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Abstract

Artificial satellites orbiting planetary bodies are sensitive to a variety of
gravitational and non-gravitational forces. This thesis focuses on the re-
covery of the long wavelengths of the Earth’s and the Moon’s gravity field
using ground-based tracking data. Since the gravity field is derived from
satellite perturbation, a major part of the thesis at hand is dedicated to pre-
cise orbit determination. As far as the Earth is concerned, the largest and
hence most crucial gravity field coefficient is the dynamical flattening term
C20. It can be most precisely determined from two-way optical satellite laser
ranges to geodetic satellites. Their simple spherical shape along with their
large area-to-mass ratio minimize the disturbing effects of non-gravitational
forces, which are difficult to model. Laser ranges to six geodetic satellites
(LAGEOS-1/2, Ajisai, Stella, Starlette, Larets) were analyzed over a time
span of almost 14 years (January 2000 to October 2013). On the one hand,
a static gravity field solution was computed up to spherical harmonic degree
and order 4. On the other hand, monthly sets of coefficients were estimated
that reflect the temporal variability of the Earth’s gravity field. Concerning
the Moon, tracking data to the Lunar Reconnaissance Orbiter were ana-
lyzed. This satellite has been routinely tracked with optical one-way laser
ranges to assist orbit determination; two-way Doppler range-rates represent
the primary tracking data type. Orbit overlap tests were conducted to find
the optimal parametrization. In total, 13 months of Doppler data (January
2011 to February 2012) were analyzed. Orbit overlap differences indicate an
orbital precision of 13.8m, 14.2m, and 1.3m in along track, cross track, and
radial direction, respectively. The modeling of the satellites clock, which is
necessary when the orbit shall be estimated using both tracking data types
turned out to be a delicate issue. Approximating the clock’s variation with a
second-degree polynomial, which is supported by the software used, resulted
in less precise orbits compared to those based on Doppler-only. Thus, the
gravity field coefficients, which were estimated up to degree and order 60,
are based solely on Doppler data.





Kurzfassung

Die Bahnen künstlicher Satelliten, die planetare Körper umkreisen, werden
von gravitativen und nicht-gravitativen Kräften beeinflusst. Die vorliegende
Arbeit behandelt die Bestimmung des langwelligen Anteiles des Schwerefeldes
der Erde sowie des Mondes mittels Beobachtungen von Bodenstationen zu
Satelliten. Da die Schwerefeldinformation aus Bahnstörungen abgeleitet
wird, nimmt die präzise Bahnbestimmung eine zentral Rolle ein. Im Fall
der Erde ist der wichtigste (da numerisch größte) Schwerefeldkoeffizient der
dynamische Abplattungsterm C20. Dieser kann am genauesten mittels optis-
chen Zweiweg-Laserdistanzmessungen zu geodätischen Satelliten bestimmt
werden. Über einen Zeitraum von fast 14 Jahren (Jänner 2000 bis Oktober
2013) wurden Laserdistanzen zu sechs geodätischen Satelliten (LAGEOS-1/2,
Ajisai, Stella, Starlette, Larets) analysiert. Es wurde einerseits eine statis-
che Schwerefeldlösung bis zu sphärisch harmonischem Grad und Ordnung
4 berechnet, andererseits wurden monatliche Lösungen geschätzt welche die
zeitliche Variabilität des Erdschwerefeldes widerspiegeln. Um Informationen
über das Mondschwerefeld zu gewinnen, wurden Beobachtungen zum Lunar
Reconnaissance Orbiter verwendet. Neben dem primären Beobachtungstyp
Zweiweg-Dopplermessungen stehen optische Einweg-Laserdistanzmessungen
zur Verfügung. Um die optimale Parametrisierung der Satellitenbahn zu
eruieren wurden Bahndifferenzen in zeitlich überlappenden Bahnbögen un-
tersucht. Die Trajektorie wurde zwischen Jänner 2011 und Februar 2012 aus
Dopplermessungen berechnet. Die Bahndifferenzen in den Überlappungs-
bereichen lassen auf eine Präzision von 13.8m in along-track, 14.2m in cross-
track, sowie 1.3m in radialer Richtung schließen. Für die Schätzung der Bahn
aus Doppler- und Lasermessungen gemeinsam muss die Satellitenuhr mod-
elliert werden. Deren Approximation durch ein Polynom zweiten Grades,
welches von der verwendeten Software unterstützt wird, resultierte jedoch in
einer weniger präzisen Bahn verglichen mit jener die nur aus Dopplerdaten
bestimmt wurde. Aus diesem Grund basieren die Schwerefeldkoeffizienten,
welche bis Grad und Ordnung 60 geschätzt wurden, auf jener Bahn in deren
Bestimmung ausschließlich Dopplermessungen eingeflossen sind.
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Chapter 1

Introduction

Background and rationale

Satellites in free fall around a planetary body give important clues on its
gravity field. The Earth’s gravity field is known in detail thanks to a large
number of realized satellite missions. Among them are geodetic satellites as
well as dedicated gravity field missions such as the Challenging Minisatel-
lite Payload (CHAMP) project (Reigber, 2002), the Gravity Recovery and
Climate Experiment (GRACE), see Tapley et al. (2004a), and the Gravity
Field and Steady-State Ocean Circulation Explorer (GOCE), see Drinkwa-
ter et al. (2006). Different data types are complementary due to different
measurement principles, accuracies, as well as spatial distribution and res-
olution. Consequently, combined satellite-only gravity field models bene-
fit from the data types’ individual strengths. While the Earth’s dynam-
ical flattening term, C20, can be determined most precisely with Satellite
Laser Ranging (SLR) measurements to geodetic satellites, long- to medium-
wavelengths of the gravity field are mainly determined from GRACE data.
GOCE contributes significantly to the short wavelengths. Examples1 for com-
bined satellite-only gravity field models include GO CONS GCF 2 DIR R5
(Bruinsma et al., 2013), EIGEN-6S2 (Rudenko et al., 2014), and the Grav-
ity Observation Combination (GOCO) model GOCO03S (Mayer-Gürr et al.,
2012). The Earth’s gravity field is not static but undergoes temporal vari-
ations due to mass redistributions in the oceans, of glaciers, ice sheets, in-
land water reservoirs, the atmosphere, etc. Consequently, knowledge about
the temporal variations of gravity allows to infer dynamic processes on the
Earth’s surface. This is particularly relevant in the context of global climate
change (IPCC, 2013).

1a comprehensive overview is given at http://icgem.gfz-potsdam.de/ICGEM/

1

http://icgem.gfz-potsdam.de/ICGEM/
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Using Earth-based satellite tracking data, only the long wavelengths of the
central body’s gravity field can be resolved. The resolution accomplished
with SLR measurements to geodetic satellites, however, is significantly lower
due to high orbital altitudes of up to several thousands of kilometers. Thus,
only the very long wavelengths of the Earth’s gravity field (up to degree
and order (d/o) 4) are investigated in this thesis. Among the estimated
coefficients, those of degree 2 are of special interest as they are related to the
tensor of inertia (e.g. Heiskanen and Moritz, 1967).

Furthermore, this thesis deals with gravity field recovery of the Moon, again
using ground-based tracking data. Lunar exploration from space started in
1966 with the launch of the lunar orbiter mission Luna-10. It was followed
by further satellites of the Luna program, the Lunar Orbiters, the subsatel-
lites of Apollo, and Clementine. Lunar Prospector (LP), launched in 1998,
orbited the Moon at low altitudes (30 to 100 km) allowing the creation of a
first detailed gravity field model (Konopliv et al., 2001). In general, lunar
gravity field recovery is severely hampered by the 1:1 spin-orbit resonance of
the Earth-Moon system since direct tracking over the Moon’s farside is im-
possible. The Japanese Selenological and Engineering Explorer (SELENE),
launched in 2007, provided the first global data set of the Moon by incorpo-
rating three satellites: a main orbiter in a circular orbit and two sub-satellites
in elliptical orbits (Namiki et al., 1999). In addition to classical radiomet-
ric tracking data, 4-way Doppler tracking between a ground station, the
main orbiter, and a subsatellite was employed as well as Very Long Baseline
Interferometry (VLBI) between the sub-satellites and two ground stations
(Goossens et al., 2011b; Kikuchi et al., 2009). In 2011, the Gravity Recovery
and Interior Laboratory (GRAIL) mission was launched. By means of low-
low satellite-to-satellite tracking between two spacecraft in the same orbit, an
unprecedented resolution of the lunar gravity field could be achieved (Zuber
et al., 2013).

The Lunar Reconnaissance Orbiter (LRO) was launched in 2009. Its main
purpose is to prepare for future in-situ lunar exploration. LRO is pioneering
in the sense that it is the first satellite in interplanetary space routinely
tracked with optical laser ranges in addition to radiometric techniques (Zuber
et al., 2010). These optical laser ranges are the reason why tracking data to
LRO are investigated in this thesis since they provide a strong link to the
geodetic satellites that are tracked with optical laser ranges as well. Again,
gravity field information is inferred from orbit perturbations. Unlike the
Earth’s gravity field, the Moon’s gravity field hardly shows any temporal
variability as the Moon has neither oceans nor atmosphere. Thus, solely the
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Moon’s static gravity field is focused on in this work.

To enhance spatial coverage, tracking is typically performed by a station net-
work. For this work, the International Laser Ranging Service (ILRS) network
and the Universal Space Network (USN) are relevant as they track geodetic
satellites and LRO, respectively. Despite of numerous tracking stations, the
sampling of the gravity field remains incomplete. This is particularly true
for the Moon due to the farside data gap. Notice that this thesis is con-
fined to the recovery of global gravity field coefficients. One might argue
that this is not the best choice as far as the Moon is concerned where almost
one half lacks observations2. Due to the integral behavior of the satellite
orbit, however, some gravity field signals can also be captured at the farside
(Floberghagen, 2002). Moreover, global gravity field models are a prereq-
uisite for mission design; in particular, low orbiting satellites are severely
perturbed by the gravity field.

Objectives

The objective of this thesis is to recover the very long wavelengths of the
Earth’s and the Moon’s gravity field using Earth-based satellite tracking
data. This intent is intrinsically related to the field of Precise Orbit Determi-
nation (POD). Finding the optimal parametrization of the satellite’s motion
for the purpose of gravity field recovery plays herein a crucial role. Unfortu-
nately, parametrization is not the same for geodetic satellites and the LRO
spacecraft: different satellite shapes (spherical vs. complex), measurement
types (two-way laser ranges vs. one-way laser ranges/Doppler range-rates),
spatial coverage (gaps over polar regions and oceans vs. farside gap), and
different environments (perturbed by the atmosphere vs. unperturbed by the
atmosphere) require different parametrization.

The orbital quality of geodetic satellites and LRO is assessed via observation
residuals. Further, orbit connecting points were analyzed for geodetic satel-
lites and extensive overlap analysis tests were conducted for LRO. Moreover,
LRO orbits are externally validated with orbits published by the National
Aeronautics and Space Administration (NASA).

Temporal variations of the Earth’s static gravity field were examined as well.
These variations are validated against externally computed time series. Apart
from small tidal variations, the lunar gravity field has no temporal variability

2due to lunar librations 59% of the Moon’s surface is visible from the Earth
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which is why solely the static part is focused on.



Chapter 2

Precise orbit determination

The Precise Orbit Determination (POD) problem involves the determination
of a satellite’s state (position and velocity) by means of observations. Basi-
cally, there exist three approaches for orbit determination. First, the dynamic
approach (e.g. Tapley et al., 2004b) where the satellite trajectory is a partic-
ular solution of the equation of motion of which force models are an integral
part. The precision of dynamic orbits mainly depends on the dynamic mod-
els. Second, the kinematic or geometric approach (Svehla and Rothacher,
2005) that is not dependent on the dynamical description of the satellite
and the equations of motion (although force models do play a role for the
state determination of Global Navigation Satellite System (GNSS) satellites).
The ephemeris are provided at discrete measurement epochs. The third ap-
proach is the reduced dynamic approach, which is mainly used for GNSS.
The dynamic model parameters are held fixed once convergence is achieved.
Additional accelerations are estimated using the observation geometry alone.
Concerning POD based on Satellite Laser Ranging (SLR) measurements or
Doppler range-rates, the dynamic approach is used. Dynamic orbit determi-
nation is also implemented within GEODYN II (McCarthy et al., 1993), a
software package provided by the Goddard Space Flight Center (GSFC). All
results presented in this thesis are based on this software.

The solution of the POD problem requires the solution of the equation of
motion of a satellite, which can be expressed as a system of first-order differ-
ential equations (note that the representation of the POD problem has been
adopted from Tapley, 1973; Tapley et al., 2004b):

d

dt
X ptq “ 9X ptq “ F pX, tq , X ptkq ” Xk (2.1)

5
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where X is the unknown satellite state vector and tk denotes an arbitrary
epoch. X contains the position (X, Y, Z), the velocity ( 9X, 9Y , 9Z), and a vec-
tor β composed of constant parameters that shall be solved for (e.g. solar
radiation pressure coefficient and gravity field coefficients):

X “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

X
Y
Z
9X
9Y
9Z
β

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˝

r
9r
β

˛

‚

9X “

¨

˝

9r
:r
0

˛

‚“

¨

˝

9r ptq
:r pt, r, 9r,βq

0

˛

‚

(2.2)

The satellite is observed from Earth-based ground stations. These observa-
tions are related to the state in a nonlinear manner. The observation-state
relationship can be expressed as

Yi “ G pXi, tiq ` ϵi, i “ 1, . . . , l (2.3)

where Yi is a p-dimensional observation vector of the state at epoch ti
1,

G pXi, tiq is the nonlinear function relating the observation with the state, ϵi
is the observation residual at epoch ti, and l is the number of observations.
The inability to observe the state directly, the nonlinear relation between
the observation and the state, the fact that the number of observations per
epoch is generally smaller than the number of unknowns, and the errors in the
observations make the estimation of the satellite’s state a complex nonlinear
estimation problem (Tapley et al., 2004b).

If the satellite’s reference initial state, X˚
0 , is known, a reference trajectory,

X˚, can be computed by integrating Equation (2.1). The trajectory of the
actual motion can then be expanded in a Taylor’s series about the reference
trajectory. Only if the true trajectory, X, and the reference trajectory re-
main close, the linearization procedure is successful and convergence is met.

1p ą 1 if more than one quantity is observed at a single epoch (e.g. if Doppler range-
rate and radiometric range are observed at a single epoch, p “ 2 hold true)
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The linear relationship for the observation deviation is expressed in a similar
manner as a function of the observation, Y, and of the computed observa-
tion, Y˚. For the linearization procedure, the state deviation, x, and the
observation deviation, y, are defined as

x ptq “ X ptq ´ X˚ ptq , y ptq “ Y ptq ´ Y˚ ptq . (2.4)

From the first term of Equation (2.4) follows

9x ptq “ 9X ptq ´ 9X˚ ptq . (2.5)

Both the state and the observations have to be linearized, yielding

9X ptq “F pX, tq “

9X˚ptq
hkkkikkkj

F pX˚, tq `

Bptq
hkkkkikkkkj

„

BF ptq

BX ptq

ȷ˚

rX ptq ´ X˚ ptqs

` OF rX ptq ´ X˚ ptqs

Yi “G pXi, tiq ` ϵi “ G pX˚
i , tiq

loooomoooon

Y˚

`

„

BG

BX

ȷ˚

i
loomoon

H̃i

rXi ´ X˚
i s

` OG rXi ´ X˚
i s ` ϵi

(2.6)

If the Taylor expansions [cf. Equation (2.6)] are truncated after the linear
terms (OF , OG indicate terms higher than the first order), state deviation
and observation deviation can be described by a set of linear differential
equations:

9x ptq “ 9X ptq ´ 9X˚ ptq “ B ptqx ptq ,

yi “ Yi ´ Y˚
i “ H̃ixi ` ϵi

(2.7)

The general solution for the first system in Equation (2.7) can be expressed
as

x ptq “ Φ pt, tkqxk, Φ pt, tkq “
BX ptq

Xk

(2.8)
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where xk is the value of x at arbitrary time tk, and Φ pt, tkq is referred to as
the state transition matrix. The state transition matrix maps deviations in
the state vector from one time to another. The differential equation for the
state transition matrix is obtained by differentiating Equation (2.8) yielding

9x ptq “ 9Φ pt, tkqxk. (2.9)

Inserting 9Φ pt, tkqxk for the left hand side of Equation (2.9) andB ptqΦ pt, tkqxk

for the right hand side, gives the differential equation of the state transition
matrix

9Φ pt, tkq “ B ptqΦ pt, tkq . (2.10)

With the initial conditions x0 and the special case that tk “ t0, the state
transition matrix reduces to the identity matrix Φ pt0, t0q “ I, and the so-
lution becomes unique. The entries of the state transition matrix are as
follows:

Φ pt, t0q “
BX ptq

BX0

“

¨

˚

˝

Brptq
BX0
B 9rptq
BX0
Bβptq
BX0

˛

‹

‚

(2.11)

Differentiating Equation (2.11) gives the second-order differential equation

9Φ pt, t0q “
B 9X ptq

BX0

“

¨

˚

˝

B 9rptq
BX0
B:rptq
BX0

0

˛

‹

‚

“

¨

˚

˝

B 9rptq
BXptq
B:rptq
BXptq

0

˛

‹

‚

looomooon

B 9Xptq

BXptq

„

BX ptq

BX0

ȷ

loooomoooon

Φpt,t0q

, (2.12)

with

B 9X ptq

BX ptq
“

¨

˝

B 9r
Br

B 9r
B 9r

B 9r
Bβ

B:r
Br

B:r
B 9r

B:r
Bβ

0 0 0

˛

‚. (2.13)

Note that the estimation of force model parameters (in particular gravity
field coefficients) is an integral part of this thesis. If no parameters were
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estimated, i.e. if only POD were of interest, Equation (2.13) would reduce to
the first two lines and the first two columns since then :r would not depend
on β. How the differential equation of the observation deviation is solved is
shown in Section 2.3.

Summing up, the solution of the orbit determination problem requires

1. the equation of motion describing the forces acting on the satellite (cf.
Section 2.1),

2. the observation model describing the relation of the observations to the
satellite state (cf. Section 2.2), and

3. a least squares estimation algorithm used to obtain the estimate (cf.
Section 2.3).

2.1 Force models

The overall acceleration of the satellite, :r, can be subdivided into the ac-
celeration due to gravitational forces, :rg, and the acceleration due to non-
gravitational forces, :rng. Since the modeling of those two forces is not perfect,
empirical accelerations, :remp, are introduced, yielding

:r “ :rg ` :rng ` :remp. (2.14)

Within the following sections, the non-gravitational forces are described in
more detail than the gravitational forces. Information about the latter can be
easily retrieved from the International Earth Rotation and Reference Systems
Service (IERS) conventions (Petit and Luzum, 2010).

2.1.1 Acceleration due to gravitational forces

The primary gravitational force an orbiter is exposed to is the gravity field
of the central body (central body acceleration :rcb). To a minor extent, third
bodies (n-body point-mass acceleration :rn), the indirect oblateness of Earth
and Moon (:rob), relativistic effects (:rrel), and tidal effects (:rt) affect the mo-
tion of a satellite. Summing these accelerations gives the overall gravitational
acceleration, :rg:

:rg “ :rcb ` :rt ` :rn ` :rob ` :rrel. (2.15)
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In the sequel, the gravitational forces acting on Earth- and Moon-orbiting
satellites are discussed in more detail.

Acceleration due to the central body’s gravitational field

The potential of a planetary body, V , in terms of spherical harmonics satis-
fying the Laplace equation (Kaula, 1966; Heiskanen and Moritz, 1967) can
be expressed as

V pr, φ, λq “
GMc

r

#

C00 `

8
ÿ

n“1

n
ÿ

m“0

´ac
r

¯n

Pnm psinφq ˆ

“

Cnm cos pmλq ` Snm sin pmλq
‰

+

.

(2.16)

The spherical coordinates r, φ, λ denote the distance from the body-fixed
planetocenter, latitude, and longitude, respectively; they refer to a point
outside the attracting masses. GMc is the central body’s gravitational pa-
rameter, ac is the semimajor axis of a central body’s reference ellipsoid of
revolution, and Pnm indicate the 4π-normalized associated Legendre func-
tions of the first kind of degree n and order m. Whereas the first term
in Equation (2.16) represents the potential of a point mass (or a homoge-
nous sphere), Cnm and Snm are normalized spherical harmonic coefficients
describing the deviations of the actual potential from the potential of a ho-
mogeneous sphere. Zonal coefficients (m “ 0) describe masses symmetrical
to the equator, tesseral coefficients (n “ m) describe masses symmetrical to
the rotation axis, and sectorial coefficients (n ‰ m) reflect a chessboard-like
mass distribution (see Figure 2.1). In practice, the series in Equation (2.16)
is truncated at a maximum degree nmax depending on data sensitivity. The
coefficient C00 in Equation (2.16) is 1. Further, if the origin of the coordinate
system coincides with the center of mass, all terms of degree 1 in the spherical
harmonic expansion of the gravity field vanish (C10 “C11 “S11 “ 0).

The coefficients of degree 2 are of particular interest because they are related
to the planet’s tensor of inertia (e.g. Heiskanen and Moritz, 1967). Their geo-
metrical meaning is as follows: C20 represents the dynamical polar flattening
and is for both the Earth and the Moon the largest coefficient describing
the deviation of the potential from a homogeneous sphere. Note that in case
of the Earth the C20 term is two orders of magnitude larger than all other
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coefficients. For the Moon, in contrast, C20 is only twice as large as C22. The
accurate estimation of C20 is therefore of crucial importance. The degree 2
order 1 coefficients (C21 and S21) are coupled with the polar motion; they
would be zero if the rotation axis would coincide with the third principal axis
of inertia (ibid.). Finally, C22 and S22 reflect the ellipticity of the equator.

Figure 2.1: Zonal, tesseral, and sectorial spherical harmonic coefficients (from
Floberghagen et al. (1996)).

Applying the Nabla operator to the gravitational potential gives the acceler-
ation due the central body’s gravity field

:rcb pr, φ, λq “ ∇V pr, φ, λq . (2.17)

Note that for the integration of the equation of motion, Equation (2.17) has
to be transferred (1) from spherical to Cartesian coordinates (Kaula, 1966),
and (2) to the inertial system.

The Earth’s gravity field is not fully described by the static part; tempo-
ral variations have to be considered as well. Significant variations arise
due to dynamics in the atmosphere (e.g. Chao and Au, 1991; Peters et al.,
2002), oceans (e.g. Johnson et al., 2001), cryosphere (e.g. Yoder et al., 1983;
Baur and Sneeuw, 2011; Nerem and Wahr, 2011), hydrology (e.g. Chao and
O’Connor, 1988; Chen et al., 2005), and due to plate motion (e.g. Biancale
et al., 1991). Unlike the Earth, the Moon has no plate motion. Moonquakes
exist but they are of much smaller amplitude than earthquakes (Williams
and Dickey, 2002). Further, the rotation of the Moon is considerably slower
compared to Earth (27.3 days vs. 23 hours and 56 minutes or one sidereal
day). Since the Moon lacks atmosphere and oceans the rotation is also more
quiet (ibid.). For the Gravity Recovery and Interior Laboratory (GRAIL)
mission, a time-varying component in the lunar gravity field is taken into
account – the motion of an oblate inner core relative to the mantle that in-
troduces a monthly signature in C21 and S21 (Park et al., 2012; Asmar et
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al., 2013). However, since simulations to GRAIL have shown that the core-
signature can only be estimated with a relatively tight error margin (Park et
al., 2012), this time-varying effect is thought to be uncritical in case of Lunar
Reconnaissance Orbiter (LRO) and remains unconsidered for this reason.

Acceleration due to tides

The Earth is not a rigid body, thus responding to the attraction of Moon
and Sun (solid Earth tides :ret). Moon and Sun are also responsible for the
presence of ocean tides, :ro. The centrifugal effect of polar motion on solid
Earth and oceans causes rotational deformation generating the solid Earth
pole tide :rep and the ocean pole tide :rop (Petit and Luzum, 2010). Hence, if
we consider the Earth to be the central body, the acceleration due to tidal
effects, :rt, is composed by:

:rt “ :ret ` :ro ` :rep ` :rop. (2.18)

The Moon responds to the attraction of Earth and Sun by deformation (solid
Moon tides, e.g. Lemoine et al. 2013). Thus, for a lunar orbiter such as the
LRO, only the acceleration due to solid Moon tides, :rmt, has to be considered:

:rt “ :rmt. (2.19)

The analog of the pole tide is less than 1mm in amplitude (Williams and
Dickey, 2002) and remains therefore unconsidered.

