. We
use the sum of all dead elements as a metric 0 < DE < 1 by using Equation
5.3 where a value nearer 0 means that there are no or less dead elements
and a value nearer to 1 means that a high number of domain elements in the
knowledge base can not be selected in a consistent configuration knowledge
base.

9Note that we are now using Example 1 for the next metrics (see Section 3.3).

120

5.4 A Goal-Question-Metrics Model for Product Configuration Knowledge Bases

DE =

∑vi∈V ∑dj∈dom(vi)

{
0 C ∪ {vi = dj} 6= ∅
1 else

|V| × domsize
(5.3)

On the other hand, a domain element can be full mandatory (FM). Full
mandatory means that there does not exist a consistent instance of the
knowledge base where this domain element is not selected, formally de-
scribed in Equation 5.4.

FM =

∑vi∈V ∑dj∈dom(vi)

{
0 C ∪ {vi 6= dj} = ∅
1 else

|V| × domsize
(5.4)

In feature models [Benavides et al., 2010] each domain has exactly two
values {true, f alse}. For domains with two domain elements we can say that
whenever a domain element is dead, the other domain element becomes
full mandatory automatically. When domains have more than two values, it
can be the case that a domain element is dead but there is no other domain
value with the property of being a full mandatory domain element.

The third well-formedness violation is called unnecessary refinement
(UR). Such a violation occurs when there are two variables and the domain
element of the first variable in a valid configuration can be suggested by
the assignment of a second variable. An unnecessary refinement can be
described as dom(vi)→ dom(vj).

In example 3.2 we can say that the variables BikeType and Usage are un-
necessary refined because whenever Usage = Comptetition then BikeType =
RacerBike, Usage = EverydayLi f e then BikeType = CityBike, and Usage =

121

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

HillClimbing then BikeType = MountainBike. In that case we can recom-
mend that the variable BikeType can be removed and its occurrences in
constraints can be replaced by the variable Usage. If both variables are
required (e.g., because the customer should be asked for Usage and man-
ufacturing is requiring the term BikeType) we recommend to remove one
of these variables from the knowledge base temporarily for improving the
performance of solvers.

The restriction rate RR compares the number of constraints with the
number of variables. In example 3.2 the restriction rate RR = |C|

|V| =
9
8 =

1.125. A value greater than 1 means that there is a high restriction [Bagheri
and Gasevic, 2011; Lethbridge, 1998].

The metric RR is influenced by the design of the knowledge base. For
example, while one knowledge engineer requires a single constraint for
subsuming the constraints c0 ∧ c1 ∧ c2 ∧ c3, another knowledge engineer is
using four single constraints. To consider these different design approaches
in the metric, the restriction rate RR2 is considering the number of variables

in a constraint, such that, RR2 =
∑ci∈C

#vars(ci)
#vars(C) |C|
|V| where #vars(ci) is the number

of variables in ci.

Another metric from the domain of software engineering is the variable
inheritance factor VIF [Abreu and Melo, 1996]. Adapted for configuration
knowledge bases, we define VIF as the number of constraints in which a
variable vi appears related to the number of constraints, e.g., VIF(eBike) =
0.22̇ because the variable eBike appears in tow constraints and |C| = 9 (see
Equation 5.5).

VIF(vi) =

∑ci∈C

{
1 vi ∈ ci

0 else

|C| (5.5)

122

5.4 A Goal-Question-Metrics Model for Product Configuration Knowledge Bases

To receive a knowledge base metric we calculate the VIFall for all variables.
Calculating the arithmetic mean of the VIFall of all variables, we can evaluate
the importance distribution of all variables (see Equation 5.6). A value near
to 0 means that all variables have the same importance and should be
considered in the same way. On the other hand, a high value means that
there are some important and less important variables in the knowledge
base. In such cases it makes sense to focus on the important variables when
maintaining the knowledge base.

VIFall = ∑
vi∈V

√
(VIF(vi)−

∑vj∈V VIF(vj)

|V|)2

|V| (5.6)

Finally, we evaluate the metric coverage. The coverage measures the
number of all consistent complete configurations (see Section 3.2) com-
pared to the maximum number of complete configurations in a knowl-
edge base. In our example 3.2 the maximum number of configurations is

∏|V|i=0 |dom(vi)| = 324 (6 variables multiplied with their domain size). This
will be compared with the number of consistent configurations. In our
example we have the following seven consistent configurations:

UniCycle = f alse ∧ (
Usage = Competition ∧ BikeType = RacerBike ∧ TireWidth = 57mm∧

eBike = f alse ∧ FrameSize = 60cm
) ∨ (
Usage = EverydayLi f e ∧ BikeType = CityBike ∧ TireWidth = 37mm ∧ (

(eBike = f alse ∧ FrameSize = 50cm)∨
(eBike = f alse ∧ FrameSize = 60cm)∨
(eBike = true ∧ FrameSize = 50cm)∨
(eBike = true ∧ FrameSize = 50cm))

)∨ (
Usage = HillClimbing∧ BikeType = MountainBike∧ TireWidth = 57mm∧

eBike = f alse ∧ (FrameSize = 50cm ∨ FrameSize = 60cm)
)

123

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

Now we can compare the number of consistent configurations (= 7)
with the number of all configurations (= 324). This leads to a coverage
of 7/324 ∗ 100 ≈ 2.16% which is very low and the example configuration
knowledge base is very restrictive. For the example knowledge base it is
quite easy to evaluate all possible combinations of variables and domain
elements. For knowledge bases with more variables, domain elements, and
constraints we have millions and more possible combinations of variable
assignments. For such scenarios we introduced the simulation technique
in the context of knowledge based systems to approximate the coverage.
For a detailed description to approximate this metric in large configuration
knowledge bases we refer the reader to Reinfrank et al. [2015a] and to the
previous Section 5.3.

Finally, we can refer the questions to the metrics. Table 5.8 gives an
overview of the relationships between the questions and the metrics.

For a detailed description of the calculation of metrics focusing on
anomalies (conflicts, redundancies, and well-formedness violations) and the
coverage metric we refer the reader to [Reinfrank et al., 2015a].

5.4.4 Discussion

In this Section we want to discuss relevant aspects of several metrics and
give an insight into the implementation of the goal-question-metrics in the
iCone interface (see Section 6.2).

Most of the research in the area of configuration knowledge engineer-
ing focuses on the area of verifying configuration knowledge bases (goal
functionality, see Section 4) and ignores the question how to validate
the knowledge base [Preece, 1998] (maintainabilty and understandabilty).
Felfernig et al. [2010] present an empirical study about the understandability

124

5.4 A Goal-Question-Metrics Model for Product Configuration Knowledge Bases

Q1 Q2 Q3 Q4 Q5

|V| + -
domsize + -
|C| + -
|CS| - - -
|∆| - - -
MCCS +
MC∆ +
|R| - - -
MCR +
DE - - - -
FM - - - -
UR - - - -
RR - -
RR2 - -
VIFall - -
Coverage - -

Table 5.8: Relations between metrics (rows) and questions (columns). A ’-’ means that the
metric has a negative impact on the question, ’+’ represents a positive impact.

of constraints in knowledge bases but there does not exist a metric for the
understandability of constraints and the knowledge base.

Briand et al. [1999] measured the effects of the structural complexity of
software and its relationship to the maintainability of software. Bagheri and
Gasevic [2011] transferred this model into the area of feature models and
found out that the number of leaf features, the cyclomatic complexity, the
flexibility of configuration, and the number of valid configurations influence
the maintainability of feature models. While the simple metrics are easy
to transfer into configuration knowledge bases, the depth of a tree or the
number of valid configurations can not be calculated.

The number of redundant constraints is an important metric since a
low number of redundant constraints can improve the maintenance task,

125

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

simplify the understandability, and reduce the time for calculating valid
configurations. An important issue in that case is that redundant constraints
can also improve the understandability of a configuration knowledge base.
If a redundant constraint is declared as a desired redundant constraint, the
metric should not contain such constraints but should list it as a desired
redundancy.

In a simple configuration knowledge base like example 3.2 it is easy to cal-
culate the consistency of each possible configuration for the coverage metric.
For example, in a configuration knowledge base with a medium number of
variables (e.g. 10) and average domain size (e.g. 5) we have approximately
10M possible configurations. Since it is not possible to calculate so many
possible configurations in real-time, we developed a simulation strategy
to approximate the number of consistent configurations. For a detailed
description of the simulation strategy we refer the reader to [Reinfrank et al.,
2015c] and Section 5.3.

Showing the GQM to knowledge engineers can help to understand and
maintain the configuration knowledge base, and it is also important for
interpreting the results. Therefore we implemented a history for each metric
in our iCone-interface (see Section 6.2). When updates in a configuration
knowledge base in the iCone-system are saved, a new version of the knowl-
edge base will be created and metrics will be actualized. In Figure 5.5 we
can see the changes of the value of the DEAD elements metric.

Felfernig [2004] gives an overview of the usage of function point analysis
for configuration knowledge bases. Therefore he analyzed the input interface
of a configuration knowledge base for customers and the complexity of
a configuration knowledge base. They use the customer requirements as
external input (EI), the data required by the user as external query (EQ), the
consistent domain elements of variables as external output (EO), knowledge
elements as internal logical files (ILF), and external information like the
product assortment from an ERP-system as external interface file (EIF).
While this approach takes input and output into account, it does not evaluate

126

5.4 A Goal-Question-Metrics Model for Product Configuration Knowledge Bases

Figure 5.5: Visualization of changes for the metric DEAD. The y-axis shows the number of
DEAD variables in each version of the configuration knowledge base (x-axis).

the quality (e.g., the number of dead domain elements) of the input and
output.

We have implemented the GQM and the FPA approach in our iCone
implementation [Wotawa et al., 2015a] (see Section 6.2). Table 5.9 gives an
overview of the performance. Note, that the time contains the calculation
/ approximation of the metrics and the calculation of all anomalies. The
notebook domain is calculated six times and the mobile phone domain is
calculated seven times.

In this Section we gave an overview of metrics in configuration knowledge
bases, focusing on knowledge base engineering processes [Studer et al.,
1998]. We can measure the metrics of an existing configuration knowledge
base but we can not identify the causes of bad configuration knowledge

127

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

Notebooks Mobile phones
Product variants 115.00 13,999.00

Product variables 28.00 34.00

product variable domain sizes 1.00 - 45.00 2.00 - 47.00

Customer variables 4.00 5.00

avg. customer variable dom. size 3.75 4.00

constraints 12.00 8.00

min. calc. time 669 msec. 6,811 msec.
max. calc. time 1,715 msec. 18,643 msec.
median calc. time 1,213 msec. 10,842 msec.
mean calc. time 1,252 msec. 11,307 msec.

Table 5.9: Duration for the calculation of all anomalies (conflicts, diagnoses, redundancies,
well-formedness violations), metrics, goal-question-metrics and function-point-
analysis for two configuration knowledge bases (notebooks and mobile phones)

base engineering. To give recommendations for optimizing the knowledge
base engineering process, we have to observe the whole process (see Section
5.6).

This thesis describes several techniques to support knowledge engineers
when they have to maintain a part of the knowledge base. On the other hand,
we can do repair actions automatically (Section 4.3). In the next section, we
present techniques to generate test cases automatically.

5.5 Test Case Generation10

In this Section we want to describe a basic approach to generate test cases
for constraint-based product configuration systems based on automated test
case generation and collaborative verification.

10This Section is based on Reinfrank et al. [2015c].

