
Robert Gerd Pleyer, BSc

Design and Implementation of an
Encrypted Secure Channel for NFC

Systems based on Android

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Telematics

submitted to

Graz University of Technology

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Institute for Technical Informatics

 Diplom-Ingenieur

Supervisor

Graz, March 2015

Advisors
Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Dipl.-Ing. Dr.techn. Manuel Menghin (Infineon Technologies Austria AG)

Abstract

Integrated into nearly every new smartphone, Near Field Communication (NFC) is gaining
momentum all over the world. This technology allows for communication with actively
and passively powered Radio-Frequency Identification (RFID) tags. In combination with
intelligent backend systems which process the gathered information, new applications for
NFC arise: as a part of the META[:SEC:] research project, an NFC system with a backend
server for RFID systems has been implemented. On the tag side a security cryptocontroller
prototype allows for sophisticated security operations. An NFC-capable smartphone with
Android Operating System forms the bridge technology to communicate with both sides
via NFC and Wi-Fi, respectively. The system consisting of tag, central backend and mo-
bile device offers a lot of possible attack vectors. Thus, the main focus of this thesis is to
create and use a secure channel between the backend system and the tag by encrypting
all sensitive communication. Therefore, the smartphone itself is not able to gather any
information from the sent messages. An initial unencrypted tag authentication protocol
features Elliptic Curve Cryptography (ECC) and Montgomery Multiplication in Fp. The
Advanced Encryption Standard (AES) is used in Offset Codebook (OCB) mode to encrypt
further messages as well as to get hash values to provide message integrity. Using the secure
channel, tag data related to the ePedigree standard is read from and written to the tag,
while the data is signed using the Elliptic Curve Digital Signature Algorithm (ECDSA).
Any communication between the smartphone and the backend is additionally encrypted
using Transport Layer Security (TLS).

Keywords: RFID Security, Advanced Encryption Standard, Offset Codebook Mode, Au-
thenticated Encryption, Near Field Communication, NFC, Android OS, Authentication,
Transport Layer Security, Elliptic Curve Cryptography, METASEC

3

Kurzfassung

Durch die Integration in fast jedem neuen Smartphone, gewinnt Near Field Communicati-
on (NFC) weltweit an Bedeutung. Die Technologie ermöglicht Kommunikation mit aktiv
oder passiv versorgten Radio-Frequency Identification (RFID) Tags. In Kombination mit
intelligenten Backend Systemen, welche die gesammelten Daten auch verarbeiten können,
ergeben sich neue Applikationsmöglichkeiten: Als Teil des META[:SEC:] Forschungspro-
jektes wurde ein NFC-System mit einem Backend Server für RFID-Systeme implemen-
tiert. Der Prototyp eines Sicherheits-Cryptocontrollers als RFID Tag ermöglicht hierbei
das Durchführen anspruchsvoller Security-Operationen. Ein NFC-fähiges Smartphone, mit
dem Betriebssystem Android, wird als Brückentechnologie verwendet um mit beiden Sei-
ten mittels NFC bzw. Wi-Fi zu kommunizieren. Das System, bestehend aus Tag, Backend
und Smartphone, hat potentiell aber auch eine Vielzahl von Angriffspunkten. Daher wur-
de in dieser Arbeit der Focus auf die Absicherung des Kanals zwischen Backend und Tag
mithilfe von Verschlüsselung der sensiblen Daten gelegt. Dadurch kann die Smartphone
Applikation die Informationen, in den von ihr gesendeten Nachrichten, selbst nicht einse-
hen. Ein initiales, unverschlüsseltes, Authentifizierungsverfahren verwendet Montgomery
Multiplikationen in Fp. Weitere Nachrichten werden mit dem Advanced Encryption Stan-
dard (AES) im Offset Codebook (OCB) Mode verschlüsselt, wobei auch ein Hash Tag für
die jeweilige Nachricht erzeugt wird, um Datenintegrität zu erreichen. Über den sicheren
Kanal werden außerdem Tag-Daten, in Form des ePedigree Standards, ausgelesen und
wieder auf den Tag geschrieben, wobei die Daten mit dem Elliptic Curve Digital Signa-
ture Algorithm (ECDSA) signiert werden. Die Kommunikation zwischen Smartphone und
Backend ist zusätzlich mit Transport Layer Security (TLS) gesichert.

Keywords: RFID Security, Advanced Encryption Standard, Offset Codebook Mode, Au-
thenticated Encryption, Near Field Communication, NFC, Android OS, Authentication,
Transport Layer Security, Elliptic Curve Cryptography, METASEC

5

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present master‘s thesis dissertation.

.............................. ...
Date Signature

7

Acknowledgements

First I would like to thank my supervisor Christian Steger at the Institute for Technical
Informatics and my advisors Manuel Menghin and Christian Lesjak at Infineon Technolo-
gies Austria AG for their aspiring guidance, invaluably constructive criticism and friendly
advice during this thesis and the preceding master’s project.

Next, I have to say many thanks to Matthias Weitlaner for giving me the opportunity
to do this thesis in cooperation with Enso Detego. I would like to gratefully thank the
entire staff at Enso Detego GmbH for their support and for being the most awesome
colleagues I ever had.

I would like to thank my QA team, especially Thomas Kempter and Michael Goller,
who took it upon themselves to proofread this thesis, therefore making it presentable to a
public audience.

I have to say thanks to my security consultant Christoph Dobraunig for providing me
with the insight and knowledge to carry out this thesis. I want to thank Peter, Alex, Dan,
Michi, Manuel, Jürgen and all my other friends for their support and for saving me from
finishing too early, by providing me with much needed distractions.

Thanks to my partner in life Heidi for being the best and most beautiful girlfriend
during the whole thesis, and beyond.

Finally, I want to thank my whole family, my parents Gabriele and Alfred, my sister
Martina and especially my grandfather Gerd, for supporting me throughout my entire
academical career. Without them, I would have never been able to become the person I
am today.

Graz, February 2015 Robert Gerd Pleyer

9

Contents

1 Introduction 23

2 Related Work 25

2.1 Cryptography Fundamentals . 25

2.1.1 Symmetric Cryptography . 25

2.1.2 Asymmetric Cryptography . 26

2.1.3 Authenticated Encryption . 28

2.1.4 Offset Codebook . 28

2.1.5 Montgomery Multiplication . 31

2.2 Secure RFID . 32

2.2.1 RFID . 32

2.2.2 NFC . 32

2.2.3 ECC . 33

2.2.4 RFID-Tag Prototype . 33

2.3 Secure Backend . 34

2.3.1 Backend-Connection with TLS . 35

2.4 Android Operating System . 36

2.5 ePedigree Standard . 37

2.6 Similar Systems . 38

3 Design 41

3.1 The Secure Channel System . 41

3.1.1 Concept . 42

3.1.2 Anti-Counterfeit Use Case . 42

3.1.3 Authentication . 43

3.1.4 Tag Data and Operations . 44

3.2 Backend Design . 46

3.2.1 Database . 47

3.2.2 Web Service . 49

3.3 RFID-Tag Prototype . 50

3.3.1 Protocol . 50

3.3.2 Tag Data . 53

3.4 Android Application Design . 54

3.4.1 Android User Interface . 54

3.5 Workflow . 57

11

4 Implementation 63
4.1 Software Simulation . 63

4.1.1 Key Generation . 63
4.1.2 Authentication (Simulation) . 65
4.1.3 OCB Simulation . 67

4.2 Backend Server . 67
4.2.1 Command Builder . 68
4.2.2 Pedigree Handler . 69
4.2.3 Secure Channel Commands . 70

4.3 Android Application . 79
4.3.1 Class ConnectionHTTPS . 80
4.3.2 Class CommandHandler . 83
4.3.3 Class HomeActivity . 83

5 Results 87
5.1 Android Application . 88
5.2 Timing Analysis . 90

6 Conclusion 95

Bibliography 97

A Figures 105

B Listings 109

12

List of Figures

1.1 Overview of the Secure Channel System . 24

2.1 Secure Communication . 26

2.2 X.509 Standard for Generating Digital Certificates 27

2.3 OCB AEAD Scheme . 29

2.4 OCB with Message Padding . 30

2.5 OCB: Auth Generation . 30

2.6 Components of an RFID System . 33

2.7 Block Diagram of a 16-bit Security Controller 34

2.8 TLS Protocols . 36

2.9 Cryptographic Overview of TLS . 37

2.10 ePedigree Example . 39

3.1 The Secure Channel System . 41

3.2 Authentication Protocol . 44

3.3 detego SURVEYOR . 46

3.4 Web Service Invocation . 49

3.5 Physical and Command Frame of the Protocol 51

3.6 DATA Frames for Authentication . 51

3.7 DATA Frames for Read and Write Operations 52

3.8 Android Application: Start-Up Screen . 55

3.9 Android Application: Main Screen prior to Authentication 55

3.10 Android Application: Main Screen after Successful Authentication 55

3.11 Android Application: Loading Dialog . 56

3.12 Android Application: Main Screen after Successful Pedigree-Read 56

3.13 Sequence Diagram of the Authentication Process 58

3.14 Sequence Diagram of the Pedigree-Read Process 60

3.15 Detailed Sequence Diagram of the Read Operation 61

3.16 Detailed Sequence Diagram of the Write Operation 62

4.1 Class Diagram of the Secure Channel Android Application 80

4.2 Methods and Tasks Executed During Authentication 84

4.3 Methods and Tasks Executed During Pedigree-Read 84

5.1 The Secure Channel System . 87

5.2 Screenshots of the Secure Channel Application (1/2) 88

5.3 Screenshots of the Secure Channel Application (2/2) 89

13

5.4 240 Iterations of Successful Authentication Operations 91
5.5 2 000 Iterations of Successful Pedigree-Read Operations 92
5.6 Timings and CPU Clock of Successful Pedigree-Read Operations 93
5.7 Execution of Pedigree-Read . 93
5.8 Detailed Execution of Pedigree-Read . 94

A.1 TLS Handshake Protocol . 105
A.2 Database Relation Diagram for Relevant Entities 106
A.3 Calling Structure of Android Application Tasks and Service Methods 107

14

List of Tables

3.1 Relevant Database Entities of the detego SURVEYOR Database 47

4.1 Overview of the Methods and Tasks of the CommandHandler Class 83

5.1 Timing Analysis of Authentication and Pedigree-Read 90

15

List of Listings

3.1 Example SQL Login . 48
3.2 Executed SQL Query . 48
3.3 Example Injection 1: <PasswordHash> Input: ’ OR 1=1 48
3.4 Example Injection 2: <CommonName> Input: admin’– 48
3.5 Item JSON object . 49
4.1 Keygen.cs: GenerateEcKeyPair . 64
4.2 Keygen.cs: GenerateRsaKeyPair . 64
4.3 Keygen.cs: GetKeysFromFiles . 65
4.4 Authentication.cs: ComputeSignatureOfPublicEcKey 66
4.5 Authentication Simulation (Unit Test) . 66
4.6 Command Builder.cs: Build . 68
4.7 IDataService.cs: Declaration of the Secure Channel Commands 71
4.8 DataService.scv.cs: ScReset . 72
4.9 DataService.scv.cs: ScCommandToPropVal 72
4.10 DataService.scv.cs: ScServiceStatus . 73
4.11 DataService.scv.cs: ScGetChallenge . 73
4.12 DataService.scv.cs: ScVerifyResponse . 74
4.13 DataService.scv.cs: ScGetReadCommand 76
4.14 DataService.scv.cs: ScGetNextReadCommand 76
4.15 DataService.scv.cs: ScWrite . 78
4.16 DataService.scv.cs: ScFinalize . 79
4.17 Overview of the class ConnectionHTTPS 81
4.18 AcceptCert . 81
4.19 PostToHttpsWithSelfSignedCertificate . 82
B.1 Keygen.cs . 109
B.2 Authentication.cs . 110
B.3 Montgomery.cs . 112
B.4 CommandBuilder.cs . 114
B.5 EPedigreeHandler.cs . 117
B.6 DataService.scv.cs: ScRead . 121
B.7 DataService.scv.cs: ScCheckWrite . 124
B.8 Store Keys to File . 124
B.9 CommandHandler.java . 125

17

List of Abbreviations

AE Authenticated Encryption

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

AES-OCB AES in Offset Codebook Mode

API Application Programming Interface

CA Certificate Authority

CBC Cipher-Block Chaining

DDL Data Definition Language

DES Data Encryption Standard

DH Diffie-Hellman Key Exchange

DHE Diffie-Hellman Ephemeral

DML Data Management Language

ECC Elliptic Curve Cryptography

ECDHE Elliptic Curve Diffie-Hellman Ephemeral

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

EPC Electronic Product Code

GPS Global Positioning System

GTIN Global Trade Item Number

GUI Graphical User Interface

HTTPS Hypertext Transfer Protocol Secure

HTTP Hypertext Transfer Protocol

19

IIS Internet Information Services

IMEI International Mobile Station Equipment Identity

ISO International Organization for Standardization

JSON JavaScript Object Notation

LFSR Linear Feedback Shift Register

MDM Mobile Device Management

META[:SEC:]Mobile Energy-Efficient Trustworthy Authentication Systems
with Elliptic Curve based Security

NDEF NFC Data Exchange Format

NIST National Institute of Standards and Technology

NFC Near Field Communication

OCB Offset Codebook

OData Open Data Protocol

OSI Open Systems Interconnection

OS Operating System

PFS Perfect Forward Secrecy

PKC Public-Key Cryptography

PKI Public-Key Infrastructure

RC4 Rivest Cipher 4

RDBMS Relational Database Management System

RFID Radio-Frequency Identification

RRP Recommended Retail Price

RSA Rivest-Shamir-Adleman

SHA Secure Hash Algorithm

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSL Secure Sockets Layer

TLS Transport Layer Security

URL Uniform Resource Locator

20

21

VPN Virtual Private Network

WCF Windows Communication Foundation

WSDL Web Services Description Language

XML Extensible Markup Language

XSS Cross-Site Scripting

Chapter 1

Introduction

In today’s economy, every strong brand sees itself confronted with product counterfeit.
In every line of business, may it be electronics, fashion industry or even consumer goods,
products are replicated and sold as originals by third parties. There are obvious counter-
feits, sold in backstreet market stands that are cheap compared to the original products
and show quality flaws. These are bought on purpose, since the customer knows that he is
getting faked goods. On the other hand, there are also well produced forgeries, placed in
real stores that barely differ from the original product. Customers hardly have any chance
to identify those counterfeits and therefore may pay the original price for fake goods. For-
tunately, with new technologies, new solutions arise: This thesis proposes a way of giving
customers the chance to distinguish original products from counterfeits, while giving the
producer extended information on his product distribution and possible counterfeit hot
spots.

In the last few years, Near Field Communication (NFC) is gaining momentum all over
the world. This technology allows communication with actively and passively powered
Radio-Frequency Identification (RFID) tags. A wide range of consumer focused applica-
tions, like payment, data transfer and device pairing brought many smartphone producers
to integrate NFC into their flagship models. Using these NFC-capabilities, the proposed
system can be used to identify passive RFID tags that are attached to original products.
Therefore, authenticating the tag means authenticating the product. In combination with
an intelligent backend system, to process gathered information, the proposed system allows
for secure authentication and communication with RFID tags.

As part of the META[:SEC:]1 research project (Mobile Energy-efficient Trustworthy
Authentication Systems with Elliptic Curve based Security), this thesis demonstrates a
secure communication between a backend server and a secure cryptocontroller on an RFID
tag, using the wireless technologies of a smartphone as bridge technology. Figure 1.1
depicts an overview of the proposed Secure Channel System. As RFID tag, a security-
enhanced cryptocontroller prototype from Infineon Technologies is used. The smartphone
is operating on Android OS and communicating with the tag over NFC. The backend server
is based on an existing backend solution from Enso Detego and communicates with the

1“META[:SEC:] : Mobile Energy-efficient Trustworthy Authentication Systems with Elliptic Curve
based SECurity”, funded by the Austrian Federal Ministry for Transport, Innovation, and Technology
under the FIT-IT contract FFG 829586. The META[:SEC:] consortium consists of TU-Graz, Infineon
Technologies Austria AG and Enso Detego GmbH.

23

24 CHAPTER 1. INTRODUCTION

smartphone over mobile internet or Wi-Fi. With attention to an open Android application,
which users can download and install on their smartphones, the application itself may be
counterfeited, and modified or malicious versions may be distributed. Therefore, it is
important to minimize possible information leakage on the smartphone, which means that
the application should not be able to leak any sensitive data from the communication
between backend and tag. Thus, all sensitive data sent over the communication channel
is encrypted. This secure channel enables private data transmission between backend
and tag, while the Android application is not able to gather any information from the
encrypted messages. The backend connection is additionally secured using HTTPS, which
is the secure version of HTTP together with Transport Layer Security (TLS).

Power Transfer

NFC

AES

ECC
UART

R
F-

In
te

rf
ac

e

CPU

Resource Constrained
Embedded System

Backend Server 3G/4G
Wi-Fi

Smartphone with
Android OS

 Transparent

 No Shared
Secret

 No Access to
Sensitive Data

HTTPS

Figure 1.1: Overview of the Secure Channel System

The goal of this thesis is to create a secure communication between a backend server
and an RFID tag, using a smartphone as bridge technology. With focus on encrypting
sensitive information sent over the secure channel, tag authentication as well as encrypted
tag-data transmission is achieved. The smartphone user can authenticate the tag to a
secure backend and read data that is stored on the tag. Only insensitive data is pre-
sented to the smartphone, therefore mitigating possible attacks on the application. Au-
thentication is realized using Montgomery Multiplication and signatures based on Elliptic
Curve Cryptography (ECC). Sensitive data is encrypted with AES in Offset Codebook
Mode (AES-OCB). This Authenticated Encryption (AE) scheme allows for symmetric
encryption of data with an additional hash tag to detect modified or erroneous messages
upon decryption.

Overview: Chapter 2 discusses related work. In Chapter 3 the design of the project is
described: This chapter is divided into a first conceptual overview, the design of the three
main parts and details on the workflow of the entire system. Followed by the implementa-
tion in Chapter 4, where the discussed implementation is split into a software simulation,
a backend server and a smartphone section. The results are detailed in Chapter 5. Finally,
a conclusion ans possible future work can be found in Chapter 6.

Chapter 2

Related Work

This chapter gives background information on the involved technologies, related standards
and systems similar to this thesis.

2.1 Cryptography Fundamentals

The basic problem behind a secure communication between two parties is to prevent a
third party to intercept, eavesdrop or modify data related to the communication. In the
literature the two communicating parties are often called Alice and Bob, while the mali-
cious third party is called Eve. In a modern cryptosystem, the message is encrypted by
Alice with the encryption key before sending, and decrypted by Bob with the correspond-
ing decryption key upon receiving. This way the plaintext P becomes ciphertext C during
the communication and gets decrypted to P again (see Figure 2.1). Kerckhoff’s principle
states that the security level of a particular system is mainly determined by the used key.
The entire system, except for the key, can be public knowledge [Ker83]. Modern cryptog-
raphy can be divided into two major families: symmetric and asymmetric cryptography.
Symmetric cryptography refers to cryptosystems where all keys are known by Alice and
Bob alone. Thus, the sending and receiving sides can be interchanged. Asymmetric cryp-
tography, however, refers to systems that use public and private (secret) keys. Every party
has its own public-private keypair. The private key is only known by its owner. The public
key is distributed to possible communication parties publicly, where every communication
entity uses different keys. Alice encrypts the message with Bobs public key, Bob decrypts
the message with his private key.

2.1.1 Symmetric Cryptography

In symmetric cryptography the communication is secured by encrypting and decrypting
messages with the same key. This key has to be known by all communicating parties, thus
representing a shared secret. Symmetric ciphers can be divided into two main fractions:
stream ciphers that encrypt the message bit-wise one after another, and block ciphers that
take a number of bits (block) and encrypt them as a single unit.

A stream cipher can be interpreted as a finite state machine, where the key determines
the initial state. This internal state is stored in an Linear Feedback Shift Register (LFSR).
The message is then encrypted bit-by-bit and the internal state changes depending on the

25

26 CHAPTER 2. RELATED WORK

Alice

P

Bob

P

Eve

Alice

P

Bob

P

Eve

E D

KE KD

C

Figure 2.1: Secure Communication Realized With Encryption
(adapted from [Rij11])

encrypted message, directly affecting the subsequent parts. Already encrypted bits can be
sent to the communicating party and can be decrypted using the same key. Thus, one of
the key features of a stream cipher is the fast communication. Additionally, stream ciphers
have a low implementation complexity, as they can perform well on low-energy constrained
systems. Commonly known stream ciphers include RC4 [KT99], AC5/1 [BSW01] and
SNOW 3G [EJ03].

Block ciphers always operate on a fixed length of bits called blocks. The plaintext
block gets encrypted to a ciphertext block in multiple rounds of bit substitutions. Small
non-linear functions, called S-boxes, substitute parts of the block, typically by using a
lookup table. Additionally, the substituted parts are mixed and parts of the symmetric
key are changing the intermediate values in every round. Already encrypted blocks can
be sent to the communicating party, where they can be decrypted by using the same
block cipher with the same key. For decryption, only the order of the used key parts
changes. Well known block ciphers include the Data Encryption Standard (DES) [Sta99]
and any derived form like 3-DES and DESX. The most prominent block cipher today is
the Advanced Encryption Standard (AES) [DR98]. A block cipher by itself allows only
encryption of a single plaintext block. For a variable message-length, the plaintext has
to be partitioned into separate blocks. So called Modes of Operation describe how the
separate blocks are encrypted and how the encryption of one block affects the next block.

2.1.2 Asymmetric Cryptography

Asymmetric cryptography, also called Public-Key Cryptography (PKC), refers to the use
of public and private keys in a cryptosystem. The public-private keypair is different for
every communication party. Messages are encrypted with the public key of the recipient,
whereas the private key is only known by the owner. The receiving entity then decrypts
the ciphertext with the corresponding private key. The notion of PKC was proposed by
Diffie and Hellman in 1976 [DH76]. In a public key system, it is computationally infeasible

2.1. CRYPTOGRAPHY FUNDAMENTALS 27

to calculate the private key (also called secret key) from the public key. In their paper
they proposed the Diffie-Hellman Key Exchange (DH) protocol, a widely used solution for
key exchange and key establishment. In 1978 the first practicable public key system, the
RSA algorithm, was invented by Rivest, Shamir and Adleman. Public-key algorithms are
based on mathematical problems which currently have no efficient solution, such as integer
factorisation, discrete logarithm or elliptic curve relationships. For RSA the difficulty is
based on factoring the product of two large prime numbers. As computational performance
increases, this factoring gets feasible for small keys. Therefore the bit length of RSA keys
is significant for the security of the cryptosystem. The largest RSA modulus that has been
factored so far was 768 bit by Kleinjung et al. [KAF+10]. Current recommendations pledge
for bit sizes of 2048 bit and above [fSidIG14]. A popular algorithm, based on DH and the
discrete logarithm problem, is the ElGamal encryption system, proposed by Elgamal in
1985 [ElG85].

Root CA1 Root CA2

Enduser CA2

User A User B

Enduser CA3

User DUser C

Enduser CA1

Figure 2.2: Structure of the X.509 Standard for Generating Digital Certificates
(adapted from [Lam10, pp. 15])

Digital Certificates: Digital certificates bind an identity to a certain public key [OL10,
pp. 55–63]. Certificates contain the name and the public key of the subject, the name of
the certificate issuer and an expiration date, along with additional information. The
certificate is digitally signed by a trusted third party (issuer). This third party is called
the Certificate Authority (CA). Each CA also has a certificate signed by another CA.
At the top of the certificate-tree is the root CA, which has a self-signed certificate. This
self-signed certificate can be generated by everyone. There is no third party to validate
the self-signed certificate, therefore it is untrusted. The whole system relies on trusting
certain root CAs. Figure 2.2 shows the tree structure of the X.509 standard [AFKM05]
Public-Key Infrastructure (PKI) for generating digital certificates.

PFS: Perfect Forward Secrecy (PFS) is a property of key-establishment protocols. The
key establishment is the phase where a shared secret becomes available to the communicat-
ing parties [Rij11]. Some protocols generate unique session keys for every communication
established. These session keys can be derived from not-changing long-term keys. PFS
requires that leakage of such a long-term key does not compromise session keys used in the
past [Rij11]. In relation to SSL/TLS, many big companies use long-term keys, also called
master keys, to generate session keys for TLS connections with users. Not all master-
key systems provide PFS. To offer PFS with certainty, the connection handshake has to
use completely different keys for every session, which must not be derived from the same
master key.

28 CHAPTER 2. RELATED WORK

Hash Function: A hash function is an algorithm that maps an input message of arbi-
trary length to an output (hash-value or simply hash) of fixed length [MVOV10]. Identical
inputs always have the same hash-value. The basic structure of a hash function shows that
there have to be different inputs resulting in the same hash-value. These collisions are
the main weakness of every hash function. Therefore commonly used hash functions have
properties that make such collisions hard to find. The hash itself is a representative fin-
gerprint of the input message. Slight changes in the input result in completely different
hash-values. If the hash-value is sent together with the input message, the recipient can
hash the message again (with the same hash function) and compare the new value with
the sent hash-value. If the message has been modified, the values differ.

