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Abstract

Driven by the aim to reduce costs and to improve efficiency, governments and public administra-
tions provide electronic services to spare citizens cumbersome paper-based procedures. These services
have become known under the term electronic government or e-government. During the past few years,
providers of e-government services have been faced with a new mobile computing paradigm. This new
paradigm has yielded the typical always-on society, in which people expect to have access to information
and services everywhere and at any time. As smartphones and tablet computers are enablers of always-on
societies, provided e-government services need to be adapted, in order to be applicable on these devices.
In the e-government domain, the provision of services for mobile devices has become known under the
term mobile government or m-government. The transition from e-government to m-government is cru-
cial for governments and public administrations, in order to keep pace with technological progress and
to meet requirements of the predominating mobile computing paradigm.

The provision of m-government services for mobile end-user devices turns out to be problematic, if
these services require the user to create legally binding electronic signatures. This is the case for so-called
transactional services that require the user to authenticate and to provide written consent in electronic
form. During the past years, various signature solutions have been developed that enable users to create
legally binding electronic signatures. However, these solutions have been tailored to classical end-user
devices and raise several issues when being applied on mobile devices. Limited hardware capabilities
of mobile devices and incompatible security concepts of signature solutions are the main reasons that
prevent an application of these solutions on smartphones and tablet computers. The current lack of
solutions for the creation of legally binding electronic signatures on mobile end-user devices currently
represents the main obstacle to transactional m-government.

To overcome this obstacle, a mobile signature solution for mobile end-user devices is proposed in
this thesis. The proposed solution is developed following an elaborate methodology. Taking into account
identified success factors of m-government, the most suitable general architecture is determined first.
Then, this architecture is successively refined and further developed towards the proposed solution. The
proposed solution is intentionally kept on an abstract and technology-agnostic level to assure its sustain-
ability and capability to respond to future technological changes. Finally, the proposed abstract solution
is evaluated by further developing it towards a concrete solution and by implementing it using three
different mobile state-of-the-art technologies. This shows that despite its abstract nature, the proposed
solution is a suitable basis for concrete realizations.

Both the proposed abstract solution and the provided implementation represent an important step
towards transactional m-government. They show that creating legally binding electronic signatures is
feasible on mobile end-user devices and that respective solutions can already be realized with available
technologies. This way, this thesis facilitates the transition from e-government to m-government and
assures that provided services comply with the emerging mobile computing paradigm and are able to
meet the requirements and expectations of the current always-on society.





Kurzfassung

Zur Erhöhung der Effizienz und zur Reduktion von Kosten setzen Regierungen und öffentliche Ver-
waltungseinheiten verstärkt auf elektronische Dienste, auch um Bürgerinnen und Bürgern mühsame
Behördenwege zu ersparen. Als Sammelbegriff für derartige Dienste hat sich der Begriff E-Government
durchgesetzt. Während der letzten Jahre waren Anbieter von E-Government-Diensten mit einer neuen
Art und Weise der mobilen Nutzung von Computern konfrontiert, welche übliche Methoden des Zu-
griffs auf Informationen und Dienste nachhaltig geändert hat. Dies resultierte schließlich in der heute
üblichen Always-On-Gesellschaft, in der davon ausgegangen wird, dass Informationen und Dienste kon-
textunabhängig jederzeit verfügbar sind. Da Smartphones und Tablet-Computer dafür Wegbereiter sind,
müssen auch bestehende E-Government-Dienste entsprechend adaptiert werden, um auf diesen Geräten
verwendet werden zu können. Für die Bereitstellung von E-Government-Diensten auf mobilen Geräten
hat sich der Begriff M-Government etabliert. Ein Übergang von E-Government hin zu M-Government ist
für öffentliche Verwaltungen wichtig und notwendig, um mit technischen Weiterentwicklungen Schritt
zu halten und um dem geänderten Nutzungsverhalten gerecht werden zu können.

Die Bereitstellung von E-Government-Diensten für mobile Endnutzergeräte stellt sich als schwierig
heraus, wenn diese die Erbringung rechtsgültiger elektronischer Unterschriften von Benutzerinnen und
Benutzern erfordern. Dies betrifft im Wesentlichen transaktionale Dienste, die eine Benutzerauthentifi-
zierung und die Erbringung einer bindenden schriftlichen Zustimmung verlangen. In letzter Zeit wurden
zahlreiche Lösungen entwickelt, die Benutzerinnen und Benutzern die Erstellung rechtsgültiger elektro-
nischer Signaturen erlauben. Diese Lösungen wurden jedoch für klassische Endnutzergeräte entworfen,
wodurch sich bei deren Verwendung auf mobilen Endnutzergeräten zahlreiche Probleme ergeben. Die-
se Probleme werden in den meisten Fällen durch beschränkte Hardware mobiler Geräte und durch für
diese Geräte ungeeignete Sicherheitskonzepte verursacht. Die aktuelle Nichtverfügbarkeit von geeigne-
ten Lösungen zur Erstellung rechtsgültiger elektronischer Signaturen auf mobilen Endgeräten kann als
größte Hürde für transaktionale M-Government-Dienste identifiziert werden.

Als Lösung für dieses Problem wird in dieser Arbeit eine Signaturlösung für mobile Endnutzergeräte
vorgeschlagen. Diese wird entsprechend einer wohlüberlegten Methodik entwickelt. Unter Beachtung
identifizierter Erfolgsfaktoren wird zunächst die bestgeeignete Architektur der vorgeschlagenen Lösung
bestimmt. In weiterer Folge wird diese Architektur schrittweise verfeinert, woraus sich schließlich die
vorgeschlagene Signaturlösung ergibt. Diese wird bewusst abstrakt und technologieunabhängig gehalten,
um ihre Nachhaltigkeit und Flexibilität in Bezug auf sich ändernde technologische Rahmenbedingungen
zu gewährleisten. Die vorgeschlagene Lösung wird schließlich evaluiert, indem diese zunächst in eine
konkrete Lösung übergeführt und schließlich unter Verwendung verschiedener aktuell verfügbarer mo-
biler Technologien realisiert wird. Auf diese Weise wird gezeigt, dass die vorgeschlagene Lösung trotz
ihrer abstrakten Natur eine geeignete Basis für die Entwicklung konkreter Umsetzungen ist.

Sowohl die vorgeschlagene abstrakte Lösung als auch die konkrete Umsetzung stellen einen wich-
tigen Schritt hin zu transaktionalem M-Government dar. Sie zeigen, dass die Erstellung rechtsgültiger
elektronsicher Unterschriften auf mobilen Endnutzergeräte möglich ist und dass entsprechende Lösungen
unter Verwendung verfügbarer Technologien umgesetzt werden können. Dadurch unterstützt diese Ar-
beit den Übergang von E-Government zu M-Government und gewährleistet, dass bereitgestellte Dienste
den Anforderungen heutiger Always-On-Gesellschaften gewachsen sind.





Affidavit

I declare that I have authored this thesis independently, that I have not used other than the declared
sources/resources, and that I have explicitly indicated all material which has been quoted either literally
or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the
present doctoral thesis.

Eidesstattliche Erklärung
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Chapter 1

Introduction

“ It is not the strongest of the species that survive, nor the most intelligent, but the one most
responsive to change.”

[ Charles Darwin, English Naturalist and Geologist. ]

With his pioneering work on the evolutionary theory, Charles Darwin has contributed significantly to
the common understanding of the descending of species. Being published in the 19th century, Darwin’s
theory on the survival of the fittest is nowadays a matter of common knowledge. Interestingly, the
basic idea behind this theory is not restricted to biological species, but applies to a certain extent also
to solutions from the Information and Communication Technology (ICT) domain. In the current era of
dynamic markets and vast technological advances, available technologies and the current state of the art
change frequently. In a similar way, user habits to employ available technologies change as well over
time. The recent history has shown that only those technical solutions that are sufficiently responsive to
technological changes are able to survive, i.e. to remain successful, in the long term.

A recent example underpinning this observation can be found in the mobile-computing domain. For
many years, Symbian OS has been one of the predominating operating systems for mobile phones. With
the introduction of smartphones and more powerful mobile operating systems such as Apple iOS1 or
Google Android2, user demands and habits regarding the use of mobile phones suddenly changed. As
Symbian OS was unable to adequately respond to the changed circumstances, it quickly lost market
shares [Ziegler, 2011]. This finally resulted in a complete stop of support for the operating system in
2012. Symbian OS can hence be regarded as a prime example showing that the incapability to respond
to changing circumstances and requirements can finally drive a successful technical solution to ruin.

The need to adequately respond to changing circumstances applies to virtually all technical solutions.
In particular, also Electronic Government (e-government) solutions, which enable the electronic accom-
plishment of administrative procedures and the electronic interaction with public-sector agencies, need
to continuously adapt to new technological advances and to current trends in the ICT domain. During the
past years, especially mobile computing has risen as new computing paradigm. This thesis contributes to
the sustainable success of e-government solutions by leveraging their use together with emerging mobile-
computing technologies. In particular, this thesis proposes, discusses, and evaluates solutions that enable
established e-government solutions to respond to changing computing habits caused by the growing
popularity of smartphones and related mobile end-user devices. The motivation behind this thesis, its
methodology, its relevant contributions, and its structure are presented in the following subsections.

1https://www.apple.com/ios/
2http://www.android.com/
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1.1 Motivation

The past years have yielded various technological innovations, which have had a strong influence on daily
life. This especially applies to the Information Technology (IT) sector, where continuous improvements
of available end-user devices and communication networks can be observed. Frequent technological
innovations in the IT sector have recently led to two trends. First, the restriction to classical end-user
devices such as Personal Computers (PCs) or laptops has been eased by the introduction of alternative
devices. Especially mobile end-user devices such as smartphones and tablet computers have significantly
gained popularity and relevance during the past years and have gradually replaced desktop PCs and
laptops. Second, ongoing technological advances continuously facilitate new use cases and application
scenarios. In this regard, e-government can be mentioned as a representative example. Enabled by
the availability of powerful technologies, governments and public administrations successively transfer
the provision of services to the digital domain. This especially applies to member states of the European
Union (EU), which increasingly employ ICT to improve provided services and to reduce costs [European
Commission, 2014b].

The first trend, i.e. the renunciation of classical end-user devices, has mainly been caused by vast
enhancements in mobile computing, which have led to the development of both powerful mobile end-
user devices and efficient mobile communication networks. According to EMarketer [2014], there was
a worldwide 25% growth in smartphone usage in 2014. Behind the Asia-Pacific region, Western Europe
represents the area with the second largest number of smartphone users. In total, Western Europe had
196.6 million smartphone users in 2014 [EMarketer, 2014]. Relevant reports underpin the growing
relevance of mobile computing all over the world and show that mobile computing is actually a global
trend [MobiForge, 2014].

The increasing popularity of mobile computing and the continuing trend to replace classical end-
user devices raises several challenges. For instance, mobile end-user devices differ from classical ones
in various aspects. This requires existing solutions and services to be adapted accordingly, in order to
meet the special requirements of mobile end-user devices. For example, web-based services must be
redesigned such that they are compliant with mobile web browsers and remain usable on mobile devices
with reduced input and output capabilities. Further challenges are raised by the heterogeneity of current
mobile platforms. At present, three mobile platforms hold significant market shares [IDC, 2014]. These
are Google Android3, Apple iOS4, and Microsoft Windows Phone 85. All of these platforms must be
regarded as closed ecosystems and are hardly compatible to each other. This means that mobile solutions
must be developed, deployed, and maintained for all platforms separately. In particular, this applies
to the provision of so-called mobile apps, i.e. applications that are designed for mobile platforms and
that are distributed over a centrally maintained platform-specific app repository. Even though all major
smartphone platforms implement the concept of mobile apps, they are specific to the mobile operating
system and hence cannot be reused on different platforms.

Despite these challenges, more and more services are nowadays offered for mobile end-user devices.
There are several reasons for that. First and foremost, smartphones and related end-user devices enable
so-called always-on societies. This means that users are online 24/7 and have access to information and
services everywhere and at any time. This, in turn, enables service providers to offer services that are
accessible and usable irrespective of the user’s current context. Second, modern mobile end-user devices
integrate various technologies that are typically not available on classical end-user devices. This includes
for instance positioning systems, short-range communication technologies, or various sensors. These
technologies enable new and innovative applications such as Location-Based Services (LBSs), which are
typically infeasible on classical end-user devices. Due to the availability of innovative technologies and
the capability to satisfy the demands of always-on societies, mobile computing has emerged to one of

3http://www.android.com/
4https://www.apple.com/ios/
5http://www.windowsphone.com
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the most relevant ICT trends during the past years.

Besides the trend towards mobile computing, technological enhancements have facilitated various
new use cases and application scenarios for information and communication technologies. For instance,
the accomplishment of banking transactions and the buying of goods have been gradually moved to the
digital domain during the past years, and have leveraged the fields of Electronic Banking (e-banking) and
Electronic Commerce (e-commerce). Inspired by the success of these fields of application, also govern-
ments and public-sector administrations have started to provide services and procedures electronically.
The use of ICT in the public sector has soon become known under the term e-government. Nowadays,
e-government covers a broad spectrum of electronic public-sector services ranging from the simple pro-
vision of static information on governmental websites to the provision of fully transactional electronic
services that enable citizens to complete entire procedures over the Internet. Hence, e-government can
be regarded as a prime example for a new use case and application scenario that has been enabled by
enhancements of ICTs.

Especially in the EU, the immense potential of e-government has been recognized early [European
Commission, 2014c]. To achieve the goals defined by the European Commission’s Digital Agenda [Euro-
pean Commission, 2014a], various member states of the EU have developed e-government solutions ac-
cording to national legal and organizational requirements. Currently, Europe faces a heterogeneous land-
scape of mainly national e-government concepts and solutions. Although most national solutions rely on
the same concepts such as electronic identities or electronic signatures, solutions from different member
states are usually not interoperable. Achieving interoperability between national solutions has been the
goal of several pan-European pilot projects6,7,8,9,10, which have aimed to provide e-government services
across national borders. National initiatives to further develop member state specific e-government so-
lutions and pan-European activities to achieve interoperability between national solutions emphasize the
relevance of e-government in Europe.

Similar to other fields of application, the global trend towards mobile computing has recently also
affected developments in the e-government domain. The integration of mobile communication tech-
nologies into e-government services and applications has become commonly known under the term
Mobile Government (m-government). Mobile technologies offer various opportunities to improve exist-
ing e-government services and enable new and innovative solutions. For instance, m-government apps
can provide location-based e-government services by incorporating the user’s current context. At the
same time, provision of e-government services through mobile end-user devices also bears several risks
and raises various challenges. This especially applies to transactional services, which integrate security-
critical concepts such as electronic identities and electronic signatures. Solutions implementing these
concepts are available and have been in productive operation in many countries for years. However,
they have usually been designed for classical end-user devices. This raises issues regarding feasibility,
security, and usability, when these solutions are ported to and applied on mobile end-user devices. Due
to these issues, transactional m-government services that rely on electronic identities and electronic sig-
natures are still rare. To address this issue, this thesis proposes, discusses, and evaluates solutions to
leverage the transition from pure informational m-government to transactional m-government. In partic-
ular, this thesis focuses on the development of electronic-signature solutions that are feasible on mobile
end-user devices and can be applied on mobile devices in a secure and usable way.

6https://www.eid-stork.eu/
7https://www.eid-stork2.eu/
8http://www.peppol.eu/
9http://www.e-codex.eu

10http://www.eu-spocs.eu/
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1.2 Methodology

Responsiveness to changing circumstances is key for the sustainable success of ICT solutions. This es-
pecially holds true for solutions incorporating mobile technologies, as the mobile sector is subject to
frequent technological innovations, short release cycles, and dynamic markets. Mobile solutions hence
need to provide a sufficient degree of flexibility, in order to be able to respond to fast changing circum-
stances and varying requirements.

To maintain a sufficient level of responsiveness and flexibility, solutions proposed in this thesis are
provided on different levels of abstraction. In terms of sustainability, a high degree of abstraction is
advantageous, as it enables the modeling of solutions independent of concrete technologies. This way,
proposed solutions remain valid, even if available technologies change. When it comes to concrete
realizations, a high degree of abstraction is often disadvantageous, as the mapping of abstract concepts to
currently available technologies can be difficult. It is hence reasonable to propose and provide technical
solutions on different levels of abstraction, in order to achieve sustainability and to assure feasibility of
concrete realizations at the same time.

The approach to provide solutions on different levels of abstraction is also followed in this thesis.
This becomes apparent from the thesis’s methodology, which is illustrated in Figure 1.1. Figure 1.1
lists activities, which have been completed during the work on this thesis, and achievements, which
have been yielded from these activities. Together, activities and achievements listed illustrate the way
followed from the definition of the thesis’s basic goal, over the proposal of an abstract solution, to the
realization and evaluation of a concrete implementation. Three achievements represent the three basic
milestones of this thesis and are marked in Figure 1.1 accordingly.

As illustrated in Figure 1.1, this thesis’s methodology comprises the following activities. First, the
e-government state of the art is analyzed and relevant current trends are identified. This yields the
general goal of this thesis, i.e. the improvement of m-government. Taking into account this general
goal, the methodology followed defines the survey of current m-government solutions as subsequent
activity. From the results of this survey, the concrete goal of the thesis, i.e. the leveraging of transactional
m-government, is derived. From this concrete goal, the basic problem tackled by this thesis is derived: the
provision of a signature solution for mobile end-user devices. According to the methodology followed,
the problem derivation is accompanied by an assessment of current mobile technologies. The definition
of the concrete problem addressed by this thesis represents the first milestone of this thesis.

To tackle the problem defined, legal requirements that are relevant for mobile signature solutions are
identified first. From these requirements, a first abstract model is derived. From this model, implementa-
tion options are systematically derived. This yields a set of possible implementation variants for mobile
signature solutions. The preferred implementation variant is subsequently determined by conducting
assessments regarding feasibility, security, and usability. From the obtained assessment results, server-
based approaches are identified as the preferred implementation variant for mobile signature solutions
and an abstract model of a server-based signature solution for mobile end-user devices is derived. This
is achieved by integrating a user-authentication method that satisfies the needs of signature solutions on
mobile end-user devices. The derived model of an abstract signature solution for mobile end-user devices
represents the second milestone of this thesis.

To assess and evaluate its feasibility and applicability, the proposed abstract model is further devel-
oped towards a concrete solution. For this purpose, a functional model is derived first. This is achieved
by defining and applying a set of design principles, which further detail the proposed abstract model.
From the functional model, a concrete solution named Smartphone Signature is subsequently derived by
selecting available mobile technologies. Joining on an existing solution, the Smartphone Signature is fi-
nally implemented. This proves that the proposed abstract signature solution for mobile end-user devices
can be mapped to concrete technologies and can be further developed towards a concrete implementation.
The resulting implementation thus represents the third and final milestone of this thesis.
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ActivitiesAchievements and Milestones

Problem Definition:
Signature Solution for Mobile 

End-User Devices

Abstract Signature Model

Identification of Legal 
Requirements

Implementation Variants

Identification of Implementation 
Options

Preferred Implementation 
Variant: Server-Based Solution

Feasibil ity/Security/Usability 
Assessment

Abstract Model of 
Server-Based Mobile Signature 

Solution

Identification of Suitable 
Authentication Method

Functional Model

Defintion of Design Principles

Concrete Solution: Smartphone 
Signature

Selection of Available 
Technologies

Implementation

Joining on Existing Solution

General Goal of Thesis: Improve 
M-Government

Concrete Goal of Thesis: 
Leverage Transactional 

M-Government

Survey of 
M-Government Solutions

Assessment of 
Mobile Technologies

Analysis of State-of-the-Art of E-
Government and Identif ication 

of Current Trends

Figure 1.1: The followed methodology yields mobile signature solutions on different levels of ab-
straction.

The list of activities and achievements emphasize the basic aim of this thesis, i.e. the provision
of solutions on different levels of abstraction. By providing both an abstract model and a concrete
implementation, the signature solution for mobile end-user devices proposed in this thesis is responsive
to technological changes and is proven to be feasible and compliant to state-of-the-art technologies.
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1.3 Contribution

Contributions of this thesis become apparent from the list of achievements illustrated in Figure 1.1.
Main achievements have also been introduced and discussed in published conference papers and journal
articles. They can be regarded as scientific backbone of this thesis. To provide a comprehensive overview,
own papers and articles related to the topics covered by this thesis are listed in the following.

Listed publications have been classified into three categories. Publications of Category A are directly
related to the concrete problem tackled by this thesis, i.e. to mobile government and mobile signature
solutions. Papers and articles assigned to Category A can hence be regarded as core publications of this
thesis. Publications assigned to Category B and Category C are related to two topics that are relevant for
mobile government, i.e. mobile security and e-government. Even though not all publications from these
categories are directly related to the problem tackled by this thesis, they still yield valuable results and
findings that enable the achievement of this thesis’s goals.

Following common scientific practice, work on this thesis has benefited from discussions and coop-
erations with colleagues and partners, who have partially contributed to the achievement of this thesis’s
goals. This is also reflected by the fact that several publications listed below contain one or more coau-
thors. In most cases, the provided order of authors corresponds to the share in contribution, whereas the
main contributor is the first author of the publication. Accordingly, the author of this thesis has been the
main contributor of all core publications assigned to Category A and of numerous related publications
assigned to Category B and Category C.

1.3.1 Category A: Mobile Government and Mobile Signature Solutions

Thomas Zefferer and Peter Teufl. Opportunities and Forthcoming Challenges of Smartphone-based m-
Government Services. European Journal of ePractice, (Megatrends in eGovernment), volume 13, 2011.

[Zefferer and Teufl, 2011]

Thomas Zefferer, Peter Teufl, and Herbert Leitold. Mobile qualifizierte Signaturen in Europa. Daten-
schutz und Datensicherheit – DuD, volume 35, pages 768–773. Springer. 2011.

[Zefferer et al., 2011c]

Thomas Zefferer, Arne Tauber, Bernd Zwattendorfer, and Klaus Stranacher. Qualified PDF Signatures
on Mobile Phones. In Electronic Government and Electronic Participation - Joint Proceedings of Ongo-
ing Research and Projects of IFIP EGOV and IFIP ePart 2012, pages 115–123. Trauner. 2012.

[Zefferer et al., 2012b]

Thomas Zefferer, Sandra Kreuzhuber, and Peter Teufl. Assessing the Suitability of Current Smartphone
Platforms for Mobile Government. In Technology-Enabled Innovation for Democracy, Government and
Governance, pages 125–139. Springer. 2013.

[Zefferer et al., 2013b]
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Thomas Zefferer, Fabian Golser, and Thomas Lenz. Towards Mobile Government: Verification of Elec-
tronic Signatures on Smartphones. In Technology-Enabled Innovation for Democracy, Government and
Governance, pages 140–151. Springer. 2013.

[Zefferer et al., 2013a]

Thomas Zefferer and Bernd Zwattendorfer. An Implementation-Independent Evaluation Model for Server-
Based Signature Solutions. In 10th International Conference on Web Information Systems and Technolo-
gies, pages 302–309. SciTePress. 2014.

[Zefferer and Zwattendorfer, 2014]

Thomas Zefferer. A Server-Based Signature Solution for Mobile Devices. In The 12th International
Conference on Advances in Mobile Computing and Multimedia, pages 175–184. ACM. 2014.

[Zefferer, 2014]

Thomas Zefferer. Towards a New Generation of Mobile Government. In 13th International Conference
on e-Society (ES 2015), pages 191–198. IADIS. 2015.

[Zefferer, 2015a]

Thomas Zefferer. Towards Transactional Electronic Services on Mobile End-User Devices – A Sustain-
able Architecture for Mobile Signature Solutions. In 11th International Conference on Web Information
Systems and Technologies, pages 586–597. SciTePress. 2015.

[Zefferer, 2015b]

Thomas Zefferer and Peter Teufl. Leveraging the Adoption of Mobile eID and e-Signature Solutions
in Europe. In 4th International Conference on Electronic Government and the Information Systems
Perspective. Springer. In press.

[Zefferer and Teufl, in press]

1.3.2 Category B: Mobile Security

Thomas Zefferer, Arne Tauber, and Bernd Zwattendorfer. Improving the Security of SMS-based Ser-
vices using Electronic Signatures - Towards SMS-based Processing of Transactional m-Government Ser-
vices. In 8th International Conference on Web Information Systems and Technologies, pages 743–752.
SciTePress. 2012.

[Zefferer et al., 2012a]
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Peter Teufl, Thomas Zefferer, Sandra Kreuzhuber, and Christian Lesjak. Trusted Location Based Ser-
vices. In International Conference for Internet Technology and Secured Transactions 2012 , pages 185–
192. IEEE. 2012.

[Teufl et al., 2012]

Thomas Zefferer, Arne Tauber, and Bernd Zwattendorfer. Harnessing Electronic Signatures to Improve
the Security of SMS-based Services. In Web Information Systems and Technologies – Lecture Notes in
Business Information Processing, pages 331–346. Springer. 2013.

[Zefferer et al., 2013c]

Thomas Zefferer and Peter Teufl. Policy-based Security Assessment of Mobile End-User Devices. In Pro-
ceedings of the 10th International Conference on Security and Cryptography, pages 347–354. SciTePress.
2013.

[Zefferer and Teufl, 2013]

Thomas Zefferer. A Survey and Analysis of NFC-Based Payment Solutions for Smartphones. In Interna-
tional Conference e-Society 2013, pages 275–282. IADIS. 2013.

[Zefferer, 2013]

Thomas Zefferer, Peter Teufl, David Derler, Klaus Potzmader, Alexander Oprisnik, Hubert Gasparitz,
and Andrea Höller. Power Consumption-Based Application Classification and Malware Detection on
Android Using Machine-Learning Techniques. In FUTURE COMPUTING 2013, The Fifth International
Conference on Future Computational Technologies and Applications, pages 26–31. IARIA. 2013

[Zefferer et al., 2013d]

Peter Teufl, Thomas Zefferer, and Christof Stromberger. Mobile Device Encryption Systems. In 28th IFIP
TC-11 SEC 2013 International Information Security and Privacy Conference, pages 203–216. Springer.
2013.

[Teufl et al., 2013a]
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Peter Teufl, Thomas Zefferer, Christof Stromberger, and Christoph Hechenblaikner. iOS Encryption
Systems – Deploying iOS Devices in Security-Critical Environments. In 10th International Conference
on Security and Cryptography, pages 170–182. SciTePress. 2013.

[Teufl et al., 2013b]

Thomas Zefferer, Peter Teufl, David Derler, Klaus Potzmader, Alexander Oprisnik, Hubert Gasparitz,
and Andrea Höller. Towards Secure Mobile Computing: Employing Power-Consumption Information
to Detect Malware on Mobile Devices. In International Journal On Advances in Software, 6, pages
150–160. IARIA. 2014.

[Zefferer et al., 2014b]

Peter Teufl, Thomas Zefferer, Christoph Wörgötter, Alexander Oprisnik, and Daniel Hein. Android –
On-Device Detection of SMS Catchers and Sniffers. In International Conference on Privacy & Security
in Mobile Systems, pages 1–8. IEEE. 2014.

[Teufl et al., 2014b]

Peter Teufl, Daniel Hein, Alexander Marsalek, Thomas Zefferer, and Alexander Oprisnik. Android En-
cryption Systems. In International Conference on Privacy & Security in Mobile Systems, pages 1–8.
IEEE. 2014.

[Teufl et al., 2014a]

Andreas Reiter and Thomas Zefferer. Paving the Way for Security in Cloud-Based Mobile Augmentation
Systems. In 3rd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering
(IEEE Mobile Cloud 2015), pages 89–98. ACM. 2015.

[Reiter and Zefferer, 2015]

Florian Reimair, Peter Teufl, and Thomas Zefferer. WebCrySIL – Web Cryptographic Service Interoper-
ability Layer. In In 11th International Conference on Web Information Systems and Technologies, pages
35–44. SciTePress. 2015.

[Reimair et al., 2015]
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1.3.3 Category C: Electronic Government

Thomas Zefferer and Thomas Knall. An Electronic-Signature Based Circular Resolution Database Sys-
tem. In Proceedings of the 25th Annual ACM Symposium on Applied Computing 2010, pages 1840–1845.
ACM. 2010.

[Zefferer and Knall, 2010]

Arne Tauber, Bernd Zwattendorfer, Thomas Zefferer, Yasmin Mazhari, and Eleftherios Chamakiotis.
Towards Interoperability: An Architecture for Pan-European eID-based Authentication Services. In
Proceedings of the International Conference on Electronic Government and the Information Systems
Perspective (EGOVIS), volume 6267/2010, pages 120–133. Springer. 2010.

[Tauber et al., 2010]

Thomas Zefferer, Arne Tauber, Bernd Zwattendorfer, and Thomas Knall. Secure and Reliable Online-
Verification of Electronic Signatures in the Digital Age. In Proceedings of the International Conference
WWW/INTERNET 2011, pages 269–276. IADIS. 2011.

[Zefferer et al., 2011b]

Thomas Zefferer, Vesna Krnjic, and Bernd Zwattendorfer. Ein virtuelles Testframework für EGovern-
ment Komponenten. In D-A-CH Security 2011, pages 492–503. syssec. 2011.

[Zefferer et al., 2011a]

Clemens Orthacker and Thomas Zefferer. Accessibility Challenges in e-Government: an Austrian Expe-
rience. In Proceedings of the Forth International Conference on Internet Technologies and Applications
(ITA 11), pages 221–228. Glyndwr University. 2011.

[Orthacker and Zefferer, 2011]

Bernd Zwattendorfer, Thomas Zefferer, and Arne Tauber. E-ID Meets E-Health on a Pan-European
Level. In Proceedings of the IADIS International Conference e-Health 2011, pages 97–104. IADIS.
2011.

[Zwattendorfer et al., 2011b]
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On Solution. In Proceedings of 5th International Conference on Network and System Security, pages
295–299. Springer. 2011.
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A-CH Security 2012, pages 365–376. syssec. 2012.

[Zefferer and Krnjic, 2012c]

Thomas Zefferer and Vesna Krnjic. Towards User-friendly E-Government Solutions: Usability Evalua-
tion of Austrian Smart-Card Integration Techniques. In Advancing Democracy, Government and Gover-
nance, pages 88–102. Springer. 2012.

[Zefferer and Krnjic, 2012a]

Thomas Zefferer and Vesna Krnjic. Usability Evaluation of Electronic Signature Based EGovernment
Solutions. In Proceedings of the International Conference WWW/INTERNET 2012, pages 227–234.
IADIS. 2012.

[Zefferer and Krnjic, 2012b]

Reinhard Posch, Clemens Orthacker, Klaus Stranacher, Arne Tauber, Thomas Zefferer, and Bernd Zwat-
tendorfer. Open Source Bausteine als Kooperationsgrundlage. In E-Government - Zwischen Partizipa-
tion und Kooperation, pages 185–209. Springer. 2012.

[Posch et al., 2012]

Arne Tauber, Thomas Zefferer, and Bernd Zwattendorfer. Approaching the Challenge of eID Interoper-
ability: An Austrian Perspective. In European Journal of ePractice, volume 14, pages 22–39. 2012.

[Tauber et al., 2012]

Bernd Zwattendorfer, Thomas Zefferer, and Arne Tauber. The Prevalence of SAML within the European
Union. In 8th International Conference on Web Information Systems and Technologies, pages 571–576.
SciTePress. 2012.

[Zwattendorfer et al., 2012]

Klaus Stranacher, Vesna Krnjic, and Thomas Zefferer. Vertrauenswürdiges Open Government Data. In
1.OGD D-A-CH-LI Konferenz, pages 27–39. ADV. 2012.

[Stranacher et al., 2012]



1.3. Contribution 15

Thomas Lenz, Klaus Stranacher, and Thomas Zefferer. Towards a Modular Architecture for Adaptable
Signature-verification Tools. In 9th International Conference on Web Information Systems and Technolo-
gies, pages 325–334. SciTePress. 2013.

[Lenz et al., 2013b]

Thomas Lenz, Klaus Stranacher, and Thomas Zefferer. Enhancing the Modularity and Applicability of
Web-Based Signature-Verification Tools. In WEBIST 2013 Selected and Revised Papers, pages 173–188.
Springer. 2013.

[Lenz et al., 2013a]

Vesna Krnjic, Philip Weber, Thomas Zefferer, and Bernd Zwattendorfer. Effizientes Testen von E-
Government Komponenten in der Cloud. In D-A-CH Security 2013, pages 225–236. syssec. 2013.

[Krnjic et al., 2013]

Klaus Stranacher, Vesna Krnjic, Bernd Zwattendorfer, and Thomas Zefferer. Assessment of Redactable
Signature Schemes for Trusted and Reliable Public Sector Data. In Proceedings of the 13th European
Conference on e-Government, pages 508–516. ACPI. 2013.

[Stranacher et al., 2013c]

Klaus Stranacher, Vesna Krnjic, and Thomas Zefferer. Trust and Reliability for Public Sector Data. In
Proceedings of International Conference on e-Business and e-Government, volume 73, pages 124–132.
ACPI. 2013.

[Stranacher et al., 2013b]

Klaus Stranacher, Vesna Krnjic, Bernd Zwattendorfer, and Thomas Zefferer. Evaluation and Assess-
ment of Editable Signatures for Trusted and Reliable Public Sector Data. In Electronic Journal of e-
Government, volume 11, pages 360–372. 2013.

[Stranacher et al., 2013d]

Klaus Stranacher, Vesna Krnjic, and Thomas Zefferer. Authentische und integritätsgesicherte Verwal-
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1.4 Outline

The structure of this thesis approximately corresponds to the defined methodology illustrated in Figure
1.1 on page 7. Achievements of this thesis according to the defined methodology are introduced and
discussed in a total of eight chapters. The eight chapters are grouped into three parts, which are based on
each other. Each part is dedicated to one of the three milestones of this thesis.

Accordingly, Part I focuses on the identification of the concrete problem tackled. For this purpose,
Part I is subdivided into three chapters. After a brief general introduction to this thesis provided in Chap-
ter 1, the evolution of mobile government is discussed in Chapter 2. This includes the introduction of
relevant e-government concepts, the discussion of the transition from e-government to m-government,
and a survey of the current state of the art of m-government. Subsequently, Chapter 3 focuses on op-
portunities and limitations of current mobile technologies in terms of security, and investigates these
technologies’ capabilities to satisfy requirements of m-government solutions. Based on the findings ob-
tained from Chapter 2 and Chapter 3, the concrete problem tackled by this thesis, i.e. development of a
signature solution for mobile end-user devices, is finally defined.

Part II of this thesis systematically analyzes the defined problem in order to develop a suitable so-
lution and to reach the thesis’s second milestone. The problem analysis and solution development is
covered by two chapters. In Chapter 4, the most suitable general architecture for mobile signature so-
lutions is developed. The developed architecture is subsequently refined in Chapter 5 by integrating
a suitable user-authentication method. This finally yields a complete abstract model of a server-based
mobile signature solution, which represents the second milestone of this thesis.

Based on the developed abstract model, a concrete implementation is introduced and discussed in Part
III. This implementation evaluates the proposed model’s feasibility and applicability in practice. In total,
Part III comprises three chapters. In Chapter 6, the proposed model is further developed towards a con-
crete solution called Smartphone Signature. Subsequently, an implementation of this solution that relies
on state-of-the-art technology is presented in Chapter 7. This implementation integrates three different
mobile cutting-edge technologies to demonstrate the proposed solution’s flexibility. Final conclusions
are subsequently drawn in Chapter 8.



18 Chapter 1. Introduction



Chapter 2

The Evolution of Mobile Government

“ The single most important top-level trend is the shift to mobile.”

[ Max Rafael Levchin, American Computer Scientist. ]

With his concise statement, Max Rafael Levchin has summarized a phenomenon that has been om-
nipresent during the past years: the trend towards mobile computing. Emerging trends, available tech-
nologies, and the current state of the art have always influenced workaday life. This also applies to
the interaction between governments, public administrations, and citizens. Before PCs became mass-
produced goods, paper-based administrative procedures had been state of the art. Citizen had to show
up personally in public offices to file paper-based applications. These applications were then processed
by officials in charge according to defined back-office processes. Results of these processes such as
official notifications or administrative rulings were finally delivered to citizens by paper-based mail. In
the 1980’s, PCs finally became mass-produced goods. With their increasing spread, these devices were
also increasingly used by public administrations to speed up back-office processes, while the filing of
applications as well as the delivery of official notifications and administrative rulings was still based
on paper. This has finally changed with the emergence of the Internet and the feasibility of web-based
services. Since the early noughties, transactional e-government services have enabled citizens to interact
with public administrations and to carry out complete electronic procedures over the Internet.

During the past years, the predominating computing paradigm has changed, as mobile communica-
tion technologies have significantly gained importance. Powered by the success story of smartphones
and tablet computers, and enabled by the increasing availability of mobile broadband networks, mobile
end-user devices are nowadays gradually replacing classical devices such as desktop PCs and laptops.
Governments and public administrations are already reacting to this new computing paradigm and are
currently preparing their services for access by and use with mobile end-user devices. The use of mobile
technologies in e-government solutions has become commonly known under the term mobile govern-
ment or m-government. First experiences with m-government show that the incorporation of mobile
cutting-edge technologies into e-government services opens up new use cases and application possibili-
ties. At the same time, the integration of these technologies also raises new threats and challenges that
need to be addressed.

In this chapter, the evolution from paper-based administrative procedures over e-government to-
wards m-government is discussed in more detail. This way, general requirements of administrative pro-
cedures are identified, basic concepts of e-government are introduced, and an overview of the current
state of the art of m-government is provided. From this overview, limitations and drawbacks of current
m-government solutions are identified and the basic goal of this thesis is motivated.
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2.1 E-Government Concepts

For many years, interaction with public administrations has been cumbersome for citizens, who have in
many cases been treated rather as supplicants than as customers. In these times, citizens had to queue
at counters, had to cope with limited office hours, and often had to deal with complex paper-based
procedures. During the past few decades, public administrations have experienced a growing pressure to
increase efficiency in order to save costs. At the same time, public administrations have been positively
influenced by the private sector so that customer satisfaction has become an increasingly important aspect
also for public services.

In order to improve customer experience and to increase efficiency, public administrations have
started to make use of ICTs. Nowadays, ICTs are used by the public sector to speed-up internal back-
office processes and to improve the interaction with both citizens and businesses from the private sector.
Irrespective of the actual use case, the use of ICTs in the public sector has become commonly known
under the term e-government. The World Bank defines e-government as ’the use by government agencies
of information technologies (such as Wide Area Networks, the Internet, and mobile computing) that have
the ability to transform relations with citizens, businesses, and other arms of government.’ [World Bank,
2014]. Nowadays, e-government concepts are adopted by public bodies and administrations of nearly all
developed countries. This especially applies to the EU, where the Digital Agenda for Europe [European
Commission, 2014a] leverages the use of ICTs in the public sector.

In many member states of the EU, e-government initiatives have already been started in the 1990’s
and have yielded e-government services and solutions relying on technologies of this era. Powered by
the emergence of new and innovative technologies, concrete implementations of e-government services
have changed during the past decades. Nevertheless, the fundamentals and basic underlying concepts
have basically remained the same. In this section, relevant concepts of e-government are briefly sketched
and their application in practice is exemplified by means of concrete solutions.

2.1.1 E-Government Fundamentals

Definitions of the term e-government such as the one provided by the World Bank [2014] are typically
rather generic. Thus, the term e-government covers a broad spectrum of services and applications ranging
from simple informational websites provided by public-sector agencies to full electronic procedures.
It is hence unsurprising that several classification schemes have been introduced to group and divide
e-government services and applications.

Depending on the used classification criterion, e-government services can be classified according to
different aspects. A commonly used classification scheme groups e-government services according to
the set of involved participants. This approach has for instance been followed by Fang [2002]. Poten-
tial participants of e-government services and applications are governmental agencies, citizens, private-
sector businesses, non-profit organizations, and employees of governmental agencies. Accordingly, Fang
[2002] identifies the following types of e-government services: Government-to-Citizen (G2C), Citizen-
to-Government (C2G), Government-to-Business (G2B), Business-to-Government (B2G), Government-
to-Government (G2G), Government-to-Nonprofit (G2N), Nonprofit-to-Government (N2G), and finally
Government-to-Employee (G2E).

As an alternative to the set of involved participants, also the nature of communication can be used to
classify e-government services and applications. This is a common approach followed in several scien-
tific publications. A prime example is a paper by Nariman and Yamamoto [2008], in which the authors
rely on this classification scheme and also provide definitions of the different categories of e-government
services. Concretely, they distinguish between the following types of e-government services:

• Informational e-government: This kind of e-government services refers to ’a passive presen-
tation of general information’ [Nariman and Yamamoto, 2008]. Common implementations of
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informational e-government services are web sites provided by public agencies, which contain
useful information such as office hours, relevant phone numbers, or mailing addresses.

• Responsive e-government: The general goal of responsive e-government services is to ’make
commonly requested information and forms available around the clock’ [Nariman and Yamamoto,
2008], in order to avoid necessary personal interactions with the agency, e.g. during office hours.
Responsive e-government services represent a step towards full electronic procedures but still com-
prise several manual processing steps.

• Transactional e-government: Transactional services are the most complex but also the most
powerful kind of e-government solutions. They ’enable clients/users to complete entire tasks elec-
tronically at any time of the day or night’ [Nariman and Yamamoto, 2008]. These services typ-
ically require a reliable authentication of the user at the e-government service and the electronic
provision of written consent by the user.

From a technical and implementation perspective, transactional services are most challenging, as they
implement full electronic procedures. Considering the participants-based classification scheme, transac-
tional services are especially relevant for interactions between governments and citizens, i.e. for G2C
and C2G transactions. In general, transactional e-government services resemble classical administrative
procedures and therefore need to satisfy the same requirements. We have discussed relevant aspects of
classical administrative procedures [Posch et al., 2011] and have identified their three basic stages, which
are illustrated in Figure 2.1.

Application Back-Office Processing Delivery

Figure 2.1: Classical administrative procedures typically comprise the three stages Application,
Back-Office Processing, and Delivery.

As shown in Figure 2.1, classical administrative procedures typically consist of the three stages
Application, Back-Office Processing, and Delivery. In the first stage, the citizen shows up in a public
office to file an application. Therefore, the citizen hands over a filled paper-based form to the official
in charge. Depending on the concrete procedure, the citizen might be required to authenticate at the
official in charge. This is usually achieved by presenting an official identity card or a passport. In most
cases, the filled paper-based form needs to be signed by the citizen. The official in charge acknowledges
receipt of the filled paper-based form and hence of the filed application. Filed applications are forwarded
internally to the public administration’s back office. There, they are processed according to the defined
process flow of the respective procedure. In most cases, this involves a manual processing by responsible
officials. Back-office processing defines the second stage of classical administrative procedures. If the
respective procedure demands it, relevant documents are finally delivered to the citizen, who has filed the
application. This might include official notifications, administrative rulings, or newly issued documents.
Delivery represents the third and last stage of classical administrative procedures.

Transactional e-government services resemble classical administrative procedures. Hence, manda-
tory concepts for transactional e-government services can be derived from the three stages of classical
administrative procedures. This is elaborated in more detail in the following.
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2.1.2 Basic Concepts of Transactional E-Government Services

From the three stages of classical administrative procedures, a set of relevant concepts can be derived.
Transactional e-government services need to implement appropriate means in order to map these con-
cepts to the digital world. Concretely, the following concepts can be identified as crucial for classical
administrative procedures and hence also for transactional e-government services:

• Identification: For most procedures, citizens need to identify themselves before being able to file
an application. In classical procedures, this is usually achieved by showing a valid identity card or
passport. Transactional e-government services need to make use of respective electronic identities,
in order to remotely identify citizens in online processes.

• Authentication: During authentication, citizens confirm an indicated identity. For classical ad-
ministrative procedures, authentication is implicitly covered during identification by showing a
valid identity document. In the digital world, the concepts of identification and authentication of-
ten need to be considered separately. This is best explained by means of the concrete example of
user name and password based access-control systems. Provision of the user name covers identi-
fication: the user claims a certain electronic identity. Authentication is on the contrary covered by
proving knowledge of a secret password, which is assigned to the electronic identity.

• Filing of applications: In the analog world, filing an application is typically accomplished by
filling a paper-based form. This concept can be easily mapped to the digital world and implemented
by transactional e-government services e.g. using approved web-based technologies.

• Provision of written consent: In classical administrative procedures, citizens usually need to
sign filled forms in order to file an application. This way, citizens provide written consent on the
contents of the filled form. Provision of written consent is hence a key concept that also needs to be
mapped to the digital world by transactional e-government services. There, electronic signatures
are usually the technology of choice to provide data-origin authentication in online processes.

• Back-office processing: Required back-office processes depend heavily on the respective proce-
dure that needs to be run through. Irrespective of the concrete procedure, back-office processes
can benefit from the use of ICTs. This applies to classical procedures as well as to procedures im-
plemented by transactional e-government services. The latter additionally leverage the use of ICTs
in back-office processes, as they avoid media breaks caused by filed applications in paper-based
form.

• Delivery: Delivery of relevant documents to the citizen is optional and not required by every
procedure. If required, classical mail services are typically used in the analog world for this pur-
pose. In the digital world, e-mail is the de-facto standard for the electronic delivery of messages
and documents. As e-mail does not assure any service quality, this technology is hardly used by
e-government services for delivery purposes. Instead, special e-delivery solutions are employed
for this purpose. We have discussed challenges, approaches, and concrete solutions of e-delivery
systems in Tauber et al. [2011b] and Tauber et al. [2011c].

From the basic concepts of classical administrative procedures, two relevant concepts for transac-
tional e-government services can be extracted. These are the concepts of electronic identities and elec-
tronic signatures. Electronic identities are crucial for all transactional e-government services, as they
enable a reliable identification of remote users. Electronic signatures are required for multiple purposes.
First, they represent an ideal mechanism to provide written consent in online processes. Second, they can
also be used to authenticate users, as provision of authenticity is one key feature of electronic signatures.
Together, the related concepts of electronic identities and electronic signatures enable users to identify
and authenticate at transactional e-government services, and to provide written consent on electronic
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data such as filed applications. Thus, these concepts are crucial for transactional e-government services,
especially regarding the interaction between central services and remote users. Relevant details of the
concepts of electronic identities and electronic signatures are discussed in the following.

2.1.2.1 Electronic Identities

The Oxford Dictionaries define the term identity as ’the fact of being who or what a person or thing is’
[Oxford University Press, 2014]. The definition of an electronic identity is slightly different. Accord-
ing to Windley [2005], the term Electronic Identity (eID) or digital identity means ’data that uniquely
describes a person or a thing and contains information about the subject’s relationships.’ [Windley,
2005]. According to this definition, the eID of a person does hence not only define its identity but does
potentially also include a set of related attributes.

From a technical or implementation point of view, all data that uniquely identifies a person in elec-
tronic processes can be regarded as eID. This can for instance be a unique number, a unique name, or an
e-mail address. Irrespective of the chosen implementation, the eID needs to be unique in the respective
eID system. Hence, the same eID must not be assigned to two different subjects. However, each sub-
ject can theoretically have multiple unique eIDs. This is probably one of the most important differences
between the classical identity concept and the concept of electronic identities.

With the emergence of Internet-based services and applications, eIDs have become an integral part
of daily life. Nowadays, eIDs are used whenever users need to be identified and authenticated over the
Internet. In most cases, eIDs are implemented by means of simple user names and associated passwords.
In the private sector, eIDs are for instance used by e-mail services, social networks, or e-commerce
solutions. Also the public sector has identified the need for appropriate eID concepts and solutions
in order to reliably identify citizens during e-government processes. Especially in Europe, national eID
systems, which enable citizens to identify and authenticate at e-government services, have been deployed
by public administrations of various countries.

The increasing use of eIDs in the public sector raises the need for solid frameworks that regulate
their legal effects. In the European Union, the Regulation on Electronic Identification and Trust Services
(eIDAS) [The European Parliament and the Council of the European Union, 2014] will represent the
relevant legal basis for eIDs. The eIDAS Regulation defines the use of eIDs and other trust services such
as electronic signatures in the European Union. Special focus is put on the interoperability of different
national eID systems on European level.

Even though the eIDAS Regulation constitutes a common legal basis for all EU member states,
Europe is currently still facing a heterogeneous ecosystem of different national eID solutions. This is
mainly due to historical reasons, as member states have started to deploy national eID system long before
a common legal basis has been established. This has led to today’s situation, in which each EU member
state runs its own eID system, which is typically aligned with national laws. For instance, Italy makes use
of unique fiscal numbers to identify citizens during e-government processes. In contrast, Austria follows
a more complex approach. For data-protection reasons, the Austrian national eID system relies on sector-
specific identifiers. This means that each governmental sector such as health, finance, or agriculture uses
different identifiers for one and the same citizen. All sector-specific identifiers are derived from the
citizen’s eID using cryptographic one-way functions. Details of the Austrian national eID system have
been discussed by Leitold et al. [2002]. The Italian and the Austrian example show that deployed eID
systems can differ fundamentally between EU member states.

The heterogeneity of current national eID systems in Europe raises several issues especially in the
context of cross-border services. Usually, eID systems of different countries are not interoperable. This
means that e.g. an Italian citizen cannot identify and authenticate at an Austrian e-government service.
This compromises the European Commission’s idea of a digital single market [European Commission,
2014a] and prevents the broad use of eID-based cross-border services in Europe. To overcome this
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issue, the EU large-scale pilot Secure Identity Across Borders Linked (STORK)1 has been started in
2008 with the goal to achieve interoperability between national eID systems. We have discussed basic
concepts of the interoperability framework developed in this project by means of two pilot applications
that demonstrate the framework’s capabilities [Knall et al., 2011] [Tauber et al., 2011c]. In general,
STORK has shown that interoperability between different national eIDs is feasible. Currently, results of
the STORK project are consolidated and further improved in its successor project STORK 2.02.

The broad use of national eIDs in EU member states and the various research activities in this area
emphasize the relevance of electronic identities. Enabling the reliable remote identification of citizens
in online processes, electronic identities represent one of the main pillars of transactional e-government
services.

2.1.2.2 Electronic Signatures

Electronic signatures represent the second basic concept frequently used in transactional e-government
services. There, electronic signatures mainly serve two purposes. First, they enable citizens to provide
written consent on electronic data such as electronically filed applications. Second, they can be used to
authenticate citizens.

From a non-technical perspective, electronic signatures can be regarded as digital pendant to hand-
written signatures as they provide authenticity, integrity, and non-repudiation of signed content. How-
ever, compared to their analog pendant, electronic signatures provide several additional features. For
instance, they are unambiguously verifiable by technical means and they enable the reliable detection
of subsequent modifications of signed content. These features are usually not available for handwrit-
ten signatures. Thus, electronic signatures are a powerful tool and are especially useful in transactional
e-government services.

From a technical perspective, electronic signatures typically rely on digital signatures, which are a
special kind of cryptographic operation. Digital signatures rely on asymmetric cryptography and hence
on a cryptographic key pair consisting of a private and a public key. The private key is required to
create a digital signature and has to be kept confidential by the signatory. The created signature can
only be verified with the corresponding public key. However, it is infeasible to create a valid signature
with the public key or to derive the private key from the corresponding public key. Thus, the public
key can be made public and does not need to be kept confidential. There are several cryptographic
algorithms available that follow the asymmetric cryptographic approach. Examples are Rivest Shamir
Adleman (RSA) [Rivest et al., 1978], or the Elliptic Curve Digital Signature Algorithm (ECDSA) [ANSI,
2005]. They all rely on complex mathematical problems and are currently regarded as secure as long as
keys with sufficient length are used. Today, these digital-signature algorithms represent the technical
foundation of the concept of electronic signatures.

In practice, the concept of electronic signatures is often closely related to the concept of electronic
identities. This is comprehensible, as electronic signatures provide authenticity of signed data. Hence,
also the identity of the signatory is of relevance. This raises several issues in practice, as there is no
obvious link between the signatory’s key pair and his or her identity. In other words, being aware of
the correct public key, the receiver of an electronically signed document can cryptographically verify
the validity of the electronic signature. However, the plain public key does not contain any information
about the signatory’s identity. To overcome this issue, Public Key Infrastructures (PKIs) are used. PKIs
rely on a so-called Certification Authority (CA). A CA is a trusted third party, i.e. it is trusted by both the
signatory and the verifier. The principle task of the CA is to establish a verifiable link between public keys
and identities. For this purpose, the CA issues electronic certificates. An issued certificate contains the
signatory’s public key, identity-related information, and optionally additional attributes. The certificate

1https://www.eid-stork.eu/
2https://www.eid-stork2.eu/
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is electronically signed by the CA. This way, the CA confirms the correctness of the contents of the
certificate and hence establishes a verifiable binding between the signatory’s public key and identity.

During the past few decades, the concept of electronic signatures and its underlying cryptographic
concept of digital signatures have significantly gained importance. Digital signatures have for instance
been used for many years by the Secure Sockets Layer (SSL)/Transport Layer Security (TLS) proto-
col [Network Working Group, 2008] to e.g. secure connections between web browsers and servers, by
software developers and providers to assure authenticity and integrity of software modules, or by end
users to sign e-mails. Recently, also the concept of electronic signatures has gained popularity. Due to
their conceptual similarity to handwritten signatures, electronic signatures are nowadays used in various
e-banking and e-government solutions to obtain written consent from remote users. To assure equiva-
lence to handwritten signatures also on legal level, legal frameworks have been enacted to define require-
ments and legal effects of electronic signatures. In the EU, the EU Signature Directive [The European
Parliament and the Council of the European Union, 1999] has been the relevant legal foundation for sev-
eral years. This directive will soon be replaced by the eIDAS Regulation [The European Parliament and
the Council of the European Union, 2014], which differentiates various types of electronic signatures
and defines so-called qualified electronic signatures to be legally equivalent to handwritten signatures.
Additionally, the eIDAS Regulation defines various technical and non-technical requirements for this
type of signatures. Essentially, qualified electronic signatures need to be created by so-called Qualified
Signature Creation Device (QSCD) and have to rely on qualified certificates. Requirements for QSCDs
and qualified certificates are also specified by the eIDAS Regulation.

Due to their various useful features and the availability of respective legal frameworks, electronic
signatures have evolved to a central and relevant concept of European e-government solutions. Together
with the related concept of electronic identities, electronic signatures represent the backbone of today’s
e-government solutions. The concrete application and implementation of these concepts in practice is
exemplified in the following section.

2.1.3 Electronic Identities and Electronic Signatures in Practice

In practice, the concepts of electronic identities and electronic signatures are often used together in order
to implement full transactional e-government services. For this purpose, EU member states usually
issue their citizens personalized hardware tokens, which store personal eID data, cryptographic signing
keys, and electronic signing certificates. Furthermore, issued tokens support the secure and reliable
creation of legally binding electronic signatures. This way, these tokens can be used in online processes
to implement required eID and electronic-signature functionality. In most cases, there is a well-defined
link between eID-related information and electronic certificates stored on the issued token. For instance,
tokens issued to Italian citizens simply store the citizen’s unique eID as additional attribute in the signing
certificate. In contrast, Austrian tokens store eID information in a separate data structure, which also
contains the public keys of the token’s signing certificates. Irrespective of the concrete implementation,
eID and electronic-signature functionality are usually closely related.

Due to the close relation between eID and electronic-signature functionality, it is unsurprising that in
the EU, the legal frameworks for both concepts are defined by one and the same regulation, i.e. the eIDAS
Regulation [The European Parliament and the Council of the European Union, 2014]. From a technical
point of view, the eIDAS Regulation defines only few requirements and formulates relevant specifications
on a rather abstract level. More concrete specifications are expected to be developed in the course of
several implementing acts, which are currently under progress. Keeping legal frameworks on a rather
abstract level is a double-edged sword. On the one hand, it enables member states to maintain legacy
solutions, which have been rolled out long before the respective legal framework has come into force.
On the other hand, the abstract nature of defined requirements has led to a heterogeneous ecosystem of
different national eID and electronic-signature solutions throughout Europe.

Even though existing solutions of different member states are rather heterogeneous and usually not



26 Chapter 2. The Evolution of Mobile Government

compliant with each other, they typically rely on similar concepts and technologies. Hence, a general
abstract model can be derived that can be seen as basis for all existing implementations of transactional
e-government services. This model is shown in Figure 2.2. According to this model, citizens access a
transactional service provided by a Service Provider with the help of a suitable User Client. The Ser-
vice Provider relies on an Identity/Signature Provider in order to integrate required eID and electronic-
signature functionality. Thus, the Identity/Signature Provider carries out necessary tasks such as authen-
ticating citizens or obtaining written consent from citizen. For this purpose, it accesses the citizen’s
personal eID/Signature Token, which stores relevant eID data and supports the creation of electronic
signatures. The citizen usually has to authorize access to the eID/Signature Token, e.g. by providing a
secret password. Note that for the sake of simplicity, the shown model assumes that eID and electronic-
signature functionality are provided by one and the same component. This is not necessarily the case in
practice.

Citizen

User Client
eID/Signature

Token

Service 
Provider

Service Provision/Consumption

Identity/
Signature 
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eID/Signature Request/Response

Token Access

User Interface Authentication

Figure 2.2: Transactional e-government services can be described by means of an abstract model.

Most transactional e-government solutions that have been deployed in Europe during the past years
rely on the general architecture shown in Figure 2.2. Depending on the concrete implementation of the
eID/Signature Token, currently deployed solutions can be roughly classified into different categories. In
practice, implementation alternatives for eID/Signature Tokens are limited. This is mainly due to the
strict requirements that must be met by these tokens if they are used for the creation of legally binding
signatures. Existing solutions can be classified into two categories. These categories are introduced and
discussed in more detail in the following subsections.

2.1.3.1 Smart Card Based Solutions

Smart card based solutions rely on smart-card technology to implement eID/Signature Tokens. In order
to provide citizens with eID and electronic-signature functionality, they are supplied with personalized
smart cards. These smart cards contain identity-related information such as unique identifiers that can
be used to unambiguously identify citizens. Furthermore, they contain one or more cryptographic key
pairs and related electronic certificates for the creation of electronic signatures. Access to stored eID
data and to the private components of the key pairs are typically protected by a Personal Identification
Number (PIN). The smart card must be provided with the correct PIN in order to gain access to these
data.

Assuming the use of smart cards, the abstract model shown in Figure 2.2 can be further refined.
This yields the model shown in Figure 2.3. Even though this model is specific for smart card based
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tokens, the basic processing steps remain the same as for the abstract model. However, reliance on
smart cards imposes the need for an additional middleware component. This middleware is necessary to
provide the remote Identity/Signature Provider access to locally connected smart cards. In most cases,
this middleware resides on the citizen’s local system and is implemented by means of locally installed
software, browser plug-ins, or Java Applets.

Citizen

Web Browser Smart Card

Service 
Provider

Service Provision/Consumption

Identity/
Signature 
Provider

eID/Signature Request/Response

Token Access

Middleware

Token Access

User Interface Authentication

Figure 2.3: Assuming the use of smart cards, the abstract model for transactional e-government
services can be refined accordingly.

Reliance on smart card based tokens is a rather old and hence time-tested approach. From a security
perspective, smart cards represent an adequate technology, as they enable two-factor authentication.
Provision of eID data and the creation of electronic signatures require possession of the smart card
and knowledge of the secret PIN that protects data stored on and functionality provided by the card.
Furthermore, smart cards can meet the requirements of QSCDs as defined by the eIDAS Regulation.
Therefore, they are well-suited for the creation of legally binding electronic signatures according to EU
law.

Even though the smart-card approach is sufficient from a functional and security perspective, it raises
several problems from a usability point of view. Most of these problems are caused by the fact that citi-
zens need to acquire, maintain, and use a card-reading device together with adequate software, i.e. mid-
dleware, in order to provide access to local smart cards. We have analyzed usability issues of smart
card based solutions in detail by means of a comprehensive usability test [Zefferer and Krnjic, 2012a].
Results of this usability test show that smart card based solutions suffer from several usability limitations
in practice.

Despite known usability drawbacks, smart card based eID and electronic-signature solutions are
still frequently used throughout Europe. Countries that rely on this approach include for instance Aus-
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tria3, Belgium4, Estonia5, Germany6, Portugal7, or Spain8. All these countries supply citizens with
eID/Signature Tokens in the form of personalized smart cards and provide various national e-government
services that can be accessed with these cards.

2.1.3.2 Mobile Solutions

Disadvantages of smart card based solutions have become apparent in practice soon and have in many
cases limited their user acceptance. Driven by the objective to replace smart card based approaches,
mobile eID and electronic-signature solutions have been developed as an alternative in several countries.
All mobile solutions have in common that mobile phones are used instead of smart cards. This sounds
reasonable at a first glance, as mobile-phone coverage has already been above 100% in Europe in 2013
[GSMA, 2013] and mobile devices are increasingly gaining popularity. However, replacing smart cards
with mobile phones also raises additional issues, as requirements defined by relevant legal frameworks
still need to be met. In the EU, mobile eID and electronic-signature solutions need to fulfill the require-
ments for the creation of legally binding electronic signatures as defined by the eIDAS Regulation [The
European Parliament and the Council of the European Union, 2014]. During the past years, two basic
approaches for mobile eID and electronic-signature solutions have evolved that are able to meet these
requirements.

The first approach makes use of the Subscriber Identity Module (SIM) that is part of virtually each
mobile phone. The SIM stores the unique International Mobile Subscriber Identity (IMSI) to identify
and authenticate the user at the mobile network. Access to the SIM and its functionality is typically
protected by a PIN, which has to be entered by the user. This way, the user authenticates at the SIM
and in further consequence at the mobile network. In mobile networks based on the Global System
for Mobile Communications (GSM), the SIM is nowadays a mandatory component of every mobile
phone. Special cryptography-enabled SIMs, which feature required cryptographic functionality, can also
be used to store eID information and to create electronic signatures. This enables these SIMs to act as
eID/Signature Token as a substitute to smart cards.

Assuming reliance on a special cryptography-enabled SIM, the abstract model shown in Figure 2.2
can be further refined. This yields the SIM-specific model illustrated in Figure 2.4, which shows that
SIM-based solutions require an additional player, i.e. the Mobile Network Operator (MNO). Only the
MNO is able to access the citizen’s SIM in order to read stored eID data or to trigger the creation of
electronic signatures. Hence, the Identity/Signature Provider cannot access the SIM directly but has to
route respective requests through the MNO.

Conceptually, SIM-based mobile eID and electronic-signature solutions resemble their smart card
based pendants. The SIM can be regarded as special kind of smart card. Under this presumption,
the mobile phone assumes the role of the card-reading device. Consequently, the MNO implements
the functionality of the middleware component. Despite these similarities, SIM-based mobile eID and
electronic-signature solutions have several advantages compared to smart card based approaches. First
and foremost, citizens do not need to acquire, install, and maintain card reading devices and local soft-
ware to provide smart-card access. This way, SIM-based solutions can also be used in scenarios and use
cases, where these kinds of hardware and software are not available. Furthermore, SIM-based solutions
have been designed and developed for a use on two separate end-user devices. While the User Client,
e.g. a web browser, is run on a classical end-user device such as a desktop PC or laptop, the eID/Signature
Token is implemented by the physically detached mobile phone. This is advantageous in terms of secu-

3http://www.buergerkarte.at/en/index.html
4http://eid.belgium.be
5http://www.id.ee/?lang=en
6http://www.personalausweisportal.de
7http://www.cartaodecidadao.pt/
8http://www.dnielectronico.es/
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Figure 2.4: Assuming the use of SIMs, the abstract model for transactional e-government services
can be refined accordingly.

rity, as attacks need to target two separate devices. Thus, SIM-based approaches can be regarded to be at
least as secure as smart card based solutions and to improve usability at the same time.

Despite their advantages, SIM-based solutions also suffer from several drawbacks. First, they re-
quire cooperation of the citizen’s MNO, as only the MNO is able to access the SIM. This reduces
the applicability of this approach to citizens, whose MNOs provide support for SIM-based eID and
electronic-signature services. Furthermore, SIM-based solutions require special SIMs that support re-
quired cryptographic functionality. Hence, citizens usually need to replace their original SIM, if they
wish to use SIM-based eID and electronic-signature functionality. This potentially induces additional
effort and causes additional costs.

Even though SIM-based mobile eID and electronic-signature solutions come with several disad-
vantages, several European countries still rely on this approach. Examples are Estonia9, Finland10, Nor-
way11, or Turkey12. In all these countries, SIM-based mobile eID and electronic-signature solutions have
been successfully deployed and are in productive operation. In many cases, these solutions complement
existing smart card based approaches and provide citizens an alternative method to use the respective
national eID and electronic-signature infrastructure. The popularity and relevance of SIM-based eID
and electronic-signature solutions is also emphasized by the fact that the European Telecommunication
Standards Institute (ETSI) has been maintaining a respective standard [ETSI, 2003] for several years.

As an alternative to SIM-based mobile eID and electronic-signature solutions, server-based mobile
approaches have recently gained relevance and popularity. They represent the second basic approach for

9http://e-estonia.com/component/mobile-id/
10http://www.mobiilivarmenne.fi/fi/bulletin/mobile-verification-launch-in-finland
11https://www.bankid.no/
12http://www.turkcelltech.com/Product.aspx?Id=5eba6d36-dba7-42be-a499-cea1422d0a3d&PId=15c36401-ddf8-424f-

8489-41077a2974ab
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mobile eID and electronic-signature solutions that has evolved during the past years.

The server-based approach aims to overcome limitations and drawbacks of SIM-based approaches.
In contrast to smart card based solutions and also to the SIM-based approach, server-based eID and
electronic-signature solutions store eID data and cryptographic signing keys remotely in a central server.
In most cases, a Hardware Security Module (HSM) is used for this purpose. HSMs are secure hardware
devices that support the secure storage of data and a set of cryptographic operations such as the creation
of electronic signatures. Reliance on a secure central hardware element reduces the requirements for
the user’s mobile device. In particular, there is no need for local hardware or software installations.
Furthermore, users do not need to exchange their SIM, as it does not need to support cryptographic
functionality.

The general architecture of server-based mobile eID and electronic-signature solutions is shown in
Figure 2.5. This architecture is again a refinement of the abstract model sketched in Figure 2.2 on page 26
and illustrates the main differences between server-based and SIM-based approaches. As shown in Figure
2.5, server-based solutions include an additional component, i.e. the central HSM. Both server-based and
SIM-based solutions require the user to possess and use a mobile device. However, the function of the
mobile device is different. Following the SIM-based approach, the mobile device, i.e. the SIM, stores
required data and creates electronic signatures. Following the server-based approach, the mobile device
is solely used to authorize eID and electronic-signature related processes carried out in the central HSM.
Many server-based signature solutions rely on an approach based on Short Message Service (SMS) for
this purpose. Following this approach, a one-time password—a so-called Transaction Number (TAN)—
is sent to the user’s mobile phone via SMS. The user has to enter this TAN into his or her User Client
in order to prove reception of the TAN and hence possession of the mobile phone. Consequently, also
server-based solutions integrate the users’ mobile phones. However, the mobile phones are only required
to be capable of receiving SMS messages. Support for the secure and reliable storage of data and for
cryptographic functionality is not required.

The probably best known and most frequently used server-based mobile eID and electronic-signature
solution is in productive use in Austria and is called Austrian Mobile Phone Signature13. This solution
is based on a concept that has been introduced and discussed by Orthacker et al. [2010] in detail. The
Austrian Mobile Phone Signature has been set into productive operation in 2010 and is operated by the
Austrian CA A-Trust14. It allows Austrian citizens to reliably authenticate at e-government services and
at various private-sector services. Furthermore, it enables the creation of qualified electronic signatures
according to the eIDAS Regulation. As such, the Austrian Mobile Phone Signature complements the
Austrian e-government infrastructure and offers Austrian citizens an alternative to smart card based eID
and electronic-signature solutions.

A commercial server-based signature solution is also offered by Intesi Group SpA15. The solution
is called PkBox16 and enables the remote creation of qualified electronic signatures in case it is used
in combination with qualified electronic certificates. Similar to the Austrian Mobile Phone Signature,
PkBox relies on two-factor authentication to protect centrally stored data from unauthorized access. In
this regard, PkBox follows a similar concept as the one proposed by Orthacker et al. [2010]. How-
ever, it shows a slightly higher degree of flexibility, as it supports different methods to cover the second
authentication factor.

13http://www.handy-signatur.at/
14https://www.a-trust.at/
15http://www.intesigroup.com/en/intro.php
16http://www.pksuite.it/eng/pr pkbox.php
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Figure 2.5: Assuming the use of a central HSM, the abstract model for transactional e-government
services can be refined accordingly.

2.2 From E-Government to Mobile Government

Having their roots back in the late 1990’s, most e-government concepts have been designed with classical
end-user devices in mind. During the early noughties, when several European countries started to deploy
e-government infrastructures on a large scale, desktop PCs still represented the most commonly used end-
user devices. Mobile computing was basically limited to laptops and notebooks. Simple mobile phones
were already available but basically restricted to telephony, text messaging, and rudimentary pre-installed
applications. Modern mobile-computing approaches based on smartphones and other powerful mobile
end-user devices were not envisaged in these times. It is hence unsurprising that basic e-government
concepts and early e-government solutions have been mainly tailored to classical end-user devices such
as desktop PCs or laptops. A representative example are smart card based eID and electronic-signature
solutions, which require an end-user device that can be equipped with a card-reading device. The long
lasting focus on classical end-user devices has only changed recently with the introduction of powerful
mobile end-user devices and the subsequent emergence of the mobile computing paradigm.

2.2.1 Adopting the Mobile-Computing Paradigm

PCs and laptops have been dominating the end-user device market for many years. In 2007, this classical
computing paradigm has suddenly changed with the introduction of the Apple iPhone17. The introduction
of this device has heralded the success story of smartphones and has paved the way for other powerful

17https://www.apple.com/at/iphone/
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mobile end-user devices such as tablet computers. At its time of introduction, the Apple iPhone was quite
innovative. Compared to simple mobile phones, which were state of the art at that time, the Apple iPhone
provided a new touchscreen-based user interface, enhanced hardware capabilities, and the opportunity
to dynamically extend pre-installed software by downloading mobile apps from a centrally managed
application store.

The immediate success of the Apple iPhone and the subsequent emergence of the mobile-computing
paradigm has also been facilitated by the introduction and broad deployment of the Third Genera-
tion (3G) of mobile-networking technologies. 3G technologies include the Universal Mobile Telecom-
munications System (UMTS), High Speed Downlink Packet Access (HSDPA), and CDMA2000. In
contrast to their predecessors such as GSM, 3G technologies provide higher data throughput and enable
broadband Internet access for mobile end-user devices. The availability of powerful mobile networks
and innovative mobile end-user devices has finally leveraged the mobile-computing paradigm on a large
scale.

Soon after the introduction of the Apple iPhone, other vendors introduced similar concepts and so-
lutions. Powered by Google, Android18 emerged as an early rival of Apple’s iPhone and its underlying
mobile operating system Apple iOS19. Android has been available as operating system for smartphones
since 2008. It is based on the Linux kernel and is developed following the open-source model. Even
though Android has been launched approximately one year after the iPhone, it already had a global mar-
ket share of more than 80% in the second quarter of 2014 [IDC, 2014]. Today, Apple iOS and Google
Android are dominating the market of mobile operating systems for smartphones and tablet computers.
Other operating systems such as Microsoft Windows Phone 820 or BlackBerry21 play a minor role only.

Smartphones, tablet computers, and their underlying mobile operating systems are continuously im-
proved. Every generation of mobile end-user devices outperforms its predecessor in terms of available
processing power and storage capabilities. Accordingly, every new release of a mobile operating system
includes new features and functionality. Similarly, also mobile apps become more and more powerful
and in turn require more powerful hardware. With their continuously growing capabilities, smartphones
and related mobile end-user devices have become an interesting alternative to classical end-user devices
during the past years. Indeed, current surveys show that mobile devices are gradually replacing desktop
PCs and laptops [Nielsen, 2014]. This especially applies to use cases, in which the end-user device is
mainly used to consume content such as videos or websites, and to applications that require only sim-
ple user interactions. Assuming a continuing improvement of mobile devices, it can be expected that
the practical relevance of classical end-user devices will further decrease and that the mobile comput-
ing paradigm will continue to gain relevance. This trend is also increased by continuous improvements
of mobile communication networks all over the world. For instance, in various countries established
3G technologies are currently complemented by the even more powerful Fourth Generation (4G) tech-
nologies Long Term Evolution (LTE) and LTE-Advanced. The availability of modern mobile end-user
devices with continuously increasing capabilities and the availability of mobile broadband communica-
tion networks contribute to the growing popularity and increasing relevance of mobile computing.

The general paradigm change towards mobile computing has had a significant impact on the way
users access information and services. Nowadays, users show an always-on behavior. This means that
they are typically online and available 24/7 and also expect information and services to be available all the
time. As mobile devices are increasingly used to access information and services, provided services need
to be tailored to their special characteristics. For instance, websites nowadays often feature a responsive
design, in order to assure that presented content is arranged and displayed dynamically depending on the
accessing end-user device and its screen size. This also applies to user interfaces of web applications that
are expected to be accessed by means of a web browser. In many cases, service providers additionally

18http://www.android.com/
19https://www.apple.com/at/ios/
20http://www.windowsphone.com
21http://blackberry.com/
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offer a mobile app as alternative to a web-based user interface. This is especially useful for applications
that require complex user interactions, which are easier to implement in a user-friendly way by means of
mobile apps. A popular example are web-mail services such as Google Gmail22 or Yahoo Mail23. Orig-
inally, these services have been designed with a web-based user interface and hence represent classical
web applications. To improve user experience for smartphone and tablet users, Google and Yahoo now
also provide mobile apps. These apps enable users to efficiently access their e-mails without the need to
use a web-based user interface on a potentially small touchscreen. Google’s and Yahoo’s e-mail services
are just two out of many available applications that have been adapted for an efficient use on mobile
end-user devices as a reaction to the emerging mobile-computing paradigm. In general, commercial ap-
plications have in most cases already been adapted to deal with limitations of mobile end-user devices
and to exploit additional opportunities that arise from a use of powerful mobile end-user devices.

2.2.2 Mobile Government

Similar to private-sector companies offering commercial applications, also the public sector is requested
to react to the emerging mobile-computing trend. In particular, existing e-government services, which
have in many cases originally been implemented as web applications, need to be adapted for a use
on smartphones and related mobile end-user devices. Furthermore, the integration of powerful mobile
end-user devices offers new opportunities, as these devices feature technologies that are typically not
available on PCs or laptops. For instance, e-government applications for smartphones can make use of
locally available positioning information in order to provide location-based services. Thus, the mobile-
computing paradigm does not only require an adaptation of existing services, it also offers opportunities
for new and innovative solutions.

The idea to make use of mobile devices and technologies in e-government solutions was actually born
long before the first smartphones were available on the market. Mobile eID and electronic-signature so-
lutions are a representative example for e-government solutions relying on simple mobile technologies.
The usage of mobile technologies in e-government solutions has soon become known under the term
mobile government or m-government, which is basically a combination of the two terms mobility and
e-government. Although this definition seems quite clear and unambiguous, several slightly different def-
initions of the term m-government can be found in literature. For instance, Kushchu and Kuscu [2004]
state that m-government ’may be defined as a strategy and its implementation involving the utilization
of all kinds of wireless and mobile technology, services, applications and devices for improving benefits
to the parties involved in e-government including citizens, businesses and all government units’. In con-
trast, Antovski and Gusev [2005] state that ’m-Government is largely a matter of getting public sector IT
systems geared to interoperability with citizen’s mobile devices’. A similar definition is also provided by
Carroll [2005], who states that ’m-Government involves the provision of public sector services via mo-
bile technologies’ but amends that ’m-Government involves interaction where the contexts are unknown,
where accessing government services might be one of several activities being undertaken and where the
physical constraints of interacting with mobile devices limit the amount and type of information that
might be located and accessed’. Finally, Misra [2010] provides a rather compact definition of the term
m-government by stating that ’m-Government is public service delivery including transactions on mobile
devices like mobile phones, pagers, and PDAs’.

