
Michael Zelle, BSc

Design and Implementation of a

Hardware Supported Memory Protection

for the Java Card Firewall

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Telematics

submitted to

Graz University of Technology

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Institute for Technical Informatics

 Diplom-Ingenieur

Supervisor

Graz, April 2015

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all material
which has been quoted either literally or by content from the sources used. The text
document uploaded to TUGRAZonline is identical to the present master‘s thesis
dissertation.

.............................. ...
date (signature)

I

Kurzfassung

Aktuelle Überprüfungen verschiedener Java Card Applets haben ergeben, dass es
keinen ausreichenden Sicherheitsschutz gegen Angriffe zur Laufzeit gibt. Dieses Pro-
blem betrifft vor allem Java Cards, auf denen mehrere Anwendungen parallel laufen.

Die Java Card Firewall wird nun verwendet, um diese verschiedenen Anwendungen
voneinander zu trennen. Dies bedeutet, keine Anwendung darf auf den Speicher-
bereich einer anderen Zugriff erlangen. Auch der Systemspeicher muss von dieser
Firewall geschützt werden. Derzeit ist die Firewall Teil der virtuellen Maschine und
rein in Software implementiert.

Es müssen nun Konzepte in eingebetteten Systemen evaluiert werden, welche die
Java Card Firewall auf Hardwareebene unterstützen und dadurch sicherer machen.
Diese Realisierung kann mittels einer Memory Protection Unit und einer Memory
Management Unit durchgeführt werden. Durch Abwägung der Vor- und Nachteile
fiel die Entscheidung auf eine Memory Management Unit. Mit dieser wird virtual
paging implementiert. Anwendungen verwenden nur noch virtuelle Adressen, um auf
den Speicher zuzugreifen. Die Verwaltung dieser Adressen wird vom Betriebssystem
übernommen.

Damit diese Verwaltung vom Betriebssystem durchgeführt werden kann, muss ei-
ne dementsprechende Anpassung dahingegen erfolgen. Allerdings müssen bei diesen
Veränderungen alle Aspekte und Vorgaben betreffend der Java Card Firewall einge-
halten werden.

Schlüsselwörter

Smart Cards, Java Card, Memory Management Unit, Virtual Addresses, Memory
Mapping

II

Abstract

Recent reviews of different Java Card applets have shown, that there is no adequate
security protection against attacks at run-time. This problem mainly affects Java
Cards, which are running multiple applications in parallel.

Now the Java Card firewall is used to separate these different applications from
each other. This means that no application is able to gain access to a memory area
from another one. Also the system memory must be protected by this firewall. At
the moment, the firewall is part of the virtual machine and implemented in software.

Then several concepts in embedded systems have to be evaluated, which support
the Java Card firewall at the hardware level and make it more secure. This can be
realized with a Memory Protection Unit and a Memory Management Unit. After
weighing the pros and cons the decision felt for the Memory Management Unit.
With this virtual paging will be implemented. All applications must use virtual
addresses to access the memory. The management of these addresses will be done
by the Operating System.

To make it possible, that this management can be done by the Operating Sys-
tem, it must be adapted. But all changes have to fulfill all aspects and guidelines of
the Java Card firewall.

Keywords

Smart Cards, Java Card, Memory Management Unit, Virtual Addresses, Memory
Mapping

III

Acknowledgments

This master thesis was carried out during the year 2014/2015 on the Institute for
Technical Informatics at Graz University of Technology.

First, I want to thank Christian Steger for the possibility to write my master thesis
at the Institute for Technical Informatics.
I also want to express my special gratitude to Reinhard Berlach, who supported me
with all of his possiblities over the whole time of this thesis.
Andreas Sinnhofer supported me especially at the end of this master thesis to finish
the work.

Last but not least I want to thank my parents and all of my friends, who sup-
ported me throughout my student time and I am sure that they will support me in
my future.

Graz, April 2015 Michael Zelle, BSc

IV

Contents

1 Introduction 1
1.1 The CoCoon Project . 1
1.2 Motivation . 3
1.3 Outline . 3

2 State of the Art 5
2.1 Virtual Machine . 5
2.2 Java . 6

2.2.1 General information . 6
2.2.2 Different Java Runtime Environment Platforms 7

2.3 Java Card . 8
2.3.1 Components . 8
2.3.2 Benfits . 9
2.3.3 Differences between Java and Java Card 10

2.4 Smart Cards . 11
2.4.1 General smart card Information . 11
2.4.2 Different types of smart card attacks 15
2.4.3 Possible attacks . 18

2.5 Memory Separation in Embedded Systems 20
2.5.1 Overview . 20
2.5.2 Separation with the Java Card Firewall 21
2.5.3 Memory Protection Devices . 22

3 Design 24
3.1 System Overview . 24
3.2 Chosen Memory Protection Device . 25

3.2.1 Memory Management Unit . 25
3.2.2 Internal structure . 26

3.3 Memory Map . 26
3.4 Parsing of lookup table entries . 28
3.5 Use Cases . 30

3.5.1 Use Cases of the Memory Management Unit 30
3.5.2 Use Cases of Operating System . 33

3.6 Future Changes of given Architecture . 37

V

4 Implementation 39
4.1 Development Environment . 39

4.1.1 Field Programmable Gate Array Board 39
4.1.2 Software Environment . 40

4.2 Implementation of the System in VHDL . 41
4.3 Memory Management Unit . 44

4.3.1 The Advanced High-Performance BUS slave interface 44
4.3.2 The configuration logic . 46
4.3.3 The memory logic . 50
4.3.4 The mirrored AHB slave interface 52
4.3.5 The dual port memory . 55
4.3.6 The D-Flip-Flop . 57
4.3.7 The logic gates . 57

4.4 Test cases . 58
4.4.1 Testbench for Advanced Microcontroller BUS Architecture model . . 58
4.4.2 Testing of the Advanced High-Performance BUS slave interface . . . 58
4.4.3 Testing of the mirrored Advanced High-Performance BUS slave in-

terface . 59
4.4.4 Testing the memory logic . 59
4.4.5 Testing the configuration logic . 60

4.5 Setting up of the Test environment . 60

5 Results 63
5.1 Configuration tests . 63

5.1.1 Write access . 63
5.1.2 IRQ . 64
5.1.3 Mode Changing . 64
5.1.4 Reset . 65

5.2 Memory tests . 65
5.2.1 Physical address access . 67
5.2.2 Virtual address access . 67
5.2.3 IRQ . 68

5.3 Speed Analysis . 68

6 Conclusion 72
6.1 Outlook . 72

A Appendix 73
A.1 Acronyms . 73
A.2 Core Information . 75
A.3 Testbench VHDL Code . 75
A.4 Code simulation File . 79
A.5 AMBA control File . 82

Bibliography 86

VI

List of Figures

1.1 CoCoon overview . 1
1.2 Java Card Layers . 2

2.1 Independence of hardware with Java . 7
2.2 Different Java platforms . 8
2.3 Block diagramm of different smart card types 13
2.4 Smart card contacts . 14
2.5 RFID card with chip and antenna . 14
2.6 Types of smart card attacks . 15
2.7 Simple illustration of the principle of the attacks 19
2.8 Mode of operation of Java Card firewall . 21

3.1 System overview . 25
3.2 Memory Management Unit . 27
3.3 The different types of memory maps . 28
3.4 Parsing of lookup table entry . 30
3.5 Use cases of the Memory Management Unit 31
3.6 Use cases of the OS . 34
3.7 Changes in software architecture . 38

4.1 FPGA board . 40
4.2 VHDL test system . 43
4.3 VHDL Memory Management Unit . 45
4.4 Ports of AHB slave interface . 46
4.5 State Diagram of AHB slave interface . 48
4.6 Ports of configuration logic . 48
4.7 State Diagram of configuration logic . 50
4.8 Ports of memory logic . 51
4.9 State Diagram of memory logic . 53
4.10 Ports of mirrored AHB slave interface . 53
4.11 State Diagram of mirrored AHB slave interface 55
4.12 Ports of TLB . 56
4.13 Ports of D-Flip-Flop . 57
4.14 Libero SoC start screen . 61
4.15 Choosing the project file . 61
4.16 Starting the simulation with ModelSim . 62
4.17 Choosing the root file in Libero SoC . 62

VII

5.1 Write access of configuration logic . 64
5.2 Occuring page fault from configuration logic 65
5.3 Changing between user and system mode 66
5.4 Reset of lookup table . 66
5.5 Memory access with physical address . 67
5.6 Memory access with virtual address . 68
5.7 Memory access with permission errors . 69
5.8 Memory access with invalid entry . 70
5.9 Transfer time without MMU . 70
5.10 Transfer time with MMU . 71

VIII

List of Tables

2.1 Contacts for smart card pinout . 12
2.2 Command structure for smart cards . 16
2.3 Attack statistic . 18

4.1 Used IP-Cores for implemented system . 44
4.2 Description of AHB slave interface ports . 47
4.3 Description of configuration logic ports . 49
4.4 Description of memory logic ports . 52
4.5 Description of mirrored AHB slave interface ports 54
4.6 Description of TLB ports . 56
4.7 Description of D-Flip-Flop ports . 57
4.8 Description of logic gate ports . 58

A.1 IP-Cores version numbers . 75

IX

Chapter 1

Introduction

This chapter will give a short overview over this master thesis, which was made
in cooperation with the Graz University of Technology. First I will explain what
the CoCoon Project is. Then I will write about my personal motivation to do this
project and why it is necessary to work on it. The next step is a short description
of the tasks and the occurring problems with current technologies. In the end there
is an overview over the structure of this master thesis. So now it is possible to see
what can be expected in the next chapters.

1.1 The CoCoon Project

Figure 1.1: CoCoon overview

CoCoon stands for: Codesign for Countermeasures against Malicious Applica-
tions on Java Cards. It was a corporate project from the Institute for Technical In-

1

CHAPTER 1. INTRODUCTION 2

formatics - Graz University of Technology and NXP Semiconductors Austria GmbH
Styria. This project ended in September 2014. In Figure 1.1 is a graphical overview
of this project which show, how it works to get secret data from a smart card with
a modified applet.
The final goal of this project was to get user centric ownership Java Cards which
are compatible with the requirements of future smart card solutions. The problem
about that is, that users are able to download untrusted software. It is important,
that this software is not able to communicate with other applications (especially
critical applications like e.g. payment software). So it must be guaranteed, that the
integrity against logical attacks or physical attacks during run-time is given.
Another important reason for making a smart card more secure is because we do
not live in a secure environment. A secure environment is, when a smart card can
not be stolen or lost. Since that is not possible it can happen that someone is able
to gain physical access to a foreign smart card.
In Figure 1.2 the abstraction layers of the Java Card implementation, which were
used in the CoCoon project, are shown. The red marked path is the part, where
this thesis will focus on. Most of the changes which are made, are on the hardware
layer and go up into the software layers of the Java Card Virtual Machine.

Java Card Runtime Environment (JCRE)

Smart Card Hardware

Java Card Virtual Machine (JCVM)

Smart Card FirewallBytecode
Verification

Defensive VM
Mechanisms

HW Support

Applet A Applet B Applet C

Software

Hardware

Figure 1.2: Java Card layers

CHAPTER 1. INTRODUCTION 3

1.2 Motivation

In a perfect world, there would be no need for security. But this world is not perfect.
So we need security mechanisms to protect private information.
Smart cards are getting more and more important in our everyday life. Almost
every person is using one every day. This starts by paying with debit or credit card
or using a discount card. Sure, not every card has the same requirements in terms
of security in the needed security. The next problem is, that the quantity of smart
cards per person is getting higher, and so the stress for the user. It is not possible,
to have every single smart card available at every time. Everyone decides which
smart cards are most important for daily use. Those smart cards will be taken
along against those cards that are not really needed. Therefore more functionality
needs to be put on a single card as proposed by the CoCoon Project.
The goal of this master thesis is to develop a hardware device, which supports the
Java Card firewall at hardware level. This is needed because current applied static
verifications of Java Card applets provide insufficient security protection against
fault attacks at run-time. Especially for the multi-application Java Cards it is a big
problem. The Java Card firewall now separates different contexts from each other
and protects the system space. To support this by hardware, makes it harder to
break.

Tasks:

• Literature research of existing implementations of embedded memory separa-
tion.

• Requirement engineering of the rules of the Java Card Applet Firewall.

• Concept for connecting the Java Card Applet Firewall with a memory protec-
tion device.

• Design and implementation of a running prototype.

• Testing of prototype.

• Research of attack type which can be blocked.

1.3 Outline

The following provides a short overview of the following chapters and its structure.

In Chapter 2 is the information about the current state of the art. The first part
is in Section 2.1, to explain, what a virtual machine is. The next is about Java
and Java Card in the Sections 2.2 and 2.3. In 2.4, general information about smart
cards and how they can be attacked are given. The last part is in Section 2.5, of

CHAPTER 1. INTRODUCTION 4

the possibilities of memory seperation.

Chapter 3 is about the design of the hardware. As first in Section 3.1, the sys-
tem is planned. In 3.2 the memory device is explained in detail. Sections 3.3 and
3.4 explain the work of the virtual addresses and how they are stored in the mem-
ory of the protection device. And in 3.5 an overview of the possible usecases is given.

Chapter 4 will show up with all details about the implementation process. It starts
in Section 4.1 with the used hardware and software. Section 4.2 shows details of the
testing system and 4.3 of the protection device. As last step in 4.4 the test cases
are shown. The last Section 4.5 shows how to rebuild the test environment.

In Chapter 5 the results and short analysis of the implementation are followed by
the discussion of future developments and conclusions in Chapter 6.

Chapter 2

State of the Art

2.1 Virtual Machine

In computing, a Virtual Machine (VM) emulates a special part of a computer system.
This type of emulation can be classified into two parts, dependent from the range
of the virtualisation:

• System virtual machines

• Process virtual machines

A system virtual machine, can be used to simulate a complete computer. It is also
able to run Operating Systems, which were designed for real computers like explained
in [24]. This type is also called full virtualisation. It is based on the definition
from Robert Gold and Gerald Popek: “A virtual Machine is an efficient, identical
and isolated duplicate of a real processor” [23]. Good known software examples of
this type of emulation are: Microsoft’s “VirtualPC”, VMWare’s “Workstation” or
Oracle’s “VirtualBox”.
The process VM, also called application VM or Managed Runtime Einvironment
(MRE) runs an application within an Operating System. It only supports one single
process. That means when the process is started it is created, and is destroyed, when
the process is finished. The applet now runs in this process, which is independed
from the hardware or the OS. This is really important for developing applications,
which has to be independent from the used platform. Good known examples of this
virtualisation type are Oracle’s Java Virtual Machine or the Common Language
Runtime from Microsoft’s .NET Framework.

