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Abbreviations

ALS amyotrophic lateral sclerosis

ANOVA analysis of variance

BCI brain-computer interface
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SSAEP steady-state auditory evoked potential

SSEP steady-state evoked potential

SSSEP steady-state somatosensory evoked potential

SSVEP steady-state visual evoked potential

TN true negative

TP true positive
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Abstract

The research goal of this thesis is to evaluate whether and to what extent
induced and evoked changes in EEG can be combined for BCI applications.
There are several potential advantages to this combined approach: first, BCIs
based on induced and evoked changes could be combined in different ways with
a common goal; second, employing different experimental strategies would in-
crease the likelihood that at least one of them works in the end-users; and
third, novel combinations of induced and evoked changes in EEG could in-
crease reliability of results and robustness against artifacts.

In this thesis it was shown how to successfully combine induced and evoked
changes in EEG for BCI applications. Furthermore, it was demonstrated
that a single auditory selective attention task can modulate both induced and
evoked changes in EEG, thus paving the way for further BCIs that exploit both
of these types of brain signals. Notably, the novel experimental paradigms can
facilitate such endeavours and their transition from a laboratory to end-users.

In a related work, the state of the art in the BCI technology was evaluated
in patients with disorders of consciousness. Furthermore, a contribution was
made by comparing different types of mental tasks and attempted movements
within patients, as well as by exploring new venues.
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Zusammenfassung

Das Forschungsziel dieser Dissertation ist es zu evaluieren, ob und inwiefern
induzierte und evozierte Veränderungen im EEG für BCI Anwendungen kom-
biniert werden können. Es gibt mehrere potentielle Vorteile in dieser kom-
binierten Herangehensweise: erstens, BCIs basierend auf induzierten und
evozierten Veränderungen im EEG könnten in unterschiedlicher Art und Weise
zur Erreichung eines gemeinsamen Ziels kombiniert werden; zweitens, durch
Verwendung unterschiedlicher experimenteller Strategien könnte die Erfol-
gswahrscheinlichkeit in EndbenutzerInnen erhöht werden; und drittens, neuar-
tige Kombinationen von induzierten und evozierten Veränderungen im EEG
könnten die Verlässlichkeit und die Robustheit der Ergebnisse gegenüber den
Artefakten erhöhen. In dieser Dissertation wurde gezeigt, wie man erfolgre-
ich induzierte und evozierte Veränderungen im EEG für BCI Anwendungen
kombinieren kann. Es wurde weiters demonstriert, dass eine einzelne, auf
der auditorischen selektiven Aufmerksamkeit basierende, Aufgabe sowohl in-
duzierte als auch evozierte Veränderungen im EEG modulieren kann, wodurch
der Weg für künftige BCIs, die diese beiden Arten von Gehirnsignalen aus-
nutzen, geebnet worden ist. Insbesondere können diese neuartigen experi-
mentellen Paradigmen solche Unterfangen, sowie deren Transition vom La-
bor zu den EndbenutzerInnen erleichtern. In einer themenverwandten Arbeit
wurde der Stand der Technik in der BCI Technologie in PatientInnen mit
Bewusstseinsstörungen evaluiert. Ferner wurde ein Beitrag geleistet, indem
sowohl unterschiedliche Arten von mentalen Aufgaben und versuchten Bewe-
gungen innerhalb der PatientInnen verglichen wurden, als auch neue Gebiete
erforscht wurden.
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Chapter 1

Introduction

1.1 BCI

1.1.1 Overview and definition

When a person is unable to communicate through words, gestures, or standard
assistive technology (AT), brain-computer interfaces (BCIs) could, in theory,
provide alternative means of communication. Similarly, in spinal-cord injured
end-users, BCIs could bypass the injury and restore the muscle control through
functional electrical stimulation.

But what is a BCI? A widely accepted definition of a BCI [24, 185] is that
it is a system that relies on intentional brain activity without neuromuscular
pathways, and provides real-time feedback. This definition has recently been
extended to also include the so called passive BCIs, that do not rely on inten-
tional control. Figure 1.1 presents an overview of the basic components of an
electroencephalogram (EEG) based BCI system.

The vast majority of BCIs are based on one of two types of brain activity:
the first one is induced through willful modulation of ongoing oscillatory ac-
tivity through mental imagery; the second one is evoked by external stimuli
and modulated through focused attention. These induced and evoked changes
each have their merits and drawbacks. The overall hypothesis behind this the-
sis is that combining these two types of changes could strengthen their merits
and weaken their drawbacks.

1.1.2 Types of brain signals and recording

Signal acquisition can be performed non-invasively using EEG, or invasively
using electrocorticogram (EcOG), single, and multi-unit activity. Signal qual-
ity is proportional with the level of invasion. EEG is the method of choice
for the majority of reported BCIs, mainly due to its high temporal resolution
and its widespread availability. It also has a long history, with the first EEG
measurements in man conducted as early as 1924, by Hans Berger [15]. The
EEG reflects the sustained spontaneous electrical activity of the human brain.
Measured on scalp with 4-10 mm diameter large electrodes, commonly placed
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Figure 1.1: Overview of the basic components of an EEG based BCI system.

according to the International 10-20 electrode system [80], the EEG measures
the spatial and temporal summation of the activity of millions of neurons,
plotted as the changes in voltage over time. The EEG can be divided into
several frequency band, commonly defined as alpha (α, 8-13 Hz), beta (β,
14-30 Hz), gamma (γ, 30-100 Hz), theta (θ, 4-7 Hz), and delta (δ, 0.5-3.5 Hz).

1.1.3 Experimental strategies and neuroelectrical phe-
nomena

Common experimental strategies include operant conditioning through neuro-
feedback (e.g., slow cortical potentials [19]), stimulus induced responses modu-
lated by focused attention in various sensory modalities [41, 51, 124, 125, 168],
and various forms of mental imagery [26, 147, 120, 47]. Following is a short de-
scription of experimental strategies and associated neuroelectrical phenomena
most relevant for this thesis.

Stimulus induced responses modulated by focused attention

Event-related potentials While evoked potentials (EPs) represent time-
and phase-locked brain’s physiological response to external stimuli, event-
related potentials (ERPs) represent transient EEG amplitudes related to cog-
nitive processing (e.g., attention, perception, etc.). Distinct ERPs reflecting
focused attention to stimuli have been reported, foremost the P300 compo-
nent, named after its characteristic large positive peak amplitude occurring
around 250 to 500 ms post stimulus [157]. Other notable ERPs include: mis-
match negativity (MMN), reflecting the preattentive change detection on the
level of auditory sensory memory [127]; late positive component (LPC), re-
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flecting the switch of attention onto the new information [190]; N400 [95] and
P600 [60], related to semantic processing.

Oddball paradigm The P300 is usually elicited by the oddball paradigm,
where an infrequent (e.g., 20%) deviant stimulus is presented among fre-
quent (e.g., 80%) standard stimuli [102]. Central to this paradigm is at-
tention of the participant, who is often instructed to silently count how often
the deviant stimulus occurs. The properties of the oddball paradigm (e.g.
the deviant to standard ratio) can be exploited for design of a P300 speller
system [41].

Steady-state evoked potentials If the frequency of stimuli presentation
is so high that the transient EEG amplitudes do not fade before a new stim-
ulus occurs, a so called steady-state evoked potential (SSEP) can be found.
SSEPs can be induced in in auditory (steady-state auditory evoked potential,
SSAEP [153]), somatosensory (steady-state somatosensory evoked potential,
SSSEP[162, 125]), and visual modality (steady-state visual evoked potential,
SSVEP [162, 183]). Focusing on the stimuli enhances the SSEPs.

SSVEP SSVEP are elicited by presenting repetitive visual stimuli faster
than 6 Hz, and can be recorded at occipitally mounted EEG electrodes [162].
Stimulation for an SSVEP-based BCI can be delivered via lights (e.g., light-
emitting diodes, LED) or via targets presented on a monitor, flickering with
different frequencies [189, 192]. These flickering stimuli typically elicit oc-
cipital oscillations at harmonics of the stimulating frequency, as well as the
fundamental frequency itself [162, 62].

Rhythms of the sensorimotor cortex

Sensorimotor rhythms (SMR) are distinguishable from each other by topogra-
phy, frequency, and timing. Common sensorimotor rhythms include µ rhythm,
normally found in the lower and upper alpha bands (8-12 Hz), and central
β (13-30 Hz) rhythms. Motor imagery (MI), without any actual performed
movements, can decrease band power in the µ-frequency range and also to
some extent in the β-frequency range relative to the band power in a reference
interval preceeding the MI onset [145]. This decrease of power is called event-
related desynchronization (ERD), and is often followed by an increase of the
band power in the lower and upper β band relative to the band power in a ref-
erence interval preceeding the MI onset, also known as event-related synchro-
nization (ERS) [145]. However, participants need to imagine the movement
kinaesthetically in order to produce EEG patterns similar to actual move-
ments [134]. Non-motor mental imagery can also modulate rhythms of the
sensorimotor cortex, e.g. mental arithmetic, spatial navigation, cube rotation
and other [166, 37, 161].
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Postmovement beta ERS Beta EEG changes, i.e. ERS and ERD as de-
scribed in the previous section, have been reported in multiple studies [5, 133,
148, 178]. After an ERD appearing briefly before and during the movement,
bursts of beta oscillations (beta rebound, beta ERS) occur approx. 1-s fol-
lowing movement offset [145]. Beta rebound has been demonstrated following
voluntary [133, 178, 150, 116], passive [116, 28] and imagined [146] movements,
as well as movements due to functional electrical stimulation [116].

1.1.4 Signal processing

Signal processing is composed of preprocessing, feature selection, and classi-
fication steps. The preprocessing step applies filters to the recorded signals,
and handles various artifacts. The feature selection step usually transforms
the time or frequency features with goal of reducing the dimensionality. The
classification step adapts to the extracted features and provides basis for the
feedback.

In addition to time and spectral domain features, common feature ex-
traction methods include logarithmic bandpower features (logBP), common
spatial patterns (CSP), lock-in analyzer (LIA), and canonical correlation anal-
ysis (CCA) [21, 160, 121, 17]. These features are then classified using various
linear and non-linear classification methods such as linear discriminant anal-
ysis (LDA), support vector machines (SVM), and random forests [39, 179].

1.1.5 Modes of operation

There are two basic modes of operation: (i) cue-based, also known as syn-
chronous, in which the signal processing is done in predefined time windows;
and (ii) self-paced, also known as asynchronous, in which the signal processing
is done continuously. Challenge in the synchronous mode of operation is the
discrimination between automatic brain responses caused by the cue stimuli,
and the willful modulation caused by participants focused attention. Simi-
larly, challenge in the asynchronous mode of operation is to detect any willful
modulation of brain activity and to minimize the number of false detections.

1.1.6 Applications

In a recently published roadmap for the BCI community [24], following future
use cases are outlined for the five BCI applications mentioned in the [1]:

replace Unlocking the completely locked-in [18]

restore BCI-controlled neuroprosthesis [126, 164]

enhance Enhanced user experience in computer games [171]

improve Upper limb rehabilitation after stroke [81, 152]
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research tool Cognitive neurosciences [187, 24]

One important application of BCIs is in connection with assistive technol-
ogy (AT). But how does this connection take place? Obviously, one cannot
expect that numerous AT devices and software already in use be adapted to
BCIs, so the BCIs themselves need to adapt. In order to do so, they need to
conform to the human / AT interface [32] already employed in the vast major-
ity of existing AT. The human / AT interface can be broken down in various
elements, such as control interface, selection set, and selection methods. Se-
lection methods, for example, differ on whether they are direct or indirect.
Indirect selection methods are widely used in BCIs, and can be divided into:

automatic scanning where items are presented sequentially

step scanning where the user moves sequentially through the list of items
by repeatedly activating a switch

inverse scanning where the items from the selection set are automatically
scanned by activating and holding a switch, and selected when the switch
is released.

Revisiting different BCIs in the context of selection methods, one can rec-
ognize that the classical visual P300 speller employs automatic row / column
scanning, albeit with random presentation. The SMR based BCIs are well
suited for automatic and step scanning, and the SSS(V)EP based BCIs sup-
port all three scanning modes, but not all are easy to use.

Various AT techniques can be applied to BCIs to improve their perfor-
mance. For example, in end-users having difficulties with eye-gaze control
the symbols can be presented in the center, with additional auditory cues.
Various activation and deactivation techniques can be applied to reduce the
number of false activations, examples of which are discussed in the ”Hybrid
BCIs” section. Finally, the selection rate can be enhanced by integrating a
language model into BCI [177], and through techniques such as abbreviation
expansion or word completion [32].

However, not all AT techniques can be equally applied to BCIs. For exam-
ple, common approaches to the scanning rate enhancement include optimiza-
tion of the group-item presentation (e.g. by presenting the most frequently
used symbol first), and dynamic rearrangement of symbol presentation. The
former has limited use in BCIs due to a relative high number of false activa-
tions, thus warranting multiple presentations of the selection set. The latter
is applicable only to some BCIs, at it is at odds with the oddball experimental
design widely employed in the state-of-the art BCIs for spelling applications.

Most of the BCI development in the past focused on maximizing metrics
such as accuracy and information-transfer rate (ITR), which was highly suc-
cessful in healthy participants, but often failed miserably as an AT device in
end-users. In order to close this translational gap, recent efforts adopted the
so called user-centered design (UCD) to BCI research and development [94].
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The key aspects of the UCD, according to which usability of applications and
devices is evaluated, are their efficiency, effectiveness, and satisfaction. In
Kübler et al. (2014) [94], these aspects were used to evaluate BCI applica-
tions in 19 end-users with severe motor impairment. To that end, efficiency
was considered to be equivalent to ITR and the amount of invested work, and
effectiveness to selection accuracy. Also, questionnaires were used to assess
satisfaction. The main findings were: efficiency was found to be low to high
for the ITR, and low to medium for the workload; effectiveness was found to
be moderate to high; and finally, satisfaction was moderate to high, depending
on the type of application.

1.2 EEG based BCIs in healthy

1.2.1 P300 component of event-related potentials

The first P300 speller system was a 6-by-6 matrix, containing the letters of
the English alphabet and basic punctuation signs [41]. Here, the oddball se-
quence was comprised of visual highlighting of either a row or a column of the
matrix, two of which (i.e. the target letter row / column) elicited the P300
response. This basic paradigm design was subsequently exploited in various
visual P300 based applications, enabling healthy participants to communi-
cate letters [41], control environments [14], control computer mouse [30], and
browse the internet [114, 154].

One disadvantage of visual P300 based BCIs is their dependence on eye-
gaze control. A study by Brunner et al. (2010) [25] found that the perfor-
mance of the visual P300 speller in healthy participants considerably depended
on the gaze direction, thus limiting its use in end-users having difficulties with
eye-gaze control. Several studies tried addressing the issue of eye-gaze depen-
dency by means of gaze-independent BCIs [182, 101, 2]. Common to these
studies was the assumption that the visual stimuli and / or the central fixation
point can always be presented in the end-users foveal vision:

Treder et al. (2010) [182] compared a two level speller, made from six cir-
cles forming an invisible hexagon, to the classical row / column matrix
layout of symbols in 19 healthy participants. Both overt and covert
attention were investigated - in the covert attention, participants si-
multaneously fixated a central dot and attended to a peripheral target.
Whereas both overt and covert attention could be employed in an ERP
based BCI, the former yielded better results than the latter. In the
covert attention condition the hexagonal two-level speller outperformed
the row / column speller, mainly due to stronger modulation of early
ERP components (i.e. N1 and P2).

Liu et al. (2011) [101] realized a gaze independent speller through a covert
visual search task. To that end, clusters of characters were sequentially
presented near the center. The participants’ task was to fixate their
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gaze on the center, and to search and recognize the target character
with covert shift of attention. They managed to select characters with
accuracy of up to 96%.

Acqualagna and Blankertz (2013) [2] investigated rapid serial visual pre-
sentation (RSVP) as a paradigm for spelling applications in 12 healthy
participants. To select a letter, the participants attended to target let-
ters in the pseudo-random stream of visual symbols. The participants
communicated on average 1.43 symbols per minute, with a mean accu-
racy of 95%.

Whereas these BCIs reduced the eye-gaze dependence to various extent,
they still relied solely on visual modality, thus making them of little use in
end-users who can have limited control of their eye-gaze. Reducing the eye-
gaze dependence even further, several studies evaluated auditory-visual P300
based BCIs in healthy participants:

Klobassa et al. (2009) [86] evaluated the performance of an auditory BCI,
in which six environmental sounds were used to denote the equal num-
ber of rows / columns of a P300 based matrix speller. Additionally, the
impact of visual cues on the performance in the early stages of training
was assessed using a two group-design: in the first group (A, N=5),
only auditory stimuli were presented over a course of 11 experimental
sessions. In the second group (AV, N=5), simultaneous auditory and
visual stimuli were presented in the initial experimental sessions, after
which the visual stimuli were gradually removed. Both online and of-
fline results showed equivalent group accuracies, with four participants
achieving an online accuracy higher than or equal to 75%, at an average
bitrate of 2 bits / min.

Schreuder et al. (2010) [174] proposed a multi-class paradigm, employ-
ing spatially distinct auditory cues. Ten healthy participants attended
to auditory cues of various length, randomly presented by up to eight
speakers, with each speaker placed at an individual spatial location. In
the offline part of the experiment all eight speakers were used, with
speakers arranged in a circle, in midst of which the participant was
seated. The same stimulus was presented from each of the eight speak-
ers. In the online part of the experiment, based on the findings from the
offline part, only the frontal five speakers were used. Here, one unique
stimulus was presented from each of the five speakers. The mean online
binary classification accuracy (i.e. target vs non-target) was 75% for
the best condition (inter-stimulus interval of 175 ms length). The mean
online target location detection accuracy increased with the number of
trials averaged, reaching 94% (N=12 averaged trials) in the best condi-
tions. The corresponding bit rate was reported for lesser accuracy (i.e.
90%, N=9 averaged trials) as 16 bits / minute.

In addition to visual and auditory modality, also tactile modality can
be used to set up a P300 based BCI. The latter modality was employed in
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Brouwer et al. (2010) [22], who analysed EEG responses to vibro-tactile
stimuli, equally spaced around a waist. In the first experiment, the effect of
the number of tactors (two, four, and six) was investigated. Here, no differ-
ence in classification performance was found. In the second set of experiments,
the effect of the timing of the tactile stimuli was investigated, with stimulus
onset asynchrony (SOA) ranging from 626 ms to 188 ms. Here, an optimal
SOA was found to be at 376 ms, as reducing the SOA below this threshold
did not further improve the performance. In both experiments, the onesample
t-tests against zero on classification accuracy corrected for chance showed that
classification accuracy was well above chance for all conditions (all p-values ¡
0.01). Further details on the performance are given in tables and figures of
the original manuscript [22].

Tactile modality was also employed in Ortner et al. (2014) [139], where
two different approaches were evaluated in twelve healthy users and six LIS
patients: a first approach utilizing three tactile stimulators and a second one
utilizing eight tactile stimulators for the stimuli delivery. In healthy partici-
pants, the three-stimuli approach yielded higher accuracy (mean accuracy of
80%) compared to the eight-stimuli approach (mean accuracy of 69.4%). The
three-stimuli approach in LIS participants yielded substantially lower accura-
cies compared to the healthy participants (mean accuracy of 53.3%), but five
out of six LIS participant performed abow the chance level (33

1.2.2 Steady-state somatosensory potentials(SSEPs)

SSEPs based BCIs can be setup in auditory [63], somatosensory [125], and
visual modality [183]. From these different modalities, only the visually evoked
steady-state potentials will be employed in this thesis.

SSVEP One of the earliest SSVEP based BCI systems was reported in
McMillan et al. (1995) [110]. In this early work, the intensity of two fluo-
rescent lamps, mounted behind a diffusing screen, was sinusoidally modulated
at 13.25 Hz in order to elicit a steady-state response in occipital EEG. Healthy
participants learned to control (i.e. to increase or decrease) the amplitude of
this response, which was in turn translated into control commands for the roll
position of a simple flight simulator.

Self-regulation of EEG responses to flickering stimuli was again investi-
gated in healthy participants in the first experiment reported in Midden-
dorf et al. (2000) [111]. A notable finding here was that three out of eight
participants reported employing subtle eye-movements in controlling the am-
plitude of their EEG responses, which was also confirmed by electrooculogram
(EOG) analysis. More novel was the approach used in the second experiment,
employing multiple evoked responses to virtual buttons flickering on a com-
puter display. Here, the participants were not required to actively control the
amplitude of their EEG responses.

This basic paradigm design, employing frequency coded visual stimuli,
was subsequently exploited in several SSVEP based BCI applications with an
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increasing information transfer rate (ITR):

Cheng et al. (2002) [29] developed a system enabling healthy participants
to input phone numbers. To that end, twelve virtual buttons, flickering
on a computer display at different rates, formed a telephone keypad.
To input a phone number, participants gazed at the desired symbols.
Eight out of thirteen participants suceeded in dialing a phone number.
Notable was the high average ITR of 27 bits / min.

Gao et al. (2003) [51] developed a system enabling healthy participants to
control environment through an infrared remote-controller. This time,
however, the virtual buttons flickering on a computer display were re-
placed by light-emitting diodes (LEDs). The system could distinguish
48 LED targets, yielding a peak ITR of 68 bits / min. The accuracy
was calculated over five groups corresponding to different stimulation
frequency ranges. The average accuracy across these five groups was
87.5%.

A growing number of SSVEP based BCIs led to further development and
refining of EEG signal processing for such a BCI:

Müller-Putz et al. (2005) [124] investigated the impact of harmonic fre-
quency components on performance in five healthy participants. A
significant (p < 0.01) increase in classification accuracy was achieved
through use of the first three SSVEP harmonic frequencies. In the
feedback experiments, the classification accuracy ranged from 42.5% to
94.4%. These findings were confirmed in Müller-Putz et al. (2008)
[121], where additionally the impact of channel selection on performance
was investigated in 10 healthy participants. A large increase in classi-
fication accuracy, compared to an anterior / posterior bipolar deriva-
tion from the O1 and O2 channels, was achieved through use of the
participant-specific optimal bipolar derivation. The mean classification
accuracy achieved with the use of a lock-in analyzer system was 74%.

Lin et al. (2007) [100] applied the canonical correlation analysis (CCA)
technique to SSVEP frequency analysis. The CCA technique facili-
tated the use of multiple EEG channels, thus increasing the robustness
against noise and improving the results. In a subsequent online ex-
periment by [17], healthy participants were cued to focus on one of six
stimuli flickering at different frequencies. The achieved performance was
an average accuracy of 95%, with an average ITR of 58 ± 9.6 bits / min.

The improvements in EEG signal processing for SSVEP based BCIs al-
lowed for more advanced application in healthy participants, such as control
of an electrical hand prosthesis [122], asynchronous control of an artificial
upper limb [74], and even abdominal functional electrical stimulation [57].

An early work on using SSVEP to control motor function was reported
in Calhoun et al. (1995) [27]. In this work, three healthy participants
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learned to regulate the magnitude of their steady-state visual evoked responses
(SSVER), not unlike the SSVEP, by focusing on two fluorescent lamps flicker-
ing at 13.25 Hz. Through this BCI, the participants controlled a FES applied
to their lower limb. The experimental task was right knee extension to a pre-
defined target angle, according to a near real-time feedback. After three to
five sessions, each lasting for several hours, all three participants were able to
fulfill the experimental task, that is to position their knee to a target angle
through FES, with high level of accuracy (>95%). While controlling knee
angle through FES by a BCI was a novelty and an improvement compared
to manual control at that time, there are some drawbacks to this approach:
first, using focused visual attention to control a muscular output still seems
as a workaround compared to, e.g., just attempting the movement; second,
while technologically impressing, the demonstrated use-case scenario warrants
real-world application; and third, even though the results obtained in healthy
participants were impressive, no evaluation in motor impaired individuals was
reported.

One disadvantage of the aforementioned SSVEP based BCIs is that they
are overt, that is, they depend on reliable eye-gaze control. Addressing this
disadvantage, several covert SSVEP alternatives were proposed:

Kelly et al. (2005) [85] investigated selective attention to targets in space
outside the foveal vision. In this covert spatial SSVEP based BCI,
left / right attention was detected by extracting the SSVEPs elicited
by the corresponding stimuli. Reliable binary control was demonstrated
in six out of eleven healthy participants [84].

Allison et al. (2008) [7] investigated whether overlapping stimuli can elicit
SSVEP changes reliable enough for BCI control. To that end, healthy
participants attended to one or the other of the two overlapping im-
ages, each oscillating with a different frequency. Half of the participants
demonstrated SSVEP modulation through non-spatial selective atten-
tion reliable enough for potential BCI control.

Zhang et al. (2010) [191] investigated non-spatial selective attention to over-
lapping stimuli. In this work, two sets of dots, differing in color and in
rotating direction, were used to induce perception of two superimposed
illusory surfaces. The surfaces also oscillated with a different frequency,
thus eliciting discriminable SSVEPs, whose amplitude could further be
modulated through selective attention. After three days of training, 18
healthy participants achieved average online classification accuracy of
73% on their last day. Notable is an improvement of accuracy through
training observed in eight participants.

1.2.3 SMR

Several studies modulated sensorimotor rhythms through both motor-related
and cognitive tasks. In Obermaier et al. (2001) [138], in addition to four
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motor-imagery tasks (left hand, right hand, foot, and tongue), participants
also performed mental calculation. Various subsets of tasks were evaluated,
grouped according to separability of EEG patterns. The reported ITR peaked
at 0.81 bits per decision, with various three task combinations yielding the
best performance. In detail, for all three healthy participants the classification
accuracy was highest for two-classes classifier (range 86.3% to 96.1%), and
lowest for five-classes classifier (range 45.2% to 67.2%).

Millan et al. (2002) [159] investigated five mental tasks: relaxation with
closed eyes, cube rotation, mental subtraction, and imagined movements of
left / right hand. Here, feedback was delivered through colored buttons, each
representing a mental task. Online evaluation of three mental tasks yielded
recognition rates above 70% and error rates of less than 5%, with responses
occurring every 0.5 s.

SMR was signal of choice in multiple asynchronous BCI spelling applica-
tions:

Obermaier et al. (2003) [137] reported on three healthy, operating a vir-
tual keyboard by mental hand and leg motor imagery. The performance
varied between 0.85 and 0.5 letters / min in error-free writing.

Millan et al. (2003) [158] reported an average spelling rate of around 3.0
letters per minute in 15 healthy participants using a three-class asyn-
chronous BCI.

Scherer et al. (2004) [172] also employed a three-class BCI, using it to
select letters by scrolling through the alphabet at an average spelling
rate of 2.0 letters per minute in three healthy participants.

Mueller et al. (2006) [117] combined an asynchronous two-class BCI with
the Hex-O-Spell application, achieving an average spelling rate of nearly
6.0 letters per minute in two healthy participants.

Going beyond spelling, Wolpaw et al. (2004) [186] reported a non-
invasive BCI that can provide two-dimensional movement control of a cursor.
The EEG control was evaluated in four healthy participants through spectral
and topographical analysis of the ¿R2 correlations between target location and
the average values for the trial of the vertical and horizontal variables[186],
respectively. The four participants reached the target in 89%, 70%, 78%, and
92% of the trials, respectively. The study showed that a non-invasive BCI can
provide humans with multi-dimensional point-to-point movement control with
comparable result to those reported with invasive methods in monkeys. This
multi-dimensional control was accomplished through an adaptive algorithm
that identified those EEG features that the person was best able to control.

1.2.4 Hybrid BCIs

There are two related, albeit somewhat different definitions of a hybrid BCI.
The first one, introduced in Pfurtscheller et al. (2010) [143], defines a
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hybrid BCI as a composition of two systems, at least one of which is a BCI,
that fulfils the following criteria: (i) the signals of interest are recorded from
the brain; (ii) at least one of the recorded brain signals is willfully modulated
by the user; (iii) the BCI processes information and delivers response within
a specified time (i.e. real-time processing); and (iv) the BCI delivers feedback
to the user.

A hybrid BCI can be setup on two different EEG brain signals, where these
parts can either operate in a simultaneous, or in a sequential manner [143, 6,
149].

An example of a hybrid BCI operating in a simultaneous manner was
reported in Allison et al. (2010) [6] and Brunner et al. (2011) [23].
In these studies, a hybrid BCI simultaneously combining ERD and SSVEP
based BCIs was compared to its parts (e.g. ERD based BCI) in terms of
accuracy and subjective measures. The described hybrid approach, while
feasible, was not significantly better than a comparable SSVEP based BCI,
and the participants found the hybrid approach slightly more difficult.

An example of a hybrid BCI operating in a sequential manner was reported
in Pfurtscheller et al. (2010) [149]. In this study, a brain switch (i.e. an
ERS-based BCI) was used to control an SSVEP-based hand orthosis. The
described hybrid approach reduced by about half the number of false positives
occurring while using the SSVEP based BCI alone.

Whereas the previous two hybrid BCI examples relied solely on EEG brain
signals, a hybrid BCI can also be setup brain signals derived using different
recording techniques. One such example was reported in Bauernfeind et
al. (2009) [12] where hemodynamic changes, measured through near-infrared
spectroscopy (NIRS), were used to activate an SSVEP-based hand orthosis. In
another example, Fazli et al. (2012) [43] investigated whether NIRS can be
used to enhance the EEG approach in a real-time SMR paradigm. Evaluation
in 14 healthy participants showed a significant (p < 0.01) improvement of the
classification accuracy of motor imagery in over 90% of participants, with an
average increase in performance by 5%.

The second definition of a hybrid BCI, introduced in Müller-Putz et al.
(2011) [118], defines a hybrid BCI not as a BCI system itself, but more as a
concept of combining existing input devices with a BCI. In this hybrid BCI
(hBCI) concept, common assistive devices are integrated with different types
of BCI, with a major goal of bringing ” . . . the BCI technology to a level where
it can be used in a maximum number of scenarios in a simple way.” [118]. To
enable this integration, four standardized interfaces are used to build and in-
terconnect BCI systems: signal acquisition, preprocessing, feature extraction,
classification, and the application. These interfaces allow for: (i) exchange of
data within a programming language; (ii) exchange of data between different
programming languages through shared memory; and (iii) exchange of data
between different computers, thus allowing for distributed processing [119].

In addition to a brain signal, hybrid BCIs can also take non-brain signals as
inputs, such as biosignals or signals originating in external devices. Example
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for the former was reported in Scherer et al. (2007) [173], where heart
rate was used to self-initiate (i.e. switch on and off) an SSVEP based BCI.
Example for the later was reported in Vilimek et al. (2009) [184], where
an eye tracker was used determine the object the participant was interested
in, which could then be selected by an motor imagery based BCI.

In addition to the four interfaces, the concept of the hBCI introduces two
new modules: fusion, and shared control. The fusion module decides which
control signal is used for application control. For example, fusing EMG and
EEG activity can increase accuracy [98], thus yielding a more stable control.
Another example is combining EEG and joystick activity, switching between
input signals depending on the quality, thus potentially prolonging the control
duration [88]. The fused control signal is forwarded to the shared control
module.

The shared control module improves upon the control signal from the
fusion module by harnessing the contextual and environmental information.
What this means is that an intelligent device handles the low-level details,
whereas the human makes the high-level decisions. For example, the shared
control applied in a BCI-controlled mobile platform can handle the low-level
navigation tasks, whereas the participant decides the high-level target. In this
way, both the time and the number of commands needed in order to reach the
destination are reduced [181].