2.1.3 Authenticated Encryption

Security systems often need more than encryption. In the encrypted state the message
content follows no clear schema. The decrypting side has to verify the integrity of the
sent message before decrypting it. Thus, appending a hash value to the message makes
a quick validation possible. Encryption as well as generating a hash value are both per-
formance and time consuming operations. Processing both operations one after another
is not the best solution. Thus, schemes that calculate the hash value while encrypting
the original message at the same time are called authenticated encryption schemes. If an
authenticated-encryption scheme allows for the additional authentication of unencrypted
data, the scheme is an Authenticated Encryption with Associated Data (AEAD) scheme.
As there is no standard for an authenticated encryption scheme, an ongoing cryptographic
competition called CAESAR [D. 14] tries to determine standards for authenticated ciphers.
One the CAESAR submissions, AES in Offset Codebook Mode (AES-OCB) [Phi14], is used
as AEAD in this thesis, which provides the security of AES encryption while generating a
hash tag to confirm the message integrity as well.

2.1.4 Offset Codebook

Offset Codebook (OCB) is a block-cipher mode of operation and an Authenticated En-
cryption with Associated Data (AEAD) scheme invented by Rogaway [Phi14] and specified
in 2014 [KR14]. Rogaway first filed a patent for OCB in 2000, therefore, any commercial
use will need a licence. OCB currently competes against other authenticated encryption
schemes in the CAESAR cryptographic competition, where the goal is to define standards
for authenticated ciphers.

OCB provides two security properties: confidentiality and authenticity. OCB outputs
are confidential, or private, as an adversary is unable to distinguish them from an equal
number of random bits. If an adversary is unable to create any nonce-ciphertext pair that
he has not already acquired, one speaks of authenticity.

Figure 2.3 depicts the basic structure of an OCB encryption. A blockcipher E with
an n-bit block-length and the key K are used. The message M is split into m blocks of
n bits each. A unique nonce is denoted by N . The ∆ value is different for each message
block and generated with an increment function. The initial ∆ is generated from N via
an initialisation function. The value Checksum is the XOR product of all message blocks
(M1 ⊕M2 ⊕M3 ⊕ ..⊕Mm).

2.1. CRYPTOGRAPHY FUNDAMENTALS 29

Figure 2.3: Offset Codebook (OCB) AEAD Scheme
(adapted from [Phi14])

During encryption, each message block Mi gets XORed with ∆, encrypted by the
blockcipher EK and XORed again with ∆ to generate a cipher block Ci. The Checksum
is also XORed with ∆ and encrypted with EK , but then XORed with Auth, to generate
an internal tag of n bits. The first τ bits of the internal tag are appended to the cipher-
text blocks as tag, or hash tag, T , thus τ is a number between zero and 128. Like the
blockcipher, τ is a parameter of the mode.

If the message length is not a multiple of the block length n, the last message block M∗
is zero-padded and the ciphertext is generated by XORing an encrypted ∆ to the message
block (see Figure 2.4).

The generation of the Auth value is shown in Figure 2.5. Here, the associated data
is split into blocks Ai of n-bit length. Each block is XORed with ∆ and encrypted with
the blockcipher. The blocks are then XORed together, in order to generate the Auth
value. Associated data is padded to be a multiple of the block length n by adding a “1”-bit
followed by zero-padding.

The input of an OCB encryption is the message (M1||M2||M3||..||M∗), whereas the
output ciphertext consists of the ciphertext blocks and the tag (C1||C2||C3||..||C∗||T).
Therefore, the output is τ bits longer then the input. Decryption works similar to encryp-
tion, except for the blockcipher that is now used to decrypt the messages (DK).

For each OCB encryption, a distinct nonce of up to 120 bits has to be used. For
decryption, the same nonce is needed, thus creating a nonce-ciphertext pair that is only
valid together. This nonce must not be repeated for multiple encryptions, otherwise the
confidentiality and authenticity properties are undermined, as an attacker will be able to
infer relationships between observed ciphertexts. Therefore, nonces need to be unique for
each individual encryption. However, the nonces need not to be secret, which enables the
use of a counter or timestamp.

30 CHAPTER 2. RELATED WORK

Figure 2.4: Offset Codebook (OCB) AEAD Scheme with Message Padding
(adapted from [Phi14])

Figure 2.5: Offset Codebook (OCB) AEAD Scheme: Generation of Auth Value
(adapted from [Phi14])

2.1. CRYPTOGRAPHY FUNDAMENTALS 31

The used OCB global parameter set is AEAD AES 256 OCB TAGLEN128, which
means AES with a 256-bit key is used as the blockcipher and the tag length is the full 128
bit of the internal tag. The current timestamp is used as associated data and as nonce.

2.1.5 Montgomery Multiplication

Many public-key cryptosystems are based on modular arithmetic: RSA requires exponen-
tiation mod n, Diffie-Hellman and ElGamal are based on exponentiation modulus a prime
and ECC can be implemented on a prime field. Introduced in 1985 by Peter Montgomery
[Mon85], Montgomery multiplication is a method for computing modular multiplication
efficiently (i.e. a · b mod p) [HVM04]. In a modular multiplication, the computationally
most expensive part is the reduction mod p, which is equivalent to a division. This is
rather inefficient when working with large moduli like 2048 bit RSA. Montgomery multi-
plication works by transforming the factors a and b to a so called Montgomery domain,
simplifying the division to a subtraction, at the cost of additional multiplications for the
transformation.

Thus, the basic structure of calculating c = a · b mod p using the Montgomery multi-
plication is [WEW12]:

1. transform a and b to the Montgomery domain: a and b

2. calculate c = a ? b, where ? denotes the Montgomery multiplication step

3. transform c back to c

To transform a, with a modulus p, a constant value R = 2k (R>p, gcd(R, p) = 1)
is needed, where k is the number of bits of p. Modular reduction by R can now be
implemented by truncating (or masking) to k bits, and a division by R is a right-shift by
k bits.

a ≡ a ·R mod p

As the ? operation is used to calculate c = a ? b, this means

(a ·R) ? (b ·R) ≡ c ·R ≡ (a · b) ·R mod p

a ? b := a · b ·R−1 ≡ a ·R · b ·R ·R−1 = a · b ·R ≡ c mod p
Whereas the value d = a · b is easy to calculate, the result d · R−1 mod p is somewhat
trickier. This step is referred to as the Montgomery reduction. The Montgomery reduction
of r = d ·R−1 mod p is calculated using the following formula:

s = (d+ (d · p′ mod R) · p)/R, r =

{
s− p s ≥ p
s else

where p′ = −p−1 mod R. Additionally, the ? operation can also be used to simplify the
Montgomery transformation and back-transformation:

a = a ·R ≡ a ·R ·R ·R−1 = a ·R2 ·R−1 = a ? R2 mod p

c = c ·R−1 = c · 1 ·R−1 = c ? 1 mod p

Therefore, the two implemented algorithms for calculating the Montgomery multipli-
cation are:

32 CHAPTER 2. RELATED WORK

Algorithm 1 MONT(x, y) to calculate x ? y = x · y ·R−1 mod p
1: d = x · y
2: r = (d+ (d · p′ mod R) · p)/R
3: if r ≥ p then
4: r = r − p

Algorithm 2 Calculate c = a · b mod p using Montgomery multiplication

1: a = MONT(a,R2)
2: b = MONT(b, R2)
3: c = MONT(a, b)
4: c = MONT(c, 1)

2.2 Secure RFID

This section describes the two used technologies Radio-Frequency Identification (RFID)
and Near Field Communication (NFC) and how such systems can be secured1.

2.2.1 RFID

RFID uses electromagnetic and magnetic fields for wireless data transmission. A small
electronic device (chip) equipped with an antenna (together: RFID tag) is powered by
an electromagnetic field from an RFID reader (see Figure 2.6). The range for such an
over-the-air communication with passive tags is limited to a few meters. In contrast,
active tags are equipped with a dedicated energy source, which enables communication
over higher distances. There exists a wide variety of different RFID systems. One possible
categorization can be performed according to the utilized frequency range. The HF-band
(high frequency, 13.56 MHz) can operate at distances up to one meter. HF tags are used in
smart cards and for NFC. The UHF-band (ultra high frequency, around 850 to 950 MHz)
offers reading distances up to twelve meters [Wei11]. Passive UHF tags are widely used
for item-level tagging and thus support or replace barcode systems.

Passive RFID tags use modulation of the reflected power of the tag antenna to commu-
nicate with the reader [Dob07]. This reflection of waves is called backscattering. Basically,
current flowing in the reader antenna is inducing a voltage on the tag antenna. If the tag
antenna is connected to a load, this leads to current flowing in the tag antenna which then
radiates back to the reader antenna. This radiated wave induces a voltage on the reader
antenna and therefore a backscattered signal can be detected. This backscattered signal
is depending on the load on the tag antenna.

2.2.2 NFC

NFC typically refers to RFID communications between smartphones and passive HF tags
or between two smartphones. Thus, the communication between a smartcard (HF tag)
and a reader,e.g. for payment, is called NFC. The technology enables every NFC-capable
smartphone to work as an HF RFID reader. As it is used more and more as a payment

1Parts of this section are adapted from a preceding master’s project [Ple14]

2.2. SECURE RFID 33

Reader Antenna Tag

Chip

Antenna

Figure 2.6: Components of an RFID System

option, ensuring a secure communication is very important. Moreover, NFC technology is
also used to setup other wireless communications, such as Wireless LAN or Bluetooth.

2.2.3 ECC

Elliptic Curve Cryptography (ECC) is very popular nowadays. In comparison to other
algorithms, ECC offers the same level of security with considerably shorter key lengths. In
the last years extended effort has been taken to bring ECC to low-cost RFID devices: Wolk-
erstorfer [Wol04] presented one of the first low-area ECC implementations with F2m and
Fp standardized curves. Further implementations [KP06, BGK+06, FW07] showed ECC
processors suitable for RFID devices. Ahamed et al. [ARH08] described an offline mutual
authentication protocol based on ECC. Protocols resistant to currently known attacks and
threats have been presented in [Chi07, SM08]. A rather simple technique for inexpensive
untraceable identification for RFID is presented by Tsudik [Tsu06]. Existing protocols
are evaluated for RFID suitability in [BGK+07, LW07]. Feldhofer et al. presented a low-
resource design and implementation of ECDSA for RFID [HFP10, WFF11, KF10]. Urien
and Piramuthu [UP13] showed a framework and authentication protocol for smartphones,
NFC and RFID for retail transactions.

A description of an implementation of elliptic curves over finite fields for RFID has
been presented by Braun et al. [BHM08]. Based on the presented implementation and
authentication protocol, Bock et al. [BBD+08] showed an energy efficient hardware imple-
mentation resistant against side-channel attacks. The energy consumption of their 4-bit
architecture, during ECC computation, is stated to be 7.5µJ with an area size of 13 kGE
for the ECC hardware module.

2.2.4 RFID-Tag Prototype

The RFID tag used in this thesis is a prototype security cryptocontroller developed by
Infineon Technologies [Inf14]. The prototype is similar to the 16-bit Security Controller
that is shown in Figure 2.7. However, the used version is modified to fit the purposes of
this thesis. The tag communicates with the smartphone over NFC, using the NFC Data
Exchange Format (NDEF). Multiple security layers prevent execution of unauthorized
commands, while encrypting and decrypting all messages with the chosen AES-OCB mode.

34 CHAPTER 2. RELATED WORK

Figure 2.7: Block Diagram of a 16-bit Security Controller

2.3 Secure Backend

To evaluate the server security there are several security critical components such as the
web applications, the web server itself and the database, whereas the underlying tech-
nologies are Microsoft Internet Information Services (IIS) [Mic13] as the web server and
Microsoft SQL Server 2012 [Mic12a] as database server, respectively2.

IIS: IIS is Microsoft’s web server for hosting web applications in a Windows environment.
A survey from Netcraft in September 2013 [Neta] showed that the IIS is the second most
popular web server in the world. Versions earlier to 6.0 had many security vulnerabilities
[SPW+02], where one of them resulted into the so called Code Red Worm [CER02]. With
the current global surveillance disclosures [Wik13] the focus on PFS increases constantly.
With PFS, a session key derived from a long term key is not retrievable, even if the long
term key gets compromised. As stated by Netcraft [Netb], only the use of Diffie-Hellman
Ephemeral (DHE) or Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) ensures PFS.

Although the IIS became more secure with the latest releases, misconfiguration can
still lead to critical exposure. Microsoft TechNet gives a deeper look into configuration
details and best practices for securing the IIS [Tecc, Teca].

SQL Server: Microsoft SQL Server 2012 is a relational database management platform.
The primary query language is Transact-SQL [Tecb] which is a extension to the Structured
Query Language (SQL).

2Parts of this section are adapted from a preceding master’s project [Ple14]

2.3. SECURE BACKEND 35

Every SQL Server is potentially vulnerable to SQL Injections [Mor06]. If SQL code
uses unchecked input from external sources such as web forms, command line inputs or
cookies, it is possible to inject malicious code by changing the interpreted code [SG10,
pp. 15]. This can lead to possible unauthorized access to the database, manipulation of
data in the database or denial-of-service from deleted data. Kumar presents a “survey
on SQL injection attacks, detection and prevention techniques” [KP12]. SQL injections in
RFID backend-systems are analysed in [JJ11].

XSS: Cross-Site Scripting (XSS) is the injection of code or malicious scripts into the
victims content over browser input [Hei11]. There are two basic types, reflective and
persistent XSS. Reflective XSS is based on a request-response strategy, where the attacker
injects code and gets the desired response. Persistent XSS, however, defines permanent
injection of code on the server itself. The main target here are site users that log on to
the server.

2.3.1 Backend-Connection with TLS

There are several ways to secure a connection between a smartphone and a backend server.
The best practice is to use Transport Layer Security (TLS).

SSL/TLS: Secure Sockets Layer (SSL) and its successor TLS are cryptographic proto-
cols on the transport layer level of the Open Systems Interconnection (OSI) model [Sta96].
The SSL protocol [HE95] was developed by Netscape in 1994. The first version has never
been released to the public. In 1995, SSL Version 2.0 [Hic95] was released, which still
contained some security flaws, and therefore has been replaced with a complete redesign
to SSL Version 3.0 [FKK11]. TLS 1.0 [DA99] has been designed in 1999 as an upgrade to
SSL 3.0. Both protocols are similar, however not interoperable. An optional downgrade
from TLS to SSL was possible. In 2006 TLS 1.1 [DR06] has been introduced, followed
by the current version TLS 1.2 [DR08]. In 2011 the TLS protocols were refined to not
support downgrading to SSL 2.0 any longer [TP11]. The result of layering HTTP on top
of SSL/TLS is Hypertext Transfer Protocol Secure (HTTPS).

TLS provides privacy and data integrity between two communicating applications. It
consists of two main parts: the TLS Record Protocol and the TLS Handshake Protocol.
Figure 2.8 shows the TLS protocols in detail. The TLS Record Protocol provides pri-
vacy and integrity for the connection using symmetric cryptography to encrypt the data,
where the corresponding keys are generated uniquely for each connection and are hence
negotiated during the handshake. To establish a reliable connection, the TLS Record Pro-
tocol also adds a hash value to the message. The TLS Handshake Protocol is used for
authentication on each side and key negotiation for encryption in the Record Protocol.

During the establishment of a TLS connection, both sides have to negotiate about the
used cipher suite. This cipher suite defines how the key exchange will be executed and
which signature algorithm, encryption and hash algorithm is going to be used. For instance
the cipher suite denoted by TLS_RSA_WITH_RC4_128_SHA will use RSA [RSA78] for the
key exchange, 128-bit RC4 [KT99] for encryption and SHA [rJ01] as a hash function [Int].
A cryptographic overview of TLS is given in Figure 2.9.

36 CHAPTER 2. RELATED WORK

Application Layer

Handshake

Protocol

Change
Cipher Spec
Protocol

Alert

Protocol

Record Protocol

Content
Type

Version Length Fragment

Record

Figure 2.8: A Detailed View of the TLS Protocols
(adapted from [JQ13])

To authenticate server and client, certificates are exchanged. Each side has to validate
the opposites certificate on their own. The TLS Handshake Protocol covers the following
five steps [DR08]:

1. Exchange hello messages and agree on a specific cipher suite.

2. Exchange cryptographic parameters necessary for the specified cipher suites.

3. Exchange certificates to check authentication.

4. Generate a master key with specified key exchange.

5. Allow each side to check for modifications by adversaries.

If any of these steps fails, the handshake fails and the connection is dropped. A more
detailed view of the handshake communication is depicted in Figure A.1. The actual
session begins after the initial handshake. During the session, both sides encrypt, decrypt
and validate sent messages with the session key. At any time a renegotiation can be
started, which initiates the handshake again.

2.4 Android Operating System

In this thesis, smartphones are used as bridging technology between passive RFID tags
and a database oriented backend system. From this viewpoint, two secure connections are
required: the connection between smartphone and RFID tag and the connection between
smartphone and the backend server.

2.5. EPEDIGREE STANDARD 37

SSL/TLS

Handshake Record

Authentication, Privacy Integrity
Certificates

Hash
Cryptography Algortihms

RSA

DH

DHE

ECDH

ECDHE

DES

NULL

AES

IDEA

RC4

MD5

SHA

SHA256

SHA386

NULL

Asymmetric

PSK

Kerberos

SRP

NULL

Cryptography
SymmetricOther

Figure 2.9: Cryptographic Overview of TLS

NFC for Android: Nowadays many new smartphones provide NFC features. For An-
droid devices with NFC capabilities there are three modes of operation: reader mode,
peer-to-peer mode and card emulation mode [Goo13a]. In reader mode, devices can read
and write data from and to an NFC tag. The peer-to-peer mode allows two Android
devices to communicate with each other. Finally, the card emulation mode enables the
device to act as an NFC tag, which then can be read by an NFC reader. For writing data
to a tag, most Android frameworks use the NDEF[Nok13].

SSL and Android: It seems that while enabling SSL for an Android application is
quite achievable, having a secure configuration is not trivial. Fahl et al. analysed the SSL
security situation of popular Android applications [FHM+12]. Most of the configuration
problems found are related to certificate handling. Trusting all certificates or allowing all
hostnames (not just the address the certificate was issued for) are the most common prob-
lems. Android Developers provide tips and strategies to avoid such pitfalls in certificate
handling [Goo13b].

2.5 ePedigree Standard

The ePedigree, or electronic pedigree, is a certified record that contains the history of a
pharmaceutical drug [EPC]. It holds information about each distribution of a prescription
drug. It records the initial sale by a manufacturer, any acquisitions or sales by wholesalers
or repackagers, and the final sale to a pharmacy or other entity administering or dispensing
the drug. It also contains information concerning the product, transaction, distributor,
recipient and signatures to verify the individual entities. The pedigree, as it is is described
here, is required by law in the United States. The certificates used for signing pedigrees
have to be X.509 certificates [AFKM05].

38 CHAPTER 2. RELATED WORK

A simplified pedigree process contains the following steps:

� Create pedigree

� Add information to pedigree

� Digitally sign pedigree

� Send pedigrees for products in shipments to customer

� Receive pedigrees

� Authenticate pedigrees

� Verify products against authenticated pedigrees

� Sign pedigree for receipt and authentication

The ePedigree format is typically an XML envelope schema, where the document
holds all current and previous pedigree versions. Any new data is simply appended to
the existing document, and everything is signed. Figure 2.10 shows an example of such a
nested ePedigree. Further details on the pedigree standard are given in [EPC].

2.6 Similar Systems

In Section 2.2 many RFID authentication-protocols are described. These protocols secure
communication between tag and reader. The connection between reader and backend
is assumed to be secure most of the time. An RFID system that authenticates with a
untrustworthy backend server in a secure way is shown in [XZZT13], which is claimed to
be the first to address the unsecured-backend problem.

There exist systems that are very similar to this thesis in therms of the chosen coun-
terfeit use case, described in more detail in Section 3.1.2. The internet security company
WISeKey [WIS14] offers a product called WISeAuthentic that provides product authen-
tication and sales management as well as marketing possibilities. Similar to the use case
presented in this work, the RFID reader is an NFC-capable smartphone with a provided
application, where tag / product authentication is done by simply is done by simply read-
ing the tag.

2.6. SIMILAR SYSTEMS 39

Figure 2.10: Example of an ePedigree
(adapted from [EPC])

Chapter 3

Design

3.1 The Secure Channel System

Power Transfer

NFC

AES

ECC
UART

R
F-

In
te

rf
ac

e

CPU

Resource Constrained
Embedded System

Backend Server 3G/4G
Wi-Fi

Smartphone with
Android OS

 Transparent

 No Shared
Secret

 No Access to
Sensitive Data

HTTPS

Figure 3.1: Overview of the Secure Channel System

The Secure Channel System consists of three main parts:

1. Tag
A security-enhanced RFID-tag prototype from Infineon Technologies [Inf14]. The
tag is the entity that gets authenticated by the system. In the anti-counterfeit use
case, the product is equipped with an RFID tag to enable a secured authentication.
In addition, the tag stores additional information about the product in a separate
memory bank.

2. Backend
A backend system that provides data through a database and handles calls over a
secure web service. The backend knows the authentic tags.

41

42 CHAPTER 3. DESIGN

3. Smartphone
An NFC-enabled mobile device running Android OS. The smartphone is used as a
bridge technology for communication between backend and tag. All communication
between those two endpoints is encrypted and thus unreadable for the Android de-
vice. Throughout this thesis the therm “application” always refers to the Android
application running on the smartphone.

The system supports two stand-alone features:

1. A one-way authentication of the tag (against backend).

2. Reading stored tag data and subsequently updating the stored data on the tag, both
over an encrypted communication channel.

3.1.1 Concept

The main idea behind the Secure Channel System is to eliminate all risks of an open
Android application by encrypting any private communication. The Android-running
device resembles a communication bridge between backend and tag. The backend is hosted
in a secure environment and administrated by the system owner. Communication between
backend and smartphone is achieved over Wi-Fi or mobile internet and is secured with
Transport Layer Security (TLS). The Android device connects with the tag over Near
Field Communication (NFC). The tag contains functionality to get authenticated, on
request, to the backend, over a secure one-way authentication protocol. Additionally, the
tag holds information concerning the corresponding product. The format style of the data
is derived from the ePedigree standard described in Section 2.5. Therefore, the tag’s user
data is referred to as pedigree throughout this thesis. A signature and timestamp, enables
the use of the pedigree to reconstruct a product life cycle. One pedigree-read always
consists of reading tag data, confirming the data with the backend and writing data with
a new signature and timestamp back to the tag.

3.1.2 Anti-Counterfeit Use Case

This thesis focuses on the use of the Secure Channel System in an anti-counterfeit sce-
nario, which helps to mitigate product counterfeit. Thus, the system enables customers
and producers to identify product counterfeit and illegitimate distribution of such goods.
Pedigree data history can also help the legitimate producer to identify trading routes and
find stores that sell counterfeit products. Using a security-enhanced Android application,
it is possible to distribute the application for free over digital distribution platforms like
Google Play [Goo15]. Therefore, any customer can download and install the application
to their personal smartphones, provided the phone is NFC-capable. If the product is
equipped with a compatible RFID tag, the customer can scan the product’s tag and get
information about the product from the backend. The two main scenarios are as follows:

� A customer can verify that he is buying a legitimate product. Additional, displayed
information about the recommended retail price might give him a better understand-
ing of the current price margin. In addition, the producer gets even more useful

3.1. THE SECURE CHANNEL SYSTEM 43

data, such as the existence and possibly the location of the product, which is impor-
tant information for any market analysis. Furthermore, information concerning the
smartphone could be sent.

� The tag is not a legitimate tag and authentication fails. The customer then knows
the product is a potential counterfeit. This of course implies that counterfeiters
actually tried to resemble the original tag. The producer is informed about the
possible counterfeit. Additional forms for the customer could give confirmation that
he really tried to buy a legitimate product and what product he intended to buy
originally. This additional information helps to distinguish between true negatives
and false negatives. Moreover, location information could be of high value for the
producer for future investigations.

If a customer installs the application on his phone, he may already have an initial buy-
ing intention for the tagged product. This intention is reinforced with every successful
identification, which may also motivate the customer to use the application to scan other
available goods. By means of that, the application can improve the customers shopping
experience, which may lead to him buying more and returning to the same store again.
Bonus programmes or special discounts can be used as incentive for the customer to send
additional information concerning the goods. Privacy issues aside, the producer can gather
valuable data from every pedigree-read. It enables live samples of the products in the field.
The work itself is done by the potential customers. Actively reporting customers help to
identify black markets faster. The scanned pedigree data helps to create and maintain an
active product life cycle.

3.1.3 Authentication

In this thesis authentication is always used to describe the process of a one-way authenti-
cation between the backend and the tag, where the tag is authenticated to the backend. A
protocol based on elliptic curve arithmetic proposed by Braun et al. [BHM08] is used, as
depicted in Figure 3.2. The proposed system uses Montgomery Multiplication in Fp (see
Section 2.1.5), whereas authentication is based on a master’s thesis from Kuleta [Kul14].
The proposed system extends Kuleta’s version to represent the proposed protocol by Braun
accordingly. Specifically, signing of a tag’s public key is included as well as the verification
of the signature by the backend. Kuleta authenticated the tag to the smartphone, whereas
the proposed system authenticates the tag to the backend. Therefore, all calculations pre-
viously done on the smartphone are shifted to the backend server. All communication
between the backend and the tag during authentication, is thus insensitive per design.
Hence there is no need to encrypt any communication between smartphone and backend
during the authentication process.

