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Abstract

During the past decades the world has seen a rapid and historically unprece-
dented evolvement of technology. Computer and Internet technology, in par-
ticular, have penetrated practically all spheres of life. Meanwhile privacy has
become a rare good, since privacy and data security concerns have often been
put aside. The reasons are to seek in cost efficiency or the business model, in
plain indifference or lack of awareness of users and sometimes in the complexity
and practical inefficiency of cryptographic solutions. We deliberately outsource
large amounts of personal data to places we do not know and cannot control
through communication channels of sometimes questionable security. At the
same time, our actions leave digital footprints, whose extents we can barely con-
ceive. A fortiori, it is a necessity to counter these developments through strong
privacy-enhancing cryptography, which allows us to secure our personal data
and reduce our communication traces that are analyzable by third parties while
still upholding functionality.

This thesis introduces structure-preserving signatures on equivalence classes
(SPS-EQs) and presents several applications to privacy-enhancing cryptography.
Loosely speaking, an SPS-EQ allows us to sign projective equivalence classes (de-
fined in the bilinear-group setting) and to adapt signatures to arbitrary represen-
tatives of the respective class later on. At the same time, it should be infeasible to
link message-signature pairs belonging to the same class. Surprisingly, SPS-EQs
enable new construction paradigms for very efficient and intelligible schemes.
We will describe two SPS-EQ constructions and a security model, which we
will also discuss in more detail. Using SPS-EQs, we will then show a new and
efficient way to build blind and partially blind signatures—two basic building
blocks for privacy-enhancing protocols—, introduce new design paradigms for
one-show attribute-based credentials (ABCs) and multi-show ABCs—methods
that allow us to authenticate ourselves without disclosing our identity. More
precisely, we will give the first practically efficient round-optimal blind-signature
scheme having security proofs in the standard model. We will then show the
first one-show ABC based on a standard-model blind-signature scheme. Further,
we will present an efficient multi-show ABC along with a game-based security
model and a new perfectly hiding set-commitment scheme as its second building
block—both latter contributions are of independent interest. Our multi-show
ABC is the first to simultaneously have constant-size credentials and constant
communication effort—two distinguishing features for efficiency and thus practi-
cality. Furthermore, it is the first ABC whose anonymity holds against malicious
organization keys in the standard model. Last but not least, we will also take
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a look at verifiably-encrypted signatures (VESs). These are signature schemes
for fair exchange in digital business processes. We will point out flaws in their
security model, show how to fix them and give a black-box VES construction
from SPS-EQ, which allows us to relate SPS-EQs to public-key encryption and
separate certain classes of SPS-EQ from one-way functions (OWFs). This rela-
tion is somewhat surprising, since digital signature schemes can usually be built
from OWFs.



Kurzfassung

Während der letzten Jahrzehnte hat sich unsere Technologie sehr rapide und
in historisch noch nie dagewesener Weise entwickelt. Computer- und speziell
Internettechnologie sind in nahezu alle Sphären des täglichen Lebens einge-
drungen. Da Datenschutz und Datensicherheit in den letzten Jahren sehr oft
vernachlässigt wurden, ist unsere Privatsphäre mehr und mehr zu einem selte-
nen Gut avanciert. Die Gründe dafür sind vielschichtig und finden sich oft in
der unaufhörlichen Suche nach Kosteneffizienzsteigerung, in den Geschäftsmod-
ellen großer Konzerne, in purer Indifferenz oder einem Mangel an Bewusstsein
der User, aber auch in der Komplexität und Impraktikabilität kryptografischer
Lösungen. Wir alle lagern leichtfertig große Teile unserer perunseressönlichen
Daten an Orte aus, die wir weder kennen noch kontrollieren können, und all das
über Kommunikationskanäle von oft fragwürdiger Sicherheit. Gleichzeitig hin-
terlässt unser Verhalten digitale Fußabdrücke, deren Ausmaße schwer zu fassen
sind. Damit wächst auch die Notwendigkeit, diesen Entwicklungen mit starken
datenschutzfördernden Technologien (privacy-enhancing technologies) entgegen-
zutreten, welche es uns einerseits erlauben, unsere persönlichen Daten abzusich-
ern und andererseits auch helfen, die digitalen Spuren, die wir alle tagtäglich hin-
terlassen und welche aktiv von Dritten analysiert werden, effektiv zu reduzieren
und das bei gleichzeitiger Aufrechterhaltung des gewohnten Komforts.