128

5.5 Test Case Generation

In software engineering, boundary value analysis are those situations di-
rectly on, above, and beneath the edges of input equivalence classes [Myers et al.,
2012]. Using this type of software testing in the context of configuration sys-
tems, we can say that the edges are within variable assignments. In our exam-
ple 3.1, if price = 399 is consistent, price = 599 is consistent too, and price =
799 is inconsistent, the boundary would be between the domain elements
599 and 799. In Figure 6.11 we can see that, under circumstances, some com-
binations are inconsistent (e.g. usage scenario = gaming ∧ cpu cores = 2)
and some are consistent (e.g. usage scenario = multimedia ∧ cpu cores = 2).
We can use the simulation technology (see Section 5.3) to generate various
sets of filter constraints to get some boundaries. Table 5.10 shows a list of
randomly generated test cases. Note that the number of assignments in the
test case can be different (see Algorithm 12).

tc f ilterconstraint coverage
t0 cpu cores = 2∧ 0.50

usage scenario = o f f ice
t1 cpu cores = 2∧ 0.50

usage scenario = multimedia
t2 price = 799∧ 0.00

usage scenario = gaming
t3 price = 599∧ 0.50

usage scenario = gaming
t4 cpu cores = 4∧ 0.50

usage scenario = multimedia
t5 cpu cores = 4 ∼ 0.54

Table 5.10: An example for randomly generated test cases.

The next step is to evaluate these randomly generated boundary test cases
according to the domain experts’ knowledge. Our example test cases show
that between the test cases t2 and t3 is a boundary because the coverage is
different.

129

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

After the randomly detected boundaries via simulation we have to evalu-
ate the boundary. Such evaluations have to be done by stakeholders of the
knowledge base and can be done via micro tasks [Felfernig et al., 2014b].
In this context several stakeholders can be asked if the results of randomly
generated test cases are valid or not. Such answers can be collected within a
case base. Table 5.11 gives an example case base.

stakeholder testcase correct?
s0 t2 yes
s1 t2 yes
s2 t2 yes
s3 t2 yes
s4 t2 yes
s5 t2 no
s6 t2 yes
s7 t2 yes
s0 t3 no
s1 t3 no
s2 t3 yes
s3 t3 yes
s4 t3 no
s5 t3 no
s6 t3 no
s7 t3 yes

Table 5.11: An example case base for evaluating randomly generated test cases.

87.5% of the stakeholders agree that t2 is correct which means that the
test case should be inconsistent and the test case currently leads to an
inconsistency. On the other hand, 62.5% of the stakeholders think that t3
should not be consistent. This example represents a conflict between the
knowledge engineers’ opinions of the knowledge base. For such scenarios
we have to offer relevant information to the stakeholders such as mails,
forum, and content-based recommendation [Jannach et al., 2010].

130

5.6 Constraint-based Product Configuration system Development

Finally, a result of the discussion leads to a consistent knowledge base
(constraints c ∈ C have to be updated or removed) which represents the real
product domain. The maintenance of a configuration knowledge base can be
supported by explanation techniques. A detailed description of explanations
for constraint-based configuration systems is given in Section 4.2.

Now we have described, how we can support knowledge engineers in
their maintenance tasks. The development of such systems is out of scope
of this thesis but is as important as the maintenance is. Next, we present
a discussion of possible techniques to develop constraint-based product
configuration systems effectively.

5.6 Constraint-based product configuration
system development11

A lot of research has been done in the maintenance of constraint-based
systems. For example, we can evaluate the quality of knowledge bases (see
Section 5.4 and Reinfrank et al. [2015b]) and check if the knowledge base
has anomalies (see Section 5.1 and Reinfrank et al. [2015a]; Felfernig et al.
[2013a]). Therefore, we can evaluate if we are doing the knowledge base
maintenance efficiently.

Less work has been done in the context of constraint-based product config-
uration knowledge base development, a task which is crucial for an effective
constraint-based configuration system. Next, we want to summarize previ-
ous work in the context of knowledge base development processes and try
to give hints for transferring research results from the software engineering
discipline into the knowledge base development research area.

11This Section is based on Reinfrank et al. [2015c].

131

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

Development processes for constraint-based configuration systems In
this Section we present an overview of current development processes for
knowledge-based systems. A detailed discussion about these engineering
processes is given in [Friedrich et al., 2014; Studer et al., 1998].

Common-KADS focuses on different models (organization, task, agent,
communication, and expertise) of the knowledge base. For example, the
expertise model tries to describe knowledge from a static, functional, and
a dynamic view. While this system tries to consider all stakeholders, it
does not prioritize the knowledge and does not try to solve conflicts in the
knowledge before it will be transferred into a constraint-based configuration
system Schreiber et al. [1994].

The MIKE engineering process can be seen as an iterative process and
is divided into the activities elicitation, interpretation, formalization / opera-
tionalization, design, and implementation. The entire development process,
i.e. the sequence of knowledge acquisition, design, and implementation, is
performed in a cycle inspired by a spiral model as process model. Every
cycle produces a prototype as output which can be evaluated by tests in
the real target environment. The evaluation of each activity will be done
by domain experts. While the result of the implementation activity can
be evaluated by domain experts, a deep understanding of modelling tech-
niques is required to evaluate the results of elicitation, interpretation, and
formalization activities [Angele et al., 1998].

Protege-II is used to model method and domain ontologies. A method
ontology defines the concepts and relationships that are used by a problem
solving method for providing its functionality. Domain ontologies define
a shared conceptualization of a domain. Both ontologies can be reused in
other domains which may reduce the effort to build-up a new knowledge
base with similar elements [Musen et al., 1994].

132

5.6 Constraint-based Product Configuration system Development

Development in the Software Engineering Discipline Compared to devel-
opment processes for constraint-based configuration systems, we give an
overview of current trends in the engineering of such systems and create a
link to the currently existing development processes for constraint-based
configuration systems.

A relevant task in software engineering is requirements engineering.
Transferring this aspect into the context of developing constraint-based con-
figuration systems, we can say that products, product variables, questions
to customers, variable domains, and filters can be functional requirements
whereas interface development (e.g. to an ERP-system), performance, and
collaborative development are non-functional requirements. When knowl-
edge base engineering processes have to be finalized with a given budget
and time, we also have to prioritize such requirements. Therefore, we have
to rank the requirements based on their necessity and effort (time and
budget) for a functional knowledge base. The prioritization should be done
by different stakeholders to include as much knowledge as possible into the
prioritization process.

Many different constraint-based configuration systems will be developed
but each of them is developed from scratch. Similar to requirements engi-
neering, most of the aspects of a new knowledge base are new and reuse
is not possible. On the other hand, several requirements are domain inde-
pendent. For such requirements the implementation in a software could
be done with design patterns. Such patterns can help to reduce the time
effort for the realization of a requirement in a knowledge engineering pro-
cess. For example, a notebook recommendation system contains products,
questions to customers, and relationships between products and customers
(constraints). In this domain products have different prices and customers
will be asked for their maximum price. While the product variable price
may have hundreds of different prices (domain elements), the customer will
not choose, e.g., between price = 799.90 or price = 799.99 but wants to have,
for example, ten different prices (e.g. price ≤ 400 or price ≤ 600 or ... or
price ≤ 2200). The relationship between those variables can be denoted as
mapping which could be a design pattern.

133

5 Intelligent Supporting Techniques for Maintaining Constraint-based Systems

We have presented several techniques to support knowledge engineers
and customers when dealing with product configuration systems. In the
next chapter we present interfaces for knowledge engineers and end-users
focusing on the abilities and capabilities of those systems and introduce our
new system iCone.

134

6 Interfaces for the Maintenance
of Constraint-based Systems

In this Chapter we focus on visualization techniques for aonomaly man-
agement. Therefore we first analyze several principals for configuration
systems and present selected available configuration systems in Section 6.1.
6.2 introduces a system for the development and maintenance of constraint-
based product configuration systems.

6.1 Current user Interfaces for the Maintenance
of Constraint-based Systems1

Configuration is one of the key enabling technologies of Mass Customiza-
tion [Pine and Davis, 1999; Anderson, 1997]. It can be defined as a special
case of design activity where the resulting artifact is composed of a prede-
fined set of component types and is consistent with a given set of constraints
[Sabin and Weigel, 1998]. Configuration environments allow end-users to
design their own individualized products and services as well as knowledge
engineers and domain experts to develop configurator applications (mainly
user interfaces and knowledge bases). For both types of users the user
interface of the configuration environment plays a key role. First, a major
precondition for lasting acceptance and application is that end users can easily
configure a product that fits their wishes and needs. Second, knowledge
engineers and domain experts are in the need of technologies that allow

1This Section is based on Felfernig et al. [2014a].

135

6 Interfaces for the Maintenance of Constraint-based Systems

effective development and maintenance processes which are a precondition
for up-to-date knowledge bases.

The major contributions of this section are the following: we provide an
overview of important criteria to be taken into account when we develop
user interfaces for configurator applications as well as interfaces for the
corresponding knowledge engineering environments. For the discussed
criteria we present and exemplify technologies which help to take these
criteria into account. With the goal to stimulate further research on user
interfaces for configuraton environments, we discuss relevant issues for
future work. A summary concludes this section.

Design Principles for Configuration Interfaces

Contrary to conventional product design where experienced product de-
signers and managers are responsible for the design of product alternatives
offered to a customer, the task of customization is now also forwarded to
end users. An important aspect in this context is that we can not expect
the disposal of detailed technical product domain knowledge from end
users because they typically do not know their preferences [Simonson, 2003].
As has been analyzed by [Randall et al., 2005], there are problems with
existing configurator user interfaces which have to be tackled in order to
increase the usability of configuration technologies. We now summarize
five key-principles to be taken into account when developing user interfaces
for configuration environments [Randall et al., 2005]. In this context we
focus on both, interfaces for users of a configurator application as well as inter-
faces which support knowledge engineers and domain experts in configurator
application development and maintenance.

Principle 1: Customize the Customization Process

Sales persons are typically adapting their style of customer interaction
depending on the type of customer. For example, customers interested in

136

6.1 Current user Interfaces for the Maintenance of Constraint-based Systems

technical details should be supported by in-depth technical information
and corresponding analyses. In contrast, customers without expertise in the
product domain should be supported by a more function-oriented dialog
where technical details are omitted. Since we can expect different types
of end users of a configurator application, we are in the need of technical
approaches that help to personalize the interaction with the configuration
environment depending on the basic characteristics of the current user. As
proposed by [Randall et al., 2005], a configuration environment should at
least support two different types of user interfaces: a needs-based interface
for non experts and a parameter-based one for users who want to perform
configuration primarily on the basis of the given set of technical product
properties.

Similar to end users there are also different types of knowledge engineers
and domain experts responsible for the development and maintenance of a
configurator application, e.g., their knowledge elicitation, data analysis and
knowledge representation methods can differ [Shortliffe and Patel, 2007].
There may be experts who know every technical property of the product but
there are also employees who recently started working on the configurator
application. These two types of users are in the need of different navigation
support.

Principle 2: Provide Starting Points

Users of a configurator application can not only be differentiated with
regard to their product preferences [Domshlak et al., 2011]. They can also be
differentiated with regard to their preferred product properties, i.e., properties
of a product they are interested in and would like to specify. For example,
one user of a car configurator prefers to start with a specification of the basic
car type (e.g., limousine vs. combi) whereas another user prefers to specify the
price because this parameter has the highest priority. In this context, a basic
requirement for configurator user interfaces is the provision of so-called
starting points which can be seen as a kind of initial variable assignment from
which the customer can continue the configuration activities [Mandl et al.,

137

6 Interfaces for the Maintenance of Constraint-based Systems

2011b]. The important idea behind starting points is that not every user
is interested in designing (configuring) a product from scratch but rather
relies on existing basic settings (also denoted as stereotype configurations).

Starting points should be provided for knowledge engineers as well as for
domain experts. A knowledge engineer (or domain expert) with nearly no
knowledge about an already existing configuration knowledge base is clearly
in the need of an indicator of where to best start the analysis process. Such
starting points can improve the overall efficiency of developing a basic
understanding of a knowledge base – or more general – a configurator
application.

Another example for a starting point in the context of knowledge base
development and maintenance are recommendations for the maintenance
derived from a quality analysis of the knowledge base [Felfernig et al., 2009,
2011c].