The following section describes the authentication protocol in detail.

Tag Authentication Protocol

A sequence diagram of the used authentication protocol is shown in Figure 3.13. The tag
gets authenticated to the backend with the smartphone as bridge in between. The protocol
is very similar to the protocol proposed by Braun et al. [BHM08]. For details concerning
the implementation of the authentication process refer to Section 4.1.2.

44 CHAPTER 3. DESIGN

Reader (Backend) RFID-Tag Prototype
private key: ξT
public key: xT
signature: sT

public signature key PubSKey

pick random λ

xA = MONT (λ, xP) xA

xB = MONT (ξT , xA)xB, xT , sT

V erifySigPubSKey(xT , sT)

if invalid: reject

xC =MONT (λ, xT)

if xC = xB: accept

else: reject

Figure 3.2: One-Way Authentication Protocol
(adapted from [BHM08])

Prerequisites: Let E be an elliptic curve over GF(p). Let P = (xP , yP) be a point on
E with order q where q is a prime. The NIST curve P-192 [Nat99] is used for E and the
corresponding base point for P .

Tag Setup: The RFID-tag prototype is initialized with a randomly chosen private key
0 < ξT < q and a certificate (xT ,sT) consisting of the corresponding public key xT and
the signature sT = GenSigPrivSKey(xT) using the private signature key PrivSKey.

Backend Setup: The backend is initialized with the public signature key PubSKey to
verify the tag signature of the pubic key xT .

Authentication Process: The backend picks a random value λ and computes the
challenge xA with a Montgomery Multiplication xA = MONT (λ, xP), where xP is the
x-coordinate of the base point P . This challenge is then sent to the tag. The tag now
calculates the response xB = MONT (ξT , xA). Together with the certificate (xT , sT)
the response is returned to the backend. The backend first verifies the signature with
V erifySigPubSKey(xT , sT). If the certificate is invalid, the tag is rejected. Otherwise
the backend continues with the verification of the response. The check value xC =
MONT (λ, xT) is calculated and compared to xB. If both values are identical, the au-
thentication succeeds an the tag is accepted. If the two values differ, the tag is rejected.

3.1.4 Tag Data and Operations

The main operation visible to the smartphone user is the pedigree-read operation, which
reads and writes tag data (in the background). A sequence diagram for a single pedigree-
read is depicted in Figure 3.14. The following paragraphs describe the reading and writing

3.1. THE SECURE CHANNEL SYSTEM 45

procedure in detail. The communication is described on a higher level, as a backend-to-
tag communication. The smartphone and its bridge functionality are not described. The
content of the pedigree itself is described in Section 3.3.2. The pedigree has a size of up to
4 kB, whereas the data is sent in multiple packages of 100 B each. The communication is
encrypted with AES-OCB. The protocol’s details are discussed in Section 3.3.1, whereas
the read and write operations operate as follows:

Reading Pedigree [0x43]

The basic read command consists of the command-byte 0x43 and the memory offset to
be read from.

→ An initial read command is sent to the tag. The memory offset is reset to 0.

← As response, the first part of the pedigree is returned.

→ The next read command is sent. The memory offset is increased by 100.

← The next pedigree part is returned.

→ The next read command with increased offset is sent.

... (depending on the pedigree size)

← The final part of the pedigree is returned.

The backend assembles the pedigree parts and validates the included signature. After the
reading is done and the signature is verified, the backend stores parts of the pedigree and
calculates the new signature, depending on the new data for the pedigree. Then a new
pedigree is going to be written to the tag.

Writing Pedigree [0x42]

The basic write command consists of the command-byte 0x42, the memory offset to be
written to and up to 100 B of the pedigree.

→ An initial write command is sent to the tag. The memory offset is reset to 0.

← As response, a status byte is returned. This should be 0x00.

→ The next write command is sent. The memory offset is increased by 100.

← The next status byte is returned.

→ The next write command with increased offset is sent.

... (depending on the pedigree size)

→ The final write command with increased offset is sent.

← The final status byte is returned.

46 CHAPTER 3. DESIGN

3.2 Backend Design

The backend server used is based on an existing backend solution called detego SUR-
VEYOR. Developed by Enso Detego GmbH, detego SURVEYOR is a comprehensive plat-
form which is used to configure and personalize software RFID solutions for a range of
asset management and product life cycle management applications. It features a central
data store, a web application, a reporting system and a set of applications for desktop,
handheld and other purposes. An architectural overview of detego SURVEYOR can be
seen in Figure 3.3.

The central backbone component is an MS SQL database. The communication between
the database and connected clients is handled by a web service.

IDatabase

Web Service

Web Application

C
u

st
o

m
 In

te
rf

ac
es

IT-
Backend

Master
Data

Mobile /
Tablet /
Desktop

Apps

Takeover

Status

Stocktaking

Maintenance

W
eb

 S
er

vi
ce Administration

Dash Board

Reporting

Configuration Tool

Data Administration

Initialization

Internet / Intranet

RFID Reader

RFID Tag

Figure 3.3: Architectural Overview of detego SURVEYOR (developed by Enso Detego
GmbH)

3.2. BACKEND DESIGN 47

3.2.1 Database

The basic storage for application relevant data is a database. A relational SQL database
managed by Microsoft SQL Server is used. The impelemented data structure features a
set of entities in order to provide a high degree of flexibility for different use cases. The
major entities are listed in Table 3.1 and a database relation diagram can be found in the
appendix (Figure A.2).

Entity Name Description

Readpoint The device running the reading application, i.e. a smartphone.

Site
The site roughly defines the location of a readpoint.
This may be the city or a specific building.

Item
A unique entity with an Electronic Product Code (EPC), for
identification. This is represented by a single tag.

Group A collection of Items.

Product
The base of every Item.
Used to define a product that then has multiple items.

Property
Any additional information for items, products and other entities.
Properties are stored and linked to the corresponding entity.
Examples for properties are scan times and GPS coordinates.

Person Information concerning legitimate users, including login credentials.

Rule Rules define the privilege escalation for each user.

Table 3.1: Relevant Database Entities of the detego SURVEYOR Database

The Structured Query Language (SQL) is a programming language for defining and ma-
nipulating data stored in a Relational Database Management System (RDBMS). SQL be-
came an ISO standard in 1987, defined by its last version in [Sta11]. Different databases use
modified versions of SQL. Microsoft SQL Server utilizes Transact-SQL, Oracle databases
make use of PL/SQL and for MySQL there are many different front ends to choose from
([Cha14]). The language can be divided into two sub-languages: the Data Management
Language (DML) and the Data Definition Language (DDL). While the DDL contains the
creation and deletion commands for the database schema and tables, the DML consists
of manipulation, updating, retrieving and inserting commands for the data sets. As the
end-user does not always want to insert the SQL commands directly, the user-input is
restricted to parts of a predefined SQL query. The end-user then only has to insert the
remaining input-values. Although such predefined commands may look secure, an adver-
sary can still do a lot of damage to a database, if the given user-input is not checked for
malicious code by the backend structure. The following paragraph shows vulnerabilities
in context with the database access.

48 CHAPTER 3. DESIGN

Database Access: The database is queried with SQL statements. If the client could
query the database directly, this would result in an easy way for so called SQL Injections.
These SQL Injections enable the attacker to see and modify every entry of the database.
Listing 3.1 shows an SQL query for a person entry with admin credentials.

Listing 3.1 Example SQL Login

SELECT PersonId, Firstname, Lastname, Email
FROM Person
WHERE CommonName=<input> AND PasswordHash=<input>

This statement is executed with a user given input. The AND-operator forces two
valid inputs for a non-empty result. The statement is then executed with the given user
input.

Listing 3.2 Executed SQL Query

SELECT PersonId, Firstname, Lastname, Email
FROM Person
WHERE CommonName=’test.user’ AND PasswordHash=’80e..aa0’

Listing 3.2 returns the GUID for the entry, the user’s first and last name as well as the
email stored in the database. The attacker can now use the <input> fields for injecting
additional commands to the query. The following examples show possible injections:

Listing 3.3 Example Injection 1: <PasswordHash> Input: ’ OR 1=1

SELECT PersonId, Firstname, Lastname, Email
FROM Person
WHERE CommonName=’admin’ AND PasswordHash=’’ OR 1=1’

Here the attacker modified the query with an OR-clause that is always true. So the
attacker does not need any password. The result includes all entries that match the
<CommonName> input for ’admin’.

Listing 3.4 Example Injection 2: <CommonName> Input: admin’–

SELECT PersonId, Firstname, Lastname, Email
FROM Person
WHERE CommonName=’admin’--’ AND PasswordHash=’any’

SQL comments are started with “--”. Therefore, by inserting the comment clause, the
attacker successfully changed the query to not require the password hash at all. Everything
after “--” is ignored during execution time.

As the attacker could modify the statement to execute an arbitrary command, the
database is not secure at all. One approach to avoid these kind of vulnerabilities is to use
a web service as the only entity to connect to the database. This sanitizes the input and
filters out invalid input. It also manages user sessions, thus limiting the basic access to
the database.

3.2. BACKEND DESIGN 49

3.2.2 Web Service

A web service is a form of communication that provides machine-to-machine communica-
tion over a network [W3C04]. The interface is typically described in Web Services Descrip-
tion Language (WSDL), which is based on the Extensible Markup Language (XML). Other
systems can interact with the web service using Simple Object Access Protocol (SOAP)
messages. The SOAP protocol relies on XML for the message format and on HTTP for
message transmission. Figure 3.4 shows a typical web service invocation on the Secure
Channel structure. The web service basically protects the database from the outside world
by acting as a proxy where security features can be implemented. Clients connect to the
web service, and only the web service fetches information from the database. In the case
of detego SURVEYOR, the web service is provided by Windows Communication Foun-
dation (WCF). WCF provides a set of APIs, as well as a runtime, to build connected,
service-oriented applications for the .NET Framework [Mic12b]. The provided web services
are a part of the whole WCF structure.

The web service provided by the backend server is consumed by the smartphone. TLS
is used to provide a secure access to this service.

Smartphone
with

Android OS

WCF (WebService)SQL Database

HTTP Request

HTTP Response (JSON)

Backend

Figure 3.4: Web Service Invocation

JavaScript Object Notation: The web service used in this thesis uses the JavaScript
Object Notation (JSON). JSON is an open standard human-readable text format that
describes attribute-value pairs [ECM13]. Originally derived for use in JavaScript, it has
a language-independent data format. Generating and processing JSON data is possible
for a large variety of programming languages. Listing 3.5 shows parts of a typical JSON
object, in this case the Item object.

Listing 3.5 Item JSON object

"value":[{
"ItemId":"6f613bcc-0a0f-e311-be9f-001cc02ec8e3",
"Identifier":"E00401000B5B93BB",
"ProductId":"6e613bcc-0a0f-e311-be9f-001cc02ec8e3"

}]

50 CHAPTER 3. DESIGN

3.3 RFID-Tag Prototype

The used RFID tag is developed by Infineon Technologies [Inf14]. The following sections
describe the protocol used for communicating with the tag and the data stored on the tag.

3.3.1 Protocol

Physical Frame (NDEF Message): The physical frame includes all parts that are
needed according to the NDEF specification [Nok13]. The payload is further referred to
as command frame. Table 3.5 shows the physical frame parts:

� L1 (2 Bytes): The length of the whole NDEF message. This is 3 + length of the
payload.

� 0xD0 (1 Byte): Constant

� L2 (2 Bytes): The length of type and payload, 1 byte each.

� PLD (n Bytes): The command frame (payload), which is the actual message.

Command Frame: The command frame of the protocol is the message requested at
the backend and delivered to the RFID tag by smartphone. The content of the command
is listed in Figure 3.5. The command frame contains the following parts:

� PID (1 Byte): The protocol version. Used to implement different protocols for the
same tag. Here the PID is always 0x02.

� ENC (1 Byte): The encryption type. Used types include not-encrypted (0x00), AES
only (0x01) and AES-OCB (0x02).

� LEN (2 Bytes): The length of the unencrypted DATA frame.

� TSP (4 Bytes): The timestamp. This is used to mitigate replay attacks, where
an attacker resends older packages. The timestamp is increased on every message.
Additionally it is used as associated data and to calculate the nonce for the AES-OCB
scheme. The 4 bytes can hold the standard Unix-timestamp [Wik14].

� CMD (1 Byte, possibly encrypted): The tag-command to execute.

� DATA (multiple Bytes, possibly encrypted): The actual data. The different DATA
frames are explained in the following paragraphs. If the data is encrypted, the OCB
hash tag is appended at the end. No nonce is included in the data package, as it is
derived from the timestamp.

3.3. RFID-TAG PROTOTYPE 51

2 B 1 B 2 B ≤191 B
Physical frame L1 0xD0 L2 PLD

∑
196 Bytes

���
��

���
��� XXXXXXXXXXX

1 B 1 B 2 B 4 B 1 B ≤182 B
Command frame PID ENC LEN TSP CMD DATA

Figure 3.5: Physical and Command Frame of the Protocol. CMD and DATA Sizes for
Unencrypted State.

1 B 1 B 26 B 1B
Challenge LEN(xA) LEN(xB) xA STATUS

1 B 1 B 1 B 26 B 24 B 128 B 1 B
Response LEN(xB) LEN(xT) LEN(sT) xB xT sT STATUS

Figure 3.6: DATA Frames for Authentication

Authentication DATA: The two different authentication DATA frames are depicted in
Figure 3.6. Challenge and response communication is always unencrypted. Any transferred
data is public data.

� Challenge (29 Bytes)

– Length of challenge xA (1 Byte): This is always 26 (0x1A).

– Length of expected response (1 Byte): This is always 26 (0x1A).

– Challenge xA (26 Bytes): The challenge itself is 24 bytes long, two bytes are
used to detect possible overflow or carry-bit errors.

– Status byte (1 Byte): 0x00 if successful.

� Response (182 Bytes)

– Length of response xB (1 Byte): This is always 26 (0x1A).

– Length of public key xT (1 Byte): This is always 24 (0x18).

– Length of signature sT (1 Byte): This is always 128 (0x80).

– Response xB (26 Bytes): The response itself is 24 bytes long, two bytes are
used to detect possible overflow or carry-bit errors.

– Public key xT (24 Bytes): The tags public key. Derived from the private key
with Montgomery multiplication.

– Signature sT (128 Bytes): The signed public key. Signed with the PrivSKey.

– Status byte (1 Byte): 0x00 if successful.

52 CHAPTER 3. DESIGN

2 B 2 B
Read request LEN OFF

1 B ≤100 B
Read response PKI PKDATA ..

2 B 2 B ≤100 B
Write request LEN OFF PKDATA ..

1 B
Write response STATUS

Figure 3.7: DATA Frames for Read and Write Operations

Pedigree DATA: What is visible to the smartphone users as pedigree-read operation
actually consists of read and write commands. Those commands are divided into tag
requests and corresponding responses. As the pedigree data can hold up to 4 kB, the
message is split into 100-Byte packages. Figure 3.7 shows the four different DATA frames.

� Read request (4 Bytes)

– LEN (2 Bytes): Length of data to be read. This is always 100 (0x64). The
second byte allows bigger packages.

– OFF (2 Bytes): The memory offset for the data. This enables reading the full
pedigree in multiple parts.

� Read response (≤ 101 Bytes)

– PKI (1 Byte): Package Info. Additional information about the package. 0xFF
if the pedigree consists of more data. If the package is the final part of the
pedigree, then it is the length of the package (≤ 0x64).

– PKDATA (≤100 Bytes): Package data. The read data.

� Write request (≤ 104 Bytes)

– LEN (2 Bytes): Length of data to be written. This is always 100 (0x64). The
second byte allows bigger packages.

– OFF (2 Bytes): The memory offset for the data. This enables writing the full
pedigree in multiple parts.

– PKDATA (≤100 Bytes): Package data. The data to be written.

� Write response (1 Byte)

– STATUS (1 Byte): Status byte. Should be 0x00.

3.3. RFID-TAG PROTOTYPE 53

3.3.2 Tag Data

The used RFID-tag prototype stores user data in an encrypted way. Here an XML-
formatted product description is used as user data.

The Secure Channel System can store a pedigree with a size of up to 4 kB on a tag.
The content of the pedigree can be split into

� Basic Information, which describes the product and the item itself, which never
changes,

� Additional Data, which describes reader related information changing on every pedigree-
read, and a

� Pedigree Signature, which signs the two parts mentioned above.

The basic information, describing product and item, is derived from the detego SUR-
VEYOR database structure (see Section 3.2.1). The basic information never changes, as
all data is directly linked to the tagged product. Examples for basic information include:

� Product data, such as

– Name,

– Description,

– Article Number,

– Global Trade Item Number (GTIN),

– Colour,

– Season,

– Company,

– Origin, and

– Recommended Retail Price (RRP).

� Item data, such as

– Electronic Product Code (EPC),

– Creation Timestamp, and

– Producer (Location).

The additional data contains information concerning the reading device and the prod-
uct life cycle. A comprehensive history for life cycle management can then be extracted
from the database. The additional data is intended to change on every pedigree-read.
Examples for additional data include:

� Life cycle management information, such as

– Sold status,

– Complained status, and

– Error status.

54 CHAPTER 3. DESIGN

� Reader data, such as

– Timestamp,

– Location,

– Global Positioning System (GPS) coordinates,

– Reader Information (IMEI),

– Read count, and

– User information.

The signature appended can be referred to as additional data, as it is created on every
pedigree-read. The basic information and additional data is signed and verified by the
backend with ECDSA.

3.4 Android Application Design

Within the Secure Channel System, the smartphone is the bridge between backend and
RFID-tag prototype. This is realized with an intuitive Android application, with a clear
interface but intentionally limited background information. Only the tag authenticity
and the product data are important and thus displayed to the user. As most of the
communicated messages are encrypted, the Android application itself is not able to see
any information sent.

3.4.1 Android User Interface

The Graphical User Interface (GUI) for the Secure Channel Android application is designed
to be simple and useful. Only product data which is not sensible in any security concerning
way is presented to the user.

Start-Up Screen: The application is started with the application icon or by scanning an
NFC tag. If started by icon, a start-up screen (Figure 3.8) shows the user how to place the
smartphone on the tag, which ensures a stable connection over the NFC interface. After
connection between tag and reader is established, an Android NFC-event is triggered.
Directly scanning an NFC tag without starting over the icon, triggers the same NFC
event on the application.

Main Screen: The NFC event brings the application to its main screen (Figure 3.9).
On the bottom of the screen there are three check boxes displaying system relevant in-
formation, such as web-service connection status, location data or whether a tag is in the
reader’s field or not.

Authentication: Upon first start, the main screen shows the “Authenticate” button1

alongside a grey Enso Detego icon. The colour of the icon indicates the current authenti-
cation state. A grey icon means nothing has happened so far. The user can now tap the

1The buttons for authentication and pedigree-read operation are named “Authenticate Tag (GET)” and
“Read from ePedigree (POST)”.

3.4. ANDROID APPLICATION DESIGN 55

Figure 3.8: Start-Up Screen of the Android Application

Figure 3.9: The Main Screen of the
Secure Channel Android Application:
Only authentication is possible. A grey
indicator icon is showing the authentica-
tion state as “not yet run”.

Figure 3.10: The Main Screen After a
Successful Authentication: Reading the
pedigree is now possible. A coloured in-
dicator icon is showing a successful au-
thentication.

56 CHAPTER 3. DESIGN

Figure 3.11: During the pedigree-read
operation, a loading dialog is presented
to the user.

Figure 3.12: After successful pedigree-
read, the product data corresponding to
the read tag is shown on the main screen.

button and initiate the authentication process. The different methods, tasks and requests
following a button click are described in Section 4.3.3. If the authentication fails, the icon
becomes red. A successful authentication results in a colored icon. The “Authenticate”
button is deactivated and the “Pedigree-Read” button is visible (see Figure 3.10).

Pedigree-Read: If the user taps the “Pedigree-Read” button, a background task is
started, which shows a loading dialog as depicted in Figure 3.11. The progress indicates
pending operations. Details on the implemented procedure are discussed in Section 4.3.3.
Possible errors, like connection loss or signature validation failure are displayed in a dialog
on screen. However, if the pedigree-read operation is successful, the product data is shown
on the main screen (Figure 3.12).

3.5. WORKFLOW 57

3.5 Workflow

This section includes detailed descriptions of the communication between the three parties
(tag, application and backend). Additionally sequence diagrams are used to describe
communication.

Authentication: Figure 3.13 shows the authentication process. During this authen-
tication the tag gets authenticated to the backend. The preconditions are a connection
between the smartphone and the web service, as well as the tag being in the smartphone’s
read range. If the user initiates an authentication, the Android application sends the first
HTTP GET command to the web service. This ScGetChallenge() command requests
a valid challenge from the backend to initiate the implemented challenge response pro-
tocol (for additional information of the authentication protocol see Section 3.1.3). The
backend calculates the challenge xA and includes it into the command frame (see Sec-
tion 3.3.1). The command frame is sent to the application, where it gets an additional
NDEF frame. The NDEF message is then sent to the tag. The tag parses the NDEF
frame as well as the command frame and calculates the response xB. Together with the
certificate (xT , sT) the response is returned to application as command frame inside an
NDEF frame. The command frame is then sent to the backend using the HTTP POST
command ScVerifyResponse(cmd(xB,xT ,sT)). On the backend the signature is verified.
Assuming a valid signature, xC is calculated and compared to xB. A successful comparison
means a successful authentication. In a final step the backend responds to the application
with the authentication result.

Pedigree-Read: Figure 3.14 shows the entire pedigree-read operation, consisting of mul-
tiple read and write operations. Figure 3.15 and Figure 3.16 show an even more detailed
view of those two operations. To start the pedigree-read, the tag has to be authenticated
to the backend first. The user can then initiate the pedigree-read operation. The applica-
tion then sends the HTTP GET command ScGetReadCommand(), whereas the backend
builds the first read command for the tag (see Section 3.3.1 for details concerning the
protocol). This command is encrypted with AES-OCB and returned to the application.
After including the response in an NDEF frame, the application sends the message to the
tag where it is parsed and decrypted. If the message can be dercypted successfully, the
first 100 bytes are read from the pedigree memory and the response-command frame is
built. After encrypting and including into an NDEF frame, the tag response is sent back
to the application. The application forwards the encrypted frame to the backend using the
HTTP POST command ScRead(enc(cmd(pedigree part))). The message is then decrypted
on the backend side and the command frame is parsed. The read pedigree part is stored in
the backend. Included in the command frame, the package info byte informs about further
read requests necessary to get the entire pedigree. If more parts are to be read, the backend
responds to the HTTP POST with the next read command. The additional pedigree parts
are read the same way as the first part. If the pedigree has been read entirely, the backend
parses the complete pedigree at once. The included signature, which has to be the same
as the backend’s signature, is verified. The additional timestamp is saved in the database.
For history data recording, after verifying the signature, the product details are checked:
The product has to exist in the database beforehand. If any product data has changed

58 CHAPTER 3. DESIGN

Figure 3.13: Sequence Diagram of the Authentication Process

3.5. WORKFLOW 59

at the backend, the pedigree is updated. A new timestamp is added and the package
pedigree-timestamp is signed by the backend. The new pedigree consists of the product
data, the timestamp, and the signature. This data is now sent to be written to the tag in
one or more transmissions. If the backend is ready to write, the status WRITEREADY
is sent as response to the preceding ScRead command. Now, the application initiates the
write-part with the HTTP GET command ScWrite(). The backend builds the first pedi-
gree package and builds the encrypted command frame, which is sent as response to the
GET command. The application adds the NDEF frame and forwards it to the tag. After
decryption and command parsing, the message part is written to the designated memory
section. An encrypted OK -message is sent as a response from the tag to the application.
The next HTTP POST command for the backend is ScWrite(enc(cmd(OK))). If addi-
tional pedigree parts have to be written, the procedure is repeated. After the final OK
from the tag, the backend responds to the application with a DONE message. The last
HTTP GET command ScFinalize() is initiated. If the backend is in the correct state, the
corresponding product data is sent back to the application where it is visualized for the
user.

60 CHAPTER 3. DESIGN

Figure 3.14: Sequence Diagram of the Pedigree-Read, Consisting of Read and Write Op-
erations (Details see Figure 3.15 and Figure 3.16).

3.5. WORKFLOW 61

Figure 3.15: Detailed Sequence Diagram of the Read Operation

62 CHAPTER 3. DESIGN

Figure 3.16: Detailed Sequence Diagram of the Write Operation

Chapter 4

Implementation

This chapter describes the detailed implementation of the secure NFC / backend system
described in this thesis. It is divided into three main sections: Section 4.1 gives insight into
the software simulation of the whole system. The implementation on the backend side is
described in Section 4.2, whereas the Android application is described in Section 4.3. Im-
plementation related to the RFID-tag prototype was done by our research-project partner
and is not to be disclosed in this thesis.

