
Matthias Schlesinger, BSc.

An LSL-Based Sensor Platform for Mobile Brain Imaging, 

Brain-Computer Interfaces and Rehabilitation

to achieve the university degree of

MASTER'S THESIS

       Master's degree programme: Software Development and Business Management

submitted to

Graz University of Technology

Ass.Prof. Dr. Reinhold Scherer

Institute of Neural Engineering

    Diplom-Ingenieur

Supervisor

Graz, February 2016





Matthias Schlesinger, BSc.

Eine LSL-Basierte Sensor Plattform für Mobile Hirnforschung, 

Gehirn-Computer Schnittstellen und Rehabilitation

zur Erlangung des akademischen Grades

MASTERARBEIT

                              Masterstudium Softwareentwicklung - Wirtschaft

eingereicht an der

Technischen Universität Graz

Ass.Prof. Dr. Reinhold Scherer

       Betreuer

 Institut für Neurotechnologie 

Graz, Februar 2016

    Diplom-Ingenieur









Abstract

Even though the brain proves constantly that it performs amazingly well
in complex, ever-changing environments the majority of brain research is
conducted while participants sit or lie motionless. Similarly, while the ultimate
goal of brain-computer interface (BCI) systems is to aid patients in need, hardly
any BCI system can be used by a patient at home without a supervisor present.
Rehabilitation exercises, however, can be done by patients at home but due to
their repetitive, monotone nature are often neglected.
Those seemingly unrelated statements express one and the same challenge: the
transition from a stationary to a mobile environment or in other words the
challenge of making technologies usable outside the laboratories and medical
clinics to advance research and aid patients.
The aim of this thesis was to further explore the three fields mobile brain
imaging, mobile BCI and mobile rehabilitation. Firstly, the requirements those
areas impose on both hardware and software were assessed. For hardware
devices those requirements include being lightweight, portable and ideally
wireless. Software is required to be able to synchronize multiple devices, be
easy to use and not to rely on proprietary software. Furthermore, both hardware
and software should be affordable for patients that already have to bear high
medical costs.
Based on those results the data acquisition and synchronisation software Lab
Streaming Layer (LSL) was extended so that it supports hardware devices that
facilitate this before-mentioned transition. Those hardware devices include
medical-grade hardware for mobile brain research such as the ANT eegosports
amplifier (ANT Neuro, Enschede, Netherlands) and two data gloves, namely, the
5DT DataGlove (5DT, Gauteng, South Africa) and the CyberClove (CyberGlove
Systems, San Jose, CA, USA) but also affordable consumer-grade devices such
as the Leap Motion controller (Leap Motion Inc., San Francisco, CA, USA) or
the Thalmic Myo wristband (Thalmic Labs Inc., Ontario, Canada).
All this yields a software platform that can easily access and synchronize a
wide range of hardware devices. To demonstrate its usefulness for mobile
rehabilitation a proof-of-concept for a computer game for rehabilitation is
presented. The game uses two of the newly implemented devices to control the
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main character and LSL to record the data coming from those devices as well
as in-game events.
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Kurzfassung

Obwohl das menschliche Gehirn permanent beweist, wie gut es komplexe
Situationen meistern kann, werden Teilnehmer in Hirnforschungsstudien dazu
angehalten, sich so wenig wie möglich zu bewegen. Gleichzeitig ist es zwar
ausgewiesenes Ziel von Gehirn-Computer Schnittstellen (auch: brain-computer
interfaces, BCIs), Patienten zu helfen. Tatsächlich bei Patienten zu Hause zum
Einsatz kommen aber ob ihrer Komplexität nur sehr wenige BCI Systeme. Phys-
iotherapeutische Übungen zu Rehabilitationszwecken, andererseits, könnten
zwar durchaus zu Hause durchgeführt werden, scheitern aber oft an der fehlen-
den Motivation der Patienten. Auf den ersten Blick mögen diese Feststellungen
etwas beliebig gewählt sein. Bei genauerem Hinsehen offenbaren sie allerdings
ein und dieselbe Herausforderung: den Übergang von einer stationären in eine
mobile Umgebung oder, mit anderen Worten, die Herausforderungen, Tech-
nologien außerhalb von Forschungseinrichtungen und Kliniken verwendbar zu
machen, mit dem Ziel, Forschung voranzutreiben und Patienten zu helfen.
Das Ziel dieser Arbeit war es, die drei Felder mobile Hirnforschung, mo-
bile Gehirn-Computer Schnittstellen und mobile Rehabilitation und die An-
forderungen, die sie an Hardware und Software stellen, zu erforschen. Zu den
Anforderungen zählen die Verwendung portabler, kabelloser Hardwaregeräte
sowie benutzerfreundliche Software, die in der Lage ist, mehrere solcher Hard-
waregeräte zu synchronisieren. Außerdem sollten für sowohl Hard- als auch
Software leistbare Lösungen angeboten werden, um Patienten, die ohnehin
schon hohe Ausgaben zu tragen haben, nicht weiter zu belasten.
Ausgehend von diesen Ergebnissen wurde die Software Plattform Lab Stream-
ing Layer (LSL) erweitert, so dass Hardwaregeräte, die den oben genannten
Übergang in eine mobile Umgebung erleichtern, unterstützt werden. Zu den
implementierten Geräten zählen medizinische Geräte wie der ANT eegosports
EEG-Verstärker (ANT Neuro, Enschede, Netherlands) und zwei verschiedene
Datenhandschuhe, und zwar der 5DT DataGlove (5DT, Gauteng, South Africa)
und der CyberGlove (CyberGlove Systems, San Jose, CA, USA), aber auch
günstige Consumer-Geräte wie der Leap Motion Controller (Leap Motion Inc.,
San Francisco, CA, USA) oder das Thalmic Myo Armband (Thalmic Labs Inc.,
Ontario, Canada).
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Abschließend wird die Praktikabilität der entstandenen Software Plattform
am Beispiel der spielbasierten Rehabilitation demonstriert. In diesem Mach-
barkeitsnachweis werden zwei der neu implementierten Geräte sowie LSL zur
Erfassung des Spielfortschritts genutzt.
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1. Introduction

1.1. Motivation

On a first glance brain imaging - the process of recording and imaging the
structure and activity of the human brain -, brain-computer interfaces (BCIs)
- systems that record and analyse brain activity to control a computer - and
rehabilitation have very little in common. But all these areas are currently
facing a similar challenge. Namely: the transition from a stationary to a mobile
environment. Or in other words the challenge of making existing technologies
usable outside controlled research laboratories and medical clinics.
For brain-imaging that transition to a mobile environment would mean being
able to record brain activity while participants actively interact with their en-
vironment. For a brain-computer interface system to be truly mobile it must
be both affordable and easy to use so that it can be used by patients at home.
And, lastly, mobile, home-based rehabilitation would allow patients to perform
the majority of their exercises at home while a computer- and/or game-based
system tracks their progress.

With this imminent change in environment also the hardware requirements
change. Brain imaging in a mobile environment calls for compact recording
devices that are light enough to be worn on the participant’s body and use very
few cables to not limit the participant’s range of motion. Furthermore, both
mobile brain-computer interfaces and mobile rehabilitation require hardware
to be robust, easy to use and most importantly to be affordable for patients.
So having one sensor platform that combines all those hardware devices is of
utmost importance and would be the first step towards a software system that
facilitates the mobile scenarios mentioned above. The platform should acquire
data from many different hardware devices and make this data available to
whichever application is interested.
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1. Introduction

The aim of this thesis is to do just that. Therefore, an existing software platform
called the Lab Streaming Layer (LSL) is extended to facilitate mobile brain
imaging, mobile brain-computer interfaces and mobile rehabilitation. To do so
support for a wide range of new hardware devices that meet the requirements
briefly outlined above was added to LSL.

1.2. Structure

The structure of this work is as follows. Chapter 2 introduces the key concepts
that are relevant for this thesis. The fields of mobile brain imaging (section 2.1),
mobile BCIs (2.2) as well as mobile rehabilitation (2.3) are presented and their
implications on both hardware and software are discussed.
Subsequently, the existing software platform LSL will be introduced in chapter
3. After a general introduction in section 3.1 its applicability for the three
mobile scenarios will be assessed in section 3.2. Based on this information, the
following chapter 4 gives an overview of promising hardware devices that can
facilitate mobile brain imaging, mobile BCI and mobile rehabilitation but are
not yet supported the Lab Streaming Layer.
The second half of this work focuses on the software developed as part of this
thesis. In chapter 5 new applications written for LSL are described. In section 5.1
the LSL Configurator, a tool that facilitates configuration of multi-application
projects, is presented. After that a description of the applications written for the
hardware devices discussed in chapter 4 is given in sections 5.2 and 5.3. Test
results using those applications are reviewed in the subsequent chapter 6. To
conclude the discussion of the practical part of the thesis a proof-of-concept of
an LSL-based rehabilitation game is presented in chapter 7.
Finally, the presented work is discussed in chapter 8 before this thesis is
concluded in chapter 9.
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2. Background

This chapter will introduce the three emerging areas mobile brain imaging,
mobile brain-computer interfaces and mobile rehabilitation that should be facili-
tated by the sensor platform presented in this thesis. Furthermore, requirements
and challenges associated with the transition from a stationary to a mobile
environment for each of these areas will be discussed.

2.1. Mobile Brain Imaging

For the purpose and importance of mobile brain imaging (MoBI) to become
evident firstly the traditional brain imaging process has to be described.

2.1.1. Traditional Brain Imaging

Brain imaging measures neuronal activity. This activity can be detected for
instance by either measuring electrical activity (Electroencephalography (EEG))
or magnetic fields (e.g. Magnetoencephalography (MEG)) when groups of neu-
rons become active or by measuring cortical blood flow (Functional Magnetic
Resonance Imaging (fMRI), Positron Emission Tomography (PET)) working
under the assumption that active brain regions require more blood than inactive
ones (Crosson et al., 2010; Gramann et al., 2011).
Most of those methods (PET, fMRI, MEG) require the use of large scanners.
EEG uses more lightweight electrode caps that are placed on the participants
head. What all those methods have in common though is, that they are usually
conducted in soundproof and electrically shielded laboratories and that they
require the participant to lie or sit still and move as little as possible (Kranczioch
et al., 2014). The reason for that is that movements contaminate the recorded
brain signals with non-brain related noise or artefacts (Makeig et al., 2009). Such
artefacts can be induced by head and neck movements as well as by processes
the participants might be unaware of such as eye-blinking (Gramann et al.,
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2. Background

2011).

Even though those well-established recording paradigms restrict the partici-
pant’s movements they have led to countless important findings about how
the human brain works and have given us a better understanding of motor
control, emotion, attention and many others (Gramann et al., 2014). Neverthe-
less, researchers argue that with only using this ”limited behavior approach”
as Makeig et al. (2009) calls it, the human brain in its natural state cannot be
explored.

2.1.2. Mobile Brain Imaging

Traditional brain imaging requires participants to move as little as possible
to not contaminate the recorded brain signal. Nevertheless, we know that the
human brain is trained to adjust to an ever-changing environment and to react
to events in our surroundings automatically and in a timely fashion (Gramann
et al., 2011; Makeig et al., 2009). Studies on animals have shown that brain states
differ depending on the behavioural state. Niell and Stryker (2010) described
that the activity in a mouse’s visual cortex doubles when it starts moving. This
suggests that the brain adjusts to movement and depending on the amount of
incoming sensory information (Gramann et al., 2011). Traditional brain imaging
studies where participants are not allowed to move disregard this link between
human behaviour and brain activity (Kranczioch et al., 2014).

So the idea of mobile brain imaging is to simultaneously record brain activity
and body movements while participants are actively interacting with their
environment (Gramann et al., 2011) and to thereby give a more detailed answer
to how brain dynamics and human behaviour are linked. When MoBI was
proposed it was defined as the simultaneous study of what the brain is doing,
what the brain is sensing, and what the brain is controlling while performing
naturally motivated actions. This requires the recording of brain activity, body
and eye movements as well as everything the subject sees and hears (Delorme
et al., 2011). However, ordinarily the term MoBI also refers to non-stationary
brain imaging where no or hardly any scene information is captured. Most
notably in this regard are studies in human upright walking that record EEG
and data from foot-force sensors (e.g. Seeber et al., 2015, Lau et al., 2014, De
Sanctis et al., 2014).
But regardless of the amount of environment data that needs to be captured

4



2.1. Mobile Brain Imaging

the new experimental modalities introduced with MoBI impose many new
requirements on both hardware and software.

2.1.3. MoBI Requirements

There are two main requirements for mobile brain imaging technologies.

1. Precision of Measurement: The precision of measurement of brain imag-
ing technologies is usually determined by its temporal and spatial resolu-
tion. Temporal resolution indicates how precise a method can measure
changes in neural processing. This means how long it takes for a change in
brain activity to become apparent in the recorded data. Spatial resolution
indicates how precisely the origin of the change in brain activity can be
pinpointed. As goal-directed movements are initiated and executed within
milliseconds, technologies used for MoBI must have high, millisecond
accurate, temporal resolution. To effectively remove artefacts from the
signal a spatial resolution in the range centimetres is required (Gramann
et al., 2011; Mullen et al., 2015).

2. Portability: The technology of choice must be portable enough to allow
the subject to move freely. It should be small, lightweight and ideally
head mounted and transmit data wirelessly or through very few cables
(Kranczioch et al., 2014; Makeig et al., 2009).

In section 2.1.1 commonly used brain imaging technologies were mentioned
and should now be assessed for MoBI. FMRI and PET scanners, that measure
the blood flow, have great spatial resolution (millimetre accurate) but have very
low temporal resolution (seconds for fMRI, tens of seconds for PET). Moreover,
due to the scanner size they require the subject to remain stationary and are
too heavy for a mobile solution. Same holds true for MEG. While it has better
temporal resolution (in the range of milliseconds) than the methods above it
shares their disadvantage of being inherently stationary because of the MEG
scanner’s size. Hence it does not fulfil the portability requirement for mobile
brain imaging that was discussed above. Hence, the most promising recording
technology for mobile brain imaging is EEG. It provides excellent temporal
resolution in the range of milliseconds, acceptable spatial resolution in the
range of centimetres and is lightweight enough to allow the subject to move
around freely (Gramann et al., 2011; Crosson et al., 2010).