Most definitions of the term m-government stem from related scientific publications on this topic.
The numerousness of publications on this topic shows that m-government has always been a topic
of scientific interest. We have provided an extensive overview on scientific publications related to
m-government in a survey prepared for the Secure Information Technologies Center – Austria (A-SIT)
[Zefferer, 2011]. We have also published relevant findings of this survey in the European Journal of
ePractice [Zefferer and Teufl, 2011]. Our surveys show that many publications on m-government focus

22http://www.gmail.com
23http://mail.yahoo.com/
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on the introduction and discussion of particular m-government solutions and applications. Examples are
published scientific work by Yoojung et al. [2004], in which they discuss an architecture for implement-
ing m-government services in Korea, or by Scholl et al. [2006], in which Seattle’s Mobile City project is
introduced. An m-government solution for Dubai has been introduced by Alrazooqi and De Silva [2010].
The situation of m-government in Greece has been discussed by Karadimas et al. [2008]. Recently, the
demand for m-government services in Japan has been analyzed by Madden et al. [2013]. These exam-
ples show that scientific publications on m-government often focus on particular use cases, solutions, or
countries.

In addition to the introduction of concrete m-government solutions, recent scientific work has also
focused on the identification of general success factors of and potential barriers to m-government. These
works are relevant, as their findings build the basis of successful m-government services and are hence
also important for the scope of this thesis. Results of these works are discussed in more detail in the
following.

2.2.3 Success Factors of Mobile Government

The consideration of success factors has soon been identified as crucial requirement for the development,
deployment, and operation of m-government solutions. Only if relevant success factors are considered,
m-government services will achieve an adequate level of user acceptance. The identification of relevant
success factors has hence been a topic of scientific interest for many years.

For instance, Karan and Khoo [2008] identify infrastructural investment, regulatory and political
environment, awareness and acceptance, security and privacy, and equitable access as success factors
for m-government. In contrast to this rather coarse-grained classification, Al-khamayseh et al. [2007]
provide a more detailed list of relevant success factors. They list privacy and security, infrastructure, user
needs and preferences, quality and user friendly applications, e-government, acceptance, cost, standards
and data-exchange protocols, coherent m-government framework, high mobile penetration, infrastructure
management, m-government awareness, access, strategy, IT literacy, m-government portals and exclusive
gateways, private sector partnerships, and legal issues as relevant factors that influence the success of
m-government solutions. Similar success factor as those listed by Karan and Khoo [2008] and Al-
khamayseh et al. [2007] have also been identified by El-Kiki and Lawrence [2006]. Sareen et al. [2013]
have focused on the Indian use case and have identified user-acceptance factors especially for Indian
m-government services. Identified success factors basically resemble those identified by other works,
even though several aspects that are special for developing countries have been taken into account.

A comprehensive survey on literature on the identification of success factors for m-government so-
lutions has been provided by Al-Hadidi and Rezgui [2009]. This survey shows that most scientific
publications on the identification of success factors for m-government solutions have in common that
the factors security, privacy, awareness, and user acceptance are top-ranked and regarded as critical. El-
Kiki [2007] and Carroll [2005] have especially focused on the factor user acceptance. For this factor,
the aspects availability, effort involved, convenience, input and output mechanisms, privacy and security
issues, and lack of public-sector services have been identified to have an impact on the user acceptance
of m-government solutions.

In summary, related scientific work on success factors of m-government solutions reveals that despite
minor country-specific differences, factors influencing security and usability are in general crucial for
the success of m-government solutions. These factors have already been identified in older publications
stemming from the pre-smartphone era. In these times, mobile phones have been implicitly assumed to
be secure. Modern smartphones are different in this regard, as they support the installation of additional
software in the form of mobile apps. This increases functionality but at the same time makes these devices
more prone to malware as well. This again increases the relevance of the success factor security when
m-government solutions are designed for smartphones and related powerful mobile end-user devices.
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2.2.4 Barriers to Mobile Government

Beside the identification of success and acceptance factors, scientific work on m-government has also fo-
cused on the identification of potential barriers and challenges that need to be overcome by m-government
solutions. Similar to the identification of success factors, investigation of potential barriers has started
early. In the following, a brief overview of related scientific work on barriers to m-government is pro-
vided.

Kumar and Sinha [2007] have identified two potential barriers of m-government solutions. Con-
cretely, they have mentioned security issues imposed by airwave-based communication channels and
accessibility issues imposed by technically limited end-user devices.

A more comprehensive analysis of potential barriers to m-government has been provided by El-
Kiki [2007]. He classifies identified barriers into the categories Organizational, Technical, Governance,
and Social. According to El-Kiki [2007], organizational barriers include issues such as bureaucratic
problems, the lack of cooperation among public organizations or interoperability issues between different
departments. Another identified organizational barrier is the lack of user-centric approaches. According
to the author, governments often take ’citizens as granted, thinking that they will accept and use a new
service as long as it is provided by the government’ and the offered ’service is structured by the goals of
the administration, not the goals of the citizen users’ [El-Kiki, 2007]. Further organizational barriers to
m-government identified by the author are the absence of combined e-business and e-governance models
as well as the lack of sustainable business models. Additionally, the reluctance of authorities to alter
traditional ways of dealing with their customers is also identified as a potential barrier. El-Kiki [2007]
further states that sometimes also economic and financial barriers hinder the success of m-Government
services. In this regard, high development costs, lack of infrastructural investments, and low budget
for mobile services are the most frequently listed issues. Finally, El-Kiki [2007] also identifies legal
problems as barrier to the success and acceptance of m-government in practice. These problems can
arise, if required legal frameworks are missing.

Beside these organizational barriers, also technical barriers can limit the success of m-government
according to El-Kiki [2007]. Short release cycles and frequent advances in the mobile computing do-
main are often difficult to be followed by end users. This may result in a lack of familiarity with mobile
technologies in general, but also in a lack of technical knowledge among IT personnel. Other techni-
cal barriers identified by El-Kiki [2007] are the lack of interoperability, the competition between access
channels, but also the lack of backend-process integration and the absence of ability to bundle informa-
tion, materials, and service together.

According to El-Kiki [2007], social barriers also reduce the acceptance of m-government services.
Hence, these services must be as simple to use as possible, in order to make them accessible to all people.
In this context, the author states that beside usability, it is also relevant that people understand why they
should use a mobile service. Other identified social barriers to m-government are security and privacy
concerns. El-Kiki [2007] states that privacy fears and security concerns are a substantial barrier. The
author points out the relevance of security for m-government by concluding that ’if there is no sound
solution to security, e-government and m-government will be a dream’ [El-Kiki, 2007].

While El-Kiki [2007] provides a rather generic list of potential barriers, other publications focus
on more specific use cases and scenarios. For instance, Moon [2010] focuses on mobile emergency
systems in Asia and identifies potential issues and challenges for them. From the identified chal-
lenges, Moon [2010] derives four recommendations for facilitating and improving the implementation of
m-government initiatives. While Moon [2010] focuses on a certain use case, Mengistu et al. [2009] focus
on challenges that need to be overcome when deploying m-government services in developing countries.
Interestingly, only few scientific work has been available on potential barriers to m-government assuming
a use of powerful mobile end-user devices such as smartphones. To bridge this gap, we have investigated
potential challenges of smartphone-based m-government solutions [Zefferer and Teufl, 2011]. In particu-
lar, we have identified the heterogeneous ecosystem of different mobile platforms as well as security and
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privacy issues on mobile end-user devices as potential barriers to the future success of m-government.

2.2.5 Relevant Aspects for Mobile-Government Solutions

The large number of related scientific publications shows that m-government has always been a topic
of scientific interest. Beside related scientific work that introduces, discusses, and assesses concrete
m-government solutions, especially the identification of success factors and potential barriers has been
a topic of interest during the past years. From these publications and from own work on this topic, a
set of relevant aspects, which need to be taken into account during design, development, deployment,
and operation of m-government solutions, can be derived. Unfortunately, the derivation of a common set
of relevant aspects is complicated by the fact that different authors usually approach the same issue on
different levels of abstraction. Thus, also relevant success factors and barriers are identified on a different
level of abstraction by different authors. To combine results of related scientific work, a sufficiently high
abstraction level hence needs to be chosen. This leads to the following set of relevant aspects that have
to be taken into account:

• Security and privacy: Security and privacy are mentioned by nearly all authors of related scien-
tific work as crucial success factors. These aspects are for instance mentioned by Karan and Khoo
[2008], Al-khamayseh et al. [2007], El-Kiki and Lawrence [2006], Sareen et al. [2013], and Al-
Hadidi and Rezgui [2009]. Furthermore, a lack of security or privacy is also frequently mentioned
as potential barrier to m-government solutions [Kumar and Sinha, 2007] [El-Kiki, 2007].

• Usability and accessibility: Usability and accessibility are also frequently listed as relevant as-
pects for m-government services and solutions. Examples are works by Karan and Khoo [2008],
Carroll [2005], and El-Kiki [2007]. The demand for usability and accessibility includes related
aspects such as user acceptance, equitable access, convenience, or the need for user-centric ap-
proaches, which are also frequently mentioned in related work.

• Legal framework: A suitable legal framework such as an appropriate regulatory and political
environment as defined by Karan and Khoo [2008] represents a mandatory basis for m-government
services. The relevance of legal issues is also emphasized by Al-khamayseh et al. [2007]. Only if
required legislations are in effect, m-government services can be used for productive use cases.

• Organizational framework: Appropriate organizational frameworks for m-government solu-
tions include a suitable infrastructure management and private-sector partnerships [Al-khamayseh
et al., 2007], appropriately combined Electronic Business (e-business) / Electronic Governance
(e-governance) models, and sustainable business models El-Kiki [2007]. Similar to legal frame-
works, also an appropriate underlying organizational framework represents a relevant aspect for
m-government solutions.

• Technical framework: Finally, m-government solutions also require a technical framework, which
they can rely on. According to surveyed related publications, a sound technical framework in-
cludes a stable e-government infrastructure, a high mobile penetration, m-government portals and
exclusive gateways [Al-khamayseh et al., 2007], as well as a general familiarity with mobile tech-
nologies [El-Kiki, 2007], and solutions facilitating the handling of different mobile platforms and
operating systems [Zefferer and Teufl, 2011].

These five aspects can be regarded as pillars of successful m-government solutions. Depending
on the concrete solution and the use case, in which this solution is deployed, the relevance of these
five pillars can vary. Nevertheless, all above-mentioned aspects should be taken into account during
design, development, deployment, and operation of m-government solutions. In the next section, existing
m-government solutions are surveyed in order to illustrate how these five pillars are taken into account
in practice by current successful m-government solutions.
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2.3 Mobile Government: State of the Art

Common definitions of the term mobile government are rather vague and abstract. Accordingly, the
term m-government covers a broad spectrum of applications, services, and solutions. In this section, a
brief overview of m-government solutions currently in productive operation is provided. This overview
is primarily based on an own study on m-government [Zefferer, 2011] that has been prepared for the
Secure Information Technology Center - Austria24 and on an own survey on m-government [Zefferer,
2015a]. Additionally, publicly available studies of m-government solutions such as those provided by
Mobi Solutions Ltd. [2010] or Jotischky and Nye [2011] are considered as well. Furthermore, also
recent developments, which are not listed in the mentioned surveys, are taken into account. This way, a
representative picture of the current m-government landscape is drawn and the current state of the art is
presented.

Due to the rather generic definition of the term m-government, related services and solutions can
be subdivided into different categories. Different approaches to classify m-government solutions have
been proposed and applied in literature. For instance, Kumar and Sinha [2007] classify m-government
solutions according to involved parties. A classification scheme based on employed user interfaces has
been applied by Misra [2010]. Zálešák [2003] follows a different approach by classifying m-government
services according to their purposes. The type of transaction is also frequently used as classification
criterion. This approach has for instance been followed by Norris and Moon [2005], Sheng and Trimi
[2008], or Hassan et al. [2009]. Finally, m-government services are sometimes also classified according
to the particular public sector, in which they are deployed. Examples are the sectors health, education,
or public administration. Accordingly, m-government services can be subdivided into Mobile Health
(m-health), Mobile Education (m-education), or Mobile Administration (m-administration). Especially
m-health and m-education services in developing countries are often deployed and operated by Non-
Governmental Organizations (NGOs). For the sake of completeness, we take these services into account,
even if they are not directly offered by public bodies.

To draw a comprehensive and global picture of the current state of the art, concrete m-government
services and solutions from all five continents are surveyed in the following. The provided survey makes
no claim to be complete, as an exhaustive list of all available solutions would go beyond the scope of
this thesis. However, surveyed services have been selected such that a reasonably representative picture
is drawn. This way, continent-specific differences and regional trends in m-government become clear.

2.3.1 M-Government in Africa

In many African countries, information and communication infrastructures are often still underdeveloped
[International Finance Corporation, 2014]. Interestingly, this mainly applies to wired communication
networks. In contrast, mobile communication networks are often already well developed. This makes
m-government an interesting and often also the only possible alternative. It is hence unsurprising that
African countries have been among the pioneers in deployment and usage of m-government solutions.
A sample of these solutions, which the author of this thesis has introduced in more detail in Zefferer
[2011], are briefly sketched in the following.

2.3.1.1 BloodBank SMS

The availability of blood transfusions is crucial for hospitals. This applies to developed countries as
well as to developing countries. In Kenya, centralized blood banks are responsible for supplying district
hospitals with blood. To assure an adequate supply, hospitals have to report the current status of their
local blood repository frequently. Because of underdeveloped infrastructures, hospitals in rural areas of

24http://www.a-sit.at
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Kenya sometimes suffer from a lack of reliable electricity and phone lines, which often renders frequent
status updates impossible. To tackle this problem, BloodbankSMS25 has been developed by Eric Magutu.
This service allows health-care workers from remote hospitals to report the current status of their blood
repository using SMS. Incoming status updates are collected at the central blood bank and graphically
visualized through a web-based interface. SMS-based alerts are triggered automatically, in case blood
repositories at district hospitals fall below a predefined threshold.

BloodBank SMS is a prime example for an m-health-related m-government service that exploits
relatively well-developed mobile communication infrastructures of developing countries. Even though
BloodBank SMS relies on simple technologies only, it significantly improves the availability of blood
transfusions in Kenya.

2.3.1.2 Cell-Life

Cell-Life26 is a South African non-profit company and public benefit organization. It focuses on the
provisioning of solutions for the management of health in developing countries. As such, Cell-Life has
started several health-related project during the past years. Many of them rely on mobile technologies.
A complete list of all projects initiated by Cell-Life is provided on their website27.

Projects relying on mobile technologies include a mobile app based drug stock management sys-
tem28, a mobile monitoring and reporting system for the national Human Immunodeficiency Virus (HIV)
counseling and testing campaign29, and a randomized controlled trial to evaluate the use of SMS tech-
nology in order to improve retention and to decrease treatment interruptions amongst patients initiating
antiretroviral therapy30.

The variety of projects carried out by Cell-Life underpins the importance of appropriate health ser-
vices and solutions especially in developing countries. Furthermore, the frequent use of mobile technolo-
gies in these projects shows their usefulness and potential for the health sector especially in developing
countries.

2.3.1.3 mPedigree

Counterfeit of legal drugs and medicines is a serious issue in developing countries [World Health Orga-
nization, 2014]. The mPedigree network31 aims to tackle this issue by providing solutions to establish a
secure supply chain from producers to consumers. Mobile technologies are used for this purpose. Con-
sumers can send the serial number that is printed on the bought medicine to a central service via SMS.
Information about the authenticity of the bought drug or medicine is then returned to the consumer via
SMS. As an alternative to the SMS-based communication channel, also a web-based user interface is
provided.

In general, the concept behind mPedigree can also be applied to other products than drugs or medicine.
Nevertheless, mPedigree is another example showing that rather simple mobile technologies can be em-
ployed to efficiently achieve an important goal.

25http://www.media.mit.edu/ventures/EPROM/research.html#bloodbank
26http://www.cell-life.org
27http://www.cell-life.org/projects/
28http://www.cell-life.org/projects/mobile-app-drug-stock-management-system/
29http://www.cell-life.org/projects/health-care-and-testing/
30http://www.cell-life.org/projects/idart-and-sms-integration-research-for-cida/
31http://mpedigree.net/
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2.3.1.4 RapidSMS

RapidSMS32 was developed by the innovation unit of the United Nations Children’s Fund (UNICEF)33

in 2007. The main goal of RapidSMS was to support data collection and youth-engagement activities in
regions with limited communication infrastructures. For such scenarios, RapidSMS provided an efficient
way to exchange information using SMS technology. After several years of development, RapidSMS has
evolved to an open-source framework for the rapid development of services based on mobile and web
technologies. As such, RapidSMS is the basis of several m-government solutions including the Nigeria
birth registration34 and a school monitoring system rolled out in Uganda35.

The continuing success of RapidSMS shows that SMS is still an important technology in developing
countries. As SMS does not require mobile broadband networks and high data-transmission rates, it is
an efficient and reliable technology for data exchange in regions with limited mobile communication
infrastructures.

2.3.1.5 Text to Change

Text to Change (TTC)36 started as a health-education initiative relying on mobile telephony. Using
SMS-based health-education programs, TTC has aimed to inform people in developing countries about
relevant health-related topics such as HIV, Acquired Immune Deficiency Syndrome (AIDS), or malaria.

TTC originally started in Uganda in 2008, but has soon expanded to other African countries and
developing regions all over the world. Today, TTC comprises more than 100 projects. In total, more than
50 million text messages have been sent so far. Most of these projects focus on health-related topics.
Current projects include a medical helpline in Ghana37 and several Ebola-prevention campaigns38.

The success of TTC underpins the fact that SMS is still one of the most important mobile technologies
in developing countries. In this aspect, TTC is comparable to RapidSMS, which also relies on SMS
technology and is frequently used in several developing countries in Africa.

2.3.1.6 Phones for Health

Phones for Health39 is a public-private partnership that aims to connect health systems in 10 countries.
By improving the health-care infrastructure, Phones for Health mainly aims to address the HIV/AIDS
pandemic. Mobile technologies play a central role in this project. Phone for Health employs the wide
spread of mobile communication networks in developing countries. Hence, these networks are one of the
backbones of the developed health-care infrastructure. This again emphasizes the relevance of mobile
technologies for health-care solutions in developing countries.

2.3.1.7 Collecting and Exchange of Local Agricultural Content

The Collecting and Exchange of Local Agricultural Content (CELAC) project40 has been launched in
Uganda and aims to improve the information flow to and between farmers. This is for instance achieved

32https://www.rapidsms.org
33http://www.unicef.org/innovation/
34http://rapidsmsnigeria.org/br
35http://edutrac.unicefuganda.org/
36http://www.ttcmobile.com/
37http://www.ttcmobile.com/newsitem/ttc-launches-medical-helpline-in-ghana/#more-2530
38http://www.ttcmobile.com/newsitem/ttc-ebola-prevention-campaigns-keep-growing/#more-2448
39http://www.pepfar.gov/c21414.htm
40http://www.celac.or.ug/
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by broadcasting SMS messages with valuable farming tips and related information about growing lu-
crative export crops. The exchange of information between farmers in Uganda shall also help them to
specialize in new and potentially more lucrative ventures.

CELAC shows that mobile technologies are not only relevant for the health-care sector. In addition,
also the agricultural sector can benefit from mobile communication technologies, which provide means
to exchange information in an efficient, timely, and cheap way.

2.3.1.8 m-Pesa

The m-Pesa project41 offers a mobile phone based non-cash money-transfer system. The solution was
developed by the Kenyan mobile-network operator Safaricom42 and by Vodafone43 in 2007. It is mainly
intended for people with low income, who cannot afford an own bank account, or for those, who have no
access to financial infrastructures.

For each m-Pesa user, a virtual account is electronically created and maintained. Special m-Pesa
agents such as super markets or gas stations act as interface between users and their accounts. By means
of these agents, users can deposit or withdraw money from their virtual accounts. In addition, m-Pesa
enables money transfers to other users, supports the payment of bills, and allows users to purchase
prepaid airtime. Transactions are carried out by exchanging SMS messages between users or between
users and agents. Required business logic on mobile devices is implemented by means of special SIM
applications.

Having its roots in Kenya, m-Pesa has already been expanded to other African countries. Since 2008,
a slightly modified version of m-Pesa has been for instance available in Tanzania. The introduction of
m-Pesa in other countries such as India and Egypt is already scheduled.

2.3.2 M-Government in America

Compared to Africa, the situation in America is sort of different. Especially in North America, both
wired and mobile communication infrastructures are usually well developed. Especially in urban areas,
3G and 4G networks are available and enable instant Internet access for mobile end-user devices. In
contrast to developing countries, where simple mobile communication infrastructures are often the only
alternative, mobile communication networks are only one out of many alternatives in developed coun-
tries. Accordingly, also the role of m-government and the motivation to use m-government solutions are
different. The probably most important reason for m-government in developed countries is convenience.
In the typical western always-on society, people are used to access services anytime and everywhere. As
mobile devices such as smartphones are usually always carried and always on, these devices are perfectly
suitable to act as end-point for services that shall be available and accessible independently of the user’s
current location and context.

In South and Central America, the situation is slightly different. In these regions, well-developed
communication infrastructures are often limited to urban areas. This also influences m-government ser-
vices and solutions that are provided in these regions. In regions with underdeveloped communication
networks, the situation is hence basically comparable to Africa. To provide a comprehensive overview of
m-government solutions in America, some of the services offered on this continent are briefly sketched
in the following.

41http://www.safaricom.co.ke/personal/m-pesa/m-pesa-services-tariffs/relax-you-have-got-m-pesa
42http://www.safaricom.co.ke
43http://www.vodafone.com
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2.3.2.1 United States Federal Mobile Apps Directory

In the United States (US), various mobile applications are provided by different public agencies and
administrations. A complete overview of available applications and services is provided at the website
of the US Government44. Offered services and applications include native mobile apps, hybrid apps, as
well as responsive and mobile websites that are optimized for a use on mobile end-user devices.

The US Government currently lists more than 200 mobile applications and websites. Most of them
offer pure informational services, i.e. provide relevant information on a particular topic in a structured
way. Examples are apps provided by the Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF)45

or apps offered by the Centers for Disease Control and Prevention46. In addition, several mobile apps
have been published that provide simple tools. Examples are an app that enables the calculation of the
body mass index47 or the app Tactical Breather48, which helps users to gain control over physiological
and psychological responses to stress. Furthermore, several location-based apps are provided that assist
citizens in navigating to public offices and other points of interest. Only few apps enable citizens to
directly communicate with public administrations. One of a few exceptions is the app iBurgh49, which
is offered for citizens of the city of Pittsburgh, Pennsylvania. This app can be used to report issues in
public space. Using the app, users can take a photo of e.g. a found pothole and send this photo together
with a brief description to the responsible municipality.

Even though the US Government offers citizens a broad spectrum of mobile apps and websites,
complete transactional services are hardly available for mobile devices. Even partly interactive apps
such as the issue-reporting solution iBurgh do not implement complete electronic transactions. Instead,
app-based m-government solutions mainly focus on the provision of relevant information and useful
tools.

2.3.2.2 Apps of the Government of Canada

Similar to the US Government, also the Canadian Government offers citizens various mobile applica-
tions50. Provided apps cover different fields and in most cases provide citizens with relevant information
on a certain topic. For instance, there is an app for Google Android and Apple iOS guiding applicants
through a website that enables application for a grant51. Another app called Learn to Camp52 provides
useful information on camping in Canadian national parks.

Similar to apps provided by the US Government, hardly any app provided by Canadian public ad-
ministrations implements complete transactional services. Instead, focus is mainly put on the provision
of information and useful tools.

2.3.2.3 Text4Baby

Text4Baby53 is an SMS-based service provided in the US for pregnant women. The service supplies
registered users with relevant information during pregnancy and provides a simple SMS-based notifica-
tion and reminder service. Text4Baby is free of charge and is provided by the National Healthy Mothers

44http://www.usa.gov/mobileapps.shtml
45https://play.google.com/store/apps/details?id=com.nicusa.atf
46https://play.google.com/store/apps/details?id=gov.cdc.general&feature=search result#?t=W10
47https://itunes.apple.com/us/app/bmi-calculator/id292796789?mt=8
48https://itunes.apple.com/app/tactical-breather/id445893881?mt=8
49https://play.google.com/store/apps/details?id=com.yinzcam.iburgh
50http://data.gc.ca/apps
51http://open.canada.ca/en/apps/how-apply-grant
52http://open.canada.ca/en/apps/learn-camp
53https://www.text4baby.org/
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Healthy Babies Coalition54.

Text4Baby has originally been launched as a pure SMS-based service. Today, the service can also
be accessed by means of a mobile app. In this regard, Text4Baby is a prime example of m-government
services in developed countries. Although services provided in these countries often employ cutting-
edge technologies such as mobile apps, also established and approved technologies like SMS are still
frequently used.

2.3.2.4 Project Patojitos

Patojitos is a pilot project that will be launched in Guatemala by the SHM Foundation55. According to
the project website56, Patojitos ’aims to study the impact of ICTs on health service delivery in remote
and underserved areas’. In particular, the project will focus on different interventions that could help to
support breastfeeding practices among mothers in Guatemala through the use of mobile technology.

Project Patojitos is a prime example showing that also in developing countries located in America,
the health-care sector aims to benefit from mobile technologies and related m-government solutions. In
this regard, parallels can be identified between developing countries in America and Africa.

2.3.2.5 Zumbido

The project Zumbido57 was run in the state of Jalisco, Mexico. It used group mobile-phone communica-
tion based on SMS technology with the goal to address challenges faced by citizens suffering from HIV
and AIDS. Zumbido is hence another example of an m-government service that has been tailored to the
needs of the health sector and aims to improve health care in a developing country.

2.3.2.6 Cell-PREVEN

Another health care related m-government project that has been started and run in Peru during the past
years is Cell-PREVEN58. Cell-PREVEN is an interactive voice-response system that allows health work-
ers in the field to access a central database using their mobile end-user devices. Data being stored in this
database can be accessed and can be remotely supplemented by collected data samples. All data trans-
missions can be carried out with off-the-shelf mobile phones. The project has been introduced and
discussed in detail by Curioso et al. [2005].

2.3.3 M-Government in Asia

In Asia, the situation is roughly comparable to the one in America. On the one hand, there are several
developing countries such as Bangladesh or the Philippines. On the other hand, several well-developed
countries such as Japan or Korea are also located in Asia. Unsurprisingly, the stage of development
has an impact on m-government services provided in the respective country. This also becomes apparent
from the sample of Asian m-government services and initiatives that are briefly sketched in the following.

54http://www.hmhb.org/
55http://shmfoundation.org
56http://shmfoundation.org/?page id=304/
57http://shmfoundation.org/?page id=323
58http://www.waltercurioso.com/preven/
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2.3.3.1 Chinese Aged Diabetic Assistant

The project Chinese Aged Diabetic Assistant (CADA)59 investigated possibilities to support elderly di-
abetics in China. For this purpose, smartphones were used to supply patients with relevant information
and guidelines. Furthermore, users could enter data on measured glucose levels using their smartphones.
This allowed for a remote surveillance and tracking of patient data. This way, a complex interactive
diabetes self-management support system based on mobile end-user devices was set up.

CADA shows that health care related m-government solutions are also required in Asian countries.
This especially applies to developed countries, where mobile technologies can be useful to improve the
quality of life for patients.

2.3.3.2 Mobile Solutions for Indian Fishermen

At the Indian coast of Kerala, mobile technologies have early been used to better the life of fishermen.
Since 2006, mobile communication technologies are used to inform fishermen about current market
situations while still being at sea. This has enabled them to divert their boats to those markets that pay
best. According to an article of the Washington Post60, the increased functioning of the market has raised
fishermen’s profit by 8%, while at the same time consumer prices fell by 4% on average.

2.3.3.3 Text2Teach

Text2Teach can be assigned to the field of m-education. According to the project website61, ’the mission
of Text2Teach is to make a significant contribution to the quality of teaching and learning in underserved
schools and communities in the Philippines’. The Text2Teach project is based on the Bridgeit initiative62

and supplies teachers in underdeveloped regions with informative video clips that can be shown in class.

The project basically consists of two phases. In the first phase, teachers can order video clips using
their mobile phones. The video itself is then transmitted over a satellite link. In the second phase,
teachers can load educational material directly on their mobile phones. These phones are then connected
to the Television (TV) set in class. New material can instantly be downloaded through the mobile phone
using 3G technologies.

Text2Teach is in productive operation in the Philippines. Since its introduction in 2003, more than
1,600 teachers and 57,000 students have benefited from this project. Text2Teach is hence a prime exam-
ple of an m-education solution that improves the educational system of developing countries.

2.3.3.4 Disaster-Alert Systems

Disaster-alert systems based on mobile communication technologies have become popular especially in
Asia, as this region of the world is frequently affected by floods, tsunamis, typhoons, and other natu-
ral disasters. Mobile communication technologies such as SMS are frequently used to warn people of
imminent disasters and to provide them with urgent information.

There are various examples for productive disaster-alert systems in Asian countries. A cyclone-alert
system that relies on mobile technologies has for instance been deployed in Bangladesh63. The websites
SMS Tsunami Warning64 or Tsunami Alarm System65 offer similar services, but mainly focus on tsunami

59http://www.cadaproject.com/
60http://www.washingtonpost.com/wp-dyn/content/article/2006/10/14/AR2006101400342.html
61http://www.text2teach.org.ph
62http://www.educationinnovations.org/program/bridgeit
63http://phys.org/news165066573.html
64http://www.sms-tsunami-warning.com
65http://www.tsunami-alarm-system.com/
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warnings. Similar solutions focusing on different types of natural disasters have also been introduced in
countries outside of Asia. For instance, an SMS-based flood-warning system has been set up in the city
of Venice, Italy, which is also frequently affected by floods66.

All over the world, mobile technologies have turned out to provide efficient means to inform people
of imminent threats in time and hence build the backbone of established disaster-alert systems. The
key advantage of mobile communication technologies is the capability to reach citizens anytime and
everywhere, as long as they carry their mobile end-user devices. This advantage is employed by disaster-
alert systems, for which timely communication is key.

2.3.3.5 PayBIR

The Philippine Bureau of Internal Revenue offers a service called PayBIR67 that allows Philippine cit-
izens to pay their taxes with the help of mobile phones. Technically, PayBIR makes use of G-Cash
technology68, a micro payment service that turns a mobile phone into a virtual wallet. Initially being
developed for business registrations, the PayBIR service has later been extended to cover a broader set
of taxes.

Today, PayBIR increases the efficiency of tax-related tasks in the Philippines and helps to reduce
costs for both citizens and administrations. PayBIR is a representative example for an m-government
solution that can be assigned to the field of m-administration.

2.3.4 M-Government in Australia

Australia can be regarded as a well-developed country. It is hence unsurprising that the current state of
the art of m-government in Australia is comparable to the situation in North America or Europe. The
Australian Government offers various mobile apps for smartphones and tablet computers. Beside these
apps, other mobile services exist that complement m-government services provided by public authorities.
In the following, a brief overview of the Australian m-government landscape is provided by means of a
few sample applications.

2.3.4.1 Australian Government Apps

The Australian Government offers citizens several mobile apps. A complete list of all available apps is
provided on the government’s official website69. Currently, more than 70 apps are listed there.

These apps cover different topics and use cases. For instance, the app ACCC Shopper70 offers
relevant consumer information and provides several useful tools to keep copies of receipts and to set
reminders. The Australian Pesticides and Veterinary Medicines Authority71 offers a smartphone app
that provides relevant information about agricultural and veterinary chemical products. An app called
DisasterWatch72 supplies citizens with relevant information about disaster-related events and disaster
resilience in Australia.

These examples show that apps of the Australian Government cover a broad range of use cases and
applications. Still, similar to mobile apps provided by governments of other developed countries, also
apps offered by the Australian Government are in most cases restricted to the provision of information,

66http://www.veniceforyou.com/high-water-SMS.html
67http://www.globe.com.ph/help/gcash/bir
68http://www.globe.com.ph/gcash
69http://www.australia.gov.au/news-and-media/apps
70http://www.accc.gov.au/about-us/tools-resources/accc-shopper-app
71http://apvma.gov.au
72http://www.em.gov.au/Resources/Pages/DisasterWatchPhoneApp.aspx
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useful tools, or simple location-based services. Hardly any app implements a complete transactional
service.

2.3.4.2 mHITs

In addition to mobile apps provided by the Australian Government, several other m-government initia-
tives and solutions have emerged in Australia during the past years. One example is the mobile payment
system mHITs73. This system works on a prepaid basis and enables users to charge a virtual account
e.g. by means of a bank transfer. Charged money can subsequently be transferred to other mHITs users
simply by sending predefined SMS messages. In this regard, mHITs resembles to a certain extent the
mobile payment solution m-Pesa, which has been deployed in several African countries.

The mobile payment solution mHITs shows that SMS is frequently used for the realization of produc-
tive mobile services also in developed countries. Despite the availability of more powerful technologies
in these countries, SMS technology is often still used for several reasons including ease of use, platform
independence, and compatibility with legacy devices.

2.3.4.3 School News Channel

School News Channel74 is another example for a popular SMS-based service offered in Australia. This
service aims to improve the communication between schools and parents by facilitating information
delivery by SMS. The SMS-based information channel is used to send parents and other registered
relatives reminders on school events, attendance confirmations, and emergency messages. School News
Channel has been developed and is provided by MGM Wireless75.

2.3.5 M-Government in Europe

In Europe, most countries can be regarded as well-developed. This especially holds true for member
states of the EU. Most of these countries have started to invest in e-government infrastructures and
solutions early. With the emergence of mobile technologies, several countries have also invested in the
development of respective m-government solutions. With regard to m-government, the situation in most
European countries is hence comparable to Australia or to developed countries in America or Asia. Most
European countries provide citizens several app-based m-government solutions. In addition, various
legacy solutions that rely on older technologies such as SMS still exist. A sample of these solutions will
be exemplified later in this section.

In one aspect, European countries differ from other developed countries. In Europe, the concepts
of electronic identities and electronic signatures are crucial especially for transactional e-government
services. Even though their relevance differs from country to country, EU laws such as the Signature
Directive [The European Parliament and the Council of the European Union, 1999] or the eIDAS Regu-
lation [The European Parliament and the Council of the European Union, 2014] define a common legal
framework that applies to all EU member states. In many European countries, potentials of mobile
technologies have early been employed to implement eID and electronic-signature solutions that meet
relevant legal requirements. Some of these solutions will also be exemplified in the following, in order
to draw a representative picture of the current state of the art of m-government in Europe.

73http://www.mhits.com.au/
74http://schoolnewschannel.com.au/snc.php
75http://www.mgmwireless.com/
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2.3.5.1 Mobile-Government Apps

In Europe, several national governments provide their citizens m-government apps for mobile end-user
devices. In Austria, the Federal Chancellery offers a set of apps for popular smartphone and tablet-
computer platforms76. For instance, the app HELP4BABY77 supplies parents-to-be with relevant infor-
mation on rights and duties. The app fem:HELP78 supports women in emergency situations by providing
information on available aid organizations. Finally, the mobile solution RIS:App79 enables citizens to
access federal and regional laws by means of a mobile app.

Austria is just one of several European countries providing m-government apps to their citizens.
Other European countries doing so are Estonia80 or Sweden81. In the Netherlands, public administrations
run an app-based service called BuitenBeter82. BuitenBeter is an app-based issue-reporting solution. It
enables citizens to take photos of issues in public space and to send these photos with a brief description
to the responsible public administration. This way, citizens can conveniently report e.g. overfull garbage
cans, broken street lamps, or potholes. Mobile BuitenBeter apps are available for all major mobile
platforms. BuitenBeter has been launched 2010 in the city of Eindhoven and has become popular during
the past years. Today, it is available in virtually every city of the Netherlands.

While app-based solutions are frequently used in several European countries, governments and public
administrations of other EU member states intentionally do not provide mobile apps to their citizens. An
example is the United Kingdom (UK), where the November 2012 Digital Strategy says that ’standalone
mobile apps will only be considered once the core web service works well on mobile devices, and if
specifically agreed with the Cabinet Office’ [UK Cabinet Office, 2012]. Even though a few countries
refrain from providing mobile apps to their citizens, a general trend towards app-based m-government
solutions can be observed in Europe. Although the number of available m-government apps is steadily
increasing, most of the solutions still provide rather simple and in most cases pure informational services.
Complete transactional services implemented by mobile apps can hardly be found in European countries
so far.

2.3.5.2 Austrian Mobile Phone Signature

In Austria, mobile technologies have been used early to implement eID and electronic-signature solu-
tions. First attempts to provide a country-wide solution for secure user authentication and electronic
signatures based on mobile technologies have been made in 2004, when the so-called A1 Signatur83 has
been introduced. In contrast to other mobile eID and electronic-signature solutions available at that time,
the A1 Signatur did not create electronic signatures directly on the mobile device. Instead, signatures
were computed centrally.

The service A1 Signatur was operated by the Austrian MNO A184. If users wanted to authenticate
at a web portal using the A1 Signatur, they had to enter their user name, password, and mobile-phone
number first. The authentication data to be signed was then sent to the central server. The server prepared
the data to be signed and sent an SMS with a one-time password to the user’s mobile phone. The user
had to enter the obtained one-time password at the web portal in order to trigger the central creation of
the electronic signature. Finally, the signed authentication data was returned to the web portal. Because
of poor user acceptance and changed legal circumstances, the A1 Signatur service was stopped in 2007.

76http://www.bundeskanzleramt.at/site/6490/default.aspx
77http://www.bundeskanzleramt.at/site/cob 52664/currentpage 0/6490/default.aspx
78https://www.bka.gv.at/site/cob 52548/currentpage 0/6490/default.aspx
79https://www.bka.gv.at/site/cob 52564/currentpage 0/6490/default.aspx
80http://estonia.eu/about-estonia/economy-a-it/e-estonia.html
81http://www.skatteverket.se/mobil
82http://www.buitenbeter.nl/english
83https://www.signatur.rtr.at/de/providers/services/mobilkom-a1signatur.html
84http://www.a1.net/
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In 2010, another mobile eID and electronic-signature solution called Mobile Phone Signature85 rely-
ing on a concept proposed and introduced by Orthacker et al. [2010] has been introduced in Austria. The
Mobile Phone Signature again aims to make use of the various benefits provided by mobile technologies
and offers Austrian citizens access to services based on qualified electronic signatures. From the user’s
point of view, the Mobile Phone Signature is similar to the A1 Signatur. Signatures are computed in
a central HSM. Hence, the Austrian Mobile Phone Signature follows the architecture of server-based
eID and electronic-signature solutions shown in Figure 2.5 on page 31. The user’s mobile phone simply
acts as end point for a second communication channel that is used to transmit an SMS message con-
taining a one-time password. This secret password can then be used by the receiver to complete the
signature-creation process in the central HSM.

During the past years, the Austrian Mobile Phone Signature has gradually replaced smart card based
eID and electronic-signature solutions in Austria. Even though both alternatives are usually supported
by e-government applications, users clearly prefer the mobile variant to smart card based approaches.
This has been revealed by a conducted usability test. We have presented results of this test in Zefferer
and Krnjic [2012b].

2.3.5.3 Estonian Mobiil-ID

Mobiil-ID86 is a SIM-based mobile eID and e-signature solution that is in productive operation in Es-
tonia. It hence follows the architecture of SIM-based eID and electronic-signature solutions shown in
Figure 2.4 on page 29. Accordingly, Mobiil-ID makes use of special SIMs to store user-specific data and
to create electronic signatures. Together with Estonia’s smart card based eID and electronic-signature so-
lution, Mobiil-ID provides required eID and electronic-signature functionality in Estonian e-government
procedures.

To authenticate at e-government services or to create an electronic signature, users have to provide
their mobile-phone number and a personal code first. The identification and authentication process itself
is processed and controlled by a central service that may be used to access the functionality provided by
Mobiil-ID through a uniform interface. After receiving an authentication or signature-creation request,
the central service transmits relevant data to the user’s SIM. Upon reception of these data, the user is
requested to enter one of two PINs, depending on the type of transaction, i.e. authentication or signature
creation. After provision of the correct PIN, the SIM carries out required operations to either authenticate
the user or to electronically sign the received data. The result of the performed operation is returned to
the central service, which forwards relevant data to the calling application. As Mobiil-ID uses appropri-
ately certified SIMs and relies on qualified electronic certificates, electronic signatures created with this
solution are legally equivalent to handwritten signatures according to EU law.

SIM-based eID and electronic-signature solutions following similar approaches as Mobiil-ID have
also been deployed in several other European countries. Examples are Turkey87, Finland88, and Nor-
way89. In all these countries, SIM-based mobile eID and electronic-signature solutions enable citizens to
authenticate at e-government services and to create legally binding electronic signatures using their mo-
bile phones. We have provided a detailed overview and analysis of mobile eID and electronic-signature
solutions in Zefferer and Teufl [in press].

85http://www.handy-signatur.at/
86http://www.id.ee/index.php?id=36881
87http://www.turkcelltech.com/Product.aspx?Id=5eba6d36-dba7-42be-a499-cea1422d0a3d&PId=15c36401-ddf8-424f-

8489-41077a2974ab
88http://www.mobiilivarmenne.fi/fi/
89https://www.bankid.no/
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2.3.5.4 EmergencySMS

The EmergencySMS service90 is provided in the UK and is supported by the government, various mobile
network operators, emergency services, Ofcom91, and Action on Hearing Loss92. The service enables
deaf, hard of hearing, and speech-impaired people in the UK to communicate with emergency services
such as the police, ambulance, fire rescue, and coast guard by means of SMS.

EmergencySMS shows that even though SMS is a rather simple and old technology, it can still be
useful to improve the accessibility of certain services. In the concrete case of EmergencySMS, it supports
hearing-impaired persons by providing an efficient alternative to speech-based communication.

2.3.5.5 Bustxt

Bustxt93 is an SMS-based timetable service offered in the city of Dublin, Ireland. It enables passengers to
request timetable information for bus routes by SMS. Bustxt is provided by the Irish transport company
Dublin Bus94.

In most developed countries, transport companies provide app-based timetable and journey-planning
solutions. Examples are solutions provided by the public transport companies of the cities of Munich95,
Vienna96, or Graz97. The Irish Bustxt service is still an interesting alternative, as it shows that useful ser-
vices can also be implemented with simple and less powerful mobile technologies. The main advantage
of Bustxt compared to app-based solutions is its general applicability on all mobile phones including
those without Internet access.

2.3.5.6 Ask Brook

Ask Brook98 is a British service that offers information and advice for young people. Ask Brook is a
service provided by the charity organization Brook99. According to their website, Brook has the objec-
tive to promote the health of young people and those most vulnerable to sexual ill health through the
provision of relevant information, education and counseling, confidential clinical and medical services,
professional advice, and training. Ask Brook gives young people the opportunity to make use of coun-
seling services using SMS messages. This mobile communication technology enables those seeking for
advice to avoid personal contact and to remain anonymous to a certain extent.

2.3.5.7 Parent-Notification Systems

TextaParent100 is an Irish service that facilitates the communication between schools and parents using
SMS technology. Schools can use the service to inform parents of e.g. last minute timetable changes,
emergency school closures, or important reminders. TextaParent is hence basically comparable to the
Australian service School News Channel.

Another parent-notification system similar to TextaParent is called CallParents101. CallParents is

90http://www.emergencysms.org.uk/index.php
91http://www.ofcom.org.uk/
92http://www.actiononhearingloss.org.uk/
93http://www.dublinbus.ie/your-journey1/bustxt/
94http://www.dublinbus.ie
95http://www.mvg-mobil.de/fahrinfo/
96http://www.wienerlinien.at/qando
97http://www.verbundlinie.at/fahrplan/bedienung mobile.php
98http://www.askbrook.org.uk
99http://www.brook.org.uk/about-brook/category/what-we-do

100https://textaparent.ie/
101http://www.the-contactgroup.com/products/call-parents/
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mainly used in the UK and aims to facilitate efficient communication between teachers, parents, and
students. Similar to TextaParent, CallParents relies on SMS technology for message delivery.

Parent-notification systems such as TextaParent or CallParents are further prime examples showing
that SMS technology is still frequently used in Europe. Even though SMS is a rather old technology, it
is still sufficient for various use cases to implement simple but efficient services.

2.3.6 Trends in Mobile Government

The provided overview of m-government solutions covers just a subset of all solutions currently avail-
able. Due to the increasing use of mobile information and communication technologies, the number of
available m-government services is continuously growing. A complete list of all available service would
hence go beyond the scope of this thesis. Still, sketched solutions have been selected such that a rep-
resentative picture of m-government in different regions of the world is drawn. For this purpose, focus
has not only been put on m-government services provided by public administrations, but also on services
from related fields such as m-health or m-education that are often provided by private organizations
or NGOs. This way, a comprehensive overview of mobile technologies in mobile government related
fields of application has been provided. From this overview, several findings can be derived and current
trends in mobile government can be identified. Derived findings and identified trends are discussed in
the following subsections.

2.3.6.1 Mobile Government to Fight the Digital Divide

The brief survey on existing m-government solutions shows that mobile government is a global phe-
nomenon. Public-sector solutions that employ mobile technologies can be found on all continents.
However, there are differences between m-government solutions provided in developed and develop-
ing countries. Underdeveloped countries e.g. in Africa and Asia often suffer from missing wire-based
communication infrastructures especially in rural areas. There, mobile technologies are hence often the
only opportunity for communication. Accordingly, mobile phones are often the only way for people to
communicate with each other over longer distances and the most efficient opportunity for governments
to get in contact with their citizens.

The special circumstances in developing countries are also reflected by the nature of provided ser-
vices from the m-government domain. The survey has shown that in Africa and Asia, mobile technolo-
gies are frequently used for health care and educational purposes. As mobile broadband networks are
often not available yet, provided services are usually restricted to voice and SMS transmissions. De-
spite limited transmission capacities, various m-health and m-education services have shown to be an
appropriate tool to facilitate the lives of people in developing countries and to fight the digital divide.

2.3.6.2 Mobile Government for Always-On Societies

Missing wire-based communication infrastructures make mobile networks often the one and only alter-
native for long-distance communication in developing countries. In developed countries, the situation
is completely different. There, multiple communication opportunities are usually available at the same
time, especially in urban areas. Still, m-government is an important topic in these countries as well.
However, the motivation to provide and use m-government services is completely different compared to
developing regions. The probably most important reason to rely on m-government in developed coun-
tries is convenience. In the typical western always-on society, there is a growing demand for services that
are accessible anytime and everywhere. Mobile devices such as smartphones are usually always carried
and always on. Hence, they are perfectly suitable to act as enabler for services that shall be available and
accessible independently of the current time or the user’s current location and context.
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The conducted survey has shown that the aim for convenience is also reflected by the nature of
provided m-government services, which differ clearly from services provided in developing regions. In
developed countries, provided m-government services usually aim to provide citizens nonstop access to
services. SMS is still frequently used for this purpose. However, in contrast to developing countries a
clear trend towards mobile app based solutions can also be observed. Furthermore, especially European
countries rely on mobile technologies to implement eID and electronic-signature solutions, which enable
transactional e-government services.

2.3.6.3 SMS as Technology of Choice

The conducted survey has revealed that the rather old SMS technology is still frequently used for
m-government services throughout the world. This is unsurprising for developing countries, where mo-
bile broadband networks are often not available and SMS represents one of few technical opportunities
to transmit data. Interestingly, SMS is also still frequently used in developed countries. Examples are
parent-notification solutions that facilitate communication between schools, parents, and students. An-
other popular example are mobile eID and electronic-signature solutions such as the Estonian Mobiil-ID
or the Austrian Mobile Phone Signature, which make use of SMS technology either to transfer data
between the MNO and the user’s SIM, or to transmit one-time passwords during user authentication.

Indeed, there are several arguments that justify reliance on the rather old-fashioned SMS technology.
First, SMS is an approved and well-established technology. Even technically inexperienced users know
how to read and write SMS messages. Second, SMS does not make high demands on the mobile end-
user device and is supported by all current devices. Third, there are no compatibility issues with SMS
messages. While mobile apps usually need to be tailored to a special mobile platform and operating
system, SMS is supported by all current platforms out of the box. All these aspects contribute to the
continuing success and popularity of SMS technology and explain the frequent use of this technology in
m-government services all over the world.

2.3.6.4 Mobile Apps on the Rise

Despite the continuing success of SMS technology, the recent emergence of smartphones especially in
developed countries has brought a new take on m-government solutions. In various countries, govern-
ments and public administrations already provide mobile apps for smartphones and tablet computers.
The conducted survey has revealed that m-government portals, on which such apps are offered, are for
instance available in the US, Canada, Austria, or Estonia. For the future, it can be expected that with an
increasing smartphone penetration and with the further development of mobile communication networks
also the number of provided m-government apps will further increase. While simple SMS-based services
will still be the most appropriate choice for certain use cases, existing mobile apps already show their
potential to open up new application scenarios.

2.3.6.5 Lack of Transactional Services

Solutions from the field of e-government can be classified into informational, responsive, and trans-
actional services. Only the latter can be regarded as pendant to classical administrative procedures,
i.e. include the three phases application, back-office processing, and delivery. The conducted survey has
revealed that there are hardly any m-government solutions implementing or providing full transactional
services so far.

Transactional e-government services typically require a reliable user authentication and require the
user to provide written consent by means of an electronic signature. Accordingly, eIDs and electronic sig-
natures have been identified as basic concepts of transactional e-government services. Interestingly, the
conducted survey shows that several solutions exist that incorporate mobile technologies to implement
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eID and electronic-signature functionality. Examples are the Austrian Mobile Phone Signature or the
Estonian Mobiil-ID. However, these solutions have been designed and developed in the pre-smartphone
era and are hence tailored to a use on classical end-user devices. Concretely, these solutions and their
underlying security concepts assume that the mobile device is used as additional device only. This ex-
plains, why existing mobile eID and electronic-signature solutions are hardly used by mobile apps to
implement transactional services.

In the absence of fully transactional m-government services, most surveyed solutions must be clas-
sified as purely informational. Other surveyed solutions provide simple tools or location-based services,
but do not implement transactional services either. Hence, they do not integrate eID or electronic-
signature functionality. This applies to both simple SMS-based services as well as to m-government
solutions based on mobile apps.

2.4 Chapter Conclusions

The provided overview of the current state of the art of m-government has revealed several interesting
findings. First of all, it has shown that m-government in developing countries must be dissociated from
m-government in developed countries. In both developing and developed regions, mobile public-sector
services are referred to as m-government. However, drivers behind these services, use cases, and circum-
stances differ significantly depending on the development stage of the region, in which these services
are deployed. Accordingly, also the provided services themselves differ significantly. The provided
overview has also shown that differences among developing countries or among developed countries are
not that considerable. For instance, in most developing countries, the health-care sector is very active
in providing mobile services to improve the health-care situation in underdeveloped regions. Similarly,
most developed countries provide citizens app-based solutions to supply them with relevant information
in a convenient and user-friendly way.

In general, it is unsurprising that developed countries increasingly make use of mobile apps for the
provision of m-government services. Compared to legacy technologies such as SMS, mobile apps allow
for more powerful services. Another argument for an increased use of mobile apps is the steadily growing
smartphone penetration in developed countries. In consideration of the continuing popularity of mobile
apps for smartphones and tablet computers, it is at a first glance quite astonishing that there are currently
hardly any transactional m-government procedures available that include a reliable user authentication
and a provision of written consent by the user. This is interesting, as mobile technologies have been
employed by eID and electronic-signature solutions for many years. However, all these solutions have
originally been designed for classical end-user devices and use the mobile phone as second end-user
device only. Hence, they can in most cases not be ported to and used on mobile end-user devices. For
this reason, existing eID and electronic-signature solutions are usually not applicable on mobile end-user
devices, which in turn renders transactional m-government services infeasible.

The current lack of transactional m-government services is a significant drawback. Existing app-
based m-government solutions show that the incorporation of mobile cutting-edge technologies and
modern mobile end-user devices enables various new application opportunities and can significantly
ease the life of both citizens and public administrations. Employing this potential for rather simple
informational m-government services only must hence be regarded as a waste. The required transition
from informational m-government to transactional m-government necessitates the availability of eID and
electronic-signature solutions that can be applied and used on mobile end-user devices. Development of
such solutions that pave the way for transactional m-government can hence be defined as the basic goal
of this thesis.
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Chapter 3

Security on Mobile End-User Devices

“ There is no such thing as perfect security, only varying levels of insecurity.”

[ Salman Rushdie, British Indian Novelist and Essayist. ]

Even though the above statement by Salman Rushdie is not necessarily restricted to IT solutions, it
recalls that absolute security can hardly be achieved in practice. This fact must not be neglected dur-
ing design and implementation of IT solutions that store, process, and transmit security-critical data.
To a certain extent, the security of these solutions always depends on capabilities and limitations of
their underlying technologies. Understanding the characteristics of employed technologies is hence cru-
cial for the development of solutions that need to meet security requirements. In particular, this also
applies to m-government solutions that typically rely on various mobile technologies to implement re-
quired functionality. Understanding capabilities and limitations of mobile technologies is crucial for the
development of secure m-government solutions.

The current m-government landscape shows that there is a clear trend towards m-government services
based on mobile apps. App-based m-government solutions benefit from the various cutting-edge tech-
nologies that are integrated into current smartphones and tablet computers. Examples are location-based
services such as the Alternative Fueling Station Locator1 provided by the US Department of Energy2,
or the Dutch app BuitenBeter3, which integrates photography features to enable citizens to conveniently
report issues in public space. Furthermore, app-based m-government solutions benefit from the usability
of current mobile end-user devices. As usability has been identified as one of the five pillars of success-
ful m-government, smartphones or tablet computers seem to be the most suitable end-user devices for
successful m-government solutions.

Due to their various advantages, it can be expected that app-based m-government solutions will
continue to gain relevance in future. The validity of this expectation is underpinned by the fact that
several SMS-based m-government services are gradually complemented by app-based solutions. An
example is the m-government service Text4Baby4, which has started as a pure SMS-based service and
can now also be accessed by means of an iPhone app5. So far, the trend towards app-based m-government
mainly applies to well-developed countries, where nationwide mobile broadband networks are available
and where the market penetration of smartphones is already high. However, it can be expected that
app-based solutions will also gain popularity in developing countries, once required mobile broadband
communication infrastructures and cheap smartphones are available.

1https://itunes.apple.com/us/app/alternative-fueling-station/id718577947
2http://www.energy.gov/
3http://www.buitenbeter.nl/english
4https://www.text4baby.org/
5https://itunes.apple.com/us/app/text4baby/id894749779?mt=8
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While smartphones and tablet computers offer various new opportunities, they also raise several
security challenges that need to be considered. In contrast to classical mobile phones, smartphones
and tablet computers are typically connected to the Internet and support the installation of third-party
software. In this aspect, smartphones and tablet computers rather resemble desktop PCs and laptops than
classical mobile phones. This makes modern mobile end-user devices also prone to attacks and malware.
Especially on Google Android, malware has evolved to a severe problem during the past years [Kelly,
2014]. Even though the situation is usually less critical on other platforms, modern mobile end-user
devices must in general not be assumed to be secure. This is problematic, as security has been identified
as another crucial pillar of successful m-government. Development of secure m-government solutions
therefore requires a deep understanding of the mobile platforms, which these solutions are intended for.
Only if all opportunities and limitations of these platforms are known, m-government solutions can be
tailored to the platforms’ special characteristics and a sufficient level of security can be assured.

Providing an appropriate level of security and hence achieving a deep understanding of current mo-
bile platforms is especially important for the development of mobile eID and electronic-signature solu-
tions. These solutions must be regarded as critical, as successful attacks on these services potentially
lead to impersonation and enable attackers to create legally binding electronic signatures on behalf of the
legitimate user. Development of a sufficiently secure mobile eID and electronic-signature solution is the
fundamental goal of this thesis. As a preparation for that, relevant aspects of modern mobile end-user
devices and underlying operating systems are analyzed in this chapter. This way, their current state of
the art is examined and a deep understanding of opportunities and limitations is achieved. All analyses
presented in this chapter are based on own published research. In particular, security features and limi-
tations of current popular mobile platform are investigated by focusing on m-government use cases and
their requirements. Furthermore, different approaches to improve the provided level of security of mobile
end-user devices are discussed. Finally, first attempts to implement electronic-signature functionality on
mobile end-user devices are presented to show the basic feasibility of this approach.

3.1 Security Features and Limitations of Mobile Platforms

Security is one of the five fundamental pillars of successful m-government. This raises challenges for
app-based m-government services that are tailored to a use on smartphones or tablet computers, as these
devices are potentially prone to attacks and malware. Raised security challenges can be met by making
use of security features provided by mobile platforms. Unfortunately, these platforms differ significantly
in terms of their vulnerability against attacks and also in terms of provided security features. This com-
plicates the development of secure m-government solutions, as a deep understanding of potential vulner-
abilities and of provided security features is necessary, and because several platform specifics need to be
taken into account.

To overcome this problem, we provide a systematic analysis and assessment of the three mobile
platforms Google Android, Apple iOS, and Microsoft Windows Phone 8. This analysis is based on own
scientific work, in which we have assessed the suitability of the three mentioned mobile platforms for
m-government [Zefferer et al., 2013b]. While the general analysis of current mobile platforms has been
a joint activity with colleagues, the author of this thesis has finally applied the mapping of analyzed
platform capabilities and limitations to concrete m-government-related use cases. In this section, main
findings of this publication are recapped. For each of the three considered platforms, available security
features are analyzed that can be employed by m-government solutions to achieve the required level of
security. To follow a systematic approach, relevant use cases are identified first. From these use cases,
four research questions are derived. Subsequently, relevant security features are identified. The three
investigated platforms are then analyzed by means of these security features. Finally, results of this
analysis are used to assess the three platforms according to the previously defined research questions.
This way, capabilities and limitations of the three platforms Google Android, Apple iOS, and Microsoft
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Windows Phone 8 to provide m-government solutions an appropriate level of security are systematically
assessed.

3.1.1 Relevant Use Cases

As a first step towards a systematic analysis and assessment of different mobile platforms, relevant
m-government use cases are identified. In general, the rather broad field of m-government provides
various opportunities to integrate and to make use of smartphones and related mobile end-user devices.
For the scope of this analysis, focus is mainly put on the following two use cases:

• Internal usage: Providing employees of public administrations with powerful mobile end-user
devices can speed up internal processes and increase efficiency. Mobile end-user devices enable
access to required information and data everywhere and at any time. For instance, the use of
smartphones enables access to e-mails around the clock and independent of the current location.
During the past few years, different strategies to provide employees with mobile end-user devices
have emerged. These strategies are applied in both the public and the private sector. Overall, three
strategies can be distinguished. Pursuing the first strategy, employers provide their employees with
mobile end-user devices. These devices are owned and managed by the employer and may be used
for business matters only. The second strategy is similar to the first one, but allows employees
greater latitude regarding the use of provided devices. In particular, employees are allowed to
use these devices also for private affairs. Accordingly, this second strategy is referred to as Cor-
porate Owned Personally Enabled (COPE). The third strategy that has gained popularity during
the past years is called Bring Your Own Device (BYOD). Pursuing this strategy, employees are
allowed to connect their private mobile end-user devices to the corporate infrastructure. On the
one hand, this is beneficial for employers, as they can save investment costs. On the other hand,
this strategy potentially raises several security issues, as the employer’s control over used devices
is limited. Concretely, employees can hardly be prevented from using insecure and potentially
malware-infected devices. Despite its disadvantages, BYOD is still continuously gaining popular-
ity. Irrespective of the pursued strategy, the use of mobile end-user devices by employees of public
administrations is a relevant use case and needs to be considered in detail.

• Citizen applications: This use case covers scenarios, in which citizens use their private mobile
end-user devices to access services and applications provided by public administrations. This
use case is gaining relevance, as mobile end-user devices are gradually replacing classical ones.
Security is a relevant aspect for this use case, as service providers have no control over used
client devices and hence must not presume a certain level of provided security. This situation is
even complicated by the fact that potential security threats and provided security functions differ
significantly between mobile platforms.

From the two identified use cases, a set of research questions can be derived. By finding answers to
these questions, a deep understanding of differences between current mobile platforms regarding relevant
security aspects can be acquired. Concretely, the following research questions can be derived:

• RQ-1: Which mobile platforms shall be chosen when providing employees of public administra-
tions with mobile end-user devices?

• RQ-2: Which mobile platforms shall be supported by public administrations, if a BYOD strategy
is pursued?

• RQ-3: For which mobile platforms shall security-critical citizen applications be provided by pub-
lic administrations?
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• RQ-4: For which mobile platforms shall non-critical citizen applications be provided by public
administrations?

3.1.2 Relevant Security Features

To enable a systematic comparison of different mobile platforms and a derivation of answers to the
derived research questions, relevant platform properties need to be identified first. These properties can
be derived from assets deserving protection and from threats that apply to these assets. Considering the
two identified relevant m-government use cases, data being stored and processed on mobile end-user
devices can be identified as basic asset. The capability to protect this asset from attackers is hence the
main quality measure for mobile platforms. In addition to complex and hence expensive approaches such
as side-channel analysis, attackers typically pursue two promising strategies to compromise security-
critical data stored and processed on mobile end-user devices. First, attackers steal mobile devices in
order to gain access to stored data. Due to their mobile nature, mobile end-user devices are more prone
to theft and loss compared to stationary devices such as desktop PCs. Second, attackers use malware to
compromise data on mobile devices. As modern mobile platforms enable users to dynamically extend the
functionality of their devices with third-party software, malware is an omnipresent threat. In addition,
frequent disclosures of powerful exploits increases the threat potential of malware as well. From the
basic asset data and from the two identified threats theft and malware, relevant platform properties can
be derived that have an impact on the platform’s capabilities to protect identified assets and to counter
imminent threats.

Relevant platform properties can be subdivided into two categories. These categories correspond
to the two identified threats, i.e. theft and malware. Accordingly, the two categories data protection
and malware resistance have been defined. Each of these categories contains a set of relevant platform
properties. Regarding the category data protection, the following properties can be identified as crucial:

• Access-protection mechanisms: Access protection is the first line of defense in scenarios, in
which the mobile end-user device gets stolen. Activated access-protection mechanisms prevent
the thief from gaining access to the device through its user interface. Common implementations
of these mechanisms are password-based or fingerprint-based user-authentication schemes. The
quality of provided access-protection mechanisms is a key property to counter the threat theft.

• Encryption support: Although appropriate access-protection mechanisms prevent attackers from
accessing the graphical user interface of mobile end-user devices, they cannot prevent direct access
to locally stored data. To guarantee the confidentiality of these data, encryption must be applied.
The support for data-encryption mechanisms is hence another crucial platform property to counter
the threat theft.

• Support for secure storage of credentials: Credentials such as PINs, passwords, or cryptographic
keys are highly-critical data, for which confidentiality must be guaranteed when being stored on
the mobile device. Therefore, the provision of dedicated credential stores that integrate reliable
protection mechanisms represents an important platform property.

• Mobile Device Management (MDM) capabilities: MDM is a platform feature that is especially
relevant for use cases, in which mobile devices are provided to employees for business affairs.
MDM enables the owner of the mobile device, i.e. the employer, to retain control over issued de-
vices. Concretely, MDM assures that certain device configurations can be determined before the
device is handed over to the employee. For instance, MDM can be used to enforce the use of
access-protection mechanisms or encryption. In most cases, these configurations can also be dy-
namically adapted, when the device is already in the field. Most importantly, the user can usually
not disable or modify configurations defined by MDM. This way, MDM enables device owners
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to retain control over their own devices and to prevent weak and potentially insecure configura-
tions. The support for MDM is hence an important platform property that is especially relevant
for m-government use cases, in which public administrations provide their citizens with mobile
end-user devices.

In addition to these platform properties, which are important to defeat threats imposed by the theft of
a mobile device, the following platform properties can be identified as crucial for the protection against
malware:

• Provided Application Programming Interfaces (APIs) and Inter-Process Communication
(IPC) capabilities: Malware residing on a mobile end-user device has basically the same ca-
pabilities to access APIs and capabilities for IPC as any other third-party app. The set of provided
APIs and IPC capabilities hence influences the potential power of malware. If a platform provides
third-party apps more capabilities to access system resources and functionalities, also malware on
this platform can employ these capabilities and must hence be regarded as more powerful. The
set of provided APIs and IPC capabilities is therefore an important property that influences the
vulnerability of a mobile platform to malware.

• Resistance against rooting: As capabilities of malware are technically limited to those of ordinary
third-party apps, attackers frequently try to exploit known security flaws, in order to gain root
access to the mobile operating system. Once attackers or malware have gained root access to a
targeted device, they are theoretically able to circumvent all enforced security mechanisms. Thus,
resistance against rooting is an important property of mobile platforms that influences its resistance
against powerful malware.

• Integrated security features: Mobile platforms typically integrate various security features rang-
ing from restrictions of potential sources for third-party apps, over security measures on operating-
system level, to permission systems that control capabilities and access rights of installed apps.
Their availability and reliability contribute to the overall security of a mobile end-user device.
Hence, the set of integrated security features is a crucial property of mobile platforms.

• Availability of updates: The past has shown that it is virtually impossible to develop and provide
an error-free operating system. Hence, timely and reliable update mechanisms are crucial, as they
represent the only opportunity to correct discovered errors and security flaws on mobile end-user
devices in the field and to keep operating systems up to date. The availability of suitable update
mechanisms and the provision of timely updates are hence relevant properties of mobile platforms
and influence the platforms’ malware resistance.

3.1.3 Platform Analysis

In this section, the three mobile platforms Google Android, Apple iOS, and Microsoft Windows Phone 8
are analyzed according to the platform properties that have been identified as relevant. This way, security
features and capabilities of these three platforms are examined and possible limitations are revealed. The
conducted analysis enables a subsequent assessment of the three platforms according to the defined
research questions.

3.1.3.1 Analysis of Google Android

During the past years, Google Android has evolved to the most popular mobile platform and currently
holds the largest market share of all mobile platforms [IDC, 2014]. From a developer’s perspective, the
key advantage of Android is its openness. For instance, Android provides a rich set of APIs for third-
party apps that enable access to various system resources and functions. This openness is advantageous
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in terms of functionality, but it also enables powerful attacks. This becomes apparent when analyzing
the identified relevant platform properties for the special case of Android.

• Access-protection mechanisms: Reliable access-protection mechanisms have been identified as
relevant property of mobile platforms, which influences their resistance against threats imposed by
theft of the mobile device. Android provides a broad spectrum of access-protection mechanisms.
They range from password-based approaches over biometric solutions to mechanisms that require
the user to enter a graphical pattern to unlock the device. All methods are disabled by default.
It is up to the user to choose, enable, and configure the preferred method. Alternatively, access-
protection mechanisms can also be enabled and configured by an MDM solution in place.

• Encryption support: File-system encryption is available for Android since version 3.0. However,
this feature is disabled by default and needs to be activated. Android’s encryption system applies to
the entire internal file system. A selective encryption of single files or directories is not supported.
The key-derivation process used to derive the encryption key does not include a device-specific
key. Instead, the encryption key is solely derived from a passcode entered by the user. Thus, brute-
force attacks on the key are not bound to the mobile device but can also be outsourced to powerful
external resources. This way, attacks on the user’s passcode and hence on the encryption key
can be significantly sped up. We have provided a more detailed review and analysis of Android’s
encryption system in Teufl et al. [2014a].

• Support for secure storage of credentials: In addition to file-system encryption, Android ad-
ditionally provides third-party apps an especially protected credential store called Android Key-
Chain6. The Android KeyChain stores credentials in encrypted form. Encryption is based on the
Advanced Encryption Standard (AES) [NIST, 2001] and on an encryption key derived from the
user’s access-protection passcode. Activation of a passcode-based access-protection mechanism
is hence a prerequisite for the Android KeyChain. The key-derivation function used to derive the
AES key from the user’s passcode again does not include a device-specific hardware key. Hence,
brute-force attacks on the key can again be sped up by outsourcing resource-intensive computa-
tions to external resources.

• MDM capabilities: Android supports MDM. However, provided capabilities are very limited, as
only few configuration options can be defined by MDM. Several vendors of mobile end-user de-
vices address this issue by adding vendor-specific proprietary MDM capabilities. This has resulted
in a heterogeneous ecosystem of MDM solutions for Android, which complicates the deployment
of MDM infrastructures and the support for multiple Android-based devices in practice. Another
issue is the lack of integrated MDM clients under Android. Such clients are necessary to enforce
centrally defined policies on the mobile device. Android requires the installation of a separate app
that assumes the role of the MDM client. However, this app is subject to the same security flaws
as any other third-party app. Hence, the lack of an MDM client that is deeply integrated into the
mobile operating system is another shortcoming of Android’s MDM support.

• Provided APIs and IPC capabilities: Another drawback of Android with regard to security is the
platform’s comprehensive API that can be used by third-party apps to access system functionality.
While third-party apps benefit from this comprehensive API, also malware can employ provided
access to system functionality. In contrast to most other platforms, Android additionally provides
rather broad support for inter-process and inter-application communication. For this purpose, An-
droid has introduced the concept of Intents7. An Intent is a data object that can be used to exchange
data between applications and processes. If misused, Intents can be a potential data leak, which

6http://developer.android.com/reference/android/security/KeyChain.html
7http://developer.android.com/reference/android/content/Intent.html
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can be exploited by malware. In summary, Android’s broad support for powerful APIs and IPC
enables powerful third-party apps but also raises several security risks.

• Resistance against rooting: To limit the threat potential of malware, resistance against rooting
has been identified as crucial property. For the special case of Android, its resistance against
rooting must be rated as rather poor. In fact, the rooting of Android devices is currently common
practice and is facilitated by several freely available tools. In many cases, Android devices are
intentionally rooted by device owners in order to gain access to additional functionality. However,
known security flaws can also be exploited by malware to gain full access to the targeted device’s
operating system. In Android version 5, several modifications have been applied to the operating
system that complicate a successful rooting process. However, the majority of the Android devices
currently in the field are still prone to rooting, as they rely on older Android versions.

• Integrated security features: So far, a quite sobering picture of Android’s platform properties
related to security has been drawn. Nevertheless, Android also provides and implements several
security features, which assure a certain level of security for apps running on the mobile device.
For instance, Android implements a sandboxing mechanism to separate and isolate different apps
from each other. This mechanism assures that each app can only access its own data and that this
data is protected from access by other applications. Furthermore, Android implements a complex
permission system, which restricts access to resources and features of the mobile device. Apps
that want to access protected resources or functions need to request the corresponding permission.
This permission must be granted by the user during the app-installation process. This way, access
rights of installed apps remain under control of the user. While this works fine in theory, users
are in practice often not aware of implications of granted permissions. Furthermore, technically
inexperienced users often do not completely understand this security feature. Practical limitations
of Android’s permission system have been discussed in detail by Felt et al. [2012].

• Availability of updates: Finally, Android also faces several problems regarding the availability of
timely updates. This is mainly due to the fragmentation, which Android is suffering from. Several
vendors equip their Android-based mobile devices with modified versions of the operating system.
Examples are the mobile-device vendors HTC8 or Samsung9, which implement proprietary user
interfaces on top of the original Android system. Applied modifications have to be re-implemented
and integrated for each new release of Android. This takes time and often delays the release of
important updates. Furthermore, the provision of updates causes costs for device vendors but does
not directly produce profit. For this reason, updates are often provided on an irregular basis only.

In summary, it must be concluded that the mobile platform Google Android suffers from several
security-related drawbacks. The vulnerability to rooting, the poor availability of timely updates, and the
provided API-based access to system functionality are among the most problematic properties of this
platform. Android hence appears to be only partly suitable for security-critical m-government use cases.

3.1.3.2 Analysis of Apple iOS

Apple iOS differs significantly from Google Android in several aspects. Overall, iOS provides third-
party apps less opportunities to access system functionality and to make use of inter-application or inter-
process communication. While this limits features of third-party apps, it leads to a higher overall level
of security. This also becomes apparent when analyzing identified relevant platform properties for the
special case of iOS.

8http://www.htc.com
9http://www.samsung.com
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• Access-protection mechanisms: Similar to Android, iOS provides different access-protection
mechanisms. This includes locking mechanisms based on numeric or alphanumeric passcodes,
as well as a biometric solution based on the user’s fingerprint. As for Android, access-protection
mechanisms need to be manually selected and activated by the user or by an MDM solution in
place. By default, no access protection is enabled.

• Encryption support: In contrast to Android, iOS provides two separate encryption systems. A
file system based encryption system can be used to encrypt the entire file system. This system
is similar to the one provided by Android. In addition, iOS also features a file-based encryption
system that can be used by mobile apps to encrypt single files. For each file, the app can chose
one of several protection classes. A protection class defines the encryption key to be used, the
applied cryptographic method, and the key-derivation function that is used to derive the required
cryptographic keys. It is hence the responsibility of the app developer to select an appropriate
protection class for the files to be encrypted. Depending on the chosen protection class, iOS
integrates device-specific keys into the key-derivation function. This renders the outsourcing of
brute-force attacks to external resources infeasible, as required key material is available on the
mobile device only. In summary, the two encryption systems provided by iOS can be regarded
as appropriate as long as they are correctly used, i.e. suitable protection classes are chosen by
responsible app developers. We have reviewed and discussed encryption systems provided by iOS
in more detail in Teufl et al. [2013b].

• Support for secure storage of credentials: In addition to the two encryption systems, iOS also
features a secure credential storage. Similar to Android, this credential storage is called iOS Key-
Chain. The KeyChain can be used to securely store cryptographic keys, passwords, and other
credentials. As for the file-encryption systems, the security of credentials stored in the KeyChain
again depends on its correct use.

• MDM capabilities: For its use in managed environments, iOS provides broad support for MDM.
In contrast to Android, iOS features an MDM client, which is deeply integrated into the mobile op-
erating system. Furthermore, iOS supports the remote configuration of various system properties.
This enables corporate device owners to adapt mobile devices issued to employees to different use
cases and related requirements.

• Provided APIs and IPC capabilities: Another aspect, in which iOS differs significantly from
Android, is the set of provided APIs and supported capabilities for inter-application and inter-
process communication. Apple’s mobile operating system provides third-party apps a reduced
API only. For instance, it does not enable third-party apps to access SMS functionality. Similar
restrictions apply to capabilities provided for IPC. While this reduces the capabilities of third-party
apps, it also limits the threat potential of malware.

• Resistance against rooting: Similar to Android, also iOS is in principle prone to rooting or
jailbreaking. Jailbreaking of iOS devices has become common practice during the past years as it
enables installation of more powerful applications. There are several tools publicly available that
facilitate the application of jailbreaks and make rooting possible even for technically inexperienced
users.

• Integrated security features: Similar to Android, iOS implements a sandboxing mechanism to
separate installed apps and their data from each other. Capabilities and rights of single apps are
managed by a permission system. In contrast to Android, required permissions must not be granted
by the user during the app-installation process, but during runtime. Download and installation of
apps are possible through the official Apple App Store10 only. Apps provided in this App Store

10https://itunes.apple.com/
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are subject to security checks and quality-assurance mechanisms. This increases security, as it
complicates the distribution of app-based malware.

• Availability of updates: Relevant updates are frequently provided for iOS-based devices. This
is in stark contrast to Android, where customization and fragmentation of the mobile operating
system often complicate the provision of timely updates. In this regard, iOS is advantageous, as
both hardware and operating system are under control of one single vendor. The rather low number
of different iOS-based mobile end-user devices facilitates an efficient provision of relevant updates.