Diese Arbeit führt neue digitale Signaturen namens structure-preserving sig-
natures on equivalence classes (SPS-EQs) ein und präsentiert gleich mehrere
Anwendungen von SPS-EQ zu privacy-enhancing cryptography. Ein SPS-EQ er-
laubt uns, grob gesprochen, das Signieren projektiver Äquivalenzklassen (welche
wir im Kontext von bilinearen Gruppen definieren) und in weiterer Folge das
Ableiten von Signaturen zu beliebigen Repräsentanten entsprechender Klassen.
Gleichzeitig soll es nicht möglich sein zwei Nachrichten-Signatur-Paare, welche
in die selbe Klasse fallen, miteinander in Verbindung zu bringen. Interessan-
terweise ermöglichen diese Signaturen neue Konstruktionsweisen für sehr ef-
fiziente und gut verständliche kryptografische Schemen. Wir werden zwei SPS-
EQ Konstruktionen und ein Sicherheitsmodell näher beschreiben und disku-
tieren. Weiters verwenden wir SPS-EQ, um blinde und partiell blinde Signa-
turen auf neue und sehr effiziente Art und Weise zu bauen. Dabei handelt
es sich um grundlegende Bausteine für viele datenschutzfördernde Protokolle.
Danach werden wir (aufbauend auf SPS-EQ) neue Methoden zur Konstruktion
von one-show und multi-show attribute-based credentials (ABCs) aufzeigen –
beides Methoden zur anonymen Authentifizierung. Im Besonderen geben wir
das erste praktikable rundenoptimale blinde Signaturverfahren, welches Beweise
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im Standardmodell besitzt. Darauf aufbauend führen wir das erste one-show
ABC ein, das auf einem blinden Signaturverfahren im Standardmodell basiert.
Weiters präsentieren wir ein sehr effizientes multi-show ABC zusammen mit
einem spielbasierten Sicherheitsmodell als auch ein neues perfekt verbergendes
Commitmentschema als zweiten Grundbaustein. Es sei angemerkt, dass die
beiden letzteren Beiträge auch unabhängig von der multi-show ABC Konstruk-
tion interessant sind. Unser multi-show ABC ist das erste solche Verfahren,
welches gleichzeitig konstanten Kommunikationsaufwand und Credentials von
konstanter Größe besitzt. Außerdem ist es das erste ABC, dessen Anonymitäts-
garantien gegenüber böswillig erzeugten Organisationsschlüsseln im Standard-
modell halten. Zu guter Letzt widmen wir uns dem Thema verifiably-encrypted
signatures (VESs). Diese Signaturverfahren ermöglichen den fairen Austausch
in digitalen Geschäftsprozessen. Zum einen diskutieren wir mehrere Probleme
in den etablierten Sicherheitsmodellen und zum anderen präsentieren wir eine
generische (black-box ) VES-Konstruktion basierend auf SPS-EQ. Diese erlaubt
es uns in weiterer Folge, eine Verbindung zwischen SPS-EQ und public-key en-
cryption (PKE) herzustellen, was es uns wiederum ermöglicht, bestimmte SPS-
EQ-Klassen von Einwegfunktionen zu separieren. Dieser Zusammenhang ist ein
wenig überraschend, da digitale Signaturen üblicherweise über Einwegfunktionen
konstruiert werden können.
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1
Introduction

We were able to do a whole bunch of other things.
Some of the other things were metadata, and bulk collection and so on.

— former NSA Director Michael Hayden, on data collection in front of
encrypted communication

We kill people based on metadata.

— Michael Hayden

I believe there is something out there watching us.
Unfortunately, it’s the government.

— Woody Allen

Over the last couple of decades information technology has been evolving at
a tremendous pace and been invading nearly all spheres of life. At the same
time, data security and privacy have been neglected or often not been taken into
account at all—may it be for deliberate reasons or for a lack of better knowledge.
This has largely enabled a society where companies collect data about their cus-
tomers, governments accumulate data about their citizens and individuals spy
on each other—and all of this is happening on a historically unprecedented,
vast scale. The dream of every 20th century intelligence agency has come true,
privacy-undermining technologies such as data mining and big data have become
a reality and the trade with personal data a lucrative business model—while (the
human right for) seeking privacy is being interpreted more and more as suspi-
cious behavior or even as a punishable act. Also, cloud computing, which offers

1
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seemingly unlimited scalability and resources, has become a multi-billion dollar
business model—mostly without taking account of data security and privacy. In-
terestingly, not only do individuals carelessly outsource increasingly large parts
of their data, but so do also many companies without taking care of proper data
protection. Ultimately, this affects the privacy of clients and employees and has
potentially business-threatening consequences, such as industrial espionage and
embarrassing data breaches. With the accumulation of data in the cloud, data
breaches have become total and more devastating than ever before. Neverthe-
less, such events are not limited to the cloud alone: History has proven again and
again that unprotected data is never safe. At this point, it must be made clear
that danger is not only posed by content data, but also by collected metadata.
This applies even to metadata gathered from encrypted communication. When
linkable to individuals, metadata are a powerful means to draw comprehen-
sive conclusions about them. Privacy-enhancing technologies offer protection
for both types of data, that is, to keep our data safe and confidential and to
maintain control over it. Indeed, a multitude of recent revelations have shown
that privacy in this dynamic and increasingly interconnected new world cannot
be enforced without being backed by strong mathematical security guarantees.
The key to tackle this issue are privacy-enhancing technologies and, in partic-
ular, their strongest form: Privacy-enhancing cryptography. Privacy-enhancing
cryptography gives us control over personal data and minimizes the amount of
metadata and personal data that is collectable and analyzable by third parties.
It aims at enforcing anonymity and unlinkability in digital interactions while it
tries to maintain the comfort to which we got used in our digital age.