Two studies combined an MI based BCI with an added input from a sensor:

Rohm et al. (2013) [163] combined an MI based BCI with an analog shoul-
der position sensor. The imagined movements of the right hand acted as
a brain-switch, toggling between the elbow and the hand control. The
upward / downward movements of the shoulder controlled the elbow
flexion / extension or the hand opening / closing. The hybrid BCI sys-
tem enabled a highly paralyzed end-user to perform various daily living
actions [163, 164].

Kreilinger et al. (2013) [89] combined an MI based BCI with a sensor
monitoring the elbow joint angle for neuroprosthesis control. Nine healthy
users and one end-user with a high-level spinal cord injury (SCI) gen-
erated either discrete commands through short MI (approximately one
second) or continuous commands with MI longer than 1.5 s. The control
commands were contingent upon the current elbow joint angle, as inter-
preted by a shared control logic. The neuroprosthesis was comprised of
a non-invasive FES system for stimulation of lower and upper arm mus-
cles, and a lockable electronic elbow orthosis. The users were instructed
to perform a series of movement sequences with the neuroprosthesis.
Four healthy users and the SCI user were able to complete more than
half of the sequences at an average true positive rate of 60%. Notably,
the SCI user achieved the second best overall performance.
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1.3 EEG based BCIs in end-users

1.3.1 Impact of BCIs in end-users

The EEG based BCI technology can benefit end-users with individual func-
tional deficits. One important area is restoration of motor function. In end-
users suffering from a spinal cord injury (SCI), the BCI together with func-
tional electrical stimulation (FES) can help restore motor functions, and lead
to a dramatic increase in quality of life. For example, the restoration of grasp-
ing function could reduce a dependency on helping person. In stroke patients,
BCI could provide feedback for motor imagery therapy, thus possibly enhanc-
ing the effect of such a therapy on stroke.

Arguably the most important area is replacement of communication. In a
longitudinal study with twenty seven amyotrophic lateral sclerosis (ALS) end-
users [107], the end-users were asked which areas of their life they consider
most relevant for their quality of life. The authors found that the only com-
ponent of quality of life whose relevance increased over time, while physical
competence decreased, was communication.

To give an impression of what impact the EEG based BCIs can have in
these areas, this section provides notable examples of such BCIs for restoration
of motor function, and replacement of communication. Finally, the application
of BCI in art is discussed, as it has a particularly positive impact on end-users.

1.3.2 Restoration of motor function

Pfurtscheller et al. (2003) [144] and Müller-Putz (2004) [120] developed
a so called BCI controlled neuroprosthesis, aimed at restoring weak or lost
grasp functions in spinal-cord injured individuals. To that end, the output of
an SMR based BCI was connected to an external FES system, with surface
electrodes stimulating the hand / forearm muscles. Through this combined
BCI / FES system, an SCI injured individual was able to grasp a cylinder
with the paralyzed hand by imagining feet movements [144]. Notably, this
work demonstrated for the first time restoration of hand grasp function in
a tetraplegic end-user by non-invasive means (i.e. EEG and surface FES).
In a second feasibility experiment, an individual with tetraplegia was able to
control a FES system implanted in his left hand by imagined movements of
his right hand [120]. Today’s research has advanced even further, e.g., by
incorporating elbow function for restoration of upper limb functions [163, 89,
164].

While the current state of the art in EEG based BCIs for direct (motor)
control is impressive, it is an open research question on how it compares to
invasive BCIs, e.g. in number of degrees-of-freedom one can control. There
are, however, scenarios where non-invasive BCIs may be preferable, such as
in teleoperation (e.g. manipulation of an external robotic arm), or navigation
(e.g. wheelchair control), where high-level commands can be combined with
intelligent systems [181]. Furthermore, EEG based BCIs can be integrated
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with other assistive technology, thus providing another potential control sig-
nal [119]. Further applications of EEG based BCIs for direct (motor) control
are a subject of ongoing research.

1.3.3 Improvement of motor function

Another important research area is clinical application of EEG based BCIs
in stroke recovery. A growing body of literature suggests that EEG based
BCIs can improve motor control in end-users in twofold manner [104]: first,
by training end-users in producing normal brain activity for motor function
control; second, by connecting the control signal from a BCI to a movement
assisting device, thus achieving a more natural control. Some of the notable
findings include:

Kaiser et al. (2012) [81] investigated the relationship between ERD and
ERS patterns and the degree of stroke impairment. To that end, EEG
was recorded in 29 monolateral stroke end-users, with upper limb mo-
tor deficit of varying degree, during imagined and executed movements.
ERD was found to be stronger in the unaffected hemisphere with higher
impairment, and stronger in the affected hemisphere with higher spas-
ticity. ERS was found to be stronger in the affected hemisphere with
both higher impairment and higher spasticity.

Pichiorri et al. (2015) [152] evaluated whether a motor imagery (MI) based
BCI can enhance standard rehabilitation care in subacute stroke end-
users. To that end, 28 end-users with severe motor impairments were
randomly split into two groups: in the first group (BCI, n=14), MI was
performed within a BCI system; in the second group (control, n=14), MI
was performed outside a BCI system. The main finding of the study was
a higher probability of clinically relevant improvement in motor function
restoration, as indexed by Fugl-Meyer Assessment (FMA). Furthermore,
the MI training with the paralyzed hand in the BCI group led to greater
involvement of the ipsilesional hemisphere, with stronger ERD in the al-
pha and beta bands.

Ang et al. (2015) [8] presented two strategies of using BCI for neuroreha-
bilitation after stroke: (i) triggering feedback by MI detection; and (ii)
providing physical practive with a robot concomitant with MI detection.
These two strategies were evalueted in three randomized control trials
employing upper limb rehabilitation, where a total of 125 chronic stroke
patients was screened over a period of six years. The results of this
screening were: (i) 103 (82%) of stroke patients can use an EEG based
BCI; (ii) 75 (60%) of stroke patients yielded accuracies above 70%; and
(iii), in 26 out of 67 stroke patients that underwent BCI neurorehabil-
itation employing these two strategies, a significant (p < 0.05) motor
improvement of 4.5 measured by Fugl-Meyer Motor Assessment of the
upper extremity was found.
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Further review of the literature on this research area can be found else-
where [164, 8]. Notable is that, in addition to brain plasticity, spinal cord
plasticity occurs in both healthy and motor impaired participants, offering
”... numerous possible avenues for inducing functional recovery beyond that
possible with current therapies.” [165].

1.3.4 Replacement of communication

One of the earliest works on using EEG to replace communication in end-
users [19] employed slow cortical potentials (SCPs) to drive a language support
program. In this work, two locked-in end-users with ALS learned to voluntary
control their brain responses, enabling them to select letters of the alphabet by
driving a cursor on a screen. In detail, the participants learned after extensive
training to change their SCPs to meet specific criterions (i.e. positivity greater
than a specific, random, amplitude during the response period). The spelling
program employed a scanning paradigm, where the alphabet was split into
consecutive halves until a letter was selected. This paradigm enabled the
participants to communicate, which they were not able to do using muscular
output.

Whereas SCPs enabled some end-users to establish a reliable enough com-
munication, not all of the end-users were able to communicate by means of
SCPs. Furthermore, writing sentences by means of SCP was very time con-
sumin g. To address these issues, several studies investigated whether a BCI
based on oscillatory components might enable additional end-users to com-
municate, and to do so faster than by means of SCPs.

One of the earliest clinical applications of SMR based BCIs was described
in Neuper et al. (2003) [132] and Müller et al. (2003) [115]. In this
work, an end-user paralyzed by severe cerebral palsy was trained over the
course of several months to communicate by means of SMRs. The training was
administered at the end-user’s clinic through a telemonitoring system, with
the EEG feedback computed from band power features at specific frequency
bands. The end-user learned to control a spelling application by producing
two distinct EEG patterns: beta band ERD during movement imagery, and
no ERD during relaxation. Further findings of this study were a significant
improvement of performance over the training sessions, with correct letters
selected at an average accuracy of 70% with a rate of one letter per min.

In a similar work by Kübler et al. (2005) [93], four ALS end-users
learned to willfully modulate SMRs over the course of 20 training sessions,
despite hyperreflexia in three of the end-users. The SMR rhythms were ac-
quired over standard scalp locations over sensorimotor cortex, and analysed at
mu (8 to 12 Hz) and beta (18 to 26 Hz) frequency bands. For every end-user
the performance exceeded the 70% accuracy, indicating its potential use for
communication.

Repetitive wrist movement execution / imagery were investigated in three
ALS end-users and three primary lateral sclerosis (PLS) end-users over mul-
tiple training sessions in Bai et al. (2010) [9]. The imagined movements
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were evaluated in binary (yes / no) and four-directional control of cursor
movements. In binary control experiment with imagined movements, four
end-users achieved online accuracy of about 80%. In four-directional control
of cursor with imagined movements, one ALS and one PLS end-user achieved
online accuracy of less than 60%.

In Höhne et al. (2014) [66] four end-users with severe motor impair-
ments were initially screened in imagined movements of left-hand, right-hand
and feet in order to determine the most discriminative pair. In total of six
experimental sessions, three out of four end-users gained BCI control. No-
tably, in the end-user with most severe motor impairments the BCI control
outperformed other available AT, as indicated by accuracy, reaction time and
ITR.

The effect of mental tasks on performance of end-users with stroke or SCI
in a binary control paradigm was investigated by Scherer et al. (2015) [170].
To that end, within-day and between-day classification performance was eval-
uated for pair-wise combinations of hand / feet movements, ”brain teasers”
(mental subtraction, word association), and spatial navigation in nine partic-
ipants. The classification performance was significantly (p = 0.01) higher for
the individually selected pair of mental tasks.

Different BCIs were investigated by Daly et al. (2013) [35] in end-
users with cerebral palsy (CP). To that end, mental imagery based BCI, and
SSVEP based BCI were evaluated in 14 CP end-users, without previous train-
ing. Eight end-users could control at least one of the BCIs online, reaching
statistically significant accuracies: six were able to control a mental imagery
based BCI, and three an SSVEP based BCI. In a follow up study [36], neural
correlates of movement and motor imagery were explored in CP end-users and
in healthy controls. Significant differences were found in the amount of ERD
and phase locking (i.e. less in the CP group), as well as in phase dynamics
between the two groups. The overall findings suggested lower levels of motor
cortex activation during motor imagery in CP end-users.

An alternative approach to establishing communication in some end-users
is the use of ERP based BCIs, most notably based on the P300 component.
Several studies have evaluated a visual P300 based system in end-users.

Sellers et al. (2006) [175] evaluated a four-choice system in an offline study
in three end-users with ALS, and in an equal number of healthy par-
ticipants, over the course of 10 experimental sessions. The stimuli (i.e.
YES, NO, PASS, END) were presented in visual, auditory, or in both
modalities. The visually elicited ERPs for the standard and deviant
stimuli could be discriminated in both end-users and in healthy controls,
with two end-users yielding peak offline accuracies that could support
communication. The mean classification accuracy ranged from 59.4% to
79.6% in healthy, and from 49.9% to 63.6% in end-users. The auditorily
elicited ERPs did not yield comparable results.

Piccione et al. (2006) [151] reported an online study in which five tetraplegic
end-users (one SCI) and seven healthy participants used a visual P300

17



based BCI to move a screen object (ball) along a specified path, over
the course of 12 experimental sessions. The movement was controlled
by four visual stimuli (i.e. arrows pointing up, right, down, and left),
placed on screen peripherals. Three out of five end-users achieved per-
formance similar to that of healthy participants, with ERPs between the
two groups differing in latency and amplitude of the P300. The average
classification accuracy was 76.2% in healthy participants and 68.6% in
end-users. Notable, the two end-users who performed significantly worse
than the healthy participants were also the most impaired.

Hoffmann et al. (2008) [65] evaluated online a six-choice system in five
disabled and four healthy participants. In detail, the diagnosis of the
disabled participants were as follows: (i) cerebral palsy; (ii) multiple
sclerosis; (iii) late-stage ALS; (iv) traumatic SCI (C4 level); and (v)
post-anoxic encephalopathy. The visual stimuli were images of appli-
ances, simulating an environmental control scenario. Whereas both
groups of participants yielded similar classification accuracy, healthy
participants yielded higher bitrates compared to disabled participants.
The classification accuracies were reported as time plots, with four out
of five disabled participants achieving 100% accuracy after 10, 15, 25,
and 30 s, respectively. The remaining disabled participant yielded ran-
dom results. Notable, all of disabled participants had some means of
communication, ranging from speech to voluntary eye-control.

Nijboer et al. (2008) [136] evaluated effectiveness of a visual P300 based
communication device in persons with advanced ALS. The visual stimuli
were flashing rows or columns of a NxN matrix, with N being either 6
or 7, whereas each cell of the matrix contained one character. The
study was split in two parts: in the first part six persons copy-spelled
characters over the course of 12 experimental sessions; in the second
part, four of these persons free-spelled messages of their own choice.
In the first part, participants communicated on average 1.2 characters
per minute, with a mean online accuracy of 62%. In the second part,
participants communicated on average 2.1 characters, with an online
accuracy of 79%. Notable, the latency and the amplitude of the P300
component stayed the same over many months.

Comparing the results of evaluation of the three previously mentioned
types of BCIs - based on SCPs, oscillatory components, and the visual P300
- in end-users with ALS, Nijboer et al. (2005) [135] concluded that the
SCP based BCI is difficult to use and very time consuming, the BCI based on
oscillatory components yields the best overall performance, and while visual
P300 based BCI does not require initial user training, not all end-users with
ALS can use it effectively.

Another end-user evaluation of visual ERP based speller was reported in
Kaufmann et al. (2013) [83], who improved upon the standard paradigm
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by using famous faces as visual stimuli. Compared to standard character high-
lighting, online performance was significantly higher in both healthy partici-
pants (N=16) and in end-users with neurodegenerative disease (N=9). Fur-
thermore, two end-users unable to communicate with the standard stimuli
were able to do so with the face stimuli.

In an effort to reduce the eye-gaze dependence, Kübler et al. (2009) [91]
developed an auditory-visual P300 based BCI. To that end, a visual 5x5 matrix
speller was adapted for auditory stimulation by encoding rows with auditorily
presented numbers 1 to 5, and columns with numbers 6 to 10. The letters
of the alphabet could then be selected by: (i) selecting the desired row; and
(ii) selecting the desired column. The auditory-visual BCI was evaluated in
four severely paralyzed end-users, with all of the participants performing at a
better than random level. The spelling accuracies achieved with the visual BCI
were significantly higher compared to those obtained with the auditory BCI.
Also, end-users found it difficult to concentrate on the task in the auditory
BCI, possibly due to a reduced attention span.

For end-users with vision problems, auditory BCIs may provide an alter-
native. A binary auditory P300 based BCI was evaluated in Pokorny et al.
(2013) [156] in 12 end-users with disorders of consciousness and in healthy
controls. The BCI was based on segregation of two tone streams, made of
short beeps with infrequent random deviant tones. Command following could
be detected reliably in 8 out of 10 healthy participants on a single-trial basis.
Command following could also be detected in 9 out of 12 end-users, albeit
after averaging all of the data segments.

Going beyond binary choice, a multi class auditory BCI was reported in
Simon et al. (2015) [176]. Here, rows and columns of a spelling matrix were
encoded through animal voices with directional cues. The spelling system was
evaluated in 11 healthy participants and in an ALS end-user over the course of
two experimental sessions. The healthy participants ended up spelling with an
average accuracy of 90% and an ITR of 4.2 bits / min, whereas the accuracy
of the ALS end-user peaked at 47%. The results improved in both healthy and
in ALS between the first and the second session, indicating a strong training
effect.

A case study investigating various sensory modalities in ERP based BCIs
with a LIS end-user was reported in Kaufmann et al. (2013) [82]. To
that end, visual, auditory and tactile modality were compared across classic
and multi-choice oddball paradigms in a user-centered approach. The tactile
modality yielded best results across different BCI systems, allowing the end-
user to successfully select targets. However, in light of other AT such as
partner scanning, its practical use seemed limited.

1.3.5 BCI and art

Most of the current BCIs, while enabling control of assistive technology (e.g.
spelling software), are not well suited for creative expression. To enable par-
alyzed end-users to paint pictures, the so called ”Brain Painting” application
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was developed. The way the ”Brain Painting” works is that in a standard
visual P300 speller application [38], the letters of the alphabet are replaced
by symbols indicating color, various objects and their parameters, as well as
zoom and cursor movements [92]. In Münssinger et al. (2011) [128] the
”Brain Painting” application was evaluated in three end-users with ALS, with
two of them reaching high accuracies (i.e. around 90%).

In a recent work, Pinegger et al. (2015) [155] developed an application
for music composition. Similarly to the ”Brain Painting” application, a visual
P300 based BCI was adapted for the task at hand. To that end, the letters of
the alphabet were replaced by symbols (e.g. notes, accidentals, etc.), and the
output of the BCI was connected to a music composition software. The whole
system was evaluated in five healthy participants, with three participants be-
ing able to compose a predetermined melody within the given time. Notable,
the system was evaluated using water-based electrodes.

Other notable examples of combining BCI and art include work by Mi-
randa et al. (2011) [112], and Makeig et al. (2011) [105]

1.4 Limitations of the state of the art

BCIs based on mental imagery, as well as ERP based BCIs, have been shown to
work in healthy participants with real-world applications, and have also made
good progress towards achieving similar results in end-users. This progress
notwithstanding, recent work on hybrid BCIs [143, 119] demonstrated various
scenarios in which combining these two types of BCIs may be advantageous.
While these scenarios gave direction for future work, they also indicated room
for improvement in such combinations. For example, whereas Pfurtscheller
et al. (2010) [149] reported a sequential combination of ERD and SSVEP
based BCIs, an experimental proof on whether two different BCIs can, in
principle, be used in parallel with a common goal, was missing. Such an ex-
perimental evaluation is needed, as it may provide further insights into com-
bined BCIs. Furthermore, whereas some combined BCIs were integrated into
a real-world AT application, others were not, leaving open the question how
such an integration could take place. Therefore, a paradigm enabling further
integration of BCIs based on induced and evoked changes in EEG is needed to
address these questions. Note that the more recent work, such as Kreilinger
et al. (2012) [90] reporting on combination of MI with error-related poten-
tials, will be discussed in the Discussion section, as it was unavailable prior
to addressing the aforementioned questions through studies conducted in this
thesis.

One common challenge all BCIs face is the so called BCI ”illiteracy”, mean-
ing that the success and acceptance of BCIs in end-users varies from person to
person, and that the best control strategy is highly unique [47]. For example,
some severely motor impaired persons have difficulties performing the motor
imagery [31], but might benefit from alternative mental tasks [46]. One way of
addressing this challenge is evaluating different types of BCIs in order to find
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the most reliable one. However, BCIs based on induced and evoked changes
can differ substantially in control strategies, and it is unclear how these differ-
ences can be overcome in common AT control scenarios. Thus, reducing these
differences to an extent that makes different BCIs interchangeable within a
common AT application could mitigate the BCI ”illiteracy”.

Another challenge for BCIs is the reliability of results. While ERP based
BCIs yield good results in ideal conditions, they are often eye-gaze depen-
dent and prone to artifacts, limiting their usability in end-users. The mental
imagery based BCIs are more robust in presence of artifacts, but in some
end-users the associated brain responses can be difficult to detect for var-
ious reasons (e.g. delayed and attenuated brain responses in persons with
MCS). Combining BCIs based on induced and evoked changes in EEG could
increase reliability of results and robustness against artifacts. Though, only
few such combinations have been proposed, all of them utilizing two different
tasks [143]. This means, that in order to achieve the desired goal in dual-task
designs the users must split their attention between two different tasks. The
extent to which a single task can result in both induced and evoked changes
in EEG, and how these changes can be combined for BCI applications, is an
open research questions.

Two further works investigated hybrid BCIs based on induced and evoked
changes in EEG, using two different tasks and executed / imagined movements
that are triggered by an external stimuli [167, 52].

Salvaris et al. (2010) [167] reported on ten healthy participants perform-
ing one of three tasks triggered by target stimuli in an oddball paradigm.
The tasks were movement execution, movement imagery, and mental
counting. The average classification accuracy for the target vs. non-
target discrimination was 90% for movement execution, 85% for move-
ment imagery, and 79% for mental counting. Notably, the classifier was
setup on ERPs only, ignoring the sensorimotor rhythms.

Geuze et al. (2014) [52] investigated neural correlates of executed move-
ments to perceived semantic relations. To that end, healthy partici-
pants performed two tasks: (i) they kept a prime word in mind and
compared it to the presented prime words; and (ii) they indicated a
relation between a presented probe word and the prime word by a sin-
gle finger tap. A movement detector combined both the evoked (ERP)
and induced (ERD) responses elicited with the two tasks, achieving an
average single trial accuracy of 67%.

Last but not least, while there are plenty of studies on EEG based BCI
evaluation in healthy participants, such studies in end-users are comparably
few. Recent efforts focused on translating these fMRI paradigms to electroen-
cephalography (EEG) technique, as it is widely available, cost effective, and
applicable at bedside, even in persons with metal implants. For example,
Goldfine et al. (2011) [56] instructed the participants to imagine complex

21



motor and familiar spatial navigation tasks, and analyzed EEG power spec-
tra over a wide range of channels and frequencies. By analysing the EEG
power spectra, evidence for performance of mental imagery tasks was found
in healthy controls and patients with severe brain injury. In another study,
Cruse et al. (2011) [33] asked the participants to imagine movements of
their right-hand and toes to command, and analyzed the EEG responses to
specific commands. Three of 16 patients (19%) generated repeatedly and reli-
ably suitable EEG responses to two distinct commands, even though they were
behaviorally unresponsive. In a follow-up study, Cruse et al. (2012) [34]
addressed some of the methodological challenges, and found EEG evidence
for attempted movements to command in an UWS patient.

Following gaps in knowledge regarding the suitability of EEG based BCIs
for end-users with disorders of consciousness exist: (i) evaluation of simple
and complex motor imagery within persons with disorders of consciousness;
(ii) passive feet movement as a mean of an initial classifier setup; and (iii)
rapid delivery of biased feedback). Addressing these gaps could yield useful
insights for further adaptation of existing BCIs to the needs and capabilities
of the end-users.

1.5 Motivation and aim

The research aim of this thesis is to evaluate whether and to what extent
willful modulation of induced and evoked EEG activity can be combined for
BCI applications. There are several potential advantages motivating this com-
bined approach: first, BCIs based on induced and evoked changes could be
combined in different ways with a common goal. Second, employing different
experimental strategies would increase the likelihood that at least one of them
works in end-users. Third, novel combinations of induced and evoked changes
in EEG could increase reliability of results and robustness against artifacts.

The applied aim of this research is to evaluate the state of the art in the
BCI technology in end-users with disorders of consciousness and to address
gaps in knowledge. Motivation for this aim is further adaptation of the existing
BCIs to the needs and capabilities of the end-users.

1.6 Workplan

Central to addressing the research aim of this thesis is to increase the level
of integration of BCIs based on induced and evoked changes in EEG within
the same system. To this end, existing BCIs need to be combined with a
common goal. Building upon this common goal, further integration can be
achieved through new methodological approaches in common standard AT use
cases. Finally, a common experimental strategy can modulate both induced
and evoked changes in EEG.

First and foremost, it is unclear whether two different BCIs can, in prin-
ciple, be used in parallel with a common goal. Therefore, the aim of the first
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work will be to evaluate whether and to what extent the existing BCI systems
can be made to work together.

Connecting the output of a BCI to an existing AT seems outright. Nev-
ertheless, developing a paradigm enabling further integration of induced and
evoked changes in EEG, and use of BCI in various end-users and various AT
applications is a formidable task, to be tackled in the second work.

The third work will further elaborate on the research aim of the thesis, on
one hand by evaluating induced EEG changes triggered by an external stimuli,
and on the other hand by evaluating event-related potentials associated with
a cognitive task, both within a common application. To this end, strategies
for using EEG responses for spelling through listener-assisted scanning will
be developed.

Addressing the applied aim of this research, the fourth work will evaluate
the state of the art in the BCI technology in end-users with disorders of
consciousness. To achieve this goal, existing BCIs will be adapted to the
needs and capabilities of the end-users.

Finally, the fifth work will evaluate the extent to which a single task can
result in both induced and evoked changes in EEG, and how these changes
can be combined for BCI applications. Building upon the previous work, a
single auditory selective attention task will be used to modulate both induced
and evoked changes in EEG in a standard AT use case.
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Chapter 2

Materials and Methods

2.1 Primary Publications

This thesis is composed of five primary contributions to peer-reviewed journals
[79, 123, 67, 70, 68], one additional contribution to a peer-reviewed journal
resulting from the author’s master thesis [74], and multiple secondary pub-
lications [78, 73, 77, 75, 76, 71, 69, 72]. Adopting the approach outlined in
the introduction, Horki et al. (2011) [79] made two different BCIs work
together, one of which was reported in Horki et al. (2010) [74]. Next,
Müller-Putz et al. (2013) [123] developed a paradigm enabling further
integration of different BCIs, Horki et al. (2015) [70] developed strategies
for using EEG responses for spelling through listener-assisted scanning, and
Horki et al. (submitted) [68] provided experimental proof that a single au-
ditory selective attention task can modulate both induced and evoked changes
in EEG. Last but not least, mental imagery and attempted movements were
evaluated in end-users with MCS in Horki (2014) [67].

2.1.1 Parallel use of two BCIs

[79] Horki, P., T. Solis-Escalante, C. Neuper and G. R. Müller-
Putz: Combined motor imagery and based BCI control of a 2 DoF ar-
tificial upper limb. Medical and Biological Engineering and Computing,
49:181–191, 2011

The first work evaluated whether and to what extent the existing BCI
systems can be made to work together. For this purpose, two different BCIs,
one based on MI and the other one on SSVEP, were used to extend the
number of degrees-of-freedom in an artificial upper limb control scenario. The
combination of MI and SSVEP based BCIs allowed for a more finer control
compared to the previous work. It also showed that two different BCIs can,
in principle, be used in parallel with a common goal.

Contribution to this work Demonstration that two different BCIs can be
used in parallel with a common goal.
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2.1.2 BCI in the context of assistive technology

A single-switch BCI based on passive and imagined movements:
toward restoring communication in minimally conscious patients

[123] Müller-Putz, G. R., C. Pokorny, D. S. Klobassa and P. Horki:
A single-switch BCI based on passive and imagined movements: toward
restoring communication in minimally conscious patients . International
Journal of Neural Systems, 23(2), 2013

In the second work a scanning paradigm was developed, allowing for the
use of an ssBCI for binary communication in auditory scanning mode, but
also enabling further integration of induced and evoked changes in EEG. To
that end, both time-locked and non time-locked control signals are supported
through a semi-synchronous design.

Future use of BCI in various end-users and various AT applications is
enabled through support for different sensory modalities, different selection
methods, and binary and multiclass selections.

This work also addressed the issue of initial classifier setup by exploit-
ing similarities of the sensorimotor EEG changes of the motor cortex during
passive and imagined movements. To this end, data obtained from the pas-
sive movements was used to setup an initial classifier that was used to detect
imagined movements.

Figure 2.1: Time-frequency analysis of patterns corresponding to passive
(PAS) and imagined (MI) brisk feet movements at 11 orthogonal Laplacian
derivations in one participant. In the feet condition significant (p=0.01) power
changes were found for both the passive and the imagined movement task.

Contribution to this work Design and development of a scanning paradigm
enabling further integration of induced and evoked changes in EEG, and
use of BCI in various end-users and various AT applications. Evaluation
of an ssBCI for binary communication in auditory scanning mode.
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2.1.3 New paradigms for induced and evoked BCIs

Evaluation of healthy EEG responses for spelling through listener-
assisted scanning

[70] Horki, P., D. S. Klobassa, C. Pokorny and G. R. Müller-Putz:
Evaluation of Healthy EEG Responses for Spelling Through Listener-
Assisted Scanning . IEEE Journal of Biomedical and Health Informatics,
19 (1):29–36, 2015

The fourth work addressed a relevant issue in combining BCIs based on
induced and evoked changes in EEG, namely the substantial differences in
their experimental paradigms. Reducing these differences to an extent that
makes different BCIs interchangeable allows for further integration of BCIs
based on induced and evoked changes within a single paradigm, as well as
mitigation of the so called BCI ”illiteracy” through choice of different control
signals.

To facilitate the transfer of the proposed solution to real-world scenarios,
listener assisted scanning, an alternative communication method for persons
with severe motor and visual impairments but preserved cognitive skills, was
chosen for evaluation (Figure 2.2).

Figure 2.2: Evaluation of Healthy EEG Responses for Spelling Through
Listener-Assisted Scanning (parts of the figure adapted from [59]). Here,
it was investigated whether listener-assisted scanning, an alternative commu-
nication method for persons with severe motor and visual impairments but
preserved cognitive skills, could be used for spelling with EEG. To that end
spoken letters were presented sequentially, and the participants made selec-
tions by performing motor execution/imagery or a cognitive task. The motor
task was a brisk dorsiflexion of both feet, and the cognitive task was related
to working memory and perception of human voice.
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Contribution to this work Different types of BCIs were made interchange-
able, thus mitigating the BCI ”illiteracy”. A single cognitive task (COG),
related to working memory and perception of human voice, was found
to modulate ERP components reflecting three different stages of selec-
tive attention. The obtained results for the motor and for the COG
conditions provided guidelines for the further development.

2.1.4 Application in persons with disorders of conscious-
ness

Detection of mental imagery and attempted movements in patients
with disorders of consciousness using EEG

[67] Horki, P., G. Bauernfeind, D. S. Klobassa, C. Pokorny, G. Pich-
ler, W. Schippinger and G. R. Müller-Putz: Detection of mental
imagery and attempted movements in patients with disorders of con-
sciousness using EEG . Frontiers in Human Neuroscience, 8:1009, 2014

In the third work the goal was to evaluate mental imagery and attempted
movements in persons with disorders of consciousness. This work addressed
several gaps in knowledge by evaluating:

1. simple and complex motor imagery within persons with DoC

2. passive feet movement as a mean of an initial classifier setup

3. rapid delivery of biased feedback

Contribution to this work Comparison of different types of mental tasks,
foremost complex motor imagery and attempted feet movements, in per-
sons with DoC. The obtained results provided valuable insights for fur-
ther development of an EEG based communication device.
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2.2 Evaluation of induced and evoked changes
in EEG during selective attention to ver-
bal stimuli

[68] Horki, P., G. Bauernfeind, W. Schippinger, G. Pichler and
G. R. Müller-Putz: Evaluation of induced and evoked changes in
EEG during selective attention to verbal stimuli . submitted to Journal
of Neuroscience Methods, 2016

The goal of this study is twofold: first goal is to develop an experimental
paradigm that can facilitate the performance of brain-teasers (e.g. mental
subtraction and word generation) on the one hand, and can increase the ex-
perimental control (i.e. type and the timing of the task performance) on the
other hand. The underlying hypothesis is that, attending to someone else’s
verbal performance of brain-teaser tasks leads to similar results as in self-
performing the same tasks. The second goal of this study is to exploit these
similarities to setup an online BCI, and to compare it in healthy participants
to the current ”state-of-the-art” motor imagery (MI).

We found that (i) attending to someone else’s verbal performance of brain-
teaser tasks leads to similar results as in self-performing the same tasks; (ii)
these similarities can be exploited to setup an online BCI and used for yes / no
communication in an auditory scanning paradigm; and (iii) a single task,
namely selective attention to verbal stimuli, can modulate both induced and
evoked changes in EEG.

