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Abstract

Synthesis is an appealing approach to construct hardware or software programs: a correct implementation
is computed automatically from a declarative specification. Controller synthesis is a variant where (most)
parts of the implementation are given, and only certain signals need to be synthesized. This allows
for a mix of imperative and declarative programming, often referred to as program sketching, but also
other applications such as automatic program repair. This thesis focuses on efficient controller synthesis
methods for both hardware and software using decision procedures for the satisfiability of formulas.

In the hardware context, we focus on safety specifications. Existing synthesis approaches mostly
use Binary Decision Diagrams (BDDs) as reasoning engine. In contrast, we present a number of novel
algorithms that use decision procedures for propositional formulas (SAT solvers), Quantified Boolean
Formulas (QBF solvers), or solvers for Effectively Propositional Logic (EPR). Our synthesis approach
consists of two steps. The first step is to compute a strategy to satisfy the specification, where we present
algorithms based on query learning, templates, reduction to EPR, and a parallelization that combines
different methods. The second step is to compute a circuit implementing the strategy. Here, we present
methods based on QBF certification, interpolation, query learning, and a parallelization as well. Our
methods are augmented with numerous optimizations, including heuristics to expand quantifiers and to
utilize unreachable states and variable independencies, down to low-level optimizations in the formula
encoding. In an extensive experimental evaluation, we compare our algorithms and the effect of op-
timizations. We demonstrate that our satisfiability-based approach outperforms a simple BDD-based
implementation and is even competitive with a highly optimized BDD-based tool. For specific bench-
mark classes, our techniques are particularly superior. Moreover, the circuits produced by our approach
are smaller by more than one order of magnitude on average in our experiments. These excellent results
are rooted in our optimizations and the careful utilization of solver features.

For software controller synthesis, we focus on the application of automatic program repair using
assertions in the code as specification. Our approach consists of three steps. First, we perform program
analysis using symbolic or concolic execution to lift the repair problem into the domain of logic. The sec-
ond step is fault localization based on Model-Based Diagnosis and Satisfiability Modulo Theories (SMT)
solving to identify potentially incorrect program parts. We also present an alternative approach that uses
pre- and postconditions with deductive verification for fault localization. The third and central step
is to synthesize replacements for the faulty program parts such that the specification is fulfilled. Our
basic solution uses templates for new implementations and Counterexample-Guided Inductive Synthe-
sis (CEGIS), enriched with heuristics, to search for suitable template instantiations with SMT solving.
An improved variant interleaves the repair synthesis with on-the-fly program analysis to obtain more
focused information about the program behavior. Our approach is designed to produce fine-grained and
readable repairs and provides many parameters to trade accuracy for efficiency. Our proof-of-concept
implementation operates on C programs. We present experimental results demonstrating that our ap-
proach can provide helpful diagnostic information in reasonable time. A comparison with existing tools
indicates a higher diagnostic resolution in fault localization and better scalability in repair synthesis.

In summary, this thesis contributes towards scalability in synthesis with novel satisfiability-based
algorithms and optimizations, and to its applicability in the interesting field of software program repair.

Keywords: Reactive Synthesis, Decision Procedures, Program Repair, Fault Localization.
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Kurzfassung

Synthese ist ein attraktiver Ansatz um Hardware oder Software zu erstellen: ausgehend von einer de-
klarativen Spezifikation wird eine korrekte Implementierung automatisch berechnet. Die Synthese von
Controllern ist eine Variante wo Teile der Implementierung bereits gegeben sind. Dies ermöglicht inter-
essante Anwendungen wie Program-Sketching oder die automatische Reparatur von Programmen. Diese
Dissertation beschäftigt sich mit der Synthese von Controllern, sowohl für Hardware als auch für Soft-
ware, mittels Entscheidungsprozeduren für die Erfüllbarkeit von Formeln.

Im Kontext von Hardware fokussieren wir uns auf Safety-Spezifikationen. Existierende Ansätze ver-
wenden zumeist Binäre Entscheidungsdiagramme (BDDs). Wir präsentieren hingegen neue Algorithmen
basierend auf Entscheidungsprozeduren für Aussagenlogik (SAT-Solvern), quantifizierten booleschen
Formeln (QBF-Solvern) oder Solvern für Effektively Propositional Logic (EPR). Unser Syntheseansatz
besteht aus zwei Schritten. Der erste Schritt ist die Berechnung einer Strategie um die Spezifikation zu
erfüllen. Hier präsentieren wir Algorithmen basierend auf Aktivem Lernen, Schablonen, Reduktion auf
EPR, sowie eine Parallelisierung die mehrere Methoden kombiniert. Der zweite Schritt ist die Berech-
nung einer Schaltung. Hier präsentieren wir Methoden basierend auf QBF-Zertifizierung, Interpolation,
Lernen und ebenfalls eine Parallelisierung. Unsere Methoden werden durch zahlreiche Optimierungen
ergänzt. Dies inkludiert das Expandieren von Quantoren, das Ausnutzen von unerreichbaren Zuständen
und von Unabhängigkeiten zwischen Variablen sowie Optimierungen in der Formelkodierung. In um-
fangreichen Experimenten vergleichen wir Algorithmen und studieren den Effekt von Optimierungen.
Wir zeigen, dass unser Ansatz eine einfache BDD-basierte Lösung übertrifft und sogar auf Augenhöhe
mit einem hochoptimierten Synthesetool steht. Die Schaltungen die unser Ansatz produziert sind in un-
seren Experimenten im Schnitt um mehr als eine Zehnerpotenz kleiner. Diese exzellenten Ergebnisse
begründen sich in unseren Optimierungen und der sorgfältigen Verwendung von Solver-Funktionalitäten.

In der Synthese von Software-Controllern fokussieren wir uns auf die automatische Reparatur von
Programmen mit Assertions als Spezifikation. Unser Ansatz umfasst drei Schritte. Der erste Schritt ist die
Programmanalyse mittels symbolischer oder concolischer Ausführung um das Reparaturproblem in die
Welt der Logik zu transformieren. Der zweite Schritt ist die Fehlerlokalisierung basierend auf modellba-
sierter Diagnose und Satisfiability Modulo Theories (SMT) Solving. Wir präsentieren auch einen alterna-
tiven Ansatz der Vor- und Nachbedingungen sowie deduktive Verifikation verwendet. Der dritte Schritt
ist die Synthese von neuen Implementierungen der fehlerhaften Programmteile. Hier verwenden wir
Schablonen und Counterexample-Guided Inductive Synthesis (CEGIS), realisiert mit SMT-Solving und
erweitert mit Heuristiken. Eine verbesserte Variante verschränkt die Synthese von Reparaturen mit Pro-
grammanalyse nach Bedarf um fokussiertere Informationen über das Programmverhalten zu gewinnen.
Unser Ansatz produziert feingranulare und lesbare Reparaturen und bietet viele Parameter um Genauig-
keit gegen Effizienz einzutauschen. Unsere Prototyp-Implementierung arbeitet mit C Programmen. Wir
präsentieren experimentelle Ergebnisse, die demonstrieren dass unser Ansatz hilfreiche diagnostische
Information in vernünftiger Zeit liefern kann. Ein Vergleich mit existierenden Tools deutet auf bessere
Genauigkeit in der Fehlerlokalisierung und bessere Skalierbarkeit in der Synthese von Reparaturen hin.

Zusammenfassend trägt diese Dissertation zur Skalierbarkeit von Synthese mit neuen SAT-basierten
Algorithmen sowie zur Anwendbarkeit im Gebiet der automatischen Software-Reparatur bei.

Schlagworte: Reaktive Synthese, Entscheidungsprozeduren, Programmreparatur, Fehlerlokalisierung
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1 Introduction

1.1 Context and Motivation

Quality assurance constitutes a significant part of the effort for developing new hardware or software
products. For hardware, estimates for the verification effort are in the order of 30 to 50 percent [89] of
the total development costs. For software, the estimates range between 50 and 75 percent of the total
costs [212, page 21], [164, page ix]. Testing [164], where the system under consideration is executed with
different inputs in order to detect misbehaviors, is certainly the most wide-spread means of verification.
However, for most real-world systems, it is practically infeasible to cover the entire input space with test
cases. Hence, for critical applications, testing alone is often not enough to achieve a satisfying level of
confidence in the correctness of a system.

In this section, we discusses how model checking and synthesis techniques can contribute towards
a higher system quality with low manual effort. With this motivation in mind, we will then discuss
the problems addressed by this thesis, namely the scalability and applicability of synthesis techniques.
Finally, we will summarize the contributions of this thesis, which are centered around novel SAT-based
synthesis algorithms as well as the application of synthesis in the context of automatic program repair.

1.1.1 Model Checking

Model checking [59, 178, 60, 107] eliminates the incompleteness that is inherent in testing by exhaus-
tively considering all possible input scenarios for a system. The idea is to formally and automatically
prove that a given model of a system satisfies a given specification. It is not surprising that this kind
of exhaustive analysis comes at a price: the number of inputs and states of the system under analysis
can be tremendous, resulting in serious scalability problems. Various techniques have been proposed to
overcome this issue. Symbolic model checking [49] avoids enumerating states explicitly and uses for-
mulas as a compact representation of state sets instead. These formulas can in turn be represented using
(Reduced Ordered) Binary Decision Diagrams (BDDs) [45], a graph-based representation for proposi-
tional formulas. Logical operations are performed by manipulating these graphs. This approach enabled
the verification of industrial designs with more than 1020 states [49], which was far beyond reach with
explicit state representations. However, for certain structures such as barrel shifters or multipliers, BDDs
are known to explode in size and thus scale insufficiently [45]. Satisfiability-based Bounded Model
Checking (BMC) [24] is an alternative to overcome this limitation. The behavior of the program is en-
coded into a propositional formula in Conjunctive Normal Form (CNF). A SAT solver is then used to
search for an input sequence that results in a specification violation. A bound on the maximum length
of the execution is iteratively increased during this search. Craig Interpolation [67] can be used as ab-
straction and to get unbounded correctness proofs [159]. Another recently proposed model checking
algorithm is called1 IC3 [41]. Like BMC, IC3 also uses a SAT solver to search for incorrect program
executions. However, the behavioral description of the system is not unfolded during this search. Instead,
over-approximations of reachable states are computed using incremental induction. Currently, IC3 is one
of the most powerful model checking algorithms for industrial hardware designs.

Model checking techniques have also been applied successfully to software programs. The tool
CBMC [61] implements Bounded Model Checking for C programs in a scalable way. Tools such as
SLAM [12], BLAST [20] or SATABS [62] apply abstraction with counterexample-guided refinements in
order to reduce the state space. Another interesting technique for software is symbolic execution [63, 136,
51], where the program is executed with symbols that act as placeholders for arbitrary input values. Since
this symbolic execution is not necessarily carried out exhaustively, it can be seen as a middle ground

1Some authors call the underlying algorithm Property Directed Reachability (PDR) [79] and its implementation IC3. How-
ever, for simplicity, we will use the term IC3 for both the algorithm and its implementation in this thesis.
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(a) Verification-based design flow.

Specification Implementation
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Debugging
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(b) Synthesis-based design flow.

Figure 1.1: Reduction of the development effort due to synthesis. The left figure shows the typical
design flow based on verification: The designer creates an implementation and a formal
specification. Formal verification techniques such as model checking are then used to
check conformance. Mismatches need to be debugged manually. The right figure
shows a flow using synthesis. The designer only needs to create a formal specification.
A synthesis algorithm then computes a correct implementation automatically.

between model checking and testing. Concolic execution [99, 191] is a variant of symbolic execution,
where the program is executed using concrete inputs, but a symbolic execution for the activated execution
path is performed in parallel. The resulting path condition can be used to compute new inputs that trigger
a different execution path. This approach scales up to very large programs. In Microsoft’s SAGE [100]
project, concolic execution is used to find potential security problems in parsers of various applications
such as image processors, media players, and operating system components. Since 2008, it has been
running all around the clock on more than 100 machines in parallel, and saved millions of dollars by
detecting bugs that would have been shipped otherwise [100].

1.1.2 Synthesis

A common criticism of formal verification techniques such as model checking is that they are only ap-
plied a posteriori, i.e., after the implementation is already completed. Synthesis is more ambitious: it
constructs an implementation from a given declarative specification fully automatically. The specifica-
tion may only express what the system shall do, but not how this is to be achieved. Hence, writing a
specification can be significantly easier than implementing it. Another advantage is that synthesized im-
plementations are correct-by-construction, i.e., guaranteed to satisfy the specification from which they
have been constructed. Assuming that the specification expresses the design intent correctly and com-
pletely, this eliminates the need for verification and debugging of the implementation, thereby saving
development time and costs. This reduction in the development effort is illustrated in Figure 1.1.

Synthesis is a game. Model checking can be understood as (exhaustive) search for inputs under
which a (model of the) system violates its specification. That is, the inputs are the only source of non-
determinism. Synthesis, on the other hand, needs to handle two sources of non-determinism: the un-
known inputs and the (yet) unknown system implementation. Synthesis can thus be seen as a game
between two players: The environment player controls the inputs of the system to be synthesized. The
system player controls the outputs and attempts to satisfy the specification for every environment be-
havior. The environment player thus has the role of the antagonist, with the objective to violate the
specification. This is illustrated in Figure 1.2. The game-based approach to synthesis computes a strat-
egy for the system player to win the game (i.e., to satisfy the specification) against every environment
player. An implementation of such a winning strategy forms the final solution. Computing a winning
strategy naturally involves dealing with alternating quantifiers because for every input (or environment
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Figure 1.2: Synthesis is a game between two players. The environment player controls the inputs
of the system and attempts to violate the specification. The system player controls the
outputs and needs to satisfy the specification against every environment behavior.

behavior) there must exist some output (or system behavior) satisfying the specification. This stands in
contrast to model checking, where existential quantification suffices.

History. The synthesis vision goes back to 1962, where Alonzo Church [57] first posed the problem
for specifications given in so-called Monadic Second Order Logic of One Successor (S1S). S1S is a
subset of second order logic, which allows quantification over individual elements and sets (but not over
arbitrary predicates), and has one successor relation. A solution to Church’s problem was given by
Büchi and Landweber [48] a few years later. Unfortunately, the worst-case complexity of the synthesis
problem from S1S specifications is non-elementary, i.e., cannot be expressed with a fixed number of
exponentiations. Two decades later, Pnueli and Rosner [176] studied the synthesis of so-called reactive
systems from Linear Temporal Logic (LTL) [175] specifications. Reactive systems interact with their
environment via inputs and outputs in a synchronous way: in every time step, the environment provides
input values and the system responds with output values. This interaction is carried out ad infinitum,
i.e., reactive systems conceptually never terminate. Thus, reactive systems directly model (synchronous)
hardware designs. Unfortunately, the problem of synthesizing reactive systems from LTL specifications
has a doubly exponential worst-case complexity [186]. Due to these high complexities, synthesis was
mainly of academic interest for quite some time.

Recent progress. Despite these high worst-case complexities, recent developments made synthesis
techniques applicable to real-world problems. One approach is to set a bound on the size of the systems
to construct [87], and increase this bound iteratively, similar to BMC. The rationale behind this approach
is that real-world specifications typically have relatively simple implementations. Moreover, the user
typically prefers simple implementations, and may not be interested in an overly complicated solution
even if one exists. Another direction is to limit the expressiveness of the specification language. For
instance, Generalized Reactivity of Rank 1 (GR(1)) [36] is a specification language that is expressive
enough for many applications. At the same time, relatively efficient algorithms (with a singly exponential
worst-case complexity) and tools [29] implementing them exist. Finally, just like in formal verification,
symbolic algorithms are important for achieving scalability in practice. In synthesis of reactive systems,
BDDs are the predominant symbolic reasoning engine. This is witnessed for instance by the fact that all
submissions to the reactive synthesis competition SyntComp2 2014 [117], except for our own, are BDD-
based. One reason is that synthesis algorithms inherently deal with alternating quantifiers (see above).
BDDs provide both universal and existential quantifier elimination. Moreover, BDDs not only compute
one satisfying assignment for a formula, but always represent all satisfying assignments simultaneously.
This is exploited by many synthesis algorithms. This dominance of BDDs in synthesis stands in contrast
to formal verification, where BDDs have largely been displaced by SAT solvers.

1.1.3 Controller Synthesis

Besides scalability, another challenge that needs to be addressed in synthesis is applicability. Writing
a declarative specification for a complete system can be very cumbersome or even unmanageable. The
reason is that certain aspects of a system are often easier to define imperatively, i.e., to implement by

2http://www.syntcomp.org/ (last visit on 2015-08-01).

http://www.syntcomp.org/
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Design
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Controller 
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Figure 1.3: Mixed imperative/declarative programming using controller synthesis. The designer
implements (most) parts of the system but can leave certain internal variables open
(symbolized by question marks). Controller synthesis then completes the implementa-
tion with a controller that defines the open variables such that a given specification is
satisfied. In contrast to Figure 1.1b, the specification does not have to be complete but
can be focused towards the missing parts.

traditional means. Controller synthesis attempts to combine the best of the imperative and the declarative
programming paradigms: (most) parts of the implementation are already given by the user. Only the
implementation for certain signals is missing and needs to be synthesized such that the entire system
satisfies a given specification. This is illustrated in Figure 1.3 and has many interesting applications.

Program sketching. Program sketching [197] allows the user to write programs with “holes” in it.
Holes represent yet unknown program parts that are difficult to engineer. They may be as simple as an
unknown integer constant, or more complex constructs such as an unknown branch condition. The user
also provides a specification, e.g., in form of a reference implementation or assertions in the code. A
synthesizing compiler then computes implementations for the holes such that the entire program satisfies
the given specification. Obviously, such a mixed imperative/declarative programming paradigm can save
development time because difficult aspects can be delegated to the synthesis tool. The rightmost part
of Figure 1.4 illustrates this application for a simple software program (in C syntax) that is supposed to
compute the maximum of two integer numbers. The programmer left the if-condition as a hole to be
synthesized. An assertion in the code serves as (incomplete) specification. Synthesis algorithms can be
used to compute a controller, which is is a piece of code defining the unknown value of the condition such
that the specification is satisfied for all inputs. The example in Figure 1.4 illustrates program sketching
for a software program, but the same principle can be applied to hardware as well.

Program repair. Another interesting application of controller synthesis is the automatic repair of
incorrect software or hardware programs [128, 140]. Manual debugging is a time-consuming and of-
ten frustrating activity. Estimates for hardware [89] say that debugging constitutes around 60 % of the

int max(int x, int y) {
  int r = x;
  if( ? )
    r = y;
  assert(r>=x && r>=y);
  return r;
}

int max(int x, int y) {
  int r = x;
  if(x > y)
    r = y;
  assert(r>=x && r>=y);
  return r;
}

           Program Repair      =       Fault Localization     +     Program Sketching

Fault
Localization

“x > y” may
be wrong

Controller
Synthesis

Controller:
? = (y > x)

Figure 1.4: Program repair and program sketching as applications for controller synthesis. Given
an incorrect program and a specification (the assertion), fault localization algorithms
can identify program parts that may be erroneous. Replacing these erroneous parts with
holes gives a program sketching problem. Controller synthesis methods can synthesize
code that controls the values of the holes such that the specification is satisfied.
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Figure 1.5: Synthesizing a controller for a plant that can be modeled as a reactive system. The
plant has uncontrollable inputs that are provided by the environment. The controllable
inputs should be defined in such a way that a given specification is satisfied.

verification effort, which is around 30 % of the total development effort. For software, estimates for the
debugging effort range from 50 to 80 % of the development and maintenance effort [64]. While there
is a broad range of existing techniques and tools to assist the developer in detecting and locating faults,
the process of fixing bugs is still mostly done manually [101]. At the same time, fixing a fault is often
the most difficult step. There is the danger of eliminating only (some but not all) symptoms, or even
introducing new faults. Controller synthesis techniques can be used to suggest potential fixes to the de-
veloper, thus assisting in the last an crucial debugging step. A realization of automatic program repair via
controller synthesis is illustrated in Figure 1.4. Given a program that violates its specification, fault lo-
calization techniques can be used to identify program parts that may be responsible for the incorrectness.
These potentially incorrect program parts can then be replaced by holes as used in program sketching. A
synthesized controller can finally define the value of the holes in such a way that the specification holds
for all inputs, thereby repairing the incorrect program. Figure 1.4 illustrates this flow for software, but
the same principle can be applied to hardware programs as well.

Control engineering. Other, more obvious applications of controller synthesis include control engi-
neering, where a given plant needs to be operated in such a way that some specification is satisfied. This
setting is illustrated in Figure 1.5. The plant can be given as a reactive system with uncontrollable inputs
that are provided by the environment, and controllable inputs that need to be defined by a controller.
Synthesis algorithms can be used to construct such a controller automatically from a model of the plant
and the specification that must be satisfied. The resulting controller observes the (sequence of) inputs
and outputs of the plant and defines the controllable inputs of the plant based on this information.

1.2 Problem Statement

This thesis addresses two main challenges in synthesis: scalability and applicability.

Scalability. Synthesis inherently involves dealing with quantifier alternations. Synthesis algorithms
for reactive (hardware) systems are thus traditionally realized using BDDs as the underlying symbolic
reasoning engine. Yet, decision procedures for the satisfiability of quantified and unquantified formulas
have experienced enormous scalability improvements over the last years and decades. Powerful imple-
mentations for different logics are available in the form of SAT solvers, QBF solvers, SMT solvers, etc.
These engines cannot only decide the satisfiability of a formula, but also compute satisfying assignments,
unsatisfiable cores, or assignments satisfying a maximum number of given constraints. Furthermore, they
can be used incrementally to solve sequences of similar queries more efficiently. The questions of (a)
how to exploit these features in synthesis effectively and (b) to which extent decision procedures can
compete with BDDs in hardware synthesis have not been studied thoroughly before.

Applicability. Synthesis of complete systems from declarative specifications is often unrealistic be-
cause (a) writing a complete specification for a large system can be practically infeasible, and (b) synthe-
sis algorithms may not be scalable enough to realize them. A more promising direction is the combination
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of the imperative and the declarative programming paradigm, where the implementation is largely given
but certain aspects of it need to be synthesized such that some specification is satisfied. Solutions to such
kinds of problems do not only require efficient synthesis algorithms but also scalable program analysis
techniques for the existing parts of the implementation. Furthermore, to keep the human engineer in the
loop, synthesis results must be simple and understandable. Solutions for this combination of problems
have not been studied extensively, especially in the context of automatic repair of software programs.

Orthogonal challenges. Synthesis challenges that are (mostly) orthogonal to this thesis include
(1) improving the quality of synthesized systems, (2) providing techniques for specification engineering
and debugging, and (3) providing appropriate specification languages.

1.3 Thesis Statement

By careful utilization of modern features such as incremental solving and the computation of un-
satisfiable cores, decision procedures for the satisfiability of formulas can be used to build scalable
synthesis algorithms. In combination with flexible program analysis techniques and fine-grained fault
localization approaches, such satisfiability-based synthesis algorithms can increase the applicability
of synthesis in promising fields like automatic repair of simple software programs.

1.4 Contributions and Publications

This thesis proposes controller synthesis methods based on automatic decision procedures for the satis-
fiability of quantified and unquantified formulas, both in the hardware- and in the software setting. In
the following, we will use the terms “satisfiability-based” or “SAT-based” to indicate the use of such
decision procedures. Note that this does not only include SAT solvers [25] for propositional formulas,
but also decision procedures for Quantified Boolean Formulas (so-called QBF solvers [97]), Satisfiabil-
ity Modulo Theories (so-called SMT solvers [14]), and decision procedures for fragments of first order
logic. We will write “SAT solver based” to specifically indicate the use of propositional SAT solvers.
With this terminology in mind, the main contributions of this thesis can be summarized as follows.

1.4.1 Scalability in Synthesis

To address the scalability challenge, we developed novel algorithms to synthesize reactive hardware
controllers from safety specifications using SAT solvers, QBF solvers, and solvers for Effectively Propo-
sitional Logic (EPR) [153], which is a decidable subset of first-order logic. The algorithms are designed
to effectively exploit solver features such as incremental solving and the computation of unsatisfiable
cores. Our synthesis approach consists of two steps. The first step is to compute a strategy to satisfy the
specification for all environment behaviors, or to report that no such strategy exists. The second step is
to compute a circuit implementing the strategy.

• For strategy computation, we present novel algorithms based on query learning [7], templates
fixing the solution structure, and a reduction to EPR [153].

– We propose a broad range of optimizations to the presented methods. This includes heuristics
to partially expand quantifiers, concepts to exploit information about (un)reachable states, as
well as low-level optimizations in the formula encoding.

– We designed a parallelization that combines different methods and different method config-
urations using multiple threads. The methods do not only run in isolation but share fine-
grained information that can support the progress in other threads.

• For computing circuits from strategies, we present solutions based on QBF certification [168],
query learning [7], Craig interpolation [67], and a combination of the latter two.
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– Our circuit synthesis methods not only work for safety specifications but also for strategies
computed from other specification formalisms. We therefore present the general solutions as
well as efficient realizations for the special case of safety synthesis problems.

– Again, we present several optimizations, including heuristics to exploit variable independen-
cies and optimizations in the formula encoding.

– A parallelization combining different approaches in different threads is proposed as well.
• We have implemented our methods in an open-source synthesis called Demiurge3. Its input is a

safety specifications in AIGER4 format, as specified by the rules for the reactive synthesis compe-
tition SyntComp [117]. Demiurge already won two gold medals (one in 2014 and one in 2015)
in this synthesis competition. Our tool is highly configurable, e.g., regarding the solvers to use or
the optimizations to enable. Demiurge is also designed to be easily extendable, and can thus also
be seen as a framework for implementing new methods and optimizations in new back ends.

• We present an extensive experimental evaluation where we compare our different methods and
optimizations on the benchmarks from the SyntComp 2014 competition, which includes several
specifications for real-world synthesis problems.

– A comparison with a BDD-based implementation demonstrates that our satisfiability-based
approach is competitive in strategy computation. Our parallelization is faster by around
one order of magnitude in our experiments. For computing circuits from strategies, our
satisfiability-based methods are also faster by more than one order of magnitude and produce
circuits that are smaller by even two orders of magnitude on the average in our experiments.

– We also perform a comparison with AbsSynthe [43], a BDD-based synthesis tool that im-
plements advanced concepts such as abstraction/refinement and won the synthesis track in
SyntComp 2014. The performance of our parallelization does not lack far behind AbsSyn-
the in strategy computation. Our parallelized circuit synthesis can solve more instances and
produces circuits that are smaller by one order of magnitude on average in our experiments.

– On top of these excellent results on the average over our benchmark set, our approach is
particularly superior for certain benchmark classes. We thus conclude that our satisfiability-
based methods form a valuable complement to existing synthesis approaches.

1.4.2 Applicability of Synthesis

To address the applicability challenge, we developed a novel approach for the automatic repair of incor-
rect software programs specified by assertions in the code. Our approach consists of three steps: program
analysis to lift the repair problem into the domain of logic, fault localization to identify candidate pro-
gram parts for repair, and finally the repair synthesis itself. SMT solving is used as the main underlying
reasoning technology.

• For program analysis, we propose a solution based on symbolic [63, 136] or concolic [99, 191] ex-
ecution. It allows for incomplete analysis with various parameters to trade accuracy for efficiency.

• Based on the diagnostic information collected by the program analysis step, we present a fine-
grained fault localization approach using the fault model of incorrect expressions and ideas from
model-based diagnosis [182]. An SMT solver is finally used to compute potential fault locations.

• As an alternative to this SMT-based fault localization approach, we also work out a solution based
on deductive verification and first-order theorem proving. Instead of assertions, it uses pre- and
postconditions as a specification.

• We present a template-based method to synthesize human-readable replacements of the potentially
incorrect expressions identified by automatic fault localization. It is based on Counterexample-
Guided Inductive Synthesis (CEGIS) [197, 196], which iteratively refines repair candidates based
on counterexamples, and uses an SMT solver as the underlying reasoning engine.

3www.iaik.tugraz.at/content/research/opensource/demiurge (last visit on 2015-08-01).
4http://fmv.jku.at/aiger/ (last visit on 2015-08-01).

 www.iaik.tugraz.at/content/research/opensource/demiurge
http://fmv.jku.at/aiger/
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– We also propose heuristics to speed up the CEGIS algorithm for repair synthesis using
Maximum Satisfiability Modulo Theories (MAX-SMT) [162] solving.

– We introduce an improved repair synthesis method that performs program analysis on the
fly and only for specific counterexamples that are encountered in the CEGIS process. It
also decouples the repair candidate computation from the candidate verification and thereby
allows for a broader range of verification techniques and specification formats, including test
case execution and model checking.

• We have implemented our repair synthesis approach as a proof of concept for simple C programs
in the tool FoREnSiC5, which is available under an open-source license. Our implementation is
highly configurable, e.g., regarding the logic and the engine to use for SMT solving, the accuracy
of program analysis and fault localization, as well as various heuristics and optimizations. Our
fault localization variant using deductive verification has been prototyped as an extension to the
widely used software analysis tool suite Frama-C [69].

• In an experimental evaluation, we demonstrate that our software repair approach can produce help-
ful diagnostic information also for non-trivial programs in reasonable time. A comparison of our
fault localization approach with the existing tool Bug-Assist [130] indicates a better diagnostic
resolution. Moreover, our repair synthesis approach turned out to scale much better than the exist-
ing program sketching tool Sketch [196, 197] in our experiments. We thus conclude that automatic
program repair is a promising application for satisfiability-based controller synthesis techniques.

1.4.3 List of Publications

The rules of the Doctoral School of Computer Science at Graz University of Technology require that
every dissertation contains a list of publications of the candidate, which explains (a) how the individual
publications are related to the dissertation, and (b) the origin of contributions if papers have been written
collaboratively. This information is provided in the following. Additionally, every section of this thesis
will list the publications it is based on.

In summary, this thesis is directly based on 7 conference publications. All in all, I contributed to
15 conference publications, 2 workshop publications and 2 journals by August 2015. Many of them
are closely related to this thesis. Furthermore, I presented 13 of these publications at conferences and
workshops. The following list of publications is sorted thematically rather than chronologically.

This thesis is directly based on the following 7 publications:

VMCAI’14 [39]: Hardware synthesis algorithms usually work in two steps. The first step is to
compute a strategy to enforce the specification. The second step is to implement this strategy in a circuit.
This paper presents satisfiability-based methods to solve the first of these two steps for the case of safety
specifications. Hence, this paper is concerned with the scalability challenge addressed by this thesis. The
paper was mainly written by myself. The development of the synthesis algorithms, the implementation,
and the experiments were mostly conducted by myself as well. Roderick Bloem contributed ideas for
algorithms and optimizations in countless discussions and proofread the paper. Martina Seidl contributed
to a more efficient encoding into QBF, and by implementing an extension of the QBF preprocessor
Bloqqer [189], which was used for some methods in the experiments. She also proofread the paper.
Aaron R. Bradley contributed to the reachability optimization through discussions about using concepts
from the model checking algorithm IC3 [41] in synthesis. Discussions with Andreas Morgenstern helped
in the reimplementation of an alternative SAT-based method [163], which served as baseline for the
comparison in the paper. The students Fabian Tschiatschek and Mario Werner contributed a BDD-based
implementation which also served as baseline for the comparison. Finally, Bettina Könighofer helped
creating benchmarks. I presented the paper at the 15th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI) in San Diego, USA, on the 19th of January 2014.

5http://www.informatik.uni-bremen.de/agra/eng/forensic.php (last visit on 2015-08-01).
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FMCAD’12 [82]: This paper presents learning-based methods to solve the second step of a typical
hardware synthesis procedure, namely the computation of circuits implementing a strategy. The algo-
rithms are independent of the underlying symbolic reasoning engines, but have been implemented using
BDDs for the experiments in the paper. Thus, this work does not directly deal with satisfiability-based
synthesis methods. However, the presented algorithms have later been used with SAT- and QBF solvers
(in VMCAI’14 [39] and FMCAD’14a [31]). The algorithms and a first version of the implementation
were mostly developed by Rüdiger Ehlers. Georg Hofferek contributed a discussion of alternative ap-
proaches and practical experience with them. I focused on optimizations and experiments. The work of
writing the paper was split quite evenly.

FMCAD’14a [31]: This paper presents satisfiability-based methods to solve the same problem as
the previous paper, namely the computation of circuits implementing a strategy. This paper therefore
directly addresses the scalability challenge outlined in the problem statement. The algorithms, optimiza-
tions, implementation, experiments, and the paper writing work was mainly done by myself. However,
the interpolation-based method was implemented and evaluated by Patrick Klampfl in the course of his
Bachelor’s Thesis under my supervision. Patrick Klampfl also developed the dependency optimization
presented in the paper. Uwe Egly and Florian Lonsing contributed towards efficient utilization of incre-
mental QBF solving in one of the presented methods, and both proofread the paper. Roderick Bloem
contributed ideas and also proofread the paper. I presented the paper at Formal Methods in Computer-
Aided Design (FMCAD) in Lausanne, Switzerland, on the 22nd of October 2014.

FMCAD’11 [140]: This paper presents an approach for automatic fault localization and correction
in simple software programs, and mainly addresses the applicability challenge from the problem state-
ment. The concept was developed by myself with guidance and supervision by Roderick Bloem. The
implementation, optimizations, experiments, and paper writing work was performed by myself. Rod-
erick Bloem proofread the paper. I presented the paper at Formal Methods in Computer-Aided Design
(FMCAD) in Austin, USA, on the 31st of October 2011.

HVC’12a [141]: This paper presents a program repair approach that performs program analysis on
the fly. It can be seen as an improvement of the previous publication [140]. Again, the algorithms, imple-
mentation, experiments, and paper writing work was mainly done by myself. Roderick Bloem supervised
this work and proofread the paper. I presented the paper at the 8th Haifa Verification Conference (HVC)
in Haifa, Israel, on the 6th of November 2012.

HVC’12b [30]: This paper presents the tool FoREnSiC, which implements the fault localization and
correction methods presented in the previous two papers [140, 141]. FoREnSiC consists of a front end,
an internal model of the program, and three back ends. I was involved in the design and implementation
of the internal model. Furthermore, I designed and implemented one of the three back ends, and wrote the
corresponding sections of the paper. I also presented the paper at the 8th Haifa Verification Conference
(HVC) in Haifa, Israel, on the 6th of November 2012.

HVC’14 [145]: This paper discusses an alternative fault localization approach for software pro-
grams. While the FMCAD’11 [140] publication uses symbolic or concolic execution and model-based
diagnosis, this paper follows an approach based on deductive verification and theorem proving. The con-
cept, the implementation, and the experiments were mostly performed by myself. Loı̈c Correnson gave
support for our proof-of-concept implementation in Frama-C. Ronald Tögl helped writing the paper.
Roderick Bloem supervised the work and proofread the paper. I presented the work at the 10th Haifa
Verification Conference (HVC) in Haifa, Israel, on the 19th of November 2014.

I also presented our work on QBF-based synthesis algorithms [39, 31, 189] in an invited talk at the
QBF Workshop in Vienna, Austria, on the 13th of July 2014. Furthermore, together with Alexander
Finder, I presented the FoREnSiC tool [30] at a University Booth at Design, Automation & Test in
Europe (DATE) in Dresden, Germany, from the 13th to the 15th of March 2012.

In addition to the content of these peer-reviewed publications, this thesis also contains a new heuris-
tic for partial quantifier elimination in SAT-based hardware controller synthesis, additional correctness
proofs, and more extensive experimental results.
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The following publications are more loosely related to this thesis:

DATE’14 [189]: This paper presents an extension of the QBF preprocessor Bloqqer to preserve
satisfying assignments, which is a prerequisite for using QBF preprocessing in synthesis. Thus, this
paper also addresses the scalability challenge mentioned in the problem statement. Results of this work
have been used in the VMCAI’14 [39] and FMCAD’14a [31] publications mentioned earlier. Martina
Seidl did the main work regarding theory, implementation, and paper writing. I mainly contributed
experimental results from the domain of synthesis and wrote the corresponding sections of the paper.

TACAS’15a [28]: This paper presents a program sketching approach for concurrent reactive pro-
grams based on the existing notion of Assume-Guarantee Synthesis [55], but extended with partial infor-
mation constraints. Since the problem is undecidable in general, the paper presents a semi-decision pro-
cedure based on bounded synthesis [87] and SMT solving. Hence, this work also deals with satisfiability-
based methods for controller synthesis, in the application of program sketching. However, it is not in-
cluded in the core publications of this thesis, because it is not primarily my own work. The concept
has been developed by Swen Jacobs. The complexity results were mainly worked out by Krishnendu
Chatterjee. I implemented the method, performed the experiments, and wrote the corresponding sections
of the paper. I also presented the work at the 21st International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS) in London, UK, on the 16th of April 2015.

TACAS’15b [37]: This paper presents an approach to synthesize a “safety shield” that enforces
critical properties of a reactive system at runtime if the properties cannot be verified statically. Similar to
our work on program repair and sketching, it combines existing implementations with synthesized code,
i.e., supports the mixed imperative/declarative engineering paradigm. The problem and initial ideas
for a solution were contributed by Chao Wang. The final solution for safety specifications was mainly
developed by myself and Roderick Bloem. Bettina Könighofer implemented the approach and performed
experiments. I presented the paper at the 21st International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS) in London, UK, on the 16th of April 2015.

FMCAD’14b [35]: This paper presents Bettina Könighofer’s work on synthesis of atomic sections
in concurrent software programs such that no race conditions can occur. Thus, this work also deals with
a mixed imperative/declarative programming paradigm, but in the context of concurrent programs. My
contribution to this paper was mostly in co-supervising the students Simon Ausserlechner and Raphael
Spörk, and in improving the presentation in the paper. I also presented the paper at Formal Methods in
Computer-Aided Design (FMCAD) in Lausanne, Switzerland, on the 22nd of October 2014.

FMCAD’09 [142]: This paper summarizes my Master’s Thesis [139]. It addresses the problem
of debugging unrealizable or unintended specifications using synthesized counterstrategies and is thus
orthogonal to the topics addressed by this thesis. The paper has been written with extensive support
from Georg Hofferek and Roderick Bloem. I presented the paper at Formal Methods in Computer-Aided
Design (FMCAD) in Austin, USA, on the 18th of November 2009.

HVC’10 [143]: This paper presents an extension to the solution for specification debugging given
in the FMCAD’09 [142] publication: techniques from model-based diagnosis are used to explain the
reasons for unrealizability of a specification to the user. The approach was developed and implemented
mainly by myself, with support from Georg Hofferek and Roderick Bloem, especially in writing the
paper. I presented the work at the 6th Haifa Verification Conference (HVC) on the 6th of October 2010.

CAV’10 [29]: This paper presents the requirement analysis and synthesis tool Ratsy. This tool
implements the specification debugging techniques of FMCAD’09 [142] and HVC’10 [143], and I con-
tributed to the corresponding sections of the paper. I presented Ratsy at the 22nd International Confer-
ence on Computer Aided Verification (CAV) in Edinburgh, UK, on the 18th of July 2010.

STTT’13 [144]: This journal article summarizing the previous three publications [142, 143, 29] in
a combined flow. The article has mainly been written by myself, with presentation improvements by
Georg Hofferek and proofreading by Roderick Bloem.

SYNT’12 [34]: This paper is about Bettina Könighofer’s work on synthesis of robust systems. This
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work deals with the quality of synthesized systems and is thus orthogonal to this thesis. My contribution
to this work is mostly in co-supervising Bettina Könighofer and helping to present the work in the paper.

Acta’14 [27]: This journal article summarizes existing work on synthesis of robust systems, in-
cluding the SYNT’12 [29] publication. My contribution to this article was mainly the illustration with
examples and co-developing a combined approach for safety and liveness specifications.

SYNT’14 [32]: This paper raises the concern that existing synthesis approaches do not always handle
assumptions in specifications in a desirable way and surveys existing work on this topic. Hence, the paper
is mostly about the quality of synthesized systems and is thus orthogonal to the problems addressed by
this thesis. The paper has been written by all authors in approximately equal parts. I presented this work
at the 3rd Workshop on Synthesis in Vienna, Austria, on the 23rd of July 2014.

QSIC’14 [38]: This paper presents Franz Röck’s work on automatic completion of given test suites.
The connection to this thesis is that the underlying methods, namely symbolic execution, are also used
in our program repair approach. My main contribution to this paper was in improving the presentation.

1.5 Structure of this Thesis

This thesis is structured as follows. Chapter 2 conveys background knowledge that is helpful for un-
derstanding the contributions of this thesis. This includes various logics and corresponding reasoning
engines, a baseline approach for hardware synthesis, algorithms for query learning and counterexample-
guided synthesis that will be used in our SAT-based synthesis algorithms, as well as software program
analysis techniques and a fault localization concept for our program repair approach. Chapter 2 also
serves the purpose of introducing notation that will be used throughout this thesis.

Chapter 3 introduces our satisfiability-based approach for hardware controller synthesis from safety
specifications. It consists of two steps: the computation of a strategy, and the computation of a circuit
implementing this strategy. Our algorithms and optimizations for these two steps will be presented in
Section 3.1 and Section 3.2, respectively. Section 3.3 will then discuss our implementation and experi-
mental evaluation.

Chapter 4 deals with satisfiability-based controller synthesis in the application of automatic program
repair. The approach we propose here consists of three steps: program analysis, fault localization, and
repair synthesis. Our basic solutions for these steps will be presented in the Sections 4.2, 4.3 and 4.5,
respectively. Section 4.4 describes our alternative solution for fault localization using deductive verifica-
tion. Our improved repair synthesis flow with on-the-fly program analysis is worked out in Section 4.7.
Section 4.6 presents a variant that uses test cases as a specification, and Section 4.8 discusses other
variations and parameters. Our implementation and evaluation is finally presented in Section 4.9.

In Chapter 5, we compare our contributions to related work. Chapter 6 finally concludes the thesis
and gives suggestions for future work.





2 Background and Notation

Parts of this chapter are based on the previous publications of the author on which
this thesis is based [82, 39, 31, 140, 141, 145, 30]. References to these sources are

not always made explicit.

This section serves two purposes. On the one hand, it introduces background knowledge that is helpful
for understanding the remainder of this thesis. On the other hand, this section introduces notation that
will be used throughout this thesis. All abbreviations that we introduce are summarized on Page xix. An
index of the main terms can be found on Page 182.

After some basic notation, we will introduce various logics and corresponding reasoning engines.
Section 2.4 will then explain how large sets can be represented symbolically as formulas in these logics.
Based on these symbolic representations, Section 2.5 will discuss the standard concepts for hardware
synthesis with a focus on safety specifications. Next, we present query learning and Counterexample-
Guided Inductive Synthesis (CEGIS), two concepts that will be used at various occasions in our SAT-
based synthesis algorithms. We finally turn to methods for software program analysis as well as fault
localization via Model-Based Diagnosis (MBD), which will both be used in our application of controller
synthesis in automatic program repair.

2.1 Basic Notation

We denote the Boolean domain by B = {true, false}, the set of natural numbers (including 0) by N,
the set of integer numbers by Z, and the set of character strings by S. In general, we will use upper
case letters for sets, lower case letters for set elements, and calligraphic fonts for tuples defining more
complex structures. We will write iff as a shorthand for “if and only if”.

2.2 Logics

We will use various kinds of logics to solve synthesis problems. This section introduces these logics.
Decision procedures and reasoning engines for these logics will then be introduced in Section 2.3.

Variables and formulas. We will use lower case letters for variables and capital letters to denote
formulas. Recall that capital letters are also used to denote sets, but this is no coincidence since we will
later use formulas to represent sets (see Section 2.4). Vectors of variables will be written with an overline.
For clarity, we will often write the variables that occur freely in a formula in brackets. For instance, F (x)
denotes a formula over the variables x = (x1, x2, . . . , xn). If the variables are clear from the context,
we will sometimes omit the brackets, i.e., write only F instead of F (x). Furthermore, we will use the
brackets to denote variable substitutions: if F (. . . , x, . . .) is a formula, we denote by F (. . . , y, . . .) the
same formula but with all occurrences of x replaced by y. With a slight abuse of notation, we will also
treat vectors of variables like sets if the order of the elements is irrelevant. For instance, x ∪ y denotes
a concatenation of two variable vectors, and x \ {xi} denotes the variable vector x but with element xi
removed.

Operator precedence. Save for cases where too many brackets hamper readability, we will avoid
ambiguities in operator precedence. However, for the avoidance of doubt, will will use the following
precedence order (from stronger to weaker binding) for operators in formulas: ¬,∧,∨,→,↔, ∀, ∃.

13
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2.2.1 Propositional Logic

All variables in propositional logic are Boolean, i.e., take values from the domain B = {true, false}.
We will use the standard Boolean connectives ¬, ∧, ∨, →, and ↔, encoding negation, conjunction,
disjunction, implication, and equivalence, respectively.

Conjunctive Normal Forms (CNFs). A literal is a Boolean variable or its negation. A clause is a
disjunction of literals. A cube is a conjunction of literals. We will sometimes treat clauses and cubes as
sets of literals. For instance, given that l is a literal and c1, c2 are clauses, we write l ∈ c1 to denote that l
occurs as a disjunct in clause c1, and we write c1 ⊆ c2 to denote that all literals of clause c1 also occur in
clause c2. A propositional formula is in Conjunctive Normal Form (CNF) if it is written as a conjunction
of clauses. There are two reasons why CNF representations are important. First, decision procedures for
satisfiability usually require the input formula to be in CNF. Second, every formula can be transformed
into an equisatisfiable formula in CNF representation by introducing at most a linear amount of auxiliary
variables. This transformation is called Tseitin transformation [208]. An improvement by exploiting the
polarity (even or odd number of negations) of subformulas to obtain smaller CNF encodings has been
proposed by Plaisted and Greenbaum [174].

Variable assignments. We will use cubes to describe (potentially partial) truth assignments to vari-
ables: unnegated variables of the cube are set to true, negated ones are false. We will use bold letters to
denote cubes. For instance, x denotes a cube over the variables x. An x-minterm is a cube that contains
all variables of x either negated or unnegated (but not both). Thus, minterms describe complete assign-
ments to Boolean variables. We write x |= F (x) to denote that the x-minterm x satisfies the formula
F (x). Given a formula F (. . . , x, . . .) and an x-minterm x, we write F (. . . ,x, . . .) to denote the formula
F but with all occurrences of the variables x replaced by their respective truth value defined by x.

Unsatisfiable cores. Let F be an unsatisfiable formula in CNF. A clause-level unsatisfiable core
is a subset of the clauses of F that is still unsatisfiable. While this definition is widely used, many
applications require the minimization of “interesting” constraints while the remaining constraints remain
fixed. For such problems, Nadel [165] coined the term high-level unsatisfiable core. To support such
high-level unsatisfiable cores, we use the following definition in this thesis. Let x be a cube and let
F (x, y) be a formula such that x ∧ F is unsatisfiable. An unsatisfiable core of x with respect to F is a
subset x′ ⊆ x of the literals in x such that x′∧F is still unsatisfiable. An unsatisfiable core x′ is minimal
if no proper subset x′′ of x′ makes x′′ ∧ F unsatisfiable. With this definition, high-level unsatisfiable
cores can be computed by adding conjuncts of the form xi → G(y) for xi ∈ x to F (x, y). This way, the
constraintG(y) can be enabled or disabled via the truth value of xi. Moreover, this notion of unsatisfiable
cores is directly supported by many solver.

Interpolants. LetA(x, y) andB(x, z) be two propositional formulas such thatA∧B is unsatisfiable,
and y and z are disjoint. A Craig interpolant [67] is a formula I(x) such that A→ I → ¬B. Intuitively,
the interpolant is a formula that is weaker than A, but still strong enough to make I ∧B unsatisfiable. In
addition to that, the interpolant references only the variables x that occur both in A and in B.

Cofactors. Let F (. . . , x, . . .) be a propositional formula. The positive cofactor of F regarding x is
the formula F (. . . , true, . . .), where all occurrences of x have been replaced by true. Analogously, the
negative cofactor of F regarding x is the formula F (. . . , false, . . .).

2.2.2 Quantified Boolean Formulas

Quantified Boolean Formulas (QBFs) [138] extend propositional logic with universal (denoted ∀) and
existential (denoted ∃) quantification of variables. The quantifiers have their expected semantics: Since
propositional variables can only be either true or false, ∃xi :F (. . . , xi, . . .) can be seen as a shorthand
for F (. . . , true, . . .) ∨ F (. . . , false, . . .). Likewise, ∀xi :F (. . . , xi, . . .) is short for F (. . . , true, . . .) ∧
F (. . . , false, . . .). Using these rules, a QBF can always be transformed into a purely propositional for-
mula. However, this usually causes a significant blow-up in formula size.
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PCNFs. A QBF is in Prenex Conjunctive Normal Form (PCNF) if it is written in the form

Q1x1 :Q2x2 : . . . Qkxk :F (x1, x2, . . . , xk),

where Qi ∈ {∀,∃} and F is a propositional formula in CNF. In this formulation, we use Qixi as a
shorthand for Qixi,1 : . . . Qixi,n with xi = (xi,1, . . . , xi,n). We refer to Q1x1 :Q2x2 : . . . Qkxk as the
quantifier prefix and call F (x1, x2, . . . , xk) the matrix of the PCNF. We require every PCNF to be closed
in the sense that all variables occurring in the matrix must be quantified either existentially or universally.
Hence, a QBF in PCNF can only be valid (equivalent to true) or unsatisfiable (equivalent to false).

Skolem functions. Let

∃a1 :∀b1 : . . . ∃ak : ∀bk :∃c :Q1d1 : . . . Qldl :F (a1, b1, . . . , ak, bk, c, d1, . . . , dl)

with Qi ∈ {∀, ∃} be a QBF in PCNF that is valid. A Skolem function for the existentially quantified
variables c is a function f : 2|b1| × . . . × 2|bk| → 2|c| that defines the values of the variables c based on
the universally quantified variables b1, . . . , bk occurring before c in the quantifier prefix such that

∃a1 :∀b1 : . . . ∃ak : ∀bk :Q1d1 : . . . Qldl :F
(
a1, b1, . . . , ak, bk, f(b1, . . . , bk), d1, . . . , dl

)
is still valid. The function f can be seen as a certificate to show that values for the variables c making
the QBF true exist (for any values of the variables b1, . . . , bk). Note that f cannot depend on the vari-
ables d1, . . . , dl occurring after c in the quantifier prefix, independent of whether some di is quantified
universally or existentially.

Herbrand functions. A Herbrand function is the dual of a Skolem function for the case of a QBF
that is unsatisfiable. Let

∃a1 :∀b1 : . . . ∃ak : ∀bk :∀c :Q1d1 : . . . Qldl :F (a1, b1, . . . , ak, bk, c, d1, . . . , dl)

be such a QBF that is unsatisfiable. A Herbrand function for the universally quantified variables c is a
function f : 2|a1| × . . .× 2|ak| → 2|c| that defines the values of the variables c based on the existentially
quantified variables a1, . . . , ak occurring before c in the quantifier prefix in such a way that

∃a1 :∀b1 : . . . ∃ak : ∀bk :Q1d1 : . . . Qldl :F
(
a1, b1, . . . , ak, bk, f(b1, . . . , bk), d1, . . . , dl

)
is still unsatisfiable.

Universal expansion. Let G = Q1x1 : . . . Qkxk :∀y :∃z :F (x1, . . . , xk, y, z) be a QBF in PCNF.
The universal expansion [47] of variable y in G is the formula G′ =

Q1x1 : . . . Qkxk : ∃z, z′ :F (x1, . . . , xk, true, z) ∧ F (x1, . . . , xk, false, z
′),

where z′ is a fresh copy of the variables z. This transformation is equivalence preserving [47]. In
our formulation, the universally quantified variable y to expand must only be followed by existential
quantifications in the prefix. The variables z may depend on y in G, i.e., may take different values for
different truth values of y. Hence, they need to be renamed in one copy of the matrix when turning the
universal quantification into a conjunction. Note that G′ is in PCNF again because the conjunction of
two CNFs is again a CNF.

One-point rule. Let x be an x-minterm. We have that(
∀x :x→ F (x, y)

)
↔
(
F (x, y)

)
↔
(
∃x :x ∧ F (x, y)

)
(2.1)

holds true because, in all three formulations, F has to hold for a given y-assignment if and only if the
variables x have the specific truth values defined by x. A slightly more complicated instance of this rule
can be formulated as follows. Let T (z, x) be a formula that defines the variables x uniquely based on the
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values of some other variables z. Formally, we assume that ∀z :∃x :T (z, x) and ∀z, x1, x2 :
(
T (z, x1) ∧

T (z, x2)
)
→ (x1 = x2). We have that(

∀x :T (z, x)→ F (x, y)
)
↔
(
∃x :T (z, x) ∧ F (x, y)

)
(2.2)

holds true because for a given z-assignment z and a given y-assignment y, F needs to hold only for
the x-assignment x that is uniquely defined by T in both formulations. We will use the dualities of
Equation 2.1 and 2.2 in various proofs and transformations throughout this thesis.

2.2.3 First-Order Logic

First-Order Logic (FOL) [115] is a more expressive logic, which enables reasoning about elements from
arbitrary domains. Let D be a (potentially infinite) domain and let x = (x1, x2, . . . , xk) be variables
ranging over this domain. Furthermore, let y = (y1, y2, . . . , yl) be Boolean variables ranging over B, let
f1, f2, . . . , fm be function symbols and let p1, p2, . . . , pn be predicate symbols. Each function symbol
and each predicate symbol has a certain arity, i.e., number of arguments to which it can be applied.
A term in first-order logic is either a domain variable xi (with 1 ≤ i ≤ k) or a function application
fi(t1, . . . , ta), where fi is a symbol for a function with arity a, and all ti (with 1 ≤ i ≤ a) are terms.
Intuitively, a term evaluates to an element of domain D. An atom is either a propositional variable yi
(with 1 ≤ i ≤ l) or a predicate application pi(t1, . . . , ta) where pi is a symbol for a predicate with arity
a, and all ti (with 1 ≤ i ≤ a) are terms. Thus, intuitively, an atom evaluates to a truth value from B.
Finally, a First-Order Logic (FOL) formula is one of

a, ¬F1, F1 ∨ F2, F1 ∧ F2, F1 → F2, F1 ↔ F2, ∃xi :F1, or ∀xi :F1,

where F1 and F2 are First-Order Logic formulas themselves and a is an atom. The semantics of the
Boolean connectives and the quantifiers are as expected. A model of a FOL formula is a structure that
satisfies the formula. It consists of concrete values for all variables that are not explicitly quantified, as
well as concrete realizations of all functions fi and predicates pi. Similar to propositional logic, we refer
to an atom or the negation of an atom as a first-order literal . A first-order clause is a disjunction of first-
order literals. A first-order CNF is a conjunction of first-order clauses. A FOL formula is quantifier-free
if it contains no occurrences of ∃ and ∀.

In this thesis, we will focus on two subsets of FOL: quantifier-free FOL formulas equipped with
theories, and Effectively Propositional Logic (EPR). We will elaborate on these two subsets in the
following.

2.2.4 Theories in First-Order Logic

Intuitively, a theory in first-order logic defines a set of predefined function symbols and predicate symbols
and equips them with some semantics, which is usually defined via axioms over the predefined symbols.
A model for a FOL formula modulo (means here “with respect to”) a given theory is a model for the
formula and all theory axioms.

Example 1. A theory of family relationships may define the binary predicates parentOf and childOf to-
gether with the axiom ∀x, y : parentOf(x, y)↔ childOf(y, x). The FOL formula childOf(Adam,Eve)∧
∀x :¬parentOf(Eve, x) would be satisfiable by itself, but is unsatisfiable modulo our theory of family
relationships. The formula says that Adam is a child of Eve, and Eve is the parent of nobody, with Adam
and Eve being functions of arity 0, i.e., constants.

In this thesis, we will mainly use two theories: the theory of linear integer arithmetic and the theory of
(fixed-size) bitvector arithmetic.
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Figure 2.1: A BDD representing the function f = (x ∨ y) ∧ ¬z. The root node is marked by an
incoming arrow. Terminal nodes are drawn as boxes, non-terminal nodes as circles.

Linear Integer Arithmetic (LIA). The theory of linear integer arithmetic [14] (commonly abbrevi-
ated as LIA) defines constants (function symbols with arity 0) for all integers z ∈ Z.1 Furthermore, it
defines the binary functions + and− with their expected semantics. Note that the + operator can also be
used to express multiplications by a constant factor. Finally, the predicates ≤ and = are available with
their expected semantics. In combination with negation, these predicates can also be used to define <,
> and ≥. This theory is also referred to as Presburger arithmetic although, strictly speaking, Presburger
arithmetic is defined over N and without subtraction. However, transformations between Z and N are
straightforward [14].

Bitvector Arithmetic (BV). The theory of (fixed-size) bitvector arithmetic [14] (abbreviated as
BV) defines constants for all bitvectors of a given size n. Furthermore, following the definition of the
SMT-LIB standard [13], all operators that are usually available in imperative programming languages
are defined with their expected semantics. This includes arithmetic operations (+, −, ∗, /, modulo,
remainder), bitwise operations (¬, ∨, ∧, bitshifts), concatenation of bitvectors, and extraction of sub-
bitvectors.

2.2.5 Effectively Propositional Logic

Effectively Propositional Logic (EPR) [153], also known as Bernays-Schönfinkel class, is a subset of
first-order logic that contains formulas of the form ∃x :∀y :F , where x and y are disjoint vectors of
variables ranging over domain D, and F is a function-free first-order CNF. The formula F can contain
predicates over x and y, though.

2.3 Decision Procedures and Reasoning Engines

In the following, we will discuss decision procedures and reasoning engines for the logics introduced in
the previous section from a user’s perspective.

2.3.1 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) [45] are a graph-based representation for formulas in propositional
logic. The graphs are rooted and acyclic. There are two terminal nodes, which we denote by 0 and 1 .
Non-terminal nodes are labeled by a variable, have exactly two outgoing edges, and act as decisions:
when traversing the graph from the root node, depending on the truth value of the variable labelling a
node, one of the outgoing edges is taken. If the terminal node 0 is reached during such a traversal, then

1Technically, defining constants for 0 and 1 is enough if + and − are available.
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this means that the formula evaluates to false for this assignment. If 1 is reached, the formula evaluates
to true.

Example 2. A BDD for the formula f = (x∨y)∧¬z is shown in Figure 2.1. The root node, representing
f , is marked with an incoming arrow. Non-terminal nodes are drawn as circles. The solid outgoing edge
is taken if the variable written in the node is true, the dashed edge is taken if it is false. The two terminal
nodes are drawn as boxes. The graph can be read as follows: If z = true, the entire formula f is false.
Otherwise, x is considered. If x is true (and z = false), the formula is true. Otherwise, y is considered.
If y = true (and z = x = false), then f is true. If y = false (and z = x = false), then f is false.

Orderdness and Reducedness. BDDs are ordered in the sense that for all paths from the root to the
terminal nodes, decisions on the variables are always taken in the same order. We will refer to this order
as the variable order of the BDD. For instance, the variable order in Figure 2.1 is z, x, y. Furthermore,
BDDs are reduced in the sense that redundant vertices (where the true- and the false-successor are
the same node) and isomorphic subgraphs have been eliminated. This reduction serves two purposes.
First, it reduces the size of the BDDs. Second, for a fixed variable order, it makes BDDs a canonical
representation of a propositional formula.

Canonicity. A BDD is a canonical representation of a propositional formula in the sense that for a
fixed variable order, the same formula will always be represented by isomorphic graphs. This property
makes equivalence checks between propositional formulas simple: once the BDDs have been built, all
that needs to be done is to compare the graphs. In particular, a satisfiability check can be performed by
comparing the BDD with that for false (which has the terminal node 0 as its root). BDD libraries are
usually implemented in such a way that multiple formulas are represented by a single graph with several
root nodes [160]. If two formulas are equivalent, they are represented by the same node in the graph.
This saves memory (because common subgraphs are stored only once) and allows for equivalence checks
between formulas in constant time: all that needs to be done is to check if the root nodes are identical.

Variable (re)ordering. In practice, the size of a BDD crucially depends on the variable ordering
that is imposed. For example, a certain sum-of-products formula [45] can be represented with a linear
number of nodes in the best ordering, and with an exponential number of nodes in the worst ordering.
Unfortunately, it can be shown [192] that the problem of computing a variable ordering that results
in at most k times the BDD nodes of the optimal ordering is NP-complete. That is, finding a good
variable ordering is a computationally hard problem. As a consequence, BDD libraries mostly rely on
heuristics. Particularly important are dynamic reordering heuristics [187], which try to reduce the BDD
size automatically while constructing and manipulating BDDs. Additionally (or alternatively), the user
of a BDD library can also trigger reorderings with specified heuristics manually.

Variable reordering heuristics are certainly effective in improving the scalability of BDDs, especially
in industrial applications such as formal verification of hardware circuits [187]. However, there exist for-
mulas for which no variable ordering yields a small BDD. Even worse, such characteristics cannot only
be observed on artificial examples, but also on structures that occur frequently in industrial applications.
For instance, for an n-bit multiplier, it can be shown [45] that at least one of the output functions requires
at least 2n/8 BDD nodes for any variable ordering. Together with the recent progress in efficient SAT
solving (see below), these scalability issues are among the reasons why BDDs are increasingly displaced
in applications like model checking.

Operations on BDDs. BDD libraries like CUDD [198] provide a rich set of operations. Besides the
basic Boolean connectives ¬, ∨, ∧, etc., they offer universal and existential quantification of variables.
Hence, BDDs can also be used to reason about Quantified Boolean Formulas (QBFs). Other useful
operations are the computation of positive and negative cofactors, as well as swapping of variables in the
formula. Satisfying assignments can be computed by traversing some path from the root to the terminal
node 1 . BDD libraries often also provide combined operations that can be computed more efficiently
than performing the operations in isolation. One example of such a combined operation is ∃x :F1(x, y)∧
F2(x, z), i.e., conjunction followed by existential quantification of some variables. Because of this rich
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set of operations, it is often not difficult to realize symbolic algorithms (we will introduce this term in
Section 2.4) using BDDs as the underlying reasoning engine.

2.3.2 SAT solvers

A SAT solver can decide whether a given propositional formula in CNF is satisfiable. This problem
is NP-complete, which means that given solutions can be checked in polynomial time, but no polyno-
mial algorithms to compute solutions are known2. Despite this relatively high complexity3 there have
been enormous scalability improvements over the last decades. Today, modern SAT solvers can handle
industrial problem instances with millions of variables and clauses [133].

Working principle. Modern SAT solvers [133] are based on the concept of Conflict-Driven Clause
Learning (CDCL), where partial assignments that falsify the formula are eliminated by adding a blocking
clause to forbid the partial assignment. The current assignment in the search is not just negated to obtain
the clause. Instead, a conflict graph is analyzed with the goal of eliminating irrelevant variables and thus
learning smaller blocking clauses. This idea is combined with aggressive (so-called non-chronological)
backtracking to continue the search. This general principle was introduced in 1996 with the SAT solvers
GRASP [193]. Modern solvers still follow the same principle [133], but extended with clever data
structures for constraint propagation, heuristics to choose variable assignments, restarts of the search,
and other improvements. We refer to [25] for more details on these techniques.

SAT competition. One driving force for research in efficient SAT solving is the annual SAT com-
petition4 [122], held since 2002. It also defines a simple textual format for CNFs, which is called DI-
MACS [177] and supported by virtually all SAT solvers. A comparison [122] of the best solvers from
2002 to 2011 shows that the number of benchmark instances (of the 2009 benchmark set) solved within
1200 seconds increased from around 50 to more than 170 during this time span. Conversely, the max-
imum solving time for the 50 simplest benchmarks dropped from around 1100 seconds to around 10
seconds. The plot in [122] summarizing this data does not show any signs of saturation over the years.
Hence, further performance improvements can also be expected for the coming years. The SAT solver
based synthesis methods presented in Chapter 3 will directly benefit from such improvements.

Solver Features and Notation in this Thesis

In the algorithms presented in this thesis, we will denote a call to a SAT solver by

sat := PROPSAT
(
F (x)

)
,

where F (x) is a propositional formula in CNF. The variable sat is assigned true if F (x) is satisfiable,
and false otherwise.

Satisfying assignments. Modern SAT solvers do not only decide satisfiability, but can also compute
a satisfying assignment for the variables in the formula. We will write

(sat,x,y, . . .) := PROPSATMODEL
(
F (x, y, . . .)

)
to denote a call to the solver where we also extract a satisfying assignment in the form of cubes x,y, . . .
over the variables x, y, . . . occurring in the formula F . The cubes may be incomplete if the value of the
missing variables is irrelevant for F to be true. The returned cubes are meaningless if sat is false.

Unsatisfiable cores. Another feature of modern SAT solvers is the efficient computation of unsatis-
fiable cores, as defined in Section 2.2.1. Given that x ∧ F (x, y) is unsatisfiable, we will write

x′ := PROPUNSATCORE
(
x, F (x, y)

)
2Even more, if P6=NP, which is widely believed but not proven, no polynomial algorithm exists.
3Well, in comparison to the complexities that have to be dealt with in synthesis it is actually not so high.
4http://www.satcompetition.org/ (last visit on 2015-08-01).

 http://www.satcompetition.org/
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to denote the extraction of an unsatisfiable core x′ ⊆ x such that x′ ∧ F (x, y) is still unsatisfiable.
Natively, SAT solvers usually compute unsatisfiable cores that are not necessarily minimal. However,
a computed core can easily be minimized by trying to drop literals of x′ one by one and checking if
unsatisfiability is still preserved. We will denote the computation of a minimal unsatisfiable core by

x′ := PROPMINUNSATCORE
(
x, F (x, y)

)
.

In our algorithms, we will use unsatisfiable core computations mostly to generalize discovered facts. In
our experience, good generalizations (in the form of small cores) are usually more beneficial than fast
ones. Thus, we will usually compute minimal unsatisfiable cores in our algorithms.

Interpolation. Given two CNFsA(x, y) andB(x, z) withA∧B = false, we denote the computation
of a Craig interpolant I(x) (such that A→ I → ¬B; cf. Section 2.2.1) by

I := INTERPOL(A,B).

While SAT solvers usually cannot compute interpolants natively, many of them can output unsatisfiability
proofs. An interpolant can then be computed from such an unsatisfiability proof forA∧B using different
methods [76].

Incremental solving. Modern CDCL-based SAT solvers can solve sequences of similar CNF queries
more efficiently than by processing the queries in isolation. For instance, if clauses are only added but
not removed between satisfiability checks, all the clauses learned so far can be retained and do not have
to be rediscovered again and again. Removing clauses is more problematic. Certain learned clauses
may become invalid and need to be removed as well. Clause removals are supported by different solvers
in different ways (or not at all). One wide-spread approach is to provide an interface for pushing the
current state of the solver onto a stack and restoring it later. A related feature that is supported by many
SAT solvers is assumption literals, which can be asserted temporarily. In the algorithms presented in
this thesis, we will mostly avoid removing clauses from incremental SAT sessions and use assumption
literals to enable or disable parts of a formula instead. In this context, will also refer to variables that are
introduced for the purpose of enabling or disabling formula parts as activation variables.

In general, we will present our synthesis algorithms in a non-incremental way and discuss the use
of incremental solving separately. This way, we do not have to introduce notation for adding clauses,
resetting the state of a solver, etc., which increases the readability of the algorithms.

2.3.3 QBF Solvers

A QBF solver can decide whether a given Quantified Boolean Formula in PCNF is satisfiable. This prob-
lem is PSPACE-complete [138], which means that solving it requires a polynomial amount of memory.
However, no NP-time algorithms are known5. Hence, from a complexity point of view, QBF problems
are (likely to be) strictly harder than SAT problems.

Working principle. While most modern SAT solvers follow the concept of CDCL, the set of tech-
niques applied for QBF solving is more diverse. For instance, the solver DepQBF [155] uses a search-
based algorithm (called QDPLL) with conflict-driven clause learning (similar to CDCL SAT solvers)
and solution-driven cube learning. The solver Quantor [21] uses variable elimination in order to trans-
form the problem into a purely propositional formula. The solver RAReQS [120] follows the idea of
counterexample-guided refinement of solution candidates, where plain SAT solvers are used to compute
solution candidates as well as to refute and refine them. None of these techniques is clearly superior —
different techniques appear to work well on different benchmarks.