5

CHAPTER 2. STATE OF THE ART 6

2.2 Java

2.2.1 General information

Java Card (JC) is a variant of the widely used programming language Java. Java
has three components:

1. The Java programming language

2. The Java Development Kit

3. The Java Runtime Environment

Java is a simple object oriented programming language with the goal of being se-
cure, dynamic, portable and architecture independent. It was developed from the
company Sun Microsystems which was acquired by Oracle Corporation in 2010. The
main goal of java is to provide the principle: “Write once, run everywhere” [7]. The
program is written by the developer in the so-called “source code”.
This code is not executable. For this it must be translated by the compiler into the
byte code. The compiler is part of the Java Development Kit (JDK). Here every
tool for programing and testing is provided. The biggest competitor to Java on the
market is .NET from Microsoft.
The next layer is the Java Runtime Environment (JRE). This is a complete software
platform, in which programs can be executed without dependencies of the Operating
System (OS) of the device. Part of this JRE is the Java Virtual Machine (JVM).
Because the generated byte code is mostly not tested on real hardware, a virtual
machine is used. So it is possible to get independent from the platform. The JRE
is provided for the following OS:

• Linux

• Windows

• Sloaris

• OS X

• other manufacturer with certified JRE

In Figure 2.1is the example for showing that the applications in Java are independent
from the used hardware. Different applications run in the Virtual Machine which
is embedded in the Runtime Environment. The applications are independent from
the hardware, but the software from the lower layers must be working with this
hardware. For example, a computer runs the Java Virtual Machine while a smart
card runs a Java Card Virtual Machine.

CHAPTER 2. STATE OF THE ART 7

Java Runtime Environment Interface
(JRE Interface)

Java Virtual Machine
(JVM)

Firewall

Applet A Applet B Applet C

Software

Hardware

Type of VM
and RE is

dependent from
used HW

….

….

Computer

JRE

Smart Card

JCRE

Mobile Phone

JMRE

Figure 2.1: Independence of hardware with Java

2.2.2 Different Java Runtime Environment Platforms

In addition to the different Operating Systems, there are also different platforms. A
graphical overview of these platforms is illustrated in Figure 2.2.

• Java Platform Enterprise Edition (Java EE)
Java EE is for computer- and web-based applications. It is also one of the
biggest platforms for the middleware market. The defined specifications are
used to provide interoperability.

• Java Platform Standard Edition (Java SE)
Java SE is the base for Java EE and Java ME. It is for general use with
computers. Here a wide range of general purpose APIs are defined. The most
important ones are the APIs for the Java Class Library which includes the
specification for the Java Virtual Machine or the Java Language. The Java
Development Kit is one of the best known implementations of the Java SE.

• Java Platform Micro Edition (Java ME)
This platform is used for mobile phones, industrial controls, PDA’s or set-top
boxes. Java ME implements configurations and the profiles. It is a subset of
Java SE. It can be used to grant access to internal functions.

CHAPTER 2. STATE OF THE ART 8

• Java Platform Java Card
It is a reduced subset of Java, which is used to run Java applets on chipcards.

Figure 2.2: Different Java platforms [12]

2.3 Java Card

2.3.1 Components

The Java Card technology consists of two parts. The Java Card Platform Speci-
fication and the Java Card Development Kit are published by Oracle Corporation
[2]. In version 2.2.2 of this specification three documents are included. This is to
provide cross-platform and cross-vendor interoperability:

• The Java Card Virtual Machine Specification
In this area everything for the Java Card technology is specified. This includes
the behavior, the features and the services, which must be supported. Also
included is a VM instruction set and the used file format for installing applets
and libraries on any device which runs on Java Card technology.

CHAPTER 2. STATE OF THE ART 9

• The Java Card Runtime Environment Specification
Here the necessary behavior of the Java Runtime Environment, together with
any implementation of Java Card technology, is defined.

• Application Programming Interface for Java Card Platform
This part is only complementing to the Virtual Machine and Runtime Envi-
ronment. The Application Programming Interface (API) must be compatible
with the industry standards.

The Java Card Development Kit is for developers. This developing suite provides
tools for two things: the first is for creating implementations of JC. The second - and
most important one - is intended for developing applets based on the API specifica-
tions. This Development Kit also includes a fully working reference implementation
and forms the basis to be used by developers:

• C - Java Card Runtime Environment
This is a complete reference implementation of the Java Card Runtime Envi-
ronment (JCRE) in C programming language.

• Off - card
To provide a complete development chain, some platform components are off-
card. This is for example a off - card installation application and a off -card
converter. The converter produces a Composite Application Platform (CAP)-
File and the installer initiates the transfer into the JCRE.

• Additional design and testing tools
This is for prototyping and testing of applications.

2.3.2 Benfits

By using Java Card technology, some benefits can be taken directly from the Java
technology. It is possible to use an object-oriented programming language with
common development tools. Furthermore, also unique were developed for JC:

• Interoperable
Adapted from Java technology (“Write once, run everywhere” [7]), means that
any applet, which was developed by Java Card technology, runs on any smart
card using JC. With running this, it is independent from the card hardware
or vendor.

• Security
The security mechanisms of the Java programming language are also available
in Java Card. So it is possible, that the latest security algorithms, which are
available at the moment, can be used by the developers.

CHAPTER 2. STATE OF THE ART 10

• Multi-Process
It is possible that multiple applets can run on one smart card.

• Flexibility
New applications can be installed securely. Even after it has been issued. This
makes it easier to respond dynamically on threads or requirements.

• Compatible with Existing Standards
The APIs have international guidelines, which refers to given standards like
EMV or ISO7816. Also some industry-specific standards are available.

Together with these benefits and also because of the fact that there are a lot of good
open source development tools, it is clear, that Java is one of the most widely used
programming languages around the world.

2.3.3 Differences between Java and Java Card

Java Card applications are designed to be executed on very lightweight hardware,
therefore there are some differences compared to the full Java specification covering
the following areas. These differences are:

• Programming Language

• Bytecode

• Libraries

• Specific Features

• Development

Programming Language

Some Java language features are not supported by Java Card. Due to the limited
memory capabilities of smart cards, Java Card only provides support for basic types
and does not support types like char, float, double, long or multi-dimensional arrays.
Further limitations apply to the run-time system, which does not support among
other features object cloning, multi-threading or garbage collection.
However, every language construct which is available in Java Card has the same
behavior as in Java. So it is possible, that a Java Card program can be compiled by
a Java compiler.

CHAPTER 2. STATE OF THE ART 11

Bytecode

The generated bytecode is encoded differently. Again, as smart cards are very
limited in terms of available memory, the generated byte code is optimized for size.
So a Java Card applet normally use less bytecode than a Java applet, even when
compiling the same source code. This is necessary because smart cards have lower
resources than a computer. Therefore a technique, which limits the package size to
64KiB is used. Application code have to be divided to fit in this size limit.

Libraries

This is one of the parts with the most differences from Java. For example, the Java
Security Manager class is not supported. Security policies are implemented in the
Java Virtual Machine. Even some features which are not supported in Java are
supported in the Java Class Library, like fast RAM variables.

Specific Features

Java Card Virtual Machine and Java Card Runtime Environment supports some
features, which are specific to the Java Card platform:

• In Java Cards, objects are stored to the persistent memory because the
Random-Access Memory (RAM) is only used for temporary objects. JCRE
and bytecode have been adapted for that.

• Smart cards are externally powered and therefore rely on persistent memory.
The JCRE inludes limited transaction mechanisms.

• The Java Card firewall which isolates applets in different contexts from each
other.

Development

Because of the mentioned differences, even the development process changes. Other
coding techniques are used to get better performance or memory usage. The earlier
a code has been debugged in a real Java smart card, the better the results will be.

2.4 Smart Cards

2.4.1 General smart card Information

Smart cards are pocket sized cards with an integrated circuit. In 1969, the german
scientists Jürgen Dethloff and Helmut Gröttrup patented their first smart card [4].
It was made in the memory card concepte. This is a simple card with a memory,
which can be read or written. Later it was also possible, to prevent access by others

CHAPTER 2. STATE OF THE ART 12

Name Description
C1 VCC Power Supply for the smart card provided by the reader. No battery

is needed.
C2 RST Reset Signal. Can be used to reset the smart card during commu-

nication.
C3 CLK Clock signal for the smart card.
C4 RFU Reserved for future use.
C5 GND Reference Voltage (Ground)
C6 VPP This is an input for voltages higher than VCC. It is often used as

programming voltage to programm the persistant memory.
C7 I/O This is a serial I/O Port which operates in half-duplex mode.
C8 RFU Reserved for future use.

Table 2.1: Contacts for smart card pinout

with a Personal Identification Number (PIN) or a passphrase. Even though, this is
a “simple” type of smart card, it is still in use nowadays.
The most common used system nowadays is the processor chip card. Examples are
EC-Cards, credit cards or debit cards. The name of this smart card type comes
also from the used microprocessor. So there is no possibility to access the memory
directly. The advantage of this architecture is, that an Operating System can be
installed (for example a Java Card Virtual Machine (JCVM) on a Java Card). This
gives the possibility to run applets on this system and protect it.

In Figure 2.3 the difference of those two systems can be seen. The only thing
both architectures have in common is the input/output (I/O) Part of the card. It
depends on the card type. It is split-up into three types:

Contact smart cards

This type of smart cards use a contact area as shown in Figure 2.4. This is called
the smart card pinout. It has an area of approximately one square centimeter. They
can look different, but they are always split into eight subareas. They are explained
in Table 2.1.

Contactless smart cards

The communication with another device is without physical contact. The commu-
nication channel is established using Radio-frequency identification (RFID) technol-
ogy. The only thing which is needed by the smart card for working is an antenna
as illustrated in Figure 2.5. Like the contact smart card the supply voltage is pro-
vided by the reader through RF-induction. The communication process is defined
in ISO/IEC 14443-4 [17].

CHAPTER 2. STATE OF THE ART 13

I/O Logic

EEPROM

ROM

I/O

CPU

EEPROM

ROMRAM

memory card

processor card

Figure 2.3: Block diagramm of different smart card types

Dual interface smart cards

This type of cards have communication interfaces for contactless and contact com-
munication on a single card. It is controlled by one chip and is currently the most
utilized type.

CHAPTER 2. STATE OF THE ART 14

Figure 2.4: Smart card contacts [8]

Figure 2.5: RFID card with chip and antenna [6]

Hybrid smart cards

On each smart card, multiple chips are available and antenna and pinout are again
the used I/O interfaces. Every chip is separately connected to every contact inter-

CHAPTER 2. STATE OF THE ART 15

face.

Multi component smart cards

This is a very special type of smart cards and is normally used only in specific
solutions. An example is a smart card which uses an integrated fingerprint sensor
to authenticate the owner.

2.4.2 Different types of smart card attacks

Smart cards are a common used tool in daily life. So these cards are normally not
stored in a secure area. So it can happen easily, that an attacker gets it into his
hands. That is the reason why smart cards need a lot of security procedures to
avoid in all circumstances, that critical and sensible data can be accessed. A good
example is a debit card. If the attacker gets the PIN of the card, he is able to
access the bank account. That is the reason why a big amount of money is invested
in finding working attacks, so possible countermeasures can be developed. In this
section the different types of attacks on smart cards are shown. In this thesis we
relate to the subdivisions made by Marc Wittenberg [26], because this are the most
common types which are used for definitions.

As shown in Figure 2.7, attacks on smart cards can be distinguished between

Logical Attacks Physical Attacks

Invasive Attacks
Non-Invasive

Attacks

Security Attacks
on Smart Cards

Hidden Command
Parameter Poisoning and Buffer
Overflow
File Access
Malicious Applets
Communication Protocol

Observing Disturbing

Power Consumption
Electromagnetic Radiation
Time

Supply Voltage
Electromagnetic Radiation
Temperature
Light and X-Rays
Frequency

Removal Chip Layers
Optical Analysis
Probe Stations
Focused Ion bean (FIB)

S
ide

 C
hann

el A
tta

cks

Figure 2.6: Types of smart card attacks [19]

physical attacks, logical attacks and side channel attacks. There are several
forms of attacks and countermeasures against it:

CHAPTER 2. STATE OF THE ART 16

CLA INS P1 P2 Lc Data Le
Header Trailer

Table 2.2: Command structure for smart cards

Physical attacks

Physical attacks are splitting again into two categories: invasive and non-invasive
attacks.
Invasive Attacks
Invasive means active attacks were physical changes are made. The controller has
to be removed from the smart card. This kind of attack can only be realized with a
great effort and special equipped laboratories.
The removal process of the controller starts with heating the card until the controller
can be removed. Sometimes it is also possible to remove it with a normal knife.
After that, the chip needs to be cleaned from the epoxy. This happens with warmed
concentrated nitric acid (<98%). The last step is to clean in an ultrasonic bath with
acetone. After this procedure the contact areas of the chip can be connected with
an analysis or manipulation environment. These kind of attacks are often done by
the card manufacturer itself. The gained information of such tests are used to find
potential weaknesses.
Non-Invasive Attacks
This part of physical attacks can also be considered as side channel attacks. Due
to this classification this section will be explained more detailed in “Side channel
attacks”.

Logical attacks

Logical attacks are the most used technique for attacking a smart card. This has
a simple reason. This type of attack does not need a lot of equipment. Only a
computer and a working smart card reader are needed. Via this reader the whole
communication is done. The next thing is that smart cards communication works
with commands. This command structure is shown in Table 2.2. Every smart card
uses only a specific number of supported commands. By not disabling of not sup-
ported commands, attackers have the possibility to use them for their purpose. The
second chance for attackers are bugs in the software implementation. The goal of
this master thesis is to avoid some of this logical attacks to raise the security level
of smart cards.

Countermeasures for logical attacks
Logical attacks are dependent on bugs in the implementation. The higher the com-
plexity of an implemented code, the higher the risk of bugs. But there are some
“simple” strategies to avoid it. The most important ones are:

CHAPTER 2. STATE OF THE ART 17

• The most important thing to avoid bugs is testing. Beside positive tests, which
lead to expected results, it also is inherently important to provide error test
cases to see how software reacts in error cases.

• Building of small functional blocks which are easier to understand.

• Keep the code as simple as possible.

• Using of standardized interfaces or re-use of proven software.

• Using of Java Card Operating System or .NET Micro Framework to get the
advantages of object-oriented programming languages which makes security
features easier to use.

Side channel attacks

Side channel attacks are non-invasive (passive) physical attacks. The goal is to get
or manipulate data without making a physical change to the smart card. This is
possible because the integrated circuits of switching semiconductors are sensitive to
basic physical phenomena. There are two different types of side channel attacks:
observing and disturbing. The phenomenons that can be used for observing are:

• Power Consumption
The power consumption directly depends on the processes which are running at
the moment on a chip. So knowing the power consumption makes it possible to
get information about the processed information, because different commands
need different amount of power. Now it is possible to relate to the command
sequences.

• Time
The amount of time, which is needed by a processor to complete a task, can
be related to to the process parameters.

• Electromagnetic Radiation
Appears every time a transistor is switching. Like the power consumption this
can be related to the current processes.