This manuscript has not been published at the time of completion of this
thesis, as it is still being peer-reviewed. Accordingly, this section includes the
submitted manuscript.

Contribution to this work This study concludes the thesis by showing
that a single auditory selective attention task can modulate both induced
and evoked changes in EEG. This proof was obtained in a standard AT
use case, with participants answering a series of yes / no questions in a
scanning paradigm, that can generalize to further applications.

——————

Introduction

For persons with severe motor and visual impairments but preserved cognitive
skills, a brain-computer interface (BCI) might provide alternative means of
communication [185]. One group of end-users who are unable to perform any
motor movement to use an assistive device but have been proven to be some-
times consciously aware (i.e. their vigilance is fluctuating [97]) are persons in
a minimally conscious state (MCS) [53].
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The most promising results for BCIs in persons with MCS have been
achieved using mental imagery, both in functional magnetic resonance imaging
(fMRI) and electroencephalogram (EEG) experiments. In fMRI experiment
by Owen et al. [140] one person diagnosed as being in the vegetative state
was asked to either imagine playing tennis or to navigate through her own
apartment. Both mental tasks resulted in very specific brain responses, which
opened the possibility of establishing communication with persons in the min-
imally conscious state by means of simple yes/no questions, as demonstrated
in Monti et al. [113] in one person.

In EEG experiments reported in Cruse et al. (2011) [33], Goldfine et
al. (2011) [56], and Horki et al. (2014) [67], similar tasks and also attempted
movements were evaluated in persons with MCS at their bedside. In some
of these persons, EEG evidence for performance of mental imagery tasks and
attempted movements was found, even when they were behaviourally unre-
sponsive. However, a functional and accurate communication with persons
with MCS, as demonstrated with fMRI, was not achieved.

Common to most of these studies is the use of one motor and one non-
motor mental imagery task [56]. The motor tasks have been known to produce
good results in a variety of end-user populations [33, 35, 40]. However, severely
motor impaired persons having difficulties with motor imagery, either because
of the underlying neurophysiology [31] or because of subjective preference [46],
might benefit from alternative mental tasks.

A thorough comparison of different mental tasks in healthy participants is
provided in studies reporting on their effect on classification performance [47],
on the stability of the associated event-related desynchronization (ERD) and
event-related synchronization (ERS) [49], and on the long-term evaluation of a
4-class imagery-based BCI [48]. In these studies, several alternatives to motor
imagery were identified, most notably spatial navigation, mental calculation
and word generation. Furthermore, in a followup study with persons with
stroke [170], it was found that mental tasks which best complemented a motor
imagery task, for example the imagined movements evaluated in end-users
with severe motor impairments by Faller et al. [40], were mental subtraction
and word generation. The two last-mentioned tasks can be described as so
called brain-teasers [49], since they require problem specific mental work and
place a variety of cognitive demands.

Before bringing these tasks to persons with MCS, two challenges need to
be addressed. The first challenge is keeping these cognitive demands as low
as possible so that they could be fulfilled by persons with MCS. The second
challenge lies in the control of experimental protocol, i.e., how to provide as
accurate instructions as possible, since the brain patterns depend both on
the type (i.e. how the task is being performed) and the timing of the task
performance. For example, the mental calculation can activate different brain
areas depending on whether one uses a verbal or a visual strategy [58].

The aim of this work is to address these challenges, namely keeping the
cognitive demands as low as possible and increasing the control of experi-
mental protocol. For this purpose, we developed an experimental paradigm
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that can facilitate the performance of the brain-teasers on the one hand, and
can increase the control of experimental protocol (i.e. employed strategy and
the timing of the task performance) on the other hand. The underlying hy-
pothesis is that, mentally attending to someone else’s verbal performance of
brain-teaser tasks leads to similar results as in self-performing the same tasks.
We tested this hypothesis in the first experiment of this study for mental
subtraction and word generation tasks.

In the second experiment of this study our aim was to exploit these sim-
ilarities to setup an online BCI based on our approach, and to compare it in
healthy participants to the current ”state-of-the-art” motor imagery (MI). We
performed this comparison in a twofold manner: first, we evaluated whether
and to what extent attending to someone else’s verbal performance of a brain-
teaser task can be discriminated online from sports imagery. Second, we evalu-
ated whether such a brain-teaser task can be used for yes / no communication
in an auditory scanning paradigm, as it was successfully demonstrated with
feet MI [123].

Building upon the results of the first two experiments, in the third exper-
iment we evaluated command following in persons with MCS. Towards this
aim, we employed two tasks: complex mental imagery (i.e. sport) and focused
attention to verbal performance of mental subtraction.

A novelty in our approach is that it induces oscillatory changes in EEG by
exploiting selective attention to verbal stimuli, normally used in event-related
potential (ERP) studies [50]. Various ERPs associated with attention to and
perception of external stimuli have been reported, most notably the P300 com-
ponent, characterised by its large positive peak amplitude at around 300 ms
following the stimulus. Further reported ERPs include late positive compo-
nent (LPC), reflecting the switch of attention onto the new information [190],
N400 [95] and P600 [60], related to semantic processing. ERPs can be used
to setup BCIs in different sensory modalities for healthy and motor-impaired
users [154, 82, 61, 176]. Promising results have also been obtained in persons
with MCS using an auditory P300-based BCI [156, 11].

An experimental strategy employing both ERPs and oscillatory changes
could increase reliability of results and robustness against artifacts [42]. To
that end, we hypothesised that this single task, namely selective attention to
verbal stimuli, can be used to modulate both induced and evoked changes in
EEG. To test this hypothesis we modified the verbal performance of brain-
teaser tasks to include a semantic oddball paradigm, and analysed the task
related EEG changes.

Summary of hypotheses

• Attending to someone else’s verbal performance of brain-teaser tasks
leads to similar results as in self-performing the same tasks.

• Single task, namely selective attention to verbal stimuli, can be used to
modulate both induced and evoked changes in EEG.
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Summary of experimental approaches

Most of the reported studies associate (self-) induced EEG brain responses
with various mental tasks, similar to the ones used in this work (i.e. brain-
teasers, motor imagery). The performance of these tasks is not contingent on
external cue presentation, although any practical application warrants some
kind of cueing (e.g. instructions, questions, etc.). In contrast, (externally-
) evoked EEG brain responses are contingent on external cue presentation.
However, any practical application warrants some kind of user engagement
(e.g. focused attention) and / or mental task performance (e.g. counting of
the deviant stimuli).

In this work, we blurred the lines between the induced and evoked re-
sponses of the brain in the following two ways:

• In the first experiment, we employed (self-) induced EEG brain responses
that are, at least partially, contingent on external cue presentation.

• In the scanning paradigm of the second experiment, in addition to the
(self-) induced EEG brain responses, we employed (externally-) evoked
EEG brain responses that are, at least partially, contingent on the men-
tal task performance (i.e. mental subtraction).

In other words, in this work we focused on the similarities, and not on the
differences, between induced and evoked responses of the brain.

Methods

PARTICIPANTS

All the experiments (see Figure 2.3, section EXPERIMENTAL PARADIGM)
were approved by the local ethics committee (Medical University of Graz) and
are in accordance with the ethical standards of the Declaration of Helsinki [188].

Healthy Eleven healthy participants (8 female; 23 to 40 year old, mean
age 26) participated in this experiment. They were recruited through univer-
sity public notice boards (i.e. newsgroup, forum). Participants gave informed
consent prior to the beginning of the experiments and received monetary com-
pensation afterward. Half of the participants had no prior experience with
EEG experiments. During the measurements, the participants were seated in
an electrically shielded room.

Ten healthy participants performed both sessions of the first experiment
(the eleventh participant performed only the first measurement session). Six
participants, all of which already performed the first experiment, were also
available for the second experiment (the rest was not available). The second
experiment was carried out on a separate day, between 1 and 2 weeks later.
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Persons with MCS Two persons diagnosed with MCS took part in this
study (one women, one man). The persons with MCS, not in intensive care
and in an overall stable medical condition, were selected by the medical staff
of the Albert Schweitzer Clinic (Graz, Austria) where all measurements were
conducted. Exclusion criteria were gravidity, infections, or participation in
other studies. Informed consent was obtained from the legal representatives
of persons with MCS.

The persons with MCS were behaviourally assessed using the Coma Recov-
ery Scale-Revised (CRS-r) within 24 h before or after each EEG measurement
in order to keep track of their fluctuations in responsiveness. The CRS-r is
composed of 23 items divided into 6 subscales dealing with auditory, visual,
motor, oromotor, communication, and arousal functions [54]. The standard-
ized scoring has been shown to produce ”. . . reasonably stable scores over re-
peated assessments . . . ” [55] and is capable of discriminating persons in MCS
from those with unresponsive wakefulness syndrom (UWS, [96]; vegetative
state (VS) can also be used in addition to UWS).

The persons with MCS participated in the third experiment, where com-
mand following was evaluated with two sessions. The idea was that each
person with MCS, if possible, would participate in two sessions on different
days to compensate for possible fluctuations in responsiveness. For the two
persons with MCS, the follow-up session was carried out between 1 and 2
weeks later.

Table 2.1 provides background and disease related data, as well as the
highest estimated CRS-r subscores, of both persons with MCS.

Table 2.1: Overview about participants with MCS

RECORDING

Healthy Persons The EEG was recorded with 29 active electrodes (g.tec,
Guger Technologies, Graz, Austria) covering the frontal, central, and parietal
scalp areas. In detail, the electrodes were placed at positions AF3, AFz, AF4,
F5, F3, F1, Fz, F2, F4, F6, FC3, FC1, FCz, FC2, FC4, C5, C3, C1, Cz,
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Figure 2.3: Shown here is an overview of the number and sessions of experi-
ments.

C2, C4, C6, CP3, CP1, CPz, CP2, CP4, P5, P3, P1, Pz, P2, P4, P6, PO3,
POz and PO4 according to the international 10/20 electrode system. The
EEG electrodes were referenced to the left ear lobe with the ground electrode
placed on the right ear lobe. The electrodes were integrated into a standard
EEG cap (Easycap GmbH, Herrsching, Germany.

In addition to EEG, electrooculogram (EOG), electrocardiogram (ECG)
and respiration were recorded. The EOG was recorded with three active
electrodes, positioned above the nasion, and below the outer canthi of the eyes.
The ECG was recorded from a single bipolar derivation. The negative lead was
attached to the chest at the left (mid) clavicular line and the 2nd intercostal
space, and the positive lead was attached to the chest at the left midaxilar line
and the 6th intercostal space. The ground electrode was placed on the right
hip. Self-adhesive Ag-AgCl electrodes were used for these recordings. The
respiration was recorded with a CE-certified piezoelektric respiration sensor
(PRO-TECH Respiratory Belt, Model: 1467).

The EEG amplifiers were set up with a band-pass filter between 0.5 and
100 Hz, and a notch filter at 50 Hz. The EEG and EOG were sampled with
512 Hz.

Persons with MCS Recording in persons with MCS was very similar to
that in healthy, with main differences being use of a reduced channel setup,
and no EOG recording. In detail, the electrodes were placed at positions AFz,
F3, F1, Fz, F2, F4, FC3, FCz, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CPz,
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CP4, P3, P1, Pz, P2, and P4 according to the international 10/20 electrode
system.

In addition to EEG, electrocardiogram (ECG) and respiration were recorded.
Again, the ECG was recorded from a single bipolar derivation, and the respi-
ration was recorded with a CE-certified piezoelektric respiration sensor (PRO-
TECH Respiratory Belt, Model: 1467).

The EEG amplifiers were set up with a band-pass filter between 0.5 and
100 Hz, and a notch filter at 50 Hz. The EEG was sampled with 512 Hz.

EXPERIMENTAL PARADIGM: Overview

The study consisted of three experiments. The first experiment was performed
twice by 10 healthy participants, on two separate days. One additional par-
ticipant showed up only for the initial measurement session, and was thus
discarded from the further analysis. The second experiment was performed
by six of the initial 10 healthy participants. The third experiment was per-
formed by two persons with MCS.

Stimuli Spoken letters, digits, and words of the German language, gen-
erated by a text-to-speech program (Pediaphon, Germany), were presented
sequentially through headphones. For evaluation of command following in
persons with MCS, the stimuli were generated with a slower pronounciation
speed setting, and were presented at an reduced rate. In detail, for command
following in patients the stimuli were generated with ”slow” speed setting com-
pared to ”normal” speed setting used for the healthy participants. In addition,
the stimuli were presented at half the rate compared to the presentation rate
used for the healthy participants, effectively reducing the number of presented
stimuli to one half of the number presented to the healthy participants.

EXPERIMENTAL PARADIGM: First experiment The goal of
the first experiment was to evaluate whether attending to someone else’s verbal
performance of brain-teaser tasks leads to similar findings as in self-performing
the same tasks. For this purpose, the first experiment investigated two mental
tasks across different conditions, defined as follows [47]:

- word generation (WORD): generate as many words as possible that begin
with the presented letter.

- Mental subtraction (SUB): perform successive elementary subtractions by
a presented fixed number.

For each mental task, three different conditions were investigated: active
attend, perform, and control condition. In the active attend condition, exem-
plified in Figure 2.4 for the WORD (upper part) and the SUB (lower part)
tasks, the participants actively attended to verbal performance of the indi-
cated mental task. In the perform condition, the participants performed the
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indicated mental task from the verbal cue onset (t = 2 s) to the end of the
trial, but this time without listening to verbal performance of the indicated
mental tasks. The cues of the control condition were identical to the active
attend condition, but the participants were instructed to ignore them and to
mind wander. The mental tasks were indicated in random order, and the
order of the conditions was pseudorandomized.

Figure 2.4: Experimental paradigm: first experiment. The two mental tasks
- word generation and mental subtraction - were investigated across the fol-
lowing conditions: (i) active attend, listening to the verbal performance of
the indicated mental task ; (ii) perform, performing the indicated mental task
without verbal stimuli; and (iii) control, ignoring the verbal stimuli.

EXPERIMENTAL PARADIGM: Second experiment The second
experiment consisted of two parts.

First part of the second experiment In the first part, two mental
tasks were employed: (i) mental subtraction (SUB), and (ii) SPORT. The SUB
task was as defined in the active attend condition of the first experiment. The
SPORT task was imagined performance of one sport of participants’ choice in
the first person perspective (e.g. tennis, volleyball, running etc.). There was
no perform condition in the second experiment. This part was split into four
runs, separated by short breaks of 1-2 min length in order to avoid fatigue.
The first two runs were for calibration, meaning the participants received
no feedback. The second two were ”online” runs, meaning the participants
received feedback.

For the resting state the participants were instructed to sit relaxed and
to avoid movements and excessive artifacts. They were neither instructed to
fixate their eyes, nor to watch anything.

Within a run, each mental task was randomly indicated 16 times, resulting
in a total of 32 calibration and 32 ”online” trials for each task. The timing
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of a single trial was the same as in the first experiment (see Figure 2.4. The
SPORT task was performed from the verbal cue onset (”Sport” @ t = 2s) to
the end of the trial (”Pause” @ t = 10.5s), without any further cues.

In the ”online” runs the participants received biased positive feedback at
the end of a trial (i.e. ”Sport / subtraction recognized” in case of correct
classifier output, ”Pause” otherwise).

Second part of the second experiment In the second part of the
second experiment, the healthy participants communicated a yes / no answer
to a series of verbal questions, performing only the SUB task. Towards this
aim, a scanning protocol ([123]), see Figure 2.5, was adapted as follows:

- Following the presentation of each question, ”yes” (”ja” in German) and
”no” (”nein” in German) scan periods were presented three times.

- Each ”yes” / ”no” scan period was denoted by a spoken ”yes begins”/”no
begins” cue at the beginning, and ”pause” at the end.

- During each scan period, verbal performance of the SUB task was pre-
sented. To communicate their intent (e.g. a yes response), the partic-
ipants actively attended to the verbal performance during the desired
scan period, and ignored it otherwise. For example, to communicate a
no response, the participants actively attended the verbal presentation
following a spoken ”no begins” cue, and ignored the verbal presentation
following a spoken ”yes begins” cue.

Throughout the experiment, breaks of random length were inserted to prevent
rhythmic cueing.

The questions, generated using a text-to-speech synthesizer, were delivered
through headphones in pseudorandom order. A total of 20 different questions
was split during 4 runs, each comprised of 5 questions. Each question had only
one meaningful response, with a balanced number of yes/no responses, thus
allowing the experimenter to know the response the participants intended to
communicate. Nevertheless, before the scanning protocol was evaluated, all
of the questions were presented to the participants once. Also, their responses
to the questions were noted. Two exemplary questions are shown in Figure
2.5.

Feedback was based on majority vote from the classifier output for the
three yes / no scan periods. Following the presentation of yes / no scanning
periods, four options were possible: (i) ”yes” detection; (ii) ”no” detection;
(iii) both ”yes” and ”no” detection; and (iv) no detection. The corresponding
auditory feedbacks, presented following the three yes/no scan periods, were:
(i) ”Yes selected”; (ii) ”No selected”; (iii) and (iv) ”Unclear response” (in
German language).

Additionally, the verbal performance of brain-teaser tasks included a se-
mantic oddball paradigm. To that end, during the ”yes” scan periods an
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additional ”yes” word was randomly interleaved with the verbal performance
of the mental subtraction, and during the ”no” scan periods an additional
”no” word was randomly interleaved with the verbal performance of the men-
tal subtraction. When actively attending to the verbal stimuli, the ”yes” and
”no” words were perceived as the deviant cue during the corresponding scan
period.

Figure 2.5: Experimental paradigm: second experiment. UPPER PANEL:
the scanning protocol employed in the second part. Following the presenta-
tion of each question, ”yes” and ”no” scan periods were presented three times.
During each scan period, verbal performance of the SUB task was presented.
To communicate their intent (e.g. a yes response), the participants actively
attended to the verbal performance during the desired scan period, and ig-
nored it otherwise. LOWER PANEL: the verbal performance of brain-teaser
tasks included a semantic oddball paradigm. For this purpose, during the
”yes” scan periods an additional ”yes” word was randomly interleaved with
the verbal performance of the mental subtraction, and during the ”no” scan
periods an additional ”no” word was randomly interleaved with the verbal
performance of the mental subtraction. When actively attending to the ver-
bal stimuli, the ”yes” and ”no” words were perceived as the deviant cue during
the corresponding scan period.

EXPERIMENTAL PARADIGM: Third experiment - command
following in persons with MCS Within one experimental session, up to
two different tasks (i.e. sport and mental subtraction) were performed in a
block design, meaning that in each run only one task was performed. The
SUB task was performed either in the active attend or the control condition.
The SPORT task was as defined in the second experiment in healthy partic-
ipants. Each task was performed during three consecutive runs, with each
run having 16 cue-based trials (auditory cue) of 13.5 s length, yielding 48
trials / task. At the beginning of a trial a beep tone was given. After 2 s,
an auditory cue, generated by a text-to-speech synthesizer, was delivered via
in-ear headphones. The cue was either a verbal instruction to perform the
SPORT task (i.e. ”sport”) lasting for 1 s, or the onset of the active attend

37



condition (i.e. verbal performance of the mental subtraction). Between the
trials a random pause (also auditorily indicated) of 4-6 s length was given. De-
tailed verbal instructions were given to the participant by the experimenter
before the measurement started. The purpose of these instructions, repeated
before each run, was to inform the persons with MCS about the tasks he/she
has to perform. The order of the runs was pseudo randomized across the mea-
surement sessions. Each measurement session was conducted on a separate
day for both participants.

USER EVALUATION

Healthy participants filled out the questionnaires for the first and the sec-
ond session of the first experiment. No questionnaires were filled out for the
second experiment, or for the command following in patients. After the mea-
surements, the participants rated the tasks on a 5 point scale for the following
aspects (questions adapted from [49]): the task ease ( 1 = “very exhausting
and full concentration needed” and 5 = “very relaxing and possible to per-
form also during major distractions”), and the enjoyment (1 = “no fun at
all and very frustrating” and 5 = “a lot of fun and not frustrating at all”).
Additionally, users rated the verbal stimuli in the active attend condition
(1 = “extremely irritating and not helpful” and 5 = “extremely motivating
and helpful”).

DATA ANALYSIS

First experiment and command following in persons with MCS
EEG analysis was performed separately for the different mental tasks using
MATLAB (MathWorks, USA) and EEGLAB. The data were high-pass filtered
(third-order butterworth filter) with cutoff frequency at 1 Hz, and segmented
into consecutive time segments of 0.5 s. Bad channels and prominent artifacts
(i.e. swallowing, electrode cable movements, etc.) were identified by visual
inspection and removed (0.5 s long time segments before ICA; whole trials
containing the artifacts after the ICA). Following these steps, binary Infomax
independent component analysis (ICA) was used to separate EEG and EOG
signals into independent components. Independent components (ICs) repre-
senting eye movements, and eye blinks were identified by visual inspection
using methods described in [109] and removed. The remaining components
were multiplied by the mixing matrix produced by the ICA algorithm to re-
construct cleaned EEG.

The cleaned EEG was band-pass filtered (third-order Butterworth filter)
between 8 and 30 Hz. Common spatial patterns (CSP, [160] method was used
to compute most discriminative features for classification relative to a refer-
ence period (1s before the verbal cue onset). Discriminative feature vectors
were obtained for 1 s EEG segments extracted from start to the end of the
trial. Classification was performed by means of shrinkage linear discriminant
analysis (sLDA, [21]) classifier. The accuracy was estimated using a 10-times
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10-fold cross-validation for each 1 s window, relative to the reference period,
from start to the end of a trial.

For percentage of relative power decrease (ERD) and relative power in-
crease (ERS) analysis, a time-frequency map for frequency bands between 4
and 40 Hz (35 overlapping bands using a band width of 2 Hz) was calcu-
lated [59] for common-average-referenced (CAR) channels. Logarithmic band
power features, calculated by band-pass filtering, squaring, and subsequently
averaging over the trials, were used to assess changes in the frequency domain.

From the ECG, the QRS complexes were automatically detected based
on an algorithm using a filter bank to decompose the ECG signal into var-
ious subbands [3]. Afterwards, the instantaneous heart rate (HR, in bpm)
was calculated, linearly interpolated and resampled at 10 Hz. Missing heart
beats, or triggering to another event, such as an extrasystole, may have large
effects on the signal curve and the further processing steps, respectively [16].
Therefore, the detection process was visually inspected by an expert to avoid
artefacts [13].

Statistical methods In the first experiment we analyzed classification per-
formance across participants, tasks, and conditions with repeated measures
analysis of variance (ANOVA). The analysis included a routine application of
Mauchly’s Test of Sphericity, and if needed a Greenhouse-Geisser correction.
The dependent variable was classification accuracy, and the factors were task
(2 levels) and condition (3 levels). Further analysis was done with Bonferroni
corrected paired t-tests with the significance level contingent on p < 0.01.

Also, to determine the statistical significance of the ERD/S values, a t-
percentile bootstrap algorithm with the significance level contingent on p = 0.05
was applied.

In the second experiment a Wilcoxon rank sum test was used to isolate
differences between actively attending to and ignoring the deviant stimuli in
the semantic oddball paradigm (see Figure 2.5), with the significance level
contingent on p < 0.01.

Second experiment

Classifier setup Different classifiers were setup during the first and
the second part of the second experiment for the six healthy participants. In
the first part, the ”SPORT vs. SUB” classifier was setup on the initial two
runs, and evaluated online during the third and the fourth run. In the second
part, the ”SUB vs. rest” classifier was setup on the SUB data from the first
part, and evaluated throughout the second part. In both cases classification
was performed by means of sLDA classifier, setup using a 10-times 10-fold
cross-validation for 1 s long windows. For each online trial in the first part,
and each scan period in the second part, the classifier output was the class
predicted for more than 50 % of the duration of the corresponding imagery
period [35].
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ERP analysis For event-related potential (ERP) analysis, performed
of the six healthy participants of the second part, we defined a single epoch
as 1000 ms following onset of a spoken letter, baseline corrected for all on-
sets to preceding 250 ms. The epochs were band-pass filtered (third-order
Butterworth filter) between 1 and 12 Hz.

Artifact detection in online experiments The artifact detection
was performed in six healthy participants of online runs in the second exper-
iment (i.e. the third and the fourth run of the first part, and throughout the
second part). Towards this aim, muscle and movement artifacts, as well as
other transient non-stationarities in the ongoing EEG signals, were detected
by inverse filtering [169]. Autoregressive (AR) parameters of the inverse fil-
ter were estimated from a 1-2 min segment of resting-state EEG, recorded
at the beginning of each session. The detection threshold was defined as five
times Root-Mean-Square from the resting-state EEG. Time periods in which
the detection threshold was exceeded were discarded from the online feedback
calculation.

Results

Experiment 1 The offline classification accuracies for the three conditions
(i.e. active attend, perform, and control), the two tasks (i.e. WORD and
SUB), and both sessions of the first experiment are given in Table 2.2 and
in Figure 2.6. The results of the ANOVA for classification accuracy re-
vealed a significant effect for task (p < 0.01, Ffirstsession(1, 9) = 14.96,
Fsecondsession(1, 9) = 17.82) and condition (p< 0.01, Ffirstsession(2, 18) = 38.90,
Fsecondsession(2, 18) = 42.88) in both of the sessions, and an interaction be-
tween task and condition (p < 0.01, Fsecondsession(2, 18) = 15.01) in the
second session.

Figure 2.7 summarizes the results of statistical tests (Bonferroni corrected
t-tests) performed to compare sample means (i) within sessions and between
conditions, and (ii) between sessions and within conditions (Figure 2.7 up-
per panel). For the SUB task, the means for the perform and active attend
condition of the first session were the same, as no significant differences were
found between the corresponding means (Figure 2.7 upper panel; significance
contingent on p < 0.01). For the WORD task, the means for the active
attend and control condition of the first session were the same, as no sig-
nificant differences were found between the corresponding means. Also, the
means for the perform and active attend condition of the second session were
the same, as no significant differences were found between the corresponding
means. Comparison of means between sessions and within conditions revealed
no significant differences for the WORD and SUB task, respectively. Finally,
comparing the means between the WORD and SUB task within sessions and
within conditions revealed significant differences for the perform condition in
both sessions, but not for the active attend and the control conditions (Figure
2.7 lower panel).
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Figure 2.6: Shown here is the offline classification accuracy, estimated using a
10-times-10 cross validation, and averaged over all participants. The accura-
cies for the SUB task are shown in the left, and the accuracies for the WORD
task in the right panel. Different conditions (i.e. active attend, perform, and
control) are shown for the first (upper panel) and the second (upper panel)
session.

Experiment 2 The results for the second experiment are given in Table
2.3 for the first part (SPORT vs. SUB), and Tables 2.4 and 2.5 for the sec-
ond part (yes / no). The classification accuracy for the SPORT vs. SUB
discrimination ranged from 48% to 70%, with mean of 58 ± 10%. The re-
sponse accuracy for the SUB scanning ranged from 25% to 100% correct
answers, 60% to 0% unclear answers, and 30% to 0% wrong answers. In
addition, several participants demonstrated significant (p=0.01) modulation
of event-related potential components related to novelty (LPC, late positive
component [190]), and semantic (N400 [95]; P600 [60]) processing (Figure 2.9
middle panel), associated with the deviant (i.e. ”yes” /”no”) stimuli of the
overlayed semantic oddball paradigm. Furthermore, actively attending to the
verbal stimuli during the desired scan period resulted in significant (p=0.01)
modulation of the negative (between 200ms and 250ms post cue onset) and
positive (between 350ms and 450ms post cue onset) components, associated
with all the verbal stimuli (i.e. standard and deviant), compared to ignoring
the verbal stimuli (Figure 2.9 lower panel).

Experiment 3 The EEG results for the offline detection of different tasks
for the command following paradigm in persons with MCS consist of (i) dis-
crimination accuracy between SPORT / SUB task, and the reference (1s before
the cue onset), and (ii) time-frequency analysis. Regarding (i), in participant
PA01 only the SPORT task of the first session resulted in significant (p=0.05)
accuracy, whereas all other cases resulted in accuracies that were not signif-
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Figure 2.7: Results of statistical tests (Bonferroni corrected t-tests) performed
to compare means across various conditions, sessions, and tasks. Significant
(p = 0.01) differences are marked with an asterisk. UPPER PANEL: No
significant differences were found between means for the perform and active
attend condition of the first session for the SUB task, and of the second
session for the WORD task. In contrast, significant differences were found
between means for the active attend and the control condition in at least one
of the two sessions for both the SUB and the WORD task. LOWER PANEL:
Shown here is the comparison of the means between the WORD and SUB task
within sessions and within conditions. Significant differences were found for
the perform condition in both sessions. In contrast, no significant differences
were found for the active attend and the control conditions.
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Table 2.2: Classification accuracy: first experiment. Classification was per-
formed by means of sLDA classifier. The accuracy (in %) was estimated using
a 10-times 10-fold cross-validation for each 1 s window, relative to the ref-
erence period, from start to the end of a trial. The highest mean accuracy
is reported. A . . . Active attend, P . . . Perform, C . . . Control, x . . . sample
mean, s . . . sample standard deviation

First session Second session
SUB WORD SUB WORD

A P C A P C A P C A P C

S1 65 67 61 67 75 60 77 79 57 65 73 57
S2 82 93 57 68 72 67 77 91 60 76 78 67
S3 74 75 61 66 64 55 78 75 55 81 71 58
S4 89 89 58 86 84 61 87 85 58 86 82 59
S5 85 83 56 62 79 58 66 82 56 63 75 57
S6 56 93 60 65 72 58 72 95 52 64 80 66
S7 78 87 56 67 70 61 79 88 58 66 77 58
S8 91 94 55 63 81 61 73 78 60 69 69 64
S9 61 96 60 63 82 61 69 94 61 64 86 59
S10 69 79 56 67 75 55 67 82 57 64 76 59

x 75.1 85.6 57.9 67.3 75.5 59.7 74.4 84.9 57.5 69.8 76.7 60.6
s 12 9.5 2.3 6.9 6.4 3.5 6.4 7.1 2.6 8.2 5.2 3.7

icant. In participant PA02, only the SPORT task of the first session could
be evaluated. Due to a large number of strong artifacts, caused by, e.g.,
bad coughs and associated cramped movements, not enough EEG data was
available for analysis. Time-frequency analysis of the SPORT tasks in the
participant PA01 revealed task-related EEG changes over neurophysiologi-
cally plausible cortical areas (i.e. central, fronto-central, frontal; Figure 2.8).
However, the classification results did not exceed upper confidence limits of
a chance result (p = 0.05). Time-frequency analysis of the SUB task in the
participant PA01 did not reveal any significant EEG changes (significance
contingent on p < 0.05).

Discussion

In this work we tested two hypotheses: first, that attending to someone else’s
verbal performance of brain-teaser tasks leads to similar results as in self-
performing the same tasks; and second, that selective attention to verbal
stimuli can be used to modulate both induced and evoked changes in EEG.

We tested the first hypothesis in the first experiment of this work with
mental subtraction and word generation tasks. Notably, the means between
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Table 2.3: Online classification accuracy: first part of the second experiment.
Here, the ”SPORT vs. SUB” classifier was setup on the initial two runs, and
evaluated online during the third and the fourth run.