Therefore when Makeig et al. (2009) introduced the concept of MoBI for the
first time they proposed an EEG based mobile brain imaging system. In their

5



2. Background

original proposal they used a 256 channel high density EEG that, due to the
size and weight of the EEG recording hardware, was mounted on a crane-like
structure above the participant (Gramann et al., 2011). This setup, while a big
step forward from stationary recordings, still restricts the participants’ move-
ments (Kranczioch et al., 2014). With recent developments regarding mobile
EEG amplifiers mobile brain imaging can be further improved. As opposed
to traditional EEG amplifiers mobile amplifiers are extremely portable. They
are either fully head-mounted or lightweight enough to be worn on the partici-
pant’s body and transmit their data wirelessly.

With the adapted hardware requirements also the software requirements change
significantly for MoBI recordings compared to traditional EEG recordings.
Traditionally only EEG data and event markers have been recorded. With
MoBI much more data, including motion capture and audio and video data, is
recorded simultaneously (Ojeda et al., 2014).
The main challenge here is the synchronization of the multiple devices recorded.
As processes studied with MoBI are initiated and executed within milliseconds
even the slightest time shifts can lead to misinterpretations of the results
(Gramann et al., 2011; Reis et al., 2014). Additionally, the recording devices
have different internal clocks and potentially different sampling rates. Also they
might not run on the same computer device. Hence network and operating
system delays complicate the synchronization process (Delorme et al., 2011).

2.2. Mobile Brain-Computer Interfaces

2.2.1. Brain-Computer Interfaces

Brain-computer interfaces (BCIs) are systems that record brain activity and
translate this activity into control commands for a (computer) device (Rao,
2013). Brain activity can be recorded using invasive (e.g. electrocorticography
(ECOG)) and non-invasive (e.g. EEG, MEG) technologies. For this thesis the
term BCI refers to EEG-based BCIs.
Originally, BCIs were developed to aid patients having only very limited neuro-
muscular control which can be caused by diseases like Amythrophic Lateral
Sclerosis (ALS) and Cerebral Palsy (CP) but also spinal cord injuries or stroke
(Klose, 2007). Those conditions have in common that the normal information
flow from the human brain to the muscles is disrupted. Either due to damage
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to the neural pathways that control muscles or to the muscles themselves. BCIs
give the brain a new, non-muscular, communication and control channel and
the patient a way to interact with its environment (Wolpawa et al., 2002). In
recent years fostered by faster and cheaper computers and advances in our
understanding of how the brain works researchers began to explore BCIs for
able-bodied individuals as well (Rao, 2013).

BCI Applications

As mentioned above BCI systems play an important role in a clinical environ-
ment to help so called locked-in patients. The goal of BCI applications for this
group of patients is to most importantly provide means for basic communi-
cation and movement control. Such applications include spellers (e.g. Farwell
and Donchin, 1988) or cursor control (e.g. Wolpaw et al., 1991) as well as en-
vironment control (e.g. Gao et al., 2003). Furthermore, BCI systems might be
used as a therapeutic tool to help patients with motor disabilities, most notably
patients that suffered from stroke, to relearn useful motor function. Either by
training them to produce more normal brain activity as shown by Buch et al.
(2008) or by using BCI to control a movement assisting device as Daly et al.
(2008) proposed.

With regard to able-bodied individuals BCI research aims at navigating virtual
worlds for gaming (Scherer et al., 2011) or monitoring alertness to assess the
degree of engagement and attention in a learning environment (Szafir and
Mutlu, 2012).
In conclusion, applications for BCI systems are diverse as are potentials and
requirements for mobile and affordable solutions. Those will be described in
the following section.

2.2.2. Hybrid BCI

Hybrid BCI (hBCI) are systems that combine a BCI with either another BCI
system (e.g. Pfurtscheller et al., 2010) or other input devices (e.g. Scherer et al.,
2007). The former will be refereed to as hybrid BCI-BCI systems. The latter,
as they utilize human computer interaction (HCI) hardware, will be refereed
to as hybrid BCI-HCI systems. BCI-BCI systems use the same acquisition
hardware and are only hybrid in the sense that they combine two different
signal processing approaches (Pfurtscheller et al., 2010). Hence they are of lesser
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2. Background

interest for this thesis. BCI-HCI systems, however, utilize multiple hardware
devices simultaneously and could benefit from a sensor platform that supports
a wide range of such devices.
According to Müller-Putz et al. (2011) typical applications of hybrid BCI-HCI
systems are applications for severely disabled but not completely locked-in
patients. As the authors point out these patients are usually able to interact
with their environment using a wide range of assistive devices. Such devices
are favoured over BCIs as they provide a more natural and reliable way of
communication. However, fatigue, tremors or other inferences might render the
patient unable to physically control a device. Then an input method that does
not rely on muscular activity such as a BCI becomes an essential alternative.
Consequently, BCI-HCI systems monitor both traditional input devices, such as
game controllers, and a BCI simultaneously and provide flexible and adaptive
means of communication (Kreilinger et al., 2011).
Another application for hybrid BCI-HCI systems is game-based rehabilitation
as proposed by Muñoz et al. (2013). Here BCIs are combined with a Kinect
(Microsoft Inc., Seattle, WA, USA) motion-tracking sensor. The BCI is used as
an additional input channel as well as to monitor the patient’s attention. The
field of mobile rehabilitation is discussed in section 2.3 in more detail.

2.2.3. Mobile BCI

While helping patients in need is the ultimate goal when developing a BCI
the majority of BCI research is conducted in laboratories. And the number of
patients that are able to use a BCI system at home without experts present is
still very low (Nijboer and Broermann, 2010).
The idea of mobile BCIs is to create BCI systems that are suitable for daily life
applications outside a laboratory without requiring constant medical and/or
technical supervision (De Vos et al., 2014). Hence the meaning of mobility is
quite different to mobile brain imaging where mobility only meant moving
freely in a controlled, scientific environment. Similarly, this transition from a
controlled to an uncontrolled, mobile environment causes the requirements for
BCI hardware and software to change as the following section will discuss.

2.2.4. Requirements for Mobile (Hybrid) BCIs

While some demands from mobile BCI systems vary among the different user-
groups there are some core requirements that apply to all mobile scenarios.
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2.2. Mobile Brain-Computer Interfaces

Firstly, the recording devices should be robust, portable, lightweight and easy
to set up (Nijboer et al., 2014). Additionally, they should require as few wired
connections as possible or ideally transmit data wirelessly (Debener et al., 2012).
This is particularly important for hybrid systems as they by definition utilize
more than one device. Hence, wireless solutions should be preferred as cables
are not only inconvenient but a potential safety threat for motor impaired
patients.
Another factor that is of lesser importance when developing BCI systems for a
research environment is usability. Traditionally, EEG-based BCI systems use wet
electrodes. While the use of conductive gel leads to better signal quality it also
takes significantly longer to set up and requires hair washing after use (Reis et
al., 2014). This is inconvenient for able-bodied users but an enormous challenge
for severely disabled patients and their caregivers (Nijboer and Broermann,
2010). While most of the consumer-grade EEG systems use dry electrodes they
usually provide too few and too inaccurate electrodes for high accuracy record-
ings particularly in mobile scenarios. Regarding the number of electrodes, Lau
et al. (2012) suggest at least 35 electrodes for EEG recordings during locomotion
whereas available consumer-grade systems provide fewer electrodes (e.g. 14 in
the case of the device presented in section 4.2.1). Regarding achieved accuracies,
Estepp et al. (2009) showed that the correlation between a signal recorded with
dry and wet electrodes can drop to as low as 0.45 while never being higher
as 0.82. However, very recently Mullen et al. (2015) demonstrated a wireless
EEG system for mobile recordings that provided 64 electrodes and, with a
signal correlation of 0.9, achieved comparable signal quality to simultaneously
recorded wet electrodes.
The transition from a lab environment to the patient’s home does not only
require improved hardware but also a new take on BCI software. In this regard
Kaufmann et al. (2012) note that existing BCI software systems are extremely
complex. They allow researchers to modify a wide range of parameters to
configure everything from stimulus presentation over signal processing and
classification. While the achieved flexibility is advantageous in a research envi-
ronment it is overwhelming for layman. Hence, existing BCI software needs to
be radically simplified so that the end-user or his/her caregiver can use the sys-
tem without requiring medical supervision. Faller et al. (2012), Kaufmann et al.
(2012), and Kübler et al. (2013) recently proposed such systems that combine a
simple user interface with auto-calibration and, for the systems presented by
Kaufmann et al. and Kübler et al., also game-based elements. Similarly, Scherer
et al. (2015) presented a user-centred, game-based BCI to increase the subjects’
motivation and cooperation during the demanding BCI calibration phase.
But probably the most important requirement that holds true for both BCI
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hardware and BCI software is to be affordable. Nijboer and Broermann (2010)
pointed out that patients that require a BCI system usually face enormous
medical costs for inpatient treatment, drugs, physical therapy or costly adapta-
tions at home. They also stated that some of those expenses are not covered by
health insurances as are the acquisition costs for a BCI system. Consequently,
developing devices that provide good accuracies without being as expensive as
currently used medical-grade equipment must be a priority. The same holds
true for BCI software. The objective must be to create a system with low hard-
ware requirements that does not rely on proprietary software like the commonly
used and fairly expensive MATLAB (MathWorks Inc., Natick, MA, USA) envi-
ronment.
For hybrid BCIs those software requirements are identical. Additionally, due to
the simultaneous use of multiple devices in hybrid BCI-HCI systems, device
synchronization is an particularly important requirement for hBCI software.
The challenges associated with multi-device synchronization were described in
detail in section 2.1.3.

2.3. Mobile Rehabilitation

Other than the before mentioned mobile brain imaging and mobile BCIs the
field of mobile rehabilitation has been more widely used and studied. The
reason for that is simple. With an ageing society and a higher number of often
multiple and complex health conditions not only the target population but also
the socio-economic (health-care) costs are significantly higher (Patel et al., 2012).
For example stroke alone leads to 5 million long-term disabled patients each
year (Burke et al., 2010).
The idea of mobile rehabilitation is to make rehabilitation exercises available
for patients at home. So, similar to mobile BCIs, mobility in this context means
providing hardware and software solutions that are usable outside medical
clinics without requiring the presence of medical doctors or therapists. The
main objectives of doing so is to reduce healthcare costs and lengths of inpatient
rehabilitation (Johnson et al., 2004) and to simplify rehabilitation particularly
for patients living in rural areas (Patel et al., 2012).
Of course, simple home-based exercises have always been prescribed by ther-
apists. Nevertheless, studies have found that a large percentage of patients
do not exercise as recommended. Shaughnessy et al. (2006) reported that only
31% of patients suffering from stroke exercised as recommended. Ellis et al.
(2011) investigated exercise behaviour of Parkinson’s disease patients and found
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that about one third of patients don’t exercise at all. Researchers attribute this
lack of motivation to the monotone nature of many rehabilitation exercises
(e.g. Alankus et al., 2010 or Flores et al., 2008). Hence, game-based approaches
are often recommended to raise motivation and engagement (Flores et al.,
2008; Scherer et al., 2013). Furthermore, studies showed that game-based or
virtual-reality-based therapy can be more effective than standard rehabilitation
(Corbetta et al., 2015).
Apart from the challenge of raising motivation, precise control (and adjustment)
of movements is challenging in a non-clinical environment with no therapist
present. There are robotic-based systems that enforce and measure correct limb
positioning. However, those systems are complex and expensive and might
endanger the patients’ safety in case of system failures (Steinisch et al., 2013).

In recent years, affordable consumer devices emerged that have the poten-
tial to facilitate out-patient rehabilitation. Particularly the Nintendo Wii game
console and the Microsoft Kinect motion tracking sensor attracted the atten-
tion of researchers (e.g. Galna et al., 2014, Pompeu et al., 2012, Mhatre et al.,
2013, Lange et al., 2011). While both systems benefit game-based rehabilitation
applications particularly the Kinect sensor proves capable to measure clini-
cally relevant movements (Galna et al., 2014a). Scherer et al. (2013) proposed
a framework that combines the Kinect sensor with an EEG recording device.
The authors argue that such a system could provide important insights on the
effect of motor rehabilitation on the human brain (neuroplasticity) as well as on
the patients’ attention and motivation during exercises.
The number of affordable hardware devices continued to grow in recent years.
While most of them are being marketed as game-controllers for consumers,
they have great potential to facilitate mobile rehabilitation. See chapter 4 for a
further discussion of some potentially useful devices.