Principle 3: Support Incremental Refinement

Users of a configurator application typically construct their preferences
within the scope of a configuration session [Simonson, 2003], i.e., preferences
are not known beforehand. A typcial requirement for user interfaces in this
context is that the configurator should actively support sensitivity analysis in
the sense that tradeoffs between different properties are visualized and al-
ternatives to the current configuration are shown in an intuitive fashion. An
easy way to support such a tradeoff analysis is to include product comparison
functionalities, i.e., a comparison between different alternative configura-
tions. An important functionality in this context is that the configurator is
able to automatically determine alternative configurations on the basis of
defined user preferences.

138

6.1 Current user Interfaces for the Maintenance of Constraint-based Systems

Similarly, there is a need for the support of tradeoff analysis in the context
of knowledge base development and maintenance. In this context, a knowledge
engineer (or domain expert) should be supported in correction and extension
activities. If, for example a domain expert has specified examples for the
intended behavior of a configurator in terms of which configuration should
be shown in which context and the configurator is not able to fulfill these
requirements, the domain expert should be supported in terms of indications
of the sources of the given inconsistency [Felfernig et al., 2004b]. In this
context the user interface should support the comparison of explanations for
the inconsistencies and it should provide information about the pragmatics
of changes to the knowledge base, for example, in terms of test cases which
are additionally accepted by the knowledge base due to the performed
repair operations.

Principle 4: Exploit Prototypes to Avoid Surprises

A major obstacle for the willingness to purchase a product is missing
trust in a given configuration [Grabner-Kraeuter and Kaluscha, 2003]. Since
configurations in many cases are unique, the exploitation of product eval-
uations for decision making is often impossible. Consequently, alternative
concepts have to be provided which help the customer to anticipate the
post-purchase experience [Randall et al., 2005]. In this context it is important
to visualize the impact of different decision altneratives on the final configu-
ration outcome. For example, a change of the interieur color of a car has to
be immediately shown to the user by directly visualizing the new intereur
of the selected car type. Another example is the configuration of financial
service portfolios: after having increased the level of willingness to take risks
or having increased the expected yearly return rate of a financial service, the
configurator should immediately show the possible consequences of the
taken decision, for example, in terms of less available money due to plunging
stock prices or – on a more visual level – in terms of the possibility of not
being able to buy the envisioned car.

139

6 Interfaces for the Maintenance of Constraint-based Systems

In the context of configurator application development, we are as well in the
need of prototypes that visualize the impact of changes in products (e.g. a
product is not selectable) and constraints (e.g., a constraint is redundant).
When, for example developing a knowledge base, knowledge engineers and
domain experts should immediately be able to test the new version of the
knowledge base by interacting with the configurator, i.e., new versions of a
knowledge base have to be automatically integrated with the corresponding
user interface. Another example of a visualization in the context of knowl-
edge base development and maintenance is to show information regarding
quality properties of the knowledge base. If a knowledge engineer adapts
or extends the knowledge base, feedback should be given immediately, for
example, in terms of an indication of a deterioration or improvement of the
level of maintainability.

Principle 5: Teach the Consumer

Consumers very often do not have the technical background knowledge
of important technical properties of the product, for example, they do not
know which processor type has which performance and – even more im-
portant – they do not know which performance is needed for their specific
requirements [Randall et al., 2005]. Increasing knowledge of the properties
of a configuration can also increase the corresponding willingness to buy
[Felfernig et al., 2006b]. As a consequence we are in the need of mechanisms
that assist users and help them to increase their personal product domain
knowledge or reduce the effort for taking decisions. Besides basic concepts
such as help buttons that explain the role of specific product parameters,
more sophisticated explanation functionalities can be integrated into config-
uration environments. First, users are typically in need of explanations as
to why a concrete configuration has been recommended. This functionality
can simply be supported by interpreting the information received from
the configuration environment (i.e., which constraints were responsible for
the calculation of the configuration). Second, users are also in the need of
explanations in situations where no solution can be found by the configu-
ration system. In this context the user is in the need of information which

140

6.1 Current user Interfaces for the Maintenance of Constraint-based Systems

requirements are responsible and what are possible repair actions that allow
the calculation of at least one solution.

In the context of configuration knowledge acquisition and maintenance, similar
explanation functionalities are needed: knowledge engineers and domain
experts need to be informed about the sources of inconsistencies in the
knowledge base (in the case that some of the test cases fail) and what are the
corresponding alternatives for repairing the knowledge base. Another type
of explanation is stemming from collaborative recommendation [Konstan
et al., 1997] where explanations are typically presented in the form of users
who purchased item A also purchased item B. This type of explanation can
as well be applied in the context of knowledge base development and
maintenance, for example, in the form of If constraint A has changed you
should also change constraint B.

Using the Design Principles in Configuration Environments

On the basis of our discussion of basic design principles for configurator
user interfaces in the previous section, we now focus on a discussion of
basic technologies that can help to support these design principles. In the
following we show how the principles can be used to optimize user inter-
faces for potential customers. Thereafter we present knowledge acquisition
environments which are using the design principles.

Customize the Customization Process. User interfaces of configurator
applications can simply be implemented on the basis of explicit definitions
of a configuration process. Such a process defines in which order which
parameters have to be specified by the user. For our computer configuration
example [Felfernig et al., 2014c] we can specify, for example, two different
types of user interfaces. For experts in the domain of personal computers,
we could provide a search interface where a user (customer) can specifiy
the requirements on the level of technical product properties such as type
of cpu, motherboard, operating system, screen, hd unit, internet, and application

141

6 Interfaces for the Maintenance of Constraint-based Systems

software. For non-experts in the product domain, a user interface could pose
questions on a more abstract (needs-oriented) level such as primary types
of usage (e.g., multi-media & game playing, programming, complex mathematical
calculations, and office applications). This needs-oriented view on the prod-
uct assortment is often denoted as functional architecture of a configurable
product [Felfernig et al., 2014c]. From the specification of preferences, the
configurator application can then determine the corresponding technical
properties. For example, programming and complex mathematical applications
require a multi-core cpu architecture.

On both levels (functional architectures and detailed technical product
properties) questions posed to the customer have to be ranked. The simplest
way to achieve this is to specify a static ordering where, for example, the
question regarding the type of cpu is posed first. However, more flexible
approaches have been developed which help to adapt their strategy regarding
the selection of the next question depending on the navigation behavior of the
user. One approach to support a selection of questions on the fly is to apply
the concepts of collaborative filtering [Falkner et al., 2011; Konstan et al.,
1997]. The idea of collaborative filtering is to determine recommendations
for the current user on the basis of the preferences of users with a similar
navigation behavior as the current user. In our scenario – in order to deter-
mine the next question to ask the current user – we would determine users
with a similar navigation behavior (the nearest neighbors) and on the basis of
the preferences of the nearest neighbors try to select (recommend) the next
question to be posed to the current user.

A working example for such a collaborative dialog management is shown
in Table 6.1. The users 1..5 have already completed their configuration
sessions, for example, user 1 has first specified a value for CPU, then a value
for OS, then a value for HD, thereafter a value for motherboard, then a value
for Screen, Internet, and Applications. The current user has already specified
values for the parameters CPU and OS and we would like to predict which
of the remaining parameters will be specified by the current user next. The
nearest neighbors of the current user are user1, user3, user 4 since all of them
have first selected a CPU and afterwards selected an operating system (OS).

142

6.1 Current user Interfaces for the Maintenance of Constraint-based Systems

user CPU motherboard OS Screen HD Internet Applications
1 1 4 2 5 3 6 7

2 3 1 2 4 5 7 6

3 1 3 2 5 4 7 6

4 1 3 2 4 5 6 7

5 2 1 3 5 4 6 7

current 1 ? 2 ? ? ? ?

Table 6.1: Example of determining relevant questions on the basis of collaborative filtering
[Konstan et al., 1997].

Since the majority of nearest neighbors has selected motherboard as third
parameter, we recommend motherboard as next parameter to be specified by
the current user. For a more detailed overview of parameter selection methods
we refer the reader to [Falkner et al., 2011].

Provide Starting Points. The basic approach to the provision of starting
points is to predetermine parameter settings which are of interest for the user.
Such starting points are often denoted as default values which are proposed
to the user within the scope of a configuration session. On the one hand
defaults can represent specific parameter settings, for example, in german-
speaking countries the value for the keyboard part of the configuration is set of
german. On the other hand, defaults can represent whole sub-configurations,
for example, the default installation settings for a software package included in
a computer configuration. Independent of the generic type of default (i.e.,
specific parameter setting vs. whole sub-configuration), defaults can be
distinguished in terms of the way that default values are determined. Three
basic types of defaults will be discussed in the following.

Static Defaults. A parameter has a fixed predefined default value which
is completely independent of the current configuration context. For ex-
ample, the default value of the parameter internet is set to yes since it is
assumed that most of the users want to have included the corresponding
network hardware. The application of this type of default is limited since

143

6 Interfaces for the Maintenance of Constraint-based Systems

in many cases defaults depend on the context of user interaction. This
aspect of contextualization is taken into account by the following two types
of defaults.

Rule-based Defaults. Here the determination of defaults is personalized
and the selection of default values is performed on the basis of pre-defined
default rules. An example for such a rule is the following: if the user has
selected ’programming’ as a main field of application then the value of the parameter
’memory’ must be set to 4GB. Although this default type takes into account
context information (on the basis of rules), rules trigger knowledge acquisi-
tion and maintenance efforts. The following default type does not rely on
an explicit specification of contexts but on context learning on the basis of
an analysis of already completed configuration sessions.

Adaptive Defaults. If we want to keep knowledge base development and
maintenance efforts as low as possible, we have to develop mechanisms
which are able to automatically determine parameter settings of relevance
for the current user. Different types of machine learning approaches can
be applied to support such an adaptive determination of defaults [Falkner
et al., 2011; Tiihonen and Felfernig, 2010]. An example for the application
of collaborative filtering is given in Table 6.2. The default value for the
parameter OS (the operating system) proposed to the current user would
be OS-Alpha since the nearest neighbors of the current user (the users 1

and 5) have choosen OS-Alpha. An example user interface - which is based
on adaptive default values - is depicted in Figure 6.1. This configurator
(RecoMobile) supports the configuration of mobile phones (for details see
[Felfernig et al., 2014c]).

Support Incremental Refinement. An important feature to support a user
in preference construction is to explicitly visualize the existing tradeoffs
between different configuration alternatives in corresponding comparison
tables [Felfernig et al., 2006b]. An often used approach to support such a
tradeoff analysis is to simply rank alternative configurations with regard
to their price (see Figure 6.2). Presenting configuration alternatives in such

144

6.1 Current user Interfaces for the Maintenance of Constraint-based Systems

user CPU motherboard OS Screen HD I-net
1 CPU-D MB-Diamond OS-Alpha Screen-A MedStore Yes
2 CPU-S MB-Silver OS-Beta Screen-B MedStore No
3 CPU-S MB-Silver OS-Beta Screen-A MaxStore Yes
4 CPU-S MB-Silver OS-Beta Screen-B MedStore No
5 CPU-D MB-Diamond OS-Alpha Screen-A MedStore No

curr. CPU-D MB-Diamond ? ? ? ?

Table 6.2: Example of determining default values for the paramaters of the computer
configurator on the basis of collaborative filtering [Konstan et al., 1997].

a way biases the product comparison towards an evaluation of the price
attribute [Felfernig et al., 2014c]. Since price is in many cases the most
important decision criterion, such interfaces are often used in commercial
settings. The major drawback of this type of product comparison is that the
interface in no way takes into account the real preferences of the user.

If user preference information is available, it can be taken into account
when presenting configuration alternatives. For the purpose of our exam-
ple let us assume that the preferences of the current user regarding the
importance of the different product properties is known (see Table 6.3).
Furthermore, we dispose of a utility evaluation of the different product
properties (see Table 6.4).

Price CPU Motherboard Internet
5% 35% 35% 20%

Table 6.3: Example list of user preferences.