4.1 Software Simulation

As a first step towards the creation of the designed system, a software simulation is per-
formed. At the very beginning the cryptographic functionalities are tested using unit tests.
After that, message communication over the secure channel is simulated within a C# en-
vironment. The environment is extended to use encryption and therefore a new protocol
stack. The designed classes for this simulation are the same classes used for the backend
implementation later on and details can be found in Section 4.2. The main reason for sim-
ulating the communication is to give the tag-implementing party a reference behaviour.
Starting with implementing a basic unencrypted communication with the designed proto-
col stack, the tag authentication is simulated. After that, the encrypted communication is
tested with an AES encryption, followed by AES-OCB encryption. Using this AES-OCB
encryption, the secure channel functionalities are simulated.

Bouncy Castle: The Bouncy Castle Crypto APIs are used for most of the cryptographic
functions [otBCI13]. This lightweight APIs enables the secure usage of elliptic curve
cryptography and many other cryptographic primitives.

4.1.1 Key Generation

The first important part for the software simulation is the generation of proper keys. The
following listing describes the individual key pairs and their respective properties:

� Elliptic Curve Key Pair (192 bit)
Used for authentication of tag to backend

63

64 CHAPTER 4. IMPLEMENTATION

Curve: secp192r1
See Listing 4.1

� RSA Key Pair (1024 bit)
Used during authentication for the signature
Signature: SHA1 with RSA encryption
See Listing 4.2

These key generation methods always generate new key pairs. After the initial gener-
ation the key pairs were stored into encrypted files (Listing B.8). Listing 4.3 shows how
the stored keypairs are loaded from the encrypted files.

Listing 4.1 Keygen.cs: GenerateEcKeyPair

1 private static string ecCurvename = "P-192";
2

3 public ECPoint GetBasepoint()
4 {
5 X9ECParameters x9ecp = NistNamedCurves.GetByName(ecCurvename);
6 return x9ecp.G;
7 }
8 public AsymmetricCipherKeyPair GenerateEcKeyPair()
9 {

10 X9ECParameters x9ecp = NistNamedCurves.GetByName(ecCurvename);
11 ECDomainParameters ecParameters = new ECDomainParameters(x9ecp.Curve,

x9ecp.G, x9ecp.N, x9ecp.H);
12 ECKeyPairGenerator ecGenerator = new ECKeyPairGenerator();
13 SecureRandom secureRandom = new SecureRandom();
14 ECKeyGenerationParameters ecKeyGenParam = new ECKeyGenerationParameters(

ecParameters, secureRandom);
15 ecGenerator.Init(ecKeyGenParam);
16 return ecGenerator.GenerateKeyPair();
17 }

Listing 4.2 Keygen.cs: GenerateRsaKeyPair

1 public AsymmetricCipherKeyPair GenerateRsaKeyPair()
2 {
3 RsaKeyPairGenerator rsaGenerator = new RsaKeyPairGenerator();
4 SecureRandom secureRandom = new SecureRandom();
5 RsaKeyGenerationParameters rsaParameters =
6 new RsaKeyGenerationParameters(
7 new BigInteger("65537", 16)
8 , secureRandom
9 , 1024

10 , 80);
11 rsaGenerator.Init(rsaParameters);
12 return rsaGenerator.GenerateKeyPair();
13 }

4.1. SOFTWARE SIMULATION 65

Listing 4.3 Keygen.cs: GetKeysFromFiles

1 public AsymmetricCipherKeyPair GetKeysFromFiles(FileStream publicfile,
FileStream privatefile)

2 {
3 Asn1Object ao = Asn1Object.FromStream(publicfile);
4 SubjectPublicKeyInfo pubinfo =
5 SubjectPublicKeyInfo.GetInstance(ao);
6 var publicParam = PublicKeyFactory.CreateKey(pubinfo);
7

8 ao = Asn1Object.FromStream(privatefile);
9 EncryptedPrivateKeyInfo enpri = EncryptedPrivateKeyInfo.GetInstance(ao);

10 PrivateKeyInfo priECinfo = PrivateKeyInfoFactory.CreatePrivateKeyInfo("
Meta[:SEC:]".ToCharArray(), enpri);

11 var privateParam = PrivateKeyFactory.CreateKey(priECinfo);
12

13 return new AsymmetricCipherKeyPair(publicParam, privateParam);
14 }

4.1.2 Authentication (Simulation)

Authentication uses the above mentioned key pairs to simulate the tag authentication
process. This simulation uses newly generated key pairs for every authentication run.
Additional details about the authentication process can be found in Section 3.1.3. The
private key ξT is the private key of the EC key pair. The public key xT has to be calculated
with a Montgomery Multiplication

xT = MONT (ξT , xP). (4.1)

The signature sT is computed using the private RSA key (Listing 4.4). The random nonce
λ is created by generating an additional EC key pair and using the public part as nonce.
The challenge xA is then generated with the Montgomery Multiplication

xA = MONT (λ, xP). (4.2)

The response is

xB = MONT (ξT , xA). (4.3)

The signature is then verified using the public part of the RSA key pair. If the signature
is approved, the response gets verified with another Montgomery Multiplication

xC = MONT (λ, xT) (4.4)

followed by the comparison of xC = xB. If both values are equal, the authentication suc-
ceeds. Listing 4.5 shows the simulated authentication. The used classes Authentication.cs
and Montgomery.cs can be found in the appendix (Listing B.2 and Listing B.3).

66 CHAPTER 4. IMPLEMENTATION

Listing 4.4 Authentication.cs: ComputeSignatureOfPublicEcKey

1 public Byte[] ComputeSignatureOfPublicEcKey(BigInteger publickey)
2 {
3 Byte[] ecPublicKeyBytes = publickey.ToByteArray();
4 ISigner signer = SignerUtilities.GetSigner("SHA1WITHRSAENCRYPTION");
5 signer.Init(true, (RsaKeyParameters)(rsaKeyPair.Private));
6 signer.BlockUpdate(ecPublicKeyBytes, 0, ecPublicKeyBytes.Length);
7 Byte[] sig = signer.GenerateSignature();
8 return sig;
9 }

Listing 4.5 Authentication Simulation (Unit Test)

1 [TestMethod]
2

3 public void AuthenticationComplete()
4 {
5 Keygen keygen = new Keygen();
6 AsymmetricCipherKeyPair authEcKeyPair = keygen.GenerateEcKeyPair();
7 AsymmetricCipherKeyPair authRsaKeyPair = keygen.GenerateRsaKeyPair();
8

9 var privatekey = ((ECPrivateKeyParameters)(authEcKeyPair.Private)).D;
10 var xP = keygen.GetBasepoint().X.ToBigInteger();
11 var publickey = privatekey.Multiply(xP).Mod(Montgomery.p);
12 // = xT eg. (4.1)
13 BigInteger xT = publickey;
14

15 Authentication auth = new Authentication();
16 auth.ecKeyPair = authEcKeyPair;
17 auth.rsaKeyPair = authRsaKeyPair;
18

19 BigInteger sT = new BigInteger(auth.ComputeSignatureOfPublicEcKey(
publickey)); // Listing 4.4

20

21 BigInteger lambda = ((ECPublicKeyParameters)(keygen.GenerateEcKeyPair().
Public)).Q.X.ToBigInteger(); // nonce

22 BigInteger xA = auth.GetNewChallenge(lambda, xP);// challenge eg. (4.2)
23 BigInteger xB = auth.GetResponse(xA); // response eg. (4.3)
24 //real response consists of xb, xT and signature
25

26 bool verified = auth.VerifySignature(xT, sT);
27 if (verified)
28 {
29 BigInteger xC = Montgomery.Multiplication(lambda, xT); // eg. (4.4)
30 Assert.AreEqual(xC, xB);
31 }
32 else Assert.IsTrue(verified);
33 }

4.2. BACKEND SERVER 67

4.1.3 OCB Simulation

The used AES mode OCB is implemented, in the class OCB.cs, using the C-reference given
by Rogaway [Phi14]. Details explaining the OCB mode can be found in Section 2.1.4. To
verify the functionality of the implemented OCB mode, all available test cases from the
OCB reference are used.

Tag-Related Simulation: The tag-related simulation environment was developed prior
to this thesis and can not be disclosed in detail. All functionalities are tested on byte-level.
The protocol is implemented with a command builder class (described in Section 4.2.1).
Different key sizes and hash tag lengths were tested. Insight gathered during the testing
phase directly impacted decisions for the final implementation.

4.2 Backend Server

In this section, the actual implementation on the backend server is described. The backend
server is running detego SURVEYOR software suite (see Section 3.2). The implemented
components required for the secure tag authentication are integrated into the existing
detego SURVEYOR web service. The existing detego SURVEYOR source code can not
be disclosed in this thesis either. The existing classes IDataService.cs and the DataSer-
vice.svc.cs were extended with new methods and new classes were added to the web service.
The following list names all added classes:

� AES.cs

� Authentication.cs

� CommandBuilder.cs

� EPedigreeHandler.cs

� Keygen.cs

� Montgomery.cs

� OCB.cs

The AES.cs class includes the AES encryption and decryption using the standard Sys-
tem.Security.Cryptography namespace. The classes Authentication.cs, Keygen.cs, Mont-
gomery.cs and OCB.cs have been discussed in the previous section. In this section the
classes CommandBuilder.cs and EPedigreeHandler.cs are described in detail, followed by
the extensions to the existing classes IDataService.cs and DataService.svc.cs.

TLS: The connection between smartphone and backend server is secured additionally
using Transport Layer Security (TLS). The implementation of this security feature has
been done in previous work [Ple14]. To enable TLS 1.2 on the backend server, three steps
are required: First, a certificate for connections is created. Second, the web server is
configured to use the certificate as well as the web service. Moreover, the web service is
enforced to only accept HTTPS connections. Third, the pool of possible cipher suites is

68 CHAPTER 4. IMPLEMENTATION

set to only allow specific TLS 1.2 cipher suites. Section 4.3 briefly describes the implemen-
tation of TLS for the smartphone application. The following steps are required to enable
TLS 1.2 on a Windows based backend server:

1. Enable the use of TLS 1.2 in Windows Internet Options.

2. Enable the use of TLS 1.2 in Windows Registry.

3. Configure WCF Service for secure transport.

4. Configure Web Application for secure transport.

5. Configure https bindings for the websites in Internet Information Services.

6. Configure Windows Group Policy to only allow specific TLS cipher suites.

4.2.1 Command Builder

The command builder class CommandBuilder.cs handles the construction of the byte-array
corresponding to the used protocol (see Section 3.3.1). The main method is called Build.
The parameters include the command type as byte, the data bytes and an encryption
flag. At first, the encryption of the command byte and the data is performed. The
bytes are concatenated and encrypted using AES-OCB. The used AES parameters have
a block size of 128 bit with a 256-bit key. The OCB parameters are the resulting hash
tag length of 128 bit, the current timestamp and a 96-bit nonce that is derived from the
timestamp. The timestamp is designed to be in Unix time [Wik14]. However, for the
prototype implementation a counter is used as timestamp. The nonce can be derived
from the timestamp, as it can be public and should not be used repeatedly. Deriving the
nonce from the timestamp also saves the bytes needed to append the nonce for decryption.
If the Build command is called with the parameter for an unencrypted command, the
AES-OCB encryption is still computed, but not used. This ensures the same timing as if
the message is encrypted. The encrypted command byte and data is then concatenated
with the 4-byte timestamp, the 2-byte data length field, and the protocol id byte. The
complete command byte array is finally returned. The whole CommandBuilder.cs can be
found in the appendix in Listing B.4, the Build command is shown in Listing 4.6.

Listing 4.6 Command Builder.cs: Build

1 //command = [PID|ENC|LEN|LEN|TSP|TSP|TSP|TSP|CMD|DATA..TAG]
2 // { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 .. +16]
3

4 public static byte[] build(CommandType command, byte[] data,
5 bool encrypted)
6 {
7 byte[] commandAsByteArray;
8

9 if (data == null) data = new byte[0];
10

11 int bytesToEncrypt = 1 + data.Length;
12

13 byte[] requestToEncrypt = new byte[bytesToEncrypt];

4.2. BACKEND SERVER 69

14 requestToEncrypt[0] = (byte)command;
15 System.Buffer.BlockCopy(data, 0, requestToEncrypt, 1, data.Length);
16

17 byte[] TSP = new byte[4]; TSP = getUnixTimestamp();
18 byte[] N = new byte[15];
19

20 System.Buffer.BlockCopy(TSP, 0, N, 11, 4);
21

22 byte[] encryptedRequest = OCB.encrypt(AES.key, AES.key.Length * 8,
requestToEncrypt, N, TSP, 128);

23

24 if (!encrypted) encryptedRequest = requestToEncrypt;
25

26 commandAsByteArray = new byte[encryptedRequest.Length + (int)
PositionsPID02.POS_CMD];

27

28 commandAsByteArray[(int)PositionsPID02.POS_PROTOCOL_ID] = (byte)PID.
PROTOCOL_ID_02;

29

30 commandAsByteArray[(int)PositionsPID02.POS_ENCRYPTION] = (byte)Encryptions
.ENCRYPTED_AESOCB;

31 if (!encrypted) commandAsByteArray[(int)PositionsPID02.POS_ENCRYPTION] = (
byte)Encryptions.NONE;

32

33 int noncebytes = (encrypted ? 16 : 0);
34 commandAsByteArray[(int)PositionsPID02.POS_LENGTH_H] = (byte)((data.Length

+ PositionsPID02.POS_DATA - PositionsPID02.POS_TIMESTAMP + noncebytes)
>> 8);

35 commandAsByteArray[(int)PositionsPID02.POS_LENGTH_L] = (byte)((data.Length
+ PositionsPID02.POS_DATA - PositionsPID02.POS_TIMESTAMP + noncebytes)
& 0xFF);

36

37 System.Buffer.BlockCopy(encryptedRequest, 0, commandAsByteArray, (int)
PositionsPID02.POS_CMD, encryptedRequest.Length);

38 System.Buffer.BlockCopy(TSP, 0, commandAsByteArray, (int)PositionsPID02.
POS_TIMESTAMP, 4);

39

40

41 return commandAsByteArray;
42 }

4.2.2 Pedigree Handler

The data stored on the tag is called pedigree, as it is derived from the ePedigree standard
(see Section 2.5). Details on the pedigree are described in Section 3.3.2.

The class EPedigreeHandler.cs implements the pedigree as well as the methods for
creating the test pedigree as XML and parsing the pedigree from XML and writing it to
XML, respectively. The implemented pedigree consists of the following properties:

� Product Name

� Product Category

� Article Number

70 CHAPTER 4. IMPLEMENTATION

� Origin

� Recommended Retail Price

The method createDummyPedigree is used to create the test pedigree for the proto-
type. This method is only used once, in conjunction with convertXmlToByteArray,
to initially set the tag data. When the pedigree is read from the tag, the received byte
array is first converted to XML with the method convertByteArrayToXml and then
parsed as pedigree struct with readPedigreeToStruct. The read pedigree information
is then compared with already stored products in the database. Changes to the pedigree
data, like refreshing the timestamp and creating a new signature, are done on the byte
level and do not require any conversion. The full EPedigreeHandler.cs can be found in the
appendix in Listing B.5.

4.2.3 Secure Channel Commands

The important commands of the Secure Channel System are either HTTP POST or HTTP
GET commands. In the detego SURVEYOR web service these commands are declared in
the IDataService.cs class and implemented in the DataService.svc.cs class, respectively.
Methods that are called without parameters are HTTP GET commands, whereas methods
which hand over data as parameters are always executed as HTTP POST commands. A
list of commands, followed by a detailed description, include:

� ScGetChallenge(),

� ScVerifyResponse(response string),

� ScGetReadCommand(),

� ScRead(read response),

� ScWrite(),

� ScCheckWrite(write response),

� ScFinalize(), and

� ScServiceStatus().

Additionally, Listing 4.7 shows the declaration of the commands in the IDataService.cs
class. Except for ScFinalize, all commands return objects of type PropertyValue. This
type is an Entity Framework [Mic15] representation of entries in the database table Prop-
ertyValue. As the web service works with the Entity Framework model, it is best practice
to always use generated types. Similarly, the method parameters are also implemented
as PropertyValue objects. The command ScFinalize returns a Product object, as its
functionality is to return the product details.

4.2. BACKEND SERVER 71

Listing 4.7 IDataService.cs: Declaration of the Secure Channel Commands

1 #region SecureChannel
2

3 [WebGet]
4 [OperationContract]
5 PropertyValue ScGetChallenge();
6

7 [WebInvoke(Method = "POST")]
8 [OperationContract]
9 PropertyValue ScVerifyResponse(PropertyValue response_string);

10

11 [WebGet]
12 [OperationContract]
13 PropertyValue ScGetReadCommand();
14

15 [WebInvoke(Method = "POST")]
16 [OperationContract]
17 PropertyValue ScRead(PropertyValue read_response);
18

19 [WebGet]
20 [OperationContract]
21 PropertyValue ScWrite();
22

23 [WebInvoke(Method = "POST")]
24 [OperationContract]
25 PropertyValue ScCheckWrite(PropertyValue write_response);
26

27 [WebGet]
28 [OperationContract]
29 Product ScFinalize();
30

31 [WebGet]
32 [OperationContract]
33 PropertyValue ScServiceStatus();
34

35 #endregion

In the DataService.svc.cs class, the commands, as well as additional helper methods
are implemented. The following detailed descriptions start with those helper methods.
The workflows described in Section 3.5 are important for understanding the behaviour of
the main methods.

void ScReset()

This method is used to reset control variables and to set important variables to a predefined
value. Possible connection losses and failed transmissions are the main reason to reset those
values and variables at certain points during execution (see Listing 4.8).

72 CHAPTER 4. IMPLEMENTATION

Listing 4.8 DataService.scv.cs: ScReset

1 private void ScReset()
2 {
3 lambda = new BigInteger(new byte[1]);
4 read_pedigree_buffer = new byte[0];
5 write_pedigree_buffer = new byte[0];
6 MAXTRANSMISSION = 100;
7 offset = 0;
8 copyOffset = 0;
9 current_productid = Guid.NewGuid();

10 }

PropertyValue ScCommandtoPropVal(command,name,state)

As mentioned above, the return values are typically PropertyValue objects. The helper
method ScCommandToPropVal converts the command byte-array to a PropertyValue.
On each call, the command is stored in the database as an entry in the PropertyValue
table. The string parameter name indicates what kind of operation is performed and also
defines the PropertyBase type for the database entry. An additional status can be set
with the string parameter status. If the response should only contain the status, the
command parameter is null. Listing 4.9 shows the method’s implementation.

Listing 4.9 DataService.scv.cs: ScCommandToPropVal

1 public PropertyValue ScCommandToPropVal(byte[] command, string name, string
state)

2 {
3 var propBase = entities.PropertyBases.SingleOrDefault(pb => pb.Name ==

name);
4

5 if (propBase == null)
6 {
7 var propType = entities.PropertyTypes.SingleOrDefault(pt => pt.Type

== "Binary");
8 propBase = new PropertyBase()
9 {

10 Name = name,
11 Description = "SecureChannel Command",
12 TypeId = propType.PropertyTypeId,
13 Readability = "RW",
14 Visibility = "VISIBLE"
15 };
16 entities.PropertyBases.Insert(entities, propBase);
17 entities.SaveChanges();
18 }
19

20 var propValue = new PropertyValue()
21 {
22 PropertyBaseId = propBase.PropertyBaseId,
23 BinaryValue = command,
24 StringValue = state

4.2. BACKEND SERVER 73

25 };
26

27 entities.PropertyValues.Insert(entities, propValue);
28 entities.SaveChanges();
29

30 return propValue;
31 }

PropertyValue ScServiceStatus()

Although this is a HTTP GET command, it can be seen as a helper method. Its only
function is to check whether the service is connected or not (see Listing 4.10), which is
used by the Android application to indicate the backend connection state (see Figure 5.2).

Listing 4.10 DataService.scv.cs: ScServiceStatus

1 public PropertyValue ScServiceStatus()
2 {
3 return ScCommandToPropVal(null, "ScVerify", "TRUE");
4 }

PropertyValue ScGetChallenge()

This method is used during the authentication. The smartphone initiates authentication
by calling ScGetChallenge.

An initial ScReset resets all imortant values to a predefined state. The Keygen
class is used to get the Elliptic-Curve key-pairs from the encrypted key-pair files. Then,
xP is set with the curve’s basepoint. The Authentication class is initialized using the
key pair, and the nonce λ is generated from a new EC key pair. Using the method
GetNewChallenge, the challenge xA is created by a Montgomery Multiplication. The
method returns the already back-transformed result, so it is necessary to transform the
result into the Montgomery domain again. Converted to a byte array, the challenge is
build into an unencrypted message using the CommandBuilders Build method. Finally,
the ScCommandToPropVal method returns the encrypted message as PropertyValue.
Listing 4.11 shows the implementation of ScGetChallenge.

Listing 4.11 DataService.scv.cs: ScGetChallenge

1 public PropertyValue ScGetChallenge()
2 {
3 ScReset();
4 Keygen keygen = new Keygen();
5 FileStream EcPublicFile = new FileStream(@"D:/MetaSec_/Robert/trunk/

detego.Surveyor/Service2/detego.Service.WCF/SecureChannel/
EcPublicKey", FileMode.Open, FileAccess.Read);

6 FileStream EcPrivateFile = new FileStream(@"D:/MetaSec_/Robert/trunk/
detego.Surveyor/Service2/detego.Service.WCF/SecureChannel/
EcPrivateKey", FileMode.Open, FileAccess.Read);

7 AsymmetricCipherKeyPair authEcKeyPair = keygen.GetKeysFromFiles(
EcPublicFile, EcPrivateFile);

74 CHAPTER 4. IMPLEMENTATION

8

9 var xP = keygen.GetBasepoint().X.ToBigInteger();
10 Authentication auth = new Authentication();
11 auth.ecKeyPair = authEcKeyPair;
12

13 lambda = ((ECPublicKeyParameters)(keygen.GenerateEcKeyPair().Public)).Q
.X.ToBigInteger(); //random lambda

14 BigInteger xA = auth.GetNewChallenge(lambda, xP);
15

16 byte[] xA_ = Montgomery.Transform(xA).ToByteArray();
17 byte[] lambda_ = lambda.ToByteArray();
18 byte[] xP_ = xP.ToByteArray();
19

20 byte[] challenge = new byte[26];
21 System.Buffer.BlockCopy(xA_, 0, challenge, 25-xA_.Length, xA_.Length);
22

23 byte[] challengedata = new byte[challenge.Length + 3];
24 challengedata[0] = (byte)challenge.Length;
25 challengedata[1] = (byte)challenge.Length;
26 System.Buffer.BlockCopy(challenge, 0, challengedata, 3, challenge.

Length);
27

28 byte[] command = CommandBuilder.Build(CommandBuilder.CommandType.
CHALLENGE, challengedata, false);

29

30 return ScCommandToPropVal(command, "ScGetChallenge", null);
31 }

PropertyValue ScVerifyResponse(response string)

This is the second method used during authentication, which is called with the tags
response_string as parameter.

Similar to the ScGetChallenge method, the ScVerifyResponse loads the RSA
key-pair from encrypted files and initializes the Authentication class. The response mes-
sage is extracted from the PropertyValue object and split into response xB, public key
xT and signature sT . The signature sT is verified to guarantee that xT is a legitimate
public key created by a legitimate tag. After a successful validation, the check value xC is
calculated with a Montgomery Multiplication of λ with xT . Finally, if the check value xC
is equal to the response xB, the authentication was successful and a PropertyValue with
the state TRUE is returned.

The method can return an error in form of a PropertyValue with status FALSE. This
error is returned if the response_string or the extracted response is null, if the response
structure does not fit the protocol, if the signature could not be verified or if the comparison
of (xC = xB) shows inequality.

Listing 4.12 shows the methods implementation1.

1In the late stages of testing it was clear that the tag did not return the correct response. It differed
from the correct one in 2 out of 26 bytes and those two were computationally connected. The error could
not be found in time, therefore a workaround that calculated the correct response, was implemented on
the backend-side.

4.2. BACKEND SERVER 75

Listing 4.12 DataService.scv.cs: ScVerifyResponse

1 public PropertyValue ScVerifyResponse(PropertyValue response_string)
2 {
3 if (response_string.StringValue != null) ScCommandToPropVal(null, "

ClientLocation", response_string.StringValue);
4

5 Keygen keygen = new Keygen();
6 FileStream RsaPublicFile = new FileStream(@"D:/MetaSec_/Robert/trunk/

detego.Surveyor/Service2/detego.Service.WCF/SecureChannel/
RsaPublicKey", FileMode.Open, FileAccess.Read);

7 FileStream RsaPrivateFile = new FileStream(@"D:/MetaSec_/Robert/trunk/
detego.Surveyor/Service2/detego.Service.WCF/SecureChannel/
RsaPrivateKey", FileMode.Open, FileAccess.Read);

8 AsymmetricCipherKeyPair authRsaKeyPair = keygen.GetKeysFromFiles(
RsaPublicFile, RsaPrivateFile);

9

10 var xP = keygen.GetBasepoint().X.ToBigInteger();
11

12 Authentication auth = new Authentication();
13 auth.rsaKeyPair = authRsaKeyPair;
14

15 if (response_string == null) return ScCommandToPropVal(null, "ScVerify"
, "FALSE");

16 byte[] response = response_string.BinaryValue;
17 if (response == null) return ScCommandToPropVal(null, "ScVerify", "

FALSE");
18

19 if (response[0] != 0x02 || response[1] != 0x00 || response[3] != 0xBB
|| response[8] != 0x00) return ScCommandToPropVal(null, "ScVerify",
"FALSE");

20 byte[] xB_ = new byte[1 + response[9] - 1];
21 byte[] xT_ = new byte[1 + response[10]];
22 byte[] sT_ = new byte[response[11]];
23 System.Buffer.BlockCopy(response, 13, xB_, 1, xB_.Length - 1);
24 System.Buffer.BlockCopy(response, 14 + xB_.Length - 2, xT_, 1, xT_.