2.3.1. Requirements for Mobile Rehabilitation

For hardware to be of use for mobile, home-based rehabilitation it, firstly, must
be accurate enough to measure timing of clinically relevant movements (Galna
et al., 2014a). Ideally, depending on the desired application, it should do so in
such a way so that small changes in the patient’s performance are noticeable
(Tung et al., 2015). Secondly, they must be easy to use for inexperienced and/or
cognitively or physically impaired users (Barry et al., 2014) and should be small
and portable enough to be used on the patients’ bedside (Scherer et al., 2013).
Lastly, as for mobile BCI the hardware devices should be easily affordable for
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patients that already have to bear high medical bills.
Regarding software requirements a mobile rehabilitation platform should be
able to handle multiple different hardware devices both simultaneously as
well as interchangeably. Firstly, simultaneity means that multiple devices can be
used at the same time. This is similar to MoBI even though millisecond-precise
synchronization is of lesser importance in this scenario. The reason for this
requirement is that many of the affordable consumer devices serve largely dif-
ferent purposes. While for instance Microsoft’s Kinect accurately tracks posture
and gross body movements but struggles to measure smaller movements such
as finger tapping (Galna et al., 2014a) or limb rotation (Rahman, 2015) such
movements can accurately be tracked using the Leap Motion controller (Leap
Motion Inc., San Francisco, CA, USA) (Tung et al., 2015) or the Myo wristband
(Thalmic Labs Inc., Ontario, Canada), respectively, which will be presented in
chapter 4. Therefore, a combination of multiple consumer devices might prove
to be most effective. Such multi-sensor applications have been proposed by
Rahman (2015) and Caraiman et al. (2015). While Rahman combined the Kinect
and the Leap Motion sensor proposed a rehabilitation and monitoring system
using the Kinect and Leap Motion as well as an EEG system and an eye tracker.
Secondly, interchangeability means that controller input (e.g. a button press, hand
gesture) and in-game output (e.g. movement of a character) should be loosely
coupled. Thereby the platform can be utilized for a wide-range of therapeutic
exercises and patient populations.
Apart from the underlying architecture the application should be designed in a
way that motivates and engages but not overwhelms the patient (Scherer et al.,
2013). Such design principles have been discussed by Burke et al. (2010), Shah
et al. (2014), Borghese et al. (2013) and many others.

2.4. Summary

Even though the meaning of mobility is different for mobile brain imaging,
mobile brain-computer interfacing and mobile rehabilitation there are many
aspects they have in common. For all those areas the transition into new, less
controlled environments comes with many challenges. In terms of hardware
new devices will have to be introduced. For MoBI new high-accuracy mobile
amplifiers are of interest. Mobile BCIs require robust and affordable hardware
solutions. Lastly, mobile rehabilitation can make use of a wide range of con-
sumer hardware that was not available a couple of years ago.
In terms of software this means that a wide range of different hardware devices
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must be supported. For many applications in those three areas multiple hard-
ware devices will be used simultaneously. Particularly MoBI systems require
millisecond-precise synchronization. For consumer oriented applications soft-
ware systems must be easy to use, platform independent and as inexpensive as
possible.
To achieve this goal the software platform presented in this thesis will build on
an existing platform called the Lab Streaming Layer. This platform is described
in more detail in the following chapter.
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3. A Sensor Platform for Mobile
Brain Imaging, BCI and
Rehabilitation

To achieve the long-term goal of having a software system that facilitates the
areas presented in the previous chapter firstly a sensor platform to access a
wide range of hardware devices must be created. Such a sensor platform should
be able to acquire and synchronize data from multiple hardware devices and
should make this data available for further processing. Additionally, it should
be extremely modular to be applicable for the diverse range of applications that
arises from the areas mentioned above. Moreover, to be usable by patients it
should be affordable and hence should not require any proprietary software.

A software approach that can fulfil those requirements is the Lab Streaming
Layer (LSL). The LSL is a software platform developed by the University of San
Diego. It is described as ”a system for the unified collection of measurement time
series in research experiments that handles both the networking, time-synchronization,
(near-) real-time access as well as optionally the centralized collection, viewing and disk
recording of the data” (LSL, 2015a).

3.1. Lab Streaming Layer (LSL)

LSL is a system to collect and synchronize data from potentially many different
sources. To do so LSL provides a core transport library, called liblsl, and a series
of tools or applications. These tools are responsible either for making the data
of different hardware devices (like EEG amplifiers) available or to retrieve and
process the provided data (like a recording program). The former will from
now on be referred to as hardware applications or hardware apps while the latter
will be called client applications or client apps.
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Figure 3.1.: LSL Scheme: Hardware applications make device data available to LSL using the
push stream call. Client applications may access this data using the pull stream call.

The basic idea of LSL is that an arbitrary number of hardware devices stream
(or push) their data to the LSL transport library using the dedicated LSL-
applications while an again arbitrary number of client programs retrieve (or
pull) this stream.
LSL currently supports a wide range of hardware including multiple EEG
amplifiers, eye trackers, motion capture hardware as well as input hardware
such as computer keyboards, computer mice and joysticks LSL (2015b). But the
range of application can easily be extended as LSL provides language interfaces
written in C, C++, C#, Java, MATLAB and Python. A schematic overview how
hardware applications, client applications and the LSL transport layer interact
can be seen in figure 3.1.
LSL’s synchronization works using an arbitrary number of applications that run
on different computers and with data streams with different and even varying
sampling rates. This architecture allows for an incredibly flexible and modular
design and experiment setup. Hardware applications can be combined in an
arbitrary fashion without having to rewrite or recompile code. The following
section 3.1.1 will describe the synchronization feature in some more detail.
Section 3.1.2 discusses the basic structure of LSL applications.
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3.1. Lab Streaming Layer (LSL)

3.1.1. Time Synchronization

Figure 3.2.: LSL Synchronization: The three key values LSL uses to synchronize streams. The
sample’s timestamp, clock-offset between machines and hardware delay.

Synchronization is the key requirement to facilitate MoBI as well as mobile
and hybrid BCI applications. LSL can achieve millisecond precision or better
(Ojeda et al., 2014; Grivich, 2015). To do so it relies on three values: timestamps,
clock-offset measures and a hardware-delay measure.

1. Timestamps: A timestamp is collected for every block of data (usually
one or multiple samples) an application pushes to the transport library. It
is either provided by the user or implicitly set by the LSL library.

2. Clock-Offset Measures: These values indicate the offset between the
sender’s and the receiver’s internal clock. For each data stream clock-
offset measures are computed periodically and transmitted to the receiv-
ing computer.

3. Hardware-Delay Measure: The hardware delay is the time between sam-
ple capture and transmission to network. This value is usually constant for
each device and can be made available to LSL using a delay information
file (Ojeda et al., 2014).
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To synchronize streams one has to make use of those three values. The easiest
approach is to add the most recent clock-offset measure to and subtract the
hardware-delay measure from each timestamp. A more advanced approach
would be to compute a linear fit through all available clock-offset measures and
add those values to the timestamps (LSL, 2015c).

In preparation for this thesis, LSL’s synchronization abilities were validated
and confirmed. Please refer to section 6.1 for detailed results.

3.1.2. LSL Applications

Figure 3.3.: A typical LSL hardware application. The application provides means to modify
devices settings, a file menu to load and store configuration files as well as a button
to start streaming the device’s data to the LSL transport library (Link Button).

As explained in the introductory part and figure 3.1 LSL is application based.
This means that for every instance of every hardware device there is one applica-
tion running. While applications can be written in many different programming
languages existing hardware applications are typically written in C++ using
the QT framework.
Usually LSL applications consist of three main parts.

1. Device Settings: This collection of User Interface (UI) elements allows the
user to modify basic device settings (e.g. the device’s sampling rate) and

18



3.2. LSL for Mobile Brain Imaging, BCI and Rehabilitation

specify LSL configuration parameters (e.g. channel names).

2. Link Button: This UI element applies the settings specified by the user
to the hardware device and starts streaming the device’s data to the LSL
transport library. Now other applications can retrieve this data stream.

3. File Menu: The file menu allows the user to save and load a configuration
file for the application in use. A configuration file stores all parameters
specified in the Device Settings section. There is also a default configura-
tion file which will be applied at start-up.

3.2. LSL for Mobile Brain Imaging, BCI and

Rehabilitation

The features of LSL were described above. This section will describe how LSL
can facilitate MoBI, mobile and hybrid BCIs and mobile rehabilitation.

LSL for Mobile Brain Imaging

As mentioned in the previous chapter one of the biggest data acquisition related
challenge of MoBI is the synchronization of EEG, motion-capture and maybe
even audiovisual scene recording (Reis et al., 2014). LSL’s ability to achieve
millisecond-accurate synchronization of multiple data sources makes it the ideal
solution for MoBI scenarios. Its predecessor was recommended by Makeig et al.
when proposing MoBI. In subsequent publications the same research group
recommends LSL for data acquisition in MoBI experiments (Makeig et al., 2009;
Gramann et al., 2014; Ojeda et al., 2014).
It is important to note that LSL is not in itself a software solution for mobile
brain imaging but only one building block that handles hardware access, data
acquisition and synchronization (or synchronization preparation). To present
stimuli to the user and to analyse the recorded data other software solutions
have to be used. Gramann et al. (2014) for example proposed the software
platforms SNAP (for stimulus presentation) and MoBILAB (for data analysis).
But the data recorded using LSL can also easily be integrated into the existing
code-base of research laboratories.
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LSL for Mobile BCI

Translating brain activity into computer commands as done by a BCI system
usually involves a set of processing stages. Pfurtscheller et al. (1993) identified
signal processing and classification as the two main stages of a BCI. Based on
this definition Wolpaw and Winter-Wolpaw (2012) and Rao (2013) describe the
four stages of a BCI system as follows:

1. Signal acquisition: Brain activity is recorded
2. Signal processing: The recorded signal is prepared and analysed
3. Feature translation: The signal is translated into computer commands to

operate applications
4. Sensory feedback: The changes in the environment caused by the BCI

are fed back to the brain via stimulation

This sequence is commonly known as the BCI loop. While software systems
exist that cover all aspects of this loop (see Brunner et al. (2012) for a review)
LSL only manages signal acquisition and, if necessary, synchronization with
other hardware devices. The advantage of an LSL based BCI system is that
existing source code for signal processing and feature translation can easily be
reused.
With the signal acquisition part of the BCI loop being loosely coupled with the
rest of the system it becomes easily expendable with new applications. Also
multiple hardware devices can be combined without requiring recompilation
of source code as is currently necessary for some BCI systems. Rozado et al.
(2015) used an LSL based BCI system. In their system they synchronized EEG
with eye-tracking data which nicely demonstrated the abilities of LSL for BCI
studies.
Similarly, the synchronization abilities of LSL are of great use for hybrid BCI
applications where multiple input devices (one of which being a BCI) are used
simultaneously.

But apart from the technical requirements for a BCI to really be usable for
patients at home affordability was a key requirement. LSL being open-source,
freely available online and not restricted to a particular, potentially expensive,
programming environment fulfils this requirement. Also it runs on all major
operating systems.
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LSL for Mobile Rehabilitation

Section 2.3 introduced the concept of mobile computer-based rehabilitation. It
was stated that using consumer devices mobile rehabilitation has the potential
to be an affordable, motivating and effective alternative to in-patient therapy.
The two key requirements for a software platform for mobile rehabilitation were
to handle multiple hardware devices both simultaneously and interchangeably.
Both of which can be achieved using LSL.
Utilize multiple hardware devices simultaneously can easily and very effectively
be implemented using LSL as the area of mobile brain imaging, where LSL is
already used, demonstrates. Even though millisecond-accurate synchronization
is of lesser importance for mobile rehabilitation the underlying architecture of
sending and receiving an arbitrary number of different data streams is equally
usable.
Secondly, due to its modular design also the requirement of interchangeabil-
ity can be achieved using LSL. Different hardware devices can be streamed
independently of each other requiring no source recompilation or project recon-
figuration. Naturally, the receiving application has to support this modularity
as well but with the multi-language interfaces provided by LSL this can be
easily achieved.
Lastly, LSL is easily expendable which makes it easy to integrate new devices
that will emerge in the years ahead.

So it can be concluded that LSL has great potential to be used as a common
sensor platform for the areas of mobile brain imaging, mobile BCIs and mobile
rehabilitation. Other than many of the existing software solutions that were
considered (e.g. platforms discussed by Brunner et al. (2012)) LSL is flexible
enough to be applicable for all those areas. But while LSL already provides
applications for a wide range of hardware devices there are some devices which
are of great interest for those scenarios which are not implemented yet. Those
devices will be presented in the following chapter.
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4. New Hardware for Mobile Brain
Imaging, BCI and Rehabilitation

This chapter presents a selection of promising hardware devices which were
not supported by LSL, as introduced in the previous chapter, and therefore
have been added to the platform as part of this thesis.
Both medical-grade and consumer devices were considered to fit the needs
of researchers, who require hardware to record high quality data in a mobile
environment, and patients, who benefit from affordable hardware devices.
Medical-grade hardware refers to hardware which is intended to be used in a
clinical or research environment. Consumer hardware, however, refers to elec-
tronic devices which are commercially available and intended for personal use
(Oxford Dictionaries, 2015). The intended application, such as entertainment
or computer interaction, will often differ from the application proposed for
this thesis. Typical consumer hardware devices which are of interest are game
controllers or game consoles.
The main requirement imposed on both medical-grade and consumer hardware
was to facilitate mobile data recording. Additionally, a medical applicability of
the consumer devices was assessed.
The structure of this chapter is as follows. Section 4.1 will introduce medical-
grade hardware devices. Namely the ANT eegosports in section 4.1.1 and
two data gloves in section 4.1.2. Consumer-grade hardware devices will be
discussed in section 4.2. Devices presented in this chapter include the Emotiv
EPOC (4.2.1), the Leap Motion controller (4.2.2) and the Thalmic Myo wristband
(4.2.3). See table 4.1 for an overview of selected hardware devices.
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Selected Hardware

Name Type Category Price

ANT eegosports EEG Amplifier Medical ~USD 50.000

CyberGlove Data Glove Medical USD 10.000/15.000

5DT DataGlove Data Glove Medical USD 1.000/5.500

Emotiv EPOC EEG Headset Consumer USD 400/500

Leap Motion Controller Consumer USD 70

Thalmic Myo Controller Consumer USD 200

Table 4.1.: A list of selected hardware devices.