Disturbing of some parameters can be used to modify them like changing bits or
make it easier to perform the observing. The possible parameters are:

• Electromagnetic Radiation
With a strong pulse it is possible to induce signals into the chip to change the
behavior.

• Power supply
This changes the behavior of the circuits because they are designed to run
at a defined voltage. Glitches can appear which makes it possible to change
commands.

CHAPTER 2. STATE OF THE ART 18

Logical Physical Side Channel
Equipment PC PC, Probe Station, SEM PC, Oscilloscope

FIB, Microscope Function Generator
Chemistry Lab, etc.

Cost $1-10K $100K-1M $10-100K
Sucess Rate Low High Medium

Development Time Weeks Months Months
Execution Time Minutes Days Hours

Table 2.3: Attack statistic [26]

• Temperature
Also changing of the behavior of the circuits because the devices have a limited
temperature range to work within normal parameters.

• Frequency
Microprocessors are designed to work at a specific clock frequency. If the
frequency gets higher, it is possible that errors occur. So the time for this
operations raise and analysis of the function easier. On the other side with a
lower clock frequency it is gets easier to observe the controller-BUS. Especially
modern smart cards with high frequencies are really hard to be observed.

• Rowhammer
A new method from Mark Seaborn, Matthew Dempsky und Thomas Dullien
from March 2015. A side effect in dynamic RAMs is, that the memory cells
leak their charges to the memory cells arround. So it is possible to change the
content of memory cells, which are not directly addressed.

Countermeasures for logical attacks
To avoid such manipulation, smart cards get equipped with sensors for voltage,
frequency and temperature. Those are so called “Watchdogs”. If limits of these
sensors get exceeded, it is possible to reset the card or make it unusable. But this
also makes the card less robust because false alarms can occur.

Statistic

In Table 2.3 a statistical overview of the presented techniques is shown. Physical
attacks have the highest success rate, but a lot of equipment, money and time is
needed. On the other hand, Logical attacks are the cheapest ones where only a
computer is required. But the success rate is lower compared to the others.

2.4.3 Possible attacks

There are a lot of known attacks to Java Cards. The background for this is, that
attackers try to read the whole memory of the card to gain information. But it is

CHAPTER 2. STATE OF THE ART 19

also useful because it allows reverse engineering. With this in mind it is possible to
understand the implementation of some parts of the JCVM. A second but also very
important detail is, that attackers get the ability to read private keys. With this, it
is possible to read the communication (this is always possible) and decrypt the data
from the crypto algorithm. This applies to the whole card communication.
Iguchi-Cartigny and Lanet [16] present such an attack. They use a mutable applet
that makes it possible to break the security box of the JCVM. The prerequisites of
their attack are:

• post issuance is allowed,

• the attacker has the credentials,

• the card must not include a BCV on-card.

Starting from here, they load their Trojan applet on the card and can modify it in a
way, so that they are able to read out the memory of the card. They use a weakness
in the invokestatic bytecode to gain access to the memory.
Hogenboom and Mostowski [15] also present an attack which allows them to read
out the whole memory of a Java Card. This attack is based on type confusion. They
exploit a very common bug in the transaction mechanism of the JCRE. This attack
is not detectable by any BCV since this is a complete correct Java Card applet.

An attack very similar to the one of Hogenboom is presented by Mostowski [21].

Figure 2.7: Simple illustration of the principle of the attacks [19]

Both of these attacks gain access to the memory due manipulating the pointer ad-
dress to the data-field of the array. This principle is illustrated in Figure 2.7.

All of these attacks gain access to the memory due to the fact that they can
break through the Java layer of the JCVM. The attack shows that the Java Cards
need a protection mechanism to secure more than only the objects of a context. The
cards also need a mechanism to protect the memory itself.

CHAPTER 2. STATE OF THE ART 20

2.5 Memory Separation in Embedded Systems

2.5.1 Overview

With our new technologies, embedded systems get more and more powerful. An-
other advantage is that they are easier to handle and therefore they can be better
included in our everyday life. Furthermore, that this embedded systems are getting
more and more multifunctional.
The attack schematic has changed in the last ten years. Back in that days, software
attacks, like shown in Section 2.4, were targeting powerful devices like computers
and laptops. But in the last years, this has changed rapidly. This leads to the re-
quirements of good security and protection techniques. Memory separation is only
one of these. But while it is tried to increase security, it has to be ensured, that
the system costs and power management do not increase too much. And the per-
formance of the system has to be ensured. Especially in time critical embedded
systems.
Because of the needs in separation, for secure data and code segments on mobile
devices, the company Advanced RISC Machines (ARM) started working on a new
technology. Although the name is rather unknown outside the involved community,
most of the microprocessors worldwide are produced by this company. The Trust-
Zone technology [3] for most of ARM systems is the result of an intensive research
and development phase. It is a System-on-Chip (SoC) technique, which enables
separation between non-trusted and trusted execution. The second important thing
was that the context switch kept being fast. This worked because TrustZone added
an additional address bit to the system. Afterwards the SoC adaption was needed
so that all interfaces, devices etc. took care of that bit.
An alternative way for protecting is system virtualization [14]. But there was one
big problem in this technology. Embedded systems had only a limited hardware vir-
tualization support, so this led to a performance overhead [13]. But with scheduling
of tasks and regulate processes which do not have to run at any time, this technology
started to make its way.
Nowadays there are more different technologies for memory separation, because em-
bedded systems have higher performance than few years ago. To solve this issue,
it is possible to use a software and hardware solution. An example for software
solution is the Java Card firewall (2.5.2). Cortex-M series are good examples for
a hardware solution. From Cortex-M3 and higher versions there is an optionally
Memory Protection Unit available. In this master thesis, the used processor is a
Cortex-M1. This is the reason, why an implementation of a security unit like in
Section 2.5.3 is necessary.

CHAPTER 2. STATE OF THE ART 21

system space

Java Card RE Context

Context 1 Context 2

applet space

applet firewall

applet A applet C

applet Dapplet B

Figure 2.8: Mode of operation of Java Card firewall [22]

2.5.2 Separation with the Java Card Firewall

The Java Card firewall (also called applet firewall) is a software solution for memory
separation and protects against the most common security concern like malicious
applets. As you can see in Figure 2.8, the applet firewall build different separated
memory spaces. This spaces are called “context”. Every time an applet creates an
instance, the Java Card Virtual Machine assigns it to an existing or a new context.
Now the applet firewall is set between the system space and the different group
contexts. So if an object wants to access another object in the same context, it is
allowed because there is no firewall in between. But if an object tries to access an
object in another context, this action is blocked by the firewall. The most impor-
tant context is the system space which holds the Java Card Runtime Environment
context. This JCRE context has other privileges than a normal group context. It
is possible from the system to access every other context. But in the reverse situ-

CHAPTER 2. STATE OF THE ART 22

ation, no group context is able to access the system space because it is blocked by
the firewall. All those facts leads to one important question: How does the JCVM
choose, which context is trying to access?
At any time, the JCVM has just one active context. This can be a group context
or the JCRE context. Thereby, it is easy to check the permission. But it is also
possible to access another context over shared interfaces. If such an access occurs,
the JCVM performs a context switch. This works in the following steps:

1. The active context is pushed to the stack.

2. The context of the called interface is loaded and gets the new active context.

3. Like implemented in the interface, it is now possible to access every object in
this context.

4. After the return value is provided by the interface, the JCVM performs a
restoring context switch.

5. The originally context gets popped from the stack and gets the currently active
context.

With this scheme the applet firewall allows to access one context from another at
the same time it prevents accessing objects in another context which are not shared.

2.5.3 Memory Protection Devices

Memory protection is a part of the most modern OS. The goal is to prevent unau-
thorized access to memory. The three most common ways for memory protection
are:

• segmentation

• virtual memory paging

• protection keys

There are also some other technologies but they are rather unused in modern sys-
tems. In this thesis it was a goal to design a memory protection for the java card
firewall. After analysis of this goal there were different possibilities to implement
this. The two most common devices are a Memory Protection Unit (MPU) which
uses segmentation, and a Memory Management Unit (MMU) which is based on
virtual memory paging.

CHAPTER 2. STATE OF THE ART 23

Memory Protection Unit

A typically Memory Protection Unit is set between Central Processing Unit (CPU)
and memory. This memory gets segmented into memory regions. After that it
is possible to write access permissions for every single region. Because of that
simple behavior, this type of device has a really low overhead. This is good for the
performance of the system. Out of that there are also some disadvantages.
Normally the permissions are fixed and can not be changed during runtime. This
decreases the dynamic use of the MPU. But to solve this problem, newer devices
are built with a rewritable permission register. So it is possible to change the usage
of the regions and make the behavior more dynamic. Next to this new type can also
be integrated directly in the CPU, the more common type is the static one.

Memory Management Unit

The most common use for a Memory Management Unit is using virtual memory
management. Every address which is requested from a process is a virtual address.
This virtual address is sent to the MMU. With the “help” of a Translation lookaside
buffer (TLB), this address is converted in a physical address which can be used to
access the memory. But before this address gets translated, it is checked for the
access authorization. If a process do not have the privilege to access an address, a
page fault occurs. This error message leads to the next advantage of a MMU. Every
access and management is handled by the OS. Through that, the device can react
dynamic because at every time, it is possible to change the permissions. On the
other hand it reduces the memory fragmentation. If a new memory gets allocated,
the OS can search in the whole address space for a matching segment.
As you can see now, the MMU has some more advantages than a MPU. The big
problem with that is the generated overhead in the system. That results in a loss of
performance.

Protection Keys

A system which is secured by protection keys divides the physical memory into
a fixed size. Now every memory region gets an associated protection key (this is
a numerical value). Further, each process has a associated protection key value.
Every time a process accesses a memory region, it is checked by the hardware, if
the protection key value of the current process suits to the protection key of the
memory region. If yes, access is granted. When it fails, a memory exception occurs.
Because of this simple behavior, the implementation is simple and during runtime it
has less overhead compared to MPU and MMU. But it is a completely non-dynamic
system. A process is only able to access a region or not. Even simple read and write
privileges are not used in this system.

Chapter 3

Design

3.1 System Overview

For implementing a hardware memory protection the first step is to specify a sys-
tem, where this device can be tested and used on. Such a system can be seen in
Figure 3.1. Even there are more parts possible to specify the system, in that case
are only the main ones included. A main part is needed to test the protection unit
or is needed for I/O.
All components are connected over a Advanced Microcontroller BUS Architec-
ture (AMBA) Advanced High-Performance BUS (AHB) Binary Unit System (BUS)
system. The Cortex M1 is the CPU of this system and is connected over a AHB
master interface to the other parts. Four other parts are connected as slaves to the
AMBA BUS.
First is the interface between the AHB and the Advanced Peripheral BUS (APB),
called the bridge. The reason for this is, that the two I/O devices are connected over
the APB. The GPIO interface shows, if the system is in normal or remap mode.
The UART interface is used in debugging mode, when the system run with a “OS”.
The second part is the memory controller. Normally this is directly connected to
the AHB. In our system this was changed and it is now connected to the MMU over
a AHB interface.
The next part is a Static RAM (SRAM) block. This is used as quick but small
memory. It is not protected by the MMU.
The last block is the MMU. It has two AHB slaves and one AHB master inter-
faces. Because of that, the MMU is directly set between the AHB and the memory
controller. It also has a direct connection to the CPU over the interrupt pin. The
structure is described in Section 3.2.2.

24

CHAPTER 3. DESIGN 25

AHB Light

Cortex
M1 SRAM

MemCtr

Bridge

APB

SDRAM FLASH

GPIO UART Timer Watchdog

UARTGPIO

MMU

Figure 3.1: System overview

3.2 Chosen Memory Protection Device

3.2.1 Memory Management Unit

In Section 2.5.3 the most common protection systems were shown. After weighting
the pros and cons of the single systems, it was possible to exclude the protection keys
method, because the system should be at least dynamic enough to differ between

CHAPTER 3. DESIGN 26

read and write access. Now only the Memory Protection Unit and Memory Man-
agement Unit were left. The big disadvantage of the MPU is that the permissions
are fixed. So this system needs to be adapted for the wanted usage because access
privileges should be able to be changed during run-time.
Finally the MMU was chosen as protection device because of following reasons:

• Less memory fragmentation because memory management is handled by OS.

• Virtual memory paging prevents the following:

– If attacker can hack into the OS, he can only get the virtual addresses
and is not able to make conclusions of the internal structure of the MMU.

– With using virtual addresses, it is possible to prevent some known attacks
like described in Section 2.4.3.

• Dynamic access privileges for every page which can be changed

• Make it easier for future projects to adapt the design for new tasks because it
is more powerful than a MPU.

3.2.2 Internal structure

In the final system, the MMU will be the most important part for the JCRE firewall.
The non-volatile writeable memory is protected by it. In this part of the memory
the CAP-Files and objects from the Java Card is stored. Figure 3.2 shows the inner
architecture of the MMU. There are two parts: The config part and the memory
part. This two parts work together over the lookup table.
The config part consist over the AHB slave where the data which is needed for the
lookup table are transmitted. Also the context Identification (ID), which is stored
in the MMU and used to check the access rights, is saved over the config part as
well.
The memory part is for transmitting the data into the memory controller. This
part also consist of an AHB slave interface. After that, the memory logic is located.
Addresses are controlled and then compared to the lookup table. If an error occurs,
a page fault interrupt is invoked. Otherwise, if the lookup table provides a hit of the
addresses, the data is transmitted over a AHB master interface which is connected
to the memory controller. This architecture was chosen to make the integration into
the existing system easier.

3.3 Memory Map

For each application which is running in the Java Card OS, a virtual memory is
created. This virtual addresses have to be mapped into the physical memory as you
can see in Figure 3.3.

CHAPTER 3. DESIGN 27

AMBA
slave
config

AMBA
slave

memory

config
logic

memory
logic

lookup
table

ID mode
AMBA
master
memory

Memory
Controler

Figure 3.2: The Memory Management Unit

Virtual addresses will start at entry 0x04000000 and go to 0x07FFFFFF. This is
because the MMU has to check, if a address is a physical or a virtual. This solution
is done for two reasons:

1. The MMU can easily check if a address is virtual or physical. Just a bit has
to be controlled to find this out. In future this bit is declared as VIRT. When
HIGH, the address is virtual, when LOW, it is a physical address.

2. That this type of addresses is also working, when debug-mode is activated.

CHAPTER 3. DESIGN 28

virtual
address
space

0x00 00 00 00

0x04 00 00 00

0x08 00 00 00

0x0F FF FF FF

RAM

0x00 00 00 00

0x08 00 00 00

0x0F FF FF FF

Text
Data
BSs

Application
Memory Map

Physical
Memory Map

start

end

Figure 3.3: The different types of memory maps

Debug mode means, that on the used Field Programmable Gate Array (FPGA)
board the non-volatile memory is deactivated and everything is stored in the
RAM. But because of the size of the memory, which is under the virtual
address area, this solution also works here.