Preprocessing. An important topic in QBF solving is preprocessing. A QBF preprocessor simplifies
a QBF before the actual solver is called. It is also possible that the preprocessor solves a QBF problem
directly, or reduces it to a propositional formula, for which a SAT solver can be used. Bloqqer [26] is

5And it is widely believed, but not proven, that no such algorithms exist.
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an example of a modern QBF preprocessor implementing many techniques. It has been shown to have
a very positive impact on the performance of different kinds of solvers [26]: when using Bloqqer, the
QBF solvers DepQBF [155], Quantor [21], QuBE [98] and Nenofex [154] can solve between 20 %
and 40 % more benchmarks (of the benchmark set from the QBFEVAL 2010 competition within 900
seconds). The median execution time decreases by up to a factor of 50 (achieved for QuBE) due to
Bloqqer [26].

Competitions. Similar to SAT solving, there are also competitions in QBF solving (QBFEVAL6

and the QBF Gallery7) with the aim of collecting benchmarks as well as assessing and advancing the
state of the art in QBF research and tool development. The input format for these competitions is called
QDIMACS, and is essentially just an extension of the DIMACS format with a quantifier prefix. While
the QBF competitions definitely witness solid progress in scalability over the years, it seems that QBF
has not yet reached the maturity of SAT, especially when it comes to industrial applications such as
formal verification, where the scalability is often insufficient [16]. However, because QBF is a much
younger research field than SAT, future scalability improvements may be even more significant. The
QBF-based synthesis algorithms presented in this thesis would directly benefit from such developments.

Solver Features and Notation in this Thesis

Similar to our notation for SAT solvers, we will write

sat := QBFSAT
(
Q1x :Q2y : . . . F (x, y, . . .)

)
to denote a call to a QBF solver, where F is a propositional formula in CNF, andQi ∈ {∃, ∀}. As before,
sat will be assigned true if the QBF is satisfiable and false otherwise.

Satisfying assignments. Many existing QBF solvers cannot only decide the satisfiability of formu-
las, but also compute satisfying assignments for variables that are quantified existentially on the outer-
most level. We will write

(sat,a,b . . .) := QBFSATMODEL
(
∃a :∃b : . . . Q1x :Q2y : . . . F (a, b, . . . , x, y, . . .)

)
to denote the extraction of such a satisfying assignment in the form of cubes a,b, . . . over the vari-
able vectors a, b, . . . quantified existentially on the outside. In general, satisfying assignments cannot
be extracted when applying QBF preprocessing, because preprocessing techniques are often not model
preserving. To remedy this situation, we extended the popular QBF preprocessors Bloqqer to preserve
satisfying assignments [189] so that we can use QBF preprocessing in synthesis algorithms that require
satisfying assignments. However, this work will not be presented in detail in this thesis, and is thus only
mentioned briefly at this point.

Unsatisfiable cores. Certain QBF solvers, such as DepQBF [156], can also compute unsatisfiable
cores natively. However, this feature cannot be used with preprocessing straightforwardly. Furthermore,
we did not encounter significant performance improvements in our experiments compared to minimizing
the core in an explicit loop. Hence, we do not introduce dedicated notation for unsatisfiable QBF cores
and use explicit minimization loops in our algorithms instead.

Incremental solving. Comprehensive approaches for incremental QBF solving have only been pro-
posed very recently [156]. However, incremental solving cannot yet be used in combination with QBF
preprocessing, because existing preprocessors are inherently non-incremental. We experimented with
incremental solving in our synthesis algorithms. However, for many cases, preprocessing turned out to
much more beneficial than incremental solving. We will therefore refrain from introducing notation for
incremental QBF solving, and discuss possibilities for incremental solving separately.

6http://www.qbflib.org/index_eval.php (last visit on 2015-08-01).
7http://qbf.satisfiability.org/gallery/ (last visit on 2015-08-01).

http://www.qbflib.org/index_eval.php
http://qbf.satisfiability.org/gallery/
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2.3.4 First-Order Theorem Provers

First-order logic is undecidable [115], that is, an algorithm to decide the satisfiability (or validity) of ev-
ery possible first-order logic formula cannot exist. Yet, incomplete algorithms and tools do exist, and they
perform well on many practical problems. Similar to SAT and QBF, there is also a competition for auto-
matic theorem provers to solve problems in first-order logic and subsets thereof. It is called CASC8 [204]
and exists since 1996. Benchmarks for the competition are taken from the TPTP library [203], which
defines a common format for first-order logic problems.

In this thesis, we are not so much interested in full first-order logic, but rather in the subset called Ef-
fectively Propositional Logic (EPR). In contrast to full first-order logic, EPR is actually decidable [153]
(the problem is NEXPTIME-complete). The CASC competition also features a track for EPR. From
2008 to 2014, this track was always won by iProver [146]. iProver is an instantiation-based solver and
can thus not only decide the satisfiability of EPR formulas, but also compute models in form of concrete
realizations for the predicates. This feature makes iProver particularly suitable for synthesis.

2.3.5 SMT Solvers

A Satisfiability Modulo Theories (SMT) solver can be seen as a first-order theorem prover that is spe-
cialized towards deciding the satisfiability of formulas with respect to some background theories. Many
SMT solvers can only handle quantifier-free formulas, and can thus also be understood as extensions
of SAT solvers to more expressive (but typically decidable) logics. This second view also explains the
nature of the most common algorithms implemented in SMT solvers: algorithms for propositional sat-
isfiability are combined with theory-specific reasoning engines [169]. This approach is usually much
more efficient than using a first-order theorem prover with axioms for the theory9, especially for realistic
applications [180].

Working principle. There are several general strategies for SMT solving [14]. Eager encoding
schemes attempt to transform the problem into an equisatisfiable propositional formula by eagerly in-
stantiating all consequences of the theory axioms on the formula. The propositional formula is then
solved by a SAT solver. Of course, this can significantly blow up the formula size. However, due to the
availability of powerful SAT solvers, this approach can nevertheless be efficient. For bitvector arithmetic,
this approach is called bit-blasting and implemented in efficient solvers such as Boolector [44]. Lazy
encoding is an approach where a SAT solver and a theory solver for conjunctive statements interact. In
its simplest form, the SAT solver first computes a satisfying assignment for the propositional skeleton of
the formula, i.e., a truth value for all predicate occurrences, such that the formula becomes true. In case
of unsatisfiability, the entire formula is unsatisfiable. In case of satisfiability, the theory solver checks
whether the computed truth assignment for the predicate occurrences is feasible in the theory. If so, the
entire formula is satisfiable modulo the theory. Otherwise, a blocking clause is computed, which prevents
the SAT solver from producing the same assignment (as well as other assignments that are inconsistent
in the theory) again. DPLL(T) is a variant of this lazy encoding approach where the SAT solver and
the theory solver are more tightly integrated. We refer to [14] for a more elaborate discussion of SMT
solving techniques.

Competitions. Since 2005, there has been a yearly competition for SMT solvers, called SMT-
COMP10. It stimulates research and tool development. It also defines a standard input format for SMT
problems, which is called SMT-LIB (version 2) [13].

8http://www.cs.miami.edu/˜tptp/CASC/ (last visit on 2015-08-01).
9This is not even possible in some cases because some theories cannot be captured by a finite set of first-order axioms [180].

10http://www.smtcomp.org/ (last visit on 2015-08-01).

http://www.cs.miami.edu/~tptp/CASC/
http://www.smtcomp.org/
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Solver Features and Notation in this Thesis

Similar to SAT solvers, SMT solvers can compute satisfying assignments, unsatisfiable cores, and per-
form incremental solving. We will write

sat := SMTSAT
(
F (x)

)
to denote a call to an SMT solver, where F is a formula over some vector of (potentially non-Boolean)
variables x = (x1, . . . , xn). As before, sat is assigned true if the formula F is satisfiable modulo the
used theories, and false otherwise.

Satisfying assignments. We will write

(sat,x,y, . . .) := SMTSATMODEL
(
F (x, y, . . .)

)
to denote a call to the solver where we also extract a satisfying assignment. Recall that satisfying assign-
ments for propositional formulas were represented by cubes. In the case of SMT, a satisfying assignment
is simply a vector of constants, one for each variable.

Unsatisfiable cores. Let F (x, y, . . .) be a formula in which the variables in x are all Boolean and let
x be a cube over x. Given that x ∧ F (x, y, . . .) is unsatisfiable, we write

x′ := SMTUNSATCORE
(
x, F (x, y, . . .)

)
to denote the extraction of an unsatisfiable core x′ ⊆ x such that x′ ∧ F (x, y, . . .) is still unsatisfiable.
The computation of a minimal unsatisfiable core will be denoted by

x′ := SMTMINUNSATCORE
(
x, F (x, y, . . .)

)
.

Incremental solving. Just as for SAT solvers and QBF solvers, we do not introduce notation for
incremental SMT solving, but discuss possibilities for incremental solving separately.

2.4 Symbolic Encoding and Symbolic Computations

Formal methods for verification or synthesis must be able to deal with large sets of states or large sets of
possible inputs efficiently. Symbolic encoding [115, page 383] is a way to represent large sets of elements
compactly using formulas. Set elements are represented by assignments to a set of variables. Formulas
over these variables characterize which elements are contained in a set: if the formula evaluates to true
for a particular variable assignment, then the corresponding element is part of the set. If the formula
evaluates to false, then the element is not contained. Such a formula is called the characteristic formula
of the set.

Example 3. Consider the set A of all integers from 0 to 65535. We can use 16 Boolean variables
x = (x0, . . . , x15) to encode subsets of A symbolically. The variables represent the bits of the bi-
nary encoding of a number, with x0 being the least significant bit. An explicit representation of the
set A0 = {0, 2, 4, . . . , 65534} of all even numbers would have to enumerate 32768 elements. In
a symbolic representation, the set of even numbers can be represented by the propositional formula
F0(x) = ¬x0, requiring that the least significant bit is false and all other bits are arbitrary. The set
A1 = {49152, 49153, . . . , 65535} of all numbers greater or equal to 49152 can be represented symboli-
cally using the formula F1(x) = x15 ∧ x14, stating that the two most significant bits must be set.

Characteristic formulas cannot only be used to represent sets. We can also perform set operations directly
on the formulas. A set union A0 ∪ A1 can be realized as disjunction of the corresponding characteristic
formulas F0 and F1, intersection corresponds to conjunction, and a complement to the negation of the
characteristic formula. The formula false represents the empty set, the formula true represents the set of
all elements in the domain.
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Example 4. Continuing Example 3, the set A0 ∩ A1 of even numbers greater or equal to 49152 can be
computed symbolically as F0(x) ∧ F1(x) = ¬x0 ∧ x15 ∧ x14. The set A1 \ A0 of odd numbers greater
or equal to 49152 can be computed symbolically as F1(x) ∧ ¬F0(x) = x15 ∧ x14 ∧ x0.

In this thesis, we will often handle sets and their symbolic representations interchangeably. For instance,
we may say “the set of states F (x)” although F is a formula over state variables x, representing the set
symbolically.

2.5 Hardware Synthesis from Safety Specifications

In this section, we define the hardware controller synthesis problem from safety specifications and intro-
duce the relevant concepts from game theory to solve the problem. We also present a standard textbook
solution. It will serve as the starting point for the SAT-based methods that will be presented in Section 3.
The last subsection then briefly discusses other common specification formats, which will mostly be
relevant for understanding our discussion of related work as well as suggestions for future work.

2.5.1 Safety Specifications

Intuitively, a safety specification expresses that certain “bad things” can never happen in a system. This
stands in contrast to liveness properties, which stipulate that certain “good things” must happen eventu-
ally. In this light, our focus on synthesis procedures for safety specifications may appear rather restric-
tive at the first glance. However, synthesis algorithms for safety specifications can be useful even for
specifications that contain liveness properties. First, bounded synthesis approaches [81, 86] can reduce
synthesis from richer specifications to pure safety synthesis problems. This is often done by setting a
bound on the reaction time. For instance, instead of requiring that some event happens eventually, one
may require that it happens within at most k steps. Clearly, a realization of the latter is also a realization
of the former. This approach [86] has been followed in the SyntComp competition for translating LTL
benchmarks into safety specifications automatically [117], but can also be applied when writing a safety
specification manually. By choosing k as low as possible (such that the problem is still realizable), we
may even get better systems in the sense that they react faster. A second reason for the importance of
safety synthesis procedures is that safety properties often make up the bulk of a specification and they
can be handled in a compositional manner: the safety synthesis problem can be solved before the other
properties are handled [195].

Safety specifications in SyntComp. The SyntComp [117] synthesis competition defines safety
specification benchmarks as hardware circuits in AIGER11 format, as illustrated in Figure 2.2. The
circuits have uncontrollable inputs i, controllable inputs c, flip-flops to store a number of state bits x,
and one output “error” signaling specification violations. The corresponding synthesis problem is to
construct a circuit that defines the controllable inputs c based on the uncontrollable inputs i and the
state x in such a way that the error output can never reach the value true. This unknown circuit to be
constructed is denoted with a question mark in Figure 2.2. We will also refer to the controllable inputs
as control signals to emphasize that these signals are not intended to be inputs of the final system.

The specification illustrated in Figure 2.2. can be seen as a runtime monitor, declaratively encoding
the design intent for the system to be synthesized. Another view is that the specification is a plant which
needs to be controlled, or a sketch of a hardware circuit where the implementation for certain signals
is still missing. Hence, this format nicely fits the concept of controller synthesis, allowing for a mixed
imperative/declarative programming paradigm. Formally, we define a safety specification as follows.

Definition 5 (Safety Specification). A safety specification is a tuple S = (x, i, c, I, T, P ), where

• x is a vector of Boolean state variables,

11http://fmv.jku.at/aiger/ (last visit on 2015-08-01).

http://fmv.jku.at/aiger/
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Figure 2.2: Circuit representation of a safety specification. The variable vector i represents uncon-
trollable inputs, c represents controllable inputs, and x is a vector of state bits. The
system to be synthesized is marked with a question mark. It must define the signals c
such that the error output can never become true.

• i is a vector of uncontrollable, Boolean input variables,
• c is a vector of controllable, Boolean input variables,
• I(x) is an initial condition, expressed as a propositional formula over the state variables,
• T (x, i, c, x′) is a transition relation, expressed as a propositional formula over the variables x, i,
c, and x′, where x′ denotes the next-state copy of x,

• the transition relation T (x, i, c, x′) is complete in the sense that ∀x, i, c : ∃x′ :T (x, i, c, x′),
• T is deterministic in that ∀x, i, c, x′1, x′2 :

(
T (x, i, c, x′1) ∧ T (x, i, c, x′2)

)
→ (x′1 = x′2), and

• P (x) is a propositional formula representing the set of safe states in S .

A state of S is an assignment to all state variables x. We will represent such assignments (and thus states
of S) as x-minterms x. In the spirit of symbolic encoding as introduced Section 2.4, a formula F (x)
over the state variables x represents the set of all states x for which x |= F (x) holds. In this way, the
formula I(x) defines a set of initial states, and the formula P (x) defines the set of safe states. Similarly,
the formula T defines allowed state transitions: a transition from the current state x to the next state x′

is allowed with input i and c if and only if x ∧ i ∧ c ∧ x′ |= T (x, i, c, x′). Definition 5 requires that the
transition relation T is both deterministic and complete. That is, for any state x and input i, c, the next
state x′ is always uniquely defined.

2.5.2 Safety Games

A specification S = (x, i, c, I, T, P ) can be seen as a game between two players: the environment and
the system we wish to synthesize (see also Figure 1.2). Depending on the context, we will thus refer to
S either as a specification or as a game.

Plays. The game starts in one of the initial states (chosen by the environment), and is played in
rounds. In every round j, the environment first chooses an assignment ij to the uncontrollable inputs i.
Next, the system picks an assignment cj to the controllable inputs c. The transition relation T then
computes the next state xj+1. This is repeated indefinitely. The resulting sequence x0,x1 . . . of states
is called a play. Formally, we have that x0 |= I(x) and xj ∧ x′j+1 ∧ T (x, i, c, x′) is satisfiable (with
some ij and cj chosen by the players) for all j ≥ 0. A play x0,x1 . . . is won by the system and lost by
the environment if ∀j :xj |= P (x), i.e., if only safe states are visited. Otherwise, the play is lost by the
system and won by the environment.

Preimages. Let F (x) be a formula representing a certain set of states. The mixed preimage

Forces1
(
F (x)

)
= ∀i :∃c, x′ :T (x, i, c, x′) ∧ F (x′)

represents all states from which the system can enforce that some state of F is reached in exactly one
step. Analogously,

Forcee1
(
F (x)

)
= ∃i :∀c :∃x′ :T (x, i, c, x′) ∧ F (x′)
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gives all states from which the environment can enforce that F is visited in one step. We also define the
cooperative preimage

Reach1

(
F (x)

)
= ∃i, c, x′ :T (x, i, c, x′) ∧ F (x′)

denoting the set of all states from which F can be reached cooperatively by the two players. The follow-
ing dualities can easily be shown:

• ¬Forces1(F ) = Forcee1(¬F ) holds because, intuitively, the states from which the system cannot
enforce that F is reached must be the states from which the environment can enforce that ¬F is
reached.

• ¬Forcee1(F ) = Forces1(¬F ) holds because, dually, the states from which the environment cannot
enforce that F is reached must be the states from which the system can enforce that ¬F is reached.

Furthermore, we have that Reach1(F1)∨Reach1(F2) = Reach1(F1∨F2). Yet, the following equivalence
does not hold in general: Forces1(F1)∨ Forces1(F2) = Forces1(F1 ∨F2). The intuitive reason is that there
may be states from which the environment controls whether F1 or F2 is visited next, and the system
can only ensure that one of the two regions is reached. Such states would falsify Forces1(F1 ∨ F2) →
Forces1(F1)∨ Forces1(F2). This difference in compositionality between Reach1 and Forces1 explains why
some ideas from verification often cannot be ported to synthesis straightforwardly.

Strategies. In this work, we focus on memoryless strategies because these strategies are sufficient12

for safety games [205]. A (memoryless) strategy for the system player in the game S is a formula
S(x, i, c, x′) that specializes T in the sense that

• S(x, i, c, x′)→ T (x, i, c, x′) and
• ∀x, i : ∃c, x′ :S(x, i, c, x′).

The implication in the first bullet requires that the strategy may only allow state transitions that are also
allowed by the transition relation. The second bullet expresses that the strategy must be complete with
respect to the current state and uncontrollable input: for every state x and input i, the strategy must
contain some way for the system to choose c (and some next state, but the next state is uniquely defined
by T already). For a particular situation, the strategy can allow many possibilities to choose c, though. A
strategy for the system is winning if all plays that can be constructed by following S instead of T are won
by the system. The winning region W (x) is the set of all states from which a winning strategy exists.
That is, if the play would start in some arbitrary state of the winning region, the system player would
have a strategy to always win the game.

System implementations. A system implementation is a function f : 2x × 2i → 2c to uniquely
define the control signals c based on the current state and the uncontrollable inputs i. A system im-
plementation f implements a strategy S if ∀x, i : ∃x′ :S

(
x, i, f(x, i), x′

)
, that is, if for every state x

and input i, the control value c = f(x, i) computed by f is allowed by the strategy S. A system
implementation f realizes a safety specification S =

(
x, i, c, I(x), T (x, i, c, x′), P (x)

)
if all plays of

S ′ =
(
x, i, ∅, I(x), T (x, i, f(x, i), x′), P (x)

)
are won by the system player, i.e., visit only safe states.

Here, S ′ is a simplified version of the game S where the moves of the system player are already de-
fined by f , i.e., the system player has no choices left. A safety specification is realizable if a system
implementation that realizes it exists. Given a winning strategy S for a safety specification S, every
implementation f of the winning strategy S realizes the specification S. This follows directly from the
definition of the winning strategy. Hence, a system implementation for a given safety specification S can
be constructed by computing a winning strategy S for S and then computing an implementation f of S.

2.5.3 Synthesis Algorithms for Safety Specifications

Given an explicit representation of the safety specification S as a game graph (with vertices representing
states and edges representing state transition) the problem of deciding the realizability of a safety speci-

12Memoryless strategies are sufficient in the sense that, if a strategy to win the game exists, then there also exists a memory-
less strategy to win the game.
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Algorithm 2.1 SAFEWIN: A textbook algorithm for computing a winning region in a safety game.

1: procedure SAFEWIN
(
(x, i, c, I, T, P )

)
, returns: The winning region W or false

2: F := P
3: while F changes do
4: F := F ∧ Forces1(F )
5: if I 6→ F then
6: return false
7: end if
8: end while
9: return F

10: end procedure

fication is known to be solvable in linear time [205]. When starting from our symbolic representation S,
the realizability problem is EXP-time complete [171].

A synthesis algorithm for safety specifications takes as input a safety specification S and computes
a system implementation realizing this specification if such an implementation exists. If no such imple-
mentation exists, the algorithm reports unrealizability. Wolfgang Thomas [205] sketches the standard
textbook algorithm for solving this problem. It proceeds in two steps. First, a winning strategy is
computed. Second, the winning strategy is implemented in a circuit. This process is elaborated in the
following two subsections.

2.5.3.1 Computing a Winning Strategy

The computation of a winning strategy S(x, i, c, x′) for the game S=
(
x, i, c, I(x), T (x, i, c, x′), P (x)

)
is achieved by computing the winning regionW (x) of the game S using the procedure SAFEWIN, shown
in Algorithm 2.1. The winning region W is built up in the variable F . Initially, F represents the set of
all safe states P . Line 4 retains only those states of F from which the system player can enforce that
the play stays in a state of F also in the next step. This operation is repeated as long as the state set F
changes. If the set of initial states I is not contained in F any more, the procedure aborts, returning false
to signal unrealizability of the specification. Otherwise, the final version of F is returned as the winning
region. All operations that are performed in this algorithm can easily be realized using BDDs.

If the specification is realizable, i.e., SAFEWIN did not return false, a winning strategy S is computed
from the winning region W . For safety specifications, S can be defined as

S(x, i, c, x′) = T (x, i, c, x′) ∧
(
W (x)→W (x′)

)
.

That is, the transition relation must always be respected. Furthermore, if the current state is in the winning
region, then the next state must be contained in the winning region as well. This strategy will enforce
the specification because I → W , i.e., all initial states are contained in the winning region (otherwise
SAFEWIN would have signaled unrealizability). When starting from a state of the winning region, the
strategy ensures that the next state will be in the winning region again. Finally, the winning regionW can
only contain safe states, i.e., W → P . Hence, only safe states can be visited when following the strategy.

2.5.3.2 Computing a System Implementation from a Winning Strategy

The second step is to compute a system implementation that implements the strategy, and to realize this
implementation in form of a circuit. This can be done by computing a Skolem function for the variables
c in the formula

∀x, i : ∃c, x′ :S(x, i, c, x′),
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Algorithm 2.2 COFSYNT: A cofactor-based algorithm for computing an implementation of a strategy.

1: procedure COFSYNT
(
S(x, i, c, x′)

)
, returns: f1, . . . , fn : 2x × 2i → B

2: for cj ∈ c do
3: C1(x, i) := ∃x′, c :S

(
x, i, (c0, . . . , cj−1, true, cj+1, . . . , cn), x′

)
4: C0(x, i) := ∃x′, c :S

(
x, i, (c0, . . . , cj−1, false, cj+1, . . . , cn), x′

)
5: C(x, i) := ¬C1(x, i) ∨ ¬C0(x, i)
6: Fj(x, i) := simplify(C1, C)
7: S(x, i, c, x′) := S(x, i, c, x′) ∧

(
cj ↔ Fj(x, i)

)
8: end for
9: return F1, . . . , Fn

10: end procedure

i.e., a function f : 2x × 2i → 2c such that

∀x, i :∃x′ :S
(
x, i, f(x, i), x′

)
holds. Usually, we prefer simple functions that can be implemented in small circuits. A survey of
existing methods to solve this problem can be found in our FMCAD’12 [82] publication. One widely
used method is presented in the following.

The cofactor-based method. The cofactor-based method presented by Bloem et al. [36] can be
considered as the “standard method” for computing an implementation from a strategy. It is outlined in
Algorithm 2.2. The input is a strategy S, the output is a set of functions f1, . . . , fn : 2x × 2i → B, each
one defining one control signal of c = (c1, . . . , cn). Together, these functions define f : 2x × 2i → 2c.
The COFSYNT procedure computes one fj after the other. In Line 3, a formula C1(x, i) is constructed.
It represents the set of all valuations of x and i in which cj = true is allowed by the strategy. It is
computed as the positive cofactor of S with respect to cj , while all signals that are currently not relevant
are quantified existentially. Similarly, Line 4 computes all situations where cj = false is allowed by the
strategy. Our definition of a strategy implies that C1(x, i)∨C0(x, i) = true, i.e., one of the two values is
always allowed (but sometimes both are allowed). Next, Line 5 computes the care set C, i.e., the set of
all situations in which the output matters. Outside of this care set, the value of cj can be set arbitrarily.
Line 6 uses this information to simplify C1: The procedure simplify returns some Fj which is equal to
C1 wherever C is true, and arbitrary where C is false. When using BDDs as the underlying reasoning
engine, this simplification can be implemented with the BDD operation Restrict [66]. However, this is
an optional optimization to obtain smaller circuits. Setting Fj = C1 would work as well. Finally, Line 7
refines the strategy S with the computed implementation for the control signal cj . This step is necessary
because some control signals may depend on others, so fixing the implementation of one control signal
may restrict other control signals.

Illustration. Figure 2.3 illustrates one iteration of the COFSYNT procedure graphically. The box
represents the set of all possible assignments to the variables x and i. The regionC1 contains all situations
where cj = true is allowed. Similarly,C0 contains all situations where cj = false is allowed. The overlap
of the two regions is colored in dark gray. Hence, the dark gray region is the set of situations where both
cj = true and cj = false is allowed. It corresponds to the negation ¬C of the care set C. Note that each
point in the box is either contained in C1 or in C0 (or in both). The function Fj defining cj is shown
in blue. Outside of the dark gray don’t-care area ¬C it matches C1 precisely. In the don’t-care area it
can be different, though. These properties are enforced by the procedure simplify, called in Line 6 of
COFSYNT. Exploiting the freedom in the don’t-care region can result in simpler formulas and thus in
smaller circuits. In Figure 2.3, this is indicated by Fj being much more regular than C1.

Computing circuits. In order to obtain an implementation f in form of a hardware circuit, the indi-
vidual functions fj , defined as formulas Fj , need to be transformed into a network of gates. In principle,
this is not difficult: each Fj is a propositional formula (if quantifiers are left, they can be expanded) and
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C0(x,i)

C1(x,i) ¬C(x,i)

2|x∪i|
Fj(x,i)

Figure 2.3: Working principle of COFSYNT. The box represents the set 2|x∪i| of all possible as-
signments to x and i. The dark gray overlap between the regions C1 and C0 is the
don’t-care region ¬C. The solution Fj matches C1 save for the don’t-care region.
Exploiting the freedom in the don’t-care region results in a simpler formula Fj .

the structure of the formula can directly be translated into gates. If BDDs are used, the decision graph
can directly be translated into a circuit by translating each decision node into a multiplexer.

2.5.4 Other Specification Formats

We briefly sketch some other common specification formats in this subsection. While this is not strictly
necessary for understanding the synthesis algorithms presented in this thesis, it is still helpful for under-
standing the differences to related work.

Reachability specifications. A reachability specification R = (x, i, c, I, T, F ) is defined similar
to our safety specification S = (x, i, c, I, T, P ). The difference lies only in the objective: while S
is satisfied if the safe states P (x) are never left, R is satisfied if a certain set F (x) of target states is
reached at least once. There is an obvious duality between safety and reachability: from a certain state x,
the system can enforce that the next state is in P (x) if and only if the environment cannot enforce that the
next state is in ¬P (x). Thus, the winning region of a safety game S = (x, i, c, I, T, P ) can be computed
by first computing the winning region of the reachability game R = (x, i, c, I, T,¬P ) using Forcee1
instead of Forces1, and then taking the complement. Vice versa, the winning region for a reachability
game can be computed by solving a safety game.

Büchi specifications. A Büchi specification B = (x, i, c, I, T, F ) is defined just like a safety speci-
fication, but the set F (x) of target states needs to be visited infinitely often instead of only once. A given
reachability specification can be transformed into an equivalent Büchi specification by making the target
states F (x) a trap-region that can never be left once reached. Similarly, a safety specification can be
transformed into an equivalent Büchi specification by making the unsafe states ¬P (x) a trap-region and
using P (x) as target states.

Generalized Büchi specifications. A generalized Büchi specification BG = (x, i, c, I, T,F) is
defined via a set F = {F1, . . . Fn} of sets of target states. Each state set Fi(x) with 1 ≤ i ≤ n needs to
be visited infinitely often.

Generalized Reactivity of Rank 1 (GR(1)) [36] specifications. A GR(1) specification essentially
consists of two generalized Büchi specifications: one expressing assumptions about the environment, and
the other one expressing guarantees about the system. The guarantees need to be satisfied (only) if the
assumptions are satisfied. The worst case complexity of deciding realizability for GR(1) specifications
is quadratic in the variable space [36] (which is in turn singly exponential in |x| · |i| · |c|).

Linear Temporal Logic (LTL) [175] specifications. LTL specifications are defined as formulas
over Boolean input- and output variables. Besides the usual Boolean operators (¬,∨,∧, . . .) to combine
sub-formulas, the following temporal operators are allowed. The operator X(ϕ), where ϕ is itself an
LTL formula, expresses that ϕ must hold in the next time step. The operator ϕ U ψ, where ϕ and ψ are
LTL formulas, requires that ϕ must be true until the point in time where ψ becomes true, and ψ must
become true eventually. Based on these two temporal operators, other operators can be defined. The
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F=G?
yes/no+xStudent Teacher

Figure 2.4: Interaction between student and teacher in query learning. Subset queries ask if x →
G(x) and are answered by yes or no. Equivalence queries ask if F = G. In case the
answer is no, the teacher also provides a counterexample x.

operator F(ϕ) = true U ϕ expresses that ϕ must become true at some point in the future. The operator
G(ϕ) = ¬F(¬ϕ) requires ϕ to hold in all time steps. As already mentioned in the introduction, synthesis
from LTL specifications has a doubly exponential worst case complexity [186].

2.6 Learning by Queries

In this section, we discuss concepts for learning propositional formulas based on queries, as introduced
by Angluin [7]. We will use the basic concept of query learning in our SAT-based algorithms for hard-
ware controller synthesis. We mostly follow the terminology of Crama and Hammer [68, Chapter 7] and
refer to this book also for a more elaborate discussion.

2.6.1 Basic Concept

The goal of query learning is to compute a small representation F of a propositional formulaG(x) over a
given set x of Boolean variables. As illustrated in Figure 2.4, this is achieved by two parties in interaction:
the student (or learner) and the teacher (or oracle). The student can ask two kinds of questions:

• A subset query asks if a given (potentially incomplete) cube x is fully contained in G(x), i.e., if
the implication x → G holds. The answer to this question is either yes or no. In algorithms, we
will denote such queries by SUB(x, G).

• An equivalence query asks if a given candidate formula F (x) is equivalent to G(x). The answer
is again either yes or no. However, in the no-case, the teacher also returns a counterexample x in
form of an x-minterm witnessing the difference. A counterexample is either a false-positive with
x |= F and x 6|= G or a false-negative with x 6|= F and x |= G. In algorithms, we will denote
equivalence queries by EQ(F,G).

A membership query is a special form of a subset query where x is an x-minterm, i.e., a complete cube.

2.6.2 Learning Algorithms

The general pattern for query learning algorithms is that they start with some initial “guess” of the target
function. In a loop, they then perform equivalence queries. If counterexamples are returned, the guess of
the target function is refined to eliminate the counterexample. The refinement may involve membership-
and subset queries, and distinguishes the algorithms. Concrete algorithms are presented in the following.

Learning a DNF. The procedure DNFLEARN [68, Chapter 7], presented in Algorithm 2.3, com-
putes a DNF representation of a given formula G(x) using equivalence queries and subset queries. It
starts with the initial guess F = false. This guess is then refined based on the counterexamples that are
returned by the equivalence queries in Line 3. The algorithm maintains the invariant F → G. Hence,
a counterexample x can only be a false-negative, i.e., x 6|= F but x |= G. In principle, the counterex-
ample x can be eliminated by updating F to F ∨ x without executing the inner for-loop. However, in
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Algorithm 2.3 DNFLEARN: A DNF learning algorithm.

1: procedure DNFLEARN(G(x)), returns: A DNF representation F (x) of G(x)
2: F := false
3: while EQ(F,G) returns a counterexample x do
4: xg := x
5: for each literal l in x do
6: if SUB(xg \ {l}, G) then
7: xg := xg \ {l}
8: end if
9: end for

10: F := F ∨ xg
11: end while
12: return F
13: end procedure

Algorithm 2.4 CNFLEARN: A CNF learning algorithm.

1: procedure CNFLEARN(G(x)), returns: A CNF representation F (x) of G(x)
2: F := true
3: while EQ(F,G) returns a counterexample x do
4: xg := x
5: for each literal l in x do
6: if SUB(xg \ {l},¬G) then
7: xg := xg \ {l}
8: end if
9: end for

10: F := F ∧ ¬xg
11: end while
12: return F
13: end procedure

order to (potentially) reduce the number of iterations and also the size of F , the counterexamples are
generalized: The inner loop drops literals from the cube x as long as the reduced cube xg still implies G,
i.e., represents only variable assignments that must be mapped to true in the end. Thus, the subsequent
update F := F ∨xg does not only eliminate the original counterexample x, but may also eliminate many
other counterexamples that have not been encountered yet. Note that this inner loop actually computes
an unsatisfiable core xg := PROPMINUNSATCORE(x,¬G). If no more counterexamples are left, the
algorithm terminates and returns F , which is a disjunction of cubes, i.e., a DNF that is equivalent to G.

Learning a CNF. A CNF representation of a given formula G(x) can be computed with F =
¬DNFLEARN(¬G), i.e., by computing a DNF for ¬G and negating the result. Alternatively, the pro-
cedure DNFLEARN can easily be rewritten to compute CNFs directly. This is shown in Algorithm 2.4.
The working principle remains the same, but F is initialized to true and refined with clauses that are
computed from the false-positives returned by the equivalence queries.

More query learning algorithms can be found in the literature. For instance, an algorithm to learn
formulas in form of a conjunction of DNFs can be defined using Bshouty’s monotone theory [46]. In
previous work [82], we show how various learning algorithms can be used effectively in circuit synthesis
using BDDs. However, in this thesis we focus on SAT-based synthesis methods. SAT- and QBF solvers
operate on CNF representations of a formula. Hence, our algorithms will mostly rely on the CNF learning
approach. We therefore refrain from introducing more complicated learning methods here in detail, and
refer the interested reader to the book by Crama and Hammer [68, Chapter 7].
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Figure 2.5: Working principle of Counterexample-Guided Inductive Synthesis (CEGIS). The goal
is to compute a satisfying assignment e for ∃e :∀u :F (e, u). This is done in a loop.
There is a database D of counterexamples ui, which is initially empty. First, a candi-
date e that satisfies F for all ui fromD is computed. If none exists, the procedure fails.
Otherwise, the candidate is checked. If no counterexample u is found, e is returned as
solution. Otherwise, the counterexample u is added to D, and the loop is repeated.

2.7 Counterexample-Guided Inductive Synthesis (CEGIS)

The general principle of query learning, namely refining an initial “guess” of the solution iteratively
based on counterexamples, has also been applied to other synthesis-related problems. One such example
is Counterexample-Guided Inductive Synthesis (CEGIS) [197, 196], which was introduced in the context
of program sketching as a method to compute satisfying assignments for quantified formulas of the form

∃e : ∀u :F (e, u).

The goal is to compute concrete values e for the variables e such that ∀u :F (e, u) holds. While the
general principle is independent of the logic, we will assume that F is a quantifier-free first order logic
formula that is to be interpreted modulo some background theory. Hence, e and u are vectors of domain
variables, and we can use an SMT solver to reason about F (without the quantifiers). However, the
CEGIS approach works analogously if F is a propositional formula over Boolean variables, in which
case a SAT solver can be used. This thesis will use CEGIS in both these settings.

Working principle. Similar to query learning, a candidate e for a solution is iteratively refined based
on counterexamples, which are concrete assignments to the variables u witnessing that ∀u :F (e, u) does
not yet hold. This refinement loop is illustrated in Figure 2.5. There is a database D of counterexamples
ui, which is initially empty. The first step of the loop is to compute a candidate assignment

e |=
∧

ui∈D
F (e,ui)

that satisfies F for all counterexamples that have been encountered previously. This is a necessary
but not a sufficient condition for ∀u :F (e, u). Hence, if no such candidate e exists, this means that
∃e : ∀u :F (e, u) is unsatisfiable, so the algorithm aborts. If a candidate e was found, the next step is to
check ifF (e, u) holds for all u and not just for the concrete u-values stored inD. This check is performed
by searching for a counterexample u |= ¬F (e, u) for which F does not (yet) hold with the given e. If
no such counterexample exists, then e must be a solution, and the algorithm terminates. Otherwise, the
counterexample u is added to D and another iteration is performed. The candidate that is computed in
the next iteration is already “better” in the sense that it satisfies F also for the counterexample from the
previous iteration (and all iterations before). If the domain of the variables is finite, then the algorithm
must terminate eventually. The reason is that every iteration excludes (at least) one candidate. Moreover,
there is only a finite set of counterexamples to encounter.

Algorithm. The procedure CEGISSMT in Algorithm 2.5 implements the CEGIS algorithm using an
SMT solver. Line 4 implements the candidate computation and Line 8 performs the candidate check
as well as the counterexample computation in the straightforward way. Instead of storing a database
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Algorithm 2.5 CEGISSMT: The CEGIS algorithm implemented using an SMT solver.

1: procedure CEGISSMT(F (e, u)), returns: An assignment e for e such that ∀u :F (e, u) or “fail”
2: G(e) := true
3: while true do
4: (sat, e) := SMTSATMODEL

(
G(e)

)
5: if sat = false then
6: return “fail”
7: end if
8: (sat,u) := SMTSATMODEL

(
¬F (e, u)

)
9: if sat = false then

10: return e
11: end if
12: G(e) := G(e) ∧ F (e,u)
13: end while
14: end procedure

of counterexamples, the algorithm directly refines the constraints for a candidate in Line 12. Note that
constraints are only added to G, so the algorithm is well suited for incremental solving.

2.8 Software Program Analysis Techniques

In order to use automatic synthesis in a setting where parts of the program are already given, we need
program analysis techniques to reason about the behavior of the existing program parts. In this thesis,
we will use several kinds of analysis techniques. Symbolic and concolic execution will be used in an
approach for automatic fault localization and correction in software. Furthermore, Hoare logic will be
used in an alternative fault localization approach that reasons about individual functions in isolation
instead of considering the entire program as a whole.

The following subsections will introduce these program analysis techniques in more detail. But
before that, we will make a note on the undecidability of various program analysis problems.

2.8.1 Undecidability in Software Program Analysis

Many problems in software analysis are undecidable. This includes the question of whether a program
satisfies a given specification. To overcome this issue, we will work with approximations.

Undecidable problems. The prime example of an undecidable problem is the halting problem,
which asks to determine if a program terminates or continues to run forever for some given input. Alan
M. Turing proved that this problem is undecidable in 1936 [209]. The halting problem can be reduced to
many other interesting problems in software analysis in the sense that a decision procedure for some other
problem P would give a decision procedure for the halting problem. Since such a decision procedure
cannot exist, the reduction proves the undecidability of the problem P . One example is the question
whether a given line in the source code is reachable for some given input: the program halts if and only
if the last line is reached (assuming that the last line is the only exit point). Consequently, the decision
problem to determine whether there exists some input for which a certain line in the source code is
reached is undecidable as well (because the variant with a fixed input is only a special case). We refer
the interested reader to Sipser [194] for more background on undecidability, the halting problem, and
reductions.

Software verification is undecidable. In this thesis, we will mostly work with assertions in the code
as a specification of the expected behavior of a program. An assertion is a statement assert(c), which
expresses that some condition c must be true at that point in the program. The question whether a given
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assertion can be violated is also undecidable. The reason is that the assertion can be rewritten to a branch
if(!c) exitErr();, and the assertion can be violated if and only if the statement exitErr()
is reachable. This means that in our setting, the problem of deciding whether a program satisfies its
specification is undecidable. Our goal will be to repair incorrect software programs, but the problem of
determining whether a repair eliminates the incorrectness is of course undecidable as well.

Workaround. As a general strategy out of this dilemma, we will apply program analysis in an
incomplete and approximate way, e.g., by setting a bound on the number and length of execution paths
to consider, and by approximating the semantics of individual statements. These approximations will
also contribute towards achieving an acceptable level of scalability in practice.

2.8.2 Symbolic Execution

Symbolic execution [63, 136] is a technique to analyze the behavior of a software program under different
inputs. It can be used to analyze under which circumstances some execution path through the program
is activated, or to search for execution paths that reach certain points in the program code. In this thesis,
we will use symbolic execution to compute an approximate condition that expresses when the program
satisfies a given specification.

Working principle. The program is executed, but the execution is performed using symbols rather
than concrete values for the inputs. The symbols are essentially just placeholders for any concrete value.
In this sense, symbols are like variables. However, calling them symbols avoids confusions with the
variables in a program. During the execution, all program variables have a symbolic value in form of
an expression over the input symbols. Program statements update the symbolic value of the variables
according to their semantics. Whenever a branching point in the program is reached, the symbolic exe-
cution forks. These forks unfold the execution into a symbolic execution tree. For each of the branches,
a branching condition over the input symbols is computed. This branching condition expresses under
which circumstances the respective branch is taken. Branching conditions are combined (by conjunc-
tion) into so-called path conditions along each execution path. Thus, a path condition expresses the
circumstances under which a certain path through the program is taken. Whenever a path condition be-
comes unsatisfiable, this means that the corresponding execution path is infeasible. The execution path
does not have to be explored further from such points, which prunes the symbolic execution tree.

Example 6. Figure 2.6 illustrates symbolic execution on an example. The left-hand side contains a
program written in a C-like programming language. The right side shows the corresponding symbolic
execution tree. Boxes denote the state of the symbolic execution between the program statements. The
first line of each box contains the symbolic variable values. The second line gives the path condition P .
Initially, the input variables a and b are set to the symbols α and β, which represent arbitrary values. At
the if in Line 2, the execution forks. The branching conditions α > 0 and α ≤ 0 are computed from
the program expression a>0 and the current symbolic value α of variable a. Because the path condition
P is initially true, the path conditions of the successor nodes are equal to the branching conditions. In
the if-branch, the next statement is a=a+b. It changes the symbolic value of variable a to α+ β. With
the current symbolic values of a and b, the branching conditions for the if in Line 4 are β > α+ β and
β ≤ α + β. The path conditions of the successor nodes are the conjunctions with the path condition so
far, i.e., with α > 0. The path condition α > 0∧β > α+β for entering the second if is unsatisfiable13.
This means that the error() function in Line 5 is unreachable. Therefore, the symbolic execution will
not analyze this branch further. In the else-branch, the next statement to be executed is a=a+1. This
statement changes the symbolic value of a again, and leaves b and P unchanged.

Discussion. The space of possible input values to a program can be huge or even infinite. In order to
address this issue, symbolic execution does not exercise the program with concrete input values but keeps
the inputs generic. However, at branching points in the program, symbolic execution forks and analyzes

13We ignore the possibility of variable overflows in this example.
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1 void foo ( i n t a , i n t b ) {
2 i f (a > 0) {
3 a = a + b ;
4 i f (b > a )
5 error ( ) ;
6 e l s e
7 a = a + 1 ;
8 }
9 }

a = α, b = β
P = true

if(a>0)

a = α, b = β
P = (α > 0)

a = α, b = β
P = (α ≤ 0)

a=a+b

a = α+ β, b = β
P = (α > 0)

if(b>a)

a = α+ β, b = β
P = (α > 0 ∧ β > α+ β)

a = α+ β, b = β
P = (α > 0 ∧ β ≤ α+ β)

a=a+1

a = α+ β + 1, b = β
P = (α > 0 ∧ β ≤ α+ β)

truefal
se

true

false

Figure 2.6: A symbolic execution example. The left-hand side shows an example program in C
syntax. The right-hand side shows the corresponding symbolic execution tree. Boxes
illustrate the state between program statements. P denotes the path condition for reach-
ing the node in the tree. The symbols α and β represent the arbitrary values of the input
variables a and b, respectively.

each execution path separately. The number of execution paths to explore can grow large, especially if
the program contains loops where the loop condition depends on inputs of the program. This problem
is often referred to as path explosion problem. In order to make symbolic execution terminate within
a reasonable amount of time, the maximum number and length of paths to explore can be bounded.
Furthermore, heuristics can be applied in deciding which paths to explore first in order to achieve a high
coverage quickly.

Tools. A prominent example of an open-source symbolic execution engine is KLEE [51], which
is a redesign of the tool EXE [52]. KLEE operates on LLVM bytecode, for which a rich compiler
infrastructure with front ends for many programming languages exists [152]. The symbolic reasoning
is bit-level accurate and uses the SMT solver STP [95]. Various optimizations contribute to a compact
representations of the symbolic states in order to save memory and to simplify queries for the SMT solver.
Several heuristics are available for the order in which nodes of the symbolic execution tree are explored.
For dangerous operations that could make the program crash (e.g., pointer dereferences or divisions)
KLEE automatically checks if there exists values that are allowed by the current path condition and cause
a failure. That is, the user (can but) does not have to write assertions or other means of specifications for
KLEE to find bugs.

2.8.3 Concolic Execution

Pure symbolic execution can be quite resource demanding when analyzing large programs. One reason
is that the number of branches in the symbolic execution tree can grow large, which results in a large
memory consumption if many variables or memory locations need to be tracked symbolically. A more
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lightweight version of symbolic execution is concolic execution [99, 191], where the program is executed
using concrete values and symbols at the same time. The artificial word “concolic” is a merge between
“concrete” and “symbolic” to express this hybrid nature.

Working principle. Concolic execution proceeds in several execution runs. Concrete input values
for the first run are chosen arbitrarily. The program is executed with these concrete inputs, but in parallel
to this execution, the symbolic values of the program variables are tracked, and a symbolic path condi-
tion is computed. The symbolic part of the execution works as explained in Section 2.8.2. However, the
execution does not fork at the branching points, but only follows the branch that is determined by the
concrete variable values. The result of one execution run is a path condition, which is a conjunction of
the encountered branching conditions. This path condition is now analyzed in order to compute concrete
input values that trigger a different execution path: one of the conjuncts is negated, all subsequent con-
juncts are discarded, and a satisfying assignment is computed, e.g., using an SMT solver. The satisfying
assignment defines the input values for the next run. In case of unsatisfiability, a different conjunct needs
to be negated. This is repeated until all execution paths have been activated or some other termination
criterion (e.g., a maximum number of iterations) is reached. Different strategies for negating conjuncts
of the path conditions can be applied [50].

Example 7. For the program from Figure 2.6, we may choose the initial inputs a = 0 and b = 0.
Hence, the first concolic execution run does not enter the if in Line 2 and yields the path condition
P1(α, β) = (α ≤ 0). This path condition contains only one conjunct that can be negated. Thus, a
satisfying assignment for α > 0 is computed next in order to activate a different execution path. Assume
that the solver returns α = 1 and β = 0, so the second run will have the input values a = 1 and b = 0.
This second run enters the if in Line 2, but then follows the else-branch in Line 7. The resulting
path condition is P2(α, β) = (α > 0 ∧ β ≤ α + β). The first part has already been negated. Negating
the second part yields an unsatisfiable formula14. Hence, no more execution paths are feasible and the
concolic execution terminates.

Advantages. The advantage of a potentially lower memory consumption of concolic execution com-
pared to pure symbolic execution has already been mentioned. Another advantage is that the concrete
variable values can be consulted if certain features of the programming language cannot be handled
symbolically or if they shall deliberately be abstracted to improve the scalability. For instance, precise
symbolic reasoning about the possible values of a pointer dereference operation may be difficult and
computationally demanding for the underlying SMT solver. Taking the symbolic value associated with
the concrete memory address that is stored in the pointer is an abstraction (because the pointer value may
depend on the input) but can be a reasonable compromise between scalability and accuracy. A disadvan-
tage of concolic execution in comparison to symbolic execution is that common execution path prefixes
are analyzed multiple times.

Tools. Concolic execution is used in multiple tools and applications. Microsoft SAGE [100], where
concolic execution is used to find potential security problems in parsers, has already been discussed in the
introduction. Microsoft PEX [206] implements concolic execution for .NET programs and is integrated
into the Visual Studio IDE. Other concolic execution tools include CUTE [191], DART [191], and
CREST [50]. In our approach for fault correction, we will use an extension of CREST [50].

2.8.4 Hoare Logic

Hoare logic is a set of rules to prove correctness properties of a program. It has been introduced by C. A.
R. Hoare [109] but was also influenced by earlier work of Floyd [88]. Similar concepts have also been
proposed by Dijkstra [75].

Hoare triples and Hoare rules. The central concept in Hoare logic is a Hoare triple {P} S {Q},
where S is a program part and P and Q are formulas over program variables. The intuitive meaning of

14Assuming that we use Linear Integer Arithmetic (LIA), thereby ignoring the possibility for variables to overflow.
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this Hoare Triple is that if P holds true before executing S, then Q will hold afterwards if S terminates.
We will also refer to P as the precondition of S and to Q as the postcondition of S. The following
paragraphs will introduce the most important rules for Hoare triples, which can be used to prove that
a program satisfies some postcondition if some precondition holds and if it terminates. This is usually
referred to as “partial correctness” because the fact that the program terminates still needs to be proven
separately. We will write rules for Hoare triples as

premises
conclusions

.

That is, if the premises above the line are satisfied, then the conclusions below the line follow. Axioms
have an empty set of premises.

Assignment statements. Assignment statements are handled using the axiom

{Q(e, . . .)} x = e; {Q(x, . . .)}
, (2.3)

where x = e; denotes the assignment of some expression e to variable x. The rule says that the formula
Q holds after the assignment if (and only if) Q with x replaced by e holds before the assignment.

if-statements. For if-statements in the program, the following rule applies:

{p ∧ P} S1 {Q} {¬p ∧ P} S2 {Q}
{P} if(p) S1 else S2 {Q}

. (2.4)

The premises say that the code in the if-branch and in the else-branch has the same postcondition Q.
The preconditions p∧ P and ¬p∧ P only differ in the negation of the branching condition p. Then, as a
consequence, P is the precondition of the entire if-statement and Q is the postcondition.

while-loops. In Hoare logic, while-loops require a loop invariant P , which is a formula that holds
before and after every execution of the loop body. With such a loop invariant, the following rule can be
applied:

{p ∧ P} S {P}
{P} while(p) S {¬p ∧ P}

. (2.5)

The premise requires that P is indeed an invariant: If P holds before executing the loop body S, then P
must also hold afterwards. By induction, this implies that P holds before and after every loop iteration.
The loop condition p can also be assumed to hold before executing S because otherwise the execution
would have left the loop already. As a conclusion of the rule, the loop invariant can be used as a pre-
condition of the while-loop. The postcondition is the loop invariant with the negated loop condition p
because the loop is only left if p is false.

Sequences of statements. The rule

{P} S1 {Q} {Q} S2 {R}
{P} S1;S2 {R}

(2.6)

for some statement S1 followed by some other statement S2 says that if the postcondition of S1 matches
the precondition of S2, then the precondition of former is also a precondition of the composition, and the
postcondition of the latter is also a corresponding postcondition of the composition. Here, S1 and S2 can
be simple assignment statements, if-statements, while-loops, or sequences of statements themselves.

Consequence rule. The consequence rule

{P1} S {Q1} P2 → P1 Q1 → Q2

{P2} S {Q2}
(2.7)

expresses that preconditions can always be strengthened and postconditions can always be weakened.
This rule can be useful as “glue” between other rules in order to make pre- and postconditions fit together.
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Example 8. Consider the program pow(a,b), which returns the value x = ab if b ≥ 0.

1 i n t pow ( i n t a , i n t b ) {
2 {1 = a0 ∧ 0 ≤ b} = {b ≥ 0}
3 i n t x = 1 ;
4 {x = a0 ∧ 0 ≤ b}
5 i n t y = 0 ;
6 {x = ay ∧ y ≤ b}
7 whi le (y < b ) {
8 {x ∗ a = ay+1 ∧ y + 1 ≤ b} = {x = ay ∧ y ≤ b ∧ y < b}
9 x = x * a ;

10 {x = ay+1 ∧ y + 1 ≤ b}
11 y = y + 1 ;
12 {x = ay ∧ y ≤ b}
13 }
14 {x = ay ∧ y ≤ b ∧ y ≥ b}
15 {x = ab}
16 re turn x ;
17 }

The blue braces between the source code lines give intermediate pre- and postconditions. In the follow-
ing, we will refer to individual pre- and postconditions and to source code statements with line numbers.
For instance, {2} 3 {4} is short for the Hoare triple {0 ≤ b} x = 1; {x = a0 ∧ 0 ≤ b}. Both
{8} 9 {10} and {10} 11 {12} are valid Hoare triples by the assignment axiom from Equation 2.3. From
these two Hoare triples, Equation 2.6 concludes {8} 9; 11 {12}. With P = (x = ay ∧ y ≤ b) and
p = (y < b) Equation 2.5 in turn concludes {6} 7-13 {14}. Since {14} implies {15}, Equation 2.7
concludes {6} 7-13 {15}. The triples {2} 3 {4} and {4} 5 {6} again hold by Equation 2.3, and Equa-
tion 2.6 concludes {2} 3; 5 {6}. In combination with {6} 7-13 {15}, Equation 2.6 finally concludes
{2} 3-13 {15}. That is, if the precondition b ≥ 0 holds before executing the code in pow, then x = ab

will hold afterwards (given that pow terminates).

Verification. Hoare logic can be used to compute the weakest precondition wp(S,Q) under which
a given postcondition (or assertion) Q of some code S holds. Most of this process is quite mechanic
and can thus be automated. Only the application of the while-rule requires creativity in coming up
with appropriate loop invariants. Tools such as the WP plug-in of the widely used software analysis tool
suite Frama-C [69] automate this process of computing the weakest precondition but require the user to
write loop invariants manually. In order to verify whether a given function f in the source code satisfies
a contract in the form of a precondition P and a postcondition Q, an automatic (or interactive) theorem
prover can then be used to check if the actual precondition P implies the computed weakest precondition,
i.e., if P → wp(f,Q) is valid. In Section 4.4, we will extend this verification concept with an approach
for fault localization.

2.9 Model-Based Diagnosis

Model-Based Diagnosis (MBD) [72, 182] is a method for fault localization. It identifies potentially erro-
neous components of a system by explaining conflicts between a model of the system and an observation
of some incorrect behavior. Based on the program analysis techniques presented in the previous section,
we will use the principle of MBD to define a fault localization approach for software in Section 4.3. The
resulting fault locations will in turn serve as basis for synthesizing repairs.

Terminology. We follow the fault localization terminology by Ammann and Offutt [6]. A fault is a
“static defect in the software” or hardware program. For instance, a statement may read “a=1;” instead
of “a=0;”. We will also refer to a fault as a bug in the program. An error is an “incorrect internal state
that is the manifestation of some fault”. For instance, a certain variable may have a wrong value at some
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Figure 2.7: Example system for model-based diagnosis. The signals s1 to s6 are integer inputs, the
signals s10 and s11 are integer outputs, the components m1 to m3 are multipliers, and
the components a1 and a2 are adders.

point in the program. A failure is an “external, incorrect behavior with respect to the requirements or
other description of the expected behavior”. That is, a failure is a symptom of an error caused by a fault.
For instance, the program produces wrong output or terminates unexpectedly because an assertion in the
code is violated.

MBD Setup. For model-based diagnosis, we follow the notation by Reiter [182] in this thesis. A
system description S is a formula in some logic and represents a model of a system. The system consists
of a set of components CMP. A component c ∈ CMP can behave abnormally (denoted AB(c), where
AB is a unary predicate) or normally (written ¬AB(c)). Every component c is described with a formula
of the form ¬AB(c)→ Nc, whereNc is a formula that defines the normal behavior of component c. That
is, abnormal components can behave arbitrarily. The system description S is composed of such compo-
nent descriptions and constraints defining the interplay of components. Additionally, we are given an
observation O of some erroneous behavior. This observation O is also given as a formula and contradicts
S in the sense that, if all components behaved normally, it would be impossible to observe O. That is,
the formula S ∧ O ∧

∧
c∈CMP ¬AB(c) is unsatisfiable.

Example 9. Consider the system from Figure 2.7, which is also used as example in the work of Re-
iter [182]. It computes two integer outputs s10 and s11 based on the integer inputs s1 to s6. The system
has 5 components CMP = {m1,m2,m3, a1, a2}, where m1 to m3 are multipliers and a1 and a2 are
adders. The system description can be defined as

S =
(
¬AB(m1)→ (s7 = s1 · s2)

)
∧
(
¬AB(m2)→ (s8 = s3 · s4)

)
∧
(
¬AB(m3)→ (s9 = s5 · s6)

)
∧(

¬AB(a1)→ (s10 = s7 + s8)
)
∧
(
¬AB(a2)→ (s11 = s8 + s9)

)
.

An observation is given as O = (s1 = s3 = s5 = 3) ∧ (s2 = s4 = s6 = 2) ∧ (s10 = 10) ∧ s11 = 12).
The formula S∧O∧¬AB(m1)∧¬AB(m2)∧¬AB(m3)∧¬AB(a1)∧¬AB(a1) is unsatisfiable because
if all components behave normally, the computed output is s10 = s11 = 12, but s10 = 10 was observed.

Diagnoses. The goal of MBD is to compute diagnoses, which are sets of components that may
be responsible for the observation O. Formally, a diagnosis is a set ∆ ⊆ CMP such that S ∧ O ∧∧
c∈CMP\∆ ¬AB(c) is satisfiable. That is, assuming that the components in ∆ behave abnormally renders

the observation O possible. A diagnosis ∆ is minimal if no subset ∆′ ⊂ ∆ is a diagnosis. If ∆ is a
diagnosis, then clearly every superset ∆′ ⊇ ∆ is a diagnosis as well. Hence, we are only interested in
computing minimal diagnoses. A diagnosis ∆ with |∆| = 1 is called a Single-Fault Diagnosis (SFD).

Conflicts. Diagnoses can be computed via conflicts. A conflict is a set C ⊆ CMP of components
such that S ∧ O ∧

∧
c∈C ¬AB(c) is unsatisfiable. Thus, a conflict is a set of components that cannot all

behave normally. If they would, the observation would have been impossible. A conflict C is called
minimal if no subset C ′ ⊂ C is a conflict.

Example 10. For the system description S and observation O from Example 9, there exist two minimal
conflicts, namely C1 = {m1,m2, a1} and C2 = {m1,m3, a1, a2}. The set C1 is a conflict because if
m1, m2 and a1 behave normally, then s7 = s8 = 6 and s10 = 12, which contradicts s10 = 10 in the



40 Chapter 2. Background and Notation

observation. The set C2 is a conflict because if m2 behaves abnormally then s8 can be arbitrary, but if
all other components behave normally we have s10 = s8 + 6 and s11 = s8 + 6, i.e., s10 = s11. This
contradicts s10 = 10 and s11 = 12 in our observation. There are 4 minimal diagnoses. The set {a1} is a
diagnosis because a1 could have computed 6+6 = 10 if it behaved abnormally, which would explain the
observation. If component m1 behaved abnormally and computed 2 · 3 = 4 then this would explain the
observation as well. Hence, {m1} is a second diagnosis. The set {m2,m3} is another diagnosis because
these components could have computed 2 · 3 = 4 and 2 · 3 = 8, respectively. Finally, {m2, a2} is a
diagnosis because these components could have computed 2 · 3 = 4 and 4 + 6 = 12.

Hitting sets. The relation between conflicts and diagnoses can be expressed using hitting sets. A
hitting set for a collection K of sets is a set H such that ∀K ∈ K :H ∩K 6= ∅ holds. That is, the hitting
setH must have at least one element in common with every setK inK. A hitting setH is called minimal
if no subset H ′ ⊂ H is a hitting set for K.

Computing diagnoses. A set ∆ ⊆ CMP is a minimal diagnosis iff ∆ is a minimal hitting set for
the collection of all conflicts [182]. The intuitive reason is that a diagnosis must explain all conflicts,
so it must share at least one element with every conflict. Since every conflict is a superset of at least
one minimal conflict, it is sufficient to compute minimal hitting sets for the collection of all minimal
conflicts. Reiter [182] presents a hitting set computation algorithm which computes conflicts on the fly
and produces diagnoses in the order of increasing cardinality. Thus, if the algorithm is aborted before all
diagnoses have been computed, only diagnoses with higher cardinality (which are generally considered
as less likely) are missed. We refrain from repeating the hitting set computation algorithm by Reiter
in this thesis, but we will use it as a black box building block for our fault localization approach in
Section 4.3.



3 SAT-Based Hardware Controller Synthesis

Parts of this chapter are based on my previous publications [82, 39, 31] as well as
on results from the Bachelor’s Thesis of Patrick Klampfl [137], which I

co-supervised. References to these sources are not always made explicit.

In this section, we present our SAT-based hardware controller synthesis approach for safety specifica-
tions. Similar to the standard textbook method presented in Section 2.5.3, our approach consists of two
steps. First, a winning strategy is computed. Second, a circuit implementing the strategy is generated.
Various SAT-based methods to solve the first step will be presented in Section 3.1. SAT-based methods
to realize the second step will be presented in Section 3.2. Finally, Section 3.3 will present experimental
results.

3.1 From Safety Specifications to Strategies

As discussed in Section 2.5.3, a strategy S for realizing a given safety specification S =
(
x, i, c, I(x),

T (x, i, c, x′), P (x)
)

can be constructed by computing the winning region W (x) in the game defined
by S. Recall that the winning region is the set of all states from which the system player can enforce
that only safe states are visited. Once the winning region is available, the corresponding strategy can be
defined by

S(x, i, c, x′) = T (x, i, c, x′) ∧
(
W (x)→W (x′)

)
.

However, a winning strategy can also be computed by different means. One option is to use a winning
area, defined as follows.

Definition 11 (Winning Area). A winning area for a safety specification S =
(
x, i, c, I(x), T (x, i, c, x′),

P (x)
)

is a state set F , represented symbolically as a formula F (x), with the following three properties:

• Every initial state is contained in F , i.e., I(x)→ F (x).
• F contains only safe states, i.e., F (x)→ P (x).
• The system player can enforce that the play stays in F , i.e., F (x)→ Forces1

(
F (x)

)
.

These three properties are sufficient to ensure that T (x, i, c, x′)∧
(
F (x)→ F (x′)

)
is a winning strategy.

The reason is the same as for the winning region (see Section 2.5.3.1): the control signals can always
be chosen in such a way that the next state is in F again, and F contains only safe states. In fact, the
winning region is just a special winning area, namely the largest one. The following sections will present
different methods for computing the winning region or a winning area.

3.1.1 QBF-Based Learning

The SAFEWIN procedure presented in Algorithm 2.1 can be implemented with BDDs using their capa-
bility of quantifier elimination in a rather straightforward manner. However, a realization with plain SAT
solvers is not easily possible because the preimage operation Forces1 in Line 4 contains a universal quan-
tification. Therefore, a natural option is to use a QBF solver, which can handle universal quantifications
without expanding the formula.

3.1.1.1 A Straightforward QBF Realization of SAFEWIN

A direct realization of SAFEWIN with QBF solving was presented by Staber and Bloem [201]. We
briefly review this existing method and its drawbacks before presenting our learning-based algorithms.
For this discussion, we will refer to the different values of the variable F in Algorithm 2.1 with indices.

41
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Algorithm 3.1 QBFWIN: Basic QBF-based CNF learning algorithm for the winning region.

1: procedure QBFWIN
(
(x, i, c, I, T, P )

)
, returns: The winning region W (x) in CNF or false

2: if PROPSAT
(
I(x) ∧ ¬P (x)

)
then

3: return false
4: end if
5: F (x) := P (x)
6: // check if F → Forces1(F ) is valid:
7: while sat in (sat,x) := QBFSATMODEL

(
∃x, i :∀c : ∃x′ :F (x) ∧ T (x, i, c, x′) ∧ ¬F (x′)

)
do

8: // generalize the counterexample:
9: xg := x

10: for each literal l in x do
11: xt := xg \ {l}
12: if ¬QBFSAT

(
∃x :∀i : ∃c, x′ :xt ∧ F (x) ∧ T (x, i, c, x′) ∧ F (x′)

)
then

13: xg := xt
14: end if
15: end for
16: // check for unrealizability:
17: if PROPSAT

(
xg ∧ I(x)

)
then

18: return false
19: end if
20: // refine F :
21: F (x) := F (x) ∧ ¬xg
22: end while
23: return F (x)
24: end procedure

That is, F0 = P denotes the initial value of F and Fj = Fj−1 ∧ Forces1(Fj−1) is the value after the
jth iteration. The termination check in Line 3 is performed by checking two subsequent values Fj and
Fj−1 for equivalence. Since Fj → Fj−1, i.e., the set F of states can only get smaller from iteration to
iteration, it is sufficient to check if Fj−1 → Fj . Thus, the first check of “F changes” can be realized with
the QBF query

¬QBFSAT
(
∀x, i : ∃c, x′ :P (x)→

(
T (x, i, c, x′) ∧ P (x′)

))
.

The second check if F changes translates to

¬QBFSAT
(
∀x, i : ∃c, x′ :∀i′ : ∃c′, x′′ :

(
P (x) ∧ T (x, i, c, x′) ∧ P (x′)

)
→
(
T (x′, i

′
, c′, x′′) ∧ P (x′′)

))
.

In general, the check ifF changed in iteration j requires solving a QBF with 2·j−1 quantifier alternations
and j copies of the transition relation T . The checks if I → Fj in Line 5 of Algorithm 2.1 work in a
similar way, also requiring 2 · j − 1 quantifier alternations and j copies of the transition relation. We
consider this steep increase in formula size and complexity as suboptimal. In the following, we will
therefore present algorithms that require only one copy of the transition relation and a constant number
of quantifier alternations in the queries to the QBF solver.

3.1.1.2 A QBF-Based CNF Learning Algorithm

Algorithm 3.1 shows the procedure QBFWIN, which computes a CNF representation of the winning
region W (x) using CNF learning with a QBF solver. Since QBFWIN will also be the basis for our
algorithms that use plain SAT solving, we discuss it here in detail. Just like SAFEWIN in Algorithm 2.1,
QBFWIN takes a specification as input. It returns either the winning region W (x) or false in case of
unrealizability. The basic structure is that of the CNF learning procedure CNFLEARN in Algorithm 2.4.
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Figure 3.1: Working principle of QBFWIN. Subfigure (a) illustrates the computation of a coun-
terexample x |= F ∧ Forcee1(¬F ). Subfigure (b) shows the generalization of x into a
larger region xg that does not intersect with Forces1(F ) in F . Subfigure (c) illustrates
the refinement of F by removing xg , as well as the next counterexample computation.

However, in Line 5, F is initialized to P instead of true because the winning region can only be a subset
of the safe states P . Differences in counterexample computation and generalization are discussed in the
following.

Counterexample computation. The equivalence query in Line 3 of the original CNF learning pro-
cedure CNFLEARN asks if the current approximation of the solution is correct. The corresponding line
(Line 7) in QBFWIN now checks if F → Forces1(F ) is valid, i.e., if another visit of F can be enforced
by the system from any state of F . The QBF query in Line 7 of QBFWIN actually asks the opposite
question, namely if there exists a state x in F from which the environment can enforce leaving F , i.e.,
if F ∧ Forcee1(¬F ) is satisfiable. This is the case if there exists some state x in F and some input i
such that for all control values c the next state will be in ¬F . If such a state x exists, QBFSATMODEL

will return it as a counterexample witnessing that F is not equal to the final winning region W . More
specifically, this counterexample state x cannot be part of W , and thus needs to be removed from F .
This removal is performed in Line 21. However, in order to reduce the number of iterations, the coun-
terexample is generalized before it is excluded. This is explained in the next paragraph. If, on the other
hand, QBFSATMODEL sets sat to false in Line 7, then this means that the implication F → Forces1(F )
holds. In this case, the algorithm terminates, returning F as the winning region.

Counterexample generalization. Just like in CNFLEARN, counterexample generalization is done by
eliminating literals of x in the inner loop of the algorithm. In CNFLEARN (see Algorithm 2.4), the final
cube xg ⊆ x must not intersect withG in order not to shrink F beyondG. Similarly, in QBFWIN, xg∧F
must not intersect with Forces1(F ) in order not to remove any states from the winning region where the
system could enforce that the play stays in the winning region. The reason is that the subsequent update
F := F ∧ ¬xg in Line 21 removes exactly the states xg ∧ F . The QBF query in Line 12 is satisfiable
if xt ∧ F contains any states of Forces1(F ), and thus prevents unjust state removals. Also note that the
inner loop essentially computes an unsatisfiable core of x with respect to F ∧ Forces1(F ).