In summary, the mobile platform Apple iOS is advantageous compared to Google Android in terms of
security. This is mainly due to the fact that iOS provides third-party applications only limited capabilities
to access system functionality. While this reduces the power of third-party apps, it also limits the threat
potential of malware. The broad support of MDM and the availability of timely updates also contribute
to an adequate level of security provided by Apple iOS.

3.1.3.3 Analysis of Microsoft Windows Phone

In 2012, Microsoft has launched its mobile platform and operating system Windows Phone 8. Although
being introduced as the official successor of Windows Phone 7, Windows Phone 8 represents a com-
pletely new platform that bases to a certain extent on the Microsoft Windows 8 operating system for
classical end-user devices. Hence, despite their similar names, there is almost no compatibility between
Windows Phone 7 and Windows Phone 8. As Microsoft puts focus clearly on Windows Phone 8, this
platform is the basis of the analysis conducted in this section. The analysis itself is mainly based on
information published by Microsoft [Microsoft Corporation, 2012].

In many aspects, the mobile platform Microsoft Windows Phone 8 is comparable to Apple iOS.
It provides third-party applications only very limited access to system functionality and hence reduces
potential attack vectors. At the same time, this also reduces capabilities of third-party apps. This also
becomes apparent when having a more detailed look on identified relevant platform properties for the
special case of Microsoft Windows Phone 8.

• Access-protection mechanisms: Similar to Google Android and Apple iOS, Microsoft Windows
Phone 8 supports a PIN-based access protection mechanism. In contrast to the other two analyzed
platforms, Windows Phone 8 is however less flexible regarding the support of alternative access-
protection mechanisms.

• Encryption support: Windows Phone 8 supports file-system encryption based on Microsoft’s
BitLocker technology. Required encryption keys are stored in a Trusted Platform Module (TPM).
This assures that only trusted components are capable to apply decryption operations. File-system
encryption is mainly intended for business scenarios. Accordingly, it can only be activated using
appropriate MDM policies.

• Support for secure storage of credentials: Windows Phone 8 provides a data-protection API that
enables the secure storage of credentials in a so-called isolated storage. Stored data is encrypted
with a key that is unique for each application. It is created upon first start of the application.
The key-generation function takes as input the user’s personal credentials and a unique application
identifier. The key itself is derived with the help of the device’s TPM.

• MDM capabilities: Similar to iOS, Windows Phone 8 supports MDM. Required MDM function-
ality is fully integrated in the operating system. Installation of an additional MDM client is not
necessary.
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• Provided APIs and IPC capabilities: In contrast to Android, Windows Phone 8 provides a re-
stricted API to third-party applications only. In this regard, Windows Phone 8 is hence comparable
to iOS. Furthermore, Windows Phone 8 does not provide broad support for background tasks.

• Resistance against rooting: Among the three analyzed platforms, Windows Phone 8 provides
the best protection against rooting or jailbreaking. Hardly any techniques are known so far that
allow for root access to the operating system. One reason for that is the fact that Windows Phone 8
includes a secure booting mechanism based on the Unified Extensible Firmware Interface (UEFI).
Thus, during the boot sequence, the integrity of each component of the operating system is cryp-
tographically checked. So far, this has proven to be an efficient means to prevent rooting.

• Integrated security features: Similar to Android and iOS, also Windows Phone 8 follows a
sandboxing approach to separate apps and their resources from each other. In addition, Windows
Phone 8 also implements a permission system that restricts capabilities of apps to access certain
functions and features. Another security feature of Windows Phone 8 is its restrictive behavior
towards third-party apps. Similar to iOS, these apps can only be provided through the official
Windows Phone Store11. There, third-party apps are subject to a strict review process. This way,
the distribution of malware is impeded.

• Availability of updates: With regard to fragmentation, Windows Phone 8 can be seen as a combi-
nation of Android and iOS. Similar to Android, Windows Phone 8 is deployed on mobile end-user
devices of different vendors. Hence, Microsoft has no full control over the hardware, on which
the mobile operating system is running. However, in contrast to Android, hardware vendors must
not modify or customize the original operating system. This way, Microsoft retains full control
over the update process and no delays are induced due to required modifications of the operating
system.

From a security perspective, the mobile platform Microsoft Windows Phone 8 is comparable to Apple
iOS. As it provides third-party applications only limited access to system functionality, it significantly
reduces the attack potential of malware. Furthermore, Windows Phone 8 is still quite resistant to rooting,
which also prevents powerful attacks. The main drawback of Windows Phone 8 is probably its small
market share compared to the market-dominating platforms Android and iOS.

3.1.4 Platform Assessment

Findings of the analysis of the three mobile platforms Google Android, Apple iOS, and Microsoft Win-
dows Phone 8 can be used to answer the four above-defined research questions. From the answers
to these questions, those platforms can be identified that are best-suited for the two identified relevant
m-government use cases.

The goal of Research Question RQ-1 is to determine, which platform is best to be chosen when pro-
viding employees of public administrations with mobile end-user devices. Taking into account obtained
results of the conducted platform analyses, Apple iOS turns out to be the best choice followed by Mi-
crosoft Windows Phone 8. While both platforms provide a sufficient level of security, Apple iOS seems
slightly advantageous due to its larger market share [IDC, 2014]. Google Android seems inappropriate
for several reasons. First, Android provides only weak support for MDM. However, MDM support is
an important aspect, as MDM is the only opportunity for public administrations to retain control over
issued end-user devices. Only if MDM is adequately supported, security features such as encryption or
access protection can be enforced on issued devices. Second, Android is more prone to malware than
other platforms. This raises additional risks, when these devices are used for official affairs. For these
reasons, Research Question RQ-1 must be answered as follows: When providing employees of public

11http://www.windowsphone.com/en-US/store
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administrations with mobile end-user devices, the mobile platforms Apple iOS and Microsoft Windows
Phone 8 should be preferred to Google Android.

Similar considerations also apply to Research Question RQ-2. This research question aims to iden-
tify the platform best suited for BYOD strategies pursued by public administrations. When deploying a
BYOD solution, platform fragmentation is the most relevant issue. An increasing number of different
devices and operating-system versions complicates their infrastructural support and their integration into
existing services. The conducted platform analyses have revealed that Google Android is clearly disad-
vantageous in terms of fragmentation. In contrast, Apple iOS is advantageous, as it is the only platform,
for which hardware and software are provided by one vendor only. This limits the potential number
of different devices and mobile operating systems to be integrated into the corporate infrastructure and
hence reduces complexity and maintenance costs. For this reason, Research Question RQ-2 must be
answered as follows: When pursuing a BYOD strategy, public administrations should primarily support
Apple iOS followed by Windows Phone 8.

While the first two research questions are mainly relevant for use cases, in which employees of pub-
lic administration make use of mobile end-user devices, Research Question RQ-3 focuses on classical
m-government services provided by public administrations for citizens. Concretely, Research Question
RQ-3 asks, for which mobile platforms security-critical applications should be provided by public admin-
istrations. Analyses of the three platforms Google Android, Apple iOS, and Microsoft Windows Phone
8 have shown that the latter currently appears to be the most secure platform. Windows Phone 8 provides
a similar security level to Apple iOS. Additionally, there are currently hardly any known security flaws
that could be used to root or jailbreak Windows Phone 8 based devices. This again raises the provided
level of security and makes Windows Phone 8 currently the most secure platform. Accordingly, Research
Question Q3 can be answered as follows: Development and provision of security-critical m-government
applications for citizens should be mainly based on the platforms Microsoft Windows Phone 8 and Apple
iOS. Android should only be supported, if the application does only rely on functionality and features,
for which the platform is able to provide the required level of security.

For non-critical applications, the situation is completely different. For m-government solutions that
do not store, process, or transmit any security-critical data, the provided level of security is less im-
portant. For these applications, especially the set of provided features and functionality is relevant.
According to the obtained analysis results, Google Android is advantageous in this regard. From all ana-
lyzed platforms, Android provides third-party apps the most flexible and powerful API to access system
functionality. Furthermore, Android is most powerful with regard to inter-application and inter-process
communication. Hence, Research Question RQ-4, which asks for the most suitable platform for non-
critical m-government applications, can be answered as follows: Google Android is the best choice for
m-government applications that do not process, store, or transmit security-critical data.

RQ-1

RQ-2

RQ-3

RQ-4 • Good flexibility • Weak flexibility • Weak flexibility

• Different customized OS versions

• Different hardware vendors

• One OS vendor

• One hardware vendor

• One OS vendor

• Some hardware vendors

• Weak security • Sufficient security • Good security

Google Android Apple iOS Microsoft Windows Phone 8

• Weak support of MDM features

• Prone to malware

• Wide spread

• Good support of MDM features

• Sufficient security

• Sufficient spread

• Good support of MDM features

• Sufficient security

• Spare spread

Figure 3.1: Apple iOS and Microsoft Windows Phone 8 are advantageous for security-critical ap-
plications, whereas Google Android is beneficial in terms of functionality.

Figure 3.1 summarizes the obtained assessment results. From this figure, it becomes apparent that the
platforms Apple iOS and Microsoft Windows Phone 8 are advantageous especially for security-critical
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applications. On the other hand, Google Android is beneficial for non-critical applications, as it provides
third-party apps the broadest set of functionality.

3.1.5 Lessons Learned

From the conducted platform analyses and the subsequent assessment, several findings can be derived.
These findings are relevant for providers of m-government solutions, as they provide a useful basis for
the choice and support of appropriate mobile platforms. In particular, the following findings have been
derived:

• Heterogeneous ecosystem of mobile platforms: The conducted analyses have focused on the
three most widely spread platforms only. Other platforms such as BlackBerry12 have not been
considered in detail. Although the scope of the analyses has been limited to three platforms, a
very heterogeneous picture of the current mobile-platform ecosystem has been drawn. The three
analyzed platforms differ significantly in terms of provided functionality and security. Although
most of them share several similar concepts and ideas, their actual implementation differs in vari-
ous aspects. The heterogeneity of the current mobile-platform landscape is also emphasized by the
fact that all analyzed platforms are incompatible to each other to a certain extent. This means that
native third-party apps need to be developed for each platform individually. A future convergence
of the different platforms is not to be expected.

• Trade-off between functionality and security: Analyses and assessments of the three platforms
Google Android, Apple iOS, and Microsoft Windows Phone 8 have mainly focused on their pro-
vided levels of functionality and security. Obtained results have shown that for all platforms there
is a trade-off between security and functionality. There is no platform that provides both a high
degree of functionality and a high degree of security at the same time. Instead, platforms are either
beneficial in terms of security or in terms of functionality. This is comprehensible to a certain ex-
tent, as functionality provided to third-party apps can theoretically also be exploited by malicious
software. At the same time, a limited set of functionality provided to legitimate third-party apps
also reduces the capabilities of malware.

• Google Android for enhanced functionality: Google Android has turned out to be the platform
that provides third-party apps the highest degree of functionality. This applies to APIs provided
for access to system functionalities as well as to the support of inter-application and inter-process
communication. However, the rich set of provided features and functionalities also comes with a
drawback: Google Android provides the poorest security of all analyzed platforms.

• Apple iOS and Microsoft Windows Phone 8 for enhanced security: Apple iOS and Microsoft
Windows Phone 8 have turned out to clearly outperform Google Android in terms of security.
Both platforms implement similar security functions to provide an adequate level of security. First
and foremost, they radically restrict provided functionality for third-party apps. Furthermore, they
limit the distribution of third-party apps to official application stores, where all apps are subject
to rigorous review processes. While these measures improve the provided level of security, they
significantly reduce the provided functionality for third-party apps.

In summary, it can be concluded that there is currently no mobile platform that is able to provide
both an adequate level of security and functionality. This is especially problematic for complex mobile
applications such as mobile eID and electronic-signature solutions, which typically require both a high
level of functionality and security. To pave the way for such solutions, we have investigated approaches

12http://www.blackberry.com/
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and techniques to improve the security of mobile platforms and to achieve an appropriate level of secu-
rity for applications running on potentially insecure devices. A selection of own work on this topic is
presented in the following section.

3.2 Securing Applications on Mobile Devices

Own research and related scientific work reveal that current mobile platforms must not be assumed to be
secure. While researchers such as Enck et al. [2009], Barrera et al. [2010], Shabtai et al. [2010], Enck
and Octeau [2011], or Rogers and Goadrich [2012] have provided analyses and comparisons of mobile
platforms and their security on a rather general level, own research has mainly focused on m-government-
related use cases. Nonetheless, drawn conclusions resemble each other and reveal that that currently no
mobile platform is able to provide absolute security. Recent incidents involving mobile malware show
that this not just a theoretic problem, but a real threat especially for security-critical mobile solutions
[Check Point Software Technologies Ltd., 2012].

The situation is even aggravated by the fact that classical security-enhancing solutions such as anti-
virus software are in many cases not applicable on mobile end-user devices. For the special case of
anti-virus software, sandboxing mechanisms, which are implemented by most mobile platforms, pre-
vent the realization of reliable malware-detection mechanisms. Similar restrictions also apply to other
security-enhancing concepts that are well-known from classical end-user devices but cannot be applied
on mobile platforms. In most cases, these restrictions are due to the significant architectural and concep-
tual differences between classical end-user devices and mobile platforms.

To overcome this problem, several alternative approaches and methods have been proposed that
aim to enhance the security of mobile platforms. For instance, Bläsing et al. [2010] have proposed
an Android application sandbox that performs static and dynamic analyses of Android applications, in
order to identify malware. A characterization of Android malware including more than 1,200 malware
samples has been provided by Zhou and Jiang [2012], who have shown that current security software is
able to detect a subset of existing malware only. We have also contributed to the ongoing research on
mobile security. In particular, we have focused on security challenges currently present on Android, as
this platform is most prone to security threats. In the following subsections, a brief overview of own
publications on this topic is provided in order to draw a representative picture of the current state of
research. For each publication, the thesis author’s contribution is emphasized.

3.2.1 Detection of SMS Sniffers and SMS Catchers

The conducted survey on m-government services has revealed that SMS has been one of the predom-
inating technologies for several years. In various developing countries, SMS is still one of the main
enabling technologies of m-government solutions. In developed countries, SMS is slowly being replaced
by more powerful technologies. Nevertheless, SMS is still the technology of choice for various scenarios
and use cases. For instance, SMS is frequently used by mobile eID and electronic-signature solutions.
SIM-based solutions rely on SMS technology to transfer relevant data between the involved mobile-
network operator and the user’s SIM. Server-based eID and electronic-signature solutions such as the
Austrian Mobile Phone Signature make use of SMS messages to deliver one-time passwords during the
user-authentication process. In both cases, the confidentiality and integrity of exchanged SMS messages
is crucial for the security of the eID and electronic-signature solution. These concrete examples show
that the security of SMS can be critical for m-government applications.

For many years, SMS technology has been implicitly assumed to be sufficiently secure. In the pre-
smartphone era, SMS-receiving functionalities and SMS-sending functionalities were directly integrated
into the operating system of mobile phones. There was no opportunity to access SMS messages with
other means than those provided by the mobile phone’s operating system. Although several attacks on
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security mechanisms of the underlying GSM standard were known [Barkan et al., 2008], mounting of
these attacks required expensive equipment and was rather complicated. In practice, SMS technology
was hence justifiably assumed to be sufficiently secure.

This situation has suddenly changed with the introduction of smartphones. Smartphone operating-
systems such as iOS or Android enable the easy installation of additional software in the form of mobile
apps. Additionally, they provide an API that can be used by third-party apps to access functionality and
resources of the mobile device. Under Android, this includes access to SMS functionality. Concretely,
third-party apps can use a public Android API to intercept incoming SMS messages and to send SMS
messages to arbitrary recipients. While provision of this API gives third-party apps the opportunity to
include SMS functionality into their business logic, it also bears risks. Obviously, also malware being
installed on the mobile device can use this API to eavesdrop security-critical data received via SMS.
In 2012, the potential of this kind of malware has been shown by the attack campaign Eurograbber
[Check Point Software Technologies Ltd., 2012]. Eurograbber has been based on a mobile variant of
the Zeus banking trojan [Symantec, 2010] and has targeted Android-based devices to intercept incoming
SMS messages containing one-time passwords for financial transactions. Within a short period of time,
Eurograbber has stolen more than 36 million Euro from European bank accounts.

Eurograbber is a prime example to emphasize the relevance of SMS security on Android-based mo-
bile end-user devices. Unfortunately, an appropriate level of security for SMS messages is difficult to
achieve in practice. In theory, Android users have the power to prevent attacks on SMS messages by
refusing to grant third-party applications the required permission to access SMS functionality. Unfortu-
nately, this approach usually does not work well in practice, as users often do not understand Android’s
permission system or are too generous in granting requested permissions. This has been discussed in de-
tail by Felt et al. [2012]. Hence, the presence of malware spying on incoming SMS messages, i.e. SMS
sniffers, and of malware intercepting and subsequently suppressing received SMS messages, i.e. SMS
catchers, cannot be precluded. It is therefore important to provide reliable and efficient means to de-
tect the presence of such malware at runtime, in order to be able to prevent the execution of security-
critical SMS-based application on potentially insecure device. For this reason, we have proposed and
discussed different methods to detect SMS sniffers and SMS catchers on Android-based devices [Teufl
et al., 2014b]. The author of this thesis has contributed to these activities by collaborating during the
conceptual design and by establishing relevant relationships to the topic of m-government and mobile
electronic signatures. Fundamental approaches followed by the proposed detection methods are briefly
sketched in the following subsection.

3.2.1.1 Approaches

In total, we have proposed three approaches to detect SMS sniffers and SMS catchers on Android de-
vices at runtime. Each of these approaches can be used to detect certain types of SMS sniffers and SMS
catchers. Their detectability mainly depends on the malware implementation and on realized counter-
measures that prevent a successful detection. Hence, none of the three proposed approaches guarantees
a reliable detection of all SMS sniffers and SMS catchers. However, by combining these approaches, the
probability for a successful detection can be considerably increased.

The first approach to detect malware targeting SMS messages is rather simple and simply checks
the manifest file of all installed apps. The manifest file is a mandatory component of each Android app.
Among other app-specific properties, it contains a list of all permissions that have been granted by the
user to the app during its installation. Hence, by analyzing the manifest files of all installed apps, those
apps can be identified that have the permission and hence the theoretic capability to spy on or to intercept
SMS messages. As this analysis does not distinguish between benign and malicious apps, it can rather
be used to shrink down the set of suspicious apps than to clearly identify malware.

In addition to the set of granted permissions, the manifest file of an Android app also contains dec-
larations of static broadcast receivers. Under Android, broadcast receivers can be registered by apps
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for certain events such as the reception of an SMS message. If this event occurs, the operating sys-
tem broadcasts a message to notify all apps that have registered a respective broadcast receiver. Static
broadcast receivers are a convenient way to intercept incoming SMS messages. Hence, by analyzing the
manifest files of all installed applications, those apps can be detected that declare a static broadcast re-
ceiver to intercept incoming SMS messages. As static broadcast receivers are not the only way to access
SMS messages, this analysis does not guarantee detection of all apps with SMS-receiving capabilities.
However, it reliably identifies those apps that make use of static broadcast receivers for this purpose.

The second approach that we have followed to detect SMS sniffers and catchers on Android devices
makes use of two broadcast receivers that are able to receive incoming SMS messages. In general,
broadcast receivers can be assigned with a priority. If multiple apps have registered a broadcast receiver
for a specific event, e.g. the reception of an SMS message, the assigned priority determines the order,
in which these apps are notified. Each notified app can decide if broadcast receivers with lower priority
shall still be notified, or if the broadcast message shall be discarded. To detect installed SMS catchers,
we have proposed the registration of a broadcast receiver with maximum priority and of another one
with minimum priority. This assures that the first broadcast receiver is notified first, whenever an SMS
message is received. Accordingly, the second registered broadcast receiver is always the last one to be
notified. All other apps with registered broadcast receivers are notified between these two broadcast
receivers. If there is an installed SMS catcher intercepting an incoming SMS message and subsequently
discarding the respective broadcast message, the registered broadcast receiver with assigned minimum
priority does never receive the broadcast message. Thus, by comparing the sets of broadcast messages
received by the maximum-priority receiver and by the minimum-priority receiver, installed SMS catchers
can be detected.

In practice, several limitations need to be taken into account, which reduce the reliability of this
approach. For instance, the Android API documentation defines a valid range for assigned priorities but
obviously also allows the definition of priorities outside of this range. This complicates the definition of
broadcast receivers with minimum and maximum priorities. In addition, the Android API documentation
states that broadcast receivers with equal priority are called in an arbitrary order. Hence, if an installed
SMS catcher assigns its broadcast receiver with the maximum priority, it cannot be guaranteed that the
implemented malware detection succeeds.

The third approach that has been followed to detect SMS catchers and sniffers has been based on
static code analysis. This approach is the most powerful but also the most complex method. It analyzes
the source code of installed apps in order to identify code fragments that indicate access to SMS function-
ality. Even though this approach relies on an elaborate technique, it still suffers from some limitations.
First, it cannot properly analyze included program libraries or Android’s service architecture. Further-
more, malware authors being aware of the capabilities of the used analysis tool can systematically avoid
the detection of suspicious code by applying appropriate obfuscation techniques.

We have provided a more detailed introduction of proposed malware-detection techniques in Teufl
et al. [2014b]. Although all proposed approaches suffer from some theoretic limitations, they are still
able to detect SMS sniffers and SMS catchers in practice. This has been shown by means of a concrete
implementation of the three approaches. Findings obtained from these implementations are discussed in
the following section.

3.2.1.2 Results and Findings

Implementation of the three approaches to detect SMS sniffers and SMS catchers on Android devices has
revealed that all approaches are feasible in practice. All required functionality such as access to manifest
files of installed applications, the registration of broadcast receivers with arbitrary priorities, or access
to required data for static code analysis is provided by the Android API. Thus, there are no technical
hurdles to realize the proposed approaches in practice.
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Their concrete implementation has shown that the three proposed approaches differ considerably in
terms of their capabilities to reliably detect malware and also in terms of complexity. In general, the
complexity of an approach is directly proportional to its malware-detection capabilities. Still, also sim-
ple approaches can be useful, as they enable a fast and efficient elimination of benign applications. For
instance, simple manifest checks can be used to determine all apps that do not have the required per-
missions to access SMS messages. For these apps, more complex malware-detection mechanisms can
be skipped in order to save resources. It hence makes sense to combine available malware-detection
approaches such that simple approaches are applied first to efficiently reduce the set of suspicious ap-
plications so that complex approaches need to be applied to a few apps only. We have proposed a
comprehensive workflow that pursues this strategy in Teufl et al. [2014b].

In summary, our contribution on the detection of SMS sniffers and SMS catchers has revealed several
interesting findings. First, our work and research has substantiated the awareness that provision of secure
and reliable SMS functionality on Android is still an open issue, as the infection of Android-based
devices with SMS sniffers and SMS catchers can hardly be avoided in practice. Second, we have shown
that there are various possible approaches to detect this kind of malware on mobile devices at runtime.
Finally, our work has also revealed that even though these approaches are feasible in practice, they cannot
provide absolute security, as they suffer from several conceptual and practical limitations. Hence, it must
be concluded that SMS messages still must not be assumed to be absolutely secure on Android.

3.2.2 Malware Detection Using Side-Channel Information

Due to the special architecture of mobile platforms, classical malware-detection approaches such as anti-
virus software do not work reliably on smartphones and related mobile end-user devices. Concretely,
implemented sandboxing mechanisms prevent an efficient and reliable application of approved malware-
detection solutions. As access to resources of installed apps is restricted, these solutions are unable to
access data needed to carry out required analyses. Ironically, implemented security features of mobile
platforms hence render the application of a reliable malware detection infeasible.

This is problematic, as malware is an emerging threat also on mobile platforms. Especially Android-
based devices and their users are faced with a multitude of malware [Kelly, 2014]. The continuous
increase of malware and the incompatibility of classical malware-detection solutions raise the demand for
alternative approaches to distinguish benign applications from malicious ones on mobile platforms. As
relevant data cannot be accessed due to implemented sandboxing mechanisms, alternative data sources
need to be employed for the analysis of installed apps.

In this context, underlying concepts of side-channel attacks appear to be an interesting alternative.
Side-channel attacks have especially gained popularity due to the pioneering work by Kocher et al.
[1999] and are also often referred to as implementation attacks. In contrast to classical crytanalysis,
implementation attacks do not target a cryptographic algorithm itself, but rather its implementation. For
this purpose, implementation attacks make use of additional information leaked by the implementation
of the cryptographic algorithm. For instance, Differential Power Analysis (DPA), which is a subcategory
of side-channel attacks, makes use of the power consumption of cryptographic devices to reveal secret
key material that is stored and processed by the targeted device. Another example for implementation
attacks are so-called timing attacks, which analyze timing behavior of cryptographic systems to reveal
secret key material. Examples are attacks proposed by Kocher [1996] or Schindler [2000].

Although there are different variants of side-channel attacks, they all follow the same basic approach,
i.e. they make use of unintentionally leaked information. We have shown that this basic approach can also
be followed to classify apps running on mobile end-user devices [Zefferer et al., 2013d]. Concretely, we
have shown that power-consumption information provided by a third-party tool can be used to classify
different types of apps. Implementing tasks of this activity have mainly been undertaken by master
students during a student project. Hence, the author of this thesis has mainly contributed by assisting in
elaborating the conceptual design and by providing support for the involved students. In the following,
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employed techniques to classify apps by means of available side-channel information are introduced and
obtained results and findings are presented and discussed.

3.2.2.1 Techniques

Classical side-channel attacks relying on power-consumption information typically make use of sophis-
ticated measurement techniques to obtain accurate side-channel information. These techniques usually
involve digital storage oscilloscopes and other expensive equipment requiring a suitable laboratory en-
vironment. Such a setup seems inappropriate for the implementation of malware-detection solutions
for mobile end-user devices. Such solutions should ideally be applicable directly on the mobile device
and should produce immediate results without requiring the user to set up a sophisticated measurement
equipment. For this reason, we have relied on rather coarse-grained power-consumption information pro-
vided by the third-party tool PowerTutor which has been introduced by Zhang et al. [2010]. PowerTutor
is a mobile app that provides power-consumption information for all apps running on the same device.
For each app, power-consumption information for the six components Central Processing Unit (CPU),
Audio, Display, WiFi, 3G, and Global Positioning System (GPS) are provided. As an illustrative ex-
ample, Figure 3.2 shows power-consumption measurements provided by PowerTutor for the two apps
Android Browser and Lookout Mobile Security13. The obvious differences between the two displayed
power traces show that the power-consumption is individual for each app.
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Figure 1: One minute plots of CPU power consumption
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Figure 2: One minute plots of CPU energy consumption

application, the two measured power-consumption traces are
quite different.

Disturbing influences render the determination of a sim-
ple and unique power-consumption signature for a given
application or smartphone state impossible. To overcome
this problem, we propose two analysis techniques that rely
on approved machine-learning approaches. The proposed
techniques can be used to classify smartphone applications
according to their power consumption. Details of the pro-
posed techniques are discussed in the next section.

IV. CLASSIFICATION TECHNIQUES

During the past years, different machine-learning tech-
niques for the classification of data have been proposed.
For the given scenario, i.e., the classification of smart-
phone applications based on their power consumptions, two
techniques have been chosen and adapted to the given
requirements. Both techniques consist of a learning phase
and a classification phase. During the learning phase, well-
known input data is used to train a model. In the subsequent
classification phase, the trained model is used to classify
unknown input data. The two techniques are discussed in
more detail in the following subsections.

A. Power-Consumption Histograms

This technique is rather simple and counts how often a
specific application is on a certain power-consumption level.
In order to model this, we have computed power histograms
by dividing the interval between 0% power consumption and
100% power consumption into 15 disjoint and equal-sized

intervals. A histogram is then created by simply assigning
each data point to exactly one interval and counting the data
points in each interval. In order to cope with differences
in the absolute power consumption, the values have been
normalized appropriately. During the learning phase, the
average histograms have been created by measuring the
power consumption of well-know applications. Figure 3
shows some examples of average histograms for different
applications that have been obtained during the training
phase.

In the classification phase, the histograms of applications
to be classified are compared with the trained average
histograms by applying distance-measures such as cosine
similarity. To assess the capabilities of this approach, this
technique has been evaluated in a real-world scenario. Re-
sults of this evaluation process are presented and discussed
in Section V.
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Figure 3: Average histograms of different applications

B. MFC Coefficients and Gaussian Mixture Models

This technique makes use of Mel Frequency Cepstral
Coefficients (MFCC) to classify smartphone applications
based on their power consumption. This technique has
originally been introduced for speaker-recognition systems
[15] [16] and is also frequently used for music similarity
finders [17][18]. In such systems, MFC coefficients and their
distribution are extracted from recorded voice or music using
complex transformations as implemented by the melcepst
function [19]. The distributions of the extracted MFCC are
then used to create a Gaussian Mixture Model (GMM) for
each MFCC. The resulting GMM define a unique represen-
tation of the recorded voice or music. Later recordings of
voice or music can be compared to existing representations

Figure 3.2: The measured power consumptions of the mobile apps Android Browser (left power
trace) and Lookout Mobile Security (right power trace) differ considerably from each
other.

While PowerTutor offers a convenient way to obtain app-specific power-consumption information,
reliance on this data source also raises several issues. For instance, PowerTutor does not carry out real
measurements but merely provides accurate estimations of the actual power consumption. Furthermore,
a mobile app’s power consumption is influenced by various factors including varying user inputs, the
processed data, or different screen orientations. These issues render a reliable classification by means of
one single power-consumption measurement difficult. This is also illustrated in Figure 3.3, which dis-
plays two power-consumption measurements of one and the same mobile app. Due to various influencing
factors, these measurements slightly vary.

As a solution to this problem, we have employed two different techniques to combine and system-
atically analyze multiple power-consumption measurements of one and the same app in order to enable
a reliable classification of apps. Both techniques rely on basic machine-learning concepts and hence
comprise a learning phase and a classification phase. During the learning phase, a model is created and

13https://play.google.com/store/apps/developer?id=Lookout+Mobile+Security&hl=en
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Figure 1: One minute plots of CPU power consumption

0 50 100 150 200 240
0

200

400

600

Time [250ms]

Po
w

er
co

ns
um

pt
io

n
[m

W
]

CPU

(a) Angry Birds - Run 1

0 50 100 150 200 240
0

200

400

600

Time [250ms]

Po
w

er
co

ns
um

pt
io

n
[m

W
]

CPU

(b) Angry Birds - Run 2

Figure 2: One minute plots of CPU energy consumption

application, the two measured power-consumption traces are
quite different.

Disturbing influences render the determination of a sim-
ple and unique power-consumption signature for a given
application or smartphone state impossible. To overcome
this problem, we propose two analysis techniques that rely
on approved machine-learning approaches. The proposed
techniques can be used to classify smartphone applications
according to their power consumption. Details of the pro-
posed techniques are discussed in the next section.

IV. CLASSIFICATION TECHNIQUES

During the past years, different machine-learning tech-
niques for the classification of data have been proposed.
For the given scenario, i.e., the classification of smart-
phone applications based on their power consumptions, two
techniques have been chosen and adapted to the given
requirements. Both techniques consist of a learning phase
and a classification phase. During the learning phase, well-
known input data is used to train a model. In the subsequent
classification phase, the trained model is used to classify
unknown input data. The two techniques are discussed in
more detail in the following subsections.

A. Power-Consumption Histograms

This technique is rather simple and counts how often a
specific application is on a certain power-consumption level.
In order to model this, we have computed power histograms
by dividing the interval between 0% power consumption and
100% power consumption into 15 disjoint and equal-sized

intervals. A histogram is then created by simply assigning
each data point to exactly one interval and counting the data
points in each interval. In order to cope with differences
in the absolute power consumption, the values have been
normalized appropriately. During the learning phase, the
average histograms have been created by measuring the
power consumption of well-know applications. Figure 3
shows some examples of average histograms for different
applications that have been obtained during the training
phase.

In the classification phase, the histograms of applications
to be classified are compared with the trained average
histograms by applying distance-measures such as cosine
similarity. To assess the capabilities of this approach, this
technique has been evaluated in a real-world scenario. Re-
sults of this evaluation process are presented and discussed
in Section V.
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Figure 3: Average histograms of different applications

B. MFC Coefficients and Gaussian Mixture Models

This technique makes use of Mel Frequency Cepstral
Coefficients (MFCC) to classify smartphone applications
based on their power consumption. This technique has
originally been introduced for speaker-recognition systems
[15] [16] and is also frequently used for music similarity
finders [17][18]. In such systems, MFC coefficients and their
distribution are extracted from recorded voice or music using
complex transformations as implemented by the melcepst
function [19]. The distributions of the extracted MFCC are
then used to create a Gaussian Mixture Model (GMM) for
each MFCC. The resulting GMM define a unique represen-
tation of the recorded voice or music. Later recordings of
voice or music can be compared to existing representations

Figure 3.3: Measuring the power consumption of a mobile app twice usually leads to slightly dif-
ferent results.

trained using known input data. In the subsequent classification phase, the trained model is then used to
classify unknown input data. The two employed techniques differ in terms of how the model is created,
trained, and finally used to classify apps.

The first technique makes use of power-consumption histograms. A separate histogram is created for
each kind of app that shall later be distinguishable. App-specific histograms are simply created by count-
ing how often the application’s power consumption is on or above a certain level. This way, histograms
such as the one shown in Figure 3.4 can be created during the learning phase using power consumptions
of known applications. In the subsequent classification phase, similar histograms are created for apps to
be classified. The resulting histogram is then compared with available trained histograms. Comparisons
can for instance be based on distance-measures such as cosine similarity.
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application, the two measured power-consumption traces are
quite different.

Disturbing influences render the determination of a sim-
ple and unique power-consumption signature for a given
application or smartphone state impossible. To overcome
this problem, we propose two analysis techniques that rely
on approved machine-learning approaches. The proposed
techniques can be used to classify smartphone applications
according to their power consumption. Details of the pro-
posed techniques are discussed in the next section.

IV. CLASSIFICATION TECHNIQUES

During the past years, different machine-learning tech-
niques for the classification of data have been proposed.
For the given scenario, i.e., the classification of smart-
phone applications based on their power consumptions, two
techniques have been chosen and adapted to the given
requirements. Both techniques consist of a learning phase
and a classification phase. During the learning phase, well-
known input data is used to train a model. In the subsequent
classification phase, the trained model is used to classify
unknown input data. The two techniques are discussed in
more detail in the following subsections.

A. Power-Consumption Histograms

This technique is rather simple and counts how often a
specific application is on a certain power-consumption level.
In order to model this, we have computed power histograms
by dividing the interval between 0% power consumption and
100% power consumption into 15 disjoint and equal-sized

intervals. A histogram is then created by simply assigning
each data point to exactly one interval and counting the data
points in each interval. In order to cope with differences
in the absolute power consumption, the values have been
normalized appropriately. During the learning phase, the
average histograms have been created by measuring the
power consumption of well-know applications. Figure 3
shows some examples of average histograms for different
applications that have been obtained during the training
phase.

In the classification phase, the histograms of applications
to be classified are compared with the trained average
histograms by applying distance-measures such as cosine
similarity. To assess the capabilities of this approach, this
technique has been evaluated in a real-world scenario. Re-
sults of this evaluation process are presented and discussed
in Section V.
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B. MFC Coefficients and Gaussian Mixture Models

This technique makes use of Mel Frequency Cepstral
Coefficients (MFCC) to classify smartphone applications
based on their power consumption. This technique has
originally been introduced for speaker-recognition systems
[15] [16] and is also frequently used for music similarity
finders [17][18]. In such systems, MFC coefficients and their
distribution are extracted from recorded voice or music using
complex transformations as implemented by the melcepst
function [19]. The distributions of the extracted MFCC are
then used to create a Gaussian Mixture Model (GMM) for
each MFCC. The resulting GMM define a unique represen-
tation of the recorded voice or music. Later recordings of
voice or music can be compared to existing representations

Figure 3.4: The power-consumption histogram of the idle process (left figure) differs from the
power-consumption histogram of the mobile app Lookout Mobile Security (right fig-
ure).

The second technique employed to classify mobile apps according to their power consumption fol-
lows a more sophisticated and more complex approach. Concretely, this technique relies on Mel Fre-
quency Cepstral Coefficients (MFCCs). MFCCs are extracted from collected power-consumption mea-
surements. Their distribution is then used to create Gaussian Mixture Models (GMMs), which finally
define a representation of the measured power consumption. This is exemplified in Figure 3.5, which il-
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lustrates GMMs derived from the distributions of Coefficient #6 and Coefficient #7. MFCCs and GMMs
are frequently used in speaker-recognition systems and music-similarity finders. As the problem of
matching recorded voice to a certain person can be conceptually compared to the problem of mapping a
measured power consumption to a certain mobile app, we have employed the concepts behind MFCCs
and GMMs to classify apps.

Figure 3.5: Gaussian Mixture Models can be derived from the distribution of MFCCs as exempli-
fied for Coefficient #6 and Coefficient #7.

3.2.2.2 Results and Findings

In order to verify their capabilities and limitations, we have implemented the two proposed classifica-
tion techniques. We have then used these implementations to classify mobile apps according to the six
categories Games, Internet, Idle, Malware, Music, and Multimedia. For each of these categories, classi-
fication models have been created during a learning phase according to the two proposed techniques. In
the subsequent classification phase, we have then divided unknown apps using the created classification
models.

Obtained results show that both approaches are basically suitable for the power consumption based
classification of mobile apps. From the obtained results, various findings can be derived. Malware
being mainly executed in the background is distinguishable from applications being actively used at the
moment. Furthermore, applications assigned to the categories Games, Internet, Music, and Multimedia
can also be successfully distinguished. However, due to their similar usage pattern and functionality,
music and multimedia applications are in general more difficult to distinguish correctly.

Obtained results also show that the MFCC-based technique works better for distinguishing apps from
the categories Idle and Malware. Hence, this approach appears to be better suited for malware-detection
purposes. On the other hand, the histogram-based technique constitutes a fast and efficient classification
method, which can be especially suitable for mobile end-user devices with limited computational power.

In summary, it can be concluded that the proposed techniques represent a promising alternative for fu-
ture malware-detection solutions. Even though first results are promising, several further improvements
are required to further develop the current prototype towards a productive malware-detection solution.
Even then, it remains unclear whether the quality of available power-consumption information on mo-
bile devices is sufficient to enable a reliable and efficient identification of malware. So far, our solution,
which we have discussed in more detail in Zefferer et al. [2013d], is merely a proof of concept and is not
able to provide absolute security on mobile end-user devices.

3.2.3 Policy-Based Security-Assessment of Mobile End-User Devices

Related work and own research show that absolute security cannot be guaranteed on current mobile
platforms. This especially applies to the mobile platform Android, which suffers from several security-
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reducing characteristics. Concretely, its support for alternative application sources, the optional nature
of integrated security features such as access protection or file-system encryption, its complex and in
practice often ineffectual permission system, its rich API, and its support for rich runtime capabilities
such as inter-process communication limit Android’s overall security in practice. This leads to a situation,
in which security-critical Android-based apps must not assume to be executed in a secure environment,
and in which stored and processed security-critical data is potentially vulnerable to malware and related
threats. Although the situation is less critical on other mobile platforms, they still must not be assumed
to be absolutely secure either.

To relieve this unsatisfactory situation, we have proposed a policy-based security-assessment frame-
work for mobile end-user devices [Zefferer and Teufl, 2013]. The author of this thesis has contributed
to this activity by forming the basic concept, developing the proposed framework’s architecture, and by
evaluating the proposed solution by means of a concrete implementation. The resulting framework as-
sesses the current level of security of a mobile end-user device and helps security-critical applications
installed on this device to decide whether an execution of security-critical functionality is currently se-
cure or not. This enables apps to refrain from exposing security-critical data on potentially insecure
devices. In the following, the architecture of the proposed framework is briefly sketched and relevant
results and findings that have been derived from its implementation and evaluation are discussed.

3.2.3.1 Architecture

The architecture of the proposed security-assessment framework is shown in Figure 3.6. From a concep-
tual perspective, the framework is located between the mobile operating system, diverse external infor-
mation sources, and the security-critical mobile app. The framework provides an API, through which
its functionality can be accessed by this app. Concretely, the API enables the app to define a security
policy consisting of an arbitrary number of logically combined security properties. A security property
represents a characteristic of the mobile device to be assessed. Examples for security properties are
’encryption activated’, ’no alternative keyboard installed’, or ’alternative application stores disabled’.
Security policies can combine an arbitrary number of security properties using the logical AND and OR
operators. Furthermore, the API also supports the definition of sub policies, which can again be logically
combined to build up more complex policies. A possible security policy including two sub policies is
exemplified in Equations 3.1, 3.2, and 3.3.

SubPolicyA = OR(SecurityProperty1, SecurityProperty2, SecurityProperty3) (3.1)

SubPolicyB = AND(SecurityProperty4, SecurityProperty5) (3.2)

SecurityPolicy = AND(SubPolicyA, SubPolicyB, SecurityProperty6) (3.3)

Defined security policies are forwarded to the framework’s Policy Interpreter. This component ex-
tracts all relevant security properties from the defined policy and forwards them to the Assessment Core
Module. The function of the Assessment Core Module is the assessment of all relevant security properties
on the current platform. For this purpose, the Assessment Core Module makes use of different Assess-
ment Plug-Ins. Each Assessment Plug-In is capable to assess one or more security properties. Therefore,
the Assessment Core Module assigns security properties to be assessed to available Assessment Plug-Ins
according to their capabilities. To assess a security property, Assessment Plug-Ins typically interface
either the Android operating system or external information sources, in order to retrieve required in-
formation. For instance, in order to assess the security property ’encryption activated’, the responsible
Assessment Plug-In evaluates the respective configuration setting of the underlying operating system.
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Figure 3.6: The proposed security-assessment framework supports the definition and assessment

of arbitrary security policies.

The various Assessment Plug-Ins return their assessment results to the Assessment Core Module.
This module collects all results and forwards them to the Result Assembler. This component combines
the collected results according to the defined security policy using the logical AND and OR operators.
This way, the Result Assembler determines, whether the defined security policy is met by the underlying
mobile device or not. The determined result is returned via the framework’s API to the security-critical
app, which can rely on this result to decide whether or not execution of security-critical tasks on the
given device is secure.

Another feature provided by the security-assessment framework is covered by the component Result
Visualizer. The use of this component by the security-critical app is optional. The Result Visualizer can
be used to graphically display assessment results to the user. This way, the user can be informed in a
convenient and usable way about problematic device properties that potentially prevent the execution of
security-critical applications and operations.

We have implemented the proposed security-assessment framework in order to assess the appro-
priateness of its architecture in practice. From this implementation, several useful findings have been
derived. These findings are discussed in the following.

3.2.3.2 Results and Findings

To evaluate its feasibility, effectiveness, and efficiency, we have realized the proposed security-assessment
framework in practice. For this purpose, we have chosen the Android platform mainly for two reasons.
First, Android is currently vulnerable to various attack scenarios and frequently targeted by malware
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[Kelly, 2014]. Second, Android provides powerful APIs and rich runtime capabilities, which facilitate
the development of the proposed functionality. For these reasons, Android has been chosen for a first
realization of the proposed framework.

Considering this first basic design decision, we have further decided to implement the security-
assessment framework in the form of an Android Library Project14. This way, implemented functionality
can be easily made available to arbitrary Android apps. As the concept of Library Projects is specific for
Android, realizations for other platforms need to follow alternative approaches.

Pursuing the Library Project based strategy, all required functionality has been successfully imple-
mented for Android. The developed implementation currently supports the assessment of 22 security
properties by seven Assessment Plug-Ins. Due to the plug-in-based architecture, the set of supported
security properties and Assessment Plug-Ins can be easily extended. In addition to required assessment
functionality, our implementation also supports the visualization of assessment results. This is illustrated
in Figure 3.7. Security properties and sub-policies composing the defined security policy are displayed
in a tree-like structure. Users can navigate through the different levels of this structure. For each security
property and sub-policy, detailed information on the respective assessment result can be displayed. This
is illustrated in Figure 3.8. The implemented visualization component enables users to easily determine
critical device properties and configurations that prevent a secure use of critical apps.

Figure 3.7: The implemented assessment framework supports the visualization of assessment re-
sults.

From the concrete implementation of the proposed security-assessment framework, several useful
findings have been derived. First and foremost, the developed solution shows the general feasibility and
applicability of the proposed framework. Its Android-based nature however reveals a potential issue.
Concretely, the developed solution suffers from Android’s fragmentation, i.e. from the continuously in-
creasing number of different Android versions and devices in the field. The assessment of certain security
properties potentially depends on the respective Android version. For instance, depending on the exact
operating-system version, different API calls might be required to determine a particular device configu-
ration. Therefore, version-specific implementations of assessment functionality might be required. This
reduces the maintainability of the proposed solution in the long term.

14https://developer.android.com/tools/projects/index.html
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Figure 3.8: Detailed assessment results can be displayed for all security properties and sub-
policies.

Another identified issue of the proposed and implemented solution is rooting. Implemented Assess-
ment Plug-Ins may be assumed to work correctly on non-rooted devices only. In case an attacker gains
root access to the mobile operating system, this attacker must be assumed to be able to circumvent any
implemented security-assessment technique and to outsmart implemented Assessment Plug-Ins. To re-
duce threats imposed by rooting, the implemented solution features a root-detection plug-in. This plug-in
checks whether the device is rooted or not. Accordingly, security-critical apps can include the require-
ment for a non-rooted device as security property into defined security policies. However, the provided
root-detection plug-in suffers from the same limitations as all other Assessment Plug-Ins. An attacker
with root access must be assumed to have the opportunity to circumvent all implemented root-detection
mechanisms. For this reason, the proposed and developed security-assessment framework is able to pro-
vide reliable assessment results on non-rooted devices only. We have provided a more detailed discussion
of capabilities and limitations of our proposed security-assessment framework and its implementation in
Zefferer and Teufl [2013].

3.2.4 Lessons Learned

Improving the security of mobile end-user devices has been a topic of scientific interest for several years.
In this section, an overview of own research and own contributions on this topic has been provided.
These contributions range from mechanisms to detect SMS-based malware, over classification methods
for mobile apps based on side-channel information and machine-learning techniques, to the provision of
a security-assessment framework for mobile end-user devices. From these contributions, several useful
lessons have been learned.

First, our contributions have increased the awareness that security on mobile end-user devices is of
growing relevance but still difficult to achieve in practice. Furthermore, we have shown that modern
mobile end-user devices enable various alternative and innovative approaches to improve security. All of
the proposed approaches have the potential to raise the achievable level of security. On the other hand,
all proposed approaches also suffer from several limitations in practice. In summary, it must hence be
concluded that perfect security is still not available on mobile end-user devices.
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The lack of absolutely secure execution environments on mobile end-user devices raises problems
for security-critical apps. This also applies to m-government apps that store, process, or transfer security-
critical data. In particular, this applies to mobile electronic-signature solutions, which have been iden-
tified as key for transactional m-government services. We have assessed potential limitations that arise
with current mobile electronic-signature solutions when being applied on mobile end-user devices. Rel-
evant own work on these assessments is sketched in the following section.

3.3 Qualified Electronic Signatures on Mobile Devices

As electronic signatures are a basic building block of transactional e-government services, their avail-
ability and applicability on mobile end-user devices is crucial for transactional m-government. During
the past years, electronic-signature solutions have been developed and deployed in various European
countries. However, nearly all of these solutions have been designed for classical end-user devices such
as desktop PCs and laptops. Even though some of today’s signature solutions also integrate mobile tech-
nologies, they are not intended to be applied on mobile end-user devices either. In some cases, applying
these solution on mobile end-user devices is technically feasible in principle. However, this raises the
question, if the required level of security can be achieved, as underlying security concepts usually do not
assume the respective signature solution to be applied on mobile end-user devices.

To answer this question, we have evaluated the applicability of existing signature solutions on modern
mobile end-user devices in more detail. Therefore, we have focused on both the creation of electronic
signatures as well as on their verification. For both use cases, we have designed and developed respective
solutions for mobile end-user devices. We briefly introduce these solutions and discuss findings obtained
from their evaluation in the following subsections. For each solution, the thesis author’s contribution is
emphasized.

3.3.1 Signature Creation

To evaluate the feasibility of signature-creation solutions on mobile end-user devices, we have mainly
focused on the productive signature solution Austrian Mobile Phone Signature15. As this solution follows
a server-based approach and incorporates mobile technologies, this solution seems perfectly suitable to
be applied on mobile end-user devices. We have evaluated the application of the Austrian Mobile Phone
Signature on mobile end-user devices by means of several concrete applications. These applications are
briefly sketched in the following subsections.

3.3.1.1 Integrating Electronic-Signature Solutions into SMS-Based Services

Surveys of current m-government solutions show that SMS-based services are still popular. This espe-
cially applies to developing countries, where mobile 3G networks are often not available. Interestingly,
SMS-based services are also still popular in developed countries, where these services offer a simple,
cheap, and convenient alternative to app-based solutions. In most cases, SMS-based services are still
rather simple and do not integrate electronic-signature functionality. Thus, these services usually have a
purely informational character. Transactional SMS-based m-government services are rare. To overcome
this limitation, we have developed an SMS-based service that incorporates electronic signatures [Zefferer
et al., 2012a]. This way, we have tested the hypothesis that transactional m-government services can be
implemented on unmodified mobile devices, even if available communication technologies are limited
to SMS. The author of this thesis has contributed to this activity by defining the developed solution’s
architecture and by carrying out a thorough evaluation by means of a fully functional implementation.

15http://www.handy-signatur.at/
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The developed solution has been realized as web application, which features both a web-based and
an SMS-based user interface. The latter has been realized by means of an external SMS gateway. The
implemented web-based interface is used for administrative tasks only and basically enables the registra-
tion and maintenance of user accounts. Once registered at the application, users can carry out complete
transactional procedures by sending and receiving SMS messages only. Concretely, the developed appli-
cation supports the remote generation of documents in Portable Document Format (PDF) based on input
data provided by SMS, the signing of generated documents, and the delivery of signed documents by
e-mail.

Capabilities of the developed application have been shown by means of a concrete procedure, which
enables users to generate, sign, and deliver sick notes using SMS messages. By sending a well-defined
SMS message, users can trigger the generation of a PDF-based sick note in the central web application.
Subsequently, the generated sick note is electronically signed. The signed sick note is then sent to the
user’s employer by e-mail. Generated, signed, and delivered sick notes are stored by the central web
application and can later be accessed by the user through the application’s web interface.

From an implementation perspective, integration of signature-creation functionality, i.e. supporting
the signing of created PDF documents, is the most challenging task. To enhance the developed web ap-
plication with signature-creation capabilities, approved signature solutions of the Austrian e-government
infrastructure have been used. Concretely, the solutions Austrian Mobile Phone Signature16 and Mod-
ules for Online Applications - Signature Creation (MOA-SS)17 have been employed for this purpose.
Although both components can be used to create electronic signatures, they still differ in several aspects
that need to be considered. The Austrian Mobile Phone Signature allows users to create qualified elec-
tronic signatures. For this purpose, the Mobile Phone Signature centrally stores a unique signature key
for each user. The Mobile Phone Signature requires direct user interaction, as the user needs to autho-
rize each signature-creation process. In contrast, MOA-SS is a pure server-signature solution. MOA-SS
does not produce qualified signatures and does not require user interaction during the signature-creation
process. We have discussed functionalities, capabilities, and limitations of the Austrian Mobile Phone
Signature and of MOA-SS in more detail in Posch et al. [2011].

Core building blocks of the developed web-application are illustrated in Figure 3.9. The web ap-
plication consists of three basic building blocks. Most functionality is implemented by the component
Business Logic, which has API-based interfaces to other building blocks of the web application. Fur-
thermore, the Business Logic interfaces several external components. This includes the Mobile Phone
Signature, which is used to create qualified electronic signatures, an SMS Gateway, which enables SMS-
based communication with the User, and the Simple Mail Transfer Protocol (SMTP) Server, which is
used to deliver signed documents via e-mail.

Based on this architecture, carrying out an SMS-based procedure, e.g. creating, signing, and deliv-
ering a sick note, consists of the following steps. First, the User sends a well-defined SMS message to
the Business Logic via the SMS Gateway. The SMS message triggers the document-generation process
in the web application. Variable parts of the document are defined by data included in the sent SMS
message. In addition to these variable data, the sent SMS message also needs to include information
regarding the preferred signature-creation method. In case MOA-SS is selected as the preferred method,
the Business Logic accesses the required signature-creation functionality through its API-based interface
to MOA-SS. If the procedure requires a qualified electronic signature, the Mobile Phone Signature is
typically used instead of MOA-SS. The Mobile Phone Signature requires the User to authorize each
signature-creation process. For this purpose, the User needs to authenticate at the Mobile Phone Signa-
ture. The authentication process consists of two steps. First, the User has to provide his or her mobile
phone number and a secret password through a web-based interface. As access to a web-based interface
is not possible for pure SMS-based services, the User has to include this password in the sent SMS mes-

16http://www.handy-signatur.at/
17https://joinup.ec.europa.eu/software/moa-idspss/home
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Figure 3.9: The developed web application enables the user to carry out electronic signature based
procedures via SMS.

sage. The Business Logic forwards this password together with the User’s mobile phone number to the
Mobile Phone Signature, in order to complete the first authentication step. In the second authentication
step, the Mobile Phone Signature sends a one-time password to the User via SMS. The User has to
prove reception of this one-time password to complete the authentication process. For this purpose, the
Mobile Phone Signature provides another web form, through which the received one-time password can
be entered. Again, the web application’s Business Logic has to assist the User to accomplish this task,
as the User is limited to SMS-based communication. Hence, the User sends the received one-time pass-
word to the Business Logic, which forwards it to the Mobile Phone Signature. This finally completes the
authentication process and authorizes the signature-creation process. The signed document is returned
to the Business Logic and finally delivered with the help of the SMTP Server. The user is notified about
the successful process via SMS.

The implemented web application shows that the integration of electronic signatures into SMS-based
applications is in principle feasible. However, the web application also reveals several severe drawbacks
of this approach. Among others, the following issues can be identified:

• Omission of second communication channel: The security of the Austrian Mobile Phone Sig-
nature relies partly on the fact that two separate communication channels are used during user
authentication. While one-time passwords are delivered via SMS, credentials need to be provided
through a web-based interface. This separation of communication channels is not possible for
the developed web application, as the User needs to carry out the entire procedure including the
creation of electronic signatures by exchanging SMS messages only. Due to this restriction, the
developed web application is used as sort of proxy component between the User and the Mobile
Phone Signature during user authentication. As the User relies on SMS-based communication
only, a separation of communication channels cannot be achieved. This reduces security.

• Additional intermediary components: Due to the restriction to SMS-based communication, ad-
ditional intermediary components are necessary. Figure 3.9 shows that all SMS-based communi-
cation is routed over an external SMS Gateway. As exchanged SMS messages potentially contain
confidential data, the SMS Gateway needs to be a trusted component. Furthermore, the developed
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web application acts as intermediary between the User and the Mobile Phone Signature during
user authentication. As user authentication includes the provision of a secret password, the User
also needs to trust the web application.

• Display of signature data: As the Mobile Phone Signature enables the User to create a legally
binding qualified electronic signature, the User must be given the opportunity to check the data
to be signed. The Mobile Phone Signature allows this during the user-authentication process by
displaying the data to be signed in the web form that is used to obtain credentials from the user.
Due to the restriction to SMS-based communication, the user cannot access this web form and
has hence no opportunity to check the data to be signed. As a solution to this problem, the web
application could send the data to be signed to the user via SMS. However, this works for simple
text-based data of limited length only. In practice, this approach is inappropriate.

We have provided a more detailed security analysis of the proposed and developed solution in Zef-
ferer et al. [2012a]. In general, it can be concluded that integrating electronic signatures into pure SMS-
based services is feasible in principle. However, the restriction to SMS-based communication raises
several security issues, when using integrated signature solutions through SMS-based communication
channels only. This is mainly due to the special characteristics of these signature solutions, which have
not been designed with pure SMS-based use cases in mind. In practice, a secure use of electronic signa-
tures in pure SMS-based services is hence hard to achieve.

3.3.1.2 Employing Electronic Signatures for Trusted Location-Based Services

The integration of signature solutions that enable the creation of qualified electronic signatures has turned
out to be difficult for pure SMS-based services. It hence seems reasonable to focus on more powerful
technologies instead. In this context, mobile apps for smartphones and tablet computers appear to be an
appropriate choice. Mobile apps have access to various functionality of the underlying mobile device
and operating system and hence allow for more powerful applications.

We have assessed possibilities to integrate qualified electronic signatures into mobile apps by means
of different applications. Our first attempt has targeted LBSs. These services have become popular during
the past years. They incorporate available location information to provide context-sensitive services.
Popular examples of LBSs are car-navigation apps that make use of location information to route users
to arbitrary destinations. LBSs are also used for m-government-related use cases. For instance, the Dutch
m-government app BuitenBeter18 incorporates location information to facilitate the reporting of issues
in public space for citizens.

Despite their growing popularity, mobile LBSs suffer from a basic drawback: assuming a poten-
tially compromised mobile end-user device, location information provided on these devices must not be
assumed to be correct and trustworthy. Even though employed positioning technologies and solutions
such as GPS work reliably, there are various ways to forge location information that is provided to apps
running on mobile devices. Provided location information can be theoretically forged by both, the legiti-
mate owner and user of the mobile device, as well as by installed malware. Hence, location information
available in mobile apps must not be assumed to be correct. This renders mobile applications that require
trustworthy location information infeasible.

As a solution to this problem, we have proposed and introduced the concept of Trusted Location-
Time Tickets (T-LTTs) [Teufl et al., 2012]. T-LTTs are data structures containing a time stamp together
with location information. Each T-LTT is unambiguously assigned to a specific user. This way, a T-LTT
proves that a specific user was at a certain location at a certain point in time. The correctness of the T-LTT
is assured by a Trusted Third Party (TTP). The author of this thesis has contributed to the elaboration of
the concept of T-LTTs and to the development of a suitable architecture.

18http://www.buitenbeter.nl/
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The basic architecture behind the proposed concept of T-LTTs is shown in Figure 3.10. Application
of the proposed concept requires three involved parties. A Service Provider requesting a T-LTT, a User
providing the T-LTT, and a TTP confirming the correctness of the T-LTT. According to the shown
architecture, the basic process flow is as follows. First, the User aims to access a resource from the
Service Provider. Second, the Service Provider requests the User to present a valid T-LTT in order to
gain access to the requested resource. Third, the User requests a T-LTT from the TTP. Fourth, the TTP
issues the User the requested T-LTT. Fifth, the User presents the Service Provider the issued T-LTT.
After positive verification of the presented T-LTT, the Service Provider finally grants the User access to
the requested resource.
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Figure 3.10: The proposed concept for the implementation of trusted location-based services de-
fines five consecutive processing steps.

The feasibility and practical applicability of the proposed concept has been demonstrated by means of
two concrete implementations. These implementations mainly differ in terms of the underlying use case
but still both rely on the general architecture shown in Figure 3.10. Concretely, the two implementations
differ in terms of the realization of the TTP. The TTP is implemented either by another smartphone user
or by cryptography-enabled Near Field Communication (NFC) tokens that are located at fixed positions.
We have discussed the concrete architecture of the two implementations in more detail in Teufl et al.
[2012].

Independent of the concrete implementation of the TTP, both implementations share a basic prop-
erty: they require the User to electronically sign time and location information on his or her mobile
end-user device. This is necessary to bind the User’s identity to the created T-LTT. To integrate the
required signature-creation functionality, the two implementations again rely on the Austrian Mobile
Phone Signature. While this approach works fine from a technical perspective, it raises problems from
a security point of view. The Mobile Phone Signature has been developed for a use on two separate
end-user devices. Only in this case, the requirement for two separate communication channels can be
met. The two implementations of the proposed T-LTT concept use the Mobile Phone Signature on one
single end-user device, i.e. the User’s smartphone, only. Thus, these implementations ignore part of the
Mobile Phone Signature’s security concept, i.e. the separation of communication channels. This renders
an application of these implementations in productive scenarios and use cases difficult.
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3.3.1.3 Qualified PDF Signatures on Mobile End-User Devices

During the past decades, PDF has emerged to one of the most relevant formats for document exchange.
Due to its popularity and frequent use, PDF is also relevant for e-government use cases. The frequent
use of PDF in e-government-related use cases raises the need for mechanisms to assure their integrity,
authenticity and non-repudiation. Electronic signatures have turned out to be the ideal solution for that.
Hence, solutions that enable the electronic signing of PDF documents have evolved to important building
blocks of e-government infrastructures. Especially in Europe, PDF-signing solutions relying on qualified
electronic signatures are of relevance, as they assure that electronically signed PDF documents are legally
equivalent to paper-based documents containing handwritten signatures.

Facing the recent emergence and growing relevance of mobile computing, we have investigated op-
portunities to apply existing PDF-signing solutions on mobile end-user devices. For this purpose, we
have focused on the Austrian e-government infrastructure, in which PDF signatures have been a relevant
building block for years. Due to incompatibilities of Austrian laws and deployed Austrian e-government
solutions with existing PDF-signature standards, a proprietary standard has been introduced in Austria.
This standard is called PDF-AS and enables the creation of qualified electronic PDF signatures. Relevant
concepts behind PDF-AS have been discussed by Leitold et al. [2009] in more detail. An implementation
of the PDF-AS standard is available as open-source software19 in the form of a Java library. Based on
this library, a desktop application20 and a web application are provided that can be used to electronically
sign PDF documents. The provided Java library mainly implements PDF-processing functionality. For
the creation of legally binding electronic signatures, the library relies on the Austrian national eID and
electronic-signature infrastructure. For instance, the library supports integration of the Austrian Mobile
Phone Signature for the creation of qualified electronic signatures.

For a better understanding, the interaction between PDF-AS components, users, the Austrian Mobile
Phone Signature, and external service providers is illustrated in Figure 3.11. According to this architec-
ture, the creation of a qualified PDF signature comprises the following steps. First, the PDF document
to be signed is provided to the PDF-AS Library. This can be done by using the provided PDF-AS Desk-
top Application or the PDF-AS Web Application. The PDF-AS Web Application can also be accessed
and used by external service providers. For this purpose, it offers a web-based interface relying on Java
Servlet Technology21, through which external services can upload PDF documents to be signed. Irre-
spective of the way PDF documents to be signed are provided, PDF-AS makes use of the Austrian eID
and electronic-signature infrastructure to create the electronic signature. The architecture shown in Fig-
ure 3.11 assumes the Mobile Phone Signature to be used for this purpose. When being provided with
data to be signed, the Mobile Phone Signature authenticates the user to authorize the signature-creation
process. After successful completion of this process, the created signature is returned to the PDF-AS
Library. There, the signature is finally included into the PDF document.

According to the architecture shown in Figure 3.11, PDF-AS functionality can be either accessed by
means of a web-based interface or by means of a desktop application. To complete the set of provided
tools for the creation of PDF-based signatures, we have proposed a PDF-AS-based PDF-signing solution
for mobile end-user devices [Zefferer et al., 2012b]. This way, the underlying concept of PDF-AS has
been mapped to modern communication technologies and to the current state of the art. The author of
this thesis has considerably contributed to the development of the proposed solution’s conceptual design
as well as to its implementation.

In order to make PDF-AS functionality available on mobile end-user devices, a distributed approach
has been followed. Concretely, our proposed solution comprises a central web application called PDF-
AS Wrapper and a mobile PDF-Signing App. This is also shown in Figure 3.12, which illustrates the
architecture of the proposed solution. By relying on a distributed approach, required functionality on

19https://joinup.ec.europa.eu/software/pdf-as/home
20http://webstart.buergerkarte.at/PDF-Over/index.html
21http://www.oracle.com/technetwork/java/index-jsp-135475.html
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Figure 3.11: PDF-AS support various interfaces and application scenarios.

the client can be minimized. This improves maintainability, as necessary updates of client software on a
growing number of different mobile end-user devices and operating systems are minimized.

In general, signing a PDF document using the proposed solution requires the following steps. First,
the user starts the PDF-Signing App and selects the PDF document to be signed. The PDF-Signing
App then transmits the selected file to the PDF-AS Wrapper, which forwards it to the PDF-AS Web
Application. For this purpose, the PDF-AS Wrapper makes use of the Servlet-based interface provided
by the PDF-AS Web Application. The PDF-AS Web Application prepares the received PDF file for
signing. The data to be signed is sent to the Austrian Mobile Phone Signature. User-authentication
requests from the Mobile Phone Signature are forwarded to the PDF-Signing App, which reads required
credentials from the user. This way, the Mobile Phone Signature’s two-factor authentication is carried
out. First, the user is requested to enter his or her secret password. Second, a one-time password is
sent to the user via SMS. After entering this one-time password, user authentication is complete and the
Mobile Phone Signature creates the requested signature. The created signature is returned to the PDF-
AS Web Application, which finally integrates it into the PDF document. The signed PDF document is
then returned to the PDF-AS Wrapper, which forwards it to the PDF-Signing App. The PDF-Signing
App stores the obtained signed document on the mobile device and notifies the user about the successful
signature-creation process.

In order to evaluate its feasibility and applicability, we have implemented the proposed solution
shown in Figure 3.12 for the Android platform. This implementation, which we have described in more
detail in Zefferer et al. [2012b], shows that the proposed solution facilitates the creation of qualified
electronic signatures on smartphones. At the same time, it also reveals a severe shortcoming of the
proposed solution. As the Mobile Phone Signature is used with one end-user device, its underlying
security concepts and requirements, i.e. the separation of communication channels, cannot be met. This
shortcoming has also been identified for the realization of trusted location-based services. Hence, similar
conclusions also need to be drawn for the proposed mobile PDF-signing solution. While it is in principle
technically feasible to electronically sign PDF documents on mobile end-user devices, the proposed
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Figure 3.12: The proposed PDF-signing solution relies on components and application scenarios
of PDF-AS.

solution cannot achieve a sufficient level of security and is hence difficult to apply in practice.

3.3.2 Signature Verification

One of the key advantages of electronic signatures compared to handwritten signatures is their unambigu-
ous verifiability. As electronic signatures rely on asymmetric cryptographic algorithms, their validity can
be reliably determined by cryptographically applying the correct public key. This way, the integrity, au-
thenticity, and non-repudiation of electronically signed content can be verified. While this sounds simple
in theory, the implementation of reliable signature-verification mechanisms often turns out to be complex
in practice. This is mainly due to complex PKIs, which are required to establish a link between signato-
ries’ identities and public keys, and also due to a steadily increasing number of different signature and
document formats. We have tackeled the problem of secure, reliable, and efficient signature verification
by means of several concrete solutions. With regard to mobile government, special focus has been put on
solutions for the verification of electronic signatures on mobile end-user devices. We elaborate on these
solutions in the following subsections in more detail.

3.3.2.1 Preparing Signature-Verification Tools for Mobile Access

In practice, the verification of electronically signed documents is complicated by the increasing number
of different document and signature formats. For instance, document formats, on which electronic sig-
natures can be applied, include PDF and the Extensible Markup Language (XML). Depending on the
respective underlying legal and organizational basis, documents of these formats can be signed according
to different signature formats. With regard to European law, especially advanced signature formats such
as XML Advanced Electronic Signatures (XAdES), CMS Advanced Electronic Signatures (CAdES), and
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PDF Advanced Electronic Signatures (PAdES) are of special relevance. In other application scenarios,
alternative signature formats might be relevant.
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Figure 3.13: The proposed signature-verification tool implements a plug-in-based architecture to
assure flexibility.

For each document and signature format, specifics regarding the verification of electronic signa-
tures need to be taken into account. This increases the complexity of signature-verification solutions
with a growing number of formats that need to be supported. To hide this complexity from the user,
signature-verification tools are usually provided that support verification of various document and sig-
nature formats. Due to the various challenges that need to be overcome by these tools, their design and
implementation are topics of scientific interest. We have contributed to ongoing research on this topic by
proposing and implementing a signature-verification tool that is tailored to requirements of the Austrian
e-government infrastructure [Zefferer et al., 2011b]. This tool is in productive operation and operated by
the Austrian Regulatory Authority for Broadcasting and Telecommunications (RTR)22. It enables users
to upload signed documents of various formats to a central web application for verification. After com-
pletion of the verification process, results are displayed in the user’s web browser. Figure 3.13 shows the
architecture behind this solution. The author of this thesis has mainly contributed to the implementation

22http://www.signaturpruefung.gv.at/



3.3. Qualified Electronic Signatures on Mobile Devices 85

of this solution and to its continuous enhancement according to emerging requirements.

The architecture of the proposed signature-verification solution comprises basically four core com-
ponents. A central Process-Flow Engine controls the entire signature-verification process. Required user
interactions such as document uploads and the displaying of verification results are implemented by a
Web Interface component. The Format-Detection Engine determines the format of documents to be ver-
ified. This enables users to upload signed documents of various formats without the need to provide
additional meta information. Required signature-verification functionality is finally implemented by the
fourth core component, i.e. the Verification Engine.

Figure 3.13 shows that scalability has been a key requirement for the proposed signature-verification
tool from the beginning. Both the Format-Detection Engine and the Verification Engine follow a plug-in-
based approach, which assures that support for additional document and signature formats can be added
easily. Although the underlying architecture provides an efficient level of flexibility regarding different
document and signature formats, it is restricted in terms of provided interfaces to external components.
Concretely, it provides only one web-based interface, through which documents to be verified can be
uploaded. This complicates a use of this solution e.g. in mobile scenarios.
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Figure 3.14: The proposed enhanced architecture for signature-verification tools assures that the
tool’s functionality is provided through various communication channels and tech-
nologies.
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To address this problem, we have proposed an enhanced architecture for server-based signature-
verification tools [Lenz et al., 2013b]. This architecture takes into account the requirement to access
the functionality of the signature-verification tool through different communication channels and tech-
nologies. This has been achieved by replacing the Web Interface component of the architecture shown
in Figure 3.13 by a flexible I/O Engine that follows the same plug-in-based approach as the Format-
Detection Engine and the Verification Engine. The resulting enhanced architecture, to which the author
of this thesis has considerably contributed, is shown in Figure 3.14.

The applicability of this enhanced architecture has been shown by means of a concrete implementa-
tion, which has been based on the initial solution implementing the architecture shown in Figure 3.13. We
have also used capabilities of the enhanced solution to make signature-creation functionality available
on mobile end-user devices. This is elaborated in more detail in the following section.

3.3.2.2 Signature Verification on Mobile Devices

Smartphones and other powerful mobile end-user devices provide the capability to receive signed docu-
ments, e.g. via e-mail. Hence, the provision of signature-verification capabilities on these devices is of
special importance. In many cases, signature-verification tools follow a web-based approach and enable
users to upload documents to be verified through a web interface. While this is convenient on classical
end-user devices, it raises problems e.g. on smartphones, which suffer from limited input and output
capabilities.
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Figure 3.15: The Signature-Verification App relies on functionality provided by the proposed
signature-verification tool and supports different input mechanisms to fetch docu-
ments from the mobile operating system.

To address this issue, we have proposed and implemented a signature-verification solution for mobile
end-user devices [Zefferer et al., 2013a]. While the author of this thesis has formed the concept behind
this solution and developed its architecture, related implementation tasks have mainly been undertaken
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by a bachelor student.

To take into account limitations of mobile end-user devices, the proposed solution outsources com-
plex operations such as cryptographic computations and PKI integrations to a server component. The
client component is limited to functionality requiring user interaction. Furthermore, the proposed solu-
tion has been defined on an abstract level to consider specifics of different mobile platforms and operating
systems. In particular, the proposed solution is flexible regarding the way documents to be signed are
provided by the underlying mobile operating system. The architecture of the proposed solution shown in
Figure 3.15 is completely technology-agnostic and can hence be applied to and implemented on arbitrary
mobile platforms.

The applicability of the proposed abstract solution has been shown by means of a concrete imple-
mentation for the mobile platform Google Android23. For the server component, the implementation
relies on the enhanced signature-verification tool, whose architecture is shown in Figure 3.15, and which
is in productive operation in Austria. Functionality of the client component has been implemented by an
Android-based Signature-Verification App. This app enables the user to select documents and to transmit
these documents to the server component for verification. After the verification process, the Signature-
Verification App receives verification results from the server component and displays them. This way,
the developed solution provides smartphone users a convenient app-based opportunity to verify signed
documents e.g. received via e-mail. Furthermore, it shows that the verification of electronic signatures is
feasible and applicable on current mobile end-user devices.

3.3.3 Lessons Learned

Electronic signatures have been a crucial building block of transactional e-government services for years.
Especially in Europe, various countries have deployed electronic-signature solutions, which enable citi-
zens to create legally binding electronic signatures. However, most of these solutions rely on technolo-
gies that are hard to be applied on mobile end-user devices. Examples are smart card based solutions,
which are common in Europe, but difficult to use e.g. on smartphones.

The incompatibility of smart card based electronic-signature solutions with modern mobile end-
user devices is unsurprising, as most of these solutions have been developed and deployed in the pre-
smartphone era. At this time, applicability on mobile end-user devices was no requirement. Still, several
European countries have deployed mobile signature solutions as an alternative to smart card based ap-
proaches. These solutions make use of the user’s mobile phone during the signature-creation process in
order to avoid the necessity of smart cards. Although these solutions seem to be well-suited at a first
glance for a use on mobile end-user devices, their use on mobile end-user devices also raises several
challenges. As also mobile signature solutions have been designed for classical end-user devices, their
underlying security concepts often become ineffective when being applied on mobile end-user devices.

In summary, it must be concluded that there is currently no satisfying signature solution that can be
securely applied on mobile end-user devices. This conclusion can be derived from several concrete elec-
tronic signature based solutions. These solutions show that signature verification is feasible on mobile
end-user devices but signature creation is usually not. The lack of signature solutions for mobile de-
vices renders the development and use of transactional e-government services on these devices virtually
impossible and represents a severe hurdle for transactional m-government in Europe.

3.4 Chapter Conclusions

For several years, technical capabilities of mobile end-user devices have been limited to telephony, text
messaging, and simple pre-installed applications. This situation has considerably changed with the in-

23http://www.android.com/
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troduction of smartphones. Today, smartphones and related mobile end-user devices feature various
enhanced technologies and support the installation and use of third-party software by means of mobile
apps. It is unsurprising that enhanced capabilities of modern mobile end-user devices are increasingly
employed to improve m-government services. In this chapter, capabilities of current mobile end-user de-
vices to meet requirements of m-government services have been assessed in detail. Concretely, security
features and limitations of different mobile platforms have been evaluated and strategies to secure appli-
cations on mobile end-user devices have been assessed. Finally, opportunities to implement electronic
signature based applications on smartphones and related end-user devices have been investigated.

Unfortunately, results of conducted evaluations, assessments, and investigations are sobering for sev-
eral reasons. First, the heterogeneity of the current mobile-platform ecosystem in general complicates the
development of mobile solutions. Second, the development of mobile solutions is also complicated by
an inevitable trade-off between security and functionality. Mobile platforms offering third-party applica-
tions an enhanced set of functionality usually suffer from reduced security. Similarly, an increased level
of security typically goes hand in hand with mobile third-party applications that are limited in terms of
functionality. Third, the special characteristics of mobile end-user devices and operating systems narrow
possibilities to implement security-enhancing techniques. We have shown by means of concrete imple-
mentations that such techniques exist, but that they cannot provide absolute security on mobile end-user
devices either. Fourth, mobile applications based on qualified electronic signatures are hardly feasible on
current mobile end-user devices. We have shown by means of several concrete solutions that application
of existing signature solutions on mobile end-user devices is theoretically feasible but incompatible with
underlying security concepts.

