

Tobias Binder, BSc

Systematische Untersuchung der Hyperfeinstruktur von Lanthan-Spektrallinien im Bereich von 5600 bis 6100 Å

MASTERARBEIT

zur Erlangung des akademischen Grades Diplom-Ingenieur Masterstudium Technische Physik

eingereicht an der

Technischen Universität Graz

Betreuer Univ.-Prof. Dr. Laurentius Windholz Institut für Experimentalphysik

Graz, Februar 2016

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen / Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit identisch.

Datum

Unterschrift

Für Valerie Sophie und Theresa Maria

Dank

Danken möchte ich:

Herrn Professor Windholz für seine geduldige und inspirierende Anleitung am Experiment.

Christine und Olivia für die Betreuung unserer Töchter während der Ausführung meiner Masterarbeit und während meines Studiums.

Den beiden Gästen Ceylan Güney und Łukasz Sobolewski für Ihre Mitarbeit, die mehr soziale Begegnung in den Laboralltag brachte.

Dem Staate Österreich für die finanzielle Basis, die mir mein Studium möglich machte.

Inhaltsverzeichnis

1	Einleitung				
2	Gru	Grundlagen			
	2.1	Die Hyperfeinstruktur atomarer Übergänge	3		
		2.1.1 Die hfs-Konstanten	4		
		2.1.2 Die Auswahlregeln für die atomaren Übergänge	6		
		2.1.3 Die Intensitäten der hfs-Komponenten	8		
	Lanthan	8			
3	Methoden und Versuchsaufbau				
	3.1	Optogalvanische Spektroskopie	11		
3.2		Laserinduzierte Fluoreszenz-Spektroskopie	17		
		3.2.1 Aufnahme von Spektren mittels LIF-Spektroskopie	17		
	3.3	Sättiguns-Spektroskopie	19		
	3.4	Monochromatorscan	21		
	3.5	Laser	22		
		3.5.1 Pumplaser	22		
		3.5.2 Farbstofflaser	22		
	3.6	Datenverarbeitung	24		
		3.6.1 Class_lw_allg17.exe	24		
		3.6.2 Fitter98.exe	24		
4	Versuchsdurchführung				
	4.1	Systematische OG-Scans	26		
	4.2	Anwendung der LIF-Spektroskopie	27		
	4.3	Monochromatorscan	29		

INHALTSVERZEICHNIS

	4.4	Sättigungsspektroskopie			
	4.5	Zwei neu entdeckte Niveaus			
		4.5.1	40136.163 cm^{-1}, J = 5/2, A = 244(4) MHz, gerade Parität $\ \ . \ . \ .$	32	
		4.5.2	41629.83 cm^{-1}, J = 7/2, A = 270(2) MHz, gerade Parität $\ . \ . \ .$	39	
5	Erg	gebnisse und Interpretation			
6	Tabellen				
7	Que	ellenvei	rweise	101	

1

Einleitung

Die vorliegende Masterarbeit beschäftigt sich mit der Hyperfeinstruktur-Analyse von Lanthan mittels laserspektroskopischer Untersuchungen.

Die Hyperfeinstruktur mit den Hyperfeinstrukturniveaus, den Hyperfeinstrukturkonstanten und den zugehörigen Spektren ist insbesondere in der Astrophysik von Interesse, da Vorkommen von Lanthanspektrallinien im Licht von Sternen einen Einblick in die stellare Entstehungsgeschichte vermittelt. Atomare Daten inklusive deren Hyperfeinkonstanten sind notwendig, um Linien in hochaufgelösten Sternenspektren zu identifizieren.

Über quantenmechanische Berechnungen sind viele Feinstrukturniveaus vorhergesagt worden, die bisher noch nicht experimentell nachgewiesen wurden. Die theoretisch berechneten Übergänge zwischen zwei Niveaus stimmen in ihrer Wellenlänge nicht genau mit den beobachteten Spektrallinien überein. Außerdem ist es nicht möglich, eine Vorhersage über die absolute Intensität einer zu erwartenden Spektrallinie zu machen. Eine Motivation für unsere Messungen stellt unter Anderem das Aufspüren dieser noch nicht beobachteten, jedoch theoretisch vorhandenen Feinstrukturniveaus dar. Die Hyperfeinstruktur bietet die Möglichkeit, zwischen verschiedenen Feinstrukturübergängen mit fast gleicher Energie zu unterscheiden.

Der experimentielle Teil der Diplomarbeit wird mit den spektroskopischen Methoden der optogalvanischen Laser-Spektroskopie, der laserinduzierten Fluoreszenz-Spektroskopie, der optogalvanischen Sättigungs-Spektroskopie und der Monochromatorscan-Methode ausgeführt.

Eine Hohlkathodenlampe dient als Quelle für Lanthan-Atome und -Ionen. Die Anregung wird mittels eines durchstimmbaren Farbstofflasers erreicht.

1. EINLEITUNG

Bei den spektralen Untersuchungen von Lanthan in der Niederdruckentladung der Hohlkathodenlampe stellt sich heraus, dass eine große Anzahl von Spektrallinien nicht mit den bisher bekannten Feinstruktur-Niveaus klassifiziert werden können. Eine wesentliche Aufgabe besteht darin, bisher unbekannte Niveaus aufzufinden und deren Existenz zweifelsfrei zu bestätigen. Übereinandergelagerte Linien gleicher Schwerpunktswellenlängen (Blends) können mittels der laserinduzierten Fluoreszenz-Spektroskopie separiert werden. Weiters werden über die laserinduzierte Fluoreszenz-Spektroskopie neue Spektrallinien als Übergänge zwischen bisher bekannten Niveaus klassifiziert oder neue Niveaus gesucht, wenn diese Linien nicht klassifizierbar sind. Der A-Faktor (die magnetische Wechselwirkungskonstante) der Hyperfeinstrukturniveaus wird mittels der optogalvanischen Registrierungen bestimmt.

Um neue Niveaus zu finden wird zunächst der Anregungslaser durchgestimmt bei gleichzeitiger Aufzeichnung des Anregungssignals. Das Hyperfeinstruktur-Spektrum wird somit aufgezeichnet. Wenn eine Linie registriert wird, die mit den bisher bekannten Energieniveaus nicht klassifizierbar ist, wird der Anregungslaser auf das Maximum dieser neuen unbekannten Linie eingestellt und es werden laserinduzierte Fluoreszenz-Signale gesucht. Die Kombination dieser beiden Methoden befähigt uns, bisher unbekannte Niveaus zu entdecken, diese zu bestätigen, deren Hyperfeinstrukturkonstanten zu bestimmen und die zugehörigen Spektrallinien mit diesen Niveaus zu klassifizieren.

$\mathbf{2}$

Grundlagen

2.1 Die Hyperfeinstruktur atomarer Übergänge

Die Wechselwirkungen der Elektronen eines Atoms mit Hauptquantenzahl n, Nebenquantenzahl l, magnetischer Quantenzahl des Drehimpulses m_l und der Spinquantenzahl m_s führen zur Ausbildung der Feinstruktur (fs) -Niveaus mit Gesamtdrehimpulsquantenzahl J.

Die Spektrallinien werden als Übergänge zwischen Energieniveaus interpretiert.

Es existiert neben der zentralsymmetrischen Coulomb-Wechselwirkung eine zusätzliche Wechselwirkung zwischen den Elektronen und dem Atomkern. Aufgrund dieser Wechselwirkung spalten sich die atomaren Zustände in die Zustände der Hyperfeinstruktur (hfs) auf. Diese Aufspaltung ist um etwa einen Faktor 1000 kleiner als die Feinstrukturaufspaltung.

Der Atomkern besitzt einen Kernspin \vec{I} :

$$|\vec{I}| = \sqrt{I(I+1)}\hbar\tag{2.1}$$

Die Kernspinquantenzahl I kann eine positive ganze oder positive halbe Zahl sein, abhängig von der Anzahl der Nukleonen.

Das magnetische Moment des Kerns und das magnetische Moment des Bahndrehimpulses der Elektronen richten sich gegeneinander aus. Dies ist nur in diskreten Richtungen möglich. Verschiedene Orientierungen bewirken verschiedene additive Energien zur fs ei-

nes Elektronenzustandes [1]. Dieser Effekt nennt sich magnetische Wechselwirkung. Der Vektor, der aus dieser Kopplung resultiert, ist der Gesamtdrehimpuls F des Atoms:

$$\vec{F} = \vec{I} + \vec{J} \tag{2.2}$$

mit dem Wertevorrat für F von

$$|J - 1| \le F \le |J + 1| \tag{2.3}$$

Die Quantenzahl F kann eine positive ganze oder positive halbe Zahl sein. Die Anzahl der möglichen Komponenten der hfs ist bestimmt durch

$$n = 2I + 1 \quad f \ddot{u}r \quad I \le J \tag{2.4}$$

$$n = 2J + 1 \quad f \ddot{u}r \quad I > J \tag{2.5}$$

2.1.1 Die hfs-Konstanten

Die bestimmenden Konstanten der hfs sind die sogenannten Hyperfeinstrukturkonstanten. Um die magnetische Wechselwirkungskonstante A zu bestimmen muss zuerst die Energie der hfs ermittelt werden [2].

$$W_{magn} = \vec{\mu_I} \cdot \vec{B}_j(0) \tag{2.6}$$

Mit dem magnetischen Moment des Kernes μ_I .

$$\mu_I = g_I \cdot \vec{I} \cdot \mu_k \tag{2.7}$$

mit dem gyromagnetischen Faktor g_I und dem Kernmagenton μ_k . Weiters entspricht $\vec{B}_j(0)$ dem zeitlich gemittelten magnetischen Feld der Atomhülle am Ort des Atomkernes. Somit kann die zusätzliche magnetische Energie quantenmechanisch berechnet werden:

$$W_{magn} = \frac{F(F+1) - I(I+1) - J(J+1) \cdot (\vec{\mu}_I \cdot \vec{B}_j(0))}{2I \cdot J}$$
(2.8)

wobei

$$\alpha(F) = \frac{F(F+1) - I(I+1) - J(J+1)}{2}$$
(2.9)

als Casimir-Faktor und

$$A = \frac{\vec{\mu}_I \cdot \vec{B}_j(0)}{h \cdot I \cdot J} \tag{2.10}$$

als A-Faktor bezeichnet werden. Der A-Faktor hat die Einheit s^{-1} und wird in MHz angegeben. Er wird auch Intervall-Faktor genannt. Er resultiert aus dem mittleren magnetischen Feld $\overline{\vec{B}_j(0)}$ der Atomhülle am Ort des Atomkernes und des magnetischen Momentes des Atomkernes.

$$A \propto \vec{\mu}_I \cdot \vec{B}_j(0) \tag{2.11}$$

Der A-Faktor ist negativ bei paralleler Ausrichtung des Gesamtdrehimpulses \vec{J} der Hülle zum gemittelten magnetischen Moment der Hülle \vec{B}_J und positiv bei antiparalleler Ausrichtung. Ein positiver A-Faktor bedeutet außerdem, dass die hfs-Niveaus mit großen F-Werten höhere Energien besitzen und ein negativer A-Faktor bedeutet, dass die hfs-Niveaus mit kleinen F-Werten höhere Energien aufweisen. Zusammengefasst kann die magnetische Energie geschrieben werden als:

$$W_{magn} = h \cdot \alpha \cdot A \tag{2.12}$$

Neben der magnetischen Wechselwirkung existiert noch eine zum Coulomb-Potential zu addierende schwache elektrostatische Wechselwirkung. Diese wird mit dem B-Faktor berücksichtigt. Diese Wechselwirkung resultiert aus dem Quadrupolmoment der Ladungsverteilung des Kernes. Entspricht die Ladungsverteilung im Kern einer Kugelsymmetrie, so verschwindet das Quadrupolmoment und der B-Faktor ist 0. Die Ladungen in La sind nahezu kugelsymmetrisch angeordnet und daher wird der B-Faktor in unseren Auswertungen in der Regel nicht berücksichtigt (Annahme B = 0).

Zur Bestimmung der Gesamtenergie der hfs werden die magnetische und die elektrische Energie zur Schwerpunktsenergie der fs addiert. Dies führt zur Casimir-Gleichung:

$$W_{tot}(F) = W_J + h \cdot \alpha(F) \cdot A + h \cdot \beta(F) \cdot B$$
(2.13)

Unter Vernachlässigung des zweiten Termes wegen der Rotationssymmetrie der Ladungsverteilung im Kern des La-Atoms (B = 0) ergibt sich im weiteren eine vereinfachte Rechnung:

$$W_{tot}(F) = W_J + h \cdot \alpha(F) \cdot A \tag{2.14}$$

Dividiert man diese Gleichung durch h, so erhält man wegen $W = h\nu$ eine nicht messbare Frequenz ν_F

$$\nu_F = \nu_J + \alpha \cdot A \tag{2.15}$$

Zur Berechnung der hfs-Aufspaltung eines Überganges wird die Energie des unteren Niveaus von der Energie des oberen Niveaus abgezogen. Diese Energiedifferenz ist messbar.

$$\Delta W_{F_o - F_u} = W_{F_o} - W_{F_u} \tag{2.16}$$

oder

$$\nu_{F_o - F_u} = \nu_{F_o} - \nu_{F_u} \tag{2.17}$$

 $\nu_{F_o-F_u}$ ist eine messbare Frequenz, welche vom Atom emittiert oder absorbiert wird. Die Übergangsfrequenz der fs ist die (ebenfalls nicht direkt messbare) Schwerpunktsfrequenz (center of gravity, cg) ν_{cg} der hfs. Es folgt, dass eine hfs-Komponente $F_o - F_u$ eine von ν_{cg} verschobene Position hat (wiederum mit der Vereinfachung, dass für La der B-Faktor = 0 ist):

$$\nu_{F_o-F_u} = \nu_{cg} + (\alpha_o \cdot A_o - \alpha_u \cdot A_u) \tag{2.18}$$

 α_o und α_u können über die entsprechenden Quantenzahlen berechnet werden:

$$\alpha_o = \frac{1}{2} \left[F_o \left(F_o + 1 \right) - I \left(I + 1 \right) - J_o \left(J_o + 1 \right) \right]$$
(2.19)

$$\alpha_u = \frac{1}{2} \left[F_u \left(F_u + 1 \right) - I \left(I + 1 \right) - J_u \left(J_u + 1 \right) \right]$$
(2.20)

Um die Konstanten A_o , A_u und ν_{cg} zu ermitteln müssen die Positionen von 3 hfs-Komponenten bekannt sein, sowie die entsprechenden Quantenzahlen.

Im Falle von La mit B = 0 gilt außerdem die Intervallregel für die Abstände zwischen den hfs-Niveaus: Die Abstände verhalten sich wie das Verhältnis der höheren Quantenzahlen zueinander: $F : (F - 1) : (F - 2) \dots$, siehe Abbildung 1.

2.1.2 Die Auswahlregeln für die atomaren Übergänge

Die Übergänge für die hfs-Niveaus unterliegen Einschränkungen:

$$\Delta F = 0, \pm 1 \tag{2.21}$$

Abbildung 1: Das Verhältnis der Abstände der hfs-Niveaus zueinander.

Für die Übergänge zwischen fs-Niveaus gilt:

$$\Delta J = 0, \pm 1 \tag{2.22}$$

Entsprechend dem Laporte-Gesetz [3] müssen die zwei am Übergang beteiligten Niveaus unterschiedliche Parität aufweisen:

$$\Delta P = 1 \tag{2.23}$$

Die Parität gibt Auskunft über die Symmetrie der Wellenfunktion [4,5]. Sie ist gerade (even, e), wenn die Summe über die Bahndrehimpulsquantenzahlen I der Elektronen gerade ist und ungerade (odd, o), wenn die Summe ungerade ist.

$$\sum l \ gerade \to P \ gerade \ (even, e) \tag{2.24}$$

$$\sum l \ ungerade \to P \ ungerade \ (odd, o) \tag{2.25}$$

Weiters gilt, dass Übergänge zwischen zwei Niveaus mit F = 0 nicht erlaubt sind. In einer hfs sind meist Komponenten höherer und Komponenten niederer Intensität vorhanden. Jede Komponente entspricht einem Übergang zwischen zwei hfs-Niveaus. Entsprechend den Auswahlregeln für F, nach 2.21, sind für gewöhnlich drei Gruppen von Komponenten in einer hfs vorhanden: $\Delta F = 0$, $\Delta F = -1$, $\Delta F = 1$, welche entsprechend 2.3 und 2.22 von J und ΔJ abhängen. Die Übergangswahrscheinlichkeiten und die entsprechenden Intensitäten der Spektrallinien eines hfs-Überganges sind größer für Übergänge mit $\Delta F = \Delta J$ als für Übergänge mit $\Delta F \neq \Delta J$. Somit entsprechen Übergänge mit $\Delta F = \Delta J$ den hfs-Komponenten hoher Intensität, welche von großen Werten für F zu kleineren hin abnehmen.

2.1.3 Die Intensitäten der hfs-Komponenten

Für die Intensitäten I der einzelnen hfs-Komponenten gelten folgende Gleichungen (C und D sind Konstanten) [6]:

Für Übergänge von J - 1 \rightarrow J und J + 1 \rightarrow J:

$$\mathbf{L} - \mathbf{1} \to \mathbf{L}, \ \mathbf{I} = \frac{D(J + L + I + 1)(J + L + I)(J + L - I)(J + L - I - 1)}{L}$$
$$\mathbf{L} \to \mathbf{L}, \ \mathbf{I} = -\frac{D(J + L + I + 1)(J + L - I)(J - L + I)(J - L - I - 1)(2L + 1)}{L(L + 1)}$$
$$\mathbf{L} + \mathbf{1} \to \mathbf{L}, \ \mathbf{I} = \frac{D(J - L + I)(J - L + I - 1)(J - L - I - 1)(J - L - I - 2)}{(L + 1)}$$
(2.26)

Für Übergänge von $J \rightarrow J$:

$$\mathbf{L} - \mathbf{1} \to \mathbf{L}, \ \mathbf{I} = \frac{C \left(J + L + I + 1 \right) \left(J + L - I \right) \left(J - L + I + 1 \right) \left(J - L - I \right)}{L}$$
$$\mathbf{L} \to \mathbf{L}, \ \mathbf{I} = \frac{C \left[J \left(J + 1 \right) + L \left(L + 1 \right) - I \left(I + 1 \right) \right]^2 \left(2L + 1 \right)}{L \left(L + 1 \right)} \quad (2.27)$$
$$\mathbf{L} + \mathbf{1} \to \mathbf{L}, \ \mathbf{I} = -\frac{C \left(J + L + I + 2 \right) \left(J + L - I + 1 \right) \left(J - L + I \right) \left(J - L - I - 1 \right)}{\left(L + 1 \right)}$$

Die von uns verwendete Software zur Berechnung und zum Fitten der hfs rechnet mit diesen Formeln.

2.2 Lanthan

Lanthan (La) ist das erste Element in der Gruppe der Lanthanoide. Das Metall ist silbrig weiß und oxidiert schnell, wenn es Luft ausgesetzt ist. Es wird in Mineralien der Seltenen Erden gefunden, normalerweise in Verbindung mit anderen Elementen der Seltenen Erden, meist in Verbindung mit Cer (Ce).

Das Wort Lanthan entstammt aus dem Griechischen lanthano und bedeutet 'im Verborgenen liegend'. Es wurde 1839 von Carl Gustav Mosander entdeckt.

Natürliches Lanthan besteht aus zwei Isotopen: Dem langlebigen radioaktiven ¹³⁸La mit einem natürlichen Vorkommen von 0,09% und einer Halbwertszeit von $1.05 \cdot 10^{11}$ Jahren und dem stabilen Isotop ¹³⁹La mit einem natürlichen Vorkommen von

99.91% [7]. Diese beiden Isotope haben Kernspinquantenzahlen I von 5/2 und 7/2. Weitere 37 Isotope konnten natürlich erzeugt werden, die jeweils eine Halbwertszeit von weniger als 24 Stunden aufweisen.

La hat die Zahl 57 im Periodensystem mit dem Grundzustand $[Xe]5d^{1}6s^{2} {}^{2}D_{3/2}^{o}$. Es hat ein Valenzelektron in der 5d Schale. Das Isotop 139 La, das für unsere Messungen zur Verfügung steht, hat ein magnetisches Dipolmoment μ_{I} von 2.7830455(9) μ_{N} [8]. Wegen seiner sphärischen Ladungsanordnung im Kern hat es ein sehr kleines elektrisches Qudrupolmoment Q von -0,20(1)b [9].

Abbildung 2 zeigt die in unserem Versuch verwendete Kathode mit Lanthan im Zentrum ummantelt von Kupfer.

Abbildung 2: Die im Versuch verwendete Kathode: La als der Innenteil ummantelt von Kupfer [10].

Die hfs von La wurde schon vielerorts mit verschiedenen Methoden untersucht. Die zur Verfügung stehenden Methoden sind: Fabry-Perot Interferometrie [11, 12], magnetische Atomstrahlresonanz [13, 14] und verschiedene Techniken der Laserspektroskopie, wie Dopplerfreie Laser-Atomstrahl-Spektroskopie [15, 16], magnetische Laser-Atomstrahl-Resonanz [17, 18], Doppler-reduzierte intermodulierte optogalvanische und laserinduzierte Fluoreszenz-Spektroskopie [19, 20, 21].

Die Entdeckungen der letzteren Zeit von zuvor unbekannten Energieniveaus sind in [22, 23, 24, 25, 26, 27, 28] dokumentiert. Die hfs-Untersuchungen von La lassen weiterhin noch viele Lücken offen.

3

Methoden und Versuchsaufbau

Zur Versuchsdurchführung steht eine Apparatur zur Verfügung, die mit kleinen Umbauten mehrere verschiedene Methoden zum Auffinden, zur Detektion und zur Zuordnung der hfs zu den atomaren Energieniveaus ermöglicht. Die in dieser Masterarbeit am häufigsten zur Anwendung kommenden Methoden sind die optogalvanische (OG) Spektroskopie und die laserinduzierte Fluoreszenz (LIF) Spektroskopie. Weitere Methoden, die zur Anwendung kommen, sind die Sättigungsspektroskopie und das Scannen des Monochromators zur Aufnahme des Spektrums der Hohlkathodenstrahlung ohne Laseranregung. Die Anordnung des Versuchsaufbaus ist in Abbildung 3 zu sehen. Die Anordnung der optischen Elemente ist in Abbildung 4 abgebildet. Das Schema und die praktische Ausführung der Vakuumapparatur sind in den Abbildungen 5 und 6 zu sehen.

Ein Querschnitt durch die Hohlkathodenlampe (HKL) ist in Abbildung 7 gezeigt. Das Schema der Versuchsanordnung zur OG- und zur LIF-Methode zeigt Abbildung 8. Das Schema zur Sättigungsspektroskopie ist in Abbildung 9 dargestellt.

3.1 Optogalvanische Spektroskopie

Wenn die Wellenlänge des Strahles des Anregungslasers, der durch die Hohlkathodenentladung hindurch geht, durchgestimmt wird und diese in Resonanz mit den Übergängen geht, so verändern sich die Bevölkerungsdichten der einzelnen hfs-Niveaus . Diese Änderung wird sichtbar in Form einer Spannungsänderung ΔU der Entladung. Sie kann mit dem Lock-In-Verstärker nachgewiesen werden. Dieser hat als Referenzfrequenz die Chopperfrequenz, mit der das Laserlicht gechoppt wird. Dieser Effekt wird als optogalvanischer (OG) Ef-

Abbildung 3: Versuchsaufbau [29].

Abbildung 4: Der Aufbau der optischen Elemente [10].

HKL ... Hohlkathodenlampe, H1, H2 ... Glasventile für die Vakuumleitungen, S1, S2 ... Schiebeventile, V1, V2 ... Vakuumventile, KF1, KF2 ... Kühlfallen, M ... Manometer, P ... Drehschieberpumpe, Ar ... Argonzufuhr

Abbildung 5: Das Schema der Vakuumapparatur [29].

3. METHODEN UND VERSUCHSAUFBAU

Abbildung 6: Die Vakuumapparatur [29].

fekt bezeichnet. Im Zusammenhang mit Spektroskopie ist der Ausdruck OG-Spektroskopie gebräuchlich [30].

Die Methode ist sehr empfindlich und es können bereits bei sehr schwachen Laseranregungen schwache Spektrallinien detektiert werden [28]. Für die OG-Methode ist eine sehr ruhige Entladung erforderlich mit einem möglichst hohen Signal-Rausch-Verhältnis [31]. Wenn die Wellenlänge des Anregungslasers durchgestimmt wird, so wird ein Signal aufgenommen, sobald die Laserwellenlänge in Resonanz mit einem optischen Übergang zwischen zwei Energieniveaus ist. Wenn zwei oder mehr Linien die annähernd gleiche Schwerpunktswellenlänge haben, so werden diese Linien gleichzeitig detektiert. Ein solches Ereignis wird als Blend-Situation bezeichnet. Die überlagerten Linien sind nicht seperierbar mittels der OG-Methode, was einen Nachteil dieser Methode darstellt.

2,7HK...Hohlkathode Lochdurchmesser, $\mathbf{m}\mathbf{m}$ A...Anodenstromanschluss, B...Aluminiumanode, C...Keramikhalter Aluminimanode, für die D....O-Ringdichtung, E...Kupferleitung zwischen Anschluss und Anode, F...Quartzglasfenster, G...Glasrohre zur elektrischen Isolation der Entladung

Abbildung 7: Ein Querschnittt der Hohlkathodenlampe [29].