Many key technologies (some of them have already been envisioned by David
Chaum [Cha81, Cha82, Cha85, Cha86] and Michael O. Rabin [Rab05] as of the
early 1980s) are already available—at least in theory. Privacy-enhancing tech-
nologies that are in general use are, for instance, data encryption, which provides
data confidentiality; and transport encryption (e.g., TLS [DR08]), which al-
lows us to establish authentic and confidential communication channels. Other
concepts in wider use are off-the-record (OTR) messaging [RGK05] (e.g., via
Signal/Textsecure), which provides us with means for secure and confidential
instant messaging; onion routing [RSG98] (e.g., Tor) and mix networks [Cha81]
(e.g., Mixmaster), which help us in anonymizing our network traffic for low and
high latency requirements, respectively; and modern e-cash systems [Cha82]
(such as Bitcoin [Nak09]), which allow for (up to some extent) anonymous fi-
nancial transactions.1 A technology that is expected to come into play within the
next couple of years is anonymous authentication, realized via anonymous cre-
dentials. They give us the possibility to authenticate ourselves anonymously
in front of different organizations [Cha86, Bra00, LRSW99, CL01, BP10]—
usually by presenting attributes about ourselves (e.g., our age), but not giv-
ing away any information beyond. Other privacy-enhancing solutions, which

1With regard to Bitcoin, various extensions and alternative approaches (such as Zero-
coin [MGGR13], Zerocash [BCG+14], Spacecoin [DFKP15] or Spacemint [PPK+15]) target
at increasing the efficiency or the level of anonymity.
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do not yet see practical deployment, are, for example, private information re-
trieval (PIR) [KO97] and oblivious RAM [GO96], which hide data access pat-
terns; searchable encryption [CGKO06], which enables searches on encrypted
data without allowing the search engine to learn neither the keywords nor the
plaintext; and (fully) homomorphic encryption [RAD78, Gen09], which enables
third parties to perform (arbitrary) computations on encrypted data without
learning anything about the plaintext and, in doing so, allows the outsourcing
of computations on confidential data into the cloud.

So far, many more sophisticated privacy-enhancing technologies have not
really found their ways into our daily lives. At the same time, it would have
never been so easy to deploy secure and privacy-preserving technologies—given
the widespread dissemination and omnipresence of smartphones and gadgets.
The main reasons blocking many privacy-enhancing technologies from prime-
time use are (1) in some cases practical inefficiency, (2) the often high complexity
and bad accessibility for implementers, (3) sometimes simply the poor usability
of respective applications and (4) the widespread unawareness about negative
consequences of mass surveillance (and the lack of knowledge how to oppose it)
on the one hand and poor negligence (or even digital promiscuity) on the other
hand.

Facing these threats from the viewpoint of cryptography, it is crucial to ad-
dress issues (1) and (2) and bring security and privacy technologies closer to
practice—particularly through the design of practically efficient, intelligible and
usable technologies. A major part of this thesis is dedicated to this purpose.2 It
gives, in fact, new construction paradigms for privacy-enhancing schemes that
help us reducing collectable metadata while upholding functionality. In par-
ticular, it aims at providing intelligible and at the same time practically (and
indeed highly) efficient new approaches to anonymous authentication and other
fundamental privacy-protecting techniques. We will not only propose several
new approaches to build anonymous-authentication protocols (in the form of
one-show and multi-show attribute-based credentials (ABCs)), blind signatures
(which form a basis for one-show attribute-based credentials (ABCs), e-voting
and e-cash), but we will also develop and study the required basic building
blocks. To this end, we will introduce some new and surprisingly versatile cryp-
tographic primitives, which are also of independent interest. Still, it has to
be noted that more work on these building blocks is still necessary in order to
achieve even stronger security guarantees.

1.1 Background

We will start this section with a general discussion of the cryptographic setting,
in which we will operate, followed by an outline of the basic ideas behind the
cryptographic schemes and protocols we are going to consider in this thesis.