From the obtained results, it must be concluded that current smartphones and related mobile end-user
devices do not enable the realization of m-government applications that make use of qualified electronic
signatures. This, in turn, eliminates the feasibility of transactional m-government services, for which
qualified electronic signatures represent a central building block. Design, development, and implemen-
tation of an electronic-signature solution that supports the creation of qualified electronic signatures and
that is also applicable on mobile end-user devices can hence be identified as inevitable basis of trans-
actional m-government services. At the same time, the current lack of such a solution defines the main
problem tackled by this thesis. A solution to the defined problem is developed and proposed in Part II of
this thesis.
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Chapter 4

Approaches Towards Electronic Signa-
tures on Mobile End-User Devices

“ Stay committed to your decisions, but stay flexible in your approach.”

[ Tony Robbins, American Author. ]

Documents have always played a central role in scenarios and use cases that require written form.
In the course of time, forms and implementations of documents have changed according to the current
state of the art. Depending on the particular use case, the authenticity and integrity of a document can be
crucial. This applies for instance to documents that represent legally binding contracts or official records.
Similar to the form and implementation of documents, also applied means to assure their authenticity and
integrity have changed in the course of time. For instance, wax seals have been one of the preferred means
in the Middle Ages. In these times, wax seals were used in most cases to authenticate the sender of a
document. Seals were also applied to document envelopes, in order to add another level of protection to a
document. As opening the envelope was not possible without breaking the seal, unauthorized disclosure
and potential modifications of the document were detectable by recipients. This way, wax seals already
provided simple means to assure the authenticity and integrity of documents hundreds of years ago.
Although applied methods have changed in the course of time, authenticity and integrity still represent
key requirements of certain types of documents.

As a more convenient alternative to wax seals, handwritten signatures have evolved early. While the
concept of historic wax seals has only partly survived up to now e.g. in the related concept of official
stamps, handwritten signatures are still frequently used in various situations of everyday life. Well-
known examples are the signing of contracts or the authorization of credit-card payments. Irrespective of
the particular use case, a handwritten signature confirms the signer’s consent on the signed document’s
content. This way, the hand-written signature assures the authenticity of the signed document.

Although they have been used for hundreds of years, hand-written signatures suffer from several
limitations. First, they do not ensure integrity, as they cannot prevent subsequent modifications on docu-
ments or make such modifications detectable. Second, handwritten signatures are neither forgery-proof
nor unambiguously verifiable. The computer-aided verification of handwritten signatures has been a
topic of scientific interest for several years. An early survey of possible approaches has been provided
by Dimauro et al. [2004]. During the past years, several additional solutions have been proposed. Exam-
ples are approaches presented by Nguyen et al. [2007], Govindarajan and Chandrasekaran [2011], or de
Medeiros Napoles and Zanchettin [2012]. Still, there is currently no absolutely reliable technical mean
to verify the validity of handwritten signatures. Another issue is raised by the ongoing digitalization of
everyday processes. Nowadays, documents are increasingly created, exchanged, processed, and stored
in electronic form. Application of handwritten signatures to electronically processed documents causes
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media breaks in electronic procedures and reduces efficiency [Leitold et al., 2009]. For all these reasons,
hand-written signatures are far from being the ideal solution to assure the authenticity and integrity of
documents.

To overcome limitations of handwritten signatures, the need for an adequate alternative has been
identified early. Considering identified limitations of handwritten signatures, electronic signatures have
turned out to be a promising solution. Electronic signatures rely on asymmetric cryptographic primi-
tives such as RSA [Rivest et al., 1978] or ECDSA [ANSI, 2005]. Based on these primitives, standards
for the electronic signing of electronic document formats have been developed during the past decades.
Examples are PAdES [ETSI, 2009b] for PDF documents or XAdES [ETSI, 2009a] for XML-based docu-
ments. Based on these standards, several solutions have been developed during the past years that enable
the electronic signing of electronic documents and render the use of handwritten signatures unnecessary.

Electronic signatures have several advantages compared to handwritten signatures. Relying on asym-
metric cryptographic methods, electronic signatures provide both authenticity and integrity of electronic
documents. Furthermore, electronic signatures enable the reliable detection of subsequent modifications
of signed content. Due to their electronic nature, they also integrate smoothly into electronic procedures.
Finally, electronic signatures are also unambiguously verifiable by technical means. Thus, electronic
signatures remove most drawbacks of handwritten signatures.

Due to their various advantages compared to handwritten signatures, electronic signatures have also
become a crucial building block of transactional e-government services. Existing solutions surveyed in
Part I of this thesis show that this especially applies to countries, in which electronic signatures are legally
equivalent to handwritten signatures. Such legal equivalence is for instance given in the European Union,
where so-called qualified electronic signatures have the same legal status as handwritten signatures. This
has already been defined by the Signature Directive [The European Parliament and the Council of the
European Union, 1999] and is now enforced by the eIDAS Regulation. According to this regulation,
qualified electronic signatures are a subset of electronic signatures and need to meet several additional
requirements. During the past years, qualified electronic signatures have increasingly gained importance
for transactional e-government services, as they enable users to provide legally binding written consent
in online procedures.

The need for qualified electronic signatures for transactional e-government services raises problems,
when these services shall be made available on mobile end-user devices to carry out the transition towards
transactional m-government. Existing solutions for the creation of qualified electronic signatures are
usually not applicable on modern mobile devices due to their limited capabilities or due to inappropriate
security concepts of signature solutions that are tailored to a use on classical devices. For instance,
smart card based solutions cannot be applied on mobile devices due to the lack of necessary card-reading
devices. Similarly, existing signature solutions relying on mobile phones such as the Austrian Mobile
Phone Signature are not applicable on modern mobile end-user devices either, as underlying security
concepts demand two separate end-user devices and communication channels. So far, there is no solution
available that enables a secure creation of qualified electronic signatures on mobile end-user devices.

Considering the importance of qualified electronic signatures for transactional e-government solu-
tions, provision of a signature solution for mobile end-user devices is crucial. Only if such a solution
is available, transactional m-government services can be accessed by and used on mobile end-user de-
vices. As a first step towards development of a signature solution for mobile end-user devices, this
chapter identifies possible approaches to implement such solutions. This way, this chapter takes up Tony
Robbin’s statement quoted at the beginning of this chapter, in which he suggests that even though one
shall stay committed to one’s decisions, flexibility regarding followed approaches shall be maintained.
All identified approaches to implement signature solutions for mobile end-user devices are assessed in
terms of feasibility, security, and usability. This way, the most suitable approach for realizing signature
solutions for mobile end-user devices is determined. Results obtained from this chapter and conducted
assessments will later build the basis for the development of a concrete signature solution.
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The structure of this chapter, which bases on own published work [Zefferer, 2015b], reflects the
systematic methodology that has been followed to identify and assess different approaches of mobile
signature solutions. First, an abstract model of signature solutions for mobile end-user devices is de-
fined. From this abstract model, possible approaches to create electronic signatures on mobile end-user
devices are derived. All derived approaches are subsequently assessed in terms of feasibility, security,
and usability. From the obtained assessment results, the most promising approach is finally determined.

4.1 Abstract Model

The multitude of technologies available on modern mobile end-user devices usually offers developers
different alternatives to solve one and the same problem. In particular, this also applies to the concrete
problem of creating qualified electronic signatures. Different approaches to create such signatures on
mobile end-user devices are conceivable. In this chapter, the best available approach is determined. For
this purpose, a complete set of all possible approaches needs to be identified first.

The identification of possible approaches to create qualified electronic signatures on mobile end-
user devices is based on an abstract model. This is advantageous for two reasons. First, an abstract
model can be kept as simple as desired by choosing a suitable level of abstraction. A simple model,
in turn, enables a systematic and hence complete identification of possible approaches. Second, an ab-
stract model hides implementation-specific and technology-dependent details. This, in turn, reduces the
number of possible approaches that need to be considered. This way, reliance on a technology-agnostic
and implementation-independent abstract model facilitates the systematic identification of possible ap-
proaches to create electronic signatures on mobile end-user devices.

To develop the required abstract model, existing signature-creation models are surveyed first. This
survey considers both related standards and scientific publications. In addition, a set of design principles
is defined. Based on obtained results of the conducted survey and on the defined design principles, an
abstract technology-agnostic and implementation-independent model for signature-creation solutions is
finally defined and proposed.

4.1.1 Existing Signature-Creation Models

The definition of models for signature-creation processes is a frequently followed approach in both sci-
entific literature and standardization works. In most cases, defined models use similar notations for
involved parties and components. This applies to most models irrespective of their level of abstraction.
In the European context, which is especially relevant for the special case of qualified electronic signa-
tures, terms and notations for involved parties and components are usually aligned with definitions given
in the EU Signature Directive [The European Parliament and the Council of the European Union, 1999],
which represents the legal basis for electronic signatures in the European Union. The EU Signature Di-
rective will soon be replaced by the EU eIDAS Regulation [The European Parliament and the Council
of the European Union, 2014]. The eIDAS Regulation reuses established terms and notations defined by
the EU Signature Directive. Furthermore, the eIDAS Regulation adds further definitions of parties and
components involved in signature-creation processes and related use cases. In the near future, the eIDAS
Regulation will assume the role of the Signature Directive and serve as a basis for common terms and
notations related to electronic signatures in Europe.

Besides legislations, also standards define standing terms of parties and components involved in
processes related to electronic signatures. For instance, ETSI1 provides a set of standards related to
electronic signatures [ETSI, 2014b]. Examples are the ETSI standards for CAdES [ETSI, 2013], PAdES
[ETSI, 2009b], and XAdES [ETSI, 2009a]. These standards focus on the definition of different formats
for electronic signatures. Even though they do not define concrete signature-creation models, these

1http://www.etsi.org/
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standards still provide definitions for involved parties and components. In particular, they identify a set
of major parties involved in business transactions supported by electronic signatures. Identified major
parties include the Signer, the Verifier, Trusted Service Providers (TSPs), and the Arbitrator. Depending
on the concrete standard, involved TSPs are also listed. Still, these standards identify involved parties
on a rather abstract level only, hardly taking into account details regarding their concrete realization or
implementation. Hence, the mentioned standards provide a solid basis for the identification of relevant
parties and components involved in signature-creation processes, but do not assemble these components
to concrete models of signature-creation solutions.

Concrete models of signature-creation processes and solutions are for instance provided by docu-
ments published by the European Committee for Standardization (CEN)2. For instance, the CEN Work-
shop Agreement (CWA) 14169 on Secure Signature Creation Devices Evaluation Assurance Level (EAL)
4+ [CEN, 2004a] defines security requirements for Secure Signature Creation Devices (SSCDs). For this
purpose, core components of signature-creation solutions that include an SSCD are identified and as-
sembled to a simple model. As CWA 14169 mainly focuses on the SSCD, other relevant parties and
components involved in signature-creation solutions are only briefly sketched in this document. More
details on such components are provided and considered by a model defined by the CEN Workshop
Agreement 14170 on security requirements for signature creation applications [CEN, 2004b]. This doc-
ument introduces a functional model for signature-creation solutions relying on an SSCD and a so-called
Signature Creation Application (SCA), which provides other entities access to the SSCD. Similar to
related standards, CWA 14170 relies on common notations, terms, and definitions of involved parties
and components. While other standards mainly use these terms on rather abstract levels, CWA 14170
assembles identified parties and components to provide a comprehensive functional model for signature-
creation solutions. A slightly modified version of the model introduced by CWA 14170 is also used in
the draft version of ETSI’s conformity assessment for signature creation and validation [ETSI, 2014a].
There, the rather complex model from CWA 14170 is reduced to a few components including the Signer,
the SCA, and the SSCD. In addition, exchanged information between these components is also consid-
ered by this model.

Identification, definition, and development of models of signature-creation solutions are not limited
to relevant standards. In addition, the development of signature-creation models has also been a topic of
interest for the scientific community. In several scientific publications, different models have been used
to systematically discuss concepts related to electronic signatures. For instance, Leitold et al. [2002] have
introduced the security architecture of the Austrian Citizen Card concept with the help of a simplified
model of a signature-creation system. This model identifies and arranges components of smart card
based signature solutions, such as a PIN pad, an SSCD, and a card-acceptor device. To serve the purpose
of the presented paper, Leitold et al. [2002] use a rather implementation-specific model that is tailored to
the special use case of smart card based solutions. In contrast, Arnellos et al. [2011] use a more abstract
model of a signature-creation solution. This model is used to discuss the structural reliability of signed
documents on a semantic level. These two contrary examples show that for scientific work on electronic
signatures similar considerations apply as for published standards on this topic: the employed model
heavily depends on the context and the use case, for which it has been defined and developed. Still, most
models share several similarities and are based on common definitions, terms, and notations. Common
terms are usually provided by legal foundations such as the EU Signature Directive [The European
Parliament and the Council of the European Union, 1999] or the eIDAS Regulation [The European
Parliament and the Council of the European Union, 2014], and by related standards.

The conducted survey on existing models for signature-creation solutions shows that there already
exists a set of established terms and notations for involved parties and components. Most models that
are employed in scientific work and standards rely on these common terms and notations. Nevertheless,
employed models differ in various aspects depending on the context, in which they are used. This has

2https://www.cen.eu
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led to the development of various models that differ in the set of considered parties and components, and
also in the granularity, in which parties and components are modeled. Hence, it can be concluded that
there is no universally valid and applicable model for all contexts. Instead, an adequate model needs to
be developed for each specific use case. This way, used models can be tailored to specific needs and
consider all relevant aspects.

4.1.2 Design Principles

Following the results of the conducted survey, a specific model for signature-creation solutions needs
to be defined for each context. Hence, a specific model also needs to be defined for the provision of
a signature solution for mobile end-user devices. For this purpose, two aspects are considered. First,
the defined model is based on the findings of the conducted survey. Second, a set of design principles
is taken into account. These design principles assure that the defined model is suitable for the given
context. Concretely, the following design principles are taken into account:

• Compliance with established notations and definitions: The model shall rely on established
terms and notations. Furthermore, it shall rely on established core components that are defined in
related legal frameworks and standards. This is reasonable in order to improve its comprehensibil-
ity and to guarantee that it can be easily set in relation to other existing models.

• Reliance on existing models: The model shall rely as much as possible on existing and approved
models. This way, their positive characteristics shall be inherited.

• Simplicity: The model shall be kept as simple as possible. This way, unnecessary complexity can
be avoided and focus can be kept on relevant aspects.

• Completeness: The model shall include all relevant parties and components that are involved in
a signature-creation process. This is reasonable, as the model will later be used to derive differ-
ent approaches for mobile signature solutions. Hence, completeness is crucial to assure that all
possible approaches can be derived.

Based on these design principles, an abstract model for mobile signature solutions is proposed. It is
later used to systematically derive possible approaches to create qualified electronic signatures on mobile
end-user devices. The proposed abstract model is introduced and discussed in the following section in
more detail.

4.1.3 Proposed Model

A suitable model needs to be chosen, in order to enable a systematic identification of possible approaches
for the creation of qualified electronic signatures on mobile end-user devices. Unfortunately, existing
models are usually tailored to specific use cases and must hence be regarded as inappropriate for this
purpose. Therefore, the alternative model shown in Figure 4.1 is proposed.

The proposed model has been defined according to the predefined design principles. To satisfy the
design principle regarding reliance on existing models, the model has been based on CWA 14170 [CEN,
2004b]. This way, it builds on an elaborate and approved basis. The model also meets the design prin-
ciple regarding compliance with established notations and definitions. Where possible and reasonable,
its components have been named according to terms and notation used in related legal frameworks and
standards. New notations have only been chosen for components that are unique for the proposed model.
Such components have been added mainly for two reasons. First, new components have been added
to achieve completeness according to the above-defined design principle. Second, for the sake of sim-
plicity, which has also been defined as relevant design principle, several components defined by other
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Figure 4.1: The proposed abstract model identifies involved parties and components of signature-
creation solutions and defines basic interfaces between these components.

models have been combined to more generic components. To avoid confusion with components of other
models, these combined components have been assigned with new names. This way, the proposed model
complies with all predefined design principles.

In general, the model shown in Figure 4.1 consists of the Signatory and four top-level components.
The Signatory is the only non-technical entity. According to the EU Signature Directive, Signatory
’means a person who holds a signature-creation device and acts either on his own behalf or on behalf
of the natural or legal person or entity he represents’ [The European Parliament and the Council of
the European Union, 1999]. Following this definition, the Signatory is the user who aims to create
an electronic signature. Apart from the Signatory, four top-level components can be identified. These
top-level components are the SSCD, the SCA, the Service Provider, and the User Client. SSCD and
SCA are established terms for key components of signature-creation models. The components Service
Provider and User Client have been added, as they will play a relevant role in the subsequent assessment
of possible signature-creation approaches. In the following subsections, the four top-level components
of the proposed model are introduced in detail.

4.1.3.1 Secure Signature Creation Device

SSCDs represent a crucial component for the creation of qualified electronic signatures. The need for
SSCDs to create qualified electronic signatures is defined by the Signature Directive [The European
Parliament and the Council of the European Union, 1999]. The concept of SSCDs is also used by the
eIDAS Regulation. However, this regulation introduces the term QSCD for this purpose. As the term
SSCD is still more established, this term is used throughout this thesis.

A model of an SSCD, which also illustrates its functionality as defined in Annex III of the EU Sig-
nature Directive, is for instance provided in CWA 14169 [CEN, 2004a]. The SSCD securely stores the
Signatory’s cryptographic signing key, i.e. the so-called Signature-Creation Data (SCD), and crypto-
graphically computes electronic signatures using this key. As the Signatory’s signing key must not be
extractable from the SSCD, the SSCD is the only component that can access and use this key for crypto-
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graphic operations. Additionally, the SSCD must implement appropriate means to protect the Signatory’s
signing key from unauthorized access. These means must guarantee that access to this key and hence
to the capability to create electronic signatures using this key are limited to the legitimate Signatory. In
general, the SSCD needs two inputs for the creation of an electronic signature. First, the SSCD needs to
be supplied with the Data To Be Signed (DTBS). Second, the SSCD needs to be supplied with the correct
authentication data provided by the Signatory in order to authorize creation of an electronic signature.
If both inputs are provided accordingly, the SSCD computes an electronic signature over the provided
DTBS and returns the result of this signing operation, i.e. the Signed Data (SD). Relevant interfaces of
the SSCD are also shown in Figure 4.1.

4.1.3.2 Signature Creation Application

The SCA is the central component of the proposed model. This becomes apparent from Figure 4.1. The
SCA connects the Signatory, the SSCD, and the Service Provider. The central role of SCAs also becomes
apparent from CWA 14170 [CEN, 2004b], which defines security requirements for this component. Ac-
cording to CWA 14170, an SCA contains various subcomponents that cover its functionality. For the sake
of simplicity, the model shown in Figure 4.1 uses a simplified representation of the SCA’s functionality
and defines only three subcomponents for the SCA. These are the Signature Processing Component, the
Signatory Authentication Component, and the DTBS Viewer. These three subcomponents combine the
functionality of multiple subcomponents of SCAs as defined in CWA 14170. This way, the proposed
model assembles the SCA from only three subcomponents, while the entire functionality of an SCA is
still covered.

Figure 4.1 shows that the SCA is the only component with a direct interface to the SSCD. Hence,
the SCA needs to provide means to supply the SSCD with the required inputs for signature-creation
processes. In particular, the SCA needs to supply the SSCD with DTBS and with authentication data.
For provision of DTBS, the SCA’s Signature Processing Component plays a central role. The Signature
Processing Component receives DTBS from the Service Provider and forwards these data to the SSCD.
After completion of the signing process in the SSCD, the Signature Processing Component receives the
SD from the SSCD. The Signature Processing Component forwards the SD to the Service Provider.
Depending on the chosen implementation, the Signature Processing Component might also be respon-
sible for doing preprocessing or reformatting of DTBS received from the Service Provider and of the
SD received from the SSCD. This is typically the case, if the communication interface to the Service
Provider bases on different communication protocols and standards than the communication interface to
the SSCD.

As the SCA is the only component with a direct interface to the SSCD, the SCA is also responsible
for supplying the SSCD with required authentication data. This functionality is covered by the SCA’s
Signatory Authentication Component. This component has a direct interface to the Signatory. Through
this interface, the Signatory Authentication Component requests authentication data from the Signatory
and forwards these data to the SSCD. Similar to the Signature Processing Component, also the Signatory
Authentication Component might be required to reformat authentication data entered by the Signatory.
This can be necessary to adapt authentication data entered by the Signatory to the technology used for
communication between the SCA and the SSCD.

The DTBS Viewer represents the third subcomponent of the SCA. Through the DTBS Viewer, the
SCA gives the Signatory the opportunity to check the DTBS. This allows the Signatory to review the
data that is about to be signed before providing the required authentication data that finally enables
the signature-creation process in the SSCD. Depending on the concrete implementation and used data
formats, the DTBS Viewer might be required to preprocess the received DTBS in order to transform it
into a human-readable format.

The Signature Processing Component, the Signatory Authentication Component, and the DTBS
Viewer basically cover the functionality of the SCA. However, to achieve the intended functionality,
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the SCA additionally needs to assure appropriate bindings between its subcomponents. This is also illus-
trated in Figure 4.1. In total, two bindings need to be guaranteed. First, the SCA needs to assure that the
DTBS displayed to the Signatory by the DTBS Viewer corresponds to the DTBS sent to the SSCD for
signature creation. Second, there must also be an unambiguous binding between the DTBS and the au-
thentication data. This means that there must be an unambiguous and verifiable link between the DTBS
and the authentication data that authorizes signature creation on these DTBS.

4.1.3.3 Service Provider

As indicated by its name, the Service Provider provides some kind of service to the Signatory. In the
context of signature-creation processes, the proposed model shown in Figure 4.1 defines two additional
roles for the Service Provider. In its first role, the Service Provider defines the data to be signed. At
some point during service provision, the Signatory is requested to create a qualified electronic signature
on data defined by the Service Provider. Hence, the Service Provider represents the source of the DTBS.
In its second role, the Service Provider represents the final destination of SD. According to the pro-
posed model, SD are forwarded to the Service Provider by the SCA after successful signature-creation
processes. Combining source of the DTBS and destination of the SD into one component distinguishes
the model shown in Figure 4.1 from other established models of signature-creation solutions. These
models usually define separate components for the creation of the DTBS and for the consumption and
further processing of the SD. Entities that act as recipients of the SD are usually referred to as Relying
Party (RP) in these models. For the given context, distinguishing between creators of the DTBS and
recipients of the SD is however not necessary. Hence, for the sake of simplicity both functionalities are
assumed to be covered by a single component. This component is simply denoted as Service Provider,
in order to avoid confusion with components of other signature-creation models.

4.1.3.4 User Client

The User Client represents the fourth top-level component of the proposed model. The User Client is
used by the Signatory to consume services provided by the Service Provider. Similar to the Service
Provider, the User Client is no integral component of the signature solution itself. However, the User
Client becomes relevant when analyzing different approaches to create electronic signatures on mobile
end-user devices. Depending on the actual implementation of the Service Provider and the User Client,
the roles of these two components can also be combined and implemented by one component. This is
for instance the case with typical mobile apps. However, there are also scenarios that require the Service
Provider and the User Client to be regarded by separate components. Examples are for instance web-
based services, where the Service Provider is implemented by a central web application, whereas the
User Client is implemented by a web browser. As subsequent assessments of possible approaches to
implement the proposed model require a separation of the two components, the model shown in Figure
4.1 defines the Service Provider and the User Client as two separate components.

4.1.4 Limitations

The proposed model represents a common abstract basis for the systematic identification of possible
approaches to create electronic signatures on mobile end-user devices. Following predefined design
principles, the proposed model has been kept as simple and as minimalistic as possible. For this purpose,
in particular the following two aspects of electronic-signature solutions are not covered by the model
shown in Figure 4.1:

• Signature validation: Electronic-signature solutions must provide means for both signature cre-
ation and signature validation. However, the proposed model puts focus on signature creation only.
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Even though the validation of electronic signatures is without doubt an important issue, validation
aspects do usually not directly influence design decisions of signature-creation solutions. Vali-
dation services face different challenges that are only marginally influenced or caused by design
or implementation decisions of the corresponding signature-creation solution. For these reasons
and also for the sake of simplicity and clarity, signature validation has not been considered for the
identification of relevant parties and components. The conceptual separation of signature creation
and validation is actually common practice. For instance, also ETSI follows this approach in Draft
SR 019 020 (Rationalised Framework of Standards for Advanced Electronic Signature in Mobile
Environments)3, for which signature-creation and signature-validation scenarios are clearly sepa-
rated.

• Registration: In general, signature-creation solutions typically consist of two major phases: the
registration phase and the usage phase. In the registration phase, signature-creation functionality
is activated and made available for a specific Signatory. Activation of signature functionality typ-
ically includes the generation of a cryptographic key-pair, the definition of an authorization code
that protects access to the private part of this key pair, and issuing of the Signatory’s qualified
electronic certificate. This certificate binds the created cryptographic key to the Signatory’s iden-
tity. In the subsequent usage phase, the activated signature functionality can then be used to create
electronic signatures. Typically, the registration phase needs to be run once by each Signatory in
order to enable the creation of electronic signatures during the usage phase. After successful reg-
istration, the usage phase can be repeated arbitrary times. As the registration phase needs to be run
only once, requirements of the registration process can also be covered by organizational means.
This does not apply to the usage phase. The usage phase must be designed and implemented in
a way that secure and usable signature-creation processes can be conveniently conducted by the
Signatory arbitrary times. This implies that requirements of this phase mainly need to be covered
by technical means. For these reasons, the proposed model focuses only on components that are
required during the usage phase, i.e. during signature-creation processes.

Due to its abstract, implementation-independent, and technology-agnostic nature, the proposed model
covers a broad spectrum of possible approaches to create electronic signatures. Different approaches can
be derived from the proposed model by varying the concrete implementation of the model’s identified
components. Hence, each approach to create electronic signatures corresponds to a concrete implemen-
tation variant of the proposed model. In the following section, a systematic approach is followed to
derive all possible implementation variants from the proposed abstract model.

4.2 Implementation Variants

The proposed abstract model for signature-creation solutions identifies components and relevant inter-
faces between these components. Due to its technology-agnostic and implementation-independent char-
acter, the model does however not make any assumptions regarding their concrete implementation. In
practice, various components can be implemented differently, yielding different implementation vari-
ants of one and the same abstract model. In this section, possible implementation variants are derived
systematically by combining possible implementations of all identified components.

In general, components can either be implemented locally on the Signatory’s mobile end-user device,
or remotely by means of a server component. To identify possible implementation variants, all identified
components are split into two categories. The first category contains components that need to be im-
plemented on the Signatory’s local mobile end-user device in any case. For instance, this applies to the
DTBS Viewer. As the Signatory needs to directly interact with the DTBS Viewer, this component needs
to be implemented on the Signatory’s mobile end-user device. In contrast, the second category contains

3http://docbox.etsi.org/ESI/Open/Latest Drafts/sr 019020-v004-AdES-in-mobile-envt STABLE-DRAFT.zip
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components that can be implemented either locally on the Signatory’s mobile end-user device, or re-
motely by a server component. This applies for instance to the Service Provider. The Service Provider
can either be implemented remotely, e.g. by a web application, or locally, e.g. by a mobile app.

Apparently, the key classification criterion is the Signatory’s need to interface the respective compo-
nent. All components of the abstract signature-creation model that need to provide a user interface to the
Signatory must be implemented locally. All other components are not subject to such restrictions and can
be implemented either locally or remotely. According to this classification criterion, three components
can be identified that can at least theoretically be implemented either locally or remotely: the Service
Provider, the Signature Processing Component, and the Secure Signature Creation Device. This yields
eight possible combinations of locally and remotely implemented components. These combinations are
summarized in Figure 4.2.

1 Local Local Local
Implementation Variant A: 

The Classical Approach

2 Local Local Remote
Implementation Variant B:

The Remote-SSCD Approach

3 Local Remote Local
Implementation Variant C:

The SIM Approach

4 Local Remote Remote
Implementation Variant D:

The Server-HSM Approach

5 Remote Local Local
Implementation Variant A: 

The Classical Approach

6 Remote Local Remote
Implementation Variant B:

The Remote-SSCD Approach

7 Remote Remote Local
Implementation Variant C:

The SIM Approach

8 Remote Remote Remote
Implementation Variant D:

The Server-HSM Approach

ID
Service

Provider

Signature Processing 

Component
SSCD Implementation Variant

Figure 4.2: The applied systematic identification process yields four general implementation vari-
ants for signature-creation solutions.

The last column of the table illustrated in Figure 4.2 shows that the eight possible combinations
can be reduced to four general implementation variants. For each of the four implementation variants,
the component Service Provider can be implemented either locally or remotely. Thus, for each imple-
mentation variant, this component needs to be split into the two components Local Service Provider
and Remote Service Provider. The four resulting implementation variants, which all consider both the
Local Service Provider and the Remote Service Provider, are presented and discussed in the following
subsections in more detail.

4.2.1 Implementation Variant A: The Classical Approach

Implementation Variant A can also be referred to as the Classical Approach, since it basically resembles
the architecture of typical smart card based signature solutions for classical end-user devices. These
solutions make use of smart cards to provide the functionality of the SSCD. Furthermore, these solu-
tions typically rely on software being installed on the user’s local system. This software enables service
providers access to the locally connected smart card, reads required credentials from the user, and dis-
plays relevant information during signature-creation processes. Signature solutions for mobile end-user
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devices that rely on Implementation Variant A follow a similar approach. As shown in Figure 4.2, such
solutions implement both the SSCD and the Signature Processing Component locally on the Signatory’s
end-user device. From the abstract model and the design decision to realize both the SSCD and the
Signature Processing Component locally, the general architecture of Implementation Variant A can be
derived. This architecture is shown in Figure 4.3.
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Figure 4.3: Implementation Variant A: The Classical Approach comprises solutions that imple-
ment both the SCA and the SSCD locally.

In addition to the abstract model shown in Figure 4.1 on page 96, the architecture of Implementation
Variant A shown in Figure 4.3 defines different domains. All parties and components of the proposed
model are assigned to one of these domains. Concretely, the architecture of Implementation Variant A
defines the two domains User Domain and Service Provider Domain. The Service Provider Domain con-
tains only the Remote Service Provider, which can for instance be realized by means of a web application
or web service hosted on a central web server. All other roles and components of the proposed model
are assigned to the User Domain. Hence, the SSCD, the Local Service Provider, the User Client, and
the Signature Creation Application including all its subcomponents are implemented locally in the User
Domain.

4.2.2 Implementation Variant B: The Remote-SSCD Approach

Implementation Variant B breaks with the strict local paradigm of the Classical Approach. In contrast
to the Classical Approach, Implementation Variant B implements the SSCD remotely. Accordingly, Im-
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plementation Variant B can also be referred to as the Remote-SSCD Approach. Removing the SSCD
from the User Domain renders SSCD realizations on the local end-user device unnecessary. This im-
proves the feasibility of signature solutions for mobile end-user devices with limited capabilities. As
shown in Figure 4.2, the location of the SSCD is the only difference between the Classical Approach
and the Remote-SSCD Approach. The Signature Processing Component is implemented locally by both
approaches. The general architecture of Implementation Variant B, i.e. the Remote-SSCD Approach, is
shown in Figure 4.4.
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Figure 4.4: Implementation Variant B: The Remote-SSCD Approach comprises solutions that im-
plement the SCA locally and the SSCD remotely.

Due to the remote nature of the SSCD, an additional remote domain needs to be defined. Thus, the
architecture shown in Figure 4.4 defines the three domains User Domain, Service Provider Domain, and
Signature-Service Provider Domain. Similar to the Classical Approach, the only component located in
the Service Provider Domain is the Remote Service Provider. Also the newly defined Signature-Service
Provider Domain contains only one component, i.e. the SSCD. All other entities including the SCA, the
Local Service Provider, the User Client, and the Signatory are again located in the User Domain.

In contrast to the Classical Approach, which basically resembles smart card based signature solu-
tions, the architecture of the Remote-SSCD Approach can be less frequently found in practice. So far,
only few providers of remote SSCDs exist. The most popular example is probably the Austrian Mobile
Phone Signature, which relies on a remote SSCD for creating qualified electronic signatures on behalf
of Signatories. However, this solution also implements the Signature Processing Component remotely.
Hence, the architecture shown in Figure 4.4 does not fully apply to the Austrian Mobile Phone Signature.
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Other solutions that rely on remote components to implement cryptographic functionality are provided
by some cloud-service providers. For instance, Amazon offers a product called Amazon CloudHSM4,
which basically provides cryptographic services via a cloud-based hardware security module. However,
most of these solutions do not provide functionality for the creation of qualified electronic signatures yet.
Hence, there are hardly any existing solutions that rely on the Remote-SSCD Approach shown in Figure
4.4.

The special characteristic of the Remote-SSCD Approach raises several challenges when further
developing this approach towards a concrete signature-creation solution. One of these challenges is
due to the local separation of the SCA and the SSCD. This raises the need for secure and reliable
communication between these two locally dispersed components. Secure and reliable communication
channels must be provided for DTBS and SD exchanged between the Signature Processing Components
and the SSCD, as well as for authentication data that is sent from the local Signatory Authentication
Component to the remote SSCD. Another challenge is imposed by the remote nature of the SSCD itself.
Signature-creation solutions that support creation of qualified electronic signatures need to assure that
the Signatory maintains sole control over personal signature-creation data, i.e. cryptographic signing
keys. This requirement is implicitly met by e.g. smart card based approaches, as the smart card remains
under physical control of the Signatory all the time. Sole control over cryptographic signing keys is
assured in a similar way by the Classical Approach. There, the Signatory is in physical possession of
the SSCD, which is part of the Signatory’s mobile end-user device. Considering the slightly different
architecture of the Remote SSCD-Approach, the situation is sort of special. Due to its remote nature, the
SSCD is not under physical control, i.e. in possession, of the Signatory. Thus, alternative means need
to be applied in order to meet the requirement for sole control over the Signatory’s signature-creation
data. Such alternative means are in principle feasible. This has for instance been shown by the Austrian
Mobile Phone Signature, which relies on a remote SSCD and is still capable to create qualified electronic
signatures. The underlying concept of this solution, which assures sole control over signature-creation
data even in remote signing scenarios, has been introduced and discussed by Orthacker et al. [2010].

4.2.3 Implementation Variant C: The SIM Approach

The Remote-SSCD Approach shows that realizing components of signature-creation solutions in a re-
mote domain is an attractive way to overcome limitations of mobile end-user devices. Also Implemen-
tation Variant C relies on this approach and implements the Signature Processing Component remotely.
However, in contrast to the Remote-SSCD Approach, the SSCD is realized locally on the mobile end-
user device. The resulting architecture of Implementation Variant C is shown in Figure 4.5. Similar
to the Remote-SSCD Approach, relevant roles and components are assigned to the three domains User
Domain, Service Provider Domain, and Signature-Service Provider Domain. The Service Provider Do-
main again contains only the Remote Service Provider. In contrast to the Remote-SSCD Approach, the
Signature-Service Provider Domain now contains the Signature Processing Component instead of the
SSCD. Hence, a remote service is provided that allows service providers to request signature-creation
functionality provided by the SSCD. The SSCD itself is assigned to the User Domain and implemented
locally on the Signatory’s mobile end-user device.

There are several signature-creation solutions that rely on the architecture shown in Figure 4.5. Most
of them rely on mobile phones. These solutions make use of special SIMs to implement the SSCD in the
User Domain. Furthermore, they rely on a central service hosted either by the Signatory’s MNO or by a
separate service provider to implement the Signature Processing Component. SIM-based solutions that
follow the architecture shown in Figure 4.5 are in productive operation e.g. in Estonia5 or Finland6. Due
to their similarity to SIM-based signature solutions, Implementation Variant C can also be referred to as

4http://aws.amazon.com/cloudhsm/
5http://mobiil.id.ee/
6https://www.gemalto.com/govt/customer cases/finland mobile.html
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Figure 4.5: Implementation Variant C comprises solutions that implement the SCA partly remotely
and the SSCD locally.

the SIM Approach.

Signature solutions that follow the SIM Approach need to overcome several challenges. Similar to the
Remote-SSCD Approach, the Signature Processing Component and the SSCD are locally dispersed and
implemented in different domains. Hence, secure and reliable communication channels between these
locally dispersed components need to be provided. Another challenge that arises with the architecture
shown in Figure 4.5 concerns the SCA. In contrast to the architectures of the Classical Approach and
the Remote-SSCD Approach, the architecture shown in Figure 4.5 implements subcomponents of the
SCA in different domains. Hence, subcomponents of the SCA are locally dispersed and implemented
by different entities. This raises the need for means to assure the required binding between the three
subcomponents of the SCA across different domains.

4.2.4 Implementation Variant D: The Server-HSM Approach

Implementation Variant D combines the approaches followed by the Remote-SSCD Approach and the
SIM Approach. These two approaches implement either the SSCD or the Signature Processing Com-
ponent remotely. In contrast, both components are implemented remotely according to Implementation
Variant D. This way, Implementation Variant D basically reflects the architecture of the Austrian Mobile
Phone Signature, which consists of a central web-based service that assumes the role of the Signature



4.2. Implementation Variants 105

Processing Component. The SSCD is implemented by means of an HSM that is attached to this remote
service. The DTBS Viewer and the Signatory Authentication Component are implemented by simple
web forms, which can be integrated easily into web-based applications that aim to integrate signature-
creation functionality. Due to its similarity with the Austrian Mobile Phone Signature, Implementation
Variant D can also be referred to as the Server-HSM Approach.
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Figure 4.6: Implementation Variant D comprises solutions that implement the SCA partly remotely
and the SSCD fully remotely.

The architecture of the Server-HSM Approach is illustrated in Figure 4.6. Relevant parties and com-
ponents are assigned to the three domains User Domain, Service Provider Domain, and Signature-Service
Provider Domain. As for all other implementation variants, the Service Provider Domain contains the
Remote Service Provider only. In contrast to the Remote-SSCD Approach and the SIM Approach, the
Signature-Service Provider Domain now contains both the SSCD and the Signature Processing Compo-
nent. In theory, these two components can also be assigned to two different remote domains and can be
provided by different entities. For instance, the provider of the Signature Processing Component could
rely on a remote SSCD provided by a cloud-service provider. From the Signatory point of view, this sce-
nario does not differ significantly from the scenario shown in Figure 4.6 in terms of feasibility, security,
and usability. Hence, this scenario is not considered separately.

Like other implementation variants, also realizations that rely on the architecture shown in Figure
4.6 need to overcome several challenges. Similar to the SIM Approach, also the Server-HSM Approach
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relies on an SCA, whose subcomponents are spread over different domains. This again raises the need for
means to assure the required binding between the SCA’s three subcomponents. Similar to the Remote-
SSCD Approach, the SSCD and the Signatory Authentication Component are locally dispersed as shown
in Figure 4.6. This raises the need for a secure cross-domain communication channel between these two
components in order to enable a reliable transmission of authentication data. Another challenge that
arises with the Server-HSM Approach is imposed by the remote nature of the used SSCD. Basically,
the same considerations apply as for the Remote-SSCD Approach: as the Signatory does not physically
possess the SSCD, concrete realizations need to implement alternative means, in order to assure the
Signatory’s sole control over remotely stored signature-creation data.

4.3 Feasibility Assessment

Possible approaches to create electronic signatures on mobile end-user devices can be classified into four
general implementation variants. All of them base on the same abstract model and consist of the same set
of components. These components are assigned to different domains and realized by different entities,
depending on the architecture of the respective implementation variant. Similar to their common under-
lying abstract model, also the four implementation variants define components and interfaces on a rather
abstract level. This way, each variant covers a broad spectrum of concrete realizations. For instance,
Implementation Variant C, which has been denoted as the SIM Approach, covers existing mobile signa-
ture solutions relying on local SIMs. Similarly, Implementation Variant D, also denoted as Server-HSM
Approach, covers server-based mobile signature solutions such as the Austrian Mobile Phone Signature.

Their abstract nature facilitates comparative assessments of the four implementation variants. As
they all rely on the same set of components, they can be easily compared on conceptual level. As a first
step in a series of comparative assessments, the feasibility of the four implementation variants is assessed
in this section. The conducted assessment focuses on current mobile end-user devices and analyzes their
capabilities to provide required functionality. In particular, opportunities to implement components of
the User Domain on current mobile end-user devices are assessed. This way, the overall feasibility of the
four implementation variants on current mobile end-user devices is assessed and compared.

4.3.1 Methodology

The heterogeneous ecosystem of mobile operating systems and end-user devices complicates accom-
plishment of a detailed feasibility assessment. Currently available mobile operating systems differ sig-
nificantly in various aspects. Hence, a thorough feasibility assessment requires separate analyses for all
mobile operating systems and needs to consider discrepancies between different end-user devices. To
limit its complexity, the conducted feasibility assessment is restricted to the current major players on the
mobile consumer-device market, i.e. Google Android7, Apple iOS8, and Microsoft Windows Phone 89.
This selection is based on current market and sales statistics [Fingas, 2014], which indicate a dominance
of these platforms. By focusing on these platforms, the complexity of the conducted assessment remains
manageable, while still more than 95% of all mobile end-user devices are covered.

To assess the feasibility of the four implementation variants, a thorough methodology is followed,
which defines two consecutive assessment steps. In the first step, a component-specific assessment is
conducted. There, the feasibility of all components identified by the abstract model, which all implemen-
tation variants are based on, is assessed separately. In the second step, results of the component-specific
assessment are combined according to the architecture of the particular implementation variant.

7http://www.android.com/
8https://www.apple.com
9http://www.windowsphone.com
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All conducted feasibility assessments have been based on publicly available information on technolo-
gies provided by different mobile platforms and on limitations of mobile operating systems. Available
information has been collected from the following sources:

• Official documentations: Public information on mobile operating systems and mobile end-user
devices represent an important basis for the conducted feasibility assessment. Information on mo-
bile operating systems can be obtained from web resources such as official development portals
provided by Google for Android [Google, 2014] or by Apple for iOS [Apple, 2014]. In addition,
specifications of mobile end-user devices are usually also publicly available on vendor websites.
This information has been used to identify capabilities, supported technologies, and available fea-
tures of different mobile operating systems and mobile end-user devices.

• Related scientific work: Assessment of different mobile operating systems has been a topic of
interest for the scientific community for several years. For instance, a comparison of Android and
iOS has been provided by Rogers and Goadrich [2012]. A comparison of mobile platforms has
also been given by Renner et al. [2011]. Results of these and related publications on capabilities
and limitations of mobile platforms have also been incorporated into the conducted feasibility
assessment.

• Results of own work: Conducted feasibility assessments have also been based on results of own
scientific work. For instance, we have provided a detailed analysis of major mobile platforms and
mobile operating systems in Zefferer et al. [2013b]. In this work, we have focused on relevant
aspects for the development and deployment of e-government applications and services on current
mobile platforms. Furthermore, also own work on analyses of encryption systems of the mobile
operating systems iOS [Teufl et al., 2013b] and Android [Teufl et al., 2014a] has been considered.

Publicly available information, related work, and own research results draw a comprehensive pic-
ture of capabilities and limitations of major mobile operating systems. Based on this information, the
feasibility of relevant components of mobile signature solutions is assessed in the following subsection.

4.3.2 Component-Specific Assessment

The four identified implementation variants of mobile signature solutions are all composed of the same
set of components, which have been derived from the proposed abstract model for mobile signature
solutions. A simplified version of this model is shown in Figure 4.7. The feasibility of all components
identified by this model is assessed in the following subsections.

4.3.2.1 Service Provider

The Service Provider can be implemented either locally or remotely. As remote Service Providers are
located off the local mobile device, the feasibility of this component is independent from available tech-
nologies on current smartphones and related mobile end-user devices. Hence, remotely implemented
Service Providers can be assumed to be feasible.

Local Service Providers are realized on the mobile end-user device. The Signatory consumes the
provided service with the help of the User Client, which also resides on the mobile end-user device. On
all major mobile platforms, the use of local software is basically limited to mobile apps. In contrast to op-
erating systems of classical end-user devices, mobile operating systems provide only limited support for
inter-application communication. This renders the realization of locally implemented Service Providers,
which provide User Clients a certain service through a well-defined interface, difficult. This especially
applies to the mobile operating systems Apple iOS and Microsoft Windows Phone 8. On Google An-
droid, basic support for inter-application communication is available [Chin et al., 2011], but far from
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Figure 4.7: The simplified abstract model identifies basic components of signature-creation solu-
tions.

being comparable with mechanisms available on classical end-user devices. Due to given limitations
imposed by the architecture of current mobile operating systems, the realization of locally implemented
Service Providers is practically limited to mobile apps. On most operating systems, these apps need to
combine the roles of the Service Provider and the User Client, as inter-application communication is
not widely supported. The only exception among all major mobile platforms is Google Android. As
this platform and its underlying operating system support inter-application communication to a certain
extent, Service Provider and User Client can also be realized by means of two separated apps.

In summary, it can be concluded that realization of a locally implemented Service Provider is feasible
on all major mobile platforms as long as this component is combined with the User Client to one single
app. Separated implementations of these two components are practically feasible on Google Android
only. Remotely implemented Service Providers are possible on all platforms, as their feasibility is inde-
pendent from capabilities of the mobile end-user device. Obtained results of the feasibility assessment
of the component Service Provider are summarized in Figure 4.8.

Component Google Android Apple iOS Microsoft Windows Phone 8

Local Service Provider Feasible
Feasible if combined with 

User Client

Feasible if combined with 

User Client

Remote Service Provider Feasible Feasible Feasible

Figure 4.8: The feasibility of the component Service Provider can be limited on certain platforms
due to missing support for inter-application communication.

4.3.2.2 User Client

This component acts as intermediary between the Service Provider and the Signatory. In case of a locally
implemented Service Provider, the User Client can be realized together with the Service Provider in one
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single app.

In case of a remote Service Provider, the User Client must be implemented as a separate component
residing on the mobile device. A common implementation of the User Client is the web browser. A web
browser provides a user interface to the Signatory, through which services offered by a remote Service
Provider, e.g. a web-application server, can be accessed. As web browsers are available on all major
mobile operating systems, the general feasibility of the component User Client is evident for all these
systems. Also other implementations of this component are possible. Limitations are theoretically only
imposed by restrictions regarding supported communication technologies and protocols between remote
Service Providers and the local User Client. Such restrictions can for instance be imposed by the mobile
operating system.

In general, it can be concluded that realization of the component User Client is feasible on all major
mobile platforms. Depending on the nature of the Service Provider, the User Client can either be realized
as separate application or be combined with the Local Service Provider. Assessment results for the
component User Client are summarized in Figure 4.9

Component Google Android Apple iOS Microsoft Windows Phone 8

User Client Feasible Feasible Feasible

Figure 4.9: The component User Client is feasible on all relevant platforms.

4.3.2.3 DTBS Viewer

The functionality of the DTBS Viewer is limited to displaying data to the Signatory. Displaying of
data is usual functionality of mobile apps and hence feasible on all major mobile platforms. In order
to obtain the data to be displayed to the Signatory, the DTBS Viewer needs to interface and communi-
cate with the Signature Processing Component. If this component is implemented locally as a separate
app, collection of data to be displayed requires inter-application communication. In this case, support
of inter-application communication by the mobile operating system is crucial for the feasibility of the
DTBS Viewer. Support for inter-application communication is currently mainly available on the Google
Android platform. Other major mobile platforms such as Apple iOS provide only very limited means for
inter-application communication [Gribsgy, 2009].

In summary, it can be concluded that realization of the DTBS Viewer is feasible on all major plat-
forms. Some platforms might pose several restrictions regarding the implementation of the communica-
tion interface between the DTBS Viewer and the Signature Processing Component, as these platforms
provide only minor support for inter-application communication. On these platforms, the Signature
Processing Component and the DTBS Viewer must be implemented in a way that does not require inter-
application communication for data exchange. For instance, these two components can be implemented
by a single mobile app. The feasibility of the component DTBS Viewer is summarized in Figure 4.10.

Component Google Android Apple iOS Microsoft Windows Phone 8

DTBS Viewer Feasible

Feasible if Signature Processing 

Component is not implemented as 

separate app

Feasible if Signature Processing 

Component is not implemented as 

separate app

Figure 4.10: On some platforms, certain restrictions regarding the implementation of the Signature
Processing Component need to be considered in order to assure the feasibility of the
DTBS Viewer.



110 Chapter 4. Approaches Towards Electronic Signatures on Mobile
End-User Devices

4.3.2.4 Signatory Authentication Component

The Signatory Authentication Component reads authentication data entered by the Signatory and for-
wards these data to the SSCD. All major mobile platforms provide user-input capabilities for this pur-
pose. Hence, this functionality is feasible on all major mobile platforms.

Accessing the SSCD to forward entered authentication data is more challenging. This especially
applies to scenarios, in which the SSCD is locally dispersed from the Signatory Authentication Compo-
nent. As the Signatory Authentication Component needs to be local in any case, such scenarios comprise
implementation variants relying on a remote SSCD. To enable communication between a local Signa-
tory Authentication Component and a remote SSCD, appropriate communication protocols need to be
applied. Both the Signatory Authentication Component and the SSCD must support these protocols.
As the Signatory Authentication Component is typically realized in software, support for required com-
munication protocols to access remote SSCDs is a matter of implemented functionality and hence in
principle feasible. In case of a local SSCD, special communication protocols to access an SSCD residing
in a remote domain are not required. In this case, communication capabilities between the Signatory
Authentication Component and the SSCD heavily depend on the mobile operating system and on the im-
plementation of the SSCD. Details on accessing local SSCDs on different mobile platforms are discussed
in Section 4.3.2.6 in more detail.

In summary, it can be concluded that realizing the functionality of the Signatory Authentication
Component is feasible on all major platforms in case the used SSCD provides interfaces that allow the
Signatory Authentication Component to forward entered authentication data. This is summarized in
Figure 4.11.

Component Google Android Apple iOS Microsoft Windows Phone 8

Signatory Autentication Component
Feasible if SSCD provides appropriate 

interface

Feasible if SSCD provides appropriate 

interface

Feasible if SSCD provides appropriate 

interface

Figure 4.11: The Signatory Authentication Component is feasible on all platforms, if the SSCD
provides communication interfaces to forward entered authentication data.

4.3.2.5 Signature Processing Component

The Signature Processing Component interfaces the Service Provider, the DTBS Viewer, and the SSCD.
Provision of suitable interfaces to these three components is the most challenging aspect regarding the
feasibility of the Signature Processing Component. In general, the Signature Processing Component
can be implemented locally or remotely. Depending on its location, different aspects that influence the
feasibility of the Signature Processing Component need to be taken into account.

In case of a remote Signature Processing Component, communication interfaces to other components
are feasible on all platforms, if these components provide the required interfaces. This is typically not
an issue for software-based components such as the DTBS Viewer, as their functionality can be easily
extended. The situation is however more complicated for the SSCD, which is typically realized in hard-
ware. Still, the SSCD needs to provide an interface, through which the remote Signature Processing
Component can access the SSCD’s functionality. Provision of such an interface can be especially chal-
lenging in case of a local SSCD. In this case, the local SSCD needs to provide an interface that can be
accessed by the Signature Processing Component from a remote domain. Hence, both the local SSCD
and the remote Signature Processing Component need to support communication protocols that enable
cross-domain communication. This is typically not an issue for the software-based Signature Processing
Component, but might be challenging for the SSCD. This will be discussed in more detail in Section
4.3.2.6.
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In case of a local Signature Processing Component, feasibility is even more difficult to achieve. In
this case, capabilities of the Signature Processing Component to communicate with other local compo-
nents additionally depend on the platform’s support for inter-application communication. Support for
inter-application communication differs between mobile platforms and operating systems. Google An-
droid currently provides the broadest support for inter-application communication and hence the highest
degree of flexibility regarding realizations of the Signature Processing Component. Considering the re-
quired access to the SSCD, two scenarios need to be distinguished for a locally implemented Signature
Processing Component. In the first scenario, the SSCD is also realized locally. In this case, communi-
cation capabilities between the Signature Processing Component and the SSCD heavily depend on the
mobile operating system and on the concrete realization of the SSCD. The feasibility of different SSCD
realizations is discussed in Section 4.3.2.6 in more detail. In the second scenario, the SSCD is realized
remotely. In this case, both the SSCD and the Signature Processing Component need to support commu-
nication protocols that enable cross-domain communication. Being typically implemented in software,
support of such protocols is technically feasible for a local Signature Processing Component. Capabil-
ities of remote SSCDs to provide support for cross-domain communication protocols are discussed in
Section 4.3.2.6.

In summary, support for inter-application communication and capabilities to access the SSCD can
be identified as key aspects for the feasibility of the Signature Processing Component. This especially
applies to local Signature Processing Components. Inter-application communication is currently mainly
available for the Google Android platform. Other major mobile platforms provide only limited support
for this feature. Access to the SSCD is basically feasible on all major platforms in case the SSCD
provides interfaces for that purpose. The feasibility of the Signature Processing Component on different
platforms is summarized in Figure 4.12.

Component Google Android Apple iOS Microsoft Windows Phone 8

Local Signature Processing Component
Feasible if SSCD provides appropriate 

interface

Feasible if SSCD provides appropriate 

interface and no inter-application 

communication is required

Feasible if SSCD provides appropriate 

interface and no inter-application 

communication is required

Remote Signature Processing 

Component

Feasible if SSCD provides appropriate 

interface

Feasible if SSCD provides appropriate 

interface

Feasible if SSCD provides appropriate 

interface

Figure 4.12: Depending on the implementation of the Signature Processing Component, its feasi-
bility depends on interfaces provided by the SSCD and on inter-application commu-
nication capabilities of the mobile platform.

4.3.2.6 SSCD

The SSCD is probably the most critical component in terms of feasibility. In order to be able to produce
qualified electronic signatures, SSCDs need to satisfy several requirements. This limits possible realiza-
tions of SSCDs. In general, two aspects need to be considered when assessing the feasibility of SSCDs.
The first aspect concerns the availability of components that are able to meet the strict requirements for
SSCDs. Availability of such a component is crucial for the feasibility of the SSCD. The second aspect
concerns the capability to access an available SSCD. Only if the Signature Processing Component and
the Signatory Authentication Component can communicate with the SSCD, the SSCD can be regarded
as feasible. In the following, these two aspects are analyzed in more detail.

Regarding the first aspect, i.e. the availability of suitable components to implement an SSCD, two
scenarios need to be distinguished. In the first scenario, the SSCD is implemented remotely. Remote
SSCDs do not depend on capabilities of the mobile end-user device. Furthermore, the Austrian Mobile
Phone Signature proves that remote SSCDs are in principle feasible. Therefore, remote SSCDs can be
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assumed to be available and feasible. Hence, this scenario does not need to be analyzed in more detail.
In the second scenario, the SSCD is implemented locally on the mobile end-user device. This is the more
challenging scenario, as the feasibility of the SSCD heavily depends on the capabilities of the mobile
end-user device and the used operating system. Local SSCDs can be classified into internal and remov-
able implementations. The first category comprises SSCDs that rely on secure hardware elements being
an integral part of the mobile device. Such hardware elements are for instance used in several devices
to implement secure key chains that can be used by mobile applications to securely store cryptographic
keys. Some platforms also make use of such hardware components to implement secure encryption
mechanisms [Teufl et al., 2013b]. A secure hardware element has for instance also been used by the mo-
bile payment system Google Wallet10 to store security-critical data. The second category covers SSCDs
that can be connected to mobile end-user devices using available interfaces. The probably most fre-
quently used implementation of this category is the SIM. Primarily intended to authenticate the user at
the mobile network, special SIMs can also be employed as SSCDs. This has been shown in practice
by several SIM-based signature solutions that are currently in productive operation. As an alternative to
SIMs, also special microSD memory cards have been introduced during the past years that include a se-
cure hardware element, which is theoretically capable of creating qualified electronic signatures. These
memory cards can be used on mobile devices featuring an interface for this cards. Security-enhanced
microSD cards are for instance offered by the companies DeviceFidelity11 or GO-Trust12. Recently, also
NFC-based security tokens13 have been introduced as an alternative. These tokens integrate a secure
element capable of providing cryptographic functionality. Access to the functionality of these tokens
is provided via the contactless NFC interface, which is supported by an increasing number of mobile
end-user devices. For the sake of completeness, also solutions relying on the use of special adapters to
physically connect smart cards to mobile end-user devices have to be mentioned as possible implementa-
tions of this category. Examples are the iAuthenticate™ smart card reader for the Apple iPhone14 or the
BlackBerry smart card reader15. Regarding the availability of suitable components to implement local
SSCDs, it can be concluded that such components exist for most mobile end-user devices.

Besides availability of suitable SSCDs, the capability to communicate with these SSCDs has also
been identified as a crucial feasibility aspect. To systematically analyze this aspect for different SSCD
implementations, two scenarios need to be considered. In the first scenario, the SSCD and the component
that needs to access the SSCD are located in the same domain. This scenario applies for instance to
solutions that implement all components locally on the mobile end-user device. In the second scenario,
the SSCD and the component that needs to access the SSCD are located in different domains. This
applies for instance to solutions that implement the SSCD remotely and all other components locally on
the mobile end-user device. Depending on the scenario, different aspects regarding the communication
between the SSCD and accessing components need to be considered.

In the first scenario, the SSCD and the component that requires access to the SSCD, i.e. the Signa-
ture Processing Component or the Signatory Authentication Component, are implemented in the same
domain. If both the SSCD and the accessing component are implemented remotely, the feasibility of
SSCD access is independent from technologies available on the mobile end-user device. Hence, this case
does not need to be considered in more detail. If both components are implemented locally, feasibility to
access the SSCD depends on the SSCD’s implementation and on the mobile operating system. Access to
secure hardware elements being an integral part of mobile end-user devices is not feasible for third-party
applications on all major platforms. Removable SSCD implementations are in general easier to access
from software components. Still, several restrictions apply depending on the SSCD implementation and

10https://wallet.google.com
11http://www.devifi.com/in2pay microsd.html
12http://www.go-trust.com/products/swp-secure-microsd/
13http://www.yubico.com/
14http://www.identive-group.com/en/products-and-solutions/identification-products/mobility-solutions/mobile-

readers/iauthenticate-smart-card-reader
15http://de.blackberry.com/business/topics/security/government.html
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on the underlying mobile operating system. For instance, SIMs cannot be accessed directly from mo-
bile applications on all major platforms. In contrast, memory cards featuring cryptographic functionality
can also be accessed by locally installed mobile apps, as long as this functionality is supported by the
underlying mobile operating system. This is currently the case for the Google Android platform, which
basically supports access to secure elements via the Personal Computer/Smart Card (PC/SC) protocol16.
The feasibility to access external SSCDs such as cryptography-enabled NFC tokens mainly depends on
the support for the employed interface technology that is used to connect the secure element to the mo-
bile end-user device. In the special case of NFC, an increasing number of mobile end-user devices are
supporting this technology. Still, the feasibility of NFC-based SSCDs is limited, mainly due to the fact
that Apple as a major player does not allow third-party app to use integrated NFC features.

In the second scenario, the SSCD and the component that needs to access the SSCD are imple-
mented in different domains. Hence, access to the SSCD requires cross-domain communication. This
potentially requires support for additional communication protocols, in order to bridge the gap between
different domains using existing communication networks. Support for additional protocols is in general
feasible for software-based components, as these components can be easily extended. In contrast, sup-
port of additional communication protocols can be problematic for typically hardware-based SSCDs, as
hardware cannot be easily extended with additional functionality. Hence, if the SSCD does not support
the required communication protocol itself, an additional software module needs to be attached to the
SSCD. This module acts as an adapter and translates the required cross-domain communication protocol
to a protocol supported by the SSCD. The feasibility of this additional software module hence defines a
crucial requirement for implementations relying on locally dispersed software components and SSCDs.
For remote SSCDs, realization of this additional module acting as proxy in front of the SSCD is con-
sidered feasible, as remote components are not limited by technology available on the mobile end-user
device. For local SSCDs, the situation is more complex. Implementing the additional module as local
third-party application requires again the mobile operating system to support access to the SSCD. As
mentioned above, this is feasible on Google Android for a limited set of local SSCD realizations only. As
an alternative, the required additional module can also be implemented by the mobile operating system
itself. This approach is for instance followed by SIM-based signature solutions. Data received from a
remote Signature Processing Component through the mobile network is directly forwarded to the local
SIM by the mobile operating system. From a feasibility point of view, this approach is advantageous
compared to reliance on third-party applications implementing the required additional module. How-
ever, due to reliance on features provided by the mobile operating system, implementation alternatives
are limited.

Component Google Android Apple iOS Microsoft Windows Phone 8

Local SSCD Feasible
Restricted to SIM-based 

implementations

Restricted to SIM-based 

implementations

Remote SSCD Feasible Feasible Feasible

Figure 4.13: While remotely implemented SSCDs are generally feasible, local SSCDs are re-
stricted to SIM-based solutions on most platforms.

In general, it can be concluded that access to and communication with SSCDs can be problematic
especially in the case of locally implemented SSCDs. Only Android provides support for accessing
different types of local SSCDs. On all other platforms, the use of local SSCDs is basically restricted
to special SIMs. As SIMs cannot be accessed directly from local third-party applications, SIM-based
solutions are rather limited in terms of possible implementation variants. Most problems regarding the
feasibility of SSCDs can be prevented by relying on remotely implemented SSCDs. The feasibility of
remotely implemented SSCDs has been shown by the Austrian Mobile Phone Signature. By relying on

16http://code.google.com/p/seek-for-android/
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a remote SSCD, most feasibility-related limitations that are imposed by restrictions of mobile end-user
device and operating systems can be overcome. The feasibility of the component SSCD is summarized
in Figure 4.13.

4.3.3 Assessment of Implementation Variants

The conducted component-specific feasibility assessment has yielded two basic findings. First, access to
and communication with the SSCD is a crucial factor that affects feasibility. Depending on the realization
of the SSCD and of components that need to access the SSCD, communication between the SSCD
and these components can be challenging. This is mainly caused by limitations of mobile operating
systems that often do not allow software components to access locally implemented SSCDs. Second, the
conducted assessment has yielded the need for inter-application communication as another feasibility-
reducing factor. This is mainly due to the fact that some mobile operating systems apply strict means to
isolate applications running on mobile devices from each other.

To complete the feasibility assessment, the results of the component-specific assessment are com-
bined according to the architectures of the four identified implementation variants for mobile signature
solutions. This way, the feasibility of each implementation variant is assessed and the most feasible
approach is determined.

4.3.3.1 Feasibility of Implementation Variant A

Implementation Variant A has been named the Classical Approach, as all components but the Remote
Service Provider are implemented locally on the Signatory’s mobile end-user device. This way, this ap-
proach basically reflects the architecture of classical smart card based solutions. Considering results of
the component-specific feasibility assessment, two major drawbacks of the Classical Approach, i.e. Im-
plementation Variant A, can be identified.

First, the Classical Approach defines a local implementation of the SSCD. This limits the feasibility
of this implementation variant to mobile end-user devices and operating systems that provide support for
implementing and accessing a local SSCD. An advantage of solutions following the Classical Approach
is the fact that the Signatory Authentication Component, the Signature Processing Component, and the
SSCD are all implemented in one and the same domain. Thus, no cross-domain communication between
the SSCD and other components is required. Hence, feasibility of an additional module that implements
required cross-domain protocols is not necessary.

Second, the Signature Processing Component is implemented locally according to the Classical Ap-
proach. This causes two potential problems. First, a local Signature Processing Component rules out
techniques to access the local SSCD using a remote component, such as the mobile network operator
in case of SIM-based SSCD implementations. Second, a local realization of the Signature Processing
Component requires inter-application communication, as the Local Service Provider needs to exchange
data with the Signature Processing Component. This can be problematic depending on the underlying
mobile platform and operating system.

Implementation Variant Google Android Apple iOS Microsoft Windows Phone 8

Implementation Variant A: 

The Classical Approach
Feasible Infeasible Infeasible

Figure 4.14: Implementation Variant A is feasible on Google Android only.

In summary, it can be concluded that Implementation Variant A, i.e. the Classical Approach, is
applicable on a subset of current mobile end-user device only. Concretely, this approach can only be
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applied on mobile end-user devices that rely on the mobile operating system Google Android. This is
illustrated in Figure 4.14.

4.3.3.2 Feasibility of Implementation Variant B

Implementation Variant B relies on a remote SSCD and has hence been denoted as the Remote-SSCD
Approach. Apart from the SSCD, all other components are implemented locally. As this approach relies
on a remote SSCD, the underlying platform’s support for local SSCDs does not influence the overall
feasibility. In this aspect, this approach is advantageous compared to the Classical Approach represented
by Implementation Variant A. Reliance on a remote SSCD however requires additional modules to enable
cross-domain communication between the SSCD and locally implemented components. Concretely,
this applies to the locally implemented Signature Processing Component and Signatory Authentication
Component. According to the conducted component-specific feasibility assessment, such modules are
feasible for these components. Being implemented remotely, also the SSCD can be easily equipped
with an additional module that adds support for cross-domain communication. In summary, the remote
implementation of the SSCD does hence not impose unsolvable problems in terms of feasibility.

However, the Remote-SSCD Approach shares another conceptual drawback with the Classical Ap-
proach represented by Implementation Variant A. As these two approaches differ only in the location of
the SSCD, both the Remote-SSCD Approach and the Classical Approach rely on a local Signature Pro-
cessing Component. Thus, in both cases the underlying mobile operating system needs to provide means
for inter-application communication. These means are required to enable communications between a
locally implemented Service Provider and the local Signature Processing Component. Hence, also the
Remote-SSCD Approach is only feasible in scenarios that do not require inter-application communica-
tion.

In summary, the Remote-SSCD Approach is advantageous compared to the Classical Approach, as
it releases the mobile end-user device from implementing the SSCD. However, due to the need for inter-
application communication, the feasibility of this approach can still be limited on several platforms.
Concretely, the Remote-SSCD Approach is restricted to platforms that provide sufficient support for
inter-application communication. This is currently the case for Google Android only. The feasibility of
Implementation Variant B, i.e. the Remote-SSCD Approach, is summarized in Figure 4.15.

Implementation Variant Google Android Apple iOS Microsoft Windows Phone 8

Implementation Variant B:

The Remote-SSCD Approach
Feasible

Feasible if no inter-application 

communication is required

Feasible if no inter-application 

communication is required

Figure 4.15: Implementation Variant B is only conditionally feasible on Apple iOS and Microsoft
Windows Phone 8.

4.3.3.3 Feasibility of Implementation Variant C

The need for inter-application communication has been identified as feasibility-reducing aspect for ap-
proaches that rely on a local Signature Processing Component. Implementation Variant C, i.e. the SIM
Approach, avoids the need for inter-application communication by implementing the Signature Process-
ing Component remotely. Thus, solutions based on the SIM Approach are feasible irrespective of the
underlying operating system’s support for inter-application communication.

However, reliance on a local SSCD again limits the feasibility of the SIM Approach. Solutions
following this approach are applicable on a subset of mobile end-user devices only. Concretely, applica-
bility is limited to devices and platforms that are able to provide a local SSCD. Additional limitations are
also imposed by the need to access the local SSCD from the remotely implemented Signature Processing
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Component. The local SSCD must support communication protocols that allow remote components to
access its functionality. The component-specific feasibility analysis has shown that SIM-based solutions
currently represent the only implementation alternative for the SIM Approach that is feasible on all major
platforms. Only on Google Android, also third-party apps can be used to act as intermediary between a
remote Signature Processing Component and a local SSCD. On this platform, concrete realizations of
the SIM Approach are hence not restricted to SIM-based solutions.

Access to the local SSCD is not only required for the remote Signature Processing Component. The
local SSCD must also be accessed by the locally implemented Signatory Authentication Component.
As most mobile operating systems do not provide third-party apps access to local SSCDs, solutions
following the SIM Approach are again limited to the use of SIMs as SSCDs. SIM-based solutions
typically rely on the SIM Application Toolkit to obtain authentication data from the Signatory. Support
for the SIM Application Toolkit is currently provided by all major mobile platforms. Hence SIM-based
solutions are currently feasible on all major platforms. However, considering the fact that the SIM
Application Toolkit represents a rather old and hardly used technology, the future feasibility of SIM-
based solutions is arguable.

Despite identified limitations regarding possible implementation alternatives, the SIM Approach is
basically feasible on mobile end-user devices at present. Various existing signature solutions following
this approach show its applicability in practice. Still, implementation alternatives are limited due to
restricted technical opportunities to access the local SSCD from remote and local components. The
feasibility of Implementation Variant C, i.e. the SIM Approach, is summarized in Figure 4.16.

Implementation Variant Google Android Apple iOS Microsoft Windows Phone 8

Implementation Variant C:

The SIM Approach
Feasible

Feasible but restricted to SIM-based 

solutions

Feasible but restricted to SIM-based 

solutions

Figure 4.16: Implementation Variant C is only conditionally feasible on Apple iOS and Microsoft
Windows Phone 8.

4.3.3.4 Feasibility of Implementation Variant D

Local implementations of the SSCD or the Signature Processing Component have turned out to reduce
feasibility. If these two components are implemented locally, the feasibility of concrete solutions is
limited to certain mobile end-user devices and operating systems. In particular, operating systems need to
provide means to implement and access SSCDs locally and to support inter-application communication.
On mobile operating systems that are unable to provide these features, mobile signature solutions relying
on local SSCDs or local Signature Processing Components are infeasible.

Implementation Variant D prevents these limitations by realizing both components in a remote do-
main. Due to its remote and server-based approach, Implementation Variant D has also been denoted as
Server-HSM Approach. As both the SSCD and the Signature Processing Component are implemented
remotely, only few technical requirements need to be met by the mobile end-user device. This assures a
high degree of feasibility.

As the local Authentication Data Provider and the remote SSCD are locally dispersed, the SSCD
needs to provide cross-domain access to its functionality. Hence, both the local Signatory Authenti-
cation Component and the remote SSCD need to implement an additional module that enables cross-
domain communication between these two components. The conducted component-specific assessment
has shown that this is feasible for both components.

In summary, the Server-HSM Approach is the most feasible approach among all four implementation
variants. Compared to the SIM Approach, which is also feasible in practice, the Server-HSM Approach
allows for more implementation alternatives, as critical components are implemented remotely. This



4.4. Security Assessment 117

way, fewer requirements are defined for the local end-user device. The feasibility of Implementation
Variant D, i.e. the Server-HSM Approach, is summarized in Figure 4.17.

Implementation Variant Google Android Apple iOS Microsoft Windows Phone 8

Implementation Variant D:

The Server-HSM Approach
Feasible Feasible Feasible

Figure 4.17: Implementation Variant D is feasible on all platforms.

4.3.3.5 Comparison of Implementation Variants

The feasibility of the four implementation variants is mainly determined by capabilities of the underly-
ing mobile platform and operating system. The conducted assessment has focused on the three major
platforms Google Android, Apple iOS, and Microsoft Windows Phone 8. The feasibility of each im-
plementation variant has been assessed for each of these platforms. Figure 4.18 combines all obtained
assessment results and shows, which implementation variant is feasible on which platform.

Implementation Variant Google Android Apple iOS Microsoft Windows Phone 8

Implementation Variant A:

The Classical Approach
Feasible Infeasible Infeasible

Implementation Variant B:

The Remote-SSCD Approach
Feasible

Feasible if no inter-application 

communication is required

Feasible if no inter-application 

communication is required

Implementation Variant C:

The SIM Approach
Feasible

Feasible but restricted to SIM-based 

solutions

Feasible but restricted to SIM-based 

solutions

Implementation Variant D:

The Server-HSM Approach
Feasible Feasible Feasible

Figure 4.18: Implementation Variant D represents the most feasible approach.

A direct comparison of the three major platforms shows that only Google Android supports all four
implementation variants. This is mainly due to the fact that this platform provides support for inter-
application communication and enables realization of locally implemented SSCDs. The mobile operat-
ing systems Apple iOS and Microsoft Windows Phone 8 are more problematic in terms of feasibility, as
these platforms provide only limited support for inter-application communication and for local SSCDs.
On these platforms, Remote-SSCD Approaches and SIM Approaches are only partly feasible and lim-
ited to certain implementation alternatives. Classical Approaches must even be considered completely
infeasible on these two platforms.

The direct comparison of different implementation variants shown in Figure 4.18 also reveals that the
Server-HSM Approach provides the highest degree of feasibility on all major platforms. In fact, it is the
only approach that is feasible without limitations on all investigated platforms. Hence, the Server-HSM
Approach represented by Implementation Variant D is obviously the best solution from a feasibility point
of view.

4.4 Security Assessment

Security is one of the key requirements and success factors of mobile government. Apparently, security
is also a crucial aspect for mobile signature solutions, as these solutions are typically used in security-
sensitive fields of application. The security of mobile signature solutions already needs to be considered
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during their design and development. As a preparatory activity to the development of a concrete signature
solution for mobile end-user devices, four possible implementation variants have been identified. In this
section, the security of these implementation variants is assessed in detail. This way, the most secure
approach is determined.

4.4.1 Methodology

In order to rely on an approved method and to follow a systematic approach, the conducted security
assessment is loosely based on the concepts of Common Criteria [Common Criteria, 2013]. Development
of security recommendations along the concepts of Common Criteria and protection profiles such as
the protection profile for secure signature creation devices [CEN/ISSS, 2001] is common practice. For
instance, the Council of Europe has applied this methodology in the context of a risk analysis for e-
voting solutions [European Council, 2004]. However, the concepts of Common Criteria are usually used
to assess and evaluate the security of one particular solution. These concepts are less suitable to compare
the security of different solutions on conceptual level. Therefore, the concepts of Common Criteria are
adapted where necessary in the course of this assessment. This leads to a methodology comprising two
consecutive steps.

In the first step, a set of assumptions is defined in order to define and limit the scope of the conducted
security analysis. Based on these assumptions, relevant assets are identified that need to be protected by
mobile signature solutions. Based on the architectures of the four implementation variants, components
and communication paths are identified, at which these assets are potentially exposed to threats. This
way, the security of the four implementation variants is assessed and compared on conceptual level.

In a subsequent assessment step, the security of each identified component and communication path
when being implemented using current mobile technologies is analyzed in detail. For this purpose, tech-
nologies that are currently available on mobile end-user devices are taken into account. The conducted
analyses are based on results from own research on smartphone security presented e.g. in Zefferer et al.
[2013b], Zefferer and Teufl [2013], and Teufl et al. [2013b]. In addition, related scientific work presented
by Felt et al. [2012], Enck and Octeau [2011], or Barrera et al. [2010] is considered as well. Analysis
results are finally assembled to systematically assess the security of the four implementation variants for
mobile signature solutions. This way, their capabilities to protect assets by means of currently available
technologies are assessed.

4.4.2 Assumptions

The conducted security assessment is based on a set of assumptions, which define and limit the scope of
the security assessment to relevant aspects. Concretely, the following two general assumptions are made:

• Security of server-based components: Server-based components of mobile signature solutions
are assumed to be secure and hence out of scope for this analysis. This assumption is valid for
several reasons. First, server-based components can be operated in a secure environment. This
environment can be protected by both technical and organizational means. Second, server-based
components can be accessed through defined interfaces only. This is in contrast to locally imple-
mented components, which are potentially fully exposed to attackers in case of compromised or
stolen end-user devices. In general, it can be stated that even though possible attacks on server-
based components must not be ignored, the security of these components is easier to assure. It is
hence reasonable to limit the conducted security assessment to local components.

• Security of SSCDs: The SSCD is assumed to be secure and to be able to securely store and
process data. These features are typically evaluated by means of standardized certifications for
SSCDs. The conducted security analysis is based on the assumption that only certified SSCDs are
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used and that these devices hence provide the required level of security. In this case, the made
assumption regarding secure SSCDs is valid.