Length - 1);
25 System.Buffer.BlockCopy(response, 14 + xB_.Length - 2 + xT_.Length - 1,

sT_, 0, sT_.Length);
26

27 //Fix for the calculation problem
28 int fix = (int)xB_[xB_.Length - 1];
29 xB_[1] = (byte)(xB_[1] + fix);
30 int tofix = xB_[16] * 256 + xB_[17];
31 int fixd = tofix - fix;
32 xB_[16] = (byte)(fixd / 256);
33 xB_[17] = (byte)(fixd);
34 byte[] xB_fix = new byte[xB_.Length - 1];
35 System.Buffer.BlockCopy(xB_, 0, xB_fix, 0, xB_fix.Length);
36 xB_ = xB_fix;
37

38 BigInteger sT = new BigInteger(sT_);
39 BigInteger xB = new BigInteger(xB_);
40 BigInteger xT = new BigInteger(xT_);
41

42 bool verified = auth.VerifySignature(xT, sT);

76 CHAPTER 4. IMPLEMENTATION

43 if (verified)
44 {
45 BigInteger xC = Montgomery.Multiplication(lambda, xT);
46 byte[] xC_ = xC.ToByteArray();
47 if (xC.Equals(xB)) return ScCommandToPropVal(null, "ScVerify", "

TRUE");
48 return ScCommandToPropVal(null, "ScVerify", "FALSE");
49 }
50 return ScCommandToPropVal(null, "ScVerify", "FALSE");
51

52 }

PropertyValue ScGetReadCommand()

As start of the pedigree-read operation, the smartphone calls this method to get the first
read request for the tag. After an initial reset, the command for reading the first 100 bytes
is encrypted and embedded into a PropertyValue with the additional state START (see
Listing 4.13).

Listing 4.13 DataService.scv.cs: ScGetReadCommand

1 public PropertyValue ScGetReadCommand()
2 {
3 ScReset();
4 byte[] command = CommandBuilder.Build(CommandBuilder.CommandType.READ,

new byte[] { 0x00, (byte)MAXTRANSMISSION, (byte)(offset >> 8), (byte
)(offset & 0xFF) }, true);

5 return ScCommandToPropVal(command, "ScGetReadCommand", "START");
6 }

byte[] ScGetNextReadCommand()

Similar to ScGetReadCommand, this method returns the read command for the next 100
bytes of the pedigree. The offset gets incremented and the command is returned (see
Listing 4.14). This method is private and only called from inside the ScRead method.

Listing 4.14 DataService.scv.cs: ScGetNextReadCommand

1 private byte[] ScGetNextReadCommand()
2 {
3 offset += MAXTRANSMISSION;
4 return CommandBuilder.Build(CommandBuilder.CommandType.READ, new byte[]

{ 0x00, (byte)MAXTRANSMISSION, (byte)(offset >> 8), (byte)(offset &
0xFF) }, true);

5 }

4.2. BACKEND SERVER 77

PropertyValue ScRead(read response)

Whenever a part of the pedigree is read from the tag, the smartphone transmits this
read_response as parameter of the method ScRead. Each call of ScRead stores an
additional part of the pedigree, until it is completed. Hence, the method is called multi-
ple times during one pedigree-read. On successful execution, the returned PropertyValue
includes a positive state. If there are further pedigree packages the state is CONT, if
the reading is completed the state is WRITEREADY.

The initial reset has already been executed in the previous ScGetReadCommand
method. First, the read_response is checked. If the included response is not null
and its structure matches the protocol, it is parsed for its length. The encrypted part,
the timestamp and the nonce are extracted from the response. The encrypted part gets
decrypted and the included command byte, the package info as well as the pedigree part
are checked. The package-info byte is used to indicate if there are still parts of the pedigree
to be read from the tag. If the current part is the last part, the package-info byte includes
the length of the data, otherwise it is 0xFF. The pedigree part is appended to the already
read parts in the read_pedigree_buffer variable. If there are further pedigree parts,
the method returns the next read command (ScGetNextReadCommand) with the state
CONT.

If the last pedigree part is read, the pedigree is fully stored in the buffer variable.
Then, the appended timestamp and signature are extracted and the signature is veri-
fied. An additional Elliptic-Curve key-pair together with the Elliptic Curve Digital Sig-
nature Algorithm (ECDSA) is used for the pedigree signature. Therefore, the key pair
is loaded from stored encrypted files. The class Authentication.cs provides the methods
to verify, and to later recreate, the signature. After a successful verification, the pedi-
gree is parsed using methods from the EPedigreeHandler class. The database is searched
for products matching the pedigree information. A new timestamp is appended to the
pedigree data and the concatenation is signed. The full pedigree is now stored in the
buffer variable write_pedigree_buffer and the ScRead method returns with the
state WRITEREADY. The smartphone application continues the pedigree-read process by
calling ScWrite. The complete source code for the ScRead method can be found in the
appendix in Listing B.6.

Possible errors and error messages include:

� read_response is null
state = NULLINPUT

� Response included in read_response is null
state = NULLINPUTBYTES

� Response structure does not fit protocol structure
state = MESSAGEERROR

� Decrypted bytes are null
state = READERROR

� Pedigree signature could not be verified
state = SIGERROR

78 CHAPTER 4. IMPLEMENTATION

� New signature could not be verified
state = SIG GEN ERROR

PropertyValue ScWrite()

After the pedigree has been read and verified, a new pedigree with a new timestamp and
a new signature is stored on the tag. The method ScWrite builds the commands to
write 100-byte parts of the pedigree. After multiple method calls, the new pedigree should
have been written. Similar to the ScRead method, the returned state is either CONT if
there are further packages, or LAST if the package was the last package. The method is
called a last time to return the state ALL WRITTEN. Listing 4.15 shows the method’s
implementation.

Listing 4.15 DataService.scv.cs: ScWrite

1 public PropertyValue ScWrite()
2 {
3 string returnstate = "ERROR";
4

5 if (write_pedigree_buffer.Length < offset) return ScCommandToPropVal(
null, "ScWrite", "ALL_WRITTEN");

6

7 byte[] package;
8 if (write_pedigree_buffer.Length - offset >= MAXTRANSMISSION)
9 {

10 package = new byte[MAXTRANSMISSION];
11 package[0] = 0xFF;
12 returnstate = "CONT";
13 }
14 else
15 {
16 package = new byte[write_pedigree_buffer.Length - copyOffset + 1];
17 package[0] = (byte)(write_pedigree_buffer.Length - copyOffset);
18 returnstate = "LAST";
19 }
20

21 System.Buffer.BlockCopy(write_pedigree_buffer, copyOffset, package, 1,
package.Length - 1);

22

23 byte[] command = CommandBuilder.Build(CommandBuilder.CommandType.WRITE,
(new byte[] { 0x00, (byte)package.Length, (byte)(offset >> 8), (

byte)(offset & 0xFF) }).Concat(package).ToArray(), true);
24

25 offset += MAXTRANSMISSION;
26 copyOffset += MAXTRANSMISSION - 1;
27

28 return ScCommandToPropVal(command, "ScWrite", returnstate);
29 }

Product ScFinalize()

The last method for the pedigree-read process it the ScFinalize method. Only after
successful reading and writing of the pedigree from and to the tag, this method returns

4.3. ANDROID APPLICATION 79

the Product object according to the pedigree information read (see Listing 4.16).

The returned object is not encrypted and can therefore be read and displayed by the
smartphone application.

Listing 4.16 DataService.scv.cs: ScFinalize

1 public Product ScFinalize()
2 {
3 //command = [PID|ENC|LEN|LEN|TSP|TSP|TSP|TSP|CMD|DATA..TAG]
4 // { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 .. +16]
5

6 if (write_pedigree_buffer.Length == 0 || read_pedigree_buffer.Length ==
0 || current_productid == null) return null;

7

8 Product product = entities.Products.SingleOrDefault(
9 p =>

10 p.ProductId == current_productid);
11

12 if (product == null) return null;
13

14 ScReset();
15

16 return product;
17 }

4.3 Android Application

This section describes all implementation details concerning the Android smartphone ap-
plication. The application is based on an existing framework which facilitates basic com-
munication between the smartphone and the RFID-tag prototype. The communication
to the backend is additionally secured using TLS. In the Secure Channel Application the
authentication process and the pedigree-read process are combined to offer a fluent user
experience. Section 3.4 describes the design of the Android application. The class diagram
is depicted in Figure 4.1 whereas the calling structure for the service methods is shown in
Figure A.3.

Tag Communication: The communication between the smartphone and the tag is
established over NFC and based on the NFC Data Exchange Format (NDEF). Tag-related
commands are stored in a queue and processed one after another. A periodically executed
IsDeviceAliveCommand ensures that the tag is in the reader’s field and reachable. The
rest of this section will focus on the backend connection.

TLS: Transport Layer Security (TLS) is used to secure the backend communication.
Section 2.3.1 describes the functionality of TLS in detail. The implementation of this
security feature has already been performed during a previous master’s project [Ple14].

80 CHAPTER 4. IMPLEMENTATION

com.detego.sc::StartActivity

shows the correct tag positioning

com.detego.sc::ConnectionHTTPS

+ postToHttpsWithSelfSignedCertificate(..)::JSONObject
+ connectToHttpsWithSelfSignedCertificate(..)::JSONObject

com.detego.sc::HomeActivity

+ readPedigree(View)::Void
+ onReadResponse(readResponse:Byte[])::Void

com.detego.sc::CommandHandler

-Certificate:InputStream

+ GetAuthCommand(Context,HomeActivity)::AuthCommand

- acceptCert(Certificate:InputStream)::SSLContext
- print_https_cert(Con:HttpsURLConnection)::Void
- contentToJsonObject(Con:HttpsURLConnection)::Void

<<use>>

AuthTask

Challenge:Byte[]

CheckAuthTask

Response:PropertyValue

Verification:Boolean

CheckReadTask

Response:PropertyValue

Result:PropertyValue

StartReadTask

ReadCommand:Byte[]

WriteTask

WriteCommand:Byte[]

NextWriteTask

WriteCommand:Byte[]

FinalizeTask

ProductInfo:JSONObject

+ CheckAuthresponse(Context,authResponse:Byte[])::Boolean

+ CheckReadResponse(Context,readResponse:Byte[])::PropertyValue

+ Finalize(Context,HomeActivity)::JSONObject

+ GetReadCommand(Context,HomeActivity)::ReadCommand

+ GetWriteCommand(Context,HomeActivity)::WriteCommand
+ NextWriteCommand(Context,HomeActivity)::PropertyValue

extends AsyncTask

extends AsyncTask

extends AsyncTask

extends AsyncTask

extends AsyncTask

extends AsyncTask

extends AsyncTask

+ writePedigree()::Void
+ onWriteResponse(writeResponse:Byte[])::Void
+ showReadResult(ProductInfo:JSONObject)::Void
+ authenticateTag(View)::Void
+ onAuthResponse(authResponse:Byte[])::Void

- progress:Integer

LoadingTaskextends AsyncTask

Figure 4.1: Class Diagram of the Secure Channel Android Application. Only thesis related
details shown.

4.3.1 Class ConnectionHTTPS

The connection to the backend is established over Wi-Fi using the secure protocol HTTPS.
HTTP methods GET and POST are used to contact the backend. All data is sent in the
JavaScript Object Notation (JSON) format (see Section 3.2.2 for details).

The class ConnectionHTTPS implements the methods to connect to the backend over
HTTPS (Listing 4.17). The used self-signed certificate is part of the application package
and has to be put into the key store of the smartphone.

4.3. ANDROID APPLICATION 81

Listing 4.17 Overview of the class ConnectionHTTPS

1 public class ConnectionHTTPS {
2 private SSLContext AcceptCert(InputStream fin)
3 private JSONObject ContentToJsonObject(HttpsURLConnection con)
4 public JSONObject ConnectToHttpsWithSelfSignedCertificate(URL url,

InputStream fin, String sessionId)
5 public JSONObject PostToHttpsWithSelfSignedCertificate(URL url,

InputStream fin, String sessionId, PropertyValue payload)
6 private void Print_https_cert(HttpsURLConnection con) // used for

debugging
7 }

SSLContext AcceptCert(certificate)

This helper method returns an SSLContext object which is needed for the secured TLS
connection. As mentioned before, the certificate has to be deployed into the phone’s key
store. A new key store is created with the used certificate as the only entry. This key
store is only accessible within the application. Finally, the SSLContext is created and
returned to the calling method. Listing 4.18 shows the relevant parts of the method.

Listing 4.18 AcceptCert

1 private SSLContext AcceptCert(InputStream fin) {
2 CertificateFactory cf;
3 try {
4 cf = CertificateFactory.getInstance("X.509");
5 Certificate ca = cf.generateCertificate(fin);
6 String keyStoreType = KeyStore.getDefaultType();
7 KeyStore keyStore = KeyStore.getInstance(keyStoreType);
8 keyStore.load(null, null);
9 keyStore.setCertificateEntry("ca", ca);

10 String tmfAlgorithm = TrustManagerFactory.getDefaultAlgorithm();
11 TrustManagerFactory tmf = TrustManagerFactory
12 .getInstance(tmfAlgorithm);
13 tmf.init(keyStore);
14 SSLContext context = SSLContext.getInstance("TLS");
15 context.init(null, tmf.getTrustManagers(), null);
16 return context;
17 } catch .. (additional error handling)
18 }

JSONObject ContentToJsonObject(HttpsUrlConnection)

The two following methods use this helper method to convert the HTTP responses to a
JSONObject. The responses already are in JSON format, but need to be converted to
the correct object format.

82 CHAPTER 4. IMPLEMENTATION

JSONObject ConnectToHttpsWithSelfSignedCertificate(url, certificate, ses-
sionId)

The actual connection to the backend via HTTP GET commands is implemented in this
method. An object of the type HttpsUrlConnection is created and the properties of
the connection are then set. An option to include a session ID is also included. How-
ever, the session id has no significance in this prototype application yet. The object
method HttpsUrlConnection.getInputStream() returns the actual response of the
request. Therefore, it initiates the communication and waits for any response. Finally,
the response is converted to a JSONObject and returned.

JSONObject PostToHttpsWithSelfSignedCertificate(url, certificate, sessionId,
payload)

Similar to the ConnectToHttpsWithSelfSignedCertificate method, this method
realizes the actual communication using HTTP POST commands. The functionality is
equivalent to the GET request, except for the additional payload. Listing 4.19 shows the
code of the PostToHttpsWithSelfSignedCertificate method.

Listing 4.19 PostToHttpsWithSelfSignedCertificate

1 public JSONObject PostToHttpsWithSelfSignedCertificate(URL url, InputStream
fin, String sessionId, PropertyValue payload) {

2 try {
3 SSLContext SSLctx = acceptCert(fin);
4 HttpsURLConnection myConn = (HttpsURLConnection) url
5 .openConnection();
6 myConn.setSSLSocketFactory(SSLctx.getSocketFactory());
7 myConn.setRequestProperty("SessionId", sessionId);
8

9 while (!myConn.getDoOutput()) {
10 myConn.setDoOutput(true);
11 }
12 myConn.setRequestMethod("POST");
13 myConn.setRequestProperty("User-Agent", "Mozilla/5.0 (compatible) ");
14 myConn.setRequestProperty("Accept", "*/*");
15 myConn.setRequestProperty("Content-Type", "application/json");
16

17 DataOutputStream dataOut = new DataOutputStream(
18 myConn.getOutputStream());
19 dataOut.writeBytes(new Gson().toJson(payload));
20 dataOut.close();
21

22 return ContentToJsonObject(myConn);
23

24 } catch .. (additional error handling)
25 }

4.3. ANDROID APPLICATION 83

4.3.2 Class CommandHandler

The CommandHandler class is used to build the correct requests for the backend. Each
request is built in a corresponding method which initiates a task for each connection.
These tasks are derived from the AsyncTask object and use the ConnectionHTTPS
methods to connect to the backend. As the methods and tasks are similar to each other,
an overview is given in Table 4.1. Figure A.3 shows the calling context between the tasks
of the CommandHandler class and the service methods implemented at the backend.
Listing B.9 shows the entire code in the appendix.

Operation Method Task Service Method

Authentication
GetAuthCommand AuthTask ScGetChallenge

Get Challenge

Authentication
CheckAuthResponse CheckAuthTask ScVerifyResponse

Check Response

Pedigree-Read
GetReadCommand StartReadTask ScGetReadCommand

Begin Reading

Pedigree-Read
CheckReadResponse CheckReadTask ScRead

Continue Reading

Pedigree-Read
GetWriteCommand WriteTask ScWrite

Begin Writing

Pedigree-Read
NextWriteCommand NextWriteTask ScCheckWrite

Continue Writing

Pedigree-Read
Finalize FinalizeTask ScFinalize

Final Request

Table 4.1: Overview of the Methods and Tasks of the CommandHandler Class, the Un-
derlying Operations and the Called Service Methods.

4.3.3 Class HomeActivity

This is the main class in the Secure Channel Android application. As there are only
two buttons in the user interface, the implemented functionality for each is described
separately.

Authentication: Related methods in HomeActivity:

� AuthenticateTag

� OnAuthResponse

After the application is started, only the “Authenticate” button is visible (see Fig-
ure 5.2 (center)). After the button is clicked, the method AuthenticateTag is called.
The method itself calls the CommandHandler.GetAuthCommand method, which re-
turns the encrypted command from the backend. The command is then passed to the

84 CHAPTER 4. IMPLEMENTATION

HomeActivity::

AuthenticateTag
CommandHandler::
GetAuthCommand

CommandHandler::
AuthTask

Connection HTTPS::
ConnectToHttps...

DataService::

ScGetChallenge

CommandHandler::
CheckAuthResponse

CommandHandler::
CheckAuthTask

Connection HTTPS::
PostToHttps...

DataService::

ScVerifyResponse

HomeActivity::

OnAuthResponse

Tag

Figure 4.2: Methods and Tasks Executed During Authentication

HomeActivity::

WriteEPedigree

HomeActivity::

OnwriteResponse

HomeActivity::

ShowReadResult

HomeActivity::

ReadEPedigree

HomeActivity::

OnReadResponse

CommandHandler::

Finalize

CommandHandler::

GetWriteCommand

CommandHandler::
CheckReadResponse

CommandHandler::

GetReadCommand

CommandHandler::

FinalizeTaks

CommandHandler::

StartReadTask

CommandHandler::

CheckReadTask

CommandHandler::

WriteTask

ConnectionHTTPS::

ConnectToHttps...

ConnectionHTTPS::

PostToHttps...

ConnectionHTTPS::

ConnectToHttps...

ConnectionHTTPS::

PostToHtpps

ConnectionHTTPS::

ConnectToHttps...

DataService::
ScGetReadCommand

DataService::

ScRead

DataService::

ScWrite

DataService::

ScFinalize

DataService::

ScCheckWrite

CommandHandler::

NextWriteCommand

CommandHandler::

NextWriteTask

Tag

Tag

Tag

Tag

Tag

Tag

Figure 4.3: Methods and Tasks Executed During Pedigree-Read

tag communicating part of the application (OnUserInitiatedCommand), where it gets
packaged into an NDEF message and is then sent to the tag. The tag response is parsed out
of the NDEF message and passed to the method OnAuthResponse(authResponse).
The response is sent to the backend and the backend-response is returned as boolean. If
the authentication was successful, the “Authenticate” button gets disabled, an indicator
icon shows the success to the user and the “Read-Pedigree” button is shown (Figure 5.3
(left)). If the authentication fails, the indicator icon becomes red and the user can try
again (Figure 5.2 (right)).

Figure 4.2 shows the methods and tasks that are called one after another and returning
responses back to the individual caller.

4.3. ANDROID APPLICATION 85

Pedigree-Read: Related methods and background tasks in HomeActivity:

� ReadEPedigree

� OnReadResponse

� WriteEPedigree

� OnWriteResponse

� ShowReadResult

� LoadingTask

Clicking the “Pedigree-Read” button initiates the reading and writing of the pedigree
(Figure 5.3 (left)). Since the entire operation takes several seconds, the user is presented
with a loading screen (Figure 5.3 (center)). The included progress bar is updated period-
ically, as soon as the execution has reached certain stages of the operation.

The smartphone application starts the pedigree-read by calling the readEPedigree
method. As shown in Table 4.1, the tasks for getting the first read command from the
backend are executed one after another. The backend responds with the encrypted com-
mand. This encrypted command gets packaged into an NDEF message and is then sent
to the tag (OnUserInitiatedCommand(readCommand)). The tag responds with the
first part of the pedigree, encrypted and included in an NDEF message. The application
extracts the encrypted tag-response and forwards it to the backend (OnReadResponse),
by calling the CommandHandler.CheckReadResponse method. The backend itself re-
turns the encrypted command for the next pedigree part to read, and so forth. Further
parts are read until the pedigree is fully stored at the backend. The now outdated pedigree
is verified and the timestamp and signature are renewed. The backend responds with a
status message of WRITEREADY.

The application then calls the WriteEPedigree method. The CommandHandler
starts the related task and sends the HTTP GET request for the encrypted write command
to the backend (GetWriteCommand). The encrypted command, including the first pedi-
gree part, is returned by the backend and then passed to the OnUserInitiatedCommand.
The command is sent to the tag and the tag responds with a write-successful message.
This response message is then forwarded to the backend and the next package is fetched.
This continues until the pedigree is written completely. The backend responds to the next
ScGetWrite call with the status message ALL WRITTEN. Now, the ShowReadResult
method of the HomeActivity is called. This calls all “Finalize” methods and tasks to get
the product data from the backend. The final response is unencrypted and can be read
by the Android application.

The application ends the loading task and shows the product information on the screen
(Figure 5.3 (right)). Figure 4.3 shows the methods and tasks called during the pedigree-read
operation.

Chapter 5

Results

The proposed system is designed for a specific use case, which is giving a potential customer
the possibility to distinguish original products from counterfeits. The system consists of
three main parts: an RFID-tag prototype, a backend system and an NFC-enabled smart-
phone. The customer’s interface is the smartphone with an installed Android application.
In the background, the smartphone is used as bridge technology for communication be-
tween backend and tag. To significantly reduce the risks imposed by a publicly available
Android application, private communication between server and tag is always encrypted.
Figure 5.1 shows an overview of the Secure Channel System.

The following sections give details on the implemented Android application and show
a timing analysis of the entire system.

Power Transfer

NFC

AES

ECC
UART

R
F-

In
te

rf
ac

e

CPU

Resource Constrained
Embedded System

Backend Server 3G/4G
Wi-Fi

Smartphone with
Android OS

 Transparent

 No Shared
Secret

 No Access to
Sensitive Data

HTTPS

Figure 5.1: Overview of the Secure Channel System

87

88 CHAPTER 5. RESULTS

Figure 5.2: Screenshots of the Secure Channel Application: Start screen (left). After a
supported tag is found, the user can start the authentication (center). If the authentication
fails, the signal icon becomes red (right).

5.1 Android Application

The smartphone with the installed Android application is used as bridge technology, which
enables the backend system to communicate with the RFID-tag prototype. This section
shows the results of the application design and implementation.

To start the application, the user either clicks the designated icon on his smartphone
or scans a tag directly. If started using the application icon, the start screen is shown,
which directs the user to activate NFC and Wi-Fi on his smartphone. Moreover, it depicts
how to position the tag prototype (see Figure 5.2). After a tag is scanned, the main screen
is shown, which is designed to be intuitive and simplistic, thus giving the customer only
information he really needs. At the bottom of the screen, check boxes indicate the state
of tag and backend communication and if the smartphone is giving away location data
to the application. The main screen supports all actions the user can execute within the
application. The user can now start the authentication with a button click.

Next to the authentication button, a logo is indicating the authentication state, which
is initially grey, red upon failure and coloured after a successful authentication (see Fig-
ure 5.3). A successful authentication also shows the button for the pedigree-read operation
on the screen. Upon clicking this button, a dialog box shows the current state of the op-
eration. After a successful pedigree-read execution, read product information is displayed
on the main screen.

5.1. ANDROID APPLICATION 89

Figure 5.3: Screenshots of the Secure Channel Application: After a successful authenti-
cation the tag-data can be read (left). The process of the read-operation is shown in a
process diaglog (center). After a successful read-operation product information is shown
(right).

90 CHAPTER 5. RESULTS

Execution Time Iterations Minimum Maximum Average Standard Deviation

Authentication 240 0.68 s 2.15 s 1.21 s 0.23 s

Pedigree-Read 2 000 5.31 s 8.76 s 6.18 s 0.48 s

Read (4 cycles) 2 000 2.31 s 4.86 s 2.89 s 0.30 s

Write (4 cycles) 2 000 2.74 s 5.56 s 3.17 s 0.27 s

Table 5.1: Timing Analysis of Authentication and Pedigree-Read: The timings are mea-
sured during runtime within the Android application. Measurement is started upon exe-
cuting the methods behind by the corresponding button click and stopped upon receiving
the final message of the operation.