So when an address is in the virtual address space it is mapped into the physical
address space. This is done by the OS. It has a declared start and end point there.
Important is, that the endpoint of the physical addresses is before 0x04000000 to
occur problems with the virtual address detection. Every application should only
try to access the memory over such a virtual address. Otherwise a page fault is
given.

3.4 Parsing of lookup table entries

As seen as in Section 3.2.2, the configuration logic hast access to a lookup table to
save the physical address and other information. These information is received over

CHAPTER 3. DESIGN 29

the AMBA interface. As seen in Figure 3.4, there is the address and the data BUS
and each of them is 32-bit width. The address BUS is split up into:

• 4-bit AMBA for decoding the slave

• 1-bit RAM for showing if access to RAM or flash

• 1-bit VIRT for showing if virtual address or physical address

• 5-bit TLB for decoding the address for lookup table

• 12-bit Page number

• 9-bit Offset

The data BUS is split up into:

• 12-bit RFU (Reseved for Future Use)

• 18-bit Physical address

• 1-bit VALID declares entry for as valid or invalid

• 1-bit RW for showing read and write privileges

When this information is available, the configuration logic saves it into the lookup
table. The size of one entry is also 32-bit and there are 32 entries available. For
identifying, the TLB bits are used for addressing the lookup table entry. After that,
the configuration logic provide the data at the 32-bit CONF In interface. This is
partitioned in the following order:

• 12-bit Page number

• 18-bit Physical address

• 1-bit VALID

• 1-bit RW

Example:
At the address BUS is the value is “04 C9 70 13” and the data BUS value is “00 00
03 17”, both sent in hexadecimal. From the address side, this means that a virtual
address is accessed. The TLB entry has the number 6. The page number is 1208
and the offset is 19. From data side there can be seen the following information.
The physical address is 197, it is a valid entry and has read and write access.
The result of that means that at CONF In the value is “4B 80 03 17”. To prove
that this is true, in Section 5.1.1 a test was made with this values.

CHAPTER 3. DESIGN 30

HADDR

HWDATA

AMBA TLB Page Number Offset
R
A
M

V
I
R
T

RFU Physical Address
V
A
L

R
W

CONF_In

Page Number Physical Address
V
A
L

R
W

Figure 3.4: Parsing of lookup table entry

3.5 Use Cases

This section describes the most common processes are described. This will happen
on three different layers. The first are the use cases from the perspective of the
Memory Management Unit on hardware level. The next is on the level of the
Operating System. And the last is from the Java Card Virtual Machine.

3.5.1 Use Cases of the Memory Management Unit

In Figure 3.5 the possible use cases of the Memory Management Unit are shown.
Each use case is triggered by the OS. There are five different possible use cases:

• Memory Access

• Add Table Entry

• Delete Table Entry

• Context Switch

• Switching between System and User Mode

Memory Access

In this use case the behavior of the MMU is listed, when there is a read or write
access to the memory. This happens in the following steps:

CHAPTER 3. DESIGN 31

Usecase: Memory Managment Unit

OS

Memory Managment
Unit

 Context Switch

Memory
Access

Add Table
Entry

Delete Table
Entry

 Interrupt

Figure 3.5: Use cases of the Memory Management Unit

1. Access to an address.

2. Checking from the memory logic which memory is accessed. There are three
types of memory:

• Transient memory

• Read Only Memory (ROM)

• Non-volatile memory: here all loaded applets and the JCRE are stored

3. Depending of the type of the address the access is granted in two different
ways:

(a) Access to a physical address is mapped 1:1 to the memory.

(b) If it is a virtual address, then there are more steps to do:

• Searching the lookup table for an entry.

CHAPTER 3. DESIGN 32

• Checking if the entry is valid. Then there are two different possibili-
ties:

i. The lookup table entry is valid. The virtual part of the address
is replaced with the physical page frame number. The access to
the memory is granted.

ii. In the lookup table is no valid entry or the privileges for access
are not given. In this case this leads to a page fault interrupt,
which is handled by the OS.

Add Table Entry

This use case happens, when new memory needs to be allocated. Then a new entry
in the lookup table has to be created. This is needed for a new table entry:

1. At first the data which is needed to create a table entry. This consists of four
parts:

(a) Virtual Page Number

(b) Physical Page Frame

(c) Metadata

(d) Context ID

2. In the next step this data has to be stored at the right location within the
lookup table.

Delete Table Entry

IF an application do not use a page anymore (application free memory or has not
used the page in a certain amount of time), it can be deleted. For this the entry just
has to be set to “invalid” in the page table. This happens in the following steps:

1. MMU has to switch to System Mode.

2. First the data for the entry is needed. This consists of:

(a) Virtual Page Number

(b) Context ID

3. Check the context ID to see if the permission for deleting is given

4. Setting the entry to invalid

5. The MMU switches back to User Mode.

CHAPTER 3. DESIGN 33

Context Switch

Context Switch means, that a new application has been selected and the system has
to switch from one virtual memory to another. Every application has its own lookup
table in the memory which replaces the current table in the MMU. The different
lookup tables are choosen by the context ID. This happens in two step:

1. All entries in the lookup table of the MMU has to be set to invalid

2. The new context ID has to be set in the MMU. Otherwise every memory
access produces a page fault interrupt because the wrong access rights are
given.

Switching between System and User Mode

Swichting between System and User Mode is very important. This is especially
needed when there is a context switch (Section 3.5.1). In this case the MMU has to
be reconfigured. This is only allowed in system mode. To set the MMU into this
mode, an activation code has to be sent over the AHB configuration interface. The
same has to be done for deactivating it. There are two cases:

• Switching from User to System Mode

• Swichting form System to User Mode

Both cases are pretty similar to each other. As you can see in Figure 3.2, there
is a register which is called “Mode”. This register has a boolean value and means
“false” for System Mode and “true” for User Mode. For switching User to System
Mode the following has to be done:

1. The code is received over the AHB configuration interface.

2. If the code is valid, the logic in the configuration part of the MMU sets the
register.

The activation code is “4F 4E” and “4F 46 46” for deactivation, which means, when
converted to ASCII, “ON” and “OFF”.

3.5.2 Use Cases of Operating System

Our system is on a microcontroller, that means we have a lightweight version of an
OS. We do not have any system calls or security rings. This is shown in Figure 3.6.
Here the behavior of this OS is described. We have six different use cases which are
handled:

• Memory Access

• Context Switch

CHAPTER 3. DESIGN 34

• Page Fault

• Allocate Memory

• Free Memory

• Switching between System and User Mode

Except of the use case Page Fault, each of the above mentioned cases describes the
MMU use cases from the view of the OS.

Virtual Machine

Memory
Access

Context
Switch

 Page Fault

Allocate
Memory

Memory
Access

Add Table

Entry

Delete Table
Entry

Context
Switch

MMUOperating System

Usecase: Operating System

 Free Memory

Error
Handling

 Interrupt

Figure 3.6: Use cases of the OS

Memory Access

Here the memory access from the OS is described. This is needed, when an appli-
cation needs to access to the memory for different reasons e.g. loading variables.

CHAPTER 3. DESIGN 35

1. An application needs to access memory.

2. Now the memory access is handled from the MMU (see Section 3.5.1)

Context Switch

For some possible reason (e.g. an interrupt), the context has to be switched. The
OS has to do the following steps to prevent errors:

1. The lookup table for the new context has to be located in the memory.

2. Switching the MMU to System Mode (described in Section 3.5.2).

3. Load the new lookup table into the MMU.

4. Load Context ID into MMU.

5. Switch the MMU back to User Mode (Section 3.5.2)

Page Fault

A page fault only occurs during a memory access and it is given by the MMU. This
is described in Section 3.5.1. For this one of this reasons is given:

1. An application tries a write access on the code section.

2. An application tries to access a physical address. This type of access is only
allowed in system mode.

3. An application tries to access a virtual address. When the MMU has no entry
in the lookup table there could be two reasons for that:

(a) The page does not exist and so it can not be loaded into the memory.

(b) The page has not been loaded into the memory. In this case the OS load
the page and modifies the lookup table in the MMU and in the persistent
memory.

If the page is not loaded yet, the OS has to load the page into the memory and
modify the page table in the MMU. In every other case an exception with an error
code is given.

Allocate Memory

Additional memory is requested in the OS in case an application needs more re-
sources. Then the following steps are made:

1. The OS is switching to System Mode like in Section 3.5.1.

CHAPTER 3. DESIGN 36

2. The available memory is searched for a free space and the OS reserves it.

3. The physical address of this page has to be stored in the persistent memory
and also in the lookup table of the MMU.

4. The OS switches back to user mode.

The main problem here is to find a memory space with the needed size. When there
are memory gaps which are to small, they can not be used. At a certain point the
OS must execute a “Free Memory” like in Section 3.5.2 to get new memory.

Free Memory

This case is important, when a page is not longer needed by an application. For this
the lookup table in the MMU and in the persistent memory has to be changed. This
is easy because only the valid byte has to be deleted. Additional to be sure that no
error occurs, this page can be deleted. But this is not necessary. These changes are
made in system mode.

Switching between System and User Mode

Switching between this two modes is important because with that only the OS is
able to configure the MMU. Four different situations are possible:

• Switching from User to System Mode
The activation code is sent over the AHB interface. Then it proceeds like
described in Section 3.5.1.

• Switching from System to User Mode
The same like before. In this case the deactivation code is sent and then it
continues processing as described in Section 3.5.1.

• Switching from User to User Mode
This type of use case occurs, when there is a switch from one context to
another. First there is a switch User to System Mode. After that the MMU
can be configured. In the end it has to be switched back to User Mode.

• Startup process from the OS
In the startup process the MMU is set to System Mode. This is done to
prevent page fault interrupts during startup. After the process finished, the
MMU is set from System to User Mode.

CHAPTER 3. DESIGN 37

3.6 Future Changes of given Architecture

The used JCVM, developed by Michael Lafer [20], has to be modified. Without
that, the software is not able to work with the new hardware. In Figure 3.7, the
software architecture is shown. The red marked squares are the parts which has to
be changed or created:

• In the Hardware Abstraction Layer (HAL) Interface it is necessary to create
a Advanced RISC Machines support. This is needed because the developed
test system is running on such a architecture. Without that communication
between JCVM and hardware would not be possible.

• In the Operating System layer, there is the memory manager. The existing one
must be updated, to make it possible to use the virtual address management.
This includes:

– Virtual addressing from applications

– Management of providing free memory

– Management of context tables entries

– Context switch

– Changing between System and User Mode

• Changing of the Object Manager in the Virtual Machine layer. The change
here is needed because in Java Card Objects are stored in the persistent mem-
ory. This memory is protected with the new developed Memory Management
Unit.

• The last change is in the Virtual Machine layer as well. It is the bytecode
interpreter. Here a function can be called by a index in a static array. Every
single of these functions exits with a specific code. Each code it possible to
indicate if an error occured or if it was executed correctly. Here some platform
support changes have to be made.

This are the parts of the given software architecture which are sure have to be
changed. But it is also possible, that other modules has to be updated during the
developing process.

CHAPTER 3. DESIGN 38

VM Layer
Package Loader

Object Manager

JC Runtime

Bytecode
InterpreterCore VM

OS Layer Transaction
Manager

Memory
Manager

Comunication
ManagerCore OS

OS Interface

HAL Interface

ARM 8051 x86

Figure 3.7: Changes in software architecture

Chapter 4

Implementation

This chapter shows everything about the implementation process. At first used
hardware and software tools are shown. The next step is to show the implementation
in detail. At the end, there is shown how to set-up the tools, to simulate the hardware
again.

4.1 Development Environment

4.1.1 Field Programmable Gate Array Board

For this thesis a ARM R©Cortex TM-M1-enabled ProASIC R©3L was used. This board
is shown in Figure 4.1. With this board it is possible to simulate the implemented
hardware in our test system. The following features of this board were used:

• Oscillator for providing system clock

• The LEDs were used as a visual sign, that the implemented system has been
synthesized. This was possible because of a test software which was stored in
the flash. So after startup of the system, the LEDs started to blink.

• USB Connector providing a RS232 interface for programming the FPGA.

• USB Connection is used for debugging. This was used for example to search
for errors while changing the Java Card Virtual Machine.

• The switches were used as General-purpose input/output (GPIO). With the
switch number nine, it is possible to change between normal and debugging
mode.

39

CHAPTER 4. IMPLEMENTATION 40

Figure 4.1: FPGA board [5]

4.1.2 Software Environment

Hardware Implementation

The used software for hardware implementation was Libero SoC (version 11.4 SP1)
from Microsemi 1 . The reason for using this software was because the FPGA board
is also from Microsemi and was delivered with a license license for the Libero SoC
software. Furthermore, kickstarting into development with the Libero SoC software
was easy, due to numerous available demo software for this particular FPGA. This
included a running test system implemented in verilog and a few software programs
for using that system in combination with the computer (using the RS232 interface).
These programs were executed in debug mode of the board. Also an additional
memory loader was available, which was used to program the flash memory of the
FPGA.

1http://www.microsemi.com/products/fpga-soc/design-resources/design-software/

libero-soc for downloading and free licensing for 1 year

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc
http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc

CHAPTER 4. IMPLEMENTATION 41

Hardware Simulation

For simulation of the implemented hardware the program Modelsim Microsemi 2

(version 10.3a) was used. The software was running in combination with Libero.
Modelsim is a widely used tool for hardware description language simulation like
verilog and Very High Speed Integrated Circuit Hardware Description Language
(VHDL) simulation. To run the simulation more efficiently, own configuration files
were created. So the used modules were first loaded and debugged. After that, the
simulation with the given constraints were started.

Software Implementation

For implementing the software, the used program was the Eclipse IDE with a special
development kit. This tool is named Microsemi SoftConsole IDE 3 (version 3.4.0.5).
This development kit is necessary to guarantee the communication between the
computer software and the USB ports of the FPGA board. The most important
“feature” is the possibility to use the debug mode. In debug mode it is possible
to start the software on the written hardware while even debugging it. This was
important for testing the system with the JCVM.

4.2 Implementation of the System in VHDL

The test system was used to familiarize with the board and development tools, but
there is a test system available for Libero. This system was used to get known with
the board and the development tools. But there were two issues with this demo
model:

1. The test system from Libero is not up to date. The first step was to update all
IP-Cores to a current version. IP stands for intellectual property core, which
describes a functional block of a chip design. To prevent future errors, all cores
were put to the current version offered by Microsemi.

2. After updating and testing this system, the testing tools were set up. This
was working without any problems. Then the first parts of the MMU were
implemented. The occurred problem was that Modelsim is not able to simulate
a model which contains verilog and VHDL files. So the whole system was build
again from scratch. After that every file was written in VHDL and also the
simulation of the system was working with Modelsim.