4.4.3 Assets

Assets are a key concept of most security assessments and basically define values that need to be pro-
tected by the assessed system. In this section, relevant assets are identified by means of the defined model
for mobile signature solutions. These assets are then mapped to the four implementation variants that
have been derived from the defined abstract model.

4.4.3.1 Identification of Assets

Figure 4.19 recalls the model that has been used to derive the four implementation variants for mobile
signature solutions. In this section, the same model is used to derive a set of relevant assets. This
is accomplished by identifying security-critical data that is processed by components of the model or
transferred between components. This finally yields the three assets Authentication Data (AD), DTBS,
and SD.
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Figure 4.19: Three assets can be derived from the developed abstract model.

The three identified assets have also been added to the model shown in Figure 4.19. This way, it
becomes apparent, which asset is transferred between which components. The three assets are described
in the following in more detail.

• AD: This is data provided by the Signatory to authorize access to the Signatory’s signature-
creation data, i.e. the private cryptographic key. Thus, AD needs to be provided to authorize a
signature-creation process in the SSCD. As control over private cryptographic keys must remain
solely at the Signatory, authentication data may be known to the Signatory only and the confiden-
tiality of these data must be maintained.
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• DTBS: This is data created by the Service Provider and transmitted to the SSCD for the purpose
of signing. The DTBS is displayed to the Signatory prior to completion of the signature-creation
process. The integrity of the DTBS must be maintained during the entire signature-creation pro-
cess. This applies to transmission of the DTBS from the Service Provider to the SSCD via the
Signature Processing Component. Furthermore, this also applies to the DTBS while it is displayed
to the Signatory by means of the DTBS Viewer. Even though modification of displayed DTBS
does not necessarily affect the integrity of DTBS transmitted to the SSCD for signing, analogy
between the two instances of these data must be guaranteed.

• SD: The SD is the result of the signature-creation process. The SD is created by the SSCD and
returned to the Service Provider by means of the Signature Processing Component. To assure
positive verifiability of the SD, its integrity needs to be maintained. Assuming the use of proper
cryptographic methods, it is infeasible for an attacker to compute valid SD on behalf of the Signa-
tory outside the SSCD. Still, SD represents a relevant asset, as unauthorized modifications of SD
can negatively influence the verifiability of created signatures. By intentionally modifying inter-
cepted SD, an attacker could sabotage the functionality of electronic signature based services. It
is hence reasonable to consider SD, even though AD and DTBS are typically regarded as stronger
assets.

In addition to these three assets, additional assets could be listed here. For instance, the protection
profile for SSCDs [CEN/ISSS, 2001] defines the additional assets Signature Creation Data, Reference
Authentication Data, or Signature-Creation Function. Most of these assets are also present in the model
shown in Figure 4.19. However, all these assets are protected by the SSCD. As the SSCD is assumed to
be secure, assets protected by the SSCD are not considered separately.

4.4.3.2 Mapping of Assets to Implementation Variants

The three identified assets must be protected by a signature solution during the entire signature-creation
process. During this process, assets can be prone to attacks when being processed by components of
the signature solution or when being transmitted over communication paths between these components.
The set of components and communication paths, at which assets are prone to attacks, depends on the
respective signature solution and its underlying architecture. In total, four different implementation
variants for mobile signature solutions have been identified. In this section, the three relevant assets are
mapped to these implementation variants. This way, for each implementation variant, components and
communication paths are identified, at which assets are prone to attacks. This enables a comparison of
the security of different approaches to implement mobile signature solutions on conceptual level.

Figure 4.20 shows an extended version of the architecture of Implementation Variant A represent-
ing the Classical Approach. In addition to the original architecture, communication channels have been
amended with assets that are exchanged and transmitted over these channels. Additionally, all compo-
nents that process or store identified assets have been marked accordingly.

The extended architecture shown in Figure 4.20 shows that the asset AD is present in the User
Domain only. This asset is read from the Signatory by the Signatory Authentication Component and
forwarded to the locally implemented SSCD. Hence, the Signatory Authentication Component is the
only component that processes the asset AD.

The asset DTBS is created by the locally or remotely implemented Service Provider and transmitted
to the local Signature Processing Component. This component finally forwards the DTBS to the SSCD.
Additionally, the Signature Processing Component forwards the DTBS to the DTBS Viewer. Hence, the
asset DTBS is processed by the Service Provider, the Signature Processing Component, and the DTBS
Viewer. In case of a Local Service Provider, the asset DTBS is present in the User Domain only. In case
of a Remote Service Provider, the asset DTBS is transferred from the remote Service Provider Domain
to the local Signature Processing Component.
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Figure 4.20: Mapping of assets to Implementation Variant A.

Similar considerations apply to the asset SD. The asset SD is created by the SSCD and transferred
to the Signature Processing Component. The Signature Processing Component returns the SD to the
Service Provider. Hence, the asset SD is present at the same components as the asset DTBS with the
exception of the DTBS Viewer.

Identified assets have also been mapped to the general architecture of Implementation Variant B,
which represents the Remote-SSCD Approach. The resulting extended architecture is shown in Figure
4.21. Components and communication paths, at which identified assets are present during a signature-
creation process, have again been marked accordingly.

The key characteristic of Implementation Variant B is the remote implementation of the SSCD. This
has an impact on all processed assets. Figure 4.21 shows that all assets need to be transferred between
the User Domain and the Signature-Service Provider Domain. Hence, Implementation Variant B requires
cross-domain transmission of all assets even in case of a locally implemented Service Provider.

Cross-domain transmission of assets is also required by solutions relying on Implementation Variant
C and hence following the SIM Approach. This becomes apparent from Figure 4.22, which shows the
extended architecture of this approach. Components and interfaces, at which relevant assets are present
during signature-creation processes have again been marked accordingly.

Following the SIM Approach, the SSCD is implemented locally, while the Signature Processing
Component resides in the remote Signature-Service Provider Domain. This way, the assets DTBS and
SD need to be transmitted across two different domains. In case of a Remote Service Provider residing
in a separate Service Provider Domain, the assets DTBS and SD even have to be shared between three
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Figure 4.21: Mapping of identified assets to Implementation Variant B.

different domains.

As the SIM Approach relies on a local SSCD, the asset AD always remains in the User Domain
during a signature-creation process. Similar to the Classical Approach, the asset AD is processed by the
local Signatory Authentication Component only.

Finally, the three assets have also been mapped to the general architecture of Implementation Variant
D, which represents the Server-HSM Approach. This yields the extended architecture shown in Figure
4.23. Following the Server-HSM Approach, both the SSCD and the Signature Processing Component
are implemented remotely. Accordingly, both components are assigned to the remote Signature-Service
Provider Domain. This has some interesting implications.

First, the asset AD has to be transmitted from the User Domain to the Signature-Service Provider
Domain. In this regard, the Server-HSM Approach resembles the Remote-SSCD Approach represented
by Implementation Variant B. Second, in case of a Remote Service Provider, the asset SD is never present
in the User Domain. This can be beneficial in case of a compromised local end-user device. Similar
considerations apply to the asset DTBS. In case of a Remote Service Provider, only a copy of the asset
DTBS is present in the User Domain. This means that an attacker, who has compromised components
of the User Domain, is able to intercept and reveal the asset DTBS. However, as the asset DTBS is
directly sent from the remote Signature Processing Component to the remote SSCD, the DTBS cannot
be modified by an attacker in the User Domain.

Mapping the three identified assets to the four implementation variants of mobile signature solutions
already yields several interesting insights. In general, all identified assets are processed by the same
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Figure 4.22: Mapping of identified assets to Implementation Variant C.

components. However, components are assigned to different domains depending on the concrete imple-
mentation variant. The capability to securely realize components in different domains is hence a crucial
aspect for the conducted security assessment.

Realizing components in different domains also affects communication paths between these compo-
nents. Communication paths between components of the same domain need to be realized differently
than communication paths between components of different domains. As each implementation variant
is unique regarding its assignment of components to different domains, each variant relies on different
communication paths. This has to be considered for the conducted security assessment.

4.4.4 Identification of Relevant Components and Communication Paths

By mapping identified assets to concrete implementation variants, a preliminary list of components and
communication paths, at which assets are potentially exposed to attacks, can be derived. This list can
be obtained from the extended architectures of the four implementation variants simply by extracting all
marked components and communication paths. In this section, this preliminary list is consolidated. The
resulting consolidated list will later be used to systematically assess the security of different implemen-
tation variants for mobile signature solution.

Consolidation of the preliminary list involves two steps. First, components are removed from the
preliminary list that are assumed to be secure according to predefined assumptions. Second, several
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Figure 4.23: Mapping of identified assets to Implementation Variant D.

communication paths between components are combined and assigned to a few classes of communication
paths. This reduces the total number of different communication paths and facilitates direct comparisons
between implementation variants.

Consolidation of the preliminary list of components and communication paths finally yields four
relevant components. These components need to be considered for the conducted security assessment.

• Local Service Provider: The Local Service Provider is the source of the DTBS and the final
receiver of the SD. Thus, the Local Service Provider represents a potential target for attacks on the
assets DTBS and SD. This applies irrespective of the implementation variant, as the Local Service
Provider is realized locally in all four implementation variants.

• Signature Processing Component: The Signature Processing Component acts as intermediary
between the Service Provider and the SSCD. The Signature Processing Component can be imple-
mented locally or remotely. If implemented locally, the Signature Processing Component repre-
sents a potential target for attacks on the assets DTBS and SD.

• Signatory Authentication Component: The Signatory Authentication Component acts as inter-
mediary between the Signatory and the SSCD and reads authentication data from the Signatory.
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Thus, the Signatory Authentication Component represents a potential target for attacks on the asset
AD. As the Signatory Authentication Component needs to be implemented locally in any case, the
Signatory Authentication Component is a potential target of attacks for all four implementation
variants.

• DTBS Viewer: The DTBS Viewer displays the DTBS to the Signatory prior to signing. Thus, this
component represents a potential target for attacks on the asset DTBS. Similar to the Signatory
Authentication Component, the DTBS Viewer needs to be implemented locally, as it requires a
direct user interface to the Signatory. Hence, this component represents a potential target for
attacks on the asset DTBS, irrespective of the underlying implementation variant.

In addition to these components, the following classes of communication paths are relevant and need
to be considered for the conducted security assessment:

• Inter-application and inter-process communication: Communication between applications or
between processes within one application need to be considered for the Local Approach and for
the Remote-SSCD Approach. This is mainly due to the fact that these approaches implement the
Signature Processing Component, which acts a central hub between the Signatory, the SSCD, and
the Service Provider, on the local end-user device. As the local Signature Processing Component
needs to communicate with the Local Service Provider to exchange the assets DTBS and SD,
there is a need for inter-application communication. In case the Signature Processing Component
and the DTBS Viewer are implemented by separate applications, inter-application communication
is also required to transmit the DTBS from the Signature Processing Component to the DTBS
Viewer. In case the Signature Processing Component and the DTBS Viewer are integrated into
one single component, application-internal inter-process communication needs to be considered,
as the asset DTBS is then transmitted from one application-internal process to another.

• Communication between local and remote software: This communication path is mainly found
between the Service Provider and the Signature Processing Component. In case of a locally imple-
mented Signature Processing Component, communication between the Remote Service Provider
and the Signature Processing Component requires communication between local and remote soft-
ware. Vice versa, in case of a remotely implemented Signature Processing Component, communi-
cation between the Local Service Provider and the Signature Processing Component also requires
this kind of communication. In any case, the assets DTBS and SD are transmitted over this com-
munication path.

• Communication between local software and local SSCD: This communication path needs to
be considered for implementation variants that rely on a locally implemented SSCD. This basi-
cally applies to the Classical Approach represented by Implementation Variant A and to the SIM
Approach represented by Implementation Variant C. However, there is a significant difference be-
tween these two approaches. Following the Classical Approach, all three assets are transmitted
over this communication channel. As the Signature Processing Component is remotely imple-
mented according to the SIM Approach, only the asset AD is transmitted over this communication
channel in this scenario.

• Communication between user and local software: A user interface between the Signatory and
the Signatory Authentication Component is required in each implementation variant. Hence, the
security of this communication path needs to be considered irrespective of the followed approach.

• Communication between local software and remote SSCD: This communication path needs
to be considered for all implementation variants that rely on a remote SSCD. This applies to the
Remote-SSCD Approach and the Server-HSM Approach. Following the Remote-SSCD Approach,
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the Signature Processing Component is implemented in the User Domain. Hence, all three assets
are transmitted over this communication path in this scenario. In contrast, only the asset AD is
transmitted over this communication channel when following the Server-HSM Approach.

• Communication between remote software and local SSCD: This communication path is rele-
vant for the SIM Approach only, as only this implementation variant relies on a remote Signature
Processing Component and a local SSCD. Over this communication channel, the assets DTBS and
SD are transmitted.

Figure 4.24 summarizes identified components and communication paths. Furthermore, Figure 4.24
shows, which components and which communication paths are relevant for the four implementation vari-
ants in order to protect the three identified assets. From this table it becomes apparent that Implemen-
tation Variant C and Implementation Variant D are beneficial in terms of the total number of different
components and communication paths, on which assets are potentially exposed to attacks. For these
implementation variants, the lowest number of components and communication paths need to be consid-
ered. Hence, the SIM Approach and the Server-HSM Approach are advantageous in terms of security
from a pure conceptual perspective.
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Figure 4.24: Different components and communication paths need to be considered for different
implementation variants of mobile signature solutions.

This becomes even more apparent, when considering scenarios that rely on a Remote Service Provider
only and ignore the possibility of a Local Service Provider. Results of an identification of relevant com-
ponents and communication paths based on such scenarios are shown in Figure 4.25. Considering a Re-
mote Service Provider only reduces the number of components, on which assets are potentially exposed
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to attacks, as one local component, i.e. the Local Service Provider, is eliminated. For the Server-HSM
Approach represented by Implementation Variant D, this results in only two components and three com-
munication paths that need to be secured in order to protect all assets. In contrast, for e.g. Implementation
Variant A, which represents the Classical Approach, four components and seven communication paths
need to be protected.
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Figure 4.25: Ignoring the possibility of a Local Service Provider reduces the number of relevant
components and communication paths that need to be considered.

In summary, several differences in the number of affected components and communication paths can
be observed between the different implementation variants. This is expectable to a certain extent, as
the number of affected components and communication paths obviously corresponds to the number of
locally implemented components. As the Server-HSM Approach implements both the SSCD and the
Signature Processing Component remotely, this solution also shows the lowest number of components
and communication paths, on which assets are potentially exposed to attacks.

However, the number of components and communication paths, on which assets are potentially ex-
posed to attacks is not the only relevant measure for the security of a particular implementation variant.
Opportunities to protect identified components and communication paths with currently available tech-
nologies is an even more important aspect. These opportunities are hence analyzed in the following
section in more detail considering technologies available on current mobile end-user devices.

4.4.5 Component and Communication Path Specific Assessment

Figure 4.24 and Figure 4.25 compare the four approaches to create electronic signatures on mobile end-
user devices from a technology-independent perspective. This is achieved by identifying components and
communication paths, on which the three assets AD, DTBS, and SD are potentially exposed to attacks.
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However, this comparison does not consider opportunities and limitations to secure these components and
communication paths by means of currently available technologies. In this section, identified components
and communication paths are hence mapped to existing technologies that are currently available on
mobile end-user devices. This way, the security of these components and communication paths on current
mobile end-user devices is assessed. Conducted assessments base on related work on the security of
mobile end-user devices and on own contributions, which have been presented in Chapter 3 in more
detail. Obtained component-specific assessment results are later used to assess the security of the four
implementation variants for mobile signature solutions.

4.4.5.1 Local Service Provider

Considering the rather limited opportunities to provide services on mobile end-user devices, implemen-
tations of Local Service Providers will in most cases be based on typical mobile apps. On all major
platforms, the basic security of mobile apps and of data processed by these apps is assured by means
of integrated features of the mobile operating system. Such features include for instance sandboxing
mechanisms, which prevent applications running on a mobile device from accessing data and resources
of other applications running on the same device. Compared to classical operating systems, mobile oper-
ating systems provide enhanced means for a logical separation of applications. An overview of currently
available security features of different mobile operating systems has been provided e.g. in Zefferer et al.
[2013b]. In general, sandboxing and other integrated security features work reliably on current mobile
end-user devices, as long as attackers do not gain root access to the mobile operating system. Otherwise,
integrated security features must not be assumed to be able to protect data and resources of installed
applications any longer. We have discussed implications that need to be considered for attackers with
root access in Zefferer and Teufl [2013].

4.4.5.2 Signature Processing Component

For locally implemented Signature Processing Components, similar considerations apply as for Local
Service Providers. Due to the system architecture of major mobile operating systems, implementation
alternatives for software components are basically restricted to mobile apps. Hence, also the Signature
Processing Component, if implemented locally, needs to be realized as mobile app. This implies that
for the security of locally implemented Signature Processing Components basically the same security
considerations apply as for the Local Service Provider. Integrated security features of mobile operating
systems protect stored and processed data from access by other software components. However, these
security features can theoretically be circumvented by attackers that gain root access to the mobile oper-
ating system. Hence, the security of data being stored and processed by a locally implemented Signature
Processing Component must not be taken for granted.

4.4.5.3 Signatory Authentication Component

Similar to the Local Service Provider, the Signatory Authentication Component needs to be implemented
locally on the mobile end-user device in any case, as this component requires a user interface to the Sig-
natory. Being implemented locally, similar considerations apply as for the local components discussed
above. Hence, also data processed by the Signatory Authentication Component is theoretically vulnera-
ble to attack scenarios, in which attackers gain root access to the underlying operating system. In addition
to other local components, two special aspects need to be considered for this component.

First, the functionality of this component is in most cases rather simple and basically limited to the
reading and forwarding of authentication data. This allows for the use of alternative technologies to
implement this functionality. For instance, current SIM-based signature solutions such as the Estonian
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Mobiil-ID17 usually make use of the SIM Application Toolkit to implement the functionality of the
Signatory Authentication Component. The SIM Application Toolkit allows the MNO to access the SIM.
Furthermore, it also allows the SIM to interact with the user, if this is supported by the operating system.
This way, the use of mobile apps, which are potentially prone to malware, can be prevented. However,
an attacker or malware with unlimited root access to the mobile operating system must be assumed to be
able to compromise the security of solutions based on the SIM Application Toolkit.

Second, the functionality of the Signatory Authentication Component might need to be enhanced
in case of remote SSCDs. In this case, the requirement for sole control over signature-creation data,
i.e. cryptographic keys, might require the Signatory Authentication Component to implement additional
authentication means. For instance, the Austrian Mobile Phone Signature, which relies on a remote
SSCD, requires the Signatory to receive an SMS message containing an One-Time Password (OTP) and
to forward this OTP to the SSCD in order to complete the authentication process. Hence, depending on
the authentication scheme used by the particular implementation, the functionality of the Signatory Au-
thentication Component might go beyond the simple reading and forwarding of static authentication data
such as PINs or passwords. Implementation of required additional functionality potentially enables new
attack scenarios. For instance, in case of OTP-based authentication schemes relying on SMS technology,
the required processing of SMS messages on mobile end-user devices potentially raises new security
issues that need to be considered.

4.4.5.4 DTBS Viewer

Similar to the Signatory Authentication Component, the DTBS Viewer needs to be implemented locally
in any case, as it requires a direct user interface to the Signatory. Hence, similar considerations apply as
for other locally implemented components. The security of data being processed by this component is
potentially prone to attacks that rely on full root access to the mobile operating system. A key function-
ality of the DTBS Viewer, which needs to be especially considered for this component, is the reliable
displaying of data to the Signatory. This aspect is discussed in more detail in Section 4.4.5.8.

4.4.5.5 Inter-Application and Inter-Process Communication

Communication between different mobile apps on one device and between different processes within one
app have been identified as crucial, especially for implementation variants that heavily rely on locally
implemented components. Support for inter-application and inter-process communication varies between
different mobile operating systems. Similarly, also the security of these communication paths varies
between different operating systems. Capabilities, limitations, and security issues of inter-application
and inter-process communication on current mobile operating systems have for instance been discussed
by Chin et al. [2011]. We have also contributed to this topic of scientific interest in Zefferer et al. [2013b].
According to these works, Apple iOS and Microsoft Windows Phone 8 provide only limited capabilities
for apps and processes to communicate with each other and to exchange data. Due to these limited
capabilities, potential attack vectors are also limited. Hence, these two platforms provide a sufficient
level of security for data being exchanged between apps and processes. Again, the situation is sort of
different when attackers with unlimited root access to the mobile operating system are considered as
well. In this case, the security of data being exchanged between different apps and processes on one and
the same mobile device must not be assumed to be secure any longer.

In contrast to Apple iOS or Microsoft Windows Phone 8, the mobile operating system Google An-
droid provides a higher degree of flexibility regarding inter-application and inter-process communication.
On Android, the exchange of information and data between applications and processes relies on so-called
Intents. An Intent is basically a simple data object that can be exchanged between internal components.

17http://mobiil.id.ee/
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A more detailed introduction to the concept of Intents has been provided by Chin et al. [2011]. The flex-
ibility of the concept of Intents enables more flexible and more powerful applications. At the same time,
this flexibility can also be employed by malware to intercept data being exchanged between applications
and processes. We have discussed this issue in more detail in Zefferer et al. [2013b]. It is important to
note that on Android attacks on the communication path between apps and between processes are also
feasible without root access to the operating system.

4.4.5.6 Communication Between Local and Remote Software

Communication between local and remote software components has been common practice on classical
end-user devices for decades. Time-tested technologies and protocols such an SSL/TLS [Network Work-
ing Group, 2008] exist that enable a secure data exchange between local and remote components. Most
of these technologies and protocols can also be used on current mobile end-user devices. For instance,
support for SSL/TLS is provided on all major mobile platforms according to publicly available documen-
tation18,19,20. Thus, if implemented correctly, local components can securely access remote components
and services by means of approved protocols.

4.4.5.7 Communication Between Local Software and Local SSCD

Access to a local SSCD from local software components is feasible depending on the implementation of
the SSCD and on the mobile operating system. While capabilities to access SSCDs from local software
components increase feasibility, these capabilities also raise additional security issues. If local software
components have the technical opportunity to access local SSCDs, also malware residing on the same de-
vice has the opportunity to do so. The feasibility of attacks depends also on the concrete implementation
of the SSCD. For instance, SIM-based SSCDs usually do not support access from third-party apps run-
ning on the mobile end-user device, as the SIM Application Toolkit is required to exchange data with the
SIM-based SSCD. In this context, SIM-based SSCDs provide a higher level of security than other local
SSCD implementations, which can be accessed by means of APIs provided by the operating system. Of
course, SIM-based SSCD implementations provide a lower level of feasibility, as access to SIMs from
local software components is usually impossible. In general, the security of the communication channel
between local software and a local SSCD depends on the security of the mobile end-user device. Hence,
this communication channel must not be assumed to be secure.

The security of this communication channel can be improved, if the SSCD implements some kind of
secure-messaging protocol. In this case, all communication between the SSCD and an accessing software
component can be protected by cryptographic means. These means can assure the confidentiality and in-
tegrity of data exchanged with the SSCD. Communication with SSCDs by means of secure-messaging
mechanisms is common practice. For instance, several smart cards support secure messaging. An ex-
ample is the Spanish national eID card21, which requires an accessing application to establish a secure
channel first.

4.4.5.8 Communication Between User and Local Software

This communication path is used by the DTBS Viewer to display data to the Signatory and by the Sig-
natory Authentication Component to obtain required authentication data from the Signatory. For both
use cases, it has to be stated that secure input and output capabilities are not available on current mobile
end-user devices.

18http://msdn.microsoft.com
19https://developer.apple.com/devcenter/ios/index.action
20http://developer.android.com/index.html
21http://www.dnielectronico.es/
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A potential future solution to this problem is the ARM TrustZone technology22. This technology
makes use of integrated secure hardware components to provide a separate secure execution environment
on potentially insecure platforms. This secure environment includes capabilities for secure user input
and output. Hence, this technology represents a promising future solution to this problem. However, this
technology is still in its infancies and not available for the majority of current mobile end-user devices.

Up to now, communication between users and software components running on mobile end-user
devices must not be assumed to be secure. This basically holds true for all major mobile operating
systems and available mobile devices. However, there are again certain differences between diverse
operating systems. While Apple iOS and Microsoft Windows Phone 8 provide only few capabilities
to modify or adapt integrated input mechanisms, Google Android e.g. enables users to install and use
alternative keyboards. A large variety of alternative keyboards are offered in the official Google Play
Store23. This flexibility raises additional security issues, as alternative keyboards can be potentially
equipped with malware to spy on data entered by users. Even though Google Android is especially prone
to unauthorized interception of user input, user input must not be assumed to be secure on other mobile
platforms either. For instance, a recent article reports on a security vulnerability on iOS devices, which
facilitates realization of key-logging functionality [Goodin, 2014]. Hence, it can be concluded that secure
input and output capabilities are currently missing on all major platforms. In particular, Google Android
seems especially prone to attacks on data exchanged between the users and the mobile device.

4.4.5.9 Communication Between Local Software and Remote SSCD

This communication path is relevant for implementation variants that rely on a remote SSCD and hence
require cross-domain communication between local software components and this SSCD. This commu-
nication path requires the use of additional modules that extend supported communication interfaces of
the SSCD and the local software component. This way, these modules enable the exchange of data using
cross-domain communication protocols. The conducted feasibility assessment has shown that integration
of such modules is possible both for local software components and for remote SSCDs.

Regarding security, integration of additional modules that enable cross-domain communication does
only raise minor additional challenges. Local software components can be easily enhanced by such
modules. Being an integral part of the local software component, these modules are protected by the
same security features of the operating system as the original software component. Even though these
security features do not provide full security, integration of additional modules does at least not reduce
the overall security. An additional module that enables cross-domain communication is also required
for the remote SSCD. This module translates the used cross-domain protocol into a protocol that is
supported by the SSCD. As this module needs to be implemented remotely, this component is secure
according to the made assumption that remote components are secure by definition. Hence, required
modules that enable communication between local software and remote SSCDs do not reduce security
of the entire solution.

In addition to the modules that enable cross-domain communication, also the communication path
between these two modules needs to be secured. An adequate level of security can be achieved by
choosing the right communication protocol. As both the local and the remote module represent software
components, the same considerations apply as for the communication path between local and remote
software components. The security of this communication path has been discussed in Section 4.4.5.6.
According to this discussion, communication paths between software components can be implemented
securely.

In summary it can be concluded that the communication path between local software components
and remote SSCDs can be implemented securely with currently available technologies. Even though the

22http://www.arm.com/products/processors/technologies/trustzone/index.php
23https://play.google.com/store/search?q=keyboard&c=apps
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need for cross-domain communication between local software and a remote SSCD raises the need for
additional modules, this does not reduce the security of the overall solution.

4.4.5.10 Communication Between Remote Software and Local SSCD

Communication between remote software components and local SSCDs requires cross-domain commu-
nication as well. Hence, again additional modules are required to enhance the two communicating parties
with the capability to use cross-domain communication protocols. As remote components are assumed
to be secure, only the local realization of the required additional module needs to be considered in detail.

The conducted feasibility assessment has shown that this local module can either be implemented by
a mobile app with access to the SSCD or by the mobile operating system. For the first case, the same
security considerations apply as for the communication path between local software and local SSCDs.
The security of this communication path is problematic as discussed in Section 4.4.5.7. For the latter
case, the security of the additional module depends on the level of security provided by the mobile
operating system. As no operating system is absolutely secure, this module must not be assumed to be
secure either.

In addition to the two modules themselves, also the communication path between these two modules
needs to be secured. An adequate level of security can be achieved by relying on suitable communication
protocols. In case the local module is implemented as a mobile app, the same considerations apply as for
the communication path between local and remote software components. This communication path can
be secured with existing protocols and technologies such as SSL/TLS. In case the local module is imple-
mented by the mobile operating system, also alternative communication channels can be employed. For
instance, most current SIM-based signature solutions rely on the mobile network and on an SMS-based
exchange of data between remote software and the local SSCD. If alternative communication channels
and technologies are used, their security also affects the security of transmitted assets. For the special
case of SIM-based signature solutions and their employed communication technology, several security
issues have been identified in the past [Donohue, 2013]. In general, securing the communication path
between the local and remote modules that enable cross-domain communication might be challenging.

In summary it can be concluded that a secure communication path between remote software and
a local SSCD is difficult to achieve. This is mainly due to the fact that remote communication with
local SSCDs potentially requires an additional local module. Depending on the implementation of this
module and on the used technology for cross-domain communication, reliance on the communication
path between remote software and local SSCDs hence potentially reduces the security of transmitted
assets.

4.4.6 Assessment of Implementation Variants

Available technologies and the current state of the art affect the security of relevant components and com-
munication paths of mobile signature solutions. Approaches to realize mobile signature solutions can be
classified into four implementation variants. As they all rely on different components and communica-
tion paths, different security aspects need to be considered for each variant. In this section, the security of
the four implementation variants is compared based on the results of the conducted component-specific
security assessment.

For this purpose, Figure 4.24 on page 126 and Figure 4.25 on page 127 can be used as a starting point.
These figures summarize involved components and communication paths for each implementation vari-
ant and hence enable a comparison on conceptual level. This comparison reveals that some components
and communication paths are used in any case. This applies to the three local components Local Service
Provider, Signatory Authentication Component, and DTBS Viewer. As shown in Figure 4.24, there are
no differences between the four implementation variants with regard to assets being potentially exposed
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to attacks by these three components. The same applies to two communication paths. Means for com-
munication between local and remote software, as well as between users and software components are
required in any case. For a comparative security assessment, components and communication paths, for
which no differences can be identified between different implementation variants, can be omitted. Hence,
focus on the remaining components and communication paths is sufficient to compare the four variants
on conceptual level. Remaining relevant components and communication paths that need be considered
for a comparative security assessment are highlighted in Figure 4.26.

SD DTBS AD SD DTBS AD SD DTBS AD SD DTBS AD

Components

Local Service Provier X X X X X X X X

Signature Processing Component X X X X

Signatory Authentication Component X X X X

DTBS Viewer X X X X

Communication Paths

Inter-application and 

inter-process communication
X X X X

Communication between local

and remote software
X X X X X X X X

Communication between local 

software and local SSCD
X X X X

Communication between user

and software component
X X X X

Communication between local 

software and remote SSCD
X X X X

Communication between remote

software and local SSCD
X X

Implementation

Variant A

(Classical Approach)

Implementation

Variant B

(Remote-SSCD Approach)

Implementation

Variant C

(SIM Approach)

Implementation

Variant D

(Server-HSM Approach)

Figure 4.26: For a comparative analysis the number of relevant components and communication
paths can be reduced.

For the remaining relevant components and communication paths, several differences can be identi-
fied between the four implementation variants. Figure 4.26 shows that the Signature Processing Compo-
nent is the only component that needs to be considered for direct comparisons. For signature solutions
following the Classical Approach or the Remote-SSCD Approach, the security of the assets DTBS and
SD depends on the security of the Signature Processing Component. Hence, these solutions are conceptu-
ally disadvantageous compared to solutions following the SIM Approach or the Server-HSM Approach,
for which the security of the assets DTBS and SD are independent from the Signature Processing Com-
ponent.

This finding is also backed by the conducted component-specific security assessment. According
to this assessment, the security of data being processed by a locally implemented Signature Processing
Component must not be taken for granted on current mobile platforms. Attackers with root access to the
mobile operating system pose a serious threat to the security of a locally implemented Signature Pro-
cessing Component and hence also to the assets DTBS and SD. With regard to the Signature Processing



134 Chapter 4. Approaches Towards Electronic Signatures on Mobile
End-User Devices

Component, solutions following the Classical Approach or the Remote-SSCD Approach are hence also
disadvantageous from a realization perspective.

Similar results can be derived with regard to inter-application and inter-process communication. Fig-
ure 4.26 shows that this communication path is required by the Classical Approach and the Remote-
SSCD Approach. In contrast, for signature solutions relying on the SIM Approach or the Server-HSM
Approach, no assets are exposed to threats on this communication path. Hence, the Classical Approach
and the Remote-SSCD Approach are again disadvantageous from a conceptual perspective.

This result is again backed by the conducted component-specific security assessment. In Section
4.4.5.5, especially inter-application communication has been identified as potential risk on certain mobile
platforms. Hence, the Classical Approach and the Remote-SSCD Approach are disadvantageous also
from a realization perspective.

Comparison of the four implementation variants by means of the Signature Processing Component
and by means of inter-application and inter-process communication clearly yields the SIM Approach and
the Server-HSM Approach to be advantageous. The other two approaches represented by Implementa-
tion Variant A and Implementation Variant B suffer from the requirements to secure a local Signature
Processing Component and to provide secure means for inter-application communication. Both require-
ments are difficult to satisfy on current mobile end-user devices. The remaining three communication
paths, for which Figure 4.26 shows differences between the four implementation variants, are related
to data exchange between software components and the SSCD. Counting the occurrences of assets on
these communication paths indicates that the Server-HSM Approach is advantageous from a conceptual
perspective. Following this approach, only the asset AD is transmitted once over one of these three com-
munication channels. For all other approaches, all three assets are present at least once on one of the
three communication paths.

Considering the conducted component-specific assessment also leads to useful results. Figure 4.26
shows that both the Classical Approach and the SIM Approach require communication between local
software and a local SSCD. The component-specific assessment has revealed that data transmitted over
this communication path is potentially prone to attacks, as attackers with access to the mobile device
can compromise transmitted data. This reduces the security of signature approaches relying on this
communication channel. Hence, the Classical Approach and the SIM Approach are disadvantageous
to the Remote-SSCD Approach and the Server-HSM Approach, which do not transmit assets over this
communication channel.

Figure 4.26 also shows that the SIM Approach is sort of special as it is the only approach that trans-
mits assets over a communication channel between remote software and a local SSCD. The component-
specific assessment of this communication path has shown that this type of cross-domain communication
potentially reduces security, as an additional local software module is required. Hence, the need to trans-
mit assets over this communication path reduces the security of the SIM Approach.

Communication between local software and remote SSCDs is required by signature solutions follow-
ing the Remote-SSCD Approach and the Server-HSM Approach. While the former transmits all three
identified assets over this communication path, only the asset AD is transmitted over this path when the
Remote-HSM Approach is followed. The Remote-HSM Approach is hence conceptually advantageous
compared to the Remote-SSCD Approach. The component-specific assessment of this communication
path has shown that this communication path can be implemented securely using approved communica-
tion protocols. From a realization perspective, reliance on this communication channel does hence not
reduce the achievable level of security.

From a comparison of the four implementation variants for mobile signature solutions, the following
conclusions can be drawn. Comparison from a conceptual perspective yields solutions following the
Server-HSM Approach to be advantageous compared to other implementation variants. This can be ex-
plained by the fact that this approach removes as many components as possible from potentially insecure
local end-user devices. Taking into account the realization perspective as well, also the SIM Approach
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turns out to provide an adequate level of security, if secure cross-domain communication technologies
are used and additionally required local modules are realized securely. Solutions following the Classi-
cal Approach or the Remote-SSCD Approach suffer from the rather large number of components being
implemented locally. Therefore, these approaches are disadvantageous in terms of security both from
the conceptual and the realization perspective. Hence, it can be concluded that from a security perspec-
tive, development of a signature solution for mobile end-user devices should follow the Server-HSM
Approach. Alternatively, also the SIM Approach can be followed, if several requirements regarding the
secure realization of critical components are satisfied.

4.5 Usability Assessment

Usability has been identified as relevant pillar for successful m-government solutions in Part I of this the-
sis. According to the International Organization for Standardization (ISO), usability is ’the effectiveness,
efficiency and satisfaction with which specified users achieve specified goals in particular environments’
[ISO/IEC, 2010]. According to this definition, usability contributes to user satisfaction and therefore
directly to user acceptance and success. The aim to develop an accepted and successful mobile signa-
ture solution requires this solution to provide a sufficient level of usability. In many cases, usability is
however not only a matter of well-designed user interfaces, but also heavily influenced by the solution’s
underlying concepts and architecture. It is hence reasonable to consider usability aspects when determin-
ing the best approach for mobile signature solutions. Therefore, this section assesses the usability of the
four identified implementation variants for mobile signature solutions in detail. Results of this usability
assessment will be used to determine the best approach to create electronic signatures on mobile end-user
devices.

4.5.1 Methodology

Hornbæk [2006] has shown that measuring usability is a complex task that raises various challenges.
Approved usability-measurement approaches such as thinking-aloud tests have mainly been designed
for the purpose of evaluating a particular solution or product. Instead of evaluating a certain solution
or implementation, this assessment aims to compare four technology-agnostic implementation variants
mainly on an abstract and conceptual level. Therefore, existing approaches are not suitable to meet the
requirements of this usability assessment.

To achieve a comparative usability assessment, three consecutive steps are carried out. In the first
step, relevant usability aspects that apply to all implementation variants are identified. The set of relevant
aspects is obtained from a survey on related work dealing with the identification of crucial aspects for
usable IT systems. Additionally, results of own research on the usability of signature-creation solutions
are considered. This way, usability aspects are covered that are specific to signature-creation solutions.
In the second step, the usability of the four implementation variants is assessed by means of the identified
usability aspects. For each aspect, a ranking of the four implementation variants is derived. Finally, ob-
tained assessment results are compared to determine the most usable implementation variant for mobile
signature solutions.

In general, the methodology resembles the one that has been followed to assess the security of the
four different implementation variants for mobile signature solutions. In addition to the security assess-
ment, the conducted usability assessment also ranks the four implementation variants according to their
capability to meet relevant usability aspects. Ranking the four implementation variants has been omitted
during the security assessment, as the security of the four implementation variants also heavily depends
on the used mobile platform. This is not the case for the usability of the four implementation variants.
As their usability is to a large extent independent from the used mobile platform, a ranking of the four
implementation variants according to relevant usability aspects can be derived.
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4.5.2 Identification of Relevant Usability Aspects

In this section, relevant usability aspects are identified. In general, usability aspects can be defined on
different levels of abstraction. For instance, according to Frøkjær et al. [2000] usability comprises the
aspects effectiveness, efficiency, and satisfaction. These rather abstract usability aspects can be split into
more detailed aspects depending on the particular field of application. For instance, usability factors for
mobile handsets have been identified by Ketola and Röykkee [2001] including the aspects integration of
functionality, availability, utility and ease of using services, readiness for use, informativity, usefulness
of support material, and interoperability. In addition, Klockar et al. [2003] consider the size of soft keys
and screen, the layout of navigation keys, and the menu structure as crucial for mobile phones. This
concrete example from the field of mobile phones shows that identification of relevant usability aspects
is a complex task in practice and heavily depends on the concrete use case. The general problem of
identifying relevant usability factors has been discussed by Heo et al. [2009] by means of the concrete
case of mobile phones. Nevertheless, identification of relevant usability factors is also crucial for other
use cases and defines the first relevant step of a usability assessment.

As all four implementation variants for mobile signature solutions are intended for mobile end-user
devices, usability factors for mobile apps are an appropriate starting point for the identification of relevant
usability aspects. Harrison et al. [2013] have provided a literature survey on the definition of relevant
usability aspects for mobile applications. Based on this literature survey, Harrison et al. [2013] have
proposed the PCMAD usability model, which defines the factors effectiveness, efficiency, satisfaction,
learnability, memorability, errors, and cognitive load as crucial for the usability of mobile applications.
These usability aspects are used as basis for the conducted usability assessment of the four implementa-
tion variants for mobile signature solutions.

Recent usability assessments of concrete signature solutions have shown that for these solutions
several additional aspects need to be considered [Zefferer and Krnjic, 2012b]. Most of these aspects
are related to the use of SSCDs, which potentially introduces additional hurdles for users. In order to
consider these additional aspects, the basic set of usability aspects for mobile applications defined by
Harrison et al. [2013] is adapted and extended accordingly. This finally leads to the following set of
relevant usability aspects:

• Effectiveness: Effectiveness describes the ’ability of a user to complete a task in a specified
context’ [Harrison et al., 2013]. In the case of mobile signature solutions, this refers to the user’s
ability to create a qualified electronic signature. As such, this usability factor also includes the
requirement for service availability. In the context of mobile applications, this usability factor is
influenced e.g. by the fact whether or not the assessed solution is also applicable without access to
the mobile network, or if the solution supports roaming.

• Efficiency: Harrison et al. [2013] define the speed and the accuracy, with which an intended task
can be completed by the user, as relevant aspects of the factor efficiency. In the context of mobile
signature solutions, efficiency is hence indirectly proportional to the complexity of a signature-
creation operation from the user’s point of view.

• Satisfaction: Harrison et al. [2013] define the usability factor Satisfaction as ’the perceived level of
comfort and pleasantness afforded to the user through the use of software’. As for all applications,
the provided user interface of mobile signature solutions mainly influences the perceived level of
satisfaction. In addition, the following two aspects, which are rather special to signature-creation
solutions, also need to be considered. We have shown and discussed the relevance of these aspects
with relation to signature-creation solutions in Zefferer and Krnjic [2012b].

– Hardware independence: Conducted usability assessments of existing signature solutions
have shown that the requirement to use certain hardware represents a potential hurdle in terms
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of usability. This applies for instance to smart card based signature solutions, which require
users to acquire, maintain, and use additional hardware in the form of card-reading devices.
Even if card-reading devices are available, users often refuse the use of smart cards, as they
are not familiar with this technology. Hardware independence is hence a crucial usability
factor for mobile signature solutions.

– Software independence: For this aspect, similar considerations apply as for the usability
factor hardware independence. Conducted usability assessments of existing signature solu-
tions have shown that the requirement to install and maintain additional software often repre-
sents a usability-reducing factor. In the case of smart card based signature solutions, software
being installed on the user’s local device often represents a potential source of problems es-
pecially for technically inexperienced users. Software independence, i.e. the avoidance of
additional software components, is hence a crucial usability factor for mobile signature solu-
tions.

• Learnability: Flood et al. [2013] have shown that average users spend only five minutes or less
to learn using a new mobile application. Learnability is hence an important aspect for mobile
solutions that aim to attract long-term attention of users.

• Memorability: Memorability, i.e. ’the ability of a user to retain how to use an application effec-
tively’ [Harrison et al., 2013] is an important aspect. This especially applies to mobile signature
solutions, as such solutions must be expected to be less frequently used than other mobile applica-
tions such as web browsers or social-networking apps.

• Error Robustness: According to Nielsen [1993], usable systems need to have a low error rate that
reduces the number of errors made by users. Furthermore, catastrophic errors must be prevented.
Defining a rather abstract requirement, this usability aspect applies to nearly all technical systems
and hence also includes mobile signature solutions.

• Cognitive Load: This usability aspect has been introduced by Harrison et al. [2013] especially
for assessing the usability of mobile applications. In short, cognitive load describes the impact
that using the mobile application has on the performance of other tasks the user is performing in
parallel. The higher their cognitive load, the more attention mobile applications demand from the
user.

4.5.3 Assessment of Implementation Variants

Related scientific work on the identification of relevant usability factors reveals that various aspects need
to be considered in the course of a comprehensive usability assessment. In this section, the four identified
implementation variants for mobile signature solutions are assessed by means of each relevant usability
aspect. The conducted usability assessment mainly focuses on the conceptual perspective. This enables
a direct comparison of different approaches to create signatures on mobile end-user devices. In addition,
usability limitations imposed by currently available technologies are also considered if necessary. Ob-
tained aspect-specific results are subsequently combined in order to determine the most usable approach.

4.5.3.1 Effectiveness

According to the definition of this usability aspect, the effectiveness of a signature solutions is closely
related to its feasibility. Only if a solution is feasible, it can be effective, i.e. allow the user to complete the
intended functionality. The conducted feasibility assessment has shown that all implementation variants
enable the Signatory to create qualified electronic signatures. Limitations regarding feasibility are mainly
imposed by required technologies that are not available on certain mobile platforms. The Classical
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Approach represented by Implementation Variant A defines the highest requirements for mobile end-
user devices. Hence, this approach is also disadvantageous in terms of effectiveness. From the remaining
three approaches, the Server-HSM Approach represented by Implementation Variant D shows the highest
degree of feasibility and hence also the highest degree of effectiveness.

Besides the pure technical feasibility, also service availability is an important factor for effectiveness.
In the context of mobile signature solutions, two concrete aspects need to be considered. First, reliance
on remote components potentially affects service availability. The use of remote services usually re-
quires the mobile device to be connected to the Internet. This requirement reduces service availability
in scenarios, in which the mobile device is offline. As the Classical Approach implements all relevant
components locally, this solution provides the highest degree of service availability in offline scenarios.
Second, limitations regarding service availability might also be caused by reliance on special commu-
nication technologies and protocols. According to the conducted feasibility assessment, this potentially
applies to the communication path between remote software components and local SSCDs. For instance,
several SIM-based mobile signature solutions require the Signatory’s mobile network operator to estab-
lish a connection between the remote Signature Processing Component and the local SIM. Depending
on the used communication protocol, this can raise the requirement for the Signatory to remain within
the network of the MNO and hence reduces service availability in roaming scenarios. As the communi-
cation path between remote software components and local SSCDs is only used by the SIM Approach,
this limitation applies to this approach only. All other communication paths between remote and local
components are typically based on common Internet-based and web-based communication technologies.

In summary, assessment of implementation variants for mobile signature solutions regarding the
usability aspect effectiveness leads to sort of ambiguous results. This also becomes apparent from Figure
4.27. In this figure, the four assessed approaches are ranked according to the two factors that contribute
to the usability aspect Effectiveness. For the factor feasibility, the Remote-SSCD Approach and the
Server-HSM Approach are ranked best, due to their avoidance of local SSCDs. The Classical Approach
and the SIM Approach, which rely on local SSCDs, share the third place. Regarding the factor service
availability, the Classical Approach is ranked best, as it does not require Internet access. The SIM
Approach is ranked worst, as it partly makes use of remote components and additionally relies on special
communication technologies that potentially reduce service availability in roaming scenarios.

Effectiveness: Feasibility

Effectiveness: Service Availability

Implementation

Variant A

(Classical Approach)

Implementation

Variant B

(Remote-SSCD Approach)

Implementation

Variant C

(SIM Approach)

Implementation

Variant D

(Server-HSM Approach)

3 1 3 1

1 2 4 2

Figure 4.27: Depending on the considered factor, either Implementation Variant B and Implemen-
tation Variant D, or Implementation Variant A achieve the highest level of effective-
ness.

4.5.3.2 Efficiency

In the context of mobile signature solutions, the usability factor efficiency measures the complexity of re-
quired user interactions during signature-creation processes. For mobile signature solutions, interactions
with the user are limited to displaying DTBS and requesting authentication data. Displaying of DTBS
is similar for all implementation variants. This does not apply in general to requesting authentication
data from the user. Approaches relying on remote SSCDs potentially require additional means to assure
that signature-creation data, i.e. cryptographic signing keys, remain under sole control of the Signa-
tory. These approaches require more complex authentication schemes, which reduce the efficiency of the
overall signature-creation process. Concretely, this applies to the Remote-SSCD Approach represented
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by Implementation Variant B and to the Server-HSM Approach covered by Implementation Variant D.
Therefore, these two approaches are disadvantageous in terms of efficiency. This is also reflected by
Figure 4.28, which ranks the four approaches according to their efficiency. The Classical Approach and
the SIM Approach are ranked best, as they rely on a local SSCD. The other two approaches, which make
use of a remote SSCD, share the third place.
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Figure 4.28: The conducted assessment yields Implementation Variant A and Implement Variant
C as most efficient approaches.

4.5.3.3 Satisfaction

The usability factor satisfaction is heavily influenced by the provided user interface. Considering the
four assessed implementation variants, only the components User Client, DTBS Viewer, and Signatory
Authentication Component provide a user interface. The User Client is regarded as out of scope, as it is
not directly involved in signature-creation processes. The usability of the user interfaces of the remaining
two components mainly depends on their implementation. Hence, no general conclusion can be drawn
for any of the four implementation variants regarding the usability of provided user interfaces.

Still, it is worth to mention that the achievable usability of user interfaces also relies on the technolo-
gies available to realize these interfaces. Mobile apps, which represent the most common approach to
implement user interfaces on mobile end-user devices, provide a high degree of flexibility to realize con-
venient user interfaces. Limitations regarding the usability of user interfaces might however be imposed
by the need to employ other technologies than mobile apps. This can be the case for signature solutions
relying on local SSCDs. As access to local SSCDs is typically limited, interaction with these compo-
nents usually requires application of specific technologies. For instance, SIM-based SSCDs typically
require the SIM Application Toolkit to provide a communication channel between the Signatory and the
SSCD. Representing a rather old and limited technology, implementation of usable user interfaces with
this technology can be difficult.

The usability of provided user interfaces is no requirement specific to signature solutions. In contrast,
the factors hardware independence and software independence are especially relevant for the level of
satisfaction provided by such solutions. Recent usability tests have revealed that the need to acquire and
maintain additional hardware and software reduces the pertained level of usability [Zefferer and Krnjic,
2012b]. The need to acquire and maintain additional hardware or software mainly applies to solutions
that rely on local SSCDs. These solutions require special hardware on the local device to implement the
SSCD. Furthermore, these solutions require special software that enables access to the SSCD. Hence,
the need for additional hardware and software mainly affects signature solutions following the Classical
Approach or the SIM Approach.

In addition to the SSCD, also other local components require additional software. Components with
direct interfaces to the Signatory need to be realized locally in any case. This applies to the DTBS Viewer,
the Signatory Authentication Component, and the User Client. All these components raise the need for
additional software irrespective of the underlying implementation variant. Differences between imple-
mentation variants can however be caused by the Signature Processing Component. This component can
be realized either locally or remotely. Local realizations of the Signature Processing Component impose
the need for additional local software and hence potentially reduce satisfaction. This applies to the Clas-
sical Approach followed by Implementation Variant A and the Remote-SSCD Approach represented by
Implementation Variant B.
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In summary, the Server-HSM Approach followed by Implementation Variant D is advantageous re-
garding the usability aspect satisfaction. In general, the Remote-SSCD Approach and the Server-HSM
Approach are advantageous compared to other approaches, as they do not require special technologies
that enable access to a local SSCD. These two approaches are also advantageous regarding hardware
independence due to reliance on a remote SSCD. Finally, the Server-HSM Approach and the SIM
Approach are beneficial in terms of software independence due to their remote implementation of the
Signature Processing Component. Hence, the Server-HSM Approach represented by Implementation
Variant D outperforms the other three approaches, as it is the only variant that is advantageous according
to all three factors that contribute to the usability aspect satisfaction. This also becomes apparent from
Figure 4.29, which ranks the four implementation variants for mobile signature solutions according to
the factors that contribute to the usability aspect satisfaction.
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Figure 4.29: Implementation Variant D achieves the highest level of satisfaction when combining
all relevant factors.

4.5.3.4 Learnability

The learnability of a signature-creation solution depends on its complexity. An increasing complex-
ity reduces learnability. The complexity of a signature solution is mainly influenced by required user
interactions. Required user interactions are similar for all four implementation variants of mobile sig-
nature solutions. First, the Signatory needs to check the DTBS being displayed by the DTBS Viewer.
Subsequently, the Signatory needs to provide the authentication data that is required to authorize the
signature-creation process. These two basic steps are equal for all four implementation variants.

However, differences can be found in the way, how authentication data need to be provided. For
implementation variants relying on a local SSCD, provision of static authentication data is usually suf-
ficient, as a second authentication factor, i.e. possession, is implicitly covered by the local SSCD. For
remote SSCDs, the authentication factor possession is not implicitly implemented by the SSCD, as the
SSCD is not under direct physical control of the Signatory. Hence, solutions relying on remote SSCDs
potentially need to implement alternative means in order to assure sole control of the Signatory over
signature-creation data, i.e. cryptographic signing keys. For instance, the mobile signature solution Aus-
trian Mobile Phone Signature24 implements a two-phase authentication mechanism. In the first authen-
tication phase, the Signatory needs to provide a unique ID and a secret static password. In the second
authentication phase, an OTP is sent to the Signatory’s mobile phone. This OTP needs to be returned by
the Signatory to prove possession of the mobile phone.

The need for alternative means to assure the Signatory’s sole control over signature-creation data
increases the complexity of the authentication process and reduces the learnability of the entire solution.
As this applies to solutions with remote SSCDs only, solutions relying on the Classical Approach or the
SIM Approach are obviously beneficial in terms of learnability. Accordingly, these two approaches are
ranked best regarding the aspect learnability. This is illustrated in Figure 4.30.

24https://www.handy-signatur.at/Default.aspx
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Figure 4.30: Implementation Variant A and Implementation Variant C are beneficial in terms of
learnability.

4.5.3.5 Memorability

Similar to the aspect learnability, also the memorability of a mobile signature solution depends on the
solution’s complexity. The more complex the solution, the more difficult it is to remember its intended
usage. Therefore, for the aspect memorability basically the same considerations apply as for the aspect
learnability. Hence, regarding the usability aspect memorability, Implementation Variant A representing
the Classical Approach and Implementation Variant C representing the SIM Approach are advantageous.
This is also illustrated in Figure 4.31, which ranks all approaches according to their memorability.
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Figure 4.31: Implementation Variant A and Implementation Variant C are beneficial in terms of
memorability.

4.5.3.6 Error Robustness

Error robustness rather depends on the specific realization of a mobile signature solution than on its
underlying architecture or concept. Hence, it is difficult to assess the error robustness of different im-
plementation variants for mobile signature solutions on a pure conceptual level. Nevertheless, it can
be assumed that remotely implemented components are typically less prone to errors compared to lo-
cally implemented components. This assumption is valid, as remote components are usually operated
in a controlled and especially protected environment such as data-processing centers. Data-processing
centers typically implement redundancy mechanisms to achieve an adequate service level. Although
this does not guarantee absolute robustness against errors and failures, remotely and centrally operated
components are usually more stable than components running on end-user devices.

Under this assumption, the error robustness increases with the number of components being imple-
mented remotely. Thus, the Server-HSM Approach represented by Implementation Variant D is advan-
tageous, as it implements both the Signature Processing Component and the SSCD remotely. Following
the Remote-SSCD Approach or the SIM Approach, either the Signature Processing Component or the
SSCD is implemented remotely. Hence, these approaches are still advantageous compared to the Classi-
cal Approach, which implements both the Signature Processing Component and the SSCD locally. These
considerations yield the ranking of implementation variants shown in Figure 4.32.
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Figure 4.32: Implementation Variant D shows the highest error robustness.
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4.5.3.7 Cognitive Load

The cognitive load of a mobile signature solution increases with its complexity. Therefore, similar con-
siderations apply for this usability aspects as for the aspects learnability and memorability. As solutions
relying on a remote SSCD potentially require more complex means to assure the Signatory’s sole con-
trol over signature-creation data, the Remote-SSCD Approach and the Server-HSM Approach impose a
higher cognitive load than approaches relying on a local SSCD. Hence, Implementation Variant A rep-
resenting the Classical Approach and Implement Variant C representing the SIM Approach are ranked
best according to the usability aspect cognitive load. This is shown in Figure 4.33.
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Figure 4.33: Implementation Variant A and Implementation Variant C are beneficial in terms of
cognitive load

4.5.4 Comparison of Implementation Variants

The conducted aspect-specific usability assessment compares the four implementation variants for mo-
bile signature solutions mainly on a conceptual level. Advantages and disadvantages of concrete real-
izations are not considered in detail. Instead, focus is mainly put on aspects that apply to all possible
realizations of a certain implementation variant. This facilitates a fair and direct comparison of the four
different approaches.

Based on the obtained aspect-specific assessment results, the most usable approach is determined.
For this purpose, all aspect-specific assessment results are combined. Concretely, the rankings, which
have been derived for each usability aspect, are summed up. This way, the most usable solution regarding
all assessed usability aspects is determined. This is illustrated in Figure 4.34. Summing up all aspect-
specific results finally yields the Classical Approach represented by Implementation Variant A and the
Server-HSM Approach represented by Implementation Variant D as most usable alternatives.

The significance of this kind of quantitative comparison is however limited for several reasons. First,
this comparison only yields valid results, if all usability aspects are assumed to be equally important.
This is usually not the case in practice. Second, the usability aspects effectiveness and satisfaction have
been split into several subordinate factors. Hence, these two aspects contribute stronger to the overall
result than other aspects. This needs to be considered when interpreting the results shown in Figure 4.34.

Although the ranking shown in Figure 4.34 does probably not allow for an absolute quantitative
comparison of the four implementation variants, it still enables derivation of several useful findings. For
instance, it clearly indicates, which approaches are beneficial regarding which usability aspects. The
most interesting finding is probably the fact that the Server-HSM Approach can be regarded as the most
bipolar solution. For most usability aspects, this approach is either among the best or among the worst
solutions. It is also remarkable that most usability aspects, for which the Server-HSM Approach is disad-
vantageous according to Figure 4.34, are related to the factor efficiency. Hence, the only drawback of this
approach in terms of usability is obviously its reduced efficiency. Its reduced efficiency is mainly caused
by the need for additional means to assure the Signatory’s sole control over remotely stored signature-
creation data. If this drawback can be removed, the Server-HSM Approach will clearly represent the
most usable and most user-friendly implementation variant for mobile signature solutions.
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Figure 4.34: Implementation Variant A is beneficial in terms of usability followed by Implemen-
tation Variant D, Implementation Variant C, and Implementation Variant B.

4.6 Chapter Conclusions

In this chapter, possible approaches to create electronic signatures on mobile end-user devices have been
identified. In total, four implementation variants for mobile signature solutions have been derived from
an abstract model. They all have been assessed according to the factors feasibility, security, and usability.
Feasibility is of fundamental importance, as only those approaches are worth to be considered that can
be implemented and realized on current mobile end-user devices with currently available technologies.
In addition, also security and usability need to be taken into account, as these factors are crucial pillars
of successful m-government solutions.

In general, the conducted analyses have not yielded an absolute winner. Hence, no approach clearly
outperforms all other approaches in all three aspects. Nevertheless, several useful findings can be derived
from the obtained results. The conducted feasibility assessment has shown that the general feasibility
of mobile signature solutions for mobile end-user devices increases with a decreasing number of com-
ponents that need to be implemented locally. By removing as many components as possible from the
mobile end-user device, it is relieved from supporting technologies that are necessary to implement these
components. For these reasons, the Server-HSM Approach can be identified to be advantageous, as it
implements as many components remotely as possible. Similar results have also been obtained for the
aspect security. The conducted security assessment has yielded the Server-HSM Approach to be slightly
advantageous, as remote components can be assumed to be more secure than local components. In terms
of security, also the SIM Approach has turned out to be a possible alternative under certain circumstances.

While the Server-HSM Approach is advantageous in terms of feasibility and security, the conducted
usability assessment has yielded this approach to represent the most bipolar implementation variant.
While the Server-HSM Approach outperforms other approaches in various usability aspects, it has turned
out to be clearly disadvantageous for some other usability aspects. Concretely, the Server-HSM Ap-
proach fails to achieve an adequate level of efficiency and is also disadvantageous regarding other us-
ability aspects that are related to this aspect. This is mainly caused by the remote implementation of the
SSCD, which raises the need for additional means to assure the Signatory’s sole control over remotely
stored signature-creation data.

Despite its limited usability, the Server-HSM Approach still represents the most suitable implemen-
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tation variant, as it is clearly beneficial in terms of feasibility and security. Addressing the concrete
problem tackled by this thesis, development of a mobile signature solution for mobile end-user devices
will therefore be based on the general concept and architecture of the Server-HSM Approach represented
by Implementation Variant D. Even though the Server-HSM Approach is beneficial in terms of feasibil-
ity and security, an adequate level of usability is also crucial for successful mobile solutions in general
and for m-government solutions in particular. The need for additional means to assure sole control over
signature-creation data has been identified as the main usability-limiting factor of the Server-HSM Ap-
proach. Development of a mobile signature solution for mobile end-user devices hence must especially
focus on the development of authentication means that satisfy given security requirements while at the
same time maintain an adequate level of security. Possible alternatives for the development of appro-
priate means to assure sole control over signature-creation data that meet both security and usability
requirements are discussed in the next chapter.



Chapter 5

Authorization Mechanisms for Mobile
Signature Solutions

“ After climbing a great hill, one only finds that there are many more hills to climb.”

[ Nelson Mandela, Former President of South Africa. ]

Determination of the Server-HSM Approach as the most suitable implementation variant for mobile
signature solutions is an important first step. However, as phrased by Nelson Mandela, a first step
is usually not enough. This also applies to the development of signature solutions for mobile end-
user devices. In particular, the decision to rely on the Server-HSM Approach raises the demand for an
adequate authorization mechanism that restricts the centrally provided electronic-signature functionality
to legitimate users. Development of such an authorization mechanism is the main topic of this chapter.

Authorization mechanisms are crucial components of signature-creation solutions. They assure that
the Signatory maintains sole control over his or her signature-creation data, i.e. his or her personal cryp-
tographic signing keys. In other words, authorization methods guarantee that nobody else but the le-
gitimate Signatory can create electronic signatures in the name of the Signatory. This is a fundamental
requirement of advanced electronic signatures and of qualified electronic signatures according to the EU
Signature Directive [The European Parliament and the Council of the European Union, 1999] and the
EU eIDAS Regulation [The European Parliament and the Council of the European Union, 2014]. Hence,
signature-creation solutions that aim to comply with these legislations need to implement adequate au-
thorization mechanisms.

Implementations of authorization mechanisms heavily depend on the particular signature-creation
solution. For instance, in the common case of smart card based solutions, access to signature-creation
data stored on the smart card is usually protected by a secret PIN. This PIN is only known to the
legitimate Signatory, who needs to enter this PIN prior to each signature-creation process. A similar
approach is also followed by mobile SIM-based signature solutions, which create electronic signatures
inside the Signatory’s SIM. Again, the Signatory needs to enter a secret PIN, in order to authorize a
signature-creation process. In contrast, server-based mobile signature solutions often follow a slightly
different approach. For instance, the Austrian Mobile Phone Signature1 implements an authorization
mechanism consisting of two consecutive steps. In the first step, the Signatory needs to provide a secret
password. In the second step, an OTP is sent to the Signatory’s mobile phone via SMS. The Signatory
needs to enter the received OTP to complete the authorization process.

These examples show that in principle different authorization mechanisms can be implemented by
signature-creation solutions. Nevertheless, most implemented mechanisms share one basic commonality:

1http://www.handy-signatur.at/
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they all rely on multiple authentication factors. For instance, authorization mechanisms of signature
solutions based on smart cards or SIMs rely on the authentication factors knowledge and possession.
The Signatory needs to possess the smart card or the SIM and needs to know the secret PIN. Also
server-based signature solutions that implement authorization mechanisms relying on OTPs delivered by
SMS make use of these two factors. Again, the Signatory needs to know a secret password. As server-
based solutions use a remote SSCD, this device however cannot directly cover the authentication factor
possession. Thus, a one-time password is sent to the Signatory’s mobile phone. By proving reception of
the one-time password, the Signatory proves to possess the mobile phone.

Differences in authorization mechanisms of existing signature solutions raise the question on mini-
mum requirements imposed by legal or organizational frameworks. In the European Union, the Signature
Directive [The European Parliament and the Council of the European Union, 1999] and the eIDAS Reg-
ulation [The European Parliament and the Council of the European Union, 2014] represent the legal
basis for electronic signatures. Regarding access to signature-creation data and signature-creation func-
tionality, these legislations state that advanced electronic signatures and hence also qualified electronic
signatures must be created using means the Signatory can maintain under his sole control. However, no
detailed requirements regarding assurance of this sole control are provided. Similar considerations also
apply to the requirements for SSCDs, which are needed for the generation of qualified electronic signa-
tures. For SSCDs, relevant legislations define that the signature-creation-data used for signature gener-
ation can be reliably protected by the legitimate signatory against the use of others. Again, no concrete
technical requirements regarding the implementation of reliable protection mechanisms are provided.

During the past years, EU member states have implemented the EU Signature Directive by means
of national laws. In general, an EU directive does not dictate the means that need to be applied by the
particular member state to achieve the results defined by the relevant directive. In the special case of
the EU Signature Directive, specific requirements regarding the implementation of signature-creation
solutions can hence also be defined by national laws. For instance, in the EU member state Austria, the
national Electronic Signature Act [Republik Österreich, 2010] and the national Signature Order [Repub-
lik Österreich, 2008] implement the EU Signature Directive on national level and define further technical
requirements for the generation of qualified electronic signatures. In particular, the Austrian Signature
Order defines the requirement for authorization codes to protect the signature-creation functionality of
signature-creation devices. Furthermore, the Austrian Signature Order defines that entered authorization
data must neither be stored by the signature solution after completion of the signature-creation process,
nor by client components to facilitate subsequent signature-creation processes. Similar to the EU Signa-
ture Directive, neither the Austrian Electronic Signature Act, nor the Austrian Signature Order defines
specific technologies to implement authorization mechanisms of signature-creation solutions.

Legal frameworks on European and national level define the need for appropriate authorization mech-
anisms for signature-creation solutions. However, these frameworks do in most cases not specify the
concrete realizations of such mechanisms. This gives signature solutions the opportunity to realize these
mechanisms in different ways. Existing signature solutions typically make use of authorization mech-
anisms relying on multiple authentication factors. This way, the required level of security is achieved.
Reliance on multiple authentication factors can hence be identified as fundamental requirement for au-
thorization mechanisms of signature-creation solutions. This also applies to mobile signature-creation
solutions that are tailored to a use on mobile end-user devices. In particular, this also applies to mobile
signature solutions following the Server-HSM Approach.

The Server-HSM Approach has been identified to be advantageous for mobile signature solutions
regarding the aspects security, feasibility, and usability. Furthermore, a generic model of solutions fol-
lowing this approach has been developed. Due to its abstract nature, this model considers only the general
need for an authorization method, but does not reflect the requirement for multiple authentication factors.
Furthermore, it does not specify, which authentication factors need to be chosen, and how they have to be
implemented. To overcome these limitations, this chapter refines the generic model of the Server-HSM
Approach by further detailing aspects related to its authorization mechanism. For this purpose, suit-
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able authentication factors are determined first. Subsequently, existing approaches to implement these
authentication factors are assessed in order to identify the most suitable approach. This approach is in-
corporated into the existing model. This finally yields a complete model of signature solutions relying
on the Server-HSM Approach. This model can then be used as basis for concrete signature-creation
solutions for mobile end-user devices. Thus, this model represents the abstract solution proposed in this
thesis.

5.1 Selection of Authentication Factors

Multi-factor authentication schemes typically involve two or three of the factors possession, knowledge,
and inherence. The factor possession is usually covered by something the user has, e.g. a smart card or
hardware token. Passwords or PINs are typically used to cover the factor knowledge. Finally, biometry is
a frequently followed approach to implement the factor inherence. Irrespective of their concrete imple-
mentation, combination of multiple authentication factors increases security, as it raises the complexity
of attacks.

The selection of authentication factors depends to a large extent on the concrete use case and de-
ployment scenario. In the special case of mobile signature solutions, especially capabilities of mobile
end-user devices need to be considered. Modern devices provide various opportunities to cover the au-
thentication factors knowledge and possession. The factor knowledge can be implemented easily by
requesting secret credentials such as PINs or passwords from the user. Implementation of the factor
possession is usually more complex. Still, existing solutions show that for instance the SIM can be
used to cover this authentication factor. Recently, also the factor inherence has gained relevance on mo-
bile end-user devices. In most cases, biometric approaches are followed for this purpose. For instance,
recent versions of mobile operating systems support biometry as an alternative to PIN and password-
based access protection. For example, Google Android supports device-unlock mechanisms based on
face recognition [Google, 2011]. Alternatively, the Apple iPhone integrates a finger-print sensor, which
allows users to unlock the phone simply by touching a button. This feature has been available first on the
Apple iPhone 5S, which has been introduced in 2013 [Apple, 2013].

Although biometry is obviously on the rise on mobile consumer devices, this authentication factor is
not considered in this chapter for the following reasons. First, especially on mobile consumer devices,
biometric approaches provide only a low level of security. For instance, the biometric device-unlock
solutions of Google Android and Apple iOS are vulnerable to even simple attacks. This has for instance
been shown by Diaz [2013] and Silverman [2011]. These vulnerabilities are mainly caused by missing
liveness-detection mechanisms on current mobile end-user devices. Second, biometry suffers from two
conceptual drawbacks. While e.g. text-based passwords can be easily kept confidential, this is much
more difficult for biometric data. For instance, finger prints can be obtained from arbitrary persons rather
easily, as they are leaked any time the person touches a smooth surface. Furthermore, in contrast to
e.g. passwords, biometric data cannot be revoked in case these data have been compromised. A detailed
analysis of biometric authentication approaches has also been provided by Bhattacharyya et al. [2009].
This analysis concludes that biometric authentication is still far from being the perfect solution. For
all these reasons, biometry is not considered as potential implementation of the authentication factor
inherence for mobile signature solutions. However, consideration of this authentication factor can be
regarded as future work, as soon as biometric solutions reach a sufficient level of maturity and reliability
on mobile end-user devices. Ruling out the factor inherence, focus is put on authentication schemes that
rely on the authentication factors knowledge and possession.

Based on the decision to focus on authorization mechanisms relying on the authentication factors
possession and knowledge, the generic model of signature solutions following the Server-HSM Approach
can be further detailed. So far, this model considers required authorization mechanisms on a rather
abstract level only. All related functionality is combined in a single local subcomponent called Signatory
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Authentication Component. The Signatory Authentication Component implements an interface between
the Signatory and the remote SSCD. Through this interface, the Signatory provides authentication data
in order to authorize signature-creation operations. Due to its abstract nature, the model does not apply
any restrictions regarding the concrete implementation of the Signatory Authentication Component. By
taking into account the decision to rely on the authentication factors knowledge and possession, the
abstract Signatory Authentication Component can be further detailed. This leads to the refined model
shown in Figure 5.1.
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Figure 5.1: The design decision to rely on the authentication factors knowledge and possession
yields a refined model of mobile signature solutions following the Server-HSM Ap-
proach.

The refined model further details the Signatory Authentication Component defined by the original
model. Concretely, the Signatory Authentication Component is split into the subcomponents Knowl-
edge Prover and Possession Prover. These subcomponents request required authentication data from the
Signatory to cover the two authentication factors knowledge and possession. The functionality of the
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subcomponent Knowledge Prover is rather simple. This subcomponent basically requests some kind of
secret data from the Signatory. In the simplest scenario, this is a static PIN or password. By entering this
secret data, the Signatory proves knowledge of this data. The Knowledge Prover forwards the requested
secret data, i.e. the knowledge proof, to the remote entity, at which the Signatory wishes to authenticate.

While the functionality of the Knowledge Prover is rather simple, the subcomponent Possession
Prover needs to be considered in more detail. This subcomponent provides the remote entity, at which
the user attempts to authenticate, with a possession proof. This is necessary, as the SSCD is implemented
remotely and hence does not implicitly cover the authentication factor possession. Hence, the Possession
Prover needs to provide the remote entity with an alternative possession proof. Existing approaches to
accomplish this task include for instance one-time passwords delivered by SMS. By proving reception of
the one-time password, the user proves possession of a certain mobile phone, or of a certain SIM, respec-
tively. This approach is for instance followed by various e-banking solutions. Examples are e-banking
solutions provided by the Austrian banks Raiffeisen2 or BAWAG PSK3. Furthermore, this approach is
also followed by the productive mobile signature solution Austrian Mobile Phone Signature4.

Due to the refinement of the Signatory Authentication Component, also the communication path be-
tween this component and the SSCD needs to be further detailed. In the original model, this communica-
tion path has been abstractly defined to transport authentication data from the Signatory Authentication
Component to the SSCD. According to the design decision to rely on the authentication factors knowl-
edge and possession, this communication path can be further concretized to transport knowledge proofs
and possession proofs. These two proofs do not necessarily need to be transported over the same com-
munication path. Hence, the communication path of the original model is also split in the refined model
shown in Figure 5.1. This refinement raises the need for a new component named Authorizer, which is
located in the same remote domain as the SSCD. The Authorizer receives knowledge and possession
proofs from the local User Domain and combines them to authentication data. The combined authenti-
cation data is then forwarded to the SSCD. The split of the communication path between the Signatory
Authentication Component and the SSCD makes the Authorizer component necessary, in order to be able
to leave all SSCD interfaces unmodified. Of course, suitable means need to be implemented to assure an
appropriate binding between the newly introduced Authorizer component and the Signature Processing
Component. This is also illustrated in Figure 5.1.

The refined model shown in Figure 5.1 considers the design decision to rely on the authentication
factors knowledge and possession. In this context, the refined model is hence more specific than the
original model defined in Chapter 4. Still, also the refined model does not specify the concrete imple-
mentation and realization of authorization mechanisms. In particular, the refined model defines the need
for a local Possession Prover and a local Knowledge Prover, but does not specify the implementation of
these components. In general, various approaches exist that can be followed to realize these components.
In order to systematically determine the best of these approaches, relevant requirements are derived in
the following section.

5.2 Derivation of Requirements

Implementation of an authorization mechanism for signature solutions following the Server-HSM Ap-
proach requires realization of the two local components Knowledge Prover and Possession Prover. Re-
alization of the Knowledge Prover is rather simple, as the functionality of this component is basically
limited to requesting a secret from the Signatory and forwarding this secret to the remote Authorizer. In
contrast, realization of the Possession Prover is more difficult. Due to the remote nature of the SSCD,
new ground to prove possession of some kind of hardware token needs to be broken.

2www.raiffeisen.at
3https://www.bawagpsk.com
4http://www.handy-signatur.at/
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During the past years, different approaches to realize remote possession proofs have been proposed
and implemented. These approaches will be surveyed and assessed to determine the best alternative for
mobile signature solutions relying on the Server-HSM Approach. The conducted assessments will be
based on a set of requirements. These requirements are derived in this section from the refined model
shown in Figure 5.1. This assures that all aspects that are relevant for possession-proof implementations
for mobile signature solutions following the Server-HSM Approach are covered.

For the sake of clarity, relevant components of the refined model have been extracted and assembled
to a reduced model. This reduced model is shown in Figure 5.2. In general, only the User Domain and the
Signature-Service Provider Domain are relevant when focusing on the realization of remote possession
proofs. The Service Provider Domain does not need to be considered. In addition, also the set of consid-
ered components can be reduced in the relevant domains. In the local User Domain, only the Possession
Prover and the DTBS Viewer need to be considered. The Possession Prover provides possession proofs
to the remote domain. The DTBS Viewer displays DTBS to the Signatory. A binding must be established
between these two components, in order to enable the Signatory to check that provided possession proofs
are used to sign the displayed data. In the remote Signature-Service Provider Domain, the SSCD, the
Signature Processing Component, and the Authorizer need to be considered. The Signature Processing
Component supplies the DTBS Viewer and the SSCD with the DTBS. The Authorizer receives posses-
sion proofs from the local Possession Prover and provides the SSCD with required authentication data.
A binding must also be established between the Authorizer and the Signature Processing Component, in
order to assure a correct mapping between DTBS and provided possession proofs.
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Figure 5.2: Considering only components that are relevant for the provision of possession proofs
yields a reduced and simplified model, which can be used to derive requirements.

The reduced model shown in Figure 5.2 contains all components and communication paths that
are relevant for the implementation of remote possession proofs. Hence, this model can be used to
derive requirements for the systematic assessment of existing approaches. Concretely, the following
requirements can be derived:

• Requirement R1: Mobile nature of possession proofs

• Requirement R2: Remote binding between possession proofs and DTBS

• Requirement R3: Local binding between possession proofs and DTBS

• Requirement R4: Secure transmission of possession proofs

• Requirement R5: Secure transmission of DTBS
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Requirement R1 can be derived directly from the facts that the Possession Prover is located in the
User Domain and that this component represents the source of possession proofs. As all components of
the User Domain are realized on and implemented by mobile end-user devices, also possession proofs
must be created on these devices. This leads to Requirement R1, which defines a mobile nature of
possession proofs.