Subj S6 S4 S7 S3 S10 S1 x± s

Acc (%) 70 69 64 51 48 48 58 ± 10

Table 2.4: Response accuracy: second part of the second experiment. Here,
the ”SUB vs. rest” classifier was setup on the SUB data from the first part
of the second experiment, and evaluated online throughout the second part.
T . . . true, U . . . unclear, F . . . false

Subj S3 S4 S10 S1 S7 S6

T (%) 100 75 50 40 25 25
U (%) 0 25 35 45 60 45
F (%) 0 0 15 15 15 30

the WORD and SUB task differed for the perform condition in both sessions,
but not for the active attend and the control conditions. Including the session
as a factor in the ANOVA revealed, in addition to aforementioned findings, a
significant effect for the session. This finding is consistent with the literature,
albeit this effect, while present in the initial sessions, is known to diminish as
the number of sessions increases [48].

Event-related (de-) synchronization during mental subtraction, word gen-
eration, and other mental tasks was thoroughly investigated in the BCI litera-
ture [47, 49]. In Friedrich et al. [47] these two tasks showed significantly more
ERD in the lower beta range (13-20 Hz) than a motor task (imagery of the
right hand). Also, more ERS was found for the mental subtraction both in
the lower and in the upper beta band (20-30 Hz) compared to the motor task
in central regions. Significant differences were also found between the brain
teasers, with mental subtraction showing more ERS than word generation in
parietal regions. Otherwise, the brain teasers showed similar ERD/S patterns
with a foremost left hemispheric activation, indicative of an linguistic strat-
egy in task performance (e.g. during mental calculation). These brain teasers
demonstrated some of the highest stability over sessions in both alpha bands
(7-10, 10-13 Hz) and in at least one beta band (13-20, 20-30 Hz) [49].

The ERD/S analysis, exemplified in the upper panel of Figure 2.9, re-
vealed patterns that are in concordance with the aforementioned findings by
Friedrich et al. [47, 49]. The participant-specific ERD/S patterns within a
task exhibited similar spatial and frequency patterns in the perform and ac-
tive attend conditions, albeit the patterns for the perform condition were
more pronounced compared to the patterns for the active attend condition.

44



Table 2.5: Event-related potential analysis: second part of the second exper-
iment. Only significant (Wilcoxon rank sum test, p = 0.01) components are
reported. LPC . . . late positive component; X. . . significant difference

Subj S3 S4 S10 S1 S7 S6

LPC X X
N400 X X
P600 X X X

Furthermore, these patterns translated to significant (p = 0.01) classification
accuracy for both the perform and the active attend condition. Importantly,
for all cases the control condition neither yielded any significant (p = 0.05)
ERD/S patterns, nor classification accuracy.

Healthy participants also filled out the questionnaires for the first and the
second session of the first experiment. The rationale for collecting this data
is to explain for possible differences between our findings, and results from
similar studies. As our findings are consistent with the literature, the results
of user evaluation are reported in Appendix A as an additional information
for the interested reader.

In the second experiment we exploited these similarities to setup an online
BCI, and compared it in healthy participants to the current ”state-of-the-art”
motor imagery (MI). The classification accuracies for the second experiment
showed a great inter-participant variability. In the first part, the two best
performing participants (S6, S4) achieved significant (p = 0.01) accuracies
that could support communication. For these participants, one mental task
could be used to communicate an affirmative response, whereas the other
mental task could be used to communicate a negative response. For the two
participants that exhibited strong bias in favour of the motor task (S7) or the
SUB task (S3), a single mental task employed in a scanning paradigm may
yield better results. In the two participants that achieved random accuracies
only, as well as in other participants, further training sessions might lead to
an improved performance.

The response accuracies for the best performing participants of the scan-
ning paradigm are comparable to those reported in [123], indicating that
selective attention to verbal performance of mental subtraction is a viable
alternative to the motor imagery. Indeed, whereas participant S3 achieved
random results only in the first part of the second experiment involving mo-
tor imagery (i.e. SPORT vs. SUB), the same participant was able to achieve
a 100% accuracy in the second part (SUB scanning).

To test the second hypothesis we modified the verbal performance of the
SUB tasks to include a semantic oddball paradigm, and analysed whether, in
addition to the aforementioned ERD/S patterns, this task can also modulate
ERPs. We found that several participants demonstrated modulation of event-
related potential components related to processing of novelty (LPC [190]),
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Figure 2.8: Percentage of power decrease (ERD, orange) and power increase
(ERS, blue) relative to a reference interval (one second pre cue) for the
SPORT task in participant PA01, averaged over two sessions. Only significant
(p = 0.05, t-percentile bootstrap algorithm) power changes are displayed for
common average referenced channels.

and semantic (N400 [95]; P600 [60]), as shown in the middle panel of Figure
2.9. In cases where induced changes alone do not yield significant results, the
evoked changes can provide evidence of command following indicative of need
for further training (e.g. S10) or a different approach (e.g. S6), meaning it
has potential to improve the reliability of results.

Few studies investigated hybrid BCIs in end users, some of them relying
on eye-gaze [141] and muscular control [142], and other combining a BCI
with an added input from a sensor [163, 89]. These studies employed two
tasks in either sequential or simultaneous manner, requiring the users to split
their attention between two different tasks. In this work we demonstrated
that a single auditory selective attention task can modulate both induced and
evoked changes in EEG. Furthermore, the employed experimental paradigm is
strongly rooted in the AT applications, and can therefore facilitate transition
from a laboratory to end-users.

For the selective attention to spoken words (i.e. yes/no interspersed with
digits 1 to 9), not unlike employed in this work, a robust effect on the brain
responses has already been observed with fMRI in healthy individuals [130].
Furthermore, in the same work individual performance was improved com-
pared with a motor imagery task, suggesting its suitability for BCI applica-
tions. In a follow up fMRI study performed in three persons with severe brain
injury (two persons with MCS, one person diagnosed as being in UWS; conve-
nience sample), command following according to instructions (i.e. count the
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Figure 2.9: UPPER PANEL: Percentage of power decrease (ERD, orange)
and power increase (ERS, blue) relative to a reference interval (one second
pre cue) for active attend condition, and the SUB task in participant S4.
Only significant (p = 0.05, t-percentile bootstrap algorithm) power changes
are displayed for orthogonal Laplacian [64] derivations. MIDDLE PANEL:
grand averaged ERPs at electrode Pz for six participants and for the deviant
”yes” / ”no” cues of the second part of the second experiment. Equal number
of target and nontarget epochs was averaged. Significant (p = 0.01) changes
are indicated with vertical bars. LOWER PANEL: grand averaged ERPs at
electrode Pz for six participants and for all verbal cues of the second part of
the second experiment. Equal number of target and nontarget epochs was
averaged.
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”yes” / ”no” target word or relax) was demonstrated in all three persons [131].

Before our measurements in persons with MCS, the medical staff of the
Albert Schweitzer Clinic provided valuable input that guided the modifica-
tions to the paradigms employed in healthy participants. As a result, the
subtraction task was chosen over the word generation task, the stimuli were
modified (i.e. slower pronunciation speed, reduced rate of presentation), and
the block design was employed. As a side effect of the reduced rate of pre-
sentation, the semantic oddball paradigm was dropped in favour of a more
simple paradigm with fewer stimuli.

The accuracies achieved in healthy participants are lower than many re-
sults reported in the BCI literature. Also, meaningful binary communication
was achieved in only some of the participants. The inclusion of an oddball
paradigm, while meaningful for the detection of command following, could not
improve the online accuracy due to a slow rate of presentation. However, every
aspect of our work was driven by needs and capabilities of the end-users, with
little or no regard to how it would impact the results in healthy participants.

One limitation of this study is that it leaves open the question on whether
and to what extent the EEG responses from attending to someone else’s verbal
performance of brain-teaser tasks are caused by the task-independent focused
attention. To answer this question, a whole new experimental design, em-
ploying additional control conditions, would be needed. Another limitation
of this study is its limited evaluation in end-users. Indeed, only one out of
two evaluations in end-users with MCS resulted in usable data, with time-
frequency analysis revealing no significant (p < 0.05) EEG changes for the
brain teaser (i.e. SUB) task.

Another limitation of this study is that the temporal electrodes were not
examined, mainly due to experimenters concerns regarding their contamina-
tion with artifacts. However, as there are many studies linking those regions
with auditory-verbal stimuli processing, further experiments should analyze
the temporal regions.

Concluding, our main findings in healthy participants are:

• attending to someone else’s verbal performance of brain-teaser tasks
leads to similar results as in self-performing the same tasks.

• these similarities can be exploited to setup an online BCI and used for
yes / no communication in an auditory scanning paradigm.

• a single task, namely selective attention to verbal stimuli, can modulate
both induced and evoked changes in EEG.

Our findings in persons with MCS are limited, as only two persons with MCS
were evaluated. Significant accuracy was found for the SPORT task of the first
session in one person with MCS, whereas all other cases resulted in accuracies
that were not significant. While our current work did not achieve the desired
results in the end-users, it outlined a novel approach to detection of command
following in end-users with MCS, and its translation to binary communication.
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Here, further measurements, also including other end-users (e.g. persons with
locked-in-syndrome), might provide further insight in EEG changes modulated
by selective attention to verbal stimuli.

Appendix A

Figure 2.10: Displayed here are the results of user evaluation for the first (left
panel) and the second (right panel) session. The users rated the tasks on
a 5 point scale for the following aspects: the task ease, the enjoyment, and
rating of the verbal stimuli in the active attend condition. Additionally, users
reported the number of performed subtractions and generated words in the
perform condition. Higher numbers are better.
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Chapter 3

Discussion

3.1 Overview

The research goal of this thesis was to evaluate whether and to what extent
induced and evoked changes in EEG can be combined for BCI applications. A
general prerequisite for combining these two types of BCIs is that each one of
them serves a meaningful purpose within the same system. Therefore, central
to fulfilment of the research goal was to increase the level of integration of
these BCIs. As a results, new methodological approaches were developed.

The applied goal of this research was to evaluate state of the art in the
BCI technology in end-users with disorders of consciousness and to address
gaps in knowledge. To that end, existing BCIs were adapted to and new BCI
research was driven by the needs and capabilities of the end-users.

This thesis’ main contributions to the existing body of knowledge are:

1. strategies for combining induced and evoked changes in EEG for control
and communication

2. enhanced auditory scanning paradigm for binary communication

3. strategies for using EEG responses for spelling through listener-assisted
scanning

4. evaluation of mental imagery and attempted movements in end-users
with disorders of consciousness

5. experimental proof that a single auditory selective attention task can
modulate both induced and evoked changes in EEG
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3.2 Brain-computer interfaces based on induced
and evoked changes in EEG

3.2.1 Combined MI and SSVEP

In pursuit of combining induced and evoked changes in EEG for BCI applica-
tions, the first step was to evaluate whether and to what extent the existing
BCI systems can be made to work together. To that end, [79] investigated
whether two different BCIs, one based on MI and the other one on SSVEP,
can be used to extend the number of degrees-of-freedom in a control scenario.
In other words, this initial work investigated whether two different BCIs can,
in principle, be used in parallel with a common goal.

Indeed, the combination of MI and SSVEP based BCIs in Horki et al.
(2011) [79] allowed for a more finer control compared to previous work [74].
Nonetheless, several improvement potentials were identified: first, making the
BCI more suitable for the end-users, e.g. by making the SSVEP based BCI
less dependent on the eye-gaze control; second, making the whole system more
cohesive, as the BCIs were used separately and for different functions.

The following work aimed at overcoming two major shortcomings of the
overt SSVEP based BCI that hindered its application in end-users: first, its
fixed placement of visual stimuli, which does not account for the uncontrolled
head movements of the end-users; and second, its eye-gaze dependency, lim-
iting its use in end-users having difficulties with eye-gaze control. The first
shortcoming can be addressed through a wearable stimulation unit, similar to
that reported in overt SSVEP experiments [103]; the second shortcoming can
be addressed through a covert spatial SSVEP based BCI [85, 84, 7].

The problem with covert spatial SSVEP based BCIs is that the amplitude
of the SSVEP responses diminishes as the targets move outside the foveal
vision. One way of improving performance in covert spatial attention experi-
ments is to individually select EEG channel locations [85]. An open question
is whether an additional advantage, i.e. an improvement in performance, can
be gained by also selecting the stimulation frequencies.

In Horki et al. (2011) [77] it was investigated whether individual stim-
ulation frequencies in the alpha-band may improve performance compared
to fixed stimulation frequencies outside the alpha-band. To that end, offline
classification was performed for both modalities in a 2-class covert spatial
attention experiment with a wearable visual stimulation unit. No significant
difference could be found between classification accuracies obtained with stan-
dard and individual stimulation frequencies, with four out of six participants
yielding significant (greater than 65%) accuracy in both modalities.

Why were these accuracies lower than those reported in the early covert
spatial attention SSVEP based BCIs [85, 84]? One explanation for this dis-
crepancy of results are the following methodological flaws in early works: first,
use of overlapping time windows between training and test sets; second, a
cross-validation procedure consisting only of training and test sets, but not of
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holdout sets; and third, experimental design where only consecutive runs are
analysed, resulting in potential overfitting of the classifier to slow time-varying
changes in EEG unrelated to the experimental task.

The pursue of a covert spatial SSVEP based BCI however was not in wane,
as it provided valuable insights for further development of BCIs for the end-
users. The first insight was that designing a BCI independent of eye-gaze
leads to EEG responses severely diminished compared to overt BCIs. These
diminished responses, while statistically significant and clearly distinguishable
in grand averages, are difficult to detect on a single-trial basis and cannot be
used to establish functional communication. Thus, with almost all of the ad-
vantages of visual BCIs becoming irrelevant, one can forfeit the visual stimuli
altogether, and opt for an auditory based BCI. The second insight was, that
in order to reliably discriminate between the willfully modulated and pure
sensory EEG responses to external stimuli, these stimuli need to elicit re-
sponses reflecting cognitive processing, meaning the stimuli themselves need
to be more complex. An added advantage is that more complex cues and
stimuli may be more intuitive and easier to communicate to the end-users,
thus facilitating the use of BCI.

3.2.2 Auditory scanning

Given the general idea of a single-switch BCI (ssBCI), namely ”... to reliably
detect one certain, individually trained brain pattern of the user that can
be used to control all kinds of applications ...” [123], one would expect its’
implementation to be trivial. However, as it is often the case when making
such ideas a reality, the god is in the detail, meaning the details require careful
planning and many small ideas before the general idea can be implemented.

The auditory scanning paradigm reported in Müller-Putz et al. (2013)
[123] is an instance of a more general solution, addressing the following chal-
lenges in bringing the BCI technology to the end-users:

1. the end-users are a heterogeneous group differing in, amongst other
things, their needs (e.g. visual, tactile, and / or auditory presentation)
and capabilities (e.g. delayed responses).

2. there are many different kind of BCIs, differing in, amongst other things,
experimental strategy (e.g. self-induced or externally evoked responses)
and modes of operation (e.g. synchronous or asynchronous control).

3. the AT applications differ with respect to selection method employed,
number of selection items, etc..

These challenges were addressed as follows:

1. to address differing end-users, a scanning paradigm was designed that, in
principle, can be operated the same way in visual, auditory, and tactile
modality.
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2. to address differing BCIs, and to allow for delayed responses in some
end-users, both time-locked and non time-locked control signals are sup-
ported through a semi-synchronous design. This design has been suc-
cessfully evaluated with both self-induced and externally evoked EEG
responses, as well as various combinations thereof [123, 70, 68].

3. the designed paradigm supports different selection methods, and is scal-
able with respect to the number of selection items, allowing for bi-
nary [123], and multiclass selections [70]. Furthermore, the speed can be
traded off for accuracy by adjusting the number of scanning repetitions.

To summarize, this work not only allowed for the use of an ssBCI for binary
communication in auditory scanning mode [123], but also enabled future use
of BCI in various end-users and various AT applications.

3.2.3 Spelling through listener-assisted scanning

Setting the stage for further fusion of BCIs based on induced and evoked
changes in EEG, [70] addressed the issue that these BCIs differed substan-
tially in their experimental paradigms. These differences contributed to the
difficulty of finding the most suited control signal for the task at hand. Fur-
thermore, offering multiple choices of BCI control signals is a necessity due to
the so called BCI ”illiteracy”, meaning that in some end-users a certain type
of BCI does not work, and the only solution is to try out an alternative type
of BCI.

By making different types of BCIs interchangeable, the most suited control
signal can be used, and the BCI ”illiteracy” can be mitigated. However, this
needs to be evaluated in a standard AT application, so that it can be trans-
ferred to real-world scenarios. Arguably, the most well known AT application
in end-users with severe motor and visual impairments but preserved cognitive
skills was spelling through listener-assisted scanning in Bauby (1997) [10].

In Horki et al. (2015) [70], two BCIs were evaluated for spelling through
listener assisted scanning: the first BCI was based on induced changes in EEG,
by means of motor imagery; the second BCI was based on evoked responses in
EEG, by means of a cognitive task. The MI task, a brisk dorsiflexion of both
feet, resulted in pronounced patterns of ERD/S. The cognitive task, related to
working memory and perception of human voice, modulated ERP components
reflecting different stages of selective attention. Thus, even though these BCIs
differed substantially in their experimental paradigm and the EEG responses,
they were made interchangeable within a common application.

However, balancing requirements for induced (e.g., sensorimotor rhythm)
and evoked (i.e., ERPs) responses in EEG, each associated with different men-
tal tasks, led to certain compromises. For example, the maximum information
transfer rate was constrained by time requirements for induced and evoked re-
sponses in EEG. Whereas increasing the rate of presentation through partially
overlapping stimuli would have benefited the ERP based BCI, it would have
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rendered the sensorimotor rhythm based BCI useless. In contrast, the latter
BCI would have probably benefited from a group-item presentation at a re-
duced rate. Nonetheless, the choice between different mental (i.e., motor and
nonmotor) tasks is beneficial in addressing the individually specific needs in
end-users.

3.2.4 Brain-computer interface based on induced and
evoked changes in EEG

To the best of the authors knowledge, Horki et al. (submitted) [68] is
the first experimental proof that a single auditory selective attention task,
namely focusted attention to verbal performance of a brain-teaser task, can
modulate both induced and evoked changes in EEG. In detail, attending to
verbal performance of mental subtraction induced oscillatory activity similar
to that of a stand-alone performance (i.e. without verbal cues). Through
built in semantic deviants (”yes” / ”no”), the selective auditory attention
also evoked event-related potentials correlated with perceptual and semantic
processing of words.

This proof was obtained in a standard AT use case, with participants
answering a series of yes / no questions in a scanning paradigm, that can
generalize to further applications. This online BCI was designed with end-
users and their needs in mind. To that end, oscillatory activity allowed for
immediate feedback, whereas in its absence the evoked potentials could still
be used for post-hoc detection of command following, thus increasing the
reliability of results [68]. The combination of EEG responses from both low
and high frequency bands may also increase robustness to artifacts [42].

Several studies investigated hybrid BCIs based on induced and evoked
changes in EEG. Common to these studies is use of two different tasks. In
oneapproach, in addition to executing and / or imagining movements, the
participants perform a second task, namely monitoring and evaluating the
response of the BCI [20, 44, 87]. In case of an unexpected response, error-
related potentials (ErrP) can be detected in the EEG, and used to improve
the accuracy of the hybrid BCI system.

In a somewhat different approach [4], participants performed the following
two tasks: (i) tactile selective attention to vibro-tactile stimulation of the
left / right finger; and (ii) imagined left / right hand movements. Two hybrid
BCIs were investigated by combining the SSSEPs from the selective attention
task, and the ERD from the MI tasks, either simultaneously or sequentially.
Based on data from 16 healthy participants, the sequential hybrid approach
yielded best results.

In contrast to these studies utilizing a dual-task designs, where the users
must split their attention between two different tasks, Horki et al. (sub-
mitted) [68] employed a single task, allowing the users to fully focus on the
task at hand.
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3.3 BCI evaluation in end-users: findings, lim-
itations, and alternative approaches

Within this thesis, complex and / or familiar mental imagery, passive, and
attempted feet movement were evaluated in end-users with DoC. To that end,
six MCS end-users were verbally instructed to perform different mental im-
agery tasks (sport, navigation), and attempted feet movements. Statistically
significant (p < 0.05) offline classification accuracies were estimated for all
three tasks (i.e., attempted feet, sport, and navigation), and most often with
motor tasks.

One limitation of this work is that the passive feet movements could be
evaluated in one end-user only, as an evaluation in other end-users was not fea-
sible due to a presence of spasticity. Indeed, [180] reported that large propor-
tion of DOC end-users develop severe spasticity. Time-frequency analysis of
passive feet movements revealed task-related EEG changes over neurophysio-
logical plausible cortical areas. However, the estimated classification accuracy
was not statistically significant (p < 0.05).

Another limitation of this work is its focus on experimental paradigms that
do not require any vision, motivated by the findings that a patient in the com-
pletely locked-in state with ALS has lost all afferent pathways but the auditory
system [129]. However, the potential BCI end-users are a very heterogeneous
group, differing greatly in their needs and capabilities. End-users with no
vision problems may benefit from visual ERP based BCIs, assuming there are
no major differences in performance compared to healthy participants. The
latter assumption was put to test in McCane et al. (2015) [108], who
evaluated a visual ERP based speller in people with amyotrophic lateral scle-
rosis (ALS) and in healthy controls, and compared these two groups in terms
of accuracy, speed, and ERP features (i.e. latency, amplitude, location). No
significant differences in accuracy and speed of communication were found be-
tween the ALS and the healthy group. Significant differences were found for
the following ERP features: amplitude of early negative component (N200);
location and amplitude of the late positive component (P300); and the latency
of late negative (LN) component.

In a non-spelling application, Marchetti et al. (2013) [106] compared
two interfaces for controlling the movement of a cursor on a monitor. The
two interfaces, based on either voluntary (endogenous) or cued (exogenous)
orienting of covert spatial attention, were evaluated in ten ALS end-users.
The ALS end-users obtained control of both of these BCIs, with endogenous
interface resulting in higher accuracy and information transfer rate.

Covert attention was also investigated in Lesenfants et al. (2014) [99],
who proposed a novel SSVEP based BCI using covert non-spatial attention to
a modified checkerboard stimulation pattern (i.e. interlaced squares made of
red and yellow LEDs). The BCI was evaluated online in healthy participants
and six LIS end-users. Mean online accuracy for healthy participants was
74 ± 13%. Command following (i.e. offline accuracy above the chance level)
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could be detected in two out of six LIS end-users, with one out of four LIS
end-users being able to communicate online.

A hybrid visual BCI was reported in Pan et al. (2014) [141], who inves-
tigated whether a visual ERP and an SSVEP based BCI can be combined to
detect command following in seven end-users with disorders of consciousness
and one LIS end-user. To that end, the end-users were instructed to attend
to one of two photos: one was their own, and the other was unfamiliar. To
elicit ERPs the frames of the two photos were randomly highlighted, and to
elicit SSVEP each photo flickered at a different frequency. Command follow-
ing could be detected in 2 DOC end-users, the LIS end-user and in healthy
controls (N=4).

In addition to BCIs relying on eye-gaze control, some end users could
potentially benefit from recently reported hybrid BCIs relying on muscular
control [142], or combining a BCI with an added input from a sensor [163, 89].
However, it is unclear whether and to what extent such an approach could
benefit end-users with MCS.

3.3.1 Complementary approaches

Recently, various approaches were reported in bringing the mental imagery
based BCIs to the end-users, that could complement the findings of this the-
sis. Several studies opted for individually adapted motor imagery [9, 66, 40],
employed specialized paradigms [9], and advanced machine learning meth-
ods [66], and online co-adaption [40]. Whereas individually adapted motor
imagery, as well as advanced machine learning methods, were already em-
ployed in this thesis, additional use of online co-adaptation could further im-
prove the results.

Co-adaptive training paradigms were evaluated by Faller et al. (2014)
[40] in 22 end-users with severe motor impairment. In the initial experiment,
the participants performed right hand movement imagery (MI), left hand MI
and relaxation. Subsequently, visual feedback was delivered for the MI task
that was easier to discriminate against relaxation. In the second experiment
of the study, the same participants controlled a self-paced BCI, individually
adapted through auto-calibration. Statistically significant (p = 0.01) accura-
cies were estimated for 18 of 22 participants of the initial experiment, and for
11 of 20 participants of the second experiment.

However, when applying these co-adaptive training paradigms to end-users
with MCS, great care must be taken to ensure that the BCI adapts to willful
modulation of brain activity, and to avoid adaptation to non-task related
changes.

3.4 Summary and Conclusions

Comparatively few BCI studies investigated combined BCIs, using two tasks
in either sequential or simultaneous manner. One possible cause of this lim-
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ited number of studies is the complexity and inherent difficulty of a two-task
design: to achieve the desired goal the users must split their attention between
two different tasks. Further difficulties lie in differing and conflicting require-
ments for experimental strategies, signal processing and mode of operation.

In this thesis, these difficulties were dealt with and it was shown how to
successfully combine induced and evoked changes in EEG for BCI applications.
Furthermore, it was demonstrated that a single auditory selective attention
task can modulate both induced and evoked changes in EEG, thus paving
the way for further BCIs that exploit both of these types of brain signals.
Notably, the novel experimental paradigms can facilitate such endeavours and
their transition from a laboratory to end-users.

In a related work, the state of the art in the BCI technology was evaluated
in end-users with disorders of consciousness. Furthermore, it was contributed
to by comparing different types of mental tasks and attempted movements
within end-users, as well as by exploring new venues.

3.5 Future prospects

EEG based BCIs, eventhough they made good progress in translating the
results obtained with healthy participants to end-users, are still not robust
and reliable enough to be used as a sole assistive devices by the end-users.
One proposed solution to this shortcoming is the hybrid BCI, also employed in
this thesis, integrating common assistive devices with different types of BCI.
In addition to assistive devices, BCIs could further be improved by including
other types of biosignals such as ECG, EMG, and EOG.

In some end-users (e.g. in persons with MCS), due to fluctuation in re-
sponsiveness it is only occasionally possible to establish communication. Most
of the current studies address this issue by repeating the measurement on a
different day. Another way of addressing this issue would be to continuously
record the EEG and other types of biosignals over a longer period of wake-
fulness. During this time period, both passive and active paradigms could be
used to try and identify the periods of responsiveness.

Future BCI research in end-users with MCS could also benefit from novel
experimental paradigms addressing the issues of agitation and motivation.
Agitation often results in strong artifacts, rendering the EEG signals difficult
to process, and motivation can be negatively impacted by monotonous ex-
perimental paradigms and lack of meaningful feedback. One future prospect
of addressing these issues is through use of music. For example, Formisano
et al. (2001) [45] reported indications that active music therapy can both
reduce psychomotor agitation in persons with severe brain injuries, as well as
improve their collaboration.

The approach outlined in this thesis is well suited for novel experimental
paradigms that integrate engaging feedback, such as active music therapy,
with various mental tasks (e.g., attempted / imagined movements). For ex-
ample, year after year thousands of people spontaneously clap their hands and

58



stamp their feet to the clapping / marching chorus of the famous Radetzky
March. Another way of viewing this is that they actively attend to an audi-
tory performance of the hand / feet motor task. And most importantly, they
have fun doing it.
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[176] Simon, N., I. Käthner, C. A. Ruf, E. Pasqualotto, A. Kübler
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Appendix A

Primary Publications

A.1 Contributions

Listed in this section is the approximate amount of work authors contributed
to the five primary publications.

Author work contribution
1 P. Horki 65% idea, programming, measurements, analysis, writing

T. Solis-Escalante 10% technical advice, writing
C. Neuper 5% general advice, writing

G. Müller-Putz 20% idea, advice on paradigm, writing
2 G. Müller-Putz 30% idea, general advice, writing

C. Pokorny 10% partial programming, measurements
D. Klobassa 5% measurements, writing

P. Horki 55% programming, measurements, analysis, writing
3 P. Horki 55% idea, programming, measurements, analysis, writing

G. Bauernfeind 5% writing
D. Klobassa 5% measurements, writing
C. Pokorny 5% technical advice, measurements
G. Pichler 5% general advice, writing, end-users

W. Schippinger 5% general advice, writing, end-users
G. Müller-Putz 20% idea, general advice, proofreading

4 P. Horki 80% idea, programming, measurements, analysis, writing
D. Klobassa 5% writing
C. Pokorny 5% writing

G. Müller-Putz 10% general advice, writing
5 P. Horki 70% idea, programming, measurements, analysis, writing

G. Bauernfeind 10% technical advice, writing
W. Schippinger 5% general advice, end-users

G. Pichler 5% general advice, end-users
G. Müller-Putz 10% advice on paradigm, writing
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Abstract A Brain–Computer Interface (BCI) is a device

that transforms brain signals, which are intentionally

modulated by a user, into control commands. BCIs based

on motor imagery (MI) and steady-state visual evoked

potentials (SSVEP) can partially restore motor control in

spinal cord injured patients. To determine whether these

BCIs can be combined for grasp and elbow function con-

trol independently, we investigated a control method where

the beta rebound after brisk feet MI is used to control the

grasp function, and a two-class SSVEP-BCI the elbow

function of a 2 degrees-of-freedom artificial upper limb.

Subjective preferences for the BCI control were assessed

with a questionnaire. The results of the initial evaluation of

the system suggests that this is feasible.

Keywords Steady-state visual evoked

potential (SSVEP) � Brain–computer interface (BCI) �
Neuroprostheses

1 Introduction

A Brain–Computer Interface (BCI) is a device which trans-

forms brain signals, which are intentionally modulated by a

user, into control commands for computers or machines [34].

Electroencephalogram (EEG)-BCIs based on steady-state

visual evoked potentials (SSVEP) [15, 16] and based on the

P300 [6] component, respectively, can be set-up with almost

no training, but they require external stimuli. On the other

hand, EEG-BCIs based on sensorimotor rhythms (SMR) [26]

and slow cortical potentials (SCP) [3] require no external

stimuli, but they require extensive user training. Self-paced

control of a neuroprosthesis has been demonstrated with the

event-related (de)synchronization (ERD/ERS) of SMR,

induced by motor imagery (MI) [19, 27].

SSVEP are elicited by presenting repetitive visual

stimuli at a frequency greater than 6 Hz, and can be

recorded at occipital electroencephalogram (EEG) elec-

trode positions [31]. For the SSVEP-BCIs, different classes

can be realized by using flickering lights with different

frequencies. These flickering stimuli, delivered via light

emitting diodes (LED) or a computer monitor, modulate the

EEG signals at the stimulating frequency and its harmonics

[4, 7, 18]. The frequency components of the SSVEP can be

obtained from the power spectral density analysis of the

EEG, the lock-in analyzer system (LAS) and canonical

correlation analysis (CCA) [2, 13, 16, 20]. Applications of

SSVEP-BCIs include communication purposes [4] as well

as self-paced control of electrical prosthesis [21].

In our previous work, we investigated whether an asyn-

chronous SSVEP-BCI can control a 2 degrees-of-freedom

(DoF) artificial limb [10]. In that work the SSVEP-BCI was

used to toggle both the hand function (open/close) and the

elbow function (flexed/extended). Eight healthy subjects and

one tetraplegic patient could control the artificial limb

online, with the positive predictive value varying between

69% and 83% (76 ± 4% for all nine participants), and the

false negative rate varying between 1% and 17% (8 ± 5%).

One possible improvement to this previous work would be to

allow for intermediate elbow positions between the full

flexion and the full extension.
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Recently, hybrid BCI systems based on MI and SSVEP

have been reported [1, 29]. In [29], a hybrid BCI system

was created by switching a battery of flickering lights

(SSVEP-BCI) on or off by using a brain switch based on

the post-imagery beta ERS [22, 25, 32]. By sequentially

combining the two BCIs the number of false activations in

the self-paced operation of an SSVEP-based orthosis could

be reduced.