Acceleration due to third bodies

The gravitational potential of third bodies (or n-bodies) is modeled as point-
masses. In a planetocentric coordinate system, the acceleration due to n-
bodies, :rn, can be expressed as

:rn “

bmax
ÿ

i“1

GMbi

ˆ

rbi ´ r

∥rbi ´ r∥3
´

rbi
∥rbi∥

3

˙

(2.20)

Here, b denotes the third body modeled as point mass, GMbi is the i-th
body’s gravitational parameter, rbi is the position of the i-th body, and r is
the position of the satellite both expressed in planetocentric coordinates. The
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positions of the perturbing masses are obtained using planetary ephemeris.
Since Equation (2.20) describes the satellite motion with respect to the cen-
tral body’s center of mass, which is a non-inertial point, the second term
within parentheses accounts for the acceleration of the planetocenter (e.g.
Tapley et al., 2004b, p. 63).

Acceleration due to oblateness

The acceleration of a spacecraft relative to the center of integration due
to the oblateness of the bodies of the solar system consists of the direct
acceleration of the spacecraft due to the oblateness of a body minus the
indirect acceleration of the center of integration (Moyer, 1971; Moyer, 2000).
Note that the indirect acceleration of the spacecraft relative to the center
of integration is the negative of the acceleration of the center of integration
due to oblateness. The direct acceleration is obtained from Equation 2.16
after transforming the acceleration to inertial rectangular coordinates. The
indirect acceleration is computed only when the center of integration is the
Earth or the Moon. According to Moyer (1971) and Moyer (2000), the force
of attraction between Earth and Moon has four components:

1. attraction between point-mass Earth and point-mass Moon,

2. attraction between the oblate part of the Earth and point-mass Moon,

3. attraction between the oblate part of the Moon and point-mass Earth,
and

4. attraction between the oblate part of the Earth and the oblate part of
the Moon.

Attraction 1 is accounted for in the formulation of the acceleration due to
third bodies and attraction 4 can be neglected due to its small effect (Moyer,
2000).

Due to the small lunar oblateness, GEODYN does not consider the direct
acceleration of geodetic satellites due to the oblateness of the Moon nor the
indirect acceleration of the Earth to the oblateness of the Moon. Hence, the
acceleration of geodetic satellites relative to the center of integration due to
the oblateness of third bodies reduces to the acceleration of the Earth due to
the attraction between the oblate part of the Earth and point-mass Moon.

For lunar orbiters such as LRO, the software considers all components given
in Moyer (1971): the direct acceleration of LRO due to the oblate part of
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the Earth and the indirect acceleration that is composed of the acceleration
of the Moon due to the oblateness of the Earth and the acceleration of the
Moon due to the oblateness of the Moon.

Acceleration due to general relativity

General relativity has to be considered threefold throughout the POD pro-
cess. First, the reference systems have to be corrected due to the involve-
ment of various time systems (Ries et al., 1988; Huang et al., 1990). In case
the geocentric reference system is used, Terrestrial Dynamical Time (TDT)
enters the equation of motion; for a solar-system barycentric reference sys-
tem, Dynamical Barycentric Time (TDB) is used (Tapley et al., 2004b).
Since the time system of measurements is typically Coordinated Universal
Time (UTC), which is derived from International Atomic Time (TAI), it has
to be related to TDT or TDB. The difference between TAI and TDT is
constant (32.184 s). The transformation between TDB and TDT is a purely
periodic function depending on the position and velocity of Earth, Moon,
planets, and Sun – a relativistic effect (e.g. Ries et al., 1988; Tapley et al.,
2004b). Second, the measurement model has to be corrected due to rela-
tivistic effects (discussed in Section 2.2.5). Lastly, the equation of motion
has to be corrected due to general relativity (discussed in the subsequent
paragraphs).

The correction term due to general relativity within the equation of motion
is composed by the Schwarzschild field, :rS, the Coriolis force (also called
geodesic precession), :rC, and the Lense-Thirring precession, :rLT, yielding

:rrel “ :rS ` :rC ` :rLT. (2.21)

From the three relativistic effects in Equation (2.21), the Schwarzschild field
has the largest impact on the motion of both Earth orbiting and Moon or-
biting satellites (Iorio, 2001, 2002). This effect, which leads to the precession
of the pericenter, poses an acceleration of

:rS “
GMc

c2∥r∥3

„ˆ

4
GMc

∥r∥
´ ∥ 9r∥2

˙

r ` 4 p 9r ¨ rq 9r

ȷ

(2.22)

on the satellite, where GMc is the gravitational parameter of the central
body, c is the velocity of light, and r and 9r are satellite position and velocity
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in the true of date coordinate system. ∥r∥ and ∥ 9r∥ denote the Euclidean
lengths of r and 9r, respectively. Since the satellite state refers to the center
of integration, ∥r∥ is equivalent to the distance of the satellite from the center
of integration.

The relativistic Coriolis force stems from the motion of the central body
through the Sun’s gravitational field causing a precession of the pole of a
satellite orbit (Moyer, 2000). The acceleration due to this effect amounts to

:rC “ 2 pΩ ˆ 9rq , (2.23)

where Ω denotes the angular velocity of the base vectors of the inertial geo-
centric reference system with respect to the barycentric reference system. For
the computation of Ω the generally valid assumption is made that the Sun
is the only significant contributor to the relativistic Coriolis force (Huang
et al., 1990), yielding

Ω «
3

2
p 9rc ´ 9r@q ˆ

„

´GM@ prc ´ r@q

c2∥rc ´ r@∥3

ȷ

. (2.24)

Here, rc, 9rc and r@, 9r@ denote position and velocity of the central body and
the Sun, respectively, and GM@ is the gravitational parameter of the Sun.

The Lense-Thirring effect (Lense and Thirring, 1918; Mashhoon et al., 1984;
Pfister, 2007) originates from the rotation of a solid sphere and causes (to
a minor extent compared to the Schwarzschild field, though) a precession
in the longitude of the ascending node and a change in the mean motion
of a satellite (Combrinck, 2013). This effect is also known as frame drag-
ging: rotating bodies like the Earth (or the Moon) drag spacetime around
themselves affecting the orbit of a satellite (Ciufolini and Pavlis, 2004). This
precession is always in the direction of the rotation of the central body. The
acceleration induced by the relativistic Lense-Thirring effect is

:rLT “

¨

˚

˚

˚

˝

GMc

∥r∥2
ωca2c
∥r∥

”

4
5
X2`Y 2´2Z2

∥r∥2
9Y ` 12

5
Y Z
∥r∥2

9Z
ı

´GMc

∥r∥2
ωca2c
∥r∥

”

4
5
X2`Y 2´2Z2

∥r∥2
9X ´ 12

5
XZ
∥r∥2

9Z
ı

GMc

∥r∥2
ωca2c
∥r∥

12
5

Z
∥r∥

X 9Y ´Y 9X
∥r∥

˛

‹

‹

‹

‚

, (2.25)
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where ωc and ac are the rotation rate and the semimajor axis of the central
body, respectively, and X, Y , Z, 9X, 9Y , 9Z is the satellite state in true of date
coordinates. Equation (2.25) shows that the acceleration due to the Lense-
Thirring effect is proportional to the central body’s rotation rate implying
that this effect is considerably smaller for the slowly rotating Moon than it
is for the Earth.

2.1.2 Acceleration due to non-gravitational forces

A satellite orbiting the Earth experiences two types of non-gravitational
forces. First, the atmosphere can lead to significant changes in the satel-
lite orbit’s semimajor axis and eccentricity for Low Earth Orbiters (LEOs).
As such, atmospheric drag is primarily responsible for the limited lifetime
of a LEO. Second, space is pervaded by electromagnetic radiation coming
from different sources such as the Sun (solar radiation pressure), the planet
(planetary radiation pressure), or the spacecraft itself (spacecraft thermal
radiation). The magnitude of all non-gravitational forces depends on the
satellite’s area-to-mass ratio. Keeping the ratio small reduces the effect of
non-gravitational forces. To sum up, the overall non-gravitational acceler-
ation acting on a satellite, :rng, is composed of the accelerations due to at-
mospheric drag, :rd, solar radiation pressure, :rs, planetary radiation, :rp, and
spacecraft thermal radiation, :rth:

:rng “ :rd ` :rs ` :rp ` :rth. (2.26)

Today, the major part of launched spacecraft are of complex shape due to
reasons of energy supply and communication. Thus, the main spacecraft
bus is often connected with steerable solar arrays and microwave antennas.
These structures can produce relatively large non-gravitational perturbations
which have to be modeled, as the accuracy of the modeled or computed
observations of the satellite orbit should theoretically be at the same level as
the observation accuracy. Milani et al. (1987) put the resulting difficulties in
a nutshell:

“... when it comes to an accurate orbit computation, all these
appendages [power system (e.g. Solar Array (SA)) and steerable
antennas] are a real nightmare both because of radiation pressure
and because of drag ...”

A complex shaped satellite is approximated by a combination of flat plates
(also referred to as panels). Topography Experiment (TOPEX)/



2.1. FORCE MODELS 17

Poseidon is a prominent example where non-gravitational forces were mod-
eled by means of a box-wing model instead of a cannonball model due to
the rigorous orbital accuracy requirement of 13 cm in the radial component
(Marshall et al., 1992; Tapley et al., 1994). A box-wing model consists of a
number of flat plates arranged like a box resembling the spacecraft bus and
connected parts such as a SA and a High Gain Antenna (HGA). Knowledge
of various plate characteristics and the orientation of each plate in space en-
ables the computation of the non-gravitational forces acting on each plate
independently. Summing up the individual accelerations gives the total force
acting on the spacecraft.

Acceleration due to atmospheric drag

The acceleration due to atmospheric drag, :rd, can be approximated by

:rd “ ´
1

2
CD

A

m
d pr, tq ∥ 9ratm∥ 9ratm, (2.27)

where CD is the dimensionless drag coefficient, A is the satellite cross-sectional
area, m is the satellite mass, d pr, tq is the atmospheric density at the loca-
tion of the satellite, and 9ratm is the velocity of the satellite relative to the
atmosphere. The lift coefficient, which is typically one order of magnitude
smaller than the drag coefficient, is neglected in Equation (2.27). Among all
quantities of the above equation, the atmospheric density is the least well-
known factor (Ries et al., 1993) and on top of that highly unpredictable.
It depends on a myriad of factors, such as atmospheric constituents, tem-
perature, current and mean solar flux, the declination of the Sun, and the
geomagnetic activity. The dependencies, however, are not well understood
(Yunck, 1993). State of the art atmospheric density models used to obtain
d pr, tq include the Naval Research Laboratory (NRL) Mass Spectrometer In-
coherent Scatter Radar (MSIS) model NRLMSISE-00 (Picone et al., 2002),
the Jacchia-Bowman (JB) model JB2008 (Bowman et al., 2008), and the
Drag Temperature Model (DTM) model DTM-2009 (Bruinsma et al., 2012).
Depending on the inclination of the satellite surface with respect to the on-
coming flow, CD is typically somewhere in between 2 and 4 (Vallado and
Finkleman, 2008). Estimating CD is an effective way to eliminate (or at
least mitigate) the average density model error over the estimation interval
resulting in reduced orbit errors in the along track direction (Ries et al.,
1993).

The lunar orbit, and with it any spacecraft orbiting the Moon, is too far away
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from the Earth to be affected from its atmosphere (Williams and Dickey,
2002). As opposed to the Earth the Moon lacks atmosphere. Consequently,
Equation (2.26) reduces to the last three components for LRO.

Acceleration due to solar radiation pressure

Solar radiation exchanges momentum with the satellite. The magnitude of
this force depends, again, on the area-to-mass ratio, and on the reflection
characteristics of the satellite material. The latter are defined by the coef-
ficient of absorption, α, and the coefficient of reflection, β, of the surface
material. The sum of α and β is equal to 1, accounting for the totality of
light incident on the surface (Cook, 2001).

In case of geodetic satellites, the expression of effective solar radiation sim-
plifies due to the prevailing constant cross-sectional area and due to the
assumption of specular reflectivity, i.e. incident light reflects in only one di-
rection. Diffuse reflection, i.e. reflection of incident light in many directions,
is left unconsidered. In this simplified case, the acceleration due to specularly
reflected light consists of a component due to incidence, :ri, and a component
due to reflection, :rr. Summing these two the total perturbing acceleration
due to solar radiation pressure, :rs, reads

:rs “ :ri ` :rr “ ´ p1 ` βq
G0

c

A

m

ˆ

a@

r@

˙2

n̂, (2.28)

where G0 is the solar flux at the distance of 1Astronomical Unit (AU), c is
the speed of light, A is the satellite surface area, and m is the satellite mass.
The satellite surface normal unit vector, n̂, gives the orientation of surface
A. In case of spherical satellites it is assumed that n̂ points in the direction
of the Sun, ŝ (Montenbruck and Gill, 2001). The solar irradiance at 1AU
decreases with the square of the distance between satellite and Sun (Cook,
2001). Therefore, a scaling factor depending on the semimajor axis of the
central body’s orbit around the Sun, a@ (i.e. 1AU), and on the satellite
orbital radius from the Sun, r@, is part of Equation (2.28). The term p1 ` βq

in Equation (2.28) is often replaced by the solar radiation pressure coefficient,
CR (Montenbruck and Gill, 2001), leading to the more compact form

:rs “ ´CR
G0

c

A

m

ˆ

a@

r@

˙2

n̂. (2.29)
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For the LRO spacecraft, which is composed of various materials, the as-
sumption of specular reflectivity does not hold true. Thus, the concept of
diffuse reflectivity is introduced by splitting β into specular reflectivity, ζ,
and diffuse reflectivity, δ. In addition to accounting for diffuse reflectivity,
the constant cross-sectional area has to be replaced by a changing area due
to LRO’s complex shape. For this more general case, the acceleration due
to solar radiation pressure consists of a component due to incidence, :ri, a
component due to specular reflection, :rsr, and a component due to diffuse
reflection, :rdr. Summing these three components results in the following
expression (Cook, 2001; Milani et al., 1987):

:rs “ :ri ` :rsr ` :rdr

“ ´
G0

c

A cos θ

m

«

ˆ

2

3
δ ` 2ζ cos θ

˙ ˆ

a@

r@

˙2

n̂ ` p1 ´ ζq

ˆ

a@

r@

˙2

ŝ

ff

,

(2.30)

where θ is the angle between the satellite surface normal and the direction
to the Sun, and ŝ is the unit vector from the satellite to the Sun. Further, ζ
and δ are given in percent of total incident radiation.

Whenever a satellite’s shape is approximated by plates (with N being the
total number of plates), the overall solar radiation pressure acting on a space-
craft is computed by summing the accelerations acting on each plate i (Milani
et al., 1987; Marshall et al., 1992) using

:rs “ ´
G0

c
ˆ

N
ÿ

i

Ai cos θi
m

«

ˆ

2

3
δi ` 2ζi cos θi

˙ ˆ

a@

r@

˙2

n̂i ` p1 ´ ζiq

ˆ

a@

r@

˙2

ŝ

ff

.

(2.31)

Here, the term Ai cos θi denotes the projected plate area that is maximum
when the Sun rays strike the plate in a 90° angle. Again, the solar radiation
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pressure coefficient CR is introduced yielding

:rs “ ´CR
G0

c
ˆ

N
ÿ

i

Ai cos θi
m

«

ˆ

2

3
δi ` 2ζi cos θi

˙ ˆ

a@

r@

˙2

n̂i ` p1 ´ ζiq

ˆ

a@

r@

˙2

ŝ

ff

.

(2.32)

In contrast to the formulation for geodetic satellites, where CR has a physical
meaning, it represents merely an overall scale factor at this place that is
usually estimated (Konopliv et al., 2006).

Acceleration due to planetary radiation pressure

A fraction of the solar radiation reaching a planetary body is immediately
reflected off the surface as short wavelength (between 0.2 and 4 µm) energy.
The remaining part is absorbed by the planet and later emitted as long wave-
length (between 4 and 50 µm) Infrared (IR) radiation (Knocke, 1989). The
reflected part, which is also called albedo, undergoes considerable variations
over an orbital revolution as it depends on the sunlit planetary area. The IR
radiation, in contrast, is much smoother. For the computation of the acceler-
ation due to planetary radiation, Knocke et al. (1988) divides the planetary
surface seen from the satellite in a number of rings and these rings further
into concentric ring segments. For each of these segments or spots, the accel-
eration due to planetary radiation pressure is computed and then summed,
yielding the overall acceleration due to planetary radiation pressure, :rp:

:rp “ ´
1

c

A

m

J
ÿ

j“1

Gj cos θj

„ˆ

2

3
δ ` 2ζ cos θj

˙

n̂ ` p1 ´ ζq ŝj

ȷ

. (2.33)

Here, Gj is the radiation flux originating from planetary spot j, c is the
velocity of light, A is the satellite cross-sectional area, m is the satellite
mass, J is the total number of surface elements, θj is the angle between the
satellite surface normal and planetary spot, ζ and δ denote specular and
diffuse reflectivity, respectively, n̂ is the satellite surface normal unit vector,
and ŝj is the unit vector from planetary spot j to the satellite. The radiation
flux Gj has a short wavelength component, Ga

j , due to albedo and a long
wavelength component, Ge

j, due to emissivity (Gj “ Ga
j ` Ge

j). In case of
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albedo, the amount of radiation received by the spacecraft at distance rj
from the planetary spot due to an elemental planetary surface area dAj is

Ga
j “

ajG0

πr2j

ˆ

a@

r@

˙2

cos θ@
j cos γjdAj. (2.34)

Here, aj denotes the albedo of planetary spot j, G0 is the radiation flux from
the Sun at 1AU, a@ is the semimajor axis of the Earth’s orbit around the
Sun, r@ is the satellite orbital radius from the Sun, θ@

j is the angle between
the unit normal of planetary spot j and the direction to the Sun, and γj is
the angle between the unit normal of planetary spot j and the direction to
the satellite. The IR radiation received by the satellite amounts to

Ge
j “

ejG0

4πr2j

ˆ

a@

r@

˙2

cos γjdAj, (2.35)

with ej denoting the emissivity of planetary spot j. Inserting Equations (2.34)
and (2.35) into Equation (2.33) gives

:rp “ ´
G0

c

ˆ

a@

r@

˙2
A

m

J
ÿ

j“1

cos θj
dAj cos γj

πr2j

ˆ

aj cos θ
@
j `

1

4
ej

˙

„ˆ

2

3
δ ` 2ζ cos θj

˙

n̂ ` p1 ´ ζq ŝj

ȷ

.

(2.36)

In case the central body is the Earth, the standard procedure for the com-
putation of albedo and emissivity is to use the model introduced by Knocke
et al. (1988) and Knocke (1989) taking the zeroth, first, and second degree
zonal harmonics into account. According to Knocke (1989) the model is good
enough to simulate both the latitudinal variation in Earth radiation and a
small hemispherical asymmetry depending on seasons (Knocke et al., 1988).
Albedo and emissivity are expressed as

a “ a0 ` a1P1 psinφq ` a2P2 psinφq , and

e “ e0 ` e1P1 psinφq ` e2P2 psinφq .
(2.37)

Albedo and emissivity parameters of the model are denoted by a0, a1, a2,
c0, c1, c2, and e0, e1, e2, k0, k1, k2, respectively, P1 and P2 are the Legendre
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polynomials of first and second degree, and φ denotes the latitude. Using
the model developed by Knocke et al. (1988), the parameters are as follows:

a0 “ 0.34

a1 “ c0 ` c1 cos pω pJD ´ tpqq ` c2 sin pω pJD ´ tpqq

a2 “ 0.29

c0 “ 0.00

c1 “ 0.10

c2 “ 0.00,

(2.38)

e0 “ 0.68

e1 “ k0 ` k1 cos pω pJD ´ tpqq ` k2 sin pω pJD ´ tpqq

e2 “ ´0.18

k0 “ 0.00

k1 “ ´0.07

k2 “ 0.00.

(2.39)

In Equations (2.38) and (2.39), ω is the frequency of periodic Earth radiation
coefficients amounting to 2π{365.25 days´1, JD is the Julian date of interest,
and tp is the epoch of the periodic terms (December 22, 1981).

For the Moon, a spherical harmonic model describing the albedo up to degree
and order (d/o) 15 is available – the Delft Lunar Albedo Model 1 (DLAM-1)
(cf. Figure 2.2, bottom). The primary source of this product are images from
the Clementine mission (cf. Figure 2.2, top, for an image example); absolute
albedo measurements contribute to a minor part. When using DLAM-1, a
can be computed for any evaluation point at latitude, φ, and longitude, λ,
according to Floberghagen et al. (1999) by

a pφ, λq “

15
ÿ

n“0

n
ÿ

m“0

Pnm psinφq
“

Ca
nm cos pmλq ` Sa

nm sin pmλq
‰

. (2.40)

Degree and order are denoted by n and m, respectively, Pnm are the associ-
ated Legendre functions, and Ca

nm, S
a
nm are the spherical harmonic coefficients

of the albedo map. The emissivity e is equal to 0.97.
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Figure 2.2: Mosaic of Clementine imagery used for the derivation of the
lunar albedo model DLAM-1 (top). The spherical harmonic coefficients of
DLAM-1 evaluated on a grid (bottom). Regions of high reflectance in the
Clementine mosaic have high albedo values in the DLAM-1 and vice versa.
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Concerning geodetic satellites the acceleration due to planetary radiation rcf.
Equation (2.36)s simplifies to

:rp “ ´CR
G0

c

ˆ

a@

r@

˙2
A

m

J
ÿ

j“1

dAj cos γj
πr2j

ˆ

aj cos θ
@
j `

1

4
ej

˙

n̂. (2.41)

For satellites of complex shape, such as LRO, the acceleration due to plane-
tary radiation is computed for each plate i separately (N being the number
of plates). The summation over all plate accelerations gives the total accel-
eration

:rp “ ´
G0

c

ˆ

a@

r@

˙2 N
ÿ

i“1

J
ÿ

j“1

Ai cos θij
m

dAj cos γj
πr2j

ˆ

aj cos θ
@
j `

1

4
ej

˙

„ˆ

2

3
δi ` 2ζi cos θij

˙

n̂i ` p1 ´ ζiq ŝj

ȷ

,

(2.42)

where θij denotes the angle between normal vector of satellite plate i and
planetary spot j. According to Marshall et al. (1992), the average value for
Earth’s albedo is about 0.34 (1 for perfect reflection of a white surface), and
the average emissivity is 0.68 (1 for a true black body). The average value
for Moon’s albedo is 0.20, and the average emissivity is 0.972.

Acceleration due to spacecraft thermal radiation

Acceleration due to spacecraft radiation is only listed for the sake of com-
pleteness. Its magnitude depends on the temperature of the satellite, which
is affected by a complex interaction of external fluxes (solar radiation and
planetary radiation) and – for active satellites only – internal fluxes (satel-
lite components dissipate radiation heating the satellite surfaces). Formulas
can be found in Marshall et al. (ibid.) or Milani and Gronchi (2010, Chap-
ter 14). To the author’s knowledge no temperature algorithms are available
neither for geodetic satellites nor the LRO spacecraft which is why this non-
gravitational acceleration has been neglected.

Shadow function

Both the acceleration due to solar radiation pressure and the acceleration due
to planetary radiation pressure depend on the illumination of the satellite.

2both values are based on the DLAM-1 model



2.1. FORCE MODELS 25

To determine the shadow function, GEODYN makes use of a conical model.
Instead of distinguishing between two cases (total eclipse or umbra and no
eclipse) as it is the case for cylindrical models, conical models are refined
by accounting for partial illumination or penumbra (see Figure 2.3). To
determine whether the satellite is in umbra, penumbra, or in full Sun, the
angle between the satellite and the Sun as seen from the central body is
needed as well as the apparent radii of the central body and the Sun3 (see
Cook, 2001, for a detailed formulation). The shadow function, κ, describes
the eclipse conditions of the satellite and is bounded between 0 and 1:

� κ “ 1 if the satellite is in full Sun

� 0 ď κ ď 1 if the satellite is in penumbra

� κ “ 0 if the satellite is in umbra.

In case of penumbra, κ is deduced from the fraction of the solar disk that is
not obscured by the eclipsing body.

Figure 2.3: Conical Earth shadow model.

At this point expressions are given for geodetic satellites (for LRO the shadow
functions are applied in the same way). To account for illumination differ-
ences in the acceleration due to solar radiation, Equation (2.29) changes to

:rs “ ´κCR
G0

c

A

m

ˆ

a@

r@

˙2

n̂. (2.43)

3The apparent radius of the central body, for instance, is the angular radius of the
central body as seen from the satellite’s perspective.
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Concerning the acceleration induced by planetary radiation, Equation (2.41)
is extended by κ in the following manner:

:rp “ ´CR
G0

c

ˆ

a@

r@

˙2
A

m

J
ÿ

j“1

dAj cos γj
πr2j

ˆ

κjaj cos θ
@
j `

1

4
ej

˙

n̂. (2.44)

Here, κj denotes the shadow function of planetary spot j. Note that the
emissivity is not affected by the shadow function as it does not cease to exist
when the planetary surface is in umbra (Knocke, 1989).