4.1. Medical-Grade Hardware

4.1.1. ANT eegosports

As mentioned above the central idea of mobile brain imaging is to investigate
the state of the human brain while the subject actively interacts with its envi-
ronment. To facilitate this idea there’s a need for mobile EEG recording devices.
While traditionally EEG recording required the use of multiple, bulky and
hardly mobile EEG amplifiers new mobile solutions have emerged in recent
years. Those devices try to be as lightweight as possible (ideally light enough
to be attached to the subject’s body without restricting his/her mobility) and to
reduce the number of wired connections to a minimum. Apart from the ANT
eegosports (ANT Neuro, Enschede, Netherlands) described below the MOVE
system (Brain Vision LLC, Morrisville, NC, USA) which transmits data from the
electrodes to the amplifier wirelessly, the Cognionics wireless EEG (Cognionics
Inc., San Diego, CA, USA) and the g.Tec g.Nautilus wireless acquisition system
(g.Tec Medical Engineering GmBH, Graz, Austria) are mobile EEG systems
worth noting. (Reis et al., 2014)

The ANT eego sports is a relatively new and compact amplifier that targets
motion and movement experiments. The eego sports system uses a compact,
battery-powered amplifier and a Microsoft Surface tablet (Microsoft Inc., Red-
mond, WA, USA). Those two devices are stored in a small backpack worn
by the user. The tablet temporarily stores the data coming from the amplifier
and forwards it to a remote computer where the data is stored permanently.
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Figure 4.1.: The ANT eegosports amplifier as distributed including a tablet, backpack and cap.
(ANT Neuro, 2015)

This solution significantly reduces the risk of data loss (Reis et al., 2014). With
a combined weight of below 2 kilograms (amplifier: 500 grams, tablet: 600 -
1200 grams depending on configuration) and wireless data transmission to the
remote computer the ANT eego sports is a truly mobile EEG system.

The amplifier comes in two configurations with either 32 or 64 channels and has
a maximum sampling rate of 2048 Hz (ANT Neuro, 2015). Amplifiers like the
ANT eego sports can significantly simplify mobile brain imaging experiments.
Using commonly used bulky EEG amplifiers proposed MoBI systems relied on
crane-like structures (e.g. Gramann et al., 2011) or moveable carts (e.g. Ehinger
et al., 2014) to hold recording equipment. As the ANT eego sports is wireless in
the sense that no wires lead from the participant to a stationary computer (only
to the device inside the participants backpack) usability is greatly improved.
Hence, the amplifier is likely to be utilized in upcoming movement experiments
and was included in the software framework discussed in this thesis. More
details regarding the ANT eego sports implementation will be given in section
5.2.1.

4.1.2. Data Gloves

Data gloves are devices worn like a glove which are equipped with a set of
sensors to capture hand and finger movements as well as hand gestures (Pam-
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Figure 4.2.: The CyberGlove (left) and the 5DT Data Glove (CyberGlove Systems Inc, 2015;
5DT Inc, 2015)

plona et al., 2008). The devices play an important role in computer assisted
rehabilitation (e.g. Jack et al., 2000 or Yamaura et al., 2009) as well as in motor
cortical research (e.g. Scherer et al., 2009 or Blakely, 2013).
Hence, it was decided to add support for two different data glove systems.
Firstly, an application for the medical-grade CyberGlove (CyberGlove Systems,
San Jose, CA) was developed. Secondly, the cheaper DataGlove (5DT, Gauteng,
South Africa) which is targeted for motion capture and animation was inte-
grated.

The CyberGlove is a data glove with either 18 or 22 sensors. It measures flexure
and abduction of each finger and wrist as well as palm arch. While the 18

sensor version has two flexure sensors per finger the 22 sensor version has three
of such bend sensors. (CyberGlove Systems Inc, 2015)
The DataGlove is available with either 5 or 14 finger sensors. It measures flexure
of each finger and in the case of the 14 sensor version also abduction between
fingers. The glove also measures orientation of the user’s hand.

Both devices are widely used in both research and rehabilitation hence no
detailed assessment of their abilities is required for the aim of this thesis. For a
detailed description of the data glove’s integration into the system please refer
to section 5.2.2.
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Figure 4.3.: The Emotiv EPOC wireless EEG headset (Emotiv, 2015)

4.2. Consumer Hardware

One of the key requirements of a mobile rehabilitation or hybrid BCI system
that was described in sections 2.2.4 and 2.3.1 is to be affordable for patients.
One of the first commercially available devices that have been used for computer-
based rehabilitation is Microsoft’s Kinect motion tracking sensor. While it has
originally been developed to control computer games through body movement
numerous publications have shown the benefits of Kinect-based rehabilitation
and physical therapy systems investigating both the Kinect’s accuracy (e.g.
Obdrzalek et al., 2012, Galna et al., 2014) as well as its impact on rehabilitation
(e.g. Hondori and Khademi, 2014) and EEG research (e.g. Scherer et al., 2012).

With computers and sensors getting smaller, faster and cheaper a wide range
of new compact and low-cost hardware devices emerged over the course of the
last couple of years. Hence, it is desirable to create a software platform that can
make use of low-cost consumer hardware as well.
Three of such affordable consumer devices will be introduced in this section.

4.2.1. EMOTIV EPOC+

The major cost factor of EEG based systems are EEG recording devices. Systems
that cost USD 40.000, such as the ANT eegosports presented above, and more
pose a significant financial challenge. Particularly for patients that would profit
the most from an EEG system, such as patients with severe motor and/or
neurological impairments who already have to bear high medical costs.
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Fortunately, more and more commercial EEG devices have become available
in recent years. Among others the Emotiv EPOC (Emotiv Inc., Hong Kong),
NeuroSky MindWave (Neurosky Inc., San Jose, CA, USA) or the Enobio (Neu-
rolectrics, Barcelona, Spain) have been released. (Badcock et al., 2013; Kranczioch
et al., 2014). These devices are typically marketed as EEG systems for gaming
or personal health and well-being. According to Badcock et al. (2013) these
systems are usually characterized by a common set of properties. Some of those
characteristics stand in clear contrast to medical-grade EEG devices. Firstly, the
number of electrodes used is typically small. Ranging from one single electrode
(e.g. NeuroSky MindWave) to 14 (e.g. Emotiv EPOC) or 20 (e.g. Enobio). Sec-
ondly, consumer-based EEG systems put emphasis on the ease of use. Hence,
they are typically wireless. Also, they usually require hardly any adjustment
of electrodes. Lastly, these systems often use cotton pads and saline solution
instead of the sticky conductive gel used in medical-grade EEG systems. (Bad-
cock et al., 2013)

While there is an increasingly wide range of commercially available EEG sys-
tems the Emotiv EPOC caused the most attention in the scientific community.
The standard Emotiv EPOC provides 14 sensors plus 2 reference channels as
well as a 2-axis gyroscope and has a sampling rate of 128 Hz. The EPOC+
device has a sampling rate of 256 Hz and a 9-axis Inertial Measurement Unit
(IMU) that provides gyroscope, accelerometer and magnetometer data. Figure
4.4 shows the position of the 14 channels on the user’s head.
At time of writing the standard version of the Emotiv EPOC costs USD 399 the
EPOC+ USD 499. (Emotiv, 2015)

EPOC Assessment

For an EEG system to really be of benefit for disabled or locked-in patients
it must be accurate enough to control a BCI. To recap, a BCI is a system that
utilizes brain activity, recorded using for instance EEG, to control a computer.
For a signal to be strong enough to be picked up by EEG a large group of
brain cells must respond to a particular stimulus. This can be achieved using
some well-known paradigms like Event-Related Potential (ERP) or Steady-State
Visually Evoked Potential (SSVEP). In case of ERP the user is presented with a
relevant and rare stimulus. This stimulus causes increased brain activity with its
peak 300ms after the stimulus occurred (Rao, 2013). The idea of SSVEP is that
when the participant focuses on a stimulus at a specific frequency increased
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Figure 4.4.: The positions of the 14 channels provided by the Emotiv EPOC. (Choi et al., 2014)

brain activity at the same frequency can be noticed (Kübler and Müller, 2007).

In recent years the EPOC’s abilities to pick up either ERPs or SSVEPs have
been assessed. Duvinage et al. (2013) assessed the EPOC’s abilities to pick up
P300 visual ERPs while the subject was either sitting or walking on a treadmill.
Badcock et al. (2013) validated the EPOC system for measuring auditory ERPs.
Most importantly, both studies concluded that the EPOC does in fact record
EEG and does not only pick up muscular or ocular artefacts as it has been
criticized in the past. Both studies also showed that well-studied changes in
the EEG such as an ERP can be measured using the Emotiv EPOC (Duvinage
et al., 2013). Nevertheless, both studies found that the EPOC does not perform
as well as a medical-grade EEG system. According to Duvinage et al. (2013),
who compared the EPOC system to a medical-grade system (ANT DC amplifier
and 128 channel WaveGuard cap, ANT Neuro, Enschede, Netherlands), the
signal-to-noise ratio is lower for the EPOC system. Hence, the EPOC headset
misclassifies more data than a medical-grade system does. They also observed
that the misclassification rate was significantly higher for the walking sce-
nario. Similarly, Badcock et al. (2013) state the EPOC compares well with a
medical-grade system for standard auditory ERPs but point out that it struggles
detecting more elaborate signal components.
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The EPOC’s potential to detect SSVEP was investigated by Pröll (2012) and
Liu et al. (2012). Pröll successfully detected SSVEPs using a 17.14 and a 20 Hz
stimulus while Liu et al. demonstrated similar results for a stimulus of 13 Hz.
Furthermore, they compared the EPOC to a medical-grade system (g.Usb Am-
plifier, g.Tec Medical Engineering GmBH, Graz, Austria). Their results showed
that while the EPOC’s accuracy is significantly higher than chance (83%) it
underperforms the medical-grade system by about 10%. Also, it is worth noting
that the accuracies varied substantially between subjects. The lowest accuracy
achieved was at 65% compared to 85% achieved for the same subject by the
medical-grade system. The authors attributed that to the strong alpha wave of
the subject in question which was stronger than the 13Hz SSVEP.
Similar results (i.e. highly varying accuracies with a mean of 61% and a high
deviation of 25%) were reported by Nijboer et al. (2015). More interestingly
the authors investigated the user-friendliness of the EPOC system. They found
that users usually rated the speed of set-up and appearance of the system as
being very high but found it significantly more uncomfortable to wear than
comparable systems. Similar results were published by Pröll (2012). The author
asked the subjects to rate the wearing comfort of the EPOC headset on a scale
from 0 (very uncomfortable) to 10 (very comfortable) at various points through-
out a two hour long recording session. While the subjects initially rated the
wearing comfort relatively high (mean: 7.45, standard deviation: 2) those ratings
dropped significantly resulting in a final rating of 2.73 (standard deviation:
2.31). The reason for this might be that due to the design EPOC sensors press
hard against the user’s head (Nijboer et al., 2015).
Another important point regarding the EPOC’s sensors was made by Duvinage
et al. (2013). They pointed out that the default arrangement of electrodes does
not aid motor imagery paradigms as there are no electrodes placed over the
motor cortex. In this regard, the work of Debener et al. (2012) is worth noting.
In their publication the authors showed how to combine the EPOC headset
with a state-of-the-art electrode cap, which yield a portable, wireless system
(the advantages of the EPOC) with improved signal quality (the advantages
of the medical-grade wet electrode cap) (Debener et al., 2012). Additionally,
with regard to the findings of Nijboer et al. (2015) mentioned above, the system
becomes more comfortable to wear when using a cap instead of the rigid sensor
frame. As all parts are commercially available, this system can easily be adopted
as shown for instance by Stopczynski et al. (2014).

To summarize, the discussed studies showed that the Emotiv EPOC is able
to record EEG as well as to detect common patterns. However, for critical
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Figure 4.5.: The Leap motion controller and the hand tracking model. (Leap Motion, 2015)

applications and brain research the standard EPOC might not be suitable.
Nevertheless, for game-based hBCIs, for rehabilitation as well as for measuring
motivation it might be used. Taking into account the work by Debener et al.
(2012) the range of possible applications increases as the authors demonstrated
the flexibility and expandability of the device. When used with a custom
electrode-cap the acquired signals improve significantly and make the system
usable for mobile BCI and even MoBI applications as described in the above-
mentioned publication.
Hence it was decided that the Emotiv EPOC is the most promising consumer-
grade EEG system and should be included as a low-cost alternative for non-
critical, and with modifications, even critical applications.

4.2.2. Leap Motion

The Leap Motion controller is a motion tracking device specifically designed for
tracking fingers, hands and finger-shaped tools. It provides data about finger
position and movement and hand velocity and rotation as well as basic gesture
recognition. As shown by studies discussed in this section the Leap Motion can
be a viable finger-tracking alternative to the significantly more expensive data
gloves presented in 4.1.2.

The sensor uses three infrared LEDs and two infrared cameras to track the
users hands. This yields a hemispherical field of view with the device being in
the centre. The sensors are able to track hands positioned between 25 and 600
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millimetres above the device which is typically placed on a flat surface in front
of a computer (Hondori and Khademi, 2014).

Leap Motion’s Accuracy

The Leap Motion’s accuracy has been investigated by Weichert et al. (2013) and
Guna et al. (2014). Both tests consisted of two scenarios. A static scenario to
test the controller’s accuracy and repeatability and a dynamic scenario to deter-
mine its ability to track a moving object (Weichert et al., 2013). Repeatability
describes the ability of the system to compute the same location for a stationary
object over a series of measurements (Guna et al., 2014). As a reference system
Weichert et al. used an industrial robotic arm while Guna et al. used a high-
precision motion capture system.

For the static scenario Guna et al. determined a minimal standard deviation
of 0.0081 millimetres for hands positioned directly above the controller and
a maximal standard deviation of 0.49 millimetres for hands positioned at the
leftmost and topmost position of the controller’s field of view. Weichert et al.
computed an average standard deviation of below 0.05 millimetres as well as a
repeatability of 0.2 millimetres. While both studies provide similar results for
the static scenario the results for the dynamic scenario differ greatly. Weichert
et al. reported accuracies of 1.2 millimetres on average with a maximal deviation
of 2.5 millimetres. Guna et al. recognized a significant drop in accuracy for
samples taken more than 250 millimetres above the controller regardless of
where on the (imaginary) hemisphere the hand is located. Tests closer to the
controller yield accuracies at around 2 millimetres and are similar to those
reported by Weichert et al. But outside that 250 millimetres frame the accuracies
drop significantly resulting in a mean deviation of 6 millimetres and above.