On the basis of this information and a corresponding utility function
we can determine the user-specific utility of each configuration alternative
x [Winterfeldt and Edwards, 1986]. The utility function used for the pur-
poses of our example is shown in Formula 6.1 where x denotes a specific
configuration alternative, importance(i) denotes the importance of product

145

6 Interfaces for the Maintenance of Constraint-based Systems

Figure 6.1: RecoMobile user interface for the representation of (adaptive) defaults.

property i for the current customer, and contribution(x, i) denotes the utility
of configuration x with regard to property i.

utility(x) =
n

∑
i

importance(i)× contribution(x, i) (6.1)

146

6.1 Current user Interfaces for the Maintenance of Constraint-based Systems

Figure 6.2: Configuration comparison interface based on price ranking.

Attribute Value Utility
CPU CPU-S 4

CPU-D 7

Motherboard MB-Diamond 8

MB-Silver 2

Internet Yes 10

No 1

Price 0–400 10

401–600 7

601–1000 3

Table 6.4: Example list of product utilities.

Combining the customer-specific preferences (Table 6.3) with the at-
tribute utilities defined in Table 6.4, we receive the ranking con f iguration
($612) > con f iguration($455) > con f iguration($389). This shows that the
most expensive configuration can also have the highest utility for a user. A
corresponding comparison interface is sketched in Figure 6.3.

Note that tradeoff analysis does not only play a role in the context of
comparing different solution alternatives with regard to their utility for the
user. In situations where no solution can be found for the current set of user
requirements (specified preferences), the configurator application proposes
a set of repair alternatives, i.e., alternatives for changes to the current set
of requirements that can guarantee the retrieval of a solution [Felfernig

147

6 Interfaces for the Maintenance of Constraint-based Systems

Figure 6.3: Configuration comparison interface based on utility-based ranking.

et al., 2009]. Such repair alternatives can be represented in the same way as
alternative configurations (see Figure 6.4).

Figure 6.4: Configuration comparison interface based on utility-based ranking.

Exploit Prototypes to Avoid Surprises. Especially for online configuration
environments it is crucial to take the aspect of trust into account since
this factor is one of the most important when it comes to a purchase
decision [Felfernig et al., 2006b; Grabner-Kraeuter and Kaluscha, 2003]. Due
to large solution spaces typically specified by configuration knowledge bases,
the resulting configurations are in many cases unique. As a consequence,
product evaluations are not available. All the more, a concrete visualization
of the outlook (and pragmatic) of the configuration is crucial in order to give
the customer a clear impression of a potential post-purchase experience.

Teach the Consumer. The basic and wide-spread approach to support a
better understanding of configuration results as well as situations where

148

6.1 Current user Interfaces for the Maintenance of Constraint-based Systems

inconsistencies occur, is to provide explanations (see Section 4.2). Basically,
we can differentiate between two basic forms of explanations. First, an
explanation can provide a set of argumentations as to why a configuration
alternative has been recommended. Second, in situations where no solution
can found by the configuration environment, the user has to be informed
about the underlying inconsistencies and potential repairs (see Section
4.4).

Beside these basic types of explanations, all the criteria for the develop-
ment of configurator user interfaces discussed in the prior sections also
contribute to a better understanding of the product domain and the under-
lying configuration knowledge bases. Customizing the customization process
allows users to grabble with topics they are interested in and – as a conse-
quence – to know more about relevant concepts of the product domain.

Technological Issues

On the basis of our discussion of basic design principles for configurator
user interfaces in the previous section, we now focus on a discussion of
basic technologies that can help to support these design principles for end
user interfaces and user interfaces for knowledge engineers.

Customize the Customization Process. For using the customizeable pro-
cess [Blythe et al., 2001b] developed a knowledge base environment with
the ability to support domain experts inserting new knowledge into the
KB. Considering the side effects of the changes, the authors developed
an approach to inform the user about these side effects via a customized
tunneling approach.

149

6 Interfaces for the Maintenance of Constraint-based Systems

user c1 c2 c3 c4 c5 c6

1 4 2 3 5 1 6

2 3 2 5 6 1 4

3 1 3 2 4 6 5

4 3 2 4 5 1 6

current ? 2 ? ? 1 ?

Table 6.5: Example of determining relevant constraints on the basis of collaborative filtering
[Konstan et al., 1997].

A similar approach can support the navigation of knowledge engineers
(domain experts) in complex knowledge bases (see the example in Table
6.5). In our scenario, the knowledge engineers (users 1..4) have already
interacted with the knowledge base, for example, user 1 took a look at all
the constraints in the following order: c5, c2, c3, c1, c4, c6.2 The current user has
already inspected the constraints c5 and c2. The constraint which should be
recommended next to the current user is c1 since this one has been inspected
next by the majority of the nearest neighbors of the current user (user 2 and
user 4).

The ICONE knowledge acquisition prototype is an example of a graphical
knowledge acquisition user interface that includes recommendation technolo-
gies for proactively supporting knowledge engineers and domain experts in
their development and maintenance activities. A detailed description of the
application is given in Section 6.2.

Provide Starting Points. In the context of knowledge engineering and main-
tenance scenarios, defaults play a major role as well. The recommendation
of constraints which could be of relevance for the current user (knowledge
engineer or domain expert) can be interpreted as a specific type of adaptive
default. Similar defaults can be determined for diagnoses [Felfernig and
Schubert, 2011a] or sets of redundant constraints, i.e., constraints which do

2Note that for reasons of simplicity we assume that each stakeholder has inspected
each constraint at least once.

150

6.1 Current user Interfaces for the Maintenance of Constraint-based Systems

not change the semantics of the knowledge base when deleted [Felfernig
et al., 2011c]. In this context a default can be interpreted as a set of faulty or
redundant constraints.

Another type of providing a starting point is to structure the user interface
in a way that only simple constraints can be inserted. By limiting the inter-
face to the implication constraint, we can use the advantages researched in
[Felfernig et al., 2010] and reduce the cognitive effort of the user interface. If
more complex constraints are absolutely necessary, the knowledge engineer
has the possibility to insert not limited constraints.

Support Incremental Refinement. Tradeoff analysis in the context of con-
figuration knowledge base development and maintenance has a similar need in
terms of user support. When testing a knowledge base, knowledge engineers
have to figure out which constraints are responsible for the faulty behavior
of a knowledge base (e.g., the knowledge base calculates configurations
which are not feasible on the technical level) and which are the repair alter-
natives to be taken into account (a detailed discussion is given in Chapter
4). In this situation well different subsets of constraints have to be evaluated
with regard to the probability of being responsible for the faulty behavior
of the knowledge base. A detailed technical discussion of the techniques
supporting the automated identification and ranking of faulty constraint
sets can be found in [Felfernig et al., 2014c].

Exploit Prototypes to Avoid Surprises. Prototyping concepts also play a
major role in the context of configurator application development and mainte-
nance. When creating or adapting a configurator application, the knowledge
engineer should be able to immediately analyze the impact of changes
on the layout of the configurator interface as well as on the underlying
configuration logic. The configuration environment Combeenation

3 is an
innovative look and feel environment that supports application develop-
ment and maintenance processes on a graphical level (see Figure 6.5). The

3See www.combeenation.com.

151

6 Interfaces for the Maintenance of Constraint-based Systems

definition of a configuration knowledge base is product-centered which
means that component and constraint definitions are directly attached to a
graphical representation of the configurable product. This approach allows
knowledge-based system development and maintenance for rapid prototyping
processes. Furthermore, Combeenation allows an immediate user testing
and feedback, i.e., erroneous behavior of the application can be immedi-
ately reported to the responsible knowledge engineer. Further research
related to graphical development, testing, and debugging environments for
configurator applications can be found in [Felfernig, 2007].

Figure 6.5: Combeenation: integrated development and visualization of configurators.

Teach the Consumer. In the context of knowledge base development and
maintenance, knowledge engineers and domain experts are in a similar
situation – they have to be informed about the sources of faulty behavior,

152

6.1 Current user Interfaces for the Maintenance of Constraint-based Systems

for example, in the case that certain test cases become invalid due to a prior
change to the knowledge base. In such situations, diagnoses take over the
role of explanations [Felfernig et al., 2014c] (see Section 4.2).

Similarly, knowledge engineers can efficiently develop a basic understand-
ing of the most relevant components and constraints part of the configura-
tion knowledge base. On the one hand, the provision of starting points offers
initial and reasonable settings in terms of, for example, a partial configura-
tion and thus helps to reduce overheads related to the design of consistent
configurations. On the other hand, starting points make knowledge en-
gineering operations more efficient due to the availability of additional
indicators of potential sources of inconsistencies. Knowledge engineers and
domain experts are supported in developing a basic understanding of the
tradeoffs with regard to alternative repair operations needed to restore the
consistency of a knowledge base. Supporting the concept of incremental
refinement, for example, on the basis of product comparison pages, helps
the user to develop a clear understanding of existing tradeoffs in the space
of solutions offered by the configuration knowledge base. Finally, proto-
types that are visualizing alternative configurations can significantly help to
develop a better understanding and clearer preferences regarding certain
solution alternatives. In the context of knowledge base development, such
visualizations help to understand alternative impacts of change operations
on the next version of the knowledge base [Felfernig, 2007].

In order to summarize the discussed design principles for user interfaces
of configuration environments, we provide an overview of these principles
which includes related technological foundations (see Table 6.6).

153

6 Interfaces for the Maintenance of Constraint-based Systems

Principle Technological Foundations
Customize the Parameter Selection [Falkner et al., 2011]
Customization Adaptive Knowledge Acquisition

Process [Burke et al., 2011]
Provide Recommendation of Defaults

Starting Points [Falkner et al., 2011; Tiihonen and Felfernig, 2010]
Recommendation of Knowledge Base Diagnoses

[Felfernig and Schubert, 2011a]
Support Configuration Comparison [Felfernig et al., 2006b]

Incremental [Felfernig et al., 2006b]
Refinement Diagnosis Comparison

[Felfernig et al., 2009]
Exploit Prototypes Explanations [Felfernig et al., 2006b]
to Avoid Surprises Graphical Testing & Debugging [Felfernig, 2007]

Teach Diagnoses [Felfernig et al., 2011a]
the Consumer Explanations [Friedrich and Zanker, 2011]

Recommendation [Felfernig and Schubert, 2011a]

Table 6.6: Design principles of configurator user interfaces and technological foundations.

Research Issues

The diversity of the configuration model has a strong influence on the
design and structure of user interfaces – nevertheless certain commonalities
can be identified. The Configuration Database Project4 provides a collection of
online configurators and includes more than 800 entries. After having ana-
lyzed configuration environments contained in this database, we detected
that more than 50% of the analyzed configurators show the following basic
characteristics:

• Selected components are summarized at the end of the configuration
process.

• Products available for configuration are presented as images.
• Process navigation, if available, is structured on a horizontal plane.

4See www.configurator-database.com

154

www.configurator-database.com

6.1 Current user Interfaces for the Maintenance of Constraint-based Systems

• Choice fields are positioned next to and/or beneath the product pic-
ture.

• Shopping cart, order button, and total price are clearly visible.

A configurator application that takes into account the mentioned charac-
teristics is depicted in Figure 6.6. It is intended as an example for developers
of configurator applications. Important hints regarding the design of indi-
vidual configurator user interface elements are the following:

• The logo should be shown in a dominant position for a fast identifica-
tion.

• The navigation bar should be clearly visible and shown unfragmented.
• The size of product (configuration) images should be sufficient to see

details.
• Selection box(es) should follow a logical clustering.
• Prices (price tables) should be accessible in all steps of a session.
• User preferences should be adaptable (e.g., by back/forward naviga-

tion).
• Shopping cart and order-button should be available for completion

purposes.

Summarizing, a close-to-reality approach is recommended to reduce the
uncertainties that a customer feels regarding a product that is not tangible
yet. For a more detailed discussion on usability issues in configurator user
interface development we refer to [Rogoll and Piller, 2004].