Abbildung 8: Das Schema des Versuchsaufbaus für die OG- und die LIF-Methode [29].

Abbildung 9: Das Schema des Versuchsaufbaus für die Sättigungs-Methode.

Weiters ist nicht unmittelbar klar, welche Energieniveaus am beobachteten Übergang beteiligt sind.

3.2 Laserinduzierte Fluoreszenz-Spektroskopie

3.2.1 Aufnahme von Spektren mittels LIF-Spektroskopie

Wenn eine Spektrallinie einem Übergang zwischen zwei Energieniveaus zugeordnet werden soll, so findet die Methode der laserinduzierten Fluoreszenz (LIF) Spektroskopie Anwendung.

Nachdem das Laserlicht gechoppt wird passiert das Laserlicht durch die Entladung. Wenn das Entladungslicht der HKL auf ein Spektrometer fokussiert wird, in unserem Falle ein Monochromator, können einzelne Fluoreszenzkanäle mit der Chopperfrequenz ausgewählt werden und die Zunahme der Intensität des LIF-Übergangs kann mittels Lock-In-Verstärker sichtbar gemacht werden.

Wenn die Laserwellenlänge in Resonanz mit einem optischen Übergang ist wird die Bevölkerung des oberen Niveaus des untersuchten Übergangs erhöht. Damit wird die Intensität der Fluoreszenzübergänge des oberen Niveaus zum unteren ebenso erhöht. Gleichzeitig wird das untere Niveau des untersuchten und angeregten Übergangs entleert. Wenn die Energie des unteren Niveaus hoch genug ist, dann finden Fluoreszenz-Übergänge zu noch tiefer liegenden Niveaus statt. Die Intensität solcher Zerfälle nimmt in gleicher Weise ab wie die Intensität der Fluoreszenzlinie des oberen Niveaus zunimmt. Die Abnahme kann am Lock-In-Verstärker als Signal gegensätzlicher Phase als die der Fluoreszenzlinie vom oberen Niveau abgelesen werden. Daher stammt die Bezeichnung 'negative Fluoreszenz' (nf)-Linie.

Ein dritter Effekt, der mittels LIF-Spektroskopie beobachtet werden kann, ist die Energieübertragung mittels Stoßkopplung. Falls zwei Energieniveaus ähnliche Energien aufweisen, so kommt es vor, dass die Energie mittels inelastischem Stoß auf dieses nah liegende Niveau übertragen wird. Somit können die Fluoreszenzlinien beobachtet werden, die von diesem mittels Stoßkopplung angeregtem Niveau stammen. Diese Linien haben nichts mit dem eigentlich angeregten Übergang zu tun und eine richtige Zuordnung zu den atomaren Energieniveaus ist schwierig. Stoßkopplung kann sowohl mit dem oberen als auch mit dem unteren Niveau des angeregten Überganges stattfinden. Die soeben beschriebenen Effekte sind in Abbildung 10 zusammengefasst. Mit der LIF-Spektroskopie kann ein optischer

Abbildung 10: Das Niveauschema der LIF-Spektroskopie [10].

Übergang eindeutig den zugehörigen Niveaus zugeordnet werden. Jede Fluoreszenzlinie, die dem selben Übergang angehört, zeigt die gleiche hfs wie die angeregte Linie. Falls zwei oder mehr Spektrallinien die selbe Schwerpunktswellenlänge haben, so überlappen sich deren Strukturen. Solche Blend-Linien sind mittels OG-Spektroskopie nicht seperierbar. Wenn der Laser in Resonanz mit einem solchen Blend ist, dann regt der Laser mehr als nur einen Übergang an und beim Scannen des Monochromators sind für gewöhnlich viele Fluoreszenzlinien sichtbar. Wenn die hfs für jeden LIF-Kanal aufgenommen wird können die verschiedenen Übergänge getrennt werden. Jede Wellenlänge, die die gleiche hfs aufweist, gehört dem selben spektralen Übergang an.

3.3 Sättiguns-Spektroskopie

Wenn Sättigungsspektroskopie experimentiell ausgeführt wird, so wird der Laserstrahl mittels Strahlteiler in zwei Strahlen gleicher Intensitätsanteile aufgespalten, bevor diese in die HKL gelangen. Ein Teilstrahl geht wie zuvor von vorne in die Entladung, der andere wird über ein Spiegelsystem um die HKL herumgeleitet und von der gegenüberliegenden Seite eingestrahlt.

Die Atome in der HKL bewegen sich nach der Maxwell-Verteilung mit unterschiedlichen Geschwindigkeiten im Raum. Beim Durchstimmen des Lasers werden nach und nach durch Resonanz verschiedene Gschwindigkeitsgruppen angeregt. Wenn das Laserlicht die Atome von zwei entgegengesetzten Seiten anregt, werden von beiden Teilstrahlen unterschiedliche Geschwindigkeitsgruppen angeregt; es werden zwei Geschwindigkeitsklassen der Atome simultan angeregt.

Falls es nun vorkommt, dass das Laserlicht eine Wellenlänge hat, welche die Atome, die sich orthogonal zum Laserlicht bewegen, anregt, dann werden diese Atome von beiden Teilstrahlen angeregt und die Anregung kann in die Sättigung kommen. Im Linienprofil ist ein kleiner Einbruch sichtbar: Ein Doppler-freier Lamb-Dip. Dieser Lamb-Dip gibt eine sehr genaue Positionsangabe jeder hfs-Komponente eines Überganges an. Dopplerfreie Messungen in einer HKL wurden z.B. von Hänsch et al. [32] durchgeführt. Wenn eine Chopperscheibe mit zwei verschieden geteilten Kreisen, also verschiedenen Chopperfrequenzen auf einem Chopper, jeweils eine Frequenz für einen Teilstrahl, verwendet wird, so ist es möglich, den Doppler-verbreiterten Untergrund zu unterdrücken. Dies ist nur möglich, wenn die beiden Chopperfrequenzen eine feste Phasenbeziehung zum Lock-In-Verstärker haben. Signale, die mit der Summenfrequenz der beiden gechoppten Teilstrahlen moduliert sind, werden verstärkt. Als Resultat werden bei einem Durchstimmen des Anregungslasers nur die nicht-linearen Intensitätsanteile registriert. Ein Beispiel für die Sättigungsspektroskopie ist in Abbildung 11 dargestellt. Die Halbwertsbreite einer Komponente liegt bei

Abbildung 11: Ein Beispiel für die Sättigungsspektroskopie aufgenommen mit LIF. Crossover-Resonanzen sind mit Pfeilen markiert [10].

300 MHz. Bei näherer Betrachtung sind mehr Komponenten in der Struktur vorhanden, als hfs-Komponenten vorkommen. Diese zusätzlichen Peaks sind Crossover-Resonanzen. Diese werden verursacht durch eine Überlappung zweier hfs-Übergänge mit einem gemeinsamen oberen oder unteren hfs-Niveau. Jeweils zwei oder drei dicht nebeneinanderliegende hfs-Komponenten, in Abbildung 11 zu einem jeweils einem Peak mit drei oder fünf Sättigungspeaks verbunden, haben das gleiche untere oder das gleiche obere hfs-Niveau. Die Frequenzen der Crossover-Resonanzen liegen in der Mitte zwischen zwei dicht aufeinanderfolgenden Sättigungs-Peaks.

3.4 Monochromatorscan

Aufgenommen wird das Entladungslicht der HKL ohne anregendes Laserlicht. Das Licht wird über ein Linsensystem gebündelt über einen optischen Chopper in den Monochromator geführt. Mittels eines Photomultipliers wird die Intensität im jeweilig vom Monochromator eingestellten Wellenlängenbereich gemessen und über einen gewählten Wellenlängenbereich gescannt. Es wird die Abhängigkeit der detektierten Intensität von der Zeit und damit - bei linearem Zusammenhang zwischen Wellenlänge und Zeit - als Intensitätüber-Wellenlänge-Spektrum ausgegeben. In dem auf diese Weise aufgenommenen Spektrum sind alle Linien der Entladung, deren Intensität das Rauschen der Entladung übersteigt, zu sehen, im Gegensatz zur OG- oder LIF-Spektroskopie, in der nur die jeweils vom Laser angeregten Linien registriert werden. Die Registrierungen können mit einem Referenzspektrum, z. B. einem Fourier-Transformations (FT) Spektrum verglichen werden. In den FT-Spektren der Datenbank sind wegen den entsprechenden Versuchsbedingungen der FT-Spektroskopie viele Spektrallinien nicht sichtbar. Mit den mittels Monochromatorscans aufgenommenen Spektren kann für Linien durch Vergleich mit den FT-Spektren die Wellenlänge sehr präzise bestimmt werden. Die FT-Spektren in der Datenbank sind relativ zu unseren Aufnahmen sehr linienarm. Im Bereich von 6295 - 6389 Å sind wegen des Filters zur Unterdrückung des He-Ne-Anregungslasers (6328 Å) keine Linien im FT-Spektrum sichtbar.

3.5 Laser

3.5.1 Pumplaser

Als Pumplaser wird ein Verdi V18 Laser von der Firma Coherent verwendet. Es ist dies ein diodengepumpter Festkörperlaser mit einem Nd:YLF-Kristall (Neodym-dotiertes Yttrium Lithium Fluorid). Die Wellenlänge des Laserlichtes beträgt 532 nm [33]. Die Ausgangsleistung beträgt in unseren Versuchen zwischen 5 und 10 W.

3.5.2 Farbstofflaser

Das Schema des in unserem Experiment verwendeten Farbstofflasers ist in Abbildung 12 und zwei Fotos dazu in Abbildung 13 zu sehen.

Abbildung 12: Das Schema des im Experiment verwendeten Farbstofflasers [10].

Als Farbstoff kommt in unseren Versuchsreihen Rhodamin 6G zur Anwendung. Damit sind wir in der Lage, einen Wellenlängenbereich von 5571 bis 6108 Å abzudecken.

Abbildung 13: Die praktische Ausführung des im Experiment verwendeten Farbstofflasers [29].

3.6 Datenverarbeitung

Neben vielen anderen kommen hauptsächlich zwei Programme für die Datenverarbeitung zur Anwendung: Class_lw_allg17.exe und Fitter98.exe.

3.6.1 Class lw allg17.exe

Das Programm 'Class_lw_allg17.exe' ist sehr vielseitig und praktisch. Es sind darin alle bekannten La- und Ar-Niveaus gespeichert. Die Hauptfunktion, die von uns zur Anwendung kommt, ist die folgende: Wird eine neue Linie in das Programm eingefügt, so errechnet das Programm unter Berücksichtigung der geltenden Auswahlregeln alle möglichen Übergänge, die zu dieser Schwerpunktswellenlänge passen und erstellt das dazugehörige hfs-Linienprofil. Es werden sowohl die positiven Fluoreszenzen als auch die negativen berechnet und es wird mit den Einträgen in der Datenbank verglichen, ob solche Übergänge bereits beobachtet wurden. Da die beobachteten Übergänge von dem Programm als mögliche Klassifizierungen vorgeschlagen werden, erscheint es als sinnvoll, den gesamten Bereich des Farbstofflasers abzuscannen, um von vornherein abzudecken, ob eine Linie bei der berechneten Wellenlänge vorhanden ist oder nicht.

3.6.2 Fitter98.exe

Mittels des Programmes 'Fitter98.exe' werden zuerst die Daten linearisiert, um einen Fit erstellen zu können. Daraus werden A-Faktoren und Schwerpunktsenergien ermittelt bzw. korrigiert.

Zum Fitten des Linienprofils kommt eine Mischung eines Gauß- und Lorentz-Profils zur Anwendung. Der Bereich der von uns entdeckten Niveaus liegt zwischen etwa 38000 und 44000 cm^{-1} . Experimentell wird beobachtet, dass, je höher ein Niveau liegt, desto größer ist der Anteil der Stoßionisation und daher entspricht das Linienprofil immer mehr einem Lorentz-Profil. Je tiefer ein Niveau liegt, desto größer ist der Anteil der Dopplerverbreiterung, was einem Gauß-Profil entspricht.

Die Fehlergleichungen für einen Fit sind nichtlinear, was dazu führt, dass Startwerte angegeben werden müssen.

In einem Emissionsspektrum koppeln die hfs-Komponenten sehr gut nach der theoretischen Vorhersage. Wird jedoch Laserspektroskopie betrieben, so koppeln die einzelnen Komponenten mit gleichem ΔF (0, ±1). Die Kopplung kann im Programm separat eingegeben werden.

Interessant ist bei solch einem Fit der A-Faktor.

Befindet sich in einer Registrierung neben einer zu fittenden Linie eine Linie, für die ν_{cg} bereits sehr genau bekannt ist, so kann durch den relativen Abstand zu ν_{cg} der zu fittenden Linie die Niveau-Energie korrigiert werden. Erfahrungsgemäß sind die unteren Niveaus eines Übergangs gut bekannt und die oberen werden korrigiert.

4

Versuchsdurchführung

4.1 Systematische OG-Scans

Während meiner Labortätigkeit von November 2013 bis April 2014 gelingt es mir, den gesamten Bereich des Farbstofflasers von 5571 bis 6108 Å mittels OG-Spektroskopie abzuscannen. Es werden dabei etwa 1850 Linien registriert. Davon werden etwa 800 Linien mit bekannten Energieniveaus klassifiziert, siehe Tabelle 1. Weiters führen etwa 500 der registrierten Linien zu Übergängen von bisher unbekannten Niveaus, siehe Tabelle 2. Die betreffenden Registrierungen sind unter der laufenden Nummer von La181 (11.November 2013) bis La234 (14. Juli 2014) abgespeichert.

Nach dem Einsetzen einer neuen Kathode gelingt es, die Entladung zwischen 25. März und 23. April für 15 Labortage ohne Zerlegen und Reinigen zu nutzen. Dies ist ein Rekord in der Geschichte der HKL-Spektroskopie an der TU Graz. Gewöhnlich erlaubt die Kathode Messungen zwischen den Reinigungen für 3 bis 5 Labortage.

Stimmen die Schwerpunktswellenlänge ν_{cg} und das Linienprofil mit Einträgen im Programm 'Class_lw_allg17.exe' überein, so wird angenommen, dass die beobachtete Linie dem vorgeschlagenen Übergang entspricht. Dann wird die neu beobachteten Linie mit dem vorgeschlagenen Übergang in die Datenbank eingetragen und wird somit klassifiziert. Entspricht die neu beobachtete Linie keinem Vorschlag, so führt diese Linie auf ein neues Niveau.

Das Signal-Rausch-Verhältnis bei den Registrierungen ist von vielen verschiedenen, teilweise noch ungeklärten Bedingungen abhängig. Es ist an jedem Labortag je nach Brennruhe

4. VERSUCHSDURCHFÜHRUNG

verschieden. Tendenziell wird es mit längerem Betreiben der Entladung besser. Ein Beispiel der gleichen Registrierung an unterschiedlichen Labortagen ist in Abbildung 14 zu sehen.

Abbildung 14: Ein Vergleich zu unterschiedlichen Signal-Rausch-Verhältnissen an den beiden Labortagen 13. Februar (Startwellenlänge $\lambda_{\rm S} = 6075.14$ Å) und 2. Juli 2014 ($\lambda_{\rm S} = 6075.18$ Å). Der freie Spektralbereich (Free Spectral Range, FSR) beider Aufnahmen beträgt 367.3 MHz.

4.2 Anwendung der LIF-Spektroskopie

Die LIF-Spektroskopie wird zum Auffinden neuer Niveaus und Klassifizierungen von Linien als Übergänge zwischen bekannten Niveaus verwendet. Für nicht mit bereits bekannten Niveaus klassifizierbaren Linien, siehe Tabelle 2, werden mittels der LIF-Methode hauptsächlich negative (jedoch auch positive) LIF-Signale mittels Durchstimmen des Monochromators bei Laseranregung bei der Wellenlänge des Peaks der größten Intensität der neuen Linie gesucht. Je größer dabei das Signal-Rausch-Verhältnis (Signal-to-Noise-Ratio, SNR) einer Linie ist, desto eher ist ein LIF-Signal zu erwarten. Handelt es sich um eine sehr starke Spektrallinie, so werden über Stoßkopplungen und weitere atomare Prozesse viele zusätzliche LIF-Signale erzeugt, die es schwierig gestalten, die richtigen LIF-Signale der Übergänge zu finden.

Nachdem der gesamte Bereich des Farbstofflasers abgescannt ist, beginnt die Suche nach neuen Niveaus. Die nützliche Tatsache ist nun, dass alle neuen Linien im Bereich von 5571

4. VERSUCHSDURCHFÜHRUNG

bis 6108 Å bereits im Programm erfasst sind und bei den errechneten Vorschlägen angeführt werden. Dies erleichtert die Arbeit sehr, denn nun ist es nur noch erforderlich, die vom Programm vorgeschlagenen neuen Linien als Übergänge zu einem neu berechneten Niveau mittels LIF zu bestätigen. Vorher war es nötig, bei den vom Programm berechneten Linien anzuregen, um zu sehen, ob diese bei den theoretisch vorhergesagten Wellenlängen vorhanden sind.

Gleich zu Beginn der Suche nach neuen Niveaus bewährt sich diese Herangehensweise indem mehrere neu entdeckte Niveaus schnell über die eingetragenen neuen Linien bestätigt werden.

Über die LIF-Spektroskopie werden während meiner Labortätigkeit 25 Niveaus zwischen 34000 and 43000 cm⁻¹ gefunden, eindeutig bestätigt und deren Bahndrehimpulse J und A-Faktoren ermittelt, siehe Tabelle 3. Die mittels dieser neuen Niveaus klassifizierten Linien sind in den Tabellen 4 und 5 aufgelistet.

Weiters werden viele Testniveaus berechnet, die jedoch erst dann als ein neues Niveau gelten, sobald ein zweiter Übergang zu dem neu berechneten Niveau beobachtet werden kann. Ein Beispiel zur Vorgehensweise ist in Abbildung 15 dargestellt.

Abbildung 15: Ein Beispiel zur Auffindung eines des neuen Niveaus 42457,17 cm⁻¹ J = 3/2 even A = 70 MHz mittels OG-Registrierung und LIF.

Ist eine Klassifizierung zu einem Eintrag in der Datenbank der Software 'Class_lw_allg17.exe' unsicher, liegt eine Blendsituation vor oder entspricht die beobachtete Schwerpunktswellenlänge ν_{cg} dem Eintrag zu ungenau, so wird eine Bestätigung mittels LIF-Spektroskopie gesucht.

4.3 Monochromatorscan

Um ein linienreicheres Gesamtspektrum als das FT-Spektrum zu erhalten, führen wir Monochromatorscans durch.

Am 10. und 11. April 2014 (laufende Registrierungsnummern La223 und La224) wird der gesamte mögliche Bereich des Monochromators von 2590 bis 10000 Å mittels Monochromators corscans aufgenommen. Ein Beispiel der Aufnahme von 4590 bis 4700 Å ist in Abbildung 16 zu sehen.

Abbildung 16: Ein Beispiel des Monochromatorscans mit Registrierungsnummer La
223027 von 4590 bis 4700 Å.
Ein Beispiel zur Bestimmung der genauen Wellenlänge mittels Vergleich mit einem FT-Spektrum ist in Abbildung 17 wiedergegeben.

Abbildung 17: Ein Beispiel des Monochromatorscans im Vergleich mit dem FT-Spektrum von 6063.75 - 6036.25 Å. Beschriftet sind La- und Ar-Linien und Ar-Linien 2. Ordnung.

4.4 Sättigungsspektroskopie

Gelegentlich werden Registrierungen mittels Sättigungsspektroskopie aufgenommen. Die kleinere Linienbreite lässt eine höhere Auflösung zu, womit die hfs-Konstanten genauer bestimmt werden können.

Anhand der Linie mit der Schwerpunktswellenlänge 5829.727 Å wird der Unterschied zwischen OG- und Sättigungsspektroskopie in Abbildung 18 illustriert. Das untere Profil stellt die mit dem Programm 'Class_lw_allg17.exe' berechnete Struktur dar.

Abbildung 18: Ein Beispiel zum Vergleich zwischen Registrierungen aus der OG-Spektroskopie, Sättigungsspektroskopie (sichtbar sind die zusätzlichen Crossover-Peaks) und der mittels dem Programm 'Class_lw_allg17.exe' berechneten Struktur. Die Schwerpunktswellenlänge beträgt 5829.727 Å.

Nach einer Pause der Labortätigkeit im Mai und Juni 2014 bin ich im Juli und August 2014 verantwortlich, Ceylan Güney aus Istanbul / Türkei und Łukasz Sobolewski aus Danzig / Polen als Gäste am Experiment zu betreuen. Während dieser Zeit bin ich am schriftlichen Teil meiner Masterarbeit tätig.

4.5 Zwei neu entdeckte Niveaus

Als Veranschaulichung zur Vorgehensweise wird die Entdeckung und Bestätigung der beiden Niveaus 40136.163 cm⁻¹ und 41629.83 cm⁻¹ beschrieben.

Zur Bestimmung des A-Faktors werden mittels des Programmes 'Fitter98.exe' Fits erstellt. Die Energiekorrektur zur Bestimmung der Niveauenergie mit einer Genauigkeit von bis zu 0.001 cm⁻¹ erfolgt auf verschiedene Herangehensweisen. Ist in einer Registrierung neben einer Linie als Übergang zu dem neuen Niveau eine Linie vorhanden, deren oberes und unteres Energieniveau bereits korrigiert sind, so wird mit einem Fit der genaue Abstand zwischen den beiden Linien bestimmt. Durch Addition oder Subtraktion des Abstandes von der Schwerpunktswellenlänge der bekannten Linie erhält man die genaue Schwerpunktswellenlänge der neuen Linie. Damit kann die Energie des neue Niveaus genauer berechnet werden.

Eine andere Herangehensweise ist die Ausführung einer Ausgleichsrechnung aller beobachteten Linien als Übergänge zu dem neuen Niveau.

4.5.1 40136.163 cm⁻¹, J = 5/2, A = 244(4) MHz, gerade Parität

Datum der Entdeckung: 21. November 2013. Das Niveau klassifiziert 4 neue Linien.

Entdeckung des Niveaus bei 5649.17 Å

Eine unklassifizierbare Linie in einem Blend wird mittels OG-Spektroskopie aufgezeichnet (OG-Registrierungsnummer: La184920). Die geschätzte Schwerpunktswellenlänge beträgt 5649.17 Å, siehe grüne Linie in Abbildung 19.

Abbildung 19: Entdeckung des Niveaus 40136.163 cm⁻¹ in einem Blend bei 5649.17 Å (die grüne senkrechte Linie markiert die Anregungswellenlänge).

Die Wellenlänge des Anregungslasers wird auf die stärkste hfs-Komponente des unklassifizierbaren Anteils des Blends bei 5649.17 Å eingestellt. Beim Abscannen des Entladungslichtes mittels Monochromator werden negative Fluoreszenzsignale bei 5055 und 5144 Å detektiert.

Es wird vermutet, dass das untere Niveau des Überganges bereits bekannt ist und das obere ein unbekanntes Niveau darstellt. Um das untere Niveau des Überganges zu finden wird im FT-Spektrum nach starken Linien gesucht, mit denen das untere Niveau zerfällt, die im Ungenauigkeitsbereich des Monochromators von ± 3 Å um die Wellenlängen der detektierten negativen Fluoreszenzen von 5055 und 5144 Å liegen. Wir kommen auf die beiden Linien 5145.417 und 5056.459 Å, die beide das Niveau 22439.347 cm⁻¹, J = 3/2, ungerade Parität als oberes Niveau aufweisen. Wir addieren zu diesem Niveau die aus der geschätzten Schwerpunktswellenlänge der Anregung bestimmte Wellenzahl von 17696.803 cm⁻¹ und erhalten so ein nicht bestätigtes Testniveau bei 40136.15 cm⁻¹. Der Bahndrehmipuls J des neuen Niveaus kann aufgrund des Bahndrehimpulses des unteren Niveaus von 3/2 und der Auswahlregel für J nur 1/2, 3/2 oder 5/2 betragen. Der A-Faktor ist in dieser Registrierung nicht bestimmbar, Fit, siehe Abbildung 20.

Abbildung 20: Bestfitsituation des Blends der drei Linien bei 5649.213, 5649.183 und 5649.166 Å.

Das Testniveau wird in die Niveauliste 'LEVEL_LA.DAT', vorerst ohne A-Faktor, eingetragen. Das Programm 'Class_lw_allg17.exe' wird neu geladen und es erscheint ein Eintrag als Vorschlag für die Linie bei 5649.17 Å. In der Liste der Übergänge des unteren Niveaus sind die beiden beobachteten negativen Fluoreszenzen bei 5055 und 5144 Å mit hoher Intensität eingetragen.

Um Bestätigungen für das neue Niveau zu erhalten wird die Liste der vom Programm berechneten Übergänge des oberen Niveaus aufgerufen. Für weitere Übergänge zum neu berechneten Niveau gibt es im von unserem Farbstofflaser zugänglichen Bereich zwischen 5571 und 6108 Å mehrere Einträge mit bisher nicht klassifizierbaren Linien: 5768.11 (Blend), 5910.26 (Blend) und 5939.10 Å.

Erste Bestätigung des Niveaus bei 5768.11 Å

Wir gehen im Programm 'Class_lw_allg17.exe' zur Linie bei 5768.11 Å und rufen die Liste mit den Übergängen des unteren Niveaus auf. Die Linie mit der stärksten Intensität ist bei 5177 Å. Nun rufen wir die Registrierung mit der Nummer La184022 auf. Um zu wissen, wo sich die Wellenlänge der Linie mit der stärksten Intensität befindet, ist es wichtig, deren hfs-Struktur in der Registrierung zu sehen. Wir erkennen die vorgeschlagene Linie als kleineren Peak, siehe die grüne Linie in Abbildung 21.