Detecting unrealizability. Detecting unrealizability is simple. The specification is unrealizable if
and only if some initial state is outside of the winning region, i.e., if I 6→ W . The reason is that no
system implementation can prevent the environment from visiting an unsafe state from an initial state
that is not winning. QBFWIN returns false as soon as I 6→ F . Since F = W eventually, this ensures that
false is returned if I 6→W . Line 2 checks if I 6→ F would hold initially. In every iteration, Line 17 then
checks if the states xg that are going to be removed from F contain an initial state. This is potentially
more efficient than than checking I 6→ F again.

Illustration. Figure 3.1 illustrates the working principle of QBFWIN graphically. A box represents
the set of all states. F is always a subset of P . In Figure 3.1a, a counterexample x |= F ∧ Forcee1(¬F )
is computed. It represents a state from which the environment can enforce that F is left. Next, the coun-
terexample x is generalized into a larger region xg by eliminating literals, as illustrated in Figure 3.1b.
Every literal that can be eliminating from x doubles the size of the state region that is represented by
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xg. Literals are dropped as long as xg ∧ F does not intersect with Forces1(F ). Finally, as illustrated
in Figure 3.1c, the generalized counterexample xg is removed from F and the next counterexample is
computed. This is repeated until no more counterexamples exist, or one of the initial states is removed.

The following theorem summarizes these explanations into a formal correctness argument.

Theorem 12. The QBFWIN procedure in Algorithm 3.1 returns the winning region W (x) of a given
safety specification S, or false if the specification is unrealizable.

Proof. QBFWIN enforces the invariants F → P (through Lines 5 and 21) and I → F (through Lines 2
and 17). The loop terminates normally if F → Forces1(F ). Hence, upon normal termination, F is
certainly a winning area according to Definition 11. F is also the largest possible winning area, and
thereby the winning region, because QBFWIN also enforces the invariant W → F . This invariant can
be proven by induction: Initially F = P , so W → F holds because W → P . Under the hypothesis
that W → F holds before an update of F in Line 21, it will also hold after the update because Line 21
only removes states xg ∧ F for which xg ∧ F → Forcee1(¬F ) holds. Given that W → F , we have
that ¬F → ¬W . This means that xg ∧ F → Forcee1(¬W ), so only states that cannot be part of W are
removed. QBFWIN will always terminate because in every iteration, at least one state is removed from
F , and when F reaches false (or earlier) the loop necessarily terminates. What remains to be shown is
that QBFWIN aborts in Line 2 or 17 iff S is unrealizable, i.e., iff I 6→W . (Direction⇒:) SinceW → F ,
and Line 2 or 17 abort iff (F is about to be updated in such a way that) I 6→ F , it follows that QBFWIN

can only abort if I 6→ W . (Direction⇐:) Since F = W eventually, Line 2 or 17 will definitely abort
eventually if I 6→W .

Discussion. In contrast to the approach sketched in Section 3.1.1.1, all QBF queries in QBFWIN

contain only one copy of the transition relation and only two quantifier alternations. This potentially
increases the scalability with respect to the size of the specifications. The disadvantage is that the number
of calls to the QBF solver can be significantly higher.

3.1.1.3 Variants and Improvements

In this section, we now discuss a few variants and optimizations of QBFWIN as presented in Algo-
rithm 3.1.

Better generalization. At any point in the inner loop of QBFWIN, xg represents states that will
definitely be removed from F . This information can be exploited already during the generalization loop
by modifying the QBF query in Line 12 to

¬QBFSAT
(
∃x :∀i : ∃c, x′ :xt ∧ F (x) ∧ ¬xg ∧ T (x, i, c, x′) ∧ F (x′) ∧ ¬x′g

)
.

This way, the generalization loop behaves as if F would have been refined to F (x) ∧ ¬xg already (with
the current version of xg). The QBF query becomes stricter, which can have the effect that more literals
can be eliminated. This can reduce the total number of counterexamples that have to be resolved. In
the illustration of Figure 3.1b, this optimization shrinks Forces1(F ) to Forces1(F ∧ xg), which allows xg
to grow even larger. Since this optimization does not increase the number or complexity of the QBF
queries, we always apply it.

Generalization until fixpoint. With the generalization optimization from the previous paragraph,
the generalization check becomes non-monotonic in the sense that, even if a literal could not be elimi-
nated initially, it may be eliminable after eliminating other literals. Hence, it can be beneficial to repeat
the generalization loop until a fixpoint is reached. However, in our experiments, this did not result in
noticeable performance improvements on the average over our benchmarks, so this is not done by default.

Computing all generalizations. In our experiments we observed that counterexample computation
often takes much more time than counterexample generalization. Moreover, depending on the order in
which the literals l ∈ x are processed in Line 10 of QBFWIN, we can get different generalizations xg.
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Figure 3.2: Computing all generalizations of a counterexample in QBFWIN. The counterexample
is drawn as a red dot. The generalizations xg1, xg2 and xg3 are drawn as red ellipses.
Removing all generalization prunes F more than removing just one.

Motivated by these observations, we propose a variant that computes all minimal generalizations for each
counterexample. A naive solution would just run the generalization loop of Line 10 repeatedly using all
|x|! different orders of the literals in x. However, since many orderings can result in the same generaliza-
tion xg, this is potentially inefficient. Instead, we thus apply an adaption of the hitting set tree algorithm
presented by Reiter [182]. For the sake of readability, we refrain from presenting this algorithm in detail.
The high-level intuition is visualized in Figure 3.2. All generalizations xg1, xg2 and xg3 will contain
the original counterexample x, and none of them may intersect with Forces1(F ) inside of F . Although
there may be a significant overlap between the generalizations, removing all of them prunes F more than
removing just one of them. In our experiments, we observed that the number of different counterexample
generalizations is usually low. Not infrequently, there is only exactly one minimal generalization. Of
course, computing all generalizations costs additional computation time. In our experiments, it gives a
solid speedup for some benchmarks, but slows down the computation for others. Hence, we do not apply
this optimization by default.
Instead of computing all generalizations, one could also compute and apply at most k different gener-
alizations for some value of k. Another option is to compute all generalizations but refine F only with
the k shortest ones. However, in preliminary experiments, these variants did not result in significant
performance increases either.

3.1.1.4 Efficient Implementation

In this section, we give a few remarks on implementing QBFWIN efficiently.

CNF encoding. The transition relation T , the characterization of the safe states P and the formula
for the initial states I are transformed into CNF initially. Furthermore, a CNF representation of ¬F needs
to be computed in each iteration. All these transformations can be done using the method of Plaisted and
Greenbaum [174]. This may introduce additional auxiliary variables, which are quantified existentially
on the innermost level of the QBF queries. Once T , P , I and ¬F are available in CNF, the matrices of
the QBF queries in Algorithm 3.1 can be constructed by building the union of the respective clause sets,
because the individual formula parts are all connected by conjunctions.

CNF compression. After some iterations, the CNF formula F in QBFWIN can contain redundant
clauses and literals. First, a clause discovered in some later iteration can be a proper subset of some earlier
discovered clause. This can be checked syntactically at low costs. Thus, whenever a clauses is added to
F , we always remove all of its supersets. Second, a set of clauses may together imply clauses that have
been added earlier. The implied clauses can be eliminated without changing F semantically. Third, it
may be possible to drop literals from clauses of F in an equivalence-preserving manner. The procedure
COMPRESSCNF in Algorithm 3.2 performs these simplifications and is explained in the next paragraph.
We call this procedure to simplify F after every modification of F , but with literal dropping disabled
(we will later use COMPRESSCNF with literal dropping enabled in other contexts). COMPRESSCNF is
very fast compared to the QBF solver calls in QBFWIN. Furthermore, a smaller CNF representation of
F is particularly important for computing a compact representation of ¬F using the method of Plaisted
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Algorithm 3.2 COMPRESSCNF: Removing redundant literals and clauses from a CNF.

1: procedure COMPRESSCNF(F (x)), returns: An equivalent but potentially smaller CNF G(x)
2: if dropping literals enabled then
3: G := true
4: for each clause c in F do
5: G := G ∧ ¬PROPMINUNSATCORE(¬c, F )
6: end for
7: F := G
8: end if
9: G := true

10: for each clause c in F with increasing size do
11: if PROPSAT(G ∧ ¬c) then
12: G := G ∧ c
13: end if
14: end for
15: return G
16: end procedure

and Greenbaum [174]. Ultimately, the more compact CNF representations reduce the QBF solving time
quite significantly.

An algorithm for CNF compression. Algorithm 3.2 uses a SAT solver to remove redundant literals
and clauses from a CNF formula F (x). The first loop (if enabled) drops literals from each clause c as
long as the reduced clause c2 ⊆ c is still implied by F . This ensures that the reduced formula G is
implied by F . Dropping literals can only make the formula stronger, i.e., F is necessarily implied by
G. Hence, G and F are equivalent. Note that F → c2 iff F ∧ ¬c2 is unsatisfiable. Hence, dropping
the literals can be realized by computing a (minimal) unsatisfiable core of the cube ¬c2 with respect to
F . Since F does not change in this loop, all unsatisfiable cores can be computed with incremental SAT
solving.
The second loop removes redundant clauses. Non-redundant clauses are copied into G. A clause c is
redundant if it is implied by G already, i.e., if G∧¬c is unsatisfiable. Clauses are processed in the order
of increasing size because smaller clauses have a higher tendency to imply larger clauses than the other
way around. This second loop can also be accomplished with incremental solving, since clauses are only
added to G. Dropping literals before eliminating clauses potentially yields better results than performing
the operations in the reverse order. The reason is that the shorter clauses produced in the first loop have
a higher potential for implying other clauses in the second loop. Since none of the SAT solver calls
involves the transition relation, Algorithm 3.2 is usually very fast. It will not only be used in QBFWIN,
but also in other contexts.

QBF preprocessing. Our work with Martina Seidl on extending the popular QBF preprocessor Blo-
qqer to preserve satisfying assignments [189] enables QBF preprocessing not only in QBFSAT, but also
in QBFSATMODEL queries. We thus apply QBF preprocessing to every single QBF query (separately).
The experimental results in Section 3.3 will show that this is crucial for the performance. In a sense,
running COMPRESSCNF to simplify F , as explained in the previous paragraphs, can also be seen as
QBF preprocessing, but using knowledge about the structure of the final QBF. Bloqqer [26] implements
way more simplification techniques, from heuristics for universal expansion to variable elimination, and
is thus clearly not subsumed by running COMPRESSCNF. On the other hand, our experiments indicate
that running COMPRESSCNF in addition to Bloqqer is beneficial as well. A possible reason is that we
compress F before computing its negation. This has advantages over applying simplifications on the
final QBF, where the structure is already lost.

Incremental QBF solving. We experimented with incremental QBF solving using DepQBF [156].
We use two incremental solver instances, one for the queries in Line 7 and one for Line 12 of QBFWIN.
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The queries in Line 12 are well suited for incremental solving because clauses are only added to F . The
conjunction with xt can be achieved with assumption literals, which are temporarily asserted. In fact,
we first let DepQBF compute an unsatisfiable core of x and minimize this core then further using a loop
that attempts to eliminate more literals.
The check in Line 7 of QBFWIN is more difficult because it also contains the negation of the F , i.e.,
cannot be realized incrementally just by adding additional clauses. We implemented three variants to
handle ¬F (x′) incrementally. Since neither of these three variants performs particularly well in our
experiments (see Section 3.3), we only sketch them briefly. The first variant uses the push/pop interface
of DepQBF to replace the parts in the CNF encoding of ¬F (x′) that change from iteration to iteration.
The second variant updates ¬F (x′) only lazily, namely when the check in Line 7 becomes unsatisfiable.1

In this event, a new incremental session of the solver is started with the latest version of ¬F (x′). The
third variant uses a pool of variables to encode negated clauses in CNF. If a variable of this pool is
not yet used, it is set to false using assumption literals. Thereby, the variable essentially represents the
negation of a tautological clause. As clauses are added to F , the variables of the pool are equipped with
constraints that make them represent the negation of the added clauses. If there are no more unused
variables in the pool, a new incremental session with a fresh pool of variables is started. As already
mentioned, neither of these three variants performs particularly well in our experiments. One reason is
that incremental QBF solving cannot be combined with preprocessing at the moment. However, this may
change in the future, which could make these approaches interesting again.

3.1.2 Learning Based on SAT Solving

In this section, we will present a learning algorithm that computes the winning region of a safety speci-
fication S = (x, i, c, I, T, P ) using a plain SAT solver. In order to simplify the presentation, this will be
done in two steps: Section 3.1.2.1 presents a basic algorithm. Section 3.1.2.2 will then discuss a more
efficient variant with better support for incremental SAT solving.

3.1.2.1 Basic Algorithm

A basic solution is shown in Algorithm 3.3. The working principle is the same as for the procedure
QBFWIN from Algorithm 3.1: starting with the initial over-approximation F = P of the winning region
W , counterexample-states x |= F ∧ Forcee1(¬F ) witnessing that F 6= W are computed, generalized
into a larger region xg of states that cannot be part of the final winning region W , and finally removed
from F . Detecting unrealizability by checking if I 6→ F is also done in exactly the same way as in
QBFWIN. Only the counterexample computation and generalization is different, and will be discussed
in the following paragraphs.

Counterexample computation. We need to find a state x from which the environment can enforce
that F is left. That is, from state x |= F , there must exist some input i such that for all control values
c, the next state will satisfy ¬F . SATWIN0 avoid this implicit quantifier alternation by computing such
a state in several steps. First, Line 8 computes a state x and input i for which some c would make the
system leave F . This is a necessary but not a sufficient condition for x to be a counterexample. Hence, if
the query in Line 8 is unsatisfiable, no counterexample can exist, so F must be the final winning region
and the algorithm terminates. The formula U in Line 8 excludes state-input combinations which cannot
be used by the environment to enforce that F is left.2 Initially, U is true, i.e., no restrictions are imposed.
The refinement of U will be discussed further below. For now, U can be ignored.

If the query in Line 8 is satisfiable, the next step is to check if the candidate x is indeed a counterex-
ample for the given i. This is investigated in Line 12 by computing some c for which F is not left, i.e.,
the next state is in F again. If such a c exists, then the environment cannot enforce that F is left from

1This is similar to the procedure SATWIN1 that will be presented in Algorithm 3.4 later. We thus refer to Section 3.1.2.2
for more details.

2Formally, U satisfies the invariant ∀x, i :
(
F (x) ∧ ¬U(x, i)

)
→
(
∃c, x′ :T (x, i, c, x′) ∧ F (x′)

)
.
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Algorithm 3.3 SATWIN0: Basic SAT solver based CNF learning algorithm for the winning region.

1: procedure SATWIN0
(
(x, i, c, I, T, P )

)
, returns: The winning region W (x) in CNF or false

2: if PROPSAT
(
I(x) ∧ ¬P (x)

)
then

3: return false
4: end if
5: F (x) := P (x)
6: U(x, i) := true
7: while true do
8: (sat,x, i) := PROPSATMODEL

(
F (x) ∧ U(x, i) ∧ T (x, i, c, x′) ∧ ¬F (x′)

)
9: if ¬sat then

10: return F (x)
11: else
12: (sat, c) := PROPSATMODEL

(
F (x) ∧ x ∧ i ∧ T (x, i, c, x′) ∧ F (x′)

)
13: if ¬sat then
14: xg := PROPMINUNSATCORE

(
x, F (x) ∧ i ∧ T (x, i, c, x′) ∧ F (x′)

)
15: if PROPSAT

(
xg ∧ I(x)

)
then

16: return false
17: end if
18: F (x) := F (x) ∧ ¬xg
19: U(x, i) := true
20: else
21: U := U∧¬PROPMINUNSATCORE

(
x∧i, c∧F (x)∧U(x, i)∧T (x, i, c, x′)∧¬F (x′)

)
22: end if
23: end if
24: end while
25: end procedure

state x with input i. In order to prevent the same (x, i)-pair from being returned by Line 8 again, U
could be refined to U ∧¬(x∧ i). However, by computing the unsatisfiable core of (x∧ i) in Line 21, the
algorithm may also exclude other (x, i)-pairs for which c can be used by the system to prevent that F is
left. Such (x, i)-pairs are not helpful for the environment in order to enforce that F is left. They can thus
safely be removed from U . Note that the formula that is used in the core computation is essentially that
of Line 8.

The remaining case is that where the formula in Line 12 is unsatisfiable. In this case, x is indeed a
counterexample because if the environment picks input i, no system action can reach a state of F , so the
next state is bound to be in ¬F . As for QBFWIN, x cannot be part of the final winning region, so it must
be excluded from F . However, before doing so, it is generalized into a larger region xg of states that
needs to be excluded. This will be explained in the next paragraph. As soon as F changes, U becomes
invalid and is thus set to true again in Line 19. The intuitive reason is as follows: even if a certain state-
input pair (x, i) cannot be used by the environment to enforce that F is left, (x, i) may still be usable for
leaving a smaller F because the target region ¬F (x′) becomes bigger.

Counterexample generalization. QBFWIN in Algorithm 3.1 eliminates literals from the counterex-
ample x as long as the reduced cube xg ⊆ x satisfies xg ∧ F → Forcee1(¬F ), i.e., as long as

∃x :∀i :∃c, x′ :xg ∧ F (x) ∧ T (x, i, c, x′) ∧ F (x′)

is unsatisfiable. Due to the universal quantification over the inputs, a SAT solver cannot be used for these
checks. SATWIN0 solves this issue by considering only one input vector, namely the input i with which
the environment can enforce that F is left from x. For this input i, the formula is certainly unsatisfiable
for the full minterm x, because this was checked in Line 12. Hence, eliminating literals from x while

xg ∧ i ∧ F (x) ∧ T (x, i, c, x′) ∧ F (x′)
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Figure 3.3: Working principle of SATWIN0. Subfigure (a) illustrates the computation of a coun-
terexample candidate x such that some i, c lead from F to ¬F . Subfigure (b) depicts
the check if x is indeed a counterexample by checking if some alternative c leads back
to F . Subfigure (c) illustrates counterexample generalization, enlarging x into a region
xg from which input i enforces that no c can lead back to F .

is unsatisfiable is implemented in Line 14 by computing an unsatisfiable core of x. Considering only one
input vector instead of all makes the formula weaker, which means that less literals may be eliminated.
However, the purely propositional satisfiability checks are also potentially faster.

Illustration. Figure 3.3 illustrates the working principle of SATWIN0 graphically. As before, a box
represents the set of all states. In Figure 3.3a, a counterexample candidate is computed in form of a state
x from which some input i and some control value c lead from F to ¬F . This corresponds to the SAT
solver call in Line 8. In case of satisfiability, the next step is to check if some alternative c leads back
to F (for the same x and i). This is illustrated in Figure 3.3b and corresponds to the SAT solver call
in Line 12. In case of satisfiability, U is refined in order not to get the same counterexample candidate
again (Line 21), and the algorithm proceeds by computing the next counterexample candidate as shown
in Figure 3.3a. In case of unsatisfiability, x is indeed a counterexample. Figure 3.3c illustrates how it is
generalized into a larger region xg for which input i enforces that the next state is in ¬F : it is ensured
that from any state of xg, with input i, no c can exist such that the next state is in F again. This is a
sufficient but not a necessary condition for F ∧ xg not to intersect with Forces1(F ). This generalization
corresponds to the computation of the unsatisfiable core in Line 14 of SATWIN0. Finally, xg is removed
from F and the procedure continues with Figure 3.3a, computing the next counterexample candidate.

Discussion. In contrast to QBFWIN (Algorithm 3.1), SATWIN0 potentially requires far more solver
calls. This has two reasons. First, many refinements of U may be necessary until a genuine counterexam-
ple is found. In contrast, QBFWIN can compute a counterexample with one single solver call. Second,
the counterexample generalization in SATWIN0 is weaker and may thus drop fewer literals. This can in-
crease the number of counterexamples that needs to be computed until a solution is found. The advantage
of SATWIN0 is that all satisfiability checks are propositional and, thus, potentially less expensive.

The main purpose of discussing the procedure SATWIN0 in Algorithm 3.3 was to prepare for a
more advanced version, which will be presented in the next section. Hence, we will not elaborate on
implementation aspects or formal correctness arguments for Algorithm 3.3, but only do this for the
advanced version, which is presented in the next section.

3.1.2.2 Advanced Algorithm

The basic algorithm from the previous section has two main weaknesses. First, a reset of U needs to be
done upon every update of F . After such a reset, a lot of iterations may be necessary until U is again
restrictive enough for Line 8 to produce a counterexample. Second, incremental solving is difficult in
Line 8 due to the negation of F : clauses are added to F , but this makes ¬F weaker, which can only be
expressed by (also) removing clauses from the CNF representation of ¬F . The procedure SATWIN1 in
Algorithm 3.4 resolves these weaknesses. The differences to SATWIN0 are marked in blue.
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Algorithm 3.4 SATWIN1: Advanced SAT solver based CNF learning algorithm for the winning region.

1: procedure SATWIN1
(
(x, i, c, I, T, P )

)
, returns: The winning region W (x) in CNF or false

2: if PROPSAT
(
I(x) ∧ ¬P (x)

)
then

3: return false
4: end if
5: F (x) := P (x)
6: U(x, i) := true, G(x) := F (x), precise := true
7: while true do
8: (sat,x, i) := PROPSATMODEL

(
F (x) ∧ U(x, i) ∧ T (x, i, c, x′) ∧ ¬G(x′)

)
9: if ¬sat then

10: if precise then
11: return F (x)
12: end if
13: U(x, i) := true, G(x) := F (x), precise := true
14: else
15: (sat, c) := PROPSATMODEL

(
F (x) ∧ x ∧ i ∧ T (x, i, c, x′) ∧ F (x′)

)
16: if ¬sat then
17: xg := PROPMINUNSATCORE

(
x, F (x) ∧ i ∧ T (x, i, c, x′) ∧ F (x′)

)
18: if PROPSAT

(
xg ∧ I(x)

)
then

19: return false
20: end if
21: F (x) := F (x) ∧ ¬xg
22: precise := false
23: else
24: U := U∧¬PROPMINUNSATCORE

(
x∧i, c∧F (x)∧U(x, i)∧T (x, i, c, x′)∧¬G(x′)

)
25: end if
26: end if
27: end while
28: end procedure

Lazy updates of F . The formula G(x) is a copy of F (x) that is updated only lazily with newly
discovered clauses. Consequently, F → G holds at any time, i.e., G always represents a superset of the
states in F . The Boolean flag precise is true whenever G = F . While SATWIN0 computed a transition
from F to ¬F in Line 8, SATWIN1 computes a transition from F to ¬G. This is illustrated in Figure 3.4.
A transition from F to ¬G is also a transition from F to ¬F . Thus, in case of satisfiability, nothing
changes. However, if no such transition exists, this does not automatically mean that no transition from
F to ¬F exists. Therefore, if G 6= F , Line 13 sets G := F and the check is repeated. Only if G = F
(indicated by precise = true), the algorithm can conclude that no more counterexample exists and
returns F as the final winning region.

Updates of U . New clauses are only added to F but not to G in Line 21. Thus, after any update
of F , precise must be set to false. However, U can be kept as it is. The intuitive reason is as follows.
If a certain (x, i)-pair is not helpful for the environment to enforce a transition from F to ¬G, then it
will definitely not be helpful to enforce a transition from some smaller set F ∧H of states into the same
region ¬G. More formally, we have that(

(x, i) 6|= ∀c : ∃x′ :F (x) ∧ T (x, i, c, x′) ∧ ¬G(x′)
)

implies(
(x, i) 6|= ∀c :∃x′ :F (x) ∧H(x) ∧ T (x, i, c, x′) ∧ ¬G(x′)

)
because(
∀c :∃x′ :F (x) ∧H(x) ∧ T (x, i, c, x′) ∧ ¬G(x′)

)
→
(
∀c :∃x′ :F (x) ∧ T (x, i, c, x′) ∧ ¬G(x′)

)
.
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Figure 3.4: Computing a counterexample candidate in SATWIN1. While SATWIN0 computes a
transition from F to ¬F , SATWIN1 searches for a transition from F to ¬G. That is,
transitions to G ∧ ¬F are not considered. Since F → G, this is stricter.

Only when G changes in Line 13, U also becomes invalid and needs to be reset to true.

3.1.2.3 Correctness of the Advanced Algorithm SATWIN1

In this section, we will work out a formal correctness argument for SATWIN1. In order to increase
readability, we split this argument into several lemmas.

Lemma 13. The SATWIN1 procedure in Algorithm 3.4 always terminates.

Proof. Every loop iteration must end with one of the following five events: (1) the loop terminates in
Line 11, (2) U is set to true in Line 13, (3) the loop terminates in Line 19, (4) F shrinks in Line 21,
or (5) U shrinks in Line 24. We show that all these events lead to termination or eventual shrinking of
F : Item (2) cannot happen twice in a row without shrinking F in between: this is prevented by having
precise = true. Item (5) cannot happen infinitely often without shrinking F in between because at
some point U would reach false, which makes Line 8 return sat = false. In this case, the algorithm
either terminates in Line 11, or item (2) occurs, and item (2) cannot occur twice without shrinking F in
between. Hence, the loop either terminates or makes some progress towards shrinking F . Before F can
shrink below I , the loop definitely terminates in Line 19.

Lemma 14. SATWIN1 enforces the invariant I(x)→ F (x)→ P (x).

Proof. Just as for QBFWIN (see Theorem 12), I → F is enforced by Line 2 and 18. Likewise, F → P
is enforced by Line 5 and 21.

Lemma 15. SATWIN1 enforces the invariant W (x)→ F (x).

Proof. Similar to Theorem 12, this can be proven induction: Initially F = P , so W → F holds because
W → P . Under the hypothesis that W → F holds before an update of F in Line 21, it will also hold
after the update because Line 17 ensures that

xg ∧ F (x) ∧ i ∧ T (x, i, c, x′) ∧ F (x′)

is unsatisfiable. Consequently, we have that

∀x, i, c, x′ :
(
xg ∧ F (x) ∧ i

)
→
(
¬T (x, i, c, x′) ∨ ¬F (x′)

)
.

Because T is both deterministic and complete (x′ is always uniquely defined by T ; see Definition 5)
we can apply the one-point rule (Equation 2.2) in order to rewrite the implication ∀x′ :T (x, i, c, x′) →
¬F (x′) to ∃x′ :T (x, i, c, x′) ∧ ¬F (x′). This gives

∀x, i, c : ∃x′ :
(
xg ∧ F (x) ∧ i

)
→
(
T (x, i, c, x′) ∧ ¬F (x′)

)
.
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Using the one point rule (Equation 2.1) on i, this formula is equivalent to

∀x :∃i : ∀c : ∃x′ : i ∧
((

xg ∧ F (x)
)
→
(
T (x, i, c, x′) ∧ ¬F (x′)

))
.

This implies ∀x :∃i : ∀c :∃x′ :
((

xg ∧ F (x)
)
→
(
T (x, i, c, x′) ∧ ¬F (x′)

))
, which can be written as

xg ∧ F (x)→ ∃i : ∀c : ∃x′ :T (x, i, c, x′) ∧ ¬F (x′).

By substituting the definition of Forcee1, we get xg ∧ F → Forcee1(¬F ). Using the induction hypothesis
W → F , which can be written as ¬F → ¬W , this means that xg∧F → Forcee1(¬W ) holds. Thus, only
states that cannot be part of W are removed in Line 21. In other words, F cannot shrink below W .

The following lemma states that the formula F (x) ∧ ¬U(x, i) can only represent state-input pairs for
which the system player can reach G and thus avoid ending up in ¬G. In other words, the conjunction
with U in the SAT solver call of Line 8 excludes only state-input pairs for which the environment cannot
enforce a transition from F to ¬G.

Lemma 16. SATWIN1 enforces the invariant ∀x, i :
(
F (x)∧¬U(x, i)

)
→
(
∃c, x′ :T (x, i, c, x′)∧G(x′)

)
.

Proof. U is initialized to true, so the invariant holds initially. Line 13 retains the invariant because U
is set to true. Line 21 retains the invariant because F can only get stricter. It remains to be shown that
Line 24 retains the invariant. Let u be the result of PROPMINUNSATCORE in Line 24. The update
U := U ∧ ¬u in Line 24 changes the invariant to

∀x, i :
(
F (x) ∧ (¬U(x, i) ∨ u)

)
→
(
∃c, x′ :T (x, i, c, x′) ∧G(x′)

)
,

which can be written as

∀x, i :
((
F (x) ∧ ¬U(x, i)

)
∨
(
F (x) ∧ U(x, i) ∧ u

))
→
(
∃c, x′ :T (x, i, c, x′) ∧G(x′)

)
.

In general, a formula (A ∨ B)→ C holds iff A→ C and B → C. By induction, we already know that
∀x, i :

(
F (x) ∧ ¬U(x, i)

)
→
(
∃c, x′ :T (x, i, c, x′) ∧G(x′)

)
holds. Hence, what remains to be shown is

that ∀x, i :
(
F (x) ∧ U(x, i) ∧ u

)
→
(
∃c, x′ :T (x, i, c, x′) ∧ G(x′)

)
also holds. Since u ∧ c ∧ F (x) ∧

U(x, i) ∧ T (x, i, c, x′) ∧ ¬G(x′) is unsatisfiable (enforced by Line 24), we have that

∀x, i :
(
F (x) ∧ U(x, i) ∧ u

)
→
(
∀c, x′ :¬c ∨ ¬T (x, i, c, x′) ∨G(x′)

)
.

By applying the one-point rule (Equation 2.1 for c and Equation 2.2 for x′), this can also be written as

∀x, i :
(
F (x) ∧ U(x, i) ∧ u

)
→
(
∃c, x′ : c ∧ T (x, i, c, x′) ∧G(x′)

)
.

This formula obviously implies

∀x, i :
(
F (x) ∧ U(x, i) ∧ u

)
→
(
∃c, x :T (x, i, c, x′) ∧G(x′)

)
,

which was to be shown for Line 24 to preserve the invariant.

Lemma 17. If SATWIN1 reaches Line 11, F (x) = W (x) holds at that point.

Proof. Line 11 is only reached when G = F (otherwise precise is false) and

F (x) ∧ U(x, i) ∧ T (x, i, c, x′) ∧ ¬G(x′)

is unsatisfiable, which means that

∀x, i :
(
F (x) ∧ U(x, i)

)
→
(
∀c :∀x′ :¬T (x, i, c, x′) ∨ F (x′)

)
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holds. By applying the one-point rule (Equation 2.2), this can also be written as

∀x, i :
(
F (x) ∧ U(x, i)

)
→
(
∀c :∃x′ :T (x, i, c, x′) ∧ F (x′)

)
.

In turn, this implies

∀x, i :
(
F (x) ∧ U(x, i)

)
→
(
∃c :∃x′ :T (x, i, c, x′) ∧ F (x′)

)
.

From Lemma 16, we know that

∀x, i :
(
F (x) ∧ ¬U(x, i)

)
→
(
∃c :∃x′ :T (x, i, c, x′) ∧ F (x′)

)
.

Since A ∧B → C and A ∧ ¬B → C together imply A→ C, we can conclude that

∀x :F (x)→ ∀i :∃c, x′ :T (x, i, c, x′) ∧ F (x′)

must hold in Line 11. This means that the returned F satisfies F → Forces1(F ). From W → F → P
(Lemma 15 and 14), it follows that F = W . The reason is that W is the set of all states from which
the system player can enforce the specification, i.e., no proper superset H of W can satisfy H → P and
H → Forces1(H).

Theorem 18. The SATWIN1 procedure in Algorithm 3.4 returns the winning region W (x) of a given
safety specification S, or false if the specification is unrealizable.

Proof. Unrealizability: If S is unrealizable, I 6→ W . SATWIN1 terminates (Lemma 13), but cannot
terminate in Line 11 because F = W (Lemma 17) contradicts with I 6→W (unrealizability) and I → F
(Lemma 14). Hence, in case of unrealizability, SATWIN1 must terminate in Line 3 or 19 returning false.

Realizability: SATWIN1 can only return false in Line 3 or 19 if F is about to be updated in such
a way that I 6→ F . However, from I → W (realizability) and W → F (Lemma 15), it follows that
I → F , so this can never happen. Yet, Lemma 13 says that SATWIN1 terminates, so it must reach
Line 11 eventually. By Lemma 17, this will return the winning region.

3.1.2.4 Efficient Implementation

This section discusses some important aspects of implementing SATWIN1 efficiently.

Incremental solving. We propose to use three SAT solver instances incrementally. The first one
will be called solverC and stores F (x) ∧ U(x, i) ∧ T (x, i, c, x′) ∧ ¬G(x′). solverC is used in Line 8
and Line 24, where the conjunction with c is realized with temporarily asserted assumption literals.
Whenever Line 13 is reached, solverC is reset with the new CNF encoding of ¬G(x′) = ¬F (x′).
Otherwise, clauses are only added to F or U . The second solver instance, called solverG, stores F (x)∧
T (x, i, c, x′)∧F (x′) and is used for Line 15 and Line 17. Clauses are only added to F , so solverG does
not have to be reset at all. The conjunctions with i and x, which change from iteration to iteration, are
again realized by setting assumption literals. The lines 15 and 17 are actually combined into one SAT
solver call that returns either a satisfying assignment c or an unsatisfiable core. The third solver instance
stores I(x) and is used in Line 18.3 The conjunction with xg is again realized with assumption literals.

CNF compression. Whenever solverC is reset with the current CNF encoding of ¬G(x′) = ¬F (x′)
in Line 13, we call the procedure COMPRESSCNF from Algorithm 3.2 (with literal dropping disabled)
in order to reduce the size of F beforehand. This results in a more compact CNF encoding of ¬G(x′)
when using the method of Plaisted and Greenbaum [174].

Resets of solverG. By default, we only add clauses to solverG. However, after some iterations,
many of the F -clauses added to solverG can become redundant because they can be implied by (a

3The input format in our implementation actually allows for only one initial state, so the check in Line 18 can be realized
syntactically without calling a SAT solver.
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combination of) other clauses that have been added later. To prevent the clause database of solverG
from growing unreasonably, we also reset solverG with the compressed F from time to time. As a
heuristic, we track the number of F -clauses that have been added to solverG so far, and compute the
difference to the number of clauses in the compressed F . If this difference exceeds a certain limit,
solverG is reset. This can give a moderate speedup for certain SAT solvers and benchmarks.

3.1.3 Partial Quantifier Expansion

The procedure QBFWIN in Algorithm 3.1 uses quantified formulas to compute counterexamples wit-
nessing that F 6= W and to generalize these counterexamples. In contrast, the procedure SATWIN1 in
Algorithm 3.4 avoids the universal quantifiers. This results in less expensive solver calls, but comes at
the price of requiring more iterations of the outer loop. In this section, we will discuss a hybrid approach
which quantifies universally over some (but not necessarily all) variables. The universal quantification
is then eliminated by applying universal expansion so that the resulting formulas can be solved with a
plain SAT solver. The hope is to find a sweet spot where the reduction in the number of iterations is more
significant than the additional costs per solver call.

3.1.3.1 Quantifier Expansion in Counterexample Computation

The procedure QBFWIN in Algorithm 3.1 computes counterexamples to F = W by solving the quanti-
fied formula

∃x, i : ∀c :∃x′ :F (x) ∧ T (x, i, c, x′) ∧ ¬F (x′).

In contrast, the SATWIN1 procedure from Algorithm 3.4 avoids the universal quantification of the vari-
ables c by solving the formula

∃x, i : ∃c : ∃x′ :F (x) ∧ U(x, i) ∧ T (x, i, c, x′) ∧ ¬G(x′),

where G is just a copy of F that may not be fully up to date. The latter formula does not necessarily
yield a counterexample, but only a candidate. If the candidate turns out to be spurious, it is excluded
by refining U . This approach can be seen as a “lazy elimination” of the universal quantification over
c via U . The disadvantage is that many refinements of U may be necessary before the first genuine
counterexample is found. One alternative would be to eliminate ∀c in

∃x, i : ∀c : ∃x′ :F (x) ∧ T (x, i, c, x′) ∧ ¬G(x′)

eagerly by performing universal expansion as explained in Section 2.2.2. Yet, this may blow up the
formula size by a factor of 2|c| and may thus be infeasible. Another alternative is to partition the variables
of c into two subsets c1 and c2 and solve

∃x, i :∃c1 : ∀c2 :∃x′ :F (x) ∧ U(x, i) ∧ T (x, i, c, x′) ∧ ¬G(x′)

using a SAT solver by expanding only over the variables in c2. By adjusting the relative size of c2,
different trade-offs between decreasing the number of refinements to U and increasing the costs per
solver call can be achieved.

3.1.3.2 Quantifier Expansion in Counterexample Generalization

The idea is similar to that of the previous subsection. QBFWIN eliminates literals from a counterexample
x as long as

∃x :∀i :∃c, x′ :xg ∧ F (x) ∧ T (x, i, c, x′) ∧ F (x′)

is unsatisfiable. In contrast, SATWIN1 avoids the universal quantification over i by ensuring that

∃x :∃i :∃c, x′ :x ∧ i ∧ F (x) ∧ T (x, i, c, x′) ∧ F (x′)
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Figure 3.5: Universal expansion for counterexample computation. The expansion of the transition
relation T is computed only once. The expansion of ¬G(x′) needs to be recomputed
upon every solver restart.

is unsatisfiable for some concrete i. The latter check is potentially cheaper, but may result in fewer literals
being eliminated from x. This means that the refinement of F is less substantial, so more iterations may
be needed. By partitioning the variables i into i1 and i2 and checking

∃x :∃i :x ∧ i ∧ F (x) ∧ ∀i2 : ∃c, x′ :T (x, i, c, x′) ∧ F (x′)

for unsatisfiability, different trade-offs between the generalization procedure of QBFWIN and that of
SATWIN1 can be realized.

3.1.3.3 Efficient Implementation

Universal expansion needs to be implemented carefully in order to avoid an unnecessary blow-up of
the formula size, and to keep the time for the expansion low. Our experience showed that even small
inefficiencies can cost orders of magnitude in both metrics.

Expansion for counterexample computation. Since F (x) and U(x, i) are independent of c and x′,
we only apply universal expansion to

∀c2 : ∃x′ :T (x, i, c, x′) ∧ ¬G(x′)

and conjoin F (x) ∧ U(x, i) afterwards. The transition relation T is always fixed, but ¬G(x′) changes
upon every restart of solverC in Line 13 of SATWIN1. Hence, we expand T only once and store the
resulting renamings x′1, . . . x

′
n of x′. A copy of ¬G(x′) is then added for each renaming x′i when solverC

is initialized or restarted. This is illustrated in Figure 3.5.

Expansion of T . In our implementation, T is originally given as a circuit of AND-gates (where inputs
can be negated). We perform the expansion of T directly on this circuit and only encode the result into
CNF. This facilitates efficient constant propagation and other simplifications. When expanding a certain
c ∈ c2, we only copy those AND-gates that have c in their fan-in cone. Whenever the copy of some
AND-gate has the same inputs as some existing AND-gate, the existing gate is reused. Finally, the tool
ABC [42] is called to simplify the expanded circuit. This involves fraiging, which ensures that no two
nodes in the circuit can represent the same function over the inputs. Hence, equivalent (copies of) next-
state signals will be represented by the same variable, which enables a more substantial simplification of
the ¬G(x′) copies (see Figure 3.5). Finally, duplicate renamings of the next-state variables are removed.
Since T is expanded only once, these simplifications can be afforded.

Expansion of ¬G(x′). First, we perform an even more aggressive compression of G(x′) than done
by COMPRESSCNF in Algorithm 3.2. COMPRESSCNF removes a clause c from a CNF A if

(
A\{c}

)
→

c, i.e., if the clause is implied by other clauses of A already. We now remove a clause c from G(x′) if(
F (x) ∧ T (x, i, c, x′) ∧

(
G(x′) \ {c}

))
→ c.
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Hence, the compressed G(x′) will only be equivalent to the original G(x′) if the current state is in F ,
but this is asserted in all SAT solver calls of SATWIN1 anyway. For every renaming x′i of x′ that has
been created during the expansion of T , we then perform the following steps: First,G(x′i) is computed by
applying the renaming. Second,G(x′i) is simplified by removing tautological clauses and performing unit
clause propagation. Finally,G(x′i) is negated, while auxiliary variables that have already been introduced
during the negation of other copies of G(x′) are reused. All these measures contribute towards reducing
the size of the expansion of ¬G(x′).

Expansion in counterexample generalization. This is easier, since no negation of a CNF is in-
volved. Again, T is expanded and the resulting renamings x′1, . . . x

′
n of x′ are stored. Whenever a clause

¬xg is added to F , we do not only add it to solverG but also add all the renamed next-state copies of the
clause to solverG.

Configuration. In our experiments for expansion in counterexample computation, choosing low
numbers for |c2| only slowed down the SATWIN1 procedure compared to |c2| = 0. High numbers for
|c2| did bring a speedup, though, with the best results achieved for c2 = c. Furthermore, we observed
that an explosion of the formula size can be avoided in most cases by our careful implementation of the
formula expansion. Hence, by default, we expand over all variables in c and only fall back to c2 = ∅ if
some memory limit is exceeded. For counterexample generalization, a speedup could only be achieved
with low numbers of |i2|. Hence, by default, we only expand one input signal. As a heuristic, the signal
that causes the least number of gates to be copied when expanding the transition relation is chosen.

Discussion. Our optimization of partial quantifier expansion can be used to realize different trade-
offs between the number of SAT solver calls and their costs in Algorithm 3.4. We hoped to find a sweet
spot between these two cost factors at low expansion rates, but our experiments suggest high rates at
least for counterexample computation. While the basic idea of quantifier expansion is simple, such high
expansion rates require a careful implementation, like the one discussed in this section, in order not to
waste computational resources.

3.1.4 Reachability Optimizations

In this section, we present optimizations that exploit (un)reachability information when computing a
winning region with query learning. The optimizations can be applied to QBFWIN (Algorithm 3.1) and
to SATWIN1 (Algorithm 3.4), both with and without partial quantifier elimination. However, to simplify
the presentation, we only explain the optimizations for the case of QBFWIN in detail. The application to
SATWIN1 works in exactly the same way.

3.1.4.1 Optimization RG: Reachability for Counterexample Generalization

Recall that a counterexample x |= F ∧ Forcee1(¬F ) in QBFWIN is a state that is part of the current over-
approximation F of the winning region, but this state cannot be part of the final winning region. The
state is represented by a minterm x over the state variables x. QBFWIN generalizes the counterexample
x into a larger state region xg by eliminating literals as long as F ∧xg → Forcee1(¬F ) holds, i.e., as long
as F ∧ xg ∧ Forces1(F ) is unsatisfiable. The reason is that any state xa |= F ∧ xg ∧ Forces1(F ) could
potentially be part of the winning region, and thus must not be removed from F . Yet, as an optimization,
we can still remove such a state xa, as long as it is guaranteed that xa is unreachable from the initial states.
Using this insight, we can eliminate literals in a counterexample x as long asR∧F ∧xg → Forcee1(¬F ),
where R(x) is an over-approximation of the reachable states in S. In QBFWIN, this can be realized by
conjoining R to the QBF that is checked in Line 12. This may result in more literals being eliminated
during the generalization, which means that F is pruned more extensively. Ultimately, this can reduce
the number of iterations in QBFWIN.

Computing reachable states. The states that are reachable from the initial states in a specification
S can be defined inductively as follows: All states in I(x) are reachable. If a state x is reachable, then
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x
F

Force1(F)s
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I xa
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Figure 3.6: Optimization RG: An overlap of F ∧ xg with Forces1(F ) is allowed as long as no state
xa |= F ∧ xg ∧ Forces1(F ) is initial or has a predecessor xb in F ∧ ¬xg . Thus, the
depicted generalization xg would not be allowed.

all states x′ |= ∃x, i, c :x ∧ T (x, i, c, x′) are also reachable. In the synthesis setting, this definition can
even be refined. Any over-approximation F of the winning region is itself an over-approximation of the
reachable states, not necessarily in the specification S , but definitely in the final implementation. The
reason is that no realization of S must ever leave the winning region W , and thus also not F . This
insight can be used to compute an even tighter set of reachable states by considering only transitions that
remain in F . In principle, the set of reachable states can easily be computed using a simple fixed-point
algorithm. However, we consider this to be too expensive, and instead work with over-approximations of
the reachable states. Such over-approximations are also useful in formal verification, and many methods
to compute them exist [161].

Our approach. We avoid computing an over-approximation of the reachable states explicitly. In-
stead, we use an idea that is inspired by the model checking algorithm IC3 [41]: Let R(x) be an over-
approximation of the reachable states. By induction, we know that a state x is definitely unreachable if
I(x)→ ¬x and ¬x∧R(x)∧T (x, i, c, x′)→ ¬x′. The formula says that if the current state is reachable
but different from x, then the next state cannot be x either. Hence, if x is not an initial state, then x can
never be visited. The same reasoning applies if x is an incomplete cube (or any other formula) repre-
senting a set of states. In IC3, ¬x is said to be inductive relative to the current knowledge R about the
reachable states. It can thus be used to refine R.

In our synthesis setting, we take the current over-approximation F as an over-approximation of the
reachable states. When generalizing a counterexample x, literals cannot only be eliminated if F ∧ xg →
Forcee1(¬F ) is preserved, but also if ¬xg is inductive relative to F . The two criteria can be combined by
requiring that

∃x∗, i∗, c∗,x :∀i : ∃c, x′ :
(
I(x) ∨ F (x∗) ∧ ¬x∗g ∧ T (x∗, i

∗
, c∗, x)

)
∧

xg ∧ F (x) ∧ T (x, i, c, x′) ∧ F (x′) (3.1)

is unsatisfiable. Only the parts of the formula that are marked in blue are new. The variables x∗, i∗ and
c∗ are previous-state copies of x, i and c, respectively. The original version of the formula was true if
some state xa |= F ∧ xg ∧ Forces1(F ) exists. The improved formula also requires that xa is either an
initial state, or has a predecessor xb in F ∧ ¬xg. This is illustrated in Figure 3.6. If neither of these two
criteria holds, then we know that I(x)→ ¬xa and ¬xa ∧F (x)∧xg ∧T (x, i, c, x′)→ ¬x′a. This means
that ¬xa is inductive relative to F ∧ ¬xg, so xa is unreachable and can thus be removed even if it could
potentially be part of the winning region. Note that we do not require inductiveness relative to F but
rather relative to F ∧ ¬xg. The intuitive reason is that F will be updated to F ∧ ¬xg, so a predecessor
xb in F ∧xg does not count. The following theorem states that this procedure cannot prune F too much.

Theorem 19. For a realizable specification S, if Equation 3.1 is unsatisfiable, then F∧xg cannot contain
a state xa from which (a) the system player can enforce that F is visited in one step, and (b) which is
reachable in any implementation of S.

Proof. By contradiction, assume that there exists such as state xa. Any implementation of S must only
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F
xg

I xkxk-1

xa

x0

W

Figure 3.7: Illustration of the correctness proof for optimization RG: x0, . . . ,xn is a path of states
from I to xa. The entire path is contained in W , which is a subset of F . From xk on,
the path remains in F ∧ xg until xa is reached.

visit states in W . Hence, for xa to be reachable in the final implementation, there must exist a play
x0, . . . ,xn, . . . of the game S such that

• x0 |= I (the play starts in the initial states),
• xn = xa (the play reaches xa at some step n),
• n ≥ 1 (that is, xa cannot be initial because this would satisfy Equation 3.1), and
• xj |= W for all 0 ≤ j ≤ n (all states in the path from I to xa are in the winning region, and thus

potentially reachable).

Such a play is illustrated in Figure 3.7. Since xa |= F ∧ xg, there must exist a smallest k ≤ n such that
xj |= F ∧ xg for all k ≤ j ≤ n. Now, xk is either initial or has a predecessor xk−1 in F ∧¬xg (because
xk−1 |= W,W → F , and xk−1 6|= F ∧ xg). Thus, xk satisfies the new (blue) part of Equation 3.1.
Since Equation 3.1 is unsatisfiable, the system player cannot enforce that the play traverses from xk to
F . Hence, xk cannot be part of W . This contradiction means that such a path of reachable states ending
in xa cannot exist if Equation 3.1 is unsatisfiable.

Theorem 19 only considers the case of a realizable specification. In case of unrealizability, the cor-
rectness argument is even simpler: Optimization RG cannot make QBFWIN identify an unrealizable
specification as realizable because the additional conjuncts in Equation 3.1 can only have the effect that
more states are removed from F , thus F can only shrink below I faster. Another important remark is
that QBFWIN no longer computes the winning region when optimization RG is enabled, but only a win-
ning area according to Definition 11. The reason is that states of W may be missing in F if they are
unreachable.

3.1.4.2 Optimization RC: Reachability for Counterexample Computation

Similar to improving the generalization of counterexamples using unreachability information, we can
also restrict their computation to potentially reachable states. In addition to x |= F ∧ Forcee1(¬F ), we
require that the counterexample x is either an initial state, or has a predecessor in F that is different
from x. If neither of these two conditions is satisfied, then x can only be unreachable and, thus, does not
have to be removed from F .

Realization. In QBFWIN, these additional constraints can be imposed by modifying the QBF query
in Line 7 to

(sat,x) := QBFSATMODEL
(
∃x∗, i∗, c∗,x, i :∀c : ∃x′ :(

I(x) ∨ x∗ 6= x ∧ F (x∗) ∧ T (x∗, i
∗
, c∗, x)

)
∧F (x) ∧ T (x, i, c, x′) ∧ ¬F (x′)

)
. (3.2)

As before, the new parts are marked in blue, and x∗, i∗, and c∗ are the previous-state copies of x, i, and c,
respectively. The expression x∗ 6= x encodes that at least one state variable x ∈ x must have a different
value than its corresponding previous-state copy.
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Consequences. When executing LEARNQBF with optimization RC on a realizable specification, the
returned formula F may not be a winning area according to Definition 11 any more. More specifically,
item (3) of Definition 11 may be violated because from some unreachable states of F , it may be that the
system player cannot enforce that F is reached in the next step. Consequently, a system implementation
can no longer be computed as a Skolem function for the variables c in the formula

∀x, i :∃c, x′ :T (x, i, c, x′)∧
(
F (x)→ F (x′)

)
because this formula no longer holds true. Still, a system implementation can be extracted, e.g., by
computing Skolem functions for the c-signals in the negation of Equation 3.2.

Configuration. In our experiments, we achieve a significant speedup when applying optimization
RG, especially with our SAT solver based algorithm SATWIN1. Optimization RC also gives some
speedup for certain benchmarks, but does not pay off on average. Hence, by default, we apply optimiza-
tion RG but disable optimization RC.

3.1.5 Template-Based Approach

In the previous sections, a winning area was computed iteratively by starting with some initial approxima-
tion and then refining this approximation based on counterexamples. This section presents a completely
different approach, where we simply assert the constraints that constitute a winning area and compute a
solution in one go.

Basic idea. We define a generic template H(x, k) for the winning area F (x) we wish to construct.
Here, H(x, k) is a formula over the state variables x and a vector of Boolean variables k, which act
as template parameters. Concrete values k for the parameters k instantiate a concrete formula F (x) =
H(x,k) over the state variables x. This reduces the search for a propositional formula (the winning area)
to a search for Boolean template parameter values. We can now compute a winning area according to
Definition 11 with a single QBF solver call, simply by asserting the desired properties:

(sat,k) = QBFSATMODEL
(
∃k : ∀x, i : ∃c, x′ :

(
I(x)→ H(x, k)

)
∧(

H(x, k)→ P (x)
)
∧ (3.3)(

H(x, k)→
(
T (x, i, c, x′) ∧H(x′, k)

)))
With the resulting template parameter values k, the corresponding instantiation F (x) = H(x,k) of
H(x, k) can then be computed.

Completeness of templates. A template H(x, k) does not necessarily have to be complete in the
sense that it can represent every function F (x) over the state variables with some choice for the parame-
ters k. We rather restrict the expressiveness of templates deliberately in order to reduce the search space
for the solver. The underlying assumption is that many specifications have a winning area which can
be represented as a “simple” formula over the state variables (according to some metric). We will use
templates that are parameterized in their expressive power. As a general strategy, we will start with a
low value for some expressiveness parameter N , and increase N as long as Equation 3.3 is unsatisfiable.
Detecting unrealizability is difficult with this approach, though. Only if Equation 3.3 is unsatisfiable
for a template that can represent every function F (x) over the state variables, we can conclude that the
corresponding specification is unrealizable.

Concrete realizations. While the basic idea of the template-based approach is simple, there are
many ways to realize it. One degree of freedom lies in the definition of the generic template H(x, k) and
its parameters. Two concrete suggestions will be made in the following subsections. Another source of
freedom lies in the way to solve Equation 3.3. An approach using SAT solvers instead of a single call to
a QBF solver will be presented in Section 3.1.5.3.
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Figure 3.8: Circuit illustration of a generic CNF template H(x, k). Template parameters k are
marked in blue, state variables x are marked in red. The truth constants true and false
are abbreviated by 1 and 0, respectively. The parameters kci define if clause i is used.
The parameters kvi,j define if clause i contains variable xj or not. The parameters kni,j
define if xj appears negated or unnegated in clause i.

3.1.5.1 CNF Templates

Figure 3.8 shows a circuit that illustrates how the template H(x, k) can be defined as a parameterized
CNF formula over the state variables x. That is, F (x) is represented as a conjunction of clauses over
the state variables. Template parameters k define the shape of the clauses. The trapezoids in Figure 3.8
are multiplexers that select one of the inputs on the left depending on the value of the signal fed in from
below. A CNF encoding of this circuit such that it can be used in Equation 3.3 is straightforward [208].

The construction in Figure 3.8 works as follows. First, a maximum numberN of clauses is fixed. This
number configures the expressiveness of the template. Next, three vectors kc, kv, kn of template param-
eters are introduced. Together, they form k = kc∪kv ∪kn. The meaning of the parameters is as follows.

• If parameter kci with 1 ≤ i ≤ N is true, then clause i is used in F (x), otherwise not. This is
achieved by making the clause true (and thus irrelevant in the conjunction of clauses) if kci is false.

• If parameter kvi,j with 1 ≤ i ≤ N and 1 ≤ j ≤ |x| is true, then the state variable xj ∈ x appears
in clause i of F (x), otherwise not. This is realized with a multiplexer that sets the corresponding
literal in the clause to false (thus making it irrelevant in the disjunction) if kvi,j is false.

• Finally, if parameter kni,j is true, then the state variable xj can appear in clause i only negated,
otherwise only unnegated. This is realized with a multiplexer that selects between xj and ¬xj . If
kvi,j is false, then kni,j is irrelevant.

This results in |k| = 2 ·N · |x|+N template parameters.

Example 20. For x = (x1, x2, x3) and N = 3, the CNF (x1 ∨ ¬x2) ∧ (¬x3) can be realized with

• kc1 = kc2 = true and kc3 = false (only clause 1 and 2 are used),
• kv1,1 = kv1,2 = true and kv1,3 = false (clause 1 contains x1 and x2 but not x3),
• kv2,3 = true and kv2,1 = kv2,2 = false (clause 2 contains x3 but not x1 and not x2),
• kn1,1 = false and kn1,2 = true (clause 1 contains x1 unnegated and x2 negated), and
• kn2,3 = true (clause 2 contains x3 negated).

All other parameters are irrelevant.

Choosing N is delicate. If N is too low, we will not find a solution, even if one exists. If it is too
high, we waste computational resources and may find an unnecessarily complex winning region. In our
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Figure 3.9: Circuit illustration of a generic AND-inverter graph template H(x, k). The truth con-
stants true and false are again abbreviated by 1 and 0, respectively. Template param-
eters k (marked in blue) define if a certain state variable xi (marked in red) appears
as input of a gate or not, and if it appears negated or not. Other parameters define if
outputs of a previous gate appear as input, and if negated or not.

implementation, we solve this dilemma by starting with N = 1 and increasing N by one upon failure
until we reach N = 4. From there, we double N upon failure. We stop if we get a negative answer for
N ≥ 2|x| because any Boolean formula over x can be represented in a CNF with less than 2|x| clauses.

3.1.5.2 AND-Inverter Graph Templates

Another option is to define the template H(x, k) as a network of AND-gates and inverters, fed by the
state variables x. The template parameters k define the connections between the gates and the state
variables, as well as the negation of signals.

Figure 3.9 gives a concrete proposal for defining such a template. The template is again illustrated as
a circuit, but can easily be encoded into CNF. A maximum number N of AND-gates is chosen first. The
first gate can have all state variables as input, either negated or unnegated. The second gate can also have
the output of the first gate as input. The third gate can have the output of the first two gates as additional
inputs, and so on. The output of the last AND-gate defines H(x, k), again with a possible negation. The
template parameters k define which inputs of a gates are actually used or ignored, and which inputs are
used negated or unnegated. We distinguish five groups of parameters.

• If parameter kvi,j with 1 ≤ i ≤ N and 1 ≤ j ≤ |x| is true, then the state variable xj ∈ x appears
as input of gate i, otherwise not.

• If parameter kni,j with 1 ≤ i ≤ N and 1 ≤ j ≤ |x| is true, then gate i can only use the negated
variable xj as input, otherwise only the unnegated variable.

• If parameter kui,j with 1 ≤ i ≤ N and 1 ≤ j < i is true, then the output of gate j appears as input
of gate i, otherwise not.

• If parameter kmi,j with 1 ≤ i ≤ N and 1 ≤ j < i is true, then gate i can only use the negated
output of gate j as input, otherwise only the unnegated output.

• The single parameter kn defines if the output of the final gate defines H(x, k) or ¬H(x, k).

This gives |k| = N · (2 · |x|+N − 1) + 1 template parameters.

Example 21. We continue Example 20, where x = (x1, x2, x3),N = 3 and F (x) = (x1∨¬x2)∧(¬x3),
which can be rewritten to ¬(¬x1 ∧ x2) ∧ (¬x3). This formula can be realized with

• kv2,1 = kv2,2 = true and kv2,3 = false (gate 2 uses x1 and x2 as input but not x3),
• kn2,1 = true and kn2,2 = false (gate 2 uses x1 negated and x2 unnegated),
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• ku2,1 = false (gate 2 ignores the output of gate 1),
• kv3,3 = true and kv3,1 = kv3,2 = false (gate 3 uses x3 as input but not x1 and not x2),
• kn3,3 = true (gate 3 uses x3 negated),
• ku3,2 = km3,2 = true and ku3,1 = false (gate 3 uses the negated output of gate 2, but ignores the

output of gate 1), and
• kn = false (the output H(x, k) is defined by the unnegated output of gate 3).

All other parameters are irrelevant. In particular, the output of gate 1 is completely ignored.

In our implementation, choosing N works in the same way as for the CNF template: starting with
N = 1, N is increased by 1 in case of unsatisfiability of Equation 3.3 until N = 4 is reached. From
there, N is doubled upon failure. There is a straightforward way to represent a CNF with N clauses as a
network of N + 1 AND-gates. Hence, the criterion for detecting unrealizability with CNF templates can
also be applied here: If Equation 3.3 is unsatisfiable for N > 2|x|, the specification must be unrealizable.

3.1.5.3 Implementation with SAT Solvers

In this section, we present an extension of the Counterexample-Guided Inductive Synthesis (CEGIS)
approach that allows us to compute satisfying assignments of Equation 3.3 with SAT solvers instead of
a QBF solver.

Basic idea. Recall that CEGIS (see Section 2.7) is an approach to compute satisfying assignments
in formulas of the form ∃e :∀u :F (e, u) by iterative refinements of a solution candidate. With

M(k, x, i, c, x′) =
(
I(x)→ H(x, k)

)
∧
(
H(x, k)→ P (x)

)
∧
(
H(x, k)→

(
T (x, i, c, x′) ∧H(x′, k)

))
being an abbreviation for the matrix of the QBF in Equation 3.3, our task is now to compute a satisfying
assignment for the parameters k in ∃k :∀x, i : ∃c, x′ :M(k, x, i, c, x′). Hence, there is an additional ex-
istential quantifier on the innermost level. This existential quantifier does not affect the computation of
solution candidates significantly: Candidates are satisfying assignments for the variables k in∧

(x,i)∈D

∃c, x′ :M(k,x, i, c, x′),

where the existential quantification of c and x′ can be handled by renaming these variables in every copy
of M and then calling a SAT solver. The computation of counterexamples, i.e., values for the variables
x and i, becomes more intricate, though. Instead of a satisfying assignment for ¬F (e, u), we now need
to compute an assignment x, i for the variables x, i in

¬∃c, x′ :M(k, x, i, c, x′),

where k represents fixed values for the variables k. The negation turns the existential quantification into
a universal one. The resulting quantifier alternation prevents us from computing counterexamples with a
single call to a SAT solver. A QBF solver could be used, but the idea of this section is to substitute QBF
solving with plain SAT solving. Hence, we will use an iterative approach that is similar to SATWIN1 in
Algorithm 3.4 to compute counterexamples.

Algorithm. The procedure TEMPLWINSAT in Algorithm 3.5 presents our solution. It takes as input
a template H(x, k) for a winning area as well as a safety specification S. As output, it returns either
a concrete winning area F (x) as an instantiation of the template H(x, k), or “fail” of no instantiation
of H(x, k) can be a winning area. The structure of the algorithm is the same as for CEGISSMT in
Algorithm 2.5: The formula G(k, t) accumulates constraints that the template parameters k have to
satisfy, where t is a vector of auxiliary variables. Line 4 computes candidate template parameter values
k in form of a satisfying assignment for G. If the formula is unsatisfiable, then no template instantiation
can be a winning area and the procedure returns “fail”. If the formula is satisfiable, a candidate winning
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Algorithm 3.5 TEMPLWINSAT: An algorithm to compute template instantiations using SAT solvers.

1: procedure TEMPLWINSAT
(
H(x, k), (x, i, c, I, T, P )

)
, returns: A winning area F (x) or “fail”

2: G(k, t) := true
3: while true do
4: (sat,k) := PROPSATMODEL

(
G(k, t)

)
5: if sat = false then
6: return “fail”
7: end if
8: (correct,x, i) := CHECK

(
H(x,k), (x, i, c, I, T, P )

)
9: if correct = true then

10: return H(x,k)
11: end if
12: tc := CreateFreshCopy(c)
13: tx := CreateFreshCopy(x′)
14: G(k, t) := G(k, t) ∧

(
I(x) → H(x, k)

)
∧(

H(x, k) → P (x)
)
∧(

H(x, k)→
(
T (x, i, tc, tx) ∧H(tx, k)

))
15: end while
16: end procedure
17: procedure CHECK

(
F (x), (x, i, c, I, T, P )

)
, returns: (correct,x, i)

18: (sat,x) := PROPSATMODEL
(
(I(x) ∧ ¬F (x)) ∨ (F (x) ∧ ¬P (x))

)
19: if sat then
20: return (true,x,

∧
i∈i ¬i)

21: end if
22: U(x, i) := true
23: while true do
24: (sat,x, i) := PROPSATMODEL

(
F (x) ∧ U(x, i) ∧ T (x, i, c, x′) ∧ ¬F (x′)

)
25: if ¬sat then
26: return (true, true, true)
27: end if
28: (sat, c) := PROPSATMODEL

(
F (x) ∧ x ∧ i ∧ T (x, i, c, x′) ∧ F (x′)

)
29: if ¬sat then
30: return (false,x, i)
31: else
32: U := U ∧¬PROPMINUNSATCORE

(
x∧ i, c∧F (x)∧U(x, i)∧T (x, i, c, x′)∧¬F (x′)

)
33: end if
34: end while
35: end procedure

area F (x) = H(x,k) is computed using the parameter values k. Next, the candidate is checked in
Line 8. This step is different to CEGISSMT in Algorithm 2.5 and explained in the next paragraph. If the
candidate is correct, it is returned. Otherwise, the procedure CHECK returns a counterexample in form
of a satisfying assignment x, i for the variables x, i. The meaning of this counterexample is that

∃c, x′ :
(
I(x)→ H(x,k)

)
∧
(
H(x,k)→ P (x)

)
∧
(
H(x,k)→

(
T (x, i, c, x′) ∧H(x′,k)

))
does not hold, thus witnessing that k cannot be a solution to Equation 3.3 yet. To make sure the candidate
of the next iteration works also for the counterexample x, i, the constraints on k are refined accordingly
in Line 14. The variables c and x′ are renamed to fresh auxiliary variables in order to account for their
existential quantification.
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Counterexample computation. The procedure CHECK in Algorithm 3.5 is a helper routine for
TEMPLWINSAT that checks if a given candidate F (x) is a winning area. It returns correct = true if
this is the case. Otherwise, it sets correct = false and returns a counterexample x, i witnessing the
incorrectness. Line 18 checks if the first two properties in the definition of a winning area F , namely
I → F and F → P , are satisfied (see Definition 11). If this is not the case, a satisfying assignment
x is returned as a counterexample witnessing this defect. The input vector i returned as part of the
counterexample is irrelevant in this case. Otherwise, CHECK turns to verifying the third property of a
winning area, namely F → Forces1(F ). Here, we search for a counterexample x, i such that no value c
can prevent the system from leaving F (x) if the environment picks input i from state x |= F (x). The
same kind of counterexample computation was performed already by SATWIN1 in Algorithm 3.4, so we
simply reuse this algorithm here. The difference is that F (x) is not refined by CHECK. Thus, there is no
need for lazy updates of ¬F (x′), which renders quite some lines of Algorithm 3.4 obsolete.

An optimization. The check in Line 18 of Algorithm 3.5 can actually be omitted if we ensure
that ∀x, k : I(x) → H(x, k) and ∀x, k :H(x, k) → P (x) holds by the construction of the template
H(x, k). This can easily be achieved by taking any template H ′(x, k) and defining a new template
H(x, k) =

(
H ′(x, k)∧P (x)

)
∨I(x), given that I(x)∧¬P (x) is unsatisfiable (otherwise the specification

is trivially unrealizable). We use this optimization in our implementation.

Incremental solving. Algorithm 3.5 is well suited for incremental SAT solving. We propose to
use three solver instances. The first one stores G and is used for Line 4. Constraints are only added
to G in Line 14, so no re-initialization is needed. The second solver instances stores F (x) ∧ U(x, i) ∧
T (x, i, c, x′) ∧ ¬F (x′) and is used in Line 24 and 32. It is (re-)initialized when CHECK is called. After
that, clauses are only added toU in Line 32. Finally, the third solver instance stores F (x)∧T (x, i, c, x′)∧
F (x′) and is used in Line 28. This instance is also (re-)initialized whenever CHECK is called. This CNF
does not change at all during the execution of CHECK. The conjunctions with x, i and c are realized with
assumption literals that are temporarily asserted.

3.1.5.4 Discussion

The template-based approach has a potential for finding simple winning areas quickly. There may ex-
ist many winning areas that satisfy the constraints given by Definition 11. The algorithms SAFEWIN,
QBFWIN and SATWIN1 discussed earlier will always compute the largest possible winning area (modulo
unreachable states if used with optimization RG or RC). The template-based approach is more flexible
in this respect. As an extreme example, suppose that there is only one initial state, it is safe, and the sys-
tem can enforce that the play stays in this state. Suppose further that the winning region is complicated.
The template-based approach may find F = I quickly, while the other approaches may require many
iterations to compute the winning region.

On the other hand, the template-based approach can be expected to scale poorly if no simple winning
area exists or if the synthesis problem is unrealizable. Starting with a small expressiveness parameter N ,
Equation 3.3 will be unsatisfiable, so N is increased. With increasing N , the search space for the solver
increases, which results in longer execution times. For unrealizable specifications, we can only terminate
once N > 2|x| (when using our CNF or AND-inverter graph templates). Except for specifications with a
very low numbers of state variables, a timeout is likely to be hit before this point can be reached.

3.1.6 Reduction to Effectively Propositional Logic (EPR)

The template-based approach presented in the previous section may work well if a simple representation
of a winning area exists. However, one drawback is the need to select a template, which is a delicate mat-
ter. It would be more desirable to directly compute a winning area as a Skolem function of a quantified
formula. Unfortunately, the definition of a winning area (Definition 11) not only involves the winning
area F (x) itself, but also its next-state copy F (x′). Hence, we have to compute two Skolem functions,
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and the two functions have to be functionally consistent. This problem cannot be formulated as a QBF
formula with a linear quantifier prefix, but requires more expressive logics.