Another study by Tung et al. investigated the reliability and accuracy of the
Leap Motion controller with regard to clinically relevant neuromotor assess-
ments such as reaching and pointing (Tung et al., 2015). Other than the studies
by Weichert et al. and Guna et al. the authors evaluated the controller using
human test subjects instead of robotic actuators. Their participants were in-
structed to move their finger from an initial starting position to one of 15 targets
presented on a computer screen. This setup resembles the Trail Making Test. A
test commonly used for neuropsychological evaluation (Arnett and Labovitz,
1995) for instance following acute stroke (Tamez et al., 2011).
The measured accuracies by Tung et al. with a root mean square error of 17
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millimetres were significantly worse than those described by Weichert et al. and
Guna et al. The authors attribute this large difference to the recording of actual
human arm movement instead of the idealistic robotic movements recorded by
the before mentioned authors.

Particularly the study conducted by Tung et al. and Guna et al. revealed the
limitations of the Leap Motion controller. Nevertheless, it can be concluded that
for well positioned hands the accuracy of the sensor is promising by achieving
significantly better results tracking hand movements than the well established
Microsoft Kinect sensor (Weichert et al., 2013). As the latter struggles to measure
fine movements such as hand clasping correctly (Galna et al., 2014a) and has
a significantly higher latency than the Leap Motion Controller (Brown et al.,
2014).

Leap Motion for Research and Rehabilitation

As mentioned above Tung et al. assessed the usefulness of Leap Motion con-
troller specifically with regard to clinical and therapeutic applications. Apart
from the issues discussed in the section above the study identified two major
limitations. Firstly, they noticed a drop in the achieved accuracies near the
ranges of the controller’s field of view as described by Guna et al. Secondly, the
study also found that the sensor is less reliable when the tracked hand touches
a monitor and thereby is not clearly separable from its surroundings.

With regard to the relatively high inaccuracy the authors concluded that the
Leap Motion controller is unsuitable for clinically-relevant measures like rapid
pointing tasks. The reason for that is that the measured inaccuracies are higher
than the mean difference between impaired and healthy subjects in such assess-
ments.
Nevertheless, the authors argued that the Leap Motion controller is sufficiently
accurate for tasks where no high positional accuracy is required. Among such
are some motor assessment and clinical rehabilitation tasks as well as portable
solutions for patients at home (Tung et al., 2015).

The applicability of the Leap Motion controller for motor rehabilitation tasks
was further investigated by Godlove et al. The authors compared the Leap
Motion controller to the 5DT Data Glove with 14 sensors. The objective was to
assess the systems regarding their capabilities as a computer- and game-based
rehabilitation tool. The study concluded that the Leap Motion controller was
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more accurate when measuring joint angles of healthy subjects than the Data
Glove. However, the sensor struggles to measure joint angles for (partially)
closed hands correctly which makes the controller difficult to use for hand-
impaired patients (Godlove et al., 2014). However, Iosa et al. successfully used
the Leap Motion controller for game-based neurorehabilitation of patients with
subacute stroke. The authors did not report the patients having any issues
using the controller. Furthermore, they found high motivation and participation
levels for all subjects.

Conclusion

The presented research suggests that the Leap Motion controller is useful for
both research and rehabilitation. As stated by Tung et al. (2015) the controller
is accurate enough for some motor assessment and for rehabilitation tasks.
Additionally, the work of Godlove et al. (2014) that compared the Leap Motion
to a medical-grade data glove showed that the former is more accurate than
the latter. Hence, the Leap Motion appears to be an interesting device for many
different applications and was included in the software platform.

4.2.3. Thalmic Myo

Surface Electromyography (EMG) - the EMG variant where muscle activity is
recorded from the surface (i.e. skin) above the muscle of interest - is of great
interest for medical diagnosis (e.g. Zwarts et al., 2000), research (e.g. Yao et al.,
2007) and rehabilitation (e.g. Mulas et al., 2005).

The Thalmic Myo armband is a wearable gesture and motion recognition device.
To do so it uses eight medical grade EMG sensors as well as a 9-axis IMU which
provides accelerometer, gyroscope and magnetometer data (Thalmic Myo, 2016).
As the name implies the Myo is worn like an armband around either the lower
or upper arm. It is designed to record activity generated by the wearer’s fingers,
palm and forearm (Kutafina et al., 2015).
While the Myo is marketed as an affordable consumer gadget to control ap-
plications and devices it also provides access to the raw EMG and IMU data.
Moreover, the controller’s data is transmitted wirelessly using a blue-tooth
connection. Those two features make the Myo armband an interesting device
for mobile brain imaging and rehabilitation scenarios.
In this section firstly the available data will be described. Secondly, an overview
over existing literature on the quality of the recorded data is provided. Lastly,
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Figure 4.6.: The Myo wearable gesture and motion detection armband. (Thalmic Myo, 2016)

existing and potential applications for the Myo controller in a research and
rehabilitation environment are discussed.

Available Data

The Myo controller provides three kinds of data.

1. Spatial Data: The data measured by the IMU consists of orientation and
acceleration data as well as the angular velocity of the wearer’s arm. The
orientation data is provided as a Quaternion, acceleration data in units of
g and the angular data as degrees per second. The spatial data is made
available at a sample rate of 50Hz.

2. Gestural Data: As shown in figure 4.7 the Myo armband automatically
detects five predefined gestures. By combining those gestures with data
from the IMU additional gestures can be distinguished.

3. EMG Data: The Myo also provides the raw EMG data of each of the eight
EMG sensors. The (unitless) EMG data is provided with a sample rate of
200Hz as integers in the range of -128 to 128.
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Figure 4.7.: Myo Gestures: The 5 preset gestures recognized by the Myo controller. (Thalmic
Myo, 2016)

Myo Data Assessment

As the Myo armband is a fairly new device studies discussing the controller’s
accuracy are rare. Nevertheless, this section will collect and compare available
data on the performance of the controller.
One feature that captured the interest of the scientific community is the Myo’s
ability to detect gestures. Gesture detection based on EMG data is a well-studied
field in EMG research. Potential applications include graphical controllers for
physically disabled patients, robotic device and arm control, control of a pros-
thetic limb as well as game control and exercise support (Ahsan et al., 2009).
However, no publication scientifically investigated the gesture recognition abili-
ties of the Myo controller. Galster and Abduo (2015) note that the preset gestures
are usually recognized well even though some misclassifications between the
fist and finger spread gesture occurred. Similar results were published by Hettig
et al. (2015). They reported relatively high recognition rates (between 86 and
71%) for the fist, spread fingers, wave in and wave out gestures. However,
recognition for the double tap gesture was fairly low with only 56%.
Regarding additional gestures computed from the raw data the literature is
inconclusive. Galster and Abduo (2015) concluded that the Myo controller is
not accurate enough to control a prosthetic hand with many degrees of freedom
but did not provide data to back this claim. However, Tenore et al. (2009) found
that the highest accuracies for gesture recognition can be achieved using 19

sensors. Hence, one might conclude that Myo’s 8 sensors are not enough for
high-accuracy detections. However, it has to be noted that - other than standard
EMG sensors investigated by Tenore et al. - the Myo controller provides more
data than just raw EEG data: Combining raw EEG data with Myo’s IMU data
yields 17 parameters on which classification can be based. Kutafina et al. (2015)
demonstrated that using all of this data it is possible to train neural networks
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that correctly classify fairly complex hand movements.

In conclusion, the limited data available prohibits a definite answer of how
the Myo controller compares to medical grade EMG sensors. Nevertheless, to
the best knowledge of the author there is no publication that questions the
validity of the Myo’s EMG data on a fundamental level. Hence, based on the
data available it is safe to say that the controller is an affordable and user
friendly alternative for applications that don’t require the precision of high
density EMG.

Myo for Research and Rehabilitation

In this section existing and potential applications that use the Myo controller
for neurological research and/or rehabilitation are discussed. Lipovsky and
Ferreira (2015) propose a low cost Myo based system for hand rehabilitation
for patients suffering from stroke. The subjects wear the Myo controller on
their healthy hand while wearing a robotic glove on their impaired hand. The
movements they execute with their healthy hand while playing a virtual reality
computer game are mimicked by the robotic glove (Lipovsky and Ferreira,
2015). Unfortunately, while the system has been proposed and tested on healthy
subjects no results working with impaired patients have been published yet.
Qamar et al. (2015) present a multi-sensor therapy approach that uses the Myo
controller as well as the Kinect sensor and the Leap Motion controller described
in section 4.2.2. They use gestures recognized by those devices to control home
appliances (e.g. lights, fan, etc.). Simultaneously they record the raw hand
data to monitor the therapeutic progress (Qamar et al., 2015). Again, no data
assessing the effectiveness of this kind of therapeutic intervention has been
published yet.
Other studies that discussed applications in a non-medical environment are eas-
ily applicable for a medical-environment as well. Kerber et al. (2015) introduced
a Myo-based smartwatch control. The authors argue that this one-handed con-
trol of a smartwatch is useful for ”situations that do not allow for opposite-side hand
interactions” (Kerber et al., 2015). Hence, applications for hemiplegic patients
would spring to mind.
The same holds true for a study by Nymoen et al. (2015) that explored the
Myo controller for musical interaction. The authors created a system that uses
Myo’s muscle and motion activity to select and modify sounds, control melody
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and play impulsive sounds like drums. The study concludes that the data pro-
vided by the Myo controller is sufficient for sound production and modification
(Nymoen et al., 2015). Using the ideas and results presented a therapeutic
intervention that combines physio- and musicotherapy can be easily imagined.

Conclusion

To conclude this section, very little scientifically relevant data that assesses the
abilities of the Myo controller is available. Nevertheless, from the data avail-
able and the applications that have been developed the Myo looks promising.
Additionally, the Myo transmits all available data wirelessly which makes it a
convenient device for mobile EMG recording (e.g. for hybrid BCIs), out-patient
rehabilitation as well as for human computer interaction. Therefore, the Myo
has been included into the proposed software platform. For a further discussion
of the implementation see section 5.3.3
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As the main goal of this thesis was to lay the groundwork for an LSL based
system for mobile brain imaging, BCIs and rehabilitation scenarios, this chap-
ter will describe how LSL was extended to facilitate those scenarios. Before
presenting applications for both medical-grade (see section 5.2) and consumer
hardware (see section 5.3) the LSL Configurator will be discussed in section 5.1.

Note: All applications presented in this section were developed in accordance with
the LSL-Team in San Diego and will be integrated into the official LSL release reposi-
tory. Furthermore, the applications’ source code is open-source and will be made publicly
available on the LSL GitHub repository.

5.1. LSL Configurator

One of the drawbacks of LSL being application based is that, particularly with
applications and experimental setups that use multiple applications or multiple
instances of the same application (e.g. for accessing multiple amplifiers), the
desktop environment can get cluttered and confusing. Hence, it becomes easy
to overlook or misconfigure an application which potentially renders entire
recording sessions useless. Also multi-app setups are difficult to store and share
between multiple workspaces as there are no project files that allow for a clean
project definition and start up.
Those issues should be resolved with the LSL Configurator shown in figure
5.1. The LSL Configurator is a tool to create, save, load, export and start multi-
application projects. The software presents a list of all available LSL hardware
applications. By default those are all the applications within the LSL git repos-
itory. Those applications are listed within a configuration file which can be
easily extended or modified. By double-clicking one of the apps the selected
app is added to the Selected Hardware section of the configurator and thereby
added to the project.
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Figure 5.1.: The LSL Configurator. An application to manage multi-application projects.

As mentioned in section 3.1.2 LSL provides configuration files for many appli-
cations allowing the user to define configuration parameters such as sampling
rate or chunk size in the case of amplifiers. Within the Selected Hardware section
the user can specify such a configuration file for an application. The software
then provides three different functionalities to use the configuration. The user
can either save a project file, export a project file to an executable file or start all
applications defined in a project.

Save a Project File
By saving a project file an eXtensible Markup Language (XML) file containing
the entire project’s information is created. The file contains all the selected
applications and, if specified, their configuration files. Using those files project
configurations can be shared between multiple users. Additionally, saved project
files can be loaded from within the configurator to allow for project modifica-
tion.

Export a Project File
While saving yields a non-executable XML file exporting creates an executable
batch (.bat) file. A batch file is a plain text file that contains a series of command-
line commands. In this case it contains commands to open each LSL hardware
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Figure 5.2.: The ANT eegosports LSL application

application specified in the project using the configuration files provided by
the user. The applications and configuration files are referred to using absolute
paths so exported batch files usually need to be adapted if executed on a
computer different from the one that created the file.

Link a Project
Besides saving and exporting a project file the user may also start all applications
from within the configurator. The results are similar to when a project is
exported and executed: each hardware application is opened and specified
configuration files are applied.

5.2. Additional Hardware Applications -

Medical-Grade Hardware

Some frequently used hardware devices were not yet supported by LSL. Apart
from the configurator which improves the usability of LSL on a higher level,
writing applications for those devices was the second major task of the thesis.

5.2.1. ANT Eego Sports

Whilst LSL supports a wide range of amplifiers the eego sports is not yet
supported. As determined in section 4.1.1 the portable eego sports amplifier is
useful for mobile brain imaging and mobile BCI applications. Hence, an LSL
application for this amplifier has been developed.
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(a)Default State (b)After Channel Test

Figure 5.3.: The DataGlove LSL application in its default state (5.3a) and after the channel test
was run (5.3b). The application for the CyberGlove looks similar albeit providing
more channels.

The Application Programming Interface (API) provided by the manufacturer
does not allow for detailed configuration of the amplifier. Hence, the user
interface of this application only lets the user specify the desired sampling rate
and link the device as figure 5.2 shows.
Upon linking two LSL streams are created. The first stream provides the data
coming from the amplifier’s 32 or 64 channels. The second stream makes the
data coming from the amplifier’s trigger input available to LSL. Those to LSL
streams are described in table 5.1 in more detail.