Conclusions

With this section we provide an overview of relevant principles of de-
veloping user interfaces for configuration environments. In this context
we focused on both types of user interfaces, interfaces for the end-user and
interfaces for knowledge engineers and domain experts who are in charge of

155

6 Interfaces for the Maintenance of Constraint-based Systems

Figure 6.6: A prototype web-based bicycle configurator (see www.cyledge.com).

knowledge base development and maintenance. In addition to this dis-
cussion of design principles, we proposed a couple of technologies which
help to achieve the mentioned principles. How we have realized the design
principles, will be shown in our interface implementation in the following
Section.

6.2 iCone: an Interface for the Maintenance of
Constraint-based Systems5

In this Section we give an overview of the iCone-interface and intelli-
gent techniques like recommendation, anomaly management, dependency
detection, and metrics which are implemented in the system.

5This Section is based on Wotawa et al. [2015a].

156

www.cyledge.com

6.2 iCone: an Interface for the Maintenance of Constraint-based Systems

Figure 6.7: Main screen of the icone interface

iCone (’Intelligent Environment for the Development and Mainenance of
Configuration Knowledge-Bases’) is a java-based web-application.6 Figure
6.7 shows the home screen of the application.

At the top-right of the page is the login area. The area on the left side
of the page shows the navigation. On the right side of the page is the
recommendation and notification area. In Figure 6.7 the user sees a list of
recommended knowledge bases (’Notebook’ and ’Smartphone’). A detailed
description of recommendations and notifications is given in the following
section. Finally, the main area of each page is the content area. For example,
in Figure 6.7 the user sees a list of knowledge bases where the user is
invited.

An overview of the principles of the iCone system can be found in Figure
1.1. The main object of iCone is the knowledge base. It contains all products,
product variables, questions, and constraints. Furthermore, it deals with the

6http://ase-projects.studies.ist.tugraz.at:8080/iCone

157

http://ase-projects.studies.ist.tugraz.at:8080/iCone

6 Interfaces for the Maintenance of Constraint-based Systems

analysis package which detects anomalies in the knowledge base, generates
recommendations for the knowledge engineers, approximates dependencies
between variables in the knowledge base, and generates metrics to evaluate
the knowledge base. For some evaluations of a knowledge base we need
consistency checks which will be done by SQL statements. SQLite databases
are used to do consistency checks and to save and load knowledge bases.
Finally, the iCone interface interacts with knowledge engineers. The interface
can be used to develop and maintain knowledge bases and to get a preview
for the resulting recommendation / configuration knowledge base.

Recommendation Techniques

Recommendation techniques help knowledge engineers to focus on rele-
vant items (e.g. products, questions, and constraints) in the knowledge base.
For example, a knowledge engineer focuses on relevant constraints for the
customer variable usage scenario. In that case recommendation techniques
find relationships between constraints with the corresponding variable. We
implemented several types of recommendation techniques. Figure 6.8 shows
the presentation of the implemented recommendation techniques.

We implemented four different recommendation techniques which can
be divided into user-independent and user-dependent ones. A detailed
description is given in Section 5.1.

• user-independent recommendation techniques

– most viewed: this recommendation technique shows the most
viewed items. It will not be differed if the item is viewed or
edited.

– recently added: this recommendation gives a list of the newest
items in the knowledge base.

• user-dependent recommendation techniques

158

6.2 iCone: an Interface for the Maintenance of Constraint-based Systems

Figure 6.8: Presentation of constraints and recommendation techniques. The right area
contains the collaborative filtering (’Recommended to you’), the most-viewed
(’Most viewed ...’), and the newest items (’Recently added’) recommendation
engine. If the user clicks on the ’i’-symbol in the content area which is available
for each constraint, question, and product in the system, she receives the
recommendations from the content-based filtering recommendation.

– collaborative filtering: this recommendation technique finds re-
lationships between knowledge engineers based on their most
viewed and edited items. For example, if user A takes a look for
the product variable cpu cores and the customers usage scenario
and user B is focusing on items concerning the cpu cores product
variable, she might also be interested in the question variable
usage scenario.

– content-based filtering: based on the content (variables and do-
main elements) of products, questions, and constraints the system
exploits the content of products (CP), questions (CR), and con-
straints (CKB) to find similar items in the knowledge base. For ex-
ample, if a constraint is concerned to the variable usage scenario,
other constraints with the same variable will be shown.

159

6 Interfaces for the Maintenance of Constraint-based Systems

For a detailed explanation of the different types of recommendation
techniques and empirical studies, we refer the reader to Section 5.1 and
[Reinfrank et al., 2015a; Felfernig et al., 2013b; Jannach et al., 2010; Chen
and Pu, 2006; Burke, 2000].

Anomaly management

Anomalies are patterns in data that do not conform to a well defined notion of
normal behavior [Chandola et al., 2009]. For example, in Figure 6.9 are two
sets of well-formedness violations.

In our implementation we consider three different types of anomalies:
conflicts, redundancies, and well-formedness violations.

• conflict: A conflict is a set of constraints which can not be fulfilled. For
example, a constraint price < 599∧ usage scenario = gaming can not
be fulfilled because gaming implies four cpu cores and the notebooks
with four cpu cores costs at least 599 EUR. Conflicts can be resolved
by sets of diagnoses. A diagnosis contains a set of constraints. If
all constraints, which are part of a diagnosis, are removed from a
knowledge base, the knowledge base will be consistent. A detailed
discussion is given in Section 4.1.1.

• redundancy: A set of constraints can be denoted as redundant if the
removal of this set does not change the behavior of the knowledge
base. For example, a constraint price < 700 can be removed without
changing the semantics if there exists another constraint price < 500
(see Section 4.1.2).

• well-formedness violation: Well-formedness violations do not change
the behavior of the knowledge base but make it difficult to maintain a
knowledge base. Well-formedness violations subsume different types
of violations like ’dead domain element’ (e.g., if a variable can never
have a specific value), ’full mandatory’ (if variables must have a specific
assignment), and ’unnecessary refinement’ (if each possible value of a
variable is always combined with another domain element of another

160

6.2 iCone: an Interface for the Maintenance of Constraint-based Systems

domain value). Figure 6.9 shows that our example knowledge base has
two unnecessary refinements. For example, the variable usage scenario
can be replaced by cpu cores because each time when the customer
wants a notebook for gaming she receives 4 cpu cores and when she
wants a notebook for multimedia or o f f ice she receives a notebook
with 2 cpu cores. A technical description of well-formedness violations
is given in Section 4.1.3.

Figure 6.9: Presentation of anomalies in the iCone interface: with the tabs at the top of the
main content area the user can switch between conflicts, diagnoses, redundan-
cies, and well-formedness violations. Our example knowledge base does not
contain conflicts, diagnoses, and redundancies but contains two unnecessary
refinements.

For each anomaly the system offers a mail draft and a forum. Additionally,
the system offers links to delete elements of anomalies (e.g. delete a con-
straint within a conflict set) or the anomaly itself (e.g. delete all constraints
within a diagnosis). Finally, the system also offers explanations for anoma-
lies (see Section 4.2). For example, the system shows which constraints are
responsible for a redundancy.

161

6 Interfaces for the Maintenance of Constraint-based Systems

For a detailed description of anomalies we refer the reader to the Sections
4.1 and 5.1 and [Reinfrank et al., 2015a; Felfernig et al., 2014e,d; Benavides
et al., 2013; Felfernig et al., 2013a, 2012a, 2011b].

Dependency detection

In our iCone implementation we have one visualization for constraint
dependencies and another one for variable dependencies.

First, dependencies between constraints shows the relationship between
products, question, and constraints. Figure 6.10 shows the graphical repre-
sentation of the content-based filtering algorithm (see Section 5.3).

Figure 6.10: Dependencies of constraints. For example, the selected constraint c1 has de-
pendencies to the customer variable usage scenario, constraints c2 and c3 and
to the product p0003.

Figure 6.11 shows the dependencies between variables. These relation-
ships can be calculated in two different ways depending on the checkbox
’Ignore all other variables’. If the checkbox is clicked, the system does exactly
one consistency check for each possible combination of the domain elements
for the variables selected in the drop down menus. The result is either 0

162

6.2 iCone: an Interface for the Maintenance of Constraint-based Systems

Figure 6.11: Dependencies of domain elements between two variables. For example, if vari-
able cpu cores = 2 and variable usage scenario = o f f ice then the probability
that this combination is consistent is 100%.

or 100 for each combination of domain elements where 0 means that the
combination of these two domain elements can never be consistent and 100

means that the combination is consistent when there are no other variable
assignments.

If the user deselects the checkbox ’Ignore all other variables’, the system
approximates the probability that the combination of each domain element
pair is consistent. The system generates constraints randomly, adds them to
the set CKB and checks if the knowledge base is consistent. For example, if
the user selects the variables usage scenario and cpu cores the combination
usage scenario = o f f ice∧ cpu cores = 2 is consistent but if the user disables
the ’Ignore all other variables’ checkbox, the system randomly adds con-
straints s.t. the initial configuration usage scenario = o f f ice ∧ cpu cores = 2
may be extended by price = 599 and the configuration would be inconsis-
tent. The probability that the combination of domain elements is consistent,
is displayed in Figure 6.11.

163

6 Interfaces for the Maintenance of Constraint-based Systems

While in simple knowledge bases it is possible to calculate all possible
combinations of variable assignments, in medium and large knowledge
bases with ten variables and each variable having five elements in its domain,
we have approx. 10 million possible different combinations. While such sets
of possible combinations can not be calculated in real-time systems, we use
Gibbs sampling to approximate the number of consistent combinations. For
example, if we have 1,000 checks and 300 are consistent, we expect that the
number of consistent combinations is 30%. For a detailed description of the
simulation strategy we refer the reader to [Reinfrank et al., 2015a,c] and
Section 5.3.

Metric calculation and evaluation

The iCone interface offers much information (products, questions, con-
straint, anomalies, dependencies, and test cases). To get an overview of the
quality of the knowledge base, the iCone interface offers an overview of
several metrics (see Figure 6.12).

While the number of metrics and their interpretation can be difficult,
the interface supports knowledge engineers in the interpretation. First,
the system shows changes in the values for each metric. Therefore the
system picks up the latest versions of the knowledge base and shows
the differences. Second, the iCone interface uses the metrics as a basis
for the goal-question-metric (GQM) approach. Metrics will be aggregated
for questions and they will be used to evaluate three goals. The goals
maintainability, understandability, and functionality are generic goals
for each knowledge base in the iCone system.

Finally, the system also uses the function point analysis (FPA) to analyze
the quality of a knowledge base. The system uses the customer requirements
as external input (EI), the available questions and products as external
query (EQ), the number of offered products and configurations as external
output (EO), items in the knowledge base (products, questions, constraints)

164

6.2 iCone: an Interface for the Maintenance of Constraint-based Systems

Figure 6.12: Visualization of metrics. When the knowledge engineer clicks on the ’i’ symbol,
she will receive the history of the metric (see Figure 5.5). Each time when
the knowledge base will be updated, a new version of the knowledge base is
created and the knowledge engineer can see the history of this metric.

as internal logical files (ILF), and external information like the product
assortment from an ERP-system as external interface file (EIF).

165

6 Interfaces for the Maintenance of Constraint-based Systems

For a detailed description of the metrics we refer the reader to Section
5.4 and [Reinfrank et al., 2015a,b; Bagheri and Gasevic, 2011; Lethbridge,
1998].

166

7 Conclusion

7.1 Summary

We have presented several techniques to support knowledge engineers in
their maintenance tasks. First, we have given an overview of current tech-
niques for the support in Chapter 2. Next, we described our understanding
of constraint satisfaction problems (Section 3.1), listed some definitions in
Section 3.2, and introduced running examples in Section 3.3.

Chapter 4 has taken a look into anomaly management. Section 4.1 ex-
panded the term anomaly management - which currently could be used
synonymously as inconsistency management (Section 4.1.1) - with the detec-
tion of redundancies (Section 4.1.2) and well-formedness violations (Section
4.1.3). The detection of those types of anomalies helps knowledge engineers
to get a better understanding of the knowledge base. Section 4.1 has focused
on the description of the anomalies. The term management subsumes dif-
ferent tasks related to anomalies. Therefore, in Section 4.2 we have shown
how we can explain anomalies to knowledge engineers. While the previous
sections expect that the knowledge base describes the real products, Section
4.3 has explained, how knowledge engineers can use test cases to detect
and repair differences between the real product and the knowledge base.
Finally, we have presented a study how the presentation of anomalies has
an influence on the satisfaction and the time knowledge engineers need to
repair an inconsistency (Section 4.4).