3.1.6.1 Using Henkin Quantifiers

One solution is to use so-called Henkin quantifiers [108], which are quantifiers that are only partially
ordered. This partial order can be used to restrict variable dependencies. In particular, a winning area
F (x) can be computed as a Skolem function for the variable w in

∀x : ∃w :∀i :∃c :
∀x′ : ∃w′ :

(
I(x)→ w

)
∧
(
w → P (x)

)
∧
(
w ∧ T (x, i, c, x′)→ w′

)
∧
(
(x = x′)→ (w = w′)

)
.

This formulation ensures that the Skolem function F (x) for w can only depend on x, and the Skolem
function G(x′) for w′ can only depend on x′. The last constraint enforces functional consistency be-
tween F and G, i.e., F and G are actually the same function but applied to different parameters. The
logic of applying Henkin quantifiers to propositional formulas is called Dependency Quantified Boolean
Formulas (DQBF) and was first described by Peterson and Reif [173]. The problem of deciding whether
a DQBF formula is satisfiable is NEXPTIME complete [173]. In addition to this high complexity, only a
few approaches and tools to solve DQBF formulas have recently been proposed [92, 93]. For this reason,
we did not implement a DQBF-based solution but we rather use EPR, where mature solvers are available.

3.1.6.2 Using Effectively Propositional Logic (EPR)

Recall from Section 2.2.5 that EPR is the set of first-order logic formulas of the form ∃x : ∀y :F (x, y),
where F is a quantifier-free formula in CNF that must not contain function symbols but can contain
predicate symbols. These predicate symbols are implicitly quantified existentially. We seek a winning
area F (x) satisfying the three properties of Definition 11, which can be combined to

∃F :∀x, i : ∃c, x′ :
(
I(x)→ F (x)

)
∧
(
F (x)→ P (x)

)
∧
(
F (x)→

(
T (x, i, c, x′) ∧ F (x′)

))
.

In order to transform this constraint into EPR, we need to perform several steps, which are similar to
those by Seidl et al. [190] when transforming QBF formulas into EPR.

Step 1. We replace all the Boolean variables x, i, c, x′ by corresponding first-order domain variables.
Since the original variables can only take two different values, we introduce a unary predicate V to
represent the truth value of a domain variable. We also introduce two domain constants > and ⊥ to
encode true and false, and add the axioms V (>) and ¬V (⊥) to the final EPR formula.

Step 2. We introduce predicate symbols I(x), P (x), T (x, i, c, x′) and F (x) to represent the different
parts of the formula. The predicates I , P and T are equipped with additional constraints that fully define
their truth value based on the truth values of the variables on which they depend. The predicate F is left
unconstrained because it represents the winning area we wish to compute.

Step 3. The third step is to eliminate the existential quantification over c and x′. Since the transition
relation is both deterministic and complete (see Definition 5), the one-point rule (Equation 2.2) can be
used to eliminate the existential quantification over x′ by rewriting the formula to

∃F : ∀x, i :∃c : ∀x′ :
(
I(x)→ F (x)

)
∧
(
F (x)→ P (x)

)
∧
((
F (x) ∧ T (x, i, c, x′)

)
→ F (x′)

)
.

The existential quantification over c is eliminated by Skolemization: for every variable cj ∈ c, we
introduce a new predicate Cj(x, i). All occurrences of V (cj) in the definition of T are then replaced by
Cj(x, i). This gives a formula of the form

∃F,C1, . . . , C|c| : ∀x, i, x′ :
(
I(x)→ F (x)

)
∧
(
F (x)→ P (x)

)
∧
((
F (x) ∧ T (x, i, x′)

)
→ F (x′)

)
.

Step 4. The body of the resulting formula needs to be encoded into CNF. Since we have a conjunc-
tion of implications on the top-level, this is mainly a matter of encoding the constraints defining I , P and
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Figure 3.10: Overview of our parallelized strategy computation. Rectangles are threads running
some methods. Arrows denote some flow of information.

T into CNF. Note that the standard Tseitin [208] or Plaisted-Greenbaum [174] transformations introduce
new auxiliary variables that are quantified existentially on the innermost level. Since this is not allowed
in EPR, these auxiliary variables need to be eliminated again. Similar to the elimination of the variables
c in Step 3, we do this by introducing new predicates. To increase efficiency, we do not pass all variables
of x, i, x′ as arguments to the new predicates, but rather analyze the variable dependencies structurally
and pass only the relevant ones.

Solving the resulting EPR formula. We call iProver on the resulting EPR formula. iProver is an
instantiation-based first-order theorem prover that can also produce implementations for the predicates
that occur in the formula. This means that the solver directly returns a winning area F (x). Moreover,
since we represent the truth values of the variables cj ∈ c with predicates Cj(x, i), we can also di-
rectly extract an implementation from the solver result.4 That is, there is no need to apply the circuit
construction methods that will be presented in Section 3.2 when using the EPR synthesis approach.

Discussion. Similar to the template-based approach presented in Section 3.1.5, this approach does
not compute the winning region but some winning area. It can thus benefit from situations where the
winning region is complicated but a simple winning area exists. In contrast to the template-based ap-
proach, it eliminates the need to guess a template and to increase the expressiveness of the template if no
solution is found. The price that is payed for this benefit is the higher worst-case complexity for checking
the satisfiability of the constructed formulas because a more expressive logic is used.

3.1.7 Parallelization

The various methods for strategy computation presented so far have different strengths and weaknesses
and, consequently, perform well on different classes of benchmarks. To a smaller extent, different char-
acteristics can also be observed within one method when run with different optimizations or solvers. In
this section we therefore combine different methods and configurations in the hope to inherit all their
strengths while compensating their weaknesses. We do this in a parallelized way, where individual
methods are running in separate threads but share discovered information that may be helpful for others.

Figure 3.10 gives a proposal for combining a promising subset of the methods (or fragments thereof).
Arrows denote information that is exchanged between threads.

SATWIN1 threads. The SATWIN1 threads execute the SATWIN1 procedure from Algorithm 3.4 and
can be seen as the main workhorse. Individual SATWIN1 threads can be run with or without optimization
RG, with or without quantifier expansion, and with different SAT solvers. All newly discovered clauses
of the winning region F (x) are put into a central database and communicated to the other threads. Newly

4Because of the poor scalability of the EPR approach in our experiments, we did not implement a parser for the predicate
implementations returned by iProver in our tool yet.



3.1. From Safety Specifications to Strategies 67

discoveredU -clauses are also shared between SATWIN1 threads. In order for this to work, the SATWIN1
threads need be synchronized regarding their restarts of solverC, i.e., they need to work with the same
version of ¬G(x′) at any time. If several SATWIN1 threads are running in a mode where they perform
universal expansion, the expansion is only done by one thread (while the others sleep) in order not to
waste resources (like stressing the memory bus unnecessarily).

QBFGEN threads. The QBFGEN threads take existing clauses from F and attempt to generalize
them further by eliminating more literals. This is done as in Line 9 to Line 15 of the QBFWIN procedure
in Algorithm 3.1 using a QBF solver. If a clause could be shortened, the reduced clause is communi-
cated to all other threads. Individual QBFGEN threads can be run with or without optimization RG,
with or without QBF preprocessing, and with or without incremental QBF solving (the combination of
incremental solving plus preprocessing is not available).

SATGEN threads. These threads take counterexamples in form of state-input pairs (x, i) as com-
puted by the SATWIN1 threads and compute all generalizations using a SAT solver (as illustrated in
Figure 3.2). The resulting F -clauses are communicated to all other threads.

TEMPLWIN threads. These threads implement the template-based method from Section 3.1.5,
using CNF templates of increasing size. The clauses from F are considered as fixed over-approximation
of the winning area to compute — the threads only compute additional clauses such that a winning area
is obtained. A timeout of 20 seconds makes the thread try again (with a potentially refined set F of fixed
clauses) if a solution cannot be found quickly. The short timeout is justified by the observation that the
template-based approach either finds a solution quickly or not at all. The QBF-based implementation and
the SAT-based implementation of the template-based approach are alternated from timeout to timeout.
The TEMPLWIN threads are information sinks: the only information communicated back to other threads
is a request to terminate if a solution has been found.

IFM’13 threads. These threads execute a reimplementation of the SAT-based synthesis method pro-
posed by Morgenstern et al. [163]. This method maintains an over-approximation G(x) of the winning
region W (x) as well as over-approximations of sets of states from which the environment can win the
game in different numbers of steps. We couple G(x) with F (x): If new clauses are added to G(x),
then they are also added to F (x) and communicated to the other threads. If other threads discover new
F -clauses, they are also added to G in the IFM’13 threads.

Configuration. When only one thread is available, we make it execute SATWIN1 with optimization
RG, quantifier expansion and MiniSat as underlying SAT solver. If two threads are available, the second
one executes TEMPLWIN (with DepQBF, Bloqqer and MiniSat). If three threads are available, the third
thread runs IFM’13 using MiniSat. With four threads, we also use a second instance of SATWIN1, but
with quantifier expansion disabled. With five threads, we also include a SATGEN thread, and with six
threads we also include a QBFGEN thread.

Variations. The current realization always shares all discovered clauses that refine the winning
region with all other threads. Another option is to share only small clauses (where the number of literals is
below some threshold) in order to reduce the communication overhead. In general, smaller clauses refine
the winning region more substantially than larger ones, so this approach would focus on communicating
only significant findings. Another promising extension is to include also threads that run BDD-based
algorithms, e.g., a BDD-based realization of Algorithm 2.1. The BDD-based threads can directly use
clauses discovered by other threads to refine the BDD that represents the winning region. Communication
in the other direction is possible as well: many BDD libraries provide functions to convert a BDD into
CNF. While it may be expensive to share all clauses of such a CNF translation, it may still be beneficial
to factor out a set of small clauses and communicate them.

Discussion. The main purpose of our parallelization is to combine different methods that comple-
ment each other. Exploiting hardware parallelism in only a secondary aspect because, due to the high
worst-case complexities, even a speedup factor of, say, 10 may have little impact on the ability of solv-
ing larger benchmark instances. Furthermore, we do not claim that our choice of distributing workload
over the threads is in any way optimal. We rather selected the methods to run in individual threads
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quite greedily, based on the performance results when running methods in isolation (see Section 3.3) and
based on experiments with subsets of the benchmarks. However, there is such a plethora of possibilities
for combining different methods, fragments thereof, optimizations, heuristics and solver configurations
that finding particularly good configurations is quite an intricate task. Hence, we rather see the main
contribution of our parallelization in providing a “playground” for combining different approaches and
configurations. It demonstrates that a parallelized way of combining different SAT-based synthesis ap-
proaches is easily possible. This stands in contrast to BDD-based synthesis algorithms, where a paral-
lelization is often much more difficult to achieve. Our parallelization goes far beyond a pure portfolio
approach because fine-grained information about refinements of the winning region, discovered coun-
terexamples and unsuccessful attempts to compute counterexamples is exchanged between the threads
as soon as discovered. This information can speed up the progress in other threads and thus stimulate
“cross-fertilization” effects.

3.2 From Strategies to Circuits

In Section 3.1, we presented a number of SAT-based methods to compute a strategy for defining the
control signals c always in such a way that a given safety specification is enforced. Recall that such a
strategy is a formula S(x, i, c, x′) such that

∀x, i :∃c, x′ :S(x, i, c, x′).

That is, for every state x and input i, the strategy will contain at least one vector of control values c that
is allowed in this situation. In many situations, many control values can be allowed, though. The task
is now to compute a system implementation in form of a function f : 2x × 2i → 2c to uniquely define
the control signals c based on the current state variables x and the uncontrollable inputs i. The system
implementation f is supposed to implement the strategy in the sense that

∀x, i :∃x′ :S
(
x, i, f(x, i), x′

)
holds. That is, for all concrete assignments x, i, the control variable assignment c = f(x, i) computed
by f must be allowed by the strategy S. Finally, this function f needs to be implemented as a circuit.
Obviously, we prefer fast algorithms that produce small circuits. In order to achieve this, the freedom in
the strategy relation S needs to be exploited cleverly.

A cofactor-based algorithm to solve the problem has already been presented in Section 2.5.3. It
can be seen as the “standard method” for computing an implementation from a strategy, and can easily
be implemented using BDDs. In the following subsections, we will present alternative approaches that
use SAT- or QBF solvers instead. The presented approaches are not specific to safety specifications.
However, in many cases, the specific structure

S(x, i, c, x′) = T (x, i, c, x′) ∧
(
W (x)→W (x′)

)
of strategies for safety specifications can be exploited. We will thus always present the general approach
first, and then discuss an efficient implementation for safety synthesis problems. As a preprocessing step
to all our methods, we simplify W by calling COMPRESSCNF (see Algorithm 3.2) with literal dropping
enabled in order to remove redundant literals and clauses from W . As a postprocessing step to all our
methods, we invoke the tool ABC [42] in order to reduce the size of the produced circuits. These steps
will not be mentioned explicitly in the following subsections.

3.2.1 QBF Certification

A system implementation can be computed in form of a Skolem function for the signals c in the QBF
∀x, i : ∃c, x′ :S(x, i, o, x′). The QBFCert [168] framework by Niemetz et al. computes such Skolem
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Algorithm 3.6 NEGLEARN: Computing a CNF representation for the negation of a formula F (x).

1: procedure NEGLEARN(F (x)), returns: ¬F (x) in CNF
2: N(x) := true
3: while sat = true in (sat,x) := PROPSATMODEL

(
F (x) ∧N(x)

)
do

4: N(x) := N(x) ∧ ¬PROPMINUNSATCORE
(
x,¬F (x)

)
5: end while
6: return N(x)
7: end procedure

functions for satisfiable QBFs from proof traces produced by the DepQBF [155] solver. The resulting
Skolem functions are produced as circuits in AIGER format. Hence, in our setting, a single call to
QBFCert suffices to compute a system implementation in form of a circuit.

3.2.1.1 Efficient Implementation for Safety Synthesis Problems

While the basic approach is simple, we can still apply some optimizations to increase the efficiency for
the case of safety synthesis problems.

QBF formulation. Instead of computing a Skolem function for the variables c in the formula

∀x, i :∃c, x′ :T (x, i, c, x′) ∧
(
W (x)→W (x′)

)
(3.4)

we rather compute a Herbrand function in its negation

∃x, i :∀c, x′ :¬T (x, i, c, x′) ∨
(
W (x) ∧ ¬W (x′)

)
.

Because T is both deterministic and complete (Definition 5), the one-point rule (Equation 2.2) can be
applied to turn the universal quantification over x′ into an existential quantification:

∃x, i :∀c : ∃x′ :T (x, i, c, x′) ∧W (x) ∧ ¬W (x′). (3.5)

Just like most QBF solvers, QBFCert requires a PCNF as input. Since most of our methods to compute
a winning region (or winning area) produce W in CNF, we only need to transform T and ¬W (x′) into
CNF. In contrast, using Equation 3.4 would require an additional CNF encoding of the implication
W (x) → W (x′). Another advantage of using Equation 3.5 lies in the size of the proofs: since the
QBF is now unsatisfiable, the QBFCert framework processes a clause resolution proof instead of a cube
resolution proof. These clause resolution proofs are often smaller.

Negation of W (x′). For complex benchmarks, the auxiliary files produced by QBFCert can still
grow very large (hundreds of GB). One reason is that a straightforward CNF encoding of ¬W (x′) re-
quires many auxiliary variables and clauses. We can reduce the size of the auxiliary files (by up to a factor
of 30 in our experiments) by computing a CNF representation of ¬W (x′) without introducing auxiliary
variables. The procedure NEGLEARN in Algorithm 3.6 computes such a negation with query learning.
It follows the principle of CNFLEARN, shown in Algorithm 2.4, and uses a SAT solver to implement the
queries: As long as N is not yet equivalent to ¬F , i.e., F ∧N is still satisfiable, NEGLEARN refines N
with a clause that excludes the cube x witnessing this insufficiency. By taking the unsatisfiable core, the
clause eliminates also other counterexamples. Since clauses are only added to N , NEGLEARN is well
suited for incremental SAT solving.

3.2.1.2 Discussion

Dependencies between control signals. In contrast to COFSYNT from Algorithm 2.2, the QBF certifi-
cation approach computes a circuit for all control signals simultaneously. This can be both an advantage
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and a disadvantage. The advantage is that dependencies between control signals can potentially be han-
dled more effectively. COFSYNT can only take local decisions and fixes an implementation for one
control signal without considering the consequences on other control signals (as long as some solution
for the other signals still exist). The QBF certification approach is free to make global decisions when
fixing the individual circuits. On the other hand, considering all control signals simultaneously instead
of decomposing the problem into smaller subproblems can also be a scalability disadvantage.

Dependencies on reasoning engine. The performance of QBFCert as well as the quality of the
resulting circuit depend on the ability of DepQBF to find a compact unsatisfiability proof quickly. In
this sense, the technique is strongly dependent on the underlying symbolic reasoning engine. This is
similar to COFSYNT when implemented using BDDs, where the ability to find a good variable ordering
can influence the circuit size and the execution time heavily.

3.2.2 QBF-Based Query Learning

In this section, we introduce an approach that is also based on QBF solving, but constructs circuits for one
control signal after the other. In this respect, it is more similar to COFSYNT presented in Algorithm 2.2.
However, in contrast to COFSYNT, we will rely on query learning to exploit the implementation freedom
in the strategy in order to obtain small circuits.

The query learning algorithms introduced in Section 2.6 compute a certain representation of a given
target formula G(x) precisely. That is, the resulting formula F (x) will be equivalent to the target G(x).
This is achieved by starting with some initial approximation for F , and refining this approximation based
on counterexamples witnessing that F 6= G. These counterexamples are also generalized to speed up
the progress. The same formula G is used both for computing counterexamples and for generalizing
them. However, by using two different formulas G1 and G2 in these two phases, we can also compute
a function F such that G1 → F → G2. This idea can be used to exploit freedom in defining F , where
the freedom is defined by (the difference between) G1 and G2. Note that F is actually an interpolant
for G1 ∧ ¬G2 (see Section 2.2.1). Thus, this way of query learning with freedom can be seen as a
special way to compute interpolants. However, depending on the underlying reasoning engine used in
query learning, the formulas G1 and G2 do not have to be quantifier-free. Furthermore, by choosing an
appropriate learning algorithm, we can control the shape of F . For instance, a CNF learning algorithm
will produce F in form of a CNF formula.

In the following, we will present a circuit synthesis algorithm based on CNF learning using a QBF
solver. CNF learning is particularly suitable in this setting because QBF solvers require formulas in
PCNF, so building up the solution in CNF reduces the overhead (especially in terms of formula size)
imposed by CNF transformations. Solutions with other learning algorithms can be found in our FM-
CAD’12 [82] publication. After introducing the basic algorithm, we will also discuss an efficient real-
ization for safety synthesis problems.

3.2.2.1 QBF-Based CNF Learning

The procedure QBFSYNT in Algorithm 3.7 presents a CNF learning algorithm, implemented using a
QBF solver. It synthesizes a circuit from a given strategy S(x, i, c, x′) while exploiting the freedom in S
in order to obtain small circuits. QBFSYNT does not return any result but directly dumps the produced
circuits. Individual circuits are computed for one cj ∈ c after the other. In this respect, QBFSYNT is
similar to COFSYNT (Algorithm 2.2) but different from QBF certification as presented in Section 3.2.1.

Definition ofM1 andM0. Line 3 of QBFSYNT computes the formulaM1(x, i), which characterizes
the set of all (x, i)-assignments for which the current control signal cj must be set to true: Recall from
COFSYNT (Algorithm 2.2) that the formula

C0(x, i) := ∃x′, c :S
(
x, i, (c0, . . . , cj−1, false, cj+1, . . . , cn), x′

)
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Algorithm 3.7 QBFSYNT: Synthesizing circuits from strategies with QBF-based CNF learning.

1: procedure QBFSYNT(S(x, i, c, x′))
2: for cj ∈ c do
3: M1(x, i) := ∀c, x′ :¬S

(
x, i, (c0, . . . , cj−1, false, cj+1, . . . , cn), x′

)
4: M0(x, i) := ∀c, x′ :¬S

(
x, i, (c0, . . . , cj−1, true, cj+1, . . . , cn), x′

)
5: Fj(x, i) := true
6: while sat in (sat,x, i) := QBFSATMODEL

(
∃x, i :Fj(x, i) ∧M0(x, i)

)
do

7: dg := QBFGENERALIZE
(
x ∧ i,M1(x, i)

)
8: Fj(x, i) := Fj(x, i) ∧ ¬dg
9: end while

10: DUMPCIRCUIT
(
cj , Fj(x, i)

)
11: S(x, i, c, x′) := S(x, i, c, x′) ∧

(
cj ↔ Fj(x, i)

)
12: end for
13: end procedure
14: procedure QBFGENERALIZE

(
d,M1(x, i)

)
, returns: dg ⊆ d such that dg ∧M1 is unsatisfiable

15: dg := d
16: for each literal l in dg do
17: dt := dg \ {l}
18: if ¬QBFSATMODEL

(
∃x, i :dt ∧M1(x, i)

)
then

19: dg := dt
20: end if
21: end for
22: return dg
23: end procedure

characterizes the set of all (x, i)-assignments for which cj = false is allowed by the strategy S. Its
negation M1(x, i) = ¬C0(x, i) is thus the set of all situations where cj = false is not allowed by S,
i.e., where cj must be set to true. Analogously, the formula M0(x, i) represents the set of all (x, i)-
assignments for which cj must be false.

Learning an implementation Fj . The lines 5 to 9 compute a CNF formula Fj(x, i) such that
M1(x, i) → Fj(x, i) → ¬M0(x, i) using a variant of the CNFLEARN procedure from Algorithm 2.4.
The first implication M1 → Fj ensures that Fj is true whenever cj must be true. The second implication
Fj → ¬M0 ensures that whenever Fj is true, cj does not have to be false. Together, these two conditions
fully describe a proper implementation for cj . Just like CNFLEARN, we start with Fj = true (Line 5).
Next, Line 6 checks if Fj is already correct in the sense that M1 → Fj → ¬M0 holds. The algorithm
maintains the invariant M1 → Fj , so only Fj → ¬M0 needs to be checked. This is done by calling
a QBF solver to search for a satisfying assignment x, i |= Fj ∧M0 to the variables x, i for which Fj
is true but cj must be false. Note that M0 contains a universal quantification of c and x′, so a SAT
solver cannot be used for this check. If no such counterexample x, i exists, the while-loop terminates.
Otherwise, the counterexample cube d = x ∧ i is generalized into a cube dg ⊆ d by eliminating literals
as long as dg∧M1 is unsatisfiable. This is implemented in the subroutine QBFGENERALIZE and ensures
that dg does not contain any (x, i)-assignments for which cj must be true, so it is safe to update Fj to
Fj ∧ ¬dg while preserving the invariant M1 → Fj . This update eliminates the original counterexample
d for which Fj must be false. Due to the generalization, other (x, i)-assignments for which Fj can be
false are also mapped to false. Going with “can be false” rather than “must be false” in the generalization
phase results in potentially smaller clauses being added to Fj . This increases the potential for eliminating
counterexamples before they are encountered in Line 6. Hence, exploiting the freedom between “must be
false” and “can be false” — as done by QBFSYNT — potentially does not only result in a more compact
CNF representation of Fj but also in fewer iterations.
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M1(x,i)

2|x∪i|

x∧i

Fj(x,i)

dg

M0(x,i)

(a) First counterexample.

M0(x,i)

M1(x,i)

2|x∪i|

x∧i
dg

Fj(x,i)

(b) Second counterexample.

Figure 3.11: Working principle of QBFWIN. The boxes represent the set of all (x, i)-assignments.
With Fj = true, subfigure (a) illustrates the computation of a first counterexample
x, i |= Fj ∧M0 as well as its generalization into a larger region dg , while dg does
not intersect with M1. With Fj = ¬dg , subfigure (b) illustrates the computation of
the second counterexample x, i |= Fj ∧M0 as well as its generalization.

Circuit construction and resubstitution. The remaining parts of QBFSYNT are the same as for
COFSYNT (Algorithm 2.2): Line 10 dumps the formula Fj(x, i) in form of a circuit which defines cj to
be true whenever Fj(x, i) evaluates to true. This can easily be done by replacing every Boolean operator
in Fj with the corresponding gate. We do not attempt to reuse existing gates while dumping the circuit,
but leave this optimization to ABC [42] in the postprocessing step. Finally, Line 11 refines the strategy
S with the solution for cj to propagate consequences of fixing cj on other control signals.

Auxiliary variables. If the strategy formula S contains auxiliary variables (e.g., from Tseitin-
transformations [208]), then these variables are all handled as if they were part of x. The resubstitution
step in Line 11 may also introduce additional auxiliary variables, which are also handled like x.

Illustration. Figure 3.11 illustrates the computation of a circuit for one control signal cj graphically.
The boxes represent the set 2|x∪i| of all possible assignments to the variables x and i. Figure 3.11a
depicts the initial situation. The region M1 represents the set of all situations where cj must be true,
and M0 represents the situations where cj must be false. The definition of the strategy ensures that these
two regions cannot overlap. The current approximation Fj of the solution is depicted in blue. Initially,
Fj = true (Line 5 in QBFSYNT). Next, a counterexample x, i |= Fj ∧M0 is computed (Line 6). It
is drawn as a red dot in Figure 3.11a. The counterexample cube x ∧ i is then generalized into a larger
region dg by eliminating literals as long as dg does not intersect withM1. This is ensured by the check in
Line 18 of QBFSYNT. Next, Fj is refined by subtracting the resulting region dg. The refined formula Fj
is shown as a blue outline Figure 3.11b. Since the first counterexample is no longer contained in Fj∧M0,
it cannot be encountered again. Instead, the algorithm computes a different counterexample, which is
generalized in the same way. This is illustrated in Figure 3.11b. After subtracting the second dg from Fj
(which is not shown in Figure 3.11), Fj does not intersect with M0 any more. Hence there are no more
situations where Fj is true but must be false. Since we did not remove any situation that is contained in
M1 from Fj , the final solution satisfies M1 → Fj → ¬M0 and the while-loop in QBFSYNT terminates.
That is, Fj exploits the freedom between M1 and M0. Compared to learning a CNF formula for ¬M0

precisely, this potentially reduces the number of iterations and the resulting circuit size, especially if
¬M0 is complicated. In Figure 3.11, this is indicated by M0 being more irregular in shape than Fj .

3.2.2.2 Efficient Implementation for Safety Synthesis Problems

The procedure SAFEQBFSYNT in Algorithm 3.8 presents an efficient realization of QBFSYNT for the
case of safety specifications, where the winning strategy S(x, i, c, x′) is defined via a winning region (or
a winning area)W (x). To make the QBF queries efficient, our aim is to avoid disjunctions and negations
of subformulas as much as possible, and to reduce the amount of universal quantification.

Grouping of control variables. In every iteration, SAFEQBFSYNT splits the control variables c into
three groups ca, cj , cb: The single variable cj is the one for which a circuit is constructed in the current
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Algorithm 3.8 SAFEQBFSYNT: Synthesizes circuits from winning areas with QBF-based CNF learning.

1: procedure SAFEQBFSYNT(T (x, i, c, x′), W (x))
2: T ′(x, i, c, x′) := T (x, i, c, x′), cb := c, ca := ∅
3: for all j from 1 to |c| do
4: cb := cb \ {cj}
5: M1(x, i) := ∀cb : ∃ca, x′ :T ′

(
x, i, ca, false, cb, x

′) ∧W (x) ∧ ¬W (x′)
6: M0(x, i) := ∀cb : ∃ca, x′ :T ′

(
x, i, ca, true, cb, x

′) ∧W (x) ∧ ¬W (x′)
7: Fj(x, i) := true
8: while sat in (sat,x, i) := QBFSATMODEL

(
∃x, i :Fj(x, i) ∧M0(x, i)

)
do

9: dg := QBFGENERALIZE
(
x ∧ i,M1(x, i)

)
10: Fj(x, i) := Fj(x, i) ∧ ¬dg
11: end while
12: DUMPCIRCUIT

(
cj , Fj(x, i)

)
13: T ′(x, i, c, x′) := T ′(x, i, c, x′) ∧

(
cj ↔ Fj(x, i)

)
14: ca := ca ∪ {cj}
15: end for
16: end procedure
17: procedure QBFGENERALIZE

(
d,M1(x, i)

)
, returns: dg ⊆ d such that dg ∧M1 is unsatisfiable

18: dg := x ∧ i
19: for each literal l in d do
20: dt := dg \ {l}
21: if ¬QBFSATMODEL

(
∃x, i :dt ∧M1(x, i)

)
then

22: dg := dt
23: end if
24: end for
25: return dg
26: end procedure

iteration, ca contains all variables for which a circuit has already been computed, and cb contains all
control variables for which a circuit will be computed in some future iteration. This split is performed in
the Lines 2, 4 and 14, and will allow us to reduce the amount of universal quantification.

Definition of M1 and M0. With S(x, i, c, x′) = T (x, i, c, x′) ∧
(
¬W (x) ∨W (x′)

)
, we can apply

the following transformations to compute a CNF for M1 more efficiently.

M1(x, i) =∀c, x′ :¬S
(
x, i, (c0, . . . , cj−1, false, cj+1, . . . , cn), x′

)
=∀cb, ca, x′ :¬

(
T (x, i, ca, false, cb, x

′) ∧
(
¬W (x) ∨W (x′)

))
=∀cb, ca, x′ :

(
T (x, i, ca, false, cb, x

′)→
(
W (x) ∧ ¬W (x′)

))
SAFEQBFSYNT keeps a copy T ′ of the transition relation T . It is updated in such a way that all variables
in ca, x′ are defined uniquely by T ′. For the variables x′, this holds initially. For ca, this is ensured by
Line 13. Thus, by using T ′ instead of T and applying the one-point rule (Equation 2.2), the universal
quantification of ca, x′ can be turned into an existential one:

M1(x, i) = ∀cb : ∃ca, x′ :
(
T ′(x, i, ca, false, cb, x

′) ∧W (x) ∧ ¬W (x′)
)

The computation of M0(x, i) works analogously. As a result, only the control signals cb, for which no
solution has been computed yet, are quantified universally in the QBF queries of Line 8 and 21. The
variable vector cb becomes shorter from iteration to iteration, which means that the formula gets “more
propositional”. In the last iteration, a SAT solver can actually be used instead of a QBF solver.
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CNF conversion. The QBF queries in Line 8 and 21 contain only conjunctions. The formula Fj
is always in CNF. Furthermore, most of our methods to compute a winning region or a winning area
produce W (x) in CNF. Hence, we only need to compute a CNF representation of T ′ and ¬W (x′). The
procedure NEGLEARN (Algorithm 3.6), which negates a formula without introducing auxiliary variables,
was beneficial in the QBF certification approach but does not pay off in the learning-based approach.
Hence, we apply the method of Plaisted and Greenbaum [174] to compute a CNF for ¬W (x′).

QBF preprocessing. With our extension of Bloqqer [189] to preserve satisfying assignments, QBF
preprocessing can be applied both for counterexample computation and generalization. However, while
preprocessing was vital in our methods for computing a winning region, it does not give a significant
speedup for SAFEQBFSYNT (see Section 3.3).

Incremental QBF solving. SAFEQBFSYNT is very well suited for incremental QBF solving, espe-
cially with a solver interface such as the one provided by DepQBF [156, 157]. We propose to use two
solver instances incrementally. The first instance stores Fj ∧M0 and is used for Line 8. Since Line 10
only adds clauses to Fj , this solver instance is only re-initialized when a mayor iteration (synthesizing
the next cj) is started. The second solver instance storesM1, is used for Line 21, and is also re-initialized
when a mayor iteration starts. Before executing the loop in Line 19, we let the second solver instance
compute an unsatisfiable core dg of d = x ∧ i and only reduce this core further in the loop. The
conjunction with dt is realized with assumption literals.

3.2.2.3 Discussion

Greediness. QBFSYNT is greedy in exploiting implementation freedom. When synthesizing a circuit for
one control signal cj , QBFSYNT ensures that some solution for the remaining control signals still exists.
However, the algorithm does not specifically attempt to retain implementation freedom for the remaining
control signals. This can have the effect that the signals synthesized early have a small implementation,
which is found after only a few refinements. Yet, for the signals synthesized later, the implementation
freedom may already be “exhausted” and large implementations may be produced after many refine-
ments. Consequently, the performance may also strongly depend on the order in which control signals
are processed. This is similar to the standard COFSYNT procedure, but different from the QBF certifica-
tion approach from Section 3.2.1, which computes circuits for all control signals simultaneously.

Independence of symbolic representation. In contrast to COFSYNT and the QBF certification
approach, the QBF-based learning approach is rather independent of the symbolic strategy representation
and the applied reasoning engine. Only the concrete counterexamples computed by Line 6 may differ,
and our experience in trying to develop heuristics for computing good counterexamples indicates that
one counterexample is usually just as good as any other. Consequently, the number of iterations and the
resulting circuit will be similar, independent of whether the strategy formula is encoded efficiently or
not. When implemented using BDDs, the variable ordering has little impact on these metrics too.

Circuit depth. Another advantage of the QBF-based CNF learning algorithm presented in this sec-
tion is that the produced circuits have a low depth. This can be an important property because the circuit
depth determines the maximum clock frequency with which the circuit can be operated. The formulas
Fj defining the control signals cj are computed in CNF. When these formulas are transformed into cir-
cuits in the straightforward way, this yields circuits with a depth of at most 3: every signal x, i needs
to pass at most one inverter, one OR-gate and one AND-gate. Depending on the gates available in the
standard cell library, it may not be feasible to realize the circuit in this straightforward way. However,
our experiments [82] with a simplistic standard cell library suggest that the circuit depth is usually much
lower than when using the standard COFSYNT procedure with BDDs.



3.2. From Strategies to Circuits 75

Algorithm 3.9 INTERPOLSYNT [124]: Synthesizing circuits from strategies using interpolation.

1: procedure INTERPOLSYNT(S(x, i, c, x′))
2: ca := c, cb := ∅
3: for all j from |c| to 1 do
4: ca := ca \ {cj}
5: M1(x, i, ca) :=

(
∃cb, x′ :S(x, i, ca, true, cb, x

′)
)
∧
(
¬∃cb, x′ :S(x, i, ca, false, cb, x

′)
)

6: M0(x, i, ca) :=
(
∃cb, x′ :S(x, i, ca, false, cb, x

′)
)
∧
(
¬∃cb, x′ :S(x, i, ca, true, cb, x

′)
)

7: Fj(x, i, ca) := INTERPOL
(
M1(x, i, ca),M0(x, i, ca)

)
8: DUMPCIRCUIT

(
cj , Fj(x, i, ca)

)
9: S(x, i, c, x′) := S(x, i, c, x′) ∧

(
cj ↔ Fj(x, i, ca)

)
10: cb := cb ∪ {cj}
11: end for
12: end procedure

3.2.3 Interpolation

Jiang et al. [124] present an interpolation-based approach to synthesize circuits from strategies. Similar
to the cofactor-based approach presented in Algorithm 2.2 and the QBF-based learning approach from
Algorithm 3.7, it computes circuits for one control signal cj ∈ c after the other. However, in contrast to
these previous algorithms, the interpolation-based approach avoids quantifier alternations by temporarily
considering other control signals for which no circuits have been computed yet as if they were inputs.

We will define the approach by Jiang et al. [124] as an algorithm for our setting in Section 3.2.3.1.
After that, we will present optimizations and an efficient realization for safety specifications. In Sec-
tion 3.2.4, we will furthermore combine the approach with query learning.

3.2.3.1 Basic Algorithm

The procedure INTERPOLSYNT in Algorithm 3.9 illustrates the approach by Jiang et al. [124] in our
setting. As before, the input is a strategy formula S(x, i, c, x′). The procedure does not return any result
but directly dumps the produced circuits defining c.

Variable dependencies. Similar to QBFSYNT in Algorithm 3.7, the variables c = (c1, . . . , cn) are
split into three groups ca, cj , cb. Here, cj is the variable for which a circuit is computed in the current
iteration. The algorithm starts with the last control signal cn and proceeds with decreasing indices.5

Line 10 makes sure that the variable vector cb contains all control variables for which a circuit has been
computed in some previous iteration. Finally, ca contains all control variables for which a circuit needs
to be computed in one of the following iterations. The variables in ca are treated as if they were inputs.
That is, the circuit defining cj may not only reference variables from x and i, but also all ck with k < j
for which no circuit has been computed yet. This is illustrated in Figure 3.12: cn can also take all signals
c1, . . . , cn−1 as input, the circuit for cn−1 can also take c1, . . . , cn−2 as input, etc. Finally, c1 cannot
depend on any other variables of c. This ensures that there are no circular dependencies. Furthermore,
when the circuits for all cj ∈ c are built together, the signals c effectively depend on x and i only.

Definition of M1 and M0. Let d = x ∪ i ∪ ca be the vector of all variables on which the current
control signal cj may depend. Line 5 of INTERPOLSYNT computes M1(d), which characterizes the
set of all d-assignments for which cj must be true. This is done as follows. The subformula C1(d) =
∃cb, x′ :S(x, i, ca, true, cb, x

′) characterizes the set of all d-assignments for which cj = true is allowed
by S. This is essentially the positive cofactor of S regarding cj , but the variables cb, x′ are also quantified
existentially, which means that their concrete value is irrelevant as long as some value exists. Similarly,
the subformula C0(d) = ∃cb, x′ :S(x, i, ca, false, cb, x

′) characterizes the set of all d-assignments for

5The order is actually irrelevant, but fixing some order simplifies the discussion.
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c

Figure 3.12: Variable dependencies in interpolation-based circuit synthesis. The first control signal
c1 can only depend on x and i. The next signal c2 can also depend on c1. The signal
c3 can also depend on c1 and c2, and so on. Yet, if all circuits Fj are combined, the
control signals c will effectively depend on x and i only.

which cj = false is allowed by S. Hence, M1 represents the set of all d-assignments for which true is
allowed, but false is not allowed. Analogously, Line 6 computes the formula M0, which characterizes
the d-assignments for which cj must be false. In principle, M1 and M0 can easily be transformed into a
propositional CNF formula by renaming or expanding the existentially quantified variables. An efficient
solution to do so will be presented in Section 3.2.3.3, but for now we focus on understandability rather
than efficiency.

Differences to QBFSYNT. Note that the procedure QBFSYNT from Algorithm 3.7 computes M1

and M0 differently in two respects. First, M1(x, i) and M0(x, i) do not contain ca as free variables in
QBFSYNT. Second, M1(x, i) is computed as ¬C0(x, i) in QBFSYNT instead of C1(d) ∧ ¬C0(d) (and
similar for M0(x, i)). The additional conjunction with C1(d) in INTERPOLSYNT is necessary for the
following reason. We have that ¬C0(x, i) → C1(x, i) and ¬C1(x, i) → C0(x, i) in QBFSYNT because
∀x, i : ∃c, x′ :S(x, i, c, x′) is guaranteed by the strategy. In other words, for every (x, i)-assignment, any
control signal cj can either be true or false (or both). Hence, the additional conjunct C1(x, i) would be of
no use in M1(x, i) = ¬C0(x, i) as defined by QBFSYNT, because it is implied anyway. Yet, ¬C0(d)→
C1(d) and ¬C1(d) → C0(d) do not hold in INTERPOLSYNT: there may be some d-assignment for
which neither cj = true nor cj = false is allowed by the strategy. The reason is that we also consider the
signals ca as if they were inputs, but ∀x, i, ca : ∃cj , cb, x′ :S(x, i, ca, cj , cb, x

′) does not hold in general.
For d-assignments for which neither cj = true nor cj = false is allowed, the definition of M1 =
C1(d) ∧ ¬C0(d) and M0 = C0(d) ∧ ¬C1(d) allows both values for cj . This is justified by the fact that
the circuits synthesized for ca in subsequent iterations will make sure that such d-assignments will never
occur as input of the circuit defining cj . We refer to Jiang et al. [124] for details on this technical subtlety.

Interpolation. The conjunction M1(d) ∧M0(d) = C1(d) ∧ ¬C0(d) ∧ C0(d) ∧ ¬C1(d) is trivially
unsatisfiable, so an interpolant Fj(d) can be computed in Line 7. The properties of an interpolant (see
Section 2.2.1) ensure that M1 → Fj → ¬M0. The first implication means that Fj is true whenever cj
must be true. The second implication means that if Fj is true, then cj does not have to false. This means
that Fj(d) is a proper implementation for cj .

Circuit construction and resubstitution. The remaining steps of the INTERPOLSYNT procedure
are the same as for CofSynt (Algorithm 2.2) and QbfSynt (Algorithm 3.7). Line 8 constructs a circuit
which sets cj = true if an only if Fj(x, i, ca) evaluates to true. Finally, Line 9 refines the strategy
formula S with the concrete implementation for cj .

Auxiliary variables. If the strategy formula S is defined using auxiliary variables, these can all be
put into cb. This also applies to auxiliary variables that may be introduced in the resubstitution in Line 9.

Variations. Jiang et al. [124] propose to perform a second pass over all control signals, where the
circuits for all cj are recomputed using interpolation, while fixing the implementation for the other con-
trol signals. This has the potential for producing smaller circuits because the recomputed interpolants
can now rely on some concrete realization for the other control signals. However, in preliminary experi-
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ments for our setting, this second pass did not result in considerable circuit size improvements (but rather
increased the circuit size for many cases). Since such a second pass also increases the computation time,
we do not perform it. Jiang et al. [124] also propose a second interpolation-based approach which does
not treat other control signals as if they were inputs but rather quantifies them universally and applies
universal expansion to eliminate the quantifiers. However, this can blow up the formula size significantly.
Preliminary experiments with this second approach were not promising in our setting either.

3.2.3.2 Dependency Optimization

For some specifications, the performance of INTERPOLSYNT strongly depends on the order in which the
control signals c = (c1, . . . , cn) are processed. One reason is that this order defines which signal cj may
depend on which other signals ck. The aim of the optimization presented in this section is to increase the
set of variables on which a certain signal cj can depend. This increases the freedom for the interpolation
procedure (the interpolant Fj may still choose the ignore the additional signals) and can lead to smaller
interpolants and shorter execution times.

Basic idea. The basic idea is as follows. As illustrated in Figure 3.12, the interpolant Fn computed
first can reference all other control signals c1, . . . , cn−1. The interpolant Fn−1 computed in the second
iteration cannot depend on cn, though. The reason is that Fn, which defines cn, could in turn reference
cn−1, which would result in a circular dependency. Yet, the concrete interpolant Fn may choose to ignore
cn−1 completely. In this case, Fn−1 can in fact be allowed to reference cn. The reason is that there is no
danger to introduce a circular dependency — the result would be the same as if cn and cn−1 would have
been processed by INTERPOLSYNT in reverse order.

Realization. In the iteration synthesizing a solution for cj , we analyze which other signals ck with
k > j do not transitively depend on cj . This is done on a syntactic level by checking if cj occurs in the
fan-in cone of ck when the circuits for Fj+1, . . . , Fn are combined. If cj does not appear in the fan-in
cone of ck, then ck is moved (temporarily) from cb to ca. Thus, Fj(x, i, ca) can reference ck.

Dependencies on auxiliary variables. Depending on the realization of INTERPOL, the computed
interpolants Fj(x, i, ca) may be represented using auxiliary variables (e.g., introduced by a Tseitin-
transformation [208]) that act as abbreviation for some subformulas over x, i and ca. As mentioned
in the previous subsection, all auxiliary variables are put into cb, so they cannot be referenced by the
computed interpolants by default. However, the dependency analysis cannot only be performed for the
final output of each Fk with k > j, but also on their auxiliary variables: if the current cj does not appear
in the fan-in cone of some auxiliary variable t, then t can be moved from cb to ca.

3.2.3.3 Efficient Implementation for Safety Synthesis Problems

The procedure SAFEINTERPOLSYNT in Algorithm 3.10 shows an efficient implementation of INTER-
POLSYNT if the winning strategy is defined via a winning region (or winning area) W (x) of a safety
specification. The dependency optimization is not included for the sake of readability.

Computation ofM1 andM0. With S(x, i, c, x′) = T (x, i, c, x′)∧
(
¬W (x)∨W (x′)

)
, we can apply

the following transformations to compute a more compact CNF for M1.

M1(x, i, ca) =
(
∃cb, x′ :S(x, i, ca, true, cb, x

′)
)
∧
(
¬∃cb, x′ :S(x, i, ca, false, cb, x

′)
)

=
(
∃cb, x′ :T (x, i, ca, true, cb, x

′) ∧
(
¬W (x) ∨W (x′)

))
∧(

¬∃cb, x′ :T (x, i, ca, false, cb, x
′) ∧

(
¬W (x) ∨W (x′)

))
=
(
∃cb, x′ :T (x, i, ca, true, cb, x

′) ∧
(
¬W (x) ∨W (x′)

))
∧(

∀cb, x′ :T (x, i, ca, false, cb, x
′)→

(
W (x) ∧ ¬W (x′)

))
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Algorithm 3.10 SAFEINTERPOLSYNT: Synthesizing circuits from winning areas using interpolation.

1: procedure SAFEINTERPOLSYNT(T (x, i, c, x′), W (x))
2: T ′(x, i, c, x′) := T (x, i, c, x′), ca := c, cb := ∅
3: for all j from |c| to 1 do
4: ca := ca \ {cj}
5: cb1, cb2, cb3, cb4 := create4FreshCopies(cb)
6: x′1, x

′
2, x

′
3, x

′
4 := create4FreshCopies(x′)

7: M ′1(x, i, ca, cb1, cb2, x
′
1, x
′
2) := T ′(x, i, ca, true, cb1, x

′
1) ∧ W (x′1) ∧

T ′(x, i, ca, false, cb2, x
′
2) ∧W (x) ∧ ¬W (x′2)

8: M ′0(x, i, ca, cb3, cb4, x
′
3, x
′
4) := T ′(x, i, ca, false, cb3, x

′
3) ∧ W (x′3) ∧

T ′(x, i, ca, true, cb4, x
′
4) ∧W (x) ∧ ¬W (x′4)

9: Fj(x, i, ca) := INTERPOL
(
M ′1(x, i, ca, cb1, cb2, x

′
1, x
′
2),M ′0(x, i, ca, cb3, cb4, x

′
3, x
′
4)
)

10: DUMPCIRCUIT
(
cj , Fj(x, i, ca)

)
11: T ′(x, i, c, x′) := T ′(x, i, c, x′) ∧

(
cj ↔ Fj(x, i, ca)

)
12: cb := cb ∪ {cj}
13: end for
14: end procedure

That is, the negation turns the existential quantification over cb, x′ into a universal one. Yet, just like
SAFEQBFSYNT (Algorithm 3.8), SAFEINTERPOLSYNT also keeps a copy T ′ of the transition relation
T that defines all variables in cb and x′ uniquely based on the other variables. For the variables x′, this
holds initially. For cb, this is ensured by Line 11. Thus, by using T ′ instead of T and by applying the
one-point rule (Equation 2.2), the universal quantification can be turned into an existential one:

M1(x, i, ca) =
(
∃cb, x′ :T ′(x, i, ca, true, cb, x′) ∧

(
¬W (x) ∨W (x′)

))
∧(

∃cb, x′ :T ′(x, i, ca, false, cb, x′) ∧W (x) ∧ ¬W (x′)
)

By renaming the variables cb and x′, the two subformulas can be merged into one block of quantifiers:

M1(x, i, ca) =∃cb1, cb2, x′1, x′2 : T ′(x, i, ca, true, cb1, x
′
1) ∧

(
¬W (x) ∨W (x′1)

)
∧

T ′(x, i, ca, false, cb2, x
′
2) ∧W (x) ∧ ¬W (x′2)

Finally,
(
¬W (x) ∨W (x′1)

)
∧W (x) can be simplified to W (x) ∧W (x′1), which is fortunate because

negations and disjunctions are expensive to perform in CNF. This gives M1(x, i, ca) =

∃cb1, cb2, x′1, x′2 :T ′(x, i, ca, true, cb1, x
′
1) ∧W (x′1) ∧ T ′(x, i, ca, false, cb2, x′2) ∧W (x) ∧ ¬W (x′2).

In SAFEINTERPOLSYNT, the existential quantification is not applied. Instead, the variables cb1, cb2, x′1,
x′2 occur freely in M ′1. Similarly, other fresh copies cb3, cb4, x′3, x

′
4 of the same variables occur freely in

M ′0. The properties of an interpolant (see Section 2.2.1) ensure that Fj , computed in Line 9, can only
reference the variables x, i, ca occurring both in M ′1 and in M ′0. Hence, these free variables cannot be
referenced in the resulting circuit.

CNF conversion. The formulas in Line 7 and 8 contain only conjunctions. Most of our methods to
compute a winning region or a winning area produce W (x) in CNF. Hence, just as for QBF certification
and QBF-based CNF learning, we only need to compute a CNF representation of T ′ and ¬W (x′).

Simplification of interpolants. The computed interpolants Fj refine T ′ in Line 11. Hence, com-
plicated representations of Fj result in more complicated formulas for T ′, which can increase the time
needed for interpolation quite significantly (and may result in even more complicated formulas for the
subsequent interpolants). Besides optimizing the final circuit regarding size, we therefore also optimize
every single interpolant using the tool ABC [42] after it has been computed.
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3.2.3.4 Discussion

Exploiting implementation freedom. INTERPOLSYNT is rather conservative in exploiting implemen-
tation freedom when computing a circuit for some control signal cj : to the extend where this is feasible,
the circuit Fj defining cj will work for any realization of the control signals ca that have not been synthe-
sized yet. The reason is that the variables of ca are handled as if they were inputs. This stands in contrast
to QBFSYNT, which is more greedy by exploiting implementation freedom as long as some solution for
the other signals still exists. Both strategies have their advantages. Preserving implementation freedom
can result in smaller circuits for control signals that are synthesized later. The greedy strategy can be
better in preventing that implementation freedom is left unexploited.

Dependencies between control signals. In contrast to COFSYNT and QBFSYNT, INTERPOLSYNT

constructs a circuit in such a way that the implementation for one control signal can be reused in the
implementation of others (see Figure 3.12). This can result in a smaller total circuit size. As an extreme
example, one control signal cj could be required to be an exact copy of some other control signal ck.
While INTERPOLSYNT may find the implementation cj = ck quickly, both COFSYNT and QBFSYNT

would have to construct the same (potentially complicated) circuit based on the variables x and i twice.
The circuit optimization techniques we apply as a postprocessing step may optimize one copy away, so
the final circuit may actually be the same. Nevertheless, computing the same circuit twice is at least a
waste of computing resources.

Dependence on the interpolation procedure. With INTERPOLSYNT, the size of the resulting cir-
cuits strongly depends on the ability of the interpolation procedure INTERPOL to exploit the freedom
between M1 and ¬M0. When the interpolant is computed from an unsatisfiability proof returned by a
SAT solver, we must rely on the heuristics in the solver to yield a compact proof that can be used to
derive a simple interpolant, which can then be implemented in a small circuit. In contrast, QBFSYNT

is more independent of the underlying reasoning engine. The next section will present an approach to
reduce this dependency of INTERPOLSYNT on the underlying solver.

3.2.4 Query Learning Based on SAT Solving

In this section, we combine query learning with the idea by Jiang et al. [124] to temporarily treat control
signals as if they were inputs. This eliminates the need for universal quantification and allows us to
implement the query learning approach from Section 3.2.2 with a SAT solver instead of a QBF solver.

In the following subsection, we will again present a solution based on CNF learning. Applying
other learning algorithms from our FMCAD’12 [82] publication is possible, but imposes more overhead
for encoding formula parts into CNF. After introducing the basic algorithm, we will again present an
efficient realization for safety synthesis problems and discuss the differences to the other algorithms.

3.2.4.1 CNF Learning Based on SAT Solving

In Section 3.2.2, we have already discussed that query learning can be used as a special interpolation
procedure if different formulas are used for counterexample computation and generalization. While
Section 3.2.2 used this idea to compute interpolants between quantified formulas using a QBF solver, we
use it here to compute interpolants for propositional formulas using CNF learning.

Algorithm. We keep the basic structure of the INTERPOLSYNT procedure from Algorithm 3.9, but
replace the call to INTERPOL in Line 7 by a call to CNFINTERPOL, which is defined in Algorithm 3.11.
The interface of CNFINTERPOL is the same as that of any interpolation procedure: given two formulas
M1(d, t1) and M0(d, t0) such that M1 ∧M0 is unsatisfiable, it returns a formula F (d) over the shared
variables d such that M1 → F → ¬M0. The implementation of CNFINTERPOL is simple. It starts with
the initial approximation F = true and enforces the invariant M1 → F . Line 3 checks if F → ¬M0,
which is the case if and only if F ∧M0 is unsatisfiable. If so, then M1 → F → ¬M0 holds, so the loop
terminates and F is returned as result. Otherwise a counterexample d |= F ∧M0 is extracted for which
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Algorithm 3.11 CNFINTERPOL: Computing an interpolant using CNF learning with a SAT solver.

1: procedure CNFINTERPOL
(
M1(d, t1),M0(d, t0)

)
, returns: A CNF F (d) with M1 → F → ¬M0

2: F (d) := true
3: while sat in (sat,d) := PROPSATMODEL

(
M0(d, t0) ∧ F (d)

)
do

4: F (d) := F (d) ∧ ¬PROPMINUNSATCORE
(
d,M1(d, t1)

)
5: end while
6: return F (d)
7: end procedure

F is true but must be false. The computation of the unsatisfiable core in Line 4 generalizes the cube d
by dropping literals as long as d does not intersect with M1. Consequently, the update of F in Line 4
preserves the invariant M1 → F and resolves the counterexample.

Exploiting freedom. As in QBFSYNT (Algorithm 3.7) using M0 in counterexample computation
makes sure that refinements of F are only triggered if some d-assignment d must be mapped to false.
Using M1 in counterexample generalization entails that other d-assignments are also mapped to false as
long as they can be mapped to false. Using “can” instead of “must” during generalization potentially
eliminates more counterexamples before they are actually encountered by Line 3.

3.2.4.2 Efficient Implementation for Safety Synthesis Problems

Following the transformations presented for SAFEINTERPOLSYNT in Section 3.2.3.3, we have that CNF-
INTERPOL is called with

M1(x, i, ca, cb1, cb2, x
′
1, x
′
2) =

T ′(x, i, ca, true, cb1, x
′
1) ∧W (x′1) ∧ T ′(x, i, ca, false, cb2, x′2) ∧W (x) ∧ ¬W (x′2) and

M0(x, i, ca, cb3, cb4, x
′
3, x
′
4) =

T ′(x, i, ca, false, cb3, x
′
3) ∧W (x′3) ∧ T ′(x, i, ca, true, cb4, x′4) ∧W (x) ∧ ¬W (x′4).

Since CNFINTERPOL itself does not contain any negations nor disjunctions, only ¬W (x′) needs to be
transformed into CNF.

Dependency optimization. We can apply the dependency optimization presented in Section 3.2.3.2.
However, on top of allowing dependencies on other control signals, we also allow dependencies on
auxiliary variables that are used for defining the transition relation T ′ as long as this does not result in
circular dependencies.

Incremental solving. CNFINTERPOL is well suited for incremental SAT solving. A simple solution
uses two solver instances, which are initialized whenever CNFINTERPOL is called. The first solver
instance stores M0 ∧ F and is used for Line 3. The second one stores M1 and is used for Line 4. A
more radical solution uses only one solver instance throughout all calls to CNFINTERPOL. Note that
M1 differs from M0 only by having cj (in two copies) set to different truth constants. Hence, switching
betweenM1 andM0 can be achieved by setting (the two copies of) cj differently with assumption literals.
Furthermore, the clauses of some Fj are all disjoined with some fresh activation variable aj before they
are asserted in the solver. This way, Fj can be enabled or disabled by setting the assumption literal ¬aj
or aj , respectively. Finally, T ′ changes between major iterations of SAFEINTERPOLSYNT (see Line 11).
However, additional constraints are only added in this update, so this does not pose any challenge for
incremental solving.

Minimizing the final solution. Recall from the interpolation-based method from Section 3.2.3 that
a second pass over all control signals can be performed, in which the circuits for all cj are recomputed
while the implementation for the other control signals is fixed. In principle, this has the potential for re-
ducing the circuit size because the recomputed circuits can now rely on some concrete realization for the
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other control signals. The same idea can also be applied in our SAT solver based CNF learning approach.
However, similar to interpolation, recomputing individual circuits by learning them from scratch did not
result in circuit size reductions, but more often in circuit size increases in our experiments. Yet, instead
of recomputing a circuit from scratch, we can also start with the existing solution Fj , which is given as
a CNF formula, and simplify it by dropping literals and clauses as long as correctness is still preserved.
The idea is similar to COMPRESSCNF (Algorithm 3.2), but the simplification is not equivalence preserv-
ing but only correctness preserving. We propose to postprocess all Fj in the order of decreasing j. The
reason is that Fn was computed first, without any knowledge about the implementation of the other Fj .
Hence, intuitively, Fn has the greatest potential for simplifications relying on the concrete realization of
all other Fj . Each Fj satisfies M1 → Fj → ¬M0 initially, where M1 and M0 are now defined using the
concrete implementation for the other Fk. We propose to simplify each Fj in two phases. The first phase
drops literals from clauses of Fj as long as M1 → Fj is preserved (because dropping literals can make
Fj only stronger). Similar to COMPRESSCNF, this can be realized by computing unsatisfiable cores, uti-
lizing incremental SAT solving. The second phase drops clauses from Fj , starting with the longest ones,
as long as Fj → ¬M0 is still preserved (because dropping clauses can make Fj only weaker). Since we
only drop literals and clauses from the existing implementations, this postprocessing can only make the
resulting circuits smaller but never larger.

3.2.4.3 Discussion

The SAT solver based CNF learning approach is very similar to the interpolation-based method from
the previous section, and thus inherits most of its strength and weaknesses. However, using the learning
algorithm instead of interpolation makes the approach less dependent on the underlying solver. This
is similar to QBFSYNT. Also similar to QBFSYNT is the fact that individual circuits are computed as
formulas in CNF. However, because the individual circuits are cascaded as illustrated in Figure 3.12,
the final circuit depth will in general be higher than that of circuits produced by QBFSYNT. Still, the
circuit depths can be expected to be lower compared to INTERPOLSYNT in most cases. The reason is
that interpolants derived from an unsatisfiability proof can have a depth that is much higher than 3, and
the procedure for building the individual circuits together is the same.

3.2.5 Parallelization

We have already discussed that different methods for circuit synthesis have different characteristics. The
experimental results in Section 3.3 will indicate that this results in different methods and optimizations
performing well on different classes of benchmarks. Similar to strategy computation (see Section 3.1.7)
we thus propose a parallelization that executes different methods and optimizations in different threads.
The aim is to combine the strengths and compensate the weaknesses of the individual methods.

Realization. In contrast to Section 3.1.7, our parallelization for synthesizing circuits from strate-
gies follows a rather simple portfolio approach, where each thread solves the circuit synthesis problem
without any information from other threads. The first thread implements the SAT solver based learning
algorithm from Section 3.2.4 with the dependency optimization from Section 3.2.3.2. If our paralleliza-
tion is executed with two threads, the second thread performs QBF-based CNF learning (Section 3.2.2)
with incremental QBF solving. If executed with three threads, the third thread again performs learning
using a SAT, but without the dependency optimization.

Heuristics. In order to achieve a good balance between low execution time and small circuits, the
user can inform our parallelization about a timeout. A heuristic then uses this information to decide
whether to perform a minimization of the final solution, as explained in Section 3.2.4.2, or not.6 Further-
more, if one thread finishes, it does not stop the other threads immediately but only if the user-defined

6For the experiments, we used a very conservative heuristic: if the remaining time available is more than 10 times the time
used so far for computing a circuit from the strategy, then the minimization of the final solution will be performed.
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timeout is approaching or the ratio between waiting time and working time exceeds a certain threshold
(0.25 in our experiments). The reason is that, from all threads that terminated, we finally select the cir-
cuit with the lowest number of gates. Hence, even if one thread has already found a solution, waiting for
other threads to finish their computation can be beneficial for the final circuit size.

Alternatives. As for strategy computation, there is a plethora of possibilities to combine different
methods while sharing information in a more fine-grained way. Since most of the methods compute
circuits for one control signal after the other, the final solutions for each control signal can be exchanged.
Each thread can then continue with the smallest solution that has been found for the respective signal.
Since several methods are based on counterexample-guided refinements of solution candidates, the re-
spective threads can also directly exchange counterexamples and the corresponding blocking clauses.
Furthermore, it can be beneficial to have different threads synthesizing circuits for control signals in
different order. We leave an exploration of such fine-grained parallelization approaches for future work.

3.3 Experimental Results

In this section, we will first sketch our implementation of the SAT-based synthesis algorithms introduced
so far. After that, we will describe benchmarks that will be used in our experimental evaluation (Sec-
tion 3.3.2). The core of this section is formed by our performance evaluation for computing strategies
(Section 3.3.3) and for constructing circuits from strategies (Section 3.3.4). The section concludes with
a discussion of the central results (Section 3.3.5).

3.3.1 Implementation

We have implemented the synthesis methods presented in Section 3.1 and Section 3.2 in a synthesis tool
called Demiurge. It is written in C++ and compatible with the rules for the SyntComp [117] synthesis
competition. Demiurge has won two gold medals in this synthesis competition: one in 2014 and one in
2015, both in the parallel synthesis track. The input of Demiurge is a safety specification in AIGER7

format. The synthesis result is a circuit in AIGER format as well. Since the synthesis process does not
involve any interaction with the user except for setting parameters, Demiurge does not come with a GUI,
but is started from the command-line. So far, our synthesis tool has only been tested on Linux operating
systems. Demiurge is freely available under the GNU Lesser General Public License8 version 3, and
can be downloaded from

https://www.iaik.tugraz.at/content/research/opensource/demiurge/.

All experiments presented in this thesis have been performed using version 1.2.0. The downloadable
archive contains all scripts to reproduce the experiments, as well as spreadsheets with more detailed data
(such as execution times for individual steps of the algorithms, numbers of iterations, etc.).

Architecture. The architecture of Demiurge is outlined in Figure 3.13. The AIG2CNF module
parses the specification into CNF formulas representing the transition relation T and the set of safe
states P . Only one initial state is allowed in the input format, so the initial states I in our definition
of a safety specification are represented as a minterm. Next, the back end selected by the user via
command-line options is executed. The back ends mostly differ in their method for computing the
winning region (or a winning area), and can be parameterized with a method for computing the circuit
from the induced winning strategy. Furthermore, the back ends can be configured with options to enable
or disable optimizations or optional steps. The back ends can access a number of different solvers via
uniform interfaces. That is, multiple SAT solvers can be accessed via the same abstract interface, which
hides the concrete solver from the application. Various QBF solvers are accessible via a second interface

7http://fmv.jku.at/aiger/ (last visit on 2015-08-01).
8Contact the authors if you want to obtain a copy of the tool under a different license.

https://www.iaik.tugraz.at/content/research/opensource/demiurge/
http://fmv.jku.at/aiger/
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Figure 3.13: Architecture of the SAT-based synthesis tool Demiurge. The input is a safety spec-
ification in AIGER format. The output is an AIGER circuit. Different back ends
implement different methods to compute a winning region. They are parameterized
with a method for computing a circuit from the induced winning strategy. Back ends
can access third-party solvers via uniform interfaces.

(which is similar to the interface for SAT solvers). The concrete solvers that shall be used are again
configured via command-line options. Due to this extensible architecture, Demiurge can also be seen
as a framework for implementing new synthesis algorithms or optimizations with low effort: A lot of
infrastructure such as the parser, interfaces to solvers and entire synthesis steps (like computing a circuit
from a strategy) can be reused.

External tools. In version 1.2.0, Demiurge has interfaces to

• the SAT solver MiniSat [80] in version 2.2.0 via its API,
• the SAT solver PicoSAT [22] in version 960 via its API,
• the SAT solver Lingeling [23] in version ayv via its API,
• the QBF solver DepQBF [155, 157] in version 3.04 via its API, both with and without prepro-

cessing by Bloqqer [26, 189] version 34,
• the QBF solver RAReQS [120] in version 1.1 via a self-made API,
• the QBF solver QuBE [98] in version 7.2 with communication via files,
• the tool ABC [42] (commit d3db71b) for optimizing AIGER circuits with communication via

files, and
• the first-order theorem prover iProver [146] in version 1.0 with communication via files.

3.3.2 Benchmarks

We used benchmarks from the SyntComp 2014 [117] benchmark set9 to evaluate the performance of
our different methods to compute strategies as well as circuits implementing these strategies. Most of
the benchmarks are parameterized. In the following, we briefly summarize their main characteristics as
far as this is helpful for interpreting the performance results. The size of the benchmarks is summarized
in Table 3.1. All in all, we included 350 benchmark instances, of which 40 instances are unrealizable.

The addko benchmark specifies a combinational adder for two k-bit numbers. The parameter o ∈
{y,n} indicates if the benchmark file has been optimized with ABC [42] for circuit size (value y) or not

9We used all benchmark instances from this set with two exceptions: From the amba and genbuf benchmarks, we did not
select the unoptimized and the unrealizable instances to keep the number of instances manageable and balanced. Second, we
also included a driver benchmark that is not contained in the SyntComp 2014 benchmark set.
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Table 3.1: Summary of benchmark sizes. The suffix k means that the respective number is multi-
plied by 1000. The suffix M means a multiplication by one million. The last column
lists the number of AND-inverter gates defining the transition relation T .

Name parameter range |x| |i| |c| Gates in T

addko k = 2 to 20 2 2 · k k 17 to 365
multk k = 2 to 16 0 2 · k 2 · k 24 to 2450
cntko k = 2 to 30 k + 1 1 1 11 to 450
mvko k = 2 to 28 k + 1 k − 1 k − 1 10 to 469
bsko k = 8 to 128 k + 1 ld(k) 1 80 to 3202
stayko k = 2 to 24 k + 2 k k + 1 17 to 4104
ambakl k = 2 to 10 28 to 76 2 · k + 3 8 to 19 177 to 630
genbufkl k = 1 to 16 21 to 73 k + 4 6 to 24 134 to 733
factmnkc special selection 20 to 54 10 to 40 8 to 12 122 to 594
movklm k = l = 8 to 128 19 to 41 12 to 34 5 306 to 830
driverkl l = 5 to 8 55 to 326 16 to 98 24 to 82 435 to 1942
demokl k = 1 to 25 12 to 280 1 to 4 1 to 4 43 to 2055
gbk k = 1 to 4 11k to 23k 4 4 867k to 1.7M
loadkl k = 2 to 3 96 to 296 3 to 4 2 to 3 1092 to 3156
ltl2dbakl k = 1 to 20 44 to 484 2 to 7 1 194 to 5482
ltl2dpak k = 1 to 18 44 to 340 1 to 3 2 to 4 191 to 3866

(value n). This benchmarks is realizable. Since it is mostly combinational, it challenges circuit synthesis
more than strategy computation.

The multk benchmark specifies a combinational multiplier for two k-bit numbers and, thus, has
similar characteristics to add.

The cntko benchmark specifies a k-bit counter that must not reach its maximum value. At value
2k−1 − 1, the counter can be reset if the only control signal is set to true. The parameter o ∈ {y,n}
again indicates if the benchmark was optimized. This benchmark is realizable and can be challenging
for strategy computation because it may require many iterations to find the winning region. It is trivial
for circuit synthesis, though, because hardwiring the only control signal to true suffices.

The mvko benchmark also contains a k-bit counter that must not reach its maximum value. However,
when the most significant counter bit is set, the counter can be reset if the XOR sum of all control signals
is true. Hence, there exists an implementation that hardwires all control signals to constant values.
Again, o ∈ {y,n} indicates if the benchmark was optimized. The benchmark is realizable and can be
challenging for circuit synthesis because it contains many interdependent control signals.

The realizable benchmark bsko applies a barrel shifter to a k-bit register, which is initialized to
some constant value and must never reach specific values. The amount of shifting is defined by uncon-
trollable inputs, but the shifting can be disabled with a control signal. Barrel shifters can be particularly
challenging for BDDs.

The benchmark stayko again contains a k-bit counter that must not reach its maximum value.
Whether the counter is incremented or not depends on complicated logic, involving an arithmetic mul-
tiplication of the control signals with the uncontrollable inputs. Yet, when setting one specific control
signal always to false, the specification is always satisfied. Hence, the crux with this benchmark is
whether the algorithms can find and exploit this “backdoor”.