As seen in Figure 4.2 the implemented system is pretty similar to the designed
system in Section 3.1. In Table 4.1 the used IP-cores are listed. The only difference

2this is downloaded and installed together with Libero SoC
3http://www.microsemi.com/products/fpga-soc/design-resources/design-software/

softconsole for downloading

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/softconsole
http://www.microsemi.com/products/fpga-soc/design-resources/design-software/softconsole

CHAPTER 4. IMPLEMENTATION 42

between the designed and implemented systems are the watchdogs. They have not
been used in the implementation and thats why the core was deleted. Instead of
that, it was necessary to have the possibility to signal an interrupt and start with
a interrupt service routine. That is why the interrupt core is used. There are two
different kinds of interrupts used. The normal interrupt request like timer or UART
and a fast interrupt request like it is used from the MMU. In Table A.1 are more
details about version number and class of the used IP-cores available.

CHAPTER 4. IMPLEMENTATION 43

Figure 4.2: VHDL Test System

CHAPTER 4. IMPLEMENTATION 44

IP-Core Description
CortexM1Top This is the Cortex M1CPU of the system.
CoreAHBLite The AHB BUS controller.
CoreMemCtrl Memory controller for writing into RAM or Flash.
CoreAhbSram A SRAM which is directly accessable.

CoreAHB2APB Bridge between AHB and APB BUS.
CoreAPB The APB BUS controller.
CoreTimer 16 or 32 Bit timer which generates a interrupt.

CoreUARTapb A standard UART interface for using the USB port of the board.
Can produce a interrupt.

CoreGPIO GPIO for using the I/O pins from the board.
CoreInterrupt Interrupt Controller which sends a flag to CPU if a interrupt

occurs.

Table 4.1: Used IP-Cores for implemented system

4.3 Memory Management Unit

In this chapter the Memory Management Unit is described with all parts. In Figure
4.3 the internal parts are shown. It consists of:

• Two AHB slave interface

• Configuration logic block

• Memory logic block

• One mirrored AHB slave interface

• Dual port memory used as TLB

• D-Flip-Flop

• Two logical gates

4.3.1 The Advanced High-Performance BUS slave interface

To enable communication between CPU and MMU two AMBA AHB slave interfaces
are needed. Two because there is a configuration and a memory path. For full
functionality this part acts like a real AHB slave. The configuration path is used
for:

• Changing between User and System Mode

• Reseting the TLB

CHAPTER 4. IMPLEMENTATION 45

Figure 4.3: VHDL Memory Management Unit

• Managing TLB entries

The memory path is less complex than the configuration path. The only thing it
has to do is changing the virtual address to the physical address and write this to
the memory controller.

CHAPTER 4. IMPLEMENTATION 46

In and Out Ports

In Figure 4.4 the picture of all inputs and outputs are shown and the functionality
is described in Table 4.2. Every signal starting with “H” comes from the AMBA
AHB. The other signals are internal signals of the MMU.

HCLK
HRESETN
HADDR

HSEL
HSIZE
HTRANS
HWDATA

HRDATA
HREADY

AHB
slave

HREADYIN

HWRITE

RESP_In
DATA_In
READY_In

HRESP

ADDR_Out
DATA_Out
READY_Out
SIZE_Out
TRANS_Out
WRITE_Out

Figure 4.4: Ports of AHB slave interface

Functionality

In Figure 4.5 the state diagram of the AHB slave interface is shown. After booting
or a reseting, the interface is set to IDLE state and as long as HSEL or HREADYIN
are logically “0”, it will remain in this state.
Once selecting this device with HSEL = 1, it is listening to the HREADY signal.
When this signal turns “1”, the transfer can start. Now it depends if it is a read or
write transfer. When HWRITE = 1, the next state is WRITING. This is needed
because the data which is written arrives one clock cycle after the begin of the
transfer.
After that, or when it is a read transfer, the device changes to the state BUSY. As
long as the READY In signal is LOW, the interface will remain in this state. When
it changes to HIGH, the interface goes back into IDLE state.

4.3.2 The configuration logic

The configuration logic is part of the MMU which manages access to the TLB over
the AHB interface. The following functionality is provided:

• Switching between User and System Mode

CHAPTER 4. IMPLEMENTATION 47

Name In / Out Description
HCLK In The global clock signal. Related to the rising edge.

HRESETN In The global reset signal. Managed by CPU. Every part
is LOW active.

HADDR In The 32-bit address bus signal. Top 4-bits are used for
decoding.

HREADYIN In This signal is sent from AHB master to slaves to signal
with HIGH that the BUS is free and LOW for occupied.

HSEL In Select signal for showing a AHB slave that the current
transfer is for it. Must be combined with HREADYIN.

HSIZE In 3-bit signal which indicates the size of the actual trans-
fer.

HTRANS In 2-bit signal which indicates the transfer type
HWDATA In Data BUS with 32-bit width for writing data.
HWRITE In Signal for write (HIGH) or read (LOW).
HRDATA Out Data BUS with 32-bit width for reading data.
HREADY Out This signal is sent from AHB slave to show the master

that a transfer has been finished.
HRESP Out Signal for giving a response if a transfer succeeded

(LOW) or had an error (HIGH)
RESP In In Internal signal for forwarding to HRESP.
DATA In In Internal signal for forwarding to HRDATA.

READY In In Internal signal for forwarding to HREADY.
ADDR Out Out Forwarding HADDR for internal use.
DATA Out Out Forwarding HWDATA for internal use.

READY Out Out Ready signal which goes from HIGH to LOW when all
data has arrived.

SIZE Out Out Forwarding HSIZE for internal use.
TRANS Out Out Forwarding HTRANS for internal use.
WRITE Out Out Internal write signal, similar to HWRITE.

Table 4.2: Description of AHB slave interface ports [1]

• Reset of TLB

• Add / Remove entries

• Read entries

• Throwing a page fault on wrong access try

CHAPTER 4. IMPLEMENTATION 48

IDLE

WRITING

BUSY

Figure 4.5: State Diagram of AHB slave interface

In and Out Ports

In Figure 4.6 all in- and outputs are shown and the functionality is described in
Table 4.3.

HCLK
HRESETN
READY_In
WRITE_In
UserMode_In
ADDR_In
DATA_In

READY_Out
Page_Fault
UserMode_out
Mode_En
TLB_reset
ENABLE
ADDR_Out
DATA_Out

configuration
logic

Figure 4.6: Ports of configuration logic

CHAPTER 4. IMPLEMENTATION 49

Name In / Out Description
HCLK In The global clock signal. Related to the rising edge.

HRESETN In The global reset signal. Managed by CPU. Every part
is LOW active.

READY In In Sensitive on a falling edge of this signal to start process-
ing with the input data.

WRITE In In Shows if there is a read (LOW) or write (HIGH) access.
A change in the TLB is always a write access.

UserMode In In Shows the actual mode of the MMU. HIGH stands for
user mode, LOW for system mode.

ADDR In In Here the 27-bit address from the AHB slave interface is
shown.

DATA In In When writing into the TLB, the physical address and
the control bits are sent over this signal.

READY Out Out Ready signal which goes from HIGH to LOW when all
data has arrived.

Page Fault Out With an occurring error a page fault is signalized (HIGH
signal).

UserMode Out Out The wanted mode is sent out. LOW for system and
HIGH for user mode.

Mode En Out If the mode is changed, this signal has to be HIGH to
enable the D-Flip-Flop were the value is saved.

TLB RST Out If necessary, the TLB can be reset over this signal (LOW
active).

ENABLE Out Enable signal for the TLB (HIGH active).
ADDR Out Out 4-bit address for addressing the TLB.
DATA Out Out 32-bit data which is a combination of virtual and phys-

ical address and the control bits.

Table 4.3: Description of configuration logic ports

Functionality

In Figure 4.7 the state diagram of the configuration logic is shown. As long as
READY In = 1, the logic will remain in IDLE state. When READY In = 0, four
possibilities are remaining.
The first is to change the mode. If both (ADDR In and DATA In) have the value
“4F 4E” or “4F 46 46” (in ASCII this means ON and OFF), the logic goes into the
MODE state. The MODE En signal goes HIGH and the desired mode is sent out
over the UserMode Out port.
Next possibility is the reset of the TLB. This is like changing of the mode and called
TLB RST. ADDR In and DATA In have to be “52 53 54” (means RST in ASCII).

CHAPTER 4. IMPLEMENTATION 50

The third possible state is the error check. Access to the TLB is only given in system
mode and with the virtual address which is created, edited or deleted. Like told in
Section 3.3 the virtual addresses are appropriated by the VIRT bit. So if this bit is
not set, or the user mode is selected, the logic changes to the IRQ state, where the
page fault signal is set by the MMU.
If no other state gets selected, the logic goes into the RW state. When there is a
read access, the information is sent out. When a TLB entry is created or changed
(deleting is changing the valid control bit), the information is parsed here and sent
out. After that is changes to BUSY state to wait one clock cycle to write the data
into the TLB. After that it returns to the IDLE state. TLB entries is parsed. This
parsing is described in Section 3.4.

IDLE

MODE
IRQ

RW

BUSY

TLB_RST

Figure 4.7: State Diagram of configuration logic

4.3.3 The memory logic

The memory logic is that part of the MMU which translates the virtual address into
the physical address. This provides the following functionality:

• Direct forwarding of physical addresses in system mode

CHAPTER 4. IMPLEMENTATION 51

• Changing a virtual address into a physical address

• Throwing a page fault on wrong access attempts

In and Out Ports

In Figure 4.8 all in- and outputs are shown, the functionality is described in Table
4.4.

HCLK
HRESETN
READY_In_AHB

WRITE_In
UserMode_In
ADDR_In
Mem_In

READY_Out
enable
Page_Fault
ADDR_Out
ADDR_TLB

memory
logic

READY_In_MEM

Figure 4.8: Ports of memory logic

Functionality

In Figure 4.9 the state diagram of the memory logic is shown. Like in the other de-
vices, it will stay in IDLE state as long as READY In AHB = 1. When READY In AHB
changes to LOW, there are two possibilities.
The first one is to change to the IRQ state. This happens when the MMU is in user
mode and the VIRT bit is not set. This means an application tries to access directly
to a physical address.
If there is no forbidden access, the logic changes into the PREPARE state. Here the
logic checks, if there is a virtual or a physical address. When the address is physical,
the next state is the WAITING state. If not, the physical address has to be loaded
from the TLB.
This happen in the next states, LOAD and LOADED. This states are to ensure that
the data is available. After this two loading states, the logic is into the TRANS-
LATE state. Here the TLB entry gets checked with the control bits. First of all the
VALID bit has to be set. The second thing is the read / write permission. If a write
access is performed on a readable address, this is an invalid transfer. If one of these
two cases occur, the next state is IRQ state again. Otherwise the logic switches to
the WAITING state.
In the WAITING state the READY Out bit goes to LOW to signalize, that a valid
address is available. It will remain in this state until the READY In MEM will
become HIGH. After that the logic return in IDLE state.

CHAPTER 4. IMPLEMENTATION 52

Name In / Out Description
HCLK In The global clock signal. Related to the rising edge.

HRESETN In The global reset signal. Managed by CPU. Every part
is LOW active.

READY In AHB In Sensitive on a falling edge of this signal to start process-
ing with the input data.

READY In MEM In Sensitive on a rising edge of this signal to see that trans-
fer has been finished.

WRITE In In Shows if there is a read (LOW) or write (HIGH) access.
UserMode In In Shows the actual mode of the MMU. HIGH stands for

user mode, LOW for system mode.
ADDR In In Here the 27-bit address from the AHB slave interface is

shown.
Mem In In The data which was read from the TLB is available here.

READY Out Out Ready signal which goes from HIGH to LOW when
transfer to memory can begin.

enable Out This is the enable signal for activating the TLB.
Page Fault Out With an occurring error a page fault is signalized (HIGH

signal).
ADDR Out Out When READY Out goes on LOW, the physical address

is available here.
ADDR TLB Out The address for accessing the TLB to gain the informa-

tion about the requested address.

Table 4.4: Description of memory logic ports

4.3.4 The mirrored AHB slave interface

To enable communication between MMU and the memory controller, a mirrored
AMBA AHB slave interface is needed. For the full functionality, this part has to act
like a real AHB master. This part is in the memory path. Like in the AHB slave
interface, all ports with a “H” are the AMBA signals. All ports are similar to this
interface from the signals, but the direction changed from in to out and vice versa.

In and Out Ports

In Figure 4.10 the picture of all inputs and outputs are shown and the functionality
is described in Table 4.5. Every signal with has a “H” at the beginning comes from
the AMBA AHB. The other signals are internal signals of the MMU.

CHAPTER 4. IMPLEMENTATION 53

IDLEWAITING

TRANSLATE

IRQ

VIRT = 0 &
MODE = 1 &

READY_IN_AHB = 0

PREPARE

LOAD

LOADED

Figure 4.9: State Diagram of memory logic

HCLK
HRESETN

HADDR

HSEL
HSIZE
HTRANS
HWDATA

HRDATA
HREADY

mirrored
AHB
slave

HREADYIN

HWRITE

DATA_Out
READY_Out
RESP_Out

HRESP

ADDR_In
READY_In
SIZE_In
TRANS_In
DATA_In
WRITE_In

Figure 4.10: Ports of mirrored AHB slave interface

CHAPTER 4. IMPLEMENTATION 54

Name In / Out Description
HCLK In The global clock signal. Related to the rising edge.

HRESETN In The global reset signal. Managed by CPU. Every part
is LOW active.

HRDATA In Data BUS with 32-bit width for reading data.
HREADY In This signal is sent from AHB slave to show the master

that a transfer has been finished.
HRESP In Signal for giving a response if a transfer succeeded

(LOW) or had an error (HIGH)
HADDR Out The 32-bit address bus signal. Top 4-bits are used for

decoding.
HREADYIN Out This signal is sent from AHB master to slaves to signal

with HIGH that the BUS is free and LOW for occupied.
HSEL Out Select signal for showing a AHB slave that the current

transfer is for it. Must be combined with HREADYIN.
HSIZE Out 3-bit signal which indicates the size of the actual trans-

fer.
HTRANS Out 2-bit signal which indicates the transfer type
HWDATA Out Data BUS with 32-bit width for writing data.
HWRITE Out Signal for write (HIGH) or read (LOW).
ADDR In In The physical address which get forwared to HADDR.

READY In In The interface is sensitive to this signal. When it is LOW,
the transfer process starts.

SIZE In In Internal signal, forwarded to HSIZE.
TRANS In In Internal signal, forwarded to HTRANS.
DATA In In Data BUS which is forwarded to HWDATA.

WRITE In In Internal signal, forwarded to HWRITE.
DATA Out Out Forwarding HRDATA for internal use.
Ready Out Out Forwarding HREADY for internal use.
RESP Out Out Forwarding HRESP for internal use.