2.1.3 Empirical acceleration

Force modeling – especially non-gravitational force modeling – is imperfect.
Thus, empirical parameters are introduced to absorb the residual acceler-
ations. These parameters are estimated in the spacecraft reference frame,
that is in along track, cross track, and radial direction. Typically, constant
and 1-cycle per revolution (1-cpr) empirical parameters are estimated. The
estimation of the latter is motivated by the fact that the attitude of the
bus and its appendages relative to the central body and the Sun is repeated
almost exactly for each revolution (Colombo, 1989). Considering constant
and 1-cpr empirical parameters results in the following expression for the
empirical acceleration :remp (Colombo, 1989; Montenbruck and Gill, 2001):

:remp “ Ae cos ν ` Be sin ν ` Ce, (2.45)

where e “ 1, 2, 3 for along track, cross track, and radial directions. Fur-
ther, A, B, and C denote the empirical parameters (A and B are the 1-cpr
coefficients, C is a constant acceleration bias), and ν is the true anomaly4.

2.2 Observation models

Describing the state deviation and observation deviation by a set of linear
differential equations (see Equation 2.7 for more details) gives

yi “ Yi ´ Y˚
i “ H̃ixi ` ϵi. (2.46)

4Note that for a non-equatorial orbit, ν is the angle between the satellite position
vector and the intersection of the orbit plane with the equator (McCarthy et al., 1993).
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This section is dedicated to the expression of the observation, Yi, and the
computed observation, Y˚

i , for two-way laser ranges to geodetic satellites,
one-way laser ranges to LRO, and two-way Doppler range-rates to LRO.

2.2.1 Observation model for geodetic satellites

Stations performing two-way SLR measurements to geodetic satellites emit
laser pulses. The satellites, in turn, reflect the pulses back to the stations as
they are equipped with retroreflectors. The observed round-trip light time,
∆τ2, of the pulse from the station to the satellite and back to the station
can be transferred to the observed one-way distance between station and
satellite, ρo, following Rim and Schutz (2002):

ρo “
1

2
c∆τ2, (2.47)

where c is the speed of light and ∆τ2 is affected by measurement errors.
Optical measurements are, for instance, subject to tropospheric delays that
are discussed later for the computed ranges. Note that for two-way laser
ranges to geodetic satellites, Yi in Equation 2.46 is given by Equation 2.47.

Figure 2.4: The motion of a geodetic satellite and a ground station during
the signal travel time of two-way range measurements. When the ground
station receives the reflected laser beam at time t, it was reflected by the
satellite at t ´ τd and emitted by the station at t ´ τd ´ τu.

For the expression of the computed one-way distance between station and
satellite one has to keep in mind that the measurement is composed by an
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uplink range from the station to the satellite, and a downlink range from
the satellite back to the station (see Figure 2.4). When a signal is received
at the station at time t, it was reflected at the satellite at time t ´ τd, and
transmitted by the station at time t ´ τd ´ τu. Downlink and uplink light
travel time are denoted by τd and τu, respectively. Downlink range, ρd, and
uplink range, ρu, are thus defined by

ρd “ ∥r pt ´ τdq ´ rstat ptq∥,
ρu “ ∥rstat pt ´ τd ´ τuq ´ r pt ´ τdq∥.

(2.48)

In the formula above, rstat and r specify the geocentric positions of the ground
station and the satellite, respectively. Two points in time are involved in the
expression for both downlink and uplink range. The computation of the light
travel time, τ , which is part of Equation (2.48), is an iterative process (see
Appendix A for more details) involving the relativistic light time correction
(cf. Section 2.2.5). The iteration process to find the final light travel time of
the signal is described in detail by Moyer (2000, Section 8).

The expressions for downlink and uplink rcf. Equation (2.48)s, which con-
tain the general relativity correction ∆ρrel through τ , are expanded by tro-
pospheric delay correction, ∆ρtrop, (cf. Section 2.2.4), and center of mass
correction, ∆ρcom, yielding the expressions for corrected downlink and up-
link, ρ̃d and ρ̃u, respectively:

ρ̃d “ ρd ` ∆ρtrop ` ∆ρcom,

ρ̃u “ ρu ` ∆ρtrop ` ∆ρcom.
(2.49)

The value of ∆ρcom depends on the laser ranging system and on the detection
energy level (Otsubo and Appleby, 2003). The computed one-way distance,
ρc, is finally obtained by averaging the corrected uplink range, ρ̃u and the
corrected downlink range, ρ̃d:

ρc “
1

2
pρ̃d ` ρ̃uq . (2.50)

Note that the computed range given in Equation 2.50 corresponds to Y˚
i in

Equation 2.46.
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2.2.2 Observation models for LRO

A small receiver telescope is mounted on and co-aligned with the LRO HGA
capturing the uplinked laser signal. A fiber optic cable routes the signal to
the Lunar Orbiter Laser Altimeter (LOLA) instrument (cf. Figure 2.5) that
records the time of the laser signal based on an ultrastable crystal oscillator
(Zuber et al., 2010). According to Sun et al. (2013), the observed one-way
optical laser range, ρo, between a tracking station on Earth, rstat, and the
LRO satellite, r, is defined as

ρo “ c∆τ1 ´ c ptrefLRO
´ trefstatq , (2.51)

where c is speed of light, ∆τ1 is the one-way light time measurement affected
by measurement errors, which is equal to the difference between the time-tag
of the laser pulse received at LRO and the time-tag of the corresponding laser
pulse transmitted from the ground station. Since the reference time of LRO,
trefLRO

, differs from the reference time of the station, trefstat , the observed
range contains the difference of the two reference times. The observed one-
way range to LRO given in Equation 2.51 corresponds toYi of Equation 2.46.

Figure 2.5: Schematic view of the laser ranging flight system from Zuber
et al. (2010). The telescope receives the signal from Earth and transmits it
to channel 1 of the LOLA receiver via the fiber optic bundle.

For the computed one-way range, GEODYN starts again from the station
transmit time, t, and computes the uplink range, ρu, using

ρu “ ∥rstat ptq ´ r pt ´ τuq∥, (2.52)
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where τu is the uplink light travel time5. The uplink range is corrected by
the same terms as uplink and downlink for geodetic satellites rcf. Equa-
tion (2.49)s, that is tropospheric delay ∆ρtrop (cf. Section 2.2.4), and center
of mass correction ∆ρcom, plus an additional clock correction term, ∆ρcl.
Note that, as for geodetic satellites, the correction term due to general rel-
ativity is implicitly given in τ (see Section 2.2.5 and Appendix A for more
details). The corrected uplink, ρ̃u, which is equal to the final computed
one-way distance, ρc, thus reads

ρc “ ρ̃u “ ρu ` ∆ρtrop ` ∆ρcom ` ∆ρcl. (2.53)

Note that the computed one-way range given in Equation 2.53 corresponds
to Yi in Equation 2.46. The center of mass correction in Equation (2.53)
is equivalent to the projection of vector E pointing from the tracking point,
i.e. the receiver telescope mounted on the HGA (Zuber et al., 2010), to
the satellite’s center of mass onto the unit vector of F, F̂, pointing from
the ground station to the tracking point (see Figure 2.6). This correction
requires knowledge about the attitude of the main spacecraft bus as well as
the HGA and will be discussed in Chapter 5.3. The clock correction term in
Equation (2.53) stems from the non-synchronous clocks (one at the ground
station and one aboard the spacecraft) involved in the time-tagging of the
one-way measurement. The LRO clock has a drift rate in the order of 21m/s
that is not constant over time thus inducing an aging rate (Mao et al., 2011).
In GEODYN, the clock correction is modeled as

∆ρcl “ u1t ` u2t
2, (2.54)

where u1 is the LRO clock drift rate, u2 is the LRO clock aging rate, and t is
the time elapsed from the epoch to which the clock parameters are referenced
and the observation time. Note that the bias between the two clocks is
handled by estimating measurement biases (cf. Section 5.1.2).

Doppler observations are based on the Doppler effect (or Doppler shift) uti-
lizing the phenomenon that the frequency of a wave changes for an observer
moving relative to the radio source. The signal is thus shifted in frequency. In

5The uplink for the computed one-way range to LRO is equivalent to the downlink for
the computed one-way range to geodetic satellites rcf. Equation (2.48)s.
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Figure 2.6: For the computation of the center of mass correction, ∆ρcom,
vector E pointing from the tracking point at the HGA to the satellite’s center
of mass is projected onto the unit vector of F, F̂, pointing from the ground
station to the tracking point. Hence, the correction term is the dot product
between E and F̂ (McCarthy et al., 1993).

case of two-way Doppler measurements, the spacecraft transponds a signal,
which was transmitted from a ground station; the ground-based reference fre-
quency is the same that drives the transmitter aboard the spacecraft (Asmar,
2005). Due to the relative motion between station and satellite caused by the
satellite motion, on the one hand, and the rotation of the Earth, on the other
hand, the transmitted frequency from the station is shifted in frequency. In
case the spacecraft is receding from Earth, the fundamental relationship be-
tween transmitted frequency at a station, ft, and received (Doppler shifted)
frequency at the station, fr, is

fr – ft

ˆ

1 ´
1

c

dρ

dt

˙

“ ft

ˆ

1 ´
9ρ

c

˙

, (2.55)
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where c is the velocity of light, dρ
dt

is the derivative of the range, ρ, with
respect to time, and 9ρ is the relative velocity along the line of sight between
observer and satellite (Seeber, 2003).

The Doppler observable, that is the Doppler shift, is derived from the change
in the Doppler cycle count D, which accumulates during the count interval
Tc at the receiving station on Earth (Moyer, 2000), a bias frequency, fbias,
and a frequency-dependent factor, M :

fr ´ ft “
1

M

„

∆D

Tc

´ fbias

ȷ

. (2.56)

For LRO, M is 1000 as it operates in S-band6, Tc is 5 s, and fbias is 240MHz.
Expressing ∆D as a function of D at the time of the present Doppler cycle
count, t2, and the time of the previous Doppler count, t1, gives

∆D “
D pt2q ´ D pt1q

Tc

, (2.57)

and Equation (2.56) becomes

fr ´ ft “
1

1000

"

D pt2q ´ D pt1q

Tc

´ 2.4 ˆ 108 rHzs

*

. (2.58)

Rearranging Equation (2.55) so that the relative velocity along the line of
sight component is on the left hand side gives

9ρ “
´c

ft
pfr ´ ftq . (2.59)

Hence, the observed one-way range-rate, 9ρo, has the following form:

9ρo “
´c

2ftK

1

1000

"

D pt2q ´ D pt1q

Tc

´ 2.4 ˆ 108 rHzs

*

, (2.60)

6see http://imbrium.mit.edu/LRORS/DOCUMENT/LRO DESC TRK.TXT

http://imbrium.mit.edu/LRORS/DOCUMENT/LRO_DESC_TRK.TXT
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with K being the spacecraft transponder turnaround ratio, which is the ratio
of the transmitted down-leg frequency at the spacecraft to the received up-
leg frequency at the spacecraft (ibid., Section 13). In case that both uplink
and downlink frequencies are S-band, as it is the case for LRO, K is 240

221
.

For two-way Doppler measurements, Y˚
i in Equation 2.46 is hence given by

Equation 2.60.

The computed one-way Doppler range-rate can be expressed as the difference
between the two-way range at the beginning of the count-time interval t1, and
the two-way range at the end of the count-time interval t2 (see Figure 2.7)

9ρc “
1

2

rρ̃u pt2q ` ρ̃d pt2qs ´ rρ̃u pt1q ` ρ̃d pt1qs

Tc

, (2.61)

where ρ̃u and ρ̃d denote the uplink and downlink range corrected by tropo-
spheric delay (cf. Section 2.2.4), ionospheric delay (cf. Section 2.2.4), general
relativity (cf. Section 2.2.5), and center of mass correction (see Figure 2.6).

Figure 2.7: The motion of LRO and a ground station during the signal
travel time of two-way Doppler measurements. Starting at the end of the
count interval t2, the signal was transponded by the satellite at t2 ´ τ2d,
and transmitted by the station at t2 ´ τ2d ´ τ2u. Similarly, if t1 denotes the
beginning of the count interval Tc, the signal was transponded by the satellite
at t1 ´ τ1d, and transmitted by the station at t1 ´ τ1d ´ τ1u.
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The corrected downlink and uplink thus read

ρ̃d “ ρd ` ∆ρtrop ` ∆ρion ` ∆ρrel ` ∆ρcom,

ρ̃u “ ρu ` ∆ρtrop ` ∆ρion ` ∆ρrel ` ∆ρcom.
(2.62)

For the expressions of ρu and ρd see Equation (2.48). The computed range-
rate (cf. Equation 2.61) corresponds to Y˚

i in Equation 2.46.

2.2.3 Station displacements

The position of the tracking station enters all observation models described
in the previous sections. Thus, it is necessary to consider the effects of
the displacement of the ground station location caused by crustal motions.
Among those motions, tectonic plate motion and tidal effects are the most
prominent ones (Rim and Schutz, 2002). The total displacement due to tidal
effects, ∆t, is comprised by the displacement due to the solid Earth tides, ∆et,
the displacement due to the ocean tide loading, ∆o, the displacement due to
the rotational deformation, i.e. Earth pole tide loading, ∆ep, and ocean pole
tide loading, ∆op, and the displacement due to atmospheric pressure loading,
∆atm:

∆t “ ∆et ` ∆o ` ∆ep ` ∆op ` ∆atm. (2.63)

In addition to tidal loading, stations are effected by non-tidal loading such
as non-tidal ocean and atmospheric pressure loading. Sośnica (2014), for
instance, took the non-tidal atmospheric pressure loading into account to
remove the so-called Blue-Sky effect7. For some stations this correction is as
large as 2.5mm (ibid.).

2.2.4 Media corrections

Electromagnetic signals experience propagation delays due to the atmosphere,
i.e. the neutral atmosphere or troposphere, on the one hand, and the charged
atmosphere or ionosphere on the other hand. The resulting delay in the mea-
surements depends on atmospheric conditions and on the satellite elevation
angle (Hopfield, 1971). In the following, the delays for optical and radio
signals due to propagation are briefly discussed.

7Optical measurements such as SLR do not penetrate clouds. Thus, the air pressure is
generally high deforming the Earth’s crust and systematically shifting the station heights.



2.2. OBSERVATION MODELS 35

Tropospheric Refraction

The troposphere is the lower part of the atmosphere (up to approximately
20 km above sea level) and is composed almost entirely of neutral gas. The
refractivity decreases with increasing altitude approaching zero at the upper
boundary of the troposphere. Generally, the neutral atmosphere can be di-
vided into two constituents, a dry (or hydrostatic) component and a wet (or
non-hydrostatic) component. About 90% of the total zenith delay is due to
the dry component (Yunck, 1993) which can be accurately modeled as it is
highly uniform and stable. Each component consists of the product of the
propagation delay experienced in the zenith direction and a Mapping Func-
tion (MF) modeling the elevation angle dependence of the zenith atmospheric
delay.

Until a few years ago, the atmospheric model developed by Marini and Mur-
ray (Marini and Murray, 1973) was commonly used within the SLR commu-
nity for the correction of observed laser ranges above 10° elevation angle. It
is based on meteorological measurements at the laser sites and reflects the
slight frequency dependence of the atmospheric delay at optical frequencies
(Yunck, 1993). In 2002, Mendes et al. (2002) published two new MFs (one
requiring site location and meteorological data, the other requiring only site
location) with significant improvements over other MFs. They are based
on ray tracing of globally distributed radiosonde stations through the year
1999 and are valid at elevation angles above 3°. In 2004, Mendes and Pavlis
(2004) presented improved zenith delay models as well. The use of those
delay models together with the new MF is recommended by the IERS (Petit
and Luzum, 2010).

Figure 2.8: The electromagnetic spectrum from radiowaves to γ-rays. Fre-
quency/wavelength of Doppler range-rate measurements to LRO and of op-
tical laser ranges to LRO and geodetic satellites are indicated.
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For radio waves, the troposphere is a non-dispersive medium (no frequency
dependency in the delay). The troposphere has the effect of steepening the
slope of the curve of the Doppler frequency versus time as observed by a
tracking station; the satellite appears slightly closer to the station than it
actually is (Hopfield, 1963). Contrary to optical signals, the wet component
has a larger impact on radio signals (Hopfield, 1971). For the tropospheric
correction of radio signals the two-quartic model by Hopfield (Hopfield, 1969)
is widely used8 yielding an error of less than 10% for elevations above 10°
(Montenbruck and Gill, 2001). This model treats the dry and wet com-
ponents separately representing each by a fourth-degree function of height
above the geoid (Hopfield, 1969). An alternative model, which is mainly used
to correct GNSS data and Very Long Baseline Interferometry (VLBI) obser-
vations, is the Vienna Mapping Function (VMF) 1 by Böhm et al. (2006). As
a concluding remark it can be said that the atmospheric dry delay at optical
and radio frequencies is nearly the same (Yunck, 1993).

Ionospheric Refraction

The ionosphere, spreading from about 70 km to a height of about 1000 km,
is composed of electrons and – considerably heavier – positive ions. Thus,
the latter hardly affect the electromagnetic signal (being in principle an os-
cillating electromagnetic field) and can be ignored (ibid.). The ionospheric
refractivity is proportional to the inverse of the signal frequency squared
and directly proportional to the electron number density. Since optical laser
ranges have a frequency in the range of 1014Hz (cf. Figure 2.8), the ef-
fect of ionospheric refraction can be neglected (Montenbruck and Gill, 2001).
The ionosphere is difficult to model, which is why often global ionospheric
models do not provide adequate accuracy (ibid.). Thus, measurements of
the Total Electron Content (TEC)9 are often used to determine the iono-
spheric refraction. Moreover, multilink observations allow an isolation of
the plasma scintillation (Asmar, 2005). Concerning the LRO spacecraft, no
multilink observations are available that would isolate the ionospheric effect.
Lemoine et al. (2013) computed the ionospheric correction for the two-way
Doppler measurements (S-band) to GRAIL by means of TEC maps. The
processing of three months of observations to GRAIL showed that the Root
Mean Square (RMS) of fit of Doppler measurements improved by a max-
imum of 0.01mm/s (varying from arc to arc) when ionospheric correction

8Lemoine et al. (2013), for instance, used the Hopfield zenith delay model for the
tropospheric correction of Doppler data to the GRAIL spacecraft.

9typically, global networks of dual-frequency Global Positioning System (GPS) stations
measure the TEC along slant paths connecting receivers and satellites
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is applied (ibid., Figure 6). As the precision of Doppler measurements to
LRO is „1mm/s (1σ) (Zuber et al., 2010), the correction due to ionospheric
refraction is thought to be uncritical. Hence, it remains unconsidered in this
work.

2.2.5 Relativistic light time correction

For satellites orbiting the Earth, the relativistic light time correction, ∆ρrel,
is expressed in the geocentric reference frame. This correction comes from
the space-time curvature produced by the gravitational field and only takes
the Earth’s rotation during light time into account (Huang et al., 1990):

∆ρrel “ 2
GMC

c2
ln

„

∥rstat∥ ` ∥r∥ ` ∥rstat ´ r∥
∥rstat∥ ` ∥r∥ ´ ∥rstat ´ r∥

ȷ

. (2.64)

Here, GMC is the Earth’s gravitational parameter, c is the velocity of light,
∥rstat∥ is the distance between station and the geocenter, ∥r∥ is the distance
between the satellite and the geocenter, and ∥rstat ´ r∥ is the computed or
geometric range between station and satellite.

For a lunar orbiter, the relativistic light time correction is expressed in a
solar-system barycentric coordinate system (Moyer, 2000, Section 8):

∆ρrel “
GM@

c2
ln

«

∥rstat ´ r@∥ ` ∥r ´ r@∥ ` ∥rstat ´ r∥ ` GM@

c2

∥rstat ´ r@∥ ` ∥r ´ r@∥ ´ ∥rstat ´ r∥ ` GM@

c2

ff

`

10
ÿ

i“1

GMbi

c2
ln

„

∥rstat ´ rbi∥ ` ∥r ´ rbi∥ ` ∥rstat ´ r∥
∥rstat ´ rbi∥ ` ∥r ´ rbi∥ ´ ∥rstat ´ r∥

ȷ

.

(2.65)

Here, GM@ is the Sun’s gravitational parameter, ∥rstat ´ r@∥ is the distance
between station and Sun, ∥r ´ r@∥ is the distance between the spacecraft
and Sun, and ∥rstat ´ r∥ is the distance between station and spacecraft.
Furthermore, GMb denotes the gravitational parameter of planet b, ∥rstat ´

rb∥ refers to the distance between station and planet, and ∥r ´ rb∥ is the
distance between spacecraft and planet. Note that all coordinates refer to a
solar-system barycentric coordinate system. The first term of Equation (2.65)
accounts for the relativistic light time delay due to the Sun which has the
effect of reducing the coordinate velocity of light below c and for the bending
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of the light path (Moyer, 2000). Typically, the same term but neglecting the
bending is evaluated for every other celestial body of the solar system, i.e.
the eight planets, Pluto, and the Moon.

2.3 Least squares adjustment

In the linearized version of the observation equation rsecond part of Equa-
tion (2.7)s, there is an unknown state deviation corresponding to each obser-
vation deviation. Inserting Equation (2.8) into Equation (2.7), the observa-
tion deviation can be written as

yi “ H̃iΦ pti, tkqxk ` ϵi. (2.66)

Now, the state transition matrix is used to map the state deviation from one
time to another. The big advantage is that the state deviation does not have
to be known for each time of observation. Note that it is assumed that only
one quantity is observed at a single epoch (p=1). In detail, Equation (2.66)
reads

y1 “ H̃1Φ pt1, tkqxk ` ϵ1,

y2 “ H̃2Φ pt2, tkqxk ` ϵ2,

...

yl “ H̃lΦ ptl, tkqxk ` ϵl.

(2.67)

Using the definitions according to Tapley et al. (2004b)

y ”

¨

˚

˚

˚

˝

y1
y2
...
yl

˛

‹

‹

‹

‚

, A ”

¨

˚

˚

˚

˝

H̃1Φ pt1, tkq

H̃2Φ pt2, tkq
...

H̃lΦ ptl, tkq

˛

‹

‹

‹

‚

, ϵ ”

¨

˚

˚

˚

˝

ϵ1
ϵ2
...
ϵl

˛

‹

‹

‹

‚

, (2.68)

and dropping the subscript k for convenience, Equation (2.67) can be ex-
pressed as

y “ Ax ` ϵ, (2.69)
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with y being the observation deviation, A the design matrix, x the state
deviation, and ϵ the observation residual. In this work, Least Squares (LS)
adjustment is used to solve for the unknown state deviation x. Minimization
of the weighted squared sum of observation inconsistencies

ϵTPϵ Ñ min! ô py ´ Axq
T P py ´ Axq Ñ min

x
! (2.70)

yields the best linear unbiased estimate10 of x,

x̂ “
`

ATPA
˘´1

ATPy, (2.71)

with P denoting the observation weight matrix.

Concerning the composition of the estimated state deviation vector, it is
common practice to make use of the multi-arc strategy where the time span
to be investigated is decomposed into shorter intervals or arcs (Milani and
Gronchi, 2010, Chapter 15). Each arc has its own initial conditions as if there
were a new spacecraft for each arc. This multi-arc approach distinguishes
between local fit parameters and global fit parameters. Details of local-
global decomposition can be found in Milani and Gronchi (ibid., Chapter
15). Local fit parameters (or arc-specific parameters) are all parameters that
change from arc to arc, such as the initial state vector, atmospheric drag
coefficient or solar radiation pressure coefficient. Global fit parameters, in
contrast, do not depend on a specific arc but are valid over a longer time
span, such as gravity field coefficients or ground station positions.

The first step of the parameter estimation process consists of solving for all
local parameters. Since the reference solution is generally not very close to
the true solution, several iterations are required that are also called inner
iterations. Within this first step the global parameters are fixed to their a
priori values. Once this system has converged, normal equations for local
and global parameters are set up – one normal equation matrix

`

ATPA
˘

and one normal equation vector
`

ATPy
˘

per arc. A companion program
to GEODYN, SOLVE (Ullman, 1994), can now be used to stack the normal
equations of several arcs (and possibly those of different satellites orbiting
the same central body) and estimate the global parameters. This is achieved

10the best linear unbiased estimate is given by the least squares estimator; ‘best’ refers
to the lowest variance of the estimate
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by reducing the normal equation system of local and global parameters by
the arc-specific part (or local parameters). This procedure is equivalent to
solving for all (local and global) parameters simultaneously. Correlations
between global and arc parameters are thus taken into account. For more
details on this technique the reader is referred to Kaula (1966).