Abbildung 21: Bestätigung des Niveaus 40136.163 cm⁻¹ bei 5768.11 Å (die grüne senkrechte Linie markiert die Anregungswellenlänge).

Wir stellen den Anregungslaser auf diesen Peak bei 5768.11 Å ein. Im Entladungslicht wird mittels Monochromator die negative Fluoreszenz bei 5177 Å nachgewiesen. Somit gilt das neue Niveau nicht mehr als Testniveau sondern als bestätigtes Niveau, da bereits zwei Übergänge von diesem nachgewiesen wurden. Der Bahndrehimpuls des unteren Niveaus beträgt 5/2. Somit wird die Auswahl für den Bahndrehimpuls des neuen Niveaus auf 3/2 und 5/2 eingeschränkt.

Zweite Bestätigung des Niveaus bei 5939.10 Å

Wir gehen im Programm zur Linie bei 5939.10 Å und rufen die Liste mit den Übergängen des unteren Niveaus auf. Die Linie mit der stärksten Intensität ist bei 5211 Å. Nun rufen wir die Registrierung mit der Nummer La184030 auf. Wir erkennen die vorgeschlagene Linie in der Registrierung als Struktur mit 5 Peaks. Wir stellen die Wellenlänge des Anregungslasers auf den stärksten Peak bei 5939.07 Å ein, siehe die grüne Linie in Abbildung 22.

Abbildung 22: Bestätigung des Niveaus 40136.163 cm⁻¹ bei 5939.10 Å (die grüne senkrechte Linie markiert die Anregungswellenlänge).

Im Entladungslicht wird mittels Monochromator die negative Fluoreszenz bei 5211 Å bestätigt. Da das untere Niveau einen Bahndrehimpuls von 7/2 hat wird der Bahndrehimpuls des neuen Niveaus auf 5/2 festgelegt.

Der A-Faktor wird mittels dem Fit-Programm 'Fitter98.exe' zu 244 MHz bestimmt, siehe Abbildung 23, und wird in der Niveauliste 'LEVEL_LA.DAT' zum neuen Niveau eingetragen.

Abbildung 23: Bestfitsituation der Linie bei 5939.10 Å. A = 244 MHz.

Anregung der Linie bei 5910.26 Å

Wir gehen im Programm zur Linie bei 5910.26 Å und rufen die Liste mit den Übergängen des unteren Niveaus auf. Die Linie mit der stärksten Intensität ist bei 5234.2755 Å. Nun rufen wir die Registrierung mit der im Programm eingetragenen OG-Registrierungsnummer La218076 auf. Wir erkennen 2 schwache Peaks der vorgeschlagene Linie. Der stärkere Peak ist in Abbildung 24 mit einer grünen Linie markiert. Wir erwarten wegen der schwachen Intensität keine negative Fluoreszenzen und regen die Linie deshalb nicht an.

Abbildung 24: Übergang des Niveaus 40136.163 cm⁻¹ bei 5910.26 Å (die grüne senkrechte Linie markiert die Anregungswellenlänge).

Die Struktur zeigt mittels der Simulations-Funktion des Programmes

'Class_lw_allg17.exe' eine gute Übereinstimmung des Vorschlages mit der Registrierung, siehe Abbildung 25, und wird somit mit der neuen Linie klassifiziert.

Abbildung 25: Vergleich der Registrierung mit der Simulation der Linie bei 5910.26 Å (die rote Linie ist ein Ausschnitt aus der Registrierung, siehe Abbildung 24, die blaue Linie ist die vom Programm berechnete Struktur.

Bestimmung der Ungenauigkeit des A-Faktors

Die Ungenauigkeit des A-Faktors wird aus den Simulationen mit \pm 4 MHz abgeschätzt.

Energiekorrektur

Zur Energiekorrektur wird eine Registrierung aufgenommen, bei der zwischen der Detektion des OG-Signals und des LIF-Signals hin und zurück geschaltet wird, OG-Registrierungsnummer: La214097, siehe Abbildung 26.

Abbildung 26: Die Niveaus der Linien 5649.381 (links) und 5649.183(Blend mit der neuen Linie) Å sind bereits korrigiert. Die neue Linie ist mit der grünen Linie markiert.

Ein 3 Komponenten-Fit des Blends in Abbildung 26 (Dateinummer des Fits: D214097) ergibt für die neue Linie eine Wellenlänge von 5649.166 Å und somit für das neue Niveau eine Energie von 40136.163 cm⁻¹.

Abbildung 27: Zur Energiekorrektur verwendeter 3 Komponenten-Fit. Die Niveaus der Linien 5649.381 (links) und 5649.183 Å (Blend mit der neuen Linie) sind bereits korrigiert. Der Fit ergibt für die neue Linie eine Wellenlänge von 5649.166 Å. (die negative Struktur in Abbildung 26 ist nach oben gespiegelt).

4.5.2 41629.83 cm⁻¹, J = 7/2, A = 270(2) MHz, gerade Parität

Datum der Entdeckung: 25. November 2013. Das Niveau klassifiziert 9 neue Linien.

Entdeckung des Niveaus bei 5805.55 Å

Eine unklassifizierbare Linie mit der geschätzten Schwerpunktswellenlänge von 5805.55 Å, wird mittels OG-Spektroskopie aufgezeichnet. OG-Registrierungsnummer: La186054, siehe Abbildung 28.

Abbildung 28: Entdeckung des Niveaus 41629.83 cm⁻¹ anhand der Linie bei 5805.55 Å (die grüne senkrechte Linie markiert die Anregungswellenlänge).

Die Wellenlänge des Anregungslasers wird auf die stärkste hfs-Komponente der unklassifizierten Linie bei 5805.54 Å eingestellt. Beim Abscannen des Entladungslichtes mittels Monochromator wird ein negatives Fluoreszenzsignal bei 4282 Å detektiert.

Es wird vermutet, dass das untere Niveau des Überganges bereits bekannt ist und das obere ein unbekanntes Niveau darstellt. Um das untere Niveau des Überganges zu finden wird im FT-Spektrum nach einer starken Linie gesucht, mit der das untere Niveau zerfällt, die im Ungenauigkeitsbereich des Monochromators von ± 3 Å um die Wellenlänge der detektierten negativen Fluoreszenz von 4282 Å liegt. Wir kommen auf die Linie 4280.254 Å, die das Niveau 24409.684 cm⁻¹, J = 7/2, ungerade Parität als oberes Niveau aufweist. Wir addieren zu diesem Niveau die aus der geschätzten Schwerpunktswellenlänge der Anregung bstimmte Wellenzahl von 17220.122 cm⁻¹ und erhalten so ein nicht bestätigtes Testniveau bei 41629.81 cm⁻¹. Der Bahndrehmipuls J des neuen Niveaus kann aufgrund des Bahndrehimpulses des unteren Niveaus von 7/2 und der Auswahlregel für J nur 5/2, 7/2 oder 9/2 betragen.

Der A-Faktor wird mittels dem Fit-Programm 'Fitter98.exe' unter Annahme von J = 7/2 auf 270 MHz bestimmt, siehe Abbildung 29, und wird in der Niveauliste 'LEVEL_LA.DAT' zum neuen Niveau eingetragen.

Abbildung 29: Bestfitsituation der Linien bei 5805.70 und 5805.55 Å

Das Programm 'Class_lw_allg17.exe' wird neu geladen und es erscheint ein Eintrag als Vorschlag für die Linie bei 5805.55 Å mit einer zur Registrierung passenden hfs-Struktur. In der Liste der Übergänge des unteren Niveaus ist die beobachtete negative Fluoreszenz bei 4280 Å mit hoher Intensität eingetragen.

Um Bestätigungen für das neue Niveau zu erhalten wird die Liste der vom Programm berechneten Übergänge des oberen Niveaus aufgerufen. Für weitere Übergänge zum neu berechneten Niveau gibt es im von unserem Farbstofflaser zugänglichen Bereich zwischen 5571 und 6108 Å weitere 6 Einträge mit bisher nicht klassifizierbaren Linien: 5630.71, 5685.49, 5751.87, 5838.83, 6041.92 und 6044.10 Å. Außerhalb des Bereiches existiert eine neue Linie bei 3984.302 Å im FT-Spektrum und eine Linie bei 6844.05 Å, für die früher schon eine OG-Registrierung gemacht wurde.

Bestätigung des Niveaus bei 5838.83 Å

Wir gehen im Programm zur Linie bei 5838.83 Å und rufen die Liste mit den Übergängen des unteren Niveaus auf. Starke Linien sind bei 4079, 4262 und 4650 Å eingetragen.

Nun rufen wir die Registrierung mit der Nummer La222041 auf. Um zu wissen, wo sich die Wellenlänge der Linie mit der stärksten Intensität befindet, ist es wichtig, deren hfs-Struktur in der Registrierung zu sehen. Wir erkennen die vorgeschlagene Linie als starken Doppel-Peak, siehe die grüne Linie in Abbildung 30.

Abbildung 30: Bestätigung des Niveaus 41629.83 cm⁻¹ anhand der Linie bei 5838.83 Å (die grüne senkrechte Linie markiert die Anregungswellenlänge).

Wir stellen den Anregungslaser auf diesen Peak bei 5838.82 Å ein. Im Entladungslicht werden mittels Monochromator die negativen Fluoreszenzen bei 4079, 4262 und 4650 Å nachgewiesen.

Somit gilt das neue Niveau nicht mehr als Testniveau sondern als bestätigtes Niveau, da bereits zwei Übergänge von diesem beobachtet wurden. Der Bahndrehimpuls des unteren Niveaus beträgt 5/2. Somit wird die Auswahl für den Bahndrehimpuls des neuen Niveaus auf 5/2 und 7/2 eingeschränkt.

Der A-Faktor von 270 MHz wird mittels dem Fit-Programm 'Fitter98.exe' bestätigt, siehe Abbildung 31.

Abbildung 31: Bestfitsituation der Linie bei 5838.83 Å.

Linie bei 5751.87 Å

Bisher wurden noch keine negative Fluoreszenzen gesucht. OG-Registrierungsnummer: La189053, siehe Abbildung 32. Ein Fit der Struktur mit einem A-Faktor von 270 MHz ist zulässig, siehe Abbildung 33.

Abbildung 32: Eine Linie des Niveaus 41629.83 cm⁻¹ bei 5751.87 Å (die grüne senkrechte Linie markiert die Schwerpunktswellenlänge).

Abbildung 33: Bestfitsituation der Linie bei 5751.87 Å

Die Übereinstimmung der beobachteten Struktur mit der vorgeschlagenen ist hinreichend gut, um die Linie als Übergang zu dem neuen Niveau zu klassifizieren.

Da das untere Niveau des Übergangs einen Bahndrehimpuls von 9/2 hat wird der Bahndrehimpuls des neuen Niveaus auf 7/2 festgelegt.

Linie bei 6044.10 Å

Bisher wurden noch keine negative Fluoreszenzen gesucht. OG-Registrierungsnummer: La210092, siehe Abbildung 34. Ein Fit der Struktur mit einem A-Faktor von 270 MHz ist zulässig, siehe Abbildung 35.

Abbildung 34: Eine Linie des Niveaus 41629.83 cm⁻¹ bei 6044.10 Å (die grüne senkrechte Linie markiert die Schwerpunktswellenlänge der Linie als Übergang zum neuen Niveau).

Abbildung 35: Bestfitsituation der Linie bei 6044.10 Å.

Die Übereinstimmung der beobachteten Struktur mit der vorgeschlagenen ist hinreichend gut, um die Linie als Übergang zu dem neuen Niveau zu klassifizieren.

Anregung der Linie bei 6041.92 Å

Die vom Programm vorgeschlagene Linie ist in der OG-Registrierung stark verrauscht, siehe die grüne Linie in Abbildung 36. Wir können keine der vorgeschlagenen negativen Fluoreszenzen nachweisen.

Abbildung 36: Eine Linie des Niveaus 41629.83 cm⁻¹ bei 6041.92 Å (die grüne senkrechte Linie markiert die Schwerpunktswellenlänge der Linie als Übergang zum neuen Niveau).

Die Übereinstimmung der beobachteten Struktur mit der vorgeschlagenen ist hinreichend gut, um die Linie als Übergang zu dem neuen Niveau zu klassifizieren.

Ein Fit der Struktur mit einem A-Faktor von 270 MHz ist zulässig, siehe Abbildung 37.

Abbildung 37: Bestfitsituation der Linie bei 6041.92 Å.

Linie bei 5630.71 Å

Bisher wurden noch keine negative Fluoreszenzen gesucht. OG-Registrierungsnummer: La201081, siehe Abbildung 38. Das Signal-Rausch-Verhältnis ist zu klein, um einen Fit zu rechtfertigen.

Abbildung 38: Eine Linie des Niveaus 41629.83 cm⁻¹ bei 5630.71 Å (die grüne senkrechte Linie markiert die Schwerpunktswellenlänge der Linie als Übergang zum neuen Niveau).

Die Übereinstimmung der beobachteten Struktur mit der vorgeschlagenen ist hinreichend gut, um die Linie als Übergang zu dem neuen Niveau zu klassifizieren.

Linie bei 5685.49 Å

Bisher wurden noch keine negative Fluoreszenzen gesucht. OG-Registrierungsnummer: La194044, siehe Abbildung 39. Das Signal-Rausch-Verhältnis ist zu klein, um einen Fit zu rechtfertigen.

Abbildung 39: Eine Linie des Niveaus 41629.83 cm⁻¹ bei 5685.49 Å (die grüne senkrechte Linie markiert die Schwerpunktswellenlänge der Linie als Übergang zum neuen Niveau).

Die Übereinstimmung der beobachteten Struktur mit der vorgeschlagenen ist hinreichend gut, um die Linie als Übergang zu dem neuen Niveau zu klassifizieren.

Linie bei 6844.05 Å

Bisher wurden noch keine negative Fluoreszenzen gesucht. OG-Registrierungsnummer: La164018, siehe Abbildung 40. Ein Fit der Struktur mit einem A-Faktor von 270 MHz ist zulässig, siehe Abbildung 41.

Abbildung 40: Eine Blendsituation der Linie des Niveaus 41629.83 cm⁻¹ bei 6844.05 Å und der Linie bei 6844.17 Å (die grüne senkrechte Linie markiert die Schwerpunktswellenlänge der Linie als Übergang zum neuen Niveau).

Abbildung 41: Bestfitsituation der Linien bei 6844.05 und 6844.17 Å.

Die Übereinstimmung der beobachteten Struktur mit der vorgeschlagenen ist hinreichend gut, um die Linie als Übergang zu dem neuen Niveau zu klassifizieren.

Die Ungenauigkeit des A-Faktors von 270 MHz wird aus den Simulationen mit \pm 2 MHz abgeschätzt.

Eine empirische Betrachtung der beobachteten Linien ergibt eine Energiekorrektur des neuen Niveaus zu 41629.83 cm⁻¹.

$\mathbf{5}$

Ergebnisse und Interpretation

Systematische OG-Scans

Der gesamte Bereich des Farbstofflasers von 5571 bis 6108 Å wird mittels OG-Spektroskopie abgescannt. Es werden dabei etwa 1850 Linien registriert. Davon werden etwa 800 Linien mit bekannten Energieniveaus klassifiziert, siehe Tabelle 1. Weiters führen etwa 500 der registrierten Linien zu Übergängen von bisher unbekannten Niveaus, siehe Tabelle 2. Die betreffenden Registrierungen sind unter der laufenden Nummer von La181 (11.November 2013) bis La234 (14. Juli 2014) abgespeichert.

Auffinden neuer Niveaus und Klassifizierung von Linien

Über die LIF-Spektroskopie werden während meiner Labortätigkeit 25 Niveaus zwischen 34000 and 43000 cm⁻¹ entdeckt, eindeutig bestätigt und deren Bahndrehimpulse J und die A-Faktoren ermittelt, siehe Tabelle 3. Die mittels dieser neuen Niveaus klassifizierten Linien sind in den Tabellen 4 und 5 aufgelistet. Zahlreiche Testniveaus werden berechnet. Aufklärung unsicherer Klassifizierungen oder Klärungen von Blendsituationen werden mittels LIF-Spektroskopie durchgeführt.

Monochromatorscan

Es wird der gesamte technisch mögliche Bereich des Monochromators von 2590 bis 10000 Å mittels Monochromatorscans aufgenommen um ein linienreicheres Gesamtspektrum als das FT-Spektrum zu erhalten.

Sättigungsspektroskopie

Gelegentlich werden Registrierungen mittels Sättigungsspektroskopie aufgenommen. Die kleinere Linienbreite lässt eine höhere Auflösung zu, womit die hfs-Konstanten genauer bestimmt werden können.

6

Tabellen

Tabelle 1: Neu entdeckte Linien, die als Übergänge zwischen bereits bekannten Niveaus klassifiziert werden konnten

Wl./Å	${\rm E_O/cm^{-1}}$	J_{O}	Po	${ m A_O/MHz}$	${\rm E_U/cm^{-1}}$	J_U	$\mathbf{P}_{\mathbf{U}}$	${\rm A}_{\rm U}/{\rm MHz}$
3951.024	41545.897	5.5	е	460	16243.165	4.5	0	614.2(5)
4447.868	40273.672	2.5	e	20s	17797.301	1.5	0	1335(1)
4637.6225	36588.369	0.5	e	1060(5)	15031.634	1.5	0	-672.6(4)
5571.23	43718.15	5.5	e	96.0(30)	25773.798	6.5	0	373.5(5)
5572.73	36543.48	2.5	е	261(5)	18603.922	3.5	0	223.96
5573.39	36109.7	2.5	е	386.58	18172.337	1.5	0	142.1(0.6
5574.25	125066.432	2	e	0	107131.709	1	0	0
5574.59	34032.734	3.5	e	298.69	16099.276	3.5	0	590.8(5)
5575.10	38904.078	1.5	е	228(5)	20972.166	2.5	0	-66.4(3)
5575.16	38903.885	2.5	е	181(3)	20972.166	2.5	0	-66.4(3)
5576.77	35494.062	1.5	e	296s	17567.517	0.5	0	2887.7(2.6
5577.683	192333.499	0.5	0	0	174409.892	1.5	е	0
5577.77	39307.26	3.5	e	123.9(40)	21383.994	4.5	0	94.9(1.0
5579.40	41792.986	3.5	e	310s	23874.946	2.5	0	241.7(2.3)
5580.53	39362.32	2.5	е	80	21447.854	3.5	0	121.5(2)
5580.54	39576.98	4.5	e	93.5(20)	21662.504	3.5	0	283.6(1)
5581.33	42753.29	4.5	е	70	24841.41	5.5	0	422(5)

Wl./Å	$\rm E_O/cm^{-1}$	Jo	Po	$A_{\rm O}/{ m MHz}$	${\rm E_U/cm^{-1}}$	J_U	$\mathbf{P}_{\mathbf{U}}$	${\rm A}_{\rm U}/{\rm MHz}$
5581.88	123372.925	2	е	0	105462.76	3	0	0
5582.27	36065.845	1.5	e	-60.73	18156.96	2.5	0	633.3(1.2
5584.09	41124.11	2.5	е	74(7)	23221.097	3.5	0	-76.4(3)
5584.93	42408.25	3.5	е	47.0(20)	24507.871	2.5	0	188.58
5585.50	42308.11	3.5	е	290	24409.684	3.5	0	188.4(1.7)
5587.07	36065.845	1.5	е	-60.73	18172.337	1.5	0	142.1(0.6
5588.12	40329.5	0.5	е	-490	22439.347	1.5	0	149.5(3.2
5588.51	34988.17	3.5	0	334(20)	17099.31	2.5	е	-210s
5589.00	41592.13	2.5	е	203.5(20)	23704.816	1.5	0	105.1(2.0
5589.34	40172	4.5	е	57.5(20)	22285.766	4.5	0	181.9(4)
5589.74	41188.16	2.5	е	100	23303.257	3.5	0	-28.1(0.5)
5589.93	37903.308	2.5	e	461.83	20018.977	1.5	0	-38.7(5.2
5590.26	41104.4	3.5	е	200(5)	23221.097	3.5	0	-76.4(3)
5591.51	18895.375	2	0	197.6(2.1)	1016.087	3	e	101.4(0.2)
5592.94	42123.7	4.5	е	119.9(17)	24248.994	4.5	0	404.84
5594.33	39532.768	2.5	е	92(2)	21662.504	3.5	0	283.6(1)
5594.67	37248.626	1.5	e	391.31	19379.397	2.5	0	-58.1(0.6)
5594.89	38206.75	2.5	e	315(15)	20338.25	2.5	0	259.2
5595.72	42275.49	2.5	е	370	24409.684	3.5	0	188.4(1.7)
5596.60	38626.23	4.5	е	163(2)	20763.214	3.5	0	194.5(1.6
5596.64	40148.67	3.5	е	155.4(30)	22285.766	4.5	0	181.9(4)
5597.01	34400.079	2.5	e	242.31	16538.378	3.5	0	146.2(2)
5597.90	39306.747	4.5	e	65(5)	21447.854	3.5	0	121.5(2)
5597.97	31119.02	2.5	е	111(2)	13260.369	1.5	0	-352.1(2)
5598.55	125353.23	1	е	0	107496.417	1	0	0
5599.09	36027.422	0.5	е	299.01	18172.337	1.5	0	142.1(0.6
5599.18	40659.052	2.5	e	122(3)	22804.25	2.5	0	45.4(6.5)
5600.31	42100.194	4.5	e	57(5s)	24248.994	4.5	0	404.84
5600.46	123467.973	1	e	0	105617.27	2	0	0
5601.12	123935.87	1	e	0	106087.26	1	0	0

Tabelle 1: Neue klassifizierte Linien

Wl./Å	$\rm E_O/cm^{-1}$	J_{O}	Po	A _O /MHz	${\rm E}_{\rm U}/{\rm cm}^{-1}$	J_U	$\mathbf{P}_{\mathbf{U}}$	${\rm A}_{\rm U}/{\rm MHz}$
5601.59	38185.34	3.5	е	200(3)	20338.25	2.5	0	259.2
5601.82	33350.009	2.5	е	250.51	15503.63	2.5	0	586.5(1)
5601.89	125135.831	1	е	0	107289.7	2	0	0
5602.44	34124.647	2.5	е	28.77	16280.255	1.5	0	539.9(5)
5603.84	41928.51	4.5	e	131.8(30)	24088.541	3.5	0	-134.1(4.0
5603.86	42088.98	4.5	е	105	24248.994	4.5	0	404.84
5604.36	125334.69	0	е	0	107496.417	1	0	0
5604.60	35784.667	2.5	е	-38(3)	17947.135	2.5	0	539.9(3.3
5605.26	125331.84	1	е	0	107496.417	1	0	0
5605.61	40273.672	2.5	e	20s	22439.347	1.5	0	149.5(3.2
5606.64	35628.354	1.5	е	112.16	17797.301	1.5	0	1335(1)
5607.00	40076.54	1.5	е	280(5)	22246.635	0.5	0	524.8(9.0
5607.24	39276.99	2.5	е	107(3)	21447.854	3.5	0	121.5(2)
5608.20	42667.5	5.5	e	56.7(30)	24841.41	5.5	0	422(5)
5608.21	38164.293	2.5	е	550(5)	20338.25	2.5	0	259.2
5608.63	50968.3	1.5	0	500s(200)	33143.602	0.5	е	550
5608.95	125113.376	2	e	0	107289.7	2	0	0
5609.02	41044.63	3.5	е	145(5)	23221.097	3.5	0	-76.4(3)
5609.15	35860.64	0.5	0	563(9)	18037.619	1.5	e	226.5(6.0
5609.846	41124.11	2.5	е	74(7)	23303.257	3.5	0	-28.1(0.5)
5610.012	37903.308	2.5	е	454(2)	20082.982	1.5	0	83.6(10)
5610.135	42229.62	2.5	е	280	24409.684	3.5	0	188.4(1.7)
5611.25	126539	1	e	0	108722.619	0	0	0
5611.39	123903.22	2	e	0	106087.26	1	0	0
5612.67	37191.292	2.5	e	406(5)	19379.397	2.5	0	-58.1(0.6)
5612.88	20402.811	3	0	332.7(3.5)	2591.609	2	e	8.7(3.0)
5613.18	40056.892	0.5	e	-766(2)	22246.635	0.5	0	524.8(9.0
5614.08	37186.805	1.5	e	390.2(1.9)	19379.397	2.5	0	-58.1(0.6)
5614.15	34663.997	3.5	е	48.16	16856.793	2.5	0	262.5(0.5
5614.36	41681.53	2.5	е	370	23874.946	2.5	0	241.7(2.3