Requirement R2 is imposed by the required binding between the Signature Processing Component
and the Authorizer. This binding assures that the remote signing entity is provided with opportunities to
verify that a received possession proof is linked to the current signature-creation process and to the DTBS
belonging to this process. Similar consideration also apply to Requirement R3. This requirement defines
that in the User Domain the Signatory must be provided with means to verify that a provided possession
proof is linked to the DTBS and used to sign nothing but the data displayed by the DTBS Viewer. Similar
to Requirement R2, also Requirement R3 can be derived directly from the reduced model, which specifies
a binding between the Possession Prover and the DTBS Viewer in the User Domain.

Finally, Requirement R4 and Requirement R5 can be derived from the fact that the reduced model
comprises two locally dispersed domains. Both DTBS and possession proofs need to be exchanged
between these domains. This raises the need for means to protect these data during inter-domain trans-
mission. This finally leads to Requirement R4, which defines a secure exchange of possession proofs
between the local Possession Prover and the remote Authorizer, and to Requirement R5, which defines a
secure transmission of DTBS between local and remote entities.

All requirements have been derived from the abstract and implementation-independent reduced model
shown in Figure 5.2. Thus, also the obtained requirements themselves are defined on a rather abstract
level. Of course, these requirements need to be refined and further detailed once the abstract model is
further developed towards a concrete realization. Nevertheless, the derived requirements can be used in
their current form to assess different approaches to implement remote possession proofs on conceptual
level. Existing approaches to implement remote possession proofs, which will be assessed by means of
the derived requirements, are surveyed in the following section.

5.3 Survey of Existing Approaches

Two-factor authentication on mobile end-user devices has been a topic of interest for a long time. In the
past, various solutions have been proposed that allow a user to remotely authenticate at a remote entity.
Especially during the past few years, the emergence of smartphones and other powerful mobile end-
user devices has facilitated the development of new approaches to implement two-factor authentication
with the help of mobile end-user devices. While the authentication factor is usually implemented by
means of static passwords, different alternatives to cover the authentication factor possession and to
implement remote possession proofs have been proposed. Unfortunately, most of these approaches have
not been designed and developed for the special use case of mobile signature solutions. Therefore,
special requirements of this particular use case are usually not considered. Hence, proposed approaches
can often not be directly applied to mobile signature solutions.

Still, underlying concepts of existing solutions potentially provide useful input for the development
of a two-factor authentication scheme that is tailored to the special requirements of mobile signature so-
lutions. Therefore, these solutions are surveyed, classified, and assessed against identified requirements
of mobile signature solutions. The conducted survey and analysis is based on related work that has been
published on this topic. Main focus is thereby put on the comprehensive survey of existing eID authen-
tication methods in Electronic Finance (e-finance) and Electronic Payment (e-payment) services that has
recently been published by the European Union Agency for Network and Information Security (ENISA)
[ENISA, 2013].
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5.3.1 Static Possession Proofs

A personalized mobile app is probably the most obvious and most simple approach to realize two-factor
authentication schemes using current mobile end-user devices. A personalized mobile app is unam-
biguously linked to a certain user and mobile end-user device. The user can use the app to send static
possession proofs that are unique for this particular app instance. Furthermore, the app instance is un-
ambiguously linked to a certain mobile end-user device and hence also to a certain user. Thus, sent
possession proofs theoretically cover the authentication factor possession.

Although static possession proofs work in theory, application of this approach raises several issues.
For instance, the mobile app must be personalized in order to unambiguously bind it to a certain mobile
end-user device and user. This, in turn, requires application of cryptographic methods. This leads to a
more complex solution, which is regarded as separate approach and discussed in Section 5.3.5.1 in more
detail. A personalization of mobile apps with other means than cryptography is also possible in theory.
For instance, simple identifiers could be used. However, this approach is prone to cloning and hence must
not be regarded as secure. Another issue arises from the static nature of used possession proofs. Even if
they are unique for a particular mobile app, reliance on static possession proofs enables the application
of replay attacks. Basic concepts behind replay attacks have been discussed by Syverson [1994].

To add a further layer of security, personalized mobile apps can be equipped with an additional local
user-authentication step. During this step, the user authenticates at the local app. For instance, users
might be required to enter a password to the app in order to authorize the app to send a static possession
proof. Instead of text-based passwords, also alternative means for local authentication such as biometry
are conceivable. Regardless of the applied means, the app needs to store reference data in order to be
able to validate local authentication data provided by the user. This raises the issue of secure storage
of reference data on the mobile client device. Furthermore, if an attacker is capable of intercepting
the static possession proof, replay attacks are still feasible. This is an inherent property of approaches
relying on static possession proofs, which cannot be completely prevented by an additional local user
authentication.

In general, static possession proofs have several drawbacks. It is therefore unsurprising that this
approach is hardly followed in practice to implement two-factor authentication by means of mobile end-
user devices. Still, this approach is listed here for the sake of completeness and to illustrate relevant
aspects that need to be considered.

5.3.2 Time-Based OTP Solutions

Their vulnerability against replay attacks has been identified as most severe drawback of static possession
proofs. Thus, most current solutions relying on the authentication factor possession follow dynamic
approaches instead. In contrast to their static pendants, dynamic possession proofs are unique for each
authentication process. This prevents replay attacks, as intercepted possession proofs cannot be reused.

A common approach to implement dynamic possession proofs are time-based OTPs. Following this
approach, the user needs to send a time-dependent password to the remote entity that requires authen-
tication. The user obtains the time-dependent password from a special hardware token, which is paired
with the remote entity. This pairing enables the remote entity to verify provided possession proofs. By
proving knowledge of the time-dependent OTP, the user proves possession of the token that is required
to generate this OTP. This way, the OTP represents a possession proof and the authentication factor
possession is covered.

Concrete solutions following this approach have been available on the market for several years. Ex-
amples are the products SecurID5, SafeWord 20086, and DIGIPASS7. All these solutions implement

5http://austria.emc.com/security/rsa-securid.htm
6http://www.safenet-inc.com/data-protection/authentication/safeword-2008/
7http://www.vasco.com/products/client products/single button digipass/single button digipass.aspx
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similar functionality. Users are supplied with small security tokens, which are equipped with a rudimen-
tary display. In an initial personalization process, the token is bound to the particular user and paired
with a central server. After initialization, the token generates new OTPs in predefined intervals. During
authentication processes, the user is requested to enter the current OTP. As the central server is paired
with the token, it is able to verify entered OTPs and to complete authentication processes. By relying
on adequate cryptographic methods, it is also guaranteed that OTPs cannot be precomputed without the
hardware token.

With the emergence of smartphones, vendors of time-based OTP solutions have started to offer
smartphone apps as an alternative to hardware tokens. During the personalization process, the smart-
phone app is bound to the user and paired with the central server. During authentication processes, the
time-dependent OTP is displayed by the smartphone app. Thus, the user’s smartphone covers the au-
thentication factor possession. A currently popular example of time-based OTP authentication schemes
is Google Authenticator8. Google Authenticator is an open-source implementation of an OTP generator
for different mobile platforms. OTPs are generated according to standards defined by the Initiative for
Open Authentication (OATH)9. In general, Google Authenticator supports creation of different types of
OTPs including time-based OTPs. When relying on a time-based approach, OTPs are created according
to the Time-Based One-Time Password Algorithm (TOTP) specified in Request For Comments (RFC)
6238 [Internet Engineering Task Force, 2011].

5.3.3 Event-Based OTP Solutions

Time-based OTP approaches rely on OTPs that depend on the current time. In contrast, event-based
OTP solutions create one-time passwords for a special event, e.g. a particular authentication process.
Again, the created OTP is unique for each authentication process. This prevents the applicability of
replay attacks. Similar as for time-based OTP solutions, event-based OTPs represent possession proofs
and hence cover the authentication factor possession.

A common standard for event-based OTP solutions is the HMAC-Based One-Time Password Algo-
rithm (HOTP) specified in RFC 4226 [Network Working Group, 2005]. This standard has been proposed
by OATH. According to HOTP, the computation of OTPs is based on a counter, which is incremented
after each usage of an OTP. Thus, this counter represents the variable component that is covered by the
current time in time-based OTP solutions. To assure that the recipient is able to verify an event-based
OTP, sender and recipient need to be synchronized. For instance, if relying on a counter as proposed by
RFC 4226, sender and receiver need to assure to increment this counter synchronously.

Examples for current implementations of the HOTP standard are again Google Authenticator and
also the Barada Project10. The latter provides a smartphone app for the Google Android platform11. This
app implements HOTP functionality and hence enables authentication processes relying on event-based
one-time passwords.

5.3.4 SMS-TAN Approaches

One-time passwords sent to the user via SMS during authentication processes represent a popular al-
ternative to time-based or event-based OTP approaches. This alternative has become commonly known
under the term SMS TAN and has been frequently used e.g. by several European e-banking solutions.
In contrast to time-based and event-based solutions, SMS-TAN approaches require the remote party, at
which the user wishes to authenticate, to create the OTP. This OTP is also denoted as TAN and sent to the
user via SMS technology. The user needs to return the received TAN to the remote party usually through

8http://code.google.com/p/google-authenticator/
9http://www.openauthentication.org/

10http://barada.sourceforge.net/
11https://play.google.com/store/apps/details?id=net.sf.crypt.gort
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an alternative communication channel. By returning the OTP, the user proves reception of the SMS. As
a specific SIM is required to receive the SMS, proving reception of the SMS also proves possession of
the SIM. This way, the authentication factor possession is covered by the SIM, while the returned OTPs
represent possession proofs.

SMS TAN based approaches can also be realized in a slightly modified way. Instead of sending the
OTP to the user via SMS, the OTP can also be displayed by the application that requires the user to
authenticate. In case of a web-based e-banking solution, the OTP could for instance be displayed in the
user’s web browser. In this case, the user needs to send the OTP via SMS to a predefined number to
complete the authentication process. Also in this alternative, the user’s SIM covers the authentication
factor possession, as this component is required to send the OTP. Mainly due to its reduced usability,
this modified approach is however hardly followed in practice.

In contrast, SMS-TAN approaches that rely on OTPs sent to user’s mobile phones are currently em-
ployed in different fields of application. A popular example is the e-banking sector, where this kind
of user authentication is commonly used to remotely authorize financial transactions. Interestingly, the
SMS-TAN approach is also followed by the server-based signature solution Austrian Mobile Phone Sig-
nature12 to authorize signature-creation processes. This shows that the SMS-TAN approach is in princi-
ple suitable for server-based signature solutions. The applicability of this approach on mobile end-user
devices is discussed in Section 5.4 in more detail.

5.3.5 Challenge-Response Approaches

From a conceptual perspective, the SMS-TAN approach shows an interesting characteristic. In contrast
to solutions relying e.g. on time-based or event-based one-time passwords, this approach requires two
communication steps to cover the authentication factor possession. First, an OTP, i.e. TAN, is generated
by the remote entity and sent to the user via SMS. Second, the user returns the obtained TAN to the
remote entity.

Challenge-response approaches follow a similar approach and also rely on two consecutive commu-
nication steps. Again, the first communication step is initiated by the remote entity, which creates a
so-called challenge. This challenge is transmitted to the user. In contrast to the SMS TAN approach,
the user does not return the challenge unmodified to the remote entity. Instead, the user applies some
kind of cryptographic method to the challenge. This way, the user creates a so-called response from the
challenge. Usually, this includes the processing of a personalized secret cryptographic key. The created
response is then returned to the remote entity. As the used key is personalized, only the legitimate user is
able to create correct responses from received challenges. Thus, the cryptographic key required to com-
pute responses from challenges covers the authentication factor possession. Accordingly, the computed
response represents the possession proof.

Depending on their concrete implementation, existing challenge-response approaches can be clas-
sified into two categories. Existing solutions belonging to these two categories are discussed in the
following two subsections in more detail.

5.3.5.1 Cryptography-Enabled Local Software

The first category of challenge-response approaches comprises solutions that solely rely on local soft-
ware. This software is deployed on the mobile end-user device and implements required cryptographic
functionality to compute responses from received challenges.

Popular examples assigned to this category are solutions using Quick Response (QR) technology.
Google has experimented with QR technology in a research project called Google Sesame [Bowling,

12http://www.handy-signatur.at/
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2012]. Another solution relying on QR technology is called Secure Quick Reliable Login (SQRL)13.
The main aim of SQRL is secure login to websites. For this purpose, the user needs to install a software
component called SQRL Client on the mobile device. Usually, this software is implemented by means
of a smartphone app. The SQRL Client stores a secret master key, which is encrypted with a secret
password defined by the user. This key is used to derive website-specific asymmetric key pairs. When
the user attempts to login to a website, a QR code is displayed. This QR code contains a transaction
token. The user scans the QR code with her mobile device. The SQRL Client extracts the transaction
token from the QR code and signs it with the user’s private key. The public key is sent to the website
together with the signed transaction token. This enables the website to authenticate the user by verifying
the obtained signed transaction token.

QR-based solutions are only one possible instance of challenge-response approaches relying on
cryptography-enabled local software. Still, they perfectly illustrate key characteristics of this category
of challenge-response approaches. The probably most important aspect concerns the computation of
responses from challenges, which requires application of cryptographic methods and secure storage of
cryptographic keys. Solutions of this category implement these functionalities solely by means of soft-
ware running on the mobile end-user device. Hence, security and reliability of this software are crucial
factors.

5.3.5.2 Hardware-Based Approaches

Hardware-based approaches represent the second category of challenge-response approaches. Simi-
lar to solutions relying on cryptography-enabled software, obtained challenges are again cryptograph-
ically processed before being returned to the remote entity. In contrast to solutions of the first category,
hardware-based approaches rely on a secure local hardware token to store required cryptographic keys
and to carry out cryptographic operations. Thus, responses are created from challenges inside a secure
environment.

An example for existing solutions belonging to this category is Universal Second Factor (U2F) pro-
posed and developed by the Fast Identity Online (FIDO) Alliance14. From an abstract point of view, U2F
proposes the use of a hardware dongle at the end-user device. This dongle enables the cryptographic
processing of obtained OTPs. However, the U2F specification are not limited to a certain technology or
implementation. Thus, different form factors of this hardware dongle are feasible.

In contrast to pure software-based solutions from the first category, hardware-based approaches pro-
vide a higher level of security. This is due to the fact that secure hardware is typically more difficult to
compromise than software. On the other hand, hardware-based approaches are harder to implement due
to the need for secure local hardware.

5.4 Assessment of Existing Approaches

The conducted survey reveals that various approaches to realize two-factor based authentication schemes
on mobile end-user devices have been developed so far. All surveyed solutions have in common that
they allow users to authenticate at remote entities using mobile end-user devices. Implemented means to
provide this functionality range from time-tested SMS-based approaches to sophisticated solutions that
make use of innovative mobile technologies. The conducted survey has also revealed advantages and
disadvantages of existing solutions. However, due to their conceptual differences, direct comparisons of
surveyed approaches and solutions is difficult in most cases.

In addition, mobile signature solutions following the Server-HSM Approach define various special
requirements. These requirements have been derived in Section 5.2 in detail. In particular, mobile

13http://sqrl.pl/blog/
14http://fidoalliance.org/
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signature solutions need to assure a mobile nature of possession proofs, a remote and local binding
between possession proofs and DTBS, and a secure transmission of possession proofs and DTBS. As
these requirements are specific for mobile signature solutions, they are not necessarily considered by the
surveyed authentication schemes.

In order to determine the most suitable authentication scheme for mobile signature solutions, all
surveyed approaches and solutions are systematically assessed in this section. This assessment is based
on the requirements of mobile signature solutions that have been defined in Section 5.2. This way,
relevant aspects that are specific for mobile signature solutions are considered and the best available
approach is identified.

5.4.1 Static Possession Proofs

Authentication approaches relying on static possession proofs typically make use of personalized mobile
apps. These apps send static possession proofs to remote entities whenever the user attempts to authen-
ticate. The main drawback of this approach is its static nature, which enables the application of replay
attacks. If a static possession proof is intercepted, it can be used for further authentication processes.

Drawbacks of static possession proofs also become apparent when assessing this approach according
to the derived requirements of mobile signature solutions. Figure 5.3 summarizes the results of this
assessment and shows that static possession proofs only meet three of the five relevant requirements.
The two problematic requirements R2 and R3 are both related to the binding between possession proofs
and DTBS. Due to the static nature of employed possession proofs, neither the remote entity nor the
Signatory has the opportunity to verify if a provided proof is linked to a particular session and to the
DTBS related to this session.
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Figure 5.3: Authentication solutions relying on static possession proofs are unable to assure a bind-
ing between the possession proof, the current session, and the current DTBS.

While static possession proofs are obviously disadvantageous regarding the binding between DTBS
and possession proofs, they are able to meet the remaining three requirements of mobile signature solu-
tions. All required components of the local Possession Prover can be implemented on mobile end-user
devices, e.g. by means of a mobile app. Thus, the mobile nature of possession proofs can be achieved
as demanded by Requirement R1. Furthermore, current mobile end-user devices provide reliable means
to realize secure communication channels between local software, i.e. mobile apps, and remote compo-
nents. This has been elaborated in Chapter 4 in detail. Hence, also Requirement R4 and Requirement R5,
which define the need for a secure cross-domain transmission of possession proofs and DTBS, can be
met. Nevertheless, Figure 5.3 shows that authentication approaches relying on static possession proofs
satisfy only a subset of the identified requirements. Hence, this approach needs to be excluded from
further consideration.

5.4.2 Time-Based OTP Solutions

One of the main drawbacks of static possession proofs is their vulnerability against replay attacks. The
obvious countermeasure to these attacks is the use of OTPs. This approach is also followed by solutions
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that rely on time-based one-time passwords. According to this approach, both the user and the au-
thenticating remote entity create a one-time password during each authentication process. This one-time
password is based on the current time and on a shared secret. To successfully complete the authentication
process, the user needs to prove to be able to compute the correct OTP and hence to be in possession of
the device that is required for this computation. As a new one-time password is used for each transaction,
replay attacks are countered.

Still, time-based OTP solutions do not provide an unambiguous binding between the DTBS and the
used possession proof, i.e. the one-time password, either. This is due to the fact that OTPs are created
independently by the user and the remote entity. Even though the OTP is valid for a certain period of
time only, it is not bound to the transaction by any means. In particular, the remote entity has no oppor-
tunity to verify if a received OTP belongs to the current transaction. Hence, although time-based OTP
solutions prevent replay attacks, they do not assure the required binding between DTBS and provided
possession proofs. Hence, these solutions are not able to meet Requirement R2 and Requirement R3,
which demand such a binding. This is also illustrated in Figure 5.4, which summarizes the assessment
results of authentication solutions relying on time-based one-time passwords.
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Figure 5.4: Authentication solutions relying on time-based OTPs are unable to assure a binding
between the possession proof, the current session, and the current DTBS.

Figure 5.4 also shows that all other requirements but Requirement R2 and Requirement R3 are met
by time-based OTP solutions. Existing implementations such as the Google Authenticator15 show that
this approach is feasible on current mobile end-user devices and that Requirement R1 is hence satisfied.
In addition, secure communication channels between local software and remote components are also
feasible as discussed in Chapter 4. Hence, also secure transmission of DTBS and possession proofs as
demanded by Requirement R4 and Requirement R5 is feasible for solutions based on time-based OTPs.

5.4.3 Event-Based OTP Solutions

For event-based OTP solutions, similar considerations apply as for approaches relying on time-based
OTPs. The general idea behind event-based OTP solutions has been described in Section 5.3.3 in more
detail. Also with this approach, OTPs are generated independently by the user and by the remote entity.
Instead of the current time, a counter or similar data being synchronized between the user and the remote
entity is used to generate an OTP. Still the basic concept is the same. Hence, also event-based OTPs
prevent replay attacks but do not provide any means to unambiguously bind the OTP, i.e. the possession
proof, to a certain transaction. Thus, solutions relying on event-based OTPs satisfy the same set of
requirements as solutions relying on time-based OTPs. This is illustrated in Figure 5.5 in detail.

Event-based OTP solutions are unable to provide the required binding between possession proofs
and DTBS. Hence, these solutions do not satisfy Requirement R2 and Requirement R3, which define
the need for such bindings. All other requirements are satisfied. Existing implementations prove the
feasibility of this approach on mobile end-user devices as demanded by Requirement R1. Furthermore,
means to establish secure communication channels between local software and remote components are

15http://code.google.com/p/google-authenticator/
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Figure 5.5: Authentication solutions relying on event-based OTPs are unable to assure a binding
between the possession proof, the current session, and the current DTBS.

available. Thus, possession proofs and DTBS can be exchanged in a secure manner as demanded by
Requirement R4 and Requirement R5.

5.4.4 SMS-TAN Approaches

SMS-TAN approaches have a long tradition in security-critical fields of application. For all approaches
discussed so far, the possession proof is created independently on the user’s local device and is delivered
to the remote entity. Hence, coverage of the authentication factor possession requires one communication
step only. In contrast, SMS-TAN approaches rely on two consecutive communication steps. First, a TAN
is created by the remote entity and delivered to the user via SMS. Second, the received TAN is returned
to the remote entity, typically over a separate communication channel.

A new TAN is created by the remote entity for each transaction. Therefore, the TAN is unique
for each signature-creation process and hence also for each DTBS. The remote entity is thus able to
unambiguously link a received possession proof to the correct transaction. Therefore, SMS TAN based
approaches meet Requirement R2, which demands a binding between possession proofs and DTBS that
is verifiable by the remote entity.

In most cases, the DTBS is not displayed to the Signatory via SMS. This would be inconvenient due
to the limited capabilities of this technology. Instead, the DTBS is usually displayed in the Signatory’s
web browser or alternatively in a dedicated app. In this case, the Signatory receives the TAN via a
different communication channel than the DTBS and the link between the DTBS and the obtained TAN
might not be obvious. Hence, Requirement R3 is not implicitly met, as the Signatory cannot verify the
binding between displayed DTBS and the obtained TAN. This binding can be assured by sending an
additional unique identifier together with the TAN, which is also displayed together with the DTBS.
This way, the Signatory can establish a link between the displayed DTBS and the received TAN. It can
hence be concluded that SMS-TAN approaches are able to satisfy Requirement R3, if appropriate means,
e.g. additional identifiers linking TANs and DTBS, are implemented.

Similar considerations also apply to the alternative SMS TAN based authentication method that has
been discussed in Section 5.3.4. Following this alternative approach, the remote entity again generates a
TAN that is linked to the current transaction. In contrast to the regular SMS-based approach discussed
above, this TAN is displayed to the user by other means than SMS, e.g. through a web page or an app.
The user is required to send this TAN back to the remote entity via SMS. In this case, Requirement R2
is also met, as the TAN is again generated by the remote entity, which is thus able to unambiguously link
it to the current transaction. In contrast to the regular SMS-TAN approach, this alternative approach also
fulfills Requirement R3 implicitly. As the TAN can be displayed together with the DTBS, the Signatory
can easily verify the binding between the DTBS and the received TAN. This renders the use of additional
identifiers to establish a binding between the displayed DTBS and the received TAN unnecessary.

In addition to Requirement R2 and Requirement R3, both variants of SMS-TAN approaches also
fulfill Requirement R1, which demands a mobile nature of employed possession proofs. Support for
SMS technology is available on virtually all current mobile end-user devices. Hence, the two discussed
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alternatives can be easily implemented on these devices. Furthermore, also Requirement R5 is met by
SMS TAN based approaches, as secure communication channels between local software and remote
components are feasible on current mobile end-user devices.

The main drawback of SMS-TAN approaches is their reliance on SMS technology. This technology
is known to be vulnerable to attacks especially on modern mobile end-user devices. This has been
discussed in more detail in Chapter 4. Due to its vulnerabilities, SMS technology must not be assumed
to be suitable for a secure transmission of security-critical data. Therefore, SMS-TAN approaches are not
able to meet Requirement R4, which demands a secure exchange of data related to possession proofs.
Concretely, SMS is no suitable technology to transmit OTPs, whose confidentiality is crucial for the
entire authentication process.

Obtained results of the conducted assessment are summarized in Figure 5.6. From this figure, it
becomes apparent that the main problem of SMS-TAN approaches is the potential vulnerability of the
SMS-based communication channel between the remote Possession Verifier and the local Possession
Prover.
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Figure 5.6: SMS-TAN approaches are unable to provide a secure communication channel for the
exchange of data related to possession proofs.

5.4.5 Challenge-Response Approaches

Challenge-response approaches represent an interesting opportunity to overcome problems of other au-
thentication approaches. For many years, challenge-response approaches have hardly been feasible on
mobile end-user device due to their reduced functionality. This has changed with the emergence of
smartphones and related powerful mobile end-user devices. The conducted survey on existing solutions
has shown that various smartphone-based challenge-response solutions already exist. Depending on
their underlying concept and implementation, these solutions can be classified into software-based and
hardware-based approaches. The suitability of these two approaches to be applied in mobile signature
solutions following the Server-HSM Approach is assessed in the following subsections in more detail.

5.4.5.1 Cryptography-Enabled Local Software

Similar to SMS-TAN approaches, authentication schemes based on cryptography-enabled local software
rely on two consecutive communication steps. However, these solutions do not make use of the local
SIM to implement the authentication factor possession. Instead, a local software component is person-
alized with a secret cryptographic key. Hence, this key is bound to a certain instance of the software
component. This way, the mobile device, on which this software instance is running, implements the
factor possession. Challenges received from the remote entity are cryptographically processed by the
local software instance with the help of the Signatory’s personal cryptographic key. The result of this
processing step represents the response that is returned to the remote entity. The response, in turn, repre-
sents a possession proof, as it proves that the Signatory’s personal cryptographic key has been used. As
this key is bound to a certain mobile device, provision of the response proves possession of this device.

Since authentication solutions based on cryptography-enabled local software follow a challenge-
response approach, the required binding between possession proofs and DTBS is guaranteed. As the
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challenge is generated by the remote entity, this entity can easily establish a binding between this chal-
lenge and the current transaction. Furthermore, the challenge is also cryptographically linked to the
possession proof returned by the Signatory. Hence, the required binding between the current transaction
and the possession proof is also provided. This way, solutions based on cryptography-enabled local soft-
ware satisfy Requirement R2, which demands that the remote entity must be able to verify the binding
between DTBS and provided possession proofs.

In addition, solutions based on cryptography-enabled local software also satisfy Requirement R3.
The local software component can also be used to display the DTBS together with the received chal-
lenges. This allows the Signatory to verify the link between the DTBS, the received challenge, and the
returned response, i.e. the possession proof. This way, solutions based on cryptography-enabled local
software also satisfy Requirement R3, which demands that the binding between possession proofs and
DTBS must be verifiable by the Signatory.

As all functionality of the local software component can be implemented by e.g. a smartphone app,
solutions following this approach are feasible on current mobile end-user devices. Thus, Requirement
R1 is also met by these solutions. In contrast to e.g. SMS-TAN approaches, no additional communica-
tion technologies such as SMS are required to transmit security-critical data. Required communication
channels between the remote entity and the local software component can be realized and secured us-
ing approved technologies. Hence, also Requirement R4 and Requirement R5, which demand a secure
exchange of DTBS and possession proofs, are met by solutions based on cryptography-enabled local
software.

In contrast to all other approaches assessed so far, solutions relying on cryptography-enabled local
software meet all relevant requirements of mobile signature solutions following the Server-HSM Ap-
proach. This is also illustrated in Figure 5.7.
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Figure 5.7: Solutions relying on cryptography-enabled local software are able to meet all prede-
fined requirements.

5.4.5.2 Hardware-Based Approaches

Hardware-based approaches as defined and discussed in Section 5.3.5.2 are similar to approaches re-
lying on cryptography-enabled local software. They also rely on a challenge-response approach and
process received challenges by means of cryptographic methods. As a further level of security, required
cryptographic functionality is however not implemented in software but in a dedicated secure hardware
module.

As hardware-based approaches rely on the same concepts as solutions based on cryptography-enabled
local software, these approaches meet the same requirements. Thus, also hardware-based approaches
meet all identified requirements of mobile signature solutions following the Server-HSM Approach. This
is also illustrated in Figure 5.8.

The main differences between hardware-based and software-based approaches are their feasibility
and their provided level of security. As secret cryptographic keys are stored inside a secure hardware
element, hardware-based approaches provide a higher level of security compared to solutions that ac-
complish this task in software only. On the other hand, reliance on secure local hardware components
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Figure 5.8: Solutions relying on secure local hardware elements are able to meet all predefined
requirements.

defines additional requirements for mobile end-user devices. This potentially reduces the feasibility of
these solutions.

5.4.6 Assessment Results

From the obtained assessment results, the most suitable approach to cover the authentication factor pos-
session can be derived. To facilitate a direct comparison, all obtained assessment results are summarized
in Figure 5.9. For each assessed approach, its capability to meet the five relevant requirements of mobile
signature solutions following the Server-HSM Approach is emphasized.
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Figure 5.9: The conducted assessment reveals capabilities and limitations of surveyed approaches
to implement remote possession proofs.

Figure 5.9 shows that all approaches are able to meet Requirement R1, which demands feasibility
on mobile end-user devices. This is expectable to a certain extent, as only those approaches have been
considered, for which concrete implementations on mobile end-user devices are available. More inter-
esting results can be obtained from analyzing Requirement R2 and Requirement R3, which demand a
binding between possession proofs and DTBS. As shown in Figure 5.9, these two requirements clearly
rule out static possession proofs. Time-based or event-based one-time passwords are not able to meet
Requirement R2 and Requirement R3 either. Hence, also these approaches need to be ruled out. While
SMS-TAN approaches are able to satisfy Requirement R2 and Requirement R3, they are unable to meet
Requirement R4, which demands a secure exchange of security-critical data related to possession proofs.
Hence, also SMS-TAN approaches need to be ruled out as a possible alternative.

From the obtained assessment results it becomes apparent that challenge response based approaches
represent the only alternative that meets all predefined requirements. This applies to both identified
categories of solutions following this approach. The authentication factor possession can be covered
either by solutions relying on cryptography-enabled software, or by hardware-based approaches. This
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finding can be used to further refine the model of mobile signature solutions following the Server-HSM
Approach. The resulting refined model is introduced and discussed in the next section.

5.5 Model Refinement

At the beginning of this chapter, two models have been defined. The first one is a more detailed version of
the original model for mobile signature solutions following the Server-HSM Approach. A higher level of
detail has been achieved by considering the design decision to rely on a two-factor authentication scheme
and in particular on the authentication factors knowledge and possession. The second model is a reduced
version of the first one and contains only components that are relevant for covering the authentication
factor possession.

This chapter has also assessed different approaches to cover the authentication factor possession.
These assessments have yielded challenge response based approaches to be the most suitable alterna-
tive. In this section, this finding is used to further refine the two models that have been defined in this
chapter so far. First, the reduced model is further refined by considering the decision to rely on challenge-
response approaches. Results of this refinement are finally integrated into the detailed model of mobile
signature solutions following the Server-HSM Approach. This way, a complete model of mobile signa-
ture solutions that follow the Server-HSM Approach and rely on the authentication factors knowledge
and possession is derived.

5.5.1 Refined Reduced Model

Conducted assessments have identified the need to rely on a challenge-response approach in order to
cover the authentication factor possession. This finding can be used to further detail the reduced model,
which has been derived in Section 5.2 and identifies relevant components to cover the authentication
factor possession. A graphical illustration of the reduced model has been provided in Figure 5.2 on
page 150. Considering the need to implement a challenge-response approach, this model can be further
refined. In particular, the local component Possession Prover and the remote component Authorizer can
be modeled in more detail. This yields the refined model shown in Figure 5.10.

In the refined model, the abstract and implementation-independent local component Possession Prover
is replaced by the three components Challenge Receiver, Transaction Binding Verifier, and Response Cre-
ator. In contrast to the abstract Possession Prover, these components are specific to challenge-response
approaches. Accordingly, also the abstract and implementation-independent remote component Autho-
rizer is replaced by the components Challenge Creator, Transaction Binding Verifier, Response Verifier,
and Verification Result Combiner, which are specific to challenge-response approaches.

Taking the refined model as a basis, provision of a possession proof during an authentication process
requires several consecutive steps. Concretely, the following steps need to be followed to cover the
authentication factor possession.

1. The Signature Processing Component sends a copy of the DTBS to the local DTBS Viewer. This
takes place over a secure communication channel, which protects the confidentiality and integrity
of the DTBS. In the Signature-Service Provider Domain, the DTBS is unambiguously linked to
the current transaction.

2. At the same time, the Challenge Generator creates a challenge, which is unique and unambiguously
linked to the current transaction. This way, the challenge is also linked to the DTBS and sent to the
local Challenge Receiver over a secure communication channel, in order to protect its integrity.

3. In the User Domain, the copy of the DTBS received by the DTBS Viewer and the challenge re-
ceived by the Challenge Receiver is forwarded to the Transaction Binding Verifier. The Transaction
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Figure 5.10: Considering the design decision to rely on challenge-response approaches, the re-
duced model of components relevant for the provision of remote possession proofs
can be further refined.

Binding Verifier checks, whether the received challenge belongs indeed to the DTBS displayed by
the DTBS Viewer. The result of this check is forwarded to the Response Creator.

4. If the Response Creator receives a positive result from the Transaction Binding Verifier, it com-
putes a response from the received challenge. For this purpose, the Response Creator obtains the
challenge from the Challenge Receiver. The locally computed response is returned to the Re-
sponse Verifier, which resides in the Signature-Service Provider Domain. To protect its integrity,
the response is transmitted over a secure communication channel.

5. In the Signature-Service Provider Domain, the Response Verifier checks the validity of the ob-
tained response. For this purpose, the Response Verifier fetches the corresponding challenge from
the Challenge Generator.

6. The Response Verifier forwards the obtained response to the Transaction Binding Verifier. The
Transaction Binding Verifier takes this response and the sent challenge to verify if the provided
response is a valid possession proof for the current transaction and hence for the current DTBS.

7. The verification results determined by the Response Verifier and by the Transaction Binding Veri-
fier are forwarded to the Verification Result Combiner. This component combines the two results.
If both results are positive, the possession proof is regarded as valid.
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5.5.2 Complete Model

The refined reduced model shown in Figure 5.10 can finally be combined with the detailed version of the
model for mobile signature solutions following the Server-HSM Approach, which is shown in Figure 5.1
on page 148. This way, a complete model of a mobile signature solution that follows the Server-HSM
Approach and that relies on a challenge response based user authentication is derived. The resulting
complete model is shown in Figure 5.11. For the sake of clarity, only the subcomponents of the SCA are
shown in Figure 5.11, while the SCA itself is not depicted separately.
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Figure 5.11: By combining the previously developed refined models, a complete model of server-
based mobile signature solutions relying on challenge response based authorization
methods can be derived.

The complete model identifies all relevant components and required interfaces between them. Fol-
lowing the general architecture of the Server-HSM Approach, also the complete model defines three do-
mains. The User Domain contains the Signatory and all local components that need to be implemented
on the Signatory’s mobile end-user device. This includes the User Client, optionally a Local Service
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Provider, and several components that are required during the authorization process. As defined by the
Server-HSM Approach, the SSCD is located in the remote Signature-Service Provider Domain. Besides
the SSCD, this domain also contains required components to supply the SSCD with the required DTBS
and authentication data. In particular, the Signature-Service Provider Domain contains components to
verify received knowledge and possession proofs provided by the Signatory during the authorization
process. Finally, the Service-Provider Domain represents the third relevant domain. According to the
Server-HSM Approach, this domain contains only the Remote Service Provider.

Based on the derived model shown in Figure 5.11, several steps need to be carried out, in order to
complete a signature-creation process. Concretely, the following steps need to be followed.

1. The Signatory interacts with the User Client to access a service provided by the Local Service
Provider or by the Remote Service Provider.

2. The involved Service Provider accesses the Signature Processing Component to initiate a signature-
creation process. For this purpose, the involved Service Provider supplies the Signature Processing
Component with the DTBS.

3. The Signatory is requested to authenticate at the signature service by providing knowledge and
possession proofs.

4. The Signatory provides a knowledge proof to the local Knowledge Prover.

5. The Knowledge Prover forwards the obtained knowledge proof to the remote Knowledge Verifier.

6. The Knowledge Verifier verifies the provided knowledge proof and forwards the verification result
to the Verification Result Combiner.

7. After successful and positive verification of the provided knowledge proof, the Signature Process-
ing Component sends a copy of the DTBS to the local DTBS Viewer, which displays the DTBS to
the Signatory and also forwards it to the local Transaction Binding Verifier.

8. The Challenge Generator creates a challenge. This challenge is sent to the local Challenge Re-
ceiver, which forwards it to the local Transaction Binding Verifier and to the Response Creator.

9. The local Transaction Binding Verifier checks, whether the received challenge belongs to the
DTBS displayed by the DTBS Viewer. The result of this check is forwarded to the Response
Creator.

10. If the challenge can be positively verified, the Response Creator computes a response. The com-
puted response is returned to the remote Response Verifier.

11. The Response Verifier checks the validity of the obtained response. For this purpose, the Response
Verifier fetches the corresponding challenge from the Challenge Generator.

12. The Response Verifier forwards the obtained response to the remote Transaction Binding Verifier.
The remote Transaction Binding Verifier takes this response and the sent challenge to verify if the
provided response is a valid possession proof for the current transaction and hence for the current
DTBS.

13. The verification results determined by the Response Verifier and by the remote Transaction Bind-
ing Verifier are forwarded to the Verification Result Combiner. This component combines the two
verification results with the previously received verification result of the Knowledge Verifier. If all
verification results are positive, the signature-creation process is authorized by sending required
authentication data to the SSCD.
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14. The electronic signature is created inside the SSCD.

15. The SSCD returns the created SD to the Signature Processing Component.

16. The Signature Processing Component forwards the SD to the requesting Service Provider.

17. The involved Service Provider informs the Signatory via the User Client about the successful
signature-creation process.

5.6 Chapter Conclusions

The complete model shown in Figure 5.11 represents the main result of Part II of this thesis and the
thesis’s second basic milestone. Part I of this thesis has revealed the general need for a signature solution
for mobile end-user devices. Based on this general objective, possible implementation variants for such
solutions have been identified. For each implementation variant, a technology-agnostic model has been
defined. The defined models have been systematically assessed and compared in terms of feasibility,
security, and usability. Thereby, the Server-HSM Approach has turned out to be the most suitable im-
plementation variant. In this chapter, the general model of this approach has been further refined and
developed towards a complete model.

The resulting complete model provides a higher level of detail compared to the general model of the
Server-HSM Approach. This mainly applies to components related to authorization mechanisms, which
are a crucial aspect of mobile signature solutions. In this chapter, the need to implement authorization
mechanisms by means of multi-factor authentication schemes has been identified. The authentication
factors knowledge and possession have been chosen for this purpose. Furthermore, challenge-response
approaches have been identified to be best suited to cover the authentication factor possession. Taking
these findings into account, the general model of the Server-HSM Approach has been further improved
by refining components involved in the user-authentication process. This has finally yielded a complete
model for signature solutions following the Server-HSM Approach and relying on a challenge response
based authorization mechanism. This model finally represents a proposal for an abstract mobile signature
solution for mobile end-user devices. As such, it defines the second milestone of this thesis according to
the followed methodology.

The proposed model does not define any restrictions regarding specific technologies or other imple-
mentation details. It merely represents a common basis for arbitrary implementations of mobile signature
solutions that follow the Server-HSM Approach and make use of challenge response based authentica-
tion methods. All steps followed to develop the proposed model and to reach the second milestone of
this thesis have been based on well-defined methodologies, thorough assessments, and elaborate design
decisions. Hence, the model can be assumed to base on the best available general architecture and to
rely on the most appropriate authorization mechanism. Due to its abstract nature, it is well-suited to act
as basis for concrete signature solutions. To bring this thesis down to a round figure, Part III evaluates
the proposed model by further developing it towards a concrete mobile signature solution for mobile
end-user devices and by realizing this solution using state-of-the-art technology.
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Chapter 6

Towards a Concrete Mobile Signature
Solution: The Smartphone Signature

“ A theory must be tempered with reality.”

[ Jawaharlal Nehru, First Indian Prime Minister. ]

Electronic signatures are a crucial building block of transactional e-government services. This es-
pecially applies to the EU, where qualified electronic signatures are legally equivalent to handwritten
signatures and hence enable users to provide written consent in electronic procedures. During the past
years, several signature solutions have been developed and deployed in the EU that allow users to cre-
ate qualified electronic signatures and that hence enable transactional e-government. To facilitate the
transition from transactional e-government to transactional m-government, users must be provided with
solutions to create qualified electronic signatures also on mobile end-user devices such as smartphones
or tablet computers. This has turned out to be problematic, as currently deployed solutions for the cre-
ation of qualified electronic signatures usually cannot be used on mobile end-user devices. This, in turn,
renders the realization of transactional m-government services impossible and explains to some extent
why most current m-government services are still purely informational.

To address this problem, a model of a mobile signature solution for mobile end-user devices has
been proposed in Part II of this thesis. This model has been systematically developed by taking into
account relevant legal requirements as well as special properties and characteristics of mobile end-user
devices. This way, an implementation-independent and technology-agnostic model of a mobile signature
solution for mobile end-user devices has been derived. The chosen abstract nature of the proposed
model is actually a double-edged sword. On the one hand, maintaining a technology-agnostic level
assures that the model remains valid even when available technologies change. Considering the fact
that especially the mobile-computing domain is subject to frequent technological changes, the abstract
nature of the proposed model is definitely an asset. On the other hand, the model’s technology-agnostic
nature complicates its application in practice, as it first needs to be further developed towards a concrete
solution. In this regard, keeping the proposed model on a rather abstract level can be an issue.

To overcome this issue, the implementation-independent and technology-agnostic model proposed
in Part II of this thesis is further developed towards a concrete mobile signature solution that relies on
mobile state-of-the-art technology. In other words and picking up the statement by Jawaharlal Nehru
quoted above, the theoretic solution developed in Part II of this thesis is now tempered with reality.
The developed concrete solution is called Smartphone Signature and is introduced and discussed in
this chapter in more detail. Its name intentionally resembles the name of the Austrian Mobile Phone
Signature, as both the Smartphone Signature and the Austrian Mobile Phone Signature share several basic
concepts. In addition, its name emphasizes the Smartphone Signature’s capability to be used on mobile
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end-user devices, which clearly distinguishes the proposed solution from the Austrian Mobile Phone
Signature. As the Smartphone Signature represents a concrete implementation of the model derived
in Part II of this thesis, it assesses the model’s feasibility and applicability on current mobile end-user
devices. This way, the Smartphone Signature evaluates the proposed model’s suitability to serve as basis
for concrete implementations.

Development of the Smartphone Signature has been based on a thorough methodology, which also
defines the structure of this chapter. In total, the methodology followed comprises three consecutive
steps, which are represented by the three sections of this chapter. In the first step, design principles,
which the Smartphone Signature is based on, are defined. Subsequently, the model proposed in Part II
of this thesis is used as a basis to derive a functional model of the Smartphone Signature. This deriva-
tion considers the previously defined general design principles. Finally, the concrete architecture and
process flow of the Smartphone Signature are derived from this functional model. For this purpose, real-
ization opportunities offered and limitations imposed by state-of-the-art technologies currently available
on mobile end-user devices are taken into account.

6.1 Design Principles

Derivation of a concrete solution, i.e. the Smartphone Signature, from the model proposed in Part II of
this thesis has been based on a set of design principles. These design principles have influenced the choice
of technologies employed to implement relevant components and communication paths. Concretely, they
have been used to transform the implementation-independent model into a complete functional model,
from which the Smartphone Signature has finally been derived.

Design principles defined in this section are closely related to the design principles that have also
been used for the systematic development of the proposed underlying model. Adopting these principles
again for the derivation of a concrete solution is reasonable. It assures that positive characteristics of
the proposed implementation-independent model are maintained and that relevant aspects are also con-
sidered when further developing this model towards a concrete solution. The derivation of a functional
model of the Smartphone Signature is based on the following design principles:

• Server-HSM Approach: A systematic comparison of all possible variants to implement signature-
creation solutions for mobile end-user devices has yielded the Server-HSM Approach to be advan-
tageous regarding the factors feasibility, security, and usability. This approach implements as
many components remotely and off the mobile end-user device as possible. In particular, this ap-
plies to the SSCD, which is required to securely store private cryptographic keys and to carry out
required cryptographic computations. The advantage of the Server-HSM Approach compared to
other implementation variants of mobile signature solutions has been directly incorporated into
the proposed implementation-independent model. Hence, concrete solutions that are based on this
model should implicitly follow this approach as well. Nevertheless, due to its importance and
for the sake of completeness, reliance on the Server-HSM Approach is again explicitly defined as
design principle for the Smartphone Signature.

• Challenge response based authorization mechanism: The restriction to solutions following the
Server-HSM Approach raises the demand for suitable authorization mechanisms. These mecha-
nisms are necessary to protect remotely stored signature-creation data, i.e. cryptographic signing
keys. In this context, the demand for multi-factor authentication in general and for reliance on the
authentication factors knowledge and possession in particular raises additional challenges. This
is mainly due to the fact that the remote SSCD is not under direct physical control of the user.
A thorough comparison of different approaches to overcome this issue has finally yielded chal-
lenge response based authentication and authorization mechanisms as the most suitable solution.
This finding has also been incorporated into the developed implementation-independent model.
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Concrete solutions adopting this model should hence implicitly feature a challenge response based
authentication and authorization mechanism. For the sake of completeness, reliance on such mech-
anisms is also defined as general design principle for the Smartphone Signature.

• Sufficient level of security: A sufficient level of security is a crucial requirement for all solutions
that store or process security-critical data. This especially applies to solutions that enable end users
to create legally binding electronic signatures. The basic demand for a sufficient level of security
has also influenced development of the implementation-independent model for mobile signature
solutions. In particular, the two decisions to rely on the Server-HSM Approach in general and to
rely on a challenge response based authorization mechanism have been derived by taking security
considerations into account. Hence, the proposed implementation-independent model of signature
solutions for mobile end-user devices can be assumed to facilitate development of concrete solu-
tions that feature an appropriate level of security. Nevertheless, a sufficient level of security is also
relevant for aspects of these solutions that are not directly covered by the underlying model. Hence,
a sufficient level of security is defined as general design principle for the Smartphone Signature.

• Support for multiple platforms: The heterogeneity of current mobile platforms represents a sig-
nificant challenge for all kinds of mobile applications. Popular mobile platforms and operating
systems such as Google Android, Apple iOS, or Microsoft Windows Phone 8 differ significantly
in terms of provided features and supported technologies. This complicates the development of
mobile solutions applicable on and compatible to all these platforms. Nevertheless, provision of
generally applicable solutions is crucial in order to not exclude certain user groups. This applies
to m-government solutions in general and to mobile signature solutions in particular. Hence, sup-
port for multiple platforms can be identified as important design principle for the Smartphone
Signature.

• Best possible user experience: Usability and user satisfaction have been identified as crucial suc-
cess factors of m-government solutions. Hence, these factors are also important to be considered
in the context of signature-creation solutions for mobile end-user devices. Unfortunately, there
is usually a well-known trade-off between security and usability. This has for instance been dis-
cussed by Gutmann and Grigg [2005], Ben-Asher et al. [2009], or Mairiza and Zowghi [2010].
Since a sufficient level of security has been identified as crucial requirement and design principle,
achieving an adequate level of usability at the same time might be challenging. Nevertheless, a
best possible user experience and an appropriate level of usability need to be defined as relevant
design principles for mobile signature solutions as well. Being aware of the trade-off between
security and usability, concrete mobile signature solutions must aim to maximize user experience
while still meeting relevant security requirements. Naturally, this also applies to the Smartphone
Signature.

Considering these design principles, the proposed implementation-independent model developed in
Part II of this thesis represents an ideal starting point. This model already complies with the design
principles that demand reliance on the Server-HSM Approach and on a challenge response based au-
thorization mechanism. Furthermore, the three design principles that demand a sufficient level of se-
curity, support for multiple platforms, and the best possible user experience are related to the aspects
security, feasibility, and usability. These aspects have also been considered during development of the
implementation-independent model. Hence, most aspects covered by the defined design principles are
to a certain extent already taken into account. Nevertheless, it is important to reconsider these aspects
when further developing the implementation-independent model towards a concrete solution.
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6.2 Functional Model

In this section, a functional model of the Smartphone Signature is derived from the implementation-
independent model for mobile signature solutions. The latter merely identifies relevant components and
interfaces between them. However, it does not specify the use of certain technologies for their concrete
implementation. Choosing suitable technologies and hence an appropriate implementation is left to the
respective solution that builds on top of this model.

In the following subsections, components of the implementation-independent model, for which con-
crete implementations need to be chosen, are identified first. For all these components, possible im-
plementations are then discussed and a concrete implementation is chosen based on the defined design
principles. By combining all chosen implementations, a complete functional model of the Smartphone
Signature is finally derived.

6.2.1 Identification of Relevant Components

Due to its implementation-independent and technology-agnostic nature, the model developed in Part
II of this thesis can act as basis for various different implementations and solutions. The number of
possible solutions increases with the number of relevant components and interfaces, for which concrete
implementations need to be determined. The identification of these components and interfaces is hence
an important first step towards development of a concrete solution. The identification process has been
based on the following two assumptions:

• Focus on relevant components: The implementation-independent model contains all components
that cover a certain task in a signature-creation process. This also includes the Service Provider,
which acts as source of the DTBS and as final destination of the SD. Furthermore, the model also
contains the User Client, which provides the Signatory access to a service provided by the Service
Provider. However, these two components are not integral parts of the signature solution itself,
but mainly act as intermediary between the signature solution and the Signatory. Hence, the Local
Service Provider, the Remote Service Provider, and the User Client are not considered in detail
when choosing concrete implementations for relevant components.

• Focus on local components: Following the Server-HSM Approach, the developed implementation-
independent model defines both local and remote components. In most cases, these two types of
components need to be aligned with each other. For instance, for a specific implementation of
the local Knowledge Prover, a corresponding implementation of the remote Knowledge Verifier
needs to be chosen. If the Knowledge Prover e.g. relies on alphanumeric passwords as knowledge
proofs, the Knowledge Verifier needs to provide means to verify this kind of passwords. Similar
considerations apply also to other local and remote components. Due to dependencies between
local and remote components, it is reasonable to focus on one domain first when choosing con-
crete implementations. In most cases, local components are more challenging to realize. This
is due to the fact that they are limited by capabilities of mobile end-user devices. In contrast,
remote components are assumed to show a higher flexibility regarding their realization. For this
reason, concrete implementations for local components are chosen first. Remote components are
subsequently aligned accordingly.

Figure 6.1 recalls the proposed implementation-independent model for mobile signature solutions
that has been developed in Part II of this thesis. In contrast to the original model, Figure 6.1 highlights
those components, for which a concrete implementation needs to be chosen. Relevant components have
been determined by taking into account the two assumptions discussed above. Accordingly, focus is first
put on components that are integral part of the signature-creation process and that need to be realized lo-
cally. As shown in Figure 6.1, this finally yields the Knowledge Prover, the DTBS Viewer, the Challenge



6.2. Functional Model 173

Receiver, the Transaction Binding Verifier, and the Response Creator to be relevant. For them, concrete
implementations need to be chosen first.
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Figure 6.1: Based on the made assumptions, relevant components can be identified from the pro-
posed abstract model.

6.2.2 Implementation of Relevant Components

Concrete implementations of the five relevant components are chosen in accordance with the design
principles defined in Section 6.1. This way, the best possible implementation is determined for each
relevant local component. In addition, related remote components are aligned accordingly. This is
elaborated in the following subsections in detail.
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6.2.2.1 Knowledge Prover

The Knowledge Prover requests knowledge proofs from the Signatory and forwards them to the remote
Knowledge Verifier. Together, these two components cover the authentication factor knowledge of the
multi-factor authorization mechanism. Choosing a concrete implementation for the local Knowledge
Prover hence directly influences the implementation of the remote Knowledge Verifier.

As a first step towards a concrete implementation of the Knowledge Prover, the employed type of
knowledge proofs needs to be determined. In principle, different approaches exist to realize knowledge
proofs. The probably most popular and best known approach is the use of alphanumeric passwords. Even
though these passwords suffer from several drawbacks, they are still commonly used.

Being aware of the various drawbacks of alphanumeric passwords, several alternatives have been
developed in the past. A recent example are so-called picture passwords, which are for example offered
as alternative authentication method for access-protection mechanisms on mobile end-user devices. Such
solutions are for instance available for the mobile platforms Google Android1 or Windows RT2. These
solutions enable the user to define a pattern on an arbitrary picture, e.g. by drawing a circle around an
object in the picture. This pattern then represents the secret picture password.

Reliance on pictures instead of text to cover the authentication factor knowledge is actually not a new
idea. This approach has been a topic of scientific interest for many years. An early survey of different
approaches to implement graphical passwords has been provided by Suo et al. [2005]. Since then, several
new and improved authentication schemes based on graphical passwords have been introduced. Solutions
proposed by Almulhem [2011] or Khan et al. [2011] are just two out of many schemes that have been
introduced during the past years.

Even though several interesting authentication schemes based on graphical passwords have been
proposed, hardly any of them have been broadly used in practice so far. Similar to other authentication
schemes, also graphical passwords suffer from the well-known trade-off between security and usability.
This has been discussed in detail by Lashkari et al. [2011]. This trade-off can be especially problematic
on mobile end-user devices, which often suffer from reduced screen sizes. As a sufficient level of security
and a best possible user experience have been defined as design principles, graphical passwords must be
regarded as inappropriate for the implementation of the Knowledge Prover.

In default of an alternative that is able to provide high usability while maintaining a sufficient level
of security, alphanumeric passwords are chosen to cover knowledge proofs. Even though alphanumeric
passwords are also far from being perfect, they at least represent an established and approved method
that can be easily implemented on arbitrary mobile end-user devices. By defining rules regarding the
minimum complexity of chosen passwords, an adequate compromise between security and usability can
be achieved.

Based on the decision to rely on alphanumeric passwords as possession proofs, also the implemen-
tation of the local component Knowledge Prover can be determined. As knowledge is proven by means
of an alphanumeric password, the Knowledge Prover needs to request this password from the Signatory
and forward it to the remote Knowledge Verifier. Hence, the functionality of the Knowledge Prover is
basically reduced to two aspects. First, the Knowledge Prover needs to provide a user interface, through
which the Signatory can enter alphanumeric passwords. Second, an interface to the remote Knowledge
Verifier needs to be provided, through which entered passwords can be forwarded.

Having determined the type of employed knowledge proofs and the concrete implementation of the
Knowledge Prover, also the functionality of the remote Knowledge Verifier can be aligned accordingly.
The Knowledge Verifier needs to compare the obtained knowledge proof, i.e. the alphanumeric password,
with some kind of reference data. This can for instance be the alphanumeric password itself or its hash
value. Provision of an interface to the Knowledge Prover, storage of reference data, and comparison of

1https://play.google.com/store/apps/details?id=com.TwinBlade.PicturePassword&hl=en
2http://windows.microsoft.com/en-us/windows-8/personalize-pc-tutorial



6.2. Functional Model 175

received passwords with stored reference data are hence the main functions that need to be implemented
by the remote Knowledge Verifier. All these functions can be easily provided in software.

6.2.2.2 DTBS Viewer

The functionality of the local component DTBS Viewer is rather simple and basically limited to receiving
DTBS from the remote Signature Processing Component and displaying these data to the Signatory.
Hence, the number of possible implementation variants of this component is limited. In any case, this
component needs to be implemented by means of a viewer component that is able to reliably display data
to the Signatory. A further concretion of this component is not necessary at this point.

6.2.2.3 Challenge Receiver

Together with other local and remote components, the Challenge Receiver implements the authentication
factor possession. For this purpose, a challenge is generated in the Signature-Service Provider Domain
and transferred to the User Domain. There, a response is created from this challenge by applying cryp-
tographic methods. This response finally represents the possession proof and is transferred back to the
Signature-Service Provider Domain for verification. The role of the local Challenge Receiver is rather
simple. It receives the challenge created in the remote Signature-Service Provider Domain and forwards
it to other local components involved in the authorization process. Hence, the main functionality of this
component is provision of appropriate interfaces to the remote Signature-Service Provider Domain and
to several local components.

The concrete implementation of the local Challenge Receiver hence mainly depends on the com-
munication interface that is used to transmit the remotely generated challenge to the local User Do-
main. Considering currently available communication technologies on mobile end-user devices, two
approaches to accomplish this task are feasible. First, the challenge can be transmitted over an estab-
lished Internet-based connection between the mobile end-user device and the remote Signature-Service
Provider Domain. Second, the mobile network can be used to transmit challenges, e.g. by means of SMS
technology. Other communication technologies such as Bluetooth or NFC, which are also available on
current mobile end-user devices, provide short-range communication capabilities only and are hence not
suitable for the cross-domain transfer of challenges.

Having the choice between an Internet-based or a mobile network based long-range communication
interface, the latter has been chosen for the transmission of challenges. Concretely, challenges are imple-
mented as random TANs and transferred to the local User Domain via SMS technology. This might be
surprising at a first glance, since pure SMS-TAN approaches have been ruled out as potential authenti-
cation and authorization approach, due to their disadvantageous security. However, there is a significant
difference between pure SMS-TAN approaches and the authorization mechanism defined by the pro-
posed implementation-independent model. Following a pure SMS-TAN approach, the authentication
factor possession is covered by the Signatory’s SIM and by the fact that the TAN delivered via SMS
can only be received with this SIM. Hence, the confidentiality of the transmitted TAN is crucial for the
overall security of SMS-TAN approaches. Due to known vulnerabilities of SMS-based communication
especially on current mobile end-user devices, the confidentiality of data delivered via SMS is however
not granted. In contrast, the concrete solution proposed in this chapter, i.e. the Smartphone Signature,
additionally implements a challenge-response approach. Hence, the authentication factor possession is
not covered by the SIM and by the capability to receive a certain SMS message, but by the capability to
compute a correct response from the received TAN. Thus, confidentiality of data transmitted via SMS,
i.e. the challenge, is not crucial for the overall security of the authentication process. Even if an attacker
is able to intercept the challenge transmitted via SMS, he or she cannot create a valid possession proof.
Thus, reliance on SMS technology to transmit challenges from the remote Signature-Service Provider
Domain to the local User Domain is a legitimate alternative.
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While reliance on SMS technology to transmit challenges is not disadvantageous in terms of secu-
rity, this approach is even beneficial in several other aspects. First, adding an additional communication
channel increases the overall security. An attacker, who attempts to compromise the entire system, po-
tentially needs to target two different communication channels and technologies. This increases the
effort for successful attacks and hence increases security. Second, reliance on SMS technology in au-
thentication schemes is a common approach that is for instance followed by the Austrian Mobile Phone
Signature3 and also by various e-banking solutions. Hence, relying on SMS technology in mobile signa-
ture solutions enables users to make use of familiar technologies and processes. This increases usability
and in turn also the user acceptance of the proposed solution. The defined design principle that demands
a best possible user experience hence justifies reliance on an SMS-based approach.

Taking the design decision made, i.e. reliance on SMS technology to transmit challenges, into ac-
count, the implementation of the local Challenge Receiver can be determined. Concretely, the Challenge
Receiver needs to implement SMS-receiving functionality. Furthermore, it must be able to extract data
wrapped in SMS messages and forward these data to other local components. On platforms that provide
mobile apps access to incoming SMS messages, this functionality can be implemented by a mobile app.
On other platforms, the SMS app that comes with the mobile operating system needs to be employed.

Based on the decision to rely on SMS technology for the transmission of challenges, i.e. TANs, from
the remote Signature-Service Provider Domain to the local User Domain, also the implementation of
the remote component Challenge Generator can be determined. Due to the SMS-based approach, this
component needs to implement SMS-sending functionality. Furthermore, this component must be able
to generate random TANs and to wrap these TANs in SMS messages. Various technologies exist that
enable server-based software components to implement this functionality.

6.2.2.4 Transaction Binding Verifier

During authorization processes, the binding between the current transaction, the DTBS, and data re-
lated to possession proofs needs to be assured. In the local User Domain, the binding between the
displayed DTBS and the received TAN needs to be verified. According to the proposed implementation-
independent model, verification of this binding is covered by the local Transaction Binding Verifier.

In total, two approaches can be followed to verify the required binding and to implement the Transac-
tion Binding Verifier. First, the generated challenge, i.e. the TAN, can be derived in the Signature-Service
Provider Domain from the DTBS. This can be accomplished e.g. by means of a cryptographic hash func-
tion. In this case, the local Transaction Binding Verifier can apply the same hash function to the received
DTBS and compare the result with the obtained TAN. Second, the Signatory can cover the functional-
ity of the local Transaction Binding Verifier and manually verify the binding between displayed DTBS
and obtained TAN. This approach is for instance followed by the Austrian Mobile Phone Signature and
requires an additional reference value to be delivered to the Signatory together with the TAN. The same
reference value is also displayed together with the DTBS. This way, the Signatory can manually verify
the link between the DTBS and the received TAN by comparing the two reference values.

Both sketched approaches provide a sufficient level of security and reliability. Relying on a manual
verification requires more interaction from the Signatory. However, this approach also gives the Signa-
tory more control over the entire signature-creation process. Therefore, this approach has been chosen
as implementation of the local Transaction Binding Verifier. This way, the defined design principle that
demands a best possible user experience is considered.

Since the Signatory assumes the role of the local Transaction Binding Verifier, no technical im-
plementation of this component needs to be determined. However, other components related to this
component need to be adapted accordingly in order to consider the necessity of an additional reference

3http://www.handy-signatur.at/
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value. This applies for instance to the remote Challenge Generator, which needs to generate and forward
an additional reference value for each TAN.

6.2.2.5 Response Creator

The local Response Creator is probably the most important component regarding coverage of the authen-
tication factor possession. According to the proposed implementation-independent model, the Response
Creator computes a response from the received challenge. This response finally represents the posses-
sion proof, which is transferred to the remote Signature-Service Provider Domain. There, it is verified
by the remote Response Verifier. In order to cover the authentication factor possession, it is crucial that
the correct response can be created by the Response Creator only. This is usually achieved by means of
a Signatory-specific cryptographic key, which is kept confidential. This key is applied to the challenge
by means of a cryptographic method. This distinguishes the Smartphone Signature from pure SMS-TAN
approaches. Following a pure SMS-TAN approach, the obtained TAN is returned to the remote entity
without modification. In contrast, the Smartphone Signature processes the obtained TAN to produce a
unique response.

Support of a proper cryptographic method to create responses, i.e. possession proofs, from received
challenges is a key requirement of the local Response Creator. Different cryptographic schemes can
be employed to implement the required cryptographic method. For instance, possession proofs can be
created by applying a symmetric cipher operation to the challenge using a secret symmetric key. In this
case, the remote Response Verifier also needs to be aware of this key, in order to be able to verify received
possession proofs. This raises the need for secure and reliable key-exchange mechanisms. Alternatively,
also asymmetric cryptographic approaches can be followed. For instance, the local Response Creator can
sign challenges using a private key and an asymmetric cryptographic algorithm such as RSA [Rivest et
al., 1978] or ECDSA [ANSI, 2005]. The signed challenge represents the possession proof. In this case,
the remote Response Verifier can verify the obtained possession proof by verifying the signed challenge.
When relying on an asymmetric cryptographic approach, no exchange of symmetric keys between the
local Response Creator and the remote Response Verifier is necessary. Instead, only the corresponding
public key must be published.

Due to their advantages regarding required key-exchange mechanisms, asymmetric cryptographic
approaches are chosen for the implementation of the local Response Creator. Concretely, challenges,
i.e. TANs, are cryptographically signed using an adequate asymmetric cryptographic algorithm. For this
purpose, the Response Creator needs to securely store and apply a cryptographic signing key. Secure
storage of cryptographic signing keys and application of asymmetric cryptographic methods are hence
the main functions that need to be implemented by the local component Response Creator.

In practice, various alternatives to provide required functionality of the Response Creator on mobile
end-user devices exist. However, the concrete implementation of this component is not further speci-
fied at this point. Instead, the Response Creator is intentionally defined to be as flexible as possible. The
main reason for this design decision is the fact that the secure provision of cryptographic functionality on
mobile end-user devices is a complex and challenging task. Mobile platforms and operating systems pro-
vide different opportunities to implement such functionality. Likewise, mobile platforms are also prone
to various security threats. Hence, determination of a unique implementation that is equally suitable for
all current platforms and end-user devices is practically impossible. As support for multiple platforms
has been defined as design principle, the Smartphone Signature needs to feature a certain degree of flex-
ibility, in order to be able to adapt to capabilities and limitations of different platforms and end-user
devices. For these reasons, determination of implementation details of the component Response Cre-
ator is limited to specifying the use of asymmetric cryptographic methods for the creation of responses
from obtained challenges. This way, the Smartphone Signature can easily adapt to properties of different
mobile platforms. Furthermore, upcoming trends and technologies available on mobile end-user devices
can be integrated easily to improve the Smartphone Signature in general and the implementation of the
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Response Creator in particular.

6.2.3 Derivation of Functional Model

The implementation-independent model developed and proposed in Part II of this thesis defines basic
characteristics such as reliance on the Server-HSM Approach and application of a challenge response
based authorization mechanism. Furthermore, it identifies relevant components and communication
paths on a purely implementation-independent and technology-agnostic level. In order to develop a con-
crete solution, i.e. the Smartphone Signature, from this model, concrete implementations of identified
components and communication paths have been chosen.

In this section, all chosen implementations are combined. This way, a complete functional model of
the Smartphone Signature is derived. This functional model still features the basic characteristics of the
underlying implementation-independent model, but additionally specifies the concrete implementation
of relevant components. For the derivation of the complete functional model, the following decisions
regarding the implementation of relevant components are considered:

• Knowledge Prover: Alphanumeric passwords are used to cover the authentication factor knowl-
edge.

• Challenge Receiver: TANs delivered via SMS technology from the remote Signature-Service
Provider Domain to the local User Domain are used to implement challenges.

• Transaction Binding Verifier: The required binding between DTBS and provided possession
proofs is manually verified by the Signatory in the User Domain.

• Response Creator: Asymmetric cryptographic methods are employed to derive responses from
obtained challenges in order to cover the authentication factor possession.

By applying all these decisions to the proposed implementation-independent model, a complete func-
tional model can be derived, which specifies the concrete implementation of relevant components and
communication paths in more detail. This functional model is shown in Figure 6.2. Affected components
have been renamed, so that their names comply with the determined implementation. Furthermore, also
information and data exchanged between components have been detailed where possible.

Due to the applied modifications and concretions, the functional model differs in various aspects
from the underlying implementation-independent model proposed in Part II of this thesis. In particular,
the following differences can be identified:

• Differences related to knowledge proofs: In the implementation-independent model, coverage of
the authentication factor knowledge involves the local Knowledge Prover and the remote Knowl-
edge Verifier. The Knowledge Prover requests a knowledge proof from the Signatory and forwards
this knowledge proof to the remote Knowledge Verifier for verification. Based on the decision to
implement knowledge proofs by means of alphanumeric passwords, the local Knowledge Prover
from the implementation-independent model is replaced by the implementation-specific Password
Requester. Accordingly, the generic component Knowledge Verifier is replaced by the concrete
component Password Verifier. Besides the two involved components, also data exchanges between
these components are further specified by the functional model. Concretely, this model specifies
that alphanumeric passwords are transmitted instead of abstract knowledge proofs between the
Signatory, the local Password Requester, and the remote Password Verifier.

• Differences related to possession proofs: The functional model shown in Figure 6.2 also spec-
ifies the concrete implementation of the authentication factor possession. In the implementation-
independent model, this authentication factor is covered by the remote components Challenge
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Figure 6.2: A functional model can be derived by applying the made design decisions to the devel-
oped abstract model.

Generator, Transaction Binding Verifier, and Response Verifier, as well as by the local compo-
nents Challenge Receiver, Transaction Binding Verifier, and Response Creator. At the beginning
of an authorization process that involves the authentication factor possession, the remote Challenge
Generator creates a challenge. This challenge is sent to the local User Domain and received by the
local Challenge Receiver. The Challenge Receiver forwards the challenge to the local Transaction
Binding Verifier, which checks whether the obtained challenge belongs to the DTBS displayed by
the DTBS Viewer. After this check, the local Response Creator computes a response from the
received challenge and forwards this response to the remote Response Verifier. The Response Ver-
ifier verifies the received response and forwards it to the remote Transaction Binding Verifier. The
remote Transaction Binding Verifier finally checks whether the received response belongs to the
current transaction and is appropriately linked to the DTBS. In the functional model, the following
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involved components and interfaces between these components have been further specified:

– Challenges and related components: Challenges have been determined to be implemented
by means of TANs transmitted via SMS technology. Thus, the generic remote component
Challenge Generator from the implementation-independent model is replaced by the concrete
component SMS TAN Generator. Accordingly, the local component Challenge Receiver is
replaced by the component SMS Receiver. Besides relevant components, also data exchanged
between these components is further specified in the functional model. Accordingly, this
model uses the implementation-specific term TAN instead of the abstract term challenge.

– Transaction Binding Verifier: Figure 6.2 shows that the local component Transaction Bind-
ing Verifier defined by the implementation-independent model is not part of the functional
model any longer. This is due to the fact that the binding between received challenges,
i.e. TANs, and DTBS is verified manually by the Signatory. This renders a technical im-
plementation of the abstract component Transaction Binding Verifier unnecessary. However,
the functionality of other involved components needs to be extended, in order to enable the
Signatory to manually verify the binding between DTBS and received TANs. Concretely,
the remote SMS TAN Generator needs to create an additional reference value for each gen-
erated TAN. This reference value needs to be sent together with the TAN and the DTBS in
order to establish a verifiable link between these data. For this purpose, the functional model
shown in Figure 6.2 introduces an additional remote component called DTBS Provider. The
DTBS Provider combines DTBS obtained from the Signature Processing Component with
the transaction-specific reference value created by the SMS TAN Generator and forwards
these data to the local DTBS Viewer. Additionally, the created reference value is also trans-
mitted to the local SMS Receiver together with the generated TAN. This enables the Signa-
tory to compare the reference value displayed by the DTBS Viewer with the reference value
received via SMS and to verify the link between the DTBS and the obtained TAN.

– Response Creator: Based on the decision to rely on asymmetric cryptographic methods for
the creation of responses from obtained TANs, the implementation-independent local compo-
nent Response Creator and the generic remote component Response Verifier are further spec-
ified in the functional model shown in Figure 6.2. The local component Response Creator is
replaced by the implementation-specific component TAN Signer Module. The name of this
implementation-specific component already describes its functionality: received TANs are
signed by this component using asymmetric cryptographic methods. The signed TAN finally
represents the response, which in turn acts as possession proof. This is also considered by
the functional model, in which the generic term response is replaced by the implementation-
specific term signed TAN. Accordingly, the implementation-independent remote component
Response Verifier is replaced by the implementation-specific component Signature Verifier.
Its name again indicates the main function of this component, i.e. the verification of received
signed TANs.

By incorporating decisions regarding the concrete implementation of relevant components into the
implementation-independent model, a complete functional model of a signature solution for mobile end-
user devices has been derived. Based on this functional model, the concrete signature solution for mobile
end-user devices called Smartphone Signature is developed. This solution is introduced in the following
section.

6.3 Concrete Solution: The Smartphone Signature

The developed functional model refines the underlying implementation-independent model proposed in
Part II of this thesis by determining the concrete implementation of relevant components. Concretely, it



6.3. Concrete Solution: The Smartphone Signature 181

defines which functionality needs to be provided by each component. Still, it does not specify how this
functionality has to be realized in practice. In particular, the functional model does not take into account
potential limitations that might be imposed by the special characteristics of current mobile end-user
devices.

To overcome these limitations, the functional model is further developed towards a concrete solution
called Smartphone Signature. For this purpose, relevant aspects that need to be taken into account when
realizing mobile signature solutions on current mobile end-user devices are identified. These aspects are
then mapped to the functional model. This way, the architecture and process flow of the Smartphone
Signature is derived. The Smartphone Signature inherits all characteristics of the underlying functional
model and additionally takes into account relevant realization aspects.

6.3.1 Realization Aspects

In order to further develop the functional model towards a concrete solution, several realization-related
aspects need to be taken into account. This is necessary, as the functional model does not consider
potential limitations of technologies that are needed to realize required components and communication
paths. Aspects that need to be considered during the realization of a concrete signature solution for
mobile end-user devices are identified and discussed in this section. Findings of this section will later be
used to derive the concrete solution Smartphone Signature from the functional model.

6.3.1.1 Realization of Local Components

The functional model defines various components that need to be implemented locally in the User Do-
main. This includes the SMS Receiver, the Password Requester, the DTBS Viewer, and the TAN Signer
Module. The functional model clearly defines the scope and the concrete functionality for each of these
components. However, it does not define how these components and their functionality have to be real-
ized in the User Domain using currently available technology.

In general, implementation and realization of local components in the User Domain are limited to
mobile end-user devices. This is due to the fact that the developed mobile signature solution must not
require an additional end-user device. Hence, all local components defined by the functional model must
be implemented and realized on and by the Signatory’s mobile end-user device.

Mobile end-user devices such as smartphones or tablet computers differ from classical end-user de-
vices in various aspects. For development of a concrete mobile signature solution based on the functional
model, especially provided features of mobile end-user devices to deploy software are relevant. In gen-
eral, software deployment on mobile end-user devices differs from software deployment on classical
end-user devices. Concretely, the deployment of software on mobile end-user devices is typically lim-
ited to platform-specific mobile apps. These apps are usually distributed over a central repository, which
is managed and maintained by the vendor of the respective mobile platform. All developed apps that
shall be deployed on mobile end-user devices have to be submitted to this central repository first. There,
they are usually subject to a vendor-specific review process. Depending on the mobile platform, apps can
also be obtained from alternative sources such as alternative repositories or arbitrary download locations.
In any case, mobile apps represent the method of choice to deploy software on mobile end-user devices.

To overcome limitations and disadvantages of mobile apps, mobile websites are sometimes used as
an alternative. Mobile websites rely on the same technologies as ordinary websites, but are tailored to
the special characteristics of mobile end-user devices. For instance, mobile websites usually display
reduced content in order to consider limited input and output capabilities of mobile end-user devices.
In contrast to apps, mobile websites do not require the user to install software on the local device.
The only requirement that needs to be satisfied in order to access a mobile website is availability of
a web browser. However, web browsers are typically pre-installed on all mobile end-user devices. By
incorporating enhanced web technologies such as Hypertext Markup Language (HTML) version 5, web
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applications, or JavaScript frameworks, mobile websites can thus be an attractive alternative to mobile
apps. However, as mobile websites are always running inside the web browser, several limitations apply
to them. These limitations especially concern access to native functionality provided by the underlying
mobile operating system. For solutions that require access to this native functionality, mobile websites
must hence be regarded as inappropriate.

In summary, mobile apps can be identified as the most suitable approach to realize local components
of mobile signature solutions on mobile end-user devices. Even though the deployment of mobile apps
is more complex compared to the deployment of software on classical end-user devices, mobile apps
represent the best alternative to access native functionality provided by mobile end-user devices and
operating systems. Considering the functional model for mobile signature solutions, access to native
functionality can be especially relevant for realizing the component TAN Signer Module. Hence, mobile
apps are used to realize local components identified by the functional model.