Restoration of a lateral grasp was achieved in a spinal

cord injured patient [27]. The patient was able to sequen-

tially switch between grasp phases by imagining foot

movements. In recent studies [22, 32], the post-movement

beta rebound was shown to be strong and stable without

any subject training. Also, recent work investigated, in

healthy participants, the SSVEP-BCI control of a prosthe-

sis and an orthosis [21, 23]. Based on these results, our goal

is to combine MI and SSVEP BCIs for the independent

control of the grasp and elbow functions. A further goal is

to allow for a fast and practical BCI setup, by using a

minimum number of EEG electrodes. We chose to combine

the beta rebound after brisk feet MI and a two-class

SSVEP-BCI. To this end, we investigate a control method

where the MI-BCI controls the grasp function and the

SSVEP-BCI the elbow function of an artificial upper limb

with 2 DoF. We evaluated the performance of both BCIs,

and assessed the participant’s preferences for the BCI

operation with a questionnaire.

2 Methods

2.1 Stimulation unit, subjects and EEG recording

Stimulation unit The stimuli were delivered via two red

LED bars (2 cm 9 5 cm) flickering at 8 and 13 Hz with a

duty cycle of 50%. The LED bars were arranged in one row

with a center-to-center distance of 7.5 cm

Subjects Twelve healthy subjects (7 male and 5 female,

aged between 23 and 30 years) participated in the initial

cue-based calibration. Two subjects showed no beta

rebound following the brisk feet MI, and for one subject we

could not setup an adequate classifier (meaning offline

accuracy above 70% [12]); therefore they were excluded

from further investigations. Two of the remaining nine

subjects were not available for subsequent measurements.

A total of seven subjects (4 male and 3 female) participated

in an online experiment.

The experiment was undertaken in accordance with the

Declaration of Helsinki, and the study was approved by the

local ethics committee of the Medical University of Graz.

Participants gave informed consent prior to the beginning

of the experiments.

EEG recording In the initial cue-based calibration the

EEG was recorded from the occipital and the central part of

the head by 21 and 5 Ag/AgCl electrodes, respectively. The

occipital electrodes were placed in 3 rows and 7 columns

[20]. The central electrodes formed a single Laplacian [9]

derivation at electrode position Cz, overlying the foot

cortical representation. Figure 1 shows the electrode

montage. The distance between electrodes was 2.5 cm.

Reference and ground electrodes were placed at the left and

right mastoid, respectively. Impedances were kept below

5 kX. The EEG amplifier (g.BSamp, g.tec Guger Tech-

nologies, Graz, Austria) was setup with a bandpass filter

between 0.5 and 100 Hz, with a sensitivity of 100 lV. The

notch filter (50 Hz) was on and the sampling rate was

fs = 250 Hz. Subjects were seated about 1 m in front of the

stimulation unit and the monitor in an electrically shielded

and slightly dimmed room.

In online BCI experiments with feedback the EEG was

recorded from a subset of six occipital electrode positions

(individually selected) and from Cz (Laplacian derivation)

as described above. Once again, reference and ground

electrodes were placed at the left and right mastoid. The

EEG amplifier settings were as described above. Subjects

were seated about 1 m in front of the experimental setup

consisting of the stimulation unit and the artificial limb

(a robotic arm mounted on a mannequin) placed in front of

an artist’s board.

Fig. 1 EEG electrode positions used for recording in the initial cue-

based calibration. Also shown is the distribution of EEG channels,

individually selected from EEG data recorded in experiments without

feedback. The numbers indicate how often each EEG channel

contributed to the best accuracy. The distance between electrodes

was 2.5 cm
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2.2 Experimental paradigm

The experiment was divided into an offline and an online

session, conducted on separate days. The offline session

consisted of a short initial screening followed by 4 runs of

simultaneous MI and SSVEP cue-based calibration [23]. In

the online session the subjects controlled a 2 DoF artificial

upper limb according to verbal instructions.

The cue-based calibration started with a short screening

measurement (3 min) during which the subjects were

instructed to relax and to focus their attention on a certain

point on the screen. The purpose of this short measurement

was to determine the alpha-band characteristics in EEG

spectrum. To this end, a power spectrum analysis was

performed on each of the EEG channels O1, Oz and O2.

For one subject (BC4), a destructive interference of the

a-band with one of the stimuli frequencies (8 Hz) was

found, and for this subject the stimuli frequencies were set

to 7 Hz and 13 Hz.

The screening measurement was followed by a com-

bined MI and SSVEP calibration consisting of 4 runs

containing 40 trials each, separated by short breaks of

about 1–2 min to avoid fatigue. In the first run the subjects

were instructed to execute a brisk feet dorsiflexion,

whereas in runs two to four the subjects were instructed to

only imagine the movement. The SSVEP task was to focus

on one of the two flickering lights, placed below the screen.

During the whole session the subjects did not receive any

feedback.

Each trial lasted 8 s and the trial timing consisted of:

(1) at the beginning of each trial (t = 0 s), a fixation cross

was presented at the center of the screen, and remained

visible until the end of the trial; (2) from t = 0 to 2 s, the

participants had to look at a fixation cross, and at t = 2 s, a

short tone catched the subject’s attention; (3) from t = 3 to

4.25 s, a cue appeared. An arrow pointing downwards

indicated the brisk feet dorsiflexion, whereas an arrow

pointing left or right indicated at which flickering light the

participants should focus their attention on.

Each flickering light was randomly indicated ten times

within each run resulting in 40 trials for each of the two

SSVEP classes. The brisk feet dorsiflexion task was ran-

domly indicated 20 times within each of the runs two to

four, resulting in 60 MI trials used for data analysis. The

ME trials in the first run were not included in the data

analysis.

In the online experiment we evaluated the combined MI

and SSVEP based BCI in a 2 DoF artificial upper limb

control scenario, repeated four times with each subject. The

subjects controlled the grasp and elbow functions accord-

ing to verbal instructions given by the experiment super-

visor. The grasp function (gripper), controlled with the MI,

could be toggled between opened and closed state by

imagining brisk feet movements. The SSVEP was used to

control the elbow. The elbow could be gradually moved

from full extension to full flexion by using the two SSVEP

classes for flexion or extension, respectively. For the elbow

control, steps of variable duration in time (minimal

duration 1 s, increment 1 s, full range 8 s) were employed.

The initial state of the gripper was closed and the initial

position of the elbow was full extension. The middle

position of the elbow, in the center between the full flexion

and the full extension, was defined as an interval (approx

20% of the full range). The flexed, middle and extended

elbow position intervals were marked on an artist’s board,

placed behind the artificial upper limb. In this way the

subjects could see whether they have reached the intended

position or not. Every time the desired elbow position was

reached, the subjects were verbally informed. During the

online experiment, the subjects were given verbal instruc-

tions to perform one of the following tasks: open the

gripper (GO); close the gripper (GC); move the elbow from

extended to middle position (T1); move the elbow from

middle to extended position (T2); move the elbow

from extended to flexed position (T3); move the elbow

from flexed to middle position (T4).

The verbal instructions followed a predefined movement

sequence, always defined as GO, GC, T1, T2, GO, GC, T3,

T4, GO, T2, GC. After each correct execution of an MI or

SSVEP task and before the subsequent verbal instruction a

non-control period of random length was inserted. The

subjects were instructed beforehand to relax during the

non-control period and to wait for the next verbal

instruction. They were also instructed to correct false

activations.

To assess the subject’s feeling of control, after the

online experiment the subjects filled out a questionnaire

with three questions. The answer to each of the questions

could be rated on a scale between 1 (low) and 10 (high).

The subjects were asked to answer the following questions:

(1) rate your ability to control the elbow by focusing on the

flickering lights; (2) rate your ability to control the gripper

by motor imagery; (3) rate the ability of the system to

detect non-control periods.

2.3 Data processing

2.3.1 Classification of SSVEP

EEG data recorded from occipital sites during the experi-

ments without feedback was used to select a subject-spe-

cific set of EEG channels and to setup the SSVEP classifier

for the online experiment. The SSVEP frequency recog-

nition was based on CCA.

Canonical correlation analysis (CCA) CCA captures the

interrelationship between several predictor and several

Med Biol Eng Comput (2011) 49:567–577 569
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response variables [11]. CCA transforms the original

variables so that the resulting values correlate as much as

possible with each other. The use of CCA in EEG signal

analysis is based on the premise that the measured SSVEP

will contain the same frequency as the stimulus signal [13].

CCA coefficients can be calculated using the EEG signals

recorded from multiple channels as one set of variables,

and all stimulus frequencies and associated harmonics

(in our experiments second and third harmonics) as another

set of variables. The frequency with the largest CCA

coefficient is then the stimulus frequency of the recorded

SSVEP.

Offline analysis Following the cue-based calibration

procedure, single-trial EEG epochs were derived in asso-

ciation with each SSVEP cue, beginning 2 s prior to the

cue onset and lasting for 8 s. These epochs were then split

into equal-sized test and training sets. Overlapping time

segments of 1 s, obtained from the EEG data from each

trial, were analysed using CCA. The amount of overlap

between two consecutive time segments was empirically

set to 80% for the training sets and 96% for the test sets.

Classification accuracy was computed from single-trial

EEG epochs. In detail, for every time segment the CCA

algorithm yielded the recognized frequency (8 or 13 Hz).

The number of how many times the same frequency was

recognized for the time segment at a given time point

across all different single trial EEG epochs was noted. For

each of the different time segments this number was divi-

ded through the number of all single trial EEG epochs,

yielding the classification accuracy.

Two thresholds were used in the online experiments to

determine which stimulus the participant is focusing his/

her attention on. The values of these thresholds were

determined from the performance of CCA on the test set

for the selected channels. These thresholds were calculated

separately for each of the stimulation frequencies as

follows: (1) previously obtained accuracies were used to

calculate mean accuracies and standard deviations for two

different time intervals—the reference interval between

second 0 and 2 and the activation interval between second

4 and 8 (relative to the beginning of the trial); (2) the

standard deviation for the reference interval was added to

the mean of the reference interval yielding the reference

threshold. The standard deviation for the activation interval

was subtracted from the mean of the activation interval

yielding the activation threshold. The threshold to be used

in the online experiments was obtained by adding the ref-

erence threshold and the activation threshold and dividing

the result by two.

Feature selection A modified sequential floating for-

ward selection (SFFS) was applied to select the EEG

electrode channels [30]. The criteria for selection was a

combination of maximizing the accuracy in the period after

the cue onset, while maintaining a chance level before the

cue onset, as indicated by the classification accuracy of

CCA in single EEG trials.

The following steps were applied on the 21 occipital

EEG channels recorded in the initial cue-based calibration

experiment:

1. In an initial step, training combinations of four channels,

with two channels in each row, are analyzed, and the one

with the single largest CCA accuracy is selected. If there

are multiple best solutions, the mean CCA accuracy is

used to discriminate between channel combinations.

2. In a step forward, the current best combination of nF

(number of channels in a forward step, nF = 4 in the

first step forward) channels is expanded (one neighbor

at a time) with all of its neighbors, yielding several

combinations of nF ? 1 channels. CCA accuracies of

these combinations are estimated and the best combi-

nation is selected. If its accuracy is better than the

accuracy of the current best channel combination, it is

selected as the new current best; otherwise, the

algorithm continues with the next step backward.

3. In a step backward, the current best combination of nB

(nusmber of channels in a backward step, nB = 5 in the

first step backward) channels is analysed. CCA

accuracies of all possible combinations of nB - 1

channels are estimated and the best one is selected. If

its accuracy is better than the accuracy of the current

best channel combination, it is selected as the new

current best; otherwise, the algorithm continues with

the next step forward.

4. The whole procedure is repeated until the desired

number of channels (empirically set to 6) is selected.

Online classification In the online classification proce-

dure, CCA was applied every 0.125 s on a sliding window

of 1-s length. The output of the CCA classifier, i.e., the

recognized SSVEP frequency—was stored in a circular

buffer containing the CCA classifier outputs for the last 4 s.

If the online percentage of frequency recognition, calcu-

lated separatly for each one of the stimulation frequencies

from the circular buffer, exceeded the corresponding

threshold, that frequency could be detected as the one the

participant is focusing on (see Fig. 2). A dwell time

parameter placed an additional constraint on the online

classification, namely that the same stimulus frequency

must be recognized during a predefined time period, in

order to be eligible for a command selection. The same

dwell parameter, empirically set to 1.5 s was used for all

participants. For example, for a percentage threshold of

50% for the 8 Hz stimulus, at least half of the recognized

frequencies in the circular buffer must had been 8 Hz.

For this case a decision can could have been made in as

short as 2 s.

570 Med Biol Eng Comput (2011) 49:567–577

123 82



2.3.2 Classification of motor imagery

Time–frequency maps analysis To analyze the percentage

of power decrease (ERD) or power increase (ERS) relative

to a reference interval [24] (0.5–1.5 s), time–frequency

map for frequency bands between 6 and 40 Hz (35 over-

lapping bands using a band width of 2 Hz) was calculated

[8]. Sinusoidal wavelets were used to assess changes in the

frequency domain, the spectrum was calculated within a

sliding window, squared and subsequently averaged over

the trials [14]. To determine the statistical significance of

the ERD/ERS values a t-percentile bootstrap algorithm

with a significance level of a = 0.05 was applied [5].

Classification Fisher’s Linear discriminant analysis

(LDA) is used as a classifier based on one logarithmic band

power feature corresponding to the brisk feet MI, obtained

by band-pass filtering, squaring and averaging over 1 s in a

sample by sample way. A 10 9 10 cross-validation was

applied to calculate the accuracy for each 0.5 s from t = 0

to 8 s. The highest accuracy classifier was used in the

online experiment with an additional threshold in the foot

MI class. For detection of foot MI, the threshold was

defined as the the mean plus standard deviation of the

simulated LDA output for the whole EEG recording. This

threshold was recalibrated in a first test run to the final

value [22].

2.3.3 Online evaluation

To assess the performance of the combined BCI we eval-

uated the performance of MI-BCI during the gripper con-

trol tasks and the performance of the SSVEP-BCI during

the elbow control tasks. For the MI-BCI we computed a

histogram of the time needed to activate the gripper rela-

tive to the verbal cue. For the SSVEP-BCI movement

trajectories were obtained from linear potentiometers

mounted on the artificial upper limb.

3 Results

3.1 BCI control

The offline classification accuracy (cross-validated) calcu-

lated from the MI trials obtained during the initial

Table 1 Summarized results of the cue-based calibration

Subject accMI (%) fMI (Hz) accSSVEP

AE9 81 23–27 99

AL9 95 17–29 87

AN7 89 19–27 93

AO3 89 26–30 94

AQ9 91 19–30 95

AV1 88 22–25 92

AV2 79 21–25 92

BC2 92 20–26 92

BC4 78 19–23 76

x 87 91

Shown here are the offline accuracy for the MI (accMI) task with

corresponding frequency bands (fMI), and the offline accuracy for the

SSVEP (accSSVEP) task

Fig. 2 Online classification procedure. The CCA was applied every

0.125 s on a sliding window of 1-s length. The output of the CCA

classifier—that is the recognized SSVEP frequency—was stored in a

circular buffer containing the CCA classifier outputs for the last 4 s. If

the online percentage of frequency recognition, calculated separately

for each stimulation frequency, from the circular buffer exceeded the

corresponding threshold, than this frequency was detected as the one

the participant was focusing on
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cue-based calibration is shown in Table 1. Additionally,

the selected frequency bands are given. The corresponding

ERD/ERS maps are displayed in Fig. 3. In Table 1, the

offline accuracies calculated from the SSVEP trials are

shown.

The online MI-BCI control is presented in Fig. 4. For

comparison purposes, Fig. 4a shows the average number of

commands given at a certain latency. Noteworthy, most of

the activations occurred in the first 10 s, relative to the

experimenter indications. Furthermore, it is reasonable to

assume that the histogram could be approximated by a

decaying exponential, suggesting a fast activation of the MI-

BCI. Figure 4b–h shows the participant-specific activation

histograms for the operation of the MI-BCI (gripper

control), together with the cumulative sum of commands.

One subject (BC4) needed 7 s at most to activate the gripper.

The online SSVEP-BCI control is presented in Fig. 5

and in Table 2. Elbow movement trajectories and the

corresponding control tasks, during a single run for each

one of the subjects, are shown in Fig. 5. Generally, the

subjects had no difficulties in moving the ellbow to the

desired position. However, they had difficulties in sus-

taining the reached position, due to false activations. Note

that it takes approximately 8 s for the artificial upper limb

to cross the full range between the flexed and the extended

position.

Figure 1 shows the distribution of occipital EEG chan-

nels, individually selected from EEG data recorded in the

Fig. 3 ERD/ERS time–frequency maps. Reference interval was calculated from second 0.5 to 1.5; movement onset was at second 3 and the

shown frequency range starts at 6–40 Hz
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Fig. 4 Gripper performance.

a The average number of

activations across time, as

subjects perform the motor

imagery task, for all 7 subjects

is shown. (b–h) Shows the time

needed to activate the gripper

and the cumulative sum of

activations for each of the

subjects and for all four runs

(b–h)
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initial cue-based calibration, and used in online experi-

ments with feedback. The numbers indicate how often each

EEG channel contributed to the best accuracy. The chan-

nels selected most often were Oz, O1 and the channel

posterior to O1.

All subjects were able to perform the movement

sequence consisting of 11 movements, albeit with move-

ment corrections. On average the subjects had to correct

3 ± 2 movements while performing the sequence.

3.2 Subjective measures

The subjects rated their ability to control the elbow with

7.7 ± 1.6 (on a scale from 1, low, to 10, high). To control

the gripper their rating was 6.3 ± 1.8. Finally, the perfor-

mance of the system to detect non-control periods was

rated with 5.8 ± 1.7.

4 Discussion

In this work, we investigated whether it was possible to

combine the MI and SSVEP BCIs in a way so that they can

be used for the control of both, grasp and elbow function,

independently. The MI-BCI was used to control the grasp

function and the SSVEP-BCI was used to control the elbow

function of a 2 DoF artificial upper limb. The results of the

initial evaluation of the system suggests that this is feasi-

ble, although further work is needed to improve the per-

formance of the system during the non-control periods.

One possible improvement would be identifying ‘‘reso-

nance-like’’ frequencies for SSVEP-based BCI. Another

aspect worth improving is the computation of the thresh-

olds in the offline SSVEP analysis, chosen for its initial

good results and for its simplicity. Indeed, there are more

sophisticated methods to discriminate between two classes

when their means and standard deviations are known (e.g.

using the correlation coefficients as features to train a

Fisher’s linear classifier [35]).

The SSVEP control (elbow) generally resulted in a

higher number of false activations than the MI control

(gripper). However, most of the subjects perceived their

ability to control the elbow to be higher than their ability to

control the gripper. One explanation for this may be that

subjects perceived that correcting false elbow activations

was easier compared to correcting false gripper activations.

Another explanation may be that the resolution of the

elbow control is finer compared to the gripper control.

The combination of BCIs for control of an application

has been presented as a ‘‘hybrid BCI’’ [28]. In their paper,

the authors described different ways on how a hybrid BCI

can be constructed. A hybrid BCI is composed essentially

of two or more BCIs that are operated sequentially or

simultaneously. The combination of at least one BCI and

other assistive technologies also constitutes a hybrid BCI

[33]. Until now, SSVEP- and MI-based BCIs were com-

bined sequentially to reduce the false activations during

non-intentional control [29]. To achieve this, the MI-based

BCI enabled/disabled the SSVEP-based BCI and thus, the

control of the application (i.e., SSVEP-based hand pros-

thesis) was not continuously available to the user. On the

other hand, the simultaneous operation of these two BCIs

was focused on improving the classification accuracy or on

reducing the illiteracy of the BCI users [1]. That is, both

BCIs worked together for providing a binary decision in a

cue-paced experiment.

In our case, two BCIs are operated simultaneously for

controlling a hand and elbow neuroprosthesis; providing

independent control of the elbow flexion/extension with an

SSVEP-based BCI and, the gripper open/close with a MI-

based BCI. Such approach is novel for these two types of

BCI and for the hybrid approach itself. The hybrid design

presented here allows the user to operate both BCIs con-

tinuously with two different purposes that serve the com-

mon goal of controlling a 2 DoF artificial arm.

Our design investigated a possible scenario where more

than one BCI is being controlled by the same user simul-

taneously. Evaluating the performance of the individual

BCI components and the system as a whole has to be done

carefully. Assessing the performance of the SSVEP-BCI

during the continuous control of the elbow posed a whole

new set of challenges, compared to the discrete MI-BCI

control of the gripper. For example, it is difficult for sub-

jects to assess the elbow position while they are focusing

their attention on the flickering LEDs. Therefore, situations

can occur when subjects continue focusing at the flickering

lights, unaware that they have reached the desired position.

Further, when full extension or full flexion is reached,

subsequent detections provide visual feedback (elbow

movement) in one direction only. One possible solution to

this problem would be to include an additional auditory

feedback. In an alternative approach one could attach the

flickering lights directly on to the artifical limb.

Future work will focus on developing a fully self-paced

BCI system. To this end, the subjects can learn the whole

movement sequence in advance. Our final goal is to use the

combined BCI system to control hand and elbow

neuroprosthesis.

Fig. 5 Elbow performance. Elbow movement trajectories and the

corresponding control tasks during a single run for each one of the

subjects. The SSVEP tasks were the following: move the elbow from

extended to middle position (T1); move the elbow from middle to

extended position (T2); move the elbow from extended to flexed

position (T3); move the elbow from extended to middle position (T4).

These runs were chosen as representative of the tasks being

performed

c
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We investigate whether an electroencephalography technique could be used for yes/no communication
with auditory scanning. To be usable by the target group, i.e. minimally conscious individuals, such a
brain-computer interface (BCI) has to be very simple and robust. This leads to the concept of a single-
switch BCI (ssBCI). With an ssBCI it is possible to reliably detect one certain, individually trained, brain
pattern of the individual, and use it to control all kinds of applications using yes/no responses. A total
of 10 healthy volunteers (20–27 years) participated in an initial cue-based session with a motor imagery
(MI) task after brisk passive feet/hand movement. Four of them reached MI classification accuracies
above 70% and, thus, fulfilled the inclusion criterion for participation in the 2nd session. In the 2nd
session, MI was used to communicate yes/no answers to a series of questions in an auditory scanning
mode. Two of the three participants of the 2nd session were able to reliably communicate their intent
with 90% or above correct and 0% false responses. This work showed, for the 1st time, the use of a ssBCI
based on passive and imagined movements for communication in auditory scanning mode.

Keywords: Brain-Computer Interface (BCI); single-switch; electroencephalography (EEG); motor
imagery; auditory scanning, minimally conscious state (MCS).

1. Introduction

A Brain–Computer Interface (BCI) provides a pos-

sible means to establish communication or con-

trol, of computers or machines, for people who are

unable to use traditional assistive devices. BCIs were

mainly developed as a means of communication,1−5

for control of wheelchairs6,7 and for control of neu-

roprosthetic devices.8,9 Although BCI research has

now been conducted for more than 20 years, only

some research labs have successfully applied the use

of BCI systems to patients.10−15 Some attempts

have been made to provide patients with so-called

locked in syndrome with an electroencephalography

(EEG)-based communication device,16 however, this

communication channel has been observed to be very

difficult and time consuming to establish.

Another group of patients who are unable to

perform any motor movement to use an assistive

device but have been proven to be consciously aware

are people in a minimally conscious state (MCS).17

This mainly occurs after traumatic brain injury.

These patients are not able to communicate and

it is not fully understood to what extent they are

conscious. Functional magnetic resonance imaging

(fMRI) experiments by Owen et al.18 and others19

have shown that it is possible to get in contact with

a patient fulfilling the criteria for the (mis)diagnosis

of vegetative state (VS). Here, patients were asked to
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either imagine playing tennis or to navigate through

their own apartment. Both imaginations led to very

specific activations which could then be used to

establish a communication channel with people in

the MCS by means of simple yes/no questions.20

Transferring such fMRI-based paradigms to

EEG-based paradigms would have the advantage

of making them suitable for standard clinical, or

even home, use with MCS patients. Cruse et al.21

assessed bedside detection of awareness with EEG

in 16 patients in VS. Patients were asked to imag-

ine movements of their right hand and toes to

assess command following. In three patients, who

were behaviorally completely unresponsive, appro-

priate EEG responses to two distinct commands

could be reliably detected. Provided consciousness

is detected, a need arises for an EEG-based com-

munication device, a BCI that would empower these

patients to reliably communicate yes or no responses.

To be usable by the target group, i.e. the mini-

mally conscious individuals, such a communication

device has to be very simple and robust, meaning it

should function even when only a single brain pat-

tern of the patient can be reliably detected. It should

employ auditory cues and feedback, since recently it

was shown that a patient in the completely locked-in

state with amyotrophic lateral sclerosis has lost all

afferent pathways but the auditory system.22 Our

goal is to develop such a BCI and use it for commu-

nication in the auditory scanning mode.

As it seems very difficult to perform motor

imagery-based (MI) BCI training as it is usually

done10,23 the so-called beta rebound phenomenon

will be exploited. A number of EEG studies reported

event-related desynchronization and synchronization

(ERD/ERS) of sensorimotor rhythms (SMR) in the

beta band, i.e. a decrease and increase of spectral

amplitudes of central beta rhythms in the range from

13 to 35Hz.24−27 Following an ERD that occurs

shortly before and during the movement, bursts of

beta oscillations (beta ERS, beta rebound) appear

within a 1-s interval after movement offset.28 Such

a post-movement beta ERS has been shown after

voluntary hand movements,25,27,29,30 passive move-

ments (PASs),30,31 movement imagery32 and also

after movements induced by functional electrical

stimulation.30

A brain-switch based on the beta rebound was

first described in Refs. 33–36. Here, the beta rebound

after brisk feet dorsiflexion was used to elicit a single

control signal. We hypothesize that a brain-switch

can be employed in an auditory scanning mode for

reliable communication of yes/no responses. As it is

unclear whether the target patient group will show

a pattern during brisk foot movement, hand move-

ment should also be investigated. Our goal is to real-

ize such a single-switch BCI (ssBCI), i.e. to reliably

detect one certain, individually trained brain pattern

of the user that can be used to control all kinds of

applications. This means that any existing assistive

technology (AT) that can be controlled by a con-

ventional single switch can, as a final goal, also be

controlled by an ssBCI.

2. Materials and Methods

2.1. Participants

A total of 10 healthy people (gender balanced, aged

between 20 and 27 years, mean age 23.3 years)

participated in the initial cue-based session. They

had no previous experience with any kind of SMR-

based BCI experiments. Participants gave informed

consent prior to the beginning of the experiments

and received monetary compensation afterwards. A

handedness test37 was performed and confirmed that

all participants were right handed. Due to the results

of the initial cue-based session 4 of the 10 partici-

pants (3 male, 1 female) fulfilled the inclusion criteria

for participation in the 2nd session.

2.2. Recording

In the initial cue-based session, the EEG was

recorded from 31 channels mounted around electrode

positions C3, Cz and C4, overlying the sensori-

motor and premotor areas. In the 2nd session,

only one participant-specific orthogonal Laplacian

derivation38 was used (see Fig. 1). The EEG deriva-

tions were referenced to the left ear lobe with the

ground electrode placed on the forehead. Active Elec-

trodes (g.tec, Graz, Austria) were integrated into

a standard EEG cap (Easycap GmbH, Herrsching,

Germany) with an inter-electrode distance of 2.5 cm

and connected to EEG amplifiers (g.tec, Graz,

Austria). The EEG amplifiers were set up with a

bandpass filter between 0.5 and 100Hz, and a notch

filter at 50Hz. Participants were seated in an electri-

cally shielded room.
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Fig. 1. EEG recording illustrated. The 31 channels
recorded in the initial cue-based session, as well as an
example of a manually selected orthogonal Laplacian
derivation (marked orth. source) are shown.

The electromyogram (EMG) was recorded from

both legs and from the right forehand. Two EMG

electrodes were placed over the musculus tibialis

anterior of each leg and over the flexor digitorum

profundus of the right hand. The ground was placed

above the pelvis on the right side. Both, EEG and

EMG were sampled at 1200Hz.

Wrist and feet angles were measured with

goniometers (Biometrics Ltd, United Kingdom)

placed on the wrist and ankle. For the wrist angle

measurement the telescopic endblock of the goniome-

ter was attached to the dorsal surface approximately

over the third metacarpal with the center axis of the

hand and endblock coincident. The fixed endblock of

the goniometer was attached to the forearm so that

when viewed from the dorsal plane the axes of the

forearm and endblock are coincident. For the feet

angle measurements the goniometers were placed in

positions analogous to those on the wrist. Goniome-

ter signals were recorded by custom-made hardware.

2.3. Experimental paradigm

2.3.1. Initial cue-based calibration

The goal of the initial cue-based session was to iden-

tify the individual EEG pattern for each partici-

pant. To this end, the experiment consisted of two

tasks with two different conditions each. The tasks

used in this experiment were passive brisk dorsiflex-

ion of both feet and wrist extension of the dom-

inant (right) hand. These two tasks were investi-

gated for the following conditions: PAS with custom-

made hardware and MI. For each task/condition

combination two runs of 40 trials each were con-

ducted, and the order in which the tasks were per-

formed was counterbalanced.

Passive movement condition (PAS)

Feet task In order to execute passive feet movement,

an inclined plane (size 44 cm× 32 cm, angle about 8◦)
was mounted at the bottom part of a comfortable

armchair the participants were sitting in. The par-

ticipants’ feet were placed in parallel on this plane.

Using a manual cable pull, the plane could be tilt up

to an angle of about 37◦ (see Fig. 2).

Hand task In order to execute PAS of the par-

ticipants’ right hand, a small padded platform (size

12 cm × 24 cm, initial angle 0◦) was mounted at the

front part of the right arm rest of the armchair

the participants were sitting in. The participants’

right hand was comfortably placed on this platform,

slightly fastened using an elastic bandage to avoid

single finger movements during passive hand move-

ment. Using a manual cable pull, the platform could

be tilted up to a maximum angle of about 70◦ (see

Fig. 3).

Paradigm In one half of the trials a PAS was exe-

cuted (t = 2 s after trial onset) by the experimenter,

standing outside the EEG recording chamber and

acting according to the visual cues visible to her/him

only. In the other half of the trials the participants

rested and focused their gaze on an eye-level fixation

point for the trial duration. The participants had no

knowledge whether a PAS execution will take place

or not in any given trial. Additionally, fabric was

used to hide their limbs, so that they could not see

their hands or legs moving.

Fig. 2. Apparatus for passive feet movement.

1250037-3

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

13
.2

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

R
A

Z
 U

N
IV

E
R

SI
T

Y
 O

F 
T

E
C

H
N

O
L

O
G

Y
 o

n 
05

/1
2/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

92



2nd Reading

April 9, 2013 17:6 1250037

G. R. Müller-Putz et al.

Fig. 3. Apparatus for passive right hand movement.

The beginning of each trial was marked by a short

tone, and the end (t = 7 s after trial onset) was

marked by a spoken word (“pause”). The trials were

separated by short breaks of random length (3–4 s),

and the order of the trials was randomized.

Motor imagery condition (MI)

Following the PAS condition of the brisk feet dor-

siflexion/hand wrist extension task, the participants

fulfilling the inclusion criteria performed the same

task for the MI condition.