Tabelle 1: Neue klassifizierte Linien

Wl./Å	E_O/cm^{-1}	Jo	Pc	Ao/MHz	${\rm E_U/cm^{-1}}$	$J_{\rm U}$	$\mathbf{P}_{\mathbf{U}}$	$A_{\rm U}/{ m MHz}$
5614.48	39468.643	3.5	е	112(2)	21662.504	3.5	0	283.6(1)
5614.64	41510.48	2.5	e	170	23704.816	1.5	0	105.1(2.0
5616.07	41104.4	3.5	e	200(5)	23303.257	3.5	0	-28.1(0.5)
5616.95	40084.08	4.5	e	18s	22285.766	4.5	0	181.9(4)
5617.270	17797.301	1.5	0	1328.6(2.9)	0	1.5	е	141.1959(16
5617.93	38767.361	3.5	e	127(10)	20972.166	2.5	0	-66.4(3)
5617.96	40599.361	3.5	e	100(2)	22804.25	2.5	0	45.4(6.5)
5618.02	123882.203	1	e	0	106087.26	1	0	0
5618.66	41014.03	3.5	e	15(3)	23221.097	3.5	0	-76.4(3)
5618.90	40231.52	1.5	e	-70	22439.347	1.5	0	149.5(3.2
5619.01	39454.307	2.5	е	59(2)	21662.504	3.5	0	283.6(1)
5619.63	125286.26	1	e	0	107496.417	1	0	0
5619.71	34032.734	3.5	e	298.69	16243.165	4.5	0	614.2(5)
5619.92	41877.45	3.5	e	133.1(20)	24088.541	3.5	0	-134.1(4.0
5620.69	125282.9	2	e	0	107496.417	1	0	0
5620.92	123873	0	e	0	106087.26	1	0	0
5621.32	35581.783	0.5	e	-111.5	17797.301	1.5	0	1335(1)
5623.78	125066.432	2	e	0	107289.7	2	0	0
5624.39	35931.742	3.5	e	145.1	18156.96	2.5	0	633.3(1.2
5625.01	37855.757	2.5	e	740.5	20082.982	1.5	0	83.6(10)
5625.28	41300.4	0.5	e	160	23528.446	0.5	0	290.3(2.0
5625.54	38534.389	2.5	е	265(5)	20763.214	3.5	0	194.5(1.6
5627.28	42849.03	4.5	е	100	25083.356	3.5	0	70.8(0.5)
5627.38	43145.55	4.5	e	73(5)	25380.28	3.5	0	391.0(0.5
5629.07	43634.49	4.5	e	100	25874.5	5.5	0	44.0(5)
5629.59	38730.502	3.5	e	222	20972.166	2.5	0	-66.4(3)
5629.74	42167.56	2.5	e	122	24409.684	3.5	0	188.4(1.7)
5629.95	40196.55	2.5	е	610	22439.347	1.5	0	149.5(3.2
5630.24	42666.669	2.5	e	101.0(20)	24910.375	1.5	0	-301.3(0.5
5633.22	41792.986	3.5	e	310s	24046.095	2.5	0	325.8(1.7

Tabelle 1: Neue klassifizierte Linien

Wl./Å	$\rm E_O/cm^{-1}$	J _O P	o A _O /MHz	${\rm E_U/cm^{-1}}$	J_U	$\mathbf{P}_{\mathbf{U}}$	${\rm A}_{\rm U}/{\rm MHz}$
5634.62	35780.1	2.5 o	-180	18037.619	1.5	е	226.5(6.0
5635.00	34358.6	0.5 o	640	16617.284	0.5	е	-627(2)
5635.45	35537.177	$0.5~{ m e}$	789(5)	17797.301	1.5	0	1335(1)
5635.58	123826.75	2 e	0	106087.26	1	0	0
5637.29	34272.49	$3.5~{ m e}$	261.65	16538.378	3.5	0	146.2(2)
5637.34	124788.22	1 e	0	107054.272	0	0	0
5639.00	39391.246	4.5 e	142.9(5)	21662.504	3.5	0	283.6(1)
5639.10	124782.61	1 e	0	107054.272	0	0	0
5639.22	40949.124	2.5 e	185.3(15)	23221.097	3.5	0	-76.4(3)
5641.46	43718.15	$5.5~{ m e}$	96.0(30)	25997.181	4.5	0	414.3(2.0
5642.39	32749.715	$1.5~{ m e}$	-522.3(2.8)	15031.634	1.5	0	-672.6(4)
5642.69	41592.13	2.5 e	203.5(20)	23874.946	2.5	0	241.7(2.3
5643.68	42123.7	4.5 e	119.9(17)	24409.684	3.5	0	188.4(1.7)
5644.03	35280.436	1.5 e	21.26	17567.517	0.5	0	2887.7(2.6
5644.57	41014.465	4.5 e	74.2(30)	23303.257	3.5	0	-28.1(0.5)
5644.70	41014.03	$3.5~{ m e}$	15(3)	23303.257	3.5	0	-28.1(0.5)
5645.73	41582.541	2.5 e	40	23874.946	2.5	0	241.7(2.3)
5648.50	42108.6	$3.5~{ m e}$	170	24409.684	3.5	0	188.4(1.7)
5648.66	39146.25	3.5 e	-14(9)	21447.854	3.5	0	121.5(2)
5649.64	42605.71	$0.5~{ m e}$	150	24910.375	1.5	0	-301.3(0.5)
5649.87	42457.17	1.5 e	70	24762.602	1.5	0	418.0(1.0
5650.91	34714.713	4.5 o	130s	17023.342	3.5	е	162.3(2.5
5654.00	41148.51	5.5 e	114.02(5)	23466.834	4.5	0	373.1(0.5
5656.02	40896.458	2.5 e	12	23221.097	3.5	0	-76.4(3)
5657.58	40109.889	2.5 e	187(1)	22439.347	1.5	0	149.5(3.2
5658.25	42578.82	2.5 e	180	24910.375	1.5	0	-301.3(0.5)
5658.31	40472.456	2.5 e	296.5(2.3)	22804.25	2.5	0	45.4(6.5)
5658.85	125162.94	0 е	0	107496.417	1	0	0
5659.09	41132.593	3.5 e	324(5)	23466.834	4.5	0	373.1(0.5
5659.15	123903.22	2 e	0	106237.552	2	0	0

Tabelle 1: Neue klassifizierte Linien

Wl./Å	$\rm E_O/cm^{-1}$	J_{O}	Po	$A_{\rm O}/{ m MHz}$	${\rm E_U/cm^{-1}}$	J_U	$\mathbf{P}_{\mathbf{U}}$	${\rm A}_{\rm U}/{\rm MHz}$
5660.65	38633.057	1.5	е	-75(3)	20972.166	2.5	0	-66.4(3)
5661.04	42167.56	2.5	e	122	24507.871	2.5	0	188.58
5662.26	43036.114	2.5	e	220	25380.28	3.5	0	391.0(0.5
5662.53	36258.965	2.5	e	513.29	18603.922	3.5	0	223.96
5662.82	33753.424	4.5	e	163(2)	16099.276	3.5	0	590.8(5)
5664.63	30908.886	2.5	e	933.7(24	13260.369	1.5	0	-352.1(2)
5665.17	42865.1	2.5	e	140	25218.265	2.5	0	101(5)
5665.48	40949.124	2.5	e	185.3(15)	23303.257	3.5	0	-28.1(0.5)
5665.84	39307.26	3.5	e	123.9(40)	21662.504	3.5	0	283.6(1)
5665.87	123882.203	1	e	0	106237.552	2	0	0
5666.00	39306.747	4.5	e	65(5)	21662.504	3.5	0	283.6(1)
5666.04	42628.42	3.5	e	202.8(25)	24984.294	2.5	0	284.5(1.7)
5666.837	39888.267	1.5	e	83(5)	22246.635	0.5	0	524.8(9.0
5667.40	124771.59	2	e	0	107131.709	1	0	0
5667.54	32348.346	2.5	e	217(1)	14708.913	1.5	0	586.2(4)
5668.56	42275.49	2.5	e	370	24639.262	1.5	0	-199.6(1.0
5668.80	41510.48	1.5	e	260	23874.946	2.5	0	241.7(2.3
5669.85	39080.135	4.5	e	33.9(30)	21447.854	3.5	0	121.5(2)
5670.01	40852.85	2.5	e	154(5)	23221.097	3.5	0	-76.4(3)
5670.06	39917.36	4.5	e	184(6)	22285.766	4.5	0	181.9(4)
5670.53	40434.382	2.5	e	100(4)	22804.25	2.5	0	45.4(6.5)
5670.56	30417.429	1.5	0	34.5(1.6)	12787.399	2.5	e	97.51
5670.87	39076.918	2.5	e	294(4)	21447.854	3.5	0	121.5(2)
5671.31	35784.667	2.5	е	-38(3)	18156.96	2.5	0	633.3(1.2
5672.64	34358.6	0.5	0	640	16735.095	1.5	e	-240s
5672.97	39006.544	4.5	е	204.2(25)	21383.994	4.5	0	94.9(1.0
5675.18	38378.896	2.5	e	179.81	20763.214	3.5	0	194.5(1.6
5675.57	39276.99	2.5	e	107(3)	21662.504	3.5	0	283.6(1)
5676.26	35784.667	2.5	е	-38(3)	18172.337	1.5	0	142.1(0.6
5677.67	38991.953	3.5	е	169.62	21383.994	4.5	0	94.9(1.0

Tabelle 1: Neue klassifizierte Linien

Wl./Å	$\rm E_O/cm^{-1}$	Jo	Po	$A_{\rm O}/{ m MHz}$	${\rm E_U/cm^{-1}}$	$J_{\rm U}$	$\mathbf{P}_{\mathbf{U}}$	$A_{\rm U}/{ m MHz}$
5678.11	41481.51	1.5	e	1097.65	23874.946	2.5	0	241.7(2.3
5678.29	40827.143	4.5	e	36(4)	23221.097	3.5	0	-76.4(3)
5680.01	42108.6	3.5	e	170	24507.871	2.5	0	188(2)
5681.50	35393.395	2.5	е	166.99	17797.301	1.5	0	1335(1)
5681.67	41300.4	0.5	е	160	23704.816	1.5	0	105.1(2.0
5682.08	38566.48	3.5	е	212.4(30)	20972.166	2.5	0	-66.4(3)
5682.464	40896.458	2.5	е	12	23303.257	3.5	0	-28.1(0.5)
5684.60	213891.504	2.5	е	0	196305.129	3.5	0	0
5684.66	34124.647	2.5	е	28.77	16538.378	3.5	0	146.2(2)
5685.22	40023.93	1.5	e	656(6)	22439.347	1.5	0	149.5(3.2
5686.44	42565.14	3.5	е	90	24984.294	2.5	0	284.5(1.7)
5686.65	39242.66	2.5	е	196(3)	21662.504	3.5	0	283.6(1)
5687.02	41453.91	2.5	е	310	23874.946	2.5	0	241.7(2.3
5687.36	123815.56	1	е	0	106237.552	2	0	0
5687.42	41044.63	3.5	е	145(5)	23466.834	4.5	0	373.1(0.5
5688.02	213891.504	2.5	е	0	196315.592	2.5	0	0
5688.36	40379.1	3.5	е	-120s	22804.25	2.5	0	45.4(6.5)
5689.45	39857.262	3.5	e	440(2)	22285.766	4.5	0	181.9(4)
5689.57	39817.789	1.5	e	105(5)	22246.635	0.5	0	524.8(9.0
5689.63	123808.513	2	e	0	106237.552	2	0	0
5689.86	41445.18	2.5	e	491.2(25)	23874.946	2.5	0	241.7(2.3)
5689.95	125066.432	2	e	0	107496.417	1	0	0
5692.86	41265.8	2.5	e	179.7(30)	23704.816	1.5	0	105.1(2.0
5692.99	42778.85	1.5	e	-137(7)	25218.265	2.5	0	101(5)
5693.11	124691.951	2	e	0	107131.709	1	0	0
5693.60	39006.544	4.5	e	204.2(25)	21447.854	3.5	0	121.5(2)
5694.16	40361.211	2.5	е	265.8(20)	22804.25	2.5	0	45.4(6.5)
5694.31	36333.116	1.5	0	430.5(1.5	18776.615	2.5	e	9.9(2.0)
5694.58	39995.069	2.5	e	235(4)	22439.347	1.5	0	149.5(3.2
5694.81	29985.508	0.5	0	737.5(2.0	12430.605	1.5	е	445.09

Tabelle 1: Neue klassifizierte Linien

Wl./Å	$\rm E_O/cm^{-1}$	J _O P	o A _O /MHz	${\rm E_U/cm^{-1}}$	J_U	$\mathbf{P}_{\mathbf{U}}$	${\rm A}_{\rm U}/{\rm MHz}$
5695.77	39837.776	4.5 e	224(4)	22285.766	4.5	0	181.9(4)
5695.91	42462	2.5 e	153(5)	24910.375	1.5	0	-301.3(0.5
5696.56	40852.85	2.5 e	154(5)	23303.257	3.5	0	-28.1(0.5)
5697.21	41014.465	4.5 e	74.2(30)	23466.834	4.5	0	373.1(0.5
5697.42	35494.062	1.5 e	296s	17947.135	2.5	0	539.9(3.3
5697.72	41592.13	2.5 e	203.5(20)	24046.095	2.5	0	325.8(1.7
5698.30	32348.346	2.5 e	217(1)	14804.067	2.5	0	335.01(74
5698.36	38991.953	3.5 e	169.62	21447.854	3.5	0	121.5(2)
5699.633	42302.725	2.5 e	95	24762.602	1.5	0	418.0(1.0
5699.97	42628.42	3.5 e	202.8(25)	25089.316	4.5	0	5.0(3.4)
5701.73	41062.12	0.5 e	527(5)	23528.446	0.5	0	290.3(2.0
5703.00	32749.715	1.5 e	-522.3(2.8)	15219.89	0.5	0	-257.8(3)
5704.48	37544.169	2.5 e	240(5)	20018.977	1.5	0	-38.7(5.2)
5704.91	40827.143	4.5 e	36(4)	23303.257	3.5	0	-28.1(0.5)
5705.92	39183.299	2.5 e	230(4)	21662.504	3.5	0	283.6(1)
5706.54	41928.51	4.5 e	131.8(30)	24409.684	3.5	0	188.4(1.7)
5707.00	37855.757	2.5 e	740.5	20338.25	2.5	0	259.2
5708.70	34369.05	1.5 e	731.55	16856.793	2.5	0	262.5(0.5
5709.09	35308.382	1.5 e	400.94	17797.301	1.5	0	1335(1)
5709.35	33753.424	4.5 e	163(2)	16243.165	4.5	0	614.2(5)
5711.30	35414.441	2.5 e	-150.97	17910.164	3.5	0	281.7(2.7)
5712.50	124554.874	1 e	0	107054.272	0	0	0
5713.50	42715.83	2.5 e	320s	25218.265	2.5	0	101(5)
5714.16	37833.795	3.5 e	158.69	20338.25	2.5	0	259.2
5714.544	34032.734	3.5 e	298.69	16538.378	3.5	0	146.2(2)
5714.66	41582.541	2.5 e	40	24088.541	3.5	0	-134.1(4.0
5715.56	41740.23	4.5 e	426.8	24248.994	4.5	0	404.84
5716.36	41577.36	4.5 e	10	24088.541	3.5	0	-134.1(4.0
5716.625	31119.02	2.5 e	111(2)	13631.032	2.5	0	959.35(50)
5717.16	41532.41	3.5 e	395(2)	24046.095	2.5	0	325.8(1.7

Tabelle 1: Neue klassifizierte Linien

Wl./Å	${\rm E_O/cm^{-1}}$	J_{O}	Po	$A_{\rm O}/{ m MHz}$	${\rm E_U/cm^{-1}}$	J_U	P_{U}	${\rm A}_{\rm U}/{\rm MHz}$
5718.13	41188.16	2.5	е	100	23704.816	1.5	0	105.1(2.0
5718.18	35393.395	2.5	е	166.99	17910.164	3.5	0	281.7(2.7
5719.74	34213.531	2.5	0	328s	16735.095	1.5	e	-240s
5720.59	41350.82	2.5	е	290	23874.946	2.5	0	241.7(2.3
5721.80	124603.89	2	е	0	107131.709	1	0	0
5721.87	36851.325	2.5	e	257.31	19379.397	2.5	0	-58.1(0.6
5722.05	35628.354	1.5	е	112.16	18156.96	2.5	0	633.3(1.2
5722.36	43344.94	4.5	е	144.9(30)	25874.5	5.5	0	44.0(5)
5724.35	41510.48	1.5	е	260	24046.095	2.5	0	325.8(1.7
5727.09	38903.885	2.5	е	181(3)	21447.854	3.5	0	121.5(2)
5730.29	35393.395	2.5	е	166.99	17947.135	2.5	0	539.9(3.3
5731.09	41532.41	3.5	е	395(2)	24088.541	3.5	0	-134.1(4.0
5733.02	40659.052	2.5	е	122(3)	23221.097	3.5	0	-76.4(3)
5733.87	41481.51	1.5	е	1097.65	24046.095	2.5	0	325.8(1.7
5735.28	42415.43	3.5	е	-35s	24984.294	2.5	0	284.5(1.7)
5736.53	40231.52	1.5	е	-70	22804.25	2.5	0	45.4(6.5)
5737.89	124554.874	1	е	0	107131.709	1	0	0
5738.38	39707.46	3.5	е	361(3)	22285.766	4.5	0	181.9(4)
5739.08	38391.75	3.5	е	170	20972.166	2.5	0	-66.4(3)
5739.50	41592.13	2.5	е	203.5(20)	24173.83	1.5	0	-228.9(2.2
5740.40	37612.922	1.5	е	569.5	20197.342	0.5	0	132.6(2.0
5742.19	42628.42	3.5	е	202.8(25)	25218.265	2.5	0	101(5)
5742.37	38172.793	4.5	е	241.22	20763.214	3.5	0	194.5(1.6
5742.40	35581.783	0.5	е	-111.5	18172.337	1.5	0	142.1(0.6
5742.65	41582.541	2.5	е	40	24173.83	1.5	0	-228.9(2.2
5743.31	38378.896	2.5	е	179.81	20972.166	2.5	0	-66.4(3)
5745.83	41445.18	2.5	е	491.2(25)	24046.095	2.5	0	325.8(1.7
5746.03	34015.77	1.5	0	355(3)	16617.284	0.5	е	-627(2)
5747.19	124526.695	0	е	0	107131.709	1	0	0
5748.55	41265.8	2.5	е	179.7(30)	23874.946	2.5	0	241.7(2.3

Tabelle 1: Neue klassifizierte Linien

Wl./Å	$\rm E_O/cm^{-1}$	J _O P	o A _O /MHz	${\rm E_U/cm^{-1}}$	J_U	$\mathbf{P}_{\mathbf{U}}$	${ m A_U/MHz}$
5749.44	39673.95	4.5 e	98.5(20)	22285.766	4.5	0	181.9(4)
5751.87	41629.83	3.5 e	270	24248.994	4.5	0	404.84
5752.36	41254.26	3.5 e	145	23874.946	2.5	0	241.7(2.3
5752.72	40599.361	$3.5~{ m e}$	100(2)	23221.097	3.5	0	-76.4(3)
5754.44	42753.29	4.5 e	70	25380.28	3.5	0	391.0(0.5
5755.60	41877.45	3.5 e	133.1(20)	24507.871	2.5	0	188.58
5756.40	34358.6	0.5 o	640	16991.47	0.5	e	4140
5760.17	40659.052	2.5 e	122(3)	23303.257	3.5	0	-28.1(0.5)
5763.24	38730.502	3.5 e	222	21383.994	4.5	0	94.9(1.0
5763.95	40148.67	3.5 e	155.4(30)	22804.25	2.5	0	45.4(6.5)
5764.79	42560.18	1.5 e	60	25218.265	2.5	0	101(5)
5765.01	212224.389	4.5 e	0	194883.092	3.5	0	0
5766.38	35494.062	$1.5~{ m e}$	296s	18156.96	2.5	0	633.3(1.2
5767.64	35280.436	$1.5~{ m e}$	21.26	17947.135	2.5	0	539.9(3.3
5768.08	43206.48	$6.5~{ m e}$	49(9)	25874.5	5.5	0	44.0(5)
5768.11	40136.163	2.5 e	248.5(20)	22804.25	2.5	0	45.4(6.5)
5769.12	32348.346	2.5 e	217(1)	15019.496	3.5	0	673.9(3)
5774.00	124603.89	2 e	0	107289.7	2	0	0
5776.12	38755.731	4.5 e	173.8(14)	21447.854	3.5	0	121.5(2)
5776.156	34299.221	1.5 o	390(9)	16991.47	0.5	e	4118.57
5776.69	41394.68	4.5 e	112(2)	24088.541	3.5	0	-134.1(4.0
5776.87	40109.889	2.5 e	187(1)	22804.25	2.5	0	45.4(6.5)
5777.26	36683.81	2.5 e	450	19379.397	2.5	0	-58.1(0.6)
5777.27	24984.294	2.5 o	284.5(1.7)	7679.945	2.5	е	802.172
5777.68	27022.612	2.5 o	-147.7(1.6	9719.429	1.5	е	-655.14
5777.94	40106.64	$3.5~{ m e}$	514.2(9)	22804.25	2.5	0	45.4(6.5)
5779.41	40601.36	4.5 e	107.3(20)	23303.257	3.5	0	-28.1(0.5)
5779.66	40518.336	$3.5~{ m e}$	62(2)	23221.097	3.5	0	-76.4(3)
5779.71	39543.768	$1.5~{ m e}$	169(1)	22246.635	0.5	0	524.8(9.0
5779.91	39402.523	3 e	149.9(2.0)	22106.016	2	0	127.8(2.4)

Tabelle 1: Neue klassifizierte Linien

Wl./Å	$\rm E_O/cm^{-1}$	J_{O}	Po	$A_{\rm O}/{ m MHz}$	${\rm E_U/cm^{-1}}$	J_U	$\mathbf{P}_{\mathbf{U}}$	${\rm A}_{\rm U}/{\rm MHz}$
5780.04	40599.361	3.5	е	100(2)	23303.257	3.5	0	-28.1(0.5
5781.00	27388.127	2	0	68.8(0.7)	10094.887	2	е	48.1(0.2
5785.20	34015.77	1.5	0	355(3)	16735.095	1.5	е	-240s
5785.38	41453.91	2.5	е	310	24173.83	1.5	0	-228.9(2.2
5787.06	124771.59	2	e	0	107496.417	1	0	0
5788.015	40076.54	1.5	е	280(5)	22804.25	2.5	0	45.4(6.5)
5789.03	40073.62	2.5	е	-85	22804.25	2.5	0	45.4(6.5)
5789.48	123505.49	2	е	0	106237.552	2	0	0
5789.50	34124.647	2.5	е	28.77	16856.793	2.5	0	262.5(0.5
5790.36	40732.18	4.5	е	133(5)	23466.834	4.5	0	373.1(0.5
5790.40	124554.874	1	e	0	107289.7	2	0	0
5792.44	43133.59	4.5	e	80	25874.5	5.5	0	44.0(5)
5793.25	122719.47	4	e	0	105462.76	3	0	0
5793.28	37275.582	0.5	е	3339(5)	20018.977	1.5	0	-38.7(5.2)
5795.78	41124.11	2.5	е	74(7)	23874.946	2.5	0	241.7(2.3
5798.11	38626.23	4.5	е	163(2)	21383.994	4.5	0	94.9(1.0
5798.81	39679.496	2.5	е	69(1)	22439.347	1.5	0	149.5(3.2
5800.055	35393.395	2.5	e	166.99	18156.96	2.5	0	633.3(1.2
5800.22	35839.845	3.5	e	-209(2)	18603.922	3.5	0	223.96
5800.44	39179.09	2.5	0	100s	21943.811	3.5	e	58(3.7)
5800.68	38206.75	2.5	e	315(15)	20972.166	2.5	0	-66.4(3)
5802.08	123467.973	1	e	0	106237.552	2	0	0
5802.42	41104.4	3.5	е	200(5)	23874.946	2.5	0	241.7(2.3)
5802.85	212089.487	3.5	e	0	194861.353	2.5	0	0
5805.55	41629.83	3.5	е	270	24409.684	3.5	0	188.4(1.7)
5805.70	40023.93	1.5	e	656(6)	22804.25	2.5	0	45.4(6.5)
5805.80	42302.725	2.5	е	95	25083.356	3.5	0	70.8(0.5)
5807.91	38185.34	3.5	е	200(3)	20972.166	2.5	0	-66.4(3)
5808.06	35009.99	1.5	e	-104.36	17797.301	1.5	0	1335(1)
5808.63	40432.076	4.5	e	118(2)	23221.097	3.5	0	-76.4(3)