6.3.1.2 Secure Realization of the TAN Signer Module

The derived functional model defines reliance on a challenge-response approach to authenticate the Sig-
natory and to authorize the creation of electronic signatures in the remote SSCD. The local TAN Signer
Module is a key component of the implemented approach, as it cryptographically computes responses
from obtained challenges. The security of the entire authorization mechanism relies on the assumption
that only the TAN Signer Module is capable to compute correct responses from obtained challenges.
Therefore, the secure realization of this component is crucial for the security of the entire signature
solution.

The security of locally implemented components depends to a large extent on the underlying mobile
platform and mobile operating system. Similarly, also opportunities to realize cryptographic functional-
ity on mobile end-user devices heavily depend on these aspects. A mobile signature solution based on
the functional model should always realize the TAN Signer Module in the best possible, i.e. most secure,
way that is feasible on the respective platform. In particular, the TAN Signer Module should be realized
by means of secure hardware elements whenever possible. This way, confidential cryptographic material
such as cryptographic signing keys can be protected and cryptographic operations can be carried out in a
secure environment.

Unfortunately, secure hardware elements are not available and accessible on all current mobile plat-
forms. Although such hardware elements are integrated in most mobile end-user devices, they cannot be
accessed by mobile apps in most cases. So far, rudimentary access to integrated hardware elements is
currently available on Google Android only. Nevertheless, concrete mobile signature solutions should at
least provide the opportunity to realize the TAN Signer Module in hardware when possible and must not
preclude this opportunity a priori.

6.3.1.3 Scalability

In the functional model, the Signatory represents the user, who aims to create an electronic signature
with his or her mobile end-user device. While this model is suitable from a conceptual perspective,
it simplifies the role of the Signatory by reducing it to a single person. In practice, mobile signature
solutions need to be developed for multiple users. Depending on the concrete deployment scenario, the
number of potential users can be up to several millions, e.g. when assuming deployment on a national
level.

A potentially high number of users raises additional challenges for the realization of concrete signa-
ture solutions. This especially applies to solutions that follow the Server-HSM Approach and make use
of one central SSCD shared by all users. According to the underlying functional model, this SSCD stores
cryptographic signing keys of all users. In practice, central SSCDs are typically implemented by HSMs.
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Unfortunately, HSMs are usually not able to simultaneously store a large number of cryptographic keys.
Hence, HSMs seem to be inappropriate to implement central SSCDs at a first glance.

An approach to overcome this problem has been discussed by Orthacker et al. [2010] and is for in-
stance followed by the Austrian Mobile Phone Signature, which has been in productive operation for
several years. According to this approach, user-specific cryptographic signing keys are stored securely
in a database outside the HSM. This way, storage-capacity limits of HSMs can be circumvented. To
protect a signing key, it is wrapped inside the HSM with an internal HSM-specific key immediately af-
ter its generation. The wrapped key is additionally encrypted with an encryption key derived from the
Signatory’s secret password. Only the wrapped and encrypted key is stored in the database. During
signature-creation processes, the Signatory is requested to provide the secret password. Using this pass-
word, the encrypted signing key is decrypted. The decrypted but still wrapped key is loaded into the
HSM. By applying the correct key, the HSM unwraps the signing key, which is then ready to use for ex-
actly one signature-creation operation. This two-step protection approach guarantees that the Signatory’s
signing key is bound to the Signatory and also to the HSM. The key can only be used, if the Signatory
provides the correct secret password, and if it is loaded into the correct HSM.

In summary, the approach proposed and discussed by Orthacker et al. [2010] assures secure remote
storage of cryptographic signing keys for signature solutions relying on central SSCDs with limited
storage capacity. Thus, this approach is also applicable to solutions relying on the developed functional
model. By integrating this approach, this model can be further developed towards a scalable signature
solution that is capable to handle even a large number of users.

6.3.1.4 Cross-Platform Applicability

During the past years, different mobile platforms and operating systems have emerged. They all differ
in terms of provided features and functionality. The functional model has been designed to be com-
patible to and applicable on all major platforms. This characteristic also needs to be maintained when
further developing this model towards a concrete solution. Hence, when choosing realizations of relevant
components and functionalities, capabilities of current mobile platforms need to be taken into account.

For instance, the functional model identifies the receiving of SMS messages as required functionality
for components assigned to the User Domain. This functionality is basically available on all platforms.
Depending on the particular platform, SMS-receiving functionality can however be restricted to pre-
installed SMS applications. This limits possible realization variants. Hence, restrictions imposed by
mobile platforms and operating systems need to be considered when choosing suitable realizations of
SMS-receiving components.

Receiving SMS messages is only one example, where platform characteristics need to be considered
when deriving a concrete solution from the functional model. By limiting concrete realizations to those
alternatives that are feasible on all current mobile platforms, a platform-independent applicability of
developed solutions can be guaranteed.

6.3.2 Architecture

By taking into account the discussed realization aspects, the architecture of the Smartphone Signature can
finally be derived from the functional model. This architecture is shown in Figure 6.3 and is introduced
and discussed in detail in the following.

Similar to the functional model, also the architecture of the Smartphone Signature shown in Figure
6.3 defines the three domains User Domain, Service-Provider Domain, and Signature-Service Provider
Domain. To derive this architecture, all components of the underlying functional model have been
mapped to corresponding building blocks. All resulting building blocks are again assigned to one of
the three defined domains. Some components of the functional model such as the User Client or the
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Figure 6.3: The architecture of the Smartphone Signature is based on the derived functional model
and takes into account discussed realization aspects.

Local Service Provider have been directly mapped to identically named building blocks. In contrast,
other components have been combined to higher-level building blocks and assigned with new names in
order to avoid confusion with the functional model. All building blocks of the proposed architecture
are introduced in the following subsections in more detail. This way, their scope and functionality is
sketched.
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6.3.2.1 Building Blocks of the User Domain

In the User Domain, the components User Client and Local Service Provider from the functional model
of the Smartphone Signature are directly mapped to corresponding building blocks of the derived archi-
tecture. As these components are no integral parts of the signature-creation process, they do not need to
be further detailed at this point. For the sake of clarity, the established names of these components have
been reused for the resulting building blocks.

Functionalities of most other local components of the functional model have been combined and
subsumed under a single local high-level building block named TAN-Signer App. As indicated by its
name, this building block represents a mobile app being installed on the Signatory’s mobile end-user
device. By relying on a mobile app, the proposed architecture considers discussed aspects regarding
the realization of local components. These discussions have yielded mobile apps as the best available
approach for the realization of local components on mobile end-user devices.

The architecture shown in Figure 6.3 also identifies internal components of the local high-level build-
ing block TAN-Signer App. Its central internal component is the App Business Logic. As indicated by its
name, the App Business Logic implements most functionality that is required during signature-creation
processes in the local User Domain. Amongst others, it covers the functionality of the components
Password Requester and DTBS Viewer from the functional model. In addition, the App Business Logic
also interacts with other local and remote entities. For this purpose, it makes use of various interface
building-blocks, which are also internal components of the local high-level building block TAN-Signer
App. These interface building-blocks provide access and communication interfaces to external entities.
For instance, the User Interface building block is used to communicate with the Signatory, while the
Server Interface building block is used to exchange data with remote entities from the Signature-Service
Provider Domain.

The App Business Logic covers the functionality of the components Password Requester and DTBS
Viewer from the functional model. In contrast, the component TAN Signer Module defined by this model
is realized as separate building block and not as part of the general App Business Logic. For security
reasons, the TAN Signer Module should either be implemented in software or in hardware, depending
on capabilities of the underlying mobile device. This is reflected by the architecture shown in Figure
6.3. There, the component TAN Signer Module from the functional model has been replaced by two
building blocks named Software-Based TAN Signer Module and Hardware-Based TAN Signer Module.
The former is an integral part of the local high-level building block TAN-Signer App and has a direct
interface to the App Business Logic. In contrast, the latter is realized as separate building block outside
the TAN-Signer App. The TAN-Signer App however features a Hardware Interface component, through
which the App Business Logic is able to access the Hardware-Based TAN Signer Module. By mapping
the TAN Signer Module to a software-based and a hardware-based building block, discussed aspects
regarding the secure realization of this component are considered.

The high-level building block TAN-Signer App subsumes the functionality of most local components
defined by the functional model. Exceptions are the Local Service Provider and the User Client, which
have been mapped to separate building blocks, and the Hardware-Based TAN Signer Module, which also
needs to be realized outside the TAN-Signer App. Additionally, also the component SMS Receiver from
the functional model is realized outside the TAN-Signer App and mapped to the building block SMS
System App. This building block represents the mobile device’s default SMS-processing application.
Even though SMS-receiving functionality could also be realized by mobile apps on certain platforms,
several other platforms do not support this opportunity. In order to assure applicability on all major
platforms, the component SMS Receiver from the functional model is therefore realized outside the
high-level building block TAN-Signer App and relies on SMS-processing functionality provided by the
mobile operating system.
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6.3.2.2 Building Blocks of the Signature-Service Provider Domain

Similar to the User Domain, relevant components defined by the functional model of the Smartphone
Signature have been mapped to corresponding building blocks also in the Signature-Service Provider
Domain. As shown in Figure 6.3, all software-based components assigned to the Signature-Service
Provider Domain have been subsumed under the high-level building block Signature Service. In addition,
the component SSCD defined by the functional model has been mapped to a separate building block
with the same name. Hence, the two building blocks Signature Service and the SSCD cover the entire
functionality implemented in the Signature-Service Provider Domain.

For the high-level building block Signature Service, several internal components have been defined.
The central component is the Server Business Logic, which covers most of the functionality needed to
carry out signature-creation processes. In addition to this central component, the Signature Service also
contains the User Database, which stores Signatory-related data including encrypted signing keys. This
database is necessary in order to meet the requirement for scalability and can be accessed by the Server
Business Logic only.

Similar to the high-level building block TAN-Signer App from the User Domain, also the Signature
Service contains several interface components, which provide access to external entities. Concretely, the
Signature Service contains an SSCD Interface component, providing access to the SSCD. The App In-
terface component is also part of the Signature Service and represents the pendant to the Server Interface
component of the local TAN-Signer App. Together, they provide cross-domain communication between
the TAN-Signer App and the Signature Service. For the delivery of SMS messages, the Signature Service
also provides an SMS Interface component. Even though not specified in detail by the architecture shown
in Figure 6.3, the SMS Interface component will in most cases access an SMS gateway to deliver SMS
messages. Finally, the Signature Service also provides a Service-Provider Interface component, which
enables the Server Business Logic to communicate with external Service Providers in order to receive
signature-creation requests and to return results of signature-creation processes.

6.3.2.3 Building Blocks of the Service-Provider Domain

The Service Provider Domain is the third domain of the Smartphone Signature. According to the derived
architecture shown in Figure 6.3, this domain contains only one building block, i.e. the Remote Service
Provider. This building block has been inherited from the respective component of the functional model
without modification, as it is no integral part of the signature-creation solution.

6.3.3 Process Flow

By mapping components of the functional model to concrete building blocks, a complete architecture
of the Smartphone Signature has been derived. According to this architecture, a mobile app is used to
implement most functionality in the User Domain. Additionally, features provided by the mobile end-
user device such as the SMS System App or secure hardware elements are employed to complement
the functionality of the mobile app. Required functionality of the Signature-Service Provider Domain is
mainly covered by a remote Signature Service. The Signature Service provides communication interfaces
to local components and represents the only building block that is capable to access the remote SSCD.

For the sake of clarity, Figure 6.3 focuses on the identification of relevant building blocks only.
In addition, Figure 6.3 indicates data being exchanged between relevant building blocks. However,
Figure 6.3 does not provide detailed information on the concrete processing steps that are required to
complete a signature-creation process. As a complement to the architecture shown in Figure 6.3, Figure
6.4 illustrates the process flow of a typical signature-creation process.

According to the process flow illustrated in Figure 6.4, a typical signature-creation process consists of
the steps depicted below. The sketched process flow represents a successful signature-creation process.
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Figure 6.4: The process flow illustrates the general signature-creation process.

The handling of errors or exceptions is not considered in detail for the sake of clarity. Assuming a
normal processing, the following steps are required to complete a signature-creation process using the
Smartphone Signature:

1. Via the User Client, the Signatory consumes a service provided by a Service Provider. In case
of a Local Service Provider, the roles of both the Service Provider and the User Client can be
combined in and implemented by one single local component. In most cases, this is a mobile app
being installed and running on the Signatory’s mobile end-user device.

2. At some point during service provision, the Service Provider requires the Signatory to create an
electronic signature. Therefore, the Service Provider sends a signature-creation request to the
Signature Service. This request includes the DTBS, which are defined by the Service Provider.
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3. Before signing the provided DTBS, the Signature Service needs to authenticate the Signatory.
Therefore, the Signature Service starts the two factor based user-authentication process. To cover
the authentication factor knowledge, the Signature Service requests the Signatory’s secret pass-
word from the TAN-Signer App first.

4. The TAN-Signer App requests the Signatory to enter the secret password, for which it provides an
adequate user interface.

5. Through the provided interface, the Signatory enters the secret password to the TAN-Signer App.
This way, the Signatory proves knowledge of the secret password.

6. The TAN-Signer App returns the entered password to the remote Signature Service.

7. The Signature Service decrypts the Signatory’s signing key with the help of the provided secret
password. This is only possible, if the password provided by the Signatory is correct. Otherwise,
the required decryption key cannot be derived successfully. This way, the key-derivation function
implicitly verifies the provided password and hence the authentication factor knowledge.

8. The Signature Service loads the decrypted signing key and the DTBS into the SSCD.

9. The SSCD unwraps the Signatory’s decrypted but still wrapped signing key.

10. The Signature Service generates a random TAN and a reference value linked to this TAN.

11. The Signature Service sends the generated TAN together with the reference value to the Signatory’s
mobile device, where it is received by the SMS System App.

12. At the same time, the Signature Service also sends the DTBS together with the reference value to
the TAN-Signer App.

13. The TAN-Signer App displays the received DTBS together with the reference value to the Signa-
tory.

14. The SMS System App displays the TAN together with the reference value to the Signatory.

15. The Signatory checks the displayed DTBS. In addition, the Signatory compares the two reference
values, in order to verify the binding between the received TAN and the displayed DTBS.

16. If the two reference values match and the Signatory agrees to sign the displayed DTBS, he or she
enters the TAN to the TAN-Signer App.

17. Optional: If required by the respective TAN Signer Module implementation, the Signatory enters
local authentication data to authorize signing of the entered TAN. For instance, the signing func-
tionality of a Hardware-Based TAN Signer Module could be protected by means of a PIN. In this
case, the Signatory needs to enter this PIN in order to enable signing of the TAN.

18. The TAN-Signer App, precisely the concrete implementation of the TAN Signer Module, signs the
entered TAN.

19. The TAN-Signer App returns the signed TAN to the Signature Service.

20. After reception of the signed TAN, the Signature Service verifies the signed TAN.

21. If the signed TAN can be verified positively, the Signature Service authorizes the signature-creation
process in the SSCD.

22. The SSCD creates the electronic signature on the provided DTBS with the Signatory’s decrypted
signing key.
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23. The SSCD returns the SD, i.e. the created signature, to the Signature Service.

24. The Signature Service returns the SD, i.e. the created signature, to the Service Provider.

25. The Service Provider notifies the User Client about the successful completion of the signature-
creation process.

26. The User Client informs the Signatory of the successful completion of the signature-creation pro-
cess.

This process flow shows, how building blocks of the architecture interact with each other in order
to produce an electronic signature. This way, this process flow complements the derived architecture.
Together, the architecture shown in Figure 6.3 and the process flow illustrated in Figure 6.4 describe the
proposed concrete signature-creation solution Smartphone Signature.

6.4 Chapter Conclusions

In this chapter, a concrete signature-creation solution for mobile end-user devices called Smartphone
Signature has been proposed. For this purpose, a set of design principles has been defined first. Based
on these design principles, a functional model has been developed. From this model, the proposed
solution has finally been derived by taking into account restrictions imposed by currently available mobile
technologies. The proposed solution, i.e. the Smartphone Signature, has been described by means of an
architecture and a process flow, which can both serve as basis for arbitrary implementations.

The Smartphone Signature is based on the implementation-independent and technology-agnostic
model proposed in Part II of this thesis. This model has been systematically developed by assessing
different approaches for mobile signature solutions and by determining the best possible approach to
implement secure and reliable authorization mechanisms. In this chapter, this model has been further
developed towards a concrete solution.

As the Smartphone Signature bases on the proposed implementation-independent model, it inherits
all its characteristics. In particular, it follows the Server-HSM Approach and relies on a challenge re-
sponse based authorization mechanism. Thus, the Smartphone Signature shows that the proposed model
is a suitable basis for the development of concrete signature solutions for mobile end-user devices. This
way, the Smartphone Signature represents a first evaluation of the proposed model.

To complete this evaluation, the Smartphone Signature has been implemented in practice. This im-
plementation shows that the Smartphone Signature and hence also the underlying model can serve as
basis for real-world applications. Details of this implementation are presented and discussed in the fol-
lowing chapter.
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Chapter 7

Implementation

“ Well done is better than well said.”

[ Benjamin Franklin, American Polymath. ]

Following this thesis’s methodology, proposed and developed models and signature solutions have
been kept on different levels of abstraction. This assures sustainability in the mobile-computing domain,
which is subject to ephemeral trends and fast-evolving technologies. In this chapter, the above quotation
by Benjamin Franklin is taken literally and the developed signature solution Smartphone Signature is
finally implemented. Because of the special characteristics of mobile platforms, limited capabilities
of software running on these platforms, and the steadily increasing fragmentation of mobile operating
systems and end-user devices, the feasibility and applicability of mobile solutions is a crucial aspect. This
especially applies to mobile solutions that require special features such as cryptographic functionality.
Hence, this also applies to the Smartphone Signature, which has been proposed and introduced in Chapter
6 in detail. According to its underlying model proposed in Part II of this thesis, the Smartphone Signature
requires the secure application of cryptographic functionality on the mobile end-user device. Hence,
the feasibility and applicability of the Smartphone Signature on current mobile platforms needs to be
assessed and evaluated. Only if the Smartphone Signature is feasible and applicable in practice and with
available state-of-the-art technology, it can be regarded as appropriate.

To prove its feasibility in practice, the Smartphone Signature has been implemented for common
mobile end-user devices. This implementation is presented and discussed in this chapter in detail. The
presented implementation of the Smartphone Signature finally completes the evaluation of its underlying
model derived and proposed in Part II of this thesis. In Chapter 6, it has been shown that this model
can be further developed towards a concrete solution that builds on existing technologies. The practical
implementation presented in this chapter goes one step further and shows that the developed concrete
solution is indeed feasible in practice. The presented implementation covers all relevant use cases of
mobile signature solutions. Furthermore, it integrates three different mobile cutting-edge technologies
to realize required cryptographic functionality on the mobile end-user device. Concretely, it supports
the use of Secure Elements (SEs), cryptography-enabled NFC tokens, and KeyChain implementations of
current mobile platforms for this purpose. The feasibility of the presented implementation finally proves
that the model proposed in Part II of this thesis is not restricted to serve as basis for concrete solutions,
but can also be the basis for practical implementations.

The implementation presented in this chapter has been designed and realized such that it can be
easily adapted according to future technological developments. For this purpose, it has been based on
a deliberate design and architecture assuring a high level of flexibility and adaptability. Its flexibility
and adaptability have also been shown by integration of different technologies for the realization of
cryptographic functionality. Thus, the presented implementation does not only serve as evaluation of the
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Smartphone Signature and its underlying model, it also represents a solid basis for a productive mobile
signature solution. This way, the presented implementation paves the way for the application of qualified
electronic signature on mobile end-user devices and represents a considerable step towards transactional
m-government services.

To provide a comprehensive insight into the developed implementation, the remainder of this chap-
ter is structured as follows. First, the mobile signature solution ServerBKU, which acts as basis for the
presented implementation, is briefly introduced. Subsequently, design and architecture of the presented
implementation are introduced. Special focus is put on strategies that have been pursued to assure flexi-
bility and adaptability. Finally, the concrete realization of the presented implementation is presented and
discussed in detail. Thereby, the integration of different mobile cutting-edge technologies for the real-
ization of required cryptographic functionality on the mobile end-user device is especially emphasized.

7.1 Implementation Basis: The ServerBKU

The implementation presented in this chapter is based on an existing signature solution. This solution
has been adapted and enhanced in order to comply with the architecture and process flow of the mobile
signature solution Smartphone Signature proposed in Chapter 6. Basing the implementation on an exist-
ing solution is reasonable for several reasons. First, time-tested components and functionalities of this
solution can be re-used. This reduces development time. Second, the re-use of existing functionality
enables the bundling of resources and allows to concentrate on relevant aspects. Third, reliance on an
existing solution implicitly assesses the compatibility of the Smartphone Signature with existing imple-
mentations. For all these reasons, the presented implementation has been based on an existing mobile
signature solution.

Based on an analysis of available alternatives, the presented implementation has finally been based on
the mobile signature solution called ServerBKU, which has been introduced by Rath et al. [2014a]. The
ServerBKU relies on the same concepts as the Austrian Mobile Phone Signature. It follows the Server-
HSM Approach and relies on TANs delivered by SMS to authenticate users. However, the ServerBKU is
not explicitly tailored to the Austrian eID infrastructure. Therefore, it shows a higher degree of flexibility
regarding different deployment scenarios. As its source code has been available, the ServerBKU has been
perfectly suitable to act as basis for the implementation of the mobile signature solution proposed and
developed in this thesis.

In this section, the ServerBKU is introduced briefly. We have presented and discussed details of
this solution in Rath et al. [2014a]. This section recaps the most relevant aspects of this publication and
focuses on those aspects that are especially relevant for the presented implementation of the Smartphone
Signature. In particular, this section introduces underlying concept of the ServerBKU, discusses its
design principles, and shows its general architecture. This way, a basic understanding of the ServerBKU
is achieved.

7.1.1 Concept

The ServerBKU relies on the concept for qualified server-based signatures proposed and discussed by
Orthacker et al. [2010]. This concept follows the Server-HSM Approach. Accordingly, electronic signa-
tures are created inside a server-based SSCD.

Orthacker et al. [2010] identify the reliable authentication of the user and the secure central storage
of SCD, i.e. cryptographic signing keys, as crucial for server-based signature solutions. Therefore, their
concept mainly focuses on these two aspects. For the reliable authentication of users, they propose
reliance on an SMS TAN based authentication scheme. After entering a user-specific secret password,
a TAN, i.e. a one-time password, is sent to the user’s mobile phone via SMS. The user has to enter
the received TAN to complete the authentication process and to authorize the signature creation in the
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remote SSCD. For the secure central storage of SCD, Orthacker et al. [2010] propose the application of
encryption schemes. Concretely, SCD are encrypted and wrapped such that decryption and unwrapping
is only possible inside the SSCD and requires interaction of the legitimate user. This way, SCD are bound
to the user and to the SSCD. Unauthorized users are not able to decrypt SCD and use them to create
signatures on behalf of the legitimate user.

From this concept, a basic architecture can be derived. This architecture is shown in Figure 7.1 and
has been aligned with common notations used throughout this thesis.
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Figure 7.1: A general architecture can be derived from the concept proposed by Orthacker et al.
[2010].

According to this concept, five relevant domains can be identified. Each domain contains one or more
components that interact with each other during signature-creation processes. The User Domain contains
the Signatory and the two components User Client and Mobile Phone. Through these components, the
Signatory interacts with the signature solution. The Service Provider Domain contains only one compo-
nent, i.e. the Service Provider. The Service Provider is accessed by the Signatory using the User Client.
Furthermore, the Service Provider interacts with components of the Signature-Service Provider Domain
to trigger signature-creation processes and to receive results of these processes. The Signature-Service
Provider Domain contains all components required for signature-creation processes. This includes the
HSM, which acts as SSCD, and the Signature Service, which provides interfaces to the Service Provider
Domain and to the User Domain. Finally, the architecture shown in Figure 7.1 defines also two domains
related to the delivery of SMS-based TANs. The SMS Gateway Domain contains the SMS Gateway,
which facilitates the delivery of SMS messages. The Mobile Network Operator Domain contains the
MNO, which receives SMS messages from the SMS Gateway and forwards them to the Signatory’s
Mobile Phone.

From the concept proposed by Orthacker et al. [2010] and from the derived general architecture
shown in Figure 7.1, the process flow of a typical signature-creation process can be derived. This process
flow comprises the following steps, which are also sketched in Figure 7.1.
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1. The Signatory consumes a service provided by the Service Provider by means of the User Client.

2. The Service Provider requests the Signatory to create an electronic signature. For this purpose, the
Service Provider sends a signature-creation request to the Signature Service.

3. The Signature Service requests the Signatory to enter the mobile-phone number and the Signatory-
specific secret password.

4. The Signature Service identifies the Signatory by means of the provided mobile-phone number
and loads the Signatory’s encrypted SCD from the User Database.

5. The encrypted SCD is decrypted with the help of the provided secret password.

6. The decrypted SCD is loaded into the HSM, where it is unwrapped.

7. After successful decryption and unwrapping of the SCD, the Signature Service generates a random
TAN and a reference value. The TAN and the reference value are sent to the Signatory’s Mobile
Phone via the SMS Gateway and the MNO.

8. At the same time, the DTBS are displayed by the Signature Service in the User Client together
with the reference value.

9. The Signatory compares the reference value that has been received together with the TAN with the
reference value displayed together with the DTBS.

10. If the reference values match, the Signatory enters the received TAN into the User Client and sends
the TAN to the Signature Service.

11. The Signature Service verifies the received TAN. If the TAN is correct, it authorizes the signature
creation in the HSM.

12. The Signature Service returns the result of the signature-creation process to the Service Provider.

The architecture and process flow that have been derived from the general concept resemble in several
aspects the proposed mobile signature solution Smartphone Signature. This is comprehensible, as both
the concept introduced by Orthacker et al. [2010] and the Smartphone Signature follow the Server-HSM
Approach. However, there are two significant differences between them. First, the concept proposed
by Orthacker et al. [2010] does not rely on a challenge-response approach to authenticate the Signa-
tory. Second, it specifies the use of two separate end-user devices represented by the components User
Client and Mobile Phone. The security of the concept proposed by Orthacker et al. [2010] relies on the
assumption that these components are realized on separate devices.

7.1.2 Design Principles

The concept for server-based signature solutions proposed by Orthacker et al. [2010] mainly focuses
on the secure remote storage of SCD and on suitable authentications schemes. Other relevant aspects
of signature-creation solutions are not considered in detail. These limitations are also reflected by the
general architecture and process flow that have been derived from the proposed concept. Concretely, the
following limitations can be identified:

• Focus on signature creation: Orthacker et al. [2010] mainly focus on the signature-creation pro-
cess. However, signature solutions also need to consider other processes related to the creation
of electronic signatures. For instance, most solutions require a preceding personalization pro-
cess, in which SCD are created for the Signatory and authentication data are defined and linked
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to the created SCD. Signature-creation processes can only be carried out after a successful per-
sonalization process. The concept proposed by Orthacker et al. [2010] does not explicitly cover
personalization-related aspects or other required processes.

• Focus on specific deployment scenario: To a certain extent, the concept proposed by Orthacker et
al. [2010] has been customized for a use in the EU member state Austria. For instance, Orthacker
et al. [2010] state that their concept is aligned with Austrian law. On the one hand, this is beneficial
as it shows that the proposed concept can be successfully applied in a concrete use case. On the
other hand, customization to a specific deployment scenario renders application of the proposed
concept in other environments difficult.

Concrete signature solutions need to handle these limitations and complement aspects not covered
by the proposed concept. Only if all relevant aspects are covered, the signature solution is able to provide
all required functionality. Therefore, development of the ServerBKU has been based on a set of design
principles. These design principles complement the underlying concept where necessary. Together with
the general concept proposed by Orthacker et al. [2010], the design principles represent the basis for the
ServerBKU. All specified design principles are defined and discussed in the following subsections.

7.1.2.1 Support of Relevant Processes

While the underlying concept mainly focuses on the signature-creation process, three relevant processes
can be defined for the ServerBKU. These processes cover different use cases related to the creation of
electronic signatures. Concretely, the ServerBKU needs to implement the three processes Registration,
Activation, and Signature Creation.

• Registration: The registration process has to be carried out once by each Signatory prior to all
other processes. During this process, the identity of the Signatory is verified and a user account is
created. This user account is a prerequisite for the other two specified processes.

• Activation: The activation process can only be carried out after a successful registration. To
run this process, the Signatory needs to log in to the user account that has been created during
registration. During the activation process, a new virtual signature token is created. This includes
the generation of a new key pair for the Signatory and the issuing of a corresponding certificate.
Furthermore, the Signatory defines authentication data to protect the created keys, i.e. the SCD.
This includes binding the Signatory’s mobile phone to the created key pair. For this purpose, the
Signatory needs to enter his or her mobile phone number. To verify the entered number, a one-
time password is sent to the mobile phone via SMS. The Signatory needs to enter this one-time
password to prove possession of the mobile phone. The activation process needs to be run at least
once, before the Signatory is able to create electronic signatures. However, the activation process
can also be run multiple times by each user. In each run, a new virtual signature token is generated
and bound to the Signatory’s mobile phone. This allows the Signatory to maintain multiple tokens.
Each token is uniquely identified by its associated phone number and password, which enables the
Signatory to select the preferred one for signature creation.

• Signature Creation: As soon as registration and activation have been run at least once, the
signature-creation process can be carried out as often as desired. During this process, the Sig-
natory selects the preferred virtual signature token and provides the chosen authentication data,
i.e. the secret password, for this token. A TAN is then created and sent to the Signatory’s mobile
phone. By entering this TAN, the Signatory proves possession of the mobile phone, completes the
authentication process, and authorizes the remote signature creation.
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By clearly assigning relevant use cases to the three processes Registration, Activation, and Signa-
ture Creation, all relevant aspects of mobile signature solutions are covered. Implementing these three
processes assures that the ServerBKU provides all functionality required for a mobile signature solution.

7.1.2.2 Flexibility

The concept proposed by Orthacker et al. [2010] has been tailored to the special use case of Austria.
Therefore, it is optimized for this particular deployment scenario, but does not explicitly consider poten-
tially varying requirements of other scenarios. In order to assure applicability in arbitrary deployment
scenarios, an adequate level of flexibility needs to be provided by concrete implementations such as the
ServerBKU that build on top of this concept.

This applies for instance to the interaction with external components. Such components are certifica-
tion authorities, which issue certificates during the activation process, or the MNO, which is required to
transmit TANs to the Signatory. In order to assure that the ServerBKU is applicable in different scenarios,
it must not be limited to certain external components. Instead, the ServerBKU must provide a sufficient
level of flexibility to enable interaction with various external components. This way, the ServerBKU can
overcome limitations of the underlying concept and can be prepared for arbitrary deployment scenarios.

Another aspect, where a sufficient level of flexibility is mandatory, is the deployment and operation
of mobile signature solutions. Different deployment scenarios usually define different requirements re-
garding the operation of signature solutions. In order to achieve compatibility with arbitrary scenarios,
the ServerBKU shall hence provide a sufficient level of flexibility that facilitates its deployment and
operation in different environments.

7.1.2.3 Security

Security is a central requirement of mobile signature solutions. The concept proposed by Orthacker
et al. [2010] considers this requirement by specifying a complex user authentication and authorization
mechanism and by defining the storage of SCD in encrypted form. Nevertheless, security also needs to be
considered when developing and deploying concrete signature solutions based on this general concept.
In this context, also other aspects than user authentication and secure storage of SCD need to be taken
into account, even if these aspects are not covered in detail by the underlying concept.

7.1.3 Architecture

From the general concept for server-based signature solutions proposed by Orthacker et al. [2010] and
from the defined set of design principles, the architecture of the ServerBKU has been derived. As the con-
cept proposed by Orthacker et al. [2010] represents the underlying basis, the general architecture derived
from this concept and shown in Figure 7.1 on pare 193 is a suitable starting point. This general archi-
tecture shows that most functionality of the signature solution is implemented in the Signature-Service
Provider Domain. The local User Domain only contains the Signatory and the two components User
Client and Mobile Phone. These components are mainly used to interact with the signature-creation
solution and to provide required authentication data. However, these components are not directly in-
volved in the signature-creation process itself. Signatures are created solely in the Signature-Service
Provider Domain. Hence, focus has been put on this domain when deriving a suitable architecture for
the ServerBKU.

The Signature-Service Provider Domain contains the three components HSM, Signature Service,
and User Database. The role and the implementation of the HSM is rather clear. This component is
implemented by a secure hardware element that is able to securely store and process data and to create
electronic signatures on behalf of the Signatory. Products that cover this functionality already exist.
Hence, this component does not need to be detailed further.
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In contrast, the functionality of the Signature Service and the User Database is more complex. Es-
pecially the Signature Service acts as central component in the Signature-Service Provider Domain and
needs to provide various functionalities. Furthermore, this component needs to implement interfaces to
various internal and external components. Hence, this component needs to be refined when further de-
veloping the abstract architecture shown in Figure 7.1 on page 193 towards a concrete architecture. This
refinement yields the ServerBKU architecture shown in Figure 7.2. Even though applied refinements con-
cern components of the Signature-Service Provider Domain only, the ServerBKU’s architecture shown
in Figure 7.2 again outlines all involved domains for the sake of completeness.
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Figure 7.2: The architecture of the ServerBKU is derived from the concept proposed by Orthacker
et al. [2010] and the defined design principles.

Figure 7.2 shows that the Signature-Service Provider Domain itself has been split into an Outer Core
and an Inner Core. All relevant components are implemented in one of these two cores. The Inner Core
comprises the HSM and components with direct interfaces to the HSM. The Outer Core comprises those
components that have interfaces to entities from other domains. Components of the Inner Core and the
Outer Core communicate with each other via well-defined internal interfaces. The conceptual split of
the Signature-Service Provider Domain into an Inner Core and an Outer Core enhances the ServerBKU’s
flexibility regarding deployment and operation. Security-critical components such as the HSM can be
deployed in a different environment than components that require external interfaces. This way, security-
critical components can be operated in especially protected environments. This, in turn, improves the
security of the entire solution. By relying on an Inner Core and an Outer Core, the ServerBKU hence
complies with the defined design principles that demand flexibility and security.

Similar to the abstract architecture derived from the underlying concept, also the architecture shown
in Figure 7.2 contains the component HSM. The HSM is assigned to the Inner Core. The other two
components from the Signature-Service Provider Domain defined by the abstract architecture are fur-
ther refined. Concretely, this concerns the components Signature Service and User Database. These
two components are split into corresponding inner and outer components, in order to meet the general
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architectural design. The User Database is split into an Inner Database assigned to the Inner Core and
an Outer Database assigned to the Outer Core. Accordingly, the Signature Service is split into an inner
and an outer component too. Additionally, this component is also split into an activation and a signature
creation component. This finally yields the following four components that together cover the functional-
ity of the abstract component Signature Service: Activation Outer, Activation Inner, Signature Creation
Outer, Signature Creation Inner. The components Activation Outer and Signature Creation Outer are
implemented in the Outer Core, whereas the components Activation Inner and Signature Creation Inner
are assigned to the Inner Core.

Splitting the abstract components Signature Service and User Database into multiple components
has several advantages. All functionality that involves the processing or storage of security-critical data
can be assigned to and implemented by components of the Inner Core. As components of the Inner Core
do not have any interfaces to external components, they can be deployed and operated in an especially
protected environment. This way, the ServerBKU fulfills the design principles that demand a sufficient
level of security and flexibility regarding deployment. Flexibility regarding deployment and operation is
also achieved by splitting components according to supported processes. This way, components involved
in the activation process can be clearly separated from components involved in the signature-creation
process. If desired, relevant components can thus be deployed and operated in different environments
depending on their purpose. This again maintains the flexibility of the ServerBKU while fulfilling the
design principle regarding support of all relevant processes.

The architecture shown in Figure 7.2 considers the two processes Activation and Signature Creation.
For each process, the architecture defines two components that cover the respective process’s functional-
ity. However, the architecture does intentionally not define components to cover the process Registration.
There are two reasons for that. First, the registration process needs to be run only once by each Signatory.
Hence, this process can also be covered by non-technical means. For instance, registration can be carried
out by an authorized registration officer, who manually verifies the identity of the Signatory. Second, the
registration process can also be implemented by various different technical means. Covering all possible
means would significantly increase the complexity of the architecture shown in Figure 7.2 and reduce
its clarity. For these reasons, the process registration is not explicitly considered. We have discussed all
registration opportunities supported by the ServerBKU in detail in Rath et al. [2014a]. For the scope of
this thesis, it is however sufficient to focus on the two processes Activation and Signature Creation and
to assume that the process Registration is carried out by non-technical means.

Following the derived architecture, the ServerBKU complies with all defined design principles while
still relying on the general concept proposed by Orthacker et al. [2010]. The ServerBKU supports all
relevant processes including Activation and Signature Creation. By splitting abstract components into
several subordinate building blocks, the ServerBKU also achieves the demanded flexibility regarding
deployment and operation. Finally, also the demand for security is fulfilled by implementing security-
critical components in the Inner Core, which can be sufficiently protected. This way, all design principles
are already considered on architectural level. The next section shows how this architecture has been
further developed towards a concrete solution and introduces the implementation of the ServerBKU in
detail.

7.1.4 Implementation

In this section, the concrete implementation of the ServerBKU is introduced. This implementation is
based on the architecture shown in Figure 7.2. In order to map this architecture to a concrete imple-
mentation, an adequate technology has been chosen first. Then, suitable development frameworks have
been selected for this technology. The selected frameworks have been used to implement the ServerBKU
and all its processes. The following subsections elaborate on the basic steps that have been followed to
implement the ServerBKU.
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7.1.4.1 Choice of Technology

The architecture shown in Figure 7.2 identifies components and building blocks of the ServerBKU but
does not specify their concrete realization. To further develop this rather abstract architecture towards a
concrete solution, an adequate underlying technology needs to be chosen. Based on this choice, concrete
implementations of identified components can be determined.

For the ServerBKU, web technologies have been selected as technology of choice. Accordingly, the
ServerBKU has been implemented as web application. Reliance on web technologies and realization of
the ServerBKU in the form of a web application has several advantages. First, web technologies also
build the basis of the Austrian Mobile Phone Signature. This shows that these technologies are suitable
for the realization of signature solutions following the Server-HSM Approach. Second, web technolo-
gies have proven their capabilities in various security-critical fields of applications such as e-banking
or e-commerce. Existing solutions from these fields show that web technologies provide mechanisms
to implement and provide functionality in a secure and reliable way. Finally, web technologies release
the Signatory from the need for special local software. Instead, arbitrary web browsers can be used to
cover the functionality of the local component User Client and to interact with remote web-based com-
ponents. For all these reasons, selecting web technologies as fundamental basis and implementation of
the ServerBKU as web application is appropriate.

Taking into account the decision to implement the ServerBKU as web application, its architecture can
be further refined. In particular, the implementation of relevant components can be determined. Due to
the chosen web-based nature of the ServerBKU, the four components of the Signature-Service Provider
Domain, i.e. the components Activation Outer, Activation Inner, Signature Creation Outer, and Signa-
ture Creation Inner are implemented as separate web modules. These modules have been named Public
Activator, Private Activator, Public Signature Creator, and Private Signature Creator. Public modules are
implemented in the Outer Core and feature web-based interfaces to the Signatory and to external compo-
nents. In contrast, the two private modules are implemented in the Inner Core and do not provide public
interfaces for external access. In general, each web module represents a subordinate web application.
Together, they build the superordinate ServerBKU web application. The local component User Client
has direct interfaces to two of these web modules. Hence, its implementation needs to be aligned with
those of these web modules. Considering their implementation as web application, the User Client can
be determined to be implemented as web browser. The two decisions to implement components of the
Signature-Service Provider Domain as web modules and to realize the local User Client as web browser
can be incorporated into the architecture of the ServerBKU. This yields the refined architecture shown in
Figure 7.3. Components that are affected by the made decisions are highlighted.

7.1.4.2 Employed Development Frameworks

Implementation of the ServerBKU according to the refined architecture shown in Figure 7.3 has been
based on approved development frameworks. Due to the popularity of web technologies, numerous
frameworks that facilitate the development of web-based solutions have been introduced during the past
few decades. Reliance on these frameworks is reasonable for several reasons. For instance, these frame-
works improve the entire development process by enforcing reliance on approved design patterns. Fur-
thermore, they typically provide libraries that cover common functionality. This releases developers from
implementing recurring functionality on their own and hence reduces the probability of implementation
errors. To exploit their various advantages, the ServerBKU has been based on the following development
frameworks for web applications:

• Spring: All web applications that compose the ServerBKU have been based on the Spring frame-
work1. This framework facilitates the development of Java-based applications and enforces re-

1http://spring.io/
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Figure 7.3: The architecture of the ServerBKU can be refined by taking into account the decision
to rely on web technologies.

liance on several programming principles such as Dependency Injection (DI) and Aspect-Oriented
Programming (AOP). The Spring framework is frequently used for the development of profes-
sional web applications.

• Java Server Faces (JSF) and Primefaces: JSF2 and Primefaces3 have been used to implement
required user interfaces. These frameworks provide a rich set of user-interface components and
hence speed up the development process.

• Hibernate: The Hibernate framework4 has been used to access databases from web applications.
Hibernate represents an object-relational mapping library and implements an abstraction layer
between a Java-based web application and a relational database. As such, Hibernate facilitates the
storage, retrieval, and modification of persistent data in web applications.

• IAIK Security Libraries: The ServerBKU needs to implement various cryptographic operations.
These operations have been implemented with the help of the IAIK Java Cryptography Extension
(JCE) and iSaSiLk libraries5.

• Apache ActiveMQ: The split of components into several subordinate modules raises the need
for means to exchange messages between these modules. In particular, these means are required
to exchange messages between the Inner Core and the Outer Core of the ServerBKU. The im-
plementation of this cross-core exchange of messages has been based on the Apache ActiveMQ

2https://javaserverfaces.java.net/
3http://primefaces.org/
4http://www.hibernate.org/
5http://jce.iaik.tugraz.at/
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framework6.

All functionality of the ServerBKU has been implemented based on these libraries and frameworks.
The concrete implementation of the ServerBKU’s relevant processes is discussed in the next section.

7.1.4.3 Implementation of Processes

The functionality of the ServerBKU is mainly covered by the four web modules implemented in the
Signature-Service Provider Domain. Each module covers a well-defined set of functionality. By com-
bining the functionality of all four modules, all required processes are implemented. In particular,
the ServerBKU supports the registration of Signatories, the activation of virtual signature tokens, and
signature-creation processes with these tokens. In this section, the functionality of the ServerBKU is
illustrated by means of its implemented processes. As the registration of Signatories is regarded as out
of scope for this thesis, main focus is put on the processes Activation and Signature Creation.

Functionality related to the process Activation is covered by the web modules Public Activator and
Private Activator. By going through a typical activation process, functionality provided by these two
modules is illustrated. In particular, the activation process comprises the following steps:

• Log in to user account: To start the activation process, the registered Signatory has to log in
to the ServerBKU in order to access his or her personal user account, which has been created
during the registration process. For this purpose, the Public Activator provides a web-based user
interface. This way, the Signatory can access functionality provided by the Public Activator via a
web browser. After log-in, the Signatory activates a new virtual signature token. This token can
subsequently be used for the creation of electronic signatures. In principle, each Signatory can
create an arbitrary number of virtual tokens.

• Specify required data: For the activation of a new token, the Public Activator provides a simple
web form. Through this web form, the Signatory enters and specifies required data. This includes
the Signatory’s mobile-phone number secret password assigned to the token. These data are sent
to the Public Activator via a Hypertext Transfer Protocol (HTTP) Post request and are stored in
the Outer Database being part of the Outer Core.

• Verify mobile-phone number: To verify the provided mobile-phone number, the Public Activator
sends an activation code to the Signatory’s mobile phone via SMS with the help of the SMS
Gateway. The SMS Gateway is provided by an external entity and is not integral part of the
ServerBKU. The user needs to enter the received activation code into a web form provided by the
Public Activator in order to prove possession of and control over the mobile phone. The entered
activation code is sent again via HTTP Post to the Public Activator for verification.

• Generate key pair: If the mobile-phone number can be verified successfully, a new key pair is
created for the Signatory and stored wrapped and encrypted in the Inner Database. This function-
ality is mainly covered by the Private Activator. The key-pair generation is triggered by the Public
Activator, which is the only component outside the Inner Core that is able to communicate with
the Private Activator. The Private Activator in turn relies on the HSM to carry out the required
cryptographic functionality. Concretely, the HSM creates the key pair and wraps the private key
according to the concept proposed by Orthacker et al. [2010]. The wrapped private key is finally
exported to the Private Activator, encrypted, and stored in the Inner Database. This way, the private
key never leaves the Inner Core.

6http://activemq.apache.org/
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• Issue certificate: The public key of the key pair created in the HSM is also exported to the Private
Activator, which forwards it to the Public Activator. The Public Activator connects to the exter-
nal Certification Authority, which issues a certificate for the user’s public key. The Certification
Authority is provided by an external entity and is no integral part of the ServerBKU. The issued
certificate is stored together with other data related to the newly activated virtual signature token.

As soon as these steps have been completed successfully, the newly activated virtual signature token
can be used for subsequent signature-creation processes. Required functionality of the signature-creation
process is mainly covered by the two web modules Public Signature Creator and Private Signature Cre-
ator. In the following, a typical signature-creation process is sketched in order to illustrate the function-
ality provided by these modules.

• Send signature-creation request: The process Signature Creation is initially triggered by a Ser-
vice Provider, which requires the Signatory to create an electronic signature. For this purpose, the
Public Signature Creator provides a well-defined public interface. Through this interface, Service
Providers can send XML-based signature-creation requests via an HTTP Post messages. Thus,
the architecture shown in Figure 7.3 is inaccurate to a certain extent. The Service Provider does
not directly send signature-creation requests to the Public Signature Creator as shown in Figure
7.3. Instead, these requests are sent via the Web Browser by means of an HTTP Post request. As
the Web Browser has an interface to the Service Provider anyways, this does however not impose
additional issues from a functional point of view.

• Request identification data: As the signature-creation request is sent via the Signatory’s Web
Browser, the Public Signature Creator already has an established session with this local end-user
component. Through this session, the Public Signature Creator identifies the Signatory prior to
proceeding with the requested signature creation. To identify the Signatory, the Public Signature
Creator requests him or her to enter the phone number associated with the desired virtual signature
token. Together with the phone number, the Signatory is requested to enter the assigned secret
password that has been defined during activation. For this purpose, the Public Signature Creator
provides a simple web form that is displayed in the Signatory’s Web Browser. This web form
can be integrated by the Service Provider smoothly e.g. by means of an HTML Inline Frame
(IFRAME) element. Data entered into the provided web form is sent to the Public Signature
Creator via an HTTP Post message.

• Verify identification data: By means of these data, the Public Signature Creator identifies the
Signatory and the desired virtual signature token. To proceed with the signature creation, the
Private Signature Creator loads the encrypted and wrapped private key assigned to the identified
signature token from the Inner Database. This action is triggered by the Public Signature Creator,
which is the only component outside the Inner Core with direct access to the Private Signature
Creator. The encrypted and wrapped key is decrypted by the Private Signature Creator with the
help of a decryption key derived from the Signatory’s secret password. This way, the correctness of
the secret password entered by the user is verified implicitly. Only if the provided data is correct,
the Signatory’s key can be decrypted successfully. The decrypted but still wrapped key is loaded
into the HSM, where it is unwrapped using an HSM-specific internal key.

• Request authorization data: If the Signatory’s key can be decrypted successfully, the Public
Signature Creator completes the authentication process. For this purpose, the Public Signature
Creator generates a random TAN and sends this TAN via SMS to the mobile-phone number that
is assigned to the selected virtual signature token. The external SMS Gateway and the Signatory’s
MNO are employed for that. The Public Signature Creator again provides a simple web form in
the Web Browser, through which the Signatory can enter the received TAN. Together with this
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web form, also the DTBS is displayed to the Signatory. The entered TAN is then sent to the Public
Signature Creator by means of an HTTP Post request.

• Verify authorization data: The Public Signature Creator compares the entered TAN with the gen-
erated one. If this comparison is successful, the Private Signature Creator triggers the signature-
creation process in the HSM.

• Return signature-creation response: The result of this process, i.e. the created signature value,
and the Signatory’s certificate are assembled to a well-defined XML-based signature-creation re-
sponse. This response is finally returned to the Service Provider as answer to the initial signature-
creation request.

The two processes Activation and Signature Creation cover most of the functionality provided by the
ServerBKU. Even though it shows a higher degree of flexibility regarding different deployment scenarios,
the ServerBKU basically resembles the Austrian Mobile Phone Signature. This especially applies to
the implemented user-authentication mechanism, which relies on a simple SMS-TAN approach. This
approach has been shown to be inappropriate for signature solutions that rely on one single mobile
end-user device only. In the remainder of this chapter, we show how the ServerBKU can be improved
by concepts and solutions proposed in this thesis. Concretely, the ServerBKU’s user-authentication
and authorization mechanism is replaced by an enhanced challenge-response approach. This way, the
ServerBKU is further developed towards an implementation of the mobile signature solution Smartphone
Signature proposed in Chapter 6.

7.2 Implementation Design

The ServerBKU represents a ready-to-use signature solution that enables users to activate an arbitrary
number of virtual signature tokens and to use these tokens for the creation of electronic signatures.
Due to its reliance on the SMS-TAN approach, the ServerBKU is however restricted to a use with two
separate end-user devices. Thus, the ServerBKU is perfectly suitable to act as implementation basis for
the Smartphone Signature, which has been proposed in Chapter 6. By enhancing the ServerBKU’s user-
authentications scheme with concepts of the Smartphone Signature, the ServerBKU can be made ready
for a use on a single mobile end-user device. This way, the capabilities of the proposed signature solution
Smartphone Signature can be evaluated in practice by means of a concrete implementation.

In the following, the architecture of this implementation is derived by combining the existing signa-
ture solution ServerBKU with the proposed solution Smartphone Signature. From the resulting archi-
tecture, process flows for the activation of new virtual signature tokens and for the creation of electronic
signatures are derived. The two covered processes, i.e. activation of virtual signature tokens and creation
of electronic signatures, are discussed in the following two subsections. As the proposed Smartphone
Signature mainly focuses on the signature-creation process, this process is discussed first.

7.2.1 Signature Creation

Figure 7.4 shows the architecture of the presented implementation that combines the ServerBKU with the
Smartphone Signature. This architecture identifies domains, entities, and components that are involved
in a typical signature-creation process. For the sake of clarity, components related to and needed only
for the activation process are not considered by the architecture shown in Figure 7.4. In general, the
shown architecture resembles the architecture of the ServerBKU, which is illustrated in Figure 7.3. This
is reasonable, as the presented implementation bases on the ServerBKU.

Although the architecture of the presented implementation resembles the architecture of the Server-
BKU, several differences can be identified. These differences are caused by the integration of concepts
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Figure 7.4: The signature creation related architecture is obtained by incorporating concepts of the
Smartphone Signature into the architecture of the ServerBKU.

of the Smartphone Signature into the ServerBKU. While the ServerBKU defines six domains in total,
the architecture shown in Figure 7.4 comprises four domains only. The Certification Authority Domain
has been omitted, as this domain and its components are only required during the activation of new vir-
tual signature tokens. Similarly, the Service Provider Domain has also been omitted by the architecture
shown in Figure 7.4, because the Service Provider is moved to the User Domain. In general, the Smart-
phone Signature considers both a Local Service Provider implemented in the User Domain and a Remote
Service Provider implemented in the Service-Provider Domain. For the presented implementation, the
case of a Local Service Provider implemented on the user’s mobile end-user device is considered ini-
tially. Realizing the Service Provider on the mobile end-user device is the more interesting use case, as
this variant is not possible with the ServerBKU. Hence, this approach is followed by the presented imple-
mentation. Accordingly, the Service Provider is implemented on the mobile end-user device by means
of a mobile app. Figure 7.4 shows that this mobile app is represented by the local component Service
Provider App. As the Service Provider is implemented locally in the User Domain, the Service-Provider
Domain is not needed and can be omitted.

Another basic difference between the ServerBKU’s architecture and the architecture of the presented
implementation concerns the components of the Signature-Service Provider Domain. As the architecture
shown in Figure 7.4 focuses on the signature-creation process only, components that are not required for
this process are omitted. Thus, the Signature-Service Provider Domain contains only those components
that are directly involved in a signature-creation process. These are the Public Signature Creator, the
Outer Database, the Private Signature Creator, the Inner Database, and the HSM. These components have
been inherited from the architecture of the ServerBKU, as they already cover most of the required server-
based functionality. Minor enhancements have only been applied to the components Public Signature
Creator and Outer Database, in order to integrate required user-authentication functionality defined by
the underlying concepts of the Smartphone Signature. Applied enhancements will be discussed in detail
in Section 7.3.

The probably most significant differences between the architectures of the ServerBKU and the pre-
sented implementation concern the User Domain. According to the original architecture of the Server-
BKU, the User Domain contains the Signatory and two separate end-user devices represented by the two
components Web Browser and Mobile Phone. These components are sufficient to implement the Server-
BKU’s SMS TAN based user-authentication mechanism. As the presented implementation replaces this
mechanism by the challenge response based authentication mechanism of the Smartphone Signature,
components of the User Domain need to be adapted accordingly. As the Smartphone Signature has been
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designed to be used on one single mobile end-user device, all required components of the User Domain
are implemented in one component. In Figure 7.4, this component is denoted as Smartphone. To cover
the functionality of the Smartphone Signature, the Smartphone implements the TAN-Signer App, which
in turn comprises the App Business Logic, the Software-Based TAN Signer Module, and the Hardware-
Based TAN Signer Module. Furthermore, the Smartphone implements the SMS System App and the
Service Provider App, which assumes the role of a Local Service Provider.

The architecture shown in Figure 7.4 identifies relevant domains and components that are involved
in a signature-creation process. From this architecture, the process flow of a typical signature-creation
process can be derived. For the sake of clarity, the various processing steps that are required to complete
such a process have not been illustrated in Figure 7.4. Instead, the entire process flow of a typical
signature-creation process is shown in Figure 7.5 by means of a separate sequence diagram.
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Figure 7.5: The creation of an electronic signature requires the interaction of various components.

The sequence diagram considers all relevant components identified by the architecture shown in
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Figure 7.4. For the sake of clarity, several simplifications have been applied. First, the components MNO
and SMS Gateway are represented by one entity in the sequence diagram. Second, the two databases of
the Signature-Service Provider Domain are not modeled as separate entities in the sequence diagram.
Finally, in the User Domain, subcomponents of the TAN-Signer App are not modeled separately by the
sequence diagram and the Hardware-Based TAN-Signer Module is assumed to be part of the TAN-Signer
App. Consideration of these simplifications finally yields eight entities that are modeled in the sequence
diagram shown in Figure 7.5. According to this diagram, the following processing steps are required to
complete a typical signature-creation process.

1. The Signatory requests a service from the Service Provider App.

2. To provide the requested service, the Service Provider App requires an electronic signature from
the Signatory. To start the signature-creation process, the Service Provider App sends a signature-
creation request to the TAN Signer App.

3. The TAN-Signer App forwards the received signature-creation request to the Public Signature
Creator.

4. Prior to creating the requested signature, the Signatory needs to be authenticated. To start the
authentication process, the Public Signature Creator requests the TAN-Signer App to provide the
phone number and the password associated with the virtual signature token that shall be used for
creating the signature.

5. The TAN-Signer App requests the Signatory to enter phone number and password.

6. The Signatory enters the phone number and password associated with the preferred signature to-
ken.

7. The TAN-Signer App forwards phone number and password to the Public Signature Creator.

8. The Public Signature Creator forwards these data to the Private Signature Creator.

9. The Private Signature Creator fetches the decrypted and wrapped signature key, i.e. SCD, of the
virtual signature token that is referenced by the provided phone number and password from the
Inner Database. It decrypts the fetched SCD using the provided password. Decryption is only
successful, if the password is correct. This way, the password is verified implicitly.

10. The decrypted but still wrapped password is provided to the HSM.

11. To start the challenge response based user authentication, the Public Signature Creator generates a
TAN and a reference value.

12. The Public Signature Creator sends the DTBS together with the reference value to the TAN-Signer
App.

13. At the same time, the Public Signature Creator sends the generated TAN together with the reference
value to the SMS Gateway.

14. With the help of the Signatory’s MNO, the SMS Gateway delivers the TAN to the SMS System
App on the Signatory’s smartphone.

15. The SMS System App displays the TAN together with the reference value to the Signatory.

16. At the same time, the TAN-Signer App displays the DTBS together with the reference value to the
Signatory.

17. The Signatory compares the two displayed reference values.
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18. If the two reference values match, the Signatory enters the TAN to the TAN-Signer App.

19. Optional: If required by the employed TAN-Signer Module, the Signatory enters local authentica-
tion data such as a secret PIN.

20. The TAN-Signer App signs the entered TAN with the help of an available TAN-Signer Module.
If required by the employed TAN-Signer Module, the TAN-signing functionality is enabled first
with the help of the provided local authentication data.

21. The TAN-Signer App sends the signed TAN to the Public Signature Creator.

22. The Public Signature Creator verifies the signed TAN. For this purpose, it fetches the required
public key from the Outer Database.

23. The Public Signature Creator provides the Private Signature Creator with the verification result.

24. If this result is positive, the Private Signature Creator authorizes the signature-creation operation
in the HSM.

25. The HSM unwraps the still wrapped SCD and creates the electronic signature on behalf of the
Signatory. Afterwards, the unwrapped key is discarded immediately.

26. The created signature is returned to the Private Signature Creator.

27. The Private Signature Creator forwards the created signature to the Public Signature Creator.

28. The Public Signature Creator returns the created signature to the TAN-Signer App.

29. The TAN-Signer App returns the signature to the Service Provider App.

30. The Service Provider App provides the service that has been requested in the first step by the
Signatory.

This process flow illustrates the enhancements that have been achieved by integrating concepts of the
Smartphone Signature into the ServerBKU. In general, two basic enhancements can be identified. First,
by incorporating concepts of the Smartphone Signature, the SMS TAN based user-authentication mech-
anism is replaced by a more secure challenge-response approach. Second, reliance on concepts of the
Smartphone Signature and hence reliance on a challenge response based user authentication enables the
use of a Local Service Provider such as a mobile app. These two enhancements are achieved by means
of an additional mobile app, which is implemented on the mobile end-user device. This app provides
required client functionality of the challenge response based authentication scheme and acts as interme-
diary between the Local Service Provider and remote components of the server-based signature-creation
solution. Due to its reliance on an additional mobile app, the presented implementation, i.e. the enhanced
ServerBKU, is especially tailored to a use on modern mobile end-user devices such as smartphones.

7.2.2 Activation

Besides signature creation, activation represents the second basic process supported by the ServerBKU.
This process has to be carried out prior to signature-creation processes. During activation, a virtual signa-
ture token is created that can later be used for an arbitrary number of signature-creation processes. When
integrating concepts of the proposed Smartphone Signature into the ServerBKU, also the ServerBKU’s
activation process has to be adapted accordingly. In particular, the additional TAN-Signer App on the
Signatory’s mobile end-user device needs to be paired with the newly activated virtual signature token.
During this paring process, the TAN-Signer App needs to generate an asymmetric key pair. The private
part of this key pair is later used to sign TANs. The public part of the key pair must be remotely stored
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together with the activated virtual signature token. This enables remote components of the server-based
signature solution to verify signed TANs during subsequent signature-creation processes.

In order to achieve the required pairing between activated virtual signature tokens and local instances
of the TAN-Signer App, the ServerBKU’s activation process needs to be extended. Components that are
required for this extended activation process are shown in Figure 7.6. This figure again illustrates the ar-
chitecture of the presented implementation and has been derived from the architecture of the ServerBKU
shown in Figure 7.3 on page 200 by incorporating the proposed solution Smartphone Signature. Thus,
Figure 7.6 basically resembles Figure 7.4 on page 204, but focuses only on those components that are
needed during an activation process.
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Figure 7.6: The activation-related architecture is obtained by incorporating concepts of the Smart-
phone Signature into the architecture of the ServerBKU.

Due to its focus on the activation process, Figure 7.6 differs in some aspects from Figure 7.4, which
has mainly focused on the signature-creation process. First, the architecture shown in Figure 7.6 defines
five domains in total. In addition to the four domains that have already been considered in Figure 7.4,
Figure 7.6 also defines the Certification Authority Domain. This domain contains the Certification Au-
thority, which is required during the activation process to issue the certificate for the Signatory. Second,
in the Signature-Service Provider Domain, only those components are considered that are involved in the
activation process. These are the Public Activator, the Private Activator, the Outer Database, the Inner
Database, and the HSM. Components of the Signature-Service Provider Domain that have been defined
by the architecture of the ServerBKU but are only required during the signature-creation process, are
not considered in Figure 7.6. In particular, this applies to the Public Signature Creator and the Private
Signature Creator. Finally, relevant differences can also be identified for the User Domain. In contrast to
the signature creation related architecture shown in Figure 7.4, the activation-related architecture shown
in Figure 7.6 defines two components, i.e. two end-user devices, for the User Domain. In addition to the
Smartphone, which implements the TAN-Signer App and other required components, also the compo-
nent Web Browser is defined. In the Web Browser, the component Activation Client is implemented.

From the architecture shown in Figure 7.6, the process flow of a typical signature-creation process
can be derived. For the sake of clarity, the processing steps required to complete an activation process
are again illustrated in a separate sequence diagram. This sequence diagram is shown in Figure 7.7 and
Figure 7.8. Figure 7.7 recaps the typical activation process of the ServerBKU, in which a new virtual
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signature token is activated. This activation process is not affected by the integration of concepts of
the Smartphone Signature at all. In contrast, Figure 7.8 shows those processing steps that are required
to establish the pairing between the newly activated virtual signature token and the local instance of
the TAN-Signer App. Figure 7.7 and Figure 7.8 show that the entire activation process can be clearly
separated into two parts. The first part is equal to the original activation process of the ServerBKU. The
second part bases on the first one and is required to pair the TAN-Signer App with the newly activated
virtual signature token. Both parts are described in the following by means of a typical activation process.

Figure 7.7 shows the processing steps of the activation process that is already known from the original
ServerBKU. For this purpose, all relevant components of the underlying architecture are also modeled
by the sequence diagram shown in Figure 7.7. For the sake of clarity, a few simplifications have been
applied. For instance, the two databases of the Signature-Service Provider Domain are not modeled
separately by the sequence diagram. Furthermore, the SMS Gateway and the MNO have been combined
in one component in the sequence diagram. Finally, the Hardware-Based TAN-Signer Module, which
is implemented by the local Smartphone component is assumed to be part of the TAN-Signer App and
not modeled separately. It is important to note that the TAN-Signer App is not involved in the original
activation process of the ServerBKU, which is shown in Figure 7.7. Still, this component is part of the
illustrated sequence diagram for the sake of completeness. However, it has been greyed out in order to
emphasize the fact that this component is not involved in the illustrated process flow.

According to Figure 7.7, the first part of the registration process comprises the processing steps
described in the following. It is assumed that the Signatory has already completed the registration process
and has successfully logged in to the user account that has been created during this process. Thus, the
Signatory has an authenticated browser session with the ServerBKU.

1. The Signatory starts the activation process in the Activation Client, i.e. in a web-based front-end
provided by the ServerBKU.

2. The Activation Client sends a request to start a new activation process to the remote Public Acti-
vator.

3. The Public Activator provides a web form to the Activation Client, through which the Signatory
can specify and enter required data.

4. The Activation Client displays this web form to the Signatory.

5. The Signatory enters the required data. This includes the Signatory’s phone number and a secret
password associated with the new virtual signature token to be activated.

6. The Activation Client transmits the entered data to the Public Activator.

7. The Public Activator stores the received data in the Outer Database.

8. The Public Activator generates a random activation code.

9. The Public Activator sends this activation code to the SMS Gateway.

10. By means of the Signatory’s MNO, the SMS Gateway delivers the activation code to the SMS
System App on the Signatory’s Smartphone via SMS.

11. The SMS System App displays the received activation code to the Signatory.

12. The Signatory enters the activation code to the Activation Client.

13. The Activation Client transmits the activation code to the Public Activator.

14. The Public Activator verifies the received activation code by comparing it with the generated one.
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Figure 7.7: The first part of the activation process is equal to a typical activation process of the
ServerBKU.

15. The Public Activator contacts the Private Activator to initiate the generation of a new key pair.

16. The Private Activator initiates the key-pair generation in the HSM.

17. The HSM generates the key pair.

18. The HSM wraps the private key of the generated key pair and exports it to the Private Activator.

19. The Private Activator encrypts the wrapped key and stores it in the Inner Database.

20. The HSM exports the public key of the generated key pair to the Private Activator.

21. The Private Activator provides the exported public key to the Public Activator.

22. The Public Activator requests a certificate for the public key from the Certification Authority.

23. The Certification Authority issues a certificate.
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24. The Certification authority returns the issued certificate to the Public Activator.

25. The Public Activator stores the certificate in the Outer Database.

26. The Public Activator sends a notification to the Activation Client.

27. The Activation Client displays the notification to the Signatory.

After successful completion of these processing steps, a new virtual signature token has been cre-
ated for the Signatory. According to the original ServerBKU implementation, the token can be used
during signature-creation processes, whenever the Signatory has been successfully authenticated at the
ServerBKU following the SMS-TAN approach. The presented implementation replaces the SMS TAN
based authentication scheme by an improved challenge-response approach. As this approach requires an
additional local mobile app, the activation process described above has to be extended in order to pair
this app with the newly created virtual signature token.

The required pairing process is illustrated in Figure 7.8 and described in the following. It is assumed
that a virtual signature token has already been successfully created, i.e. that the first part of the activation
process illustrated in Figure 7.7 has been completed successfully. For the sake of clarity, the sequence
diagram shown in Figure 7.8 models the same components as the sequence diagram that has been used to
illustrate the first part of the activation process. Again, components not directly involved in the illustrated
process are greyed out, but are still displayed for the sake of completeness.
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Figure 7.8: The second part of the activation process covers the pairing of the TAN-Signer App.

1. In the established authenticated browser session, i.e. in the Activation Client, the Signatory starts
the pairing process for the newly created virtual signature token.



212 Chapter 7. Implementation

2. The Activation Client starts the pairing process in the Public Activator.

3. The Public Activator generates a pairing code.

4. The generated pairing code is sent to the Activation Client.

5. The Activation Client displays the pairing code to the Signatory.

6. The Signatory enters the activation code to the TAN-Signer App.

7. The TAN-Signer App generates a key pair for the signing of TANs.

8. The TAN-Signer App securely stores the private key of the generated key pair.

9. Optional: The TAN-Signer App can request the Signatory to define local authentication data such
as a PIN that is used to protect the private key.

10. Optional: If requested to do so, the Signatory defines local authentication data in the TAN-Signer
App.

11. Optional: If local authentication data have been defined, these data are set by the TAN-Signer App.

12. The TAN-Signer App sends the public key of the generated key pair together with the pairing code
to the Public Activator.

13. The Public Activator identifies the relevant virtual signature token by means of the received pairing
code and stores the provided public key for this token.

14. The Public Activator sends a notification to the TAN-Signer App.

15. The TAN-Signer App displays the notification to the Signatory.

16. The Public Activator sends a notification to the Activation Client.

17. The Activation Client displays the notification to the Signatory.

Upon successful completion of these processing steps, the activated virtual signature token is paired
with the Signatory’s TAN-Signer App and can be used for subsequent signature-creation processes as
described and discussed in Section 7.2.1. The applicability of the architectures and process flows derived
in this section have been evaluated by means of a concrete realization. Details of this realization are
presented in the next section.

7.3 Realization

The implementation design presented and discussed in Section 7.2 has been realized using state-of-
the-art technology. Essentially, this realization extends the ServerBKU such that it complies with the
derived architecture and process flows and hence implements the concepts of the proposed Smartphone
Signature. This is elaborated in this section in more detail.
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7.3.1 Realization Details

In general, two basic tasks had to be accomplished to realize the implementation design presented in
Section 7.2. First, a mobile app had to be implemented that assumes the role of the local component TAN-
Signer App. Second, components of the existing signature solution ServerBKU had to be extended, in
order to cover required server functionality. In particular, the server components Public Activator, Public
Signature Creator, and Outer Database had to be extended.

Accomplishment of the latter task, i.e. extension of existing ServerBKU components, was rather
simple, as only minor extensions were necessary. Essentially, the ServerBKU’s SMS TAN based user-
authentication scheme has been replaced by an improved challenge response based method that relies
on signed TANs. For this purpose, two basic modifications of the ServerBKU had to be applied. First,
the ServerBKU’s Public Activator has been extended, in order to adapt the activation process such that
key material required for the verification of signed TANs can be reliably exchanged with the Signatory’s
TAN-Signer App and stored in the Outer Database. Second, TAN-verification functionality of the Server-
BKU’s Public Signature Creator has been modified. Instead of simply comparing the received TAN with
the one sent to the Signatory, the Public Signature Creator has been extended to cryptographically verify
received signed TANs using the key material exchanged during the activation process. Both required
changes have been implemented using existing libraries such as the IAIK JCE7.

In addition to the extension of components of the ServerBKU, development of a mobile app that
implements functionality of the TAN-Signer App represented the second mandatory realization task. As
inclusion of a mobile app has not been part of the original ServerBKU concept, a suitable app had to be
developed from scratch. Implementation details of the developed app are discussed in the following in
more detail.

The required app has been developed for the Google Android8 platform. This platform has been
chosen mainly because of three reasons. First, Google Android is the current market leader for mobile
operating systems [MobiThinking, 2014]. Hence, reliance on this platform assures that a high percent-
age of potential users can be reached. Second, own conducted assessments of relevant platforms have
revealed that Google Android currently provides developers the highest degree of flexibility and func-
tionality [Zefferer et al., 2013b]. This makes this platform perfectly suitable for the implementation
and realization of innovative solutions. Third, from all platforms, Android is most affected by malware
[Kelly, 2014]. Hence, a solution that satisfies security requirements on Android should also be able to
satisfy the same requirements on any other platform.

Required functionality of the developed app has been identified from the implementation design,
in particular from the derived activation and signature-creation processes. During activation, the TAN-
Signer App needs to create a cryptographic key pair, store the private part of the key pair, request required
data such as the pairing code from the Signatory, and forward the pairing code together with the public
part of the key pair to the ServerBKU. During signature-creation, the TAN-Signer App acts as interme-
diary between a Local Service Provider and the ServerBKU, requests data such as the secure password
and the TAN from the Signatory, signs the TAN, and forwards the signed TAN to the ServerBKU. Hence,
provision of user interfaces, communication with the ServerBKU, communication with the Local Service
Provider, generation and storage of cryptographic key material, and the signing of TANs are the basic
features that need to be covered by the developed TAN-Signer App.

The required functionality of the TAN-Signer App also defines its internal structure, which is shown
in Figure 7.9. Naturally, this structure resembles the architecture of the TAN-Signer App that has been
defined in Chapter 6 as part of the Smartphone Signature. However, the internal structure shown in
Figure 7.9 is more specific and also takes into account the decision to rely on the Android platform.

Figure 7.9 shows that the App Business Logic is the central building block of the TAN-Signer App

7https://jce.iaik.tugraz.at/
8http://www.android.com
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Figure 7.9: The TAN-Signer App is composed of several internal building blocks and interfaces.

implementation. This building block acts as central control unit and implements required process flows.
For this purpose, the App Business Logic relies on and connects to other internal building blocks, which
provide specific functionalities.

To interact with the Signatory, the App Business Logic makes use of the two interface components
Activation Activity and Signature Creation Activity. The names of these building blocks reflect the
Android-based nature of the TAN-Signer App. Under Android, user-interface components are imple-
mented by so-called Activities9, which interact with other app components by means of inter-process
communication mechanisms. In addition to the two implemented user-interface building blocks, the
TAN-Signer App also implements interfaces to the remote ServerBKU and to Local Service Providers.
To access the ServerBKU through its HTTP-based interface, an HTTP Connector has been implemented
for the TAN-Signer App. The HTTP Connector provides support for SSL/TLS in order to protect data
exchanged with the ServerBKU. To interact with Local Service Providers, a simple SP Interface build-
ing block has been implemented. This building block enables a Local Service Provider to invoke the
TAN-Signer App in order to initiate a signature-creation process and to retrieve created signatures.

In addition to interface building-blocks that enable communication with external entities, the TAN-

9http://developer.android.com/reference/android/app/Activity.html
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Signer App also needs to implement cryptographic functionality to generate asymmetric key pairs during
the activation process, and to sign TANs during subsequent signature-creation processes. The secure and
reliable implementation of required cryptographic functionality on current mobile end-user devices is a
challenging task. This has already been considered during development of the proposed signature so-
lution Smartphone Signature in Chapter 6. In order to cope with varying threats and opportunities on
different mobile end-user devices, the Smartphone Signature has left the concrete implementation of the
TAN-Signer Module, which covers required cryptographic functionality, open. This generic approach
has also been pursued by the concrete realization of the proposed solution. Concretely, the TAN-Signer
App supports the use of different TAN-Signer Modules. This is also illustrated in Figure 7.9. Different
hardware-based and software-based implementation variants of the TAN-Signer Module are connected
to the App Business Logic by means of so-called TAN-Signer Adapters. These adapters assure that the
actual implementation of the TAN-Signer Module is to a large extent transparent to the App Business
Logic. This way, different implementations of the TAN-Signer Module can be easily integrated into the
TAN-Signer App without the need to adapt other internal building blocks. In order to enable the Signa-
tory to select the preferred TAN-Signer Module at runtime, the TAN-Signer App features an additional
user-interface component called TAN-Signer Selector. This component is used by the Activation Activity
and the Signature Creation Activity to determine the TAN-Signer Module to be used.

Flexibility with regard to the concrete realization of the TAN-Signer Module is a key feature of the
TAN-Signer App. Maintaining a high degree of flexibility is important, in order to cope with varying
capabilities and limitations of different mobile end-user devices. To demonstrate the flexibility of the
developed TAN-Signer App, three variants of the TAN-Signer Module have been realized that all rely on
a different enabling technology. These three realizations are introduced in the following three sections.
Concretely, TAN-Signer Module implementations relying on SEs, cryptography-enabled NFC tokens,
and the Android KeyChain are presented.

7.3.2 Realization Variant 1: Secure Elements

SEs are probably the most obvious alternative to implement a hardware-based TAN-Signer Module on
a mobile end-user device. Capabilities, limitations, and realization opportunities of SEs have already
been briefly sketched in Chapter 4. There, SEs have been considered as potential enabler for signature
solutions that rely on a local SSCD. Essentially, SEs are especially protected hardware modules that
support the secure and reliable storage of security-critical data and the secure and reliable processing
of cryptographic operations. Due to their hardware-based nature, SEs are to a large extent immune to
malware. From a functional point of view, SEs are hence an ideal choice for implementing the local
TAN-Signer Module. This section introduces the technology behind SEs, motivates their use, and shows
how they can be employed to cover required TAN-signing functionality in the scope of the implemented
Smartphone Signature.

7.3.2.1 Technology

In theory, SEs are perfectly suited to implement the functionality of a hardware-based TAN-Signer Mod-
ule. Unfortunately, the availability of SEs on current mobile end-user devices is limited in practice. Even
though most devices are supplied with modules that could assume the role of an SE, these modules often
cannot be accessed by third-party apps that are not deeply rooted in the mobile operating system. So far,
Google Android is the only platform that provides third-party apps basic access to SEs by means of the
seek-for-android framework10. Capabilities of this framework have been analyzed by Oberauer [2012].
This analysis has revealed that access to hardware-based SEs is feasible under Android.