The benchmark ambakl specifies an arbiter for ARM’s AMBA AHB bus [33] with k bus masters.
The parameter l ∈ {b,c,f} describes the method that has been used for transforming liveness properties
in the original formulation of the benchmark [33] into safety properties. We refer to Jacobs et al. [117] for
a description of these three transformations. All benchmark instances are available in an optimized and
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in an unoptimized form. Additionally, all benchmark instances are available in an unrealizable variant.
However, since the performance difference between all these variants are rather small, we only ran our
experiments with the realizable and optimized versions. This keeps the number of instances manageable.

The benchmark genbufkl specifies a generalized buffer [33] connecting k senders to two receivers.
The parameter l ∈ {b,c,f} is the same as for the amba benchmarks. Similar to amba, we only ran our
experiments with the realizable and optimized versions in order to reduce the number of instances.

The factmnkc benchmark specifies a factory line with m tasks that need to be performed by two
manipulation arms on a continuous stream of objects. The factory belt has n places and rotates every k
cycles by one place, thereby delivering an object. The parameter c is a maximum number of errors in
the setup of the processed objects that needs to be tolerated by the factory line. Some of the included
benchmark instances are unrealizable.

The movklm benchmark specifies a robot that has to move in a two-dimensional grid of k × l cells
while avoiding collisions with a moving obstacle. By default, the obstacle can only move in every second
step. However, at most m times, the obstacle can also move in consecutive time steps. For every grid
size, our benchmark set contains an unrealizable and a realizable instance.

The benchmark driverkl specifies an IDE hard drive controller based on an operating system
interface specification [188]. The parameter k ∈ {a,b,c,d} encodes the level of manual abstraction
that has been applied when translating the benchmark into a safety specification. The value a means
that no abstraction has been applied, and the value d means that many details have been simplified. The
parameter l ∈ {5, 6, 7, 8} is a bound on the reaction time. The benchmark is only realizable for l = 8.

The remaining benchmarks are LTL formulas that are contained as examples in the distribution of
the synthesis tool Acacia+ [40]. They have been translated into safety specifications using the approach
by Filiot et al. [86]. The demokl benchmarks represent LTL formulas that have originally been used
as benchmarks for the synthesis tool Lily [125]. Here, k is just a running number without any special
meaning and l is a bound for the liveness-to-safety transformation. Some of these benchmarks are un-
realizable. The benchmark gbk represents a different formulation of the generalized buffer benchmark
genbuf for two senders and two receivers. The parameter k is here a bound for the liveness-to-safety
transformation. One of these instances is unrealizable. The benchmark loadkl contains a specification
of a load balancing system [81] for k clients that has been used as a case study for the Unbeast synthe-
sis tool [81]. The parameter l is again a bound for the liveness-to-safety transformation. One of these
instances is unrealizable. Finally, the benchmarks ltl2dbakl and ltl2dpak from the Acacia+ [40]
examples have been translated. Here, k is just a running index without any special meaning, and l is
again a parameter of the translation. From these benchmarks, some are also unrealizable.

3.3.3 Strategy Computation Results

In this section, we compare different methods for strategy computation. Methods for computing circuits
that implement a given strategy will be evaluated in Section 3.3.4. First, we will describe the compared
methods and their configuration. Section 3.3.3.2 will then present performance results on the average
over all our benchmarks. A more detailed investigation for the individual benchmark classes is then
performed in Section 3.3.3.3. Section 3.3.3.4 will finally highlight other interesting observations. All
experiments reported in this section were performed on an Intel Xeon E5430 CPU with 4 cores running
at 2.66 GHz, and a 64 bit Linux.

3.3.3.1 Evaluated Configurations

Table 3.2 summarizes the methods and their configurations we compare in this thesis.

Baseline. BDD denotes a BDD-based implementation of the standard SAFEWIN procedure pre-
sented in Algorithm 2.1. It has been implemented by students and won a synthesis competition that
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Table 3.2: Configurations for computing a winning strategy.

Name Algorithm and Optimizations Solver

BDD SAFEWIN (Alg. 2.1) CuDD
IFM Re-implementation of [163] MiniSat
ABS AbsSynthe 2.0 [43] CuDD
Q QBFWIN (Alg. 3.1) DepQBF
QB QBFWIN (Alg. 3.1) DepQBF + Bloqqer
QGB QBFWIN (Alg. 3.1) + Opt. RG (Sect. 3.1.4.1) DepQBF + Bloqqer
QGAB QGB + computing all generalizations (Sect. 3.1.1.3) DepQBF + Bloqqer
QGCB QBFWIN (Alg. 3.1) + Opt. RG and RC (Sect. 3.1.4) DepQBF + Bloqqer
QI Incremental QBFWIN with variable pool (Sect. 3.1.1.4) Incremental DepQBF
S SATWIN1 (Alg. 3.4) MiniSat
SG SATWIN1 (Alg. 3.4) + Opt. RG (Sect. 3.1.4.1) MiniSat
SGC SATWIN1 (Alg. 3.4) + Opt. RG and RC (Sect. 3.1.4) MiniSat
SE SATWIN1 (Alg. 3.4) + Expansion (Sect. 3.1.3) MiniSat
SGE SATWIN1 (Alg. 3.4) + Opt. RG + Expansion MiniSat
TQC Eq. 3.3 + CNF Templates (Sect. 3.1.5.1) DepQBF
TBC Eq. 3.3 + CNF Templates (Sect. 3.1.5.1) DepQBF + Bloqqer
TSC Eq. 3.3 + CEGIS (Alg. 3.5) + CNF Templates MiniSat
EPR Reduction to EPR (Sect. 3.1.6.2) iProver
P2 Parallel (Sect. 3.1.7) with 2 threads MiniSat + DepQBF + Bloqqer
P3 Parallel (Sect. 3.1.7) with 3 threads MiniSat + DepQBF + Bloqqer

has been carried out in a lecture. It is fairly optimized: it uses dynamic variable reordering, forced re-
orderings at certain points, combined BDD operations, and a cache to speed up the construction of the
transition relation. See Section 2.3.1 for more background. IFM denotes a reimplementation of the ap-
proach by Morgenstern et al. [163]. It is inspired by the model checking algorithm IC3 [41] and based
on SAT solving. AbsSynthe is a BDD-based synthesis tool that uses abstraction and refinement10 as
well as many other advanced optimizations [43]. It won the sequential synthesis track in the SyntComp
2014 [117] competition. In version 2.0 (the version we compare to), AbsSynthe has also been extended
with an approach for compositional synthesis. AbsSynthe can therefore be considered as one of the
leading state-of-the-art synthesis tools for safety specifications at the time of writing this thesis. To-
gether with IFM and BDD, it serves as a baseline for our comparison. Since this section only evaluates
the strategy computation, the circuit extraction is disabled in all baseline tools for now.

QBF-based learning. The configurations starting with a Q represent different realizations of the
QBFWIN procedure shown in Algorithm 3.1. This includes the basic algorithm with QBF preprocessing
(QB) and without preprocessing (Q), a version (QGB) using optimization RG (see Section 3.1.4.1), and
a version (QGCB) that also uses optimization RC (see Section 3.1.4.2). Furthermore, we present results
for an implementation (QGAB) that computes all counterexample generalizations instead of just one
(see Section 3.1.1.3), and for one of our three approaches (named QI) for incremental QBF solving (see
Section 3.1.1.4). The results for the other two methods using incremental QBF solving are similar and
can be found in the downloadable archive. The archive also contains other combinations of the different
options and optimizations (20 in total).

Learning based on SAT solvers. The different configurations of the SAT solver based learning pro-

10Abstraction and refinement are applied (roughly) in the following way. Only a subset of the state variables are considered.
Based on this subset, an under-approximation and an over-approximation of the mixed preimage operator Forces1 are defined.
These are used to compute an over-approximation W↑ and an under-approximation W↓ of the winning region. If the initial state
is in W↓, the specification is realizable. If it is not contained in W↑, the specification is unrealizable. Otherwise, the abstraction
is refined by considering additional state variables.
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cedure SATWIN1, presented in Algorithm 3.4, are all named with an S as a first letter. Our comparison
contains a plain implementation (S), a variant (SG) with optimization RG (see Section 3.1.4.1), and a
version (SGC) that also performs optimization RC (see Section 3.1.4.2). The former two are also com-
bined with our heuristic for performing universal expansion (see Section 3.1.3), named SE and SGE
respectively. To simply the matters, we only present result using the SAT solver MiniSat. Results using
Lingeling and PicoSAT can be found in the downloadable archive. Both Lingeling and PicoSAT can
be faster than MiniSat for individual benchmark instances, but MiniSat yields better results on average.

Template-based approach. All configurations of our template-based approach (see Section 3.1.5)
start with a T. A QBF-based implementation with and without QBF preprocessing is realized in TBC
and TQC, respectively. TSC denotes a SAT solver based realization using our variant of the CEGIS
algorithm (see Algorithm 3.5). We only present results using CNF templates. The results when using
AND-inverter graph templates are similar and can be found in the downloadable archive.

Reduction to EPR. The configuration realizing the approach of Section 3.1.6.2 is named EPR.

Parallelization. The results produced by our parallelization with one thread are essentially the same
as for SGE because our parallelization executes SGE when used with one thread. The additional com-
munication overhead is negligible. The configurations with two and three threads are named P2 and
P3, respectively. The additional speedup we achieve with more than three threads is rather insignificant.
Thus, we do not present any results with more threads.

3.3.3.2 The Big Picture

We executed the configurations listed in Table 3.2 with a timeout of 10 000 seconds per benchmark in-
stance and a memory limit of 8 GB. Figure 3.14 gives an overview of the resulting execution times in
form of a cactus plot. The horizontal axis contains the benchmarks, sorted in the order of increasing
execution times (individually for each configuration). The vertical axis shows the corresponding execu-
tion time on a logarithmic scale. Hence, the lines for the individual configurations can only rise, and the
steeper a line rises, the worse is its scalability. Another way to read cactus plots is as follows: For a given
time limit on the vertical axis, the horizontal axis contains the number of benchmarks that can be solved
within this time limit. We omitted some of the more exotic configurations from Table 3.2 (namely Q,
QGAB, QGCB, SGC, and SE) to keep the plot readable. In the following paragraphs, we will focus on
the most important observations based on Figure 3.14. A more detailed comparison will be given in the
next subsections.

Our reduction to EPR does not scale well. EPR could only solve 27 instances. In none of the
cases, a timeout was hit. For all instances that could not be solved, iProver ran out of memory.

Our template-based configurations solve only few instances. By comparing the lines for TQC and
TBC, we can see that QBF preprocessing improves the scalability of our QBF-based realization of the
template-based approach quite significantly. Our implementation TSC using CEGIS and SAT solving
can even solve a few more instances. In all three cases, the lines rise very steeply. Slightly oversimplified,
this means that the template-based methods either find a solution quickly or not at all. Unfortunately, the
latter case happens more often. In total, TSC solves only 115 instances, which is low compared to the
other methods. However, the solved instances include some that cannot be solved by any other method,
so the template-based approach can complement other techniques. We will elaborate on this aspect in
the next section. Except for the (very large) gb benchmarks, the memory limit was never exceeded.

Incremental QBF solving gives a solid speedup for simple benchmark instances. Compared to
QB and QGB, the realization QI using incremental QBF solving is faster on average by more than one
order of magnitude for simple benchmark instances. For example, the 130 simplest instances for QB can
all be solved by QB in less than 137 seconds each, while the 130 simplest instances for QI can be solved
by QI in less than 6.2 seconds each. Yet, for more complex instances, QI falls behind QB. One possible
reason is the lack of QBF preprocessing in QI, which appears to be a promising future research direction.

SAT solvers can outperform QBF solvers when learning a winning region. All our QBF-based
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Figure 3.14: A cactus plot summarizing the execution times for computing a winning strategy
with different methods and configurations. The vertical axis contains the execution
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line rises, the worse is its scalability. The compared methods and configurations are
summarized in Table 3.2. The configurations Q, QGAB, QGCB, SGC, and SE have
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methods are outperformed significantly even by the plain SAT solver based implementation S. The ob-
servation that it can be beneficial to solve QBF problems with plain SAT solving is not new [163, 120],
and hence not completely surprising. The plain implementation S can already solve more instances than
our reimplementation IFM of the approach by Morgenstern et al. [163].

Optimization RG yields a speedup of roughly one order of magnitude for method S. This can be
observed, at least for larger benchmark instances, when comparing the lines for SG and S in Figure 3.14.
For example, the 224 simplest instances for S can each be solved by S in at most 9450 seconds. On
the other hand, SG can solve its 224 simplest instances in at most 470 seconds, which is 20 times
shorter. Interestingly, optimization RG is not beneficial when applied to our QBF-based implementation
(compare QGB versus QB) on the average over all our benchmarks, though. But even in the QBF case,
it still yields a significant speedup for certain benchmark instances. While optimization RG turned out
to be very effective, optimization RC does not have a positive effect on average in our experiments: the
number of solved instances decreases from 255 to 236 when switching from SG to SGC (this is not
shown in Figure 3.14 but can be seen in Table 3.3). But optimization RC is also beneficial for individual
benchmark instances and, thus, not useless either.

Our heuristic for quantifier expansion gives a speedup of roughly one more order of magnitude.
This can be seen by comparing the line for SGE with that for SG. Nailed down by numbers, SG solves its
254 simplest benchmarks in at most 6800 seconds each, while SGE solves its 254 simplest benchmarks
in at most 268 seconds, which is 25 times shorter. The configuration SGE is already on a par with BDD.

Our parallelization achieves a speedup of more than one additional order of magnitude. SGE
solves its 279 simplest benchmarks in at most 9920 seconds each. P2 solves its 279 simplest benchmarks
in at most 295 seconds, which is 33 times shorter. P3 never requires more than 105 seconds on its 279
simplest benchmarks, which can even be seen as a speedup by a factor of 95 over SGE. Obviously, these
speedups are not primarily the result of exploiting hardware parallelism. They rather stem from combin-
ing different approaches that complement each other. Although AbsSynthe uses advanced techniques
such as abstraction/refinement, P3 is not far behind (P3 solves 4 instances less).



3.3. Experimental Results 89

3.3.3.3 Performance per Benchmark Class

The previous section discussed the performance of the individual methods and configurations on average
over all our benchmarks. In this section, we will perform a more fine-grained analysis for the different
classes of benchmarks.

Table 3.3 lists the number of solved benchmark instances per benchmark class. Recall that a de-
scription of the compared methods and their configurations can be found in Table 3.2. Some statistics
on the benchmarks can be found in Table 3.1. Also recall that all experiments were performed with a
timeout of 10 000 seconds and a memory limit of 8 GB. Table 3.3 marks the “best” configuration for
a certain benchmark class in blue: If several methods solve the same amount of instances, we marked
the one with the lowest total execution time. For cases where the difference in the total execution time
is insignificant, we marked several configurations. If most of the configurations solve all instances of a
certain benchmark class in an insignificant amount of time, we refrain from marking them. Moreover,
we do not include ABS and the parallelizations in this ranking because they combine several techniques.

add. Neither BDD nor the template-based method TBC require more than 0.2 seconds for any
instance of the add benchmark. The SAT solver based learning approaches using universal expansion
(SE, SGE) solve all instances as well, but require up to 42 seconds. Without expansion (S, SG, SGC),
SATWIN1 requires many iterations to refine U before a counterexample is found or to conclude that
no counterexample exists (see Algorithm 3.4). For instance, for add6y, roughly 4000 counterexample
candidates are computed. This takes only one second. For add8y, SATWIN1 already computes 65 000
counterexample candidates, which takes 90 seconds. For add10y we hit the timeout. In contrast, the
QBF-based learning methods (with names starting with Q) require only two iterations, but cannot solve
significantly more instances either. This illustrates that the number of iterations alone is often not a good
measure for estimating the performance of different algorithms relative to each other.

mult. The results for this benchmark are similar to add. The main difference is that the BDD-
based implementation does not perform well, but this is not surprising since multipliers are known to be
challenging for BDDs (see Section 2.3.1). Even ABS, which is highly optimized but also BDD-based,
cannot solve all mult instances. The template-based configuration TBC performs best.

cnt. When the winning region is computed iteratively for this benchmark, this requires many iter-
ations. More specifically, around 2k−1 refinements of the winning region are required for cntko. For
k = 30, this already gives around half a billion iterations. Even though the time per iteration is very low
for all configurations, this still results in timeouts for large values of k. In contrast, the template-based
realizations require only one iteration. In particular, the configuration TSC solves all cnt instances in
less than 8 seconds.

mv. Even though this benchmark has a relatively high number of inputs and control signals, most
methods can solve all its instances within a fraction of a second. This benchmark will only be challenging
for some of our circuit computation methods in Section 3.3.4.

bs. This benchmark contains a barrel shifter and is thus challenging for BDD. Most of the other
methods solve all instances within a fraction of a second.

stay. This benchmark contains a counter and a multiplier, and thus combines the characteristics of
mult and cnt. Hence, it is not surprising that one of the template-based configurations performs best.

amba and genbuf. While the previous benchmarks are basically toy examples designed to chal-
lenge the synthesis methods in different ways, the amba and genbuf benchmarks can be seen as spec-
ifications for realistic hardware designs. BDD performs very well on both these benchmarks. One
circumstance contributing to this success may be that these benchmarks have been translated from input
files for the BDD-based synthesis tool Ratsy [29], where they have been tweaked for efficient synthesiz-
ability. Yet, the SAT-based learning method SGE solves the same amount of amba instances as BDD,
an is even slightly faster on the solved instances. For genbuf, BDD is unrivaled in our experiments.

fact and mov. None of our SAT-based methods can compete with BDDs on these benchmarks.
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driver. The IFM method by Morgenstern et al. [163] solves all instances of the driver bench-
mark in a fraction of a second. This is remarkable because with up to 326 state variables, these bench-
marks are quite large. The SAT solver based learning methods SG and SGE are ranked second when
run with optimization RG. Without optimization RG, only few instances can be solved.

demo. Both IFM and SGE can solve all instances in at most 40 seconds. With up to 280 state
variables, the demo benchmarks contain quite large instances as well. The number of inputs is always
relatively low, though.

gb. These benchmarks are far beyond reach with any of our methods. Even ABS fails.

load, ltl2dba and ltl2dpa. SGE performs best, solving most of these instances in less than a
second. With 138 seconds, the longest execution time with SGE is also quite low.

Conclusions. Our QBF-based learning algorithms are dominated by our SAT solver based realiza-
tions across all benchmarks classes. EPR is even dominated by all other configurations. On the other
hand, no single methods dominates all the other methods on all benchmark classes. We thus conclude
that it is important to have different synthesis approaches available. Our experiments suggest that our
novel SAT-based synthesis methods form an important contribution to the portfolio of available methods,
complementing existing BDD-based methods (like BDD and ABS) but also existing SAT-based methods
(like IFM).

3.3.3.4 Further Observations

This section highlights interesting observations that are more specific to certain methods.

QBF preprocessing is important. Figure 3.15 compares the execution times with and without
QBF preprocessing for the QBF-based learning approach in a scatter plot. Each point in the diagram
corresponds to one benchmark instance. The horizontal axis gives the execution time for the benchmark
without preprocessing, and the vertical axis the corresponding execution time with preprocessing. Hence,
all points below the diagonal represent a speedup due to preprocessing, and all points above are instances
with a slowdown. Note that both axes are scaled logarithmically. We can see a slowdown by up to around
one order of magnitude for many instances. However, there are also 20 points on the x-axis, indicating
instances that can be solved in less than one second due to preprocessing. Furthermore, there are 19
points on the right border of the diagram, indicating cases where we had a timeout without preprocessing
but get a solution when preprocessing is enabled. Two instances are even located in the lower right corner,
representing an improvement from a timeout to less than one second. The number of solved instances
increases from 179 to 193 due to preprocessing in the QBF-based learning method (see Table 3.3). The
results for the template-based method (TQC versus TBC) are illustrated in Figure 3.16 and are even
more impressive. A noticeable slowdown can only be observed for two cases. There are 44 points on
the x-axis, for which preprocessing reduced the execution time to less than one second. For 40 cases,
a timeout is avoided due to preprocessing. Finally, there are 23 points in the bottom right corner of
Figure 3.16, for which a timeout is turned into a successful execution that takes less than one second.

Our optimizations for quantifier expansion can avoid a formula size explosion in many cases.
For most of our SAT-based methods, the memory consumption is rather insignificant. As an exception,
SGE can consume quite some memory due the expansion of universal quantifiers (see Section 3.1.3).
However, our implementation can also fall back to SG if some memory limit is exceeded. In our ex-
periments, this happened only for large instances of mult, stay, gb, and driver. One reason is
our careful implementation of the expansion, which aggressively applies simplifications to reduce the
formula blow-up. As an example, for genbuf15b, a straightforward implementation would produce
652 · 223 ≈ 5 · 109 AND gates to define the expanded transition relation. With 3 · 4 = 12 byte per
AND gate, this gives 56 GB. With our simplification techniques, the expanded transition relation has
“only” 1.5 million AND gates. In addition, the final over-approximation F of the winning region W
for genbuf15b contains 707 clauses and 8517 literals (after simplification). After negation, this makes
8517 clauses with 17739 literals. With 4 byte per literal, combining 223 copies of this CNF in a straight-
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Figure 3.15: A scatter plot illustrating the speedup due to QBF preprocessing in QBF-based learn-
ing (Q versus QB). The x-axis contains the execution times without preprocessing,
the y-axis with preprocessing. Note the logarithmic scale on both axes.
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Figure 3.16: A scatter plot illustrating the speedup due to QBF preprocessing in our template-
based approach (TQC versus TBC). The x-axis contains the execution times without
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forward way would require more than 500 GB of memory. Due to our simplifications, the expanded
CNF for ¬F has only 8.5 million literals and SGE solves this benchmark instance without falling back
to SG. The maximum memory consumption is only 680 MB.

Our parallelization is more than a portfolio approach. When executed with two threads, our
parallelization combines the template-based approach (in a mix of TBC and TSC) with the learning-
based approach SGE. The two approaches do not only run in isolation, but share information: clauses
discovered by the SGE-thread are communicated to the template-based thread and are considered as
fixed part of the winning region there (see Section 3.1.7). This exchange of information can have a
positive effect. For example, for the genbuf benchmark, the template-based approach fails to solve
even the simplest instances when applied in isolation. However, in our parallelization, the final winning
region for certain instances is actually found by the template-based thread. This includes even very large
instances such as genbuf15b. The speedup of our parallelization P2 in comparison to SGE for such
instances is rather moderate (e.g. ≈ 10 % for genbuf15b), but this still illustrates that complementary
methods can also benefit from each other in our parallelization.

3.3.4 Circuit Synthesis Results

We now compare our different methods (from Section 3.2) to construct a circuit from a given strategy.
Again, we first describe the evaluated configurations and the experimental setup. Section 3.3.4.3 then
discusses the results on the average over all our benchmarks. Section 3.3.4.4 dives into more details
by investigating the performance for different benchmark classes. Other interesting observations will be
highlighted in Section 3.3.4.5.

3.3.4.1 Evaluated Configurations

Table 3.4 lists the different methods and their configurations compared in this section. All our SAT-based
methods use the tool ABC [42] in a postprocessing step to further reduce the circuit size.11

Baseline. BDD denotes a BDD-based implementation of the standard cofactor-based approach pre-
sented in Algorithm 2.2. It is implemented in the tool that has already been discussed in Section 3.3.3.1,
which won a synthesis competition that has been carried out in the course of a lecture. Besides dynamic
variable reordering (with method SIFT [187, 198]), it also performs a forced reordering with a more ex-
pensive heuristic (SIFT CONV [187, 198]) before circuits are extracted from the strategy. Furthermore,
it uses a cache that maps BDD nodes to corresponding signals in the circuit constructed so far. Whenever
new circuitry is added, the cache is consulted to reuse existing signals. Consequently, no two signals
in the constructed circuit will be equivalent. The configuration ABS denotes the circuit synthesis step
as implemented in AbsSynthe version 2.0 [43]. The basic algorithm is the same as that of BDD, but
additional optimizations are applied. The IFM method by Morgenstern et al. [163], which has been used
as a baseline in Section 3.3.3, is not included here because it can only compute a winning strategy but
not a circuit implementing it.

QBF-based methods. Our approach using QBF certification (see Section 3.2.1) is named QC. A
variant where we compute the negation of the winning region using the procedure NEGLEARN (Algo-
rithm 3.6) is denoted by QCN. Our QBF-based learning approach from Algorithm 3.8 is used in three
configurations: QL denotes a plain implementation using DepQBF, QLB also uses QBF preprocessing
by Bloqqer, and QLI uses the DepQBF solver in an incremental fashion (see Section 3.2.2.2).

Interpolation-based method. An implementation of the interpolation-based method from Algo-
rithm 3.10 is denoted by ID. It applies the dependency optimization presented in Section 3.2.3.2 and uses

11If the AIGER circuit has less than 2 · 105 AND gates before optimization, then we execute the command sequence
strash; refactor -zl; rewrite -zl; three times, followed by dfraig; rewrite -zl; dfraig;. Be-
tween 2 · 105 and 106 AND gates, we only execute the sequence strash; refactor -zl; rewrite -zl; twice. For
more than 106 AND gates, we perform it only once.
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Table 3.4: Configurations for computing a circuit that implements a given strategy.

Name Algorithm and Optimizations Solver

BDD COFSYNT (Alg. 2.2) CuDD
ABS AbsSynthe 2.0 [43] CuDD
QC QBF Certification (Sect. 3.2.1) QBFCert
QCN QBF Certification (Sect. 3.2.1) + NEGLEARN (Alg. 3.6) QBFCert
QL SAFEQBFSYNT (Alg. 3.8) DepQBF
QLB SAFEQBFSYNT (Alg. 3.8) DepQBF + Bloqqer
QLI SAFEQBFSYNT (Alg. 3.8) Incremental DepQBF
ID SAFEINTERPOLSYNT (Alg. 3.10) + Dep. Opt. (Sect. 3.2.3.2) MathSAT
SL SAFEINTERPOLSYNT + CNFINTERPOL (Alg. 3.11) Lingeling
SLD SAFEINTERPOLSYNT + CNFINTERPOL (Alg. 3.11) Lingeling

+ Dep. Opt. (Sect. 3.2.3.2)
SLDM SAFEINTERPOLSYNT + CNFINTERPOL (Alg. 3.11) Lingeling

+ Dep. Opt. + Minimizing the final solution (Sect. 3.2.4.2)
P2 Parallel (Sect. 3.2.5) with 2 threads Lingeling + DepQBF
P3 Parallel (Sect. 3.2.5) with 3 threads Lingeling + DepQBF

MathSAT version 5.2.12 as interpolation engine. MathSAT supports several interpolation methods.
In our experiments we use McMillan’s system [159]. Results with other interpolation methods are rather
similar, though. We also implemented our own interpolation engine by processing PicoSAT proofs in
the TraceCheck format12. However, for larger benchmark instances, the proof files grew prohibitively
large with this approach. Our realization using MathSAT does not have this problem.

Learning based on SAT solvers. The configuration SL implements the SAT solver based learning
approach from Section 3.2.4 without the dependency optimization (Section 3.2.3.2) and without mini-
mizing the final solution (Section 3.2.4.2). SLD denotes a similar configuration, but with the dependency
optimization enabled. Finally, the SLDM configuration also applies a minimization of the final solution
by attempting to eliminate literals and clauses from the computed solutions (Section 3.2.4.2). All these
configurations use activation variables to perform incremental solving across all calls to CNFINTERPOL

(see Section 3.2.4.2). Lingeling is slightly faster on average than MiniSat and PicoSAT in all these
configuration. Results for other configurations (28 in total) can be found in the downloadable archive.

3.3.4.2 Experimental Setup

Again, all experiments were performed on an Intel Xeon E5430 CPU with 4 cores running at 2.66 GHz,
using a 64 bit Linux as operating system. A timeout was set to 10 000 seconds for all circuit synthesis
runs. The available main memory was limited to 8 GB. The maximum size for auxiliary files to be written
to the hard disk was set to 20 GB.

Sanity checks. All synthesized circuits were model checked using IC3 [41]. IC3 never found a
counterexample but in some cases hit a timeout. We thus also ran a bounded model checker (BLIMC,
which is distributed with Lingeling [23]) to get bounded correctness guarantees for such cases.

Winning strategies. For all our SAT-based circuit computation methods, we used the winning strate-
gies as computed by configuration P3 (see Table 3.2). Preliminary experiments with other strategy com-
putation methods suggest that the impact on the performance in circuit synthesis is rather small. One
reason is that we simplify the computed winning region (or winning area) by calling COMPRESSCNF

(Algorithm 3.2) as a preprocessing step to circuit extraction (see Section 3.2). We thus refrain from run-
ning experiments with all combinations of our strategy- and circuit computation methods. Furthermore,

12http://fmv.jku.at/tracecheck/ (last visit on 2015-08-01).

http://fmv.jku.at/tracecheck/
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we stored the winning strategies computed by P3 into files and loaded them for our circuit computa-
tion experiments in order to ensure that all our methods operate on exactly the same strategy (and to
save computational resources for recomputing the strategy each time). For BDD and ABS, we used the
winning regions as computed by these tools as a starting point for circuit synthesis.

Benchmarks. From the 350 benchmark instances used to evaluate our strategy computation methods
(see Section 3.3.2), only 267 instances have been used to compare our circuit computation methods. This
has two reasons. First, 40 instances are unrealizable, so they have no winning strategy. Second, for some
instances, no winning strategy could be computed (even with a timeout of 105 seconds) for at least one
of the compared methods. In order to have a fair comparison, we thus used only those benchmarks for
which P3, BDD and ABS succeeded in computing a winning strategy. In detail, P3 failed to compute
a winning strategy for 25 instances. For 19 additional instances, BDD could not find a winning strategy
within 105 seconds. This includes cnt30n and cnt30y, for which we estimated BDD’s circuit synthesis
time (to be 0.1 seconds) and the circuit size (to be 32 gates) based on observations from smaller instances.
This leaves 17 excluded instances. ABS could not compute a winning strategy for 11 more benchmarks.
However, for two cnt instances, we could estimate the size and time to 0.1 seconds and 1 gate based
on results for smaller instances. For eight instances of the stayko benchmark, we also estimated 0.1
seconds and k + 1 gates. What remains is one driver instance to exclude. This finally results in
350 − 40 − 25 − 17 − 1 = 267 instances used for the comparison. The number of used instances per
benchmark class can be seen from Table 3.5 (see the line labeled by “Total”).

More detailed comparisons. The downloadable archive also contains more detailed pairwise com-
parisons on larger subsets of the benchmark instances. This includes charts to compare our SAT-based
methods with ABS on all 281 benchmarks for which both ABS and P3 were able to compute a winning
strategy. Charts comparing our SAT-based methods with BDD on all 268 instance on which both BDD
and P3 were able could find a winning region are included as well. However, since the results are almost
identical to our three-way comparison, we refrain from presenting them in this document.

3.3.4.3 The Big Picture

The Figures 3.17 and 3.18 contain cactus plots illustrating the execution time and the resulting circuit
size for the method configurations from Table 3.4. The configuration QC has been omitted in the plots
because both the execution time and the circuit size is similar to QCN (the difference is mostly in the
memory consumption). The configuration QL performs slightly worse than QLB and QLI and has also
been omitted to make the plots more legible. The following paragraphs discuss the most important obser-
vations based on these two figures. A more detailed analysis will be done in Section 3.3.4.4 and 3.3.4.5.

QBF certification does not perform well. From Figure 3.18, we can see that the QBF certification
method QCN produces the largest circuits. Figure 3.17 illustrates that QCN is on average slightly faster
than QLB, but still solves less instances within the given resource limits. The reason is that QCN
often exceeds the 20 GB limit for auxiliary files because the proof traces produced by DepQBF in
the QBFCert framework can grow very large (several hundreds of GB when run without limits).

QBF-based learning is slow but produces small circuits. Especially when used with incremental
QBF solving, QBF-based learning can outperform QBF certification both regarding execution time and
circuit size (compare QLI versus QCN). Still, in comparison with the other methods, QLI is on average
way slower. Regarding circuit size, QLI and QLB are on a par and outperform the interpolation-based
method ID as well as the BDD-based implementation BDD by almost one order of magnitude on average.

The interpolation-based approach does not outperform BDDs in our experiments. Regarding
circuit size, the interpolation-based configuration ID yields similar results as BDD on average. However,
ID is noticeably slower than BDD, especially for more complex benchmark instances.

Our SAT solver based learning approach outperforms all our other non-parallel methods. This
holds true for both the execution time and the circuit size. The configuration SLD turns out to be our best
non-parallel option on the average over all our benchmarks. It is already faster than BDD on average by
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more than one order of magnitude. For example, BDD can solve its 233 simplest benchmark instances in
at most 7931 seconds each. SLD never needs more than 461 seconds for its 233 simplest instances. This
is a factor of 17. With respect to circuit size, the situation is even more extreme. The 233 smallest circuits
produced by BDD have at most half a million AND gates each. The 233 smallest circuits produced by
SLD have at most 2383 gates each. This is smaller by a factor of 188. SLDM produces even slightly
smaller circuits, with an improvement factor of 240 for the 233 smallest circuits compared to BDD. This
is not only because BDD produces large circuits for benchmarks that cannot be solved by SLD. The most
extreme instance is driverd813, for which BDD produces a circuit with 3.7 million AND gates, while
SLD produces a circuit with only 66 gates.

Our parallelization is competitive with the state of the art. Our parallelization P3 increases the
number of solved instances compared to SLD from 250 to 263 by combining different methods and
optimizations. The circuit sizes also decrease slightly, which is partly due to our heuristics performing
additional circuit minimizations if there is sufficient time left (see Section 3.2.5), and due to selecting
the smallest solution from all threads. Our parallelization already solves 2 instances more than the state-
of-the-art tool AbsSynthe. When comparing P3 against AbsSynthe in Figure 3.17, we can see that
AbsSynthe solves many instances in less than one second but the execution times grow steeper for more
difficult instances. Thus, AbsSynthe can be superior if the timeout is short, while P3 shows a more
steady pace. Regarding circuit size, our parallelization outperforms AbsSynthe by more than one order
of magnitude on average (compare P3 versus ABS in Figure 3.18).

Execution time and circuit size often correlate. With the exception of the QBF-based learning
methods, we can observe a correlation between execution time and circuit size in our experiments. Meth-
ods that are fast have a tendency to also producing small circuits and vice versa. At the first glance, this
may be surprising because, intuitively, one could expect that we have to find a good trade-off between
these performance metrics. One reason for the correlation is that most of our methods (all except QC
and QCN) compute circuits iteratively for one control signal after the other. After every iteration, the
strategy formula is refined with the solutions for the control signals that have been synthesized so far. If
these solutions are complicated, then this results in more complicated strategy formulas for the next iter-
ations, which can increase the computation times. For the learning-based methods, the size of the CNF
formulas defining the control signals directly corresponds to the number of iterations that were needed
to compute them: Every clause results from a mayor iteration involving a counterexample computation.
Every literal in a clause witnesses a failed attempt to eliminate this literal with a SAT- or QBF solver
call. A correlation between the circuit size and the execution time is thus natural.

Computing circuits from strategies is by no means a negligible step in the synthesis process. Let
us compare the total strategy computation time against the total circuit computation time for all instances
where both steps terminate within the timeout of 10 000 seconds. For P3, this comparison reveals that
52 percent of the total synthesis time is spent on strategy computation and 48 percent is consumed by
circuit computation. For BDD, the distribution is 60 % to 40 %. Only for ABS, the distribution is 90 %
to 10 %, which may be due to the abstraction/refinement techniques implemented in ABS.

3.3.4.4 Performance per Benchmark Class

This section analyzes the performance of our methods for circuit synthesis for the different benchmark
classes. We will see that the configuration SLD is not always superior.

Table 3.5 lists the number of benchmark instances that could be solved per benchmark class by the
different configurations. The fastest configuration is marked in blue. If the same amount of instances
are solved by several configurations, we marked the one with the lowest total execution time. In case the
total execution time is very similar, we sometimes marked several configurations. For benchmark classes
where most of the configurations solve all instances, we did not mark any configuration. Again, we do
not include ABS and the parallelizations in this ranking because they combine several techniques.

13This instance is not included in Figure 3.18 because ABS could not compute a winning strategy for this instance.
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add. The configurations BDD, SLD and SLDM solve all instances of the add benchmark within one
second. The difference in circuit size is moderate (at most 171 gates with SLD and SLDM; at most 416
gates with BDD). The interpolation-based method ID solves all instances as well but requires at most
40 seconds. The good results of SLD, SLDM and ID are mostly due to our dependency optimization
(see Section 3.2.3.2 and Section 3.2.4.2): Without the dependency optimization, the SAT solver based
learning method solves only 12 instances (SLD versus SL).

mult. This benchmark is similar in spirit as add, but the circuit to be synthesized is more complex.
SLD and SLDM still perform well, again due to dependency optimization. However, BDD and ID
fall back noticeably. The difference in circuit size also grows more significant: For example, BDD
implements mult9 with more than 105 gates, while SLD and SLDM require only 633 gates. One
reason is that multipliers cannot be represented by small (monolithic) BDDs with any variable ordering
(see Section 2.3.1). Since the BDD method dumps BDDs as a network of multiplexers to obtain the
resulting circuit, the BDD size does not only affect the computation time but also the resulting circuit size.
Our SAT solving based methods SLD and SLDM do not suffer from this issue. They even outperform
AbsSynthe significantly on this benchmark.

cnt, bs and stay. These benchmarks can be solved by all our methods in a few seconds. Only
ID requires up to 46 seconds on larger instances of stay. BDD performs well on cnt, but cannot solve
all instances of bs and stay. The latter two benchmarks contain barrel shifters and multipliers, which
are known to be challenging for BDDs.

mv. The mv benchmark is an interesting case. Most of our methods can solve all instances of this
benchmark in less than one second. However, for the interpolation-based method ID as well as the SAT
solver based learning methods SL, SLD and SLDM, this benchmark is challenging. All these methods
are based on INTERPOLSYNT (Algorithm 3.9). The crux with the mv benchmark is that the XOR sum
of all control signals must be true. INTERPOLSYNT starts by building a circuit to fix the value of the
last control signal based on all other control signals such that this is ensured. Since this circuit needs
to react properly to all possible values of all other control signals, it can be very large. In particular,
the SAT solver based learning methods build this circuit in a CNF representation without introducing
auxiliary variables. A CNF formula that computes the XOR sum of n variables without introducing new
auxiliary variables requires 2n−1 clauses. For mv28y, this gives 227 ≈ 134 · 106 clauses.14 Only in the
last iteration, when the algorithm processes the first control signal, INTERPOLSYNT discovers that this
signal can actually be set to a constant value. This has the effect that all the computed circuits for the other
control signals also collapse to constant values. The root cause for this behavior is that INTERPOLSYNT

is very conservative with exploiting implementation freedom (see Section 3.2.3.4 for a discussion). In
contrast, the QBF-based learning algorithm QBFSYNT (Algorithm 3.7) exploits the available freedom
greedily. It sets each control signal to a constant value right away, because this is sufficient to ensure that
a solution for the remaining control signals still exists.

amba and genbuf. For these benchmarks, the SAT solver based learning configuration SL per-
forms best. That is, the dependency optimization implemented in SLD and SLDM does not pay off.
SLD, SL and BDD can solve the same amount of genbuf instances, but SLD is slower than SL by a
factor of 2 in total, and BDD is even slightly slower than SLD in total. The sum of the circuit sizes for all
genbuf instances is 44 times smaller when using SL instead of BDD. For amba, the factor is 21 when
counting only the instances that can be solved by both SL and BDD.

fact and mov. Both BDD and SL can solve all fact instances in less than 10 seconds per in-
stance. The mov instances are solved by BDD in at most 160 seconds per instance. The second fastest
configuration for mov is SL, but it requires already 4500 seconds.

driver. ABS cannot compute a winning strategy for any of the driver instances, so this bench-
mark is not included in the comparison of Table 3.5. Our SAT solver based learning methods SL, SLD
and SLDM can solve all driver instances in less than 10 seconds. The circuit size with these methods

14For the resubstitution step in Line 9 of Algorithm 3.9, this CNF also needs to be negated, which can even result in running
out of memory.
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is at most 600 gates. BDD can only handle the smallest driver instance, but takes already half an hour
to produce a circuit with 3.7 million gates. With up to 326 state variables and 98 inputs, the driver
benchmark certainly offers plenty of possibilities for building complicated circuitry. Yet, in contrast to
BDD, our learning-based methods appear to perform well in exploiting the implementation freedom to
avoid overly complicated solutions.

demo. Only ABS and our SAT solver based learning methods SL, SLD and SLDM can solve all
instances. The dependency optimization is not beneficial: SLD is slower than SL by a factor of 3.2.

load. Again, the SAT solver based learning methods SL, SLD and SLDM perform best: they solve
all instances in at most 2 seconds. ID requires up to 18 seconds. The fastest QBF-based learning method
is QLI, requiring up to 87 seconds for the load instances. BDD requires up to 10 minutes.

ltl2dba and ltl2dpa. The configurations ID, SL, SLD, and SLDM require at most 4 seconds
on these benchmarks. Other configurations that can also solve all these benchmarks are slightly slower.

3.3.4.5 Further Observations

This section highlights some other, interesting observations.

The effect of our postprocessing with ABC [42] is rather insignificant. For SLD, ABC manages
to reduce the average circuit size from 9500 gates to around 2700 gates in our experiments. However, this
average is strongly influenced by the mv benchmark, where circuits with up to half a million gates are
reduced to circuits were all control signals are driven by constants. See Section 3.3.4.4 for an explanation
why this happens. This reduction for the mv benchmark could also be achieved with a simple constant
propagation. When omitting the mv benchmark, the average circuit size is reduced from 4100 gates to
2900 gates, which is a reduction by around 30 percent. In relation to the circuit size differences between
our methods, which can be in the range of several orders of magnitude (see Figure 3.18), this is rather
insignificant. On the other hand, in the case of SLD, only 0.6 percent of the total execution time for all
benchmarks is spent by ABC. By modifying the sequence of minimization commands executed by ABC,
other trade-offs between the execution time and the resulting circuit size improvements are possible. Yet,
our experiments suggest that postprocessing cannot easily compensate the large circuit size differences
between the methods. In other words, exploiting the implementation freedom cleverly while computing
the circuits appears to be much more effective than investing more effort into postprocessing.

Incremental QBF solving outperforms QBF preprocessing in our circuit synthesis experiments.
Figure 3.19 illustrates the effect of QBF preprocessing in our QBF-based learning method for circuit
synthesis by comparing QLB against QL in a scatter plot. We can see a negative effect for most instances.
The number of solved instances even decreases from 188 to 186 (see Table 3.5). By trend, preprocessing
is more beneficial for more complex instances. Some of the more complex instances have been left out
in the comparison because either BDD or ABS failed to compute a winning region. If we consider all
285 instances on which P3 managed to compute a winning strategy, the number of solved instances
actually increases from 190 to 193 due to QBF preprocessing. Hence, preprocessing also has its merits.
On the other hand, incremental QBF solving has an exclusively positive impact in our experiments. It is
visualized in Figure 3.20, comparing QLI against QL. There is not a single instance where incremental
QBF solving increased the computation time. In 3 cases, a timeout is avoided. When counting only
the instances where QL terminates successfully, the average execution time is reduced from 204 to 59
seconds, which corresponds to a speedup factor of 3.5.

Using NEGLEARN reduces the memory required by QBFCert. As already mentioned, QBFCert
can consume quite some memory. This applies to both main memory as well as disk space for auxiliary
files. As a consequence, QC encounters a timeout for only two benchmark instances. For the other
instances that cannot be solved, the reason is in exceeding the memory limit. When using NEGLEARN

(Algorithm 3.6) in order to compute the negation of the winning region without introducing auxiliary
variables, the size of the auxiliary files is reduced by up to a factor of 30. On the other hand, for more
than 15 instances, running NEGLEARN only trades a memory issue for a timeout. Still, the total number
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Figure 3.19: The effect of QBF preprocessing in circuit synthesis, illustrated in a scatter plot. The
x-axis shows the execution times without preprocessing (configuration QL). The y-
axis gives the corresponding execution times with QBF preprocessing enabled (con-
figuration QLB). Note that both axes are scaled logarithmically.
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Figure 3.20: The effect of incremental solving in circuit synthesis, illustrated in a scatter plot. The
x-axis shows the execution times without incremental QBF solving (configuration
QL), the y-axis with incremental QBF solving enabled (configuration QLI).
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of solved instances increases from 161 to 171 in our QBF certification approach (compare QC with QCN
in Table 3.5). For our other methods, running NEGLEARN does not pay off, though.

Minimizing the final solution in SAT solver based learning yields moderate circuit reductions.
When counting only the benchmark instances where both SLD and SLDM terminate, the average circuit
size is reduced by 33% (from 1500 to 1000 gates) due to the final minimization step discussed in Sec-
tion 3.2.4.2. On the other hand, the average circuit computation time increases from 106 seconds to 311
seconds, which is almost a factor of 3. For individual benchmark instances, the cost/benefit ratio can be
lower, though. For example, in the case of driverb8, the circuit size is reduced from 594 gates to 152
gates in only a few extra seconds.

3.3.5 Discussion

Binary Decision Diagrams are increasingly displaced by SAT-based methods in the formal verification
of hardware circuits. In synthesis, however, outperforming BDDs is challenging.

Outperforming BDDs in strategy computation. For the strategy computation step, our SAT solver
based learning approach is competitive with the BDD-based reference implementation in our experi-
ments, but only when making clever use of incremental solving, unsatisfiable cores, our optimization
for exploiting unreachable states, and our heuristic for expanding quantifiers. With our parallelization,
we can even solve significantly more benchmark instances than the BDD-based implementation. This is
achieved by complementing the SAT solver based learning approach with our template-based approach.
An advantage of BDDs is that they can handle both universal and existential quantification. This also
holds true for QBF solvers. However, a QBF solver only computes one satisfying assignment, while
BDDs eliminate the quantifiers to represent all satisfying assignments simultaneously. Our QBF-based
algorithms have to compensate for that with more iterations. The performance of our QBF-based al-
gorithms is rather limited compared to our SAT solver based realizations. This is somewhat surprising
because the lack of universal quantification induces even more iterations. However, considering that
QBF is still a rather young research discipline, this situation may change in the future. A combination of
incremental QBF solving with preprocessing appears to be a particularly promising direction.
Our parallelization is on a par with the state-of-the-art synthesis tool AbsSynthe, which is also BDD-
based but uses abstraction/refinement and other advanced optimizations. Adopting optimizations like
abstraction/refinement from AbsSynthe appears to be a promising direction for future work.

Outperforming BDDs in circuit computation. For the second synthesis step, where circuits imple-
menting the computed strategies are constructed, our satisfiability-based methods are even more bene-
ficial in the average over all our benchmarks. In particular, our combination of interpolation with SAT
solver based learning outperforms the BDD-based reference implementation by roughly one order of
magnitude on average. Moreover, it produces circuits that are smaller by around two orders of mag-
nitude on average. One reason is that the learning techniques we apply seem to be good at exploiting
implementation freedom. In earlier work [82], we showed that learning techniques can also improve the
circuit sizes when used with BDDs, but only at the cost of additional computation time. The experiments
reported in this thesis suggest that the combination of learning algorithms with decision procedures for
satisfiability is more promising. Our plain SAT solver based learning approach is still significantly slower
than AbsSynthe. However, our parallelization can already solve more instances by combining different
SAT-based methods. Moreover, it produces circuits that are smaller than those from AbsSynthe by more
than one order of magnitude on average in our experiments.

Conclusion. BDDs are far from obsolete in the synthesis of reactive hardware systems. Yet, SAT-
based methods can also be competitive, and even outperform BDD-based implementations on the av-
erage when designed carefully. We also observed that satisfiability-based methods can solve classes of
benchmarks that are hard to deal with for BDD. We therefore believe that our novel satisfiability-based
synthesis methods form an important contribution to the portfolio of available approaches.



4 SAT-Based Software Controller Synthesis for
Program Repair

Parts of this chapter are based on my previous publications [140, 141, 145, 30].
References to these sources are not always made explicit.

The previous chapter discussed methods for hardware controller synthesis, where all inputs, control sig-
nals and state variables are represented by Boolean variables. The focus in this setting was on improving
scalability with respect to the state of the art. To this end, we proposed novel algorithms based on tem-
plates or counterexample-guided refinements of solution candidates, and realized them using decision
procedures for the satisfiability of quantified and unquantified propositional formulas.

In this chapter, we will present a controller synthesis approach for software programs and apply it in
the context of automatic program repair. Our synthesis approach follows some of the same principles,
namely templates to fix the structure of the solution and counterexample-guided refinement of solution
candidates to find a proper template instantiation. However, program variables are no longer Boolean in
the software setting but represented as domain variables in some theory. Consequently, we will use an
SMT solver to reason about the program behavior formally. Besides scalability, this section also aims at
applicability, in particular in the context of automatic program repair. Hence, we will not only address
the synthesis of repairs but also program analysis and automatic fault localization in order to realize a
fully automatic debugging flow. In order to produce meaningful diagnostic information for the user, our
goal is the synthesis of fine-grained and readable repairs.

Outline. Our debugging flow is outlined in Figure 4.1. Its objectives will be elaborated in Section 4.1.
The input, discussed in Section 4.1.1, consists of an incorrect software program P and a specification ϕ
in the form of assertions in the code. Assertions can also be used to compare results computed by the pro-
gram against that of a reference implementation. An extension to specifications that are given in the form
of test cases will be presented in Section 4.6. Our debugging flow then consists of three steps. First, we
apply program analysis to lift the debugging problem into the domain of logic by capturing correctness
aspects of the program using formulas. Our approach for constructing these formulas using symbolic or
concolic execution will be discussed in Section 4.2. Second, we perform automatic fault localization in
order to identify parts of the program that could potentially be responsible for the incorrectness. Sec-
tion 4.3 discusses a fault localization approach based on SMT solving, and Section 4.4 will present an
alternative solution based on deductive verification and first-order theorem proving. The third step is to
synthesize replacements for the potentially faulty program parts. A basic solution using templates and
Counterexample-Guided Inductive Synthesis (CEGIS) will be given in Section 4.5. Section 4.7 will then
propose a more advanced approach that interleaves the repair synthesis with on-the-fly program analysis
using concolic execution. Finally, Section 4.9 will present our proof-of-concept implementation as well
as experimental results.

Incorrect 
Program P

Specification φ

Program
Analysis Diagnostic

Information D

Fault
Localization

Fault
Correction

Diagnoses

Repairs

Figure 4.1: Outline of our automatic debugging flow. The input is an incorrect software program
P and a specification ϕ. The output is a set of potential fault locations (diagnoses) and
a set of suggestions how to fix the program (repairs). Our flow consists of three steps:
program analysis, fault localization, and fault correction.

103



104 Chapter 4. SAT-Based Software Controller Synthesis for Program Repair

4.1 Objectives

In this section, we first discuss the input to our debugging flow, which consists of an incorrect program
P and a specification ϕ. Based on the input definition, we then discuss objectives regarding the output
of our automatic debugging approach as well as the envisioned usage scenario.

4.1.1 Input

The input of our debugging flow consists of an incorrect program P and a specification ϕ. We refrain
from defining a formal syntax and semantics for programs because our debugging flow abstracts from
the program in the first step already. The heart of our debugging flow then operates on formulas that
capture only the relevant correctness properties of the program.

Programming language. We impose several assumptions about the program under analysis. Some
of these assumptions are only made to simplify the presentation and can be relaxed. We consider pro-
grams written in an imperative programming language. We allow for both global and local program
variables but assume that all variables store integers1 of the same (fixed and finite) bit-width. That is,
we do not consider floating point variables, pointers, arrays, compound types or type casts. All the usual
arithmetic operations on integers (+, -, *, /, %), including bit-wise operations (&, |, ˜, ˆ, <<, >>), are al-
lowed. Furthermore, we support the usual comparison operators (==, !=, <, <=, >, >=). Besides assign-
ments we also support the typical control flow primitives (if-else, switch, while, do-while,
for) as well as function and procedure calls, which can also be recursive. Our proof-of-concept de-
bugging tool operates on simple C programs and relaxes some of these restrictions. Section 4.9.1 will
discuss which features of the programming language C are supported by our tool to which extent.

Program inputs. The program P can contain calls to a special function input, which takes no
parameters and returns an unknown integer value, which is considered as an input to the program. Fur-
thermore, all parameters of the entry function are implicitly considered to be inputs of the program.

Assertions and assumptions. Assertions are program statements of the form assert(c), where
c is a condition. Intuitively, an assertion expresses that the condition c must be true at that point in the
program. Likewise, assumptions are statements of the form assume(c), where c is a condition that is
assumed to be true at that point in the program. We use assertions and assumptions as specification.

Specifications. Our basic approach takes the assertions in the code as a specification ϕ. We say that
a program P violates its specification ϕ if there exist values for the inputs such that some assert(c)
statement is executed with c being false and without executing an assume(d) statement for which d
is false beforehand. Otherwise, P satisfies ϕ. We furthermore call a program correct if it satisfies its
specification and incorrect otherwise. In Section 4.6, we will later extend our debugging flow to also
support test cases as a specification. Since the problem of deciding whether a given program is correct
is undecidable in general (see Section 2.8.1), our approach will only detect and repair correctness issues
with certain approximations.

Incomplete specifications. We do not require specifications to be complete in the sense that they
rule out every undesirable behavior. As a consequence, it can happen that our approach reports a repair
as “correct” according to the definition above, but the repair may still not satisfy the design intent of the
user. In this case, we suggest that the user refines the specification (with additional assertions) to rule out
the undesirable repairs and starts the tool again. This way of keeping the user in the loop has the positive
side-effect that the specification is improved during the debugging process as well.

1When we use the term “integer” in this section, we always refer to an integral data type ranging over a subset of all integer
numbers that can be represented with some fixed and finite number of bits. We will use the term “mathematical integer” when
referring to the (infinite) set of all integers.
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4.1.2 Output and Objectives

The output of our debugging flow consists of diagnoses and repairs. In order to convey meaningful
feedback to the user, we formulate additional objectives for this output.

Diagnoses and repairs. In a fist step, our debugging flow produces a set of diagnoses, which are
program parts that could be responsible for specification violations. The diagnoses thus represent poten-
tial fault locations. Second, our flow also produces repairs, which are modified versions of the original
program P that satisfy the specification (modulo approximations of the program semantics made during
the repair computation). Repairs will be computed from diagnoses. That is, a repaired program will only
differ from the original program P in program parts identified by a diagnosis.

Fine-grained diagnoses and repairs. As an additional objective, we want diagnoses to be fine-
grained, i.e., to consist of relatively small program parts. Coarse-grained diagnoses, e.g., identifying
functions of the program as potentially faulty, would leave a significant portion of the work in tracking
down the fault to the user. Moreover, since our approach will infer repairs from diagnoses, fine-grained
diagnoses will also result in fine-grained repairs that modify only small program parts. This has several
advantages. First, the user must only comprehend small code changes in order to understand the repair.
A completely resynthesized program function, for instance, can be much harder to understand. Second,
small code changes have a higher probability to be in line with the user’s design intent (recall that we do
not require the specification to be complete). Third, the restriction to small code changes also restricts
the search space for repairs and thus supports efficiency.

Readable repairs. Even fine-grained repairs can be difficult to understand for the user. For instance,
a single if-condition can be repaired with a formula that connects different bits of global and local
program variables in an inscrutable way. No human developer would fix a bug in such a way. Even
if such a cryptic repair renders the program correct, it is of little use. Since the specification may be
incomplete, the user cannot judge if it also satisfies unspecified aspects of the design intent. Moreover,
such a repair is not maintainable: the user cannot extend the repaired program, refactor it, or fix other
bugs without running the risk of breaking the synthesized repair.

Keeping the user in the loop. We envision a program repair tool that does not override the user but
keeps the user in the loop. The tool suggests repairs, but it is always the user who selects one. The goal
is to reduce the manual effort for finding a correction, not to relieve the user from being responsible for
the fix. Furthermore, if only unsatisfactory repairs are presented, the user should be able to refine the
specification in order to rule them out. Readability and fine-grainedness of repairs are a crucial usability
feature to enable this.

False-positives and false-negatives. Since the user is in the loop anyway, we do not strictly require
our debugging approach to be sound or complete. That is, our approach may produce diagnoses and
repairs that are incorrect with respect to the specification (we call this a false-positive), and it may miss
diagnoses and repairs (called a false-negative). Recall from Section 2.8.1 that the problem of deciding
whether a program satisfies its specification is undecidable in general. Thus, a fully automatic repair
algorithm that has no false-positives and no false-negatives cannot exist. While our goal is to keep the
amount of false-positives and false-negatives low, our approach will provide many parameters to trade
accuracy for efficiency.

4.2 Program Analysis

This section discusses our approach for program analysis, which has the purpose of collecting diagnostic
information about the program correctness in the form of formulas. As illustrated in Figure 4.1, this
diagnostic information D will then be used by our automatic fault localization and correction methods.
Our program analysis approach consists of two steps. The first step is to preprocesses the program P .
Based on a fault model, the preprocessing step identifies program parts that could be faulty, and marks
them in the source code. In a second step, symbolic or concolic execution is applied to the preprocessed
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program P̂ in order to obtain the diagnostic information D. Since software program verification is
undecidable in general (see Section 2.8.1), the program analysis will be performed in an incomplete and
approximative way, producing only approximate correctness information in general.

The following three subsections will discuss our fault model, the preprocessing step, and the program
analysis using symbolic or concolic execution, respectively.

4.2.1 Fault Model

Our automatic debugging method needs to identify parts of the program P as potentially faulty. Further-
more, it shall suggest replacements for these faulty parts. Following the terminology for Model-Based
Diagnosis (MBD), introduced in Section 2.9, we will refer to individual program parts as components
of the program. We decompose the program into individual components using a fault model, which
describes assumptions about the faults in the program.

Objectives. A good fault model needs to balance conflicting objectives: it should be general in
the sense that it covers many faults. It should be fine-grained in order to enable pinpointing potential
fault locations precisely. (Since we will later synthesize new implementations for faulty components, a
fine-grained component definition also reduces the amount of changed code in the synthesized repairs.)
Furthermore, the fault model should allow for efficient debugging algorithms. Clearly, these properties
cannot all be maximized at the same time.

Our choice: faulty expressions. As a trade-off between these objectives, we assume that expressions
in the program are the only components that can be erroneous. The rest of the program is deemed correct
and thus unmodifiable by our debugging approach. This means that our approach cannot handle certain
kinds of faults, e.g., wrong control flow structures, missing statements, or faults in the left-hand side
of an assignment. Yet, even for such kinds of faults, our approach may find repairs that work around
the limitations of the model and fix the program by modifying some expressions in the code. The fault
model of incorrect expressions is fine-grained, relatively generic, and has already been used successfully
in other debugging approaches [106, 131]. Furthermore, it enables efficient algorithms because the
unknown result of an erroneous expression can be handled symbolically, just like an input.

Extensions. In principle, our fault model can be extended in various ways. However, these exten-
sions generally come at the cost of increased computational efforts in program analysis, fault localization
and correction. For instance, missing assignment statements can be handled by adding vacuous assign-
ments of the form v := v; between all statements and for all variables v that are in scope at the
respective position. Our debugging approach can then synthesize new expressions for the right-hand
side (RHS) of certain assignments, which amounts to adding the so constructed non-vacuous assignment
statements to the program. Faults on the left-hand side of an assignment (where the correct expression is
assigned to a wrong variable) can be handled by introducing a switch-statement with cases that assign
the expression to all different variables that are in scope. The choice is set to the case that is implemented
in the program, but this choice can be repaired by the debugging tool. Incorrect control flow structures
(e.g., the programmer wrote an if instead of a while) can be handled similarly, in principle.

Alternatives. Alternative fault models for fault localization and correction include mutation-based
fault models [74, 179]. A mutation is a small modification of a program’s source code. Mutation-based
fault models were originally introduced in mutation testing to assess the quality of a test suite [123]: A
test suite is considered to be of high quality if it detects many of these small modifications. In mutation-
based debugging [74, 179], this idea is turned on its head: an incorrect program is mutated in the hope
that the mutation renders the program correct. Mutation-based fault models are usually restricted to
small syntactic changes. In contrast, our fault model of incorrect expressions can also handle bugs that
can only be fixed with more substantial changes in the code. Another approach is to use fault patterns,
which are sequences of statements or constructions that are known to cause defects. They can be defined,
e.g., in the form of regular expressions and also allow for efficient fault localization. Pattern-based fault
models are popular in static analysis tools for security properties such as Microsoft ESP [71] with its
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pattern language OPAL [151]. Their disadvantages are that they operate mostly on the syntactic level,
that defining fault patters is a lot of (manual) work, and that they can never be exhaustive.

4.2.2 Preprocessing

Based on our fault model of incorrect expressions, we now construct a preprocessed version P̂ of the
original program P by performing simple textual substitutions. The purpose of the preprocessing step
is to express that expressions in the program code may be erroneous. We distinguish two kinds of
expressions: arithmetic expressions evaluate to some integer value, and conditional expressions evaluate
to either true or false. Every arithmetic expression expr in the code is textually replaced by

cmpa(c, expr, v1, v2, ..., vn).

Here, cmpa is a special function that returns an integer and marks an arithmetic component of the
program, c is (a unique identifier of) the component c ∈ CMP, and v1, . . . ,vn are the variables that
are in scope when component c is executed. Analogously, every conditional expression expr in the
program P is textually replaced by cmpc(c, expr, v1, v2, ..., vn). The only difference is
that cmpc returns a Boolean value instead of an integer.

Intuition. Intuitively, we can think of cmpa or cmpc as a shorthand (in C syntax) for

assumeCorrect(c) ? expr : rep c(v1, ...,vn);.

If component c is assumed to be correct, there is no need to modify it. Otherwise it can be replaced by a
new expression, which is represented by the (yet unknown) function rep c. The fault localization step
will find out which components are assumed to be correct or incorrect. The repair step will compute
implementations of the functions rep c for all incorrect components. Note, however, that this is just a
conceptual model and we do not introduce such conditional operators into the program explicitly. One
reason is that we will later user symbolic or concolic execution on the preprocessed program, where
additional conditionals in the code would amplify the path explosion problem (see Section 2.8.2).

Example 22. Consider the following program in C syntax, which will also serve as a running example.

1 i n t max ( i n t a , i n t b ) {
2 i n t r = a ;
3 i f (b > a )
4 r = a + 2 ;
5 assert (r >= a && r >= b ) ;
6 re turn r ;
7 }

1 i n t max ( i n t a , i n t b ) {
2 i n t r = cmpa ( 1 , a , a , b ) ;
3 i f (cmpc ( 2 , b>a , a , b , r ) )
4 r = cmpa ( 3 , a+2 , a , b , r ) ;
5 assert (r >= a && r >= b ) ;
6 re turn r ;
7 }

The left-hand side shows a program P that is supposed to compute the maximum of two integer numbers
a and b, but contains a bug in Line 4, which should read “r = b;”. The specification ϕ is given with
the assert-statement in Line 5. Note that the specification is incomplete: it only requires that the result
cannot be smaller than a or b, but not that the result must be equal to either a or b. Still, ϕ is violated
by P : e.g., for a = 0 and b = 3, we have that r = 2, which violates r >= b. With our fault model of
incorrect expressions, three potentially erroneous components CMP = {c1, c2, c3} are identified: c1 is
the arithmetic expression “a” in Line 2, c2 is the conditional expression “b > a” in Line 3, and c3 is the
arithmetic expression “a + 2” in Line 4. The right-hand side shows the preprocessed version P̂ . All
expressions have been substituted by calls to cmpa or cmpc as explained above. The intuitive meaning
of Line 4, for instance, is that r is assigned a+2 if component c3 is assumed to be correct. Otherwise,
r is set to rep c3(a, b, r), where rep c3 is a yet unknown function that can be defined by our
debugging tool as a replacement for c3.
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4.2.3 Symbolic Program Analysis

As a final step in our program analysis approach, we now analyze the preprocessed program P̂ using a
customized version of symbolic or concolic execution to obtain diagnostic information D for fault local-
ization and correction. Recall from Section 2.8.2 that standard symbolic execution interprets the program
using symbols for the inputs. Just like variables, symbols are placeholders that can take any value from
a given domain. In our setting, we will administer two sets of symbols: input symbols to represent the
unknown input values and repair symbols to represent the results of component executions. This allows
us to reason about program correctness even under the assumption that component implementations can
be changed in a yet unknown way.

In the following, we first discuss the outcome of the program analysis, namely the diagnostic in-
formation D. Section 4.2.3.2 will then explain how this diagnostic information can be computed using
symbolic execution. Section 4.2.3.3 will present an alternative realization using concolic execution.

4.2.3.1 Diagnostic Information

Some notation. We assume that all symbols are taken from a sufficiently large set S. Since all our pro-
gram variables are of the same type (an assumption made to simplify the presentation; see Section 4.1.1),
symbols will range either over some domain D of values or over the Boolean domain B. Depending on
the theory used for SMT solving, D may be the set Bn of bitvectors of some fixed length n or the in-
teger domain Z. An extension to different domains for different symbols in order to support multiple
data types is conceptually simple. We write F to denote the set of quantifier-free formulas that can be
constructed over symbols from S. We will use formulas over the symbols to represent conditions in
the program. Similarly, the set of terms over S will be denoted by T. Terms will be used to represent
values of program variables as a function over the (unknown) values of the input symbols and the repair
symbols. Given that t1, t2 ∈ T and F1, F2 ∈ F, we assume that t1 = t2, t1 ≤ t2, t1 ≥ t2, F1 ∨ F2,
F1 ∧ F2, and ¬F1 are in F as well, with the expected semantics. Finally, we assume that an SMT solver
can decide the satisfiability of formulas from F modulo some chosen background theory.

Definition 23 (Diagnostic Information). The diagnostic information D =
(
CMP,TypOf,Vars, i, rD,

rB,CmpOf,OrgD,OrgB,Vals,Correct(i, r)
)

is a tuple where the elements have the following meaning.

• CMP is the set of components in the program. Recall that we consider all expressions in the code
as components.

• TypOf : CMP → {D,B} is a function that maps a component to its type. An arithmetic compo-
nent c (marked by a call to cmpa in P̂ ) has TypOf(c) = D, a conditional component c (calling
cmpc in P̂ ) has TypOf(c) = B.

• Vars : CMP→ S∗ is a function that maps each component to a list of strings, which represent the
names of the variables that are in scope when the respective component is executed.

• i = (i1, . . . , ik) ∈ Sk is a vector of input symbols, all ranging over the domain D.
• rD = (r1, . . . , rl) ∈ Sl is a vector of repair symbols, each one ranging over D and representing

the result of an execution of some arithmetic component (marked by a call to cmpa in P̂ ).
• rB = (rl+1, . . . , rl+m) ∈ Sm is another vector of repair symbols, all ranging over B and repre-

senting the result of an execution of some conditional component (a call to cmpc in P̂ ).
• r = rD ∪ rB is an abbreviation for the vector of all repair symbols.
• CmpOf : {r1, . . . , rl+m} → CMP is a function that maps each repair symbol rj ∈ r to the

component that produced it.
• OrgD : {r1, . . . , rl} → T maps all arithmetic repair symbols rj ∈ rD to the symbolic value t ∈ T

that would be produced by the unmodified component CmpOf(rj).
• Analogously, OrgB : {rl+1, . . . , rl+m} → F maps all conditional repair symbols rj ∈ rB to the

symbolic truth value F ∈ F that is produced by the unmodified component CmpOf(rj).
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• Vals : {r1, . . . , rl+m} → T∗ maps all repair symbols rj ∈ r to a vector of terms that represent the
symbolic values of all program variables in scope when CmpOf(rj) was executed to produce rj .

• Correct(i, r) ∈ F is a formula over the input symbols i and the repair symbols r expressing under
which circumstances the preprocessed program P̂ satisfies its specification ϕ.

Intuition. The intuition behind this definition is as follows. Whenever, a component c ∈ CMP (i.e., an
expression in the program) is executed, a new repair symbol r is created to represent the resulting value.
One component can be executed multiple times (e.g., if contained in a loop or in a function that is called
multiple times). Hence, the there is a one-to-many relationship between components and repair symbols.
This relationship is stored in CmpOf . On the other hand, all repair symbols produced by the same
component c have the same type TypOf(c). A repair symbol r can take any value from the respective
domain x = TypOf(CmpOf(r)). The value that would be produced by the original implementation
of the component is stored separately in Orgx(r). This way, later steps in our debugging flow can
extend the correctness formula Correct(i, r) with constraints of the form r = Orgx(r) to reason about
the program correctness while assuming that (certain) components are left untouched. Furthermore, the
repair engine can find different assignments to the repair symbols when searching for a repair. These
different assignments may not only be constants, but can be computed from the values Vals(r) of the
program variables at the respective point in the execution. Vars stores the names of the program variables
such that computed repairs can later be printed for the user.