167

7 Conclusion

Chapter 5 has described several techniques that support knowledge en-
gineers in their maintenance tasks. We have explained how collaborative
filtering techniques can be used to differ between relevant and irrelevant
information regarding a maintenance task (Section 5.1).

We have described algorithms to detect anomalies in Section 5.2. In
addition to the current algorithms for calculating conflicts (Section 5.2.1),
diagnoses (Section 5.2.1), and redundancies (Section 5.2.2) in a linear way,
we have introduced algorithms to calculate redundancies with a divide-and-
conquer algorithm (Section 5.2.2) and well-formedness violations (Section
5.2.3). We have also explained how we can calculate redundancies based
on assignments instead of constraints to get a more detailed information
about the anomaly than with calculating anomalies based on constraints in
Section 5.2.2.

Simulation techniques are a well established technology in several ap-
plication areas except in the domain of maintaining product configuration
knowledge bases. We have taken this technology to detect dependencies of
variables in Section 5.3. This technique helps knowledge engineers to un-
derstand how an assignment of a variable can influence the possible values
(and the probability of the assignment of other values) of other variables.

Based on a literature review, we have discussed how we can evaluate a
constraint-based product configuration knowledge base (Section 5.4). On
the basis of the goal-question-metrics approach, we first described the goals
a knowledge base has to fit with (Section 5.4.1). How we can relate the
three goals with our questions, is described in Section 5.4.2. To evaluate the
answers of the questions, a set of metrics has been identified in Section 5.4.3.
Those metrics can have positive and negative implications to the questions.
A description how to interpret the results for goals, questions, and metrics
is difficult. Therefore, we have suggested to describe the changes of these
values when a knowledge base is maintained (Section 5.4.4).

168

7.2 Further Research

In Section 4.3 we have illustrated how test cases can be used to correct
a knowledge base. How we can generate the test cases automatically, has
been explained in Section 5.5. We have introduced how we can generate
test cases automatically using Gibbs’ sampling, boundary values, and micro
tasks.

The previously explained techniques to support knowledge engineers
focus on the maintenance of product configuration knowledge bases. While
these techniques help to work more efficiently, supporting the whole de-
velopment process would lead to more effective maintenance. Considering
that, we have taken a look into the development process in Secton 5.6 and
have given some initial hints how we can optimize the development process
for product configuration knowledge bases.

While the previous Chapters 4 and 5 have concentrated on techniques to
support knowledge engineers, Chapter 6 has focused on user interfaces for
configuration knowledge bases. Section 6.1 has listed requirements for such
interfaces and presented some examples from practice how the requirements
can be realized. Our implemented system iCone is presented in Section 6.2.
This system shows how we have realized all of the previously explained
techniques to support knowledge engineers and their maintenance tasks.

7.2 Further Research

We have presented several techniques that help to support knowledge
engineers in their knowledge base maintenance tasks. These techniques can
be used in almost each product domain. We assume that these techniques
tackle the main issues of maintenance. Qualitative and quantitative studies
have to be done to optimize the supporting techniques with focus on product
domains.

169

7 Conclusion

In Section 5.2.2 assignment-based redundancy detection a) detects more re-
dundancies than constraint-based redundancy detection and b) gives a
more detailed information about the anomaly. As recommended in Section
5.2.2, this technology can also be applied for inconsistency detection. For
example, an assignment based inconsistency detection for the constraints
c1 = x < 5∧ y = 3; c2 = x > 5 returns CS1 = {{x < 5} ∈ c1, {x > 5} ∈ c2}
instead of CS1 = {c1, c2} and gives a more detailed description for the
inconsistency. The diagnoses for this inconsistency would be more detailed,
too, because ∆1 = {{x < 5} ∈ c1} and ∆2 = {{x > 5} ∈ c2} fits more to
the original knowledge base.

As explained in Section 5.6, we can increase the effectiveness of a knowl-
edge base maintenance task. A lot of research related to the development
process of knowledge bases has been in done in many research areas similar
to constraint-based product configuration systems. In this thesis we have
given a first insight into a development process for product configuration
systems but a lot of research should be done to get a deep understanding of
the development process.

170

Bibliography

Abreu, F. B. and Melo, W. (1996). Evaluating the impact of object-oriented
design on software quality. Proceedings of the 3rd international software
metrics symposium, pages 90 – 99.

Anderson, D. (1997). Agile Product Development for Mass Customization.
McGraw-Hill.

Angele, J., Fensel, D., Landes, D., and Studer, R. (1998). Developing
knowledge-based systems with mike. Automated Software Engineering,
5(4):389–418.

Bagheri, E. and Gasevic, D. (2011). Assessing the maintainability of software
product line feature models using structural metrics. Software Quality
Journal, 19(3):579–612.

Barker, V., O’Conner, D., Bachant, J., and Soloway, E. (1989). Expert systems
for configuration at digital: Xcon and beyond. Communications of the ACM,
32(3):298 – 318.

Barr, V. (1997). Applications of rule-base coverage measures to expert system
evaluation. AAAI.

Baumeister, J., Puppe, F., and Seipel, D. (2004). Refactoring methods for
knowledge bases. In Engineering Knowledge in the age of the Semantic Web:
14th international conference, EKAW, LNAI 3257, pages 157–171. Springer.

Benavides, D., Felfernig, A., Galindo, J. A., and Reinfrank, F. (2013). Au-
tomated analysis in feature modelling and product configuration. ICSR,
pages 160 – 175.

171

Bibliography

Benavides, D., Segura, S., and Ruiz-Cortés, A. (2010). Automated analysis
of feature models 20 years later: A literature review. Information Systems,
35:615–636.

Bharadwaj, N., Naylor, R. W., and ter Hofstede, F. (2009). Consumer response
to and choice of customized versus standardized systems. International
Journal of Research in Marketing, 26(3):216 – 227.

Blecker, T., Abdelkafi, N., Kreutler, G., and Friedrich, G. (2004). Product
configuration systems: State of the art, conceptualization and extensions.
Eight Maghrebian Conference on Software Engineering and Artificial Intelligence,
pages 25 – 36.

Blythe, J., Kim, J., Ramachandran, S., and Gil, Y. (2001a). An integrated
environment for knowledge acquisition. IUI, pages 14 – 17.

Blythe, J., Kim, J., Ramachandran, S., and Gil, Y. (2001b). An integrated en-
vironment for knowledge acquisition. In Proceedings of the 6th international
conference on Intelligent user interfaces, IUI ’01, pages 13–20, New York, NY,
USA. ACM.

Boehm, B. (1984). Verifying and validating software requirements and
design specifications. IEEE Software, 1(1):75–88.

Bourke, R. (2000). Product configurators: Key enabler for mass cus-
tomization - an overview. http://www.pdmic.com/articles/midrange/-
Aug2000.html (Retrieval 10. Nov. 2003).

Bowen, J. and Bahler, D. (1991). Conditional existence of variables in gener-
alised constraint networks. In AAAI, pages 215–220. Citeseer.

Briand, L., Wust, J., Ikonomovski, S., and Lounis, H. (1999). Investigating
quality factors in object-oriented designs: an industrial case study. In
Software Engineering, 1999. Proceedings of the 1999 International Conference
on, pages 345–354.

Brooke, J. (1986). Sus: a quick and dirty usability scale. In Jordan, P., Thomas,
B., Weerdmeester, B., and McClelland, I. L., editors, Usability Evaluation in
Industry. Taylor and Francis.

172

Bibliography

Burke, R. (2000). Knowledge-based recommender systems. In Encyclopedia
of library and information systems, page 2000. Marcel Dekker.

Burke, R., Felfernig, A., and Goeker, M. (2011). The Future of Recommender
Systems: Research and Applications. AI Magazine, 32(3):13–18.

Burke, R. D., Hammond, K. J., and Yound, B. C. (1997). The findme approach
to assisted browsing. IEEE Expert, 12(4):32–40.

Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A
survey. ACM Comput. Surv., 41:15:1–15:58.

Chen, L. and Pu, P. (2006). Evaluating critiquing-based recommender agents.
In Proceedings of the 21st national conference on Artificial intelligence - Volume
1, AAAI’06, pages 157–162. AAAI Press.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object-
oriented design. IEEE Transactions on Software Engineering, 20(6):476 –
493.

Chklovski, T. and Gil, Y. (2005). An analysis of knowledge collected from
volunteer contributors. In Veloso, M. M. and Kambhampati, S., editors,
Proceedings, The Twentieth National Conference on Artificial Intelligence and
the Seventeenth Innovative Applications of Artificial Intelligence Conference,
July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pages 564–571. AAAI Press
/ The MIT Press.

Claessen, K., Een, N., Sheeran, M., and Sorensson, N. (2008). Sat-solving in
practice. In Discrete Event Systems, 2008. WODES 2008. 9th International
Workshop on, pages 61–67.

Daaboul, J., Bernard, A., and Laroche, F. (2009). Implementing Mass Cus-
tomization: Literature Review. In proceedings of the 5th World Conference on
Mass Customization and Personalization, pages –, Helsinki, Finland.

Domshlak, C., Hüllermeier, E., Kaci, S., and Prade, H. (2011). Preferences
in ai: An overview. Artificial Intelligence, 175(7–8):1037 – 1052. Repre-
senting, Processing, and Learning Preferences: Theoretical and Practical
Challenges.

173

Bibliography

Fahad, M. and Qadir, M. A. (2008). A framework for ontology evaluation. In
Eklund, P. W. and Haemmerlé, O., editors, Supplementary Proceedings of the
16th International Conference on Conceptual Structures, ICCS 2008, Toulouse,
France, July 7-11, 2008, volume 354 of CEUR Workshop Proceedings, pages
149–158. CEUR-WS.org.

Falkner, A., Felfernig, A., and Haag, A. (2011). Recommendation Technolo-
gies for Configurable Products. AI Magazine, 32(3):99–108.

Falkner, A. and Schreiner, H. (2014). SIEMENS: Configuration and Reconfigu-
ration in Industry, pages 199 – 210. Volume 1 of Felfernig et al. [2014c].

Felfernig, A. (2004). Effort estimation for knowledge-based configuration
systems. In Maurer, F. and Ruhe, G., editors, SEKE, pages 148–154.

Felfernig, A. (2007). Standardized configuration knowledge representations
as technological foundation formass customization. IEEE Transactions on
Engineering Management, 54:41–56.

Felfernig, A., Benavides, D., Galindo, J. A., and Reinfrank, F. (2013a). To-
wards anomaly explanation in feature models. Workshop on Configuration,
pages 117 – 124.

Felfernig, A., Blazek, P., Reinfrank, F., and Ninaus, G. (2014a). Intelligent
User Interfaces for Configuration Environments, pages 89 – 106. Volume 1 of
Felfernig et al. [2014c].

Felfernig, A. and Burke, R. (2008). Constraint-based recommender systems:
technologies and research issues. In Proceedings of the 10th international
conference on Electronic commerce, ICEC ’08, pages 3:1–3:10, New York, NY,
USA. ACM.

Felfernig, A., Friedrich, G., Gula, B., Hitz, M., Kruggel, T., Leitner, G.,
Melcher, R., Riepan, D., Strauß, S., Teppan, E., and Vitouch, O. (2007a).
Persuasive recommendation: Serial position effects in knowledge-based
recommender systems. In Kort, Y., IJsselsteijn, W., Midden, C., Eggen, B.,
and Fogg, B., editors, Persuasive Technology, volume 4744 of Lecture Notes
in Computer Science, pages 283–294. Springer Berlin Heidelberg.