Paradigm In one half of the randomized trials, par-

ticipants imagined a brisk movement, and in the

other half they rested while focusing their gaze on

a fixation point placed approximately 1 m in front of

them. All of the participants were instructed to avoid

any muscular activity during the imagination of the

brisk feet/hand movements.

Similar to the PAS condition, the beginning of

each trial was marked by a short tone, and a random

break of 3–4 s length followed each trial. Auditory

Fig. 4. Experimental paradigm of the 2nd session.

instructions were presented 2 s after the beginning of

a trial (t = 2 s after trial onset) as either the name of

the corresponding task (“feet”/“hand”) or as “rest”.

Feedback Discrete auditory feedback was presented

at the end of the trial (t = 7 s) as follows (translated

to English from German):

• “Feet/hand correctly recognized” was played if the

feet/hand MI was recognized during an activation

trial.

• “Feet/hand falsely recognized” was played if the

feet/hand MI was recognized during a rest trial.

• “Pause” was played if no feet/hand MI was recog-

nized, also indicating the end of a trial.

2.3.2. 2nd session

In the 2nd session, the participants imagined per-

forming brisk feet or hand movements to communi-

cate a yes/no answer to a series of questions. To this

end, a scanning protocol39 (see Fig. 4) was employed

where spoken yes/no words were used as external

synchronization signals for the corresponding three

scan periods. To communicate their intent, i.e. a

yes/no response, the participants performed the MI

task during the desired scan period. Random length

breaks were employed throughout the experiment to

avoid rhythmic cues.

A total of 5 runs, with 10 questions each, were

conducted. In total, 25 different questions, with only

one meaningful response, were delivered twice in

pseudorandom order. Each question was repeated

during a different run, and yes/no responses were

balanced. The nature of these questions ensured that

the experimenter knew the responses the partici-

pants intended to communicate. Nonetheless, at the

beginning of the session the participants were pre-

sented with all questions once. Additionally, they
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read a list containing both the questions and the

responses. The questions were generated by a text-

to-speech synthesizer and were delivered by loud-

speakers.

Only those participants fulfilling the inclusion

criteria participated in the 2nd session. The clas-

sifier used was adapted to one optimal EEG pat-

tern derived from a single orthogonal Laplacian

derivation.

Following each repetition, four cases were pos-

sible: activation after “yes”, activation after “no”,

activation after both “yes” and “no” and no activa-

tion at all. After three yes/no scan periods, discrete

auditory feedback was provided (i.e. “Yes selected”,

“No selected” or “Unclear response” in German lan-

guage). Feedback was selected according to majority

vote based on the three yes/no scan periods and the

corresponding output. “Unclear response” was pre-

sented when either no activation or an equal number

of yes/no activations was selected.

2.4. Data analysis

Various feature extraction and classification methods

have been proposed for continuous analysis of differ-

ent mental tasks in EEG signals.40−48 The methods

presented here were chosen for their robustness and

reliability.

2.4.1. Time–frequency analysis

To analyze the percentage of power decrease (ERD)

or power increase (ERS) relative to a reference inter-

val (second 1–2 in the paradigm), a time–frequency

map for frequency bands between 6 and 40Hz (35

overlapping bands using a bandwidth of 2Hz) was

calculated.49 Logarithmic band power features, cal-

culated by bandpass filtering, squaring and subse-

quently averaging over the trials, were used to assess

changes in the frequency domain. To determine the

statistical significance of the ERD/ERS values, a

t-percentile bootstrap algorithm with a significance

level of α = 0.01 was applied.

2.4.2. Inclusion criteria

As reported in Kübler et al.50 an accuracy of at least

70% is a prerequisite for reliable BCI communica-

tion. Accordingly, we used this as the inclusion crite-

ria, based on evaluation of one orthogonal Laplacian

derivation (see Fig. 1). We conducted time–frequency

maps analysis on all 11 Laplacian channels and man-

ually selected the one with the most pronounced pat-

tern of significant (p ≤ 0.01) ERD/ERS values to

setup the classifier.

The EEG data recorded during the PAS were

used to setup the classifier for the initial MI exper-

iment, which in turn yielded data used to setup the

final classifier.

2.4.3. Classification

Fisher’s LDA was used as a classifier based either

on ERD occurring during, or beta ERS occurring

after, task execution.51 Logarithmic band power fea-

tures were calculated for multiple frequency bands

between 6 and 40Hz using a bandwidth of 2Hz.

A logarithmic band power feature was obtained by

bandpass filtering, squaring and averaging over 1s in

a sample by sample way and finally by taking the

logarithm.

A 10×10 cross-validation was applied to calculate

the accuracy for each 0.5 s window from t = 0 s to

the end of a trial (t = 7 s). One final logarithmic

band power feature was obtained by extending the

frequency range of the band with highest accuracy

to include neighboring bands with accuracies greater

than 70%. The corresponding classifier was used in

the online experiments with an additional threshold.

For the detection of the MI, the threshold was defined

as the mean plus standard deviation of the simulated

LDA output for the whole EEG recording.

Additionally, the 10 × 10 cross-validation was

nested within a 10 × 5 outer cross-validation, thus

splitting the data into an outer training set and a val-

idation set. Classifiers at points in time with highest

accuracy, selected via an inner cross-validation, were

thus applied on unseen data.

A dwell time parameter placed an additional con-

straint on the online classification, namely that the

threshold must be exceeded for a predefined time

period. The same dwell time parameter, empirically

set to 0.5 s, was used for all participants.

2.4.4. Evaluation

For the passive task of the 1st session, cross-

validated percentage accuracies for the most dis-

criminating time segment, and the corresponding

frequency band, are reported. For the imagined task
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of the 1st session, our main interest was to what

extent a classifier setup on the EEG data recorded

during the PASs can be used to deliver feedback for

imagined movements. To this end, we compared the

results of the “passive” classifier and the classifier

setup directly on the imagined movements, and also

estimated the effect of adjusting the LDA threshold

for the “passive” classifier on imagined movements.

Additionally, time–frequency maps for the passive

and imagined condition of the 1st session are com-

pared in the context of the selected frequency bands.

For the 2nd session, true (T), false (F) and

unclear (U) responses were obtained from the partic-

ipants’ communication of yes/no responses to a series

of questions. Additional offline analysis estimated the

effects of an increase in speed of communication or

reliability of responses on the performance.

3. Results

The offline classification accuracy (cross-validated),

calculated from the trials obtained during the 1st

session for the hand/feet task and for the pas-

sive/imagined condition, is summarized in Tables 1

and 2. In Fig. 5, we estimated to what extent a clas-

sifier setup on the EEG data recorded during the

PASs can be used to deliver feedback for imagined

movements.

In Fig. 6 time–frequency maps, calculated from

the EEG data obtained during the passive (1st row)

Table 1. Offline accuracy (acc) for the passive hand and
feet movement during the 1st session with corresponding
frequency band (f), selected channel and time segment.

Feet Hand

acc f t acc f t
Subj. (%) (Hz) (s) Ch (%) (Hz) (s) ch

BO4 90 15–26 6 FCz 87 15–22 6 C3
BX9 77 24–30 5.5 Cz 58 16–18 5 C1
BY2 60 26–28 6.5 FCz 72 16–22 5 FC2
BY6 89 22–34 6.5 ∼FCz 61 24–26 5 C3
BY8 88 30–40 4.5 C1 78 18–22 5.5 ∼C1
BZ2 79 22–26 6.5 Cz 93 16–28 6 ∼C1
BZ4 96 16–20 5.5 Cz 91 18–24 6 ∼C1
BZ5 81 15–22 5.5 Cz 79 16–22 5.5 C3
BZ6 92 22–28 6 FCz 79 10–12 5 ∼C1
BZ8 54 20–22 4.5 FCz 60 18–20 4.5 ∼FCz
µ± σ 81± 14 76± 13

Table 2. Offline accuracy (acc) for the imagined hand
and feet movement during the 1st session with corre-
sponding frequency band (f), selected channel and time
segment. Empty table entries indicate absence of mea-
surement due to the participant not satisfying the inclu-
sion criteria.

Feet Hand

acc f t acc f t
Subj. (%) (Hz) (s) ch (%) (Hz) (s) ch

BO4 82 26–30 4.5 FCz 54 18–20 7 C3
BX9 50 20–22 5.5 Cz C1
BY2 51 22–24 7 FC2
BY6 56 30–32 6 ∼FCz C3
BY8 60 28–30 4.5 C1 68 10–12 5.5 ∼C1
BZ2 83 24–32 3.5 Cz 60 28–30 7 ∼C1
BZ4 76 16–20 5 Cz 67 22–24 4.5 ∼C1
BZ5 79 17–21 5 Cz 69 16–22 5 C3
BZ6 69 10–12 6.5 FCz 49 22–24 5 ∼C1
µ± σ 69± 13 60± 8

Fig. 5. Shown here are results of applying different clas-
sifiers on the imagined feet movements recorded during
the 1st session, in an “offline” simulation of the online
performance. To estimate the impact of the LDA thresh-
old when applying the passive classifier on imagined
movements, we considered two extreme cases: in the 1st
case the threshold is estimated on the PASs only (i.e.
without any adaptation on the imagined movements);
in the 2nd case the threshold is estimated on the imag-
ined movements. The imagery classifier is also evaluated
online in the 2nd session. Encircled results are for the
passive (adjusted) and imagery classifiers for three par-
ticipants of the 2nd session.
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Table 3. Shown here are the true positive rates (TPRs)
and false positive rates (FPRs) depicted in Fig. 5 (see
caption of Fig. 5 for details).

Passive (original) Passive (adjusted) Imagery

Subj. TPR FPR TPR FPR TPR FPR

BO4 25.0 0.0 82.5 17.5 92.5 37.5
BX9 70.0 65.0 37.5 37.5 32.5 25.0
BY6 0.0 0.0 30.0 22.5 57.5 45.0
BY8 70.0 62.5 32.5 32.5 42.5 27.5
BZ2 2.5 25.0 2.5 27.5 42.5 10.0
BZ4 45.0 5.0 85.0 32.5 77.5 20.0
BZ5 65.0 22.5 82.5 22.5 90.0 25.0
BZ6 47.5 30.0 50.0 37.5 32.5 30.0

and imagined (2nd row) conditions of the 1st session

are shown.

The SMR-BCI performance of three (one par-

ticipant BZ2 was excluded from further evaluation

due to slight movements during imagination) partic-

ipants in the 2nd session is summarized in Table 4

and Fig. 7. One participant (BO4) achieved a per-

fect score, communicating correct yes/no response

to all of the questions. Another participant (BZ4)

achieved good performance, communicating 90% cor-

rect responses and zero false responses. One par-

ticipant performed at chance level only. Table 4

also summarizes the offline analysis of single yes/no

Fig. 6. (Color online) Percentage of power decrease (ERD, orange) and power increase (ERS, blue) for the passive (PAS,
upper panel) and imagined (IM, lower panel) brisk feet movements in the 1st session. For each participant, the same
EEG Laplacian derivation (i.e. FCz for BO4, Cz for BZ4 and BZ5) was employed for both passive and for imagined feet
movements. Only significant (p = 0.01) power changes are shown.

Table 4. Shown here are the results of the 2nd ses-
sion. The online feedback section shows the percentage
of true (T), false (F) and unclear (U) responses. The
offline analysis section shows a stricter interpretation of
true (Tstrict) and false (Fstrict) responses, namely that
they must form the majority of yes/no scans (i.e. two
out of three per question). Finally, the majority voting
is broken down, and true (t), false (f) and unclear (u)
responses are obtained from single yes/no scans as inde-
pendent responses. All three participants performed feet
imagery.

BO4 BZ4 BZ5

Online feedback T [%] 100 90 34
F [%] 0 0 34
U [%] 0 10 32

Offline analysis Tstrict [%] 82 64 14
Fstrict [%] 0 0 14
Ustrict [%] 18 36 72
t [%] 77 61 25
f [%] 0 1 24
u[%] 23 38 51

scanning periods of the 2nd session, assuming their

mutual independence.

4. Discussion and Conclusion

This work showed, for the first time, the use of a

ssBCI for communication in auditory scanning mode.
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Fig. 7. (Color online) Mean and standard deviation of the LDA output for activation (blue) and rest (red) periods
recorded during the 2nd session for different participants.

Such a BCI is of high importance for patients with

reduced possibilities to accurately produce several

brain patterns and as well as are unable to follow

visual instructions on a computer screen. Patients

with disorders of consciousness are such a group.

As already shown in fMRI experiments,18,20 single

brain patterns can be used to communicate yes and

no responses. Here, we used a brain pattern occur-

ring automatically after brisk movement, and more

importantly after mental imagery of a movement,

to establish EEG-based communication. We demon-

strated the idea of using this mental imagery-based

ssBCI to communicate a yes or no response to a

question.

Two out of three participants evaluated were able

to reliably communicate their intent giving 90% or

above correct and 0% false responses. The perfor-

mance of one participant was only at chance level;

one cause for this sudden drop in performance might

be a possible change in mental imagery compared

Fig. 8. (Color online) Percentage of power decrease (ERD, orange) and power increase (ERS, blue) for the activation,
i.e. brisk feet imagery, scan periods in the 2nd session. The EEG Laplacian derivation are FCz (BO4) and Cz (BZ4, BZ5).
Only significant (p = 0.01) power changes are shown.

to the 1st session. This hypothesis is supported by

offline analysis of the 2nd session which revealed

significant (p ≤ 0.01) ERD/ERS patterns in the

two “good” performing participants and absence of

the same in the random performing participant (see

Fig. 8).

The robust signal detection and classification

come at the price of relatively low speed of

communication. However, this can be improved by

reducing the number of yes/no scan repetitions,

resulting in lower sensitivity (see Table 4). The relia-

bility of communication can further be improved by

also considering the “unclear” yes/no scans. The rate

of false responses remained constantly low, ensuring

that only intended communication took place.

In a related work Qian et al.52 reported a MI-

based brain controlled switch with a minimal false

positive rate. Similar to our design, only one Lapla-

cian channel was employed to detect brain pattern

synchronized to an external signal. However, our BCI
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focused on beta ERS, and employed majority voting

of the consecutive activations instead of averaging

the corresponding features. While we also used exter-

nal synchronization signals due to inserted random

breaks, these were not rhythmic and were context-

dependent (i.e. yes or no response). Another nov-

elty in our work is that we adapted the classifier to

the individual EEG pattern by exploring two tasks

(feet/hand) instead of one, and by selecting the opti-

mal Laplacian derivation.

One important issue partially addressed in our

study is how to setup the initial classifier. Bashashati

et al.,53 pointed out that generating training data for

the initial system setup is problematic because no

external knowledge of intention is available for indi-

viduals with severe motor disabilities. One possible

solution, presented therein, is to rely on the external

knowledge of the “approximate” time of the intended

control. Another solution is to exploit similarities of

the sensorimotor EEG changes of the motor cortex

during active and PAS and MI30,36,54 (see Fig. 6).

Here, we opted for the latter solution and used EEG

data obtained from PASs to setup an initial classi-

fier for the detection of MI. As shown in Fig. 5, some

participants could benefit from this solution assum-

ing correct setting of the classifier threshold, e.g. by

online adaptation.55

One shortcoming of this study is the limited num-

ber of participants evaluated in the final session,

partly due to strict inclusion criteria. Indeed, by low-

ering the offline accuracy threshold to the upper con-

fidence limit of a chance result (65% for α = 5%56)

six out of 10 participants would have been included in

the evaluation. Furthermore, by allowing for a longer

training period, it is likely that further participants

would have satisfied the inclusion criteria. However,

our goal was not to estimate how many healthy par-

ticipants are able to willfully modulate their brain

activity, but instead to evaluate, with those par-

ticipants who managed to do so, whether they can

communicate a yes/no response in an auditory scan-

ning paradigm. Initial results indicate that they can

communicate their intent, and in future work we

will seek to confirm these results in further applica-

tions (e.g. spelling software). The next step now is to

apply the paradigm presented here to MCS patients.

Our final goal is to enable MCS individuals to use

existing AT.
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Further development of an EEG based communication device for patients with
disorders of consciousness (DoC) could benefit from addressing the following gaps
in knowledge—first, an evaluation of different types of motor imagery; second, an
evaluation of passive feet movement as a mean of an initial classifier setup; and third,
rapid delivery of biased feedback. To that end we investigated whether complex and/or
familiar mental imagery, passive, and attempted feet movement can be reliably detected
in patients with DoC using EEG recordings, aiming to provide them with a means of
communication. Six patients in a minimally conscious state (MCS) took part in this study.
The patients were verbally instructed to perform different mental imagery tasks (sport,
navigation), as well as attempted feet movements, to induce distinctive event-related
(de)synchronization (ERD/S) patterns in the EEG. Offline classification accuracies above
chance level were reached in all three tasks (i.e., attempted feet, sport, and navigation),
with motor tasks yielding significant (p < 0.05) results more often than navigation
(sport: 10 out of 18 sessions; attempted feet: 7 out of 14 sessions; navigation: 4
out of 12 sessions). The passive feet movements, evaluated in one patient, yielded
mixed results: whereas time-frequency analysis revealed task-related EEG changes over
neurophysiological plausible cortical areas, the classification results were not significant
enough (p < 0.05) to setup an initial classifier for the detection of attempted movements.
Concluding, the results presented in this study are consistent with the current state of
the art in similar studies, to which we contributed by comparing different types of mental
tasks, notably complex motor imagery and attempted feet movements, within patients.
Furthermore, we explored new venues, such as an evaluation of passive feet movement
as a mean of an initial classifier setup, and rapid delivery of biased feedback.

Keywords: EEG, mental imagery, attempted movements, passive movements, disorders of consciousness

INTRODUCTION
Functional magnetic resonance imaging (fMRI) studies by Owen
et al. (2006) and others Boly et al. (2007), Monti et al. (2010),
demonstrating detection of awareness in the unresponsive wake-
fulness syndrome (UWS, Laureys et al., 2010), paved the way for
the development of brain–computer interfaces (BCI) as a means
of communication in this patient group. In these studies, patients
were asked to imagine playing tennis, or to navigate through their
own apartment. Such imaginations led to very specific activations
which could then be used to establish a communication channel
with people in the minimally conscious state (MCS, Giacino et al.,
2002) by means of simple yes/no questions (Monti et al., 2010).

Recent efforts focused on translating these fMRI paradigms
to electroencephalography (EEG) technique, as it is widely avail-
able, cost effective, and applicable at bedside, even in persons with
metal implants. For example, Goldfine et al. (2011) instructed
the participants to imagine complex motor and familiar spatial

navigation tasks, and analyzed EEG power spectra over a wide
range of channels and frequencies. By analysing the EEG power
spectra, evidence for performance of mental imagery tasks was
found in healthy controls and patients with severe brain injury.
In another study, Cruse et al. (2011) asked the participants to
imagine movements of their right-hand and toes to command,
and analyzed the EEG responses to specific commands. Three
of 16 patients (19%) generated repeatedly and reliably suitable
EEG responses to two distinct commands, even though they were
behaviorally unresponsive. In a follow-up study, addressing some
of the methodological challenges, EEG evidence for attempted
movements to command was found in an UWS patient (Cruse
et al., 2012).

Notable in these efforts are the different approaches to motor
tasks—attempted hand/feet movements in Cruse et al. (2012),
and complex motor imagery in Goldfine et al. (2011). It is unclear
which approach is more suitable, as both have their merits. On
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one hand, attempted movements lead to well investigated fre-
quency band-specific oscillatory changes over appropriate areas
of the sensorimotor cortex (see Pfurtscheller and Da Silva, 1999).
On the other hand, imagery of complex movements has been
shown to elicit stronger activation than imagery of simple ones
with fMRI (Kuhtz-Buschbeck et al., 2003; Boly et al., 2007),
encouraging its study with EEG. Furthermore, a recent EEG study
performed by Gibson et al. (2014) found that complex and famil-
iar mental tasks can enhance single-trial detectability of imagined
movements.

One common challenge facing these EEG efforts is the ini-
tial classifier setup for detection of the brain responses. While
the delay and variability in brain responses can be addressed
with different methods, there is no way of telling whether and
when the MCS individuals performed the tasks. However, one
could address this challenge by exploiting similarities of the brain
responses during passive and attempted movements. In a recent
work our group exploited similarities of the sensorimotor EEG
changes of the motor cortex during active, passive and imag-
ined movements to setup an initial classifier for the detection of
motor imagery in healthy participants (Müller-Putz et al., 2010,
2013a). However, it is an open research question whether this
approach is feasible for detection of attempted movements in
MCS individuals.

While the current efforts could in theory establish a two-way
communication with some of the patients, a real-time feed-
back on classification of mental imagery with EEG is yet to be
evaluated in MCS patients. Such an evaluation is important, as
feedback might benefit patient’s performance. For example, it
is unclear whether rapid delivery of biased (i.e., positive) feed-
back would benefit patients performing close to chance level, as it
has benefited healthy participants (Barbero and Grosse-Wentrup,
2010). Addressing the above mentioned gaps in knowledge—
first, an evaluation of both simple and complex motor imagery
within patients; second, an evaluation of passive feet movement
as a mean of an initial classifier setup; and third, rapid delivery
of biased feedback—could provide valuable insights for further
development of an EEG based communication device. To that
end, the goal of the current work was to investigate whether com-
plex mental imagery, passive, and attempted feet movement can
be reliably detected in patients with disorders of consciousness
(DoC).

MATERIALS AND METHODS
PATIENTS
Six patients diagnosed with MCS took part in this study (one
women, five men; age range 21–66 years, mean and standard devi-
ation 41.7 ± 17.8 years). The patients, not in intensive care and
in an overall stable medical condition, were selected by the med-
ical staff of the Albert Schweitzer Clinic (Graz, Austria) where
all measurements were conducted. Exclusion criteria were gra-
vidity, infections, or participation in other studies. The patients
participated in two parts (command following part and online
feedback part) with a different number of sessions. The idea was
that each patient, if possible, would participate in two session on
different days to compensate for possible fluctuations in respon-
siveness. For patients who participated in more than one session,

the follow-up sessions were carried out between 1 and 2 weeks
later when possible.

The patients were behaviorally assessed using the Coma
Recovery Scale-Revised (CRS-r) within 24 h before or after each
EEG measurement in order to keep track of their fluctuations
in responsiveness. The CRS-r is composed of 23 items divided
into 6 subscales dealing with auditory, visual, motor, oromotor,
communication, and arousal functions (Giacino et al., 2004). The
standardized scoring has been shown to produce “... reasonably
stable scores over repeated assessments...” (Giacino et al., 2009)
and is capable of discriminating patients in MCS from those with
UWS.

Table 1 provides background and disease related data, as well
as the highest estimated CRS-r subscores, of all patients.

Informed consent was obtained from the patient’s legal repre-
sentatives. The study was approved by the local ethics committee
(Medical University of Graz) and is in accordance with the ethical
standards of the Declaration of Helsinki.

EXPERIMENTAL PARADIGMS
The study consisted of two parts. The first part (performed by
4 patients; age range 21–66, mean (μ) and standard deviation
(σ) 39.8 ± 20.3 years, all men) comprised a command follow-
ing paradigm. The second part was an online paradigm which
was performed by 4 patients (one women and 3 men; age range
27–66 years, μ and σ 46.0 ± 18.9 years), of which two already
participated in the first part.

Command following paradigm
Within an experimental session, up to four different tasks (i.e.,
sport, navigation, attempted/passive feet movement) were per-
formed in a block design. Each task was performed during three
consecutive runs, with each run having 15 cue-based trials (audi-
tory cue) of 12 s length, yielding 45 trials/task (see Figure 1). At
the beginning of a trial a beep tone was given. After 2 s, an audi-
tory cue, generated by a text-to-speech synthesizer, was delivered
via in-ear headphones. The cue was a verbal instruction to per-
form the current task (i.e., either “sport,” “navigation,” or “feet”)
lasting for 1 s. For the “passive feet” task, no cue was given to the
patients, as it was only audible to the caregiver performing the
passive feet movement. Between the trials a random pause (also
auditorily indicated) of 4–6 s length was given. Detailed verbal
instructions were given to the participant by the experimenter
before the measurement started. The purpose of these instruc-
tions, repeated before each run, was to inform the patient about
the tasks he/she has to perform. The order of the tasks was pseudo
randomized across the measurement sessions. Each measurement
session was conducted on a separate day.

In more detail, for the “sport” task the participants were
instructed to imagine performing one sport of their choice in the
first person perspective. For measurements with non-responsive
patients there is no way of knowing for sure which sport they
chose. However, they were instructed to keep their choice while
performing this task. For the “navigation” task the participants
were instructed to imagine navigating through their house, look-
ing around each room, without focusing on the movement. For
the “feet” task the participants were instructed to repeatedly
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Table 1 | Overview about participants for both the command following and the online feedback paradigm.

Participant Age Sex Onset

P1 45 M April 2010

Etiology Traumatic brain injury with craniotomy and evacuation of a traumatic right sighted subdural hematoma, plus a left-sided
temporo-parietal subarachnoid hemorrhage, bilateral temporopolar and right-sided temporo-occipital contusion hemorrhages

Auditory function Reproducible movement to command

Visual function Object recognition

Motor function Automatic motor response

Verbal function Vocalization/Oral movement

Communication Non-functional: intentional

Arousal Eye opening w/o stimulation

Additional diagnoses Epilepsy, spastic tetraparesis (left more than right), anarthria

P2 66 M March 2011

Etiology Traumatic brain injury with left sighted subdural hematoma and left sighted epidural hematoma

Auditory function Consistent movement to command

Visual function Object localization: reaching

Motor function Object manipulation

Verbal function Vocalization/Oral movement

Communication Non-functional: intentional

Arousal Attention

Additional diagnoses Epilepsy, tetraparesis (right more than left), dysphagia, anarthria

P3 21 M December 2008

Etiology Hypoxic brain injury after resuscitation after mixed drug intoxication

Auditory function Reproducible movement to command

Visual function Object localization: reaching

Motor function Localization to noxious stimulation

Verbal function Oral reflexive movement

Communication Non-functional: intentional

Arousal Eye opening w/o stimulation

Additional diagnoses Anarthria, severe spastic tetraparesis

P4 27 M December 2007

Etiology Traumatic brain injury with left sighted subdural hematoma and right sighted epidural hematoma, hydrocephalus with
ventriculo-peritoneal shunt, st. p. craniectomy left with reimplantation of an artificial bone

Auditory function Localization to sound

Visual function Visual pursuit

Motor function Flexion withdrawal

Verbal function Oral reflexive movement

Communication None

Arousal Attention

Additional diagnoses Epilepsy, severe spastic tetraparesis, anarthria

P5 58 F March 2002

Etiology Hypoxic brain injury

Auditory function Localization to sound

Visual function Visual pursuit

Motor function Localization to noxious stimulation

Verbal function Oral reflexive movement

(Continued)
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Table 1 | Continued

Participant Age Sex Onset

P5 58 F March 2002

Communication None
Arousal Eye opening w/o stimulation
Additional diagnoses Spastic tetraparesis, osteoporosis

P6 33 M January 2002

Etiology Traumatic brain injury after car accident
Auditory function Localization to sound
Visual function Visual pursuit
Motor function Flexion withdrawal
Verbal function Oral reflexive movement
Communication Non-functional: intentional
Arousal Eye opening w/o stimulation
Additional diagnoses

FIGURE 1 | Experimental paradigm for measurements in patients.

Timeline of a single trial is shown here.

attempt feet dorsiflexion (i.e., several consecutive attempts dur-
ing a single trial). In the “passive feet” task, a caregiver performed
a brisk (i.e., ∼1 s long) dorsiflexion of both feet. The cue was
the same as for the “feet” task, but it was only audible to the
caregiver.

Online feedback paradigm
The online feedback paradigm built upon the command follow-
ing paradigm by introducing feedback. In general the transition
from offline to online paradigm within a measurement ses-
sion was possible but contingent upon results (i.e., accuracy,
confusion matrix), statistical significance (i.e., number of trials,
leave-one-out or blockwise crossvalidation), plausibility of results
(i.e., neurophysiological plausible EEG channels), and patient’s
condition (i.e., fatigue, indicated by an obviously reduced vigi-
lance). To that end, it started with recording of a few minutes
resting state EEG, followed by a run of command following
paradigm without feedback, and afterwards an initial classi-
fier setup. The next step was contingent upon the estimated
accuracy and patient’s condition. In case of promising results,
the next run was for the online feedback paradigm, again fol-
lowed by a classifier setup in order to obtain a more reliable
estimate of the accuracy. This step (i.e., a run of online feed-
back paradigm, followed by a classifier setup) was repeated
depending on the estimated accuracy and patient’s condition.
Furthermore, the following changes were made compared to the
initial command following paradigm: (i) only motor tasks (i.e.,
sport, attempted feet) were employed, based on offline analy-
sis of shared common patient data recorded in the command

FIGURE 2 | EEG channel locations used for measurements in patients.

following paradigm (Müller-Putz et al., 2013b); (ii) a vary-
ing number of trials, separated in blocks of 15 trials by short
breaks, were recorded for each task; (iii) in case the initial com-
mand following led to online feedback, the second task was
discarded.

RECORDING
For all measurements the EEG was recorded from 32 active elec-
trodes (g.tec, Guger Technologies, Austria) located over frontal,
central and parietal areas (for details see Figure 2). The signals
were acquired with a g.UBSamp amplifier (Guger Technologies,
Austria) with 512 Hz sampling rate, 0.5 Hz high-pass, and 100 Hz
low-pass filter, and an additional 50 Hz notch filter.
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DATA ANALYSIS
Preprocessing
For the offline analysis, artifacts were removed from EEG with
an elaborate projection method which automatically detects neu-
ronal and artifactual source components derived from indepen-
dent component analysis (ICA). We used the binary Infomax
independent component analysis by Enghoff (1999), based on
the Matlab version of Scott Makeig and collaborators, to sepa-
rate EEG and EOG signals into independent components (Makeig
et al., 1996). We identified independent components (ICs) repre-
senting eye movements, eye blinks, and muscle activity by visual
inspection using methods described in McMenamin et al. (2010),
and removed them. We multiplied the remaining components by
the mixing matrix produced by the ICA algorithm to reconstruct
cleaned EEG.

For the online feedback delivery, due to time and resources
constraints (i.e., short breaks between consecutive runs and a
single laptop certified for clinical measurements, respectively)
artifacts were rejected. To that end, muscle and movement arti-
facts, as well as other transient non-stationarities in the ongoing
EEG signals, were detected by inverse filtering of orthogonal
Laplacian derivation (Scherer, 2008). Autoregressive (AR) param-
eters of the inverse filter were estimated from a 1 to 2 min
segment of resting state EEG, recorded at the beginning of
each session. The detection threshold was defined as five times
Root-Mean-Square from the resting-state EEG. Trials in which
the detection threshold was exceeded were discarded from the
analysis.

Time-frequency analysis (ERD/ERS calculation)
Event-related desynchronization (ERD) and event-related syn-
chronization (ERS) are defined as the percentage of power
decrease (ERD) or power increase (ERS) in a defined frequency
band in relation to a reference interval (Pfurtscheller and Da
Silva, 1999). To analyze the percentage of power decrease (ERD)
or power increase (ERS) relative to a reference interval (sec-
ond 1–2 in the paradigm), time-frequency map for frequency
bands between 6 and 40 Hz (35 overlapping bands using a
band width of 2 Hz with a step size of 1 Hz) was calculated
(Graimann, 2002). Logarithmic band power features, calcu-
lated by band-pass filtering, squaring and subsequently aver-
aging over the trials, were used to assess changes in the fre-
quency domain. To determine the statistical significance of the
ERD/ERS values a t-percentile bootstrap algorithm with a sig-
nificance level of α = 0.05 was applied (Davison and Hinkley,
1997). In the ERD/ERS maps statistically significant ERD val-
ues were plotted as red dots and significant ERS values as blue
dots.