After having estimated the local parameters iteratively and solved for the
global parameters, the first global iteration is complete. It is now possible
to feed the estimated global parameters back to the system by replacing, for
instance, the a priori gravity field coefficients used for the first global iteration
with the estimated gravity field coefficients and solving again for the local
parameters in an iterative manner. After the second global iteration, the
residuals are typically smaller than after the first global iteration and are
referred to as post-fit residuals.

2.4 Key issues and quality assessment

According to Luthcke et al. (2003), (1) data use, (2) parametrization, and
(3) arc length are key issues in solving an orbit determination problem. The
first issue, data use, comprises data editing, weighting of observations of the
same type, and relative weighting of observations of different types. Data
use is no primary objective in this thesis. Instead, the same weight for all
observations of the same type were introduced. Also, the normal equations
comprising data to different geodetic satellites are equally weighted in the
combination process.

The second issue, parametrization, seeks to find the set of parameters that
describe the motion of a satellite in an optimal way. As already mentioned,
the perturbing forces affecting the satellite are not perfectly known (e.g. at-
mospheric drag). Also, some forces may not be known well enough to be
modeled at all or there is simply no access to relevant information. Space-
craft thermal radiation (cf. Section 2.1.2) shall be mentioned at this place for
which, in practice, a model of the external surface temperatures is typically
not available with the required accuracy (Milani and Gronchi, 2010, Chapter
14). Ignoring the presence of this force, though, would lead to a degraded
orbit solution. Estimating empirical parameters is an effective way to miti-
gate this problem (cf. Section 2.1.3). The number of empirical parameters
that can be resolved depends primarily on the density and the geometry of
the available tracking data (Rowlands et al., 2009). Optimal parametrization
with respect to the number and the type of empirical parameters is exhaus-
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tively studied within this thesis, especially concerning the POD of the LRO.
Unlike POD of a lunar orbiter, POD of geodetic satellites has been practiced
for several years at the Space Research Institute of the Austrian Academy of
Sciences (see e.g. Maier et al., 2012; Maier et al., 2014); naturally, use was
made of this experience.

The third key issue, the arc length, has to be addressed whenever the multi-
arc strategy (see Section 2.3 for more details) is used. According to Rowlands
et al. (2002), the optimal arc length depends on the geometric strength of the
tracking data, the magnitude of unmodeled or imperfectly modeled forces,
and the sensitivity of the data to the parameters of interest. If the latter are
gravity field coefficients, the sensitivity increases with increasing arc length
(Rowlands et al., 2002; Goossens, 2010). Thus, longer arcs are generally
preferable. The drawback of longer arcs is, however, that the unmodeled
accelerations, which accumulated over time, are larger compared to shorter
arcs. Bare in mind that if the errors grow too large, the assumption of linear-
ity on which the least squares adjustment is based, does not hold (Goossens
et al., 2011a). Thus, the choice of the optimal arc length represents a trade-
off between capturing the dynamics of the satellite motion and keeping the
residuals small. The quality of the computed orbits was assessed by means
of quality indicators introduced in the subsequent paragraph.

Orbital accuracy can only be assessed by estimating the satellite’s trajec-
tory using independent tracking data types. For the LRO spacecraft two
independent measurement types are available, optical laser ranges, on the
one hand, and Doppler range-rates, on the other hand. As will be shown in
Section 5.3.2, however, orbits determined from laser ranges are of consider-
ably lower quality compared to orbits determined from Doppler range-rates;
sparse tracking and the involvement of two clocks are thought to be the main
reasons. Instead, other quality indicators can be used such as the orbital pre-
cision that is typically assessed by orbit overlap tests. In the course of these
overlap tests the investigated time span is split into arcs that overlap with
respect to time. Since the dynamical modeling and the used measurements
for the overlap period are the same, the orbit differences give an indication
of the consistency of the orbit determination and thus an indication of the
minimum error in the final solution (Zandbergen et al., 2003). Some care
should be taken though when analyzing overlap values as the least squares
adjustment (cf. Section 2.3) used for the orbit determination tends to result
in larger errors at the beginning and at the end of each arc (ibid.). The
most trivial case of overlap analysis would consist in choosing the arcs so
that successive arcs are connected by exactly one point; this would allow an
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analysis of the difference of the so-called orbit connecting points (Kang et
al., 2006). Note that for estimating gravity field coefficients, non-overlapping
arcs have to be used since observations within the overlapping period would
count twice otherwise.

Further, observation residuals provide a clue on how well the forces acting on
the satellite are modeled. If the forces were modeled perfectly, the residuals
would be at the level of tracking data precision (ibid.). In case of LRO the
estimated orbit can be externally validated using LRO ephemeris computed
and published by National Aeronautics and Space Administration (NASA).



Chapter 3

Gravity field recovery

Gravity field recovery can be severely hampered by ill-conditioning of the
normal equation system. The solution of an ill-conditioned problem strongly
oscillates amplifying data errors and unmodeled signal (Kusche and Klees,
2002). As stated in Kusche and Klees (ibid.), ill-conditioning has two reasons.
First, the determination of gravity field functionals on the central body’s
surface from satellite sensors lacks stability (also referred to as downward
continuation problem). Secondly, incomplete spatial sampling of the central
body has a negative effect (Weigelt et al., 2013).

To some extent, one can try to mitigate ill-conditioning. The usage of obser-
vations to satellites having a wide range of inclinations has a positive effect on
the condition of the normal equations, for instance; the gravitational field is
sampled more adequately in latitude (King-Hele, 1962; King-Hele and Cook,
1965). Also, the inclusion of more observation types has a stabilizing effect.

In case the normal equation system remains unstable, the concept of reg-
ularization can be applied by adding a priori information to the solution.
The classical global regularization method is referred to as Tikhonov-Phillips
regularization (Tikhonov, 1963; Phillips, 1962). The Tikhonov-Phillips reg-
ularized version of Equation (2.71) reads

x̂η “
`

ATPA ` ηK
˘´1

ATPy, (3.1)

where η is the regularization parameter and K is a symmetric regularization

43
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matrix

K “ LTL. (3.2)

A Tikhonov-Phillips regularized problem is said to be in standard form if
L “ I, and in general form if L ‰ I. Here, the latter applies since the
regularization matrix was defined to be the Kaula regularization matrix.
Consequently, L in Equation (3.2) is a diagonal matrix containing the inverse
of the empirical degree variances known as Kaula’s rule (Kaula, 1966):

σ2
n “

ˆ

1 ˆ 10´5

n2

˙2

, (3.3)

where n denotes the spherical harmonic degree. The regularized solution, x̂η,
is subject to the minimization problem
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,

.

-

Ñ min
x

. (3.4)

The so-called L-curve method (e.g. Hansen, 1998; Hansen, 2000) was adopted
to find the optimal value of the regularization parameter η. This method
makes use of the solution norm and the residual norm rcf. Equation (3.4)s.
Note that if regularization is too tight, the residual norm will be too large.
On the other hand, if regularization is too loose, the fit will be good but
the solution norm will be large as it is dominated by the contributions from
the data errors (Hansen, 2000). As such, the optimal value for η represents
a compromise between data misfit and the power of the solution. Solution
and residual norm are typically plotted against each other on a log-log scale
as this scale emphasizes the two different parts of the curve forming an ‘L’
(Hansen, 1998). The optimal regularization parameter corresponds to the
point at the corner of the L-shaped curve.

In order to find the optimal value of η, use can be made of a very elegant
way to analyze discrete ill-posed problems (e.g. Hansen, 2008) – the Singular
Value Decomposition (SVD) for L “ I or the generalized SVD for L ‰ I.
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These concepts are implemented in regtools1, a MATLAB package for anal-
ysis and solution of discrete ill-posed problems, developed by P. C. Hansen.
As the regularization matrix is chosen to be the Kaula matrix, the use of
regtools for generalized SVD shall be shortly discussed at this point. Input
to the function l corner.m, which plots the L-curve on a log-log scale and
returns the optimal η, is the generalized SVD of the matrix pair A and L
as well as the residual vector y. For a total number of 200 different values
of η the solution norm and the residual norm is computed. Next, a spline
is laid through the points and the optimal regularization parameter is found
by computing the maximum curvature of that curve.

1available at http://www.imm.dtu.dk/„pcha/Regutools/

http://www.imm.dtu.dk/~pcha/Regutools/




Chapter 4

Geodetic satellites

Laser ranging to geodetic satellites is based on the measurement of the round-
trip light travel time: a pulse is emitted at a ground station into the direction
of a geodetic satellite. The satellite reflects the signal back to the station.
The ground station records the time of pulse emittance and the time of ar-
rival of the reflected signal. These dedicated satellites are completely passive
free falling objects of spherical shape covered with corner cube reflectors (cf.
Figure 4.1). The round-trip light travel time can be easily converted to un-
ambiguous two-way ranges [cf. Equation (2.47)]. For orbit determination
purposes so-called Normal Points (NPs) are used. NPs are statistically de-
rived pseudo-observations from integrated raw Satellite Laser Ranging (SLR)
measurements over a certain time span or bin size (Sinclair, 1997); they are
precise to 1 to 3mm (Degnan, 2013).

Figure 4.1: Illustration of the LAGEOS-1 satellite. Its surface is covered by
426 corner cube reflectors (image credit: NASA).

47
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The International Laser Ranging Service (ILRS)1 coordinates satellite track-
ing by means of optical laser ranges and provides the data to the research
community (Pearlman et al., 2002). The ILRS network (Figure 4.2) is a
global network and consists of a few tens of stations. It is densest in Eu-
rope and is characterized by a hemispheric dichotomy. Stations are missing
primarily in the polar regions and in oceanic areas.

4.1 Data set

A total of six geodetic satellites were analyzed over a time span of almost 14
years (January 2000 to October 2013). Satellite parameters, orbital charac-
teristics, and additional information are given in Table 4.1. Some geodetic
satellites such as the Laser Geodynamics Satellite (LAGEOS)-1 and Stella
have been orbiting the Earth for decades. Their long lifetime can be ascribed
to their high orbital altitudes making the atmosphere a negligible perturbing
factor. The orbits of all considered satellites are near-circular allowing a uni-
form sampling of the gravity field with respect to altitude. The satellites have
different inclinations decreasing correlations between estimated gravity field
coefficients (cf. Chapter 3). Moreover, highly inclined satellites orbiting at
high orbital altitudes such as LAGEOS-1 are crucial for expanding the data
coverage to the polar regions where no observatories exist (see Figure 4.3).
SLR data acquisition is spatially (Figure 4.3) and temporally inhomogeneous;
the number of observations per site varies significantly as can be seen from
Figure 4.4. Most of the satellites have a small area-to-mass ratio (cf. Ta-
ble 4.1) diminishing the effect of non-gravitational forces acting on them (cf.
Section 2.1.2).

Five out of the six considered satellites have a diameter less or equal to
60 cm. Moreover, the mass of the LAGEOS satellites, Stella, and Starlette is
large. Consequently, the area-to-mass ratio of those satellites (cf. Table 4.1)
is favorably small as it diminishes the effect of non-gravitational forces acting
on them (cf. Section 2.1.2).

Over the „14-year time span, a total number of about 6.4 million NPs were
analyzed. One third of this number amounts to observations to Ajisai. The
number of NPs per satellite and the percentage of each satellite contributing
to the total number of observations is listed in Table 4.2. All observational
data were retrieved from the Crustal Dynamics Data Information System

1http://ilrs.gsfc.nasa.gov/

http://ilrs.gsfc.nasa.gov/
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(CDDIS)2, which is discussed in Noll (2010). The EUROLAS Data Center
(EDC) is the second data center providing NPs to geodetic satellites. Sośnica
et al. (2011) showed that the data provided by CDDIS and EDC is not
identical suggesting, thus, to merge the observation files from both centers.

Table 4.1: Characteristics of considered geodetic satellites3.

LAGEOS-1 LAGEOS-2 Ajisai Starlette Stella Larets

Sponsor US US/Italy Japan France France Russia
Year of launch 1976 1992 1986 1975 1993 2003

Inclination [˝] 109.8 52.6 50.0 49.8 98.6 98.2
Eccentricity [-] 0.0045 0.0135 0.0010 0.0206 0.0008 0.0002
Revolution

225 223 116 104 101 98.5
period [min]

Perigee [km] 5860 5620 1490 812 800 691

Diameter [cm] 60 60 215 24 24 25
Mass [kg] 407 405 685 47 48 23
Area-to-mass

7 7 53 10 9 20
ratio [cm2/kg]

Bin size of
120 120 30 30 30 30

NPs [s]

Table 4.2: Number of NPs per satellite from January 2000 to October 2013.

Satellite Number of NPs Percentage

Ajisai 2 176 000 34
Starlette 1 216 000 19
LAGEOS-1 1 088 000 17
LAGEOS-2 1 024 000 16
Stella 576 000 9
Larets 320 000 5

ř

“6 400 000

2visit ftp://cddis.gsfc.nasa.gov
3all data are retrieved from the ILRS website http://ilrs.gsfc.nasa.gov except

for the revolution period and the diameter of Larets, which were retrieved from Kucharski
et al. (2014)

ftp://cddis.gsfc.nasa.gov
http://ilrs.gsfc.nasa.gov
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4.2 Parametrization and modeling

First of all, the NP files were converted to the GEODYN-specific format (cf.
Appendix D.1). Then, SLR data of the „14-year time span were processed in
‘weekly’ batches; each calendar month was subdivided into three seven-day
arcs plus a fourth arc of variable length depending on the number of days
within the month. Table 4.3 summarizes the standards and models used for
Precise Orbit Determination (POD). The adopted standards are motivated
by contributing SLR-based normal equations to gravity field models of the
Gravity Observation Combination (GOCO) series4. For the computation of
their latest satellite-only gravity field models, the GOCO consortium agreed
to data processing in consistency with the Gravity Field and Steady-State
Ocean Circulation Explorer (GOCE) High-level Processing Facility (HPF)
standards (EGG-C, 2010). Consequently, the processing of SLR data enter-
ing GOCO02S and GOCO03S (the SLR part is the same for both models) is
consistent with the GOCE HPF standards. The latter instruct the usage of
the Finite Element Solution (FES) ocean tide model FES2004 (Lyard et al.,
2006). This model was used for the processing of SLR data that enter the
GOCO models. For the analysis of the „14-year time span presented here,
however, the FES model was replaced by the more recent Goddard Ocean
Tide (GOT) model GOT4.8 (Ray, 1999), released in 2011.

The satellites orbiting at high altitudes, such as LAGEOS-1 and -2, are
less sensitive to the Earth’s gravity field than the lower ones. Sośnica (2014)
showed that the LAGEOS satellites are insensitive to coefficients higher than
degree and order (d/o) 30 implying that for the analysis of LAGEOS data
the a priori gravity field model can be truncated at d/o 30. However, since
also lower orbiting satellites were considered in this study, the full d/o of the
European Improved Gravity model of the Earth by New techniques (EIGEN),
EIGEN-5S, was used for all satellites (d/o 150).

For each satellite, the initial state vector for the very first orbital arc was
obtained from predictions in the Tuned Inter-Range Vectors (TIRVs) format5

provided by the ILRS. The initial states of all other arcs were taken from
the estimated orbit of the respective previous arc, as subsequent arcs were
chosen such that they overlap by one point. The integration step size was
set to 60 s for all satellites.

The rejection level of NPs was defined as 3.5σ. Further, a minimum number

4visit http://www.goco.eu/ for more information
5retrieved from ftp://cddis.gsfc.nasa.gov/slr/predicts/

http://www.goco.eu/
ftp://cddis.gsfc.nasa.gov/slr/predicts/
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of NPs per station and month was introduced (30 NPs). All laser ranges
measured above an elevation angle of 12° were taken into account. Moreover,
all measurements were assigned equal weight. The usage of the bin Root
Mean Square (RMS) value, which is available for each NP, led to significantly
larger range residuals than introducing equal weights for all observations.
This might be due to the fact that the computation of the bin RMS value
is not standardized. As a consequence, the algorithm to deduce this value
might differ from station to station. The impact of using equal weights or
the bin RMS value on the estimated monthly sets of gravity field coefficients
was investigated: whereas the two observation schemes resulted in nearly the
same C20 coefficients, the variations of the other degree-two terms were all
larger in case the bin RMS was used as observation weight (for more details
see Appendix B). This is the reason why equal weights have been introduced.

Table 4.3: Precision orbit determination standards for geodetic satellites

Standard/model Reference

Reference frame

Inertial reference system ICRF McCarthy and Petit (2004)
EOPs IERS 08 C04 Bizouard and Gambis (2007)
Planetary ephemeris JPL DE-403 Standish et al. (1995)
Polar motion IERS McCarthy and Petit (2004)
Precession-nutation model IAU-2000 Capitaine et al. (2003)
Station coordinates SLRF2008 Pavlis (2009)

Gravitational force models

Gravity field model EIGEN-5S (full d/o) Förste et al. (2008)
Solid Earth tides IERS McCarthy and Petit (2004)
Ocean tides GOT4.8 up to d/o 20 Ray (1999)
Solid Earth pole tide IERS McCarthy and Petit (2004)
Ocean pole tide IERS McCarthy and Petit (ibid.)
Third bodies JPL DE-403 Standish et al. (1995)
Oblateness indirect acceleration of Moyer (1971)

the Earth due Earth’s
oblateness

Relativistic corrections Schwarzschild, Coriolis,
Lense-Thirring

Non-gravitational force models

Atmospheric drag atmosphere model MSIS-86 Hedin (1987)
Solar radiation pressure G0=1367.2Wm´2

at 1AU, conical shadow
model

Continued on next page
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Table 4.3: (continued)

Standard/model Reference

Earth radiation pressure Albedo and emissivity, Knocke (1989)
2nd degree zonal model

Satellite parameters

Cannonball model Cross sectional area
derived from the diameter
given in Table 4.1

Mass (cf. Table 4.1)

Measurement models

Tropospheric refraction Mendes-Pavlis zenith Mendes and Pavlis (2004)
delay model

FCULa mapping function Mendes et al. (2002)
Center of mass correction 0.9930m: Ajisai Sośnica et al. (2012)

0.2510m: LAGEOS-1/2 ILRS recommendation
0.0780m: Stella/Starlette Sośnica et al. (ibid.)
0.0562m: Larets ILRS recommendation

Relativistic correction IERS McCarthy and Petit (2004)
Station displacement:
Solid Earth tide loading IERS McCarthy and Petit (ibid.)
Ocean tide loading GOT4.8 up to d/o 20 Ray (1999)
Solid Earth pole tide IERS McCarthy and Petit (2004)
loading
Ocean pole tide loading IERS McCarthy and Petit (ibid.)
Atmospheric pressure not applied
loading
Non-tidal loading not applied

For each week and each satellite the orbit was computed using GEODYN.
Various arc parameters (cf. Table 4.4), such as the satellite state vector, were
estimated in an iterative manner. After convergence of the orbit a normal
equation system was set up for the estimated arc parameters together with
the global parameters. The latter consist of gravity field coefficients and
station coordinates (cf. Table 4.4). Preceding simulations in Maier et al.
(2012) have shown that the recovery of gravity field coefficients is limited to
about d/o 5 when using five geodetic satellites. Estimating coefficients up
to d/o 10 resulted in large variations of the monthly coefficients due to the
increased ill-conditioning of the normal equations (ibid.). Non-global data
coverage (cf. Figure 4.3) and the high orbital altitudes of some of the geodetic
satellites (cf. Table 4.1) are thought to be responsible for this behavior. SLR
data to geodetic satellites have a particular strength for the determination
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of the degree-2 terms since errors in non-gravitational force modeling are
significantly reduced because of the satellites’ spherical shape and large area-
to-mass ratio. For this reason and in order to avoid any degradation of the
results due to ill-conditioning, the maximum gravity field resolution was set
to d/o 4. The coordinate system has been defined to coincide with the Earth’s
center of mass, implying that the degree-1 coefficients are fixed to zero.

Table 4.4: Estimated arc and global parameters

Arc parameters
Atmospheric drag coefficient 1 per day
Empirical acceleration 1-cpr along track,

constant cross track (1 per day each)
Measurement bias 1 per station and arc
Satellite state vector 1 per arc

Global parameters
Gravity field coefficients 1 set per month (time-variable solution)
up to d/o 4 1 set over „14 years (static solution)

Station coordinates same as for gravity field coefficients

From the physical point of view there is no reason why measurement biases
should exist since stations are urged to perform system calibrations on a
regular basis. Small biases, however, might remain. More importantly, esti-
mated biases can absorb deficiencies in the orbit modeling. Figure 4.5 shows
the estimated biases for YARL to LAGEOS-1 and Starlette. The variation
is generally larger for the lower orbiting satellite Starlette due to the larger
impact of the atmosphere. Moreover, the variations of the biases to Starlette
seem to be correlated with the solar activity (see Figure 4.6, bottom) which
is small between 2006 and 2010. The estimated measurement biases thus
absorb to some extent insufficiently modeled variations of the atmosphere.
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Figure 4.5: Estimated measurement biases per orbital arc from YARL to
LAGEOS-1 and Starlette

4.3 Results

The quality of the achieved results can be assessed at the level of computed
orbits, on the one hand, and at the level of recovered gravity field coefficients,
on the other hand. The outcome of both is presented in this chapter.

4.3.1 Precise orbit determination

As discussed in Section 2.4, observation residuals (O ´ C) are often used as
an indicator of how well the the forces acting on the satellite are modeled.
Figure 4.6 (top) depicts the RMS values of the post-fit residuals per arc for
all considered satellites. The observations can be modeled most precisely
for the LAGEOS satellites that are orbiting at altitudes of nearly 6000 km;
at altitudes this high the influence of the atmosphere on the motion of the
satellite is negligible. The level of the RMS values of the lower satellites is
higher, pointing to deficiencies in the modeling of non-gravitational forces
such as atmospheric drag and solar radiation pressure. Further, the RMS
values of all low-orbiting satellites show a similar pattern: they are large
at the beginning and at the end of the investigated time span and small in
the middle (cf. Figure 4.6, top). This behavior correlates with the varying
activity of the Sun. Figure 4.6 (bottom) depicts the 10.7-cm solar radio flux6,
which can be considered as a proxy for the solar activity. Table 4.5 contains
the RMS values of the post-fit residuals averaged over the investigated time
span.

6retrieved from https://celestrak.com/SpaceData/

https://celestrak.com/SpaceData/
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Figure 4.6: Top: RMS values of the post-fit residuals per arc and satellite
from January 2000 to October 2013 (the time series of Larets starts in Jan-
uary 2004). The values are smallest for the LAGEOS satellites at „6000 km
altitude (cf. Table 4.1). Bottom: 10.7-cm solar radio flux (F10.7) adjusted
to 1AU. The residuals of the low-altitude satellites (Stella, Starlette, Larets)
seem to be correlated with the solar activity.
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Another indication of the orbital precision provide the so-called orbit con-
necting points. The RMS values of the differences in orbit connecting points
show a similar behavior as the RMS values of the post-fit residuals: they
are smallest for the LAGEOS satellites and – concerning the lower satellites
– larger at the beginning and at the end of the „14-year time span (not
shown here). The RMS values of orbit connecting points averaged over the
investigated time span are given in Table 4.5. The significance of the orbit
connecting points is of course limited as successive arcs are connected by only
one point. Nonetheless, the tendency of the residuals is clearly reflected in
the orbit connecting points (cf. Table 4.5).

Table 4.5: RMS values of post-fit residuals over 7-day arcs from January
2000 to October 2013 and RMS values in total position of orbit connecting
points averaged over the investigated time span. The latter indicate the inner
precision of the estimated orbits.