174

Bibliography

Felfernig, A., Friedrich, G., Jannach, D., and Stumptner, M. (2004a).
Consistency-based diagnosis of configuration knowledge bases. Arti-
ficial Intelligence, 152(2):213 – 234.

Felfernig, A., Friedrich, G., Jannach, D., and Stumptner, M. (2004b).
Consistency-based Diagnosis of configuration knowledge bases. Arti-
ficial Intelligence, 152(2):213–234.

Felfernig, A., Friedrich, G., Jannach, D., and Zanker, M. (2006a). An in-
tegrated environment for the development of knowledge-based recom-
mender applications. Int. J. Electron. Commerce, 11(2):11–34.

Felfernig, A., Friedrich, G., Schubert, M., Mandl, M., Mairitsch, M., and
Teppan, E. (2009). Plausible repairs for inconsistent requirements. 21st
International Joint Conference on Artificial Intelligence (IJCAI’09), pages 791–
796.

Felfernig, A., Friedrich, G. E., and Jannach, D. (2000). Uml as domain specific
language for the construction of knowledge-based configuration systems.
International Journal of Software Engineering and Knowledge Engineering
(IJSEKE, 10:449–469.

Felfernig, A., Gula, B., Leitner, G., Maier, M., Melcher, R., and Teppan, E.
(2008a). Persuasion in knowledge-based recommendation. In Oinas-
Kukkonen, H., Hasle, P., Harjumaa, M., Segerståhl, K., and Øhrstrøm,
P., editors, Persuasive Technology: Third International Conference, PERSUA-
SIVE 2008, Oulu, Finland, June 4-6, 2008., pages 71–82, Berlin, Heidelberg.
Springer.

Felfernig, A., Gula, B., and Teppan, E. (2006b). Knowledge-based Recom-
mender Technologies for Marketing and Sales. Special issue of Personaliza-
tion Techniques for Recommender Systems and Intelligent User Interfaces for the
International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI),
21(2):1–22.

Felfernig, A., Haas, S., Ninaus, G., Schwarz, M., Ulz, T., and Stettinger, M.
(2014b). Recturk: Constraint-based recommendation based on human
computation. CrowdRec.

175

Bibliography

Felfernig, A., Hotz, L., Bagley, C., and Tiihonen, J., editors (2014c). Knowledge-
based configuration. From research to business cases, volume 1. Morgan
Kaufmann.

Felfernig, A., Isak, K., and Russ, C. (2006c). Knowledge-based recommen-
dation: Technologies and experiences from projects. In Proceedings of the
2006 Conference on ECAI 2006: 17th European Conference on Artificial Intelli-
gence August 29 – September 1, 2006, Riva Del Garda, Italy, pages 632–636,
Amsterdam, The Netherlands, The Netherlands. IOS Press.

Felfernig, A., Isak, K., Szabo, K., and Zachar, P. (2007b). The vita financial
services sales support environment. In Proceedings of the 19th National
Conference on Innovative Applications of Artificial Intelligence - Volume 2,
IAAI’07, pages 1692–1699. AAAI Press.

Felfernig, A., Mandl, M., Pum, A., and Schubert, M. (2010). Empirical knowl-
edge engineering: Cognitive aspects in the development of constraint-
based recommenders. In Garcı́a-Pedrajas, N., Herrera, F., Fyfe, C., Benı́tez,
J. M., and Ali, M., editors, Trends in Applied Intelligent Systems, volume
6096 of Lecture Notes in Computer Science, pages 631–640. Springer Berlin /
Heidelberg.

Felfernig, A., Reinfrank, F., and Ninaus, G. (2012a). Resolving anomalies in
configuration knowledge bases. ISMIS, 1(1):1 – 10.

Felfernig, A., Reinfrank, F., Ninaus, G., and Blazek, P. (2014d). Redundancy
Detection in Configuration Knowledge, pages 157 – 166. Volume 1 of Felfernig
et al. [2014c].

Felfernig, A., Reiterer, S., Reinfrank, F., Ninaus, G., and Jeran, M. (2014e).
Conflict Detection and Diagnosis in Configuration, pages 73 – 87. Volume 1

of Felfernig et al. [2014c].

Felfernig, A., Reiterer, S., Stettinger, M., Reinfrank, F., Jeran, M., and Nin-
aus, G. (2013b). Recommender systems for configuration knowledge
engineering. Workshop on Configuration, pages 51 – 54.

Felfernig, A., Schippel, S., Leitner, G., Reinfrank, F., Isak, K., Mandl, M.,
Blazek, P., and Ninaus, G. (2013c). Automated repair of scoring rules in
constraint-based recommender systems. AI Commun., 26(1):15–27.

176

Bibliography

Felfernig, A. and Schubert, M. (2011a). Personalized Diagnoses for Incon-
sistent User Requirements. Artificial Intelligence for Engineering Design,
Analysis, and Manufacturing (AIEDAM), 25(1):115–129.

Felfernig, A. and Schubert, M. (2011b). Personalized diagnoses for inconsis-
tent user requirements. AI EDAM, 25(2):175–183.

Felfernig, A., Schubert, M., and Reiterer, S. (2013d). Personalized diagnosis
for over-constrained problems. IJCAI, pages 1990 – 1996.

Felfernig, A., Schubert, M., and Zehentner, C. (2011a). An Efficient Diag-
nosis Algorithm for Inconsistent Constraint Sets. Artificial Intelligence for
Engineering Design, Analysis, and Manufacturing (AIEDAM), 25(2):175–184.

Felfernig, A., Schubert, M., and Zehentner, C. (2012b). An efficient diagnosis
algorithm for inconsistent constraint sets. AI EDAM, 26(1):53–62.

Felfernig, A. and Shchekotykhin, K. (2006). Debugging user interface de-
scriptions of knowledge-based recommender applications. In Proceedings
of the 11th International Conference on Intelligent User Interfaces, IUI ’06,
pages 234–241, New York, NY, USA. ACM.

Felfernig, A., Teppan, E., Friedrich, G., and Isak, K. (2008b). Intelligent
debugging and repair of utility constraint sets in knowledge-based rec-
ommender applications. In Proceedings of the 13th International Conference
on Intelligent User Interfaces, IUI ’08, pages 217–226, New York, NY, USA.
ACM.

Felfernig, A., Zehentner, C., and Blazek, P. (2011b). Corediag: Eliminating
redundancy in constraint sets. In Sachenbacher, M., Dressler, O., and
Hofbaur, M., editors, DX 2011. 22nd International Workshop on Principles of
Diagnosis, pages 219 – 224, Murnau, GER.

Felfernig, A., Zehentner, C., and Blazek, P. (2011c). Corediag: Eliminating
redundancy in constraint sets. 22nd International Workshop on Principles of
Diagnosis (DX’11), pages 219–224.

Fisher, M. L. and Ittner, C. D. (1999). The impact of product variety on auto-
mobile assembly operations: Empirical evidence and simulation analysis.
Management Science, 45:771–786.

177

Bibliography

Fleischanderl, G., Friedrich, G. E., Haselböck, A., Schreiner, H., and Stumpt-
ner, M. (1998). Configuring large systems using generative constraint
satisfaction. IEEE Intelligent Systems, 13(4):59–68.

Fogliatto, F. S., da Silveira, G. J., and Borenstein, D. (2012). The mass
customization decade: An updated review of the literature. International
Journal of Production Economics, 138(1):14 – 25.

Fourer, R., Gay, D. M., and Kernighan, B. W. (2002). AMPL: A modeling lan-
guage for mathematical programming. Cole Publishing Company, 2 edition.

Freuder, E. (1997). In pursuit of the holy grail. Constraints, 2(1):57–61.

Friedrich, G., Jannach, D., Stumptner, M., and Zanker, M. (2014). Knowledge
Engineering for configuration systems, pages 139 – 155. Volume 1 of Felfernig
et al. [2014c].

Friedrich, G. and Zanker, M. (2011). A Taxonomy for Generating Explana-
tions in Recommender Systems. AI Magazine, 32(3):90–98.

Gartner (2005). Top ten risks to a configuration project and how to avoid
them.

Gershberg, F. B. and Shimamura, A. P. (1994). Serial position effects in
implicit and explicit tests of memory. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 20:1370–1378.

Grabner-Kraeuter, S. and Kaluscha, E. (2003). Empirical research in on-line
trust: a review and critical assessment. International Journal of Human-
Computer Studies, 58(6):783–812.

Grimm, S. and Wissmann, J. (2011). Elimination of redundancy in ontologies.
In Antoniou, G., Grobelnik, M., Simperl, E. P. B., Parsia, B., Plexousakis,
D., Leenheer, P. D., and Pan, J. Z., editors, The Semantic Web: Research and
Applications - 8th Extended Semantic Web Conference, ESWC 2011, Heraklion,
Crete, Greece, May 29-June 2, 2011, Proceedings, Part I, volume 6643 of Lecture
Notes in Computer Science, pages 260–274. Springer.

Günter, A. and Kühn, C. (1999). Knowledge-Based Configuration - Survey
and Future Directions. In Puppe, F., editor, XPS-99: Knowledge Based

178

Bibliography

Systems, Proceedings 5th Biannual German Conference on Knowledge Based
Systems, Springer Lecture Notes in Artificial Intelligence 1570, Würzburg.

Hartmann, H. and Trew, T. (2008). Using feature diagrams with context
variability to model multiple product lines for software supply chains. In
Proceedings of the 2008 12th International Software Product Line Conference,
pages 12–21, Washington, DC, USA. IEEE Computer Society.

Hong, J.-C. and Liu, M.-C. (2003). A study on thinking strategy between
experts and novices of computer games. Computers in Human Behavior,
19:245 – 258.

Hotz, L., Felfernig, A., Stumptner, M., Ryabokon, A., Bagley, C., and Wolter,
K. (2014). Configuration Knowledge Representation and Reasoning, pages 41 –
72. Volume 1 of Felfernig et al. [2014c].

Hu, S., Zhu, X., Wang, H., and Koren, Y. (2008). Product variety and
manufacturing complexity in assembly systems and supply chains. CIRP
Annals - Manufacturing Technology, 57(1):45 – 48.

Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. (2010). Recommender
Systems: An Introduction, volume 1. University Press, Cambridge.

Jeffress, L. A., editor (1951). Cerebral Mechanisms in Behaviour: The Hixon
Symposium. Hafner Publishing Co Ltd.

John, U. and Geske, U. (2003). Web knowledge management and decision
support: 14th international conference on applications of prolog, inap
2001 tokyo, japan, october 20–22, 2001 revised papers. In Bartenstein,
O., Geske, U., Hannebauer, M., and Yoshie, O., editors, Web Knowledge
Management and Decision Support: 14th International Conference on Applica-
tions of Prolog, INAP 2001 Tokyo, Japan, October 20–22, 2001 Revised Papers,
chapter Constraint-Based Configuration of Large Systems, pages 217–232.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Juengst, W. E. and Heinrich, M. (1998). Using resource balancing to configure
modular systems. IEEE Intelligent Systems, 13(4):50–58.

179

Bibliography

Junker, U. (2004). Quickxplain: preferred explanations and relaxations for
over-constrained problems. In Proceedings of the 19th national conference on
Artifical intelligence, AAAI’04, pages 167–172. AAAI Press.

Kahneman, D., Knetsch, J., and Thaler, R. H. (1991). Anomalies: The endow-
ment effect, loss aversion, and status quo bias. The Journal of Economic
Perspectives, 5:193 – 206.

Keefe, R. M. O. and Preece, A. D. (1996). The development, validation
and implementation of knowledge-based systems. European Journal of
Operational Research, 92(3):458 – 473.

Keeney, R. and Raiffa, H. (1993). Decisions with Multiple Objectives: Preferences
and Value Trade-Offs. Wiley series in probability and mathematical statistics.
Applied probability and statistics. Cambridge University Press.

Keeney, R. L. and Raiffa, H. (1976). Decisions with Multiple Objectives: Prefer-
ences and Value Tradeoffs. John Wiley and Sons.