Feature extraction and classification
Feature extraction. Logarithmic band power features were cal-
culated for multiple frequency bands (θ: 4–7 Hz; α: 7–13 Hz; βL:
13–19 Hz; βM: 19–25 Hz; βH: 25–30 Hz) by band-pass filtering,
squaring and averaging over 1 s in a sample by sample way.

For further analysis, a trial was divided into consecutive, non-
overlapping time periods of 1 s duration. One time period, from
t = 1 s to t = 2 s (i.e., 1 s before the cue onset), was designated as

the reference. Finally, a single value was sampled at the middle of
each time period, and was used in the subsequent classification.

Classification. We sought to identify one Laplacian chan-
nel/frequency band yielding the best results for the current task.
Thus, we estimated the accuracy over different time periods rel-
ative to the reference, for each of the frequency bands (i.e., θ, α,
βL, βM, βH), and at each of the Laplacian channels. To that end we
used a linear discriminant analysis (LDA) classifier.

To avoid overfitting cross-validation was applied to estimate
the accuracy. For the offline analysis, a nested block-wise cross-
validation (10 × 10 inner fold; leave-one-out-block outer fold)
was applied. For the online paradigm, both leave-one-trial-out
(initial runs), as well as nested blockwise (10 × 10 inner fold;
leave-one-out-block outer fold; micro-averaging of confusion
matrices) cross-validation were applied. Also, the classifier was
recalculated following each run, based on the EEG recording from
up to three previous runs.

To ensure comparable results, we performed a separate
cross-validation for each channel using comparable data (i.e.,
randomized trial indices in inner/outer folds were held con-
stant). Furthermore, in each cross-validation, classification was
performed separately for each frequency band and time segment.

Online feedback
Feedback was only given for correct classified trials. The feed-
back was either “Sport/feet correctly recognized” in the case of
correct classifier prediction for more than 50% of the dura-
tion of the imagery period in the trial (Daly et al., 2013a), or
“Pause” otherwise (also for the trials in which EEG artifacts were
detected).

RESULTS
Tables 2, 3 show post-hoc analysis results of the command follow-
ing paradigm and online paradigm, respectively. The Laplacian
channel derivation and the frequency band yielding the highest
accuracy, as estimated with the blockwise nested crossvalidation,
is reported. The reported results were obtained with respect to
a baseline reference period, and no differentiation between the
tasks was made.

In both the command following and the online feedback
paradigm, offline classification accuracies above chance were
reached in all three tasks (i.e., attempted feet, sport, and navi-
gation), with motor tasks yielding significant results more often
than navigation (sport: 10 out of 18 sessions; attempted feet: 7 out
of 14 sessions; navigation: 4 out of 12 sessions). In the online feed-
back paradigm, post-hoc classification accuracies above chance
(p = 5%) were reached by three out of four patients in either the
attempted feet (F) or sport (S) task. Online accuracies, as used
for the feedback delivery, were below the level of significance (i.e.,
random) and are not reported.

The passive feet movements, evaluated once in the third
session of patients P2, did not yield significant accura-
cies. However, time-frequency analysis revealed task-related
EEG changes over neurophysiological plausible cortical areas
(Figure 3).
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Table 2 | Summary of results for the offline detection of different tasks for the command following paradigm.

Participant/Session no. CRS-r score Sport Navigation Attempted feet

P1/1 18 71% (CP1, ϑ, 0.01) n.s. 73% (C2, α, 0.01)

2 18 n.s. n.s. n.s.

3 17 n.p. n.s. n.p.

4 19 65% (CPz, ϑ, 0.05) n.s. n.s.

P2/1 14 76% (Fz, ϑ, 0.01) n.s. 69% (FC1, α, 0.01)

2 15 n.s. 72% (P3, ϑ, 0.01) n.s.

3 14 65% (C2, ϑ, 0.05) n.p. 80% (FC1, ϑ, 0.01)

P3/1 14 n.s. n.s. n.s.

2 13 66% (CP1, ϑ, 0.05) n.s. 65% (CP1, βM, 0.05)

3 13 n.s. 72% (POz, βM, 0.01) 68% (Cz, ϑ, 0.05)

P4/1 9 66% (Fz, α, 0.05) n.s. n.p.

2 11 n.s. 72% (C4, βM, 0.01) n.s.

3 11 n.s. 72% (C2, βM, 0.01) 64% (Fz, βM, 0.05)

Discrimination between mental imagery task/attempted feet/passive feet movement, and the reference (1 s before the cue onset). Only significant (p = 0.01 and/or

p = 0.05, considering the number of trials, Müller-Putz et al., 2008) accuracy is reported. CRS-r, Coma Recovery Scale-Revised; acc (ch, band, p), accuracy (Laplacian

channel, band, significance level); n.s., not significant; n.p., not performed.

Table 3 | Summary of results for the post-hoc offline detection of

different tasks for the online feedback paradigm.

Participant/

Session no.

CRS-r score Sport Attempted feet

P2/1 18 n.s. n.p.

2 17 68% (CP2, α, 0.01) n.p.

P4/1 11 64% (Fz, ϑ, 0.05) n.p.

2 11 65% (FC2, βM, 0.05) n.p.

P5/1 11 n.p. n.s.

2 11 n.p. n.s.

P6/1 11 n.s. 64% (CP2, βM, 0.05)

2 12 71% (C3, βM, 0.01) n.p.

Discrimination between motor imagery task/attempted feet movement, and the

reference (1 s before the cue onset). Only significant (p = 0.01 and/or p = 0.05,

considering the number of trials, Müller-Putz et al., 2008) accuracy is reported.

CRS-r, Coma Recovery Scale-Revised; acc (ch, band, p), accuracy (Laplacian

channel, band, significance level); n.s., not significant; n.p., not performed.

DISCUSSION
In the current work involving patients with DoC our aim was
threefold: (i) to evaluate different types of motor imagery; (ii)
to evaluate passive feet movements as a mean of an initial clas-
sifier setup; and (iii) to evaluate rapid delivery of biased feedback.
To that end, we investigated whether complex mental imagery,
attempted, and passive feet movements can be reliably detected
in patients with disorders of consciousness (DoC).

The two motor tasks, the sport imagery and attempted feet
movement, accounted for almost two thirds (i.e., 62%) of sessions
yielding significant (p < 0.05) accuracies, with similar outcomes
within sessions. This is in line with previous findings indicat-
ing that, among other tasks, motor imagery rather than spatial
navigation most frequently results in better classification perfor-
mance (Friedrich et al., 2012). The sport imagery resulted in
activations in theta (centro-parietal, central, and frontal), alpha

FIGURE 3 | ERD/S map for the participant P2 and for the passive feet

condition of the 3rd session, calculated for Laplacian channel

derivations.

(centro-parietal, frontal), and middle beta band (fronto-central,
central). The attempted feet resulted in activations in theta
(fronto-central, central), alpha (central), and middle beta band
(centro-parietal, frontal). In Figure 4, ERDS patterns for the sport
and attempted feet tasks are exemplified for the participant P1
and the first session.

The passive feet movements were evaluated in only one out
of four patients (P2), as an evaluation in other patients was not
feasible due to their medical conditions (i.e., spasticity). The eval-
uation in P2 yielded mixed results: on one hand, time-frequency
analysis revealed task-related EEG changes over neurophysio-
logical plausible cortical areas (Figure 3); on the other hand,
classification results were not significant enough (p < 0.05) to
setup an initial classifier for the detection of attempted move-
ments. However, the attempted feet movements performed after
the passive feet movements yielded highly significant (p < 0.01)
accuracies, prompting the question whether this was more than a
mere coincidence.
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FIGURE 4 | ERD/S map for the participant P1 and for the sport, and the attempted feet task of the 1st session, calculated for Laplacian channel

derivations. Marked with the red circle is the Laplacian channel derivation yielding the highest accuracy, as estimated with the blockwise nested crossvalidation.

FIGURE 5 | (A) ERD/S map for the participant P1 and for the sport task of the 2nd session. (B) LDA accuracy over trial duration for this participant, sport task,
and α band during the 2nd session.

The online feedback paradigm led to ERDS patterns in MCS
patients that, when analyzed post-hoc, could be detected at around
70% accuracy with blockwise crossvalidation. However, online
detection of these ERDS patterns was at the random level only.
One possible explanation for this discrepancy is that, while a
longer mental imagery period may be beneficial for inducing the
desired ERDS patterns, a shorter detection period may be needed
in order to reliably detect these patterns. In the latter case, a
continuous auditory feedback may be more suitable than a dis-
crete auditory feedback. Further investigation is needed to assess
whether and to what extent the MCS patients could benefit from
an auditory feedback.

In Cruse et al. (2011) consistent and robust responses to com-
mand for attempted movements were observed in the EEG of 5
out of 23 of the MCS patients. Similarly, we estimated highly sig-
nificant (i.e., p = 0.01) accuracy for attempted feet movements
in two out of six of the MCS patients. Worth pointing out is
that we employed longer trials to accommodate for more com-
plex mental imagery tasks. In Goldfine et al. (2011) two out of
three patients (one patient in MCS and one in LIS) showed evi-
dence of motor imagery task performance, which is similar to

our findings with 62% (N = 21) of sessions yielding significant
(p < 0.05) accuracies for either sport or attempted feet task.

In our initial analysis (Müller-Putz et al., 2013b), we employed
manual artifact rejection instead of the ICA, and obtained par-
tially different results. Notably, for the participant P1 and for the
sport task of the second session we found activation over cen-
tral sensorimotor area (see Figure 5), yielding significant (p <

0.01) accuracies. However, following the ICA artifact rejection,
the significance of these patterns diminished. In only one addi-
tional, case namely for the participant P6 and for the sport
task of the first session, did we observe a similar discrepancy
in results. One explanation for these discrepancies is, that the
rejected electromyography (EMG) components also entailed the
signal of interest, i.e., discriminative periods of neural activ-
ity (McMenamin et al., 2010). In contrast, for the navigation
task significant accuracies were obtained only after the ICA
preprocessing, as this task was especially prone to artifacts.
Whereas in healthy participants these issues can be addressed by
rejecting the artifactual EEG, doing so in the patients is rarely an
option, as it is often ridden with artifacts. Therefore, we are aim-
ing to address these issues with an automated and online artifact
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removal method, combining wavelet decomposition, indepen-
dent component analysis, and thresholding (Daly et al., 2012,
2013b, 2014).

The above mentioned tasks were chosen due to previous
investigations: for example the passive and attempted movement
conditions were already investigated by our group in studies with
healthy subjects (Müller-Putz et al., 2007, 2013a; Solis Escalante
et al., 2012). In Müller-Putz et al. (2013a) 10 healthy sub-
jects performed brisk passive feet/hand movements and reached
mean offline classification accuracies of 81% (±14) and 76%
(±13) for passive hand and feet task, respectively. In Müller-
Putz et al. (2007) EEG-changes during passive and attempted foot
movements were investigated in 10 healthy subjects and seven
patients suffering from a complete sensor and motor paralysis.
In this study healthy subjects showed distinctive ERD/ERS pat-
terns similar to earlier studies focusing on active movements
(Neuper and Pfurtscheller, 1996, 2001; Stancak et al., 2000; Müller
et al., 2003) and passive movements (Cassim et al., 2001; Müller
et al., 2003). Furthermore, in in five out of seven patients dur-
ing attempted movement diffuse ERD/ERS patterns were found.
Finally, attempted movements were already used by Cruse et al.
(2012) to detect awareness in a patient who had been diagnosed
to be in UWS.

In the command following paradigm we opted for a block-
design instead of a pseudo randomized design mainly for the
following two reasons: first, we wanted to reduce the cognitive
demand by performing only one condition at a time, instead of
pseudo randomizing up to four different conditions (i.e., sport,
attempted feet, navigation, and passive feet); second, in case a
measurement session had to be ended prematurely (e.g., due to
patients obvious reduced vigilance) block design would increase
the probability that at least for some of the conditions (i.e., the
initial ones) enough data has been gathered. We reduced the
risk of the task-irrelevant intrablock correlations in the EEG sig-
nificantly accounting for the classification results through: (i)
rigorous removal of artifacts with ICA; (ii) use of a simple and
robust classifier with few features; (iii) control for physiological
plausibility of results by means of time-frequency analysis.

It is important to note, that even though the results pre-
sented in this study are consistent with the current state of the
art in similar studies (Cruse et al., 2011; Goldfine et al., 2011),
a functional and accurate communication with MCS patients, as
demonstrated with fMRI, is yet to be achieved with EEG and will
be the primary goal of our further investigations.

Concluding, we contributed to the state of the art by
comparing different types of mental tasks, notably complex
motor imagery and attempted feet movements, within patients.
Furthermore, we explored new venues, such as an evaluation of
passive feet movement as a mean of an initial classifier setup, and
rapid delivery of biased feedback. Further application of online
feedback, as well as of an auditory scanning method, as described
recently in Müller-Putz et al. (2013a), has to be investigated.
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Evaluation of Healthy EEG Responses for Spelling
Through Listener-Assisted Scanning

Petar Horki, Daniela S. Klobassa, Christoph Pokorny, and Gernot R. Müller-Putz, Member, IEEE

Abstract—We investigated whether listener-assisted scanning,
an alternative communication method for persons with severe mo-
tor and visual impairments but preserved cognitive skills, could
be used for spelling with EEG. To that end spoken letters were
presented sequentially, and the participants made selections by
performing motor execution/imagery or a cognitive task. The mo-
tor task was a brisk dorsiflexion of both feet, and the cognitive task
was related to working memory and perception of human voice.
The motor imagery task yielded the most promising results with
respect to letter selection accuracy, albeit with a large variation
in individual performance. The cognitive task yielded significant
(p = 0.05) albeit moderate results. Closer inspection of grand av-
erage ERPs for the cognitive task revealed task-related modulation
of a late negative component, which is novel in the auditory BCI
literature. Guidelines for further development are presented.

Index Terms—Assistive technology, brain–computer interfaces,
electroencephalography.

I. INTRODUCTION

WHEN Jean–Dominique Bauby woke up following a mas-
sive brain stem stroke, he found himself physically par-

alyzed with only residual head and eye movements. Despite
his condition, the so-called locked-in syndrome, he wrote “The
Diving Bell and the Butterfly” [1]. How did he manage to com-
municate a whole book? He used the listener-assisted scanning
method, where messages or letter choices are presented to a per-
son in a sequential fashion until a selection is made. To select
a letter of the alphabet, repeatedly recited by a caregiver, he
blinked with his eyelid.

Persons transitioning from locked-in to complete locked-in
state often find themselves unable to communicate due to loss
of voluntary muscle control. For such persons with severe motor
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and visual impairments but preserved cognitive skills, a brain–
computer interface (BCI) might provide alternative means of
communication [2], thus increasing their quality of life [3]. The
majority of reported BCIs are based on electroencephalography
(EEG), mainly due to following three reasons: first, it has a
high temporal resolution [4]; second, it is widely available; and
third, it is applicable in persons with metal implants. Whereas
different BCIs for spelling applications based on changes of
oscillatory components have been proposed [5]–[10], we will
focus on auditory based ones, as it was shown that a patient in
the completely locked-in state has lost all afferent pathways but
the auditory system [11].

An auditory BCI for spelling applications can be realized by
utilizing the spatial features of auditory cues [12], [13]. How-
ever, it is an open research question to what extent behaviorally
nonresponsive patients can process these spatial features. In a
recent study using oddball design [14], preattentive processing
of different features of auditory cues (i.e., location, pitch, inten-
sity, duration, and complexity [15]) was investigated in nonre-
sponsive patients. The main result was that pitch and intensity
deviants could be discriminated by almost all patients, whereas
other deviants could be discriminated only in some patients.
Whereas these results, given the small number of participants
involved, should be interpreted with caution, it is reasonable
to assume that some patients might benefit from an auditory
BCI for spelling applications independent of spatial features of
auditory cues—a listener-assisted BCI for spelling applications
[16].

Does it make sense to pursue a listener-assisted BCI for
spelling applications? At first glance, the answer might be no
since the oddball experimental design, as employed in state-
of-the-art auditory BCIs for spelling applications, is contingent
upon random presentation of items. However, random presen-
tation of letters of the alphabet is difficult to process, which
causes the evoked responses in EEG to diminish [17]. In spite
of this problem, several lines of evidence suggest that a listener-
assisted BCI for spelling applications might be feasible: first
[18], demonstrated that a periodic protocol can outperform the
standard oddball protocol within the context of an visual BCI;
second [19], demonstrated gaze-independent spelling based on
rapid serial visual presentation; and third [20], enhanced the
performance of an auditory attention-based brain–computer in-
terfaces by employing an active mental task.

Another approach would be to employ a linear scanning pro-
tocol based on sensorimotor rhythm-based selection. Such an
approach was already demonstrated in a multichoice visual [21]
and a binary auditory [22] paradigm, but it is unclear whether it
is feasible for multichoice auditory paradigm.

2168-2194 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Our aim is to investigate whether listener-assisted scanning
could be used for spelling with EEG. Our hypothesis is that
when spoken letters are presented sequentially, the participants
can communicate the intended letter by performing a mental
task. To test this hypothesis, we evaluate whether the intended
letter can be detected through induced and evoked EEG re-
sponses associated with different mental tasks. The results of
this evaluation will form the basis of a listener-assisted BCI for
spelling applications and guide its further development.

II. METHODS

A. Subjects

Eleven healthy subjects (5 male, 6 female; 22 to 29 year
old, mean age 26) participated in this experiment. They were re-
cruited through university public notice boards (i.e., newsgroup,
forum). Participants gave informed consent prior to the begin-
ning of the experiments and received monetary compensation
afterward. Half of the participants had no previous exposure
to EEG experiments. The experiment was undertaken in accor-
dance with the Declaration of Helsinki.

B. Recording

The EEG was recorded with 29 active electrodes (g.tec, Guger
Technologies, Graz, Austria) overlying the frontal, central, and
parietal scalp areas. In detail, the electrodes were placed at
positions AFz, F3, F1, Fz, F2, F4, FC2, FC1, FCz, FC4, C5,
C3, C1, Cz, C2, C4, C6, CP3, CP1, CPz, CP2, CP4, P3, P1, Pz,
P2, P4, and POz according to the international 10/20 electrode
system. The EEG electrodes were referenced to the left ear lobe
with the ground electrode placed on the right ear lobe. The
electrodes were integrated into a standard EEG cap (Easycap
GmbH, Herrsching, Germany) with an interelectrode distance of
2.5 cm and connected to EEG amplifiers (g.tec, Graz, Austria).

The electrooculogram (EOG) was recorded with three ac-
tive electrodes (g.tec, Guger Technologies, Graz, Austria), posi-
tioned above the nasion, and below the outer canthi of the eyes.
The electromyogram (EMG) was recorded with four electrodes
from both legs (musculus tibialis anterior). The EEG amplifiers
were set up with a band-pass filter between 0.5 and 100 Hz, and
a notch filter at 50 Hz. The EEG and EOG were sampled with
512 Hz, the EMG with 2000 Hz. Participants were seated in an
electrically shielded room.

C. Stimuli

Spoken letters of the English alphabet, generated by a text-
to-speech program (AT&T Natural Voices, AT&T, USA), were
presented sequentially in alphabetical order through a right head
phone for one of several predefined words. Presenting acoustic
cues through one ear only, keeps the other ear free for incoming
communication from surroundings. The task irrelevant acoustic
cues (i.e., cues specifying the target letter, pause, report) were
presented in either male or female voice, balanced across all the
subjects.

Stimulus onset asynchrony was set to 550 ms, including a
50 ms pause. Thus, it took 14.3 s for a single presentation of

the whole alphabet. For each target letter, indicated through a
verbal cue, the alphabet was repeated one to three times, for a
total of two to four alphabet presentations, followed by a short
break of random length (i.e., 4 to 6 s).

D. Experimental Paradigm

The experimental paradigm is depicted in Fig. 1. For the
investigation the predefined words “brain,” “power,” “husky,”
and “magic”—had to be spelled in copy spelling mode. They
were chosen because their letters are distributed across the whole
alphabet range. Each word was spelled letter by letter within a
single run. Runs were separated by short break of 1–2 min to
avoid fatigue.

The participants were instructed verbally to perform one of
the following tasks whenever a target letter was presented: 1)
brisk feet motor execution (ME), 2) brisk feet imagery (MI), 3)
discrimination of the target voice’s gender and comparison to
the following repetition (i.e., whether the target voice’s gender
has changed or it remained the same, reporting through sin-
gle/double button press with index finger of the right hand in a
dedicated time window) as a cognitive task (COG), and 4) men-
tal repetition of the target letter as a control condition (auditory
evoked potentials, AEP). The participants were also verbally
instructed to avoid any movements.

We balanced the order of motor (ME, MI) and nonmotor
conditions (COG, AEP). ME condition always preceded the
MI condition. The COG and AEP conditions were pseudoran-
domized. We randomized the order of words, and balanced the
voice of presentation (male/female). Participants received no
feedback.

E. Data Analysis

EEG analysis was performed separately for motor and non-
motor mental tasks using MATLAB 2009a (MathWorks, USA)
and EEGLAB version 11 [23]. The analysis consisted of pre-
processing, feature extraction, and classification.

1) Preprocessing: The data were high-pass filtered (third-
order butterworth filter) with cutoff frequency at 1 Hz, and
segmented into consecutive epochs of 0.5 s. Bad channels and
prominent artifacts (i.e., swallowing, electrode cable move-
ments, etc.) were identified by visual inspection and removed.
Following these steps, binary Infomax independent component
analysis (ICA) by Sigurd Enghoff [24], based on the MATLAB
version of Scott Makeig and collaborators, was used to separate
EEG and EOG signals into independent components [25]. In-
dependent components (ICs) representing eye movements, eye
blinks, and muscle activity were identified by visual inspection
using methods described in [26] and removed. The remaining
components were multiplied by the mixing matrix produced by
the ICA algorithm to reconstruct cleaned EEG.

a) Feature extraction–motor tasks: For motor tasks anal-
ysis, we defined a single epoch as 1 s following onset of a spoken
letter. The epochs were band-pass filtered (third-order Butter-
worth filter) between 8 and 30 Hz. Common spatial patterns
(CSP, [27]–[29]) method was used to compute most discrimina-
tive features for classification.111
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Fig. 1. Experimental paradigm: the four predefined words (i.e., “brain,” “power,” “husky,” and “magic”) had to be spelled in copy spelling mode. To that end,
spoken letters of the English alphabet, generated by a text-to-speech program, were presented sequentially in alphabetical order through a right head phone. The
participants were instructed to perform one of the following tasks whenever a spoken target letter was presented: i) brisk feet motor execution (ME), ii) brisk feet
motor imagery (MI), iii) discrimination of the target voice’s gender and comparison to the following repetition (COG), and iv) mental repetition of the target letter
(AEP). Participants received no feedback. The task irrelevant acoustic cues (i.e., cues specifying the target letter, pause, report) were presented in either male or
female voice, balanced across all the subjects.

Discriminative feature vectors were obtained for a fixed time
segment (one second post letter onset) extracted from a balanced
number of target and randomly chosen nontarget epochs of the
initial run. Four feature vectors (first two and last two) were
preselected, and downsampled to 32 equally spaced samples.
The size of the feature vector used for subsequent classification
was 128 (i.e., four CSP feature vectors by 32 time points).

For percentage of power decrease (ERD) and power increase
(ERS) analysis, we defined a single epoch as 1 s preceding
and 5 s following onset of a spoken letter. To that end, a time-
frequency map for frequency bands between 4 and 40 Hz (35
overlapping bands using a band width of 2 Hz) was calculated
([30]) for one orthogonal Laplacian derivation overlying Cz.
Logarithmic band power features, calculated by band-pass filter-
ing, squaring, and subsequently averaging over the trials, were
used to assess changes in the frequency domain. To determine
the statistical significance of the ERD/ERS values, a t-percentile
bootstrap algorithm with a significance level of p = 0.05 was
applied.

b) Feature extraction–nonmotor tasks: For nonmotor task
analysis, we defined a single epoch as 1000 ms following onset
of a spoken letter, baseline corrected to preceding 250 ms. The
epochs were band-pass filtered (third-order Butterworth filter)
between 1 and 7 Hz, downsampled to 32 equally spaced samples,
and the features were extracted from nine preselected electrodes
(F3, Fz, F1, C3, Cz, C1, P3, Pz, P1). The size of the feature vector

Fig. 2. Shown here is the binary discrimination accuracy for all subjects
and for different conditions, calculated as the percentage of correctly classified
target/nontarget epochs in outer folds of the nested cross validation. Balanced
number of target and nontarget epochs was used. In subject 7, ME condition
was discarded due to movement artifacts, that could not be removed with the
artifact rejection. ME/MI . . . brisk feet motor execution/imagery; COG . . .
discrimination of the target voice’s gender and comparison to the following
repetition; AEP . . . mental repetition of the letter.

used for subsequent classification was 288 (i.e., 9 channels by
32 time points).

3) Classification: To avoid over fitting, we used Bayesian
linear discriminant analysis (BLDA, [31]) as a classifier, and
nested cross validation.112
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Fig. 3. Shown here is letter selection accuracy, calculated as the percentage of correctly “guessed” letters (i.e., letters with highest classifier probability within a
sequence). The x-axis indicates whether single sequences (i.e., for x = 1), sequence pairs (i.e., for x = 2) or sequence triplets (i.e., x = 3) were used to accumulate
the classifier probability. Mean values and upper limits of one standard deviation (marked by an asterisk) are displayed in lower right corner for all subjects,
together with the type-I error. ME / MI . . . brisk feet motor execution/imagery; COG . . . discrimination of the target voice’s gender and comparison to the
following repetition; AEP . . . mental repetition of the letter; α∗ . . . type-I error.

Each inner cross validation (five-fold with ten repetitions) was
repeated five times with randomly selected nontarget epochs
(i.e., to balance the number of target and nontarget epochs),
followed by an evaluation on the outer fold.

Three outer folds were employed, constructed to allow for the
evaluation of both binary (i.e., target versus nontarget) as well
as letter selection accuracy. The three outer folds were obtained
by pseudorandomly splitting the data into roughly three equal
parts as follows:

1) First outer fold was created by randomly choosing within
trial sequence-triples. Given there was a total of 20 trials
(i.e., letters to spell) within a condition, this resulted in
approximately six sequence-triplets constructed from a
total of 18 sequences.

2) Second outer fold was created by randomly choosing
within trial sequence-pairs, resulting in approximately six
sequence-pairs constructed from a total of 12 sequences.

3) Third outer fold was created from the remaining sequences
(varying number due to artifact rejection).

For the motor tasks, we discarded the initial run used for CSP
filters calculation.

4) Evaluation: Outer cross-validation folds were used to es-
timate both the binary discrimination accuracy (i.e., on a bal-
anced number of target versus nontarget epochs) as well as
to estimate the letter selection accuracies (i.e., on sequence-
triplets, -pairs, and single sequences). The reported values are
means over the three outer folds, with each outer fold evaluated
five times with repeated inner cross validation.

The binary discrimination accuracy (accbin ) is the percentage
of correctly classified target (TP) and correctly classified non-
target epochs (TN) in each outer fold as in (1), averaged over
all outer fold evaluations. The target/nontarget epoch pairs were
selected from same sequences

acc bin =
TP + TN

#epochs
. (1)

We analyzed classification performance across subjects
and conditions with repeated measures analysis of variance
(ANOVA). The independent variable was binary discrimina-
tion accuracy, and the factor was condition (4 levels). Further
analysis was done with a Bonferroni corrected paired t-tests.

The letter selection accuracy is the percentage of correctly
“guessed” letters (i.e., letters with highest classifier probability
within a sequence). Note that for sequence-pairs and triplets,
the classifier probability was accumulated over two and three
sequences, respectively.

III. RESULTS

The results of binary discrimination accuracy for all subjects
across different conditions are shown in Fig. 2. In subject 7,
ME condition was discarded due to movement artifacts, that
could not be removed with the artifact rejection, resulting in
an overestimate of the classification accuracy. The mean and
standard deviation are 71% ± 11% for ME, 66% ± 12% for MI,
63% ± 3% for COG, and 51% ± 3% for AEP condition (the113
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Fig. 4. Percentage of power decrease (ERD, orange) and power increase
(ERS, blue) relative to a reference interval (one second pre cue) for motor
execution (ME, left) and motor imagery (MI, right) condition in one subject.
One orthogonal Laplacian derivation overlying Cz was used for both conditions.
Only significant (p = 0.05, t-percentile bootstrap algorithm) power changes are
shown. The CUE corresponds to the onset of target letter voice presentation.

TABLE I
ANOVA RESULT FOR CLASSIFICATION PERFORMANCE

Effect DFn DFd P

Cond 3 27 0.00018

The factor condition is abbreviated
as Cond. F is the value of the f-
statistic, with degrees of freedom
DFn and DFd.

upper 95% confidence limit of a chance result was estimated to
be 60% [32]).

Table I shows the results of the ANOVA for classification per-
formance, showing a significant effect for Condition (p < 0.01).
The classification performance for the ME, MI, and COG condi-
tion was significantly higher than for the AEP condition (paired
t-test, Bonferroni adjusted alpha levels: α < 0.01 for ME, MI;
α < 0.05 for COG). No significant (p < 0.05) difference was
found when comparing the ME, MI, and COG classification
performance between each other.

The results of letter selection accuracy for all subjects across
different conditions, and varying number of sequences used to
accumulate the classifier probability, are shown in Fig. 3. No-
table is a large variation in individual performance, with best
performing participants achieving 88% for ME, 83% for MI,
and 57% for COG. The upper limit of the letter selection ac-
curacy chance level was estimated to be 11% (see evaluation).
The nonmonotonic trend visible for the lower performing par-
ticipants, as well as the mean for the AEP condition, could be
explained by a lack of an underlying signal benefiting from
an increased signal-to-noise ratio. The AEP condition yielded,
same as in binary discrimination, random results only and thus
will not be analyzed any further. Also shown in Fig. 3 are the
corresponding mean and standard deviation. The type I error
(i.e., α) when repeatedly testing with accumulating probabili-
ties was estimated as α∗ = 1 − (1 − α)k , with α = 1/26 (i.e.,
number of letter choices in a trial) and k = 1, 2, 3.

In Fig. 5, selection accuracy is reevaluated with increased
time windows for ME, MI, and COG conditions, respectively.
To that end, letter selections immediately before and after the
target letter (i.e., 1.5 s time window being equivalent to the target

Fig. 5. From top to bottom: selection accuracy for ME, MI, and COG condition
and for varying time resolutions (i.e., 1.5 s time window equals the target
letter plus one letter before and one letter after, etc.). The increasing time
windows simulate a decreased rate of presentation. Pooled accuracy is obtained
as percentage of all correct selections (i.e., from all of the sequence-triplets,
sequence pairs, and single sequences).

letter plus one letter before and one letter after; 2.5 s time win-
dow being equivalent to the target letter plus two letters before
and two letters after) are counted as correct. Pooled accuracy
is obtained as percentage of all correct selections (i.e., a single
percentage accuracy estimated from all of the sequence-triplets,
sequence-pairs, and single sequences). Notable is a large in-
crease in pooled accuracy for the ME and MI conditions in the114
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Fig. 6. Grand averaged event-related potentials (ERPs) at electrode Pz for multiple subjects, and for the COG and AEP condition. Equal number of target and
nontarget epochs was averaged.

top performing subjects, and a modest increase for the COG
condition.