Satellite
RMS value [cm] of RMS value [cm] of
post-fit residuals orbit connecting points

LAGEOS-2 1.60 14.09
LAGEOS-1 1.63 19.13
Ajisai 11.46 84.55
Starlette 11.91 100.64
Stella 16.56 130.47
Larets 20.27 170.20

4.3.2 Gravity field

Time-variable gravity field

Monthly sets of gravity field coefficients were estimated and compared with
two external solutions, both computed at the Center for Space Research
(CSR) at Austin, Texas. One is based on SLR measurements7 (Cheng et
al., 2011) and one is estimated from Gravity Recovery and Climate Exper-
iment (GRACE) data8 (Bettadpur, 2012). For this purpose, the normal
equations of all satellites9 over one calendar month (three 7-day arcs plus
a fourth arc of variable length) were combined and inverted, yielding one

7retrieved from ftp://ftp.csr.utexas.edu/pub/slr/degree 2/RL05/
8release 05 gravity field solutions; retrieved from http://isdc.gfz-potsdam.de
9note that Larets was launched at the end of 2003, which is why Larets contributes

from January 2004 onwards

ftp://ftp.csr.utexas.edu/pub/slr/degree_2/RL05/
http://isdc.gfz-potsdam.de
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set of coefficients per month. To ensure consistency of the time series that
shall be compared, the CSR estimates were adjusted as follows: for both the
SLR and GRACE time series, the monthly C20 coefficients were transferred
from the zero-tide system to the tide-free system (Petit and Luzum, 2010,
Chapter 6). Further, the monthly average of the atmosphere and ocean de-
aliasing product10 (Flechtner et al., 2014a) was added to the GRACE series.
Finally, all spherical harmonic coefficients were scaled to the reference radius
of EIGEN-5S (6378.1363 km). Note that there are differences in force mod-
eling between the gravity field solution presented here and those computed
by CSR (e.g., a priori gravity field model, ocean tide model, and maximum
d/o of ocean tide model), see Cheng et al. (see 2011) and Bettadpur (2012)
for more details.

Variations of C20 reflect changes in the Earth’s oblateness. Cheng and Tapley
(2004) analyzed SLR data over a time span of 28 years (1976 to 2003). They
found that the dominant signatures in C20 are

1. interannual variations that are related to strong El Niño-Southern Os-
cillation events,

2. seasonal annual variations (climate related) due to mass redistribution
in the atmosphere, ocean, and continental water,

3. a decadal variation due to tidal forcing, and

4. a secular variation that is mainly caused by land uplift due to Post-
glacial Rebound (PGR), but has also contributions from the ablation of
mountain glaciers and ice sheets, and from changes in water reservoirs.

Seasonal annual variations are clearly visible in the estimated C20 time series
(cf. Figure 4.7, top) based on SLR data as well as a secular trend. The
GRACE-based C20 time series reveals unrealistically large amplitudes on the
one hand and an offset with respect to the two SLR series on the other hand
(cf. Figure 4.7, top). This comparison underpins the superiority of SLR
when it comes to the determination of the Earth’s oblateness term. The two
solutions based on SLR are in very agreement concerning C20.
In contrast to the C20 time series, the GRACE solutions do not show larger
amplitudes than the SLR series for order-1 and order-2 terms (cf. Figure 4.7).
Variations in C21 and S21 (cf. Figure 4.7, middle) are caused by mass-induced
excitations of polar motion. Besides seasonal variations, these coefficients
experience a significant linear trend that is explained by PGR as well as

10retrieved from http://isdc.gfz-potsdam.de

http://isdc.gfz-potsdam.de
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Figure 4.7: Monthly gravity field coefficients of degree 2. Red and light red:
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coefficients by CSR and formal errors (data are available from January 2001).
Green: GRACE-based estimates by CSR (data are available from January
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present-day mass changes of glaciers and ice sheets (Cheng et al., 2011).
The sectorial coefficients of degree two, C22 and S22 (Figure 4.7, bottom),
reflect the ellipticity of the equator and are characterized by mainly seasonal
fluctuations. From all coefficients shown in Figure 4.7, the agreement of the
C21 and C22 time series is smallest which might be attributed to the weaker
seasonal variability of those coefficients (Chen et al., 2000).

Static gravity field

For the computation of the static gravity field solution, SLR data to all
six satellites over the „14-year time span were analyzed in a joint least-
squares adjustment; the normal equation systems of all 7-day arcs and all
satellites were stacked. The resulting coefficients represent averaged values
(in terms of least squares) over the considered time span. The degree-wise
error amplitudes of the static solution are approximately one order of mag-
nitude smaller than those of the monthly estimates (cf Figure 4.8); the error
decreases with the square root of the number of stacked normal equations.
Note that especially for the degree-2 coefficients the error amplitudes of the
static solution are considerably smaller than those of the adopted a priori
gravity field model EIGEN-5S (a combination solution of GRACE and 14
years of LAGEOS data). This improvement might be due to the analysis of
six geodetic satellites instead of two in case of EIGEN-5S.
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Figure 4.8: Degree-wise error amplitudes in terms of geoid heights. Grey
lines: monthly solutions from SLR data; solid black line: static (averaged)
solution from SLR data; dashed black line: EIGEN-5S.
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4.4 Discussion and conclusions

The RMS values of the post-fit residuals are significantly larger than the
measurement precision (1-3mm). Whereas the residuals of the observations
to the LAGEOS satellites do not show a systematic pattern, those of the
lower satellites actually do. The applied atmospheric density model, MSIS-
86, seems to insufficiently model the densities at times of pronounced solar
activity. Even though the new release NRLMSISE-00 might lead to slightly
better results, the fluctuations of the atmospheric density remain unpre-
dictable to a large extent (cf. Section 2.1.2). Aside from the systematic
patterns due to these fluctuations, the level of residuals (see Figure 4.6, top)
is smaller for satellites of high altitude (e.g., LAGEOS) than for lower or-
biting satellites (e.g., Stella and Starlette). This behavior can be explained
by the perturbing factor of the atmosphere, which increases with decreasing
altitude. A further shortcoming might come from the fact that the center
of mass corrections were treated as constant values (cf. Table 4.3). Sośnica
et al. (2012) showed, however, that Ajisai’s center of mass correction, for
instance, varies up to 45mm between different stations.

Simulations over a time span of one year to five geodetic satellites (see Maier
et al., 2012, for details) have shown that it is not feasible to estimate gravity
field coefficients higher than about d/o 5. The case is different if SLR data are
combined on the normal equation level with other satellite data to compute
a combined gravity field model (e.g. GOCO models). Then, the resolution
could be increased.

The offset in the C20 temporal variations of the GRACE-based solution as
well as the less pronounced annual signature compared to the SLR-based
solutions (cf. Figure 4.7, top) demonstrate that SLR is better suited than
GRACE (or any other to date realized space gravimetry mission) to de-
termine the Earth’s dynamical oblateness (C20). The reason for the larger
amplitudes of the GRACE-based estimates is that they are affected by errors
in the applied diurnal-semidiurnal ocean tide model (e.g. Chen et al., 2009;
Lavallée et al., 2010). It should be emphasized that C20 is the most important
gravity field parameter as it has the largest absolute value in the spherical
harmonic expansion. As far as the temporal variations of the degree-2 terms
are concerned, SLR is able to detect both seasonal changes and secular vari-
ations on (and near to) the Earth’s surface. The quality of the non-zonal
coefficients of degree 2 is similar for SLR and GRACE. Beyond degree two,
the benefit of SLR over GRACE becomes less pronounced (not shown see,
see e.g. Sośnica et al. (2014)). Since GRACE might be decommissioned at
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any time, SLR is likely to gain more emphasis in future gravity field research
– at least until the GRACE follow-on mission (Flechtner et al., 2014b) is
operational.

The temporal variations of the coefficients of degree 2 agree very well with
the SLR-based estimates by CSR. The monthly time series of degree 2 can
be retrieved from http://geodesy.iwf.oeaw.ac.at/.

http://geodesy.iwf.oeaw.ac.at/




Chapter 5

The Lunar Reconnaissance
Orbiter

National Aeronautics and Space Administration (NASA)’s Lunar Reconnais-
sance Orbiter (LRO) project NASA (cf. Figure 5.1) is the first mission in
the framework of the Lunar Precursor Robotic Program (LPRP). This pro-
gram shall support the return of the United States (US) to the moon by
executing lunar robotic missions to conduct research and prepare for future
human exploration. LRO’s main objectives being aligned with this vision
include global mapping of the lunar surface, acquisition of topography, radi-

Figure 5.1: Artist concept of the Lunar Reconnaissance Orbiter (©NASA).
The dimension of the main spacecraft bus is approximately 1.3ˆ1.4ˆ2.2m.
Several scientific instruments are attached to the bus along with a single solar
array and a high gain antenna.

65
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ation characterization, and water ice identification. The Lunar Orbiter Laser
Altimeter (LOLA) is one of seven instruments aboard LRO (see Chin et al.,
2007, for a description of the instruments). LOLA determines the shape of
the Moon by measuring the range from the spacecraft to the lunar surface
using five beams with a nominal accuracy of 10 cm (Smith et al., 2010). To
take maximum advantage of LOLA’s precision the radial component of the
orbit of LRO must be reconstructed to the sub-meter-level (Zuber et al.,
2010).

LRO, a 3-axis stabilized spacecraft, was launched in June 2009. A one-year
nominal mission phase was followed by a two-year science mission phase,
and an extended science mission phase (cf. Table 5.1). To meet the mission
objectives, LRO was orbiting the Moon in a polar (for total coverage), near-
circular (for collecting almost uniform science data), and low altitude orbit
(for high-resolution mapping of the topography) for about two years1 (cf.
Table 5.2). These two years are also referred to as the polar mapping phase.
One full mapping cycle is completed within 27.4 days. In December 2011,
LRO was moved to a quasi-frozen orbit2 at an eccentricity of 0.043, or a
„ 30 ˆ 216 km altitude orbit (Beckman, 2006; Keller et al., 2014).

Table 5.1: LRO mission phases

Launch Jun 18, 2009
Cruise Jun 18, 2009 to Jun 23, 2009
Lunar orbit acquisition Jun 23, 2009
Commissioning Jun 23, 2009 to Sep 14, 2009
Nominal mission Sep 15, 2009 to Sep 15, 2010
Science mission Sep 16, 2010 to Sep 15, 2012
First extended science mission Sep 16, 2012 to Sep 15, 2014
Second extended science mission since Sep 16, 2014

At an altitude of 50 km, the non-spherical lunar gravitational potential is the
dominant perturbing factor. It causes a variation of the eccentricity and of
the argument of periapsis (Beckman, 2006). Due to the changes in eccentric-
ity, orbital altitude varies. If left uncorrected, LRO would impact the Moon
after about 60 days (Houghton et al., 2007). Since the altitude of 50 km shall

1entire nominal mission phase and the first year of the science mission phase
2a quasi-frozen orbit is an orbit for which the parameters have been selected to bound

one or more orbital elements in the presence of perturbations (Beckman, 2006); for LRO,
the eccentricity and the argument of perigee were bounded
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Table 5.2: Orbital characteristics during LRO’s polar mapping phase

Orbital period 113min
Inclination 90˝ w.r.t. the lunar equator
Eccentricity „0
Altitude 50 km (˘20 km)

be maintained within ˘20 km, the eccentricity has to be bounded by Station
Keeping (SK) maneuvers. Every lunar orbit period, i.e. every 27.4 days, SK
is performed while the Earth is in full view of the spacecraft (cf. Figure 5.2).
In the course of these maneuvers, eccentricity and argument of periapsis are
reset to their initial values. SK is accomplished with two-step burns being
performed approximately three hours apart (see Appendix C.1 for a list of
maneuvers). Apart from SK, delta-H (dH) maneuvers are performed once a
month: LRO fires its thrusters to desaturate the momentum wheels, which
absorb angular momentum caused by disturbing torques acting on the space-
craft. Unlike the orbit of the polar mapping phase (cf. Table 5.2), the quasi-
frozen orbit to which the spacecraft moved in late 2011, can be maintained
for many months without any SK maneuvers (cf. Table C.1); the periselene
is located near the lunar south pole (Beckman, 2006). According to Keller
et al. (2014), LRO has enough fuel onboard to maintain this quasi-frozen
orbit for another 11 years.

LRO is in full sunlight twice a year for about one month (cf. Figure 5.2).
During these periods, the solar beta angle3 varies between ˘76.4° and ˘90°.
During the rest of the year the spacecraft experiences eclipses of up to 48
minutes during each orbit (Beckman, 2006; Houghton et al., 2007); the max-
imum eclipse duration occurs at zero solar beta angle. LRO’s single Solar
Array (SA) is mounted on the -Y face of the spacecraft bus frame (cf. Fig-
ure 5.16). As the sunlight comes from the opposite direction every six months,
LRO performs a yaw flip maneuver twice a year (cf. Appendix C.1 for the
dates of the maneuvers). Figure 5.3 illustrates the variation of the solar beta
angle from September 1, 2010 to September 1, 2011.

3the solar beta angle is the angle between the orbital plane and the Sun
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Figure 5.2: Earth and Sun from LRO’s perspective (from Saylor et al., 2009).
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Figure 5.3: Variation of the solar beta angle from September 1, 2010 to
September 1, 2011. Whenever the solar beta angle becomes zero, a yaw flip
maneuver is performed to keep the Sun on the spacecraft side where the solar
array is mounted. LRO starts terminator crossing at ˘76.4°.

5.1 Tracking data

In the sequel, one-way optical laser ranges and two-way Doppler range-rates
to the LRO spacecraft are discussed. Radiometric ranges are not addressed
as they were not considered for Precise Orbit Determination (POD) of LRO.
The conversion from raw observational files to the GEODYN-specific format
is subject of Appendix D.

5.1.1 Optical laser ranges

One of LOLA’s five detectors supports both incoming signals from the Earth
and the signals reflected from the lunar surface (McGarry et al., 2008).
Ground stations controlling their laser fires to ensure that the pulses ar-
rive when the LOLA Earth Window is open are referred to as synchronous
stations (GO1L, HERL, ZIML). All other stations fire their lasers asyn-
chronously to LOLA (e.g. ibid.). The receiver telescope mounted on the
High Gain Antenna (HGA) has a wide field of view making simultaneous
ranging from multiple stations to LRO possible. Simultaneous ranging can
be used, for instance, to compare the ground station times, which is also
known as time transfer (Sun et al., 2013). Simultaneous ranging from three
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stations can, in principle, provide a geometric solution of the spacecraft po-
sition.

The processing of single laser pulses is based on the following steps: each laser
pulse emitted from a ground station has to be paired with the corresponding
laser pulse received by LRO. To achieve this, a time-of-flight is computed
for each emitted pulse based on the station’s position, Earth orientation,
the LRO ephemeris provided by Goddard Space Flight Center (GSFC)’s
Flight Dynamics Facility (FDF) (McGarry et al., 2013; Mao et al., 2013).
After accounting for this computed time-of-flight, a low-degree polynomial is
used to model the differences between reception and emittance time of the
laser pulses (differences are mainly caused by orbit errors) (McGarry et al.,
2013; Mao et al., 2013). To increase the measurement precision, 5-second
Normal Points (NPs) are formed from the full-rate data according to the
International Laser Ranging Service (ILRS) NP algorithm by Sinclair (1997).
NPs to LRO have a nominal precision of 10 cm (Smith et al., 2008), which
is significantly higher compared to radiometric ranges (10m, Morinelli et al.,
2010). The NPs, which are given in the Consolidated Laser Ranging Data
Format (CRD) format, were downloaded from http://pds-geosciences.wu

stl.edu/lro/lro-l-rss-1-tracking-v1/lrors 0001/data/range/npt/.

The involvement of two non-synchronous clocks in the laser ranging obser-
vations (cf. Equation 2.51) imposes a major challenge to the processing of
those data (see Figure 5.4 for an example). Whereas the ground stations
time-tag the outgoing pulses using highly stable clocks such as Maser or Ce-
sium clocks, the LRO clock suffers from a constant time offset, a linear time
drift, a quadratic frequency aging, and a cubic frequency aging rate (Mao
et al., 2014). Note that the clock correction term implemented in GEODYN
(cf. Equation 2.54) does not contain a cubic term.

NASA’s Next Generation Satellite Laser Ranging (NGSLR) station is the
primary station performing laser ranging measurements to LRO. In addi-
tion, the ILRS network (Pearlman et al., 2002) participates in tracking. All
stations performing laser ranges to LRO are given in Table 5.3. The number
of observations per tracking station is shown in Figure 5.5. The primary sta-
tion naturally observes the major part, followed by the ILRS stations YARL
and MDOL.

http://pds-geosciences.wustl.edu/lro/lro-l-rss-1-tracking-v1/lrors_0001/data/range/npt/
http://pds-geosciences.wustl.edu/lro/lro-l-rss-1-tracking-v1/lrors_0001/data/range/npt/
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Figure 5.4: The ‘true’ distance between McDonalds, Texas, and LRO (black
color) was computed based on the science orbits, which are available at
http://imbrium.mit.edu/LRORS/DATA/SPK/ in the SPICE container for-
mat (cf. Appendix E). Since LRO was orbiting the Moon at only 50 km
above the lunar surface for the time span shown above, the distance between
the Earth and LRO is roughly the same as the distance between the Earth
and the Moon (varying between „360 000 km at perigee and „400 000 km
at apogee). Further, the one-way runtime measurements of the laser signal
emitted from McDonalds, which are given in the NP files, were converted
to one-way distances (red color). The non-synchronous clocks at the ground
station and at the spacecraft impose a bias and a drift to the range mea-
surements. The estimation of LRO clock parameters during the orbit deter-
mination procedure based on laser ranges corrects the observed distances to
realistic values (green color).

http://imbrium.mit.edu/LRORS/DATA/SPK/
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Table 5.3: Stations performing laser ranging measurements to LRO. NASA’s
Next Generation Satellite Laser Ranging station is designated GO1L.

Code ID Location

MDOL 7080 McDonalds, Texas, USA
YARL 7090 Yarragadee, Australia
GODL 7105 Greenbelt, Maryland, USA
MONL 7110 Monument Peak, California, USA
GO1L 7125 Greenbelt, Maryland, USA
HARL 7501 Hartebeesthoek, South Africa
ZIML 7810 Zimmerwald, Switzerland
HERL 7840 Herstmonceux, United Kingdom
GRSM 7845 Grasse, France
WETL 8834 Wettzell, Germany
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Figure 5.5: Number of NPs per station for the one-year nominal mission
phase.
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5.1.2 Doppler range-rates

Processing two-way Doppler range-rates is less complex than processing one-
way or three-way measurements4 since only one clock is involved. The round-
trip light time is smaller than the sampling rate (5 s), having a positive effect
on noise (Berman, 1972). S-band tracking to LRO is available for about
20 hours per day (Zuber et al., 2010). The network consists of the NASA
White Sands 1 antenna (WS1S), which acts as the primary station, and the
Universal Space Network (USN) antennas at South Point (Hawaii), Don-
gara (Australia), Weilheim (Germany), and Kiruna (Sweden), cf. Table 5.4.
Whereas the WS1S antenna system provides Doppler tracking data with a
nominal accuracy of ď1mm/s (1-σ), the USN antenna system provides data
with accuracy of ď3mm/s (1-σ), see Morinelli et al. (2010).
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Figure 5.6: Observed Doppler range-rates during a time span of „30 days
(top). The magnitude depends on the cosine of LRO’s declination (bottom).

Figure 5.6 (top) depicts the overall pattern of range-rates over a time span
of about 30 days. The amplitude of the sinusoidal Doppler measurements

4in case of three-way measurements the emitting and receiving ground station is not
the same
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Table 5.4: Stations performing Doppler range-rate measurements to LRO.

Code ID Location

WS1S 119 White Sands, New Mexico, US
USPS 103 Dongara, Australia
USHS 105 South Point, Hawaii, US
KU1S 126 Kiruna, Sweden
KU2S 127 Kiruna, Sweden (back-up)
WU1S 128 Wilheim, Germany
WU2S 128 Wilheim, Germany (back-up)
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Figure 5.7: Number of Doppler range-rates per station for the one-year nom-
inal mission phase.
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is proportional to the cosine of the spacecraft’s declination5 (cf. Figure 5.6,
bottom); its phase varies with the time of day (Doody, 2009). The range-
rate, i.e. the relative velocity between LRO and the ground station, is zero
when the distance between the two is at its minimum (or maximum). The
number of range-rates per station for the nominal mission phase is shown in
Figure 5.7.

Figure 5.8 shows the number of Doppler range-rates to LRO during the nom-
inal mission phase on top of the lunar surface. On the nearside of the Moon,
observations are densest near the lunar equator. The farside data gap is easy
to identify.

Figure 5.8: Total number of Doppler range-rates to LRO during the nominal
mission phase, averaged over a 1°ˆ1° grid. The western limb of the Moon
as seen from the Earth is located at 270°.

To get an idea of the temporal distribution of laser ranges and Doppler range-
rates, it is instructive to visualize the time of observation for each tracking
station (Figure 5.9). Tracking of LRO via optical laser ranges (cf. Fig-
ure 5.9, top) is not continuous and there exist several gaps. The availability
of Doppler data, in contrast, is continuous (cf. Figure 5.9, bottom).

5measured from the equatorial plane to the line connecting the geocenter with the
spacecraft
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5.2 Simulation study

A series of simulation studies has been conducted to (1) gauge the relative
performance of the measurement types, (2) investigate the impact of the
farside data gap on the recovery of the lunar gravity field, and (3) analyze
the effect of spectral leakage.

5.2.1 Setup

Over a time span of about 100 days (January 14, 2010 to May 2, 2010), opti-
cal laser ranges and Doppler range-rates were simulated for three stations (cf.
Table 5.5). The considered stations observed 82% of all laser ranges and 90%
of all range-rates made during the one-year nominal mission phase. Two spa-
tial coverage modes were considered to demonstrate the difficulty concerning
POD of satellites orbiting the Moon. The first mode (referred to as ‘even
coverage’) generates observations on the nearside and on the farside of the
Moon. The even coverage mode is only of theoretical interest as it assumes
globally available direct tracking data. The second mode (referred to as ‘un-
even coverage’) represents the real case: laser ranges and Doppler data were
only generated on the nearside of the Moon. Since real tracking data to LRO
were already available when this simulation study was conducted, observa-
tions were simulated for the exact time spans when the stations tracked the
spacecraft. The number of simulated observations for the even and uneven
coverage mode is given in Table 5.6.

Table 5.5: Settings for the simulation of one-way laser ranges and two-way
range-rates (cf. Tables 5.3 and 5.4 for a description of the station code).

Laser ranges Doppler range-rates

Station code
GO1L WS1S
YARL USPS
MDOL KU1S

Elevation cut-off angle 20˝ 10˝

Bin size/count interval 5 s 5 s
Coverage mode even/uneven even/uneven
Noise level 10 cm 1mm/s

For the purpose of simulation studies it is sufficient that the simulated LRO
trajectory reflects the overall characteristics of the true trajectory. Hence, the
only perturbation taken into account was the lunar gravity field. JGL165P1
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Table 5.6: Number of simulated observations for a time span of „100 days.

Coverage Number of Number of
mode laser ranges Doppler range-rates

even

629 000 (YARL) 718 000 (USPS)
609 000 (MDOL) 700 000 (WS1S)
568 000 (GO1L) 590 000 (KU1S)

ř

=1806 000
ř

=2008 000

uneven

64 000 (GO1L) 371 000 (WS1S)
46 000 (YARL) 147 000 (USPS)
23 000 (MDOL) 50 000 (KU1S)

ř

=133 000
ř

=568 000

(Konopliv et al., 2001), truncated at degree and order (d/o) 100, served as the
‘true’ model for tracking data simulation. The simulated observations were
superposed with white Gaussian noise of zero mean. For laser ranges and
Doppler range-rates a noise level of 10 cm and 1mm/s has been introduced,
respectively (cf. Table 5.5), since these are the nominal precisions for laser
ranges and Doppler measurements from the primary station. The initial
state vector was obtained from the science orbits by using the SPICE toolkit
within the MATLAB environment (cf. Appendix E).

For the recovery of the orbit (and the estimation of gravity field coefficients)
by means of simulated observations, a 1-σ clone of JGL165P1 (up to d/o 100)
served as a priori gravity field model (cf. Table 5.7). Gravity field coefficients
were estimated up to d/o 5, 12, and 16 taking gravity field omission errors
into account. Again, the initial state vector was obtained from the science
orbits. The typical arc length was about two weeks since this is the time
span not interrupted by maneuvers (cf. Appendix C.1). More information
about the simulation settings are given in Table 5.5.
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Table 5.7: Standards used for POD and gravity field recovery based on sim-
ulated tracking data to LRO.