Computation of D. The set CMP and the functions TypOf and Vars can easily be computed dur-
ing the preprocessing step presented in the previous subsection. The computation of the other elements
will be discussed in the following. We will first describe a method based on symbolic execution. Sec-
tion 4.2.3.3 will then present a variant using concolic execution.

4.2.3.2 Symbolic Execution

In order to compute diagnostic information D according to Definition 23, we perform a symbolic execu-
tion of the preprocessed program P̂ with the following peculiarities.

Inputs. Whenever a call to the function input is encountered, and for all parameters of the entry
function of the program, a fresh symbol i is taken from S and appended to i. The symbol i, interpreted
as a term, represents the unknown value of the input.

Components. Whenever a call to the function cmpa(c, expr, v1, v2, ..., vn) is exe-
cuted, a fresh symbol r is taken from S and appended to rD. The symbolic value returned by cmpa is
the term r. In addition, we set CmpOf(r) to c, OrgD(r) to the symbolic value of the program expression
that is passed as argument expr, and Vals(r) to the tuple of symbolic values of the variables v1, . . . ,
vn. Calls to cmpc are handled similarly, but the new symbol r is appended to rB instead of rD, the
returned value is the formula r, and OrgB(r) is set to a formula rather than a term.

Assertions. An assertion assert(c) is handled as if it was a shortcut for if(!c) exitErr();.
That is, the symbolic execution forks into two branches, one where c is true and one where c is false.
In the true-branch, the execution continues normally with the next statement. In the false-branch, it ends
and is marked with a specification violation.

Assumptions. An assumption assume(c) is handled as a shorthand for if(!c) exitOK();.
Thus, the symbolic execution forks into two branches again. On the branch where c is true, the execu-
tion simply continues with the next statement. On the branch where c is false, the symbolic execution
terminates as if the end of the program would have been reached.

Computation of Correct(i, r). With the peculiarities explained in the previous paragraphs, we exe-
cute the preprocessed program with a user-defined limit on the number and the length of execution paths
to consider. Once the symbolic execution is finished, the leaf nodes of the symbolic execution tree are
divided into three sets: FAIL is the set of all nodes that are marked with a specification violation, i.e.,
that ended in exitErr() due to an assertion violation. PASS is the set of all nodes where the program
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terminated normally by reaching the end of the entry function or in exitOK() due to an assumption
violation. Finally, OPEN contains all the remaining leaf nodes where the execution was aborted because
some analysis depth limit was exceeded. Let PCn(i, r) ∈ F be the path condition of node n in the
symbolic execution tree. We define Correct(i, r) ∈ F as

Correct(i, r) =
∧

n∈FAIL

¬PCn(i, r). (4.1)

Recall from Section 2.8.2 that the path condition PCn(i, r) expresses under which circumstances the
node n in the symbolic is reached. Correct(i, r) thus accumulates all circumstances under which sym-
bolic execution did not encounter a specification violation. Also note that the repair symbols r are uncon-
strained in Correct(i, r). The fault localization and correction algorithms will later combine Correct(i, r)
with additional constraints that define the repair symbols appropriately.

Definition 24. The diagnostic information D is called precise if symbolic execution has been applied
exhaustively (i.e., OPEN = ∅) and without abstracting the program semantics.

Example 25. For P̂ from Example 22 we obtain CMP = {c1, c2, c3},

TypOf(c1) = D, TypOf(c2) = B, TypOf(c3) = D,
Vars(c1) = (a,b), Vars(c2) = (a,b,r), Vars(c3) = (a,b,r),

i = (α, β), rD = (ρ1, ρ3), rB = (ρ2),

CmpOf(ρ1) = c1, CmpOf(ρ2) = c2, CmpOf(ρ3) = c3,

OrgD(ρ1) = α, OrgB(ρ2) = β > α, OrgD(ρ3) = α+ 2,

Vals(ρ1) = (α, β), Vals(ρ2) = (α, β, ρ1), Vals(ρ3) = (α, β, ρ1), and

Correct(i, r) = (ρ2 ∧ ρ3 ≥ α ∧ ρ3 ≥ β) ∨
(
(¬ρ2) ∧ ρ1 ≥ α ∧ ρ1 ≥ β

)
Lemma 26. Let i ∈ Dk, rD ∈ Dl and rB ∈ Bm be three vectors of concrete symbol values. If D is
precise (Definition 24), then the condition Correct(i, rD ∪ rB) is true iff P̂ fulfills its specification, given
that i is used as input vector and rD and rB is the vector of values returned by calls to the function cmpa
and cmpc, respectively.

Proof. Every leaf node n in the symbolic execution tree represents an execution path through the program
(the sequence of statements encountered when traversing from the root node to n). Let ne be the node
that represents the execution path pe that is induced by the values i, rD, rB. Since all leaf nodes have
disjunct path conditions (i.e., PCn1 ∧ PCn2 is unsatisfiable for all pairs of distinct leaf nodes n1 6= n2),
PCn(i, rD ∪ rB) is true iff n = ne. Lemma 26 holds because ¬PCne(i, rD ∪ rB) = false is a conjunct of
Correct(i, rD ∪ rB) iff ne ∈ FAIL, i.e., iff pe violates the specification.

Proposition 27. Let P be a potentially incorrect program and let i ∈ Dk be an input vector. Assuming
that D is precise (Definition 24), the formula

∃r :Correct(i, r) ∧
∧
r∈rD

r = OrgD(r)(i, r) ∧
∧
r∈rB

r ↔ OrgB(r)(i, r) (4.2)

is true iff P fulfills the specification ϕ when executed with input i.

Proof. Let rD ∈ Dl be concrete values returned by calls to cmpa in P̂ , let rB ∈ Bm be the concrete
values returned by cmpc, and let r = rD ∪ rB. According to Lemma 26, Correct(i, r) is true iff P̂
fulfills the specification ϕ when executed with i, rD, rB. The conjuncts in Formula 4.2 require that all
components in P̂ return the same value as the respective expressions in P . Hence, Formula 4.2 is true
iff P fulfills ϕ for input i.

Lemma 26 states how the formula Correct(i, r) can be used to make statements about the correctness of
the preprocessed program P̂ , depending on the inputs and the components. Proposition 27 establishes
the link to the correctness of the original program P using the information stored in OrgD and OrgB.
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4.2.3.3 Concolic Execution

This section explains how concolic execution can be used for program analysis as an alternative to using
symbolic execution. Recall from Section 2.8.3 that concolic execution is just a variant of symbolic
execution where the program is executed using concrete values and symbols at the same time. The
analysis proceeds in several runs. In each run, the program is executed using concrete inputs, while the
symbolic execution for the activated execution path is performed in parallel.

Computing the diagnostic informationD. Using concolic execution instead of symbolic execution
to compute D =

(
CMP,TypOf,Vars, i, rD, rB,CmpOf,OrgD,OrgB,Vals,Correct(i, r)

)
is simple. D

is stored persistently across all execution runs. The elements i, rD, rB, CmpOf , OrgD, OrgB and Vals
are initially empty and updated as for symbolic execution while calls to the functions input, cmpa
and cmpc are carried out. At the end of each concolic execution run, the negation ¬PC(i, r) of the
resulting path condition is conjoined to the correctness formula Correct(i, r) if the program terminated in
exitErr() due to an assertion violation. Otherwise, Correct is not updated. This procedure computes
Correct(i, r) as in Equation 4.1, but the computation is done on the fly rather than a posteriori.

Managing symbols. A simple realization would create symbols that are fresh across all execution
runs, resulting in disjoint symbol sets for different runs. However, this has the disadvantage that different
symbols may be used to represent the same unknown value. In particular, many of the execution runs
may share the same prefix of executed statements, on which the same symbols can be reused in order to
simplifyD. In our realization, we reuse input symbols from previous execution runs based on the order in
which they are read by the program: the jth input that is consumed by the program is always represented
by the same input symbol ij ∈ i in all runs. This way, we can think of the input symbols as being read
from a tape while the program is being executed. When executing calls to cmpa, we reuse a symbol
rx ∈ rD instead of producing a new symbol ry if CmpOf(rx) = CmpOf(ry), OrgD(rx) = OrgD(ry),
and Vals(rx) = Vals(ry).2 Existing symbols from rB are reused in calls to cmpc analogously.

Advantages. As described above, concolic execution can compute the same diagnostic information
as symbolic execution. In particular, Lemma 26 and Proposition 27 hold analogously. Advantages of
concolic execution over symbolic execution (less memory consumption, flexibility in abstracting pro-
gram semantics by using concrete variable values) have already been discussed in Section 2.8.3.

4.3 SMT-Based Fault Localization

Based on the diagnostic information D computed with the program analysis approach from the previous
section, this section now discusses how to compute diagnoses, which are sets of program components
that could be responsible for the incorrectness. As illustrated in Figure 4.1, these diagnoses are on the
one hand presented to the user as potential fault locations, and on the other hand used as input for our
fault correction method to synthesize repairs.

Our fault localization method rests upon Model-Based Diagnosis (MBD), as introduced in Sec-
tion 2.9. Standard MBD takes as input a model of a system together with a contradicting observation.
The contradiction manifests in conflicts, which need to be explained using diagnoses. In our setting, a
program conflicts with its specification, so we need a different notion of a conflict. Deriving diagnoses
from conflicts then works in the standard way. In the following, we will first define a notion of conflicts
and diagnoses in our setting. Section 4.3.2 will then discuss how they can be computed efficiently.

4.3.1 A Definition for Conflicts and Diagnoses

We define a function repairable : 2CMP → B. Intuitively, repairable(A) maps a set A ⊆ CMP of
components to true iff program P̂ can be repaired for all inputs, assuming that all components c ∈ A are

2The comparison is performed syntactically in order to reduce the computational overhead. That is, if two terms in OrgD or
Vals are syntactically different but semantically equivalent (e.g., a+b vs. b+a), a new symbol may be produced unnecessarily.



112 Chapter 4. SAT-Based Software Controller Synthesis for Program Repair

correct and need not be modified. Formally, we define

repairable(A) = ∀i : ∃r :Correct(i, r) ∧
∧
r∈RD

r = OrgD(r) ∧
∧
r∈RB

r ↔ OrgB(r), (4.3)

where RD stands for {r ∈ rD | CmpOf(r) ∈ A} and RB = {r ∈ rB | CmpOf(r) ∈ A}. The
definition says that a program is repairable iff, for all inputs, there exist values that can be returned by
the components (the functions cmpa and cmpc in P̂ ) such that Correct is true, which means that the
specification is fulfilled. Components that are assumed to be correct can only return the value that would
be returned by the original version of that component. This is enforced by the conjuncts of the form
r = OrgD(r) and r ↔ OrgB(r) if CmpOf(r) ∈ A. The other components can return arbitrary values.

Lemma 28. The function repairable is monotonic in the sense that, for all component sets A′ ⊆ A ⊆
CMP, we have that repairable(A) implies repairable(A′).

Proof. Removing elements from A only removes conjuncts Equation 4.3.

Definition 29. A set ∆ ⊆ CMP is a diagnosis for program P iff repairable(CMP \ ∆) = true. A set
C ⊆ CMP is a conflict iff repairable(C) = false.

A diagnosis is a set ∆ of components that can be modified such that P becomes correct. The reason is
that, for every input, it is possible to find some value that can be returned by the components c ∈ ∆ such
that the specification is fulfilled. Hence, diagnoses represent fault candidates. A conflict is a set C of
components from which at least one component has to be modified in order to obtain a correct program.
If none of the components c ∈ C are modified, the program will be incorrect not matter what happens
with components c 6∈ C.

Example 30. Consider the program from Example 22 with the diagnostic information D from Exam-
ple 25. In summary, we have the following repairability situation:

Case Set A ⊆ CMP repairable(A) Diagnosis Conflict

1 ∅ true {c1, c2, c3}
2 {c1} true {c2, c3}
3 {c2} true {c1, c3}
4 {c3} true {c1, c2}
5 {c1, c2} true {c3}
6 {c1, c3} false {c1, c3}
7 {c2, c3} false {c2, c3}
8 {c1, c2, c3} false {c1, c2, c3}

That is, the minimal diagnoses are ∆1 = {c3} and ∆2 = {c1, c2}. Intuitively, this means that com-
ponent c3 can be modified such that P becomes correct. Alternatively, both c1 and c2 can be modified
simultaneously to fix the problem. Since repairable is monotonic (Lemma 28), all supersets of ∆1 and
∆2 are diagnoses as well. The minimal conflicts are C1 = {c1, c3} and C2 = {c2, c3}, and all supersets
are conflicts as well. We will now discuss a few of the cases in more detail. Case 5 establishes that the
component set ∆1 = {c3} is a diagnosis because

repairable({c1, c2}) = ∀α, β : ∃ρ1, ρ2, ρ3 :
(
(ρ2 ∧ ρ3 ≥ α ∧ ρ3 ≥ β) ∨ ((¬ρ2) ∧ ρ1 ≥ α ∧ ρ1 ≥ β)

)
∧

(ρ1 = α) ∧
(
ρ2 ↔ (β > α)

)
= ∀α, β : ∃ρ3 : (β > α ∧ ρ3 ≥ α ∧ ρ3 ≥ β) ∨ (β ≤ α ∧ α ≥ α ∧ α ≥ β)

= ∀α, β : ∃ρ3 : (β > α ∧ ρ3 ≥ β) ∨ (β ≤ α)

= true (because we can set ρ3 = β).
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The intuitive reason is that we can always find some alternative value ρ3 to return when executing com-
ponent c3 (namely the value β of the second input b) in order to make Correct evaluate to true, which
means to satisfy the specification. Hence, c3 may be responsible for the incorrectness of P — it is a
diagnosis. On the other side, Case 6 states that C1 = {c1, c3} is a conflict because

repairable({c1, c3}) = ∀α, β :∃ρ1, ρ2, ρ3 :
(
(ρ2 ∧ ρ3 ≥ α ∧ ρ3 ≥ β) ∨ ((¬ρ2) ∧ ρ1 ≥ α ∧ ρ1 ≥ β)

)
∧

(ρ1 = α) ∧ (ρ3 = α+ 2)

= ∀α, β :∃ρ2 : (ρ2 ∧ α+ 2 ≥ α ∧ α+ 2 ≥ β) ∨
(
(¬ρ2) ∧ α ≥ α ∧ α ≥ β

)
= ∀α, β :∃ρ2 : (ρ2 ∧ α+ 2 ≥ β) ∨

(
(¬ρ2) ∧ α ≥ β

)
= false because with α = 0 and β = 3 no value for ρ2 works.

This means that c1 and c3 cannot both be correct — at least one of them must be modified in order to
obtain a correct program. This implies that the set {c2} = CMP \ C1 cannot be a diagnosis.

4.3.2 Computation of Conflicts and Diagnoses

The following theorem, which is a slight adaptation of Theorem 4.4 from the work of Reiter [182], states
that minimal diagnoses can be computed as minimal hitting sets for the collection of conflicts.

Theorem 31. A set ∆ ⊆ CMP of components is a minimal diagnosis for program P iff it is a minimal
hitting set for the collection K of conflicts for P̂ .

Proof. Using Lemma 28, the proof in the work of Reiter [182] applies.

Basic algorithm. Based on Theorem 31, we apply the hitting set tree algorithm of Reiter [182] (with
the fix by Greiner et al. [103]) to compute diagnoses. This algorithm requires a procedure to compute a
conflict without components from a given set N ⊆ CMP, if such a conflict exists. Such a procedure can
be implemented as

getConfWo(N) =

{
CMP \N if repairable(CMP \N) = false, and
“None” otherwise.

That is, getConfWo in turn requires a procedure to evaluate repairable, as defined in Equation 4.3.

Avoiding quantifier alternations. Deciding repairability as defined in Equation 4.3 is computa-
tionally hard or, depending on D, F and the background theory, even undecidable. One reason is the
quantifier alternation. As an approximation, we therefore propose to check repairability only for a given
set J ⊆ 2(Dk) of input vectors. That is, instead of repairable(A) we rather consult

repairable′(A) =
∧
i∈J

(
∃r :Correct(i, r) ∧

∧
r∈RD

r = OrgD(r)(i, r) ∧
∧
r∈RB

r ↔ OrgB(r)(i, r)
)

(4.4)

with RD = {r ∈ rD | CmpOf(r) ∈ A} and RB = {r ∈ rB | CmpOf(r) ∈ A}. Note that Equation 4.4
differs from Equation 4.3 only in having a finite conjunction over the inputs instead of a universal quan-
tification. For the set J , we use only inputs i that make the program P violate its specification ϕ because
for all other inputs, P is trivially repairable. In other words, J consists only of counterexamples to the
correctness of P . When applying concolic execution for program analysis, such concrete input values
i are computed anyway. When using symbolic execution, satisfying assignments to path conditions can
be computed in order to obtain input vectors for J . The following theorem states that using repairable′

instead of repairable can only lead to false positives but not to missing diagnoses.

Theorem 32. Every diagnosis ∆ with respect to the definition of repairable is also a diagnosis with
respect to repairable′.
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Algorithm 4.1 GETMINCONFWO: Computes a minimal conflict without elements from N .

1: procedure GETMINCONFWO(N), returns: A minimal conflict C ⊆ CMP \N or “None”
2: x := true
3: for each component c ∈ CMP \N do
4: x := x ∧ xc
5: end for
6: if SMTSAT

(
x ∧ F (x, . . .)

)
then

7: return “None”
8: else
9: x′ := SMTMINUNSATCORE

(
x, F (x, . . .)

)
10: return {c | xc ∈ x′}
11: end if
12: end procedure

Proof. Since repairable(A) implies repairable′(A) for all A ⊆ CMP, we have that repairable(CMP\∆)
implies repairable′(CMP \∆).

Answering repairability queries. The quantifier-free part of repairable′ is in F. Therefore, a query
repairable′(A) can be solved using one SMT solver call per input vector i ∈ J . These individual calls
can also be carried out in parallel. An alternative is to swap the conjunction over the input vectors i ∈ J
with the existential quantification of r in Equation 4.4, rename all repair symbols r to fresh ones for every
conjunct, and use only one SMT solver call. Let ri = (ri1, ri2, . . .) be a fresh copy of r = (r1, r2, . . .)
for input vector i. We now have that repairable′(A) is true iff∧

i∈J

(
Correct(i, ri) ∧

∧
rj∈RD

rij = OrgD(rj)(i, ri) ∧
∧

rj∈RB

rij ↔ OrgB(rj)(i, ri)
)

(4.5)

is satisfiable, where RD is again defined as {rj ∈ rD | CmpOf(rj) ∈ A} and RB = {rj ∈ rB |
CmpOf(rj) ∈ A}.

Computing minimal conflicts. The performance of Reiter’s hitting set tree algorithm [182] increases
if the computed conflicts are small. A minimal conflict not intersecting with a certain set N ⊆ CMP
of components can be computed in different ways. One way is to use a failure-preserving minimization
algorithm like Delta Debugging [213] or QuickXplain [132] to repeatedly invoke repairable′ with differ-
ent subsets of CMP \N until a minimal subset for which repairable′ evaluates to false is found. Another
option is based on the observation that every minimal conflict corresponds to an unsatisfiable core in
Equation 4.5: Every component c ∈ A activates a certain set Bc of constraints of the form r = Org(r)
in Equation 4.5. We search for a minimal subset M ⊆ {Bc | c ∈ A} of these constraints such that the
conjunction with Correct(i, ri) for all i ∈ J is still unsatisfiable. To realize this idea, we introduce a
vector x containing one Boolean activation variable xc per component c ∈ CMP. With these activation
variables, we construct the formula

F (x, . . .) =
∧
i∈J

Correct(i, ri)∧
∧
rj∈rD

xCmpOf(rj) →
(
rij = OrgD(rj)(i, ri)

)
∧

∧
rj∈rB

xCmpOf(rj) →
(
rij ↔ OrgB(rj)(i, ri)

)

That is, setting xc to true in F intuitively means that component c ∈ CMP is correct and cannot be mod-
ified. The procedure GETMINCONFWO in Algorithm 4.1 finally uses F to compute minimal conflicts
(not intersecting with some set N ⊆ CMP) using unsatisfiable cores computed by an SMT solver. The
search for a minimal set C ⊆ CMP \N of components such that repairable′(C) = false is reduced to a
search for a minimal subset x′ of the activation literals in x such that x′ ∧ F (x, . . .) is still unsatisfiable.
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Note that GETMINCONFWO is also well suited for incremental SMT solving, even across multiple calls
to GETMINCONFWO: The formula F (x, . . .) can always remain asserted — only the set of additionally
asserted activation literals changes.

Summary. The purpose of the fault localization approach presented in this section is to compute
diagnoses based on the diagnostic information D (see Figure 4.1). A diagnosis ∆ ⊆ CMP is a set of
components of the incorrect program P that can be modified in such a way that P becomes correct. Using
the hitting set tree algorithm of Reiter [182], diagnoses can be computed efficiently using a procedure
to compute minimal conflicts. Such a procedure is presented in Algorithm 4.1. It approximates the
necessary repairability check by replacing a universal quantification with a finite conjunction for the
sake of efficiency. This approximation can result in false-positives but not in diagnoses being missed.

4.4 Fault Localization Based on Deductive Verification

The fault localization approach presented in the previous section faces several challenges. First, our
specifications are given as assertions in the code and require reasoning about the program correctness on
a global level. Second, applying our program analysis technique using symbolic or concolic execution
exhaustively may be impracticable, especially in the presence of loops where the number of iterations de-
pends on inputs. Third, computing diagnoses precisely requires solving formulas that contain quantifier
alternations. Even if the selected background theory is decidable with quantifiers, this can be challenging
for SMT solvers. To counteract that, we turned the universal quantifications into finite conjunctions, but
this can result in false-positives.

In this section, we propose an alternative method for fault localization that addresses these issues.
We work with specifications that are given in the form of preconditions and postconditions for every
function in the program. This allows for local reasoning about program correctness (every function can
be analyzed in isolation) and therefore has a higher potential for scaling up to larger programs. Second,
we require that loops in the program are annotated with loop invariants. Using these invariants, loops
can be analyzed inductively rather than iteratively. Third, we use a first-order theorem prover instead of
an SMT solver to reason about repairability without approximating the quantifier alternation.

4.4.1 From Deductive Program Verification to Fault Localization

Our alternative approach for fault localization can be realized with only minor modifications to a typical
deductive verification flow.

Deductive verification. Model checking attempts to prove a program correct by exploring all pro-
gram behaviors exhaustively. In contrast, deductive program verification techniques construct proof
obligations, which are formulas that imply program correctness if they can be shown to hold true. One
approach for constructing such proof obligations is to use Hoare logic (see Section 2.8.4): Every func-
tion of the program is analyzed in isolation. Based on the postcondition Q of a function f and the loop
invariants, the Hoare axioms are used to compute the weakest precondition W (i) = wp(f,Q) under
which the postcondition holds. This weakest precondition W (i) is a formula over the input variables i
of the function under analysis. Given the user-defined precondition P (i) of the function, a correctness
formula Corr(i) = P (i) → W (i) can then be computed. Finally, an (automatic) theorem prover can be
used to check the validity of the proof obligation ∀i :Corr(i). This approach (sketched here in simplified
form) is realized in the WP plug-in of the widely used software analysis tool suite Frama-C [69].

Fault localization using deductive verification. With our fault model of incorrect expressions, we
can use a deductive verification engine (almost) as a black-box in order to perform fault localization. We
use the same repairability-based notion of diagnoses and conflicts as in Section 4.3 (Definition 29). In
order to decide repairable(A) for some component set A ⊆ CMP, we
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1. textually replace components c 6∈ A in the program code by fresh repair variables r,

2. call a deductive verification engine to produce a proof obligation ∀i, r :Corr(i, r), and

3. modify the quantifier structure of the proof obligation in order to check ∀i : ∃r :Corr(i, r) using an
automatic theorem prover.

We set repairable(A) = true if the theorem prover managed to prove the validity of ∀i :∃r :Corr(i, r).
In all other cases (the theorem prover disproved validity, it had a timeout or returned “Unknown”) we
set repairable(A) = false.3 With this procedure to answer repairability queries, the basic algorithm from
Section 4.3.2 can be applied to compute diagnoses.

Example 33. Consider the program from Example 22, but specified with a pre- and a postcondition:

/*@requires true;
@ensures \result>=a &&
@ \result>=b;

*/
1 i n t max ( i n t a , i n t b ) {
2 i n t r = a ;
3 i f (b > a )
4 r = a + 2 ;
6 re turn r ;
7 }

1 i n t max ( i n t a , i n t b ) {
{(b > a ∧ ρ3 ≥ a ∧ ρ3 ≥ b) ∨ b ≤ a}

2 i n t r = a ;
{(b > a ∧ ρ3 ≥ a ∧ ρ3 ≥ b) ∨ (b ≤ a ∧ r ≥ a ∧ r ≥ b)}

3 i f (b > a ) {
{ρ3 ≥ a ∧ ρ3 ≥ b}

4 r = ρ3 ;
{r ≥ a ∧ r ≥ b}

} e l s e {
{r ≥ a ∧ r ≥ b}

}
{r ≥ a ∧ r ≥ b}

6 re turn r ;
7 }

The program is shown on the left. With i = (a, b), the @requires clause defines the precondition
Pre(i) = true and the @ensures clause sets the postcondition to \result ≥ a ∧ \result ≥ b,
with \result being the value returned by max. We consider the same components as in Example 22
and apply our approach to check if {c3} is a diagnosis (recall that c3 is the expression a+2 in Line 4).
Definition 29 states that {c3} is a diagnosis iff repairable({c1, c2}) = true. Our approach for checking
repairable({c1, c2}) is carried out in the source code listing on the right. The component c3 is replaced by
a fresh repair variable ρ3 (Line 4). Next, for every point in the program, Hoare logic (see Section 2.8.4)
is used to compute the weakest precondition under which the postcondition holds. These preconditions
are shown in blue. With r = (ρ3), the weakest precondition for max is Wp(i, r) = (b > a ∧ ρ3 ≥
a ∧ ρ3 ≥ b) ∨ b ≤ a. Since Pre(i) = true, we have that Corr(i, r) = Wp(i, r), so

repairable({c1, c2}) = ∀a, b : ∃ρ3 :(b > a ∧ ρ3 ≥ a ∧ ρ3 ≥ b) ∨ b ≤ a.

This formula is true because ρ3 can be set to b. This means that {c3} is a diagnosis.

4.4.2 Discussion

The following paragraphs point out some differences to the fault localization approach from Section 4.3.

Repeated program analysis. Our fault localization approach based on deductive verification builds
the correctness formula from the program source code anew for every repairability query. However, this
is not considered a severe issue because constructing the correctness formula is merely a syntactic opera-
tion and can thus be expected to run fast. The advantage is that deductive program analysis can be applied
as a black-box operation. In contrast, the SMT-based fault localization approach presented in Section 4.3
performs program analysis only once, but uses a customized version of symbolic or concolic execution

3Categorizing timeouts or “Unknown” verdicts as irreparable cases can result is missed diagnoses, but overall yields more
accurate results in our experiments than classifying them as repairable.
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to gather global correctness information for different local correctness assumptions about components in
one go. Since symbolic (or concolic) execution involves SMT solving, redoing it for every repairability
query would be costly.

Preconditions and postconditions versus assertions. In contrast to assertions, using preconditions
and postconditions as a specification allows for localized correctness reasoning, i.e., every function in the
code can be analyzed in isolation. Besides a scalability advantage, verifying functions in isolation also
gives a coarse-grained fault localization as a side product, because the (potentially) erroneous functions
are reported. The obvious disadvantage is that annotating every function in the code with contracts and
every loop with invariants is a lot of manual work. Since this manual specification work is itself error
prone, contracts can easily by faulty or incomplete. However, this issue is orthogonal to this thesis —
we always assume specifications to be correct.

First-order theorem provers versus SMT solvers. SMT solvers can be seen as specialized theo-
rem provers, optimized for efficient theory reasoning in quantifier-free formulas. Theorem provers can
be a better choice when reasoning about quantified formulas. This motivated our choice of using a the-
orem prover for discharging the quantified repairability formulas in this section. This being said, we
also note that the differences between these two kinds of reasoning engines are fading: SMT solvers
are increasingly extended with support for quantifiers, and theorem provers are getting better in theory
reasoning.

4.5 Template-Based Repair Synthesis

This section presents our basic approach for synthesizing repairs for an incorrect program P . As illus-
trated in Figure 4.1, it takes as input the diagnostic informationD, computed as explained in Section 4.2,
and a diagnosis ∆ ⊆ CMP. The diagnosis is a set of program components that are potentially faulty.
Diagnoses can be computed with the fault localization methods from Section 4.3 or 4.4, but may also be
given by the user or some other means. If successful, the output of our synthesis procedure is a repair in
the form of a modified program P ′, which differs from P only in the components ∆. Assuming thatD is
precise (Definition 24), the repaired program P ′ will satisfy its specification ϕ for all inputs. Otherwise,
the repaired program will be correct up to the analysis depth and modulo the approximations used during
the program analysis phase. If multiple diagnoses are found by the fault localization step, our repair
method is executed for each of them.

This section will first discuss how templates can be used to fix the structure of repairs. Subsec-
tion 4.5.2 will then present our solution for computing repairs using Counterexample-Guided Inductive
Synthesis (CEGIS). Subsection 4.5.3 finally proposes heuristics to speed up the repair computation. An
improved variant of our repair synthesis method will be presented in Section 4.7.

4.5.1 Templates

In our software repair approach, we synthesize new expressions for all components c ∈ ∆ in a given
diagnosis ∆. Similar to our template-based method for hardware controller synthesis (Section 3.1.5), we
use templates in order to fix the structure of the new expressions to synthesize. This reduces the search
for new expressions to the search for constants. In the software setting, templates are now expressions
consisting of program variables and template parameters. Concrete values for the template parameters
induce a concrete expression over the program variables.

Example 34. The template k0 + k1 · v1+ k2 · v2, where k0, k1, k2 are template parameters and v1, v2
are program variables, can be instantiated to any linear expression over the variables v1 and v2. The
values k0 = −2, k1 = 1, and k2 = 0 induce the expression v1 - 2.

Templates also provide control over the expressions subjected to search and thus support our goal of syn-
thesizing readable repairs. In order to obtain simple repairs, we propose to start with simple templates
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and switch to more expressive templates if no repair is found with the simple ones. In our implemen-
tation, we strive for a fully automatic debugging flow and use a fixed set of templates. However, in
principle, templates can also be defined by the user.

Creating templates. Recall that we are given a diagnosis ∆ ⊆ CMP and the diagnostic in-
formation D =

(
CMP,TypOf,Vars, i, rD, rB,CmpOf,OrgD,OrgB,Vals,Correct(i, r)

)
as defined in

Definition 23. For every arithmetic component c ∈ ∆ with TypOf(c) = D, we create a template
Tc(kc,vc) ∈ T as a term over two vectors of fresh symbols kc ∈ S∗ and vc ∈ S|Vars(c)|. The symbols
in kc are template parameters and range over D. The symbols vc represent the values of the program
variables in scope when component c is executed. Hence, the symbols vc range over D as well. Similarly,
for all conditional components c ∈ ∆ with TypOf(c) = B, we create a template Tc(kc,vc) ∈ F as a
formula instead of a term. We will write k =

⋃
c∈∆ kc for the vector of all template parameters.

Applying templates. Let kc ∈ D|kc| be concrete values for the template parameters kc of component
c ∈ ∆. Furthermore, let k =

⋃
c∈∆ kc be the concrete values for all parameters k. We write P ′ =

apply(k, P ) to denote that program P is transformed to program P ′ by replacing all components c ∈ ∆
with the expression Tc(kc,Vars(c)). That is, in all templates, parameters kc are replaced by the values
defined in kc and program variable symbols vc are replaced by the respective variable names Vars(c).
Finally, each component c ∈ ∆ of P is textually replaced by the so instantiated template Tc(kc,Vars(c)).

Reasoning about correctness. In order to check if a certain template instantiation yields a correctly
repaired program, we define a formula

Rep(i, k) =∃r :Correct(i, r) ∧
∧

r∈rD\RD

r = OrgD(r) ∧
∧

r∈rB\RB

r ↔ OrgB(r)∧

∧
r∈RD

∃vc :vc = Vals(r) ∧ r = Tc(kc,vc) ∧ (4.6)

∧
r∈RB

∃vc :vc = Vals(r) ∧ r ↔ Tc(kc,vc)

where RD = {r ∈ rD | CmpOf(r) ∈ ∆}, RB = {r ∈ rB | CmpOf(r) ∈ ∆} and c is short for
CmpOf(r). The intuition behind Equation 4.6 is as follows. Correct(i, r) expresses when the prepro-
cessed program P̂ satisfies the specification ϕ, depending on the unknown inputs i and the unknown
values r returned by the components. Every symbol r produced by a correct component c 6∈ ∆ is bound
to the value Org(r) that would have been produced by the unmodified component c. Moreover, every
symbol r that has been produced by an incorrect component c ∈ ∆ is bound to the value that would
be produced by the corresponding template Tc. This value is obtained by binding the symbols vc to the
values Vals(r) the program variables had when component c was executed to produce r (the equality is
meant element-wise). Note that this seamlessly handles the case where a faulty component is executed
multiple times: the same component is always associated with the same template and the same template
parameters but the values of the program variables in the template can be different.

Lemma 35. Let P be an incorrect program, i ∈ Dk be an input vector, and k ∈ D|k| be template
parameter values. IfD is precise (Definition 24), then Rep(i,k) is true iff the program P ′ = apply(k, P )
fulfills the specification ϕ when executed with input i.

Proof. Let r be the concrete component results returned by calls to cmpa and cmpc in the preprocessed
version P̂ of P . According to Lemma 26, Correct(i, r) evaluates to true iff P̂ fulfills ϕ for input i and
component results r. The additional conjuncts in Equation 4.6 make Rep evaluate to true iff a special
version P̂ ′ of P̂ satisfies ϕ for input i. In P̂ ′, all components c 6∈ ∆ return the same value as the original
implementation of c in P . All components c ∈ ∆ return the values that would have been returned
by template Tc, instantiated with parameter values defined in k. This program P̂ ′ behaves exactly as
P ′ = apply(k, P ).
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Theorem 36. Let k be a vector of concrete template parameter values such that Rep(i,k) holds for all
input vectors i ∈ Dk. If D is precise (Definition 24), then P ′ = apply(k, P ) is a correct program.

Proof. Lemma 35 implies that P ′ cannot violate specification ϕ for any input. Hence, P ′ is correct.

4.5.2 Computation of Repairs

Theorem 36 states that a repair can be computed as a satisfying assignment k for the variables k in the
formula ∃k :∀i :Rep(i, k). This section discusses how such a satisfying assignment can be computed
using an SMT solver. We avoid dealing with the quantifier alternation explicitly. Instead we apply
Counterexample-Guided Inductive Synthesis (CEGIS) [197, 196], as defined in Algorithm 2.5 in Sec-
tion 2.7, where a solution candidate is iteratively refined based on counterexamples. A user-defined
bound on the maximum number of refinements is set to ensure termination.

Applying CEGIS via variable substitutions. Note that the formula Rep(i, k), defined in Equa-
tion 4.6, contains existential quantifiers. However, these quantifiers do not encode any choice but are
only introduced to increase readability: The symbols vc are uniquely defined by Vals(r), and thus act
as abbreviations for the terms listed in Vals(r). Similarly, all repair symbols r ∈ r are uniquely defined
either by OrgD, OrgB or by a template Tc and can thus be seen as a shortcut for some term or formula as
well.4 A simple way for dealing with the existentially quantified symbols in Equation 4.6 is therefore to
textually replace them with the term or formula they abbreviate. This gives a quantifier-free formula that
only contains the symbols i and k, so Algorithm 2.5 can be applied directly.

Applying CEGIS via variable renaming. Another approach is to rename the symbols vc to vcr for
each r ∈ RD ∪RB and remove the existential quantifiers in Equation 4.6 to obtain the formula

Rep′(i, k, r,vcr1 ,vcr2 , . . .) =Correct(i, r) ∧
∧

r∈rD\RD

r = OrgD(r) ∧
∧

r∈rB\RB

r ↔ OrgB(r) ∧

∧
r∈RD

vcr = Vals(r) ∧ r = Tc(kc,vcr) ∧∧
r∈RB

vcr = Vals(r) ∧ r ↔ Tc(kc,vcr).

We have that Rep(i, k) ↔ ∃r,vcr1 ,vcr2 , . . . :Rep′(i, k, r,vcr1 ,vcr2 , . . .), so we can compute satisfying
assignments for Rep as satisfying assignments for Rep′. The CEGIS algorithm also needs to compute
satisfying assignments of ¬Rep(i,k) for some fixed values k of k. This can be realized by defining

NegRep′(i, k, r,vcr1 ,vcr2 , . . .) =
(
¬Correct(i, r)

)
∧

∧
r∈rD\RD

r = OrgD(r) ∧
∧

r∈rB\RB

r ↔ OrgB(r) ∧

∧
r∈RD

vcr = Vals(r) ∧ r = Tc(kc,vcr) ∧∧
r∈RB

vcr = Vals(r) ∧ r ↔ Tc(kc,vcr)

and computing satisfying assignments to NegRep′(i,k, r,vcr1 ,vcr2 , . . .). This works because of the
duality ¬Rep(i, k)↔ ∃r,vcr1 ,vcr2 , . . . :NegRep′(i, k, r,vcr1 ,vcr2 , . . .). Using Rep′ and NegRep′, the
CEGISREPAIR procedure from Algorithm 4.2 can be applied. It differs from Algorithm 2.5 only in using
Rep′ instead of F , NegRep′ instead of ¬F and some more renaming of the auxiliary variables.

4Note that OrgD(r), OrgB(r), Vars(r) and thus also Tc(kc,vc) may contain symbols from r. Still, there cannot be any
circular dependencies because OrgD(r), OrgB(r), Vars(r) can only contain r-symbols that occur before r in the vector r. This
order among the symbols in r is imposed by the order in which the symbols are created during symbolic or concolic execution.
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Algorithm 4.2 CEGISREPAIR: The CEGIS algorithm applied to computing program repairs.

1: procedure CEGISREPAIR
(
Rep′(i, k, r,vcr1 ,vcr2 , , . . .),NegRep

′(i, k, r,vcr1 ,vcr2 . . .)
)
,

2: returns: An assignment k for k such that ∀i :∃r,vcr1 ,vcr2 , . . . :Rep′(i,k, r,vcr1 ,vcr2 , . . .) or “fail”
3: G(k, . . .) := true
4: while true do
5: (sat,k) := SMTSATMODEL

(
G(k, . . .)

)
6: if sat = false then
7: return “fail”
8: end if
9: (sat, i) := SMTSATMODEL

(
NegRep′(i,k, r,vcr1 ,vcr2 , . . .)

)
10: if sat = false then
11: return k
12: end if
13: r′,v′cr1 ,v

′
cr2 , . . . := createFreshCopies(r,vcr1 ,vcr2 , . . .)

14: G(k, . . .) := G(k, . . .) ∧ Rep′(i, k, r′,v′cr1 ,v
′
cr2 . . .)

15: end while
16: end procedure

Example 37. We continue Example 22 with the diagnostic information D from Example 25. For the
diagnosis ∆ = {c3} and the template Tc3(k,v) = k0 + k1 · v1 + k2 · v2 + k3 · v3 we obtain

Rep
(
(α, β), (k0, k1, k2, k3)

)
=∃ρ1, ρ2, ρ3 :

(
(ρ2 ∧ ρ3 ≥ α ∧ ρ3 ≥ β) ∨ ((¬ρ2) ∧ ρ1 ≥ α ∧ ρ1 ≥ β)

)
∧

(ρ1 = α) ∧
(
ρ2 = (β > α)

)
∧

∃v1,v2,v3 :(v1 = α) ∧ (v2 = β) ∧ (v3 = ρ1) ∧
(ρ3 = k0 + k1 · v1 + k2 · v2 + k3 · v3)

=∃ρ3 :
(
(β > α ∧ ρ3 ≥ α ∧ ρ3 ≥ β) ∨ (β ≤ α ∧ α ≥ α ∧ α ≥ β)

)
∧

(ρ3 = k0 + k1 · α+ k2 · β + k3 · α)

=(k0 + k1 · α+ k2 · β + k3 · α ≥ β) ∨ (β ≤ α)

The first candidate solution in CEGIS is arbitrary because it is computed as a satisfying assignment for
the formula true. We could obtain k0 = (0, 0, 0, 0), which corresponds to replacing component c3 in
program P by the expression Tc3

(
k0, (a,b,r)

)
= “0”. The next step is to compute a counterexample

i0 to the correctness of k0 as a satisfying assignment for ¬Rep(i,k0) = ¬
(
(0 ≥ β) ∨ (β ≤ α)

)
. This

formula is satisfiable, so k0 is not a correct repair. We could get i0 = (0, 10) as a counterexample.
Next, an improved candidate k1 is computed as a satisfying assignment to Rep(i0, k) = (k0 + k2 · 10 ≥
10). We may get k1 = (10, 0, 0, 0), which corresponds to replacing c3 with “10”. Again, we find
a counterexample i1 = (1, 100) disproving k1 as a satisfying assignment for ¬Rep(i,k1) = ¬

(
(10 ≥

β)∨(β ≤ α)
)
. The next candidate is computed as satisfying assignment k2 for Rep(i0, k)∧Rep(i1, k) =

(k0+k2 ·10 ≥ 10)∧(k0+k1+k2 ·100+k3 ≥ 100). Assume that the SMT solver returns k2 = (1, 0, 1, 0),
which corresponds to the expression “1 + b”. Since ¬Rep(i,k2) = ¬

(
(1 + β ≥ β) ∨ (β ≤ α)

)
is

unsatisfiable, our procedure terminates, suggesting to replace c3 in P by “1 + b” as a repair.

Computing multiple repairs. As illustrated by the result of Example 37, a repaired program P ′

may satisfy the specification ϕ, but may still fail to satisfy the user. One possible reason is that the
specification is incomplete. The repair may also be correct in a functional sense but suboptimal or
undesirable in some other respect. With our approach, we can easily compute multiple different repairs
and let the user choose one: when a repair k is found in Line 10 of Algorithm 4.2, we store it, update
G(k, . . .) := G(k, . . .)∧ k 6= k with constraints that require satisfying assignments for G to be different
from the found solution k (in at least one parameter value), and continue to execute the loop in order to
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find additional repairs. In the same way, additional constraints for repairs could also be imposed by the
user. For instance, for the template from Example 37, the constraint k1 = 0 ∨ k3 = 0 added to G can
express that the synthesized expression cannot refer to both variables a and r simultaneously.

4.5.3 Heuristics

In this section, we point out some issues with the repair synthesis process from the previous section and
propose heuristics to address them. Computing repairs with CEGIS can be seen as a game between two
players. Player 1 comes up with candidates and Player 2 attempts to disprove them. Player 1 wins if she
manages to find a correct candidate. Player 2 wins if she has ruled out every possible candidate. In our
experiments, we discovered two issues of this procedure.

Issue 1: Candidates may diverge. Even if simple repairs exist, the play between Player 1 and
Player 2 may end up computing and excluding more and more complex candidates. For instance, for one
program in our experiments, the sequence of candidates

Iteration Candidate replacement for a certain component
0 0

1 -v0

2 250*v1 + 248*v2 - 2*v3 - v4

3 and so on, becoming more and more complex

was observed, although the constant 500 was a repair for that component. That is, the sequence of repair
candidates may diverge, with the search getting lost in vastness of the candidate space.

Issue 2: Progress may be insufficient. Even if candidates remain simple, the progress may still
be insufficient if both player do the least to fulfill their duty. For instance, for Example 37, the CEGIS
approach could produce the following sequence of candidates:

Iteration Candidate replacement for c3 Counterexample i
0 0 (0, 1)
1 1 (1, 2)
2 2 (2, 3)
3 3 (3, 4)
4 and so on and so on

The constant 0 as a replacement for component c3 is not high enough for the program input α = 0 and
β = 1. The constant 1 works for this counterexample, but is not high enough for input (1, 2). The
constant 2 works for the first two counterexamples, but is not high enough for (2, 3), etc. Depending
on the size of D, this interaction may not terminate (in reasonable time). Note that each counterexample
subsumes all the previous ones. Hence, if Player 2 would have started with the counterexample i =
(100, 101), the first 100 iterations would have been saved.

Solution. We solve these two issues heuristically by improving the two players. Intuitively, we want
“simple” candidates and “nasty” counterexamples.

Computing simple candidates. We say that a candidate is “simple” if many template parameters ki
are small or, even better, equal to some special value di that makes terms in the template disappear (e.g.,
zero in case of a template for linear expressions). To implement this idea, we define a set S of constraints
S(k) ∈ F over the template parameters k as

S =
⋃
ki∈k

(
ki = di

)
∪
(
−s ≤ ki ≤ s),

where s is a constant defining what “small” means. In Algorithm 4.2, we can now compute simple
candidates by modifying Line 5 to compute not just any satisfying assignment for G(k, . . .) but one
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that also satisfies as many constraints S(k) ∈ S as possible. This problem is known as the (partial)
Maximum Satisfiability Modulo Theories (MAX-SMT) problem [162] and supported natively by several
SMT solvers. An efficient MAX-SMT engine can also be built on top of any SMT solver that supports
the computation of unsatisfiable cores [94].5

Computing nasty counterexamples. We say that a counterexample is “nasty” if it contains large,
uncorrelated values. Again, we define a set N of constraints N(i) ∈ F over the input symbols i as

N =
⋃
i∈i

(
i ≥ l ∨ i ≤ −l

)
,

where l is a constant that is much larger than s. Similar as before, we change Line 9 in Algorithm 4.2
to a MAX-SMT computation in order to compute a counterexample i that satisfies as many constraints
fromN as possible. In order to break correlations between values in the counterexample we additionally
randomize it: values are changed to large random values as long as the modified input vector is still a
counterexample.

4.6 Using Test Cases as a Specification

Natively, our software repair flow only supports assertions in the code as specification. Assertions can
also be used to compare the outcome of a program with that of a reference implementation. However, in
some cases it can be difficult to come up with meaningful assertions. In this section, we therefore discuss
how our debugging approach can be extended to using test cases as a specification. Intuitively, a test case
defines the expected output of the program for some concrete input.

Programs and specifications. In order to model output in our program P , we introduce a special
function output(x). It takes one integer value x as parameter, which is considered to be an output
of the program. This function can be called repeatedly (possibly interleaved with calls to input) if
the program outputs a sequence of values. Our specification ϕ is now given as a set T of test cases t.
Formally, we define a test case t = (i,o) ∈ D∗ ×D∗ to consist of a vector i of concrete input values and
a vector o of expected output values. Whenever a call to the special function input is encountered (and
for all parameters of the entry function), the next value from i is read.6 Whenever a call to output(x)
is encountered, the value of x is compared with the next element in o.7 If the values differ, the program
terminates and we say that the test case t failed. Otherwise, if the program terminates normally by
reaching the end of the entry function, we say that the test case passed. The program P is said to satisfy
the specification ϕ if all test cases t ∈ T pass.

Combination with assertions and assumptions. Test cases can easily be combined with asser-
tions and assumptions as a specification. Whenever the execution of a test case t encounters a statement
assume(c) with c being false, the execution terminates and the test case t is marked as passed. When-
ever some statement assert(c) with c = false is executed, the execution terminates and t is marked
as failed. That is, in contrast to Section 4.1.1, the assertions are only considered for the concrete input
values defined by the test cases.

Program analysis. The program is preprocessed as usual (see Section 4.2.2). The preprocessed
program P̂ is then analyzed using symbolic or concolic execution for every test case t one after the other.
This works essentially as explained in Section 4.2.3. However, calls to the special function input do
not produce a new input symbol i ∈ i but always return a concrete value. Note that program variables
can still have a symbolic value (as a function of r) due to component executions. Calls to the function
output(x) are treated as if they where a shortcut for if(x != e) exitErr();, where e is the
expected output value read from the test case. That is, calls to output will, in general, make the

5Fu and Malik [94] describe the approach for the Boolean case but an extension from SAT to SMT is straightforward [162].
6After the length of i is exceeded, input returns arbitrary values.
7After the length of o is exceeded, output can be called with arbitrary values.
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symbolic execution fork into a branch where the output is as expected and one where it is not. Let

Dt = (CMP,TypOf,Vars, ∅, rtD, rtB,CmpOft,OrgtD,OrgtB,Valst,Correctt(rt))

with rt = rtD ∪ rtB be the so obtained diagnostic information for test case t. Note that the vector of input
symbols is empty. Assuming that all symbol vectors rt are disjoint8, we compute the combined diagnos-
tic information D = (CMP,TypOf,Vars, ∅, rD, rB,CmpOf,OrgD,OrgB,Vals,Correct(r)) with

rD =
⋃
t∈T

rtD, OrgD(r) = OrgtD(r) if r ∈ rt, CmpOf(r) = CmpOft(r) if r ∈ rt,

rB =
⋃
t∈T

rtB, OrgB(r) = OrgtB(r) if r ∈ rt, Vals(r) = Valst(r) if r ∈ rt,

r = rD ∪ rB Correct(r) =
∧
t∈T

Correctt(rt)

Fault localization. In principle, the SMT-based fault localization approach presented in Section 4.3
can be applied without any modifications when using diagnostic information obtained with test cases T
as a specification. However, since the set of input symbols i is empty, some simplifications can be made.
The universal quantification in repairability checks according to Equation 4.3 falls away, so there is no
need to approximate this universal quantification with a finite conjunction (as done in Equation 4.4).
However, an approximation in the flavor of Equation 4.4 can still be performed by considering only a
subset of the test cases when constructing Correct(r) from the individual conjuncts Correctt(rt). The
reason is that each conjunct Correctt(rt) expresses program correctness for one concrete vector i of
inputs (namely the one in test case t = (i,o)). Hence, Correctt(rt) can be seen as an instantiation
Correct′(i, r) of a hypothetical formula Correct′(i, r) that captures the program correctness for all inputs.

Repair. The CEGIS-based program repair approach presented in Section 4.5 can also be simplified
significantly if the vector of input symbols i is empty. In fact, a correct template instantiation can be
computed with a single SMT solver call as a satisfying assignment to Rep(k), as defined by Equation 4.6
with i = ∅. However, depending on the program size and the number of test cases, the correctness
formula Correct(r) used to build Rep(k) may be rather large and, consequently, expensive to solve. It
can thus still make sense to follow an approach of iterative refinements: By including only the conjuncts
Correctt(rt) with t ∈ T ′ for some T ′ ⊂ T in Correct(r), we can compute a repair candidate that is
guaranteed to pass at least the subset T ′ of the test cases T . If the candidate fails on some test t ∈ T \T ′,
then T ′ can be enlarged (at least by t). The following section generalizes this principle of refining the
correctness formula on demand.

4.7 Repair Synthesis with On-The-Fly Program Analysis

Section 4.5 already presented a basic solution for synthesizing repairs using templates. This section
discusses some issues of this solution and then presents an improved synthesis flow addressing these
issues. The section concludes with a discussion of the main benefits of the improved flow.

Recall that the template-based CEGIS approach presented in Section 4.5 synthesizes repairs for in-
correct programs by refining candidates iteratively based on counterexamples. It relies on the availability
of a monolithic correctness formula Rep(i, k) that expresses which repair candidates (values for the tem-
plate parameters k) would be correct for which inputs (values for the variables i). This one formula is
used both for computing candidates and for refuting them. Candidates are computed as satisfying assign-
ments for the variables k with fixed values for i. Counterexamples disproving candidates are computed
as assignments to i with fixed values for k.

Issues. While working with one monolithic correctness formula Rep(i, k) has a certain elegance, it
also comes with some issues. First, exhaustive program analysis to build a perfectly accurate correctness

8Otherwise, they can easily be renamed.
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Figure 4.2: Overview of our repair method with on-the-fly program analysis. A repair candidate
is computed as a satisfying assignment k to a correctness formula OtfRep(k), which
is initially true. The candidate program P ′ = apply(k, P ) is then verified by some
means. If a counterexample i is found, a program analysis step refines OtfRep(k) with
constraints OtfRepi(k) on the parameters k that ensure correctness for input i. This
loop is repeated until a correct repair is found or OtfRep(k) becomes unsatisfiable.

formula is often infeasible, especially if the program contains loops or recursive functions. Yet, when
setting bounds on the analysis depth (e.g., by limiting the number of loop unrollings or considered ex-
ecution paths) one runs the risk of abstracting away the wrong information. Second, even if exhaustive
program analysis is feasible, it may take long and produce an unnecessarily large correctness formula.
After all, for computing repair candidates using CEGIS, the correctness formula needs to be accurate for
some (typically few) inputs only. In this light, constructing a formula that is accurate for all inputs can
be wasteful. Third, computing counterexamples as satisfying assignments to the negated correctness for-
mula may not be ideal. Depending on the program and its specification formalism, other techniques such
as test case execution or invoking a specialized and optimized model checker may be a better option.

Concept. We remedy these issues in our improved repair synthesis flow by doing program analysis
on the fly during the repair process, thereby analyzing the program only for the counterexamples that
have been found. Furthermore, we decouple the computation of repair candidates from their verification.
This allows us to use various verification techniques and specification formats.

4.7.1 Solution

The input to our repair method with on-the-fly program analysis is an incorrect program P , a specifica-
tion ϕ, and a diagnosis ∆ ⊆ CMP. In contrast to Section 4.5, no diagnostic information D is required
because the program will be analyzed on demand. We do, however, use templates as in Section 4.5.
That is, for every potentially incorrect program component c ∈ ∆, we construct a template Tc(kc,vc)
for a new implementation of the component. As before, the vector of all template parameters is de-
noted by k =

⋃
c∈∆ kc. Applying a template instantiation k to the program P is again denoted by

P ′ = apply(k, P ).

Overview. Figure 4.2 outlines our approach to compute a repair by finding an appropriate tem-
plate instantiation with on-the-fly program analysis. We maintain a quantifier-free correctness formula
OtfRep(k) ∈ F over the template parameters k. Intuitively, this correctness formula expresses (an in-
complete set of) constraints that must be satisfied by a template instantiation k to yield a correct repair
P ′ = apply(k, P ). The correctness formula is of the form

OtfRep(k) =
∧
i

OtfRepi(k),

where each OtfRepi(k) is a quantifier-free formula that expresses constraints that must be satisfied by
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a template instantiation to be correct for input i. Initially, OtfRep(k) is true. As a first step in a loop,
we compute a repair candidate k as a satisfying assignment for the formula OtfRep(k). If OtfRep(k) is
unsatisfiable, the loop aborts, signaling that no repair with this template exists. Otherwise, a candidate
program P ′ = apply(k, P ) is constructed. Next, we verify if P ′ satisfies the specification ϕ. If this is
the case, P ′ is reported as a repair and the loop terminates. Otherwise, the verification step returns a
counterexample i, which is an input for which P ′ violates ϕ. Using this counterexample i, we perform
a program analysis step in order to infer additional constraints OtfRepi(k) that ensure correctness for
input i. These additional constraints are conjoined with OtfRep(k) and the next iteration starts. In
this way, our method keeps analyzing the program for more and more inputs, and improving the repair
candidates until a correct one is found. A user-defined bound on the maximum number of iterations can
be imposed to ensure termination. The next subsections explain the individual steps in more detail.

4.7.1.1 Repair Candidate Computation

Since OtfRep(k) is a (quantifier free) formula from F, a satisfying assignment can be computed with
one SMT solver call (sat,k) := SMTSATMODEL

(
OtfRep(k)

)
. Alternatively, the heuristics from Sec-

tion 4.5.3 for computing simple repair candidates can be applied by solving a MAX-SMT problem.

4.7.1.2 Repair Candidate Verification

The verification of repair candidates can be performed in many ways. The prerequisite is that the verifi-
cation method is able to produce a counterexample in case of incorrectness. This increased flexibility in
candidate verification also comes with increased flexibility in the specification mechanism.

Symbolic or concolic execution. When using assertions in the code as specification ϕ, we can apply
(standard) symbolic or concolic execution to verify a candidate program P ′. Since we are not interested
in a correctness formula but only in one counterexample, the analysis can be stopped as soon as the
first execution path that violates the specification is encountered. In the case of symbolic execution, a
satisfying assignment to the respective path condition is then computed to obtain the counterexample i.
When using concolic execution, a concrete input vector to activate the execution path is available anyway.

Model checking. Another possibility is to use a software model checker taking assertions in the code
as a specification. This includes bounded software model checkers such as CBMC [61] or abstraction-
based tools such as BLAST [20] or SATABS [62]. Model checkers are typically able to prove incorrect-
ness by giving a counterexample in the form of an input vector for which an assertion is violated. There
is also a competition, called SV-COMP9, among tools for software verification. Since 2015, tools are
also required to produce verifiable counterexamples in this competition [19].

Test case execution. When using test cases as specification, the natural way to verify candidates is
to execute them. As in Section 4.6, we consider test cases t = (i,o) that are given as an input vector i
together with a vector o of expected outputs. A counterexample is the input part i of a failing test case.

Verification by the user. Repair candidates can even be verified by a human user. Here, a counterex-
ample is again an input vector. The user also defines the corresponding expected output, which serves as
a specification. That is, no explicit specification needs to be available initially. The user simply creates
a specification in the form of input-output examples (which are essentially test cases) on demand. The
repair engine learns a fix of the incorrect program using the input-output examples given by the user
in response to the candidates. Constructing input-output examples to rule out the presented candidates
can be significantly less work than creating a test suite that rules out all undesirable candidates before
starting the repair engine.

Notation. We will write (OK, i) := VERIFY(P ′, ϕ) to denote the verification of the candidate
program P ′ with respect to the specification ϕ using some method. If P ′ satisfies ϕ, then OK is set to

9http://sv-comp.sosy-lab.org (last visit on 2015-08-01).

http://sv-comp.sosy-lab.org
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true, otherwise to false. If OK = false, then i ∈ D∗ contains a counterexample, which is a vector of
concrete input values for which P ′ violates ϕ.

4.7.1.3 On-The-Fly Program Analysis

The crucial step of our improved repair approach is program analysis, which is deliberately incomplete:
We only look at behavior that is possible under one particular input assignment, namely the counterex-
ample i found in the preceding verification step. Similar to Section 4.6, we do so using a customized
version of symbolic or concolic execution.

Preprocessing. Recall that we have introduced a template Tc(kc,vc) for every potentially incorrect
program component c ∈ ∆. The symbols kc are template parameters and k =

⋃
c∈∆ kc is their union.

The symbols vc represent the values of the variables in scope when component c is executed. We now
introduce a fresh (global) program variable k for every template parameter k ∈ k and construct the
program P̂ ′ = apply(k, P ), in which all components c ∈ ∆ are replaced with the program expression
Tc
(
kc,Vars(c)

)
. That is, in the template Tc(kc,vc), we replace all parameter symbols kc with the

corresponding parameter variables kc and all variable symbols vc with the names of the variables Vars(c)
that are in scope when component c is executed. Each program component c ∈ ∆ is then replaced with
the so constructed program expression Tc

(
kc,Vars(c)

)
.

Example 38. Consider the repair problem from Example 37 again.

1 i n t max ( i n t a , i n t b ) {
2 i n t r = a ;
3 i f (b > a )
4 r = a + 2 ;
5 assert (r >= a && r >= b ) ;
6 re turn r ;
7 }

i n t k0 , k1 , k2 , k3 ;
1 i n t max ( i n t a , i n t b ) {
2 i n t r = a ;
3 i f (b > a )
4 r = k0 + k1*a + k2*b + k3*r ;
5 assert (r >= a && r >= b ) ;
6 re turn r ;
7 }

The source code listing on the left shows the program P from Example 22. The listing on the right shows
the preprocessed version P̂ ′ = apply(k, P ) for the diagnosis ∆ = {c3} and the template Tc3(k,v) =
k0 + k1 · v1 + k2 · v2 + k3 · v3. With the program variables k = (k0,k1,k2,k3) to represent the
template parameters k = (k0, k1, k2, k3) and Vars(c3) = (a,b,r), we have that Tc3(k,Vars(c3)) =
k0 + k1*a + k2*b + k3*r. This program expression replaces the component c3 (the expression
a + 2 in Line 4) in the preprocessed program P̂ ′ shown on the right.

Symbolic execution. We perform symbolic execution similar to Section 4.6. The program inputs are
fixed to the values i in the counterexample. That is, for all parameters of the entry function and for all
calls to the function input, the next concrete value from i is used. The symbols k are used as symbolic
values of the template parameter variables k. Note that these program variables k have an unknown
but constant value, so their value is represented by the same symbols k throughout the entire program
execution. Assertions and assumptions in the code are handled as usual (see Section 4.2.3.2). Calls to
the function output are only considered if the specification ϕ is given as a set T of test cases. In this
case, we search for a test case t = (i, o) ∈ T for which the input part matches our counterexample. As
in Section 4.6, calls to the function output(x) are then treated as if they were a shortcut for if(x
!= e) exitErr();, where e is the next expected output value read from the output part o of the test
case t. In order to limit the effort for program analysis as well as the size of the resulting formulas, we
set a user-defined bound on the maximum number and length of the execution paths to consider.

Computing a correctness formula. As in Section 4.2.3.2, we divide the leaf nodes of the symbolic
execution tree into three sets: FAIL is the set of all nodes that are marked with a specification violation
(i.e., ended in exitErr()), PASS is the set of all nodes where the program terminated normally (or in
an assumption violation), and OPEN contains the remaining leaf nodes where the execution was aborted
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because some analysis depth limit was exceeded. Each path condition associated with a node n of the
symbolic execution tree is a formula PCn(k) ∈ F over the template parameters k. We finally compute

OtfRepi(k) =
∧

n∈FAIL

¬PCn(k). (4.7)

We denote this computation by OtfRepi(k) := ANALYZE(P̂ ′, i) with P̂ ′ = apply(k, P ).

Lemma 39. Let k be values for the template parameters k. Assume that our approach for on-the-
fly program analysis using symbolic execution has been applied to the preprocessed program P̂ ′ =
apply(k, P ) with counterexample i exhaustively (i.e., OPEN = ∅) and without abstracting the program
semantics. Then OtfRepi(k) is true iff P ′ = apply(k, P ) satisfies the specification ϕ for input i.

Proof. Every leaf node n in the symbolic execution tree represents an execution path through the program
P̂ ′. Let ne be the node that represents the execution path pe that is induced by the inputs i and parameter
values k. Since all leaf nodes have disjunct path conditions, PCn(k) is true iff n = ne. ¬PCne(k) =
false is a conjunct of OtfRepi(k) iff ne ∈ FAIL, i.e., iff pe violates the specification. Hence, P̂ ′ satisfies
ϕ for input i and parameter values k iff OtfRepi(k) is true. The program P ′ differs from P̂ ′ only in
having the parameters fixed to k. Consequently, P ′ also satisfies ϕ for input i iff OtfRepi(k) is true.

Lemma 39 states that OtfRepi(k) = true is both a necessary and a sufficient condition for P ′ =
apply(k, P ) to satisfy the specification ϕ for input i (given that program analysis was applied without
approximations). The formula OtfRepi(k) is therefore conjoined to the correctness formula OtfRep(k)
(see Figure 4.2) in order to exclude candidates that fail for the input vector i in the next iterations.

Concolic execution. Since concolic execution is merely a variant of symbolic execution, it can easily
be applied instead of symbolic execution, as explained in Section 4.2.3.3. In the context of on-the-fly
program analysis, the set of symbols k that can appear in path conditions is fixed. Hence, in contrast to
Section 4.2.3.3, no special care in managing symbol uniqueness across multiple concolic execution runs
is necessary.

4.7.1.4 Algorithm

The procedure REPAIROTF in Algorithm 4.3 combines the different steps from the previous subsections
into an algorithm, thereby formalizing their interplay as already outlined in Figure 4.2. Based on this
algorithm, we will now work out correctness guarantees.

Theorem 40. Assume that ANALYZE(P̂ ′, i) always analyzes the correctness of program P̂ ′ for input i
exhaustively and without abstracting the program semantics. Then the procedure REPAIROTF from
Algorithm 4.3 will (a) only return “fail” if no repair with the given templates Tc(kc,vc) satisfies the
specification ϕ, (b) only return a repair P ′ if this repair satisfies ϕ, and (c) never investigate the same
template parameters k twice.

Proof. Statement (a) follows from Lemma 39: OtfRepi(k) is true iff P ′ = apply(k, P ) satisfies ϕ for
input i. That is, OtfRepi(k) = true is a necessary condition for P ′ = apply(k, P ) to satisfy ϕ for input i.
P ′ satisfies ϕ if it does so for all inputs i. Hence, OtfRepi(k) = true is also a necessary condition for
P ′ to satisfy ϕ. Since OtfRep(k) is always a conjunction of several OtfRepi(k), it also contains only
necessary conditions for P ′ to satisfy ϕ. REPAIROTF only returns “fail” if OtfRep(k) is unsatisfiable,
so “fail” is only returned if P ′ = apply(k, P ) cannot satisfy ϕ for any k, i.e., no repair with the given
templates exists.

Statement (b) follows from assumptions about VERIFY(P ′, ϕ): it returns OK = true iff P ′ satisfies ϕ.

Statement (c) also follows from Lemma 39, but read in the other direction: OtfRepi(k) is true iff
P ′ = apply(k, P ) satisfies ϕ for input i. Each candidate program P ′ either violates ϕ for some coun-
terexample input i, or REPAIROTF terminates. If P ′ = apply(k, P ) violates ϕ for input i, we have that
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Algorithm 4.3 REPAIROTF: An algorithm for template-based repair with on-the-fly program analysis.

1: procedure REPAIROTF
(
P,ϕ,∆, templates Tc(kc,vc) for all c ∈ ∆

)
, returns: A repair P ′ or “fail”

2: k :=
⋃
c∈∆ kc, k are fresh program variables corresponding to k

3: P̂ ′ := apply(k, P )
4: OtfRep(k) := true
5: while true do
6: (sat,k) := SMTSATMODEL

(
OtfRep(k)

)
7: if sat = false then
8: return “fail”
9: end if

10: P ′ := apply(k, P )
11: (OK, i) := VERIFY(P ′, ϕ)
12: if OK then
13: return P ′
14: end if
15: OtfRepi(k) := ANALYZE(P̂ ′, i)
16: OtfRep(k) := OtfRep(k) ∧ OtfRepi(k)
17: end while
18: end procedure

OtfRepi(k) = false in Line 15 of REPAIROTF. Hence, after the update of OtfRep(k) in Line 16, we
have that OtfRep(k) = false. Since OtfRep(k) can only get stricter, OtfRep(k) will furthermore remain
false throughout the entire algorithm. Hence, the same k cannot be encountered by Line 6 again.

The statements (a) and (b) from Theorem 40 express that REPAIROTF returns the expected information
if it terminates. Statement (c) expresses that REPAIROTF also makes some progress in each iteration.
In particular, if D is finite, then there can only be finitely many assignments k ∈ D|k| to the template
parameters k (because CMP is finite and every template Tc with c ∈ ∆ ⊆ CMP can only have finitely
many parameters kc). Statement (c) implies that REPAIROTF terminates in this case.

4.7.2 Discussion

This section discusses benefits and drawbacks of our repair method with on-the-fly program analysis.

More focused program analysis. The main advantage of the repair method proposed in this section
is that program analysis is very focused towards the information needed for computing repair candidates.
Complete program analysis is infeasible for complex programs. The basic solution from Section 4.5 can
address this issue by setting a limit on the number and length of the execution paths to consider while
computing the diagnostic information D. However, since there is no guidance on what to analyze and
what to leave out, this limit can render the probability of obtaining the information relevant for finding
a (correct) repair rather low. In contrast, our improved repair method analyzes the program only for the
counterexamples that are relevant for the repair finding process. There is also a bound on the number
and length of the execution paths. However, since these limits apply locally for each invocation, our new
approach learns at least something about the behavior under each counterexample.

Simpler program analysis. Compared to the basic solution from Section 4.5, our improved method
renders program analysis with symbolic or concolic execution simpler because the inputs are always
fixed to one counterexample at a time. This can drastically reduce the number of feasible execution
paths. When using concolic execution, it can also simplify the analysis per concolic execution run. We
can start to track the symbolic values of the program variables only after a repair template with unknown
parameters has been executed for the first time. In particular, when using a reference implementation as
a specification, then this is often done by executing both the reference implementation and the program
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under analysis using the same inputs, and then comparing the results using assertions. If the inputs are
always concrete, this means that the entire reference code needs to be executed with concrete variable
values only. In contrast, the basic approach without on-the-fly program analysis needs to track the
symbolic values right from the beginning because the inputs are not fixed but have a symbolic value.