The ERD and ERS relative to a reference interval (one second
preceding the onset of a spoken target letter) for ME and MI
conditions are exemplified in Fig. 4 for one subject. Visible is
alpha and beta ERD during and beta ERS following the brisk feet
motor execution/imagery. In both motor condition the ERD/S
patterns are similar, albeit weaker in the MI condition.

In Fig. 6, grand average ERPs for equal number target and
nontarget responses for the COG condition, averaged over mul-
tiple subjects at the Pz electrode position, are shown. Task-
dependent modulation of early negative (around 200 ms), late
positive (around 500 ms), and subsequent late negative (up to
1000 ms) component is visible.

IV. DISCUSSION

The goal of this paper was to investigate whether induced
and evoked EEG responses could enable spelling independent
of muscular output through listener-assisted scanning. To that
end, the results for the motor and for the COG conditions are
analyzed to derive guidelines for the further development.

The motor conditions yielded the most promising results with
respect to letter selection accuracy (see Figs. 3 and 5), albeit with
a large variation in individual performance. Closer inspection of
error distribution revealed peaks immediately before and after
the target letter, indicating that the current rate of presentation
(i.e., one letter pronounced every 0.5 s) might be too fast for
sensorimotor rhythm-based selection. Indeed, reevaluation of
selection accuracy with increased time windows (see Fig. 5,
middle), simulating a decreased rate of presentation, led to a
notable increase in performance, with pooled selection accuracy
(i.e., estimated from all of the sequence triplets, sequence pairs,
and single sequences) almost doubling for the MI condition in
the top performing subjects.

Thus, the foremost guideline for further development of sen-
sorimotor rhythm-based selection is to reduce the rate of pre-
sentation, e.g., by employing group presentation of letters and
hierarchical selection.

Close inspection of grand average ERPs (see Fig. 6) for tar-
get and nontarget responses in the COG and AEP conditions,
revealed modulation of several components in the COG condi-
tion: first, mismatch negativity (MMN), reflecting the preatten-
tive change detection on the level of auditory sensory memory

[33]; second, late positive component (LPC) [20], reflecting
the switch of attention onto the new information; and third,
late negative component, possibly reflecting reorientation back
to the task-relevant information (reorienting negativity, RON)
[33]. The absence of the aforementioned components in the AEP
condition indicates that these modulations are task dependent
for the COG condition. Whereas task dependent modulation
of MMN and LPC is consistent with the BCI literature [20],
modulation of RON is a novelty.

The COG condition yielded significant (p = 0.05), albeit
moderate results with respect to binary discrimination (mean
and standard deviation 63% ± 3%) and letter selection accuracy
(57% for the top performing participant). While the classifi-
cation accuracies for the COG condition may not seem very
encouraging on the first sight, they are, in contrast to the AEP
condition, accompanied by a strong physiological response (see
Fig. 6). Furthermore, a monotonically increasing trend with an
increase in signal-to-noise ratio can be observed on average
(see Fig. 6). Given the evidence of task-dependent modulation
of ERP components evident in Fig. 6, moderate results for the
COG condition are likely caused by an insufficient number of
sequences used to accumulate the classifier probability. Con-
trary to motor imagery task, reevaluation of selection accuracy
with increased time windows has not led to a notable increase
in performance, indicating that the current rate of presentation
is not too fast. In fact, the rate of presentation could further be
increased, allowing for additional sequences within a trial that
could be used to accumulate the classifier probability. Thus,
the foremost guideline for further development of ERP-based
selection is to increase the number of sequences used to accu-
mulate the classifier probability, e.g., by increasing the rate of
presentation through partially overlapping stimuli. Notably, this
issue could possibly be handled without necessarily increasing
the presentation rate—the definitive method is to be determined
experimentally.

The current paradigm tried to strike a balance between time
requirements for induced (i.e., sensorimotor rhythm) and evoked
(i.e., ERPs) responses in EEG associated with different mental
tasks. As such, the primary goal was not to achieve a high,
task-specific maximum information transfer rate, but to allow
for an unbiased comparison between the different mental tasks.
The use of different mental (i.e., motor and nonmotor) tasks
was motivated by highly individually specific requirements in
disabled or able-bodied persons [34]–[36]. We assumed intact115
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cognitive abilities allowing one to understand the task require-
ments through verbal instructions, to attend auditory stimuli
(i.e., human voice) while retaining information in working mem-
ory, and to perform the mental tasks. Whereas it is an open
research question to what extent behaviorally nonresponsive
patients possess these abilities, there are several case studies
([37], [38]) proving their presence at least in some individuals.

One of the weaknesses of this study is that all the 11 subjects
studied were healthy volunteers and none suffered from the
lock-in-syndrome. Extrapolation of research results obtained
on healthy individuals to those with lock-in-syndrome and ALS
is obviously fraught with risk.

V. CONCLUSION

We investigated whether induced and evoked EEG responses
associated with motor and nonmotor mental tasks could en-
able spelling independent of muscular output through listener-
assisted scanning, and found the most promising results with
motor related tasks. We also found that a single cognitive task,
related to working memory and perception of human voice, can
modulate ERP components (i.e., MMN, LPC, and RON) reflect-
ing three different stages of selective attention. These findings,
as well as the recent reports that the selective attention to spoken
words in auditory scanning is perceived as intuitive and easy to
use in untrained participants [39], form a solid basis for further
development of an EEG-based listener-assisted BCI for spelling
applications.
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Asynchronous steady-state visual evoked potential based BCI

control of a 2-DoF artificial upper limb
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Abstract

A brain-computer interface (BCI) provides a direct connec-
tion between the human brain and a computer. One type of
BCI can be realized using steady-state visual evoked poten-
tials (SSVEPs), resulting from repetitive stimulation. The
aim of this study was the realization of an asynchronous
SSVEP-BCI, based on canonical correlation analysis, suita-
ble for the control of a 2-degrees of freedom (DoF) hand
and elbow neuroprosthesis. To determine whether this BCI
is suitable for the control of 2-DoF neuroprosthetic devices,
online experiments with a virtual and a robotic limb feedback
were conducted with eight healthy subjects and one tetraple-
gic patient. All participants were able to control the artificial
limbs with the BCI. In the online experiments, the positive
predictive value (PPV) varied between 69% and 83% and
the false negative rate (FNR) varied between 1% and 17%.
The spinal cord injured patient achieved PPV and FNR val-
ues within one standard deviation of the mean for all healthy
subjects.

Keywords: brain-computer interface (BCI); canonical cor-
relation analysis (CCA); electroencephalogram (EEG); hand
and elbow neuroprosthesis; neuroprosthesis; steady-state
visual evoked potential (SSVEP).

Introduction

A brain-computer interface (BCI) provides a direct connec-
tion between the human brain and a computer w30, 32x. BCIs
based on sensorimotor rhythms (SMRs), slow cortical poten-
tials, steady-state visual evoked potentials (SSVEPs), and
P300s have been used for communication, and SMR BCIs
have been most promising for motor control w2, 4, 24x. By
using motor imagery induced event-related (de)synchronization

*Corresponding author: Assoc. Prof. Dr. Gernot Müller-Putz, Graz
University of Technology, Institute for Knowledge Discovery,
Laboratory of Brain-Computer Interfaces, Krenngasse 37, Graz,
8010, Austria
Phone: q43-316-873-5313
Fax: q43-316-873-5349
E-mail: gernot.mueller@tugraz.at

(ERD/ERS) of SMR, two tetraplegic patients with only resid-
ual muscle activity in parts of their upper limbs learned to
open and close their paralyzed hands with the aid of func-
tional electrical stimulation w18, 19, 25x.

One disadvantage of most of the SMR BCIs is that they
require training. However, this depends on subjects’ previous
BCI experience, electrode montage, filters, and classification
procedures. In contrast to SMR BCIs, an SSVEP-based BCI
requires little or no training.

SSVEPs are elicited by presenting repetitive visual stimuli
faster than 6 Hz and can be recorded at occipitally mounted
electroencephalogram (EEG) electrodes w29x. One of the first
SSVEP BCI systems was developed in 1995 and was used
to control the roll position of a flight simulator by using two
flickering light sources w14x. Results of a similar experiment
and also an experimental design where the task was to select
virtual buttons on a computer screen was reported previously
w15x. In one study w3x an SSVEP BCI that helped users to
input phone numbers was designed and implemented, and in
another study w5x an SSVEP BCI-based environmental
controller for people with motor disorders was presented. In
other reported experiments w16x, an asynchronous (i.e., inde-
pendent of external cues) four-class BCI based on SSVEPs
was used to control a two-axis electrical hand prosthesis.

The frequency components of SSVEP in EEG are usually
obtained by analyzing the power spectral density of the EEG,
e.g., by means of the discrete Fourier transformation (DFT).
Stimulation for an SSVEP-based BCI can be delivered via
light emitting diodes (LEDs) or via targets presented on a
monitor that flicker at different frequencies. These flickering
stimuli typically elicit occipital oscillations at harmonics of
the stimulating frequency, as well as the fundamental fre-
quency itself w6, 29x. By using the first three SSVEP har-
monics, a significant increase in classification accuracy can
be achieved w17x. Furthermore, a lock-in analyzer system can
increase classification accuracy in a four-class SSVEP-based
BCI relative to the DFT w16x.

The canonical correlation analysis (CCA) technique, first
described in 1936 w8x, captures the interrelationship between
several predictor and several response variables. CCA trans-
forms the original variables so that the resulting values cor-
relate as much as possible with each other. Lin et al. w11x
applied CCA to analyze the frequency components of
SSVEP in EEG. Reported accuracies of the approach were
higher than those using power spectral density based analy-
sis. Furthermore, it was mentioned that the use of multiple
channels might have contributed to these improved results
by creating greater robustness against noise. One notable
exception was stated – if the area that generated the SSVEP
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is very small, the use of broadly spaced EEG channels in the
CCA approach can increase noise and thus reduce the rec-
ognition accuracy. Also, a possible improvement from using
higher harmonics was suggested. Recently, online experi-
ments with a cue-based multichannel SSVEP-based BCI sys-
tem using the CCA method were conducted w1x, in which
subjects were instructed to focus on one of six stimuli. The
reported BCI system achieved an average accuracy of 95.3%
and an information transfer rate of 58"9.6 bit/min.

Problems in the synchronous mode of operation lie in the
impact of the cue stimuli on EEG. In one study w26x, inspec-
tion of central mu and beta rhythms revealed short-lived
brain state after cued motor imagery in naive subjects. Others
w12x stated the necessity of asynchronous BCI for applica-
tions requiring constant user attention and irregular user-
initiated control, e.g., monitoring a process and adjusting a
control level when required. These types of applications are
usually not communication applications but control applica-
tions. Such asynchronous control applications are widely
being acknowledged as the most natural mode of interaction
for neuroprosthesis control w13x. To our knowledge, no pre-
vious study has evaluated an online SSVEP BCI (with real-
time feedback) based on frequency recognition using CCA
in asynchronous mode of operation.

The aim of this work was the realization of an asynchro-
nous SSVEP BCI, based on the CCA method, suitable for
the control of a 2-degrees of freedom (DoF) hand and elbow
neuroprosthesis. To this end, a virtual and a robotic 2-DoF
limb are used as a feedback. By first training with a virtual
and subsequently with a robotic feedback, the performance
of the participants increases compared to training with a
robotic feedback only w7x. We hypothesized that by selecting
EEG channels for each subject, which discriminate best
between intentional control (IC) and non-intentional control
(NC) states, self-paced control of a 2-DoF hand and elbow
neuroprosthesis can be obtained. A further goal was to eval-
uate the system in a spinal cord injured (SCI) patient. Here,
we expect no difference in performance between healthy
individuals and the SCI patient.

Methods

Stimulation unit (SU)

Visual stimulation was delivered via a custom-made stimu-
lation unit, consisting of two red LED bars (2 cm=5 cm),
arranged in one row, with a center to center distance of
7.5 cm. During all experiments the LED bars of the SU were
programmed to flicker at 8 and 13 Hz, respectively. The duty
to period ratio was 1/2.

Subjects

Two studies were carried out with eight healthy subjects
(26.5"3 years, 5 males and 3 females) and one tetraplegic
patient. The tetraplegic patient was a 34-year-old man who
had a spinal cord injury in April 1998. He was affected by
a complete motor and sensory lesion below C5 and an

incomplete lesion below C4 w25x. The study was approved
by the local ethics committee of the Medical University of
Graz.

EEG recording

In experiments without feedback, EEG was recorded via 21
Ag/AgCl electrodes placed in three rows and seven columns
over the occipital part of the head, with O1, Oz, and O2
being the middle posterior electrode positions. The distance
between electrodes was 2.5 cm. Reference and ground elec-
trodes were placed at the left and right mastoids, respectively.
Impedances were kept below 5 kOhm. The EEG amplifier
(g.BSamp, g.tec Guger Technologies, Graz, Austria) used a
bandpass filter of 0.5–100 Hz with a sensitivity of 100 mV.
The notch filter (50 Hz) was on and the sampling rate was
fss250 Hz. Subjects were seated approximately 1 m in front
of the stimulation unit and the monitor, which was located
in an electrically shielded and slightly dimmed room.

In online BCI experiments with feedback, EEG was
recorded by a set of individually selected electrodes (six for
healthy subjects). The time available for the measurement
with the patient was limited and there was not enough time
to allow the search for optimal electrode positions to com-
plete. Therefore, the search was halted as soon as the best
combination of five channels was found, which were then
used in the online experiment. Reference and ground elec-
trodes were placed at the left and right mastoid, respectively.
The EEG amplifier settings were set as described above.
Subjects were seated approximately 1 m in front of the
experimental setup consisting of the stimulation unit, robotic
limb feedback, and the slightly elevated monitor.

Experimental paradigms

Experiments without feedback The cue-based calibra-
tion experiment without feedback consisted of eight runs
containing 40 trials each and were separated by breaks to
avoid fatigue. Each trial lasted 6 s. Subjects were instructed
to focus on one of the flickering lights, placed below the
screen, according to the cue-based training paradigm w23x:

• At the beginning of each trial (ts0 s), a fixation cross
was presented at the center of the monitor and remained
visible on the screen until the end of the trial.

• From ts0 to 2 s, the participants had to look at the
fixation cross.

• From ts2 to 6 s, an arrow appeared indicating at which
flickering light the participants should focus on.

• At ts6 s, a short tone indicated the end of the trial.

Each flickering light was randomly indicated 20 times
within each run resulting in 160 trials for each of the two
classes.

Artificial limb feedback To provide feedback in the online
experiment, a 2-DoF robotic and a virtual limb (Figure 1)
were used. For the robotic limb, the 8-Hz flickering light
toggled the gripper state between open and closed, and the
13-Hz flickering light toggled the elbow state between flex-
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Figure 1 Virtual (A) and robotic (B) limb feedback. Both feed-
back approaches simulated the movement sequence usually
executed when reaching for and drinking out of a glass.

Figure 2 Evaluation procedure. An online experiment was carried
out to evaluate the performance of the CCA classifier, whereby a
run was divided into self-paced intentional control (IC) and timed
non-intentional control (NC) periods. Each sequence consisted of
six movements.

ion and extension. For the virtual limb, the 8-Hz flickering
light toggled the hand movement animation, and the 13-Hz
flickering light toggled the elbow movement animation. In
addition, the virtual limb simulated the so-called palmar
grasp. The virtual limb feedback was created using the 3-D
content creation software Blender (Blender Foundation,
Amsterdam, Netherlands) and was visualized and animated
using the Qt4 application and user interface (UI) framework
(Trolltech, Oslo, Norway).

Online BCI experiments with feedback The online BCI
experiments with feedback were conducted after the cue-
based calibration experiment on separate days, excluding the
patient, who participated in both of the experiments on the
same day.

The online experiment consisted of eight runs, separated
by breaks to avoid fatigue. During the first four runs, the
subjects controlled an animated virtual limb by looking at
the flickering lights. During the last four runs, subjects con-
trolled the robotic limb. The subjects were verbally instructed
to perform a predefined movement sequence: hand open,
hand close, elbow flexion, elbow extension, hand open, and
hand close.

The performance of the SSVEP BCI in the online exper-
iment was evaluated during the IC and NC periods (Figure
2). At the beginning and before the end of every run, a 1-
min NC period occurred. Between these two NC periods,
subjects had to perform the above mentioned movement
sequence twice (IC). They were verbally instructed to per-
form it each time the IC period started. These two movement
sequences were separated by a 30-s NC period. There was
no time limit on the duration of the IC period. After this
procedure, subjects were asked whether they preferred the
virtual limb feedback or the robotic limb feedback to monitor
their preference.

Data processing

Canonical correlation analysis (CCA)

The use of CCA in EEG signal analysis is based on the
premise that the measured SSVEP will contain the same fre-
quency as the stimulus signal w11x. CCA coefficients can be
calculated using the EEG signals recorded from multiple
channels as one set of variables (X), and all stimulus fre-
quencies and associated harmonics (Y, in our experiments
first, second and third harmonics) as another set of variables
wsee Eq. (1), Figure 3x.

sin(2pft)
cos(2pft)
sin(4pft)

Y(t)s (1)
cos(4pft)
sin(6pft)u w
cos(6pft)

The goal of CCA is to find such weight vectors v and w so
that the resulting and values correlate with each other asˆ ˆx y
much as possible wsee Eq. (2)x.

x̂sXv
ŷsYw

(2)

The canonical correlation (CR) is then the product-moment
correlation between the and values wsee Eq. (3)x.ˆ ˆx y

CRsr (3)ˆ ˆxy

In the EEG signal analysis, the frequency with the largest
CR is the stimulus frequency of the recorded SSVEP.
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Figure 3 CCA in EEG signal analysis illustrated – modified from w11x. Using EEG signals, recorded from multiple channels, as one set
of variables and stimulus frequency and associated harmonics as another set of variables, CCA coefficient can be calculated.

Offline analysis

Test and training set Following the cue-based calibration
procedure, a single-trial EEG epoch was derived in associ-
ation with each cue, beginning 2 s prior to the cue onset and
lasting for 6 s. These epochs were then split into equal sized
test and training sets. Overlapping time segments (80% over-
lap, between two consecutive time segments, for the training
sets and 96% for the test sets) of 1 s, obtained from the EEG
data from each trial, were analyzed using CCA.

Percentage accuracies For every time segment CCA
yielded the recognized frequency, which in this case was
either the 8- or 13-Hz. The number of how many times the
same frequency was recognized for the time segment at a
given time point across all different single trial EEG epochs
was noted. For each of the different time segments this num-
ber was divided through the number of all single trial EEG
epochs yielding percentage accuracies.

CCA thresholds CCA thresholds were used in the online
experiments to determine whether and at which stimulus the
participant is focusing his/her attention on. These percentage
thresholds, one for each of the stimulation frequencies, were
calculated as follows:

• Previously obtained percentage accuracies were averaged
in time for two different time intervals: the reference
interval contains accuracies for time segments with center
points between and including second 0.5 and 1.5; the acti-
vation interval contains accuracies for time segments with
center points between and including second 4.5 and 5.5.

• For each of the stimulation frequencies the corresponding
reference and activation interval were added and divided
by two, yielding the percentage threshold to be used in
the online experiments. The values of these thresholds
were determined from the performance of CCA on the
test set for the selected channels.

Feature selection A feature selection was applied to
select the EEG electrode channels. The criteria for selection
was a combination of maximizing the accuracy in the period
after the cue onset, while maintaining a chance level before
the cue onset, as indicated by the classification accuracy of
CCA in single EEG trials.

The applied approach was based on the wrapper approach
to feature selection w28x. This approach to feature selection
uses the classifier as the evaluation function to select a subset
of the complete feature set that yields a high accuracy. In
this case, CCA was used as the classifier and the complete
feature set consisted of the 21 EEG channels recorded in
experiments without feedback.

The simplest methods based on the wrapper approach to
feature selection are the sequential forward selection (SFS)
and the sequential backward selection (SBS). The SFS starts
with the empty set and adds features one at a time. In con-
trast to the SFS, the SBS starts with the complete feature set
and removes features one at a time. Both of these methods
endure the so-called nesting effect: once a bad choice has
been made, there is no way to undo it in the following steps.
The sequential floating forward selection (SFFS) solves the
nesting problem that appears in SFS and SBS by removing
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Table 1 True positives (TPs), false negatives (FNs), and false
positives (FPs) for all subjects and all runs.

Participant TP FN FP Runs

S1 96 8 20 4 (4)
S2 96 1 22 4 (4)
S3 96 2 25 4 (4)
S4 96 8 29 4 (4)
S5 96 20 31 4 (4)
S6 96 10 33 4 (4)
S7 96 15 39 4 (4)
S8 96 8 43 4 (4)
S 96 9 30.25 Total

12 1.13 3.78 Per run
P1 48 5 15 3 (1)
P 12 1.25 3.75 Per run

TP and FN movement selections were obtained from the control
state, and FP movement selections were obtained from the non-
intentional control state. The ‘‘Runs’’ column displays the number
of runs conducted with the robotic (virtual) limb feedback. S is the
mean of S1–S8.

previously added features and by adding previously removed
features w28x.

A modified SFFS was used as a channel selection algo-
rithm. This algorithm, applied on a rectangular channel
arrangement with three rows and seven columns, works as
follows:

1. In an initial step, training combinations of four channels,
with two channels in each row, are analyzed, and the one
with the single largest CCA value is selected. If there are
multiple best solutions, other parameters, such as mean
CCA accuracy value, are used to discriminate between
channel combinations.

2. In a step forward, the current best combination of nF

(number of channels in a forward step, nFs4 in the first
step forward) channels is expanded (one neighbor at a
time) with all of its neighbors, yielding several combi-
nations of nFq1 channels. The precise number of these
combinations depends on the value of nF and on the posi-
tion of the previously selected channels. CCA values of
these combinations are analyzed using the aforemen-
tioned criteria, and the best combination is selected. If its
value is better than the value of the current best channel
combination, then it is selected as the new current best;
otherwise, the algorithm continues with the next step
backward.

3. In a step backward, the current best combination of nB

(number of channels in a backward step, nBs5 in the
first step backward) channels is analyzed. CCA values of
all possible combinations of nB-1 channels are analyzed
using the aforementioned criteria, and the best one is
selected. If its value is better than the value of the current
best channel combination, then it is selected as the new
current best; otherwise, the algorithm continues with the
next step forward.

4. The whole procedure is repeated until the desired number
of channels (empirically set to 6) is selected or until no
further improvement is possible.

Online analysis

Classification In the online classification procedure, CCA
was applied every 0.25 s on a sliding window of 1-s length.
The output of the CCA classifier, that is the recognized
SSVEP frequency, was stored in a circular buffer containing
the CCA classifier outputs for the last 8 s. If the ‘‘online’’
percentage accuracy, calculated separately for each one of
the stimulation frequencies from the circular buffer, exceeded
the corresponding percentage threshold, then this frequency
could be detected as the one the participant is focusing on.
For example, for a percentage accuracy threshold of 50% for
the 8-Hz stimulus, at least half of the recognized frequencies
in the circular buffer had to be 8 Hz. For this case, a decision
could have been made in as short as 4 s. The dwell (do well)
time parameter placed an additional constraint on the online
classification, namely that the same stimulus frequency must
be recognized during a predefined time period to be eligible
for a command selection. The same dwell parameter of 1.5 s,
or 6 recognitions, was used for all participants.

Evaluation True positive (TP) and false negative (FN)
decisions were detected from the movement sequence during
the IC periods, and false positive (FP) decisions were detect-
ed during the NC periods. From these numbers, the positive
predictive value wPPV, see Eq. (4)x and the false negative
rate wFNR, see Eq. (5)x were calculated. A PPVs100%
means that all the commands were intended by the subject,
whereas a FNRs0% means that all intended commands
were detected. The evaluation was performed in the error
ignoring mode w10x, meaning that the artificial limb only
accepted commands in the correct order, and incorrect
commands were ignored.

PPVsTP/(TPqFP) (4)

FNRsFN/(TPqFN) (5)

Results

Eight healthy subjects and one tetraplegic patient could con-
trol the 2-DoF artificial limbs with the asynchronous SSVEP-
based BCI. To further evaluate the 2-DoF artificial limb
control, TP and FN decisions were obtained from the IC
state, and FP decisions were obtained from the NC state
(Table 1). From these numbers, the PPV and the FNR were
calculated (Figure 4). The PPV varied between 69% and
83% (76"4% for all nine participants), and FNR varied
between 1% and 17% (8"5%).

Offline accuracies were obtained from the cue-based cal-
ibration experiment (Table 2). The detailed results obtained
from the EEG data recorded in experiments without feedback
indicate different levels of accuracy, before and after the cue
onset, when comparing the two stimulus frequencies. There-
fore, different CCA thresholds were used for the 8-Hz
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Figure 4 Positive predictive value (PPV) and false negative rate
(FNR) for online experiments using the CCA method.

Table 2 Offline accuracies calculated using first three (ACCH1-3)
and first harmonic only (ACCH1), and participant-specific CCA
thresholds used for the 8-Hz and 13-Hz stimulus frequencies.

Participant ACCH1 ACCH1-3 th8 (%) th13 (%)

S1 61.7 67.9 95 30
S2 85.4 98.5 80 60
S3 81.9 92.4 85 50
S4 87.1 91.7 85 60
S5 82.8 82.9 75 60
S6 69.5 71.6 85 40
S7 88.8 92.7 85 55
S8 60.8 66.4 75 45
S 77.8 83 83 50
P1 82.1 84.8 80 50

Figure 5 The distribution of EEG channels, individually selected
from EEG data recorded in experiments without feedback. The fre-
quency of selection is encoded as a color (from bright to dark, bright
equals zero, and dark the highest possible value). The numbers indi-
cate how often each EEG channel contributed to the best accuracy.

(83"6% in nine participant-specific thresholds) and 13-Hz
(50"10%) stimulus frequencies (Table 2). Figure 5 shows
the distribution of EEG channels, individually selected from
EEG data recorded in experiments without feedback and
used in online experiments with feedback. The channel
selected most often was O1.

The average number of FPs per minute of NC period var-
ied between 1.0 and 2.1 (1.5"0.3 average FPs per minute
of NC period for all nine participants), and the average num-
ber of FNs per movement sequence varied between 0.06 and
1.25 (0.57"0.37 average FNs per movement sequence for
all nine participants).

Six out of nine participants did not prefer either feedback
type, and all of them stated that both feedback approaches
served the purpose of simulating the desired movement
sequence. One participant who preferred the robotic limb
feedback described this type of feedback as being more real-
istic. The only participant who preferred the virtual limb
feedback said it was faster and simpler than the robotic limb
feedback.

Discussion

Our online study showed that an asynchronous SSVEP-based
BCI based on frequency recognition using CCA can be used
to control a 2-DoF artificial limb. In one study w21x, the
upper confidence limits of chance results in two-class para-
digms given as 55.6% with 160 trials/class and 60% with 40
trials/class. The FNR in online experiments varied between
1% and 17% (8"5%), meaning that more than 80% of the
activations were correct and thus the results are significant.
The SCI patient achieved PPV and FNR rates within one
standard deviation of the mean for all healthy subjects. The
average bit rate, calculated from the offline accuracies using
the formula from Refs. w31, 32x, was 0.42 bits/trial (4.2 bits/
min). The maximal bit rate achieved was 0.9 bits/trial (9 bits/
min).

We assessed whether the usage of harmonic frequency
components increased the accuracy after the cue onset. To
this end, we employed a t-test on the percentage accuracies
obtained from the cue-based calibration procedure. The aver-
age of the CCA accuracies is 83.2"11.9 for the first three
harmonics and 77.8"10.9 for the first harmonic only. The
CCA accuracies for the first and for the first three harmonics
are significantly different (p-0.005). A more detailed
assessment on the impact of harmonic frequency components
can be found elsewhere w20x. In another study w23x, a similar
evaluation procedure was applied. In the aforementioned
study, four subjects were trained to induce one distinctive
brain pattern by motor imagery (MI) over two different dura-
tions. The results showed that participants could control
grasp and elbow function with only one Laplacian EEG
channel and one MI pattern. The average number of FPs per
minute of NC period for the MI-based BCI varied between
0.20 and 3.10, and the average number of FNs per movement
sequence varied between 1.38 and 6.50. Hence, the SSVEP
and MI BCI approaches exhibited a comparable number of
average FPs per minute of NC period, which varied between
1.00 and 2.11 in our SSVEP BCI. However, the SSVEP BCI
averages considerably fewer FNs per movement sequence,
which varied between 0.06 and 1.25.

An online, multichannel, SSVEP-based BCI system using
a CCA method was recently proposed w1x. This system used
nine channel locations in the occipital and parietal lobes and
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a window length of 2 s based on the first harmonic of the
stimulating frequency. Furthermore, it was suggested that
subject-specific channel selection and parameter optimiza-
tion are not needed. Our online SSVEP-based BCI system
used six channel locations in the occipital lobes, with a win-
dow length of 1 s and first three harmonic components. The
classification accuracy of CCA in single EEG trials indicated
that, consistent with the comments in w1x, subject-specific
channel selection and parameter optimization did not dras-
tically improve the already high accuracy in the period after
the cue onset. However, for most of our subjects subject-
specific EEG channel selection, parameter optimization, and
usage of harmonic frequency components increased the dif-
ference between the accuracy level before and after the cue
onset, as reported previously w17, 20x.

In one study w20x, a search for optimal electrode positions
in SSVEP-based BCI was conducted and an overview of the
distribution of the most relevant electrodes was given. In that
study, the channel Oz was very important for most subjects.
In our study, the most relevant monopolar channel, that is
the channel that contributed most often to the best accuracy,
was O1. A possible explanation for this distribution differ-
ence could be that in the former study bipolar combinations
were used and in most cases the electrode being the sink was
Oz. However, in our study monopolar combinations were
used with O1 being the source.

To be useful outside of the lab, a BCI must allow for fast
setup. Hence, the calibration time and the number of EEG
channels must be minimized. Therefore, we have applied a
practical approach in which the calibration for an asynchro-
nous BCI requires less than an hour, using as few as five
EEG channels. Based on this approach, an SCI patient
obtained control of 2-DoF artificial upper limbs using our
asynchronous SSVEP BCI, immediately after only one short
(approximately 1 h) calibration session.

A potential problem arises when a SSVEP stimulus fre-
quency overlaps with the subject’s peak alpha frequency. To
ameliorate this problem, we used subject-specific CCA
thresholds for each frequency. Another approach would be
to choose stimulus frequencies that do not overlap the sub-
ject’s peak alpha frequency w9x.

This study incorporates the methods and confirms the
results obtained from previous studies w1, 11, 23x; further-
more, this study includes several new results, e.g., PPV and
FNR. These results provide a more complete evaluation of
frequency recognition based on CCA for SSVEP-based BCIs
by evaluating its performance not only during the IC time
but also during the NC time. These results also support our
earlier suggestion that the SSVEP-based BCI, operating in
asynchronous mode, is feasible for the control of a neuro-
prosthetic device w16x.

To further improve the asynchronous control, the number
of FPs can be reduced by using two BCIs, with one of the
BCIs being used as the brain switch w12x. In this way, a
hybrid BCI system can be created by switching, e.g., a bat-
tery of flickering lights (SSVEP BCI) on or off by using a
brain switch based on sensorimotor rhythms w22, 27x.
Repeatedly switching between MI and SSVEP tasks results

in fewer false positives compared to the use of a flickering
light as the on/off button.
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