Standard/model Reference

Reference frame

Inertial reference system ICRF McCarthy and Petit (2004)
EOPs IERS 08 C04 Bizouard and Gambis (2007)
Planetary ephemeris JPL DE-421 Folkner et al. (2009)
Precession-nutation model IAU-2000 Capitaine et al. (2003)
Station coordinates NGSLR: retrieved from

the PDS6

YARL, MDOL: SLRF2008 Pavlis (2009)
WS1S, USPS, KU1S:
retrieved from the PDS6

Gravitational force model

Gravity field model 1-σ clone of JGL165P1 Konopliv et al. (2001)
(up to d/o 100)

5.2.2 Results

Observations were simulated by declaring JGL165P1 the ‘true’ gravity field
model. Hence, the differences between the ‘true’ orbit and the estimated
orbit can be used as an indicator of the quality of the recovered orbit. Fig-
ure 5.10 depicts the Root Mean Square (RMS) values of those differences
for each arc in the along-track component of the spacecraft reference frame.
If direct tracking data were available over the farside, the three observa-
tional cases (laser ranges, Doppler range-rates, laser ranges and Doppler
range-rates) would produce orbits of about the same quality (Figure 5.10,
top) as there are approximately as many laser ranges as Doppler range-rates
available (cf. Table 5.6). The result is different in case of uneven coverage
(Figure 5.10, bottom): despite of the larger number of Doppler observations
(cf. Table 5.6), laser ranging outperforms Doppler due to its high precision.
The RMS values of the orbit differences over all arcs (cf. Table 5.8) reveal
that the best agreement between ‘true’ and recovered orbit in total position
is achieved using both laser ranges and Doppler range-rates. The result is
only marginally worse if the orbit is recovered solely from laser ranges.

6http://pds.nasa.gov/ds-view/pds/viewInstrumentProfile.jsp?INSTRUMENT I

D=RSS&INSTRUMENT HOST ID=LRO

http://pds.nasa.gov/ds-view/pds/viewInstrumentProfile.jsp?INSTRUMENT_ID=RSS&INSTRUMENT_HOST_ID=LRO
http://pds.nasa.gov/ds-view/pds/viewInstrumentProfile.jsp?INSTRUMENT_ID=RSS&INSTRUMENT_HOST_ID=LRO
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Figure 5.10: RMS values of orbit differences between ‘true’ and estimated
orbit in along track direction. RMS values are given for the even coverage
mode (top) and the uneven coverage mode (bottom). The orbit was esti-
mated based on laser ranges (‘L’), on Doppler range-rates (‘D’), and on laser
ranges and Doppler range-rates (‘L+D’).

Table 5.8: RMS values of the differences between ‘true’ and recovered orbit
in along track, cross track, and radial direction as well as in total position.
The orbit was computed from laser ranges (‘L’), from Doppler range-rates
(‘D’), and from laser ranges and Doppler range-rates (‘L+D’) for the uneven
coverage mode.

Observational RMS [m]
case along track cross track radial total

L 0.168 0.124 0.154 0.260
D 0.465 0.211 0.459 0.686
L+D 0.160 0.130 0.157 0.258
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After having compared the orbits obtained for the three observational cases,
the results can also be analyzed at the level of gravity field coefficients.
One possibility is to interpret the estimated parameters in terms of selenoid
heights. In case coefficients are estimated up to d/o 5 (Figure 5.11, column
1), the difference is well below ˘0.5m for all observational cases (uneven
coverage mode). Estimating coefficients up to d/o 12, however, considerably
degrades the results particularly over the farside where no tracking data exist
(Figure 5.11, column 2). An even higher d/o of 16 also affects the nearside
(Figure 5.11, column 3). Note that the results presented in Figure 5.11 are

Figure 5.11: Difference in selenoid height between the ‘true’ gravity field
model JGL165P1 and the estimated coefficients (uneven coverage mode).
Column 1 to 3 corresponds to different maximum d/o of recovered coefficients
(5, 12, 16); row 1 to 3 corresponds to the recovery of gravity field information
from laser ranges only, from Doppler data only, and from laser ranges and
Doppler data. The nearside of the Moon is located between 270° and 90°;
the colorbar has been limited to range from -1 to +1 to make a comparison
easier. The differences, however, are as large as ˘30m for d/o 12 and ˘80m
for d/o 16; they are largest at the farside where no tracking data exist.
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overpessimistic as spectral leakage is not considered at this point.

Singular Value Decomposition (SVD) is a powerful tool for the analysis of
ill-posed problems. The singular values of the normal equations based on
Doppler range-rates are shown in Figure 5.12 for maximum d/o 5, 12, and
16. Figure 5.12 substantiates that an increase in the dimension of the normal
equation system increases the range of singular values (Floberghagen, 2002,
Chapter 4). Whereas the difference between smallest and largest singular
value is approximately the same for d/o 5 for the even and uneven coverage
mode (Figure 5.12, left), it is significantly larger for the uneven coverage
mode concerning d/o 12 and d/o 16 (Figure 5.12, middle and right). From
the singular values one can deduce rather large condition numbers7; in case
of even coverage mode they are 4ˆ106, 7ˆ108, and 3ˆ109 for maximum d/o
5, 12, and 16, respectively. For the uneven coverage mode, they are 4 ˆ 106,
1 ˆ 1011, and 3 ˆ 1012 for maximum d/o 5, 12, and 16, respectively. The
increasing ill-conditioning with increasing degree and order is responsible for
the large differences in selenoid heights for d/o 12 and 16 (cf. Figure 5.11).
Consequently, it is not possible to estimate gravity field coefficients up to
d/o 12 (let alone d/o 16) without regularization.
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Figure 5.12: Singular values of the normal equation matrix based on Doppler
range-rates for the even and uneven coverage mode for maximum degree
and order 5 (left), 12 (middle), and 16 (right). The scale of the y-axis is
logarithmic.

As stated in the previous paragraph, regularization is inevitable even for a
resolution as low as d/o 12. As described in Chapter 3, Tikhonov-Phillips reg-

7the condition number is the ratio between largest and smallest singular value
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ularization was applied. The L-curve criterion, implemented by Per Christian
Hansen and provided as a MATLAB toolbox, was used to find the optimal
regularization parameter. An example of the plots that can be generated
with this tool is given in Figure 5.13. The normal equations that result
from estimating coefficients up to d/o 12 based on laser ranges (uneven cov-
erage) served as input. The L-curve for this particular case is shown in
Figure 5.13 (left) on a linear scale since for the specific example the L-shape
is less pronounced in the log-log scale. The optimal value for the regulariza-
tion parameter η corresponds to the maximum curvature of the L-curve (cf.
Figure 5.13, right) and amounts to 2.95. By applying Kaula’s regularization
matrix (Kaula, 1966), scaled by the optimal regularization parameter, to the
normal equation system, the regularized gravity field solution is obtained (cf.
Section 3).
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Figure 5.13: Output of the regularization tool by Per Christian Hansen,
which finds the optimal regularization parameter by means of the L-curve
criterion. The normal equations for estimating gravity field coefficients up
to d/o 12 based on laser ranges served as input. (Left) Residual norm vs.
solution norm on a linear scale for 200 regularization parameters. (Right)
The optimal regularization parameter (2.95) corresponds to the maximum
curvature of the L-curve.

Again, the regularized solution is compared with the ‘true’ solution in terms
of selenoid height. The large differences concerning the unregularized solu-
tion of the uneven coverage mode (Figure 5.14, left), which are as large as
˘25m over the farside, have been successfully reduced after applying regular-
ization (Figure 5.14, middle); after regularization, the maximum differences
are ˘0.5m. To compare with, the unregularized solution for the even cov-
erage mode is given in Figure 5.14 (right). Mind that for the nearside of
the Moon the differences of the regularized solution (uneven coverage mode)
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Figure 5.14: Difference in selenoid height between the ‘true’ gravity field
model JGL165P1 and the estimated coefficients (maximum d/o 12) based
on laser ranges. The nearside of the Moon is located between 270° and 90°.
(Left) Unregularized solution of the uneven coverage mode. (Middle) Reg-
ularized solution of the uneven coverage mode using Kaula’s regularization;
the optimal regularization parameter was determined with the L-curve cri-
terion. (Right) Unregularized solution of the even coverage mode.

Figure 5.15: Difference in selenoid height between the ‘true’ gravity field
model JGL165P1 and the estimated coefficients based on laser ranges. The
nearside of the Moon is located between 270° and 90°. Coefficients were
estimated based on laser ranges (even coverage mode) up to d/o 5 (left) and
16 (right), whereas all coefficients higher than d/o 5 were disregarded.
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are similar to those of the unregularized solution (even coverage mode). The
slightly better performance of the latter can be explained by the fact that in
the even coverage mode observations were simulated whenever line of sight
was given between station and satellite. In the uneven coverage mode, how-
ever, observations were only simulated when the stations actually tracked
the spacecraft.

The simulation studies are perfectly suited to evidence the effect of spectral
leakage (cf. Chapter 1). To this end, examplarily for all three cases, gravity
field coefficients were estimated from laser ranges (even coverage mode) up
to d/o 5 and d/o 16. From the latter solution, all coefficients larger than d/o
5 were left unconsidered. The comparison of these two solutions is depicted
in Figure 5.15. Estimating more coefficients than actually asked for is an
effective way to mitigate spectral leakage; the differences could be reduced
by about a factor of 5 (cf. Figure 5.15).

5.2.3 Discussion and conclusions

Rowlands et al. (2009) conducted a pre-launch simulation study for LRO
and obtained, in accordance with the outcome of the simulation presented
here, better results with laser ranges than with Doppler range-rates. This
is striking to that effect that the number of Doppler data is a factor of
five larger than the number of laser ranges. The high precision of the laser
ranging measurements is the reason for the better performing. At this point
it shall be stressed, however, that the simulations were kept very simple. The
involvement of two non-synchronous clocks in the laser ranging measurements
to LRO, which was disregarded for the conducted simulations, makes real
data analysis a very challenging task.

To conclude, the simulation studies have shown that

1. the most precise orbits are obtained by evaluating Doppler range-rates
as this is the main tracking data type,

2. it is unfeasible to estimate coefficients up to d/o 12 or higher without
regularization due to the farside data gap,

3. Tikhonov-Phillips regularization successfully decreases the numerical
instability of the normal equation system caused by the farside data
gap,
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4. it is prudent to estimate more gravity field coefficients than actually
asked for to mitigate spectral leakage.

5.3 Precise orbit determination

The gravity field model GL0660B (Konopliv et al., 2013), derived from the
Gravity Recovery and Interior Laboratory (GRAIL) mission and computed
at the Jet Propulsion Laboratory (JPL), served as a priori gravity field model.
To find out a suitable truncation level of the a priori gravity field model due
to computational reasons, a simple forward integration was made over a time
span of six months using two different truncation levels (maximum d/o 270
and maximum d/o 540). The two orbits were then compared; the RMS values
of the differences amount to 0.66m, 0.55m, and 0.08m in along track, cross
track, and radial direction, respectively. In total position, the RMS value
is 0.86m. Bearing in mind that LRO’s position knowledge requirement was
defined as 50-100m in total position (e.g. Mazarico et al., 2012), truncating
the a priori gravity field at d/o 270 seems to be a suitable tradeoff between
orbital precision and computing time.

The positions of all planetary bodies were determined by GEODYN using
the Planetary and Lunar Ephemeris DE 421 (Folkner et al., 2009). All
bodies, except for the Earth, were approximated as point masses. Table 5.9
lists the gravitational parameters used for the computation of third body
accelerations. In addition to the approximation of third bodies as point
masses, the acceleration of the LRO spacecraft due to the oblateness of the
Earth and the Moon is considered (see 2.1.1 for more details).

For a lunar orbiter, GEODYN takes the relativistic Schwarzschild field and
the relativistic Coriolis force into account. Regarding the correction of the
computed range between station and spacecraft, the software neglects the
bending term given in Equation (2.65). According to Moyer (2000), this term
is only significant when the transmitter and the receiver are on opposite sides
of the Sun which is never the case for LRO. Further, the relativistic light
time delay is not computed for all planets as suggested by Moyer (ibid.) but
only for Jupiter and Saturn whose gravitational parameters are significantly
larger than those of the other planets (cf. Table 5.9).

Laser ranging and Doppler measurements refer to the tracking point at the
HGA. Consequently, they must be transferred to the center of mass. The
antenna offset relative to the satellite’s center of figure and the center of
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Table 5.9: Gravitational parameters, GM , used for the computation of the
acceleration due to the lunar gravity field and due to third body accelerations.

Planetary body GM [km3/s2]

Mercury 22032.08051

Venus 324858.59881

Earth 398600.44152

Earth’s Moon 4902.80033

Mars 42828.37444

Jupiter 126712767.85781

Saturn 37940626.06111

Uranus 5794549.00711

Neptune 6836534.06391

Pluto 981.60091

Sun 132712440017.98701

1 Standish et al. (1995)
2 Petit and Luzum (2010)
3 Konopliv et al. (2013)
4 Konopliv et al. (2006)

mass offset, again relative to the satellite’s center of figure, are given in Table
5.10. The center of mass correction, ∆ρcom (cf. Section 2.2.2), is obtained
by projecting the difference between the antenna offset vector and the center
of mass offset vector (this difference is denoted by E in Figure 2.6) onto
the unit vector pointing from the ground station to the tracking point. The
dimensional layouts of LRO along with the assumed center of figure and the
assumed center of mass can be found in Appendix C.2.

Table 5.10: POD standards for LRO.

Standard/model Reference

Reference frame

Inertial reference system ICRF McCarthy and Petit (2004)
EOPs IERS 08 C04 Bizouard and Gambis (2007)
Planetary ephemeris JPL DE-421 Folkner et al. (2009)
Precession-nutation model IAU-2000 Capitaine et al. (2003)
Station coordinates NGSLR: retrieved from

the PDS8

Continued on next page

8http://pds.nasa.gov/ds-view/pds/viewInstrumentProfile.jsp?INSTRUMENT I

D=RSS&INSTRUMENT HOST ID=LRO

http://pds.nasa.gov/ds-view/pds/viewInstrumentProfile.jsp?INSTRUMENT_ID=RSS&INSTRUMENT_HOST_ID=LRO
http://pds.nasa.gov/ds-view/pds/viewInstrumentProfile.jsp?INSTRUMENT_ID=RSS&INSTRUMENT_HOST_ID=LRO
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Table 5.10: (continued)

Standard/model Reference

ILRS stations: SLRF2008 Pavlis (2009)
WS1S and USN stations:
retrieved from the PDS8

Gravitational force models

Gravity field model GL0660B (up to d/o 270) Konopliv et al. (2013)
Solid Moon tides IERS McCarthy and Petit (2004)

lunar Love number Konopliv et al. (2013)
k2=0.02405

Third bodies positions: JPL DE-421, Folkner et al. (2009)
gravitational parameters:
see Table 5.9

Oblateness direct acceleration of LRO Moyer (1971)
due to Earth’s oblateness

indirect acceleration of the
Moon due to Earth’s and
Moon’s oblateness

Relativistic corrections Schwarzschild, Coriolis

Non-gravitational force models

Solar radiation pressure G0=1372.54Wm´2 at 1AU,
conical shadow model

Lunar radiation pressure Albedo and emissivity: Floberghagen et al. (1999)
DLAM-1 (d/o 15)

Satellite parameters

Macro-model 10-plate macro-model given
by area, normal unit
vector, specular and diffuse
reflectivity (cf. Table 5.11)

Orientation of spacecraft
bus, HGA, and SA derived
from quaternions

Mass interpolated from SFF

Measurement models

Tropospheric refraction Hopfield model Hopfield (1969)
Antenna offset9 p0.3,´0.3,´2.5qT

Center of mass offset10 p1.35, 0.00, 0.00qT

Continued on next page
9coordinates of antenna w.r.t. center of figure in [m]; the values were retrieved from

published dimensional layouts (cf. Appendix C.2)
10coordinates of center of mass w.r.t. the center of figure in [m]; the values were

retrieved from published dimensional layouts (cf. Appendix C.2)
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Table 5.10: (continued)

Standard/model Reference

Relativistic correction Applied
Station displacement
Solid Earth tide loading IERS McCarthy and Petit (2004)

The shape of LRO is modeled by a macro-model (cf. Figure 5.16) consisting
of ten flat plates; six plates form the spacecraft bus (`X, ´X, `Y, ´Y, `Z,
´Z), two plates the Solar Array (SA`, SA´), and two plates the High Gain
Antenna (HGA`, HGA´). The macro-model of LRO can be found in Smith
et al. (2008). As described in Section 2.1.2, each plate is characterized by a
unit normal vector, n̂, a plate area, A, and specular and diffuse reflectivity
coefficients ζ and δ (see Table 5.11).

The orientation of the three components of LRO’s macro-model, i.e. space-
craft bus, SA, and HGA, enter Equations (2.32) and (2.42) via n̂. In the
SPICE information system (cf. Appendix E), pointing data for LRO are
stored within so-called C-kernels11 in terms of transformation matrices relat-
ing

� the LRO spacecraft frame to the Moon mean equator and equinox of
date (J2000),

� the SA frame to the spacecraft frame, and

� the HGA frame to the spacecraft frame.

Using the SPICE toolkit, these rotation matrices are then converted to unit
quaternions12, made continuous13, and written to the GEODYN-specific for-
mat for external attitude information. Figure 5.16 illustrates the LRO main
spacecraft bus frame along with the SA and HGA frames. No information
about the location of the SA and the HGA w.r.t. the main spacecraft enters
GEODYN. Consequently, self-shadowing remains unconsidered. Mazarico
et al. (2009) investigated the impact of self-shadowing on the accelerations

11C-kernels for LRO can be downloaded from http://naif.jpl.nasa.gov/pub/naif

/pds/data/lro-l-spice-6-v1.0/lrosp 1000/data/
12a quaternion is a four-component representation of a rotation matrix: one component

is a scalar describing the angle of rotation and the remaining three components specify
the rotation axis; within the SPICE information system (and also within GEODYN), a
quaternion has a magnitude of one

13this is necessary because the rotation angle in SPICE format is limited between 0°
and 180°; in GEODYN format, however, it is defined to range from 0° to 360°

http://naif.jpl.nasa.gov/pub/naif/pds/data/lro-l-spice-6-v1.0/lrosp_1000/data/
http://naif.jpl.nasa.gov/pub/naif/pds/data/lro-l-spice-6-v1.0/lrosp_1000/data/
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Figure 5.16: (Top) The LRO spacecraft with coordinate systems from Saylor
et al. (2009). S/C denotes spacecraft, SA solar array, and HGA high gain
antenna. (Bottom) Macro-model approximation.
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Table 5.11: LRO macro-model. For each panel, the plate normal unit vector,
n̂, is given in the respective frame (cf. Figure 5.16, top), that is the spacecraft
bus frame for the spacecraft bus panels (`X, ´X, `Y, ´Y, `Z, ´Z), the
solar array frame for the solar array panels (SA`, SA´q, and the antenna
frame for the high gain antenna panels (HGA`, HGA´). Further, the plate
area, A, is given as well as specular reflectivity, ζ, and diffuse reflectivity, δ.

Panel n̂ A [m2] ζ δ

`X

¨

˝

`1
0
0

˛

‚ 2.82 0.29 0.22

´X

¨

˝

´1
0
0

˛

‚ 2.82 0.39 0.19

`Y

¨

˝

0
`1
0

˛

‚ 3.69 0.32 0.23

´Y

¨

˝

0
´1
0

˛

‚ 3.69 0.32 0.23

`Z

¨

˝

0
0

`1

˛

‚ 5.14 0.32 0.18

´Z

¨

˝

0
0

´1

˛

‚ 5.14 0.54 0.15

SA`

¨

˝

0
´0.7071068
´0.707110

˛

‚ 11.00 0.05 0.05

SA´

¨

˝

0
`0.7071068
`0.707110

˛

‚ 11.00 - -

HGA`

¨

˝

0
0

´1

˛

‚ 1.00 0.18 0.28

HGA´

¨

˝

0
0

`1

˛

‚ 1.00 0.02 0.05
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of the Mars Reconnaissance Orbiter (MRO) and of Mars Odyssey due to
solar radiation pressure, atmospheric drag, and albedo. He found that self-
shadowing has a significant impact on MRO due to the large HGA and due
to the presence of two solar panels. For Mars Odyssey, in contrast, the effect
of self-shadowing is minor due its small HGA and its single SA. Since LRO
is similar to Mars Odyssey in these respects, self-shadowing is not expected
to have a significant impact on the the accelerations of the LRO spacecraft.
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Figure 5.17: The spacecraft mass decreases primarily due to Station Keeping
maneuvers (cf. Appendix C.1). The Small Forces Files, which contain the
mass before and after each burn, were used to interpolate the mass for the
initial state; piecewise linear interpolation was applied. This example shows
the spacecraft mass after the two-step burns for the first 140 days of 2011
along with the interpolated mass for all arcs of Science Mission Phase 7. Note
that the total mass of LRO before orbit insertion was 1916 kg.

The spacecraft mass, which enters the expressions for the accelerations due
to solar radiation and lunar radiation rcf. Equation (2.43) and (2.44)s, de-
creases with increasing life time due to maneuvers. Therefore, the spacecraft
mass at the epochs of initial state has been interpolated from the post-burn
fuel masses (see Figure 5.17 for an example) that are given in so-called
Small Forces Files (SFF). These files contain the type of maneuver, the burn
start and stop times, and the pre- and post-burn fuel masses, among other
information14. Figure 5.17 clearly shows the two-burn sequence of the SK

14SFF were retrieved from http://pds-geosciences.wustl.edu/lro/lro-l-rss-1-

tracking-v1/lrors 0001/data/sff/; as of August 4, 2014, the last available SFF covers
SK31 on December 11, 2011. Since the investigated period ends about two months later,
a mass of 1070 kg has been assigned to all arcs after December 11, 2011.

http://pds-geosciences.wustl.edu/lro/lro-l-rss-1-tracking-v1/lrors_0001/data/sff/
http://pds-geosciences.wustl.edu/lro/lro-l-rss-1-tracking-v1/lrors_0001/data/sff/
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maneuvers. One SK maneuver dissipates about 3 kg of fuel.

5.3.1 Finding the optimal parametrization

Orbit accuracy can only be as good as orbit precision. To assess the latter,
orbit overlap tests were conducted over three science mission phases, SM05
to SM07, lasting from January 3, 2011 to March 27, 2011. The objective
was to find (1) the optimal set of empirical accelerations and (2) the opti-
mal arc length. Mind that all tests are based solely on Doppler range-rates
since this is the major measurement type. In addition to orbit overlaps, ob-
servation residuals were analyzed. Concerning the estimation of empirical
accelerations, the following five scenarios were tested:

� along track constant,

� along track 1-cycle per revolution (1-cpr),

� along track constant and along track 1-cpr,

� along track constant and cross track constant,

� along track constant and cross track 1-cpr.

Further, three different arc lengths were evaluated: an arc length of l.25 days
(short arcs), an arc length of 2.5 days (medium arcs), and an arc length of
4.5 days (long arcs). Short, medium, and long arcs overlap by 6 hours, 12
hours, and 36 hours, respectively (cf. Figure 5.18).

In case of short arcs, the RMS value of overlap differences amounts to
25.64m in total position when estimating one constant empirical parameter
in along track direction (Table 5.12). The overall RMS value of the residu-
als (3.9mm/s) is larger than the nominal precision (1mm/s for WS1S and
3mm/s for the USN stations). Figure 5.19 (left) reveals, however, that the
RMS value of the residuals that high comes from a few very large residuals.
For time spans when these large residuals are missing, the residuals of the
short arcs are smaller than those of the medium arcs (cf. Figure 5.19, right).
Due to the large orbit overlap differences compared to medium arcs, the short
arcs were not further investigated. When it comes to medium arcs, the RMS
values of overlap differences are significantly lower than for short arcs. In
addition, the residuals are more homogenous compared to the short arcs (cf.
Figure 5.19, left). Among all five scenarios of empirical accelerations listed
above, estimating a constant empirical acceleration in along track direction
yields the smallest RMS value of overlap differences in total position, i.e.
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WS1Supassesu(~1uhrueach)

overlappinguarcsu(~6uhrsuoverlap)

WS1Supassesu(~1uhrueach)

overlappinguarcsu(~12uhrsuoverlap)

WS1Supassesu(~1uhrueach)
overlappinguarcsu(~36uhrsuoverlap)

Shortuarcs:u9uWS1Supassesu(1.25udays)

Mediumuarcs:u18uWS1Supassesu(2.5udays)

Longuarcs:u30uWS1Supassesu(4.5udays)

Figure 5.18: Illustration of dividing a time span of 7.5 days into short arcs
(top), medium arcs (middle), and long arcs (bottom) that overlap by 6 hours,
12 hours, and 36 hours, respectively. Start and stop time of overlapping arcs
were chosen according to observed White Sands (WS1S) passes.

3.57m (cf. Table 5.13). For long arcs the RMS values of overlap differences
and residuals tend to increase compared to medium arcs (Table 5.14).

Table 5.12: Short arcs (1.25 days): averaged RMS values of overlap differ-
ences and RMS value of observation residuals.