Kellner, M. I., Madachy, R. J., and Raffo, D. M. (1999). Software process
simulation modeling: Why? what? how? Journal of Systems and Software,
46(2–3):91 – 105.

Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., and Riedl, J.
(1997). Grouplens: applying collaborative filtering to usenet news. Com-
munications of the ACM, 40(3):77–87.

Lashley, K. (1951). The problem of serial order in behavior. In Jeffress [1951],
page 506–528.

Lauenroth, K. and Pohl, K. (2007). Towards automated consistency checks of
product line requirements specifications. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering, ASE
’07, pages 373–376, New York, NY, USA. ACM.

Lethbridge, T. (1998). Metrics for concept-oriented knowledge bases. Inter-
national Journal of Software Engineering and Knowledge Engineering, 8:16–1.

Mandl, M., Felfernig, A., Teppan, E., and Schubert, M. (2011a). Consumer de-
cision making in knowledge-based recommendation. Journal of Intelligent
Information Systems, 37(1):1–22.

180

Bibliography

Mandl, M., Felfernig, A., Tiihonen, J., and Isak, K. (2011b). Status quo bias
in configuration systems. In Mehrotra, K. G., Mohan, C. K., Oh, J. C.,
Varshney, P. K., and Ali, M., editors, IEA/AIE (1), volume 6703 of Lecture
Notes in Computer Science, pages 105–114. Springer.

McSherry, D. (2003). Similarity and compromise. In Proceedings of the Fifth
International Conference on Case-Based Reasoning, pages 291–305. Springer.

McSherry, D. (2004). Maximally successful relaxations of unsuccessful
queries. In 15th Irish Conference on Artificial Intelligence and Cognitive
Science, AICS-04, pages 127–136.

Mehrotra, M., Bobrovnikoff, D., Chaudhri, V., and Hayes, P. (2002). A
clustering approach for knowledge base analysis. American Association for
Artificial Intelligence.

Mirzadeh, N., Ricci, F., and Bansal, M. (2005). Feature selection methods for
conversational recommender systems. In 2005 IEEE International Conference
on e-Technology, e-Commerce and e-Service, pages 772–777.

Musen, M. A., Eriksson, H., Gennari, J. H., and Tu, S. W. a. (1994). Protégé-ii:
A suite of tools for development of intelligent systems from reusable
components. Proc Annu Symp Comput Appl Med Care.

Myers, G. J., Badgett, T., and Sandler, C. (2012). The art of software testing.
John Wiley & Sons, 3 edition.

Nabil, D., El-Korany, A., and Eldin, A. S. (2008). Towards a suite of quality
metrics for kadss-domain knowledge. Expert Systems with Applications,
35:654 – 660.

Neumaier, A., Shcherbina, O., Huyer, W., and Vinkó, T. (2005). A compari-
son of complete global optimization solvers. Mathematical Programming,
103(2):335–356.

O’Keefe, R. M. and O’Leary, D. E. (1993). A review and survey of expert
system verification and validation. Artificial Intelligence Review, 7(1):3 – 42.

Olhager, J. and Persson, F., editors (2007). Advances in Production Management
Systems. Springer US, Linköping, Sweden, 1 edition.

181

Bibliography

Pazzani, M. and Billsus, D. (1997). Learning and revising user profiles: The
identification of interesting web sites. Machine Learning, 27(3):313–331.

Pazzani, M. and Billsus, D. (2007). Content-based recommendation systems.
In Brusilovsky, P., Kobsa, A., and Nejdl, W., editors, The Adaptive Web,
volume 4321 of Lecture Notes in Computer Science, pages 325–341. Springer
Berlin / Heidelberg.

Piette, C. (2008). Let the solver deal with redundancy. In Proceedings of the
2008 20th IEEE International Conference on Tools with Artificial Intelligence -
Volume 01, pages 67–73, Washington, DC, USA. IEEE Computer Society.

Pine, B. and Davis, S. (1999). Mass Customization: The New Frontier in Business
Competition. Harvard Business School Press.

Pine, J. B., editor (1992). Mass Customization. The new frontier in business
competition. Harvard Business School.

Preece, A. (1998). Building the right system right evaluating v&v methods
in knowledge engineering.

Preece, A. D. and Shinghal, R. (1994). Foundation and application of
knowledge base verification. International Journal of Intelligent Systems,
9(8):683–701.

Preece, A. D., Shinghal, R., and Batarekh, A. (1992). Principles and practice
in verifying rule-based systems. The Knowledge Engineering Review, 7:115–
141.

Preece, A. D., Talbot, S., and Vignollet, L. (1997). Evaluation of verifica-
tion tools for knowledge-based systems. International Journal of Human-
Computer Studies, 47(5):629 – 658.

Prerau, D. S. (1987). Knowledge acquisition in the development of a large
expert system. AI Magazine, 8(2):43–51.

Rabe, M. and Jäkel, F.-W. (2002). Decomposition of large simulation systems
for supply chains and manufacturing systems.

182

Bibliography

Rabiser, R. and Dhungana, D. (2007). Integrated support for product config-
uration and requirements engineering in product derivation. In Software
Engineering and Advanced Applications, 2007. 33rd EUROMICRO Conference
on, pages 219–228.

Randall, T., Terwiesch, C., and Ulrich, K. (2005). Principles for User Design
of Customized Products. California Managament Review, 47(4):1–18.

Reichwald, R. and Piller, F. (2009). Interaktive Wertschöpfung. Open Innovation,
Individualisierung und neue Formen der Arbeitsteilung. Gabler, Wiesbaden, 2

edition.

Reinfrank, F., Ninaus, G., and Felfernig, A. (2015a). Intelligent techniques
for the maintenance of constraint-based systems. Configuration Workshop.

Reinfrank, F., Ninaus, G., Peischl, B., and Wotawa, F. (2015b). A goal-
question-metrics model for configuration knowledge bases. Configuration
Workshop.

Reinfrank, F., Ninaus, G., Wotawa, F., and Felfernig, A. (2015c). Maintaining
constraint-based configuration systems: Challenges ahead. Configuration
Workshop.

Reiter, R. (1987). A theory of diagnosis from first principles. Artificial
Intelligence, 32(1):57–95.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. (1994).
Grouplens: An open architecture for collaborative filtering of netnews. In
Proceedings of the 1994 ACM Conference on Computer Supported Cooperative
Work, CSCW ’94, pages 175–186, New York, NY, USA. ACM.

Ricci, F. and Nguyen, Q. N. (2007). Acquiring and revising preferences in
a critique-based mobile recommender system. IEEE Intelligent Systems,
22(3):22–29.

Richardson, M. and Domingos, P. M. (2003). Building large knowledge bases
by mass collaboration. In Gennari, J. H., Porter, B. W., and Gil, Y., editors,
Proceedings of the 2nd International Conference on Knowledge Capture (K-CAP
2003), October 23-25, 2003, Sanibel Island, FL, USA, pages 129–137. ACM.

183

Bibliography

Rogoll, T. and Piller, F. (2004). Product configuration from the customer’s
perspective: a comparison of configuration systems in the apparel indus-
try.

Sabin, D. and Weigel, R. (1998). Product Configuration Frameworks – A
Survey. IEEE Intelligent Systems, 13(4):42–49.

Sabin, M. and Freuder, E. C. (1998). Detecting and resolving inconsistency
and redundancy in conditional constraint satisfaction problems. Proceeding
of Constraint Programming (CP’98).

Salvetto, P. F., Martinez, M. F., Luna, C. D., and Segovia, J. (2004). A very
early estimation of software development time and effort using neural
networks. Workshop de Ingenierı́a de Software y Base de Datos.

Samuelson, W. and Zeckhauser, R. (1988). Status quo bias in decision
making. Journal of Risk and Uncertainty, 1:7–59.

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-based collab-
orative filtering recommendation algorithms. In Proceedings of the 10th
International Conference on World Wide Web, WWW ’01, pages 285–295, New
York, NY, USA. ACM.

Schmitt, C., Dengler, D., and Bauer, M. (2003). Multivariate preference
models and decision making with the maut machine. In Brusilovsky,
P., Corbett, A., and de Rosis, F., editors, User Modeling 2003, volume
2702 of Lecture Notes in Computer Science, pages 297–302. Springer Berlin
Heidelberg.

Schreiber, G., Wielinga, B., de Hoog, R., Akkermans, H., and Van de Velde, W.
(1994). Commonkads: a comprehensive methodology for kbs development.
IEEE Expert, 9(6):28–37.

Schubert, M., Felfernig, A., and Reinfrank, F. (2011). Reaction: Personalized
minimal repair adaptations for customer requests. In Christiansen, H., Tré,
G. D., Yazici, A., Zadrozny, S., Andreasen, T., and Larsen, H. L., editors,
Flexible Query Answering Systems - 9th International Conference, FQAS 2011,
Ghent, Belgium, October 26-28, 2011 Proceedings, volume 7022 of Lecture
Notes in Computer Science, pages 13–24. Springer.

184

Bibliography

Shortliffe, E. H. and Patel, V. L. (2007). 9 - human-intensive techniques. In
Greenes, R. A., M.D., and Ph.D., editors, Clinical Decision Support, pages
207 – 226. Academic Press, Burlington.

Simonson, I. (2003). Determinants of Customer’s Responses to Customized
Offers: Conceptual Framework and Research Propositions. Stanford GSB
Working Paper No. 1794.

Smyth, B., McGinty, L., Reilly, J., and McCarthy, K. (2004). Compound
critiques for conversational recommender systems. In Web Intelligence,
2004. WI 2004. Proceedings. IEEE/WIC/ACM International Conference on,
pages 145–151.

Studer, R., Benjamins, V. R., and Fensel, D. (1998). Knowledge engineering:
Principles and methods. Data & Knowlege Engineering, 25:161 – 197.

Stumptner, M., Friedrich, G., and Haselböck, A. (1998). Generative
Constraint-based Configuration of Large Technical Systems. AI EDAM,
12(04):307–320.

Thompson, C. A., Göker, M. H., and Langley, P. (2004). A personalized
system for conversational recommendations. J. Artif. Int. Res., 21(1):393–
428.

Tiihonen, J. and Felfernig, A. (2010). Towards Recommending Configurable
Offerings. International Journal of Mass Customization, 3(4):389–406.

Tiihonen, J. and Soininen, T. (1997). Product Configurators: Information System
Support for Configurable Products. Helsinki University of Technology.

Tsang, E. (1993). Foundations of Constraint Satisfaction. Academic Press.

Tversky, A. and Kahneman, D. (1974). Judgement under uncertainty: Heuris-
tics and biases. Science, 185(4157):1124 – 1131.

Tversky, A., Slovic, P., and Kahneman, D. (1990). The causes of preference
reversal. American Economic Review, 80(1):204–17.

van Melle, W., Shortliffe, E. H., and Buchanan, B. G. (1984). Emycin: A
knowledge engineer’s tool for constructing rule-based expert systems. In

185

Bibliography

Buchanan, B. G. and Shortliffe, E. H., editors, Rule-Based Expert Systems.
The Mycin Experiments of the Stanford Heuristic Programming Project, pages
302–313. Addison-Wesley.

von Winterfeldt, D. and Edwards, W. (1986). Decision Analysis and Behavioral
Research. Cambridge University Press.

Winterfeldt, D. and Edwards, W. (1986). Decision Analysis and Behavioral
Research. Cambridge University Press.

Wotawa, F., Reinfrank, F., Ninaus, G., and Felfernig, A. (2015a). icone: intelli-
gent environment for the development and maintenance of configuration
knowledge bases. IJCAI 2015 Joint Workshop on Constraints and Preferences
for Configuration and Recommendation.

Wotawa, F., Stettinger, M., Reinfrank, F., Ninaus, G., and Felfernig, A. (2015b).
Conflict management for constraint-based recommendation. IJCAI 2015
Joint Workshop on Constraints and Preferences for Configuration and Recom-
mendation.

Zwicky, F. (1966). Entdecken, Erfinden, Forschen im morphologischen Weltbild.
Droemer-Knaur.

186