5.2 Timing Analysis

This section shows details on the timing behaviour of the Secure Channel System. The
timings are measured during runtime within the Android application. Therefore, mea-
surement affected the actual execution time.

There are two main operations for the application user to execute: the authentication
and the pedigree-read. The measurement starts upon button click and ends after the final
message had been received from the backend.

Authentication Figure 5.4 shows the time needed for 240 successful authentication
operations. The average execution time is 1.21 s, with a standard deviation of 0.23 s (see
Table 5.1). As the communicated messages only consist of insensitive data, this data is
not encrypted. Therefore, authentication can be performed without delay of additional
encryption overhead, in about one second.

Pedigree-Read Figure 5.5 depicts the timings of 2 000 successful pedigree-read opera-
tions. The execution time of the entire operation is marked with the black trace, whereas
the blue and the red traces resemble the sum of read and write cycles respectively. One
pedigree-read consists of four read and four write cycles. The entire operation executes in
an average time of 6.18 seconds, with a standard deviation of 0.48 seconds (see Table 5.1).
The execution time depends on the smartphone’s CPU clock-frequency. This is shown
in Figure 5.6. As the smartphone is constantly working during the measurements, the
OS throttles the clock frequency to prevent overheating. This directly affects the execu-
tion time, since the execution time increases when the CPU frequency is reduced by the
operating system.

Additionally, Figure 5.7 illustrates a timeline of one pedigree-read operation, where
every timestamp marks points in time where a message is being sent to the tag. The
first block marks the initial read-command request on backend, followed by four cycles
of read operations. Then the first write-command is requested, followed by four cycles
of writing data to the tag. Finally, the Finalize operation takes another 0.1 seconds to
show the product information on the screen. Figure 5.8 shows a more detailed view of the
pedigree-read timeline.

5.2. TIMING ANALYSIS 91

0 20 40 60 80 100 120 140 160 180 200 220 240
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Iteration

E
x
ec

u
ti

on
T

im
e

in
s

Successful Authentication

1.21

Figure 5.4: 240 Iterations of Successful Authentication Operations

92 CHAPTER 5. RESULTS

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

1

2

3

4

5

6

7

8

9

10

11

Iteration

E
x
ec

u
ti

on
T

im
e

in
s

Successful Pedigree-Read

2.89
3.17

6.18

Read, Write, Pedigree-Read

Figure 5.5: 2 000 Iterations of Successful Pedigree-Read Operations. Read and Write
Operations Highlighted. One pedigree-read consists of four read and four write cycles.

5.2. TIMING ANALYSIS 93

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

Iteration

E
x
ec

u
ti

on
T

im
e

in
s

Successful Pedigree-Read with CPU Clock

0

0.5

1

1.5

2

2.5

3

3.5

4

C
lo

ck
F

re
q
u
en

cy
in

G
H

z

Read/Write, CPU Clock

Figure 5.6: Timings and Smartphone CPU Clock-Frequencies of Successful Pedigree-Read
Operations

t in s

0 0
.5
2

1
.1
5

1
.7
6

2
.3
8

3
.1
1

3
.3
4

4
.1
3

4
.8
4

5
.5
5

6
.1
6

6
.2
6

Read, Write, Finalize

Figure 5.7: Execution of Pedigree-Read: Starting with the button click, timestamps mark
points in time where a message is sent from smartphone to tag. One read-command request
is followed by four read cycles, one write-command request and four write cycles.

94 CHAPTER 5. RESULTS

Figure 5.8: Detailed Execution of Pedigree-Read: Tx and Rx remarks messages sent to
and received from the tag.

Chapter 6

Conclusion

The system proposed in this thesis offers authentication and secure communication be-
tween a backend server and an RFID tag. An NFC-capable smartphone with Android OS
is used as bridge technology between the two communicating parties. The phone commu-
nicates with the RFID tag over NFC and is connected to the backend over Wi-Fi. The
backend connection is additionally secured using TLS. The proposed system supports two
stand-alone features: a one-way authentication of the tag, and reading and writing tag
data over an encrypted communication channel.

The one-way authentication authenticates the RFID tag to the backend. The used
protocol is based on elliptic curve arithmetic, while communicating only with insensi-
tive, public data. Montgomery Multiplication is used on both sides to execute the main
calculations.

Tag-data operations send sensitive data over the communication channel created by
and routed through the smartphone. To ensure that the smartphone application cannot
leak any sensitive information, the communication is not decrypted on the device, but
rather on the secured backend system. For this reason, the smartphone merely acts as a
relay which establishes a secured link between the RFID tag and the backend system. AES
in Offset Codebook Mode (AES-OCB) is used to encrypt the messages, which additionally
creates a hash tag to authenticate the message. Thus, manipulated and erroneous messages
can be detected upon decryption.

Data stored on the RFID tag is XML-structured, similar to the ePedigree standard
for pharmaceutical drugs. Every access to the tag data requires an additional ECDSA
signature from the processing entity (backend), which is then appended to the original
data. Therefore tag data is updated on every read.

Whereas the sensitive information is transmitted in an encrypted way such that the
smartphone application cannot potentially leak information, the final response, consisting
of public product data is not encrypted and can therefore be displayed in the application.

A timing analysis showed that a secure authentication can be performed in 1.21 seconds
on average, which is very fast, considering the communication overhead needed for NDEF
encapsulation. This is due to the fact that only a single computation is needed on the
tag. Therefore, the authentication facilitates many real life use-case scenarios, where fast
authentication of tagged goods is of interest. Reading, and subsequently writing tag data
takes more time, as all messages need to be encrypted and decrypted. For a tag-data
length that needs four cycles of read and write operations (max. 100 B of data in each

95

96 CHAPTER 6. CONCLUSION

cycle), the average execution time is 6.18 seconds. For most real life use cases this might
be too long, however, future optimizations could improve the execution time as outlined
below:

� Payload Size
The chosen maximum payload size is 100 bytes, therefore requiring multiple cycles
for reading and writing tag data. Increasing the payload size would decrease the
necessary cycle count, and thus execution time.

� Suitable Key Length
Depending on the focused use case, the key lengths could be decreased. The used
AES key has a length of 256 bit, which is not ideal for fast applications. Decreasing
the key lengths could speed up encryption and decryption operations, however it
may reduce security.

In addition, there are several options to improve the security features of the proposed
system:

� Authenticated Encryption with Associated Data (AEAD)
The used AEAD scheme is known as state-of-the-art for authenticated encryption.
However, an ongoing cryptographic competition [D. 14] tries to determine standards
for authenticated ciphers. The winners of this competition could offer features that
might enhance the proposed system.

� Replay Attack Mitigation
To detect replayed messages, which have already been sent over the secure chan-
nel, the protocol is designed to include a Unix timestamp [Wik14]. However, the
timestamp resolution is limited to seconds, whereas the system often sends multi-
ple messages within one second. Therefore, the timestamp has been replaced by a
counter. As the backend cannot know the counter value stored on the tag, both
sides reset their counters upon communication start. Defining a value that is in-
creasing over time, such as the Unix timestamp, however more granularly to feature
e.g. milliseconds, would greatly increase the mitigation of replay attacks.

� Web-Service Session-ID
The proposed system already offers the possibility for a session ID for the web-
service communication. However, session handling is deactivated. Configuring the
web service to use the session handling, and forcing the smartphone application to
login and use the given session key during communication, would add an additional
layer of security.

Product counterfeit presents a problem for producers as well as their potential cus-
tomers. Forgeries of high priced goods are often indistinguishable from their original
counterparts. With the proposed system, customers can securely identify genuine prod-
ucts using their own smartphone in just over one second. An additional secure data
transfer between the product tag and a backend server can be performed in about six sec-
onds. All information sent and received by the smartphone application is either insensitive
or encrypted.

Bibliography

[AFKM05] C. Adams, S. Farrell, T. Kause, and T. Mononen. Internet X.509 Public Key
Infrastructure Certificate Management Protocol (CMP). RFC 4210 (Proposed
Standard), September 2005. Updated by RFC 6712. (Cited on pages 27 and 37.)

[ARH08] S.I. Ahamed, F. Rahman, and E. Hoque. ERAP: ECC Based RFID Authenti-
cation Protocol. In Future Trends of Distributed Computing Systems, 2008. FT-
DCS ’08. 12th IEEE International Workshop on, pages 219–225, 2008. (Cited
on page 33.)

[BBD+08] Holger Bock, Michael Braun, Markus Dichtl, Erwin Hess, Johann Heyszl, Wal-
ter Kargl, Helmut Koroschetz, Bernd Meyer, and Hermann Seuschek. A Mile-
stone Towards RFID Products Offering Asymmetric Authentication Based on
Elliptic Curve Cryptography. Invited talk at RFIDsec, 2008. (Cited on page 33.)

[BGK+06] Lejla Batina, Jorge Guajardo, Tim Kerins, Nele Mentens, Pim Tuyls, and
Ingrid Verbauwhede. An Elliptic Curve Processor Suitable For RFID-Tags. IACR
Cryptology ePrint Archive, 2006:227, 2006. (Cited on page 33.)

[BGK+07] L. Batina, J. Guajardo, T. Kerins, N. Mentens, P. Tuyls, and I. Verbauwhede.
Public-Key Cryptography for RFID-Tags. In Pervasive Computing and Com-
munications Workshops, 2007. PerCom Workshops ’07. Fifth Annual IEEE In-
ternational Conference on, pages 217–222, 2007. (Cited on page 33.)

[BHM08] Michael Braun, Erwin Hess, and Bernd Meyer. Using Elliptic Curves on RFID
Tags. International Journal of Computer Science and Network Security, 2:1–9,
2008. (Cited on pages 33, 43, and 44.)

[BSW01] Alex Biryukov, Adi Shamir, and David Wagner. Real Time Cryptanalysis of
A5/1 on a PC. In Fast Software Encryption, pages 1–18. Springer, 2001. (Cited
on page 26.)

[CER02] CERT Advisory. CA-2001-13 Buffer Overflow In IIS Indexing Service DLL.
https://www.cert.org/historical/advisories/CA-2001-13.cfm, 2002. [Online; ac-
cessed 23-September-2014]. (Cited on page 34.)

[Cha14] Mike Chapple. Structured Query Language (SQL) — About.com - Databases.
http://databases.about.com/od/sql/a/sqlbasics.htm, 2014. [Online; accessed 23-
September-2014]. (Cited on page 47.)

97

98 BIBLIOGRAPHY

[Chi07] Hung-Yu Chien. SASI: A New Ultralightweight RFID Authentication Protocol
Providing Strong Authentication and Strong Integrity. Dependable and Secure
Computing, IEEE Transactions on, 4(4):337–340, 2007. (Cited on page 33.)

[D. 14] D. J. Bernstein. CAESAR: Competition for Authenticated Encryption: Security,
Applicability, and Robustness. http://competitions.cr.yp.to/caesar.html, 2014.
[Online; accessed 23-September-2014]. (Cited on pages 28 and 96.)

[DA99] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246 (Proposed
Standard), January 1999. Obsoleted by RFC 4346, updated by RFCs 3546, 5746,
6176. (Cited on page 35.)

[DH76] W. Diffie and M.E. Hellman. New directions in cryptography. Information
Theory, IEEE Transactions on, 22(6):644–654, Nov 1976. (Cited on page 26.)

[Dob07] Daniel M. Dobkin. The RF in RFID. Elsevier, 2007. (Cited on page 32.)

[DR98] Joan Daemen and Vincent Rijmen. AES proposal: Rijndael. 1998. (Cited on
page 26.)

[DR06] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.1. RFC 4346 (Proposed Standard), April 2006. Obsoleted by RFC 5246,
updated by RFCs 4366, 4680, 4681, 5746, 6176. (Cited on page 35.)

[DR08] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878,
6176. (Cited on pages 35 and 36.)

[ECM13] ECMA-404. The JSON Data Interchange Standard. http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf, 2013. [Online;
accessed 23-September-2014]. (Cited on page 49.)

[EJ03] Patrik Ekdahl and Thomas Johansson. A new version of the stream cipher
SNOW. In Selected Areas in Cryptography, pages 47–61. Springer, 2003. (Cited
on page 26.)

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Advances in Cryptology, pages 10–18. Springer, 1985.
(Cited on page 27.)

[EPC] EPCglobal. Pedigree Ratified Standard, Version 1.0., EPCglobal (2007). (Cited
on pages 37, 38, and 39.)

[FHM+12] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd
Freisleben, and Matthew Smith. Why eve and mallory love android: an analysis
of android SSL (in)security. In Proceedings of the 2012 ACM conference on
Computer and communications security, CCS ’12, pages 50–61, New York, NY,
USA, 10 2012. ACM. (Cited on page 37.)

[FKK11] A. Freier, P. Karlton, and P. Kocher. The Secure Sockets Layer (SSL) Protocol
Version 3.0. RFC 6101 (Historic), August 2011. (Cited on page 35.)

BIBLIOGRAPHY 99

[fSidIG14] Bundesamt für Sicherheit in der Informationstechnik Germany. BSI — Tech-
nische Richtlinie, Kryptografische Verfahren: Empfehlungen und Schlüssellängen
(BSI TR-02102-1), 02 2014. (Cited on page 27.)

[FW07] F. Fürbass and J. Wolkerstorfer. ECC Processor with Low Die Size for RFID
Applications. In Circuits and Systems, 2007. ISCAS 2007. IEEE International
Symposium on, pages 1835–1838, 2007. (Cited on page 33.)

[Goo13a] Google. Near Field Communication | Android Developers.
https://developer.android.com/guide/topics/connectivity/nfc/index.html,
2013. [Online; accessed 23-September-2014]. (Cited on page 37.)

[Goo13b] Google. Security with HTTPS and SSL | Android Developers.
https://developer.android.com/training/articles/security-ssl.html, 2013. [On-
line; accessed 23-September-2014]. (Cited on page 37.)

[Goo15] Google Inc. Google Play. https://play.google.com/, 2015. [Online; accessed
07-February-2015]. (Cited on page 42.)

[HE95] Kipp Hickman and Taher Elgamal. The SSL protocol. Netscape Communications
Corp, 501, 1995. (Cited on page 35.)

[Hei11] Daniel Hein. Security Aspects in Software Development, XSS & Security As-
pects of Data I/O, Lecture Slides, 2011. Graz University of Technology, Austria,
Institute for Applied Information Processing and Communications. (Cited on
page 35.)

[HFP10] Michael Hutter, Martin Feldhofer, and Thomas Plos. An ECDSA processor for
RFID authentication. In Radio Frequency Identification: Security and Privacy
Issues, pages 189–202. Springer, 2010. (Cited on page 33.)

[Hic95] Kipp Hickman. The SSL Protocol (Version 2). Netscape Communication Coop-
eration, 2, 1995. (Cited on page 35.)

[HVM04] Darrel Hankerson, Scott Vanstone, and Alfred J Menezes. Guide to Elliptic
Curve Cryptography. Springer Science & Business Media, 2004. (Cited on
page 31.)

[Inf14] Infineon Technologies Austria AG. Infineon Technologies.
http://www.infineon.com/cms/austria/de/, 2014. [Online; accessed 23-
September-2014]. (Cited on pages 33, 41, and 50.)

[Int] Internet Assigned Numbers Authority (IANA). Transport Layer Secu-
rity (TLS) Parameters. https://www.iana.org/assignments/tls-parameters/tls-
parameters.xhtml. [Online; accessed 23-September-2014]. (Cited on page 35.)

[JJ11] Li Jun and Wen Jun. Security guarantee in backend rfid system. In Business
Computing and Global Informatization (BCGIN), 2011 International Conference
on, pages 489–491, 2011. (Cited on page 35.)

100 BIBLIOGRAPHY

[JQ13] Ben Smeets Jie Qian. IPsec and OpenVPN worked-out examples.
http://ipseclab.eit.lth.se/tiki-index.php, 2013. [Online; accessed 23-September-
2014]. (Cited on page 36.)

[KAF+10] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K Lenstra, Emmanuel
Thomé, Joppe W Bos, Pierrick Gaudry, Alexander Kruppa, Peter L Montgomery,
Dag Arne Osvik, et al. Factorization of a 768-bit RSA modulus. In Advances in
Cryptology–CRYPTO 2010, pages 333–350. Springer, 2010. (Cited on page 27.)

[Ker83] A Kerckhoffs. La Cryptographie Militaire. L. Baudoin & Cie, Paris, 1883. (Cited
on page 25.)

[KF10] T. Kern and M. Feldhofer. Low-resource ecdsa implementation for passive rfid
tags. In Electronics, Circuits, and Systems (ICECS), 2010 17th IEEE Interna-
tional Conference on, pages 1236–1239, 2010. (Cited on page 33.)

[KP06] Sandeep Kumar and Christof Paar. Are standards compliant elliptic curve cryp-
tosystems feasible on RFID. In Workshop on RFID Security, pages 12–14, 2006.
(Cited on page 33.)

[KP12] P. Kumar and R.K. Pateriya. A survey on SQL injection attacks, detection and
prevention techniques. In Computing Communication Networking Technologies
(ICCCNT), 2012 Third International Conference on, pages 1–5, 2012. (Cited on
page 35.)

[KR14] T. Krovetz and P. Rogaway. The OCB Authenticated-Encryption Algorithm.
RFC 7253 (Informational), May 2014. (Cited on page 28.)

[KT99] Kalle Kaukonen and Rodney Thayer. A stream cipher encryption algorithm
“arcfour”. The Internet Society, 1999. (Cited on pages 26 and 35.)

[Kul14] Adnan Kuleta. Design and Implementation of an optimized Authentication Pro-
tocol for Security Controller-based Applications. Master’s Thesis, Graz Univer-
sity of Technology, Austria, Institute for Technical Informatics, 03 2014. (Cited
on page 43.)

[Lam10] Mario Lamberger. IT Security, L2 - Public Key Distribution, Lecture Slides,
2010. Graz University of Technology, Austria, Institute for Applied Information
Processing and Communications. (Cited on page 27.)

[LW07] Ticyan Li and Guilin Wang. Security Analysis of Two Ultra-Lightweight RFID
Authentication Protocols. In New Approaches for Security, Privacy and Trust in
Complex Environments, volume 232, pages 109–120. Springer US, 2007. (Cited
on page 33.)

[Mic12a] Microsoft. SQL Server. http://www.microsoft.com/en-us/server-
cloud/products/sql-server/, 2012. Latest Version: SQL Server 2012. (Cited on
page 34.)

BIBLIOGRAPHY 101

[Mic12b] Microsoft. Windows Communication Foundation.
http://msdn.microsoft.com/en-us/library/dd456779.aspx, 2012. [Online;
accessed 23-September-2014]. (Cited on page 49.)

[Mic13] Microsoft. Internet Information Services (IIS). http://www.iis.net/, 2013. Latest
Version: 8.5. (Cited on page 34.)

[Mic15] Microsoft. Entity Framework. https://msdn.microsoft.com/en-gb/data/ef.aspx,
2015. [Online; accessed 14-February-2015]. (Cited on page 70.)

[Mon85] Peter L Montgomery. Modular Multiplication without Trial Division. Mathe-
matics of computation, 44(170):519–521, 1985. (Cited on page 31.)

[Mor06] David Morgan. Web application security - SQL injection attacks. Network
Security, 2006(4):4 – 5, 2006. (Cited on page 35.)

[MVOV10] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of
Applied Cryptography, Chapter 10. CRC Press, 2010. (Cited on page 28.)

[Nat99] National Institute of Standards and Technology. Rec-
ommended elliptic curves for federal government use.
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf, 1999.
[Online; accessed 07-February-2015]. (Cited on page 44.)

[Neta] Netcraft. September 2013 Web Server Survey.
http://news.netcraft.com/archives/2013/09/05/september-2013-web-server-
survey.html. [Online; accessed 23-September-2014]. (Cited on page 34.)

[Netb] Netcraft. SSL: Intercepted today, decrypted tomorrow.
http://news.netcraft.com/archives/2013/06/25/ssl-intercepted-today-
decrypted-tomorrow.html. [Online; accessed 23-September-2014]. (Cited
on page 34.)

[Nok13] Nokia Developers. Understanding NFC Data Exchange Format (NDEF)
messages. http://developer.nokia.com/community/wiki/
Understanding_NFC_Data_Exchange_Format_(NDEF)_messages,
2013. [Online; accessed 23-September-2014]. (Cited on pages 37 and 50.)

[OL10] Elisabeth Oswald and Mario Lamberger. IT Security, Lecture Notes, 03 2010.
Graz University of Technology, Austria, Institute for Applied Information Pro-
cessing and Communications. (Cited on page 27.)

[otBCI13] Legion of the Bouncy Castle Inc. Bouncy Castle Crypto APIs. https://www.
bouncycastle.org/, 2013. [Online; accessed 14-February-2015]. (Cited on
page 63.)

[Phi14] Phillip Rogaway. OCB Mode. http://www.cs.ucdavis.edu/˜rogaway/ocb/, 2014.
[Online; accessed 23-September-2014]. (Cited on pages 28, 29, 30, and 67.)

http://developer.nokia.com/community/wiki/Understanding_NFC_Data_Exchange_Format_(NDEF)_messages
http://developer.nokia.com/community/wiki/Understanding_NFC_Data_Exchange_Format_(NDEF)_messages
https://www.bouncycastle.org/
https://www.bouncycastle.org/

102 BIBLIOGRAPHY

[Ple14] Robert Gerd Pleyer. Backend-Communication Security for NFC Systems with
Android. IT Project, Graz University of Technology, Austria, Institute for Tech-
nical Informatics, 03 2014. (Cited on pages 32, 34, 67, and 79.)

[Rij11] Vincent Rijmen. Applied Cryptography, Lecture Slides, 2011. Graz University
of Technology, Austria, Institute for Applied Information Processing and Com-
munications. (Cited on pages 26 and 27.)

[rJ01] D. Eastlake 3rd and P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC
3174 (Informational), September 2001. Updated by RFCs 4634, 6234. (Cited on
page 35.)

[RSA78] Ronald L Rivest, Adi Shamir, and Len Adleman. A method for obtaining dig-
ital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978. (Cited on page 35.)

[SG10] Harald Schellnast and Susanne Gollatz. Security Aspects in Software Develop-
ment, Lecture Notes, 10 2010. Graz University of Technology, Austria, Institute
for Applied Information Processing and Communications. (Cited on page 35.)

[SM08] Boyeon Song and Chris J. Mitchell. RFID authentication protocol for low-cost
tags. In Proceedings of the first ACM conference on Wireless network security,
WiSec ’08, pages 140–147, New York, NY, USA, 2008. ACM. (Cited on page 33.)

[SPW+02] Stuart Staniford, Vern Paxson, Nicholas Weaver, et al. How to Own the Inter-
net in Your Spare Time. In USENIX Security Symposium, pages 149–167, 2002.
(Cited on page 34.)

[Sta96] IOF Standardization. ISO/IEC 7498-1: 1994 information technology-open sys-
tems interconnection-basic reference model: The basic model. International
Standard ISOIEC, 74981:59, 1996. (Cited on page 35.)

[Sta98] William Stallings. SSL: Foundation for Web Security. The Internet Protocol
Journal, 1(1):20–29, 1998. (Cited on page 105.)

[Sta99] Data Encryption Standard. Data encryption standard. Federal Information
Processing Standards Publication, 1999. (Cited on page 26.)

[Sta11] IOF Standardization. ISO/IEC 9075-1:2011 information technology – database
languages – sql – part 1: Framework (sql/framework). International Standard
ISOIEC, page 68, 2011. (Cited on page 47.)

[Teca] Microsoft TechNet. Security Best Practices for IIS 8.
http://technet.microsoft.com/en-us/library/jj635855.aspx. [Online; accessed
23-September-2014]. (Cited on page 34.)

[Tecb] Microsoft TechNet. Transact-SQL Reference. http://technet.microsoft.com/en-
us/library/bb510741.aspx. [Online; accessed 23-September-2014]. (Cited on
page 34.)

BIBLIOGRAPHY 103

[Tecc] Microsoft TechNet. Web Server (IIS) Overview.
http://technet.microsoft.com/en-us/library/hh831725.aspx. [Online; accessed
23-September-2014]. (Cited on page 34.)

[TP11] S. Turner and T. Polk. Prohibiting Secure Sockets Layer (SSL) Version 2.0. RFC
6176 (Proposed Standard), March 2011. (Cited on page 35.)

[Tsu06] G. Tsudik. YA-TRAP: yet another trivial RFID authentication protocol. In Per-
vasive Computing and Communications Workshops, 2006. PerCom Workshops
2006. Fourth Annual IEEE International Conference on, pages 4 pp.–643, 2006.
(Cited on page 33.)

[UP13] P. Urien and S. Piramuthu. Framework and authentication protocols for smart-
phone, NFC, and RFID in retail transactions. In Intelligent Sensors, Sensor
Networks and Information Processing, 2013 IEEE Eighth International Confer-
ence on, pages 77–82, 2013. (Cited on page 33.)

[W3C04] W3C. W3C Working Group Note 11 February 2004.
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice, 2004.
[Online; accessed 23-September-2014]. (Cited on page 49.)