2The remaining parts deal with security in electronic-business processes and, most impor-
tantly, their results allow further insights on the basic building blocks that we are going to
introduce in the course of this thesis and on which we will base the other central results.
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1.1.1 Pairing-Based Cryptography

The techniques used throughout this thesis are based on bilinear groups, which
can be efficiently set up in the elliptic curve setting. Elliptic curves have been
studied in mathematics for a long time. The set of points on an elliptic curve (to-
gether with the point at infinity) forms a group, where the group law is given by
the so-called chord-and-tangent method (for further details we refer the reader
to, e.g., [Sil86, HMV03, CF05]). Their applications are manyfold and range
from the study of integrals to the proof of Fermat’s last theorem by Andrew
Wiles [Wil95]. In the 1980s, they were introduced to cryptography by Miller
and Koblitz [Mil86b, Kob89]. Since then elliptic curves have become an impor-
tant pillar of modern public-key cryptography (PKC) and an efficient alternative
to other cryptosystems like RSA [RSA78]. The great benefit of elliptic curves lies
in the fact that no sub-exponential-time algorithm for solving the elliptic-curve
discrete-logarithm problem (ECDLP) is known. Compared to RSA, for which
algorithms solving the underlying integer-factorization problem (IFP) in sub-
exponential time are known (e.g., the number field sieve [Pol93]), this facilitates
the use of by far smaller key sizes and, thus, more efficient implementations—
despite the more complex arithmetic. Pairings on elliptic curves (or more gen-
erally on Abelian varieties) were first defined by Weil [Wei40] as early as in the
year 1940 and have for a quite a while been conceived as a purely theoretical
concept. In the context of elliptic curves, a pairing is a bilinear map mapping
two group elements to a target group.3 In the 1990s their first application to
elliptic-curve cryptography (ECC) was found, namely, a negative one: An attack
against the ECDLP on certain curves equipped with an efficiently computable
bilinear map. Even though, this event shattered the trust in ECC for a short
period in the 1990s, it did, interestingly enough, neither block the rise of ECC in
the long run nor the advent of pairing-based cryptography. However, from then
on, it would take until the early 2000s to discover positive applications of bilin-
ear maps, such as one-round tripartite Diffie-Hellman key agreement [Jou00] or
identity-based encryption (IBE) [Sha84, BF01], and become aware of their huge
potential. Since then pairing-based cryptography and with it cryptography itself
has undergone considerable development. Several breakthroughs enabled the ef-
ficient computation of pairings (e.g., [Mil86a, MNT01, BKLS02, BN06, Ver10])
and further triggered new directions and rapidly evolving new developments in
cryptography [Jou00, BF01, BLS01]. These advances led to a blossoming of
public-key cryptography that has been going on until today. Besides enabling
solutions to long-standing open problems (such as IBE [Sha84, BF01]), it gave
rise to a plethora of new cryptographic primitives (such as short aggregate signa-
tures [BLS01], verifiably-encrypted signatures (VESs) [BGLS03], attribute-based
encryption [GPSW06] and the like) and enabled more efficient and more elegant

3There are several types of pairings: Type-1, Type-2 and Type-3 pairings. In the Type-1
(or symmetric) setting, the pairing maps two elements coming from the same group to a target
group. In the Type-2 and Type-3 (or asymmetric) settings, the pairing maps two elements
stemming from two related, yet distinct, groups to a target group. Moreover, in the Type-3
setting those two base groups are strictly separated. For more details, we refer the reader to
Section 2.3.
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constructions of already known cryptographic primitives (e.g., short group sig-
natures [BBS04] and blind signatures [Bol03]). Due to such theoretical break-
throughs and the hunt for practically efficient pairing implementations, which
reached its climax in the development of the optimal Ate pairing [Ver10] on
Barreto-Naehrig (BN) curves [BN06], pairing-based cryptography has become
one of the most important building blocks of modern cryptography.4

Another significant breakthrough was the introduction of the Groth-Sahai
(GS) proof system in 2007 [GS07, GS08], which is an efficient framework for non-
interactive witness-indistinguishable (NIWI) and non-interactive zero-knowledge
(NIZK) proofs for languages expressible by bilinear groups. This led to the de-
velopment of structure-preserving signatures (SPSs) [AFG+10]—a new signature
scheme type compatible with GS proofs. In particular, SPSs are defined on bilin-
ear groups, that is, messages, public keys and signatures are group elements and
verification is performed by a conjunction of pairing-product equations (PPEs)
and group membership tests.

Current cutting-edge research strives to develop multilinear maps [BS02a],
in order to continue and generalize the ideas of pairing-based cryptography.
Right now, many new developments follow in quick succession: Most of all,
we see big advances on indistinguishability obfuscation (iO) (e.g., [GGH+13b,
GH13a, PS15a, AFH+15]), which is equivalent to multilinear maps [PS15a,
AFH+15], and the quest for multilinear maps constructions (cf., e.g., [GGH13a,
CLT13, LSS14, CLT15, GGH15]) alternating with the chase to break them (cf.,
e.g., [GHMS14, CLT14, CLR15, CLLT15, CFL+16]).

1.1.2 Blind Signatures

The concept of blind signatures [Cha82] dates back to the beginning of the 1980s.
A blind-signature scheme is an interactive protocol where a user (or obtainer)
requests a signature on a message which the signer (or issuer) must not learn.
In particular, the signer must not be able to link a message-signature pair to the
execution of the issuing protocol in which it was produced (blindness). Further-
more, it should even for adaptive adversaries be infeasible to produce a valid
blind signature without the signing key (unforgeability). Blind signatures have
proven to be an important building block for cryptographic protocols, which is
featured most prominently in e-cash, e-voting and one-show anonymous creden-
tials.