Table 4.5: Description of mirrored AHB slave interface ports [1]

Functionality

In Figure 4.11 the state diagram of the mirrored AHB slave interface is shown. After
booting or a reset, the interface is set to IDLE state and as long as READY In =
1, it will remain in this state.
With changing it to LOW, the transfer can begin. First the WRITE In signal is
checked. When it is HIGH, the next state is WRITING, if it is low, the next state is
BUSY. Like for the normal AHB interface, this WRITING state is needed because

CHAPTER 4. IMPLEMENTATION 55

the data has to be at the data BUS one clock cycle later.
After that, the interface stays in the BUSY state until the HREADY signal gets
HIGH. After that the transfer has been completed and the interface returns in
IDLE state.

IDLE

WRITING

BUSY

Figure 4.11: State Diagram of mirrored AHB slave interface

4.3.5 The dual port memory

The dual port memory is used as TLB. As illustrated in Figure 3.1, the TLB is
located between the configuration and the memory path. And with this kind of
memory, it is able to have read and write access from both sides, clocked by one
single signal. Every entry has 32-bit width and the table contains 32 entries. It is
even possible to define the width and entries for every port.

In and Out Ports

In Figure 4.12 the picture of all inputs and outputs are shown and the functionality
is described in Table 4.6. This is the only part withing the MMU, which is sensitive
on a falling clock edge.

CHAPTER 4. IMPLEMENTATION 56

CONF_RW
MEM_RW
CONF_En

HCLK
RESET
CONF_In
MEM_In

CONF_Out
MEM_Out

TLB

MEM_En

CONF_Addr
MEM_Addr

Figure 4.12: Ports of TLB

Name In / Out Description
CONF RW In Read / write signal of configuration side. Read is HIGH

and write is LOW. That is inverted to the AHB protocol.
So this port has a upstream inverter

MEM RW In Read / write signal of memory side. Because there is no
write access allowed from this side, it is constant high.

CONF En In Enable signal for configuration side. Sensitive to a
HIGH Signal.

MEM En In Enable signal for memory side. Sensitive to a HIGH
Signal.

HCLK In The global clock signal. Related to the falling edge.
RESET In The global reset signal. Managed by CPU. Every part

is LOW active.
CONF In In The data which is written into the TLB from the con-

figuration side.
MEM In In The data which is written into the TLB from the mem-

ory side. Because no write access is allowed on this side,
it is constant LOW.

CONF Addr In 4-bit address from configuration side.
MEM Addr In 4-bit address from memory side.
CONF Out Out Data BUS with 32-bit output for configuration side.
MEM Out Out Data BUS with 32-bit output for memory side.

Table 4.6: Description of TLB ports

CHAPTER 4. IMPLEMENTATION 57

4.3.6 The D-Flip-Flop

The D-Flip Flop is used to store if the MMU is in user mode or system mode. When
the enable signal gets HIGH, the input is saved to the output at the next rising clock
edge. When the enable signal is LOW, nothing happens to the output. Because at
booting the VM has to do a lot of memory accesses, the Flip-Flop starts in system
mode.

In and Out Ports

In Figure 4.13 the picture of all inputs and outputs are shown and the functionality
is described in Table 4.7.

HCLK
HRESET
D

Q

mode
EN

Figure 4.13: Ports of D-Flip-Flop

Name In / Out Description
HCLK In The global clock signal. Related to the rising edge.

HRESET In The global reset signal. Managed by CPU. Every part
is LOW active.

D In Input signal of the Flip-Flop.
EN In Enable signal for Flip-Flop. When HIGH, the input is

saved.
Q Out Out signal of the Flip-Flop.

Table 4.7: Description of D-Flip-Flop ports

4.3.7 The logic gates

This are the “easiest” devices of the MMU. It has two inputs and one output
(described in Table 4.8. One is a logical “or”, which means if one input is is HIGH,
the output is HIGH. The other one is a logical “and”, which means both inputs have
to be HIGH, to get a HIGH at the output. The two logical gates are:

CHAPTER 4. IMPLEMENTATION 58

1. The first one is the logical “or” for the page fault signal. When there occurs an
error in the memory logic or the configuration logic, the signal to the output
port of the MMU is lead to the interrupt controller (seen in Figure 4.2). The
“or” function was used because the signals are normally LOW.

2. The second one is the logical “and” for a TLB reset. There are two possibilities
for a reset. First is system reset from the CPU, the second is a reset of the
TLB from the configuration logic. Here the “and” function was used because
the reset signal is normally on a HIGH level.

Name In / Out Description
IN 1 In First input signal.
IN 2 In Second input signal.
OUT Out Output signal.

Table 4.8: Description of logic gate ports

4.4 Test cases

To ensure that the hardware is working without any problems, some tests were made
during the implementation. Only if the test finished without errors, the next part of
the hardware was implemented. The described tests here are in chronological order
as implemented. The results of these tests are shown in the Chapter 5.

4.4.1 Testbench for Advanced Microcontroller BUS Archi-
tecture model

First of all a testbench for testing our hardware was necessary. This testing environ-
ment should simulate the AMBA signals and include the memory controller, flash
and SRAM. As second part the existing memory controller of the system must be
able to communicate over the simulated AMBA interface. This include read an write
access over the memory controller to the memory. This was also really important
after implementing the VHDL model like described in Section 4.2. After this test
were successful, it was possible to begin with the implementation of the MMU.

4.4.2 Testing of the Advanced High-Performance BUS slave
interface

The next step was to establish the connection over the AHB interface. For this
reason three parts were needed:

CHAPTER 4. IMPLEMENTATION 59

1. AHB slave interface

2. A reduced version of the configuration logic

3. Working TLB

With this parts it is possible to check the whole function of the AHB interface and
the TLB in one step. The configuration logic has only one function: to ensure that
the TLB is enable and disable at the right moment.
The testbench from the AMBA model (Section 4.4.1) was taken and modified for
this test. The MMU component has been included in the test file and was connected
to the AMBA simulator. Because of the reason, that the MMU has no AHB out
interface at the moment, it was possible to ignore the memory controller. The test
completed with the function of writing data into the TLB and also being able to
read it after that.

4.4.3 Testing of the mirrored Advanced High-Performance
BUS slave interface

The next step was implementing the mirrored AHB slave interface to connect the
MMU between the AMBA controller and the memory controller. The functionality
of the normal interface was granted because of the previous test.
In this test, the AHB interface of the memory path was connected directly to the
mirrored AHB slave interface. After that, the memory controller had to be connected
within the testing file. And because now there are already two AHB interfaces (for
configuration and memory path) the right one had to be connected to the AMBA
simulator, the other one had to be declared as “open” without function. This test
was declared as successful after writing and reading through the MMU and the
memory controller.

4.4.4 Testing the memory logic

Because the test files were prepared to test the memory logic, the decision was made
to implement the memory logic. For simulation, it is possible to fill TLB entries
with useful data. So some test entries were made to check the full function of this
path. This included three cases:

• Behavior for normal function with translating of valid addresses

• Behavior for wrong access

• Behavior for accessing a invalid entry

With completing this test series, the memory path was completed and had fully
functionality.

CHAPTER 4. IMPLEMENTATION 60

4.4.5 Testing the configuration logic

The last test drive completes the MMU functions. The testing files gets prepared like
in Section 4.4.2. After that the configuration logic gets implemented. The following
functions had been tested:

• Adding and changing of a TLB entry

• Generatin a page fault

• Changing of the MMU mode

• Reset of the TLB

This was the last needed test for the hardware. The full functionality of the Memory
Management Unit is tested and available.

4.5 Setting up of the Test environment

For running the test, the software from Section 4.1 must be installed on the system.
Also a working license file has to be installed 4. The project files are put together
into a .zip file. This has to be extracted into a chosen folder. After that Libero SoC
has to be started.

In Figure 4.14 you can see, that in the working menu, the left enty “Project”
→ “Open Project” has to be chosen. Change to the folder where the .zip file was
extracted. There choose the “CortexM1.prjx” file and click open (Figure 4.15).

In the next step on the right side the COREMEMCtrl has to be made the root
file. This is made with right click on it and “Set As root”. After that it looks like
in Figure 4.17. If this file is already root, this option is not available anymore.
The next step is to start the simulation. For this a own test file has to be created like

it is available in A.4. The project paths have to be changed to the current folders.
After that the simulation with Modelsim can be started like shown in Figure 4.16.
After loading Modelsim, just enter “do test.do” (where test has to be replaced with
the real file name you created). The simulation will start. If you want to change
the AMBA parameters, this can be done in the file “corememctrl usertb.bfm” in the
folder simulation. In Section A.5, there is the content of this file shown.

4http://soc.microsemi.com/Portal/DPortal.aspx?v=24

http://soc.microsemi.com/Portal/DPortal.aspx?v=24

CHAPTER 4. IMPLEMENTATION 61

Figure 4.14: Libero SoC start screen

Figure 4.15: Choosing the project file

CHAPTER 4. IMPLEMENTATION 62

Figure 4.16: Starting the simulation with ModelSim

Figure 4.17: Choosing the root file in Libero SoC

Chapter 5

Results

This chapter contains the final results of the test cases, which were made during the
implementation. We are just taking a look on the final hardware. First the test of
the configuration path are shown. The second is the result of the memory path. At
last there is a before and after speed analysis.

5.1 Configuration tests

In this section the results of the test cases of the configuration logic are shown. This
contains the following cases:

• Write / Read access

• IRQ

– VIRT not set

– MMU in user mode

• Mode Changing

• TLB reset

5.1.1 Write access

Figure 5.1 shows a write access to the lookup table. Transfer begins at 0.43us, with
the positive clock edge. The state signals are the current state of the devices. The
first one is the AHB interface, the second one is the configuration logic.
As you can see, after the HREADY signal goes low, the Conf In state (that is the
AHB interface) changes to WRITING. The logic is changing into RW state. The
signal CONF In is the input interface for the lookup table. After successful write
CONF Out follows CONF In.

63

CHAPTER 5. RESULTS 64

Figure 5.1: Write access of configuration logic

5.1.2 IRQ

In Figure 5.2 there are two test cases were a page fault occurs. Normally the
OS would join an interrupt service routine. But because we are only testing the
hardware, here only the signal changes from LOW to HIGH. This is illustrated in
Figure 5.2 using the state named IRQ.
The upper transfer shows a page fault when an access is tried in user mode. The
signal Q is the output of the mode register. It is HIGH, so this means user mode.
The transfer is startet at 0.73us. The logic changes directly from IDLE to IRQ and
the page fault signal rises.
In the lower transfer a page fault occurs, because an access is tried without having
a virtual address. The VIRT signal shows that this is a physical address and even
though the MMU is in system mode, the page fault occurs.

5.1.3 Mode Changing

Figure 5.3 show the change between user and system mode. Because the simulation
starts in Boot-Mode, the signal Q (output from mode register) is LOW which means
system mode. At 0.43us the signal for changing to user mode is sent. The mode
changes to HIGH. The READY signal goes HIGH and signals the AMBA master
that the transfer has ended. Directly after that, the code for changing to system
mode is sent. The mode register changes back to LOW.

CHAPTER 5. RESULTS 65

Figure 5.2: Occuring page fault from configuration logic

5.1.4 Reset

The last test in Figure 5.4 shows the TLB reset. At 0.43us the reset signal is sent.
The configuration logic changes to state TLB RST. The reset signal changes to
LOW, all entries in the lookup table are deleted. After that the MMU returns into
IDLE state.

5.2 Memory tests

In this section the results of the test cases of the memory logic are shown. This
contains the following cases:

• Physical address access

• Virtual address access

CHAPTER 5. RESULTS 66

Figure 5.3: Changing between user and system mode

Figure 5.4: Reset of lookup table

• IRQ

– Entry invalid

– Wrong permission

CHAPTER 5. RESULTS 67

5.2.1 Physical address access

Figure 5.5: Memory access with physical address

In Figure 5.5 a memory access with a physical address is done. The information
is sent over the AHB interface. The logic changes into the PREPARE state. Because
the address is physical and the MMU is in system mode, the logic directly changes to
the WAITING state. So the address is directly sent to the mirrored AHB interface.
HADDR MMU is the address BUS to the memory controller. After successful write,
every device returns to IDLE state.

5.2.2 Virtual address access

In Figure 5.6 a memory access with a virtual address is done. This is seen at the
VIRT signal. The information is sent over the AHB interface. The logic changes
into the PREPARE state. Because the address is virtual and the MMU is in system
mode, the logic changes to the LOAD state. In state LOADED the output of the
lookup table (MEM Out signal) changes to the saved table entry. This entry is
parsed and the physical address is read and parsed. The physical address is 0 so it
changes to this. After the logic changes to the WAITING state, the changed address
is sent to the mirrored AHB interface. In HADDR MMU it is possible to see that
the address has been changed.

CHAPTER 5. RESULTS 68

Figure 5.6: Memory access with virtual address

5.2.3 IRQ

Wrong permission

In Figure 5.7 memory access is shown. The upper transfer is a writing and the lower
a reading access. Both to the same address. As you can see, the RW bit is LOW,
this means that on this address only reading access is allowed. That is why in the
upper picture a page fault occur. Because this is a simulation of the hardware, no
interrupt service routine is called. In the lower transfer the reading access granted,
because everything is alright with the permissions. The MMU allows read access
from the memory address.

Invalid Entry

Figure 5.8 show a memory access to an address with an invalid lookup table entry.
In the TRANSLATE state, the VIRT bit is checked. Because it is LOW, that means
that the Entry is invalid, the next state is IRQ were the page fault signal changes
to HIGH.

5.3 Speed Analysis

In Figure 5.9 a normal write access is made in the test system. The transfer starts
at 0.43us and ends at 0.49us, this means that the access has a duration from 0.06us.
Now compared with Figure 5.9 there can be seen. That the duration rises rapidly
to 0.36us. This means one access is six times longer than before. This is the worst

CHAPTER 5. RESULTS 69

Figure 5.7: Memory access with permission errors

case for a reading access and occurs because of the devices which has to be passed
through into the MMU.

CHAPTER 5. RESULTS 70

Figure 5.8: Memory access with invalid entry

Figure 5.9: Transfer time without MMU

CHAPTER 5. RESULTS 71

Figure 5.10: Transfer time with MMU

Chapter 6

Conclusion

This chapter includes a short conclusion about this project and what new important
things were learned during working on this master thesis. Furthermore there is a
short outlook about projects what can be worked on in further projects.

The goal of the project was to develop a hardware module to support the Java
Card firewall. This goal was reached. Attacks which try to access another context
than their own are blocked. Also the access to the system space is not possible from
inside an applet context. Another success is that an attacker is not able to make
reverse engineering because the only thing he is able to find are the virtual addresses
which are managed by the Operating System.
The only negative aspect is that the performance of the systems gets lower. This is
because more devices are included in one memory access. This loss of performance
is justified with the win of security.

6.1 Outlook

Using this thesis as a base, the next step will be to adapt the Operating System to
make it possible to use the new developed hardware. Another interesting point after
adapting is to reduce the overload of the Memory Management Unit. By doing this,
it would be possible to improve the speed performance of the system.
Furthermore another idea is to change the position of the MMU inside the used
system. At the moment it is located between the AHB BUS and the memory
controller. The repositioning between CPU and AHB will change the security level
because with that it is possible to check every access which is made to every available
memory. But in this case, the complete protocol of the MMU has to be changed as
well.