Tabelle 1: Neue klassifizierte Linien

Wl./Å	E_{O}/cm^{-1}	J _O P	$_{\rm O}~{ m A_O/MHz}$	$E_{\rm U}/{\rm cm}^{-1}$	J _U P _t	$_{ m J}~{ m A_U/MHz}$
5808.80	40014.725	3.5 e	80(5)	22804.25	2.5 o	45.4(6.5)
5809.47	41083.463	1.5 e	68(4)	23874.946	2.5 o	241.7(2.3
5809.58	41254.26	$3.5~\mathrm{e}$	145	24046.095	2.5 o	325.8(1.7
5809.80	35117.7	2.5 e	161.48	17910.164	3.5 o	281.7(2.7)
5810.36	38178.025	$3.5~\mathrm{e}$	180s	20972.166	2.5 o	-66.4(3)
5810.93	34060.977	1.5 e	1287(1)	16856.793	2.5 o	262.5(0.5
5812.33	32219.536	$3.5~{ m e}$	160.1(16	15019.496	3.5 o	673.9(3)
5812.752	41447.78	5.5 e	74	24248.994	4.5 o	404.84
5815.166	40896.458	2.5 e	12	23704.816	1.5 o	105.1(2.0
5816.65	33286.519	3.5 e	283.09	16099.276	3.5 o	590.8(5)
5817.10	35096.124	3.5 e	177.86	17910.164	3.5 o	281.7(2.7)
5819.65	38626.23	4.5 e	163(2)	21447.854	3.5 o	121.5(2)
5821.72	37191.292	2.5 e	406(5)	20018.977	1.5 o	-38.7(5.2)
5824.20	44297.4	$3.5~\mathrm{e}$	100s	27132.434	3.5 o	76.11
5824.43	39603.64(50	0)0.5 e	-330(10)	22439.347	1.5 o	149.5(3.2
5828.46	20402.811	3 o	332.9(0.5	3250.38	3 e	1067.0(0.4
5828.57	31247.796	1.5 e	-424(2)	14095.677	0.5 o	-581.4(1.3)
5828.69	42605.71	$0.5~{ m e}$	150	25453.951	0.5 o	-368.9(3.7
5828.81	35308.382	1.5 e	400.94	18156.96	2.5 o	633.3(1.2
5829.52	29936.73	1.5 o	891.4(3.0	12787.399	2.5 e	97.51
5829.60	35096.124	$3.5~\mathrm{e}$	177.86	17947.135	2.5 o	539.9(3.3
5829.84	43145.55	4.5 e	73(5)	25997.181	4.5 o	414.3(2.0
5829.96	40852.85	2.5 e	154(5)	23704.816	1.5 o	105.1(2.0
5830.63	41555.735	4.5 e	149.2(30)	24409.684	3.5 o	188.4(1.7)
5832.28	35298.127	3.5 e	58.83	18156.96	2.5 o	633.3(1.2
5832.742	33678.22	$2.5 {\rm e}$	7.57	16538.378	3.5 o	146.2(2)
5833.00	41014.03	$3.5~{ m e}$	15(3)	23874.946	2.5 o	241.7(2.3
5834.04	35308.382	1.5 e	400.94	18172.337	1.5 o	142.1(0.6
5834.10	42778.85	1.5 e	-137(7)	25643.001	1.5 o	272s
5834.57	40601.36	4.5 e	107.3(20)	23466.834	4.5 o	373.1(0.5

Tabelle 1: Neue klassifizierte Linien

Wl./Å	E_{O}/cm^{-1}	Jo P	AO/MHz	$E_{\rm H}/{\rm cm}^{-1}$.J ₁₁]	Pu Au/MHz
5834 70	29564 700	05.0	1//0 0/0 3	12/30 605	15 /	- //5 00
5835 33	35042.709	25 0	620(10)	17010 164	3.5 4	2 - 281.7(9.7)
5835 71		2.0 C	100(4)	23303 257	3.5 0	-281.1(2.1)
5836.47	40434.372	2.5 e	20	23303.231	25	23 - 20.1(0.3)
5927.26	41003.83	2.5 e	-20	23074.940	2.5 (241.7(2.3)
5057.20	41300.4	0.5 e	100	24173.03	1.5 0	-220.9(2.2)
2838.32	35280.430	1.5 е	21.20	18150.90	2.5 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5838.57	41532.41	3.5 е	395(2)	24409.684	3.5 (188.4(1.7)
5839.19	31924.993	3.5 e	512.75(15	14804.067	2.5 0	5 335.01(74
5839.45	41166.285	1.5 e	488(18)	24046.095	2.5 (o 325.8(1.7
5839.97	38566.48	3.5 e	212.4(30)	21447.854	3.5 (121.5(2)
5842.51	39915.41	2.5 e	37.1(20)	22804.25	2.5 c	5 45.4(6.5)
5843.05	34906.899	1.5 e	206.4	17797.301	1.5 0	5 1335(1)
5843.39	39355.233	1.5 e	50(5)	22246.635	0.5 0	524.8(9.0)
5844.45	39391.246	4.5 e	142.9(5)	22285.766	4.5 0	5 181.9(4)
5844.67	38767.361	$3.5~\mathrm{e}$	127(10)	21662.504	3.5 0	283.6(1)
5845.24	41742.44	$2.5~{ m e}$	360	24639.262	1.5 0	o -199.6(1.0
5846.45	41188.16	2.5 e	100	24088.541	3.5 0	- 134.1(4.0
5846.78	34239.623	4.5 o	-99.3(2.0	17140.94	4.5 e	108.1(5.3)
5847.94	35042.426	$2.5~{ m e}$	620(10)	17947.135	2.5 c	539.9(3.3)
5848.41	30354.282	$2.5~{ m e}$	492.89	13260.369	1.5 c	-352.1(2)
5848.58	39532.768	$2.5 {\rm e}$	92(2)	22439.347	1.5 c	149.5(3.2)
5848.64	38755.731	4.5 e	173.8(14)	21662.504	3.5 0	283.6(1)
5849.07	41265.8	2.5 e	179.7(30)	24173.83	1.5 0	-228.9(2.2
5849.40	36220.338	$3.5~{ m e}$	156.16	19129.307	4.5 0	o 110.1(1.0
5849.79	44112.48	3.5 e	130	27022.612	2.5 c	o -147.7(1.6
5850.09	32108.512	3.5 e	-68.5(34	15019.496	3.5 0	673.9(3)
5850.92	41132.68	3.5 e	315(5)	24046.095	2.5 c	325.8(1.7)
5850.96	42540.42	1.5 e	-550s	25453.951	0.5 0	-368.9(3.7)
5851.39	33820.31	0.5 o	-232.7(6.0	16735.095	1.5 e	e -240s
5851.81	39888.265	1.5 e	83	22804.25	2.5	5 45.4(6.5)
	I			I		

Tabelle 1: Neue klassifizierte Linien

Wl./Å	$\rm E_O/cm^{-1}$	J _O P _C	AO/MHz	$\rm E_U/cm^{-1}$	$J_{\rm U}$	$\mathbf{P}_{\mathbf{U}}$	${\rm A}_{\rm U}/{\rm MHz}$
5852.04	34880.63	2.5 e	-20.13	17797.301	1.5	0	1335(1)
5852.62	42462	2.5 e	153(5)	25380.28	3.5	0	391.0(0.5
5853.38	39326.05	$0.5~{ m e}$	205(6)	22246.635	0.5	0	524.8(9.0
5853.78	37275.582	$0.5~{ m e}$	3339(5)	20197.342	0.5	0	132.6(2.0
5855.00	41582.541	2.5 e	40	24507.871	2.5	0	188.58
5855.17	40949.124	2.5 e	185.3(15)	23874.946	2.5	0	241.7(2.3)
5855.51	37092.172	1.5 e	353s	20018.977	1.5	0	-38.7(5.2)
5857.10	40329.5	$0.5~{ m e}$	-490	23260.912	0.5	0	-405(1)
5857.29	38730.52	$3.5~{ m e}$	222	21662.504	3.5	0	283.6(1)
5857.36	41241.615	1.5 e	535(11)	24173.83	1.5	0	-228.9(2.2
5858.22	41975.68	1.5 e	138(2)	24910.375	1.5	0	-301.3(0.5
5858.60	33799.29	1.5 o	960(5)	16735.095	1.5	e	-240s
5858.77	34861.01	$0.5~{ m e}$	-715.41	17797.301	1.5	0	1335(1)
5859.06	35009.99	$1.5~{\rm e}$	-104.36	17947.135	2.5	0	539.9(3.3
5860.75	40361.19	2.5 e	265.8(20)	23303.257	3.5	0	-28.1(0.5)
5860.87	44112.48	$3.5~\mathrm{e}$	130	27054.94	4.5	0	183(1)
5862.43	39857.262	$3.5~\mathrm{e}$	442	22804.25	2.5	0	45.4(6.5)
5862.59	40273.672	2.5 e	20s	23221.097	3.5	0	-76.4(3)
5862.96	40518.374	$3.5~\mathrm{e}$	60	23466.834	4.5	0	373.1(0.5
5863.03	37248.626	1.5 e	391.31	20197.342	0.5	0	132.6(2.0
5864.21	42137.13	$3.5~\mathrm{e}$	190s	25089.316	4.5	0	5.0(3.4)
5865.11	30305.597	2.5 e	-180.1(6)	13260.369	1.5	0	-352.1(2)
5865.58	35081.51	0.5 o	-1390	18037.619	1.5	e	226.5(6.0
5867.28	40505.755	$3.5~\mathrm{e}$	67(2)	23466.834	4.5	0	373.1(0.5
5867.82	41083.463	1.5 e	68(4)	24046.095	2.5	0	325.8(1.7
5868.59	42415.43	2.5 e	-45s	25380.28	3.5	0	391.0(0.5
5872.01	42108.6	$3.5~\mathrm{e}$	170	25083.356	3.5	0	70.8(0.5)
5872.73	37786.315	4.5 e	306(4)	20763.214	3.5	0	194.5(1.6
5873.29	40896.458	$2.5~{\rm e}$	12	23874.946	2.5	0	241.7(2.3
5873.46	39306.747	4.5 e	65(5)	22285.766	4.5	0	181.9(4)

Tabelle 1: Neue klassifizierte Linien

	- 1			D (1	-	-	
Wl./A	E_O/cm^{-1}	J _O P	O AO/MHz	$E_{\rm U}/{\rm cm^{-1}}$	JU	PU	A _U /MHz
5873.62	42238.827	3.5 e	210	25218.265	2.5	0	101(5)
5874.06	42108.6	$3.5~{ m e}$	170	25089.316	4.5	0	5.0(3.4)
5874.904	42100.194	4.5 e	57(5s)	25083.356	3.5	0	70.8(0.5)
5875.55	39454.3	2.5 e	59(2)	22439.347	1.5	0	149.5(3.2
5875.75	41188.16	$2.5~{\rm e}$	100	24173.83	1.5	0	-228.9(2.2
5877.27	39256.609	1.5 e	-2	22246.635	0.5	0	524.8(9.0
5877.54	37092.172	1.5 e	353s	20082.982	1.5	0	83.6(10)
5878.28	42881.51	5.5 e	50	25874.5	5.5	0	44.0(5)
5878.33	41053.02	2.5 e	120	24046.095	2.5	0	325.8(1.7
5879.51	35780.1	2.5 o	-180	18776.615	2.5	e	9.9(2.0)
5879.59	42457.17	1.5 e	70	25453.951	0.5	0	-368.9(3.7
5879.82	41510.48	1.5 e	260	24507.871	2.5	0	188.58
5881.23	41044.63	3.5 e	145(5)	24046.095	2.5	0	325.8(1.7
5881.87	39800.91	3.5 e	305	22804.25	2.5	0	45.4(6.5)
5882.86	41978.11	3.5 e	120	24984.294	2.5	0	284.5(1.7)
5883.35	41166.235	1.5 e	505(5)	24173.83	1.5	0	-228.9(2.2
5883.71	41975.68	1.5 e	138(2)	24984.294	2.5	0	284.5(1.7)
5884.36	37186.805	1.5 e	390.2(1.9)	20197.342	0.5	0	132.6(2.0
5884.66	39792.88	2.5 e	119(3)	22804.25	2.5	0	45.4(6.5)
5884.81	29775.588	2.5 o	467.9(3.9	12787.399	2.5	е	97.51
5885.22	22705.126	1 o	72.2(7.0)	5718.109	1	е	-225.2(0.2)
5885.92	41394.68	4.5 e	112(2)	24409.684	3.5	0	188.4(1.7)
5886.92	40243.026	0.5 e	-103(5)	23260.912	0.5	0	-405(1)
5887.73	31688.66	1.5 e	-208.4(7)	14708.913	1.5	0	586.2(4)
5888.23	34545.828	1.5 e	29.9	17567.517	0.5	0	2887.7(2.6
5888.38	40852.85	2.5 e	154(5)	23874.946	2.5	0	241.7(2.3)
5889.22	40196.55	2.5 e	610	23221.097	3.5	0	-76.4(3)
5889.54	42849.03	4.5 e	100	25874.5	5.5	0	44.0(5)
5889.857	41481.51	1.5 e	1097.65	24507.871	2.5	0	188.58
5890.90	40231.52	1.5 e	-70	23260.912	0.5	0	-405(1)

Tabelle 1: Neue klassifizierte Linien

Wl./Å	E_O/cm^{-1}	J _O P _O	o A _O /MHz	${ m E_U/cm^{-1}}$	J_{U}	$\mathbf{P}_{\mathbf{U}}$	$A_{\rm U}/{ m MHz}$
5890.97	40273.672	2.5 e	20s	23303.257	3.5	0	-28.1(0.5
5891.84	41014.03	3.5 e	15(3)	24046.095	2.5	0	325.8(1.7
5891.92	42051.05	2.5 e	220	25083.356	3.5	0	70.8(0.5)
5892.44	31061.838	$0.5~{ m e}$	-871.0(56	14095.677	0.5	0	-581.4(1.3)
5892.77	40432.076	4.5 e	118(2)	23466.834	4.5	0	373.1(0.5
5893.05	41053.02	2.5 e	120	24088.541	3.5	0	-134.1(4.0
5893.29	38626.25	4.5 e	163	21662.504	3.5	0	283.6(1)
5893.65	42605.71	$0.5~{ m e}$	150	25643.001	1.5	0	272s
5894.56	41870.498	2.5 e	165(5)	24910.375	1.5	0	-301.3(0.5)
5894.67	34906.899	1.5 e	206.4	17947.135	2.5	0	539.9(3.3
5895.34	42041.2	3.5 e	44(10)	25083.356	3.5	0	70.8(0.5)
5895.68	38900.7	3.5 o	110	21943.811	3.5	e	58(3.7)
5895.95	41044.63	3.5 e	145(5)	24088.541	3.5	0	-134.1(4.0
5896.23	34752.589	$0.5~{ m e}$	617.3	17797.301	1.5	0	1335(1)
5896.79	40482.117	$0.5~{ m e}$	1437(7)	23528.446	0.5	0	290.3(2.0
5897.08	41592.13	2.5 e	203.5(20)	24639.262	1.5	0	-199.6(1.0
5897.41	42041.2	3.5 e	44(10)	25089.316	4.5	0	5.0(3.4)
5898.32	42167.56	2.5 e	122	25218.265	2.5	0	101(5)
5898.62	35552.325	4.5 e	167.21	18603.922	3.5	0	223.96
5899.68	35117.7	2.5 e	161.48	18172.337	1.5	0	142.1(0.6
5900.19	38391.75	$3.5~{ m e}$	170	21447.854	3.5	0	121.5(2)
5900.41	42560.18	$1.5~{\rm e}$	60	25616.928	0.5	0	-297.3(1.5)
5900.410	41582.541	2.5 e	40	24639.262	1.5	0	-199.6(1.0
5900.60	123997.01	1 e	0	107054.272	0	0	0
5901.16	41350.82	$2.5~{\rm e}$	290	24409.684	3.5	0	188.4(1.7)
5903.01	42578.82	2.5 e	180	25643.001	1.5	0	270(5)
5903.95	42576.095	2.5 e	290(5)	25643.001	1.5	0	272s
5904.55	38900.7	3.5 o	110	21969.299	2.5	e	165.5(3.0
5904.62	37903.308	2.5 e	461.83	20972.166	2.5	0	-66.4(3)
5905.88	40148.67	3.5 e	155.4(30)	23221.097	3.5	0	-76.4(3)

Tabelle 1: Neue klassifizierte Linien
Wl./Å	E_O/cm^{-1}	J _O P _O	o A _O /MHz	$\rm E_U/cm^{-1}$	J _U P _t	$_{\rm J}~{\rm A_U/MHz}$
5906.460	41014.465	4.5 e	74.2(30)	24088.541	3.5 o	-134.1(4.0
5906.613	41014.03	$3.5~{ m e}$	15(3)	24088.541	3.5 o	-134.1(4.0
5907.49	39362.32	2.5 e	80	22439.347	1.5 o	149.5(3.2
5908.68	40180.44	$0.5~{ m e}$	968.6(20)	23260.912	0.5 o	-405(1)
5908.92	41681.53	2.5 e	370	24762.602	1.5 o	418.0(1.0
5909.52	42560.18	1.5 e	60	25643.001	1.5 o	272s
5909.76	34015.77	1.5 o	355(3)	17099.31	2.5 e	-210s
5909.97	39355.233	1.5 e	50(5)	22439.347	1.5 o	149.5(3.2
5910.35	42865.1	2.5 e	140	25950.323	1.5 o	478.5(1.9
5910.76	36293.017	$3.5~\mathrm{e}$	239.96	19379.397	2.5 o	-58.1(0.6
5911.23	40379.1	$3.5~\mathrm{e}$	-120s	23466.834	4.5 o	373.1(0.5
5911.43	32108.512	$3.5~{ m e}$	-68.5(34	15196.822	2.5 o	410.4(4)
5911.88	37248.626	1.5 e	391.31	20338.25	2.5 o	259.2
5913.598	31924.993	3.5 e	512.75(15	15019.496	3.5 o	673.9(3)
5913.66	36034.61	4.5 e	178.09	19129.307	4.5 o	110.1(1.0
5913.95	31923.96	4.5 e	72s	15019.496	3.5 o	673.9(3)
5913.99	44297.4	$3.5~{ m e}$	100s	27393.027	2.5 o	143.8(1.0)
5914.12	38566.48	3.5 e	212.4(30)	21662.504	3.5 o	283.6(1)
5914.38	39707.46	3.5 e	361(3)	22804.25	2.5 o	45.4(6.5)
5914.46	40949.124	2.5 e	185.3(15)	24046.095	2.5 o	325.8(1.7
5915.93	41740.23	4.5 e	426.8	24841.41	5.5 o	422(5)
5917.18	42275.49	2.5 e	370	25380.28	3.5 o	391.0(0.5
5917.34	37092.172	1.5 e	353s	20197.342	0.5 o	132.6(2.0
5917.87	40196.55	2.5 e	610	23303.257	3.5 o	-28.1(0.5)
5918.12	30988.239	1.5 e	820s	14095.677	0.5 o	-581.4(1.3)
5918.27	35787.523	2 e	242.6(5.7)	18895.375	2 o	197.6(2.1)
5918.90	42108.6	3.5 e	170	25218.265	2.5 o	101(5)
5919.45	40109.889	2.5 e	187(1)	23221.097	3.5 o	-76.4(3)
5919.62	41062.12	$0.5~{ m e}$	527(5)	24173.83	1.5 o	-228.9(2.2
5920.18	39326.05	$0.5~{ m e}$	205(6)	22439.347	1.5 o	149.5(3.2

Tabelle 1: Neue klassifizierte Linien

Wl./Å	E_O/cm^{-1}	J_{O}	Po	${ m A_O/MHz}$	${\rm E_U/cm^{-1}}$	J_U	$\mathbf{P}_{\mathbf{U}}$	${\rm A}_{\rm U}/{\rm MHz}$
5920.59	40106.64	3.5	е	514.2(9)	23221.097	3.5	0	-76.4(3)
5920.92	31688.66	1.5	е	-208.4(7)	14804.067	2.5	0	335.01(74
5921.00	42881.51	5.5	e	50	25997.181	4.5	0	414.3(2.0
5921.24	41132.593	3.5	е	324(5)	24248.994	4.5	0	404.84
5921.27	37855.757	2.5	е	740.5	20972.166	2.5	0	-66.4(3)
5921.96	123935.87	1	е	0	107054.272	0	0	0
5922.22	40585.7	2.5	е	57.3(30)	23704.816	1.5	0	105.1(2.0
5922.68	36258.965	2.5	е	513.29	19379.397	2.5	0	-58.1(0.6
5922.84	41053.02	2.5	е	120	24173.83	1.5	0	-228.9(2.2
5923.55	34787.254	2.5	е	291.65	17910.164	3.5	0	281.7(2.7)
5924.20	39679.496	2.5	е	69(1)	22804.25	2.5	0	45.4(6.5)
5925.37	38534.389	2.5	е	265(5)	21662.504	3.5	0	283.6(1)
5925.61	41510.48	1.5	е	260	24639.262	1.5	0	-199.6(1.0
5926.47	40129.64	1.5	е	160	23260.912	0.5	0	-405(1)
5928.24	39110.38	1.5	е	110	22246.635	0.5	0	524.8(9.0
5928.97	37833.795	3.5	е	158.69	20972.166	2.5	0	-66.4(3)
5932.00	37191.292	2.5	е	406(5)	20338.25	2.5	0	259.2
5935.558	41350.82	2.5	е	290	24507.871	2.5	0	188.58
5936.25	36220.338	3.5	е	156.16	19379.397	2.5	0	-58.1(0.6
5936.51	42457.17	1.5	е	70	25616.928	0.5	0	-297.3(1.5
5936.55	34787.254	2.5	е	291.65	17947.135	2.5	0	539.9(3.3
5939.10	40136.163	2.5	е	248.5(20)	23303.257	3.5	0	-28.1(0.5)
5939.39	41742.44	2.5	е	360	24910.375	1.5	0	-301.3(0.5
5939.83	39077.463	1.5	е	320(5)	22246.635	0.5	0	524.8(9.0
5940.29	41592.13	2.5	е	203.5(20)	24762.602	1.5	0	418.0(1.0
5940.53	33820.31	0.5	0	-232.7(6.0	16991.47	0.5	е	4140
5940.85	123882.203	1	е	0	107054.272	0	0	0
5943.01	36840.808	0.5	е	1423	20018.977	1.5	0	-38.7(5.2)
5943.52	40525.211	1.5	е	60	23704.816	1.5	0	105.1(2.0
5943.68	41582.541	2.5	е	40	24762.602	1.5	0	418.0(1.0
					•			

Tabelle 1: Neue klassifizierte Linien

Wl./Å	$\rm E_O/cm^{-1}$	J_{O}	Po	$A_{\rm O}/{\rm MHz}$	${\rm E_U/cm^{-1}}$	J_U	$\mathbf{P}_{\mathbf{U}}$	${\rm A}_{\rm U}/{\rm MHz}$
5943.89	122282.104	2	е	0	105462.76	3	0	0
5944.03	42462	2.5	е	153(5)	25643.001	1.5	0	272s
5945.53	41453.91	2.5	е	310	24639.262	1.5	0	-199.6(1.0
5946.55	34968.76	3.5	е	163.19	18156.96	2.5	0	633.3(1.2
5946.61	33350.009	2.5	е	250.51	16538.378	3.5	0	146.2(2)
5946.69	34758.552	1.5	е	-29.06	17947.135	2.5	0	539.9(3.3
5947.01	35414.441	2.5	е	-150.97	18603.922	3.5	0	223.96
5947.929	40896.458	2.5	е	12	24088.541	3.5	0	-134.1(4.0
5948.34	40852.85	2.5	e	154(5)	24046.095	2.5	0	325.8(1.7
5948.64	41445.18	2.5	е	491.2(25)	24639.262	1.5	0	-199.6(1.0
5949.98	43141.05	2.5	e	200	26338.934	2.5	0	103.2(2.2)
5950.61	33657.057	1.5	e	-147.75	16856.793	2.5	0	262.5(0.5
5952.98	40014.725	3.5	e	80(5)	23221.097	3.5	0	-76.4(3)
5953.07	36172.8	1.5	e	71.27	19379.397	2.5	0	-58.1(0.6)
5953.25	34590.19	0.5	e	-540.773	17797.301	1.5	0	1335(1)
5953.83	208765.837	0.5	e	0	191974.58	1.5	0	0
5954.46	35393.395	2.5	e	166.99	18603.922	3.5	0	223.96
5954.70	38172.793	4.5	e	241.22	21383.994	4.5	0	94.9(1.0
5954.94	41877.45	3.5	e	133.1(20)	25089.316	4.5	0	5.0(3.4)
5956.16	40489.499	1.5	e	-318(1)	23704.816	1.5	0	105.1(2.0
5956.37	40659.056	2.5	е	122(3)	23874.946	2.5	0	241.7(2.3
5957.53	40084.08	4.5	е	18s	23303.257	3.5	0	-28.1(0.5)
5957.90	38221.49	2	е	297.2(1.0)	21441.69	1	0	412.4(0.5)
5958.36	41188.16	2.5	е	100	24409.684	3.5	0	188.4(1.7)
5958.62	35907.065	3.5	е	235(10)	19129.307	4.5	0	110.1(1.0
5959.97	39995.069	2.5	е	235(4)	23221.097	3.5	0	-76.4(3)
5960.09	32872.945	2.5	е	568.8(35)	16099.276	3.5	0	590.8(5)
5960.59	25218.265	2.5	0	101(5)	8446.039	1.5	е	-422.4
5960.84	123903.22	2	e	0	107131.709	1	0	0
5961.75	29199.577	1.5	0	736.7(5.6	12430.605	1.5	е	445.09