1.1.3 Anonymous Credentials

Credential systems are means for anonymous authentication and have been fore-
seen by Chaum as early as in 1985 [Cha85]. Chaum’s intention was to develop a
protocol that allowed users to interact anonymously with multiple organizations.

4Later works on pairing-based schemes often pursue a more abstract approach and use the
notion of a bilinear group, which is essentially made up of the pairing, all related groups and
their generators. Also in this thesis, we will spare out any technical details related to elliptic
curves and only employ the more abstract notion of bilinear groups.
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In such a system, a user can obtain a credential from an issuing organization
and demonstrate its possession to other organizations acting as verifiers.

This idea was later formalized and extended in [LRSW99] and [CL01] to
pseudonym and anonymous credential systems, respectively. While the expres-
siveness of many early credential systems (e.g., the one in [CL01]) was quite lim-
ited, state-of-the-art credential systems typically consider a collection of different
attributes (e.g., nationality, sex, etc.). Such systems are known as attribute-
based credentials (ABCs) or also as Privacy-ABCs. Here, the credential owner
can prove the possession of several attributes in an anonymous fashion to any
verifying party.

There are two major lines of anonymous credentials: one-show and multi-
show anonymous credentials. In the former, a user can perform a single unlink-
able showing; whereas in the latter a user can conduct an arbitrary number of
unlinkable showings. Implementations for one-show and multi-show ABCs are
available as Microsoft’s U-Prove [BP10] and IBM’s idemix [CV02], respectively.

Besides these two types, there are also delegatable anonymous credentials
[BCC+09]. These allow users to obtain credentials from different organizations
and to delegate their credentials to other users later on.

1.1.4 Verifiably Encrypted Signatures

VESs provide means for optimistic fair exchange. A common scenario for this
is the following one: Bob wants to buy a theater ticket with an electronic check.
That is, he wants to exchange one document, signed by himself, for another
document, signed by the theater. If he sends the check before receiving the
ticket, he worries that the theater will cash his check without issuing the ticket.
On the other hand, the theater is not willing to issue the ticket without receiving
a check.

A VES, introduced by Boneh, Gentry, Lynn and Shacham [BGLS03], can
be used to resolve this impasse. A VES has two forms of signatures: plain and
encrypted. Both forms of signature can be verified, and if the signer refuses to
reveal the plain signature at the end of negotiations, the other party can appeal
to a trusted third party (called the arbiter), who can recreate a plain signature
given the corresponding encrypted signature.

Thus, in our example, the theater can provisionally send Bob a ticket with an
encrypted signature, and once they receive Bob’s signed check they can reveal
the corresponding plain signature, and thus validate the provisional ticket. If
they fail to do so, Bob can take the encrypted signature to the arbiter. The
arbiter’s investigation will reveal that Bob has indeed upheld his side of the
deal, and so recreate the corresponding plain signature, giving Bob the ticket
he has paid for (fairness). This protocol has the advantage of being optimistic
meaning that the arbiter need not participate unless there is a dispute.
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1.2 This Thesis in a Nutshell

In this thesis, we will not only define a new type of SPSs called structure-
preserving signature on equivalence classes (SPS-EQ) but also demonstrate their
potential to build cryptographic schemes and protocols in a completely new
way. Structure-preserving signatures on equivalence classes (SPS-EQs) allow for
a completely new construction paradigm for VESs and privacy-enhancing pro-
tocols such as anonymous credentials and blind signatures. The goal that we
pursue with SPS-EQ is to define a signature scheme that allows for the con-
sistent and unlinkable randomization of message-signature pairs. To this end,
we partition the message space into projective equivalence classes and allow a
controlled form of malleability: When signing one class, by signing one of its
representatives, we allow subsequent public signature adaptations to arbitrary
other representatives. If the decisional Diffie-Hellman (DDH) assumption holds
on the underlying group, then we get a form of indistinguishability on the mes-
sage space for free. Furthermore, in order to obtain security we require a property
on the distribution of signatures: After signing a representative, a signer cannot
tell apart whether she is being given an adapted signature for a new represen-
tative, or a fresh signature on a completely random message. In combination
with the property of indistinguishability on the message space, this means that
message-signature pairs falling into the same class are indistinguishable.

The consistent and unlinkable randomization of message-signature pairs en-
ables new and highly efficient approaches to especially blind signatures and one-
show and multi-show ABCs. A highlight is that for all those schemes blind-
ness and anonymity, respectively, hold against malicious issuers. At its heart,
the blinding and unblinding in our blind-signature scheme and one-show ABC
scheme are just changes of representatives. Similarly, in the case of our multi-
show ABCs, a showing is essentially the presentation of an arbitrary represen-
tative of a credential’s associated class. Also in our VES scheme we make use
of this inherent property of SPS-EQ: The arbiter is able to switch an encrypted
signature to its plain form by performing a switch to another representative.