Flexibility in the specification. The basic solution from Section 4.5 has been designed for asser-
tions in the code as a specification. An extension to test cases is possible, as illustrated in Section 4.6,
but defeats some of the strength of the approach. Writing assertions that accurately reflect the desired
program behavior and do not only check for basic properties can be difficult, though. Test cases (possibly
together with some assertions) are often more natural. Our approach with on-the-fly program analysis
supports test cases natively. This flexibility is also important for keeping the user in the loop. Writing
additional test cases if only incorrect repairs are produced is often simpler than coming up with better
assertions. Our improved approach can even be used in an interactive mode, where no specification is
available initially: Input-output examples are provided by the user in order to exclude repair candidates
as they are presented.

Scalability. Our improved repair method also addresses the scalability issue, which is common for
all formal fault correction approaches, from several sides. Doing program analysis for (typically only a
few) concrete counterexamples has already been mentioned. The flexibility in the technique for verifying
repair candidates is another factor. Highly optimized model checkers that apply abstraction, specialized
reasoning engines or other optimizations may do a better job in verifying repair candidates efficiently
than our basic approach of building one monolithic correctness formula and solving it using an SMT
solver. Moreover, where formal approaches like model checking or symbolic execution fail, test case
execution or manual reviews of candidates by the user can still produce meaningful results.

Drawbacks. A drawback of the separation of concerns is that little information (only the counterex-
ample) is passed from the verification phase to the program analysis phase. Furthermore, if candidate
verification is outsourced to an external tool or method, we have no control over the computed counterex-
amples. In particular, we cannot easily steer the verification towards producing “nasty” counterexamples
as we did in our heuristic from Section 4.5.3 in order to speed up the convergence of the repair refinement
loop. Another disadvantage is that certain program paths may be feasible under several counterexamples,
and may thus be analyzed multiple times using symbolic or concolic execution.

4.8 Parameters and Variations

Now that all steps of our software program repair flow are worked out, we briefly review possible vari-
ations and parameters in this section. Our debugging method offers a lot of them. As an advantage, our
method can by tailored to a broad range of programs. On the other hand, it may take some attempts to
find a good configuration.

Program analysis parameters. In the program analysis step, the parameters include bounds on
the analysis depth such as the maximum number of execution paths to analyze or the maximum length
of execution paths to consider. Furthermore, different heuristics can be used for determining the order
in which program paths are analyzed using symbolic or concolic execution [50]: this ranges from a
simple breadth first or depth first search up to advanced heuristics guided by the control flow graph of
the program [50]. Another important parameter is the theory used for SMT solving (see Section 2.2.4),
which defines the domains D, T and F. It determines which program language constructs can be handled
exactly and which ones have to be approximated. Linear integer arithmetic allows for rather efficient
reasoning but cannot (directly) deal with bitwise operations, variable overflows or type casts. Bitvector
arithmetic can model such aspects precisely but can be significantly more expensive to reason about.

Alternative correctness conditions. Section 4.2.3.2 suggests to compute the correctness condition

Correct(i, r) =
∧

n∈FAIL

¬PCn(i, r). (4.8)
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An alternative definition would be

Correct′(i, r) =
∨

n∈PASS

PCn(i, r). (4.9)

Recall that FAIL is a set of symbolic execution tree nodes. Each node n ∈ FAIL represents an analyzed
execution paths that ended in a specification violation. The formula PCn is the path condition associated
with node n, i.e., the condition under which the respective execution path is taken. PASS, on the other
hand, encompasses all analyzed execution paths that ended in a successful program termination. Finally,
OPEN contains the remaining execution paths that were not analyzed completely due to some limit on
the analysis depths. If OPEN = ∅, i.e., all execution paths have been analyzed, we have that Correct
and Correct′ are equivalent.10 If certain execution paths were not analyzed, there is a difference, though.
Equation 4.8 considers a program execution correct if none of the known specification violations is
encountered. That is, all execution paths that have not been analyzed are implicitly assumed to satisfy
the specification. Consequently, using Equation 4.8 can result in false diagnoses and repairs. We will thus
refer to using Equation 4.8 as non-conservative mode. On the other hand, Equation 4.9 only considers a
program execution correct if it is known to terminate normally. Here, all execution paths that have not
been analyzed are implicitly assumed to violate the specification. Hence, using Equation 4.9 can result
in missed diagnoses and repairs, and will thus be denoted as conservative mode.

Alternative program analysis concepts. Our choice of symbolic or concolic execution for program
analysis is mainly motivated by two factors: (1) the multitude of possible approximations and parameters
to trade performance for precision, and (2) the success of these techniques in other domains such as test
data generation [100]. In principle, the program analysis step to compute the diagnostic information D
can also be realized in completely different ways, though. One alternative option is to unroll all loops
for a fixed number of times, transform the program into Static Single Assignment (SSA) form (variable
are renamed such that each variable is assigned only once), and apply techniques from bounded model
checking [61] in order to obtain the correctness formulas.

Fault localization parameters. The most important parameter to configure the precision of our fault
localization approach from Section 4.3 is the number |J | of concrete counterexamples to consider. In
the model-based diagnosis algorithm, we can also set a limit on the maximum number and the maximum
size of diagnoses to compute. This is important in order not to flood the user (and the repair engine) with
diagnoses (of high cardinality).

Fault correction parameters. The parameters for our basic fault correction method from Section 4.5
include the templates to use, a maximum number of counterexample-guided repair refinements before
giving up, and a maximum number of repairs to compute (in total and/or per diagnosis). The repair
method with on-the-fly program analysis (Section 4.7) additionally can be configured with all parameters
that have already been discussed for program analysis. This also includes the option to compute the more
conservative correctness formula

OtfRep′i(k) =
∨

n∈PASS

PCn(k). (4.10)

instead of OtfRepi(k) as defined in Equation 4.7.

Additional program analysis passes. As already argued in Section 4.7, performing the program
analysis step only once in the beginning has the disadvantage that the resulting diagnostic information D
may be relatively imprecise (due to bounds on the program analysis depth) for a particular diagnosis ∆
to repair. Our repair approach with on-the-fly program analysis (Section 4.7) addresses this issue by ana-
lyzing the program anew, but only for the specific counterexamples that are encountered during the repair

10The intuitive reason is that the preprocessed program P̂ can only either violate or satisfy its specification ϕ for given
values i, r of the symbols i, r. The more formal reason is that all path conditions are disjoint (i.e., PCn1(i, r) ∧ PCn2(i, r) is
unsatisfiable if n1 6= n2), FAIL and PASS are disjoint, and

∨
n∈PASS∪FAIL

PCn(i, r) is true if OPEN = ∅.



4.9. Experimental Results 131

Incorrect
C program Model

Front
End

Back End 1
... Diagnoses,

Repairs

FoREnSiC

Back End N

Figure 4.3: Architecture of FoREnSiC. The main input is an incorrect C program. The front end
creates an internal model of the program and the back ends use this model to compute
diagnoses and repairs with different techniques.

process. A more lightweight approach to tackle the problem is to perform only one additional program
analysis pass per diagnosis to repair. In this pass, the components that are not repaired get fixed to their
original implementation. This reduces the number of feasible execution paths and results in diagnostic
information D∆ that is tailored towards the specific diagnosis ∆ to repair. The disadvantage compared
to our approach of one-the-fly program analysis is that the diagnostic information D∆ is not tailored to-
wards the counterexamples that will be encountered during the repair process. The advantage, however,
is that program analysis needs to be done only once per diagnosis and not once per counterexample in
the repair process.

4.9 Experimental Results

The previous sections in this chapter explained how our approach for controller synthesis in the applica-
tion of software repair works. The aim of this is section is to evaluate to which extent it works in practice.
To this end, we will first present our proof-of-concept implementations in the tools FoREnSiC [30] and
Frama-C [69]. Section 4.9.2 will then discuss some examples to demonstrate that our approach is able
to produce helpful diagnoses and repairs in reasonable time. Section 4.9.3 contains a performance eval-
uation of our approach in different configurations. Section 4.9.4 finally draws conclusions.

4.9.1 Implementation

The debugging approach outlined in Figure 4.1 has been implemented as a proof-of-concept in FoREn-
SiC [30], which is a debugging environment for simple C programs. The fault localization variant using
deductive verification (Section 4.4) has been prototyped as an extension to the WP plug-in of Frama-
C [69]. This extension will be called WPLoc and is presented in Section 4.9.1.2.

4.9.1.1 FoREnSiC

We developed FoREnSiC [30] in collaboration with the University of Bremen and Tallinn University
of Technology. The name FoREnSiC stands for “Formal Repair Environment for Simple C”. Just like
Demiurge, FoREnSiC is also freely available under the GNU Lesser General Public License (version
2.1). It can be downloaded from

http://www.informatik.uni-bremen.de/agra/eng/forensic.php.

All experiments presented in this thesis have been performed using version 1.0.1. The downloadable
archive contains all scripts to reproduce the experiments, as well as spreadsheets with more detailed data.
FoREnSiC features a modular architecture with different back ends implementing different debugging
engines. In the following, we will briefly describe the general architecture and then focus on the symbolic
back end, which implements the debugging approach of Figure 4.1.

http://www.informatik.uni-bremen.de/agra/eng/forensic.php
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Architecture. Figure 4.3 illustrates the basic architecture of FoREnSiC. The main input is a (poten-
tially) incorrect C program. A front end based on the gcc compiler parses this program and constructs
an internal model. This internal model is essentially a flow graph where nodes correspond to statements
of the program and edges model the control flow. Each node also stores an Abstract Syntax Tree (AST)
of the respective statement as well as source code location information in terms of line and column
numbers. This is important for communicating results back to the user. Different back ends finally im-
plement different fault localization and correction algorithms based on this model. The back ends may
read additional inputs such as specifications in the form of test cases or a reference model. They can
access a library of utility functions as well as interfaces to reasoning engines such as SMT solvers. This
architecture and infrastructure makes FoREnSiC easily extendable with new back ends and features.

The following paragraphs describe the symbolic back end, which implements the debugging ap-
proach of Figure 4.1. The variant using test cases as a specification (Section 4.6) has not yet been
implemented. Test cases are only supported for repair with on-the-fly program analysis.

Concolic execution. By default, program analysis is done via concolic execution. We implemented
our concolic execution engine as an extension to CREST [50] and thus inherit all its different search
strategies and heuristics. CREST itself supports only Linear Integer Arithmetic (LIA) as theory for
SMT solving. Program language constructs that cannot be modeled in LIA (e.g., bitwise operations)
are abstracted by taking the fixed values from the concrete part of the execution. CREST uses the
SMT solver Yices [77]. Our extension supports also the SMT solver Z3 [73] as well as the Bitvector
Arithmetic (BV) theory for SMT solving. The program under analysis can also contain floating point
variables, arrays, pointers, and compound data types like structs and unions. However, these con-
structs are only handled in an approximative way. Arrays are essentially treated like sets of variables.
That is, the values of array elements are tracked symbolically, but array indices are always abstracted
with their concrete value. This has the effect that our implementation cannot diagnose or repair bugs in
array index computations. The same holds for pointers: the value of the pointer target is tracked symbol-
ically but arithmetic applied to the pointer itself is always abstracted with the resulting concrete pointer
value. Consequently, bugs in pointer arithmetic cannot be diagnosed and repaired either. Floating point
variables in the program are completely ignored in the symbolic analysis.

Preprocessing for concolic execution. Section 4.2.1 proposed to take all expressions in the code as
potentially faulty components. Our implementation does not follow this idea strictly. It only takes all
conditions in the program as well as the right-hand side (RHS) of all assignments that have an integer
result as potentially faulty components. However, the front end11 simplifies the program by assign-
ing non-trivial expressions to auxiliary variables before they are used. Consequently, our implementa-
tion also considers them as potentially faulty components. If the user encapsulates code blocks with
<ASSUME CORRECT> and </ASSUME CORRECT> tags, this code will always be assumed to be cor-
rect, i.e., it will not be instrumented with calls to cmpa or cmpc. This is useful, for instance, when using
reference implementations as a specification.

Symbolic execution. A symbolic execution engine for computing the diagnostic information D has
been implemented by Philipp Pani in the frames of his Bachelor’s Thesis [170]. It can be used as an
alternative to the concolic engine. Just like the concolic engine, it supports the SMT solvers Yices [77]
and Z3 [73] with LIA or BV. Operations that cannot be modeled in the chosen theory (e.g., a division
when using LIA) are abstracted using a fresh input symbol that can take any value. In contrast to the
concolic engine, the symbolic execution engine does not support floating point variables, arrays, pointers,
and compound data types like structs and unions.

Fault localization. We implemented the fault localization method from Section 4.3.2 in several
variants. All variants use the hitting set tree algorithm by Reiter [182] for deriving diagnoses from
conflicts but different methods to compute minimal conflicts. A basic variant computes minimal conflicts

11When using concolic execution, we actually bypass the gcc-based front end shown in Figure 4.3 and use CIL [167] instead.
The reason is that CREST [50] also uses CIL in order to instrument the program for concolic execution. The gcc-based front
end performs similar simplifications, though.
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by dropping components one after the other as long as the reduced set is still a conflict. This is realized
using one SMT solver call per attempt to drop a component. A more advanced approach implements
the procedure GETMINCONFWO from Algorithm 4.1 utilizing unsatisfiable cores computed by the SMT
solver but without incremental SMT solving. A third variant also uses incremental SMT solving (even
across multiple calls to GETMINCONFWO).

Templates for fault correction. Let c ∈ ∆ be an arithmetic component (i.e., TypOf(c) = D) to
repair and let vc = Vars(c) = (v1,v2, . . . ,vn) be the variables in scope when component c is executed.
When LIA is chosen as a theory for SMT solving, we use the linear template

k0 + k1 · v1 + k2 · v2 + . . .+ kn · vn

to find a new implementation for component c. When BV is chosen as the SMT theory, the following
sequence of templates is tried:

Name Template

linear k0 + k1 · v1 + k2 · v2 + . . .+ kn · vn

dnf k0 | (k1 & v1) | (k2 & v2) | . . . | (kn & vn)

cnf k0 & (k1 | v1) & (k2 | v2) & . . . & (kn | vn)

shift-dnf k0 |
(
k1 &

(
(v1<<k2)>>k3

))
| . . . |

(
k3n−2 &

(
(vn<<k3n−1)>>k3n

))
shift-cnf k0 &

(
k1 |

(
(v1<<k2)>>k3

))
& . . . &

(
k3n−2 |

(
(vn<<k3n−1)>>k3n

))
Here, “&” denotes a bit-wise conjunction, “|” denotes a bit-wise disjunction, and “<<” and “>>” are
bitshift operations. Templates for conditional components (with TypOf(c) = B) are always of the
form T OP 0, where T is a template for an arithmetic component and OP ∈ {>,<,>=,<=,==,!=}
is a comparison operator. A template parameter encodes which of the comparison operators is taken.
Defining additional or alternative templates is easily possible.

Basic fault correction. Our implementation of the basic fault correction approach from Section 4.5
is highly configurable. Features that can be enabled or disabled include (1) our heuristic for comput-
ing simple repair candidates and nasty counterexamples (Section 4.5.3), (2) incremental SMT solving
in the CEGIS loop, and (3) an additional program analysis pass (see Section 4.8) per diagnosis to ob-
tain more accurate diagnostic information. In addition to bounds on the maximum number of repair
refinements, the user can also set a timeout to all SMT solver calls in order to ensure termination.12

We also implemented a few optimizations to the CEGIS approach. One optimization reduces the set of
counterexamples (D in Figure 2.5) from time to time: counterexamples are removed as long as D still
contains at least one counterexample to disprove every candidate that has been encountered so far. This
makes the formula for candidate computation smaller. However, in experiments we have observed that
this optimization can increase the number of refinements that are necessary to find a repair. The reason is
that even if a counterexample is not necessary to disprove the already encountered candidates, it may still
be useful for ruling out not yet encountered candidates. This heuristic is therefore disabled by default.
Another optimization adds random input vectors to the counterexample database D from time to time.
While this can decrease the number of repair refinement iterations, it can also result in larger formulas
for candidate computation. This optimization is therefore disabled by default as well.

Repair with on-the-fly program analysis. Two methods for verifying repair candidates are cur-
rently supported: test case execution and concolic execution. On-the-fly program analysis is realized
using concolic execution. Incremental SMT solving as well as our heuristic from Section 4.5.3 can again
be enabled or disabled.

12A timeout during repair candidate computation is handled as if no candidate exists, i.e., the procedure aborts. In case of a
timeout during candidate verification, the tool gives a warning but considers the candidate to be correct.
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Other variants. We have also implemented a few alternatives to the CEGIS approach for template-
based repair computation. A brute-force method takes as input a set L of likely values (such as 0, 1,
−1, etc.) for template parameters. First, it computes all possible vectors of template parameter values
k, with individual parameter values taken from L, up to a given bound. Heuristics sort these vectors for
maximum success likelihood. Then, for one vector k after the other, the brute-force method checks if
this vector constitutes a correct repair. Another method passes the quantified formula ∃k :∀i :Rep(i, k)
to the SMT solver Z3 and lets the solver deal with the quantifier alternation directly. However, compared
to our CEGIS approach, none of these alternatives performed well in preliminary experiments.

4.9.1.2 Fault Localization Using Deductive Verification

We implemented the alternative fault localization approach from Section 4.4 as a proof of concept in the
WP plug-in of the widely used software analysis tool suite Frama-C. This implementation will be called
WPLoc and can be downloaded from

http://www.iaik.tugraz.at/content/research/design_verification/others/.

At the moment, only the computation of single-fault diagnoses is supported. An extension to computing
diagnoses with higher cardinality is conceptually simple, though. Several challenges had to be resolved
in our implementation. These challenges are discussed in the following paragraphs. Finally, we discuss
reasons for imperfect diagnostic resolution in our implementation.

Preprocessing. Recall from Section 4.4 that our approach replaces expressions in the code with fresh
repair variables in a preprocessing step. We use fresh global program variables to model these repair
variables. Frama-C normalizes the source code while parsing it into an Abstract Syntax Tree (AST).
For instance, it rewrites all loops into simple while-loops, it decomposes complicated statements using
auxiliary variables, etc. Our preprocessing works on this normalized AST. This makes it robust when
handling complicated constructions. The disadvantage is that our approach may report fault locations
that are not present in the original program but were only introduced by the normalization. However,
we do not consider this a severe usability issue because the line number in the original code is available.
Also, Frama-C presents the normalized source code and how it links to the original code in its GUI.

Computation of Corr(i, r). Unfortunately, we cannot use the WP plug-in of Frama-C as a black-
box to compute the correctness formula Corr(i, r) after preprocessing. WP performs simplifications
that may rewrite or eliminate our newly introduced repair variables r. We solve this issue by extending
Frama-C’s memory model such that the repair variables r are not touched by formula simplifications.

Quantification. Once we have Corr(i, r) available, our approach adds the quantifier prefix ∀i : ∃r.
Unfortunately, Corr may also contain auxiliary variables t that express values of variables at specific
program points. Intuitively, the values of the symbols r should not depend on variables that are assigned
later in the program. This would violate the causality and lead to false-positives. We therefore separate
the variables of Corr to construct the formula ∀i :∃r :∀t :Corr(i, r, t). This is done by computing the
input variables (parameters and global variables) of the function under analysis and linking them to the
corresponding variables in the formula. Variables in the formula that cannot be linked to an input of the
function are put into inner quantification ∀t.

Axiomatization. WP uses axiomatized functions and predicates in Corr. For instance, instead of
a < b, WP writes zlt(a, b) in the constructed formulas, where the predicate zlt : Z × Z → B is
axiomatized as ∀x, y :

(
zlt(x, y) → x < y

)
∧
(
¬zlt(x, y) → x ≥ y

)
. In our experiments we observed

cases where the automatic theorem prover (we used Alt-Ergo13) could not solve formulas when using
the axiomatization, but had no difficulty solving the same formula when the axiomatized predicates and
functions are replaced by the corresponding native operators. Hence, we modified the interface to the
theorem prover such that formulas do not contain axiomatized functions and predicates, where possible.

13http://alt-ergo.lri.fr (last visit on 2015-08-01).

http://www.iaik.tugraz.at/content/research/design_verification/others/
http://alt-ergo.lri.fr
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Diagnostic resolution. Our implementation is neither sound (it may report spurious fault locations)
nor complete (it may miss potential fault locations). The main reasons are as follows.

• The theorem prover may return “Unknown” if it could neither prove nor disprove the validity of
the formula. We treat such verdicts as if the program was incorrect (see Section 4.4), which results
in incompleteness.

• Instead of one monolithic formula Corr, WP may compute multiple formulas that can be checked
independently. In fault localization, we also check repairability for each formula in isolation. This
is weaker than checking the conjunction and can thus result in reporting spurious fault locations
but increases efficiency.

• The specification may be incomplete, i.e., not strict enough. This can result in reporting spurious
fault locations.

• The bug in the program may not match our fault model. For instance, code may be missing or the
control flow may be incorrect. This results in missed fault locations.

Despite these potential imprecisions, our implementation usually produces meaningful results. This is
illustrated in the next section.

4.9.2 Examples

This section presents a few code examples and discusses output that is produced by our tools on a
qualitative level. The aim is to demonstrate that our approach is able to produce helpful diagnoses and
repairs in reasonable time. Section 4.9.3 will then discuss the performance of our approach in various
configurations.

4.9.2.1 Running Example

For the program from Example 22, FoREnSiC produces the diagnoses ∆1 = {c3} and ∆2 = {c1, c2}
that were already discussed in Example 30. That is, the tool suspects either the expression “a + 2”
in Line 4 to be faulty, or the two expressions “a” and “b > a” in Line 2 and 3 to be simultaneously
faulty. With a limit of three corrections per diagnosis and LIA as SMT theory, FoREnSiC produces the
following repair suggestions.

1 i n t max ( i n t a , i n t b ) {
2 i n t r = a ;
3 i f (b > a )
4 r = b ; //a+2
5 assert (r>=a && r>=b ) ;
6 re turn r ;
7 }

i n t max ( i n t a , i n t b ) {
i n t r = a ;
i f (b > a )
r = b + 1000 ; //a+2
assert (r>=a && r>=b ) ;
re turn r ;
}

i n t max ( i n t a , i n t b ) {
i n t r = a ;
i f (b > a )
r = b + 1 ; //a+2

assert (r>=a && r>=b ) ;
re turn r ;
}

1 i n t max ( i n t a , i n t b ) {
2 i n t r = b ; //a
3 i f (a > b ) //b>a
4 r = a + 2 ;
5 assert (r>=a && r>=b ) ;
6 re turn r ;
7 }

i n t max ( i n t a , i n t b ) {
i n t r = b + 1 ; //a
i f (a > b ) //b>a
r = a + 2 ;
assert (r>=a && r>=b ) ;
re turn r ;
}

i n t max ( i n t a , i n t b ) {
i n t r = b + 1000 ; //a
i f (b < a ) //b>a
r = a + 2 ;

assert (r>=a && r>=b ) ;
re turn r ;
}

The entire computation takes only three seconds. Some of the suggested repairs may be unsatisfactory
for a function that is supposed to compute the maximum of two integers. The reason is the incomplete
specification. If we refine this specification to also require that r must be equal to either a or b, we get
repairs that suggest to replace a + 2 by b, by a + b - r, by -a + b + r, by 3*a + b - 3*r,
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by 4*a + b - 4*r, etc. Since r=a holds at Line 4, all these suggestions are equivalent to the first
one and, hence, obviously correct.

Our extension WPLoc of Frama-C’s WP plug-in computes only single-fault diagnoses. Hence, it
does not report ∆2 = {c1, c2} but only ∆1 = {c3} as well as the expression “r” in Line 6 (because
the specification refers to the returned value and not to the content of variable r; see Example 33). This
takes only two seconds.

4.9.2.2 Traffic Collision Avoidance System (TCAS)

Our next example is the Traffic Collision Avoidance System (TCAS) for aircrafts from the Siemens
benchmark suite.14 It has first been used by Hutchins et al. [114] and can be seen as a standard benchmark
for automatic debugging. The TCAS program has 137 lines of code (not counting comments and blank
lines) spread over 8 functions, 12 integer inputs and one output. It comes in 41 faulty versions as well
as a reference implementation and 1608 test cases. When running FoREnSiC, we use an assertion that
compares the computed result with that of the reference implementation as a specification. For WPLoc,
we wrote pre- and postconditions for all functions in the code. The TCAS program does not contain any
loops, so writing loop invariants was not necessary for WPLoc.

Version 2. The faulty version number 2 contains the following function:

75 i n t Inhibit_Biased_Climb ( ) {
77 re turn (Climb_Inhibit ? Up_Separation + MINSEP : Up_Separation ) ;
78 }

Here, MINSEP is a constant (implemented as a preprocessor macro) with value 300. The correct refer-
ence implementation uses the constant NOZCROSS (value 100) instead of MINSEP. WPLoc reports two
potential fault locations, where one of them is the expression Up Separation + MINSEP in Line 77.
This takes only 8 seconds. Using LIA, FoREnSiC produces 11 diagnoses, whereof 3 are single-fault
diagnoses15 and the remaining 8 have a cardinality of 2. With a bound of 3 on the maximum number of
repairs to compute, FoREnSiC suggests to replace Up Separation + MINSEP in Line 77 by

• Up Separation + 100,
• -Down Separation + 2*Up Separation + 199, or
• -6*Down Separation + 7*Up Separation + 700.

The first repair directly corresponds to the code in the reference implementation. The latter two repairs
are correct (which is also confirmed by the model checker CBMC [61]) as well because the function
Inhibit Biased Climb() is only called in comparisons of the form Inhibit Biased Climb()
> Down Separation. With the second repair, this comparison becomes

-Down Separation + 2*Up Separation + 199 > Down Separation

= 2*Up Separation + 199 > 2*Down Separation

= Up Separation + 100 > Down Separation.

The last equality only holds because all variables are integers and program variable overflows are dis-
regarded when using LIA. The same reasoning applies to the third repair. FoREnSiC takes around 80
seconds to find these solutions.

14http://sir.unl.edu/portal/bios/tcas.php#siemens (last visit on 2015-08-01).
15Recall that WPLoc only performs fault localization for the functions that violate their local specification. FoREnSiC takes

a global view of the program and can also identify components outside of Inhibit Biased Climb as potentially faulty.
This is one reason for the difference in the number of reported single-fault diagnoses.

http://sir.unl.edu/portal/bios/tcas.php#siemens
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Table 4.1: Example repair process for TCAS version 28 using FoREnSiC. We compute three re-
pairs with the linear repair template. The first column gives the iteration number, the
next two columns the candidate replacements, and the last column indicates whether the
candidate was found to be correct or not. Even though the search space for expressions
is huge, correct solutions are found quickly.

Iteration Candidate replacement for Candidate replacement for Correct
Up Separation + NOZCROSS Up Separation

1 0 0 8

2 0 728 8

3 -1000 Up Separation + 1000 8

4 -1000 Up Separation + 100 8

5 -32768 High Confidence + 1000 8

6 -32768 Up Separation + 100 8

7 -Other Tracked Alt + 1 Other Tracked Alt - 260 8

8 -Other Tracked Alt + 1 -Other RAC - 615 8

9 Down Separation - 1000 -Climb Inhibit + 1000 8

10 Down Separation - 1000 Up Separation - 1000 8

11 Up Separation - 1000 Own Tracked Alt - 262 8

12 Down Separation - 1000 Other Tracked Alt - 261 8

13 Down Separation - 1000 Up Separation - 999 8

14 Up Separation Up Separation - 998 8

15 Up Separation - 1000 Up Separation + 1 8

16 Up Separation - 1000 Up Separation + 100 8

17 -Other Tracked Alt + 1 Up Separation + 100 8

18 Up Separation Up Separation + 100 4

19 Up Separation Up Separation + 2 8

20 Up Separation Up Separation + 99 8

21 Down Separation - Other RAC - 229 Up Separation + 100 8

22 Down Separation - Own Tracked Alt - 1 Up Separation + 100 8

23 -Own Tracked Alt + Up Separation - 1000 Up Separation + 100 8

24 -Other RAC + Up Separation - 229 Up Separation + 100 8

25 ALV + Up Separation - 1 Up Separation + 100 8

26 Up Separation -ALV + Up Separation + 101 8

27 -ALV + Up Separation + 1 Up Separation + 100 8

28 Climb Inhibit + Up Separation Up Separation + 100 4

29 Up Separation ALV + Up Separation + 99 8

30 -Climb Inhibit + Up Separation Up Separation + 100 4

Version 28. In this version of the TCAS program, Inhibit Biased Climb is implemented as:

75 i n t Inhibit_Biased_Climb ( ) {
77 re turn (Climb_Inhibit == 0 ? Up_Separation + NOZCROSS : Up_Separation ) ;
78 }

In the reference implementation, the condition Climb Inhibit == 0 of the ternary if is negated.
WPLoc takes 10 seconds to report two diagnoses, one of which is this condition. FoREnSiC reports 20
diagnoses and computes the expected fix within 30 seconds when run with appropriate parameters. How-
ever, with suboptimal parameters (running the diagnosis engine in the conservative mode using Equa-
tion 4.9 with too few execution paths analyzed by concolic execution), FoREnSiC does not find out that
Climb Inhibit == 0 may be wrong, but only that the if-part Up Separation + NOZCROSS
and the else-part Up Separation of the ternary if may be wrong simultaneously. We take this as
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an opportunity to illustrate the strength of our repair engine by showing that it finds a fix anyway.

Table 4.1 shows the repair candidates that are computed by the CEGIS loop when asking FoREnSiC
to synthesize three repairs using the linear repair template. Since the TCAS program has 12 global
integer variables, we have 26 template parameters for repairing the two expressions simultaneously.
But even though the parameter space is huge, the first solution is found already after 18 iterations. It
corresponds to swapping the if-part and the else-part of the ternary if in Line 77 of the TCAS
program. Since FoREnSiC is requested to compute two more repairs, it still continues after Iteration 18.
The additional repairs found in Iteration 28 and 30 are also correct because the if-part is only evaluated
if Climb Inhibit is 0. The repair process takes only 80 seconds, the entire execution time is 130
seconds. Our heuristic from Section 4.5.3 is crucial for CEGIS to converge to a solution so quickly. If this
heuristic is disabled, the tool just investigates utterly complex candidate expressions (mostly containing
all 12 global program variables in both expressions) until a solver timeout is hit.

4.9.2.3 Greatest Common Divisor Example

The following source code listing shows an optimized function (gcd) for computing the greatest common
divisor of two integer numbers on the right-hand side. This function contains a bug which is not easy
to see and even more difficult to fix: Line 41 should read u - v instead of u >> 1. The standard
Euclidean algorithm (function gcdR) is used as a reference implementation on the left-hand side.

1 # i n c l u d e <a s s e r t . h>
2 # i n c l u d e < f o r e n s i c . h>
3 # d e f i n e UI unsigned i n t
4
5 //<ASSUME_CORRECT>
6 UI gcd (UI u , UI v ) ;
7 UI gcdR (UI a , UI b ) {
8 i f (a == 0)
9 re turn b ;

10 whi le (b != 0 ) {
11 i f (a > b )
12 a = a − b ;
13 e l s e
14 b = b − a ;
15 }
16 re turn a ;
17 }
18 void main ( ) {
19 UI a , b ;
20 FORENSIC_input_UI (a ) ;
21 FORENSIC_input_UI (b ) ;
22 assert (gcdR (a ,b ) == gcd (a ,b ) ) ;
23 }
24 //</ASSUME_CORRECT>

25 UI gcd (UI u , UI v ) {
26 UI shift = 0 ;
27 i f (u == 0 | | v == 0)
28 re turn u | v ;
29 f o r ( ; ( ( u |v ) &1) ==0; ++shift ) {
30 u >>= 1 ;
31 v >>= 1 ;
32 }
33 whi le ( (u & 1) == 0)
34 u >>= 1 ;
35 do {
36 whi le ( (v & 1) == 0)
37 v >>= 1 ;
38 i f (u <= v ) {
39 v −= u ;
40 } e l s e {
41 UI tmp = u >> 1 ;
42 u = v ;
43 v = tmp ;
44 }
45 v >>= 1 ;
46 } whi le (v != 0 ) ;
47 re turn u << shift ;
48 }

This example is challenging for FoREnSiC in various respects. First, it mixes arithmetic operations with
bitwise operation. We will thus run FoREnSiC with bitvector arithmetic as theory for SMT solving.
Second, due to the many loops in the program, the number of possible execution paths is huge, which
makes exhaustive program analysis using symbolic or concolic execution infeasible.

Fault localization. The fault localization results are not particularly impressive: with rather low
parameters for the program analysis depth, FoREnSiC reports 9 of the 15 components that are identified
in gcd as potentially faulty. This takes only 4 seconds. Higher parameters for the program analysis
depth reduce the number of diagnoses to 6, but this computation takes already 120 seconds.
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Fault correction with our basic method. Our basic method for fault correction (Section 4.5) does
not work at all for this example. It either finds no repair (when using the conservative mode, i.e., Equa-
tion 4.9), incorrect repairs (when using the non-conservative mode, i.e., Equation 4.8), or the solver hits
a timeout (when choosing too high analysis depth parameters).

Fault correction with on-the-fly program analysis. Our repair method with on-the-fly program
analysis (Section 4.7) and test cases as a specification still performs well. As test inputs, we take all pairs
a, b with 0 ≤ a, b < 100. The number 100 was chosen arbitrarily, the correct repair is also found with
lower numbers like 15. For program analysis, we do not limit the number of execution paths to analyze,
but rather their length. With two or three invocations of our method, we found out that a length of 55 is
enough.16 Using these parameters and Z3 with bitvector arithmetic, our method encounters the sequence
of repair candidates “873”, “12”, “u - 2”, and “u - v” in 80 seconds. The last one, “u - v”, was
found to be correct.

4.9.2.4 DLX Processor

Our next example is a C program that emulates a DLX processor, which is a RISC processor architecture
introduced by Patterson and Hennessy in a textbook on computer architecture [172]. Assertions in the
code are used as a specification. Including assertions but excluding blank lines and comments, the
processor emulator has 526 lines of code. Instructions are executed in three phases. The FETCH phase
reads the next instruction from memory, the DECODE phase decomposes it, and the EXECUTE phase
finally executes the instruction. For our debugging experiment with FoREnSiC, we place only one
instruction in memory. This instruction (4 byte) is modeled as an input. Bitvector arithmetic is used as
theory for SMT solving.

Bug in instruction fetching. The first bug we consider is in a function that reads a 32 bit word from
memory. It is called when fetching the next instruction from memory.

442 unsigned read32 ( unsigned addr ) {
443 unsigned res = mem [addr ] ;
444 res <<= 8 ;
445 res |= mem [addr+ 1 ] ;
446 res <<= 8 ;
447 res |= mem [addr+ 2 ] ;
448 res <<= 8 ;
449 res |= mem [addr+ 3 ] ;
450 res <<= 8 ; //BUG: remove.
451 re turn res ;
452 }

52 void fetch ( ) {
53 ir = read32 (pc ) ;
54 assert (ir & 0xFF == mem [pc+ 3 ] ) ;
55 assert (ir & 0xFF00
56 == mem [pc+2] << 8) ;
57 assert (ir & 0xFF0000 )
58 == mem [pc+1] << 16) ;
59 assert (ir & 0xFF000000
60 == mem [pc ] << 24) ;
61 pc += 4 ;
62 }

Line 450 contains a copy-paste mistake: this line should be removed. With the assertions in the fetch()
function, the bug is easy to detect, locate and repair for FoREnSiC. With a limit of 3 repairs per diag-
nosis, FoREnSiC reports 16 repairs within a total execution time of only 5 seconds. Among them are
suggestions to replace the statement in Line 450 by res = res; or res = 4294967295 & res;,
which are both equivalent to removing this statement (because 4294967295 is 0xFFFFFFFF in hex-
adecimal representation). Other repairs make the processor halt (and the C program terminate) before
fetch() is even called. This successfully prevents an assertion violation because the assertion is never
executed. Such repairs are clearly undesirable but result from the way we define correctness with respect
to assertions. We will leave this issue for future work (see Section 6.3.2).

16This number roughly corresponds to the number of executed statements.
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Bug in instruction decoding. The next bug we consider is a faulty bitmask in Line 102 of the
instruction decoding routine. Assertions again serve as a specification:

94 void decode ( ) {
95 opcode = ir >> 2 6 ;
96 rega = (ir >> 21) & 0x1F ;
97 regb = (ir >> 16) & 0x1F ;
98 regc = (ir >> 11) & 0x1F ;
99 uimm16 = ir & 0xFFFF ;

100 imm16 = uimm16 ;
101 i f ( (uimm16 & 0x8000 ) != 0 )
102 imm16 |= 0xFFFFF000 ; // correct: |= 0xFFFF0000
103 unsigned uimm26 = ir & 0x3FFFFFF ;
104 imm26 = uimm26 ;
105 i f ( (imm26 & 0x02000000 ) != 0 )
106 imm26 |= 0xFC000000 ;
107 func = ir & 0x7FF ;
108
109 // Some sanity checks:
110 assert ( (opcode & 0xFFFFFFC0 ) == 0) ; // opcode has only 6 bit
111 // ... some more assertions are not printed here ...
112 // imm16 and uimm16 must represent the same 16 bit value
113 assert ( (uimm16 & 0xFFFF ) == (imm16 & 0xFFFF ) ) ;
114 // a negative number implies that sign extension has been done:
115 assert ( (uimm16 & 0x8000 ) == 0 | | (imm16 & 0xFFFF0000 ) == 0xFFFF0000 ) ;
116 // a non-negative number implies that the upper bits are zero:
117 assert ( (uimm16 & 0x8000 ) != 0 | | (imm16 & 0xFFFF0000 ) == 0) ;
118 }

With a limit of 5 repairs per diagnosis, FoREnSiC takes only 18 seconds to produce 25 repairs. Some
repairs again make the processor halt before decode() is reached. The repairs for Line 102 suggest a
replacement with one of the following statements17:

(1) imm16 = 0xFFFF0000 | ir;

(2) imm16 = 0xFFFF8000 | ir;

(3) imm16 = 0xFFFF0000 | uimm16;

(4) imm16 = 0xFFFF0000 | imm16;

(5) imm16 = 0xFFFF8000 | imm16;

Repair (4) corresponds to the expected solution. Repair (3) is equivalent because uimm16 is equal to
imm16 at Line 102. Repair (5) is also correct because Line 102 is only executed if bit number 16 is set
in uimm16 and imm16. Hence, there is no difference between the bitwise OR with 0xFFFF8000 and
0xFFFF0000. The first two repairs are correct as well because imm16 and ir share the same lower 16
bit. In summary, even though the function decode() is rather short, its code is all but trivial. Detecting,
locating and fixing subtle bugs like wrong bitmasks can be very cumbersome for a human developer.
FoREnSiC takes only a few seconds to suggest reasonable fixes automatically. More examples of bugs
in the DLX processor design can be found in the downloadable FoREnSiC archive.

4.9.3 Performance Evaluation

In this section, we evaluate and compare the performance and the diagnostic resolution of our approach
in various configurations. All experiments are performed on a notebook with an Intel Core i5-3320M
processor running at 2.6 GHz, 8GB of RAM, and a 64 bit Linux operating system. We use FoREnSiC

17Constants have been transformed into hexadecimal representation manually and bitwise ANDs with 0xFFFFFFFF have
been removed manually in order to increase readability.
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always with the SMT solver Z3 version 4.4.0 via its API. Our extension WPLoc of Frama-C’s WP
plug-in uses the theorem prover Alt-Ergo version 0.95.

4.9.3.1 Fault Localization Results

Table 4.2 summarizes performance results for fault localization on the 41 faulty versions of the TCAS
benchmark. See Section 4.9.2.2 for a description of this benchmark. Column 1 lists the TCAS version
number. Column 2 indicates whether the bug in the respective version matches our fault model of incor-
rect expressions. This is the case for around 60 % of the versions. The remaining 40 % contain wrong
control flow18, missing code or wrong array sizes or indices. The number of source code modifications
compared to the reference implementation is given in Column 3. Most of the introduced bugs are single-
faults but some versions contain several simultaneously faulty program parts. The Columns 4 and 5 give
the execution time and the number of potential fault locations reported by the tool Bug-Assist [130],
which serves as a baseline for comparison. The Columns 6 to 9 give results for FoREnSiC when run-
ning fault localization in the non-conservative mode (using Equation 4.8). The maximum number of
execution paths to analyze in the program analysis step was limited to 400, the number |J | of input
vectors was set to 3, and the diagnosis engine was run with all optimizations (unsatisfiable cores and
incremental solving). The program analysis time (not listed in Table 4.2) is around 16 seconds for all
versions. The fault localization time is given in Column 6. The Columns 7 to 9 list the number of reported
Single Fault Diagnoses (SFDs), the total number of reported diagnoses, and the sum of the diagnosis car-
dinality, respectively. The Columns 10 to 13 give the same information when using the conservative
mode (Equation 4.9 instead of Equation 4.8). TCAS version 38 contains a wrong array size. FoREnSiC
does not detect this bug and thus does not start the diagnosis engine. Finally, the last two columns show
the execution time and the number of reported (single-fault) diagnoses when using WPLoc.

Bug-Assist. The tool Bug-Assist [130] computes diagnoses from a counterexample using a solver
for maximum satisfiability [131]. See Section 5.3 for a discussion of the working principle of this ap-
proach. Just as for FoREnSiC, we used the TCAS reference implementation with an assertion comparing
the results as a specification. With only 6.9 seconds on average, Bug-Assist is very fast (Column 4).
However, as can be seen from Column 5, it also produces quite a high number of potential fault locations
(15 on average)19.

FoREnSiC in non-conservative mode. With the parameters chosen for Table 4.2 (at most 400
execution paths, |J | = 3 input vectors; different parameters will be explored in the next paragraphs),
the non-conservative mode is very fast in doing fault localization: it takes only 1.4 seconds on average
(Column 6). Note, however, that this number does not include the time for program analysis, which is
around 16 seconds. Unfortunately, this configuration produces a rather high number of diagnoses: Our
preprocessing identifies between 74 and 79 components in the program, and 34 of them are reported as
potential SFDs on the average (Column 7). This number is twice as high as with Bug-Assist. However,
Bug-Assist reports its results as potentially faulty lines of code, while our approach often identifies
several components per line of code. For cases where the number of single-fault diagnoses is low,
our approach often reports a high number of diagnoses with higher cardinality (Column 8 and 9). Since
diagnoses of higher cardinality can be considered as less likely, it is important that our approach computes
diagnoses in the order of increasing cardinality and that the user can set a bound on the number and the
cardinality of diagnoses to compute. One reason for the limited diagnostic resolution is that we only
analyzed a small portion of the execution paths in the preprocessed program P̂ . The program does not
contain any loops. Nevertheless, exhaustive program analysis is infeasible: We aborted an experiment to
analyze all execution paths of P̂ after around 2 · 105 execution paths and 6 hours.

18Logical connectives such as && or || in if-conditions are often swapped. Our front end decomposes if-conditions
containing such connectives into several if-statements. E.g., if(a && b) is decomposed into if(a){if(b){...}}.
The reason is the lazy evaluation semantic in the programming language C, saying that b must only be evaluated if a is true.

19We manually subtracted the number of potential fault locations that were reported within in the reference implementation.
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Table 4.2: Performance results for fault localization on the TCAS benchmark. Bug-Assist [130]
serves as baseline for comparison. Results with FoREnSiC are reported for two modes:
the non-conservative mode using Eq. 4.8 and the conservative mode using Eq. 4.9, both
with a program analysis limit of 400 execution paths and |J | = 3 input vectors. For
TCAS version 38, no bug was detected. WPLoc was run with default parameters. The
last line lists the average per column. The symbol # is short for “number of”.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bug-Assist FoREnSiC + Eq. 4.8 FoREnSiC + Eq. 4.9 WPLoc
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[-] [-] [sec] [-] [sec] [-] [-] [-] [sec] [-] [-] [-] [sec] [-]

1 Yes 1 7.8 16 0.7 48 53 58 1.4 3 3 3 20 4
2 Yes 1 9.8 17 0.4 34 91 148 1.4 1 5 9 6.9 2
3 No 1 10 17 1.7 28 367 706 2.7 1 38 119 111 13
4 No 1 7.5 17 1.0 40 64 90 2.0 4 4 4 22 0
5 No 1 4.3 18 5.1 26 382 824 2.1 2 35 92 84 7
6 Yes 1 5.6 17 0.5 44 49 54 1.5 2 6 10 6 2
7 Yes 1 7.6 17 0.9 27 370 713 1.7 1 17 65 6 1
8 Yes 1 8.1 15 1.0 32 337 642 1.6 1 17 65 6.8 1
9 Yes 1 8.6 13 0.5 42 47 52 2.1 2 3 4 20 2
10 Yes 2 11 18 1.5 41 80 119 1.4 1 1 1 6.9 4
11 No 3 6.3 9 4.6 29 356 697 0.4 0 0 0 6.9 4
12 No 1 5.5 18 1.1 41 48 55 1.0 3 14 25 89 5
13 Yes 1 6.7 16 3.3 29 368 707 2.6 3 40 121 111 8
14 Yes 1 7 8 0.1 10 10 10 1.0 1 1 1 104 2
15 No 2 4.4 18 2.3 25 334 643 2.5 1 20 39 35 6
16 Yes 1 7.7 16 1.0 27 370 713 1.6 1 17 65 6.8 1
17 Yes 1 8 16 0.9 27 370 713 1.7 1 17 65 6.8 1
18 Yes 1 7.8 16 1.0 27 370 713 1.7 1 17 65 6.8 1
19 Yes 1 7.9 16 0.9 27 370 713 1.6 1 17 65 7 1
20 Yes 1 7.3 17 0.6 45 50 55 2.5 6 7 8 20 2
21 Yes 1 10 17 0.2 45 47 49 1.5 5 5 5 18.4 2
22 Yes 1 7.1 16 0.1 40 42 44 1.3 1 1 1 18.3 2
23 Yes 1 8.7 13 0.2 42 44 46 1.6 1 1 1 18.4 2
24 Yes 1 10 17 0.2 45 47 49 1.8 5 5 5 18.5 2
25 Yes 1 6.8 16 0.6 46 51 56 1.4 3 3 3 20 3
26 No 1 6.2 17 4.1 28 367 706 2.8 2 39 120 93 8
27 No 1 4.2 18 5.1 26 382 824 2.1 2 35 92 87 7
28 Yes 1 8.2 14 3.1 26 605 1524 1.5 0 11 26 10 2
29 Yes 1 7.4 13 0.5 33 91 149 0.5 0 4 8 5.6 1
30 Yes 1 9.1 17 0.5 15 152 289 0.5 0 4 8 6 2
31 No 3 3.4 15 0.1 35 40 45 1.7 1 41 373 129 10
32 No 3 3.2 17 0.2 34 41 48 0.9 1 1 1 102 7
33 No 4 0.3 1 3.3 32 337 642 1.6 1 17 65 6.8 0
34 No 1 4.3 18 2.2 24 380 822 1.6 2 35 92 30 1
35 Yes 1 10 18 3.0 26 605 1524 1.6 0 11 26 7 2
36 Yes 1 4.3 15 0.7 48 53 58 0.6 0 0 0 129 13
37 No 1 7.4 15 1.0 32 337 642 0.5 1 17 65 6.1 0
38 No 1 0.3 1 - - - - - - - - 5.2 0
39 Yes 1 7 16 0.6 46 51 56 1.4 3 3 3 20 3
40 No 2 7.6 16 0.4 41 46 51 2.3 0 180 1854 80 8
41 No 1 6.4 16 0.6 42 47 52 1.9 4 4 4 17 3

Avg. 61% 1.3 6.9 15 1.4 34 206 403 1.6 1.7 17 89 37 3.5



4.9. Experimental Results 143

Table 4.3: Fault localization results for TCAS with different values of |J |. All entries are averages
over all TCAS instances. For both the non-conservative mode (Eq. 4.8) and the conser-
vative mode (Eq. 4.9), the number of analyzed execution paths was limited to 400. The
symbol # is short for “number of”.

FoREnSiC + Eq. 4.8 FoREnSiC + Eq. 4.9

|J | 1 2 3 5 10 1 2 3 5 10

Avg. # SFDs 45.2 36.9 33.9 32.5 31.7 2.43 1.95 1.70 1.55 1.33
Avg. fault loc. time [sec] 0.16 0.63 1.39 2.72 6.21 0.51 1.10 1.59 3.10 8.51

FoREnSiC in conservative mode. The conservative mode appears to cope with the highly incom-
plete diagnostic information obtained by our shallow program analysis way better. On average, only
1.7 single-fault diagnoses are reported (Column 11). For those 23 versions where the introduced bug
directly corresponds to a set of components identified by FoREnSiC, we investigated the reported di-
agnoses manually. Only in 17 % of the cases, the expected diagnosis was missed. For 11 cases, the
expected diagnosis was reported as the only SFD. In 6 of these 11 cases, all non-single-fault diagnoses
had a cardinality of at least 4. Moreover, these excellent results are achieved within very short execution
times (Column 10).

WPLoc. With an average execution time of 37 seconds (Column 14), our fault localization approach
based on deductive verification is the slowest configuration investigated in Table 4.2. On the positive
side, the number of reported SFDs is much lower than with Bug-Assist. Note, however, that WPLoc
faces a simpler task: since the specification is given in the form of pre- and postconditions for each
function, WPLoc only needs to locate the fault within the functions for which verification fails. In the
conservative mode, FoREnSiC still produces fewer SFDs than WPLoc, even though it operates on a
global specification. However, while FoREnSiC missed the expected diagnosis in 17 % of the cases,
WPLoc did not miss the expected diagnosis in any of the cases where the fault model matches. We
therefore consider WPLoc as the configuration with the highest diagnostic resolution in Table 4.2.

Impact of |J |. Table 4.3 investigates different trade-offs between execution time and diagnostic
resolution that can be achieved with FoREnSiC using different numbers |J | of input vectors that are
considered simultaneously (see Section 4.3.2). The first line gives the number of single-fault diagnoses
that are reported on the average over all TCAS instances. The second line lists the average execution
time. As in Table 4.2, this number does not include the time for program analysis, which is 16 seconds
on average. The program analysis depth was again limited to 400 execution paths. The percentage of
missed expected diagnoses (17 % when using Equation 4.9 and 4 % when using Equation 4.8) does not
change with |J | in Table 4.3. We can observe that using more than one input vector is indeed beneficial
for the amount of reported SFDs. However, for larger values of |J |, the effect levels out. This experiment
suggests that taking only a few input vectors can be a reasonable choice. The execution time increases
with |J | but is still low compared to the program analysis time, even for |J | = 10.

Impact of the program analysis depth. Table 4.4 summarizes fault localization results with dif-
ferent limits on the number of execution paths to analyze. The first line gives the average number of
single-fault diagnoses that are reported. For those 23 TCAS versions where the introduced bug corre-
sponds to components identified by FoREnSiC, we again investigated if the expected diagnosis was
reported. The second line gives the percentage of the cases where this expected diagnosis was missed.
The last two lines give the average execution time for fault localization and program analysis, respec-
tively. We can observe that the number of reported SFDs is not affected significantly by the number of
explored execution paths. The percentage of missed diagnoses increases strongly for low numbers of
analyzed execution paths. The main effect here is that for very low numbers, no bug is detected so the
diagnosis engine is not even started. If enough paths were analyzed to detect a bug, even significant
increases of the number of execution paths do not yield noticeable improvements any more. The execu-
tion time for fault localization is very low compared to that for program analysis. This is mostly due to
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Table 4.4: Fault localization results for TCAS with different program analysis depths. All entries
are averages over all TCAS instances. For both the non-conservative mode (Eq. 4.8) and
the conservative mode (Eq. 4.9), the number of |J | of input vectors was set to 3. The
symbol # is short for “number of”.

FoREnSiC + Eq. 4.8 FoREnSiC + Eq. 4.9

# analyzed execution paths 50 100 200 400 4000 50 100 200 400 4000

Avg. # SFDs 35.8 34.8 34.6 33.9 33.8 1.71 1.70 1.72 1.70 1.70
Exp. diagnosis missed [%] 26 17 9 4 4 39 30 22 17 17
Avg. fault loc. time [sec] 0.34 0.48 0.77 1.39 2.26 0.21 0.35 0.69 1.59 4.62
Avg. prog. anal. time [sec] 2.90 4.73 8.49 16.2 243 2.80 4.68 8.49 16.7 261

making use of unsatisfiable cores and incremental solving, as illustrated in the next paragraph.

Impact of exploiting solver features. Figure 4.4 presents a scatter plot that illustrates the speedup
we achieve in fault localization on the TCAS benchmark by exploiting features of the underlying SMT
solver. The x-axis gives the fault localization time without incremental solving and without using unsatis-
fiable cores computed by the SMT solver. The y-axis contains the execution time when these features are
enabled. Each point in the diagram corresponds to one TCAS instance for a certain number of analyzed
execution paths and a certain number |J | of input vectors. We varied these parameters as in Table 4.3
and Table 4.4 to obtain all the data points shown in Figure 4.4.

The blue pluses illustrate the speedup due to exploiting unsatisfiable cores computed by the SMT
solver. The average fault localization time is reduced from 146 seconds to only 42 seconds, which corre-
sponds to a speedup factor of around 3.5. The average over the individual speedup factors is even 6.3. We
can see that the blue data points are roughly clustered into two clouds. The upper cloud corresponds to the
non-conservative mode (using Equation 4.8), the lower cloud to the conservative mode (Equation 4.9).
One reason for the higher speedups in the conservative mode can be that it produces more diagnoses of
higher cardinality, for which a larger number of conflicts need to be computed and minimized.

The red crosses illustrate the speedup that is achieved using unsatisfiable cores and incremental
solving together. The average computation time decreases from 146 seconds to only 2.2 seconds. This
is a speedup of a factor of 66. The average over the individual speedup factors is 62.

4.9.3.2 Fault Correction Results

We now investigate the performance of our program repair approach, as implemented in FoREnSiC,
on the TCAS benchmark. A comparison of different parameter configurations will then be performed
in Section 4.9.3.3. Section 4.9.3.4 will finally compare the performance of FoREnSiC with that of the
program sketching tool Sketch [196, 197].

Setup. As a basis for fault correction, we use the two fault localization configurations from Table 4.2
(400 execution paths analyzed, |J | = 3 input vectors, one configuration uses Equation 4.8, the other one
Equation 4.9). The repair engine is always run in the non-conservative mode, i.e., using Equation 4.8.
On-the-fly program analysis is disabled, our heuristic for computing simple repair candidates and nasty
counterexamples (see Section 4.5.3) is enabled, and incremental SMT solving is enabled as well. We
also perform an additional program analysis pass per diagnosis to repair (see Section 4.8) in order to
obtain more accurate diagnostic information. The maximum size of diagnoses to repair is set to 1 (i.e.,
only single-fault diagnoses are repaired) and the maximum number of repairs to compute per diagnosis
is limited to 3. Linear integer arithmetic is used as theory for SMT solving and Z3 is used as solver.
We did not impose a limit on the maximum number of repair candidate refinements in the CEGIS loop
but set a timeout of 60 seconds for all SMT solver calls. Other configurations will be investigated in
Section 4.9.3.3.
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Figure 4.4: A scatter plot illustrating the speedup due to exploiting solver features in fault local-
ization on the TCAS benchmark. The x-axis contains the fault localization times with-
out incremental solving and without using unsatisfiable cores computed by the SMT
solver. The y-axis gives the execution time when unsatisfiable cores (blue pluses) and
incremental solving (red crosses) are enabled. Note the logarithmic scale on both axes.

Table of results. Table 4.5 summarizes performance results in this setup for the 41 faulty versions
of the TCAS benchmark. Just like in Table 4.2, Column 1 lists the TCAS version number and Column 2
indicates whether the bug in the respective version matches our fault model of incorrect expressions. The
Columns 3 to 7 give fault correction statistics when using the fault localization setting from Table 4.2 in
the non-conservative mode (i.e., using Equation 4.8). The number of single-fault diagnoses (SFDs) that
are used as a basis for computing repairs is shown in Column 3. Column 4 gives the total time spent
on fault correction, including the time for additional program analysis passes. Column 5 lists the total
number of reported repairs. We used the model checker CBMC [61] to check if the computed repairs are
indeed equivalent to the reference implementation. Column 6 gives the number of repairs for which this
was the case. Column 7 finally lists the time spent by the repair engine until the first repair is reported.
The Columns 8 to 12 give the same information but with diagnoses computed in the conservative mode
(using Equation 4.9).

Missed repairs. Even if the fault model matches, FoREnSiC is unable to find a repair in 5 cases
(compare Column 2 and 5). For the TCAS versions number 22, 23 and 24, the reason is that the faulty
expression is missing a call to a (side-effect-free) function. However, we only define our templates as
expressions over all program variables that are in scope. An extension to also include calls to side-
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Table 4.5: Performance results for fault correction with FoREnSiC on the TCAS benchmark.
FoREnSiC was run with the two fault localization settings from Table 4.2, i.e., us-
ing Eq. 4.8 and Eq. 4.9. The repair engine was run using Eq. 4.8 in both cases. The
maximum size of diagnoses to repair was set to 1, the maximum number of repairs to
compute per diagnosis was set 3. The symbol # is short for “number of”. The last line
lists the average per column.

1 2 3 4 5 6 7 8 9 10 11 12

FoREnSiC + Eq. 4.8 FoREnSiC + Eq. 4.9
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[-] [-] [sec] [-] [-] [sec] [-] [sec] [-] [-] [sec]

1 Yes 48 3078 16 16 799 3 275 3 3 223
2 Yes 34 839 3 3 91 1 57 3 3 16
3 No 28 1669 0 0 - 1 15 0 0 -
4 No 40 2377 19 18 44 4 105 6 6 23
5 No 26 1172 0 0 - 2 30 0 0 -
6 Yes 44 2290 19 3 273 2 39 3 2 39
7 Yes 27 545 3 3 7 1 8 3 3 8
8 Yes 32 1203 19 19 8 1 8 3 3 8
9 Yes 42 1480 3 3 209 2 83 3 3 83
10 Yes 41 2588 8 8 583 1 118 0 0 118
11 No 29 731 0 0 - 0 - - - -
12 No 41 1321 0 0 - 3 73 0 0 -
13 Yes 29 1355 3 3 290 3 138 3 3 41
14 Yes 10 492 3 3 68 1 57 3 3 36
15 No 25 961 0 0 - 1 18 0 0 -
16 Yes 27 993 31 3 7 1 7 3 3 7
17 Yes 27 525 3 3 7 1 8 3 3 8
18 Yes 27 619 6 3 8 1 9 3 3 8
19 Yes 27 937 13 3 7 1 7 3 3 7
20 Yes 45 2687 18 18 112 6 447 3 3 107
21 Yes 45 2718 10 10 2417 5 473 0 0 473
22 Yes 40 1173 0 0 - 1 78 0 0 -
23 Yes 42 1369 0 0 - 1 145 0 0 -
24 Yes 45 2711 0 0 - 5 405 0 0 -
25 Yes 46 1924 3 3 915 3 121 3 3 111
26 No 28 1390 0 0 - 2 107 0 0 -
27 No 26 1153 0 0 - 2 32 0 0 -
28 Yes 26 530 2 2 8 0 - - - -
29 Yes 33 647 0 0 - 0 - - - -
30 Yes 15 202 0 0 - 0 - - - -
31 No 35 1943 19 19 188 1 13 3 3 13
32 No 34 1924 22 22 308 1 13 3 3 13
33 No 32 794 0 0 - 1 16 0 0 -
34 No 24 872 3 2 562 2 40 0 0 40
35 Yes 26 523 2 2 11 0 - - - -
36 Yes 48 939 1 1 939 0 - - - -
37 No 32 847 0 0 - 1 136 0 0 -
38 No - - - - - - - - - -
39 Yes 46 1888 3 3 916 3 116 3 3 109
40 No 41 1098 15 15 219 0 - - - -
41 No 42 2685 20 20 180 4 123 6 6 22

Avg. 61% 34 1380 6.7 5.2 526 1.7 101 1.9 1.9 69



4.9. Experimental Results 147

effect-free functions would be possible20, but increases the search space for repairs and thereby the
potential computational effort for finding correct repairs. For the TCAS versions 29 and 30, the faulty
expression is not identified as a component in the preprocessing phase. Recall from Section 4.9.1.1 that
our implementation only considers the conditions and the right-hand sides of assignments as potentially
faulty components, relying on the front end to assign non-trivial expressions to fresh variables before
they are used. This approach works well in most cases, but fails for these two versions. The version with
conservative fault localization fails to find repairs for some more versions where the fault model matches
(compare Column 2 and 10). The reason lies in diagnoses being missed by the fault localization step.

Unexpected repairs. For 6 TCAS versions where the fault model does not match, FoREnSiC is able
to find repairs nevertheless. As an example, we discuss Version 41, which contains the following code.

1 i n t Non_Crossing_Biased_Climb ( ) {
2 i n t result = 0 ;
3 i f (Inhibit_Biased_Climb ( ) > Down_Separation ) {
4 result = [code skipped ]
5 } e l s e {
6 // deleted: if(Own_Above_Threat())
7 i f (Cur_Vertical_Sep >= 300)
8 i f (Up_Separation >= ALIM ( ) )
9 result = 1 ;

10 }
11 re turn result ;
12 }

The deletion of Line 6 makes the function Non Crossing Biased Climb return 1 in cases where
only 0 would render the entire TCAS program correct. One repair suggested by FoREnSiC is to modify
the condition in Line 7 to 0 != 0, i.e., to false. This is surprising, because it makes the entire else-
part obsolete. The reason why this works is that the function Non Crossing Biased Climb is only
used in a statement

need upward RA = Non Crossing Biased Climb() && Own Below Threat();

in some other function. That is, need upward RA can only be 1 if Own Below Threat() returns 1.
Yet, if Own Below Threat() gives 1, then Own Above Threat() necessarily returns 0. Hence,
the else-part in the reference implementation is indeed obsolete and can be removed. FoREnSiC finds
19 more repairs for the problem. Some are similar in spirit to the discussed fix. Other repairs modify
the computation or the use of need upward RA. For other TCAS versions, the author of this thesis
often failed to comprehend why certain repairs produced by FoREnSiC render the program correct (but
correctness was confirmed by the model checker CBMC [61]). This illustrates that FoREnSiC can
produce non-trivial fixes that may not be obvious for the user.

Correctness of repairs. We verified the computed repairs using the model checker CBMC [61].
With the diagnoses computed in the non-conservative mode (using Equation 4.8), 208 of the 267 reported
repairs were found to be correct (compare Column 5 and 6 in Table 4.5). With the diagnoses computed in
conservative mode (using Equation 4.9), only one of the 63 computed repairs was incorrect (Column 10
versus 11). The reason for the incorrect repairs is that we run the repair engine in the non-conservative
mode (using Equation 4.8) but limited the program analysis depth to only 400 execution paths. When we
increase the number to 2000 execution paths, only correct repairs are reported. The average execution
time per instance increases from 1380 seconds to 2175 seconds in Column 4, and from 101 to 157
seconds in Column 9. This illustrates how our approach can trade performance for accuracy.

20For instance, for each side-effect-free function foo(p1, ..., pn)we could add the code block int p1 = 0; ...
int pn = 0; int rfoo = foo(p1, ..., pn); at the beginning of each function during the preprocessing phase.
The repair engine can then use the variable rfoo in repair templates. It can also repair assignments to the parameter variables
p1, . . . , pn to find appropriate arguments for the function call.
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Table 4.6: Performance results for fault correction on the TCAS benchmark with FoREnSiC in
different configurations. All configurations had a program analysis depth limit of 2000
execution paths. The given numbers are averages over 26 TCAS instances. The symbol
# is short for “number of”.

C
on

fig
ur

at
io

n Number 1 2 3 4 5 6 7

Program analysis 2x 2x 2x 2x 1x otf otf
Candidate verification SMT SMT SMT SMT SMT test test
Conservative No Yes No No No No No
Heuristics Yes Yes Yes No Yes Yes Yes
Incremental solving Yes Yes No Yes Yes Yes No

R
es

ul
ts

# correct repairs 26 24 26 15 4 26 26
Avg. fault corr. time [sec] 22.8 35.2 44.4 101 12.9 10.3 10.8
Avg. # iterations 6.73 9.76 6.88 621 3.42 5.58 5.77
Avg. cand. comp. time [sec] 0.37 11.7 21.8 53.7 7.84 0.04 0.44
Avg. cand. verif. time [sec] 0.21 0.59 0.21 17.0 0.13 1.63 1.58

Execution time. With the many diagnoses computed using Equation 4.8, fault correction already
takes around 25 minutes per TCAS instance on average (Column 4). One reason is also that we asked
the repair engine to compute 3 diagnoses per repair. The average time until the first repair is reported is
less than 10 minutes (Column 7). With the smaller amount of diagnoses found using Equation 4.9, the
repair engine takes only 2 minutes on average (Column 9). Compared to the time for program analysis
(16 seconds on average) and fault localization (only a few seconds), we can thus conclude that fault
correction dominates the total debugging time, which is not surprising. In any case, even though the
TCAS benchmark contains logic that is all but trivial, the total debugging times are still acceptably low.

4.9.3.3 Comparison of Different Fault Correction Configurations

In this section, we evaluate and compare the performance of FoREnSiC’s repair engine in different
configurations. The performance results in Table 4.5 are strongly influenced by the accuracy of the
diagnoses reported by the preceding fault localization step. In order to eliminate this effect, we now take
only the 26 TCAS instances for which a repair has been found in Table 4.5 (thus we know that a repair
exists). For these instances, we let FoREnSiC compute one repair for one diagnosis that has a solution.

Results. Table 4.6 summarizes the results. The upper six rows describe the compared configura-
tions, the lower five rows summarize the corresponding performance results. The first row assigns a
unique number to each configuration. The program analysis entry “2x” means that an additional pro-
gram analysis pass (see Section 4.8) for the diagnoses is performed to obtain more accurate diagnostic
information, “1x” means that this pass is skipped, and “otf” means that program analysis is done on the
fly (Section 4.7). Candidate verification is either done by computing a counterexample using an SMT
solver call on the negated correctness formula (entry “SMT”) or by executing the 1608 test cases (entry
“test”) for the TCAS program. The fourth row indicates whether the repair engine was run in conserva-
tive mode (using Equation 4.9) or in the non-conservative mode (using Equation 4.8). The row labeled
by “Heuristics” indicates if our heuristics for computing simple candidates and nasty counterexamples
(Section 4.5.3) are enabled. The last row describing the configuration indicates whether incremental
SMT solving is enabled or disabled. In all configurations, the program analysis depth was limited to
2000 execution paths. The rows in the lower part of Table 4.6 summarize the number of benchmark
instances for which a repair was found, the total fault correction time (including the execution time for
additional program analysis passes) on the average over the instances, the average number of iterations
of the CEGIS loop, and the average (over the benchmark instances) of the total time for computing repair
candidates and for verifying them, respectively.
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Discussion. Configuration 1 serves as baseline for our investigation. It is essentially the configuration
that is also used in Table 4.5 but with the difference that we analyzed up to 2000 execution paths instead
of 400 to avoid incorrect repairs.

Conservative mode. When using the conservative mode (Configuration 2), the average time for re-
pair candidate computation increases significantly (from 0.37 to 11.7 seconds) and we even hit a timeout
for one case. One reason is that concolic execution usually finds way more execution paths that satisfy
the specification than ones violating the specification. Consequently, the correctness formula computed
with Equation 4.9 is often much larger than with Equation 4.8. For a second TCAS instance, FoREnSiC
concludes that no repair exists, which means that analyzing 2000 execution paths was still not enough
when using Equation 4.9.

Incremental solving. When disabling incremental SMT solving (Configuration 3 versus 1), the
average repair candidate computation time increases even more significantly (from 0.37 to 21.8 seconds).
That is, the effect of incremental SMT solving to candidate computation (the only place where it is
applied) is enormous. Even though the total fault correction time is also significantly influenced by the
time for the additional program analysis pass (which takes around 22 seconds on average), incremental
solving in the repair candidate computation still halves the total fault correction time.

Heuristics. When disabling our heuristics (Configuration 4 versus 1), the number of iterations in the
CEGIS loop grows by around two orders or magnitude (from 6.73 to 621) on average in our experiments.
Since the formula for repair candidate computation grows in every iteration (see Algorithm 4.2), this
results in timeouts for quite some instances. In 19 cases, a repair was still reported, but only 15 of the
reported repairs were correct according to CBMC. The reason for incorrectness was mostly in variable
overflows due to very high template parameter values (recall that we used linear integer arithmetic, which
disregards overflows, for computing repairs). The fact that so many repairs are still found is also due to
incremental SMT solving in the candidate computation. When disabling incremental solving as well,
five more cases end in a solver timeout.