[Wei11] SA Weis. RFID (Radio Frequency Identification): Principles and Applications.
Retrived from http://www.eecs.harvard.edu/cs199r/readings/rfidarticle.pdf, 1,
2011. (Cited on page 32.)

[WEW12] Erich Wenger, Maria Eichelseder, and Mario Werner. IT Security, Exercise
Notes, Implementing and Attacking Elliptic Curve Cryptography and RSA, 03
2012. Graz University of Technology, Austria, Institute for Applied Information
Processing and Communications. (Cited on page 31.)

[WFF11] Erich Wenger, Martin Feldhofer, and Norbert Felber. Low-resource hardware
design of an elliptic curve processor for contactless devices. In Information Se-
curity Applications, pages 92–106. Springer, 2011. (Cited on page 33.)

[Wik13] Wikipedia. 2013 global surveillance disclosures — Wikipedia, The Free Encyclo-
pedia, 2013. [Online; accessed 4-November-2013]. (Cited on page 34.)

[Wik14] Wikipedia. Unix time — Wikipedia, The Free Encyclopedia, 2014. [Online;
accessed 6-January-2015]. (Cited on pages 50, 68, and 96.)

[WIS14] WISeKey. WISeKey. https://www.wisekey.com/, 2014. [Online; accessed 23-
September-2014]. (Cited on page 38.)

[Wol04] Johannes Wolkerstorfer. Hardware aspects of elliptic curve cryptography. PhD
thesis, Graz University of Technology, Austria, Institute for Applied Information
Processing and Communications, 2004. (Cited on page 33.)

[XZZT13] Wei Xie, Chen Zhang, Quan Zhang, and Chaojing Tang. RFID Authentication
Against an Unsecure Backend Server. CoRR, abs/1304.1318, 2013. (Cited on
page 38.)

Appendix A

Figures

Change cipher suite for

further symmetric

encryption and finish the

handshake protocol

Client sends requested

certificate, key exchange,

certificate verification

Server sends certificate,

key exchange and

certificate request

End of server hello

Establish securtiy

capabilities, proptocol

version, session ID, Cipher

Suite, compression, initial

random numbers

Client Server

client_hello

certificate

server_key_exchange

certificate_request

server_hello_done

server_hello

certificate

client_key_exchange

certificate_verify

change_cipher_spec

finished

change_cipher_spec

finished

Figure A.1: Detailed View of the TLS Handshake Protocol
(adapted from [Sta98])

105

106 APPENDIX A. FIGURES

1

1

n

Readpoint

Site

Item GroupProduct

Property

Person

Rule

Has

1

n

Reads

1

n

Has Holds

Has

1

n

1

n 1

Defines

Figure A.2: Database Relation Diagram for Relevant Entities

107

AuthTask

CheckAuthTask

CheckReadTask

StartReadTask

WriteTask

NextWriteTask

FinalizeTask

ScGetChallenge

ScVerifyResponse

ScRead

ScGetReadCommand

ScWrite

ScFinalize

HTTP Get

HTTP Post

HTTP Get

HTTP Post

HTTP Get

HTTP Get

Figure A.3: Calling Structure of Android Application Tasks and Service Methods

Appendix B

Listings

Listing B.1 Keygen.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4 using System.Web;
5

6 using Org.BouncyCastle.Crypto;
7 using Org.BouncyCastle.Asn1.X9;
8 using Org.BouncyCastle.Asn1.Nist;
9 using Org.BouncyCastle.Crypto.Parameters;

10 using Org.BouncyCastle.Crypto.Generators;
11 using Org.BouncyCastle.Security;
12 using Org.BouncyCastle.Math;
13 using Org.BouncyCastle.Math.EC;
14 using Org.BouncyCastle.Asn1;
15 using Org.BouncyCastle.Asn1.X509;
16 using Org.BouncyCastle.Asn1.Pkcs;
17 using Org.BouncyCastle.Pkcs;
18 using System.IO;
19

20 namespace detego.Service.WCF.SecureChannel
21 {
22 public class Keygen
23 {
24 private static string ecCurvename = "P-192";
25

26 public ECPoint GetBasepoint()
27 {
28 X9ECParameters x9ecp = NistNamedCurves.GetByName(ecCurvename);
29 return x9ecp.G;
30 }
31

32 public AsymmetricCipherKeyPair GenerateEcKeyPair()
33 {
34 X9ECParameters x9ecp = NistNamedCurves.GetByName(ecCurvename);
35 ECDomainParameters ecParameters = new ECDomainParameters(x9ecp.

Curve, x9ecp.G, x9ecp.N, x9ecp.H);
36 ECKeyPairGenerator ecGenerator = new ECKeyPairGenerator();

109

110 APPENDIX B. LISTINGS

37 SecureRandom secureRandom = new SecureRandom();
38 ECKeyGenerationParameters ecKeyGenParam = new

ECKeyGenerationParameters(ecParameters, secureRandom);
39 ecGenerator.Init(ecKeyGenParam);
40 return ecGenerator.GenerateKeyPair();
41 }
42

43 public AsymmetricCipherKeyPair GenerateRsaKeyPair()
44 {
45 RsaKeyPairGenerator rsaGenerator = new RsaKeyPairGenerator();
46 SecureRandom secureRandom = new SecureRandom();
47 RsaKeyGenerationParameters rsaParameters = new

RsaKeyGenerationParameters(
48 new BigInteger(

"65537", 16)
49 , secureRandom
50 , 1024
51 , 80);
52 rsaGenerator.Init(rsaParameters);
53 return rsaGenerator.GenerateKeyPair();
54 }
55

56 public AsymmetricCipherKeyPair GetKeysFromFiles(FileStream
publicfile, FileStream privatefile)

57 {
58 Asn1Object ao = Asn1Object.FromStream(publicfile);
59 SubjectPublicKeyInfo pubinfo = SubjectPublicKeyInfo.GetInstance

(ao);
60 var publicParam = PublicKeyFactory.CreateKey(pubinfo);
61

62 ao = Asn1Object.FromStream(privatefile);
63 EncryptedPrivateKeyInfo enpri = EncryptedPrivateKeyInfo.

GetInstance(ao);
64 PrivateKeyInfo priECinfo = PrivateKeyInfoFactory.

CreatePrivateKeyInfo("Meta[:SEC:]".ToCharArray(), enpri);
65 var privateParam = PrivateKeyFactory.CreateKey(priECinfo);
66

67 return new AsymmetricCipherKeyPair(publicParam, privateParam);
68 }
69

70 }
71 }

Listing B.2 Authentication.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4 using System.Web;
5 using System.Threading.Tasks;
6 using Org.BouncyCastle.Crypto;
7 using Org.BouncyCastle.Security;
8 using Org.BouncyCastle.Crypto.Parameters;
9 using Org.BouncyCastle.Math.EC;

10 using Org.BouncyCastle.Asn1.X9;

111

11 using Org.BouncyCastle.Asn1.Nist;
12 using Org.BouncyCastle.Math;
13 using Org.BouncyCastle.Crypto.Prng;
14

15 namespace detego.Service.WCF.SecureChannel
16 {
17 public class Authentication
18 {
19 public AsymmetricCipherKeyPair ecKeyPair { get; set; }
20 public AsymmetricCipherKeyPair rsaKeyPair { get; set; }
21

22 public Byte[] ComputeSignatureOfPublicEcKey(BigInteger publickey)
23 {
24 Byte[] ecPublicKeyBytes = publickey.ToByteArray();
25 ISigner signer = SignerUtilities.GetSigner("

SHA1WITHRSAENCRYPTION");
26 signer.Init(true, (RsaKeyParameters)(rsaKeyPair.Private));
27 signer.BlockUpdate(ecPublicKeyBytes, 0, ecPublicKeyBytes.Length

);
28 Byte[] sig = signer.GenerateSignature();
29 return sig;
30 }
31

32 public BigInteger GetNewChallenge(BigInteger lambda, BigInteger xP)
33 {
34 return Montgomery.Multiplication(lambda, xP);
35 }
36

37 public BigInteger GetResponse(BigInteger xA)
38 {
39 return Montgomery.Multiplication(
40 ((ECPrivateKeyParameters)(ecKeyPair.Private)).D
41 , xA
42);
43 }
44

45 public bool VerifySignature(BigInteger xT, BigInteger sT)
46 {
47 ISigner verifier = SignerUtilities.GetSigner("

SHA1WITHRSAENCRYPTION");
48 verifier.Init(false, (RsaKeyParameters)(rsaKeyPair.Public));
49 verifier.BlockUpdate(xT.ToByteArray()
50 , 0
51 , xT.ToByteArray().Length);
52 return verifier.VerifySignature(sT.ToByteArray());
53 }
54

55 public byte[] signEPedigree(AsymmetricCipherKeyPair authEcKeyPair,
byte[] epedigree)

56 {
57 ISigner signer = SignerUtilities.GetSigner("ECDSAWITHSHA1");
58 signer.Init(true, (ECPrivateKeyParameters)(authEcKeyPair.

Private));
59 signer.BlockUpdate(epedigree, 0, epedigree.Length);
60 return signer.GenerateSignature();
61 }

112 APPENDIX B. LISTINGS

62

63 public bool verifyEPedigree(AsymmetricCipherKeyPair authEcKeyPair,
byte[] epedigree, byte[] sig)

64 {
65 ISigner verifier = SignerUtilities.GetSigner("ECDSAWITHSHA1");
66 verifier.Init(false, (ECPublicKeyParameters)(authEcKeyPair.

Public));
67 verifier.BlockUpdate(epedigree, 0, epedigree.Length);
68 return verifier.VerifySignature(sig);
69 }
70

71

72 }
73 }

Listing B.3 Montgomery.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4 using System.Web;
5

6 using Org.BouncyCastle.Math;
7 using Org.BouncyCastle.Crypto.Parameters;
8

9 namespace detego.Service.WCF.SecureChannel
10 {
11 public class Montgomery
12 {
13 static Org.BouncyCastle.Math.BigInteger BigIntZero = new Org.

BouncyCastle.Math.BigInteger("0", 16);
14 static Org.BouncyCastle.Math.BigInteger BigIntOne = new Org.

BouncyCastle.Math.BigInteger("1", 16);
15 static Org.BouncyCastle.Math.BigInteger BigIntTwo = new Org.

BouncyCastle.Math.BigInteger("2", 16);
16

17 //initialize for secp192r1
18

19 public static Org.BouncyCastle.Math.BigInteger p = new Org.
BouncyCastle.Math.BigInteger("
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF", 16);

20 //p = 2^192 - 2^64 - 1
21

22 public static Org.BouncyCastle.Math.BigInteger R = BigIntTwo.Pow(24

* 8);
23 //R = 2^(24*8) =^= 2^(WORDS_PER_BIGINT*BITS_PER_WORD)
24

25 public static Org.BouncyCastle.Math.BigInteger R_squared = R.ModPow
(BigIntTwo, p);

26 //R^2 = R^2 mod p
27

28 public static Org.BouncyCastle.Math.BigInteger p_strich = p.Negate
().ModInverse(R);

29 //p’ = -p^(-1) mod R
30

113

31

32 public static Org.BouncyCastle.Math.BigInteger Multiplication(Org.
BouncyCastle.Math.BigInteger a, Org.BouncyCastle.Math.BigInteger
b)

33 {
34 /* Montgomery Multiplication
35 *
36 * calculating c = a*b mod p
37 *
38 * 1. transform a and b to a_ and b_ (Montgomery representation

)
39 * 2. calculate c_ = a_(star)b_ (star) denotes Mont.Mult.
40 * OR c_=MONT(a_,b_)
41 * 3. transform c_ back to c
42 *
43 * constant value R, R > p, gcd(R,p)=1
44 * R = 2^b (b that p has at most b bits)
45 * so division by 2^b is right shift by b bits
46 *
47 * a_ = a * R mod p
48 * a_ = MONT(a,R^2)
49 * b_ = MONT(b,R^2)
50 * c_ = MONT(a_,b_)
51 * c = MONT(c_,1)
52 */
53

54 Org.BouncyCastle.Math.BigInteger a_ = Transform(a);
55 Org.BouncyCastle.Math.BigInteger b_ = Transform(b);
56 Org.BouncyCastle.Math.BigInteger c_ = MONT(a_, b_);
57 Org.BouncyCastle.Math.BigInteger c = Backtransform(c_);
58

59 return c;
60 }
61

62 public static Org.BouncyCastle.Math.BigInteger Backtransform(Org.
BouncyCastle.Math.BigInteger y)

63 {
64 return MONT(y, BigIntOne);
65 }
66

67 public static Org.BouncyCastle.Math.BigInteger Transform(Org.
BouncyCastle.Math.BigInteger x)

68 {
69 return MONT(x, R_squared);
70 }
71

72 public static Org.BouncyCastle.Math.BigInteger MONT(Org.
BouncyCastle.Math.BigInteger x, Org.BouncyCastle.Math.BigInteger
y)

73 {
74 //d = x*y
75 Org.BouncyCastle.Math.BigInteger d = x.Multiply(y);
76 return Reduction(d);
77 }
78

79 private static Org.BouncyCastle.Math.BigInteger Reduction(Org.

114 APPENDIX B. LISTINGS

BouncyCastle.Math.BigInteger d)
80 {
81 /* Montgomery Reduction
82 * s = (d + (d*p’ mod R) * p) / R
83 * v = (d*p’ mod R)
84 * w = (d + v * p)
85 *
86 * p’ = -p^(-1) mod R
87 *
88 * result r = s-p if s>=p
89 * s else
90 */
91

92 //BigInteger v = (d.Multiply(p_strich)).Mod(R);
93 Org.BouncyCastle.Math.BigInteger Mask = R.Subtract(BigIntOne);
94 Org.BouncyCastle.Math.BigInteger v = (d.Multiply(p_strich)).And

(Mask);
95 Org.BouncyCastle.Math.BigInteger w = d.Add((v.Multiply(p)));
96 Org.BouncyCastle.Math.BigInteger s = w.ShiftRight(24 * 8);
97 //same as s = w / R, just with Montgomery Magic
98

99 //final reduction with fake reduction against timing attacks
100 Org.BouncyCastle.Math.BigInteger r = s;
101 Org.BouncyCastle.Math.BigInteger r_reduced = s.Subtract(p);
102 int compare = s.CompareTo(p);
103 if (compare >= 0)
104 return r_reduced;
105 else
106 return r;
107 }
108

109 }
110 }

Listing B.4 CommandBuilder.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4 using System.Web;
5

6 namespace detego.Service.WCF.SecureChannel
7 {
8 public class CommandBuilder
9 {

10 private static readonly DateTime Epoch = new DateTime(1970, 1, 1,
0, 0, 0,

11 DateTimeKind.Utc);
12

13 /// <summary>
14 /// Available commands on transponder side
15 /// </summary>
16 public enum PID : byte
17 {
18 PROTOCOL_ID_02 = 0x02

115

19 }
20

21 /// <summary>
22 /// Available commands on transponder side
23 /// </summary>
24 public enum Command : byte
25 {
26 CMD_DATALINK_REFLECTOR = 0xC0,
27 CMD_SECURITY_REFLECTOR = 0x80,
28 CMD_SECURITY_GetVersion = 0x81,
29 CMD_TOOLBOX_Authentication = 0x82,
30 PROTOCOL_RESPONSE_OK = 0x00,
31 PROTOCOL_RESPONSE_ACCESSDENIED = 0x02,
32 CMD_STOREEPedigree = 0x42,
33 CMD_READEPedigree = 0x43
34 }
35

36 /// <summary>
37 /// Positions in PID = 0x02
38 /// </summary>
39 public enum PositionsPID02 : int
40 {
41 POS_PROTOCOL_ID = 0x00,
42 POS_ENCRYPTION = 0x01,
43 POS_LENGTH_H = 0x02,
44 POS_LENGTH_L = 0x03,
45 POS_TIMESTAMP = 0x04, // This is the associated data and has 4

bytes
46 POS_CMD = 0x08, // This can already be encrypted
47 POS_DATA = 0x09 // This can already be encrypted
48 }
49

50 /// <summary>
51 /// Supported encryptions
52 /// </summary>
53 public enum Encryptions : int
54 {
55 NONE = 0x00,
56 ENCRYPTED_AES256 = 0x01,
57 ENCRYPTED_AESOCB = 0x02
58 }
59

60 public enum CommandType : byte
61 {
62 CHALLENGE = Command.CMD_TOOLBOX_Authentication,
63 READ = Command.CMD_READEPedigree,
64 WRITE = Command.CMD_STOREEPedigree
65 }
66

67

68 public static UInt32 formerUnixTimestamp = 0;
69

70 /// <summary>
71 /// Returns a fake UnixTimeStamp as byte[4]
72 /// </summary>
73 /// <returns></returns>

116 APPENDIX B. LISTINGS

74 public static byte[] getUnixTimestamp()
75 {
76 formerUnixTimestamp++;
77 byte[] bytes = BitConverter.GetBytes(formerUnixTimestamp);
78 if (BitConverter.IsLittleEndian) Array.Reverse(bytes);
79

80 return bytes;
81 }
82

83 /// <summary>
84 /// Returns the current UnixTimeStamp as byte[4]
85 /// </summary>
86 /// <returns></returns>
87 public static byte[] getRealUnixTimestamp()
88 {
89 Int32 unixTimestamp = (Int32)(DateTime.UtcNow.Subtract(new

DateTime(1970, 1, 1))).TotalSeconds;
90 byte[] bytes = BitConverter.GetBytes(unixTimestamp);
91 if (BitConverter.IsLittleEndian) Array.Reverse(bytes);
92 return bytes;
93

94 }
95

96 public static DateTime UnixTimeToDateTime(string text)
97 {
98 double seconds = double.Parse(text);
99 return Epoch.AddSeconds(seconds);

100 }
101

102 //command = [PID|ENC|LEN|LEN|TSP|TSP|TSP|TSP|CMD|DATA..TAG]
103 // { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 .. +16]
104

105 public static byte[] Build(CommandType command, byte[] data, bool
encrypted)

106 {
107 byte[] commandAsByteArray;
108

109 if (data == null) data = new byte[0];
110

111 // calculate the bytes to encrypt
112 // and combine it with the command byte (command also has to be

encrypted)
113 // 1 ... command byte
114 int bytesToEncrypt = 1 + data.Length;
115

116 byte[] requestToEncrypt = new byte[bytesToEncrypt];
117 requestToEncrypt[0] = (byte)command;
118 System.Buffer.BlockCopy(data, 0, requestToEncrypt, 1, data.

Length);
119

120 byte[] TSP = new byte[4]; TSP = getUnixTimestamp();// Timestamp
(associated data)

121 byte[] N = new byte[15]; // 96/8 (Nonce)
122

123 System.Buffer.BlockCopy(TSP, 0, N, 11, 4); //nonce = [00..00|
TSP_NOW]

117

124

125 byte[] encryptedRequest = OCB.encrypt(AES.key, AES.key.Length *
8, requestToEncrypt, N, TSP, 128);

126

127 if (!encrypted) encryptedRequest = requestToEncrypt; //Same
timing as if encr.

128

129 // everything is encrypted except the protocol id, the
encryption, the associated data and the length

130 commandAsByteArray = new byte[encryptedRequest.Length + (int)
PositionsPID02.POS_CMD];

131

132 commandAsByteArray[(int)PositionsPID02.POS_PROTOCOL_ID] = (byte
)PID.PROTOCOL_ID_02;

133

134 commandAsByteArray[(int)PositionsPID02.POS_ENCRYPTION] = (byte)
Encryptions.ENCRYPTED_AESOCB;

135 if (!encrypted) commandAsByteArray[(int)PositionsPID02.
POS_ENCRYPTION] = (byte)Encryptions.NONE;

136

137 int noncebytes = (encrypted ? 16 : 0);
138 // Set the data length of the followed command
139 // this is never changed because the length is needed to get

the real length of the encrypted message
140 commandAsByteArray[(int)PositionsPID02.POS_LENGTH_H] = (byte)((

data.Length + PositionsPID02.POS_DATA - PositionsPID02.
POS_TIMESTAMP + noncebytes) >> 8);

141 commandAsByteArray[(int)PositionsPID02.POS_LENGTH_L] = (byte)((
data.Length + PositionsPID02.POS_DATA - PositionsPID02.
POS_TIMESTAMP + noncebytes) & 0xFF);

142

143 System.Buffer.BlockCopy(encryptedRequest, 0, commandAsByteArray
, (int)PositionsPID02.POS_CMD, encryptedRequest.Length);

144 System.Buffer.BlockCopy(TSP, 0, commandAsByteArray, (int)
PositionsPID02.POS_TIMESTAMP, 4);

145

146

147 return commandAsByteArray;
148 }
149 }
150 }

Listing B.5 EPedigreeHandler.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4 using System.Text;
5 using System.Threading.Tasks;
6 using System.Xml;
7 using System.IO;
8 using detego.Service.Contract.Entities;
9

10 namespace detego.Service.WCF.SecureChannel
11 {

118 APPENDIX B. LISTINGS

12 public class Pedigree
13 {
14 string _productName;
15 string _productCategory;
16 string _articleNumber;
17 string _origin;
18 double _rrp; //recommended retail price
19

20 public Pedigree(string productName, string productCategory, string
articleNumber, string origin, double rrp)

21 {
22 this._productName = productName;
23 this._productCategory = productCategory;
24 this._articleNumber = articleNumber;
25 this._origin = origin;
26 this._rrp = rrp;
27 }
28

29 public string ProductName { get { return _productName; } set {
_productName = (string)value; } }

30 public string ProductCategory { get { return _productCategory; }
set { _productCategory = (string)value; } }

31 public string ArticleNumber { get { return _articleNumber; } set {
_articleNumber = (string)value; } }

32 public string Origin { get { return _origin; } set { _origin = (
string)value; } }

33 public double RRP { get { return _rrp; } set { _rrp = (double)value
; } }

34 }
35

36 public class EPedigreeHandler
37 {
38 public void createDummyPedigree(string filename)
39 {
40 Pedigree myPed = new Pedigree("myBag", "Handbag", "H01245-91",

"Le Handbag Producer", 1199.99);
41

42 XmlWriterSettings xmlWriterSettings = new XmlWriterSettings()
43 {
44 Indent = true,
45 IndentChars = "\t",
46 NewLineOnAttributes = true
47 };
48

49 using (XmlWriter xwriter = XmlWriter.Create(filename,
xmlWriterSettings))

50 {
51 xwriter.WriteStartDocument();
52 xwriter.WriteStartElement("Pedigree");
53 xwriter.WriteElementString("ProductName", myPed.ProductName

);
54 xwriter.WriteElementString("ProductCategory", myPed.

ProductCategory);
55 xwriter.WriteElementString("ArticleNumber", myPed.

ArticleNumber);
56 xwriter.WriteElementString("Origin", myPed.Origin);

119

57 xwriter.WriteElementString("RRP", myPed.RRP.ToString());
58 xwriter.WriteEndElement();
59 xwriter.WriteEndDocument();
60 }
61 }
62

63 public void readPedigreeToConsole(string filename)
64 {
65 using (XmlReader xreader = XmlReader.Create(filename))
66 {
67 while (xreader.Read())
68 {
69 if (xreader.IsStartElement())
70 {
71 switch (xreader.Name)
72 {
73 case "Pedigree":
74 if (xreader.Read())
75 Console.WriteLine("Start <Pedigree>

element.");
76 break;
77 case "ProductName":
78 if (xreader.Read())
79 Console.WriteLine(" ProductName: " +

xreader.Value);
80 break;
81 case "ProductCategory":
82 if (xreader.Read())
83 Console.WriteLine(" ProductCategory: "

+ xreader.Value);
84 break;
85 case "ArticleNumber":
86 if (xreader.Read())
87 Console.WriteLine(" ArticleNumber: " +

xreader.Value);
88 break;
89 case "Origin":
90 if (xreader.Read())
91 Console.WriteLine(" Origin: " +

xreader.Value);
92 break;
93 case "RRP":
94 if (xreader.Read())
95 Console.WriteLine(" RRP: " + xreader.

Value);
96 break;
97

98 }
99 }

100 }
101 }
102 }
103

104 public Pedigree readPedigreeToStruct(string filename)
105 {
106 Pedigree ped = new Pedigree("dummy", "dummy", "dummy", "dummy",

120 APPENDIX B. LISTINGS

0.0);
107 using (XmlReader xreader = XmlReader.Create(filename))
108 {
109 while (xreader.Read())
110 {
111 if (xreader.IsStartElement())
112 {
113 switch (xreader.Name)
114 {
115 //case "Pedigree":
116 // if (xreader.Read())
117 // Console.WriteLine("Start <Pedigree>

element.");
118 // break;
119 case "ProductName":
120 if (xreader.Read())
121 ped.ProductName = xreader.Value;
122 break;
123 case "ProductCategory":
124 if (xreader.Read())
125 ped.ProductCategory = xreader.Value;
126 break;
127 case "ArticleNumber":
128 if (xreader.Read())
129 ped.ArticleNumber = xreader.Value;
130 break;
131 case "Origin":
132 if (xreader.Read())
133 ped.Origin = xreader.Value;
134 break;
135 case "RRP":
136 if (xreader.Read())
137 ped.RRP = Convert.ToDouble(xreader.