Besides these three main contributions, we introduce a game-based security
model for multi-show ABCs, identify flaws in the VES security model and pro-
pose a way to fix them. Moreover, we introduce a new commitment type that
we require to handle the attribute sets in our multi-show ABC, which is of in-
dependent interest. This new primitive allows to commit to sets and to open
arbitrary subsets. We present a security model and an efficient construction.

This thesis relies on three publications at major cryptography and computer-
security conferences, one preprint and one paper still in review. More precisely,
the general results about SPS-EQ stem from [HS14, FHS15a, FHS14] and a full-
version paper [FHS16] to [HS14] that is joint work with Georg Fuchsbauer and
Daniel Slamanig and has been submitted to Journal of Cryptology. The results
on blind signatures and one-show ABCs come from [FHS15a], those on multi-
show ABCs from [HS14] and the improvements of these results, which have been
incorporated into this thesis, from the respective follow-up paper [FHS16]. Last
but not least, the results on VESs are based on [HRS15].
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1.3 Related Work

In this section, we discuss work related to the topics SPSs, randomizable sig-
natures, blind and partially blind signatures, set commitments, one- and multi-
show ABCs and VESs.

1.3.1 Structure-Preserving Signatures

Digital signatures are an important cryptographic primitive to provide a means
for integrity protection, non-repudiation as well as authenticity of messages in a
publicly verifiable way. In most signature schemes, the message space consists of
integers in Z|G| for some group G or consists of arbitrary strings encoded either
to integers in Z|G| or to elements of a group G using a suitable hash function. In
the latter case, the hash function is usually required to be modeled as a random
oracle (RO) (thus, one signs random group elements).

In contrast, SPSs [Fuc09, AHO10, AFG+10, AGHO11, CDH12, AGOT14b,
LPY15, KPW15] can handle messages which are elements of two groups G1 and
G2 equipped with a bilinear map, without requiring any prior encoding. They
have originally been introduced in the context of the GS proof system [GS08];
as new type of signature schemes compatible with this particular proof system
defined on bilinear groups [AFG+10]. Later on, other applications of SPS, which
are of independent interest, have been found as well [LPJY13, HS14, FHS15a].
Basically, in an SPS scheme the public key, the messages and the signature
consist only of group elements and the verification algorithm evaluates a signa-
ture by deciding group membership of elements in the signature and by eval-
uating PPEs. Recently, this concept has been extended to so called fully SPS
schemes [AKOT15, Gro15], whose secret keys also only consist of group elements.
SPS schemes typically allow to sign vectors of group elements (from one of the
two groups G1 and G2, or mixed) and also support some types of randomization
(inner, sequential, etc., cf. [AFG+10, AGOT14b]).

In [AGHO11], Abe et al. showed that Type-3 SPSs (that is, an SPS built over
Type-3 bilinear groups) having constant-size signatures cannot exist, unless the
signature has at least 3 elements, its elements stem from both groups (bilateral)
and the SPS scheme uses at least 2 PPEs for verification. In [AGOT14a], they
showed similar results for Type-2 SPSs. Moreover, in [AGO11], Abe et al. proved
that the unforgeability of optimally short Type-3 SPS schemes (i.e., with 3-
element signatures) cannot be reduced to non-interactive assumptions. This
means that we are restricted to proving the unforgeability of such schemes in
the generic-group model (GGM) (cf. Section 2.2.3).

1.3.2 Randomizable Signatures

In [BFPV11], Blazy et al. present signatures on randomizable ciphertexts (based
on linear encryption [BBS04]) using a variant of Waters signatures [Wat05].
Basically, anyone given a signature on a ciphertext can randomize the cipher-
text and adapt the signature accordingly, while maintaining public verifiability
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and neither knowing the signing key nor the encrypted message. However, as
these signatures only allow to randomize the ciphertexts and not the underlying
plaintexts, this approach is not useful for our purposes and also not practically
efficient.

Another somewhat related approach is the proofless variant of the Chaum-
Pedersen signature [CP93] which is used to build self-blindable certificates by
Verheul in [Ver01]. This certificate as well as the initial message can be ran-
domized using the same scalar, preserving the validity of the certificate. This
approach works for the construction in [Ver01], but it does not represent a secure
signature scheme (as also observed in [Ver01]) due to its homomorphic property
and the possibility of efficient existential forgeries.