Empirical RMS of orbit overlaps [m] RMS of residuals
acceleration Along Cross Radial Total [mm/s]

Along track constant 19.01 14.76 1.06 25.64 3.90

The analysis of orbit overlaps and observation residuals revealed that the
highest precision is achieved using medium arcs of 2.5 days in length and
estimating constant empirical accelerations in along track direction. The
optimal arc length of 2.5 days is in perfect agreement with the statement in
Rowlands et al. (2009) that arcs for LRO are usually limited to 2 or 3 days
due to force model errors and orbital maneuvers. The optimal arc length
and the optimal choice of empirical accelerations have been adopted for all
further investigations.

The nominal precision of the primary station’s tracking data is by a factor of
3 better compared to the USN stations (cf. Section 5.1.2). Hence, one would
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Figure 5.19: Wide view (left) and narrow view (right) of range-rate residuals
for short arcs and medium arcs.

Table 5.13: Medium arcs (2.5 days): averaged RMS values of overlap differ-
ences and RMS value of observation residuals.

Empirical RMS of orbit overlaps [m] RMS of residuals
acceleration Along Cross Radial Total [mm/s]

Along track constant 2.44 2.22 0.22 3.57 0.30
Along track 1-cpr 11.56 11.12 0.70 17.43 0.60
Along track constant, 4.81 3.08 0.48 6.47 1.20
along track 1-cpr

Along track constant, 2.61 2.47 0.20 3.89 0.30
cross track const.

Along track constant, 4.60 4.60 0.21 6.94 0.30
cross track 1-cpr
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Table 5.14: Long arcs (4.5 days): averaged RMS values of overlap differences
and RMS value of observation residuals.

Empirical RMS of orbit overlaps [m] RMS of residuals
acceleration Along Cross Radial Total [mm/s]

Along track constant 3.86 5.20 0.35 6.75 0.40
Along track 1-cpr 56.74 57.72 7.60 85.00 3.80
Along track constant, 2.68 3.55 0.23 4.66 0.40
along track 1-cpr

Along track constant, 4.16 5.52 0.35 7.19 0.40
cross track const.

Along track constant, 6.54 8.62 0.38 11.14 0.30
cross track 1-cpr

expect that assigning a standard deviation of 1mm/s to the observations of
the primary station and 3mm/s to those of the USN stations would result
in more precise orbits than using the same standard deviation for all obser-
vations. This was, however, not the case. Computing RMS values of the
Doppler range-rate residuals averaged over all arcs (13 months) for the pri-
mary station on one hand and for the secondary stations on the other hand
gave an RMS value of 0.72mm/s for the primary station and 0.82mm/s for
the USN stations. Hence, the performance of primary and secondary stations
is much more alike than the nominal values would suggest.

5.3.2 Results

About 13 months (January 3, 2011 to February 9, 2012) of Doppler data
were processed as overlapping arcs of 2.5 days in length to assess orbital
precision. These 13 months relate to 15 science mission phases (SM05 to
SM19) or more than 130 arcs. Extreme outliers were deleted prior to orbit
determination by using information from the science orbits15. The advantage
is primarily a shorter computational time because orbit convergence is met
sooner16. Estimated arc and global parameters are summarized in Table 5.15.

15all observations that differed from the range-rates generated to the science orbits of
LRO by more than 10m/s were removed

16Moreover, prior outlier detection is necessary when laser ranges and Doppler shall be
processed together. In this case the edit level must be chosen very generously due to the
huge bias in laser ranges. With a high edit level, however, the anomalous Doppler data
are not detected as outliers by GEODYN resulting in a degraded orbit in the best case
and abortion due to hyperbolic trajectory in the worst case.
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Table 5.15: Estimated arc and global parameters for orbits based on Doppler
range-rates

Arc parameters
Solar radiation pressure coefficient 1 per arc
Empirical acceleration along track constant (1 per arc)
Measurement bias 1 per station and arc
Satellite state vector 1 per arc

Global parameters
Gravity field coefficients up to degree and order 60

Figure 5.20 depicts the estimated measurement biases for each ground sta-
tion. Whereas the biases of the primary station WS1S are generally very
small (on average 0.1mm), they are at the level of 10mm for the USN sta-
tions.
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Figure 5.20: Estimated measurement biases for the ground stations tracking
LRO via two-way Doppler range-rates

The range-rate residuals are correlated with the Earth viewing geometry
angle (Figure 5.21), which is the angle between LRO’s orbital plane and
the line-of-sight direction between station and satellite. They are smaller
for face-on geometries, where the cosine of the angle is zero, and higher for
edge-on geometries, where the cosine of the angle is 1. The better fits do
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not indicate better orbits though (Mazarico et al., 2012). The different color
coding for range-rate residuals from White Sands and those from the USN
stations (Figure 5.21, top) demonstrates the slightly better performing of
the primary station. The residuals are generally smaller than the nominal
precision (1mm/s for WS1S and 3mm/s for USN stations). Three arcs,
which showed significantly larger values, were not considered for gravity field
estimation. Figure 5.22 depicts the RMS values of observation residuals per
orbital arc. The RMS values show a systematic pattern. They are small at
the beginning and at the end of the investigated time span with larger values
in between.
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Figure 5.21: Range-rate residuals for the primary station White Sands and
the USN stations (top) and the dependence on the Earth viewing geometry
angle (bottom).

The RMS values of orbit overlap differences are depicted in Figure 5.23 (top).
The pattern is similar to the one we have seen for the observation residuals
(cf. Figure 5.22): small at the beginning and at the end of the time span
with larger values in between. It is not clear to the author where this pattern
originates from. Park et al. (2012) states that for solar beta angles less than
the value at terminator crossing (˘76.4° for LRO)

“... modeling non-gravitational forces becomes much more diffi-
cult, as the perturbations are changing more rapidly due to part
of the orbit being in shadow, ... ”.
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Figure 5.22: RMS values of Doppler range-rate residuals per arc.
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Figure 5.23: (Top) RMS values of orbit overlaps in the spacecraft reference
frame. There seems to be a connection between the RMS values and the
solar beta angle (bottom). LRO start terminator crossing at ˘76.4°.
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Hence, the solar beta angle is depicted in Figure 5.23 (bottom). A correlation
between orbital precision and the solar beta angle cannot be clearly identified
though.

The RMS values of the orbit overlaps averaged over the investigated science
mission phases are given in Table 5.16. Over the entire investigated time
span, the overlap tests indicate that the orbit determined from Doppler range-
rates is precise to 13.79m, 14.17m, and 1.28m in along track, cross track,
and radial direction, respectively, as well as 21.32m in total position.

Table 5.16: RMS values of orbit overlap differences and of orbit differences
w.r.t. the science orbits averaged over the considered science mission phases
(SM).

RMS of orbit overlaps [m] RMS of orbit differences [m]

SM along cross radial total along cross radial total
track track track track

5 1.87 2.03 0.25 2.99 4.76 3.08 0.64 6.02
6 2.54 2.38 0.15 3.68 3.96 2.72 0.42 5.09
7 2.91 2.28 0.24 4.06 3.16 2.97 0.49 4.69
8 9.34 8.73 2.34 14.42 10.68 6.42 1.80 13.16
9 18.08 17.49 2.34 26.89 10.48 6.53 1.34 12.97
10 36.43 45.09 3.13 61.57 13.46 14.25 1.55 20.95
11 10.63 6.06 0.53 12.92 10.71 4.29 1.83 12.84
12 24.84 23.48 1.95 37.45 14.54 10.34 2.40 19.03
13 37.06 45.10 3.07 61.71 11.95 11.41 2.95 18.58
14 23.60 20.46 1.70 32.27 9.77 5.59 2.00 11.68
15 17.73 14.57 1.27 23.67 9.55 6.99 2.24 12.75
16 12.48 14.62 1.14 20.92 10.65 9.93 1.30 15.35
17 11.18 14.93 1.14 19.93 17.48 12.81 1.86 23.02
18 3.11 1.94 0.58 4.16 4.82 2.33 0.80 5.82
19 3.71 4.11 0.61 6.54 6.47 4.95 0.88 8.74

The estimated LRO orbit is compared against the science orbits provided by
Navigation and Ancillary Information Facility (NAIF). The tracking data
the orbits are based on are not the same though. Here, solely Doppler mea-
surements are used, whereas the science orbits additionally incorporate ra-
diometric ranges and altimetric crossovers (Mazarico et al., 2012). Table 5.16
summarizes the RMS values per orbital arc (cf. Figure 5.24) according to
science mission phases. Averaged over the entire time span, the computed
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orbits agree within 9.50m, 6.98m, and 1.50m in along track, cross track,
and radial direction, respectively, and within 12.71m in total position.

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

Days since January 1, 2011

R
M

S
 v

a
lu

e
 [
m

]

 

 

along track

cross track

radial

total

Figure 5.24: RMS values of differences per arc between the computed orbit
that is based solely on Doppler range-rates and the science orbit that is based
on Doppler range-rates, radiometric ranges, and altimetric crossovers.

An attempt was made to determine LRO’s orbit solely from laser ranges.
An arc length of „2.5 days did not prove successful though. Thus, a time
span of about three months (SM05 to SM07) was subdivided into longer arcs
of about 7 days in length. The estimated arc parameters can be found in
Table 5.17. Since the LRO clock parameters play a crucial role in processing
one-way laser ranges to LRO, they shall be discussed at this point. Figure
5.25 shows the estimated measurement biases for four stations set up for each
pass. These biases account mostly for the difference between the reference
time at the station and the reference time at the spacecraft. In most cases,
the bias of one pass is very similar to the previous one as it is expected. The
distinct jumps in the biases are due to jumps in the observed one-way laser
range. The estimated drift of the LRO clock (see Figure 5.26, top) agrees
well with the drift rate published by Mao et al. (2014) who estimated the
clock parameters solely from the primary station. The drift should, however,
follow a straight line which is only partly the case.

Estimating the orbit solely from laser ranges, the RMS values of orbit differ-
ences w.r.t. the science orbits are 373m, 23m, and 17m in along track, cross
track, and radial direction, respectively. The RMS value of range residuals
is 3.4m, which is one order of magnitude larger than the nominal precision
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(10 cm). The reason for this rather poor precision is probably due to the
insufficient modeling of the LRO clock using a polynomial of second degree.
Due to the bad performance of orbits solely computed from laser ranges,
LRO’s final orbit presented in this thesis is based on Doppler range-rates.

Table 5.17: Estimated arc parameters for orbits based solely on laser ranges

Solar radiation pressure coefficient 1 per arc
Empirical acceleration along track constant (1 per arc)
Measurement bias 1 per station and pass
LRO clock drift rate and aging rate 1 per arc
Satellite state vector 1 per arc

The author also tried to determine LRO’s orbit from laser ranges and Doppler
range-rates in a combined estimation process. A series of tests has shown,
however, that no convergence is achieved using the respective nominal pre-
cision, i.e. 1mm/s for Doppler range-rates and 10 cm for laser ranges. An
increased standard deviation for laser ranges of „1m results in convergence;
the orbit turned out to be of much poorer quality compared to that one de-
termined from Doppler-only data. Increasing the standard deviation further
to several meters results in an orbit similar to the Doppler-only orbit since
then the laser ranges have only a tiny contribution. Consequently, the orbits
on which gravity field recovery is based on were reconstructed solely from
two-way Doppler range-rates.

Once we have settled on how the final LRO orbits are estimated, it might be
interesting to have a look at the accelerations acting on the satellite (note
that the acceleration due to the lunar gravity field is dealt with separately
in Section 5.4). Representative for the entire time span, the acceleration
due to all modeled gravitational and non-gravitational forces is shown for 24
hours. To start with the gravitational forces, the acceleration due to third
bodies is illustrated in Figure 5.27. The Earth has the largest effect due to its
proximity, followed by the Sun because of its huge gravitational parameter
(cf. Table 5.9). Among the relativistic forces, the Schwarzschild field is the
major contributor (cf. Figure 5.28). It depends on the distance between
spacecraft and central body (Park et al., 2005). The closer Moon and Sun
the larger the effect (cf. Figure 5.29). Figure 5.28 gives an overall picture
of the acceleration due to gravitational forces. Third bodies have the largest
impact, followed by the solid Moon tide.
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Figure 5.25: Pass per pass measurement biases for four stations tracking
LRO via optical laser ranges.
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Figure 5.26: LRO clock drift (top) and aging rate (bottom) estimated from
all stations.
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logarithmic scale. All eight planets of our solar system are considered as well
as Pluto and the Sun.
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Figure 5.28: Acceleration magnitude acting on LRO due to solid Moon tides,
third bodies, Earth and Moon oblation, and general relativity (Schwarzschild
and Coriolis).
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Figure 5.29: (Top) Acceleration due to the general relativistic Schwarzschild
field. This effect is at its maximum in close proximity to the Moon (bottom).
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Figure 5.30 depicts the acceleration on LRO due to the modeled non-
gravitational forces, i.e. solar radiation pressure and lunar radiation pressure
(albedo and emissivity). At a low solar beta angle (cf. Figure 5.30, top) the
perturbations change rapidly as part of the orbit is in shadow. At a high
solar beta angle (cf. Figure 5.30, bottom), in contrast, the perturbations
are smoother. Because emissivity is independent on illumination conditions
(cf. Section 2.1.2), the acceleration acting on LRO is nearly constant (cf.
Figure 5.30). The acceleration due to albedo, on the other hand, is highly
variable even for high solar beta angles (cf. Figure 5.30, bottom).
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Figure 5.30: Acceleration magnitude acting on LRO due to solar radiation
pressure and lunar radiation pressure (albedo and emissivity). Acceleration
at low solar beta angle (top) and at high solar beta angle (bottom).
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5.4 Gravity field recovery

For the estimation of lunar gravity field coefficients, the orbit was computed
without overlapping periods. Otherwise, the observations within the overlaps
would count twice. The arc length was approximately 3 days17 including 18
White Sands passes as well as passes from secondary stations. Over the
entire investigated time span of 13 months, all orbital arcs were combined
for the estimation of gravity field coefficients up to d/o 60 (those from d/o
51 to 60 shall absorb spectral leakage). The gravity field solution is based on
1 908 507 Doppler range-rates.

As for the simulation studies, Tikhonov-Phillips regularization was applied.
Again, the L-curve criterion was used to find the optimal regularization pa-
rameter, albeit the large dimension of the design matrix precluded usage of
the regtools toolbox (cf. Section 3). Figure 5.31 shows the L-curve for
regularization parameters varying between 0.5 and 2500. The curve does
not have a distinct corner. Since the numerical values of the regularization
parameters are very similar in the central part, the lack of a distinct corner
is not thought to be critical. By visual inspection of Figure 5.31, the optimal
regularization parameter was set to 9.
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Figure 5.31: Residual norm vs. solution norm for regularization parameters
varying between 0.5 and 2500. The curve lacks a distinct corner. The optimal
regularization parameter (marked with a box) was set to 9.

17arc 1: first observation from WS1S pass 1 to first observation from WS1S pass 19,
arc 2: first observation from WS1S pass 19 to first observation from WS1S pass 37, etc.
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To find out from which spherical harmonic d/o onwards the coefficients have
to be regularized, four gravity field solutions were computed by regularizing
all coefficients of d/oě2, 6, 11, and 16. Whereas the formal errors of the very
first two solutions are nearly identical (Figure 5.32), a significant increase of
the formal errors can be seen when the gravity field is regularized from d/o
11 or 16 onwards. Based on Figure 5.32 the decision was made to freely
adjust all coefficients up to d/o 5 and starting regularization from d/o 6.
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Figure 5.32: Degree-wise signal and errors of the gravity field coefficients
estimated from Doppler range-rates to LRO in terms of selenoid height. The
formal errors are shown for solutions regularized from d/o 2, 6, 11, and 16.

Accounting for the variance of the unit weight18, the signal and errors of the
estimated gravity field coefficients can be compared against those of the a
priori gravity field model GL0660B (Figure 5.33). Whereas the signals agree
well, the errors of the LRO-derived solution are significantly larger than
those of the GRAIL-derived model GL0660B. Note that GRAIL provided
a substantial leap of knowledge due to the concept of low-low satellite-to-
satellite tracking (Zuber et al., 2013). Since no model is available that is
solely based on tracking data to LRO, the errors of the Lunar Prospector (LP)

18the variance of the unit weight is defined as v̂TPv̂
l´u , where v̂ are the estimated observa-

tion errors, P is the observation weight matrix, and l and u are the number of observations
and unknowns, respectively
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model JGL165P1 are shown in Figure 5.33 to compare the LRO-derived
solution with; this comparison is justified as JGL165P1 is also based on
ground-based tracking data. The errors of JGL165P1 steadily increase up to
d/o 15 since regularization was applied from d/o 16 onwards (Konopliv et
al., 2001). The error level of SGM150J (Goossens et al., 2011a), a SELENE-
derived gravity field model including data to LP, is slightly lower compared
to JGL165P1 and the LRO-derived model as some tracking data are available
over the farside.
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Figure 5.33: Degree-wise signal, formal errors, and empirical errors (w.r.t.
GL0660B) of the recovered gravity field solution based on Doppler range-
rates to LRO in terms of selenoid height (in red color). In addition, the signal
and the errors of the a priori GRAIL-derived model (GL0660B) are shown.
Further, the errors of JGL165P1 (based on LP) and those of SGM150J (based
on LP and SELENE) are depicted.

Figure 5.34 depicts the differences in selenoid height between the regularized
gravity field solution and the a priori gravity field model GL0660B. At the
farside of the Moon, the differences are as large as ˘15m. At the nearside
(Figure 5.35), the differences are smallest near the lunar equator where track-
ing data are densest (cf. Figure 5.8). The differences on the nearside are at
maximum ˘2m.
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Figure 5.34: Differences in selenoid height between the regularized gravity
field solution (truncated at degree and order 50) and the a priori gravity field
model GL0660B. The larger discrepancies at the farside (located between 90°
and 270° in longitude) due to the lack of direct tracking data is clearly visible.

Figure 5.35: Differences in selenoid height between the regularized gravity
field solution (truncated at degree and order 50) and the a priori gravity
field model GL0660B (nearside). The differences are largest at the poles
were Doppler tracking is sparsest.
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Figure 5.36: Selenoid uncertainties for the regularized gravity field solution
derived from Doppler range-rates to LRO. Error propagation was imple-
mented according to Haagmans and Gelderen (1991) using the full variance-
covariance information. The uncertainties are illustrated for coefficients up
to degree and order 50.

Figure 5.37: Selenoid uncertainties for the regularized gravity field solution
derived from Doppler range-rates to LRO (nearside). The uncertainties are
illustrated for coefficients up to degree and order 50.
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The selenoid uncertainties of the derived gravity field solution, shown in
Figure 5.36, can be as large as 12m on the deep farside. On the nearside
of the Moon (Figure 5.37), where direct tracking data are available, the
uncertainties are one order of magnitude smaller.

5.5 Discussion and conclusions

The low precision of the LRO orbit when computed solely from optical one-
way laser ranges is attributed to the insufficient parametrization of the LRO
clock. The estimation of a cubic frequency aging rage, as suggested by Mao
et al. (2014), was not supported by the software version at hand. Further, an
arc length of seven days might be too short for a robust estimation of clock
parameters. Mao et al. (2013), for instance, used an arc length of two weeks
to infer the LRO clock parameters. In the work presented here, longer arcs
did not improve the results.

To some extent, the temporal variation of the Doppler residuals can be ex-
plained by the solar beta angle. The correlation, however, is far from perfect.
Since the parametrization is the same for the entire time span, the reason
for the varying magnitude of the residuals (apart from the solar beta angle)
remains unclear.

The largest gravitational force LRO is exposed to (apart from the lunar
gravity field), is due to the presence of third bodies (cf. Figure 5.28). Among
the third bodies, the Earth and the Sun have the largest impact due to the
small distance and the large mass, respectively. The most prominent non-
gravitational force acting on LRO is solar radiation pressure (cf. Figure 5.30).
The acceleration due to lunar radiation pressure is approximately one order
of magnitude smaller. Whenever the satellite’s orbit is partially shadowed by
the Moon, force modeling is more demanding since then the accelerations due
to non-gravitational forces change rapidly (cf. Figure 5.30). Insufficiencies
coming from this side are reflected in the RMS values of the orbit overlaps
(cf. Figure 5.23).

Up to d/o 12, the formal errors of the LRO-based gravity field solution are
larger than those of JGL165P1. This might be due to the fact that the
latter contains 18 months of radio tracking data to LP as well as historical
data to Lunar Orbiter 1 to 5, Apollo 15 and 16 subsatellites, and Clementine
(Konopliv et al., 2001). From d/o 16 on, the formal errors of the LRO solution
are smaller than those of JGL165P1 since the former was regularized from
d/o 6 onwards as opposed to the latter which was regularized from d/o 16
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onwards.

A decrease of the errors of the recovered gravity field solution (cf. Fig-
ure 5.33), albeit a moderate one, could be achieved by increasing the analyzed
time span. The limiting factor, however, is clearly the single-hemisphere data
coverage. The awesome effect of global data coverage in combination with
a very precise measurement type on the degree-wise errors can be seen in
Figure 5.33 for the GRAIL-derived gravity field model GL0660B.

The selenoid uncertainties (Figures 5.36 and 5.37), which were computed
from the formal errors, are in good agreement with the differences between
the estimated gravity field signal and the a priori model (Figures 5.34 and
5.35). Hence, the conclusion is drawn that the formal errors are realistic.





Chapter 6

Discussion

Gravity field recovery from Satellite Laser Ranging (SLR) measurements to
geodetic satellites on the one hand, and from Doppler data to the Lunar
Reconnaissance Orbiter (LRO) on the other hand, tackles the same problem:
the gravity field shall be derived from satellite perturbations triggered by
changes in the central body’s gravity field. Although the concept is the same
for the Earth and the Moon, the practical implementation is not.

First, the quality of available tracking data is different. The nominal precision
of two-way optical laser ranges to geodetic satellites is a factor of 70 to 100
times better than the precision of one-way optical laser ranges to LRO. For
both the Earth and the Moon the data coverage is not uniform. Whereas
for the Earth the data gaps are primarily located in oceanic areas and polar
regions, the Moon suffers from a farside data gap being almost as large as
one half of the entire lunar surface. Consequently, ill-conditioning is a major
issue for lunar gravity field recovery from Doppler range-rates to LRO and a
minor issue for terrestrial gravity field recovery from SLR measurements to
geodetic satellites.

Laser ranges to LRO are extremely precise and should therefore be an integral
part of Precise Orbit Determination (POD). A significant effort was put into
the analysis of laser ranges – unfortunately without much success. Mao et
al. (2013) demonstrated that it is possible to deduce LRO orbits from laser
ranges only, albeit of reduced quality compared to S-band only orbits. Since
in Mao et al. (2014) the LRO clock is modeled by a third-degree polynomial, it
is suspected that the second-degree polynomial, which is used by the software,
is not able to capture the entire signature of the spacecraft clock.

Second, the dominant perturbing forces are different for Earth and Moon

115
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orbiting satellites. The lower orbiting geodetic satellites (Stella, Starlette,
Larets) are significantly perturbed by atmospheric drag, which is difficult to
model. Consequently, the range residuals to these satellites are larger than
those to higher orbiting satellites such as LAGEOS-1/2. For a lunar orbiter,
the dominant non-gravitational force is solar radiation pressure since the
Moon has no atmosphere. The acceleration due to lunar radiation pressure
is approximately one order of magnitude smaller.

Third, non-gravitational force modeling is different for geodetic satellites and
LRO due to the satellites’ shape. Whereas the former are simple spheres, the
latter is complex due to the attached Solar Array (SA) and the High Gain
Antenna (HGA). In particular, LRO’s single SA is large (11m2) requiring
a proper modeling of its orientation. The non-gravitational force modeling
for LRO is even more demanding for time spans when its orbit is partially
shadowed since then the forces change rapidly. Insufficiencies coming from
this side might be (at least to some extent) responsible for the larger range-
rate residuals whenever parts of the orbit is in shadow.

Regarding the derived gravity field solutions, spectral leakage is negligible for
geodetic satellites because of their high orbital altitude. For LRO, however,
leakage is crucial to account for as the spacecraft is orbiting the Moon at
only 50 km above the lunar surface. The easiest way, which was also pursued
in this work, is to estimate more coefficients than actually needed.

To sum up the author’s achievements, the quality of the estimated orbits
and the derived gravity field information are in good agreement with pub-
lished results by other established research groups. The presented gravity
field solutions for the Earth and the Moon, however, should not be seen as
stand-alone solutions. SLR-based normal equations are an integral part of
combined satellite-only gravity field models such as the models of the Grav-
ity Observation Combination (GOCO) series1. Concerning the Moon, future
will tell whether LRO-based normal equations contribute to gravity field
solutions derived from Gravity Recovery and Interior Laboratory (GRAIL)
data (Zuber et al., 2013).