Second program analysis pass. When disabling the second program analysis pass (Configuration 5
versus 1), FoREnSiC reports 23 repairs rather quickly. However, only 4 of them are equivalent to the
reference implementation according to CBMC. The reason is that analyzing 2000 execution paths in the
preprocessed program P̂ yields only rather imprecise diagnostic information for the particular diagnoses
at hand. Analyzing the preprocessed program where only the diagnosis to repair is left open gives much
more accurate information with the same number of analyzed program paths. The obvious disadvantage
is that the additional program analysis pass also consumes some computation time.

On-the-fly program analysis. Our approach with on-the-fly program analysis and test case execu-
tion for verifying candidates (Configuration 6) takes only half the execution time of Configuration 1 and
still finds repairs for all cases. This has several reasons. First, less time is spent on program analysis. On
average, on-the-fly program analysis investigated only 15.2 execution paths. In contrast, Configuration 1
analyzed 653 execution paths in the second program analysis pass on average. Second, repair candidate
computation is extremely fast because the correctness formula that is passed to the SMT solver contains
only those aspects of the program behavior that are needed by CEGIS. Even when incremental solving
is disabled (Configuration 7), the average repair candidate computation time is still below one second.

Workload distribution in CEGIS. For those configurations in Table 4.6 where candidate verifica-
tion is done with an SMT solver call on the negated correctness formula, repair candidate computation
usually takes significantly more computation time than repair candidate verification in the CEGIS loop
(compare the last two rows in Table 4.6). This is not surprising because the SMT formula for candidate
computation grows with every iteration, while the formula for candidate verification is (rather) constant
in size (see Algorithm 4.2). Only in our configurations with test case execution as a means for candidate
verification, the verification times are higher. Because the TCAS program is rather small, the reason is
mostly the overhead for compiling candidate programs and executing the test cases in a separate process.
For larger programs, this overhead can be expected to be negligible compared to program analysis and
candidate computation, though.
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4.9.3.4 Comparison with Sketch

In this section, we compare the performance of our repair engine to Sketch [196, 197], which is a tool
for program sketching: The user provides a program with unknown integer values (so-called “holes”)
together with a specification. Sketch then synthesizes values for the unknown integer holes using CEGIS
such that the specification is fulfilled for all input values. For synthesizing more complex program parts,
the user has to provide so-called “generators”, which are expressions containing only unknown integer
values. These generators serve the same purpose as our repair templates: reducing the synthesis of
program components to the search for integer constants. Sketch models the semantics of the program
under analysis on the propositional level and uses a SAT solver to realize the CEGIS loop. In contrast, our
repair approach uses an SMT solver, applies additional heuristics, and can trade accuracy for efficiency
using many parameters.

Setup. We modeled the 26 TCAS instances from Table 4.6 in the input language of Sketch using the
reference implementation as a specification. Next, we manually replaced the faulty components that were
also used as basis for repair in Table 4.6 with templates for new expressions, where the unknown template
parameters were modeled using holes. Finally, Sketch was called to synthesize template parameter
values. Our experiments were performed using Sketch version 1.6.7 (released in September 2014) with
default parameters and MiniSat as the underlying solver. We set a memory limit of 4 GB.

Results. Table 4.7 summarizes the performance results. The first column lists the TCAS version
number. The second column gives the number of template parameters used by FoREnSiC. Column 3
gives the repair synthesis time with FoREnSiC in Configuration 1 from Table 4.6. In order to have
Sketch find a repair with a 4 GB memory limit, we had to reduce the bit-width of an integer to 8, for
which we had to lower constants in the program. We also had to manually reduce the number of template
parameters. The number of parameters for which Sketch can still find a repair without running out of
memory is listed in Column 4. The last column gives the corresponding execution time with Sketch.

Discussion. The memory consumption of Sketch on the TCAS benchmarks is very high. Even
though we reduced the bit-width of integers, the same template as in FoREnSiC could only be used
in one case (Version 34). For all other instances, we had to reduce the number of template parameters
significantly (from 15.3 to 4.6 on average) in order to find a repair without exceeding the memory limit
of 4 GB. On the other hand, the maximum memory consumption of FoREnSiC was below 100 MB in
all cases. The execution time of Sketch is also higher by one order of magnitude on the average over
our benchmarks, even though the templates for Sketch were reduced. We attribute these enormous per-
formance differences mostly to the fact that Sketch models the program semantics on the propositional
level while our approach is based on SMT solving (with linear integer arithmetic in this experiment).

4.9.4 Discussion

Our approach for applying controller synthesis techniques in the application of automatic program repair
turned out to be promising in various respects.

Usefulness. As demonstrated on several examples in Section 4.9.2, our debugging flow from Fig-
ure 4.1 can deliver helpful diagnostic information to the user. Our key ingredients to achieve this include
a generic and fine-grained fault model that can pinpoint potential reasons for mismatches between the
program and its specification precisely, systematic fault localization using model-based diagnosis to filter
out promising candidates for repair and, ultimately, our template-based approach to synthesize repairs
that are not only correct (with configurable approximations) but also simple and understandable by hu-
mans. Our proof-of-concept implementation in FoREnSiC is fully automatic and easy to apply.

Scalability. Our approach does not only work for toy examples but also scales to non-trivial pro-
grams for which manual debugging can be difficult and time-consuming. One success factor here is
that our approach provides many parameters to trade efficiency for accuracy. This includes our concept
for incomplete program analysis using symbolic or concolic execution and user-given bounds on the
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Table 4.7: Performance comparison with Sketch [196, 197] for the TCAS instances from Ta-
ble 4.6. FoREnSiC was run with Configuration 1 from Table 4.6. Sketch version
1.6.7 was run with MiniSat and default parameters. We set a memory limit of 4 GB and
reduced the bit width of integers in Sketch to 8 in order to prevent Sketch from run-
ning out of memory. The number of template parameters had to be reduced as well. The
symbol # is short for “number of”. The last line gives the averages over the columns.

FoREnSiC Sketch (8 bit)

Version # Parameters Time # Parameters Time

[-] [sec] [-] [sec]

1 16 12 3 5.7
2 13 20 3 1.6
4 14 7 6 2.5
6 14 73 3 56
7 13 6 3 418
8 13 7 3 250
9 15 13 2 4.4
10 28 130 4 1777
13 14 21 3 207
14 14 30 3 6.4
16 13 6 3 103
17 13 6 3 431
18 13 6 3 1091
19 13 7 3 232
20 15 12 4 7.1
21 20 23 4 12
25 16 10 3 5.6
28 14 25 10 996
31 18 11 4 166
32 18 10 4 163
34 17 98 17 24
35 14 25 10 1000
36 15 6 4 450
39 16 11 3 536
40 14 10 6 1308
41 15 7 6 1186

Avg. 15.3 22.8 4.6 401

analysis depths, replacing universal quantifications with finite conjunctions in fault localization, and our
approach of repair synthesis with on-the-fly program analysis to obtain more focused information about
the program correctness under specific inputs. Another success factor is the utilization of SMT solvers
as underlying reasoning engines. Our comparison with Sketch showed that handling the problem on
the propositional level using SAT solvers can be significantly more expensive in the domain of software
programs. Using BDDs instead of SAT solvers can be expected to scale even much worse due to the very
high number propositional variables needed to encode the behavior of software programs of reasonable
size. With performance improvements of up to two orders of magnitude (see, e.g., Figure 4.4), careful
utilization of SMT solver features such as the computation of unsatisfiable cores and incremental solving
also turned out to be very beneficial.

Conclusion. We conclude that automatic program repair is a promising application for satisfiability-
based controller synthesis techniques. When designed carefully, synthesis can be scalable enough to
repair incorrect programs of reasonable size, delivering helpful diagnostic information to the user.





5 Related Work

Parts of this chapter are based on the previous publications of the author on which
this thesis is based [82, 39, 31, 140, 141, 145, 30].

Related work on which this thesis builds has already been discussed throughout the document, and
especially in Chapter 2. This chapter discusses alternative approaches and points out similarities and
differences. Sections 5.1 and 5.2 discuss alternatives to our hardware synthesis algorithms from Chap-
ter 3. Sections 5.3 and 5.4 discuss alternative fault localization and repair approaches and relate them to
our software repair flow from Chapter 4. Since automatic synthesis and debugging are wide and active
research areas, our discussion will not be exhaustive but focuses on closely related works.

5.1 SAT-Based Hardware Synthesis Approaches

While reactive hardware synthesis is a broad research area, hardware synthesis approaches based on
decision procedures for satisfiability are relatively rare.

Incremental induction. Morgenstern et al. [163] present a SAT solver based synthesis algorithm
for safety specifications that is inspired by the model checking algorithm IC3 [41] and its principle of
incremental induction. The basic idea is to lazily compute the rank of the initial state of the specification,
which is the maximum number of steps in which the environment can enforce to visit an unsafe state. If
this rank is found to be finite, the specification is unrealizable. If it is found to be infinite, the specification
is realizable. Hence, strictly speaking, the paper only presents a decision procedure for realizability.
However, computing a winning strategy and a circuit implementing this strategy is also possible. We
used a reimplementation of this algorithm as a baseline in our experimental evaluation. It was very fast
on certain benchmark instances, but outperformed significantly by our new algorithms on average.

Strategy computation without preimages. Narodytska et al. [166] propose an algorithm to compute
strategies for reachability specifications, where a set of target states needs to be visited at least once. The
general idea is to apply a counterexample-guided backtracking search in order to find a set of executions
that is sufficient to reach the target states within some number n of steps. This set of executions is then
generalized into a winning strategy in the form of a tree that defines control actions based on previous
inputs. If no strategy is found for a particular bound n, then n is increased. A SAT solver is used both
to compute and to generalize executions. Hence, in comparison to our work, this approach operates on a
different specification class (reachability rather than safety), and it computes a winning strategy directly
rather than deriving it from a winning region.

Implementing strategy trees. Eén et al. [78] complete the work discussed in the previous paragraph
by proposing a method to compute circuits implementing the obtained winning strategies. Just like one
of our methods, it uses interpolation. However, since the strategies are represented as trees rather than
relations, the use of interpolation is quite different compared to our work.

QBF-based approaches. Staber and Bloem [201] present a QBF-based synthesis method for safety
specifications. The general principle of unrolling the transition relation has already been discussed along
with its drawbacks in Section 3.1.1.1 as a motivation for our learning-based algorithms. A solution
for Büchi objectives (where some set of states needs to be visited infinitely often, see Section 2.5.4) is
presented by Staber and Bloem [201] as well. Alur et al. [5] propose a similar solution for bounded
reachability specifications (where a set of target states needs to be reached within at most n steps). This
paper [5] also proposes an optimization that uses only one copy of the transition relation. However, all
variables are still copied for all time steps and the high number of quantifier alternations (linear in n)
remains. In contrast, our learning-based methods use only one copy of the transition relation and two
quantifier alternations in all QBF solver calls (at the cost of a potentially higher number of solver calls).
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ALLQBF solving. Becker et al. [15] explain how QBF solvers can be used to compute not only
one but all satisfying assignments of a QBF in the form of a compact (quantifier-free) formula. Similar
to some of our satisfiability-based synthesis methods, query learning is used to solve this problem. The
paper also points out that such an ALLQBF engine can be used as a direct replacement of BDDs to
compute the winning region of various specification classes using fixpoint algorithms. For instance,
Algorithm 2.1 can be realized with an ALLQBF engine in order to compute the winning region of a
safety specification. While our QBF-based algorithm QBFWIN (Algorithm 3.1) is similar in spirit, there
are also some important differences. We apply query learning directly to the specification rather than
the preimage computations, which allows for better generalizations. Furthermore, we extend the basic
algorithm with additional optimizations such as our reachability optimization from Section 3.1.4.

QBF as a game. Synthesis can be seen as a game between two players: the system controlling the
outputs and trying to satisfy the specification, and the environment controlling the inputs and trying to
violate the specification. Similarly, QBF solving can also be seen as a game between two players: one
player controls the existentially quantified variables and tries to satisfy the formula, the other player con-
trols the universal variables and tries to falsify the formula. This idea is followed by Janota et al. [120]
in the QBF solver RAReQS. Following the principle of counterexample-guided refinement of solution
candidates, it uses two competing SAT solvers to build a QBF solver: one SAT solver computes candi-
dates in the form of assignments to existential variables, the other one refutes them with assignments for
the universal variables. We followed the same principle when traversing from our QBF-based synthesis
algorithm to SAT solver based algorithms (cp. Algorithm 3.1 with Algorithm 3.4). However, we apply
the idea on the level of the synthesis algorithm rather than for realizing individual QBF solver calls. This
allows for additional optimizations. Another connection to this work is in coming to the same conclusion,
namely that solving quantified problems with SAT solvers instead of QBF solvers can be beneficial.

SMT-based bounded synthesis. Bounded synthesis [87] by Finkbeiner and Schewe has the objec-
tive of synthesizing a reactive system from a given Linear Temporal Logic (LTL) [175] specification.
First, the LTL specification ϕ is transformed into a (universal co-Büchi tree) automaton. A given system
implementation satisfies ϕ if there exists a special annotation that maps each (automaton state, system
state)-pair to a natural number. The idea is now to search for such an annotation and a system implemen-
tation simultaneously using an SMT solver: An upper bound on the system size is fixed but the system
behavior is left open by using uninterpreted functions for the transition relation and the definition of the
system outputs. Along with the annotations, the SMT solver then searches for concrete realizations of
these uninterpreted functions. In case of unsatisfiability, the bound on the system size is increased until a
solution is found. Although this synthesis approach is also SAT-based, it is quite different from the algo-
rithms presented in this thesis. The basic philosophy of enumerating constraints that have to be satisfied
by the final solution is similar to our template-based approach and our reduction to EPR, though.

Parameterized synthesis. The tool PARTY [134] uses SMT-based bounded synthesis to solve the
parameterized synthesis problem [116], which asks to synthesize systems with a parametric number of
isomorphic components. The approach is based on so-called cutoffs [83], saying that the verification of
parametric systems with an arbitrary number of isomorphic components can be reduced to the verification
of systems with a fixed size (the cutoff size) if the specification has a certain structure.

Controller synthesis using uninterpreted functions. Hofferek et al. [111, 113, 110] present an
approach to synthesize controllers for aspects that are hard to engineer in concurrent systems. A se-
quential reference implementation acts as a specification. Uninterpreted functions are used to abstract
complex datapath elements. Interpolation over SMT formulas is used as the core technology for comput-
ing a controller implementation. This includes a method to compute multiple interpolants from a single
unsatisfiability proof [113]. The approach is implemented in the tool Suraq [112]. While there are simi-
larities with our interpolation-based algorithms, we apply interpolation on the propositional level, we do
not use abstraction using uninterpreted functions, and we compute one interpolant after the other. These
differences appear to be interesting directions for future work, though.
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5.2 Other Hardware Synthesis Approaches and Tools

BDDs can be considered as the dominant data structure for symbolic synthesis algorithms. However,
there are also other alternatives.

Antichains. Given a set of partially ordered elements, an antichain is a subset of elements that are
all pairwise incomparable. Just like BDDs, antichains can be used as compact representations of large
state sets: for a given partial order among states, an antichain represents the set of all states that are less
than or equal to one antichain element with respect to the partial order. Besides decision procedures for
satisfiability, antichains provide another successful alternative to BDDs in synthesis [86, 181, 18]. The
following paragraphs describe such approaches in more detail.

Antichains for LTL synthesis. Filiot et al. [86] present a synthesis approach for LTL specifications
that uses antichains as data structure. It translates the specification into a (universal co-Büchi word)
automaton and enforces that the rejecting states of the automaton are visited at most n times. This
effectively gives a safety game and is thus similar to bounded synthesis [87] as discussed earlier. The ap-
proach has been implemented in the tool Acacia+ [40]. While the similarities to our work are small, the
procedure of reducing LTL specifications to safety games can be used to apply our SAT-based synthesis
methods also to LTL specifications. In fact, this approach was followed in the SyntComp competition
to translate LTL benchmarks into safety specifications automatically [117].

Antichains for synthesis with imperfect information. In certain settings, the system to be synthe-
sized may not be able to observe all internals of other components. Synthesis algorithms for imperfect
information address this issue. Raskin et al. [181] present algorithms to determine the realizability of
such synthesis problems using antichains. Berwanger et al. [18] extend this work by proposing a method
to also extract winning strategies for parity games with imperfect information. This approach has been
implemented in the tool Alpaga [17]. As an optimization, this tool uses BDDs to represent antichains in
such a way that efficient quantification is possible.

Explicit representations. The tool Lily [125] synthesizes reactive systems from LTL specifications
by a serious of automata transformations that are based on work by Kupferman and Vardi [149].1 A
witness to the non-emptiness of the final (nondeterministic Büchi tree) automaton constitutes an imple-
mentation of the original specification. Jobstmann and Bloem [125] present a multitude of optimizations
to improve the performance of this approach. Lily implements them on top of Wring [199]. Lily does
not represent automata symbolically but operates on explicit representations. The similarities to our
SAT-based synthesis algorithms are thus rather small.

BDD-based tools. We only give a brief and incomplete overview of BDD-based synthesis tools
and approaches. Anzu [126] is a BDD-based synthesis tool for GR(1) specifications [36]. It has later
been reimplemented in the requirement analysis tool Ratsy [29]. The same synthesis algorithm is also
implemented in the BDD-based tools slugs2, gr1c3, and NuGAT4, which is a game solver built on top
of the model checker NuSMV [58]. Unbeast [81] is tool for synthesis from LTL specifications that also
builds on the principle of bounded synthesis [87]. The reduction from LTL to safety games is similar to
that by Filiot et al. [86] but the resulting safety game is solved using BDDs instead of antichains. Except
for our own submission Demiurge, all tools that competed in the SyntComp 2014 competition [117]
are BDD-based. This includes AbsSynthe [43], which has been used as a baseline for comparison in
our experimental results, Basil by Rüdiger Ehlers, realizer by Leander Tentrup, and the Simple BDD
Solver5 by Leonid Ryzhyk and Adam Walker.

1Similar to the antichain-based approach by Filiot et al. [86] and the bounded synthesis approach by Finkbeiner and
Schewe [87], the LTL specification is translated into a universal universal co-Büchi tree automaton first. Following an ap-
proach by Kupferman and Vardi [149], this automaton is then translated into an alternating weak tree automaton and further on
to a nondeterministic Büchi tree automaton.

2https://github.com/LTLMoP/slugs (last visit on 2015-08-01).
3http://slivingston.github.io/gr1c/ (last visit on 2015-08-01).
4http://es.fbk.eu/technologies/nugat-game-solver/ (last visit on 2015-08-01).
5https://github.com/adamwalker/syntcomp/ (last visit on 2015-08-01).

https://github.com/LTLMoP/slugs
http://slivingston.github.io/gr1c/
http://es.fbk.eu/technologies/nugat-game-solver/ 
https://github.com/adamwalker/syntcomp/
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5.3 Fault Localization

Techniques for fault localization can roughly be classified into statistical approaches and logic-based
approaches. Since our solution for fault localization in the context of repair synthesis falls into the latter
category, we will only give a brief overview of statistical methods. Existing logic-based methods will
then be discussed in more detail.

Statistical fault localization. The basic idea of statistical fault localization is to collect data about
passing and failing executions of a program, and to analyze this data in order to rank program parts ac-
cording to their “suspiciousness” [150]. Intuitively, if a program statement has been executed in many
failing test cases and in only a few passing test cases, then it can be considered as highly suspicious
of being responsible for the failures. This principle is also referred to as spectrum-based fault local-
ization [184], with a program spectrum being a profile that indicates which parts of the program have
been active during an execution. There exists a rich body of literature proposing and comparing various
suspiciousness measures. We refer the interested reader to a recent publication by Landsberg et al. [150],
which compares 157 different measures experimentally. Existing tools include Tarantula [129] (for C
programs), AMPLE [70] (for Java), Zoltar [121] (building on the LLVM compiler infrastructure), and
Pinpoint [56] (targeting Internet services). While our model-based fault localization approach is funda-
mentally different, a combination with statistical techniques is a promising direction for future work.

Model-based diagnosis. Model-based diagnosis [182, 72] has already been applied to locate faults
in logic programs [65], functional programs [202], VHDL designs [91], Java programs [158], knowl-
edge bases [85], ontologies [90], temporal logic specifications [143], and spreadsheets [119, 1]. We
apply model-based diagnosis to correctness formulas obtained from software programs using symbolic
or concolic execution and combine it with automatic program repair. Moreover, we use a customized
definition of conflicts and diagnoses for our setting.

Using a model checker. Griesmayer et al. [105, 106] show how diagnoses for an incorrect hardware
or software program P can be computed using an off-the-shelf model checker. Our fault localization
approach is inspired by this work, so we discuss it in more detail. Assume that the model checker
produced a counterexample demonstrating that P does not satisfy a given specification ϕ. Then, (1) the
original inputs of the program are fixed to the values defined by the counterexample, (2) the program is
split into components and every component ci is textually replaced by if abi then xi else ci, where
abi and xi are new inputs, and (3) a model checker verifies the so preprocessed program against the
specification ϕ′ = ¬

(
ϕ ∧ ((

∑
abi) = 1)

)
. This way, the model checker searches for values of all abi

and xi to falsify ϕ′, i.e., to satisfy the original specification ϕ while having only one abi set to true. If
such a counterexample is found, the component ci for which abi is assigned true is a diagnosis because
the alternative value xi fixes the counterexample. Further diagnoses can be computed by refining ϕ′

with the conjunct abi = false and starting the procedure again. Multiple counterexamples can be used
by invoking the procedure for one counterexample after the other and then intersecting the diagnoses.
Diagnoses of higher cardinality can be computed by relaxing the cardinality constraint (

∑
abi) = 1.

This approach has many similarities to our solution. For software programs, it uses the same fault
model of incorrect expressions. The preprocessing is also similar in spirit but our approach accounts for
program components to behave abnormally during the program analysis with symbolic or concolic ex-
ecution rather than expressing this possibility with additional if-statements in the program code.6 The
definition of a diagnosis via repairability is similar, but our approach considers multiple input vectors
simultaneously. The computation of diagnoses is completely different. Griesmayer et al. compute diag-
noses directly using a model checker as a black box. Our approach uses the hitting set tree algorithm by
Reiter [182] to infer diagnoses from conflicts. This has the advantage that solver features such as incre-
mental solving and the computation of unsatisfiable cores can be exploited effectively. Furthermore, our

6Introducing such additional if-statements would increase the number of execution paths and thus amplify the path explo-
sion problem of symbolic or concolic execution in our setting.
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approach requires only one (custom) program analysis pass instead of several calls to the model checker.
Finally, our approach allows for trading accuracy against efficiency with many parameters.

Using maximum satisfiability solving. Jose and Majumdar [131] present a fault localization method
based on maximum satisfiability solving. The starting point is an input vector i for which the program
violates its specification. First, techniques from bounded model checking are used to construct a trace
formula α, which encodes the semantics of each statement that is executed with input i. Each clause of α
corresponds to one program statement that has been executed. Second, this trace formula α is extended
to an unsatisfiable formula β by additionally asserting that the input variables have the values defined
by i and the specification does hold. Finally, a solver for maximum satisfiability is used to compute a
maximum number of clauses of α such that β is satisfiable. The complement of the corresponding set
of statements is reported as a diagnosis because these statements can be modified (simultaneously) to
render the program correct. Since there can be several different maximum satisfiability solutions, all
of them are computed and reported. This approach has been implemented for C programs in the tool
Bug-Assist [130]. We used Bug-Assist as a baseline for comparison in our experimental results.

In contrast to this procedure, our model-based diagnosis approach considers several input vectors
simultaneously. The results of our experimental evaluation are thus not surprising: our approach reports
fewer potential fault locations but is also slower. Another difference is in the computation of diagnoses.
Our approach uses a hitting set tree algorithm [182] to derive diagnoses from conflicts, which are es-
sentially unsatisfiable cores. Jose and Majumdar compute diagnoses directly as maximum satisfiability
solutions. Interestingly, Fu and Malik [94] point out that the maximum satisfiability problem can be
solved efficiently by eliminating unsatisfiable cores. This unsatisfiable core elimination is similar to our
procedure for deriving diagnoses from conflicts. Thus, in a sense, our algorithm also computes maxi-
mum satisfiability solutions (the diagnoses) but via the elimination of unsatisfiable cores (the conflicts).
Other differences concern the program analysis. Our approach uses symbolic or concolic execution and
does not only consider one execution paths through the program.

Program slicing. Program slicing, introduced by Mark Weiser [211], is a technique to compute
a set of program statements that may influence the values of given program variables at a given point
in the program. Program slicing can be used for fault localization by computing statements that may
have contributed to a failure (e.g., an assertion violation or a wrong output produced by a program). A
survey of existing techniques and applications is given by Tip [207]. Program slicing is mostly based on
analyzing data flow and control flow dependencies, and can thus be considered as a rather lightweight
technique. In contrast, our model-based approach also considers the semantics of the program statements.
It is thus more expensive but potentially also more accurate.

Delta debugging. Delta debugging [213] by Zeller and Hildebrandt is a technique to isolate the
trigger of a failure. Given an input sequence that causes a program to fail, it computes a minimized
version of the input sequence that still causes the failure. In this sense, delta debugging does not directly
compute diagnoses in the form of program parts that may be responsible for a failure. It rather supports
the developer in understanding the problem. Our fault localization (and correction) approach is thus
orthogonal to delta debugging.

5.4 Program Repair

The problem of automatic program repair has already been tackled from various directions. In the fol-
lowing discussion, we mostly focus on synthesis-based approaches for software, but mutation-based
solutions and genetic algorithms will be covered as well.

Program sketching. Our method to synthesize repairs from given diagnoses is very similar to pro-
gram sketching as introduced by Solar-Lezama [197, 196]. The general principle of program sketching
has already been outlined in the introduction: the user writes a program with “holes” in it and provides
a specification. A synthesis tool then computes implementations for the holes such that the specification
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is satisfied for all inputs. In the approach by Solar-Lezama, holes are unknown integer values. For syn-
thesizing more complex program parts, the user has to provide so-called generators, which are program
fragments containing only integer holes. Loops in the program are unrolled for a fixed number of times.
Function calls are inlined (with a user-given bound for recursive functions). The specification can be
given using reference implementations and assertions. CEGIS (see Section 2.7) is used as algorithm to
synthesize solutions. The approach is implemented in the tool Sketch, which was used as a baseline for
comparison in our experimental evaluation (see Section 4.9.3.4). Sketch encodes program correctness
in a propositional formula and uses a SAT solver in the CEGIS loop.

Our repair approach is similar in various respects. We also use CEGIS to synthesize repairs, but build
on SMT solving (with configurable theories) rather than plain SAT solving. Furthermore, we present
heuristics to speed up the convergence of the CEGIS loop. We also show how CEGIS can be interleaved
with on-the-fly program analysis to obtain more focused information about the program correctness
on demand. Our templates have a similar role as the generators in program sketching but are applied
fully automatically. We also combine repair synthesis with fault localization to realize a fully automatic
debugging flow. Finally, our means of program analysis can be configured with many parameters to
trade accuracy for efficiency. All these ingredients contribute not only to better scalability compared to
Sketch (see Section 4.9.3.4) but also to the computation of fine-grained and readable repairs.

Syntax-guided synthesis. Alur et al. [4] propose to define a synthesis problem not only by means of
a semantic correctness specification but also by syntactic constraints on the solution. More specifically,
a syntax-guided synthesis problem is defined to consist of (1) a formula ϕ(va, vb, . . . , f1, f2, . . .) as a
semantic correctness specification for a set of function f1, f2, . . . to be synthesized, where va, vb, . . . are
free variables, (2) a set of grammars defining syntactic sets L1, L2, . . . of candidate implementations,
and (3) a background theory. The problem asks to find implementations e1 ∈ L1, e2 ∈ L2, . . . of the
functions f1, f2, . . . such that ∀va, vb, . . . :ϕ(va, vb, . . . , e1, e2, . . .) is valid in the background theory.
Alur et al. also define the SYNTH-LIB format as standardized input format for syntax-guided synthesis.
It is based on SMT-LIB2 [13], which is the standard input format for SMT solvers. Since 2014, there is a
yearly competition, called SyGuS-COMP7, among syntax-guided synthesis tools based on this format.

Our software repair synthesis problems can be defined as syntax-guided synthesis problems. A cor-
rectness formula ϕ(i, fc1 , fc2 , . . .) can be computed similar to Equation 4.6 but with functions fc1 , fc2 . . .
instead of the templates for the components ci ∈ ∆. The templates can be supplied separately as syn-
tactic constraints in the form of grammars. This way, any tool from the SyGuS-COMP can be used
to synthesize repairs in our basic approach. Our advanced approach, where repair synthesis is inter-
leaved with on-the-fly program analysis to compute the correctness specification lazily, cannot directly
be realized via syntax-guided synthesis problems, though.

Functional synthesis. Kuncak et al. [148] address the problem of synthesizing functional code that
satisfies a given input/output relation. Similar to this thesis, the vision is in combining the imperative and
the declarative programming paradigm: instead of implementing certain code blocks, the user is allowed
to specify their behavior declaratively. A synthesizing compiler then inserts a concrete implementation
automatically. Kuncak et al. [148] focus on synthesis procedures for specifications defined as formulas
in linear rational arithmetic, linear integer arithmetic, or formulas over sets with size constraints. The ap-
proach has been implemented in Comfusy [147], which is a synthesizing compiler for Scala. Functional
synthesis procedures have also been proposed for unbounded bitvector arithmetic [200] or algebraic data
types and arrays [118]. As a fundamental difference to our work, functional synthesis assumes the spec-
ification to be local, so an implementation of the specification can be synthesized without considering
other program parts. In contrast, our repair synthesis approach synthesizes program parts to make the
entire program satisfy a global specification. This also requires suitable techniques for program analysis.

Path-based program repair. Similar to our work, Riener et al. [185] also propose a repair ap-
proach based on iterative refinements. The specification is given using pre- and postconditions. The fault
location is assumed to be known. In every iteration, a model checker is used to compute a symbolic

7http://www.sygus.org/ (last visit on 2015-08-01).

http://www.sygus.org/
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counterexample, which keeps the data flow symbolic but the control flow concrete. Based on this coun-
terexample, a verification condition is then computed at the point of the faulty program part. Intuitively,
this is done by pushing the precondition down and the postcondition up along the counterexample path
using Hoare axioms (see Section 2.8.4). This transforms the global specification into a local one (for one
counterexample path). The final step of the loop is to resynthesize the faulty program part such that all
symbolic counterexamples seen so far are resolved. This is done by interpreting the verification condi-
tions computed so far as synthesis goal and applying functional synthesis, as discussed in the previous
paragraph. If the functional synthesis procedure reports unrealizability, the loop aborts. Otherwise, a
model checker verifies the candidate. If it finds a counterexample, another iteration is started.

There are several differences to our work. The approach by Riener et al. does not use templates.
Depending on the underlying synthesis procedure, this can result in unreadable repairs, which makes it
difficult to keep the user in the loop. In particular, the proof-of-concept implementation for C programs
applies bit-blasting, computes the repair as a network of AND-gates, and maps this network back to C
code. On the other hand, the approach is flexible regarding the synthesis procedure and a realization
using templates is possible as well. Moreover, avoiding templates avoids the disadvantage that no repair
may be found even if one exists. The principle of considering more and more execution paths is similar
to our repair approach with on-the-fly program analysis, but we consider more and more input vectors,
which indirectly results in analyzing more and more execution paths. Our approach computes the effect
of the behavior of components to repair on the global specification rather than breaking down the global
specification into local constraints for the component to repair. Finally, the approach by Riener et al. does
not handle cases where the faulty program part is executed multiple times along one counterexample
path (e.g., because it occurs in a loop or in a function that is called multiple times). The simultaneous
computation of repairs for multiple program parts is not addressed either. Our repair approach can handle
these cases seamlessly.

Repair as a game. Jobstman et al. [127, 128] consider the repair of finite-state programs with
respect to a given LTL specification. The problem is transformed into a finite-state game and a repair
is computed as a strategy in this game. Fault localization is done simultaneously by having the strategy
select a component to repair as a first move. To support the readability of repairs, heuristics attempt to
compute a memoryless strategy that does not introduce additional state variables. Still, the repair can be
an arbitrary function over state variables and inputs, and thus quite difficult to understand. In contrast,
our template-based approach restricts the shape of solutions, so the result will always be readable.

Using predicate abstraction. Griesmayer et al. [104] extend the idea of computing a repair as a
strategy in a game to software with a potentially infinite state space using predicate abstraction. A repair
is computed for a Boolean abstraction of the program (as computed by verification tools like SLAM [12]).
The abstraction is such that the correctness of the abstract program implies the correctness of the original
program. A repair for the abstract program thus suggests a repair of the concrete one. However, if no
repair of the abstract program exists, this does not mean that no repair of the concrete program exists.
The approach by Griesmayer et al. does not include a refinement of the abstraction in this case and is thus
correct but incomplete. Our approach of incomplete program analysis (considering only a subset of the
execution paths) can also be seen as abstraction. Our repair approach with on-the-fly program analysis
can even be understood as counterexample-guided abstraction refinement.

Mutation-based repair. A mutation is a small syntactic modification (like changing a “+” into
a “-”) of the program (see also Section 4.2.1). Debroy and Wong [74] propose a simple software re-
pair method based on such mutations. First, statistical methods for fault localization are used to rank
statements according to their likelihood of containing faults. Second, starting with the statements ranked
highest, mutations are introduced. Each mutated program is checked for correctness until a repair is
found. A similar approach is used by Raik et al. [179] for hardware designs at the register-transfer level.
FoREnSiC [30] also contains a back end implementing this approach in combination with program slic-
ing [183]. While this method can scale up to very large programs, it is rather restricted in its fault model.
In contrast, our fault model of incorrect expressions can also handle faults that can only be fixed with
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more substantial changes in the code (e.g, changing some expression “a+2” to “b-823”, which may be
too far-fetched for a mutation).

Genetic approaches. Arcuri [8] uses genetic programming algorithms to evolves the incorrect pro-
gram with guidance from a fitness function that counts how many test cases pass. Each iteration keeps
a population of programs. The fitness function selects promising candidates. Crossover and mutation
operators are then used to generate “offspring”, which is the population of the next iteration. Arcuri
and Yao [10, 9] extend this approach to a setting where both the program and the test cases co-evolve
competitively. Le Goues et al. [102] present GenProg, which is a similar approach to repair an incorrect
program using genetic programming and test cases as a specification. It uses structural differencing [3]
and delta debugging [213] to reduce the difference to the original program. Furthermore, it focuses the
genetic operators to statements that are executed in failing test cases.

From an algorithmic point of view, our program repair approach is fundamentally different from
genetic approaches. Nevertheless, there are similarities in the iterative refinement of candidates. While
genetic approaches have the potential to scale up to large programs (GenProg [102] has been used on
benchmarks with several thousand lines of code), our constraint-based approach is more systematic.

Concurrent programs. Vechev et al. [210] present an approach to repair concurrent software pro-
grams by synthesizing atomic sections (where no context switch is allowed) that are sufficient to guar-
antee correctness. Similar to the work by Griesmayer et al. [104] (discussed above), the approach is also
based on abstraction. However, the abstraction can also be refined based on counterexamples. If a coun-
terexample is found, heuristics are used to decide whether to refine the abstraction or to insert an atomic
section. The user has to provide a characterization of bad states (e.g., using assertions) as a specification.
In previous work [35] that is orthogonal to this thesis, we present an alternative solution that uses ab-
straction by means of uninterpreted functions. The behavior of sequential executions is taken as implicit
specification, so the user does not have to (but can) provide an explicit specification. Cerný et al. [53, 54]
present an approach where counterexamples cannot only be eliminated by adding synchronization but
also by instruction reordering. Khoshnood et al. [135] present ConcBugAssist, an approach that di-
agnoses concurrency bugs using maximum satisfiability solving (similar to Bug-Assist [131, 130]; see
above) and computes repair suggestions by solving a binate covering problem. The repair process yields
inter-thread ordering constraints that are then enforced using synchronization primitives such as locks,
signal/wait, or atomicity primitives.

These works assume that the program is correct if executed sequentially, i.e., the incorrectness is only
in missing synchronization. Since the program will always be correct if all threads are made atomic, this
can actually be seen as an optimization problem to find a minimum set of atomic sections that suffices.
In contrast, this thesis focuses on the repair of sequential programs an is thus orthogonal.



6 Conclusion and Outlook

In this thesis, we proposed novel satisfiability-based methods for controller synthesis, both for hardware
systems and for software programs. In the hardware setting, we focused on scalability for safety spec-
ifications. In the software setting, we concentrated on controller synthesis techniques in the application
of automatic program repair. In order to wrap this thesis up, the following sections will now recapitulate
our motivation and contributions, discuss the main conclusions, and give suggestions for future work.

6.1 Summary

Before coming to conclusions, a summary of the motivation and contributions of this thesis is appropriate.

Synthesis versus verification. In the conventional development process for obtaining correct hard-
ware or software programs, the developer (1) implements the design intent manually, (2) verifies the
implementation, e.g, by executing test cases or by applying formal verification techniques such as model
checking, and (3) fixes all the bugs that are discovered in the verification phase. Synthesis can simplify
this process significantly by automatically computing a correct implementation from a specification that
formalizes the design intent declaratively. Writing such a specification can be significantly easier than
implementing it because the specification only expresses what the system shall do, but not how.

Challenges in synthesis. The advantages of synthesis also come with several challenges. First,
there is a scalability challenge induced by the high worst-case complexities. To achieve acceptable
scalability in practice, symbolic algorithms are important. While Binary Decision Diagrams (BDDs)
are the predominant technology in realizing synthesis algorithms symbolically, there has been enormous
progress on decision procedures for the satisfiability of formulas in the recent years and decades. Yet,
their potential in synthesizing hardware components is still largely unexplored. A second challenge lies
in the applicability of synthesis. Formalizing the design intent completely in a declarative fashion can
be unmanageable in practice. A more promising direction is controller synthesis, where parts of the
synthesis problem can be defined imperatively and other parts declaratively. This gives rise to interesting
applications such as program sketching and automatic program repair. These applications have not yet
received the research attention they deserve either. This thesis focused on these two challenges. Other
synthesis challenges that are mostly orthogonal to this thesis include the quality of synthesized systems,
techniques for specification engineering and debugging, and appropriate specification languages.

Contributions to the scalability challenge. To address the scalability challenge, we proposed sev-
eral novel algorithms to synthesize hardware controllers from safety specifications. Our algorithms make
use of various techniques such as query learning, templates to fix the structure of solutions, interpola-
tion, and satisfiability certification. They are tailored towards decision procedures for the satisfiability
of propositional formulas (SAT solvers), Quantified Boolean Formulas (QBF solvers), or solvers for
Effectively Propositional Logic (EPR), exploiting solver features such as incremental solving or the
computation of unsatisfiable cores where possible. We also presented numerous optimizations, includ-
ing heuristics to partially expand quantifiers, optimizations using information about unreachable states
or variable independencies, as well as low-level optimizations in the formula encoding. In an experi-
mental evaluation, we compared our methods and optimizations on a broad range of benchmarks. The
comparison also included a BDD-based tool, a highly optimized state-of-the-art synthesis tool, and an
alternative SAT-based approach as a baseline. Our implementation is available with the open-source tool
Demiurge, which already won two gold medals in an international synthesis competition.

Contributions to the applicability challenge. To address the applicability challenge, we presented
an approach for controller synthesis in the application of automatic software program repair, using asser-
tions in the code as specification. Our specific goal was to synthesize fine-grained and readable repairs.
To achieve this goal, we proceeded in three steps. First, we used symbolic or concolic execution in a
program analysis step to lift the repair problem into the domain of logic. Second, we proposed a fault lo-
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calization approach based on the fault model of incorrect expressions and techniques from model-based
diagnosis with Satisfiability Modulo Theories (SMT) solving. We also discussed an alternative for fault
localization using deductive verification and pre- and postconditions as specification. The (potential)
fault locations reported in the second step were then used as a basis for synthesizing replacements in
the last step. Similar to our algorithms for hardware synthesis, we built on templates to fix the structure
of the solution and counterexample-guided refinement of solution candidates to find correct repairs. We
discussed some practical issues with this approach and addressed them in two ways. First, we devel-
oped heuristics to speed up the repair candidate refinement. Second, we proposed an improved flow
that interleaves the repair synthesis with on-the-fly program analysis to obtain more focused information
about the program behavior. We prototyped our approach for simple C programs in the open-source
tools FoREnSiC and Frama-C. Our approach as well as the implementation is highly configurable with
many parameters to trade accuracy for efficiency. Finally, we presented experimental results evaluating
the usefulness of the produced diagnostic information and the performance in various configurations.

6.2 Conclusions

Chapters 3 and 4 already discussed the strengths and weaknesses of the different algorithms and op-
timizations while they were presented. Moreover, the Sections 3.3.5 and 4.9.4 summarized the most
important conclusions that can be drawn from our experiments. In this section, we will not repeat this
discussion but rather focus on the most important conclusions from a high-level point of view. This will
also form the basis to our suggestions for future work. While the main chapters were organized with re-
spect to the setting (hardware or software), we will organize the conclusions according to the challenges
(scalability and applicability) addressed by this thesis.

6.2.1 Scalability

The scalability results achieved in this thesis rely on a multitude of factors.

Exploiting solver features. In contrast to verification, decision procedures that can only give a
yes/no answer are of no use in synthesis. Fortunately, many decision procedures for satisfiability are
based on the search for satisfying structures. These artifacts can in turn be used to build an implementa-
tion for a given specification in synthesis. Modern SAT-, QBF- and SMT solvers offer additional features
that can be exploited in synthesis as well. This includes the computation of unsatisfiable cores, which
can be used to generalize discovered facts. Another example is incremental solving, which can be used
to answer sequences of similar queries much more efficiently. Our algorithms for hardware controller
synthesis utilize such solver features by design, which turned out to be crucial for being competitive
with BDDs. Our repair approach for software programs also achieves speedups of up to two orders of
magnitude for individual debugging steps by exploiting these solver features.

Counterexample-guided refinement. The general algorithmic principle of refining solution candi-
dates iteratively based on counterexamples turned out to be a good match with decision procedures for
the satisfiability of formulas. We used this concept in two flavors: query learning and Counterexample-
Guided Inductive Synthesis (CEGIS). Query learning combined with SAT solving proved to be our best
approach in our hardware controller synthesis experiments. This applies both to the first step of com-
puting a winning strategy as well as to the second step of constructing a circuit. In the second step,
query learning also produced circuits that were smaller by more than one order of magnitude on average
compared to other techniques such as interpolation, QBF certification, or the BDD-based cofactor ap-
proach. This suggests that query learning performs well at exploiting available implementation freedom.
In the software setting, CEGIS turned out to be efficient, but we could still speed up its convergence
with heuristics. Furthermore, CEGIS was amenable for our improved repair synthesis approach that
interleaves repair candidate refinements with on-the-fly program analysis.
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Abstracting program semantics. In the domain of software controller synthesis, our approach for
program repair provides many parameters to trade accuracy for efficiency. This turned out to be very
important for handling larger programs. In the TCAS case study, our approach could synthesize repairs
in reasonable time by abstracting program variables with mathematical integers and using an SMT solver.
In contrast, the existing tool Sketch could only solve manually simplified problems because of using bit-
precise reasoning and complete program analysis.

Handling quantifiers. The game-based approach to synthesis inherently involves dealing with both
universal and existential quantifiers. The support for both quantifiers is also among the reasons for the
sustained success of BDDs in hardware synthesis. When switching from BDDs to decision procedures
for satisfiability, one could thus expect that QBF solvers are the most suitable choice. Yet, in our exper-
iments, our algorithms using plain SAT solving outperformed the QBF-based algorithms significantly,
even though (often far) more solver calls are necessary to compensate for the lack of universal quantifiers.
Our heuristic for quantifier expansion reduces this amount of iterations at the cost of larger formulas for
the SAT solver, which gives a speedup of one more order of magnitude. This suggests that the current
state in QBF solving is still lacking behind its potential, at least for the specific kinds of QBF problems
we encounter in our synthesis algorithms. However, considering that QBF is still a rather young research
discipline compared to SAT, this situation may change in the future.

More expressive logics. The scalability of our approach based on reduction to EPR, which is a more
expressive logic, is even worse than when using QBF in our experiments. Together with the statement
from the previous paragraph, this suggests that breaking the synthesis problem into simple solver queries
in a lean logic is a better strategy than delegating bigger chunks of the problem to the underlying solver.

Parallelizability. Since our satisfiability-based methods for hardware controller synthesis mostly
break the synthesis problem down to many small solver queries that do not crucially depend on each
other, they are also well suited for fine-grained application-level parallelization. This stands in contrast
to symbolic algorithms realized with BDDs, which are often intrinsically hard to parallelize [84]. In
this thesis, we presented parallelizations that do not only exploit hardware parallelism but also combine
different (variants of) algorithms in different threads. This way, we achieved average speedups of around
one order of magnitude with only three threads.

Outperforming BDDs. Due to our heuristics and optimizations, careful utilization of solver features,
and our parallelization, our satisfiability-based methods managed to outperform a BDD-based synthesis
tool by more than one order of magnitude regarding execution time, and even two orders of magni-
tude regarding circuit size on average in our experiments. Our parallelization is even competitive with
AbsSynthe, a highly optimized state-of-the-art tool implementing advanced optimizations such as ab-
straction/refinement. These results confirm that decision procedures for the satisfiability of formulas can
indeed be used to build scalable synthesis algorithms, as claimed in the thesis statement in Section 1.3.

There is no silver bullet. Despite the excellent performance results we achieved on the average in
our hardware synthesis experiments, we also observed that different techniques perform well on different
classes of benchmarks. Our main contribution regarding scalability can thus be seen in extending the
portfolio of available synthesis approaches with new algorithms that complement existing techniques.

Safety specifications. Our hardware controller synthesis algorithms operate on safety specifications.
Many of the benchmarks used in our experimental evaluation originally contained liveness properties
that have been translated to safety specifications by imposing fixed bounds on the reaction time. While
choosing low bounds for the reaction time (such that the specification is still realizable) can have the
advantage of producing systems that react faster, the translation may have a negative performance impact
compared to handling liveness properties directly in the synthesis algorithm.

6.2.2 Applicability

Besides focusing on controller synthesis, which allows for a mixed imperative/declarative programming
paradigm, we address the applicability challenge mostly through our approach for applying controller
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synthesis in the context of automatic program repair. This approach is appealing in various respects.

Fine-grained repairs. Our choice of incorrect expressions as a fault model results in fine-grained
repairs, i.e., repairs that differ from the original program only in small parts. Keeping as much of the
original code as possible increases the chances that the synthesized repair coincides with the design
intent by the user. It also supports the understandability of computed repairs because the user only needs
to comprehend the consequences of small code changes (rather than, e.g., completely resynthesized
functions). Finally, it also supports performance because the restriction to resynthesizing only small
code parts reduces the search space for repairs.

Human-readable repairs. Our template-based approach for synthesizing repairs allows us to control
the shape of the computed repairs. We start with simple templates and switch to more expressive ones
upon failure. This reduces the search space for repairs and thus supports scalability. Moreover, it ensures
that the computed repairs are human readable, which is important for keeping the user in the loop.

Keeping the user in the loop. In the envisioned usage scenario, the tool can suggests repairs, but it is
always the user who selects one. After all, it is also the user who must continue to work with the repaired
program (extend it with new features, refactor it, fix other bugs, etc.). Another flavor of keeping the user
in the loop regards the debugging process itself. In our approach, we do not assume the specification
to be complete in the sense that it rules out every behavior that conflicts with the design intent. If only
undesirable repairs are presented by the tool, the user can refine the specification and start the tool again.
Readability and fine-grainedness of computed repairs are important usability features to enable this.

Specification mechanisms. We support various kinds of specifications. Natively, our approach
uses assertions in the code. Such assertions can also be used to compare results with that of a reference
implementation. Our improved repair approach with on-the-fly program analysis also supports test cases.
Our fault localization variant based on deductive verification uses pre- and postconditions as well as
user-defined loop invariants. This has the advantage that functions in the code can be processed in
isolation, which potentially increases the scalability. The disadvantage is that writing function contracts
and appropriate loop invariants can be a lot of manual work.

Generality. Our fault model and our template-based approach for restricting the shape of repairs both
have the positive effect of narrowing down the search space and producing useful repairs if successful.
Yet, they may also prevent our approach from finding a repair. While we have encountered such cases
in our experiments, we have also encountered other cases where repairs are found even though the fault
model does not match. We thus conclude that our approach forms a reasonable compromise between
generality on one hand and scalability and usefulness of the results on the other hand.

Configuration. Our repair approach provides many configuration parameters to trade accuracy for
efficiency. This can be both a blessing and a curse. On the one hand, our approach can be tailored
towards a broad range of problems. One the other hand, the experience with our tool shows that it often
takes some attempts before a suitable parameter configuration is found.

Potential. In support of the second claim of the thesis statement (see Section 1.3), we have demon-
strated that satisfiability-based methods for controller synthesis can be combined seamlessly with pro-
gram analysis and fault localization techniques to realize a fully automatic, yet flexible flow for software
program repair. We believe that this application is particularly promising for making synthesis tech-
niques accessible to a broader audience of potential users. But program repair is of course not the only
interesting application of synthesis. In related work, we have also worked on runtime enforcement for
reactive systems [37], program sketching for concurrent systems [28], and synthesis of synchronization
for concurrent software programs [35].

6.3 Future Work

There is a multitude of directions for future work on improving our satisfiability-based hardware con-
troller synthesis methods as well as our application of controller synthesis in the field of program repair.
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6.3.1 SAT-Based Hardware Controller Synthesis

Our suggestions for future work in satisfiability-based hardware controller synthesis range from improve-
ments in the underlying reasoning engines up to extensions for different classes of specifications.

QBF preprocessing. While our QBF-based algorithms for hardware controller synthesis were not
among the best solutions in our experiments, we still observed that using incremental QBF solving and
QBF preprocessing both can have a very positive performance impact. Researching ways to combine
these techniques therefore seems to be a particularly promising direction to support the success of QBF
in synthesis. Furthermore, in our circuit computation method based on QBF certification, preprocessing
could not be applied because existing tools only preserve satisfying assignments for existentially quanti-
fied variables [189], but are in general not certificate preserving. Research on such certificate-preserving
preprocessing solutions could thus boost the performance of QBF certification (not only) in synthesis.

Solver parameters. So far, we used all solvers with default parameters in our experiments. It is
not unlikely that a solid speedup can be achieved by tuning solver parameters to the specific kinds of
decision problems that are encountered in our synthesis algorithms. For instance, our algorithms based
on SAT solving usually make huge amounts of rather simple queries. The default parameters of the SAT
solvers may be tuned to more complex instances from SAT competitions, however.

Other logics. Our approach based on reduction to EPR did not perform well in our experiments. For
this reason, we did not explore the alternative of using DQBF instead. Yet, recent progress [92, 93, 11, 96]
in theory and tools for DQBF makes this approach interesting as well.

Computing multiple interpolants. Some of our methods to compute circuits from given strategies
are based on interpolation. As mentioned in Section 5.1, it would be interesting to also implement the
approach by Hofferek et al. [113] for computing multiple interpolants from a single proof.

Reachability optimization. Our reachability optimization is rather simplistic and still has a very
positive performance impact. Other variants may thus yield even bigger speedups. In particular, our
reachability optimization avoids the explicit computation of an over-approximation of the reachable
states. Exploring this option based on existing work in verification [161] can be worthwhile.

Parallelization. Our parallelized hardware synthesis method merely demonstrates that a paralleliza-
tion is easily possible and beneficial for our satisfiability-based synthesis methods. However, it is in no
way optimal. First, there is a plethora of possibilities to combine different algorithms, optimizations
and solver configurations in different threads. Second, there are also numerous ways for exchanging
information between the threads. A thorough exploration of possibilities is still to be done.

AIGER as symbolic data structure. Another alternative to BDDs is to use AIGER circuits as a data
structure for Boolean formulas. The standard Boolean connectives (∧,∨,→, . . .) are easy to realize by
adding gates accordingly. Universal and existential quantification can be realized by expansion. Circuit
simplification techniques as implemented in ABC [42] can be applied to reduce the size of the symbolic
representation after applying operations (similar to variable reordering in BDDs). A SAT solver can be
used for equivalence or inclusion checks. In contrast to BDDs, such a symbolic representation is not
canonical. It may thus be more compact in cases where BDDs explode in size (see Section 2.3.1).

Specification preprocessing. Inspired by the formidable performance impact of preprocessing in
QBF solving, research on preprocessing techniques for specifications in synthesis can be another angle
from which the scalability issue can be tackled. For specifications defined as AIGER circuits, one first
idea would be to develop heuristics for identifying auxiliary variables (outputs of AND-inverter gates
defining the transition relation) that can be controlled fully and independently by either the system or the
environment. As a simple example, some auxiliary variable t may be defined as a function over some
vector it ⊆ i of uncontrollable inputs, and the inputs it are used nowhere else. Such auxiliary variables
can be replaced by new controllable or uncontrollable inputs, and their respective cone of influence can
be removed. Another idea is to detect monotonic dependencies of the error output on inputs or latches
and replacing such inputs or latches with constants. Existing techniques for circuit simplification can
also be applied, of course.
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Other specifications. Our satisfiability-based hardware controller synthesis algorithms operate on
safety specifications. A natural point for future work is thus to extend them to other types of specifi-
cations. Interesting cases would include reachability specifications (some states must be visited at least
once), Büchi specifications (some states must be visited infinitely often), or even GR(1) [36] (see also
Section 2.5.4). Our methods to compute a circuit from a given strategy are rather agnostic against the
specification from which the strategy has been constructed. Here, future work would mostly be in work-
ing out an efficient implementation. For the computation of strategies, the situation is different though.
Learning-based algorithms are not difficult to define for other specification formats in principle. If and
how they can be applied efficiently remains to be explored, though.

6.3.2 SAT-Based Software Controller Synthesis for Program Repair

All steps of our software repair approach, from program analysis to fault localization and repair synthesis,
can still be improved by future work.

Automatic specifications. Certain correctness properties of a program can be defined fully automat-
ically. For instance, if the program performs a division, the divisor must not be zero. If the program
accesses an array element, the index must not exceed the array size. In our current realization, such
properties need to be defined manually using assertions. Automating such checks, either by automat-
ically inserting assertions into the code or by including these checks directly in the program analysis,
would improve the usability.

Fault model. As already pointed out in Section 4.2.1, our fault model of incorrect expressions can
be extended in various ways, but at the cost of an increased computational effort in automatic debugging.
It would thus be interesting to explore extensions to the fault model and study the different trade-offs that
can be achieved between generality and efficiency.

Memory model. Our current implementation of the program analysis step using concolic execution
cannot reason about array indices or pointer values symbolically, but applies abstraction by taking the
concrete index or pointer value for memory accesses. Consequently, our tool cannot repair bugs in
array index computations or pointer arithmetic. This shortcoming can be mitigated by extending our
implementation with a memory model and support for the theory of arrays in SMT solving.

Using KLEE [51]. Our concolic execution engine is based on CREST [50] and is thus rather robust
and highly configurable. Our symbolic execution engine, on the other hand, is merely a self-made proof-
of-concept implementation. By extending a mature symbolic execution engine such as KLEE [51] so
that it can compute diagnostic information as needed for our fault localization and correction approach,
it is possible to realize a more attractive alternative to concolic execution in FoREnSiC.

Using Bounded Model Checking (BMC). Another interesting extension would be to use BMC
tools such as CBMC [61] as an alternative to symbolic or concolic execution for program analysis. Both
techniques have their strengths and weaknesses.

Ranking diagnoses. Our fault localization approach based on Model-Based Diagnosis (MBD) has
the advantage of being very systematic, but the disadvantage of producing many diagnoses in some cases.
On the other hand, statistical techniques such as spectrum-based fault localization [2] can rank program
parts regarding their likelihood of being responsible for the incorrectness. These two techniques can also
be combined by ranking the diagnoses produced by MBD. The repair engine can then repair the most
likely diagnoses first, and may thus find a fix faster.

Reducing undesirable repairs. The debugging experiments on the DLX processor design (see
Section 4.9.2.4) revealed cases where faults are repaired by making the program terminate before critical
assertions can be reached. In most cases, such repairs are undesirable. Future extensions of FoREnSiC
could eliminate such undesirable repairs by requiring not only correctness in the sense that assertion
violations are impossible, but also that code that was reachable in the original program does not become
unreachable by the repair.
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Deductive program repair. Our alternative debugging approach based on deductive verification and
pre- and postconditions as a specification has only been worked out for fault localization in this thesis.
However, since diagnoses are computed by checking the program for repairability, it is conceptually
simple to extend this approach also to program repair: if the underlying theorem prover is able to deliver
a witness for the validity of the repairability formula (in the form of Skolem functions), then this witness
directly describes a repair1. It would be interesting to see if repairs computed as Skolem functions are
readable enough to constitute a viable alternative for our template-based approach.

Syntax-guided synthesis. In our discussion of related work (Section 5.4), we have already pointed
out that our repair synthesis problems can be expressed as syntax-guided synthesis problems as defined
by Alur et al. [4]. By implementing a translator into the standardized input format for syntax-guided
synthesis, any tool from the SyGuS-COMP2 competition could be plugged into our automatic software
debugging flow (on-the-fly program analysis cannot be supported in this mode, though).

1Given that the variables in the formula can be linked back to the corresponding program variables.
2http://www.sygus.org/ (last visit on 2015-08-01).

http://www.sygus.org/
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[48] J. Richard Büchi and Lawrence H. Landweber. Solving sequential conditions by finite-state strate-
gies. Transactions of the American Mathematical Society, 138:295–311, 1969. (Cited on page 3.)

[49] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang. Sym-
bolic model checking: 10ˆ20 states and beyond. In Logic in Computer Science (LICS’90), pages
428–439. IEEE, 1990. (Cited on page 1.)

[50] Jacob Burnim and Koushik Sen. Heuristics for scalable dynamic test generation. In Automated
Software Engineering (ASE’08), pages 443–446. IEEE, 2008. (Cited on pages 36, 129, 132
and 166.)

[51] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and automatic gener-
ation of high-coverage tests for complex systems programs. In Operating Systems Design and
Implementation (OSDI’08), pages 209–224. USENIX Association, 2008. (Cited on pages 1, 35
and 166.)

[52] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler. EXE:
automatically generating inputs of death. ACM Transactions on Information and System Security,
12(2), 2008. (Cited on page 35.)
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incorrect program, 104
incremental solving, 20, 21, 23
initial state, 25
input symbol, 108
interpolant, 14, 20

lazy encoding, 22
Linear Integer Arithmetic (LIA), 17
Linear Temporal Logic (LTL), 29
literal, 14
loop invariant, 37

matrix (of a QBF), 15
MAX-SMT, 122
membership query, 30

182



Index 183

minterm, 14
model (of a FOL formula), 16
model checking, 1
Model-Based Diagnosis (MBD), 38, 156
mutation, 106, 159

non-conservative mode, 130

on-the-fly program analysis, 124, 126
one-point rule, 15
ordered (BDDs), 18

parameterized synthesis, 154
partial correctness, 37
passed test case, 122
path condition, 34
path explosion problem, 35
play (of a game), 25
postcondition, 37
precise (diagnostic information), 110
precondition, 37
preimage, 25
Prenex Conjunctive Normal Form (PCNF), 15
preprocessing (of QBFs), 20
preprocessing (of a program), 107
Presburger arithmetic, 17
program repair, 4
program sketching, 4, 157
program slicing, 157
proof obligation, 115

QBF solver, 20
QDIMACS, 21
Quantified Boolean Formula (QBF), 14
quantifier prefix, 15
query learning, 30

reachability specification, 29
reactive system, 3
readability (of repairs), 105
realizability, 26
reduced (BDDs), 18
relative inductiveness, 57
repair symbol, 108
repairability, 111

safe states, 25
safety game, 25
safety specification, 24
SAT solver, 19
SAT-based, 6
Satisfiability Modulo Theories (SMT), 16
satisfying assignment, 19, 21, 23

scatter plot, 91
Single-Fault Diagnosis (SFD), 39
Skolem function, 15
SMT solver, 22
SMT-LIB, 17, 22
soundness, 105
spectrum-based fault localization, 156
state (of a safety specification), 25
Static Single Assignment (SSA), 130
statistical fault localization, 156
strategy, 26
subset query, 30
symbol, 34
symbolic back end (of FoREnSiC), 132
symbolic encoding, 23
symbolic execution, 34
symbolic execution tree, 34
symbolic model checking, 1
syntax-guided synthesis, 158
synthesis, 2
synthesis algorithm, 27
system, 25
system implementation, 26

template, 59, 117
term (of a FOL formula), 16
test case, 122
testing, 1
theorem prover, 22
Traffic Collision Avoidance System (TCAS), 136
transition relation, 25
Tseitin transformation, 14

uncontrollable inputs, 24
undecidability in software analysis, 33
universal expansion, 15
unsatisfiable core, 14, 19, 21, 23
user in the loop, 105

variable (re)ordering (in a BDD), 18
violation (of a specification), 104

weakest precondition, 38
winning area, 41
winning region, 26
winning strategy, 26


	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	1 Introduction
	1.1 Context and Motivation
	1.1.1 Model Checking
	1.1.2 Synthesis
	1.1.3 Controller Synthesis

	1.2 Problem Statement
	1.3 Thesis Statement
	1.4 Contributions and Publications
	1.4.1 Scalability in Synthesis
	1.4.2 Applicability of Synthesis
	1.4.3 List of Publications

	1.5 Structure of this Thesis

	2 Background and Notation
	2.1 Basic Notation
	2.2 Logics
	2.2.1 Propositional Logic
	2.2.2 Quantified Boolean Formulas
	2.2.3 First-Order Logic
	2.2.4 Theories in First-Order Logic
	2.2.5 Effectively Propositional Logic

	2.3 Decision Procedures and Reasoning Engines
	2.3.1 Binary Decision Diagrams
	2.3.2 SAT solvers
	2.3.3 QBF Solvers
	2.3.4 First-Order Theorem Provers
	2.3.5 SMT Solvers

	2.4 Symbolic Encoding and Symbolic Computations
	2.5 Hardware Synthesis from Safety Specifications
	2.5.1 Safety Specifications
	2.5.2 Safety Games
	2.5.3 Synthesis Algorithms for Safety Specifications
	2.5.3.1 Computing a Winning Strategy
	2.5.3.2 Computing a System Implementation from a Winning Strategy

	2.5.4 Other Specification Formats

	2.6 Learning by Queries
	2.6.1 Basic Concept
	2.6.2 Learning Algorithms

	2.7 Counterexample-Guided Inductive Synthesis (CEGIS)
	2.8 Software Program Analysis Techniques
	2.8.1 Undecidability in Software Program Analysis
	2.8.2 Symbolic Execution
	2.8.3 Concolic Execution
	2.8.4 Hoare Logic

	2.9 Model-Based Diagnosis

	3 SAT-Based Hardware Controller Synthesis
	3.1 From Safety Specifications to Strategies
	3.1.1 QBF-Based Learning
	3.1.1.1 A Straightforward QBF Realization of SafeWin
	3.1.1.2 A QBF-Based CNF Learning Algorithm
	3.1.1.3 Variants and Improvements
	3.1.1.4 Efficient Implementation

	3.1.2 Learning Based on SAT Solving
	3.1.2.1 Basic Algorithm
	3.1.2.2 Advanced Algorithm
	3.1.2.3 Correctness of the Advanced Algorithm SatWin1
	3.1.2.4 Efficient Implementation

	3.1.3 Partial Quantifier Expansion
	3.1.3.1 Quantifier Expansion in Counterexample Computation
	3.1.3.2 Quantifier Expansion in Counterexample Generalization
	3.1.3.3 Efficient Implementation

	3.1.4 Reachability Optimizations
	3.1.4.1 Optimization RG: Reachability for Counterexample Generalization
	3.1.4.2 Optimization RC: Reachability for Counterexample Computation

	3.1.5 Template-Based Approach
	3.1.5.1 CNF Templates
	3.1.5.2 AND-Inverter Graph Templates
	3.1.5.3 Implementation with SAT Solvers
	3.1.5.4 Discussion

	3.1.6 Reduction to Effectively Propositional Logic (EPR)
	3.1.6.1 Using Henkin Quantifiers
	3.1.6.2 Using Effectively Propositional Logic (EPR)

	3.1.7 Parallelization

	3.2 From Strategies to Circuits
	3.2.1 QBF Certification
	3.2.1.1 Efficient Implementation for Safety Synthesis Problems
	3.2.1.2 Discussion

	3.2.2 QBF-Based Query Learning
	3.2.2.1 QBF-Based CNF Learning
	3.2.2.2 Efficient Implementation for Safety Synthesis Problems
	3.2.2.3 Discussion

	3.2.3 Interpolation
	3.2.3.1 Basic Algorithm
	3.2.3.2 Dependency Optimization
	3.2.3.3 Efficient Implementation for Safety Synthesis Problems
	3.2.3.4 Discussion

	3.2.4 Query Learning Based on SAT Solving
	3.2.4.1 CNF Learning Based on SAT Solving
	3.2.4.2 Efficient Implementation for Safety Synthesis Problems
	3.2.4.3 Discussion

	3.2.5 Parallelization

	3.3 Experimental Results
	3.3.1 Implementation
	3.3.2 Benchmarks
	3.3.3 Strategy Computation Results
	3.3.3.1 Evaluated Configurations
	3.3.3.2 The Big Picture
	3.3.3.3 Performance per Benchmark Class
	3.3.3.4 Further Observations

	3.3.4 Circuit Synthesis Results
	3.3.4.1 Evaluated Configurations
	3.3.4.2 Experimental Setup
	3.3.4.3 The Big Picture
	3.3.4.4 Performance per Benchmark Class
	3.3.4.5 Further Observations

	3.3.5 Discussion


	4 SAT-Based Software Controller Synthesis for Program Repair
	4.1 Objectives
	4.1.1 Input
	4.1.2 Output and Objectives

	4.2 Program Analysis
	4.2.1 Fault Model
	4.2.2 Preprocessing
	4.2.3 Symbolic Program Analysis
	4.2.3.1 Diagnostic Information
	4.2.3.2 Symbolic Execution
	4.2.3.3 Concolic Execution


	4.3 SMT-Based Fault Localization
	4.3.1 A Definition for Conflicts and Diagnoses
	4.3.2 Computation of Conflicts and Diagnoses

	4.4 Fault Localization Based on Deductive Verification
	4.4.1 From Deductive Program Verification to Fault Localization
	4.4.2 Discussion

	4.5 Template-Based Repair Synthesis
	4.5.1 Templates
	4.5.2 Computation of Repairs
	4.5.3 Heuristics

	4.6 Using Test Cases as a Specification
	4.7 Repair Synthesis with On-The-Fly Program Analysis
	4.7.1 Solution
	4.7.1.1 Repair Candidate Computation
	4.7.1.2 Repair Candidate Verification
	4.7.1.3 On-The-Fly Program Analysis
	4.7.1.4 Algorithm

	4.7.2 Discussion

	4.8 Parameters and Variations
	4.9 Experimental Results
	4.9.1 Implementation
	4.9.1.1 FoREnSiC
	4.9.1.2 Fault Localization Using Deductive Verification

	4.9.2 Examples
	4.9.2.1 Running Example
	4.9.2.2 Traffic Collision Avoidance System (TCAS)
	4.9.2.3 Greatest Common Divisor Example
	4.9.2.4 DLX Processor

	4.9.3 Performance Evaluation
	4.9.3.1 Fault Localization Results
	4.9.3.2 Fault Correction Results
	4.9.3.3 Comparison of Different Fault Correction Configurations
	4.9.3.4 Comparison with Sketch

	4.9.4 Discussion


	5 Related Work
	5.1 SAT-Based Hardware Synthesis Approaches
	5.2 Other Hardware Synthesis Approaches and Tools
	5.3 Fault Localization
	5.4 Program Repair

	6 Conclusion and Outlook
	6.1 Summary
	6.2 Conclusions
	6.2.1 Scalability
	6.2.2 Applicability

	6.3 Future Work
	6.3.1 SAT-Based Hardware Controller Synthesis
	6.3.2 SAT-Based Software Controller Synthesis for Program Repair


	Bibliography
	Index