Despite their limited applicability on other platforms than Google Android, SEs have still been em-
ployed to implement the TAN-Signer Module. There are several reasons for that. First, there is evidence

10https://code.google.com/p/seek-for-android/
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that SEs will continue to play a major role on mobile end-user devices. By now, SEs are integral parts
of most smartphones and e.g. build the backbone of secure hardware-based credential stores provided by
the mobile operating system. So far, access to these SEs is in most cases limited to the mobile operating
system. However, it can be expected that future mobile end-user devices will provide further possibilities
to implement SEs and that upcoming releases of mobile operating systems will provide access to SEs
also for third-party apps. Second, the emergence of new security-critical applications such as mobile
payment solutions will continuously raise the need for SEs on mobile end-user devices. For instance,
the mobile payment system Google Wallet11 has relied on secure elements on mobile end-user devices
early. Another example for a mobile payment system that relies on a local SE is Softcard12. Similar to
SIM-based signature solutions, Softcard makes use of an enhanced SIM, which assumes the role of the
SE. These examples show that SEs can be expected to play a relevant role on mobile end-user devices in
future, even though their applicability is currently still limited.

Finally, SEs additionally provide an interesting conceptual advantage that justifies their use. Despite
their hardware-based nature, the functionality of SEs is dynamically adaptable. For this purpose, SEs
usually rely on Java Card technology13. Using this technology, the functionality of an SE is defined by
so-called Java Card applets. These are reduced Java-based programs that can be installed and executed in
the SE. Installed Java Card applets have access to hardware-based cryptography features of the SE and
can be accessed from external applications by means of the PC/SC protocol [PC/SC Workgroup, 2014].
Typically, multiple Java Card applets can be installed on one SE. As they define the functionality of the
SE, secure means to install and remove Java Card applets are crucial. Hence, SEs are usually shipped
with a secret cryptographic key that is securely stored in the SE. With the help of this key, a secure
communication channel can be established between the SE and an authorized external entity that is also
aware of this key. Over this secure communication channel, Java Card applets can be securely installed
on SEs in the field. The possibility to securely install arbitrary Java Card applets on SEs offers an
interesting opportunity. Applets to be installed can be equipped with a secret symmetric master key prior
to their installation on the SE. As the installation of the applet takes place over a secure communication
channel, this master key cannot be compromised during the installation process. Once the applet is
installed on the SE, the secret master key is protected by the SE itself. This master key can subsequently
be used to protect the communication between the Java Card applet and an external application. This
way, all data exchanged with the SE can be reliably protected. As SEs provide means to establish a
secure channel to external entities and hence enable secure messaging, they represent an interesting and
promising technology for a highly secure realization of required TAN-signing functionality on mobile
end-user devices.

7.3.2.2 Technology-Specific Internal Structure of the TAN-Signer App

Taking into account the decisions to rely on SEs and on their capabilities to establish secure commu-
nication channels with external entities, the internal structure of the TAN-Signer App shown in Figure
7.9 can be further refined. The resulting SE-specific internal structure is shown in Figure 7.10. For re-
alization of the proposed solution, a Secure Element Emulator has been developed, which emulates the
functionality of an SE. The Secure Element Emulator implements required cryptographic functionality
and provides a PC/SC-based interface. In addition to the Secure Element Emulator, a Secure Element
Adapter has been implemented, which acts as intermediary between the SE and the App Business Logic.
The Secure Element Adapter basically hides implementation specifics of the SE and provides the App
Business Logic a common interface to SE implementations. This way, the Secure Element Emulator can
be easily replaced by arbitrary hardware-based SEs.

Figure 7.9 also shows that there is a secure channel between the SE and the ServerBKU. Hence,

11https://wallet.google.com
12https://www.gosoftcard.com
13http://www.oracle.com/technetwork/java/embedded/javacard/overview/index.html
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Figure 7.10: The architecture of the SE-based TAN-Signer App shows relevant internal building
blocks and interfaces.

even if the mobile end-user device is compromised by malware, data exchanged between the SE and the
ServerBKU remain secure and protected. This even holds true, if components of the TAN-Signer App
are compromised, as exchanged data is encrypted and decrypted already in the SE.

Reliance on a secure channel between the SE and the ServerBKU, and the application of secure-
messaging mechanisms also affects implemented activation and signature-creation processes. The inte-
gration of secure messaging into these processes and their SE-specific implementation is presented and
discussed in the following.

7.3.2.3 Realization of the Activation Process

Following the implementation design derived in Section 7.2, the activation process consists of two parts.
The first part reflects the activation process of the original ServerBKU solution: the Signatory creates
a new virtual signature token through a web-based user interface provided by the ServerBKU. In the
second part, the newly created virtual signature token is paired with the Signatory’s personal instance of
the TAN-Signer App, in order to enable the creation and verification of signed TANs during signature-
creation processes.
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As the first part of the activation process does not require interaction with the TAN-Signer App,
required interaction with the Signatory mainly takes place over a web browser. This is illustrated by the
following screenshots. Figure 7.11 illustrates the web-based user interface provided by the ServerBKU.
This user interface gives the Signatory the opportunity to create new virtual signature tokens and to
manage existing ones. Creation, i.e. activation, of a new token can be initiated by clicking the respective
icon.

Figure 7.11: The web-based user interface provided by the ServerBKU provides means to create
new virtual signature tokens and to manage existing ones.

Upon initiation of the activation process, an activation wizard is displayed, which guides the Sig-
natory through the entire activation process. This wizard requests required data from the Signatory and
displays relevant information. The first form of this wizard is shown in Figure 7.12. Through this form,
the Signatory provides required data. This includes a unique identifier for the virtual signature token to
be created, as well as the Signatory’s phone number and e-mail address. Furthermore, the Signatory is
required to define a secret password that will later be used to protect access to and use of the created
token.

All entered data are transferred to the central ServerBKU. There, the phone number provided by the
Signatory is verified. For this purpose, a random code is sent to the provided phone number by SMS.
The Signatory has to enter this code into the activation wizard. This is illustrated in Figure 7.13.

By entering the received code, the Signatory proves possession and control of his or her mobile
phone. In the next step, the Signatory is asked to enter further person-related and certificate-related data.
This is illustrated in Figure 7.14 and Figure 7.15.

As soon as the ServerBKU has received the entered data, it creates a new cryptographic key pair
for the Signatory in the central HSM. The private key of this key pair is wrapped and encrypted using
the chosen token-specific password. The wrapped and encrypted password is finally stored in the Inner
Database. The public key is sent to the Certification Authority together with certificate-related infor-
mation provided by the Signatory. The Certification Authority issues a certificate in order to bind the
public key to the Signatory’s identity. The issued certificate is stored by the ServerBKU as part of the
created virtual signature token. As all activation steps described so far have already been part of the
existing ServerBKU implementation, they are not discussed here in more detail. Details of the original
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Figure 7.12: In the first step of the activation process, the Signatory is asked to enter required data.

Figure 7.13: To verify the provided phone number, the Signatory is asked to enter a code delivered
by SMS.

ServerBKU implementation have been presented and discussed by Rath et al. [2014a].

The second part of the activation process is actually the more interesting one. During this part, the
Signatory’s instance of the TAN-Signer App is paired with the newly created virtual signature token.
During this pairing process, the TAN-Signer App, concretely the TAN-Signer Module, generates a new
key pair that is subsequently used to sign TANs. The public key of this key pair is transmitted to the
ServerBKU, in order to enable a remote verification of signed TANs during signature-creation processes.
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Figure 7.14: The TAN-Signer App prompts the Signatory to enter required person-related data.

Figure 7.15: The Signatory is also asked to enter required certificate-related data.

To implement the pairing process, the ServerBKU’s web-based activation wizard has been extended
by an additional form. This form is displayed immediately after successful completion of the first part
of the activation process, i.e. as soon as a new virtual signature token has been created. The displayed
form is illustrated in Figure 7.16. Essentially, it displays a random activation code. By entering this code
in the TAN-Signer App, an unambiguous link between the current browser session and the TAN-Signer
App can be established. The displayed activation code is also provided in the form of a QR code, which
can be scanned with mobile end-user devices featuring a camera and a QR scanner.
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Figure 7.16: The pairing form is displayed immediately after successful creation of a new virtual
signature token.

In order to initiate the app-pairing process, the Signatory needs to start the TAN-Signer App. This
can be done manually by touching the app icon, or automatically by scanning the QR code displayed in
the web browser. Upon initiation of the paring process, the TAN-Signer App first requests the Signatory
to choose the preferred TAN-Signer Module, i.e. the technology that will later be used to sign received
TANs. For this purpose, the TAN-Signer App displays the dialog shown in Figure 7.17.

Figure 7.17: The TAN-Signer App provides a simple user interface to select the preferred technol-
ogy used to sign TANs.

Assuming that the Signatory selects SE technology to sign TANs during authentication processes, the
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TAN-Signer App continues the app-pairing process with the dialog shown in Figure 7.18. This dialog
requires the Signatory to enter the phone number and the activation code. If supported by the mobile
operating system, the phone number is automatically read out from the device. Otherwise, the phone
number has to be entered manually by the Signatory. The app also supports the Signatory in entering the
activation code. In case the TAN-Signer App has been started by means of the displayed QR code, the
activation code is automatically pre-populated. Only if the app has been started manually, the Signatory
needs to type in the activation code manually.

Figure 7.18: The TAN-Signer App provides a simple user interface to enter data required for the
paring process.

In addition to the phone number and the activation code, the TAN-Signer App also requires the
Signatory to define a secret SE PIN. This SE PIN is used to protect the private key stored in the SE
and used to sign TANs during signature-creation processes. To increase the security of the PIN-entering
process, a custom PIN pad has been implemented for the TAN-Signer App. This PIN pad, which is shown
in Figure 7.19, circumvents the use of the mobile device’s keyboard. This way, it counters potential
threats caused by compromised soft keyboards.

When all required data have been entered to the TAN-Signer App, the pairing process can be started
by pressing the OK button. The various communication steps of the pairing process, in which data is
mainly exchanged between the remote ServerBKU and the local SE, are completely transparent to the
Signatory. During execution of these steps, a progress bar is displayed and the Signatory is requested
to stand by. This is illustrated in Figure 7.20. Due to the establishment of a secure channel between
ServerBKU and local SE, which requires the execution of several cryptographic operations, the activation
process can take a couple of seconds.

Figure 7.21 offers a more detailed look at the pairing process and shows in detail all communication
steps that take place between the ServerBKU and the TAN-Signer App including the employed SE. Thus,
Figure 7.21 essentially further details processing steps 6 – 15 of the second part of the pairing process
that has been discussed in Section 7.2.2 and illustrated in Figure 7.8 on page 211. For the sake of clarity,
internal components of the TAN-Signer App are not modeled separately in Figure 7.21. Only the SE is
shown as separate component.

Figure 7.21 shows that after the Signatory has entered the activation code and other required data to
the TAN-Signer App, a secure channel is established between the SE and the ServerBKU first. Estab-
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Figure 7.19: A custom PIN pad has been implemented to counter threats caused by compromised
keyboards.

Figure 7.20: The paring process is completely transparent to the Signatory.

lishment of this secure channel is based on GlobalPlatform specifications14. Concretely, the GlobalPlat-
form’s Secure Channel Protocol 03 [GlobalPlatform, 2009] is employed. Both, the TAN-Signer App
and the ServerBKU have been extended to support this protocol. To establish a secure communication
channel, the ServerBKU generates a random challenge and transmits this challenge to the TAN-Signer
App. The TAN-Signer App forwards the challenge to the SE. Upon reception of the host challenge,
the SE generates a card challenge. From the received host challenge, the generated card challenge, and
the secret symmetric master key that has been installed in the SE as part of the JavaCard applet, the SE

14http://www.globalplatform.org/specifications.asp
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derives session keys. These session keys are later used to protect data exchanged between the SE and the
ServerBKU. In addition, the SE computes a card cryptogram from the host challenge, the card challenge,
and one of the derived session keys. The computed card cryptogram is sent to the TAN-Signer App and
further to the ServerBKU together with the generated card challenge. From the provided data, the Server-
BKU is able to derive the same session keys as the SE, as it is aware of the same secret cryptographic
master key. Using the derived session keys, the ServerBKU can cryptographically verify the received
card cryptogram and compute a host cryptogram from the host challenge and the card challenge. This
host cryptogram is then sent to the TAN-Signer App, which forwards it to the SE. Being aware of the
required session keys, the SE is able to verify the host cryptogram. If verification succeeds, the SE sends
an OK message to the ServerBKU.

The final OK message completes the establishment of the secure channel between the ServerBKU
and the SE. All subsequent communication steps between the ServerBKU and the SE can be crypto-
graphically protected by means of the derived session keys. As derivation of these keys is based on a
secret master key, external entities, which are not aware of this key, cannot decrypt exchanged messages.
Note that not even the TAN-Signer App or any of its internal components is able to decrypt exchanged
messages, as it is neither aware of the secret master key, nor of the derived session keys. Hence, when
communication between the SE and the ServerBKU takes place over the established secure channel,
the TAN-Signer App merely acts as proxy and communication relay for encrypted messages. Once the
secure channel has been successfully established, the remaining steps of the activation process are exe-
cuted. First, the ServerBKU sends a command to the SE, in order to initiate the generation of a new key
pair. The SE generates the key pair and returns an OK message to the ServerBKU. Then, the ServerBKU
transmits the PIN defined by the Signatory to the SE. The SE sets the PIN to protect the private key of the
generated key pair. Subsequently, the SE again returns an OK message to the ServerBKU. Finally, the
generated public key is requested from the ServerBKU and returned by the SE. All these communication
steps take place over the established secure channel. Hence, confidentiality and integrity of exchanged
data are protected at any time during the activation process.

Protection of data exchanged during the activation process is crucial. This especially applies to the
transmission of the locally created public key to the ServerBKU. If an attacker is able to intercept this
key and to replace it with an own key, signed TANs can be successfully forged during signature-creation
processes. Hence, the secure and reliable transmission of the public key from the SE to the ServerBKU
is crucial for the security of the entire system. Applied means to protect data exchanged between the
ServerBKU and the local components TAN-Signer App and Secure Element are also illustrated in Figure
7.21. In general, communication between the TAN-Signer App and the remote ServerBKU is protected
by means of SSL/TLS. All processing steps that are protected by these means are shown in front of a blue
background. As an additional layer of protection, part of the communication between the ServerBKU
and the Secure Element is protected by secure messaging. Communication steps affected by these means
of protection are shown in front of a red background.

The successful execution of all processing steps illustrated in Figure 7.21 completes the pairing
process. When the ServerBKU has received the Signatory’s public key, it sends a completion message
to the TAN-Signer App. This enables the TAN-Signer App to notify the Signatory about the successful
completion of the pairing process. Additionally, successful completion of the pairing process is also
indicated by the web-based activation wizard. This is shown in Figure 7.22.

Upon successful completion of the pairing process, activation of the new virtual signature token in
the remote ServerBKU is complete. The created token can be used during subsequent signature-creation
processes. In the following, the realization of such signature-creation processes is presented.

7.3.2.4 Realization of the Signature-Creation Process

Compared to the activation process, the signature-creation process is rather simple. It requires fewer
processing steps and also fewer interactions with the Signatory. Furthermore, no additional web-based
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Figure 7.22: The pairing form notifies the Signatory about the successful completion of the pairing
process.

user interface is required during signature creation, which again improves simplicity and efficiency. As
signature-creation processes are usually applied more frequently than activation processes, they must be
efficient and fast.

In contrast to the activation process, secure messaging is not employed during signature creation.
During signature creation, the only data being exchanged between the SE and the ServerBKU is the
signed TAN. The signed TAN is unique for each transaction. Hence, its confidentiality does not nec-
essarily need to be assured, as a specific signed TAN cannot be reused for other transactions. Thus,
transmission of the signed TAN over a secure channel would not improve the overall security of the
user-authentication process. Furthermore, a basic level of security is still provided, as the communica-
tion channel between the TAN-Signer App and the ServerBKU is protected by means of SSL/TLS. Other
critical data such as phone number and password associated with the chosen virtual signature token could
indeed benefit from a transmission over a secure channel. However, these data are entered by the Signa-
tory and are hence present in the TAN-Signer App anyways. Furthermore, a sufficient level of security
is provided for these data, as they are transmitted over communication channels protected by SSL/TLS.
Taking these considerations into account, it is reasonable to limit the application of secure messaging to
the activation process and to not use it during signature creation.

As no additional user interface is required during signature creation, the number of required interac-
tions with the Signatory is rather limited. The following screenshots show a typical signature-creation
process from the Signatory’s perspective and illustrate realized user interfaces.

At the beginning of the signature-creation process, the Signatory needs to be identified. For this
purpose, the Signatory enters the phone number and password associated with his or her virtual signature
token. These data have been defined during the activation process, in which the token has been created.
As the Signatory can activate an arbitrary number of virtual signature tokens, this processing step is also
required to give the Signatory the opportunity to select the preferred token. The user interface of the
TAN-Signer App that enables the Signatory to specify phone number and password is shown in Figure
7.23.

The entered credentials are transmitted to the ServerBKU. There, the virtual signature token refer-
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Figure 7.23: The TAN-Signer App requests the Signatory to enter phone number and password
associated with the preferred virtual signature token.

enced by the provided data is fetched from the database and decrypted using the Signatory’s provided
password. This way, the password is implicitly verified. The decrypted but still wrapped password is
loaded into the HSM, in order to prepare the signature-creation process. Before this process is autho-
rized, the second step of the user-authentication process is carried out. Therefore, a random TAN is sent
to the Signatory’s mobile end-user device. The Signatory is requested to enter the received TAN into the
TAN-Signer App and to sign it. Hence, the Signatory first needs to choose the respective TAN-Signer
Module. For this purpose, the dialog shown in Figure 7.24 is displayed.

Figure 7.24: The TAN-Signer App requests the Signatory to select the respective TAN-Signer
Module.
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In order to be able to sign the received TAN using the selected TAN-Signer Module, the TAN-Signer
App needs to read the TAN from the Signatory. For this purpose, the app displays the user interface
shown in Figure 7.25.

Figure 7.25: The TAN-Signer App requests the Signatory to enter the received TAN.

In addition to reading the TAN from the Signatory, the provided user interface provides two additional
features. First, it displays a reference value, which is unique for the current authentication process. The
same reference value is also part of the SMS message that is used to transmit the TAN to the Signatory.
This way, the Signatory can establish an unambiguous binding between the received challenge, i.e. the
TAN, and the current transaction. Second, the provided user interface enables the Signatory to review the
DTBS. By pressing the respective button, the Signatory can open a simple DTBS viewer, which displays
the data to be signed. This is illustrated in Figure 7.26.

The TAN entered by the Signatory is finally signed by the TAN-Signer App using the selected TAN-
Signer Module, i.e. the SE. As the private key stored in the SE and used to sign TANs is protected by a
secret PIN, the Signatory needs to enter this PIN in order to authorize the signing of the TAN. The PIN
can again be entered by means of a custom PIN pad, which is provided by the TAN-Signer App as shown
in Figure 7.27. This way, the confidentiality of the PIN is guaranteed, even if the keyboard of the mobile
end-user device has been compromised.

The signed TAN is then transmitted to the ServerBKU. There, it is verified with the help of the public
key that has been received during the activation process. If the signed TAN can be verified successfully,
the signature-creation process is authorized in the central HSM and the requested electronic signature is
finally created on behalf of the Signatory.

7.3.3 Realization Variant 2: Cryptography-Enabled NFC Tokens

The use of SEs shows that required functionality of the TAN-Signer App can indeed be realized with the
help of state-of-the-art technology. Representing secure hardware, SEs are well-suited for the realization
of the app’s TAN-Signer Module. While the use of SEs is clearly beneficial in terms of security and
usability, this technology unfortunately suffers from a rather poor feasibility, as current off-the-shelf
end-user devices do not feature SEs that can be accessed from third-party apps. In order to provide an
alternative solution for these devices, the implemented TAN-Signer App also supports cryptography-
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Figure 7.26: The TAN-Signer App features a simple DTBS viewer.

Figure 7.27: The required PIN can be entered by means of a custom PIN pad.

enabled NFC tokens as TAN-Signer Modules. The use of these tokens in the context of the developed
solution is presented and discussed in this section.

7.3.3.1 Technology

NFC bases on Radio-Frequency Identification (RFID), a technology, which dates back to pioneering
work by Stockman [1948], and which makes use of electromagnetic fields to establish a communication
channel between an active reader an a passive tag or transponder. The passive transponder has no own
power source and collects all required energy from the electromagnetic field generated by the reader.
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The simple nature of RFID tags facilitates their cheap mass production. Accordingly, RFID technology
has been used early for the identification of products and has evolved as an attractive alternative to bar
codes. Well-known standards of RFID technology are MIFARE specified in ISO/IEC [2008] or FeliCa
developed by Sony [Sony, 2015]. Key properties of RFID-based communication are low bandwidth,
short range, and immediate communication set-up.

NFC bases on RFID technology and combines the established RFID standards MIFARE and FeliCa.
Relevant standards defining NFC technology are ISO/IEC 18092 [ISO/IEC, 2013] and ISO/IEC 21481
[ISO/IEC, 2012]. In contrast to RFID, NFC does not strictly divide communicating devices into active
readers and passive tags. Instead, each NFC device can be operated in three different modes. First,
each NFC device can be operated in card-emulation mode and behave as a passive tag. Second, an NFC
device can also be operated in reader/writer mode and act as active reader. Third, two NFC-enabled
devices can directly communicate with each other when being operated in peer-to-peer mode. This way,
NFC is applicable in more application scenarios and use cases compared to simple RFID solutions. Still,
NFC features the same communication properties such as short range, low bandwidth, and immediate
communication set-up.

Although NFC has been available for more than ten years, adoption of this technology has been
low for a long time. This has changed recently, when NFC has been identified as promising enabler for
contactless payment systems, such as those analyzed in Zefferer [2013]. This promising use case has
motivated device manufactures to integrate NFC technology into smartphones and related mobile end-
user devices. Today, NFC technology is supported by most major platforms including Android and iOS
[NFC World, 2015].

With the emergence of more complex use cases, passive NFC tags have become more complex and
powerful as well. For instance, contactless payment systems and other security-critical application sce-
narios require passive NFC tags to carry out cryptographic operations. This has yielded a new generation
of powerful NFC-enabled security tokens. Contactless smart cards are an example for such tokens, which
are frequently used by contactless payment systems to authenticate card holders and to authorize finan-
cial transactions at dedicated payment terminals. In addition to contactless smart cards, cryptography-
enabled NFC tokens can be obtained in other form factors as well. For instance, the company Yubico15

offers NFC-enabled Universal Serial Bus (USB) tokens under the name YubiKey [Yubico, 2015]. Similar
to SEs, these tokens support JavaCard technology and can be programmed with own JavaCard applets to
define their functionality.

The support of NFC technology by modern mobile end-user devices and the availability of power-
ful cryptography-enabled NFC tokens make these tokens an interesting alternative to classical SEs. In
contrast to SEs, cryptography-enabled NFC tokens have a considerable advantage: the Signatory has to
actively enable access to the token by putting it in the short range of the mobile device’s NFC reader.
Similarly, the Signatory can easily prevent a possible misuse of the token simply by removing it from
the reader. This adds an additional level of protection for scenarios, in which the mobile end-user de-
vice is compromised e.g. by local malware. We have demonstrated capabilities of cryptography-enabled
NFC tokens to act as TAN-Signer Module by integrating support for YubiKey tokens into the developed
TAN-Signer App. Details of this integration are provided in more detail in the following sections.

7.3.3.2 Technology-Specific Internal Structure of the TAN-Signer App

Based on the decision to rely on cryptography-enabled NFC tokens, more specifically on YubiKeys, to
implement the TAN-Signer Module, the TAN-Signer App’s general architecture defined in Figure 7.9 on
page 214 can be further refined. The resulting technology-specific architecture that is tailored to the use
of YubiKeys is shown in Figure 7.28.

In many aspects, this architecture resembles the one of the SE-based realization variant shown in

15https://www.yubico.com/
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Figure 7.28: The architecture of the YubiKey-based TAN-Signer App shows relevant internal
building blocks and interfaces.

Figure 7.10 on page 217. However, two basic differences can be identified. The first difference is due to
the alternative technology that is used to realize the TAN-Signer Module. Instead of an SE, a YubiKey
is used for this purpose. Accordingly, the TAN-Signer App’s Secure Element Adapter has been replaced
by a YubiKey Adapter. The added YubiKey Adapter implements all NFC-based communication to the
external NFC token and hence provides the App Business Logic access to the YubiKey.

The second basic difference to the SE-specific architecture concerns the establishment of a secure
channel between the ServerBKU and the TAN-Signer Module, i.e. the YubiKey. The YubiKey-based
implementation sketched in Figure 7.28 does not implement such a secure channel. There are several
reasons for that. First and foremost, avoidance of a secure-channel establishment facilitates the deploy-
ment of YubiKeys. By omitting secure messaging with the YubiKey, required cryptographic functionality
that has to be implemented by the YubiKey is reduced to the generation of a cryptographic key pair and
the creation of electronic signatures. These features are often already covered by JavaCard applets pre-
installed on shipped tokens. This way, off-the-shelf tokens can be deployed and used without the need
to personalize them with proprietary JavaCard applets. Furthermore, the intentional avoidance of secure
messaging demonstrates the flexibility of the entire solution, which supports secure messaging with the
TAN-Signer Module, but does not define it as mandatory requirement.
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The architecture shown in Figure 7.28 explicitly defines the use of a YubiKey as TAN-Signer Module.
However, other NFC tokens can be used as well, as long as they support the required cryptographic func-
tionality. YubiKeys have been used for the present realization mainly because of their current popularity
and flexibility. The following two sections describe the integration of YubiKeys into the implemented
activation and signature-creation processes.

7.3.3.3 Realization of the Activation Process

Replacing the SE with a YubiKey has only minor impacts on the overall activation process. Again, this
process consists of two parts. In the first part, the Signatory creates a new virtual signature token through
the web-based user interface provided by the ServerBKU. In the second part, the newly created virtual
signature token is paired with the Signatory’s TAN-Signer App. The first part of the activation process
is always identical, irrespective of the concrete realization of the TAN-Signer Module. Hence, when
relying on a YubiKey as TAN-Signer Module, the Signatory has to go through the same processing steps
as described in Section 7.3.2.3 and illustrated in Figure 7.11 to Figure 7.16. After successful completion
of these processing steps, the Signatory has created a new virtual signature token and the ServerBKU
displays an activation code and a QR code in the Signatory’s web browser.

For the subsequent second part of the activation process, in which the Signatory’s TAN-Signer App
is paired with the newly created virtual signature token, several YubiKey-specific differences can be
identified compared to the SE-specific activation process. The pairing process can again be started either
manually by starting the TAN-Signer App on the mobile end-user device, or by scanning the displayed
QR code. In either case, the TAN-Signer App first requests the Signatory to select the preferred technol-
ogy for the TAN-Signer Module. This is illustrated in Figure 7.29.

Figure 7.29: The TAN-Signer App provides a simple user interface to select the preferred technol-
ogy used to sign TANs.

When the YubiKey has been selected as technology of choice, the TAN-Signer App displays a dialog
to obtain required data from the Signatory. This dialog is shown in Figure 7.30 and contains two input
fields. The Signatory is requested to enter his or her phone number in the first input field. If supported
by the mobile operating system, the phone number is obtained automatically from the mobile device and
is pre-populated. The activation code displayed in the Signatory’s web browser has to be entered to the
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second input field displayed. In case the TAN-Signer App has been started by scanning the displayed
QR code, the activation code is entered automatically to the provided input field.

Figure 7.30: The TAN-Signer App provides a simple user interface to enter data required for the
paring process.

In addition to the two input fields, the dialog displayed also features a button to pair the YubiKey.
When pressing this button, the Signatory is requested to tap his or her personal YubiKey to the mobile
end-user device. This is illustrated in Figure 7.31. As soon as the YubiKey is detected, the TAN-
Signer App connects to it and reads out the public key of the token-specific key pair. According to the
developed JavaCard applet that defines the YubiKey’s functionality, the key pair is already generated,
when the applet is installed on the token. This is beneficial, as it reduced the period of time, in which the
YubiKey has to be present in the NFC field during the activation process. Once the public key has been
successfully read from the YubiKey, the previous dialog is displayed again and the Signatory is notified
accordingly as illustrated in Figure 7.32. By pressing the OK button and confirming all entered data,
the Signatory initiates completion of the pairing process. All entered data and the public key read from
the YubiKey are sent to the central ServerBKU and associated with the Signatory’s newly created virtual
signature token. Similar to the SE-specific realization variant, the Signatory is finally notified about the
successful completion of the entire pairing process.

In contrast to the SE-specific realization variant, the Signatory does not have to define a secret PIN
during the YubiKey-specific activation process. Accordingly, the YubiKey’s signature-creation function-
ality is not protected by means of a PIN. While this obviously reduces security, it improves usability, as
no additional data entry is required during signature-creation processes. Instead of entering a PIN, the
Signatory indicates willingness to sign a TAN by putting the YubiKey in range of the mobile device’s
NFC reader. Omitting the use of PINs in the context of cryptography-enabled NFC tokens is common
practice and also applied by various contactless payment systems. If required, support for local authen-
tication, i.e. local PIN verification, could be easily added by modifying the YubiKey’s JavaCard applet
accordingly.
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Figure 7.31: The TAN-Signer App requests the Signatory to tap his or her YubiKey to the mobile
end-user device.

Figure 7.32: The Signatory can complete the pairing process by confirming all entered data.

7.3.3.4 Realization of the Signature-Creation Process

Refraining from using local authentication affects the signature-creation process as well. Still, the
signature-creation process of the YubiKey-specific realization resembles to a large extent the one of
the SE-specific implementation. The TAN-Signer App first requests the Signatory to enter his or her per-
sonal credentials, in order to identify the preferred virtual signature token. Concretely, the TAN-Signer
App displays a dialog, through which the Signatory can enter his or her phone number and the secret
password associated with the respective virtual signature token. This is illustrated in Figure 7.33.
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Figure 7.33: The TAN-Signer App requests the Signatory to enter phone number and password
associated with the preferred virtual signature token.

Upon pressing the OK button, the TAN-Signer App transmits the entered credentials to the Server-
BKU. This data transmission is protected by means of SSL/TLS. The ServerBKU verifies the obtained
credentials by decrypting the virtual signature token referenced by the provided data. If this decryption
process is successful, the ServerBKU generates a random TAN and sends it to the Signatory’s mobile
end-user device. To sign the received TAN locally, the Signatory needs to choose the preferred TAN-
Signer Module first. For this purpose, the TAN-Signer App again displays the dialog shown in Figure
7.34.

Figure 7.34: The TAN-Signer App requests the Signatory to select the respective TAN-Signer
Module.
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When the Signatory has selected the YubiKey as the preferred TAN-Signer Module, the TAN-Signer
App displays a dialog to enter the received TAN. This dialog equals the one shown in the SE-specific im-
plementation and provides the same features. Again, it displays a reference value to enable the Signatory
to establish a binding between the received TAN and the current transaction. Furthermore, the shown di-
alog contains a button, which can be used to open a simple DTBS viewer. For the sake of completeness,
this dialog is again shown in Figure 7.35.

Figure 7.35: The TAN-Signer App requests the Signatory to enter the received TAN.

When the Signatory has entered the TAN and pressed the OK button, he or she is requested to tap his
or her YubiKey to the mobile device. This enables the TAN-Signer App to send the entered TAN to the
YubiKey, where it is finally signed. This is illustrated in Figure 7.36.

The YubiKey signs the obtained TAN. It then returns the signed TAN to the TAN-Signer App, which
forwards it to the ServerBKU. There, the signed TAN is verified with the help of the Signatory’s public
key that has been obtained during the activation process. If this verification succeeds, the signature-
creation process is completed.

Compared to the SE-specific signature-creation process, two basic differences can be identified. First,
the Signatory does not need to enter a PIN to authorize the local signing of the TAN. Second, the
Signatory needs to manually tap the YubiKey to the mobile device, in order to enable the local signing
of the TAN. As tapping an NFC token is typically less complex than entering a PIN, the YubiKey-based
realization variant can be regarded as more usable.

7.3.4 Realization Variant 3: KeyChains

Both realization variants discussed so far provide a sufficient level of security, but still suffer from a few
drawbacks. Its rather poor feasibility is the main problem of the SE-based implementation. At present,
only few mobile end-user devices are available that feature suitable SEs. In addition, capabilities to
access available SEs from third-party apps heavily depend on the mobile operating system. Among the
most popular platforms, only Android provides sufficient means to access SEs so far. In contrast to the
SE-specific solution, the presented realization variant that relies on cryptography-enabled NFC tokens
can be regarded as more feasible. However, this approach requires the Signatory to acquire and possess
an additional NFC token. Depending on the respective deployment scenario, this might cause additional
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Figure 7.36: The TAN-Signer App requests the Signatory to tap his or her YubiKey to the mobile
end-user device to sign the entered TAN.

costs and hence reduce user acceptance.

To mitigate problems of SE-based and NFC-based approaches, a third realization variant has been
developed that relies on KeyChain implementations of current mobile operating systems. KeyChains are
especially protected credential stores that can be used by third-party apps to store passwords, electronic
certificates, or cryptographic key material. Provided features and underlying security concepts of current
KeyChain implementations depend on the respective mobile platform and operating system. In the fol-
lowing subsections, current KeyChain implementations are briefly sketched and their use for the signing
of TANs is discussed by means of a concrete realization.

7.3.4.1 Technology

The secure and reliable storage of credentials and cryptographic key material is a recurring problem
also on mobile end-user devices. As these data usually have to be kept confidential, means must be
provided that restrict access to credentials and keys to authorized entities. For this purpose, most mobile
operating systems and platforms implement the concept of KeyChains. A KeyChain can be regarded
as secure local storage for security-critical data and can be used by arbitrary third-party apps running
on the mobile end-user device. Security concepts implemented by these KeyChains assure that access
to these data is restricted to legitimate apps and users. Functionalities provided and security concepts
implemented by KeyChains depend heavily on the particular mobile operating system and platform. In
the following, the KeyChain implementations of the mobile platforms Android and iOS are exemplified.
We have discussed details of these platform’s KeyChain implementations in Teufl et al. [2013b] and Teufl
et al. [2014a].

Android’s KeyChain has been introduced in Android 4.0 and enables the secure storage of system-
wide credentials that can be accessed by arbitrary apps if access is granted by the user. With Android
4.3, the platform’s KeyChain implementation has been revised. The credential store has been renamed to
Android Key Store16 and now builds the basis for two features. First, it is used by Android’s KeyChain

16https://developer.android.com/training/articles/keystore.html
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API17 to securely store credentials and cryptographic keys. Second, the Android Key Store is also used
by the Android Keystore Provider18, which has also been introduced in Android 4.3 and enhances the
functionality of the Android KeyChain by enabling storage of app-specific credentials. Android 4.3 has
also introduced support for hardware-backed Android Key Stores. Credentials and cryptographic keys
can be stored such that they are not only stored in software but are protected by a secure hardware
element. Depending on the capabilities of the underlying mobile end-user device, the hardware-backed
Android Key Store can for instance be implemented by an SE, a TPM, or with the help of ARM’s
TrustZone technology19. As hardware support for the Android Key Store depends on the respective
mobile end-user device, it is up to the developer to check whether hardware support is available and
hence an increased level of security is provided.

The Android Key Store can be accessed and used through Android’s KeyChain API or by means of
the Android Keystore Provider. The KeyChain API enables third-party apps to install private crypto-
graphic keys and associated electronic certificates to the Android Key Store. In addition, the KeyChain
API enables third-party apps to retrieve stored keys and certificates. In contrast, the Android Keystore
Provider can be accessed by means of standard JCE APIs. Compared to the KeyChain API, it provides
additional functionality. Concretely, stored cryptographic keys and associated certificates can be used to
carry out cryptographic operations in a secure way. For instance, the Android Keystore Provider enables
third-party apps to create cryptographic key pairs in hardware-backed Android Key Stores. Further-
more, it also enables apps to securely use stored keys, e.g. to create electronic signatures. At the same
time, it prevents private keys being generated and stored inside a hardware-backed Key Store from being
exported.

Similar to Android, also iOS provides third-party apps a KeyChain implementation. Its underlying
concept and basic functionality are comparable to Android’s solution. The iOS KeyChain is mainly
intended for the secure storage of credentials such as passwords or cryptographic keys. Its underlying
security concept bases on the iOS-specific protection-class system, which provides means for data en-
cryption on file level. This system is also employed by the iOS KeyChain and enables app developers
to define different protection classes for KeyChain entries. The defined protection class essentially de-
termines capabilities to access the respective KeyChain entry and specifies the way, in which the stored
entry is protected by means of cryptographic mechanisms.

The iOS KeyChain has originally been designed for the secure storage of user credentials such as
passwords. Today, is can also be used by third-party apps to securely store cryptographic keys and
associated electronic certificates. For this purpose, iOS provides a C-based API to create and request
certificate objects, to import certificates, keys, and identities, and to create asymmetric cryptographic
key pairs. Although the iOS KeyChain relies on a hardware-based protection mechanism, KeyChain
entries themselves are not directly stored in secure hardware. Instead, the secure hardware is required to
derive the decryption key that is needed for the decryption of stored KeyChain entries.

Although their concrete implementations vary between different mobile platforms, KeyChains rep-
resent an interesting and easy-to-use alternative for the realization of the TAN-Signer App’s TAN-Signer
Module. The technology-specific internal structure of the TAN-Signer App, which can be derived from
an integration of KeyChain technology, is presented and discussed in the next section.

7.3.4.2 Technology-Specific Internal Structure of the TAN-Signer App

Based on the decision to realize the TAN-Signer Module by means of KeyChain technology, the general
architecture of the TAN-Signer App, which is shown in Figure 7.9 on page 214, can be further refined.
The resulting technology-specific architecture is illustrated in Figure 7.37.

17http://developer.android.com/reference/android/security/KeyChain.html
18https://developer.android.com/reference/java/security/KeyStore.html
19http://www.arm.com/products/processors/technologies/trustzone/index.php
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Figure 7.37: The architecture of the KeyChain-based TAN-Signer App shows relevant internal
building blocks and interfaces.

To enable access to the underlying mobile platform’s KeyChain implementation, the architecture
shown in Figure 7.37 features a KeyChain Adapter. This component communicates with the respective
KeyChain implementation through APIs provided by the mobile platform. Figure 7.37 also shows that
depending on the underlying platform and on capabilities of the respective end-user device, employed
KeyChains can be either software-backed or hardware-backed. In most cases, implementation details
should be hidden by the provided API anyways. If this is not the case, the KeyChain Adapter needs to
implement access to different available KeyChain implementations, in order to provide the App Business
Logic a common implementation-independent interface.

Similar to the realization variant that bases on cryptography-enabled NFC tokens, the architecture
shown in Figure 7.37 does not establish a secure channel between the remote ServerBKU and the local
TAN-Signer Module, i.e. the KeyChain. For the NFC-based solution, secure messaging over a secure
channel has been forgone by design, although cryptography-enabled NFC tokens would be technically
capable to support this feature. This is not the case for the KeyChain-specific realization variant. Due to
the limited set of KeyChain functionality that can be accessed through provided APIs, establishment of
a secure channel between the remote ServerBKU and the local KeyChain is infeasible. Hence, commu-
nication between the TAN-Signer App and the ServerBKU is protected by means of SSL/TLS only.
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7.3.4.3 Realization of the Activation Process

Reliance on KeyChains provided by the respective mobile platform limits the degree of freedom with
regard to implementation of the TAN-Signer App. In particular, the achievable level of security can
hardly be influenced and depends mainly on the KeyChain’s security provided by the respective mobile
platform. This low degree of freedom also affects the realization of the KeyChain-specific activation
process. As no local authentication data needs to be defined and no communication with external tokens
must be implemented, the resulting activation process is simpler compared to the activation processes of
the NFC-based and SE-based implementation variants.

The first part of the activation process is identical for all implementation variants. In this part, the
Signatory creates a new virtual signature token by accessing the ServerBKU’s web interface with his or
her web browser. After successful completion of the first part, an activation code is displayed that can
be used to pair the Signatory’s personal TAN-Signer App. In addition, a QR code, which contains the
activation code, is displayed as well.

To start the second part of the activation process, i.e. the pairing process, the Signatory needs to
launch the TAN-Signer App either manually or by scanning the displayed QR code. Similar to the
activation process of the other two implementation variants, the TAN-Signer App first requests the Sig-
natory to choose the preferred technology for the TAN-Signer Module by displaying the dialog illustrated
in Figure 7.38.

Figure 7.38: The TAN-Signer App provides a simple user interface to select the preferred technol-
ogy used to sign TANs.

If the Signatory selects the KeyChain as the preferred technology, the TAN-Signer App displays
a dialog to retrieve phone number and activation code from the Signatory. Similar to the other two
realization variants, these data are pre-populated if possible, i.e. if the mobile operating systems allows
automatic retrieval of the phone number and if the TAN-Signer App has been started by scanning the QR
code. The displayed dialog is illustrated in Figure 7.39. In contrast to the SE-based or the NFC-based
realization variant, the dialog does neither ask the Signatory to specify local authentication data, nor
request the pairing of an external token.

When the Signatory presses the displayed OK button, the TAN-Signer App creates a new crypto-
graphic key pair using the mobile device’s KeyChain implementation, exports the public key from the
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Figure 7.39: The TAN-Signer App provides a simple user interface to enter data required for the
paring process.

KeyChain, and transfers the public key together with the data entered by the Signatory to the ServerBKU.
There, the transferred data is stored and associated with the Signatory’s newly created virtual signature
token. Finally, the ServerBKU notifies the Signatory about the successful completion of the activation
process.

7.3.4.4 Realization of the Signature-Creation Process

Similar to the activation process, also the signature-creation process benefits from reduced complexity,
if the KeyChain is used as preferred technology. This becomes apparent from the following screenshots,
which illustrate required interactions with the Signatory during a typical signature-creation process. To
authorize a requested signature creation, the Signatory first needs to provide phone number and password
associated with the preferred virtual signature token. For this purpose, the TAN-Signer App displays the
dialog shown in Figure 7.40.

Entered and transferred data are verified as usual by the ServerBKU, which subsequently generates a
random TAN and sends it to the Signatory via SMS. The Signatory, who is requested to sign the received
TAN, again needs to select the appropriate technology first. This can again be accomplished by means
of the dialog displayed by the TAN-Signer App and illustrated in Figure 7.41.

Selecting the KeyChain as preferred technology causes the TAN-Signer App to display another di-
alog, which enables the Signatory to view the DTBS and to enter the received TAN. This dialog is
identical irrespective of the chosen technology and is already known from the other discussed realization
variants. It is again illustrated in Figure 7.42 mainly for the sake of completeness.

Pressing the OK button causes the TAN-Signer App to request the KeyChain to sign the entered
TAN. Internal security features of the respective KeyChain implementation assure that this process can
be initiated by the TAN-Signer App and by the legitimate user only. The signed TAN is finally returned
to the TAN-Signer App, which forwards is to the remote ServerBKU. There, the signed TAN is verified
and the signature-creation process is completed.



242 Chapter 7. Implementation

Figure 7.40: The TAN-Signer App requests the Signatory to enter phone number and password
associated with the preferred virtual signature token.

Figure 7.41: The TAN-Signer App requests the Signatory to select the respective TAN-Signer
Module.

7.3.5 Future Work

The presented realization shows that the solution developed in this thesis, i.e. the Smartphone Signature,
is feasible on current mobile end-user devices. Required cryptographic functionality has been realized
on the client side by means of three different technologies. This has shown that the proposed solution
is flexible enough to facilitate easy adoption of different technologies. This assures that the solution
provides a sufficient degree of sustainability. At the same time, its concrete realization has also revealed
that the proposed solution needs to cope with a trade-off between security, usability, and feasibility.
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Figure 7.42: The TAN-Signer App requests the Signatory to enter the received TAN.

Technologies such as SEs that provide an increased level of security usually lack broad support on current
mobile end-user devices. In addition, they often induce higher complexity, as they require additional
user interactions. In contrast, widely supported and easy-to-use technologies such as KeyChains usually
provide a lower level of security.

Taking into consideration these basic findings, future work on the proposed solution and its real-
ization can be classified into two categories: integration of further technologies and migration of client
components to alternative mobile platforms. These two categories of future work are motivated in the
following subsections.

7.3.5.1 Integration of Further Technologies

Realization of the proposed solution has revealed that the choice of the technology used to implement
TAN-signing functionality is a key criterion that influences the solution’s security, usability, and feasibil-
ity. So far, the developed solution supports three different technologies, which all suffer to a certain extent
from a trade-off between security, usability, and feasibility. To overcome this issue, mobile cutting-edge
technologies will be continuously assessed in future and will be integrated into the existing solution to
extend the set of supported technologies.

For the near future, ARM’s TrustZone technology20 appears to be a promising alternative. Following
the approach taken by TrustZone technology, the entire mobile end-user device is divided into a Normal
World and a Secure World. While the Normal World runs the rich mobile operating system, the Secure
World is intended to execute small pieces of security-critical code. Essentially, components of the Nor-
mal World cannot access or intercept data being processed in the Secure World. In contrast to e.g. SE
technology, the Secure World is not necessarily limited to a single secure hardware element, but can
theoretically cover arbitrary system components including the CPU, memory, keyboards, and displays.
This way, TrustZone technology does not only enable secure storage of security-critical data and secure
execution of cryptographic functions, it also enables the realization of secure user interfaces. This makes
ARM’s TrustZone technology a powerful alternative to established security-preserving techniques.

20http://www.arm.com/products/processors/technologies/trustzone/index.php
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Figure 7.43: The possible architecture of the TrustZone-based TAN-Signer App shows relevant
internal building blocks and interfaces.

A possible architecture of the TAN-Signer App that integrates TrustZone technology is shown in
Figure 7.43. According to this architecture, the TrustZone’s Secure World could be used to provide a
secure execution environment for the TAN-Signer Module. If required, application of the Secure World
could also span over additional components, e.g. to implement a secure user interface.

Its limited support by current mobile platforms is the main drawback of ARM’s TrustZone technol-
ogy. Although various devices already feature TrustZone-enabled hardware, current mobile operating
systems provide limited support for this technology only. Broad and flexible use of TrustZone technol-
ogy is hence still difficult to achieve for third-party apps. This makes TrustZone technology rather a
promise for the future than a ready-to-use alternative.

Another possible alternative for the realization of TAN-signing functionality on the local mobile
end-user device has recently emerged with the introduction of powerful wearable technologies. Popular
examples are Google Glass21, a wearable computer with an optical head-mounted display, or different

21https://www.google.com/glass/start/
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kinds of smartwatches like Apple Watch22. Wearable technologies have in common that they are typically
used as additional device together with a smartphone. Furthermore, they feature considerable computing
power and communication technologies that enable a data exchange with other devices. Thus, wearable
technologies are an interesting alternative to outsource security-critical operations from potentially inse-
cure smartphones. In the context of the solution proposed in this thesis, a smartwatch could for instance
be used to sign received TANs. This could prevent the smartphone from the need to securely store and
apply confidential cryptographic key material. A possible architecture of the developed TAN-Signer App
that makes use of wearable technology to sign TANs is shown in Figure 7.44.
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Figure 7.44: The possible architecture of a TAN-Signer App that is based on wearable technology
shows relevant internal building blocks and interfaces.

In general, integration of an additional device increases the overall security, as a successful attack
requires two distinct devices to be compromised. However, this approach is only applicable, if wearable
technologies are sufficiently widespread. Even though this is not the case yet, wearable technology is
expected to significantly gain relevance [Statista, 2015], making it a promise for the future.

22https://www.apple.com/watch/
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7.3.5.2 Migration to Alternative Mobile Platforms

The current realization of the mobile signature solution proposed in this thesis has been based on the
mobile platform Google Android. Choosing Android as the first target platform is reasonable, as this
platform raises most challenges with regard to security. Current statistics indicate that 97% of mobile
malware is on Android [Kelly, 2014]. Hence, a solution that satisfies relevant security requirements on
Android should also be able to satisfy the same requirements on any other mobile platform. Realizing
the proposed solution on Android first can hence be regarded as acid test for the solution’s underlying
concepts.

However, it must not be neglected that Android also provides application developers more flexibility
compared to other mobile platforms. For instance, even though both Android and iOS devices support
NFC technology, capabilities of provided APIs that can be used by third-party apps to communicate
with NFC tags differ significantly between these platforms. Thus, migrating the developed solution to
other mobile platforms and adapting implemented functionality where necessary in order to cope with
limitations of these platforms is regarded as relevant future work as well.

7.4 Chapter Conclusions

In this chapter, a practical implementation of the proposed mobile signature solution Smartphone Signa-
ture has been presented. To assure applicability on different mobile end-user devices and to demonstrate
the implementation’s general flexibility, required cryptographic operations on the client side have been
realized by means of three different technologies. The presented implementation has been developed by
combining concepts of the proposed Smartphone Signature with the existing signature solution Server-
BKU. Concretely, the ServerBKU has been extended and adapted such that it can be used following
a single-device approach. This way, the ServerBKU has been released from the restriction to be used
with two separate end-user devices and has been prepared for typical smartphone-based use cases and
application scenarios.

The presented implementation has been realized on the Google Android platform. This platform
has been chosen, as it currently has the highest market share among all mobile operating systems and
provides developers a high degree of flexibility. Furthermore, Android must currently be regarded as the
most problematic platform with regard to security. Thus, choosing this platform for a first implementation
can be regarded as a perfect acid test for the underlying concept and architecture. However, porting the
existing realization to other major mobile platforms such as Apple iOS or Microsoft Windows Phone 8 is
considered for future work. In addition, the continuous assessment and integration of upcoming mobile
technologies for the local realization of required cryptographic operations is regarded as future work as
well.

The implementation presented in this chapter completes the evaluation of proposed models and so-
lutions for the creation of qualified electronic signatures on mobile end-user devices. This way, it repre-
sents the third and final milestone of this thesis according to the methodology followed. The presented
implementation shows that the proposed signature solution Smartphone Signature is indeed applicable
and realizable in practice. Furthermore, it evaluates the implementation-independent and technology-
agnostic model proposed in Part II of this thesis. As the Smartphone Signature has been derived from
this model, the presented implementation shows this model’s suitability to act as basis for the develop-
ment of concrete signature solutions for mobile end-user devices.
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Conclusions

“ It is good to have an end to journey toward, but it is the journey that matters in the end.”

[ Ursula K. Le Guin, American Author. ]

During the past few years, the predominating computing paradigm has undergone significant changes.
Classical end-user devices such as desktop computers and laptops have been gradually replaced by pow-
erful mobile devices including smartphones and tablet computers. At the same time, user habits have
changed accordingly. In the current always-on society, users expect to have access to information and
services everywhere and at any time. This new mobile computing paradigm requires service providers
to react and to adapt their services to changed circumstances and requirements. This also applies to
public-sector agencies and administrations, which have followed the classical computing paradigm for
years, in order to provide e-government services to citizens. In these days, public-sector organizations
are requested to make their services ready for a use with mobile end-user devices and to complete the
transition from e-government to m-government.

Enabling a successful transaction from classical e-government to m-government has been the main
topic and basic goal of this thesis. Work on this thesis has yielded more than 50 publications in confer-
ence proceedings and scientific journals. To reach the thesis’s goal, a thorough methodology has been
followed. From an analysis of the current state of the art, the lack of suitable solutions to create legally
binding electronic signatures on mobile end-user devices has been identified as main obstacle towards
transactional m-government. A solution to overcome this obstacle has been proposed, discussed, and
evaluated. The proposed solution represents a server-based signature solution that can be used on mod-
ern mobile end-user devices and enables the provision of transactional m-government services on these
devices.

To assure its sustainability, the proposed solution has been defined and provided on different levels
of abstraction. Long-term sustainability is assured by means of an abstract model that is independent
from concrete technologies. In addition to this abstract model, a concrete solution called Smartphone
Signature, which relies on currently available mobile technologies, has been proposed as well. Feasibility
and applicability of this solution and its underlying model have finally been evaluated by means of a
concrete implementation. By providing solutions on different levels of abstraction, sustainability and the
capability to respond to frequent technological changes is guaranteed.

The signature solution for mobile end-user devices proposed in this thesis enables m-government
services to integrate electronic-signature functionality. This way, the proposed solution overcomes the
main obstacle that currently hinders a broad application of transactional m-government services. By
enabling users to create legally binding electronic signatures on their mobile end-user devices, this thesis
paves the way for transactional mobile services and thereby contributes to the successful evolution from
e-government to m-government. In that sense, this thesis can be regarded as part of the journey towards

247
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successful m-government and hence takes up the above quotation by Ursula K. Le Guin stating that it is
good to have an end to journey toward, but that it is the journey that matters in the end.
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Bläsing, Thomas, Leonid Batyuk, Aubrey Derrick Schmidt, Seyit Ahmet Camtepe, and Sahin Albayrak
[2010]. An Android Application Sandbox System for Suspicious Software Detection. In Proceedings of
the 5th IEEE International Conference on Malicious and Unwanted Software, Malware 2010, pages
55–62. ISBN 9781424493555. doi:10.1109/MALWARE.2010.5665792. (Cited on page 65.)

Bowling, Drew [2012]. Open Sesame: Google’s Newest Security Log-In Uses QR Codes.
http://www.webpronews.com/open-sesame-googles-newest-security-log-in-

uses-qr-codes-2012-01. (Cited on page 154.)

Carroll, Jennie [2005]. Risky Business: Will Citizens Accept m-Government in the Long Term? In
Proceedings of the First Mobile Government Conference (Euro mGov 2005), pages 77–87. Brighton.
http://www.m4life.org/proceedings/2005/PDF/9_R376JC.pdf. (Cited on pages 33, 34
and 36.)

CEN [2004a]. CWA 14169 - Secure Signature-Creation Devices ”EAL 4+”. Technical Report, European
Committee for Standardization. (Cited on pages 94 and 96.)

CEN [2004b]. CWA 14170 - Security Requirements for Signature Creation Applica-
tions. http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT,FSP_ORG_

ID:23764,400296&cs=1C1B2F4DF3464C9FD768CB422F16D3387. (Cited on pages 94, 95
and 97.)

CEN/ISSS [2001]. Protection Profile - Secure Signature-Creation Device Type 3. http://www.

commoncriteriaportal.org/files/ppfiles/pp0006b.pdf. (Cited on pages 118 and 120.)

Check Point Software Technologies Ltd. [2012]. Media Alert: Check Point and Versafe Uncover New Eu-
rograbber Attack. http://www.checkpoint.com/press/2012/120512-media-alert-cp-

versafe-eurograbber-attack.html. (Cited on pages 65 and 66.)

Chin, Erika, Adrienne Porter Felt, Kate Greenwood, and David Wagner [2011]. Analyzing Inter-
Application Communication in Android. In Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services, MobiSys 2011, pages 239–252. MobiSys ’11, ACM
Press. ISBN 9781450306430. doi:10.1145/1999995.2000018. http://www.eecs.berkeley.

edu/˜emc/papers/mobi168-chin.pdf. (Cited on pages 107, 129 and 130.)

Common Criteria [2013]. Common Criteria. http://www.commoncriteriaportal.org/. (Cited on
page 118.)

Curioso, Walter, Bryant Karras, Pablo Campos, Clara Buendia, King Holmes, and Ann Marie Kimball
[2005]. Design and Implementation of Cell-PREVEN: A Real-Time Surveillance System for Adverse
Events Using Cell Phones in Peru. Annual Symposium Proceedings / AMIA Symposium, pages 176–
180. ISSN 1942-597X. doi:54572[pii]. (Cited on page 42.)

http://dx.doi.org/10.1109/ARES.2009.174
http://dx.doi.org/10.1109/ARES.2009.174
http://dblp.uni-trier.de/db/conf/IEEEares/ares2009.html#Ben-AsherMME09
http://dblp.uni-trier.de/db/conf/IEEEares/ares2009.html#Ben-AsherMME09
http://www.amazon.com/exec/obidos/ASIN/9781424493555/keithandrewshcic
http://dx.doi.org/10.1109/MALWARE.2010.5665792
http://www.webpronews.com/open-sesame-googles-newest-security-log-in-uses-qr-codes-2012-01
http://www.webpronews.com/open-sesame-googles-newest-security-log-in-uses-qr-codes-2012-01
http://www.m4life.org/proceedings/2005/PDF/9_R376JC.pdf
http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT,FSP_ORG_ID:23764,400296&cs=1C1B2F4DF3464C9FD768CB422F16D3387
http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT,FSP_ORG_ID:23764,400296&cs=1C1B2F4DF3464C9FD768CB422F16D3387
http://www.commoncriteriaportal.org/files/ppfiles/pp0006b.pdf
http://www.commoncriteriaportal.org/files/ppfiles/pp0006b.pdf
http://www.checkpoint.com/press/2012/120512-media-alert-cp-versafe-eurograbber-attack.html
http://www.checkpoint.com/press/2012/120512-media-alert-cp-versafe-eurograbber-attack.html
http://www.amazon.com/exec/obidos/ASIN/9781450306430/keithandrewshcic
http://dx.doi.org/10.1145/1999995.2000018
http://www.eecs.berkeley.edu/~emc/papers/mobi168-chin.pdf
http://www.eecs.berkeley.edu/~emc/papers/mobi168-chin.pdf
http://worldcatlibraries.org/wcpa/issn/1942-597X
http://dx.doi.org/54572 [pii]


Bibliography 251

de Medeiros Napoles, S. H. L. and C. Zanchettin [2012]. Offline Handwritten Signature Verification
Through Network Radial Basis Functions Optimized by Differential Evolution. In The 2012 Interna-
tional Joint Conference on Neural Networks (IJCNN), pages 1–5. ISSN 2161-4393. doi:10.1109/
IJCNN.2012.6252720. (Cited on page 91.)

Diaz, Jesus [2013]. iPhone 5S Fingerprint Security Can Be Easily Broken, Hackers
Show. http://gizmodo.com/hackers-iphone-5s-fingerprint-security-is-not-

secure-1367817697. (Cited on page 147.)

Dimauro, G., S. Impedovo, M. G. Lucchese, R. Modugno, and G. Pirlo [2004]. Recent Advance-
ments in Automatic Signature Verification. In Proceedings - International Workshop on Fron-
tiers in Handwriting Recognition, IWFHR, pages 179–184. ISBN 0769521878. ISSN 15505235.
doi:10.1109/IWFHR.2004.85. (Cited on page 91.)

Donohue, Brian [2013]. Weak Encryption Enables SIM Card Root Attack. https://threatpost.

com/weak-encryption-enables-sim-card-root-attack/101557. (Cited on page 132.)

El-Kiki, Tarek [2007]. mGovernment: A Reality Check. In Conference Proceedings - 6th International
Conference on the Management of Mobile Business, ICMB 2007, page 37. IEEE. ISBN 0769528031.
doi:10.1109/ICMB.2007.42. (Cited on pages 34, 35 and 36.)

El-Kiki, Tarek and Elaine Lawrence [2006]. Mobile User Satisfaction and Usage Analysis Model of
mGovernment Services. In Proceedings of the Second European Mobile Government Conference,
pages 91–102. (Cited on pages 34 and 36.)

EMarketer [2014]. Worldwide Smartphone Usage to Grow 25% in 2014. http://www.emarketer.

com/Article/Worldwide-Smartphone-Usage-Grow-25-2014/1010920. (Cited on page 4.)

Enck, William and Damien Octeau [2011]. A Study of Android Application Security. Proceedings of
the 20th USENIX Conference on Security, pages 21–21. ISSN 0364-2348. doi:10.1007/s00256-
010-0882-8. http://www.usenix.org/event/sec11/tech/slides/enck.pdf. (Cited on
pages 65 and 118.)

Enck, William, MacHigar Ongtang, and Patrick McDaniel [2009]. Understanding Android Security.
IEEE Security & Privacy, 7, pages 50–57. ISSN 15407993. doi:10.1109/MSP.2009.26. (Cited on
page 65.)

ENISA [2013]. eID Authentication Methods in e-Finance and e-Payment Services. Technical Report,
European Union Agency for Network and Information Security (ENISA). http://www.enisa.

europa.eu/activities/identity-and-trust/library/deliverables/eIDA-in-e-

finance-and-e-payment-services. (Cited on page 151.)

ETSI [2003]. ETSI TS 102 204: Mobile Commerce (M-COMM); Mobile Signature Service; Web
Service Interface. http://docbox.etsi.org//ec_files/ec_files/ts_102204v010104p.

pdf. (Cited on page 29.)

ETSI [2009a]. ETSI TS 101 903 - XML Advanced Electronic Signatures (XAdES). http://uri.etsi.
org/01903/v1.4.1/ts_101903v010401p.pdf. (Cited on pages 92 and 93.)

ETSI [2009b]. ETSI TS 102 778-1 - Electronic Signatures and Infrastructures (ESI); PDF Ad-
vanced Electronic Signature Profiles; Part 1: PAdES Overview - A Framework Document for
PAdES. http://www.etsi.org/deliver/etsi_ts/102700_102799/10277801/01.01.01_
60/ts_10277801v010101p.pdf. (Cited on pages 92 and 93.)

http://worldcatlibraries.org/wcpa/issn/2161-4393
http://dx.doi.org/10.1109/IJCNN.2012.6252720
http://dx.doi.org/10.1109/IJCNN.2012.6252720
http://gizmodo.com/hackers-iphone-5s-fingerprint-security-is-not-secure-1367817697
http://gizmodo.com/hackers-iphone-5s-fingerprint-security-is-not-secure-1367817697
http://www.amazon.com/exec/obidos/ASIN/0769521878/keithandrewshcic
http://worldcatlibraries.org/wcpa/issn/15505235
http://dx.doi.org/10.1109/IWFHR.2004.85
https://threatpost.com/weak-encryption-enables-sim-card-root-attack/101557
https://threatpost.com/weak-encryption-enables-sim-card-root-attack/101557
http://www.amazon.com/exec/obidos/ASIN/0769528031/keithandrewshcic
http://dx.doi.org/10.1109/ICMB.2007.42
http://www.emarketer.com/Article/Worldwide-Smartphone-Usage-Grow-25-2014/1010920
http://www.emarketer.com/Article/Worldwide-Smartphone-Usage-Grow-25-2014/1010920
http://worldcatlibraries.org/wcpa/issn/0364-2348
http://dx.doi.org/10.1007/s00256-010-0882-8
http://dx.doi.org/10.1007/s00256-010-0882-8
http://www.usenix.org/event/sec11/tech/slides/enck.pdf
http://worldcatlibraries.org/wcpa/issn/15407993
http://dx.doi.org/10.1109/MSP.2009.26
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/eIDA-in-e-finance-and-e-payment-services
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/eIDA-in-e-finance-and-e-payment-services
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/eIDA-in-e-finance-and-e-payment-services
http://docbox.etsi.org//ec_files/ec_files/ts_102204v010104p.pdf
http://docbox.etsi.org//ec_files/ec_files/ts_102204v010104p.pdf
http://uri.etsi.org/01903/v1.4.1/ts_101903v010401p.pdf
http://uri.etsi.org/01903/v1.4.1/ts_101903v010401p.pdf
http://www.etsi.org/deliver/etsi_ts/102700_102799/10277801/01.01.01_60/ts_10277801v010101p.pdf
http://www.etsi.org/deliver/etsi_ts/102700_102799/10277801/01.01.01_60/ts_10277801v010101p.pdf


252 Bibliography

ETSI [2013]. ETSI TS 101 733 - Electronic Signatures and Infrastructures (ESI); CMS Advanced
Electronic Signatures (CAdES). Technical Report, European Telecommunications Standards Insti-
tute. http://www.etsi.org/deliver/etsi_ts/101700_101799/101733/02.02.01_60/

ts_101733v020201p.pdf. (Cited on page 93.)

ETSI [2014a]. Conformity Assessment for Signature Creation and Validation Applications. http:

//docbox.etsi.org/esi/Open/Latest_Drafts/prEN_419103_v002_conformity-

assessment-sign-creation-validation_COMPLETE-draft.pdf. (Cited on page 94.)

ETSI [2014b]. Electronic Signature. http://www.etsi.org/technologies-clusters/

technologies/security/electronic-signature. (Cited on page 93.)

European Commission [2014a]. Digital Agenda for Europe. http://ec.europa.eu/digital-

agenda/. (Cited on pages 5, 20 and 23.)

European Commission [2014b]. EU eGovernment Report 2014 Shows That Usability of Online Public
Services is Improving, But Not Fast. http://ec.europa.eu/digital-agenda/en/news/eu-

egovernment-report-2014-shows-usability-online-public-services-improving-

not-fast. (Cited on page 4.)

European Commission [2014c]. Pillar I: Digital Single Market. http://ec.europa.eu/digital-
agenda/our-goals/pillar-i-digital-single-market. (Cited on page 5.)

European Council [2004]. Multidisciplinary Ad Hoc Group of Specialists on Legal, Operational and
Technical Standards for e-Enabled Voting (IP1-S-EE). https://wcd.coe.int/ViewDoc.jsp?

id=768817&Lang=en. (Cited on page 118.)

Fang, Zhiyuan [2002]. E-Government in Digital Era : Concept , Practice, and Development. Interna-
tional Journal of The Computer, The Internet and Management, 10(2), pages 1–22. (Cited on page 20.)

Felt, Asrienne Porter, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and David Wagner [2012].
Android Permissions: User Attention, Comprehension, and Behavior. Proceedings of the Eighth Sym-
posium on Usable Privacy and Security, pages 1–16. doi:10.1145/2335356.2335360. (Cited on
pages 59, 66 and 118.)

Fingas, Jon [2014]. Android Climbed to 79 Percent of Smartphone Market Share in 2013, But
Its Growth Has Slowed. http://www.engadget.com/2014/01/29/strategy-analytics-

2013-smartphone-share/. (Cited on page 106.)

Flood, Derek, Rachel Harrison, Claudia Iacob, and David Duce [2013]. Evaluating Mobile Applications:
A Spreadsheet Case Study. International Journal of Mobile Human Computer Interaction (IJMHCI),
4(4), pages 37–65. (Cited on page 137.)

Frøkjær, Erik, Morten Hertzum, and Kasper Hornbæk [2000]. Measuring Usability : Are Effectiveness,
Efficiency, and Satisfaction Really Correlated? In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, pages 345–352. ACM, ACM. ISBN 1581132166. doi:10.1145/332040.
332455. (Cited on page 136.)

GlobalPlatform [2009]. GlobalPlatform Card Technology - Secure Channel Protocol 03 - Card Specifi-
cation v 2.2 - Amendment D. http://www.globalplatform.org/specificationscard.asp.
(Cited on page 223.)

Goodin, Dan [2014]. New iOS Flaw Makes Devices Susceptible to Covert Keylogging, Re-
searchers Say. http://arstechnica.com/security/2014/02/new-ios-flaw-makes-

devices-susceptible-to-covert-keylogging-researchers-say/. (Cited on page 131.)

http://www.etsi.org/deliver/etsi_ts/101700_101799/101733/02.02.01_60/ts_101733v020201p.pdf
http://www.etsi.org/deliver/etsi_ts/101700_101799/101733/02.02.01_60/ts_101733v020201p.pdf
http://docbox.etsi.org/esi/Open/Latest_Drafts/prEN_419103_v002_conformity-assessment-sign-creation-validation_COMPLETE-draft.pdf
http://docbox.etsi.org/esi/Open/Latest_Drafts/prEN_419103_v002_conformity-assessment-sign-creation-validation_COMPLETE-draft.pdf
http://docbox.etsi.org/esi/Open/Latest_Drafts/prEN_419103_v002_conformity-assessment-sign-creation-validation_COMPLETE-draft.pdf
http://www.etsi.org/technologies-clusters/technologies/security/electronic-signature
http://www.etsi.org/technologies-clusters/technologies/security/electronic-signature
http://ec.europa.eu/digital-agenda/
http://ec.europa.eu/digital-agenda/
http://ec.europa.eu/digital-agenda/en/news/eu-egovernment-report-2014-shows-usability-online-public-services-improving-not-fast
http://ec.europa.eu/digital-agenda/en/news/eu-egovernment-report-2014-shows-usability-online-public-services-improving-not-fast
http://ec.europa.eu/digital-agenda/en/news/eu-egovernment-report-2014-shows-usability-online-public-services-improving-not-fast
http://ec.europa.eu/digital-agenda/our-goals/pillar-i-digital-single-market
http://ec.europa.eu/digital-agenda/our-goals/pillar-i-digital-single-market
https://wcd.coe.int/ViewDoc.jsp?id=768817&Lang=en
https://wcd.coe.int/ViewDoc.jsp?id=768817&Lang=en
http://dx.doi.org/10.1145/2335356.2335360
http://www.engadget.com/2014/01/29/strategy-analytics-2013-smartphone-share/
http://www.engadget.com/2014/01/29/strategy-analytics-2013-smartphone-share/
http://www.amazon.com/exec/obidos/ASIN/1581132166/keithandrewshcic
http://dx.doi.org/10.1145/332040.332455
http://dx.doi.org/10.1145/332040.332455
http://www.globalplatform.org/specificationscard.asp
http://arstechnica.com/security/2014/02/new-ios-flaw-makes-devices-susceptible-to-covert-keylogging-researchers-say/
http://arstechnica.com/security/2014/02/new-ios-flaw-makes-devices-susceptible-to-covert-keylogging-researchers-say/


Bibliography 253

Google [2011]. Introducing Android 4.0. http://www.android.com/about/ice-cream-

sandwich/. (Cited on page 147.)

Google [2014]. Introduction to Android. https://developer.android.com/guide/index.html.
(Cited on page 107.)

Govindarajan, M. and R.M. Chandrasekaran [2011]. Signature Verification Using Radial Basis Function
Classifier. 2011 3rd International Conference on Electronics Computer Technology, 5, pages 182–185.
doi:10.1109/ICECTECH.2011.5941981. (Cited on page 91.)

Gribsgy, Dan [2009]. Apple Approved iPhone Inter-process Communication. http://

mobileorchard.com/apple-approved-iphone-inter-process-communication/. (Cited
on page 109.)

GSMA [2013]. Mobile Economy Europe 2013. Technical Report, GSMA. http://

gsmamobileeconomyeurope.com/GSMA_MobileEconomyEurope_v9_WEB.pdf. (Cited on
page 28.)

Gutmann, Peter and Ian Grigg [2005]. Security Usability. IEEE Security & Privacy, 3(4), pages 56–58.
ISSN 1540-7993. doi:10.1109/MSP.2005.104. (Cited on page 171.)

Harrison, Rachel, Derek Flood, and David Duce [2013]. Usability of Mobile Applications: Literature
Review and Rationale for a New Usability Model. Journal of Interaction Science, 1(1), page 1. ISSN
2194-0827. doi:10.1186/2194-0827-1-1. (Cited on pages 136 and 137.)

Hassan, Mohammad, Tareq Jaber, and Zina Hamdan [2009]. Adaptive Mobile-Government Framework.
In Proceedings of International Conference on Administrative Development: Towards Excellence in
Public Sector Performance, pages 1–11. (Cited on page 37.)

Heo, Jeongyun, Dong Han Ham, Sanghyun Park, Chiwon Song, and Wan Chul Yoon [2009]. A Frame-
work for Evaluating the Usability of Mobile Phones Based on Multi-Level, Hierarchical Model of
Usability Factors. Interacting with Computers, 21(4), pages 263–275. (Cited on page 136.)

Hornbæk, Kasper [2006]. Current Practice in Measuring Usability: Challenges to Usability Studies
and Research. International Journal of Human Computer Studies, 64(2), pages 79–102. (Cited on
page 135.)

IDC [2014]. Smartphone OS Market Share, Q2 2014. http://www.idc.com/prodserv/

smartphone-os-market-share.jsp. (Cited on pages 4, 32, 57 and 62.)

International Finance Corporation [2014]. Infrastructure in Africa. http://www.ifc.org/wps/

wcm/connect/region__ext_content/regions/sub-saharan+africa/investments/

infrastructure. (Cited on page 37.)

Internet Engineering Task Force [2011]. TOTP: Time-Based One-Time Password Algorithm. http:

//tools.ietf.org/html/rfc6238. (Cited on page 153.)

ISO/IEC [2008]. ISO/IEC 14443-1:2008. http://www.iso.org/iso/iso_catalogue/

catalogue_ics/catalogue_detail_ics.htm?csnumber=39693. (Cited on page 230.)

ISO/IEC [2010]. ISO 9241-210:2010 - Ergonomics of Human-System Interaction – Part 210: Human-
Centred Design for Interactive Systems. http://www.iso.org/iso/catalogue_detail.htm?
csnumber=52075. (Cited on page 135.)

ISO/IEC [2012]. ISO/IEC 21481:2012. http://www.iso.org/iso/iso_catalogue/catalogue_
tc/catalogue_detail.htm?csnumber=56855. (Cited on page 230.)

http://www.android.com/about/ice-cream-sandwich/
http://www.android.com/about/ice-cream-sandwich/
https://developer.android.com/guide/index.html
http://dx.doi.org/10.1109/ICECTECH.2011.5941981
http://mobileorchard.com/apple-approved-iphone-inter-process-communication/
http://mobileorchard.com/apple-approved-iphone-inter-process-communication/
http://gsmamobileeconomyeurope.com/GSMA_Mobile Economy Europe_v9_WEB.pdf
http://gsmamobileeconomyeurope.com/GSMA_Mobile Economy Europe_v9_WEB.pdf
http://worldcatlibraries.org/wcpa/issn/1540-7993
http://dx.doi.org/10.1109/MSP.2005.104
http://worldcatlibraries.org/wcpa/issn/2194-0827
http://dx.doi.org/10.1186/2194-0827-1-1
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.ifc.org/wps/wcm/connect/region__ext_content/regions/sub-saharan+africa/investments/infrastructure
http://www.ifc.org/wps/wcm/connect/region__ext_content/regions/sub-saharan+africa/investments/infrastructure
http://www.ifc.org/wps/wcm/connect/region__ext_content/regions/sub-saharan+africa/investments/infrastructure
http://tools.ietf.org/html/rfc6238
http://tools.ietf.org/html/rfc6238
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=39693
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=39693
http://www.iso.org/iso/catalogue_detail.htm?csnumber=52075
http://www.iso.org/iso/catalogue_detail.htm?csnumber=52075
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=56855
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=56855


254 Bibliography

ISO/IEC [2013]. ISO/IEC 18092:2013. http://www.iso.org/iso/iso_catalogue/catalogue_
ics/catalogue_detail_ics.htm?csnumber=56692. (Cited on page 230.)

Jotischky, Nick and Sheridan Nye [2011]. Mobilizing Public Services in Africa: The m-Government
Challenge. Technical Report, Informa UK Ltd. http://www.informatandm.com/wp-content/
uploads/2012/02/ITM-M-Government-White-Paper.pdf. (Cited on page 37.)

Karadimas, Nikolaos, Katerina Papatzelou, and Agisilaos Papantoniou [2008]. M-Government Services
in Greece. In Proceedings of the 22nd European Conference on Modelling and Simulation, pages
71–74. ISBN 978-0-9553018-5-8. (Cited on page 34.)

Karan, Kavita and MCH Khoo [2008]. Mobile Diffusion and Development: Issues and Challenges of
m-Government with India in Perspective. In Proceedings of the 1st International Conference on M4D
Mobile Communication Technology for Development, pages 138–149. (Cited on pages 34 and 36.)

Kelly, Gordon [2014]. Report: 97% Of Mobile Malware Is On Android. This Is The Easy Way
You Stay Safe. http://www.forbes.com/sites/gordonkelly/2014/03/24/report-97-

of-mobile-malware-is-on-android-this-is-the-easy-way-you-stay-safe/. (Cited
on pages 54, 68, 74, 213 and 246.)
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