72

Appendix A

Appendix

A.1 Acronyms

AHB Advanced High-Performance BUS. 24

AMBA Advanced Microcontroller BUS Architecture . 24

APB Advanced Peripheral BUS . 24

API Application Programming Interface . 9

ARM Advanced RISC Machines . 20

BUS Binary Unit System. .24

CAP Composite Application Platform . 9

CPU Central Processing Unit. .23

FPGA Field Programmable Gate Array . 28

GPIO General-purpose input/output. .39

ID Identification . 26

I/O input/output . 12

JC Java Card . 6

JCVM Java Card Virtual Machine . 12

JCRE Java Card Runtime Environment . 9

JDK Java Development Kit . 6

JRE Java Runtime Environment . 6

JVM Java Virtual Machine . 6

MMU Memory Management Unit . 22

MPU Memory Protection Unit . 22

OS Operating System. .6

73

APPENDIX A. APPENDIX 74

PIN Personal Identification Number . 12

RAM Random-Access Memory . 11

RFID Radio-frequency identification . 12

ROM Read Only Memory . 31

SoC System-on-Chip. .20

SRAM Static RAM. .24

TLB Translation lookaside buffer . 23

VHDL Very High Speed Integrated Circuit Hardware Description Language 41

VM Virtual Machine . 5

APPENDIX A. APPENDIX 75

A.2 Core Information

IP-Core Version Number Class
CortexM1Top 3.1.101 CPU
CoreAHBLite 5.0.100 BUS
CoreMemCtrl 2.0.105 Regular
CoreAhbSram 1.4.104 Regular

CoreAHB2APB 1.1.101 Bridge
CoreAPB 1.1.101 BUS
CoreTimer 1.1.101 Regular

CoreUARTapb 5.2.2 Regular
CoreGPIO 3.0.120 Regular

CoreInterrupt 1.1.101 Regular

Table A.1: IP-Cores version mumbers

A.3 Testbench VHDL Code

Here some code elements from the testbench.vhdl file are shown. The available
testbench file was changed in a few parts. The first one was at the beginning. Here
the component of the own hardware had to be added.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.numeric_std.all;

library work;

use work.corememctrl_pkg.all;

use work.coreparameters.all;

entity testbench is

generic (

VECTFILE : string := "corememctrl_usertb.vec"

);

end entity testbench;

architecture test of testbench is

-- component declaration for MMU

component MMU is

port(

APPENDIX A. APPENDIX 76

-- Inputs

HADDR : in std_logic_vector (27 downto 0);

HADDR_1 : in std_logic_vector (27 downto 0);

HCLK : in std_logic;

HRDATA_0 : in std_logic_vector (31 downto 0);

HREADYIN : in std_logic;

HREADYIN_1 : in std_logic;

HREADY_0 : in std_logic;

HRESETN : in std_logic;

HRESP_0 : in std_logic_vector (1 downto 0);

HSEL : in std_logic;

HSEL_1 : in std_logic;

HSIZE : in std_logic_vector (2 downto 0);

HSIZE_1 : in std_logic_vector (2 downto 0);

HTRANS : in std_logic_vector (1 downto 0);

HTRANS_1 : in std_logic_vector (1 downto 0);

HWDATA : in std_logic_vector (31 downto 0);

HWDATA_1 : in std_logic_vector (31 downto 0);

HWRITE : in std_logic;

HWRITE_1 : in std_logic;

-- Outputs

HADDR_0 : out std_logic_vector (27 downto 0);

HRDATA : out std_logic_vector (31 downto 0);

HRDATA_1 : out std_logic_vector (31 downto 0);

HREADY : out std_logic;

HREADYIN_0 : out std_logic;

HREADY_1 : out std_logic;

HRESP : out std_logic_vector (1 downto 0);

HRESP_1 : out std_logic_vector (1 downto 0);

HSEL_0 : out std_logic;

HSIZE_0 : out std_logic_vector (2 downto 0);

HTRANS_0 : out std_logic_vector (1 downto 0);

HWDATA_0 : out std_logic_vector (31 downto 0);

HWRITE_0 : out std_logic;

PageFault : out std_logic

);

end component;

The next step was to add a few signals to create a connection between the MMU
and the memory controller.

-- signal for MMU to CoreMemCtrl

signal HADDR_MMU : std_logic_vector (27 downto 0);

signal HREADYIN_MMU : std_logic;

APPENDIX A. APPENDIX 77

signal HSEL_MMU : std_logic;

signal HSIZE_MMU : std_logic_vector (2 downto 0);

signal HTRANS_MMU : std_logic_vector (1 downto 0);

signal HWDATA_MMU : std_logic_vector (31 downto 0);

signal HWRITE_MMU : std_logic;

signal HRDATA_MMU : std_logic_vector (31 downto 0);

signal HREADY_MMU : std_logic;

signal HRESP_MMU : std_logic_vector (1 downto 0);

The last part was to change the port map of the MMU and the memory controller
in dependency from the chosen test case.

-- MMU (device under test)

MMU_00 : MMU

port map (

HCLK => HCLK ,

HRESETN => HRESETN ,

-- AHB_Mem_In

HADDR => HADDR (27 downto 0),

HREADYIN => HREADY ,

HSEL => HSEL (0),

HSIZE => HSIZE ,

HTRANS => HTRANS ,

HWDATA => HWDATA ,

HWRITE => HWRITE ,

HRDATA => HRDATA ,

HREADY => HREADY ,

HRESP => HRESP ,

--AHB_Mem_Out

HADDR_0 => HADDR_MMU ,

HREADYIN_0 => HREADYIN_MMU ,

HSEL_0 => HSEL_MMU ,

HSIZE_0 => HSIZE_MMU ,

HTRANS_0 => HTRANS_MMU ,

HWDATA_0 => HWDATA_MMU ,

HWRITE_0 => HWRITE_MMU ,

HRDATA_0 => HRDATA_MMU ,

HREADY_0 => HREADY_MMU ,

HRESP_0 => HRESP_MMU ,

-- AHB_Conf_In

HADDR_1 => (others => ’0’),

HREADYIN_1 => ’0’,

HSEL_1 => ’0’,

HSIZE_1 => (others => ’0’),

APPENDIX A. APPENDIX 78

HTRANS_1 => (others => ’0’),

HWDATA_1 => (others => ’0’),

HWRITE_1 => ’0’,

HRDATA_1 => open ,

HREADY_1 => open ,

HRESP_1 => open

);

-- Memory controller

COREMEMCTRL_00 : CoreMemCtrl

generic map (

-- Configuration parameters

SYNC_SRAM => SYNC_SRAM ,

FLASH_16BIT => FLASH_16BIT ,

NUM_WS_FLASH_READ => NUM_WS_FLASH_READ ,

NUM_WS_FLASH_WRITE => NUM_WS_FLASH_WRITE ,

NUM_WS_SRAM_READ => NUM_WS_SRAM_READ ,

NUM_WS_SRAM_WRITE => NUM_WS_SRAM_WRITE ,

SHARED_RW => SHARED_RW ,

FLOW_THROUGH => FLOW_THROUGH ,

FLASH_ADDR_SEL => FLASH_ADDR_SEL ,

SRAM_ADDR_SEL => SRAM_ADDR_SEL

)

port map (

-- Inputs

-- Global

HCLK => HCLK ,

REMAP => REMAP ,

HRESETN => HRESETN ,

-- Testing with MMU

HADDR => HADDR_MMU ,

HREADYIN => HREADYIN_MMU ,

HSEL => HSEL_MMU ,

HSIZE => HSIZE_MMU ,

HTRANS => HTRANS_MMU ,

HWDATA => HWDATA_MMU ,

HWRITE => HWRITE_MMU ,

HRDATA => HRDATA_MMU ,

HREADY => HREADY_MMU ,

HRESP => HRESP_MMU ,

--Testing without MMU

--HADDR => HADDR (27 downto 0),

--HREADYIN => HREADY ,

APPENDIX A. APPENDIX 79

--HSEL => HSEL (0),

--HSIZE => HSIZE ,

--HTRANS => HTRANS ,

--HWDATA => HWDATA ,

--HWRITE => HWRITE ,

--HRDATA => HRDATA ,

--HREADY => HREADY ,

--HRESP => HRESP ,

--Testing MEMCTRL

--HADDR => (others => ’0’),

--HREADYIN => ’1’,

--HSEL => ’0’,

--HSIZE => (others => ’0’),

--HTRANS => (others => ’0’),

--HWDATA => (others => ’0’),

--HWRITE => ’0’,

--HRDATA => open ,

--HREADY => open ,

--HRESP => open ,

MEMADDR => MEMADDR ,

MEMREADN => MEMREADN ,

MEMWRITEN => MEMWRITEN ,

FLASHCSN => FLASHCSN ,

FLASHOEN => FLASHOEN ,

FLASHWEN => FLASHWEN ,

SRAMBYTEN => SRAMBYTEN ,

SRAMCSN => SRAMCSN ,

SRAMCLK => SRAMCLK ,

SRAMOEN => SRAMOEN ,

SRAMWEN => SRAMWEN ,

-- Inouts

MEMDATA => MEMDATA

);

A.4 Code simulation File

Here the code of the *.do file for runnning the simulation is shown. The paths have
to be changed to the current folder and installation. This is important because
otherwise it will not work.

q u i e t l y s e t ACTELLIBNAME p r o a s i c 3 l
q u i e t l y s e t PROJECT DIR ”D: /TU/Master/ Diplomarbeit /SVN/

CortexM1 System”

APPENDIX A. APPENDIX 80

source ”${PROJECT DIR}/ s imu la t i on / bfmtovec compi le . t c l ” ;

i f { [f i l e e x i s t s presynth / i n f o]} {
echo ”INFO: Simulat ion l i b r a r y presynth a l r eady e x i s t s ”

} e l s e {
f i l e d e l e t e −f o r c e presynth
v l i b presynth

}
vmap presynth presynth
vmap p r o a s i c 3 l ”C: / Microsemi / Libero v11 .4/ Des igner / l i b /

modelsim/ precompi led / vhdl / p r o a s i c 3 l ”
vmap proa s i c 3 ”C: / Microsemi / Libero v11 .4/ Des igner / l i b /

modelsim/ precompi led / vhdl / p r o a s i c 3 l ”
vmap COREAHBLITE LIB ”${PROJECT DIR}/component/ Acte l /

DirectCore /CoreAHBLite /5 . 0 . 100/ mti/ use r vhd l /
COREAHBLITE LIB”

vcom −work COREAHBLITE LIB − f o r c e r e f r e s h
v log −work COREAHBLITE LIB − f o r c e r e f r e s h
i f { [f i l e e x i s t s COREGPIO LIB/ i n f o]} {

echo ”INFO: Simulat ion l i b r a r y COREGPIO LIB a l ready
e x i s t s ”

} e l s e {
f i l e d e l e t e −f o r c e COREGPIO LIB
v l i b COREGPIO LIB

}
vmap COREGPIO LIB ”COREGPIO LIB”
vmap COREMEMCTRL LIB ”${PROJECT DIR}/component/ Acte l /

DirectCore /CoreMemCtrl /2 . 0 . 105/ mti/ use r vhd l /
COREMEMCTRL LIB”

vcom −work COREMEMCTRL LIB − f o r c e r e f r e s h
v log −work COREMEMCTRL LIB − f o r c e r e f r e s h
i f { [f i l e e x i s t s COREUARTAPB LIB/ i n f o]} {

echo ”INFO: Simulat ion l i b r a r y COREUARTAPB LIB a l ready
e x i s t s ”

} e l s e {
f i l e d e l e t e −f o r c e COREUARTAPB LIB
v l i b COREUARTAPB LIB

}
vmap COREUARTAPB LIB ”COREUARTAPB LIB”

vcom −93 −e x p l i c i t −work COREMEMCTRL LIB ”${PROJECT DIR}/
component/ Acte l / DirectCore /CoreMemCtrl /2 . 0 . 105/ r t l / vhdl /
co r e ob fu s ca t ed / corememctrl . vhd”

APPENDIX A. APPENDIX 81

vcom −93 −e x p l i c i t −work COREMEMCTRL LIB ”${PROJECT DIR}/
component/ Acte l / DirectCore /CoreMemCtrl /2 . 0 . 105/ r t l / vhdl /
t e s t / user / corememctrl pkg . vhd”

vcom −93 −e x p l i c i t −work COREMEMCTRL LIB ”${PROJECT DIR}/
component/ Acte l / DirectCore /CoreMemCtrl /2 . 0 . 105/
coreparameters . vhd”

vcom −93 −e x p l i c i t −work COREAHBLITE LIB ”${PROJECT DIR}/
component/ Acte l / DirectCore /CoreAHBLite /5 . 0 . 100/ r t l / vhdl /
co r e ob fu s ca t ed /components . vhd”

vcom −93 −e x p l i c i t −work COREAHBLITE LIB ”${PROJECT DIR}/
component/ Acte l / DirectCore /CoreAHBLite /5 . 0 . 100/ r t l / vhdl /
co r e ob fu s ca t ed / c o r e a h b l i t e a d d r d e c . vhd”

vcom −93 −e x p l i c i t −work presynth ”${PROJECT DIR}/component
/ Acte l / DirectCore /CoreAhbSram /1 .4 . 104/ r t l / vhdl /u/
components . vhd”

vcom −93 −e x p l i c i t −work COREGPIO LIB ”${PROJECT DIR}/
component/ Acte l / DirectCore /CoreGPIO /3 .0 . 120/ r t l / vhdl /
co r e ob fu s ca t ed /components . vhd”

vcom −93 −e x p l i c i t −work COREGPIO LIB ”${PROJECT DIR}/
component/ Acte l / DirectCore /CoreGPIO /3 .0 . 120/ r t l / vhdl /
co r e ob fu s ca t ed / coregp io pkg . vhd”

vcom −93 −e x p l i c i t −work COREMEMCTRL LIB ”${PROJECT DIR}/
component/ Acte l / DirectCore /CoreMemCtrl /2 . 0 . 105/ r t l / vhdl /
co r e ob fu s ca t ed /components . vhd”

vcom −93 −e x p l i c i t −work presynth ”${PROJECT DIR}/component
/ Acte l / DirectCore /CortexM1Top /3 .1 . 101/ r t l / vhdl /o/
CortexM1Top a3pl . vhd”

vcom −93 −e x p l i c i t −work COREUARTAPB LIB ”${PROJECT DIR}/
component/work/ core /CoreUARTapb 0/ r t l / vhdl /
co r e ob fu s ca t ed /components . vhd”

vcom −93 −e x p l i c i t −work COREMEMCTRL LIB ”${PROJECT DIR}/
component/ Acte l / DirectCore /CoreMemCtrl /2 . 0 . 105/ r t l / vhdl /
t e s t / user /async memory . vhd”

vcom −93 −e x p l i c i t −work COREMEMCTRL LIB ”${PROJECT DIR}/
component/ Acte l / DirectCore /CoreMemCtrl /2 . 0 . 105/ r t l / vhdl /
t e s t / user /sync memory . vhd”

vcom −93 −e x p l i c i t −work COREMEMCTRL LIB ”${PROJECT DIR}/
component/ Acte l / DirectCore /CoreMemCtrl /2 . 0 . 105/ t e s t /
amba bfm/ vhdl /bfm main . vhd”

vcom −93 −e x p l i c i t −work COREMEMCTRL LIB ”${PROJECT DIR}/
component/ Acte l / DirectCore /CoreMemCtrl /2 . 0 . 105/ t e s t /
amba bfm/ vhdl / bfm ahbl . vhd”