ANT eego sports Streams

Stream Name Channels Datatype Sampling Rate

eegoSports 32/64 Float 500 - 2048 Hz

eegoSportsMarkers 1 Integer 500 - 2048 Hz

Table 5.1.: The two streams provided by the ANT eego sports LSL application
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5.2.2. Data Glove Applications

In section 4.1.2 two different data gloves were presented. Firstly the CyberGlove,
secondly the 5DT Data Glove. While the implementations of the two applica-
tions differ due to the different interfaces provided by the manufacturers the
applications themselves are structured similarly. See figure 5.3 for a screenshot
of the DataGlove application. Both applications automatically detect all con-
nected CyberGloves or DataGloves, respectively, as well as their handedness
and their number of sensors. It is worth noting that even though all connected
data gloves are displayed only the one selected is streamed to the LSL transport
library. To stream multiple gloves multiple applications have to be opened.
Both data glove applications come with a feature to test the glove’s sensors. If
the Test Channels button is pressed the application will record a 5 second sample.
During this time period the user is asked to extensively move his/her fingers.
Depending on how many different values have been recorded the channel’s
colour in the channel-name list changes (red: <3; orange: 3 <= x <10; green:
>10). The results of such a channel test can be seen in figure 5.3b.
When the link button is clicked a single LSL stream is created. Depending on
the glove type the CyberGlove application streams either 18 or 22 channels as
can be seen in table 5.2.

CyberGlove Streams

Stream Name Channels Datatype

CyberGlove<SerialNumber > 18/22 Float

Table 5.2.: The stream provided by the CyberGlove LSL application

It is important to note that the values recorded by the CyberGlove and streamed
by the application are not joint angles but 8 bit values that measure the resistivity
of the bend sensors used (Blakely, 2013). Nevertheless, Blakely (2013) showed
that the mapping between real joint angles and sensor resistivity is linear.
Hence, the joint angles can easily be derived from the values provided by the
glove.
The same holds true for the 5DT Data Glove. As shown in table 5.3 this
application streams either 8 or 19 channels depending on which type of glove
is used.
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5DT Data Glove Streams

Stream Name Channels Datatype

DataGlove<SerialNumber > 8/19 Float

Table 5.3.: The stream provided by the 5DT Data Glove LSL application

The 18-sensor CyberGlove provides the two bend sensors per finger, four
abduction sensors to measure the abduction between fingers as well as sensors
to measure thumb crossover, palm arch, wrist flexion and wrist abduction. The
22-sensor glove provides three bend sensors per finger. The values provided by
those sensors are streamed by the LSL application as described in table 5.4.

CyberGlove: Streamed Data

Index Value Index Value

1 (1) Thumb Near 12 (10) Ring Near

2 (2) Thumb Middle 13 Ring Middle

3 (3) Thumb Far 14 (11) Ring Far

4 (4) Thumb/Index 15 (12) Middle/Ring

5 (5) Index Near 16 (13) Pinky Near

6 Index Middle 17 Pinky Middle

7 (6) Index Far 18 (14) Pinky Far

8 (7) Middle Near 19 (15) Ring/Pinky

9 Middle Middle 20 (16) Palm Roll

10 (8) Middle Far 21 (17) Wrist Flexion

11 (9) Index/Middle 22 (18) Wrist Abduction

Table 5.4.: The data streamed by the CyberGlove LSL application. Entries written in italics are
only available for the 22-sensor CyberGlove. Indices in parenthesis are the indices as
streamed by the 18-sensor Data Glove.

Regarding the 5DT DataGlove, the 5-sensor version provides one bend sensor
per finger as well as wrist roll and wrist pitch. The 14-sensor version provides
2 bend sensors per finger as well as four finger abduction sensors and an addi-
tional wrist bend value. The structure of the stream created by the DataGlove
LSL application can be seen in table 5.5.
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5DT Data Glove: Streamed Data

Index Value Index Value

1 (1) Thumb Near 11 Ring Far

2 Thumb Far 12 Ring/Pinky

3 Thumb/Index 13 (5) Pinky Near

4 (2) Index Near 14 Pinky Far

5 Index Far 15 Thumb/Palm

6 Index/Middle 16 Wrist Bend

7 (3) Middle Near 17 (6) Wrist Roll

8 Middle Far 18 (7) Wrist Pitch

9 Middle/Ring 19 (8) Gesture

10 (4) Ring Near

Table 5.5.: The data streamed by the Data Glove LSL application. Entries written in italics are
only available for the 14-sensor Data Glove. Indices in parenthesis are the indices as
streamed by the 5-sensor Data Glove.

5.3. Additional Hardware Applications - Consumer

Hardware

While LSL already supports some consumer hardware like for instance the first
generation of the before mentioned Microsoft Kinect sensor or the Nintendo
Wiimote (Nintendo Inc., Kyoto, Japan) some promising hardware devices that
were presented in chapter 4 are not supported yet.

In this section three new LSL applications for such devices will be introduced.
Firstly, the LSL application for the consumer-grade EEG headset Emotiv EPOC
will be presented. Secondly, the application for the Leap Motion controller that
was introduced in section 4.2.2 will be described. Lastly, the application for the
Myo wristband that was presented in section 4.2.3 will be discussed.
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Figure 5.4.: The Emotiv EPOC LSL application

5.3.1. Emotiv EPOC

The Emotiv EPOC is a consumer grade EEG headset. As described in section
4.2.1 it provides 14 EEG channels as well as a two-axis gyroscope. Those values
are streamed to LSL with a sampling rate of either 128 or 256 Hz, depending
on the device type. Those sampling rates are fixed and cannot manually be set
by the user. Therefore, the user interface of the EPOC’s LSL application only
provides the link button as figure 5.4 See the following table 5.6 for an overview
of the streamed channels.

Emotiv Epoc: Streamed Data

Index Value Index Value

1 AF3 9 P8

2 F7 10 T8

3 F3 11 FC6

4 FC5 12 F4

5 T7 13 F8

6 P7 14 AF4

7 O1 15 Gyro X

8 O2 16 Gyro Y

Table 5.6.: The data streamed by the Emotiv Epoc LSL application. Sensor names refer to the
international 10-20 electrode placement system.
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Figure 5.5.: The Leap Motion LSL application

5.3.2. Leap Motion

As described in section 4.2.2 the Leap Motion controller is a consumer hard-
ware device that tracks the user’s hand and fingers. The application which is
shown in figure 5.5 can stream two different kinds of data. Firstly, hand and
finger data of up to two hands. In this state the Leap Motion app basically
mimics a data glove providing finger flexure and abduction data. Secondly,
the application can make use of the serialization feature provided by the Leap
Motion API. This mode of operation compresses all the data coming from the
Leap Motion and allows the receiving application to use this data as if it was
coming directly from the controller. Both streaming modes are listed in table
5.7 will be described in more detail below.

Leap Motion Streams

Stream Name Channels Datatype Sampling Rate

LeapMotion 20/40 Float varying (~60Hz)

LeapMotionFrame 1 String varying (~60Hz)

Table 5.7.: The two streams provided by the LeapMotion LSL Application
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Figure 5.6.: The finger bones tracked by the Leap Motion controller and their respective indices
within the samples streamed to LSL. Indices 3, 6, 9 and 12 refer to abduction angles
between two adjoining fingers. All the other indices refer to the angle between the
respective bone and the hand’s palm.

Finger and Hand Data

This streaming mode is mostly targeted for research applications where raw
finger and hand data is of interest. In this mode the application streams 20

values per hand for up to two hands. It is important to note that if two hands
are tracked not both of them can be a right or left hand, respectively. If one
left and one right hand are tracked the first 20 channels of the data stream
characterize the left hand and the channels 21 to 40 the right hand. If only one
hand is tracked only 20 channels are transmitted, regardless of a right or left
hand is tracked.

For each finger the angle between the proximal phalanx and the distal phalanx
respectively and the palm is computed. For the thumb the angle between the
metacarpal and the distal phalanx respectively and the palm is computed. Ad-
ditionally the abduction between two adjoining fingers is computed. The values
are provided in degrees in order from thumb to pinky. Furthermore, the hand’s
direction as well as the hand’s movement velocity is provided. The hand’s
direction is characterized by three rotation values: pitch (rotation around the
x-axis), yaw (rotation around the y-axis) and roll (rotation around the z-axis).
Similarly, the hand’s velocity is described by providing the rate of change of
the palm position along the x-, y- and z-axis. Table 5.8 provides an overview
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over the streamed data.

Leap Motion Tracking Data

Index Value Index Value

1 Thumb: metacarpal/palm 11 Ring: distal/palm

2 Thumb: distal/palm 12 Ring/Pinky

3 Thumb/Index 13 Pinky: proximal/palm

4 Index: proximal/palm 14 Pinky: distal/palm

5 Index: distal/palm 15 Hand: Pitch

6 Index/Middle 16 Hand: Yaw

7 Middle: proximal/palm 17 Hand: Roll

8 Middle: distal/palm 18 Hand: Velocity X

9 Middle/Ring 19 Hand: Velocity Y

10 Ring: proximal/palm 20 Hand: Velocity Z

Table 5.8.: The data streamed by the Leap Motion application for each hand. If two hands are
tracked the indices refer to the indices of the first (=left) hand. The second (= right)
hand’s data has indices 21 to 40.

Note: The Leap Motion API does not match the standard anatomical naming system.
As shown in figure 5.6 the thumb has no intermediate phalanx and thereby only three
bones. For ease of programming the API introduces a zero-length metacarpal so that
all fingers have four bones. The thumb’s anatomical metacarpal bone is identified as a
proximal phalanx and the anatomical proximal phalanx is identified as the intermediate
phalanx in the Leap Motion finger bone model (Leap Motion, 2015). This does not affect
the data provided by the application but is important for programmers working with
the app’s source code.

Serialization

The second streaming mode provided by the Leap Motion LSL application uses
the concept of serialization. Serialization is a process where an object of a class
is converted into a stream of bytes to store or in the case of this application to
stream it to LSL.
Everything the Leap Motion controller sees such as hands, pointables, tools
or gestures is stored in a Frame object which is outlined in figure 5.7. In other
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Figure 5.7.: The Leap Motion Frame object and all the information it contains. (Leap Motion,
2015)

words a Frame is basically a snapshot of the controller’s field of view at a
given time. The Frame’s HandList for instance was used to compute the finger
positions which were described in the section above. But the Frame provides
much more information than just that. For example finger position, width
and length, recognized gestures their speed and length, the hands sphere
and much more can be retrieved. It would be infeasible and unnecessary for
most applications to read out all this data and then stream it to LSL. Hence
this second streaming mode was introduced. This mode serializes the Frame
object to a Byte string and streams only this string to LSL. If an application is
interested in this data it can then deserialize it (create a Frame object from the
Byte string) using the Leap Motion API and use it as if the data was coming
directly from the Leap Motion controller.
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Figure 5.8.: The Thalmic Myo LSL application

5.3.3. Myo

The Myo controller was presented in section 4.2.3 and is a wearable consumer
device that provides raw EMG, spatial as well as gestural data. The spatial data
consists of orientation data, acceleration data as well as rotational data. It was
also noted that while EMG data is streamed with a sampling rate of 200Hz,
the spatial data is provided with only a quarter of that rate. Additionally the
Myo API does not provide data in a continuous stream but uses an event-based
mechanism for that purpose. It provides five event callbacks that fire when new
EMG, acceleration, rotation, orientation, or gestural data is available. Due to
this architecture it was decided that the Myo LSL application, which is shown
in figure 5.8, should create five different LSL streams to not introduce any time
lag as could be the case if for instance all spatial data would be combined into
one stream. A list of streams is provided in table 5.9.

Thalmic Myo Streams

Stream Name Channels Datatype Sampling Rate

MyoEMG 8 Float 200 Hz

MyoAccelerometer 3 Float 50 Hz

MyoGyroscope 3 Float 50 Hz

MyoOrientation 7 Float 50 Hz

MyoGesture 1 Integer variable

Table 5.9.: The five streams provided by the Myo LSL application
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Figure 5.9.: The numbering of Myo’s EMG sensors (Thalmic Myo, 2016). The numbers corre-
spond to the indices in the data array provided by the LSL application.

EMG Data

The LSL stream provides the data coming from the eight EMG sensors inte-
grated into the Myo wristband. Each of the band’s links contains one sensor.
The indices of the sensors never change. In accordance with the API implemen-
tation the link with the glowing Myo logo is always sensor four. To the left of it
are sensors 1-3 and to the right sensors 5-8. For the sensor’s numbering please
refer to figure 5.9.

Spatial and Gestural Data

Apart from raw EMG the Myo wristband also provides spatial and gestural
data. The spatial data consists of orientation data (x, y, z, w) as a Quaternion,
acceleration data (x, y, z), provided in units of g, as well as angular data (x, y,
z), provided in degrees per second. For each of those data streams there is one
LSL stream. The LSL stream that provides orientation data also provides data
describing the arm’s roll, pitch and yaw. Those values are computed from the
Quaternion provided by the Myo API. This yields a stream consisting of seven
channels. The gestural data is transmitted as a single integer between 0 and 6.
0 indicates no detected gesture and 1-5 indicate one of the gestures described
in figure 4.7. For the mapping between gestures and integer values please see
table 5.10.
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Myo Gestures

Gesture Value

Wave Left 1

Wave Right 2

Double Tab 3

Fist 4

Fingers Spread 5

Table 5.10.: The available gestures and their integer representation

5.4. Summary

In this chapter newly written LSL applications were presented. Using these
applications LSL can now be used for data acquisition in mobile brain imaging,
mobile BCI and mobile rehabilitation scenarios. An LSL-based application for
one such scenario will be presented in chapter 7 where a LSL-based game for
rehabilitation is introduced. Before that chapter 6 presents some of the experi-
ments that were used to validate LSL and the newly written applications.
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This chapter discusses experiments that were conducted to validate the newly
implemented LSL applications as well as LSL itself. If not stated differently
all used devices were connected to the same computer (Windows 7 32bit, 4GB
RAM, 2 Core 2.4GHz).