Linearly homomorphic signatures [BFKW09, CFW12, Fre12] allow to sign
any subspace of a vector space by producing a signature for every basis vector
with respect to the same identifier. The messages are signed together with
a unique identifier that “glues” together the single vectors. These signatures
are homomorphic, meaning that given a sequence of scalar and signature pairs
(βi, σi)i∈[`] for vectors ~vi, one can publicly compute a signature for the vector
~v =

∑
i∈[`] βi~vi. If one was using a unique identifier per signed vector ~v, then such

signatures would support a functionality similar to the one that we are looking
for, i.e., publicly compute signatures for vectors ~v′ = β~v (although they are not
structure-preserving). Various existing constructions also provide the privacy
feature of being strongly/completely context-hiding [ALP12, ALP13], meaning
that one cannot tell apart a signature for a vector ~v from a signature to a vector
~v resulting from a homomorphic computation on signatures. Nevertheless, this
does not help in our context: If we do not restrict every single signed vector
to a unique identifier, the signature schemes are homomorphic, which is not
compatible with our goal concerning unforgeability. If we apply this restriction,
however, then we are not able to achieve our privacy notion as all signatures can
be linked to the initial signature by the unique identifier. The same arguments
also apply to structure-preserving linearly homomorphic signatures [LPJY13].
Other classes of homomorphic signatures schemes supporting a richer class of
admissible functions (beside linear ones) is also related but does not help us
either (cf. [ABC+12, ALP12] for an overview).

We note that the general framework of P -homomorphic signatures [ABC+12,
ALP12] is related to our approach in terms of unforgeability and privacy guaran-
tees, but there are no existing instantiations for the functionality that we require,
and we find it more natural to use our formalization. Moreover, in [CKLM13],
the authors introduce a framework for malleable signatures that allows to de-
rive a signature σ′ on a message m′ = T (m) for an “allowable” transforma-
tion T , when given a signature σ for a message m. This can be considered as
a generalization of signature schemes, such as quotable [ABC+12, ALP13] or
redactable signatures [SBZ02, JMSW02] with the additional property of be-
ing context-hiding. The authors note that for messages being pseudonyms
and transformations which transfer one pseudonym into another pseudonym,
such malleable signatures can be used to construct anonymous credential sys-
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tems. They also demonstrate how to build delegatable anonymous credential
systems [BCC+09]. The general construction in [CKLM13], however, relies
on malleable zero-knowledge proofs (ZKPs) [CKLM12] and is not practically
efficient—even when instantiated with the GS proof system [GS08]. Although
the above framework is conceptually totally different from our approach, we note
that by viewing our scheme in a different way, it fits their definition of malleable
signatures (such that their evaluation algorithm takes only a single message vec-
tor with corresponding signature and a single type of allowable transformation).
However, firstly, our instantiations are far more efficient than their approach
(and, in particular, really practical) and, secondly, [CKLM13] when used to con-
struct ABCs, it focuses only on transformations of single messages (pseudonyms)
and does not consider attributes (which is the main focus of our construction).

1.3.3 Blind and Partially Blind Signatures

In over 30 years of research, many different (> 50) blind-signature schemes have
been proposed. The spectrum ranges from RSA-based (e.g., [Cha82, CKW05])
over DL-based (e.g., [Oka93, Abe01]) and pairing-based (e.g., [Bol03, BFPV11])
to lattice-based (e.g., [Rüc10]) constructions, as well as constructions from gen-
eral assumptions (e.g., [JLO97, HKKL07, Fis06]). Two distinguishing features
of blind signatures are whether they assume a common-reference string (CRS)
(cf. Section 2.2.3) set up by a trusted party to which everyone has access; and the
number of rounds in the signing protocol. Schemes which require only one round
of interaction (two moves) are called round-optimal [Fis06]. Besides improv-
ing efficiency, round optimality also directly yields concurrent security (which
otherwise has to be dealt with explicitly; e.g., [HKKL07]). There are very effi-
cient round-optimal schemes [Cha83, Bol03, BNPS03] under interactive assump-
tions (chosen-target one-more RSA inversion and chosen-target computational
Diffie-Hellman (CDH), respectively) in the random-oracle model (ROM) (cf.
Section 2.2.3) as well as under the interactive LRSW [LRSW99] assumption in
the CRS model [GS12]. All these schemes are in the honest-key model where
blindness only holds against signers whose keys are generated by the experiment.

Fischlin [Fis06] proposed a generic framework for constructing round-optimal
blind signatures in the CRS model with blindness under malicious keys: The
signer signs a commitment to the message and the blind signature is a non-
interactive zero-knowledge proof (NIZKP) of a signed commitment which opens
to the message. Using SPS [AFG+10] and the GS proof system [GS08] instead
of general NIZKPs, this framework was efficiently instantiated in [AFG+10].
In [BFPV11, BPV12], Blazy et al. gave alternative approaches to compact round-
optimal blind signatures in the CRS model which avoid including a GS proof
in the final blind signature. Another round-optimal solution with comparable
computational costs was proposed by Seo and Cheon in [SC12] building on work
by Meiklejohn et al. [MSF10].

Known impossibility results indicate that the design of round-optimal blind
signatures in the standard model (cf. Section 2.2.3) has some limitations. Lin-
dell showed in [Lin03] that concurrently secure (and consequently also round-
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optimal) blind signatures are impossible in the standard model when using
simulation-based security notions. This can however be bypassed via game-based
security notions, as shown by Hazay et al. [HKKL07] for non-round-optimal con-
structions.