APPENDIX A. APPENDIX 82

vcom −93 −e x p l i c i t −work COREMEMCTRL LIB ”${PROJECT DIR}/
hdl /AHB In . vhd”

vcom −93 −e x p l i c i t −work COREMEMCTRL LIB ”${PROJECT DIR}/
hdl /AHB Out . vhd”

vcom −93 −e x p l i c i t −work COREMEMCTRL LIB ”${PROJECT DIR}/
hdl / c o n f l o g i c . vhd”

vcom −93 −e x p l i c i t −work COREMEMCTRL LIB ”${PROJECT DIR}/
hdl /mode . vhd”

vcom −93 −e x p l i c i t −work COREMEMCTRL LIB ”${PROJECT DIR}/
hdl / mem logic . vhd”

vcom −93 −e x p l i c i t −work COREMEMCTRL LIB ”${PROJECT DIR}/
smartgen/ t l b r e s e t / t l b r e s e t . vhd”

vcom −93 −e x p l i c i t −work COREMEMCTRL LIB ”${PROJECT DIR}/
smartgen/UserMode/UserMode . vhd”

vcom −93 −e x p l i c i t −work COREMEMCTRL LIB ”${PROJECT DIR}/
smartgen/ PageFault or / PageFault or . vhd”

vcom −93 −e x p l i c i t −work COREMEMCTRL LIB ”${PROJECT DIR}/
smartgen/ t r a n s t a b l e / t r a n s t a b l e . vhd”

vcom −93 −e x p l i c i t −work COREMEMCTRL LIB ”${PROJECT DIR}/
component/work/MMU/MMU. vhd”

vcom −93 −e x p l i c i t −work COREMEMCTRL LIB ”${PROJECT DIR}/
component/ Acte l / DirectCore /CoreMemCtrl /2 . 0 . 105/ r t l / vhdl /
t e s t / user / tes tbench . vhd”

vsim −L p r o a s i c 3 l −L presynth −L COREAHBLITE LIB −L
COREGPIO LIB −L COREMEMCTRL LIB −L COREUARTAPB LIB −t 1
ps COREMEMCTRL LIB. tes tbench

do ”${PROJECT DIR}/ s imu la t i on /wave . do”
run −a l l

A.5 AMBA control File

The last part here is the code from the test file for the AMBA controlls. Here it is
easily possible to change the controls for the master device.

#===
#
Syntax :
−−−−−−−
#
memmap resource name base addre s s ;
#
wr i t e width resource name b y t e o f f s e t data ;

APPENDIX A. APPENDIX 83

read width resource name b y t e o f f s e t ;
readcheck width resource name b y t e o f f s e t data ;
#
#===

#−−−
Memory Map
Def ine name and base address o f each r e sou r c e .
#−−−

memmap FLASH 0x00000000 ;
memmap SSRAM 0x08000000 ;

procedure main
c a l l mem test

re turn

procedure mem test
Set debug l e v e l (c o n t r o l s v e rb o s i t y o f s imu la t i on

t r a c e)
debug 3 ;

#−−−
Test FLASH a c c e s s
#−−−
pr in t ”==”;
p r i n t ”FLASH t e s t ” ;
p r i n t ”==”;
pr in t ”==”;
pr in t ” Set USERMODE ON” ;
pr in t ”==”;
wr i t e w FLASH 0x4F4E 0x00004F4E ;

pr in t ”==”;
pr in t ” Set SYSTEMMODE” ;
pr in t ”==”;
wr i t e w FLASH 0x4F4646 0x004F4646 ;

pr in t ”==”;
pr in t ” Set RESET” ;
pr in t ”==”;

APPENDIX A. APPENDIX 84

wr i t e w FLASH 0x525354 0x00525354 ;

pr in t ”==”;
pr in t ” Set USERMODE ON” ;
pr in t ”==”;

wr i t e w FLASH 0x4C97013 0x00000317 ;
read w FLASH 0x4600200 ;
readcheck w FLASH 0x00 0x0000dead ;
wr i t e w FLASH 0x00 0 xdeadbeef ;
wr i t e w FLASH 0x4F4E 0x00004F4E ;
wr i t e w FLASH 0x4C97013 0x00000317 ;
wr i t e w FLASH 0x4600206 0xabcd1234 ;
wr i t e w FLASH 0x4000403 0xdeaddead ;
wr i t e w FLASH 0x4400003 0x00000000 ;
read w FLASH 0x4400003 ;
readcheck w FLASH 0x00 0 xdeadbeef ;
readcheck w FLASH 0x4600206 0xabcd1234 ;

wr i t e w FLASH 0x200000 0x12345678 ;
readcheck w FLASH 0x200000 0x12345678 ;
readcheck w FLASH 0x00 0 xdeadbeef ;
readcheck w FLASH 0x04 0x12345678 ;
readcheck w FLASH 0x02 0x45454545 ;
wr i t e w FLASH 0x10 0xabcd1234 ;
wr i t e w FLASH 0x44 0 x00abcdef ;
wr i t e w FLASH 0x50 0 x3d681acf ;
wr i t e w FLASH 0x54 0x82db74a9 ;
wr i t e w FLASH 0x58 0xe81d93be ;
readcheck w FLASH 0x50 0 x3d681acf ;
readcheck w FLASH 0x54 0x82db74a9 ;
readcheck w FLASH 0x58 0xe81d93be ;
readcheck w FLASH 0x44 0 x00abcdef ;

#−−
Test SSRAM a c ce s s
#−−

pr in t ”==”;
p r i n t ”SRAM t e s t ” ;
p r i n t ”==”;

wr i t e w SSRAM 0x00 0xD00FD00F ;

APPENDIX A. APPENDIX 85

wr i t e w SSRAM 0x03 0x22222222 ;
wr i t e w SSRAM 0x05 0x33333333 ;
readcheck w SSRAM 0x00 0xD00FD00F ;
readcheck w SSRAM 0x03 0x22222222 ;
readcheck w SSRAM 0x05 0x33333333 ;

wr i t e b SSRAM 0x24 0x41 ;
wr i t e b SSRAM 0x3c 0xa5 ;
wr i t e b SSRAM 0x28 0xcd ;
readcheck b SSRAM 0x3c 0xa5 ;
readcheck b SSRAM 0x24 0x41 ;
readcheck b SSRAM 0x28 0xcd ;

wr i t e b SSRAM 0x42 0xae ;
wr i t e b SSRAM 0x43 0x67 ;
wr i t e b SSRAM 0x4a 0x14 ;
readcheck b SSRAM 0x42 0xae ;
readcheck b SSRAM 0x43 0x67 ;
readcheck b SSRAM 0x4a 0x14 ;

wr i t e w SSRAM 0x50 0 x3d681acf ;
wr i t e w SSRAM 0x54 0x82db74a9 ;
wr i t e w SSRAM 0x58 0xe81d93be ;
readcheck w SSRAM 0x50 0 x3d681acf ;
readcheck w SSRAM 0x54 0x82db74a9 ;
readcheck w SSRAM 0x58 0xe81d93be ;

wr i t e h SSRAM 0x12 0x368c ;
wr i t e h SSRAM 0x10 0x8dba ;
wr i t e h SSRAM 0x16 0xe1db ;
readcheck h SSRAM 0x12 0x368c ;
readcheck h SSRAM 0x10 0x8dba ;
readcheck h SSRAM 0x16 0xe1db ;

re turn

The ”#“ character has to be removed in the lines which are going to be used in the
simulation.

Bibliography

[1] AMBA R©3 AHB-Lite Protocol v1.0 Specification. ARM Limited.

[2] Java Card Technology. Oracle Corporation. Accessed on 27.12.2014.

[3] TrustZone. ARM Limited http://www.arm.com/products/processors/

technologies/trustzone.php/. Accessed on 05.03.2015.

[4] Identification System, 1969. http://worldwide.espacenet.com/

publicationDetails/biblio?CC=GB&NR=1317915A&KC=A&FT=D&ND=4&date=

19730523&DB=EPODOC&locale=en_EP#.

[5] Cortex-M1-enabled ProASIC3L Development Kit. Microsemi Corpora-
tion http://www.microsemi.com/products/fpga-soc/design-resources/

dev-kits/proasic3/cortex-m1-enabled-proasic3l-development-kit,
2002. Accessed on 25.03.2015.

[6] RFID cards. Kaardiekspert Ltd. http://www.kaardiekspert.ee/en/

rfid-kaardid, 2002. Accessed on 23.03.2015.

[7] Write once, run everywere. Computer Weekly http://www.computerweekly.

com/feature/Write-once-run-anywhere, 2002. Accessed on 27.12.2014.

[8] http://microtoad.free.fr/?p=15, Accessed on 10.04.2005.

[9] Bar-el, H. Known Attacks again Smartcards. Tech. rep., Discretix Technolo-
gies Ltd., Reviewed 18.02.2015.

[10] Chan, S.-c. C. An Overview of Smart Card Security, captured on Jan. 27,
2001. Aug 17 (1997), 1–7.

[11] Chen, Z. Java Card Technology for Smart Cards: Architecture and Programmer’s Guide.
Addison-Wesley Professional, 2000.

[12] Daryatmo, B. J2ME. Weblog : Budi Daryatmo (November 2007).

[13] Ding, J.-H. ARMvisor: System Virtualization for ARM. Tech. rep., National
Tsing Hua University, In: Linux Symposium (2012).

86

http://www.arm.com/products/processors/technologies/trustzone.php/
http://www.arm.com/products/processors/technologies/trustzone.php/
http://worldwide.espacenet.com/publicationDetails/biblio?CC=GB&NR=1317915A&KC=A&FT=D&ND=4&date=19730523&DB=EPODOC&locale=en_EP#
http://worldwide.espacenet.com/publicationDetails/biblio?CC=GB&NR=1317915A&KC=A&FT=D&ND=4&date=19730523&DB=EPODOC&locale=en_EP#
http://worldwide.espacenet.com/publicationDetails/biblio?CC=GB&NR=1317915A&KC=A&FT=D&ND=4&date=19730523&DB=EPODOC&locale=en_EP#
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/proasic3/cortex-m1-enabled-proasic3l-development-kit
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/proasic3/cortex-m1-enabled-proasic3l-development-kit
http://www.kaardiekspert.ee/en/rfid-kaardid
http://www.kaardiekspert.ee/en/rfid-kaardid
http://www.computerweekly.com/feature/Write-once-run-anywhere
http://www.computerweekly.com/feature/Write-once-run-anywhere
http://microtoad.free.fr/?p=15

BIBLIOGRAPHY 87

[14] Goldberg, R. P. Architectural Principles for Virtual Computer Systems.
Tech. rep., Harvard University, 1973.

[15] Hogenboom, J., and Mostowski, W. Full Memory Read Attack on a Java
Card. Tech. rep., 2010.

[16] Iguchi-Cartigny, J., and Lanet, J.-L. Developing a Trojan applets in a
smart card. Tech. rep., J. Comput. Virol., 2010.

[17] ISO/IEC. Identification cards – Contactless integrated circuit cards – Prox-
imity cards – Part 4: Transmission protocol. ISO/IEC 14443-4., International
Organization for Standardization / International Electrotechnical Commission,
2008.

[18] Joan, B. Memory protection units(MPU). A look at ARM MPUs., September
2013.

[19] Lackner, M., and Irauschek, M. Codesign for Countermeasures against
Malicious Applications on Java Cards. Work Package 1: Threat Analysis. Tech.
rep., Institute for Technical Informatics Graz University of Technology, 2011.

[20] Lafer, M. Design and Implementation of a Java Card Operating System for
Design Space Exploration on Different Platforms. Master’s thesis, Institute for
Technical Informatics, Graz University of Technology, 2014.

[21] Mostowski, W., and Poll, E. Malicious Code on Java Card Smartcards:
Attacks and Countermeasures. Tech. rep., 2008.

[22] Oracle Corporation. Java Card 3 Platform: Runtime Environment Specification, Classic Edition,
3.0.4 ed., September 2011.

[23] Popek, G., and Goldberg, R. Formal requirements for virtualizable third
generation architectures. Communications of the ACM (1974).

[24] Smith, J., and Nair, R. Virtual Machines: Versatile Platforms For Systems And Processes.
Morgan Kaufmann Publishers Inc., 2005.

[25] Tunstall, M. Attacks on Smart Cards. Gemplus, 2003. Reviewed 17.01.2015.

[26] Witteman, M. Advances in Smartcard Security.
Information Security Bulletin (2002).

	Introduction
	The CoCoon Project
	Motivation
	Outline

	State of the Art
	Virtual Machine
	Java
	General information
	Different Java Runtime Environment Platforms

	Java Card
	Components
	Benfits
	Differences between Java and Java Card

	Smart Cards
	General smart card Information
	Different types of smart card attacks
	Possible attacks

	Memory Separation in Embedded Systems
	Overview
	Separation with the Java Card Firewall
	Memory Protection Devices

	Design
	System Overview
	Chosen Memory Protection Device
	Memory Management Unit
	Internal structure

	Memory Map
	Parsing of lookup table entries
	Use Cases
	Use Cases of the Memory Management Unit
	Use Cases of Operating System

	Future Changes of given Architecture

	Implementation
	Development Environment
	Field Programmable Gate Array Board
	Software Environment

	Implementation of the System in VHDL
	Memory Management Unit
	The Advanced High-Performance BUS slave interface
	The configuration logic
	The memory logic
	The mirrored AHB slave interface
	The dual port memory
	The D-Flip-Flop
	The logic gates

	Test cases
	Testbench for Advanced Microcontroller BUS Architecture model
	Testing of the Advanced High-Performance BUS slave interface
	Testing of the mirrored Advanced High-Performance BUS slave interface
	Testing the memory logic
	Testing the configuration logic

	Setting up of the Test environment

	Results
	Configuration tests
	Write access
	IRQ
	Mode Changing
	Reset

	Memory tests
	Physical address access
	Virtual address access
	IRQ

	Speed Analysis

	Conclusion
	Outlook

	Appendix
	Acronyms
	Core Information
	Testbench VHDL Code
	Code simulation File
	AMBA control File

	Bibliography