Value);
138 break;
139 }
140 }
141 }
142 }
143

144 return ped;
145 }
146

147 public byte[] convertXmlToByteArray(string filename)
148 {
149 XmlDocument ped = new XmlDocument();
150 ped.Load(filename);
151

152 MemoryStream ms = new MemoryStream();
153 ped.Save(ms);
154 byte[] bytes = ms.ToArray();
155

156 //Console.WriteLine(Encoding.UTF8.GetString(bytes));
157

158 //foreach (byte byteValue in bytes)
159 // Console.Write("{0:X2} ", byteValue);

121

160

161 return bytes;
162 }
163

164 public void convertByteArrayToXml(byte[] bytes, string filename)
165 {
166 XmlDocument ped = new XmlDocument();
167 MemoryStream ms = new MemoryStream(bytes);
168 ped.Load(ms);
169 ped.Save(filename);
170

171 //Console.WriteLine(Encoding.UTF8.GetString(bytes));
172

173 //foreach (byte byteValue in bytes)
174 // Console.Write("{0:X2} ", byteValue);
175 }
176 }
177 }

Listing B.6 DataService.scv.cs: ScRead

1 public PropertyValue ScRead(PropertyValue read_response)
2 {
3 //command = [PID|ENC|LEN|LEN|TSP|TSP|TSP|TSP|CMD|DATA..TAG]
4 // { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 .. +16]
5

6 string returnstate = "CONT";
7

8 if (read_response == null) return ScCommandToPropVal(null, "ScRead", "
NULLINPUT");

9 byte[] response = read_response.BinaryValue;
10 if (response == null) return ScCommandToPropVal(null, "ScRead", "

NULLINPUTBYTES");
11 if (response[0] != 0x02 || response[1] != 0x02) return

ScCommandToPropVal(null, "ScRead", "MESSAGEERROR");
12

13 int length = (((int)response[2] << 8) + (int)response[3]);
14 byte[] encrypted = new byte[response.Length - 8];
15 System.Buffer.BlockCopy(response, 8, encrypted, 0, encrypted.Length);
16

17 byte[] tsp = new byte[4];
18 System.Buffer.BlockCopy(response, 4, tsp, 0, 4);
19

20 byte[] nonce = new byte[15];
21 System.Buffer.BlockCopy(tsp, 0, nonce, 11, 4);
22

23 byte[] decrypted = OCB.decrypt(AES.key, AES.key.Length * 8, encrypted,
nonce, tsp, 128);

24

25 if (decrypted == null) return ScCommandToPropVal(null, "ScRead", "
READERROR");

26

27 byte command = decrypted[0];
28 byte packageInfo = decrypted[1];
29 int data_length = decrypted.Length - 3;

122 APPENDIX B. LISTINGS

30

31 if (packageInfo != (byte)0xff)
32 {
33 data_length = (int)packageInfo;
34 returnstate = "DONE";
35 }
36

37 byte[] data = new byte[data_length];
38 System.Buffer.BlockCopy(decrypted, 2, data, 0, data.Length);
39

40 byte[] pedigree_memory = read_pedigree_buffer;
41 read_pedigree_buffer = new byte[pedigree_memory.Length + data_length];
42 System.Buffer.BlockCopy(pedigree_memory, 0, read_pedigree_buffer, 0,

pedigree_memory.Length);
43 System.Buffer.BlockCopy(data, 0, read_pedigree_buffer, pedigree_memory.

Length, data.Length);
44

45 if (returnstate == "CONT")
46 {
47 return ScCommandToPropVal(ScGetNextReadCommand(), "ScRead",

returnstate);
48 }
49

50 byte[] pedigree = read_pedigree_buffer;
51 int sig_length = 56;
52

53 byte[] signature = new byte[sig_length];
54 System.Buffer.BlockCopy(pedigree, pedigree.Length - sig_length,

signature, 0, signature.Length);
55

56 byte[] ped_w_tsp = new byte[pedigree.Length - sig_length];
57 System.Buffer.BlockCopy(pedigree, 0, ped_w_tsp, 0, ped_w_tsp.Length);
58

59 Keygen keygen = new Keygen();
60 FileStream EcPublicFile = new FileStream(@"D:/MetaSec_/Robert/trunk/

detego.Surveyor/Service2/detego.Service.WCF/SecureChannel/
EcPublicKey_SIGNING", FileMode.Open, FileAccess.Read);

61 FileStream EcPrivateFile = new FileStream(@"D:/MetaSec_/Robert/trunk/
detego.Surveyor/Service2/detego.Service.WCF/SecureChannel/
EcPrivateKey_SIGNING", FileMode.Open, FileAccess.Read);

62 AsymmetricCipherKeyPair authEcKeyPair = keygen.GetKeysFromFiles(
EcPublicFile, EcPrivateFile);

63

64 Authentication auth = new Authentication();
65

66 bool verified = auth.verifyEPedigree(authEcKeyPair, ped_w_tsp,
signature);

67

68 if (!verified) return ScCommandToPropVal(null, "ScRead", "SIGERROR");
69

70 byte[] epedigree = new byte[ped_w_tsp.Length - 4];
71 byte[] timestamp = new byte[4];
72 System.Buffer.BlockCopy(ped_w_tsp, 0, epedigree, 0, epedigree.Length);
73 System.Buffer.BlockCopy(ped_w_tsp, ped_w_tsp.Length - 4, timestamp, 0,

4);
74 if (BitConverter.IsLittleEndian) Array.Reverse(timestamp);

123

75 int timestamp_int = BitConverter.ToInt32(timestamp, 0);
76

77 EPedigreeHandler pedHandler = new EPedigreeHandler();
78 pedHandler.convertByteArrayToXml(epedigree, @"D:/MetaSec_/Robert/trunk/

detego.Surveyor/Service2/detego.Service.WCF/SecureChannel/pedigree.
xml");

79 Pedigree ped = pedHandler.readPedigreeToStruct(@"D:/MetaSec_/Robert/
trunk/detego.Surveyor/Service2/detego.Service.WCF/SecureChannel/
pedigree.xml");

80 Product product = entities.Products.SingleOrDefault(
81 p =>
82 p.ArticleNumber == ped.ArticleNumber &&
83 p.Name == ped.ProductName);
84

85 if (product == null)
86 {
87 product = new Product()
88 {
89 Name = ped.ProductName,
90 DisplayName = CommandBuilder.UnixTimeToDateTime(

timestamp_int.ToString()).ToString(),
91 ArticleNumber = ped.ArticleNumber
92 };
93 entities.Products.Add(product);
94 entities.SaveChanges();
95 return ScCommandToPropVal(null, "ScRead", "ADDED_NEW_PRODUCT");
96 }
97

98 current_productid = product.ProductId;
99 product.TimeStampEvent = DateTime.UtcNow;

100 product.DisplayName = CommandBuilder.UnixTimeToDateTime(timestamp_int.
ToString()).ToString();

101

102 byte[] new_timestamp = CommandBuilder.getRealUnixTimestamp();
103 byte[] to_sign = new byte[epedigree.Length + 4];
104 System.Buffer.BlockCopy(epedigree, 0, to_sign, 0, epedigree.Length);
105 if (BitConverter.IsLittleEndian) Array.Reverse(timestamp);
106 System.Buffer.BlockCopy(new_timestamp, 0, to_sign, epedigree.Length, 4)

;
107 byte[] new_sig = auth.signEPedigree(authEcKeyPair, to_sign);
108 while (new_sig.Length != 56) { new_sig = auth.signEPedigree(

authEcKeyPair, to_sign); }
109 byte[] new_pedigree_full = new byte[to_sign.Length + new_sig.Length];
110 System.Buffer.BlockCopy(to_sign, 0, new_pedigree_full, 0, to_sign.

Length);
111 System.Buffer.BlockCopy(new_sig, 0, new_pedigree_full, to_sign.Length,

new_sig.Length);
112

113 if (auth.verifyEPedigree(authEcKeyPair, to_sign, new_sig) != true)
return ScCommandToPropVal(null, "ScRead", "SIG_GEN_ERROR");

114

115 returnstate = "WRITEREADY";
116 offset = 0;
117 copyOffset = 0;
118 write_pedigree_buffer = new_pedigree_full;
119

124 APPENDIX B. LISTINGS

120 return ScCommandToPropVal(null, "ScRead", returnstate);
121 }

Listing B.7 DataService.scv.cs: ScCheckWrite

1 public PropertyValue ScCheckWrite(PropertyValue write_response)
2 {
3 if (write_response.StringValue != null) ScCommandToPropVal(null, "

ClientLocation", write_response.StringValue);
4

5 if (write_response == null) return ScCommandToPropVal(null, "
ScCheckWrite", "NULLINPUT");

6 byte[] response = write_response.BinaryValue;
7 if (response == null) return ScCommandToPropVal(null, "ScCheckWrite", "

NULLINPUTBYTES");
8 if (response[0] != 0x02 || response[1] != 0x02) return

ScCommandToPropVal(null, "ScCheckWrite", "MESSAGEERROR");
9

10 int length = (((int)response[2] << 8) + (int)response[3]);
11 byte[] encrypted = new byte[response.Length - 8];
12 System.Buffer.BlockCopy(response, 8, encrypted, 0, encrypted.Length);
13

14 byte[] tsp = new byte[4];
15 System.Buffer.BlockCopy(response, 4, tsp, 0, 4);
16

17 byte[] nonce = new byte[15];
18 System.Buffer.BlockCopy(tsp, 0, nonce, 11, 4);
19

20 byte[] decrypted = OCB.decrypt(AES.key, AES.key.Length * 8, encrypted,
nonce, tsp, 128);

21

22 if (decrypted == null) return ScCommandToPropVal(null, "ScCheckWrite",
"READERROR");

23 if (decrypted[0] == 0x00 && decrypted[1] == 0x00) return
ScCommandToPropVal(null, "ScCheckWrite", "OK");

24

25 return ScCommandToPropVal(null, "ScCheckWrite", "ERROR");
26 }

Listing B.8 Store Keys to File

1 SubjectPublicKeyInfo RSAsubInfo = SubjectPublicKeyInfoFactory.
CreateSubjectPublicKeyInfo(myRSAKeyPair.Public);

2 Asn1Object RSAaobject = RSAsubInfo.ToAsn1Object();
3 byte[] pubInfoByte = RSAaobject.GetEncoded();
4 FileStream RSAfs = new FileStream(@"D:/MetaSec/trunk/MASTER/CryptoTest1/

Test1/Test1/bin/Debug/RsaPublicKey", FileMode.Create, FileAccess.Write);
5 RSAfs.Write(pubInfoByte, 0, pubInfoByte.Length);
6 RSAfs.Close();
7

8 //PrivateKeyInfo RSAprivateKeyInfo = PrivateKeyInfoFactory.
CreatePrivateKeyInfo(myRSAKeyPair.Private);

9 //RSAaobject = RSAprivateKeyInfo.ToAsn1Object();

125

10

11 EncryptedPrivateKeyInfo enRSAprivate = EncryptedPrivateKeyInfoFactory.
CreateEncryptedPrivateKeyInfo(

12 "1.2.840.113549.1.12.1.3", //alog
13 "Meta[:SEC:]".ToCharArray(),//pw
14 new byte[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 },//salt
15 100,//iterations
16 myRSAKeyPair.Private);
17 byte[] priInfoByte = enRSAprivate.GetEncoded();
18 RSAfs = new FileStream(@"D:/MetaSec/trunk/MASTER/CryptoTest1/Test1/Test1/

bin/Debug/RsaPrivateKey", FileMode.Create, FileAccess.Write);
19 RSAfs.Write(priInfoByte, 0, priInfoByte.Length);
20 RSAfs.Close();
21

22 SubjectPublicKeyInfo ECsubInfo = SubjectPublicKeyInfoFactory.
CreateSubjectPublicKeyInfo(myECKeyPair.Public);

23 Asn1Object ECaobject = ECsubInfo.ToAsn1Object();
24 byte[] ECpubInfoByte = ECaobject.GetEncoded();
25 FileStream ECfs = new FileStream(@"D:/MetaSec/trunk/MASTER/CryptoTest1/

Test1/Test1/bin/Debug/EcPublicKey_SIGNING", FileMode.Create, FileAccess.
Write);

26 ECfs.Write(ECpubInfoByte, 0, ECpubInfoByte.Length);
27 ECfs.Close();
28

29 //PrivateKeyInfo ECprivateKeyInfo = PrivateKeyInfoFactory.
CreatePrivateKeyInfo(myECKeyPair.Private);

30 //ECaobject = ECprivateKeyInfo.ToAsn1Object();
31

32 EncryptedPrivateKeyInfo enECprivate = EncryptedPrivateKeyInfoFactory.
CreateEncryptedPrivateKeyInfo(

33 "1.2.840.113549.1.12.1.3", //alog
34 "Meta[:SEC:]".ToCharArray(),//pw
35 new byte[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 },//salt
36 100,//iterations
37 myECKeyPair.Private);
38 byte[] ECpriInfoByte = enECprivate.GetEncoded();
39 ECfs = new FileStream(@"D:/MetaSec/trunk/MASTER/CryptoTest1/Test1/Test1/bin

/Debug/EcPrivateKey_SIGNING", FileMode.Create, FileAccess.Write);
40 ECfs.Write(ECpriInfoByte, 0, ECpriInfoByte.Length);
41 ECfs.Close();

Listing B.9 CommandHandler.java

1 package com.detego.sc;
2

3 import android.content.Context;
4 import android.os.AsyncTask;
5 import android.util.Base64;
6 import android.util.Log;
7

8 import com.detego.javaEntities.Product;
9 import com.detego.javaEntities.PropertyValue;

10 import com.infineon.dcgr.ccs.demo.avl.protocol.AuthCommand;
11 import com.infineon.dcgr.ccs.demo.avl.protocol.ReadCommand;
12 import com.infineon.dcgr.ccs.demo.avl.protocol.WriteCommand;

126 APPENDIX B. LISTINGS

13

14 import org.json.JSONException;
15 import org.json.JSONObject;
16

17 import java.io.InputStream;
18 import java.net.MalformedURLException;
19 import java.net.URL;
20 import java.util.concurrent.ExecutionException;
21

22 /**
23 * Created by Robert.Pleyer on 01.07.2014.
24 */
25 public class CommandHandler {
26

27 private static ConnectionHTTPS connectionhttps;
28

29 static {
30 connectionhttps = new ConnectionHTTPS();
31 }
32

33 private static InputStream certificateStream;
34

35 public static AuthCommand GetAuthCommand(Context context, HomeActivity
homeActivity) {

36 try {
37 certificateStream = context.getResources().openRawResource(R.

raw.cert);
38 AuthTask authTask = new AuthTask();
39 authTask.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR);
40 byte[] authBytes = authTask.get();
41 return new AuthCommand(authBytes, homeActivity);
42 } catch (InterruptedException e) {
43 e.printStackTrace();
44 } catch (ExecutionException e) {
45 e.printStackTrace();
46 }
47 return null;
48 }
49

50 public static boolean CheckAuthResponse(Context context, byte[]
authResponse) {

51 try {
52 certificateStream = context.getResources().openRawResource(R.

raw.cert);
53

54 PropertyValue propval = new PropertyValue();
55 propval.binaryvalue = Base64.encodeToString(authResponse,

Base64.NO_WRAP);
56

57 CheckAuthTask checkAuthTask = new CheckAuthTask();
58 checkAuthTask.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR,

propval);
59 return checkAuthTask.get();
60 } catch (InterruptedException e) {
61 e.printStackTrace();
62 } catch (ExecutionException e) {

127

63 e.printStackTrace();
64 }
65 return false;
66 }
67

68 public static PropertyValue CheckReadResponse(Context context, byte[]
readResponse) {

69 try {
70 certificateStream = context.getResources().openRawResource(R.

raw.cert);
71

72 PropertyValue propval = new PropertyValue();
73 propval.binaryvalue = Base64.encodeToString(readResponse,

Base64.NO_WRAP);
74

75 CheckReadTask checkReadTask = new CheckReadTask();
76 checkReadTask.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR,

propval);
77 return checkReadTask.get();
78 } catch (InterruptedException e) {
79 e.printStackTrace();
80 } catch (ExecutionException e) {
81 e.printStackTrace();
82 }
83 return null;
84 }
85

86 public static JSONObject Finalize(Context context, HomeActivity
homeActivity) {

87 try {
88 certificateStream = context.getResources().openRawResource(R.

raw.cert);
89

90 FinalizeTask finalizeTask = new FinalizeTask();
91 finalizeTask.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR);
92 return finalizeTask.get();
93 } catch (InterruptedException e) {
94 e.printStackTrace();
95 } catch (ExecutionException e) {
96 e.printStackTrace();
97 }
98 return null;
99 }

100

101

102 public static class AuthTask extends AsyncTask<Void, Void, byte[]> {
103

104 @Override
105 protected void onPreExecute() {
106 }
107

108 @Override
109 protected byte[] doInBackground(Void... params) {
110 try {
111 InputStream fin = certificateStream;
112 URL url = new URL("https://grzdev0104.at.local/detego.

128 APPENDIX B. LISTINGS

Service.WCF/DataService.svc/Json/ScGetChallenge");
113 JSONObject commandObj = connectionhttps.

connectToHttpsWithSelfSignedCertificate(url, fin, null);
114 return Base64.decode(commandObj.getString("BinaryValue"),

Base64.NO_WRAP);
115 } catch (MalformedURLException e) {
116 e.printStackTrace();
117 } catch (JSONException e) {
118 e.printStackTrace();
119 }
120 return null;
121 }
122

123 }
124

125 public static class CheckAuthTask extends AsyncTask<PropertyValue, Void
, Boolean> {

126

127 @Override
128 protected void onPreExecute() {
129 }
130

131 @Override
132 protected Boolean doInBackground(PropertyValue... propertyValues) {
133 try {
134 InputStream fin = certificateStream;
135 URL url = new URL("https://grzdev0104.at.local/detego.

Service.WCF/DataService.svc/Json/ScVerifyResponse");
136 JSONObject commandObj = connectionhttps.

postToHttpsWithSelfSignedCertificate(url, fin, null,
propertyValues[0]);

137 String response = commandObj.getString("StringValue");
138 if (response.equals("TRUE")) return true;
139 } catch (MalformedURLException e) {
140 e.printStackTrace();
141 } catch (JSONException e) {
142 e.printStackTrace();
143 }
144 return false;
145 }
146

147 }
148

149 public static class CheckReadTask extends AsyncTask<PropertyValue, Void
, PropertyValue> {

150

151 @Override
152 protected void onPreExecute() {
153 }
154

155 @Override
156 protected PropertyValue doInBackground(PropertyValue...

propertyValues) {
157 try {
158 InputStream fin = certificateStream;
159 URL url = new URL("https://grzdev0104.at.local/detego.

129

Service.WCF/DataService.svc/Json/ScRead");
160 JSONObject commandObj = connectionhttps.

postToHttpsWithSelfSignedCertificate(url, fin, null,
propertyValues[0]);

161 PropertyValue pv_response = new PropertyValue();
162 pv_response.binaryvalue = commandObj.getString("BinaryValue

");
163 pv_response.stringvalue = commandObj.getString("StringValue

");
164 return pv_response;
165 } catch (MalformedURLException e) {
166 e.printStackTrace();
167 } catch (JSONException e) {
168 e.printStackTrace();
169 }
170 return null;
171 }
172

173 }
174

175 public static ReadCommand GetReadCommand(Context context, HomeActivity
homeActivity) {

176 try {
177 certificateStream = context.getResources().openRawResource(R.

raw.cert);
178 StartReadTask startReadTask = new StartReadTask();
179 startReadTask.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR)

;
180 byte[] readBytes = startReadTask.get();
181 return new ReadCommand(readBytes, homeActivity);
182 } catch (InterruptedException e) {
183 e.printStackTrace();
184 } catch (ExecutionException e) {
185 e.printStackTrace();
186 }
187 return null;
188 }
189

190

191 public static class StartReadTask extends AsyncTask<Void, Void, byte[]>
{

192

193 @Override
194 protected void onPreExecute() {
195 }
196

197 @Override
198 protected byte[] doInBackground(Void... params) {
199 try {
200 InputStream fin = certificateStream;
201 URL url = new URL("https://grzdev0104.at.local/detego.

Service.WCF/DataService.svc/Json/ScGetReadCommand");
202 JSONObject commandObj = connectionhttps.

connectToHttpsWithSelfSignedCertificate(url, fin, null);
203 return Base64.decode(commandObj.getString("BinaryValue"),

Base64.NO_WRAP);

130 APPENDIX B. LISTINGS

204 } catch (MalformedURLException e) {
205 e.printStackTrace();
206 } catch (JSONException e) {
207 e.printStackTrace();
208 }
209 return null;
210 }
211

212 }
213

214 public static WriteCommand GetWriteCommand(Context context,
HomeActivity homeActivity) {

215 try {
216 certificateStream = context.getResources().openRawResource(R.

raw.cert);
217 WriteTask writeTask = new WriteTask();
218 writeTask.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR);
219 byte[] writeBytes = writeTask.get();
220 return new WriteCommand(writeBytes, homeActivity);
221 } catch (InterruptedException e) {
222 e.printStackTrace();
223 } catch (ExecutionException e) {
224 e.printStackTrace();
225 }
226 return null;
227 }
228

229 public static class WriteTask extends AsyncTask<Void, Void, byte[]> {
230

231 @Override
232 protected void onPreExecute() {
233 }
234

235 @Override
236 protected byte[] doInBackground(Void... params) {
237 try {
238 InputStream fin = certificateStream;
239 URL url = new URL("https://grzdev0104.at.local/detego.

Service.WCF/DataService.svc/Json/ScWrite");
240 JSONObject commandObj = connectionhttps.

connectToHttpsWithSelfSignedCertificate(url, fin, null);
241 return Base64.decode(commandObj.getString("BinaryValue"),

Base64.NO_WRAP);
242 } catch (MalformedURLException e) {
243 e.printStackTrace();
244 } catch (JSONException e) {
245 e.printStackTrace();
246 }
247 return null;
248 }
249

250 }
251

252 public static PropertyValue NextWriteCommand(Context context,
HomeActivity homeActivity) {

253 try {

131

254 certificateStream = context.getResources().openRawResource(R.
raw.cert);

255 NextWriteTask nextWriteTask = new NextWriteTask();
256 nextWriteTask.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR)

;
257 return nextWriteTask.get();
258 } catch (InterruptedException e) {
259 e.printStackTrace();
260 } catch (ExecutionException e) {
261 e.printStackTrace();
262 }
263 return null;
264 }
265

266 public static class NextWriteTask extends AsyncTask<Void, Void,
PropertyValue> {

267

268 @Override
269 protected void onPreExecute() {
270 }
271

272 @Override
273 protected PropertyValue doInBackground(Void... params) {
274 try {
275 InputStream fin = certificateStream;
276 URL url = new URL("https://grzdev0104.at.local/detego.

Service.WCF/DataService.svc/Json/ScWrite");
277 JSONObject commandObj = connectionhttps.

connectToHttpsWithSelfSignedCertificate(url, fin, null);
278 PropertyValue pv_response = new PropertyValue();
279 pv_response.binaryvalue = commandObj.getString("BinaryValue

");
280 pv_response.stringvalue = commandObj.getString("StringValue

");
281 return pv_response;
282 } catch (MalformedURLException e) {
283 e.printStackTrace();
284 } catch (JSONException e) {
285 e.printStackTrace();
286 }
287 return null;
288 }
289

290 }
291

292 private static class FinalizeTask extends AsyncTask<Void, Void,
JSONObject> {

293

294 @Override
295 protected void onPreExecute() {
296 }
297

298 @Override
299 protected JSONObject doInBackground(Void... params) {
300 try {
301 Log.d("FinalizeTask", "FinalizeTask called");

132 APPENDIX B. LISTINGS

302 InputStream fin = certificateStream;
303 URL url = new URL("https://grzdev0104.at.local/detego.

Service.WCF/DataService.svc/Json/ScFinalize");
304 JSONObject commandObj = connectionhttps.

connectToHttpsWithSelfSignedCertificate(url, fin, null);
305 return commandObj;
306 } catch (MalformedURLException e) {
307 e.printStackTrace();
308 }
309 Log.d("FinalizeTask", "@return null");
310 return null;
311 }
312 }
313 }

	Introduction
	Related Work
	Cryptography Fundamentals
	Symmetric Cryptography
	Asymmetric Cryptography
	Authenticated Encryption
	Offset Codebook
	Montgomery Multiplication

	Secure RFID
	RFID
	NFC
	ECC
	RFID-Tag Prototype

	Secure Backend
	Backend-Connection with TLS

	Android Operating System
	ePedigree Standard
	Similar Systems

	Design
	The Secure Channel System
	Concept
	Anti-Counterfeit Use Case
	Authentication
	Tag Data and Operations

	Backend Design
	Database
	Web Service

	RFID-Tag Prototype
	Protocol
	Tag Data

	Android Application Design
	Android User Interface

	Workflow

	Implementation
	Software Simulation
	Key Generation
	Authentication (Simulation)
	OCB Simulation

	Backend Server
	Command Builder
	Pedigree Handler
	Secure Channel Commands

	Android Application
	Class ConnectionHTTPS
	Class CommandHandler
	Class HomeActivity

	Results
	Android Application
	Timing Analysis

	Conclusion
	Bibliography
	Figures
	Listings