Tabelle 1: Neue klassifizierte Linien

Wl./Å	E_{O}/cm^{-1}	Jo	Po	o A _O /MHz	${\rm E_U/cm^{-1}}$	J_{U}	$\mathbf{P}_{\mathbf{U}}$	$A_{\rm U}/{ m MHz}$
5961.98	36851.325	2.5	е	257.31	20082.982	1.5	0	83.6(10)
5962.22	40472.456	2.5	е	296.5(2.3)	23704.816	1.5	0	105.1(2.0
5962.34	40813.42	3.5	е	90	24046.095	2.5	0	325.8(1.7
5962.62	25950.323	1.5	0	478.5(1.9	9183.806	2.5	e	876.32
5962.988	41014.465	4.5	e	74.2(30)	24248.994	4.5	0	404.84
5963.143	41014.03	3.5	e	15(3)	24248.994	4.5	0	404.84
5963.86	40023.93	1.5	e	656(6)	23260.912	0.5	0	-405(1)
5964.24	41672.33	1.5	е	-5	24910.375	1.5	0	-301.3(0.5
5965.01	41978.11	3.5	е	120	25218.265	2.5	0	101(5)
5965.35	30019.232	0.5	е	-1492.9	13260.369	1.5	0	-352.1(2)
5965.61	41742.44	2.5	е	360	24984.294	2.5	0	284.5(1.7)
5965.67	41265.8	2.5	е	179.7(30)	24507.871	2.5	0	188.58
5965.86	41975.68	1.5	e	138(2)	25218.265	2.5	0	101(5)
5966.83	40800.78	2.5	e	200s	24046.095	2.5	0	325.8(1.7
5967.10	37092.172	1.5	е	353s	20338.25	2.5	0	259.2
5968.33	123882.203	1	e	0	107131.709	1	0	0
5968.51	34906.899	1.5	e	206.4	18156.96	2.5	0	633.3(1.2
5969.02	34545.828	1.5	e	29.9	17797.301	1.5	0	1335(1)
5969.16	33286.519	3.5	e	283.09	16538.378	3.5	0	146.2(2)
5969.25	41510.48	1.5	e	260	24762.602	1.5	0	418.0(1.0
5969.78	41254.26	3.5	е	145	24507.871	2.5	0	188.58
5973.20	41578.224	5.5	е	30	24841.41	5.5	0	422(5)
5974.11	37771.563	2.5	0	126.5(9.0	21037.296	1.5	е	-88.8(3.0
5974.29	41241.615	1.5	е	535(11)	24507.871	2.5	0	188.58
5975.03	40260.13	1.5	е	120(1)	23528.446	0.5	0	290.3(2.0
5975.53	36109.7	2.5	e	386.58	19379.397	2.5	0	-58.1(0.6)
5975.90	38391.75	3.5	e	170	21662.504	3.5	0	283.6(1)
5976.16	39532.768	2.5	е	92(2)	22804.25	2.5	0	45.4(6.5)
5977.46	40813.42	3.5	е	90	24088.541	3.5	0	-134.1(4.0
5977.47	34635.015	4.5	е	253.78	17910.164	3.5	0	281.7(2.7)

Tabelle 1: Neue klassifizierte Linien

5977.6340599.3613.5 e100(2)23874.9462.5 o241.7(2)5978.2740896.4582.5 e1224173.831.5 o-228.9(2)5978.9339006.5444.5 e204.2(25)22285.7664.5 o181.9(4)5979.23642100.1944.5 e57(5s)25380.283.5 o391.0(0)5979.4044112.483.5 e13027393.0272.5 o143.8(1.4)5979.6341481.511.5 e1097.6524762.6021.5 o418.0(1.4)5980.4838164.2932.5 e550(5)21447.8543.5 o121.5(2)5980.4938378.8962.5 e179.8121662.5043.5 o283.6(1)5980.5042666.6692.5 e101.0(20)25950.3231.5 o478.5(1)5980.6732219.5363.5 e160.1(16)15503.632.5 o586.5(1)
5978.2740896.4582.5 e1224173.831.5 o-228.9(2)5978.9339006.5444.5 e204.2(25)22285.7664.5 o181.9(4)5979.23642100.1944.5 e57(5s)25380.283.5 o391.0(0)5979.4044112.483.5 e13027393.0272.5 o143.8(1)5979.6341481.511.5 e1097.6524762.6021.5 o418.0(1)5980.4838164.2932.5 e550(5)21447.8543.5 o121.5(2)5980.4938378.8962.5 e179.8121662.5043.5 o283.6(1)5980.5042666.6692.5 e101.0(20)25950.3231.5 o478.5(1)5980.6732219.5363.5 e160.1(16)15503.632.5 o586.5(1)
5978.9339006.5444.5 e204.2(25)22285.7664.5 o181.9(4)5979.23642100.1944.5 e57(5s)25380.283.5 o391.0(0)5979.4044112.483.5 e13027393.0272.5 o143.8(1.4)5979.6341481.511.5 e1097.6524762.6021.5 o418.0(1.4)5980.4838164.2932.5 e550(5)21447.8543.5 o121.5(2)5980.4938378.8962.5 e179.8121662.5043.5 o283.6(1)5980.5042666.6692.5 e101.0(20)25950.3231.5 o478.5(1)5980.6732219.5363.5 e160.1(16)15503.632.5 o586.5(1)
5979.23642100.1944.5 e57(5s)25380.283.5 o391.0(05979.4044112.483.5 e13027393.0272.5 o143.8(1.5979.6341481.511.5 e1097.6524762.6021.5 o418.0(1.5980.4838164.2932.5 e550(5)21447.8543.5 o121.5(2.5980.4938378.8962.5 e179.8121662.5043.5 o283.6(1.5980.5042666.6692.5 e101.0(20)25950.3231.5 o478.5(1.5980.6732219.5363.5 e160.1(1615503.632.5 o586.5(1.
5979.4044112.483.5 e13027393.0272.5 o143.8(1.5979.6341481.511.5 e1097.6524762.6021.5 o418.0(1.5980.4838164.2932.5 e550(5)21447.8543.5 o121.5(2.5980.4938378.8962.5 e179.8121662.5043.5 o283.6(1.5980.5042666.6692.5 e101.0(20)25950.3231.5 o478.5(1.5980.6732219.5363.5 e160.1(1615503.632.5 o586.5(1.
5979.6341481.511.5 e1097.6524762.6021.5 o418.0(15980.4838164.2932.5 e550(5)21447.8543.5 o121.5(25980.4938378.8962.5 e179.8121662.5043.5 o283.6(15980.5042666.6692.5 e101.0(20)25950.3231.5 o478.5(15980.6732219.5363.5 e160.1(1615503.632.5 o586.5(1
5980.4838164.2932.5 e550(5)21447.8543.5 o121.5(2)5980.4938378.8962.5 e179.8121662.5043.5 o283.6(1)5980.5042666.6692.5 e101.0(20)25950.3231.5 o478.5(1)5980.6732219.5363.5 e160.1(16)15503.632.5 o586.5(1)
5980.4938378.8962.5 e179.8121662.5043.5 o283.6(1)5980.5042666.6692.5 e101.0(20)25950.3231.5 o478.5(1)5980.6732219.5363.5 e160.1(16)15503.632.5 o586.5(1)
5980.5042666.6692.5 e101.0(20)25950.3231.5 o478.5(1.6)5980.6732219.5363.5 e160.1(16)15503.632.5 o586.5(1.6)
5980.67 32219.536 3.5 e 160.1(16 15503.63 2.5 o 586.5(1
5981.92 122329.672 3 e 0 105617.27 2 o 0
$5982.51 \begin{vmatrix} 40585.7 \\ 2.5 \\ e \\ 57.3(30) \end{vmatrix} = 23874.946 2.5 \\ o \\ 241.7(2.5) \\ 2$
5982.59 35839.845 3.5 e -209(2) 19129.307 4.5 o 110.1(1.5)
5982.91 41792.986 3.5 e 310s 25083.356 3.5 o 70.8(0.5)
5984.51 40172 5.5 e 57.5(20) 23466.834 4.5 o 373.1(0.5)
5984.76 41545.897 5.5 e 460 24841.41 5.5 o 422(5)
5985.05 41792.986 3.5 e 310s 25089.316 4.5 o 5.0(3.4
5986.37 33799.29 1.5 o 960(5) 17099.31 2.5 e -210s
5987.69 39917.36 4.5 e 184(6) 23221.097 3.5 o -76.4(3
5988.14 123826.75 2 e 0 107131.709 1 o 0
5989.50 40865.17 1.5 e 250 24173.83 1.5 o -228.9(2
5991.48 40560.645 2.5 e -60 23874.946 2.5 o 241.7(2.5)
5992.16 123815.56 1 e 0 107131.709 1 o 0
5992.89 40148.67 3.5 e 155.4(30) 23466.834 4.5 o 373.1(0.
5992.91 41592.13 2.5 e 203.5(20) 24910.375 1.5 o -301.3(0
5993.89 40852.85 2.5 e 154(5) 24173.83 1.5 o -228.9(2
5994.69 123808.513 2 e 0 107131.709 1 o 0
5995.50 38921.19 0.5 e 100s 22246.635 0.5 o 524.8(9
5996.36 41582.541 2.5 e 40 24910.375 1.5 o -301.3(0
5996.64 41433.99 2.5 e 260 24762.602 1.5 o 418.0(1

Tabelle 1: Neue klassifizierte Linien

	1			1		
Wl./Å	E_O/cm^{-1}	J _O P	o A _O /MHz	$E_{\rm U}/{\rm cm}^{-1}$	J _U P _U	$_{\rm U}~{\rm A_U/MHz}$
5996.77	39110.38	1.5 e	110	22439.347	1.5 o	149.5(3.2
5997.01	42667.5	$5.5~\mathrm{e}$	56.7(30)	25997.181	4.5 o	414.3(2.0
5997.81	36687.14	2.5 e	164.5(20)	20018.977	1.5 o	-38.7(5.2)
5999.16	39468.643	3.5 e	112(2)	22804.25	2.5 o	45.4(6.5)
6000.32	41300.4	$0.5~{ m e}$	160	24639.262	1.5 o	-199.6(1.0
6001.04	41877.45	$3.5~{ m e}$	133.1(20)	25218.265	2.5 o	101(5)
6001.07	41742.44	2.5 e	360	25083.356	3.5 o	70.8(0.5)
6001.66	38904.078	1.5 e	228(5)	22246.635	0.5 o	524.8(9.0
6001.87	41740.23	4.5 e	426.8	25083.356	3.5 o	70.8(0.5)
6002.39	42605.71	0.5 e	150	25950.323	1.5 o	478.5(1.9
6004.02	41740.23	4.5 e	426.8	25089.316	4.5 o	5.0(3.4)
6004.25	40525.211	1.5 e	60	23874.946	2.5 o	241.7(2.3
6005.96	41629.83	3.5 e	270	24984.294	2.5 o	284.5(1.7)
6006.65	40732.18	4.5 e	133(5)	24088.541	3.5 o	-134.1(4.0
6006.70	36840.808	$0.5~{ m e}$	1423	20197.342	0.5 o	132.6(2.0
6006.99	31351.6	2.5 e	307.7(7)	14708.913	1.5 o	586.2(4)
6007.68	37612.922	1.5 e	569.5	20972.166	2.5 o	-66.4(3)
6008.63	39077.463	1.5 e	320(5)	22439.347	1.5 o	149.5(3.2
6008.83	39076.918	2.5 e	294(4)	22439.347	1.5 o	149.5(3.2
6009.34	39857.262	3.5 e	442	23221.097	3.5 o	-76.4(3)
6009.78	41044.63	3.5 e	145(5)	24409.684	3.5 o	188.4(1.7)
6011.86	40878.18	3.5 e	140.3(30)	24248.994	4.5 o	404.84
6012.13	42578.82	$2.5~{\rm e}$	180	25950.323	1.5 o	478.5(1.9
6012.52	39888.265	1.5 e	83	23260.912	0.5 o	-405(1)
6013.10	42576.098	2.5 e	290	25950.323	1.5 o	478.5(1.9
6013.45	41132.593	3.5 e	324(5)	24507.871	2.5 o	188.58
6013.50	40329.5	$0.5~{ m e}$	-490	23704.816	1.5 o	105.1(2.0
6013.87	40797.43	$0.5~{ m e}$	440	24173.83	1.5 o	-228.9(2.2
6016.16	40084.08	4.5 e	18s	23466.834	4.5 o	373.1(0.5
6017.02	34787.254	2.5 e	291.65	18172.337	1.5 o	142.1(0.6

Tabelle 1: Neue klassifizierte Linien

Wl./Å	E_{O}/cm^{-1}	JO	Pc	AO/MHz	${\rm E_U/cm^{-1}}$	J_{U}	$\mathbf{P}_{\mathbf{U}}$	$A_{\rm U}/{ m MHz}$
6017.32	39917.36	4.5	е	184(6)	23303.257	3.5	0	-28.1(0.5
6017.73	40659.056	2.5	e	122(3)	24046.095	2.5	0	325.8(1.7
6018.02	39915.41	2.5	e	37.1(20)	23303.257	3.5	0	-28.1(0.5)
6018.53	38857.42	1.5	e	220	22246.635	0.5	0	524.8(9.0
6019.10	125331.84	1	е	0	108722.619	0	0	0
6019.61	41592.13	2.5	е	203.5(20)	24984.294	2.5	0	284.5(1.7)
6020.13	41447.78	5.5	е	74	24841.41	5.5	0	422(5)
6020.65	32108.512	3.5	е	-68.5(34	15503.63	2.5	0	586.5(1)
6022.39	41510.48	1.5	е	260	24910.375	1.5	0	-301.3(0.5
6022.91	34545.828	1.5	е	29.9	17947.135	2.5	0	539.9(3.3
6026.706	41350.82	2.5	е	290	24762.602	1.5	0	418.0(1.0
6028.69	34529.896	2.5	е	59.57	17947.135	2.5	0	539.9(3.3
6030.37	40827.059	4.5	е	36(4)	24248.994	4.5	0	404.84
6031.61	41792.986	3.5	e	310s	25218.265	2.5	0	101(5)
6033.15	40659.056	2.5	е	122(3)	24088.541	3.5	0	-134.1(4.0
6035.36	40813.42	3.5	е	90	24248.994	4.5	0	404.84
6035.65	125286.26	1	e	0	108722.619	0	0	0
6037.68	39362.32	2.5	e	80	22804.25	2.5	0	45.4(6.5)
6038.69	40260.111	1.5	е	120(1)	23704.816	1.5	0	105.1(2.0
6039.44	40599.361	3.5	e	100(2)	24046.095	2.5	0	325.8(1.7
6039.77	35931.742	3.5	е	145.1	19379.397	2.5	0	-58.1(0.6)
6040.263	39355.233	1.5	е	50(5)	22804.25	2.5	0	45.4(6.5)
6041.02	41188.16	2.5	е	100	24639.262	1.5	0	-199.6(1.0
6041.39	40014.725	3.5	е	80(5)	23466.834	4.5	0	373.1(0.5
6041.92	41629.83	3.5	е	270	25083.356	3.5	0	70.8(0.5)
6042.42	41053.02	2.5	е	120s	24507.871	2.5	0	188(2)
6042.97	41453.91	2.5	е	310	24910.375	1.5	0	-301.3(0.5)
6043.27	123832.419	3	е	0	107289.7	2	0	0
6043.82	28971.829	1.5	0	-116.6(9.0	12430.605	1.5	е	445.09
6044.10	41629.83	3.5	е	270	25089.316	4.5	0	5.0(3.4)

Tabelle 1: Neue klassifizierte Linien

Wl./Å	$\rm E_O/cm^{-1}$	Jo	Po	$A_{\rm O}/{ m MHz}$	${\rm E_U/cm^{-1}}$	J_U	$\mathbf{P}_{\mathbf{U}}$	${\rm A}_{\rm U}/{\rm MHz}$
6045.36	123826.75	2	е	0	107289.7	2	0	0
6045.47	41044.63	3.5	е	145(5)	24507.871	2.5	0	188.58
6046.29	41914.75	2.5	е	700	25380.28	3.5	0	391.0(0.5
6048.503	40056.892	0.5	е	-766(2)	23528.446	0.5	0	290.3(2.0
6049.13	40231.52	1.5	е	-70	23704.816	1.5	0	105.1(2.0
6049.33	41510.48	1.5	е	260	24984.294	2.5	0	284.5(1.7)
6049.70	40613.7	3.5	е	150	24088.541	3.5	0	-134.1(4.0
6049.94	36543.48	2.5	е	261(5)	20018.977	1.5	0	-38.7(5.2)
6050.54	38185.34	3.5	е	200(3)	21662.504	3.5	0	283.6(1)
6050.96	41975.68	1.5	е	138(2)	25453.951	0.5	0	-368.9(3.7)
6052.03	123808.513	2	е	0	107289.7	2	0	0
6053.23	38178.025	3.5	е	180s	21662.504	3.5	0	283.6(1)
6053.87	35117.7	2.5	е	161.48	18603.922	3.5	0	223.96
6054.13	36851.325	2.5	е	257.31	20338.25	2.5	0	259.2
6054.25	40601.36	4.5	е	107.3(20)	24088.541	3.5	0	-134.1(4.0
6054.67	42462	2.5	е	153(5)	25950.323	1.5	0	478.5(1.9
6054.96	40599.361	3.5	е	100(2)	24088.541	3.5	0	-134.1(4.0
6055.15	38172.793	4.5	е	241.22	21662.504	3.5	0	283.6(1)
6055.73	41592.13	2.5	e	203.5(20)	25083.356	3.5	0	70.8(0.5)
6056.96	36588.369	0.5	е	1060(5)	20082.982	1.5	0	83.6(10)
6057.42	40379.1	3.5	е	-120s	23874.946	2.5	0	241.7(2.3
6057.46	36896.636	0.5	0	-438.7(9.0	20392.631	0.5	е	258.9(1.0
6057.91	42119.75	1.5	e	20.6(20)	25616.928	0.5	0	-297.3(1.5)
6058.18	43634.49	4.5	е	100	27132.434	3.5	0	76.11
6058.27	38164.293	2.5	e	550(5)	21662.504	3.5	0	283.6(1)
6058.73	123997.01	1	е	0	107496.417	1	0	0
6059.23	41582.541	2.5	е	40	25083.356	3.5	0	70.8(0.5)
6059.94	41481.51	1.5	e	1097.65	24984.294	2.5	0	284.5(1.7)
6060.60	40023.93	1.5	е	656(6)	23528.446	0.5	0	290.3(2.0
6061.79	35096.124	3.5	е	177.86	18603.922	3.5	0	223.96

Tabelle 1: Neue klassifizierte Linien

Wl./Å	E_{O}/cm^{-1}	J _O P _C	AO/MHz	$\rm E_U/cm^{-1}$	J_U	$\mathbf{P}_{\mathbf{U}}$	${\rm A}_{\rm U}/{\rm MHz}$
6062.75	39792.88	2.5 e	119(3)	23303.257	3.5	0	-28.1(0.5
6063.79	40896.458	2.5 e	12	24409.684	3.5	0	188.4(1.7)
6063.94	39707.46	$3.5~\mathrm{e}$	361(3)	23221.097	3.5	0	-76.4(3)
6063.98	40361.19	2.5 e	265.8(20)	23874.946	2.5	0	241.7(2.3
6066.64	41241.615	$1.5~{ m e}$	535(11)	24762.602	1.5	0	418.0(1.0
6067.48	42119.75	$1.5~{ m e}$	20.6(20)	25643.001	1.5	0	272s
6067.58	35253.105	3.5 o	205.9(5.0	18776.615	2.5	е	9.9(2.0)
6067.88	40180.44	$0.5~{ m e}$	968.6(20)	23704.816	1.5	0	105.1(2.0
6069.10	41555.735	4.5 e	149.2(30)	25083.356	3.5	0	70.8(0.5)
6070.35	33204.058	1.5 o	30	16735.095	1.5	е	-240s
6070.52	40878.18	$3.5~\mathrm{e}$	140.3(30)	24409.684	3.5	0	188.4(1.7)
6071.30	41555.735	4.5 e	149.2(30)	25089.316	4.5	0	5.0(3.4)
6071.98	38903.885	2.5 e	181(3)	22439.347	1.5	0	149.5(3.2
6074.13	38705.343	1.5 e	-170(5)	22246.635	0.5	0	524.8(9.0
6074.93	41545.897	$5.5~\mathrm{e}$	460	25089.316	4.5	0	5.0(3.4)
6075.33	37903.308	2.5 e	461.83	21447.854	3.5	0	121.5(2)
6077.43	37833.795	$3.5~\mathrm{e}$	158.69	21383.994	4.5	0	94.9(1.0
6079.30	38730.502	$3.5~{ m e}$	222	22285.766	4.5	0	181.9(4)
6079.88	40852.85	2.5 e	154(5)	24409.684	3.5	0	188.4(1.7)
6079.89	41532.41	$3.5~\mathrm{e}$	395(2)	25089.316	4.5	0	5.0(3.4)
6080.58	40949.124	2.5 e	185.3(15)	24507.871	2.5	0	188.58
6080.88	41350.82	2.5 e	290	24910.375	1.5	0	-301.3(0.5)
6081.25	123935.87	1 e	0	107496.417	1	0	0
6081.28	36556.744	4.5 e	480(4)	20117.368	5.5	0	60.4(5)
6081.60	35042.426	2.5 e	620(10)	18603.922	3.5	0	223.96
6086.66	40129.64	1.5 e	160	23704.816	1.5	0	105.1(2.0
6087.74	34369.05	1.5 e	731.55	17947.135	2.5	0	539.9(3.3
6089.25	34590.19	$0.5~{ m e}$	-540.773	18172.337	1.5	0	142.1(0.6
6089.48	40505.755	3.5 e	67(2)	24088.541	3.5	0	-134.1(4.0
6091.46	40585.7	2.5 e	57.3(30)	24173.83	1.5	0	-228.9(2.2

Tabelle 1: Neue klassifizierte Linien

Wl./Å	E_O/cm^{-1}	Jo	Po	$A_{\rm O}/{\rm MHz}$	${\rm E_U/cm^{-1}}$	$J_{\rm U}$	$\mathbf{P}_{\mathbf{U}}$	$\mathrm{A}_{\mathrm{U}}/\mathrm{MHz}$
6091.75	42408.25	3.5	е	47.0(20)	25997.181	4.5	0	414.3(2.0
6092.12	31119.02	2.5	e	111(2)	14708.913	1.5	0	586.2(4)
6092.94	37855.757	2.5	e	740.5	21447.854	3.5	0	121.5(2)
6093.17	41490.658	4.5	e	195.0(20)	25083.356	3.5	0	70.8(0.5)
6093.36	123903.22	2	e	0	107496.417	1	0	0
6093.93	35784.667	2.5	е	-38(3)	19379.397	2.5	0	-58.1(0.6)
6094.31	39707.46	3.5	е	361(3)	23303.257	3.5	0	-28.1(0.5)
6094.51	40813.42	3.5	е	90	24409.684	3.5	0	188.4(1.7)
6095.02	37786.315	4.5	e	306(4)	21383.994	4.5	0	94.9(1.0
6095.37	41490.658	4.5	е	195.0(20)	25089.316	4.5	0	5.0(3.4)
6096.24	51441.445	1.5	0	100	35042.426	2.5	е	620(10)
6096.35	40273.672	2.5	е	20s	23874.946	2.5	0	241.7(2.3)
6097.63	39923.729	0.5	е	-38.8(30)	23528.446	0.5	0	290.3(2.0
6099.19	40800.78	2.5	е	200s	24409.684	3.5	0	188.4(1.7)
6099.21	36588.369	0.5	е	1060(5)	20197.342	0.5	0	132.6(2.0
6099.45	39857.262	3.5	е	442	23466.834	4.5	0	373.1(0.5
6099.59	41300.4	0.5	е	160	24910.375	1.5	0	-301.3(0.5
6100.12	40896.458	2.5	е	12	24507.871	2.5	0	188(2)
6100.230	40434.382	2.5	e	100(4)	24046.095	2.5	0	325.8(1.7
6100.76	40560.692	2.5	е	-60	24173.83	1.5	0	-228.9(2.2
6100.93	38633.057	1.5	е	-75(3)	22246.635	0.5	0	524.8(9.0
6104.36	123508.927	0	e	0	107131.709	1	0	0
6104.86	41465.17	3.5	e	115(3)	25089.316	4.5	0	5.0(3.4)
6105.03	40421.525	1.5	е	65(5)	24046.095	2.5	0	325.8(1.7
6106.79	39673.95	4.5	e	98.5(20)	23303.257	3.5	0	-28.1(0.5)
6106.94	40878.18	3.5	е	140.3(30)	24507.871	2.5	0	188.58
6108.34	41350.82	2.5	е	290	24984.294	2.5	0	284.5(1.7)
6108.98	34968.76	3.5	e	163.19	18603.922	3.5	0	223.96
6109.03	40613.7	3.5	e	150	24248.994	4.5	0	404.84
6109.181	41582.541	2.5	e	40	25218.265	2.5	0	101(5)
	·				•			

Tabelle 1: Neue klassifizierte Linien

Wl./Å	$\rm E_O/cm^{-1}$	J _O P _O	AO/MHz	${\rm E_U/cm^{-1}}$	J_U	$\mathbf{P}_{\mathbf{U}}$	${ m A_U/MHz}$
6132.82	41681.53	2.5 e	370	25380.28	3.5	0	391.0(0.5
6145.54	41350.82	2.5 e	290	25083.356	3.5	0	70.8(0.5)
6219.61	34850.38	1.5 o	-474	18776.615	2.5	е	9.9(2.0)
6323.62	33756.46	3.5 e	167.63	17947.135	2.5	0	539.9(33)
6326.49	41445.18	2.5 e	491.2(25)	25643.001	1.5	0	270(5)
6531.53	40949.124	2.5 e	185.3(15)	25643.001	1.5	0	270(5)
6534.70	32290.16	0.5 o	467(3)	16991.47	0.5	е	4148
6550.64	35280.436	1.5 e	21.26	20018.977	1.5	0	-38.7(5.2)
6551.38	40876.67	$0.5~{ m e}$	-460	25616.928	0.5	0	-297.3(1.5)
6562.69	40613.7	3.5 e	180	25380.28	3.5	0	391.0(0.5
6571.40	123935.87	1 e	0	108722.619	0	0	0
6665.36	40949.124	$2.5~{ m e}$	185.3(15)	25950.323	1.5	0	478.5(1.9
6673.02	39391.246	4.5 e	142.9(5)	24409.684	3.5	0	188.4(1.7)
6697.42	35009.99	1.5 e	-104.36	20082.982	1.5	0	83.6(10)
6697.46	41265.8	2.5 e	179.7(30)	26338.934	2.5	0	103.2(2.2)
6697.71	40876.67	$0.5~{ m e}$	-460	25950.323	1.5	0	478.5(1.9
6697.95	32872.945	2.5 e	568.8(35)	17947.135	2.5	0	539.9(33)
6735.17	29874.962	1.5 e	666	15031.634	1.5	0	-672.6(4)
6788.67	40106.64	$3.5~{ m e}$	514.2(9)	25380.28	3.5	0	391.0(0.5
6792.73	39800.91	3.5 e	305(3)	25083.356	3.5	0	70.8(0.5)