6.1. LSL Network Synchronization Test

Even though there is very little doubt about the abilities of LSL to synchronize
multiple data streams as it is currently used for synchronization sensitive tasks
in other laboratories (e.g. Gramann et al., 2014) those abilities were tested.
The experimental setup looked as follows: four medical-grade EEG amplifiers
were used and plugged into two different computers in pairs of two. To have a
comparable signal a signal generator (g.Tec g.SIGgen, g.Tec Medical Engineering
GmBH, Graz, Austria) was used to generate a sine wave and was connected
to all the amplifiers. The amplifiers’ data was streamed to LSL using the LSL
g.USB amp applications. See the following table 6.1 for the list of amplifiers
and their configurations.

Amplifier Name Location Sampling Rate

Amp 1 Remote 256 Hz

Amp 2 Local 512 Hz

Amp 3 Remote 512 Hz

Amp 4 Local 512 Hz

Table 6.1.: The amplifiers used in this experiment. The location specifies whether the amplifier
was connected directly to the recording computer (Local) or streamed its data over
the network (Remove).

The signal acquisition was performed on one of the two computers using the
LSL LabRecorder. Both computers ran Windows 7.
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Figure 6.1.: The cross-correlations computed for the four amplifiers with each other.

Results

The data collected by the LabRecorder was imported into MATLAB (R2011a)
and synchronized using the MATLAB Importer provided by LSL. The 256Hz
signal was interpolated to match a 512Hz signal using the MATLAB function
interp1. Subsequently, the cross-correlation of the four signals with each other
was computed using the MATLAB function xcorr resulting in 6 cross-correlation
values. As can be seen in figure 6.1 the cross-correlation was zero in four cases
and one for the remaining two cases. A cross-correlation of one corresponds to
an offset of not more than one sample. Hence, for 512Hz signals the offset is
smaller than 2ms which is sufficiently accurate.

6.2. ANT eegosports and DataGlove

A standard finger-tapping experiment (e.g. Pfurtscheller and Neuper, 1992,
Darvas et al., 2010, Paek et al., 2014) was conducted to validate the newly imple-
mented ANT eegosports and DataGlove applications. According to Pfurtscheller
and Neuper (1992) self-paced, voluntary finger movements cause a band power
decrease around frequencies of 10 Hz. This movement-related band power
decreased is called Event-Related Desynchronization (ERD) (Pfurtscheller and
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Figure 6.2.: Event-Related Desynchronization at 10 Hz computed from an EEG signal recorded
with the ANT eegosports LSL application.

Lopes da Silva, 1999). The goal of the experiment was to replicate those findings.
EEG data was recorded using 64 wet electrodes, the 14 channel 5DT DataGlove
was used to record finger tapping. The two LSL streams were collected by
the LabRecorder software provided by LSL. Four runs lasting for five minutes
each were recorded. Each run consisted of multiple arbitrary long tap/no-tap
sequences.

Results

The data recorded by the LabRecorder was imported into MATLAB and syn-
chronized for offline analysis using the MATLAB importer. Tap and no-tap
sequences were localized using the data provided by the DataGlove application
and separated into one tap and one no-tap EEG signal. For both EEG signals the
power spectral density was computed. Thereafter the no-tap frequency band
was subtracted from the tap frequency band to single out frequency changes
unique to the tap frequency band. As can be seen in figure 6.2 the obtained
power spectrum showed a distinct decrease in band power at around 10 Hz.
Hence the experiment to replicate previously obtained results was successful.
This supports the conclusion that the newly developed ANT eegosports and
5DT DataGlove applications correctly acquire data from the amplifier and data
glove, respectively.
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6.3. Emotiv EPOC

As shown by Liu et al. (2012) and Pröll (2012) and discussed in more detail
in section 4.2.1 the Emotiv EPOC is able to detect SSVEPs, that is increased
brain activity at the same frequency as a visual stimulus the participant looks
at. Hence, to validate the newly written LSL application a standard SSVEP
experiment (e.g. Gao et al., 2003) was conducted. To detect a SSVEP the subject
was asked to look for 30 seconds at a visual stimulus presented at either 7,
12 or 20 Hz while wearing the Emotiv EPOC headset. The EPOC data was
provided to LSL using the newly developed application and recorded using the
LSL LabRecorder.

Results

The recorded data was imported into MATLAB using the LSL MATLAB Im-
porter. A 10 seconds sample was taken out of the 30 second recording. As visual
stimulation yields evoked potentials in the visual cortex only the data from
electrodes O1 and O2, which cover the occipital lobe where the visual cortex
is located, were analysed (Kübler and Müller, 2007). A fast Fourier transform
(FFT) was computed to get the frequency spectrum of those two electrodes. Us-
ing this setup detection of a SSVEP was unsuccessful as no significant increase
in frequency at 7, 12 or 20 Hz, respectively, could be observed.
However, strong occipital alpha waves that occur while the subjects’ eyes are
closed as well as strong EEG artefacts, caused for instance by grinding of teeth,
are visible in the EEG data recorded using the EPOC LSL application. Therefore,
it was concluded that the inability to detect SSVEPs is a signal processing not a
signal acquisition related problem. While finding ways to properly process the
data coming from the Emotiv EPOC is important it was not within the aim of
this thesis to do so.

6.4. Leap Motion

Leap Motion’s ability to detect finger-tapping was verified. To do so the hand
was recorded while wearing a 5DT DataGlove which has successfully been
used for finger-tapping experiments before. Tapping of the right index finger
was performed. For the Leap Motion controller the angle between proximal
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Figure 6.3.: Finger Tapping recorded by both the Leap Motion and the 5DT Data Glove. Streams
recorded using the LSL LabRecorder and synchronized using the MATLAB Importer.
The Leap Motion stream was shifted upwards for representational purposes.

phalange and palm was used. This corresponds to the Data Glove’s ’Index Near’
sensor. The data was recorded using the LSL LabRecorder.

Results

Again, the data collected by the LabRecorder was imported into MATLAB
and synchronized using the MATLAB Importer provided by LSL. As can be
seen in figure 6.3 both Leap Motion and DataGlove accurately recorded the
tapping motion. There is no noticeable difference between the two streams
regarding general finger movement. Moreover, the cross correlation between
the two signals was computes using the MATLAB function xcorr which yield a
correlation of 0.97. Some dissimilarity in the recorded data become apparent
where the direction of movement changes and the tracked finger shakes ever so
slightly. To quantify this divergence more elaborate tests using either a robotic
hand or a highly accurate motion tracking system would be necessary. However,
for this thesis the aim of the experiment was to validate the implementation of
the LSL application, not the Leap Motion controller itself. The results presented
in figure 6.3 and subsequently in chapter 7 do just that.
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7.1. Mobile Rehabilitation using LSL - A Proof of

Concept

In section 3.2 multi-sensor applications for rehabilitation have been presented as
one possible scenario where LSL might be of use. To reiterate, the idea of those
systems is to use multiple (consumer) devices to facilitate out-patient, possibly
game-based, rehabilitation. Apart from being affordable it was important to
accurately measure the patient’s progress.
To demonstrate the abilities of this LSL based, mobile system for a rehabilitation
scenario a simple game was developed. Multiple affordable consumer devices
are used to control the game’s main character. LSL is used to retrieve data
from the consumer hardware and to collect markers from within the game.
The data streamed from the consumer devices and made available to the LSL
transport layer is then used in two applications: Firstly, within the game where
the raw data is mapped to controller commands. Secondly, the data as well as
the in-game markers are recorded and stored for further analysis by an expert
(e.g. the patient’s therapist). This approach of combining raw movement data
with game events, as proposed by Broeren et al. (2006), allows for a better
interpretation of the patient’s performance, limitations and improvements. For
instance Cameirão et al. (2010) successfully used similar in-game events to
analyse the performance of stroke patients using the rehabilitation gaming
system proposed by the authors .
The purpose of this game is twofold. On the one hand, LSL’s functionality
to stream data remotely and to access streams simultaneously on multiple
machines should be demonstrated. On the other hand, the newly developed
LSL applications should be validated and the system’s versatility should be
demonstrated.
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Figure 7.1.: Structure of the proposed game-based rehabilitation environment.

7.1.1. Used Hardware

For the first exemplary release of this game two hardware devices were in-
cluded. Again, with regard to demonstrating an affordable solution using newly
implemented devices the Leap Motion hand and finger tracker as well as the
Myo EMG wristband were used.

7.1.2. Development Environment

The game was developed using the Unity game engine (Unity Technologies,
San Francisco, CA, USA) version 5.2. In-game code is written in C#. The
main reasons for selecting this game-engine were the multi platform support
(including all major operating systems, game consoles, as well as iOS and
Android), the large community and the fact that the platform is available for
free.

7.1.3. Building Blocks

1. The LSL Applications: For each hardware device the respective LSL
application has to be used to make the data available to the applications
described below.

62



7.1. Mobile Rehabilitation using LSL - A Proof of Concept

Figure 7.2.: The proposed game.

2. Command Parser: This module reads and interprets the data streams
that were made available by the LSL applications and converts them into
simulated keystrokes. For instance, and upwards movement of a specific
finger will be converted into an Arrow Up key event. The generated key
events will be recognized by all applications running on that machine.

3. The Game: The actual game where the generated key strokes will be
used to control a character. Additionally, markers are streamed to LSL
containing information of the patient’s progress.

4. The Therapist’s Interface: All LSL data is recorded using the recording
software provided by LSL. This data comprises all the streams created by
the hardware devices’ LSL applications as well as in-game markers.

7.1.4. The Game

The premise of this game is simple. The game character, a bird, has to collect
coins and dodge or shoot oncoming opponents (birds as well). For each coin
the user collects 5 points are added to the overall score. For each coin the user
misses 5 points are subtracted. Upon collision with oncoming birds the game
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ends. The main character’s position on the x-axis (left-right) is fixed. Only
its position on the y-axis (up-down) can be controlled. For each upward or
downward movement the bird’s position changes by a fixed amount.

LSL Integration

As mentioned above, LSL is not only used to retrieve data from the hardware
devices but also to collect in-game markers. Both the hardware data and the
in-game markers are then stored for further analysis.
The markers are streamed to LSL as strings with irregular timing as data
is only pushed to LSL upon certain events occur. Such events are character
controls (up, down, shoot), collection of a coin, not collected coins as well
as collisions with opponents. As shown in table 7.1 each of these events is
identified by a single character which is streamed to LSL. Those markers
provide useful information for the therapist (cf. Cameirão et al., 2010). For
instance the percentage of successful finger movements (i.e. how often the
movement of the index finger actually triggers a character movement) becomes
apparent. Figure 7.3 describes such a case by plotting index finger movements
(provided by the LSL LeapMotion application) as well as Player Up events
(streamed to LSL from within the game). As can be seen in the plot, the
participant tried multiple times to trigger an upwards movement of the game
character by raising his/her index finger but only the final most distinct motion
led to a successful movement.

Markers

Event Marker

Player Up u

Player Down d

Player Shoot s

Collected Coin c

Missed Coin m

Collision (Game Over) g

Table 7.1.: Game events and their marker representation
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Figure 7.3.: The data recorded by LSL from the Leap Motion controller and the rehabilitation
game. The participant tried multiple times to trigger an upwards movement of
the game character but only the final most distinct motion led to a successful
movement.

7.1.5. Game Control

At this point the game controls are rather simple consisting only of an upward
and downward movement of the main character as well as the ability to shoot.
To control the character either a standard computer keyboard or the consumer
devices mentioned in 7.1.1 can be used.
Right now the game adapts two exercises that are widely used in physiotherapy
for patients with movement disorders to control the main character. Firstly,
extensive finger movement is used to control the game’s main character. Finger
movements are recorded using the Leap Motion controller. To do so the con-
troller has to be positioned on a flat surface with the infrared sensors facing
upwards. The user is then asked to position his/her hand at around 20cm
above the controller. The character can now be controlled by stretching (up) or
bending (down) the index finger.
Secondly, flexing of the user’s forearm is used to let the game’s main character
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shoot. More specifically the user is asked to make a fist which is one of the de-
fault gestures detected by the Myo wristband. An overview over those controls
is given in table 7.2.

Game Controls

Control Keyboard Sensor

Player Up Arrow Up Leap Motion: Index finger up

Player Down Arrow Down Leap Motion: Index finger down

Shoot Space Myo: Fist

Table 7.2.: The controls used in the game and their mapping to both computer keyboard and
sensor input

Flexibility of Controls Using this architecture of parsing control commands
in a separate module allows for very flexible and interchangeable game control.
The command parser takes stream input from LSL and converts it into universal
control commands (e.g. arrow up, space). In this case a finger up movement
detected by the Leap Motion controller is interpreted as an arrow up command.
By using a different command parser another movement can trigger a specific
control command, e.g. moving the entire hand upwards is interpreted as an
arrow up command.
This approach is very useful for applications where a direct mapping of
recorded movements to conventional input (e.g. keystrokes) is possible. Appli-
cations that use more precise controls (e.g. a mouse pointer) or virtual reality
applications where the user’s body and body movements are projected into
the game would require a deeper integration of the recorded data into the
application.
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In the previous chapters LSL was introduced as a powerful tool to acquire and
synchronize data. The potential of LSL for mobile brain research, BCIs and
rehabilitation was assessed and the range of applications was extended in this
regard with a focus on mobile and affordable devices. It was shown that the
data coming from the newly implemented applications is plausible and that,
to the best knowledge of the author, LSL as such, as well as the additions that
were made, work. Furthermore, by working in close collaboration with the
creators of LSL the newly created applications will be added to the official LSL
distribution and therefore can potentially be used in a wide range of research
laboratories.