1visit http://www.goco.eu/ for more information

http://www.goco.eu/
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Appendix A

Computation of the light time τ

The computation of the light travel times starts at the final received time, t,
which is assumed to be known, and proceeds backwards until the model is
complete: whereas one-way measurements require the computation of only
one light travel time (downlink), two-way measurements require the compu-
tation of two light travel times (downlink and uplink). Table A.1 illustrates
the iteration process for the computation of the downlink light travel time,
τd, between ground station, rstat, and satellite, r, for geodetic satellites. All
position vectors are given in the geocentric reference frame. More details to
the relativistic correction term can be found in Section 2.2.5. Convergence is
met when τ

pnq

d ´ τ
pn´1q

d ă 1 ˆ 10´8 seconds. The computation of the uplink
light travel time, τu, is done in an analogous manner.

For the computation of the downlink and uplink light travel time for the
Lunar Reconnaissance Orbiter (LRO) satellite, some changes must be made
regarding Table A.1. First, all position vectors have to refer to a solar-system
barycentric reference frame (cf. Section 2.2.5). Second, the relativistic light
time correction is defined differently (column 3 of Table A.1 has to be replaced
with Equation 2.65).
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Appendix B

Weighting SLR measurements

For a time span of five years (January 2006 to December 2010), the impact
of using the bin Root Mean Square (RMS), given in the Normal Point (NP)
files for each observation, instead of assigning all observations equal weights
was tested. Figure B.1 shows the variation of the degree-two gravity field
coefficients for these two weighting types. Whereas there are no noticeable
differences in the variations of C20, the variations of all other degree-two
terms tend to be larger using the bin RMS. This is why equal weights were
assigned to the laser observations.

135



136 APPENDIX B. WEIGHTING SLR MEASUREMENTS

−4.841655

−4.841650

C
2

0
 (

×
 1

0
−

4
)

−4

−3

−2

C
2

1
 (

×
 1

0
−

1
0
)

14

15

16

S
2

1
 (

×
 1

0
−

1
0
)

2.4393

2.4394

2.4395

C
2

2
 (

×
 1

0
−

6
)

J06 J07 J08 J09 J10

−1.4006

−1.4004

−1.4002

−1.4000

S
2

2
 (

×
 1

0
−

6
)

Calendar date

Figure B.1: Monthly gravity field coefficients of degree 2. The gravity field
solution in red color is based on equally weighted observations. For the
solution in black the bin RMS, which is available for each NP, was used to
weight the observations.



Appendix C

LRO

C.1 Maneuvers

The binary SPK files provided by the Navigation and Ancillary Information
Facility (NAIF) and computed at the Goddard Space Flight Center (GSFC),
which contain ephemeris data of the Lunar Reconnaissance Orbiter (LRO),
were downloaded from http://imbrium.mit.edu/LRORS/DATA/SPK/. One
SPK file covers one science mission phase1. Gaps in the coverage exist be-
cause around maneuvers the trajectory was not reconstructed. Type and
duration of maneuvers were extracted from the SPK files using the com-
mand line tool COMMNT provided by NAIF. Table C.1 contains a list of
performed maneuvers including Station Keeping (SK) maneuvers (the letters
‘a’ and ‘b’ denote first and second burn), delta-H (dH) maneuvers, and yaw
flips during the nominal and the science mission phase2. SK maneuvers are
numbered in a continuous manner.

Table C.1: List of maneuvers for the nominal and the science mission phase.

maneuver type from to

dH 25 Sep 2009 15:45:00.00 25 Sep 2009 15:45:00.00

SK01a 25 Sep 2009 18:27:56.00 25 Sep 2009 18:29:28.00

SK01b 26 Sep 2009 17:55:25.00 26 Sep 2009 17:56:46.60

yaw flip to +X 26 Sep 2009 17:56:46.60 26 Sep 2009 18:45:00.00

dH 05 Oct 2009 21:55:00.00 05 Oct 2009 21:55:00.00

SK02a 23 Oct 2009 14:28:29.47 23 Oct 2009 14:30:01.79

SK02b 23 Oct 2009 17:21:28.33 23 Oct 2009 17:23:05.39

Continued on next page

1a science mission phase spans approximately four weeks
2a yaw flip to -X in March 2011 is missing
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Table C.1: (continued)

maneuver type from to

dH 06 Nov 2009 14:10:00.00 06 Nov 2009 14:10:00.00

SK03a 20 Nov 2009 14:05:07.00 20 Nov 2009 14:06:29.60

SK03b 20 Nov 2009 16:54:53.00 20 Nov 2009 16:56:28.80

dH 04 Dec 2009 16:05:00.00 04 Dec 2009 16:09:00.00

SK04a 17 Dec 2009 18:16:08.50 17 Dec 2009 18:17:33.90

SK04b 17 Dec 2009 21:08:23.50 17 Dec 2009 21:09:51.50

dH 30 Dec 2009 17:15:00.00 30 Dec 2009 17:15:00.00

SK05a 13 Jan 2010 16:50:58.50 13 Jan 2010 16:52:23.90

SK05b 13 Jan 2010 19:41:59.70 13 Jan 2010 19:43:26.50

dH 28 Jan 2010 13:40:00.00 28 Jan 2010 13:40:00.00

SK06a 09 Feb 2010 15:24:28.70 09 Feb 2010 15:25:52.70

SK06b 09 Feb 2010 18:18:24.70 09 Feb 2010 18:19:57.10

dH 23 Feb 2010 16:43:00.50 23 Feb 2010 16:48:28.70

dH 09 Mar 2010 13:15:00.60 09 Mar 2010 13:24:01.90

SK07a 09 Mar 2010 14:29:13.60 09 Mar 2010 14:30:32.60

SK07b 09 Mar 2010 17:22:28.60 09 Mar 2010 17:23:56.10

dH 23 Mar 2010 15:49:00.60 23 Mar 2010 15:56:35.40

yaw flip to -X 30 Mar 2010 19:20:00.00 30 Mar 2010 19:51:00.00

dH 05 Apr 2010 15:00:00.70 05 Apr 2010 15:05:15.90

SK08a 05 Apr 2010 16:54:50.90 05 Apr 2010 16:56:14.50

SK08b 05 Apr 2010 19:48:21.40 05 Apr 2010 19:49:46.40

dH 19 Apr 2010 14:26:00.80 19 Apr 2010 14:33:38.00

dH 03 May 2010 14:20:00.90 03 May 2010 14:27:11.90

SK09a 03 May 2010 15:59:54.10 03 May 2010 16:01:24.50

SK09b 03 May 2010 18:52:54.90 03 May 2010 18:54:18.70

dH 17 May 2010 14:20:00.90 17 May 2010 14:25:33.70

dH 30 May 2010 14:15:01.00 30 May 2010 14:20:57.00

SK10a 30 May 2010 16:25:06.20 30 May 2010 16:26:29.80

SK10b 30 May 2010 19:20:56.20 30 May 2010 19:22:16.20

dH 14 Jun 2010 17:15:01.10 14 Jun 2010 17:18:19.70

dH 27 Jun 2010 15:00:00.20 27 Jun 2010 15:02:34.20

SK11a 27 Jun 2010 17:15:52.40 27 Jun 2010 17:17:18.00

SK11b 27 Jun 2010 20:10:35.40 27 Jun 2010 20:11:59.20

dH 24 Jul 2010 13:15:00.30 24 Jul 2010 13:19:00.30

SK12a 24 Jul 2010 15:41:54.30 24 Jul 2010 15:43:20.20

SK12b 24 Jul 2010 18:39:35.60 24 Jul 2010 18:40:59.10

dH 06 Aug 2010 14:35:00.50 06 Aug 2010 14:37:40.30

dH 20 Aug 2010 10:10:00.50 20 Aug 2010 10:15:54.50

SK13a 20 Aug 2010 12:18:46.70 20 Aug 2010 12:20:11.90

Continued on next page
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Table C.1: (continued)

maneuver type from to

SK13b 20 Aug 2010 15:14:10.50 20 Aug 2010 15:15:32.30

dH 03 Sep 2010 15:35:00.60 03 Sep 2010 15:39:47.80

dH 16 Sep 2010 16:15:00.70 16 Sep 2010 16:22:06.90

SK14a 16 Sep 2010 18:15:39.70 16 Sep 2010 18:17:09.90

SK14b 16 Sep 2010 21:10:23.90 16 Sep 2010 21:11:46.70

yaw flip to +X 29 Sep 2010 18:00:00.80 29 Sep 2010 18:30:11.80

dH 30 Sep 2010 15:00:00.80 30 Sep 2010 15:04:50.80

dH 14 Oct 2010 15:00:00.90 14 Oct 2010 15:07:33.30

SK15a 14 Oct 2010 17:20:56.10 14 Oct 2010 17:22:41.40

SK15b 14 Oct 2010 20:15:49.10 14 Oct 2010 20:17:14.30

dH 27 Oct 2010 17:17:00.90 27 Oct 2010 17:22:41.40

dH 10 Nov 2010 22:10:01.00 10 Nov 2010 22:15:30.00

SK16a 10 Nov 2010 23:10:51.20 10 Nov 2010 23:12:14.90

SK16b 11 Nov 2010 02:05:18.10 11 Nov 2010 02:06:41.60

dH 22 Nov 2010 13:46:01.00 22 Nov 2010 13:50:39.70

dH 07 Dec 2010 11:50:00.20 07 Dec 2010 11:54:06.80

SK17a 07 Dec 2010 14:11:43.20 07 Dec 2010 14:13:00.00

SK17b 07 Dec 2010 17:06:55.20 07 Dec 2010 17:08:22.60

dH 19 Dec 2010 19:40:00.30 19 Dec 2010 19:42:21.50

dH 03 Jan 2010 16:35:00.40 03 Jan 2010 16:36:20.60

SK18a 03 Jan 2010 17:48:35.40 03 Jan 2010 17:50:01.00

SK18a 03 Jan 2010 20:43:22.60 03 Jan 2010 20:44:41.20

dH 18 Jan 2010 14:00:00.50 18 Jan 2010 14:02:55.30

dH 31 Jan 2010 18:45:00.60 31 Jan 2010 18:48:05.80

SK19a 31 Jan 2010 20:36:20.70 31 Jan 2010 20:37:40.10

SK19a 31 Jan 2010 23:26:40.50 31 Jan 2010 23:28:01.70

dH 14 Feb 2011 18:05:00.70 14 Feb 2011 18:07:37.70

dH 27 Feb 2011 13:35:00.70 27 Feb 2011 13:39:27.50

SK20a 27 Feb 2011 15:12:17.70 27 Feb 2011 15:13:37.90

SK20b 27 Feb 2011 18:08:50.70 27 Feb 2011 18:10:10.30

dH 14 Mar 2011 20:55:00.70 14 Mar 2011 21:01:43.90

dH 26 Mar 2011 11:25:00.70 26 Mar 2011 11:30:38.10

SK21a 26 Mar 2011 13:51:35.70 26 Mar 2011 13:52:54.70

SK21b 26 Mar 2011 16:49:00.70 26 Mar 2011 16:50:24.50

dH 05 Apr 2011 18:50:00.80 05 Apr 2011 18:58:20.00

dH 08 Apr 2011 14:53:00.80 08 Apr 2011 14:55:15.60

dH 22 Apr 2011 13:30:00.80 22 Apr 2011 13:38:27.30

SK22a 22 Apr 2011 15:51:26.80 22 Apr 2011 15:52:54.70

SK22b 22 Apr 2011 18:47:03.80 22 Apr 2011 18:48:21.50

Continued on next page
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Table C.1: (continued)

maneuver type from to

dH 07 May 2011 19:40:00.90 07 May 2011 19:44:59.40

dH 20 May 2011 14:55:01.00 20 May 2011 14:59:31.00

SK23a 20 May 2011 16:57:00.00 20 May 2011 16:58:19.70

SK23b 20 May 2011 19:48:54.00 20 May 2011 19:50:13.00

dH 02 Jun 2011 17:50:01.10 02 Jun 2011 17:53:40.90

dH 16 Jun 2011 13:15:00.21 16 Jun 2011 13:17:22.41

SK24a 16 Jun 2011 15:24:12.21 16 Jun 2011 15:25:30.21

SK24b 16 Jun 2011 18:21:16.41 16 Jun 2011 18:22:33.01

dH 30 Jun 2011 22:30:00.30 30 Jun 2011 22:32:56.30

dH 13 Jul 2011 12:22:00.40 13 Jul 2011 12:23:35.40

SK25a 13 Jul 2011 13:56:39.40 13 Jul 2011 13:57:59.60

SK25b 13 Jul 2011 16:53:22.60 13 Jul 2011 16:54:42.00

dH 27 Jul 2011 12:30:00.50 27 Jul 2011 12:32:59.30

dH 10 Aug 2011 11:20:00.50 10 Aug 2011 11:23:05.70

SK26a 10 Aug 2011 13:04:53.80 10 Aug 2011 13:07:09.90

SK26b 10 Aug 2011 15:55:24.70 10 Aug 2011 15:57:42.10

dH 24 Aug 2011 13:25:00.60 24 Aug 2011 13:29:00.20

dH 31 Aug 2011 16:50:00.40 31 Aug 2011 16:53:15.90

dH 06 Sep 2011 15:14:00.70 06 Sep 2011 15:19:29.30

SK27a 06 Sep 2011 17:16:16.70 06 Sep 2011 17:16:55.70

SK27b 06 Sep 2011 20:32:52.70 06 Sep 2011 20:33:22.30

dH 13 Sep 2011 16:55:00.76 13 Sep 2011 17:01:04.36

dH 20 Sep 2011 19:35:00.80 20 Sep 2011 19:38:58.00

yaw flip to +X 27 Sep 2011 13:00:00.00 27 Sep 2011 13:30:11.00

dH 28 Sep 2011 17:30:00.80 28 Sep 2011 17:32:07.20

dH 03 Oct 2011 15:50:00.90 03 Oct 2011 15:53:30.90

SK28a 03 Oct 2011 17:48:35.10 03 Oct 2011 17:49:50.30

SK28b 03 Oct 2011 20:46:44.90 03 Oct 2011 20:48:03.90

dH 11 Oct 2011 16:17:00.90 11 Oct 2011 16:20:17.10

dH 17 Oct 2011 18:20:01.00 17 Oct 2011 18:22:29.00

dH 24 Oct 2011 20:00:01.00 24 Oct 2011 20:03:15.80

dH 31 Oct 2011 14:50:01.00 31 Oct 2011 14:52:04.20

SK29a 31 Oct 2011 17:03:50.20 31 Oct 2011 17:05:18.00

SK29b 31 Oct 2011 19:55:09.20 31 Oct 2011 19:57:25.80

dH 14 Nov 2011 13:40:01.10 14 Nov 2011 13:43:42.10

dH 27 Nov 2011 12:10:01.20 27 Nov 2011 12:12:17.80

SK30a 27 Nov 2011 13:53:55.40 27 Nov 2011 13:54:48.40

SK30b 27 Nov 2011 16:44:59.20 27 Nov 2011 16:45:27.00

dH 11 Dec 2011 11:55:00.30 11 Dec 2011 11:56:33.50

Continued on next page
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Table C.1: (continued)

maneuver type from to

SK31a 11 Dec 2011 13:00:20.50 11 Dec 2011 13:07:43.90

SK31b 11 Dec 2011 16:02:58.80 11 Dec 2011 16:03:28.10

dH 23 Dec 2011 15:10:00.30 23 Dec 2011 15:13:43.50

dH 10 Jan 2012 12:30:00.50 10 Jan 2012 12:31:45.90

dH 10 Jan 2012 12:30:00.50 10 Jan 2012 12:31:45.90

dH 24 Jan 2012 16:50:00.50 24 Jan 2012 16:54:53.30

dH 17 Feb 2012 12:40:00.70 17 Feb 2012 12:43:42.30

dH 28 Feb 2012 20:45:00.80 28 Feb 2012 20:48:49.60

dH 15 Mar 2012 15:55:00.80 15 Mar 2012 15:57:38.40

dH 15 Mar 2012 15:55:00.80 15 Mar 2012 15:57:38.40

yaw flip to -X 19 Mar 2012 11:05:00.00 19 Mar 2012 11:35:11.00

dH 27 Mar 2012 15:50:00.91 27 Mar 2012 15:52:37.82

dH 11 Apr 2012 15:15:01.00 11 Apr 2012 15:18:17.00

dH 11 Apr 2012 15:15:01.00 11 Apr 2012 15:18:17.00

dH 24 Apr 2012 16:55:01.10 24 Apr 2012 16:59:08.10

dH 08 May 2012 14:30:01.20 08 May 2012 14:32:24.80

dH 08 May 2012 14:30:01.20 08 May 2012 14:32:24.80

dH 30 May 2012 15:40:00.30 30 May 2012 15:43:19.30

dH 30 May 2012 15:40:00.30 30 May 2012 15:43:19.30

dH 26 Jun 2012 14:45:00.50 26 Jun 2012 14:47:54.10

dH 26 Jul 2012 13:10:00.60 26 Jul 2012 13:13:24.40

dH 26 Jul 2012 13:10:00.60 26 Jul 2012 13:13:24.40

dH 15 Aug 2012 17:20:00.70 15 Aug 2012 17:22:13.30

dH 29 Aug 2012 15:55:00.80 29 Aug 2012 15:59:21.20

dH 29 Aug 2012 15:55:00.80 29 Aug 2012 15:59:21.20

dH 12 Sep 2012 20:03:01.00 12 Sep 2012 20:07:26.20

C.2 Dimensional layouts

The dimensional layouts of LRO are depicted in Figures C.1 and C.2. They
are essential to derive the antenna offset (coordinates of the antenna w.r.t
the center of figure) and the center of mass offset (coordinates of center of
mass w.r.t. the center of figure). Hence, center of figure and center of mass
have to be known. The latter depends mainly on the orientation of the
Solar Array (SA). Further, fuel decreases with time, causing a shift of the
center of mass. The assumption is made, however, that the center of mass
remains fixed at the center of the main spacecraft bus (cf. Figure C.2). The
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center of figure (or the origin of the spacecraft bus frame) is at the center
of the spacecraft/launch vehicle interface. The exact location though is not
known to the author. The assumed center of figure is shown in Figure C.2.
It is possible that the assumed center of figure differs from the ‘true’ center
of figure by up to a few decimeters. This is not thought to be critical,
however, since the center of figure differs from the center of mass solely
in the x-component, which is aligned with the along track direction of the
spacecraft reference system. The empirical accelerations estimated in along
track direction are expected to absorb possible deficiencies in the assumed
location of the center of figure.

Figure C.1: Dimensional layout of LRO (stowed) from Tooley (2006). The
dimensions are given in meters and inches (square brackets).
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Appendix D

Raw data conversions

D.1 From NPs to GEODYN format

The Normal Point (NP) files, which are available in the Consolidated Laser
Ranging Data Format (CRD)1, were retrieved from the Crustal Dynamics
Data Information System (CDDIS)2 for the geodetic satellites and from the
Planetary Data System (PDS)3 for the Lunar Reconnaissance Orbiter (LRO).
The files contain information such as the light travel time, the number of raw
ranges a NP is based on, the bin Root Mean Square (RMS) value from the
mean value of raw accepted time of flight values minus the trend function,
and meteorological information.

There is no routine available to directly establish the observations in the
GEODYN-specific format from the CRD NP files. Consequently, the CRD
NP files were converted to CSTG NP files (old format) using scripts written
by R. Ricklefs4. The CSTG NP files were then converted to the International
Laser Ranging Service (ILRS) fullrate format (formerly known as MERIT
II). In a final step, the MERIT II formatted NP files were converted to the
GEODYN II binary format (G2B).

1a format description is available at http://ilrs.gsfc.nasa.gov/docs/2009/crd v

1.01.pdf
2ftp://cddis.gsfc.nasa.gov
3http://pds-geosciences.wustl.edu/lro/lro-l-rss-1-tracking-v1/lror

s 0001/data/range/npt/
4downloaded from http://ilrs.gsfc.nasa.gov/data and products/formats/crd.

html
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D.2 From Doppler range-rates to GEODYN

format

The Perl module Astro::UTDF was used to read the raw radiometric track-
ing data (.TRK), which are given in the binary Universal Tracking Data
Format (UTDF), and to convert relevant information such as measurement
time, tracking station, and Doppler range-rate to American Standard Code
for Information Interchange (ASCII). See Table D.1 for an example of the
created ASCII file.

Table D.1: Example for extracted ASCII data from raw range-rate obser-
vations that are given in the binary Universal Tracking Data Format. The
extracted information includes the measurement time in UTC, emitting and
receiving tracking stations (ID1 and ID2), and the range-rate observation in
meter per second.

year month day hour minute second ID1 ID2 range-rate [m/s]

2011 01 03 18 55 00 119 119 -41.2380
2011 01 03 18 55 05 119 119 -41.0913
2011 01 03 18 55 10 119 119 -40.9536

The content of Table D.1 is expanded by weather data (temperature, at-
mospheric pressure, relative humidity) that are used by GEODYN for the
computation of tropospheric correction. The weather data were retrieved
from the PDS website5. One weather file (.WEA) contains relevant data for
one tracked pass of one station, such as the UTC, the station which collected
the weather data, temperature in degrees Celsius, atmospheric pressure in
millibars, relative humidity in percent, and wind speed6 in km/hr. The in-
terval of two successive weather data records within a pass is generally five
minutes.

Two conclusions can be drawn from Figure D.1, which depicts Doppler obser-
vations from White Sands along with available weather data. First, weather
data are not available for all tracking passes. Second, Doppler tracking data
to LRO are available every five seconds whereas the weather data are avail-
able every five minutes. The latter is solved by performing a piece-wise
interpolation of the weather data to the Doppler observation time. When-

5http://pds-geosciences.wustl.edu/lro/lro-l-rss-1-tracking-v1/lror

s 0001/data/wea/
6wind speed is not used by GEODYN

http://pds-geosciences.wustl.edu/lro/lro-l-rss-1-tracking-v1/lrors_0001/data/wea/
http://pds-geosciences.wustl.edu/lro/lro-l-rss-1-tracking-v1/lrors_0001/data/wea/
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19 19.1 19.2 19.3 19.4 19.5

Day of year 2011

 

 
Doppler observations available

weather data available

Figure D.1: Observed range-rates compared against available weather data
for seven tracking passes of White Sands. Gaps in the weather data can
occur. Mind the different step size (five seconds for range-rates, five minutes
for weather data).

ever weather data are missing, as it is the case, e.g., for the first pass in
Figure D.1, the weather data are set to zero. For all observations having no
weather data available, GEODYN uses default values7.

The 12-column ASCII file (9 columns as in Table D.1 plus three columns
for weather data) is converted to the GEODYN II binary metric tracking
data format using a Formula Translating System (Fortran) routine. Finally,
the tracking data formatter, which is part of the GEODYN/SOLVE software
package, was used to convert the observations from the GEODYN II binary
metric tracking data format to the GEODYN II binary format (G2B).

7temperature and relative humidity are set to 20°C and 40%, respectively; atmospheric
pressure is computed by evaluating the expression P0 ˆ p1 ` dPdH ˆ hq, where P0 is the
mean sea level pressure, dPdH is the lapse rate (change of pressure with height change),
and h is the station height.





Appendix E

The SPICE module by NAIF

National Aeronautics and Space Administration (NASA)’s Navigation and
Ancillary Information Facility (NAIF) provides a space geometry informa-
tion system called Spacecraft Planet Instrument C-matrix Events (SPICE)1

to assist scientists in planning and interpreting scientific observations from
space-based instruments aboard robotic spacecraft (Acton, 1996). SPICE is
offered in various computing languages. The author used it within the MAT-
LAB environment. For the Lunar Reconnaissance Orbiter (LRO), numerous
useful data files (also called kernels) are provided, such as

� the satellite’s ephemeris and

� the attitude of the spacecraft bus, of the Solar Array (SA), of the High
Gain Antenna (HGA) as well as the attitude of all instruments aboard
LRO.

The author experienced the so-called geometry finder a very useful tool. With
this tool it was possible to get a feeling of the overall geometry spanned by
tracking stations on Earth, LRO, and the Sun. To give some examples, the
geometry finder was used to

� extract the time intervals LRO is in line-of-sight of a specific station
above a certain elevation angle. The stations of the Deep Space Net-
work (DSN) are defined in the database. By using the program PIN-
POINT one can introduce stations that are not yet defined, such as
White Sands and the stations of the Universal Space Network (USN),

� compute the solar beta angle, i.e. the angle between LRO’s orbital
plane and the Sun.

1http://naif.jpl.nasa.gov/naif/
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Moreover, SPICE proved useful for converting LRO’s position from the J2000
system (GEODYN output) to the spacecraft reference frame in which the
results of the overlap analysis are typically given.
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