Tabelle 1: Neue klassifizierte Linien

 E_{O} . . . Oberes neu entdecktes Energieniveau

- $J_{\rm O}\,\ldots$ Bahndrehimpuls des oberen Niveaus
- $P_O \dots Parität$ des oberen Niveaus
- $A_O \dots A$ -Faktor des oberen Niveaus
- $E_{\rm U}$. . . Unteres bereits bekanntes Energieniveau
- J_U ... Bahndrehimpuls des unteren Niveaus
- P_{U} ... Parität des unteren Niveaus
- ${\rm A}_{\rm U}$. . . A-Faktor des unteren Niveaus

Tabelle 2:	Mit	bisher	bekannten	Niveaus	nicht	klassifi-
zierbare	Linie	en				

Wellenl./Å	r.I.	Bemerkung
5572.18	1	aLWTB14 OG La200117
5572.91	4	aLWTB14 OG La200113
5573.87	3	aLWTB14 OG La200110
5579.14	2	aLWTB14 OG La200083
5579.25	2	aLWTB14 OG La200082
5582.70	2	aLWTB14 OG La200073
5584.03	4	aLWTB14 OG La200068
5584.52	2	aLWTB14 OG La200067
5584.60	1	aLWTB14 OG La200067
5585.29	3	aLWTB14 OG La200065
5587.74	1	aLWTB14 OG La200054
5591.99	2	aLWTB14 OG La200029
5592.15	2	aLWTB14 OG La200029
5593.14	3	aLWTB14 OG La200021
5595.14	2	aLWTB14 OG La200004
5595.98	1	aLWTB14 OG La200002
5597.68	4	aLWTB13 OG La199113
5601.29	2	aLWTB13 OG La199100
5601.45	2	aLWTB13 OG La199100
5602.26	4	aLWTB13 OG La199097
5602.36	3	aLWTB13 OG La199097
5602.83	4	aLWTB13 OG La199095 a270114 nf4497?
5603.64	2	aLWTB13 OG La199092
5605.88	4	aLWTB13 OG La199086
5606.12	3	aLWTB13 OG La199047 Blend
5609.33	3	aLWTB13 OG La199067 Blend
5609.54	2	aLWTB13 OG La199067
5609.68	2	aLWTB13 OG La199064
5610.19	3	aLWTB13 OG La199062

Tabelle 2: Bisher nicht klassifizierbare Linien

Wellenl./Å	r.I.	Bemerkung
5610.85	3	aLWTB13 OG La199059
5611.22	3	aLWTB13 OG La199055
5612.69	2	aLWTB13 OG La199047 Blend
5613.62	2	aLWTB13 OG La199039
5615.79	5	aLWTB14 OG La201139 a270114 knf
5618.37	1	aLWTB14 OG La201128
5618.91	2	aLWTB14 OG La201126 Blend
5622.39	2	aLWTB14 OG La201107
5623.484	1	in La701-704 aLWTB14 OG La201103
5627.20	3	aLWTB13 OG La194026 aLWTB14 OG La201092
5628.57	2	aLWTB14 OG La201088
5637.51	2	aLWTB14 OG La201038
5640.27	2	aLWTB14 OG La201026
5641.02	2	aLW13 OG La 179052 aLWTB14 OG La 201024 $$
5648.50	3	aLWTB14 OG La200139
5651.17	1	aLW13 OG La 182018 knf knf 4280 aLWTB14 OG La 200129 $$
5651.43	2	aLWTB13 OG La198024
5654.53	1	aLWTB13 OG La199006
5656.24	3	aLWTB13 OG La198008
5657.29	1	aLWTB13 OG La198005
5658.25	2	aLWTB13 OG La197068
5660.71	4	aLWTB13 OG La197058
5663.00	2	aLWTB13 OG La197044
5663.84	2	aLWTB13 OG La197041
5664.85	2	aLWTB13 OG La197037
5665.17	3	aLWTB13 OG La197036
5665.45	3	aLWTB13 OG La197035
5666.16	1	aLWTB13 OG La197031
5668.24	5	aLWTB13 OG La197020 knf
5670.80	3	aLWTB13 OG La 197007 La 197010 nf+5714 nf4650 nf4263 nf4079 $$

Tabelle 2: Bisher nicht klassifizierbare Linie
--

Wellenl./Å	r.I.	Bemerkung
5671.66	5	aLWTB13 OG La 197001 a270114 nf-5250 nf7576
5674.54	3	aLWTB13 OG La196059
5674.86	3	aLWTB13 OG La196054
5676.79	3	aLWTB13 OG La196046
5679.14	5	aLWTB13 OG La196036 a280114 nf3577? nf5945?
5680.01	2	aLWTB13 OG La196028
5680.80	2	aLWTB13 OG La196027
5682.55	2	aLWTB13 OG La196014 Blend
5683.94	3	aLWTB13 OG La194051 La196003
5685.13	5	aLWTB13 OG La194045
5685.59	2	aLWTB13 OG La194044
5685.75	1	aLWTB13 OG La194044
5686.27	2	aLWTB13 OG La194043
5687.47	2	aLWTB13 OG La194038 La208041
5689.05	3	aLWTB13 OG La194028
5693.29	5+	aLWTB13 OG La193037 knf
5696.89	3	aLWTB13 OG La193018
5697.79	2	aLWTB13 OG La193013
5698.02	2	aLWTB13 OG La193011
5698.09	1	aLWTB13 OG La193012
5698.58	2	aLWTB13 OG La193007
5699.16	2	aLWTB13 OG La193004
5702.67	2	aLWTB13 OG La192054
5704.40	4	aLWTB13 OG La192041
5709.40	3	aLWTB13 OG La191128 Blend
5711.03	1	aLW13 OG La 171007 aLWTB13 kOG La 191122 $$
5713.59	2	aLWTB13 OG La191109
5716.35	5	aLWTB13 OG La179013 nf7504 Ar? La182906 La191096
5719.43	3	aLWTB13 OG La191083
5720.73	2	aLWTB13 OG La191077

Wellenl./Å	r.I.	Bemerkung
5724.91	5	aLW13 OG La 178036 knf aLWTB13 OG La 191060 nf 5928 $$
5725.52	3	aLW13 kOG aLWTB13 OG La191058
5727.02	2	aLWTB13 OG La191054
5728.98	1	aLWTB13 OG La191048
5730.17	3	aLWTB13 OG La191041
5731.38	2	aLWTB13aLWTB13 OG La191037
5735.28	2	aLWTB13 OG La191020
5737.18	2	aLWTB13 OG La191012
5739.79	3	aLWTB13 OG La190062
5740.11	2	aLWTB13 OG La190060
5743.84	2	aLWTB13 OG La190043
5745.12	2	aLWTB13 OG La190025
5746.65	3	aLWTB13 OG La190021
5747.29	2	aLWTB13 OG La190012
5747.38	3	aLWTB13 OG La190012
5749.15	2	aLWTB13 OG La190003
5751.27	3	aLW13 OG La175011 aLWTB13 OG La189056
5751.74	2	aLWTB13 OG La189053
5755.27	2	aLWTB13 OG La189038
5757.91	2	aPG12 kOG kf knf aLWTB13 OG La 189024 La 198037
5759.26	1	aLWTB13 OG- La189005
5760.37	2	aLWTB13 OG La189003
5761.69	4	aLWTB13 OG La188110
5764.05	2	aLWTB13 OG La188100 Blend
5764.17	2	aLWTB13 OG La188100
5764.26	2	aLWTB13 OG La188099
5764.47	2	aLWTB13 OG La188099
5764.85	1	aLWTB13 OG La188097
5765.49	1	aLW13 OG La171002 nf4657? aLWTB13 OG La188096
5766.47	5	aLWTB13 OG La188092 Blend

Tabelle 2: Bisher nicht klassifizierbare Linien

Tabelle 2:	Bisher	\mathbf{nicht}	klassifizierbare	Linien

Wellenl./Å	r.I.	Bemerkung
5766.81	1	aLWTB13 OG La188091
5767.37	2	aLWTB13 OG La188081
5768.25	2	aLWTB13 OG La184022 La188075
5772.79	3	aLWTB13 OG La188052
5775.18	5	aLW13 OG La 176004 knf aLWTB13 OG La 188046 aLWTB14 nf-
		6922 nf7023 nf5930 nf5000 nf5455 nf5270
5776.38	5	aLWTB13 OG La188028 Blend
5777.27	3	aLWTB13 OG La188022 Blend
5779.26	2	aLWTB13 OG La188041
5782.55	4	aLWTB13 OG La188006
5783.71	4	aLW13 OG La 179010 knf Blend aLWTB13 OG La 188002
5783.92	3	aLWTB13 OG La188001 Blend
5789.94	5	aLWTB13 OG La187085
5790.87	3	aLWTB13 OG La187081
5795.00	1	aLWTB13 La183034 La187052
5795.87	1	aLWTB13 OG La187048
5797.70	3	aLWTB13 OG La187034
5804.08	4	aLWTB13 La187004
5804.80	2	aLWTB13 La187000
5810.58	3	aLWTB13 OG La186026
5815.30	4	aLWTB13 La185059 Blend knf
5816.39	5	aLWTB13 OG La185051
5818.29	3	aLW13 OG La 171016 knf aLWTB13 OG La 185441
5821.27	2	aLWTB13 OG La185025
5821.53	2	aLWTB13 OG La185021
5824.13	2	aLWTB13 OG La185002
5825.03	3	aLWTB13 OG La184098 La184101
5825.98	2	aLWTB13 OG La184096
5827.763	1	in La708-712 aLWTB13 OG La184079
5833.48	3	aLWTB14 OG La222075 knf140424

Tabelle 2: Bisher nicht klassifizierbare Linien		Tabelle 2:	Bisher	nicht	klassifizierbare	Linien
---	--	------------	--------	-------	------------------	--------

Wellenl./Å	r.I.	Bemerkung		
5835.11	2	aLWTB14 OG La222062 Blend		
5835.79	2	aLWTB14 OG La222056		
5836.32	1	aLWTB14 OG La222051/052		
5837.09	2	aLWTB14 OG La222048		
5838.04	3	aLWTB14 OG La222045 210414 nf6408? nf6395? nf6250? knf		
		29042014 knf6608		
5839.67	1	aLWTB14 OG La222034 Blend		
5839.83	3	aLWTB14 OG La222033 Blend		
5840.36	1	aLWTB14 OG La222031		
5840.62	1	aLWTB14 OG La222030		
5841.09	2	aLWTB14 OG La222029 knf140424		
5841.34	1	aLWTB14 OG La222027		
5841.54	2	aLWTB14 OG La222027		
5841.91	3	aLWTB14 OG La222024 nf-4109		
5842.05	2	aLWTB14 OG La222024 Blend knf140424		
5842.14	4	aLWTB14 OG La222024 Blend knf140424		
5842.24	5+	aLWTB14 OG La 222023 nf4540 nf4652 nf4479 $$		
5842.35	1	aLWTB14 OG La222023		
5844.72	1	aLWTB14 OG La222003		
5845.25	4	aLWTB13 OG La198017 aLWTB14 OG La221121		
5847.55	2	aLWTB14 OG La221112		
5848.06	1	aLWTB14 OG La221107		
5850.95	4	aLWTBCGLS14 OG La221093		
5851.34	2	aLWTB14 OG La221086		
5852.41	4	aLWTB14 OG La221076		
5853.32	2	aLWTB14 OG La221071 Blend		
5853.77	1	aLWTB14 OG La221068 Blend		
5854.76	3	aLWTB14 OG La221063		
5854.80	4	aLWTB14 OG La221063 Blend		
5854.986	4	in La708-712 aLWTB14 OG La221063		

Wellenl./Å	r.I.	Bemerkung
5855.02	5+	aLWTB14 OG La221063 nf-4122
5855.29	4	aLWTB14 OG La221056
5856.29	1	aLWTB14 OG La221051
5856.77	2	aLWTB14 OG La221044
5857.62	1	aLWTB14 OG La221039
5857.72	5	aLWTB14 OG La221040
5858.12	1	aLWTB14 OG La221038
5858.42	4	aLWTB14 OG La221034 knf a140429
5858.93	3	aLWTB14 OG La221030 knf 29042014
5859.33	4	aLWTB14 OG La 221019 Blend a140429 ${\rm knf}$
5859.61	2	aLWTB14 OG La221019
5860.05	3	aLWTB14 OG La221005 nf5498
5861.64	3	aLWTB14 OG La220153
5861.74	1	aLWTB14 OG La220152
5862.18	3	aLWTB14 OG La220150 nf5742 nf-5530
5862.74	1	aLWTB14 OG La220145
5863.10	2	aLWTB14 OG La220144
5864.21	3	aLWTB14 OG La220140 nf-6606
5865.00	3	aLWTB14 OG La220133
5865.08	3	aLWTB14 OG La220133 Blend
5865.24	1	aLWTB14 OG La220129
5865.43	4	aLWTB14 OG La220128 Blend
5865.58	4	aLWTB14 OG La220127 Blend
5866.09	3	aLWTB14 OG La220126
5868.59	3	aLWTB14 OG La220111
5869.13	1	aLWTB14 OG La220105
5869.21	3	aLWTB14 OG La220106
5870.56	2	aLWTB14 OG La220090
5871.63	1	aLWTB14 OG La220082

Tabelle 2: Bisher nicht klassifizierbare Linien

Wellenl./Å	r.I.	Bemerkung		
5871.73	5+	- aGaLW13 OG La165049 nf6752 nf6325 nf6108 nf+6066 nf554		
		aLW13 OG La 171000 aLWTB14 OG La 220079 $$		
5872.01	3	aLWTB14 OG La220076		
5873.36	1	aLWTB14 OG La220063 Blend		
5873.74	1	aLWTB14 OG La220061		
5873.82	2	aLWTB14 OG La220060		
5874.06	3	aLWTB14 OG La220061		
5874.20	1	aLWTB14 OG La220058		
5874.26	1	aLWTB14 OG La220058		
5874.44	1	aLWTB14 OG La220058		
5874.54	5+	aLWTB14 OG La220053		
5874.99	1	aLWTB14 OG La220045		
5875.06	3	aLWTB14 OG La220045		
5875.19	4	aLW13 OG La 180050 aLWTB14 OG La 220044 Blend		
5875.82	1	aLWTB14 OG La220037		
5876.19	3	aLWTB14 OG La220035		
5876.45	1	aLWTB14 OG La220033		
5876.58	4	aLWTB14 OG La220033		
5877.10	1	aLWTB14 OG La220031		
5877.36	2	aLWTB14 OG La220025		
5877.71	1	aLWTB14 OG La220019		
5878.55	2	aLWTB14 OG La220015		
5878.65	2	aLWTB14 OG La220015		
5878.73	1	aLWTB14 OG La220014 Blend		
5879.10	1	aLWTB14 OG La220011		
5879.24	2	aLWTB14 OG La220011		
5879.44	2	aLWTB14 OG La220010		
5880.54	1	aLWTB14 OG La219141 Blend		
5882.31	3	aLWTB14 OG La219131 knf4137		
5882.98	2	aLWTB14 OG La219128		

Tabelle 2: Bisher nicht klassifizierbare Linien

Wellenl./Å	r.I.	Bemerkung
5885.02	2	aLWTB14 OG La219113
5885.28	3	aLWTB14 OG La219113
5886.40	1	aLWTB14 OG La219109
5887.02	5	aLWTB14 OG La219108
5888.84	3	aLWTB14 OG La219099 Blend
5889.37	1	aLWTB14 OG La219097
5890.13	1	aLWTB14 OG La219092
5890.22	2	aLWTB14 OG La219092
5891.22	3	aLWTB14 OG La219084
5891.92	3	aLWTB14 OG La219082
5892.55	5	aLWTB14 OG La219078
5893.21	1	aLWTB14 OG La219072
5893.40	1	aLWTB14 OG La219072
5893.70	2	aLWTB14 OG La219071
5893.81	4	aLWTB14 OG La219071
5893.93	1	aLWTB14 OG La219069
5895.15	3	aLWTB13 OG La194015 La219059
5895.38	4	aLWTB13 OG La 194015 aLWTB14 OG La 219059 Blend nf-4158 $$
5895.49	1	aLWTB13 OG La 194015 aLWTB14 OG La 219058 $$
5895.86	5+	aLWTB14 OG La219054
5896.06	1	aLWTB14 OG La219055
5896.44	1	aLWTB14 OG La219051
5896.64	1	aLWTB14 OG La219048
5897.02	3	aLWTB14 OG La219050
5897.28	1	aLWTB14 OG La219047
5897.41	5+	aLWTB14 OG La219044 Blend
5897.51	2	aLWTB14 OG La219044 Blend
5898.53	3	aLWTB14 OG La219041
5898.91	1	aGaLW13 OG La165033 aLWTB14 La219039
5899.50	2	aLWTB14 OG La219036

Tabelle 2: Bisher nicht klassifizierbare Linien

Wellenl./Å	r.I.	Bemerkung
5900.48	1	aLWTB14 OG La219031
5901.16	4	aLWTB14 OG La219019 Blend
5901.42	5+	aLWTB14 OG La219019
5901.54	3	aLWTB14 OG La219019
5902.21	1	aLWTB14 OG La219010
5902.28	1	aLWTB14 OG La219010
5902.68	2	aLWTB14 OG La219008
5902.87	2	aLWTB14 OG La219007
5903.01	3	aLWTB14 OG La219006
5904.88	3	aLWTB14 OG La218109
5905.53	1	aLWTB14 OG La218106
5906.04	3	aLWTB14 OG La218102
5906.68	2	aLWTB14 OG La218100
5906.746	5+	aLWTB14 OG La218098
5907.09	5	aLWTB13 OG La195010 La218096 nf5454 nf5158
5907.24	4	aLWTB13 OG La 195010 aLWTB14 OG La 218093 nf 5414 nf+4015 $$
		nf-7531
5908.24	2	aLWTB14 OG La218286
5909.04	1	aLWTB14 OG La218082
5909.31	3	aLWTB14 OG La218081
5909.87	3	aLWTB14 OG La218080
5910.35	3	aLWTB14 OG La218077 Blend
5912.18	1	aLWTB14 OG La218065 Blend
5918.09	3	aLWTB14 OG La218025 Blend
5918.76	1	aLWTB14 OG La218022 Blend
5918.90	3	aLWTB14 OG La 218022 Blend a 300414 ${\rm knf}$
5920.42	3	aGaLW13 OG La 168016 aLWTB14 OG La 218009/013 $\rm nf5231$
		nf5067
5920.50	3	aGaLW13 OG La 168016 aLWTB14 OG La 218009/013 nf5231 $$
		nf5067

Tabelle 2: Bisher nicht klassifizierbare Linien

Wellenl./Å	r.I.	Bemerkung
5920.72	3	aLWTB14 OG La218009 Blend
5921.50	1	aLWTB14 OG La217109
5925.20	5	aLWTB14 OG La 217090 nf6751 nf-5739 nf+5540 nf5323 nf4945
		nf3672
5926.12	2	aLWTB14 OG La217086
5926.74	3	aLWTB14 OG La217080
5926.99	2	aLWTB14 OG La217079 Blend
5927.64	5+	aLWTB14 OG La217077
5927.89	2	aLWTB14 OG La217077
5928.03	3	aLWTB14 OG La217077 nf-7664 nf6455?
5928.49	4	aLWTB14 OG La217064
5931.60	5	aLWTB14 OG La 217044 nf-5649 nf 5638 nf 5562 nf+5540 nf-5555
		nf-4568 nf3672
5932.23	3	aLWTB14 OG La217038 Blend
5932.44	4	aLWTB14 OG La 217038 a230414 knf a290414 knf
5933.38	5	aLW13 OG La 174014 (wl aus La 174016) nf5454? nf-5567 nf-5630 $$
		aLWTB14 OG La 217030 nf+5567
5933.69	2	aLWTB14 OG La217031
5934.43	2	aLWTB14 OG La217025
5935.10	1	aLWTB14 OG La217022
5935.46	1	aLWTB14 OG La217021
5936.23	3	aLWTB14 OG La217011
5936.64	1	aLWTB14 OG La217008
5937.17	2	aLWTB14 OG La217006
5938.12	5	aLWTB14 OG La217001 nf-4608 (Ar?)
5938.93	3	aLWTB14 OG La216155 nf5338 nf-5415 nf-4015 nf4567
5940.02	2	aLWTB14 OG La216147
5940.68	3	aLWTB14 OG La216141
5941.17	2	aLWTB14 OG La216138
5941.63	5+	aLWTB14 OG La216136 Blend OGsat La225006-007

Tabelle 2: Bisher nicht klassifizierbare Linien

Tabelle 2: Bisher nicht klassifizierbare Linier	Tabelle 2:	e 2: Bisher	\mathbf{nicht}	klassifizierbai	e Linien
---	------------	-------------	------------------	-----------------	----------

Wellenl./Å	r.I.	Bemerkung
5941.98	2	aLWTB14 OG La216134
5943.04	3	aLWTB14 OG La216228 Blend
5944.13	2	aLWTB14 OG La216220
5946.01	3	aLWTB14 OG La216109
5947.16	5+	aLWTB14 OG La 216103 f 4125 f 4334 f 4897 f 4921 viele ${\rm nf}{\rm nf}{+}4648$
5949.20	3	aLWTB14 OG La216090 Blend
5951.36	2	aLWTB14 OG La216071
5951.79	3	aLWTB14 OG La216064
5951.92	2	aLWTB14 OG La216063
5954.29	3	aLWTB14 OG La216044 Blend
5956.82	3	aLWTB14 OG La216031
5958.67	2	aLWTB14 OG La216016 Blend
5958.94	2	aLWTB14 OG La216014
5959.46	3	aLWTB14 OG La216013
5962.56	3	aLWTB14 OG La215131 Blend
5963.97	3	aLWTB14 OG La215112
5965.17	2	aLWTB14 OG La215099
5965.75	3	aLWTB14 OG La215092
5965.83	1	aLWTB14 OG La215094
5967.10	4	aLWTB14 OG La215089 Blend
5968.15	1	aLWTB14 OG La 215085 Blend a 290414 ${\rm knf}$
5968.34	4	aLWTB14 OG La 215071 Blend a 220414 ${\rm knf}$
5969.58	3	aLWTB14 OG La215063
5970.01	3	aLWTB14 OG La215061
5971.89	2	aLWTB14 OG La215050
5972.32	2	aLWTB14 OG La215049
5973.52	3	aLWTB14 OG La215043 Blend
5974.53	2	aLWTB14 OG La215037 Blend
5974.98	2	aLWTB14 OG La215034
5975.07	3	aLWTB14 OG La215033 Blend

Wellenl./Å	r.I.	Bemerkung
5978.46	3	aLWTB14 OG La215014 Blend
5979.22	3	aLWTB14 OG La 214141 Blend a 220414 knf f 5458 $$
5979.85	1	aLWTB14 OG La214132
5980.10	5	aLW13 aLWTB14 OG La 214134 nf-5740 nf-5658 nf5253 nf5105? $$
		nf-5646 nf-6246 f5461
5983.96	2	aLWTB14 OG La214107
5984.10	3	aGaLW13 OG La165039 aLWTB14 OG La214107 Blend
5984.97	2	aLWTB14 OG La214104
5985.35	3	aLW13 OG La179019 aLWTB14 OG La214101
5985.46	3	aLWTB14 OG La214100
5985.81	2	aLWTB14 OG La214100
5987.24	3	aLWTB14 OG La214074 Blend
5988.40	2	aLWTB14 OG La214065 Blend
5992.21	3	aLWTB14 OG La214045
5992.58	4	aLWTB14 OG La214040 Blend
5992.91	4	aLWTB14 OG La214040 Blend
5996.29	3	aLWTB14 OG La214027
5996.64	5	aLWTB14 OG La214026 nf5270 knf4993
5997.16	4	aLWTB14 OG La214023
5997.55	2	aLWTB14 OG La214021
5998.50	3	aLWTB14 OG La214013
5999.33	3	aLWTB14 OG La214009 220414 knf
6001.93	4	aLWTB14 OG La213112 Blend
6002.81	3	aLWTB14 OG La 213110 a240414 ${\rm knf}$
6003.009	1	in La717-719 aFy09 kf aLWTB14 OG La213110 Blend
6004.14	3	aLWTB14 OG La213103 Blend
6005.96	3	aLWTB14 OG La213098
6009.56	3	aLWTB14 OG La213070
6009.70	3	aLWTB14 OG La 213070 a 290414 ${\rm knf}$
6010.26	4	aLWTB14 OG La213067 knf240414