While the aim of this thesis was to get a better understanding of LSL and
its abilities there are still steps to be taken to successfully integrate LSL into
the existing research infrastructure as well as there is great potential to further
extend the LSL software platform.

Firstly, as pointed out when assessing LSL for MoBI and mobile BCI (sec-
tion 3.2) data acquisition and synchronization is only one building block of a
complex data processing system. Hence, the next step will be the integration
of LSL into the existing data processing environment. This task requires an
excellent understanding of the field and the current work-flow. While this thesis
can hopefully facilitate the integration it was neither the aim of the thesis nor
within the expertise of the author to complete such an integration.

Secondly, LSL is a very promising platform that can be further explored in
many directions. It has been argued throughout this thesis that affordability
and mobility are key requirements for systems to be used by patients. In this
regard, it would be interesting to explore the feasibility of running LSL on low
cost single-board computers such as the Raspberry Pi (Raspberry Pi Foundation,
Caldecote, UK). While it costs only USD 35 it provides hardware that should
be powerful enough to acquire signals and stream it to LSL. The Raspberry Pi
being credit-card sized it could be carried around easily which is important for
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mobile, home-based BCIs as discussed by Nijboer and Broermann (2010). With
a recent release of the operating systems Windows 10 (Microsoft Inc., Redmond,
WA, USA) for Raspberry Pi this vision became even more viable. Therefore,
the possibilities of running LSL on a Raspberry Pi are currently explored by
researchers at the Institute of Neural Engineering.
Additionally, there are numerous interesting consumer devices that could be
applicable for the scenarios defined in this thesis which were recently released
or are still in development. Among those are the Sensoria (Sensoria Inc., Red-
mond, WA, USA) smart socks. The socks have three pressure sensors built in
and could be useful for human gait experiments as well as for mobile rehabili-
tation. Another interesting device is the the Unlimited Hand (H2L Inc., Tokyo,
Japan) wristband. The controller is similar to the Thalmic Myo presented in
this thesis but provides haptic feedback which is a useful addition for hand
rehabilitation. Another device worth noting is the Gest (Gest, Austin, TX, USA)
for hand gesture recognition. Other than the Leap Motion discussed in this
work, the Gest is a wearable device and transmits data wirelessly.
In short, a wide range of new affordable devices that track movements or fitness
markers can be expected over the course of the next few years. And it will be
interesting to see how those can be adapted for research and rehabilitation.
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In this thesis the emerging areas of mobile brain imaging, mobile BCI as well
as mobile rehabilitation were presented. Firstly, the requirements imposed
on hard- and software by those three areas were discussed. EEG that uses
lightweight, wireless amplifiers was presented as the most promising technol-
ogy for MoBI. In terms of software the ability of synchronizing multiple devices
that run on different computers was found to be a key requirement for MoBI.
For BCIs it was said that mobile solutions for patients at home should be robust,
portable and lightweight and, again, transmit data wirelessly. Also hybrid BCIs
were introduced where, again, synchronization of multiple hardware devices
is important. Mobile rehabilitation requires hardware devices that allow the
user’s progress to be tracked, are easy to setup and use and, most importantly,
affordable.
Based on this information it was argued that a sensor platform that acquires
and synchronizes data from a wide range of hardware devices that facilitate
those mobile scenarios is a first important step toward the ultimate goal of a
software system that provides solutions for all those areas. In this respect the
Lab Streaming Layer (LSL) was introduced as a sensor platform that is able
to fulfil those requirements. Furthermore, hardware devices were presented
that can facilitate Mobile Brain Imaging, BCI and rehabilitation but were not
supported by LSL yet. Apart from the medical-grade ANT eegosports amplifier
and two different data gloves, promising consumer devices like the Emotiv
EPOC EEG headset, the Leap Motion hand tracking controller and the Thalmic
Myo EMG wristband were presented.
Subsequently, it was explained how LSL was extended to support those devices.
Also, the LSL Configurator, a tool that simplifies multi-application projects, was
introduced. Furthermore, the results of different experiments for validation
purposes were presented. It was shown that the latency of multiple streams
synchronized using LSL is minimal (not more than one sample). Moreover, the
newly developed applications for the ANT eegosports EEG amplifier and the
5DT DataGlove were used to successfully replicate a standard finger-tapping
experiment. Also, it was validated that the affordable Leap Motion controller
(USD 70) provides similar data like the more expensive DataGlove (USD 5.500).
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Lastly, a proof of concept for an LSL-based computer game for rehabilitation
was demonstrated. It was proposed to use LSL to record both the hardware de-
vices used to control the game and in-game event markers to provide therapists
with a better insight into their patients’ performance.

As all the applications that emerged from this thesis will be added to the
official LSL repository a significant contribution could be made to the research
lab in Graz and to the entire LSL community.
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Appendix A.

Working with LSL

A.1. Developing for LSL

A.1.1. Basics

LSL consists of a transport library and numerous applications that either send
data to or read data from this transport library. The core library is written in
C++ but can be accessed through language interfaces in a wide range of pro-
gramming languages (C, C++, Python, Java, C#, MATLAB). Independent of the
programming language accessing the transport library is pretty straightforward.
To write data to the transport library three steps have to be taken:

1. Create a StreamInfo
2. Create an Outlet using the StreamInfo
3. Send data through this Outlet

Similarly, to receive data the following steps have to be taken:

1. Specify the stream of interest
2. Create an Inlet using found streams
3. Read data from this Inlet

Send Data
To send data firstly a StreamInfo has to be created. A StreamInfo characterizes
the stream that is made available to LSL through this applications. It consists of
the following information: the streams name and type (e.g. EEG), the number of
channels that are transmitted through this streams, the sampling rate the data
is provided with, the channel format (e.g. integer, float, string), as well a unique
identification number to tell streams apart. Here’s what such a StreamInfo
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specification would look like for an EEG stream with 8 channels and a SR of
512 in C++:

l s l : : s t ream info i n f o (”MyEEG” ,EEG, 8 , 5 1 2 , l s l : : c f f l o a t 3 2 , ” ID ” ) ;

Using this information an outlet can be created. An outlet is used to send data
to the transport library. Here’s how that works:

l s l : : s t ream info i n f o (”MyEEG” ,EEG, 8 , 5 1 2 , l s l : : c f f l o a t 3 2 , ” ID ” ) ;
l s l : : s t r e a m o u t l e t o u t l e t ( i n f o ) ;

All that’s left to do now is sending data to the transport library. This usually
happens in some kind of loop where data is read from a hardware devices.
But that’s not required. Data can be send sample by sample or as a chuck of
samples. Here’s a while loop sending a single sample:

l s l : : s t ream info i n f o (”MyEEG” ,EEG, 8 , 5 1 2 , l s l : : c f f l o a t 3 2 , ” ID ” ) ;
l s l : : s t r e a m o u t l e t o u t l e t ( i n f o ) ;
while ( t rue ) {

f l o a t sample [ 8 ] = { 16 , 2 , 77 , 40 , 62 , 54 , 12 , 11 } ;
o u t l e t . push sample ( sample ) ;

}

If chunks of data should be streamed to LSL usually two dimensional arrays
are used and the function push chunk has to be used. That’s basically it. Where
ever data needs to be sent to LSL all that’s needed is a StreamInfo, an outlet,
and then this outlet can be used to push data to LSL.

Receiving Data
Receiving data works similarly. Firstly streams of interest have to be resolved.
Streams can be identified using field-value pairs, where field can be for instance
’name’ or ’type’. To resolve the above stream following call can be used:

std : : vector< l s l : : s t ream info> r e s u l t s ;
r e s u l t s = l s l : : r eso lve s t ream (”name” ,”MyEEG” ) ;

This returns a list of all streams (identified by their StreamInfo) that match the
search query. Secondly, an Inlet has to be created through witch data can be
read. To do so, pass the StreamInfo of the desired stream to a new inlet object.
Like so:
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std : : vector< l s l : : s t ream info> r e s u l t s ;
r e s u l t s = l s l : : r eso lve s t ream (”name” ,”MyEEG” ) ;
l s l : : s t r e a m i n l e t i n l e t ( r e s u l t s [ 0 ] ) ;

Lastly, data can be received using this inlet. Similar to the push call for sending
data there are pull calls for receiving data.

s td : : vector< l s l : : s t ream info> r e s u l t s ;
r e s u l t s = l s l : : r eso lve s t ream (”name” ,”MyEEG” ) ;
l s l : : s t r e a m i n l e t i n l e t ( r e s u l t s [ 0 ] ) ;
while ( t rue ) {

f l o a t sample [ 8 ] ;
double t s = i n l e t . pul l sample ( sample , 8 ) ;

}

In the example above sample now contains the received sample and ts the times-
tamp associated with this sample. For more examples see the LSL repository or
https://code.google.com/p/labstreaminglayer/wiki/ExampleCode.

A.1.2. Application Development (C++)

Most of the LSL applications that acquire data from a hardware device are
written in C++. This section quickly discusses the recommended development
environment and code structure.

Development Environment and Setup
LSL applications make use of the Qt framework as well as the Boost library.
At time of writing LSL applications use Qt 4.8.1. Even though there are newer
version of Qt available it is recommended to use 4.8.X as well to keep things
consistent. Same holds true for the Boost library where version 1.4.7 is used.
To develop applications the Visual Studio environment is recommended which
is freely available online. Qt4 natively supports VS2008 so this would be the
recommended version of Visual Studio. Unfortunately, it is fairly old and not
officially distributed anymore. If Qt is to be used with a newer version of Visual
Studio it has to be compiled manually. To do so, the following links might be
of help:

• Get QT Source zip from here: https://download.qt.io/archive/qt/4.8/
• Tutorial: http://menatronics.blogspot.fr/2012/12/compiling-qt-for -visual-

studio-2012.html
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• Fix for tutorial above: http://stackoverflow.com/questions/18080625/
• Tutorial x64: http://stackoverflow.com/questions/12113400/

Before starting the compilation make sure to replace the HashSet.h as well as
to modify MathExtras.h as described in the links above. After compilation look
at existing LSL applications on how to include Qt in your VS project. Adapt the
paths for Additional Include Directories and for Additional Library Directories
(right click on project and open Properties).

Application Structure
The file structure of a typical LSL application looks as follows:

• Form Files

– mainwindow.ui

• Header Files

– mainwindow.h

• Source Files

– main.cpp
– mainwindow.cpp

mainwindow.ui
A QT .ui file contains the user-interface declaration. Usually created and
modified using the Qt Designer.

mainwindow.h
Header file for mainwindow.cpp. Contains definitions for both the Main-
Window class and the reader thread.

main.cpp
Contains the main function. Reads command-line parameters such as
default configuration files and creates the MainWindow.

mainwindow.cpp
Implementation of mainwindow.h. Contains methods to interact with
the UI (e.g. load and save configuration files) and to read data from the
desired hardware device using a separate thread.

Usually an LSL application to acquire data from a hardware device consists of
two threads. The main thread handles UI interaction (device settings, load and
save configuration files, etc.) and creates the second thread, the reader thread,
when the user presses the link button. The reader thread (either a Boost or Qt
thread) connects to the desired hardware device using, if available, the device
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Figure A.1.: The interactions of the key components of an LSL application during a standard
recording sequence initialized and terminated by the user’s click on the Link
button.

settings provided by the user and streams the data coming from the device
to LSL. This is done until the user terminates the acquisition by clicking the
link button again. Figure A.1 shows a simplified sequence diagram of a usual
recording procedure.

A.2. Using LSL

There are three important parts of a successful LSL recording session:

1. LSL Hardware Applications
2. LSL LabRecorder
3. LSL MatlabImporter
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Hardware Applications
Firstly, hardware applications as described above. Those applications are used to
acquire data from a specific hardware device and to stream it to LSL. As soon
as the application’s link button is clicked its stream should be visible for other
applications to read.

Lab Recorder
The LabRecorded is an application provided by LSL. It provides an overview
over all streams available on the network (all applications that stream data to
LSL) and means to record all of those or a selection of streams. The LabRecorder
uses Python and PySide. To get the LabRecorder to work the following steps
have to be taken (on a Windows machine):

1. Download Python 2.7 from here: https://python.org/downloads/release/
python-2711/

2. Install PySide for Python 2.7 following this tutorial: http://stackoverflow.
com/questions/23576028

See the following tutorial for how to use the LabRecorder: https://code.

google.com/archive/p/labstreaminglayer/wikis/LabRecorder.wiki

The LabRecorder stores the entire stream data in an XDF file. XDF stands for
Extensible Data Format, has been developed concurrently with LSL and is
documented here: https://code.google.com/archive/p/xdf/.

MATLAB Importer
To import the data recorded by the LabRecorder into MATLAB the LSL MAT-
LAB Importer can be used. The importer can be found within the LSL repository.
To use it simply add the load xdf.m file to your MATLAB path. Import an XDF-
File using the load xdf(”Filename.xdf”) call. Like so:

streams =load xdf (” recording . xdf ” ) ;

Now streams is a cell array where each cell contains one stream. Each of those
streams is a struct consisting of three fields:

1. info: contains all the information provided by the user when creating the
StreamInfo as well as additional parameters such as clock offset measures
or the effective sampling rate

2. time series: the data that was recorded from this stream
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3. time stamps: the timestamp at which data was provided. Tor each entry
in time series there is one entry in time stamps.

It is important to align the timestamps for all the streams. To do so find the
minimal first timestamp of all available streams and substract this timestamp
from every timestamp of every stream. Like so:

s t r 1 t s = streams {1} . t ime stamps ;
s t r 2 t s = streams {2} . t ime stamps ;
min time stamp = min ( s t r 1 t s ( 1 ) , s t r 2 t s ( 1 ) ) ;
s t r 1 t s = s t r 1 t s − min time stamp ;
s t r 2 t s = s t r 2 t s − min time stamp ;
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