Tabelle 2: Bisher nicht klassifizierbare Linien

Wellenl./Å	r.I.	Bemerkung
6011.72	3	aLWTB14 OG La213062 Blend
6012.13	3	aLWTB14 OG La213059
6014.29	3	aLWTB14 OG La213044
6015.51	3	aLWTB14 OG La213039
6016.01	3	aLWTB14 OG La213037
6017.54	5	aLWTB14 OG La213016 Blend
6023.39	2	aLWTB14 OG La212091
6024.31	3	aLWTB14 OG La 212084 a 290414 ${\rm knf}$
6024.90	2	aLWTB14 OG La212083
6026.07	1	aLWTB14 OG La212073
6026.97	2	aLWTB14 OG La212071
6028.22	2	aLWTB14 OG La212067
6029.17	2	aLWTB14 OG La 212062 a 290414 knf Blend
6029.85	2	aLWTB14 OG La212060
6030.04	2	aLWTB14 OG La212059
6034.57	1	aLWTB14 OG La212031
6040.14	3	aLWTB14 OG La210115
6046.29	3	aLW13 OG La 171027 aLWTB14 OG La 210085 $$
6047.170	2	in La717-719 aLWTB14 OG La210083
6056.43	2	aLWTB14 OG La210050
6060.83	2	aLWTB14 OG La210039
6063.23	2	aLWTB14 OG La209055
6063.32	3	aLWTB14 OG La209055
6065.11	2	aLWTB14 OG La210016 Blend
6067.44	3	aLWTB14 OG La209041 Ne?
6074.79	4	aLWTB14 OG La227002
6083.61	3	aLWTB14 OG La205115
6087.82	3	aLWTB14 OG La205097
6088.46	3	aLWTB14 OG La205096
6094.06	2	aLWTB14 OG La205077

Tabelle 2: Bisher nicht klassifizierbare Linien

Wellenl./Å	r.I.	Bemerkung
6096.06	2	aLWTB14 OG La205069
6098.40	2	aLWTB14 OG La205060
6101.31	2	aLWTB14 OG La205049

Tabelle 2: Bisher nicht klassifizierbare Linien

r.I. ... Anhand des Signal-Rausch-Verhältnisses der Registrierungen abgeschätzte relative Intensität:

1 Struktur kaum vom Rauschen abgehoben

2 Struktur erkennbar, vom Rauschen abgehoben

3 Struktur klar vorhanden

4 kaum Rauschen in der Struktur vorhanden

5 kein Rauschen mehr sichtbar

5+ sehr starke Struktur ohne Rauschen

nf5760 ... negative Fluoreszenz beobachtet bei 5760 Å

f3828 ... positive Fluoreszenz beobachtet bei 3828 Å

knf/kf ... keine negative / keine positive Fluoreszenz beobachtet

- ... schwaches Signal

 $+ \ldots$ starkes Signal

OG ... optogalvanische Aufnahme

OGsat ... Aufnahme mit OG-Sättigungsspektroskopie

La206015 ... Dateiname, unter dem die Registrierung der Linie abgespeichert ist

La717-719 ... Dateinname, unter dem das FT-Spektrum abgespeichert ist

- J...Bahndrehimpuls
- LW ... Laurentius Windholz
- TB ... Tobias Binder
- CG ... Ceylan Güney
- LS ... Łukasz Sobolewski
- Ga ... Bettina Gamper
- Iq . . . Imran Siddiqui
- Fy ... Feyza Güzelcimen
- PG ... Przemysław Głowacki

	P	Energie /cm ⁻¹	Δ/MH ₇	Bemerkungen
		tdockto Nivos		lon Donität
25	u ei		110(20)	*IW140910 -F004 FF OC I-919111 59990 4
3.0	0	38900.70	110(30)	*LW140218 a5904.55 OG La218111 15828.4
				13895.645 13974.48 a5895.68 OG La219056 km
4.5	0	39075.06	122(5)	*LW140218 a5835.66 OGsat La207024 f4533.523
				f3869.38
3.5	0	39520.77	50(30)	*LW140218 a5687.67 OG La194037 f3878 J
				könnte auch $9/2$ sein
\mathbf{Ne}	u er	ntdeckte Nivea	us gerader	Parität
0.5	е	36588.369	1060(5)	*LW140207 a6033.53 OG La206015 nf5760
				nf+5268 nf 4992 Energie korr. LW14 (4637.623)
2.5	e	40136.163	248.5(20)	*LWTB131121 a 5649.17 OG La 184920 nf5144
				nf5055 a 5768.11 OG La 184022 nf5177 Blend
				a 5939.10 OG La 184430 nf 5211 J sicher Energie
				korr. D214097
2.5	e	40273.672	10(20)	*LWTB140424 a 5605.61 OG La 199086 a 5890.97 $$
				OG La 219085 nf5045 nf5211 nf4493 a 5862.59 $$
				OG La220147 nf5234 nf5067 a6096.37 OG
				La 205068 nf-4187 Energie korr. LW14 (4447.868)
2.5	е	40800.78	200(10)	*LWTB140422 a 5981.99 OG La 214120 nf+4339
				a5966.84 OG La215089 nf4157 a6099.18 OG
				La205058 nf4280 J sicher
2.5	е	41053.02	120(20)	*LWTB140411 a5878.33 OG La220017
				nf++6108 a5893.03 OG La219074 $nf++4337$
				a5922.81 OG La217104 nf++4648 J sicher
2.5	е	41350.82	282(20)	*LWTB140203 a5720.58 OG La191477 nf4187
2				a5935.56 nf4080 OG La217418 a5901 16 OG
				La219419 a6026.71 OG La212472 a6080 88 OG

Tabelle 3: Neu entdeckte Niveaus

J	Р	$\mathrm{Energie}/\mathrm{cm}^{-1}$	A/MHz	Bemerkungen
1.5	e	41510.48	257(5)	*LWTB140113 a5724.36 OG La191462 nf4156
				a 5969.26 OG La 215465 nf 4037 a 5879.82 OG $$
				La 220408 nf4079 nf4650 a 6049.34 OG La 195035
				nf4177 nf4479 nf4549 nf4652
5.5	e	41545.897	460(10)	*LWTB140429 a 5984.76 OG La214105 nf+6698
				f 3951 Energie korr. LW14 (3951.024) $$
2.5	e	41582.541	50(20)	*LWTB140203 a 5714.66 OG La 191103 nf4340 $$
				a 5645.73 OG La 205406 a 5742.65 OG La 205407 $$
				a5855.01 OG La204428 Blend
3.5	e	41629.83	270(2)	*LWTB131125 a5805.55 La186353 nf4282
				a 6041.92 OG La 210109 J sicher LW140411
				a 5838.83 OG La 222441 nf4079 nf4262 nf4650 $$
1.5	e	41672.33	3(5)	*LWTB140423 a5964.21 OG La215111
				nf++4494 $nf++4564$ $a5869.30$ OG La220109
				nf-4238 nf-4550 nf 6468 a 5990.68 OG La 205139 $$
				nf-6327 J kann auch 2.5 sein
2.5	e	41681.53	360(20)	*LWBT140120 a 5682.46 OG La 196015 nf4337
				a 5614.35 OG La 199029 nf 4185 a 6132.80 OG $$
				La202022 nf4567
2.5	e	41742.44	352(10)	*LWBT140116 a 5662.90 OG La 197045 nf4336
				a 5965.61 OG La 215095 nf 4177 a 6001.07 OG $$
				La214005 J sicher
1.5	e	41975.68	138(2)	*LWTB140411 Fit La221335 a5858.22 OG
				La221035 nf++4495 a5883.71 OG La219127
				nf++4177 $nf4479$ $nf++4549$ $a6050.96$ OG
				La210073 nf+3927 J sicher
3.5	e	41978.11	90(10)	*LWTB140120 a 6023.26 OG La 212094 nf4567
				nf 4468 a 5882.86 OG La 219029 nf 4549 nf 4479
				nf4177

Tabelle 3: Neu entdeckte Niveaus

J	Р	$\rm Energie/cm^{-1}$	A/MHz	Bemerkungen
2.5	е	42041.20	58(10)	*LWTB140110 a5701.84 OG La192059 nf4079
				aFy14 8230 L2146L05 nf4500 $aFy14$ 7972
				L2539L01 nf4581 könnte auch J=7/2 haben
0.5	e	42285.04	-535(60)	*LWTBCGLS140709 a5753.91 OG La189047
				nf6070 J sicher
3.5	e	42441.339	198(20)	*LWTBCGLS140715 a5859.69 OG La221012
				nf 4567 nf 4108 nf 4468 a 5804.56 OG La 187003 $$
				nf5489 nf4137 nf5638 Energy corr.
1.5	e	42457.17	60(30)	*TB140127 a 5879.60 La 200135 nf3927 nf5565
				nf 4387 a 5649.87 OG La 200135 a 5936.51 OG $$
				La217011 knf
0.5	e	42605.71	130(50)	*TB140118 a5649.62 OG La200135 nf4495
				nf6699 nf6357 nf4564
3.5	e	44112.48	130(30)	*LWTBCGLS140716 a5979.39 OG La214138
				nf+++5275 $nf++5167$ $nf+++4905$ $a5860.87$
				OG La 220156 nf-4242 nf+++5846 nf-5829 J si-
				cher
3.5	e	44297.40	110(130)	*LWTB140423 a5913.99 OG La218055
				nf++3650 $nf3797$ $nf4905$ $nf5023$ $nf5168$
				a 5824.18 OG La 185002 nf4144 nf5239 a 5798.03 $$
				OG La 072016 La 187034 nf 4243 J sicher

Tabelle 3: Neu entdeckte Niveaus

*...Niveau bestätigt

a5756.40 ... angeregt bei der Wellenlänge 5756.40 Å

nf
5760 ... negative Fluoreszenz be
obachtet bei 5760 Å

f
3828 ... positive Fluoreszenz be
obachtet bei 3828 Å

- \ldots schwaches Signal

 $+ \ldots$ starkes Signal

 $++\ldots$ stärkeres Signal

- +++ ... sehr starkes Signal
- OG ... optogalvanische Aufnahme
- OGsat ... Aufnahme mit OG-Sättigungsspektroskopie
- La206015 ... Dateiname, unter dem die Registrierung der Linie abgespeichert ist
- J ... Bahndrehimpuls
- P ... Parität
- LW ... Laurentius Windholz
- TB ... Tobias Binder
- CG ... Ceylan Güney
- LSŁukasz Sobolewski
- Iq . . . Imran Siddiqui
- LWTB131206 ... Niveau berechnet von LW und TB am 6. Dezember 2013
- Energie korr. LW14 ... Die Energie wurde von LW 2014 korrigiert
- D214097 ... Dateiname, unter dem die Fitdatei gespeichert ist

Wellenl./Å	${\rm E_O/cm^{-1}}$	J_{O}	$A_{\rm O}/{\rm MHz}$	${\rm E_U/cm^{-1}}$	J_U	${\rm A}_{\rm U}/{\rm MHz}$
3828.38	38900.7	3.5	110(30)	12787.399	2.5	97.51
3895.652				13238.331	3.5	-19.1
3974.48				13747.276	4.5	-63.83
4569.652				17023.342	3.5	162.3(2.5)
5895.68				21943.811	3.5	58(3.7)
5904.55				21969.299	2.5	165.5(3.0)
3869.37	39075.06	4.5	122(5)	13238.331	3.5	-19.1
4533.523				17023.342	3.5	162.3(2.5)
5835.67				21943.811	3.5	58(3.7)
3878.855	39520.77	3.5	50(30)	13747.276	4.5	-63.83
5687.6875				21943.811	3.5	58(3.7)

Tabelle 4: Linien als Übergänge zu den neu entdeckten Niveaus ungerader Parität

 E_O ... Oberes neu entdecktes Energieniveau

- $J_{\rm O}$... Bahndrehimpuls des oberen Niveaus
- $A_O \dots A$ -Faktor des oberen Niveaus
- $E_U \ldots$ Unteres bereits bekanntes Energieniveau
- $J_{\rm U}$... Bahndrehimpuls des unteren Niveaus
- $A_{\rm U}$. . . A-Faktor des unteren Niveaus

_

Tabelle 5: Linien als Übergänge zu den neu entdeckten
Niveaus gerader Parität

Wellenl./Å	$\rm E_O/cm^{-1}$	J_{O}	$A_{\rm O}/{ m MHz}$	${\rm E_U/cm^{-1}}$	J_U	${ m A_U/MHz}$
4637.6225	36588.369	0.5	1060(5)	15031.634	1.5	-672.6(4)
6033.56				20018.977	1.5	-38.7(5.2)
6056.96				20082.982	1.5	83.6(10)
6099.21				20197.342	0.5	132.6(2.0)
5649.166	40136.163	2.5	244(4)	22439.347	1.5	149.5(3.2)
5768.11				22804.25	2.5	45.4(6.5)
5910.26				23221.097	3.5	-76.4(3)
5939.10				23303.257	3.5	-28.1(0.5)
3910.5265	40273.672	2.5	10(20)	14708.913	1.5	586.2(4)
4447.868				17797.301	1.5	1335(1)
5605.61				22439.347	1.5	149.5(3.2)
5862.59				23221.097	3.5	-76.4(3)
5890.97				23303.257	3.5	-28.1(0.5)
6096.35				23874.946	2.5	241.7(2.3)
4175.230	40800.78	2.5	200(10)	16856.793	2.5	262.5(0.5)
5686.80				23221.097	3.5	-76.4(3)
5966.83				24046.095	2.5	325.8(1.7)
5981.98				24088.541	3.5	-134.1(4.0)
6099.19				24409.684	3.5	188.4(1.7)
5762.71	41053.02	2.5	120(20)	23704.816	1.5	105.1(2.0)
5819.76				23874.946	2.5	241.7(2.3)
5878.33				24046.095	2.5	325.8(1.7)
5893.05				24088.541	3.5	-134.1(4.0)
5922.84				24173.83	1.5	-228.9(2.2)
6006.76				24409.684	3.5	188.4(1.7)
6042.42				24507.871	2.5	188(2)
5665.45	41350.82	2.5	282(20)	23704.816	1.5	105.1(2.0)
5720.59				23874.946	2.5	241.7(2.3)
5901.16				24409.684	3.5	188.4(1.7)

Wellenl./Å	E_{O}/cm^{-1}	J_{O}	$A_{\rm O}/{ m MHz}$	${\rm E_U/cm^{-1}}$	J_U	${ m A_U/MHz}$
5935.558				24507.871	2.5	188(2)
6026.706				24762.602	1.5	418.0(1.0)
6080.88				24910.375	1.5	-301.3(0.5)
6108.34				24984.294	2.5	284.5(1.7)
6145.54				25083.356	3.5	70.8(0.5)
5614.64	41510.48	1.5	257(5)	23704.816	1.5	105.1(2.0)
5668.80				23874.946	2.5	241.7(2.3)
5724.35				24046.095	2.5	325.8(1.7)
5879.82				24507.871	2.5	188(2)
5925.61				24639.262	1.5	-199.6(1.0)
5969.25				24762.602	1.5	418.0(1.0)
6022.39				24910.375	1.5	-301.3(0.5)
6049.33				24984.294	2.5	284.5(1.7)
3951.024	41545.897	5.5	460(10)	16243.165	4.5	614.2(5)
5984.76				24841.41	5.5	422(5)
6074.93				25089.316	4.5	5.0(3.4)
6338.57				25773.798	6.5	373.5(5)
3984.302	41629.83	3.5	270(2)	16538.378	3.5	146.2(2)
5630.71				23874.946	2.5	241.7(2.3)
5685.49				24046.095	2.5	325.8(1.7)
5751.87				24248.994	4.5	405(2)
5805.55				24409.684	3.5	188.4(1.7)
5838.83				24507.871	2.5	188(2)
6041.92				25083.356	3.5	70.8(0.5)
6044.10				25089.316	4.5	5.0(3.4)
6844.05				27022.612	2.5	-147.7(1.6)
5614.36	41681.53	2.5	360(20)	23874.946	2.5	241.7(2.3)
5682.50				24088.541	3.5	-134.1(4.0)
5908.92				24762.602	1.5	418.0(1.0)
6132.82				25380.28	3.5	391.0(0.5)

Tabelle 5: Linien zu neuen Niveaus gerader Parität

Wellenl./Å	E_{O}/cm^{-1}	JO	$A_{\rm O}/{ m MHz}$	${\rm E_U/cm^{-1}}$	J_U	$\mathrm{A}_{\mathrm{U}}/\mathrm{MHz}$
5662.90				24088.541	3.5	-134.1(4.0)
5845.24				24639.262	1.5	-199.6(1.0)
5939.39				24910.375	1.5	-301.3(0.5)
5965.61				24984.294	2.5	284.5(1.7)
6001.07				25083.356	3.5	70.8(0.5)
5858.22	41975.68	1.5	138(2)	24910.375	1.5	-301.3(0.5)
5883.71				24984.294	2.5	284.5(1.7)
5965.86				25218.265	2.5	101(5)
6050.96				25453.951	0.5	-368.9(3.7)
5882.86	41978.11	3.5	90(10)	24984.294	2.5	284.5(1.7)
5965.01				25218.265	2.5	101(5)
6023.23				25380.28	3.5	391.0(0.5)
5701.84	42041.2	2.5	58(10)	24507.871	2.5	188(2)
5835.80				24910.375	1.5	-301.3(0.5)
5861.06				24984.294	2.5	284.5(1.7)
5895.34				25083.356	3.5	70.8(0.5)
7972.91				29502.176	2.5	49.3(0.5)
8230.706				29894.913	3.5	467.9(2.2)
5705.37	42285.04	0.5	-535(85)	24762.602	1.5	418.0(1.0)
5753.91				24910.375	1.5	-301.3(0.5)
5939.74				25453.951	0.5	-368.9(3.7)
5997.82				25616.928	0.5	-297.3(1.5)
6007.21				25643.001	1.5	270(5)
5804.55	42441.339	3.5	198(20)	25218.265	2.5	101(5)
5859.66				25380.28	3.5	391.0(0.5)
5649.87	42457.17	1.5	60(30)	24762.602	1.5	418.0(1.0)
5879.59				25453.951	0.5	-368.9(3.7)
5936.51				25616.928	0.5	-297.3(1.5)
5945.71				25643.001	1.5	270(5)
5649.64	42605.71	0.5	130(50)	24910.375	1.5	-301.3(0.5)

Tabelle 5: Linien zu neuen Niveaus gerader Parität

Wellenl./Å	E_{O}/cm^{-1}	J_{O}	${ m A_O/MHz}$	${\rm E_U/cm^{-1}}$	J_U	$\rm A_U/\rm MHz$
5828.69				25453.951	0.5	-368.9(3.7)
5884.60				25616.928	0.5	-297.3(1.5)
5893.65				25643.001	1.5	270(5)
6002.39				25950.323	1.5	478.5(1.9)
5860.87	44112.48	3.5	130(30)	27054.94	4.5	183(1)
5979.40				27393.027	2.5	143.8(1.0)
5798.03	44297.4	3.5	110(130)	27054.94	4.5	183(1)
5824.20				27132.434	3.5	76(1)
5913.99				27393.027	2.5	143.8(1.0)

Tabelle 5: Linien zu neuen Niveaus gerader Parität

 E_{O} . . . Oberes neu entdecktes Energieniveau

 $J_{\rm O}\,\ldots$ Bahndrehimpuls des oberen Niveaus

 ${\rm A}_{\rm O}$. . . A-Faktor des oberen Niveaus

 $E_U \ldots$ Unteres bereits bekanntes Energieniveau

 $J_{\rm U}$. . . Bahndrehimpuls des unteren Niveaus

 ${\rm A}_{\rm U}$. . . A-Faktor des unteren Niveaus

7

Quellenverweise

 [1] Ludwig Bergmann Clemens Schäfer Wilhelm Raith. Bergmann Schäfer Lehrbuch der Experimentalphysik Band 4 BESTANDTEILE DER MATERIE Atome, Moleküle, Atomkerne, Elementarteilchen. 2. Auflage. Walter de Gruyter & Co.KG. (2003)

- [2] Charles Schwartz. Theory of hyperfine structure. Physical Review. 97, 380 (1955)
- [3] O Laporte and W F Meggers. Some rules of spectral structure. Journal of the Optical Society of America. 11, 459 (1925)
- [4] Franz Schwabl. Quantenmechanik. 6. Auflage. Springer-Verlag. (2002)

 [5] Wolfgang Nolting. Grundkurs Theoretische Physik 5/1. 5. Auflage. Springer Verlag. (2004)

[6] H E White. Introduction to atomic spectra. McGraw-Hill Book Company, Inc..S.206 (1954)

[7] R B Firestone V S Shirley C M Baglin S Y F Chu J Zipkin. Table of Isotopes. Wiley. (1996)

[8] H Krüger O Lutz and H Oehler. Nuclear magnetic moments and ratios of quadrupole moments ¹³⁵Ba, ¹³⁷Ba, ¹³⁸La, ¹³⁹La by NMR spectroscopy. *Physical Letters A*. 62, 131 (1977)

[9] J Bauche J F Wyart Z Ben Achmed and K Guidara. Interpretation of the hyperfine structures in the low even configurations of lanthanum II. Zeitschrift für Physik A. 304, 285 (1982)

[10] Bettina Gamper. Hyperfine Structure Analysis of Praseodymium and Lanthanum. Doctoral Thesis, TU Graz. (2013).
7. QUELLENVERWEISE

[11] O Anderson. The Nuclear Mechanical Moment of Lanthanum from Hyperfine Structure. *Physical Review.* 45, 685 (1934).

[12] G Luhrs. Das Kernquadrupolmoment des 57La¹³⁹. Zeitschrift für Physik A.
141, 486 (1955)

[13] Y Tring. Physical Review. 108, 295 (1975)

[14] W J Childs and L S Goodman. Hyperfine and Zeeman Studies of low-lying
 Atomic Levels of ¹³⁹La and the Nuclear Electric-Quadrupole Moment. *Physical Review A.* 3, 25 (1971)

[15] W J Childs and L S Goodman. Complete resolution of hyperfine structure in the close doublet λ 5930.6 of ¹³⁹La by laser-atomic-beam spectroscopy. Journal of the Optical Society of America. 67, 1230 (1977)

 [16] W J Childs and L S Goodman. Hyperfine structure of excited, odd-parity
 levels in ¹³⁹La by laser-atomic-beam fluorescence. Journal of the Optical Society of America. 68, 1348 (1978)

[17] W J Childs and U Nielsen. Hyperfine structure of the $(5d+6s)^3$ configuration of ¹³⁹La: New measurements and ab initio multiconfigurational Dirac-Fock calculations. *Physical Review A.* **37**, 6 (1988)

[18] W J Childs and L S Goodman. ¹³⁸La,¹³⁹La nuclear electric-quadrupole-

moment ratio by laser-rf double resonance. Physical Review A. 20, 1922 (1979)

[19] H O Behrens and G H Guthöhrlein. High Resolution Optotalvanic

Spectroscopy as a useful Tool in the Determination of Atomic Hyperfine

Parameters and Isotopic Shifts. Journal de Physique Colloques. 44, C7-149 (1983)

[20] C Luo J Qu L Zhu and F Lin. Studies on the hyperfine structure of La I in a hollow-cathode discharge tube. Journal of Physics D: Applied Physics. 23, 1327 (1990)

[21] G Basar and S Kröger. High Resolution measurements of the hyperfine structure of the Lanthanum atom for energetically low lying levels of odd parity. Optics Communications. 282, 562 (2009)

[22] B Furmann J Ruczkowski D Stefanska M Elantkowska and J Dembczynski.

Hyperfine structure in La II odd configuration levels. Journal of Physics B: Atomic, Molecular and Optical Physics. 41, 215004 (2008)

7. QUELLENVERWEISE

[23] Y Nighat M Raith M Hussain and L Windholz. Investigation of the hyperfine structure of lanthanum lines by a laser-induced fluorescence technique. Journal of Physics B: Atomic, Molecular and Optical Physics. 43, 125001 (2010)

[24] F Güzelimen I Siddiqui G Basar S Kröger and L Windholz. New energy levels and hyperfine structure measurements of neutral lanthanum by laser-induced fluorescence spectroscopy. Journal of Physics B: Atomic, Molecular and Optical Physics. 45, 135005 (2012)

[25] B Furmann M Elantkowska D Stefanska J Ruczkowski and J Dembczynski.

Hyperfine structure in La II even configuration levels. Journal of Physics B: Atomic, Molecular and Optical Physics. 41, 235002 (2008)

[26] B Furmann D Stefanska and J Dembczynski. Experimental investigations of the hyperfine structure in neutral La: II. Even parity levels. Journal of Physics B: Atomic, Molecular and Optical Physics. 43, 015001 (2010)

[27] B Furmann D Stefanska and J Dembczynski. Experimental investigations of the hyperfine structure in neutral La: I. Odd parity levels. Journal of Physics B: Atomic, Molecular and Optical Physics. 42, 175005 (2009)

[28] I Siddiqui S Khan B Gamper J Dembczynski and L Windholz. **Optogalvanic** spectroscopy of the hyperfine structure of weak La I lines: discovery of new even parity fine structure levels. *Journal of Physics B: Atomic, Molecular and Optical Physics.* **46**, 065002 (2013)

[29] T Binder, Steigerung der Intensität von Tantal-Ionen-Linien bei einer
Hohlkathodenentladung mittels gepulster Stromzufuhr. Bachelorarbeit, TU Graz.
(2011)

[30] J E Lawler A I Ferguson J E M Goldsmith D J Jackson and A L Schawlow.
Doppler-free Intermodulated Optogalvanic Spectroscopy. *Physical Review Letters.* 42, 1046 (1979)

[31] Randy D May. Spatial charcteristics of the optogalvanic effect in striated rare-gas discharges. *Journal of Applied Physics.* 58, 1169 (1985)

[32] A Siegel J E Lawler B Couillaud and T W Hänsch. Doppler-free spectroscopy in a hollow-cathode discharge: Isotope-shift measurements in molybdenum. *Physical Review A.* 23, 2457 (1981)

[33] www.coherent.com/download/6538/Verdi-Family-Data-Sheet.pdf