Fischlin and Schröder [FS10] showed that black-box reductions of blind-
signature unforgeability to non-interactive assumptions in the standard model
are impossible if the scheme has three moves or less, blindness holds statistically
(or computationally if unforgeability and blindness are unrelated) and proto-
col transcripts allow to verify whether the user is able to derive a signature
(signature-derivation checks). Existing constructions [GRS+11, GG14] bypass
these results by making non-black-box use of the underlying primitives (and
preventing signature-derivation checks in [GRS+11]).

Garg et al. [GRS+11] proposed the first round-optimal generic construction
in the standard model, which can, however, only be considered as a theoretical
feasibility result. Using fully homomorphic encryption, the user encrypts the
message sent to the signer who evaluates the signing circuit on the ciphertext. To
remove the CRS, they use two-move witness-indistinguishable proofs (ZAPs) to
let the parties prove honest behavior; to preserve round-optimality, they include
the first fixed round of the ZAP in the signer’s public key.

Garg and Gupta [GG14] proposed the first efficient round-optimal blind sig-
nature constructions in the standard model. They build on Fischlin’s framework
using SPSs. To remove a trusted setup, they use a two-CRS NIZKP system based
on GS proofs and include the CRSs in the public key while forcing the signer
to honestly generate the CRS. Their construction, however, requires complexity
leveraging (the reduction for unforgeability needs to solve a subexponential dis-
crete logarithm (DL) instance for every signing query) and is proven secure with
respect to non-uniform adversaries. Consequently, communication complexity is
in the order of hundreds of KB (even at a 80-bit security level) and the com-
putational costs (not considered by the authors) seem to limit their practical
application even more significantly.

1.3.4 One-Show ABCs

One-show credential systems are typically built from blind signatures following
the approach from Brands [Bra00], which has been implemented in Microsoft’s
U-Prove [BP10]. Thereby, blind signatures ensure that no party is able to link
the credential issuance to any of its showings, while different showings of the
same credential are linkable. In 2013, Baldimtsi et al. [BL13b] showed that
with currently known proof techniques the underlying blind-signature scheme
by Brands [Bra00] cannot be proven secure. To get around this problem, they
propose a generic construction of one-show credentials (in the fashion of Brands;
called “Anonymous Credentials Light”) secure in the ROM [BL13a]. Their cre-
dential system is based on a blind-signature scheme that they term blind sig-
natures with attributes, for which they also give a construction based on a
non-round-optimal blind-signature scheme by Abe [Abe01].
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1.3.5 Set Commitments

The most well-known approach for commitments to (ordered) sets are Merkle
hash trees (MHTs) [Mer88], where for a set S the commitment size is O(1) and
the opening to a committed value is of size O(log |S|). Quite recently, Boneh and
Corrigan-Gibbs [BC14] proposed an alternative MHT construction using a novel
commitment scheme based on a bivariate polynomial modulo RSA composites.
In contrast to MHTs, their construction supports succinct proofs of knowledge
(PoKs) of committed values.

Kate et al. [KZG10] introduced polynomial-commitment schemes that allow
to commit to polynomials and support (batch) openings of polynomial evalua-
tions. They can be used to commit to ordered sets (by fixing an index set) or to
sets by considering committed values to be the roots. Their two constructions are
analogues to DL and Pedersen commitments and have O(1)-size commitments
and openings. Recently, Camenisch et al. [CDHK15] proposed a variant of the
Pedersen version in [KZG10]. A related commitment scheme, called knowledge
commitment, has been proposed in [Gro10] (and later generalized by Lipmaa
in [Lip12]).

Another common commitment type for ordered sets are generalized Peder-
sen [Ped92] or Fujisaki-Okamoto [FO98] commitments. Both have commitment
size O(1), but opening proofs are of size O(|S|). For the sake of completeness,
we also mention the notion of vector commitments [CF13], which allow to open
specific positions as well as subsequent updates at specific positions (but do not
necessarily require hiding).

Zero-knowledge sets [MRK03] are another primitive in this context. They al-
low to commit to a set and to perform membership and non-membership queries
on values without revealing any further information on the set. In [DHS15b], it
was shown that zero-knowledge sets imply commitments in a black-box way.

1.3.6 Multi-Show ABCs

Signatures providing randomization features [CL03, CL04, BBS04, PS15b] along
with efficient zero-knowledge proofs of knowledge (ZKPoKs) of committed val-
ues can be used to generically construct ABC systems. The most prominent
approaches based on Σ-protocols are CL credentials [CL03, CL04]. With the ad-
vent of GS proofs, which allow (efficient) non-interactive proofs in the CRS model
without random oracles, various constructions of so-called delegatable (hierar-
chical) anonymous credentials [BCC+09, Fuc11] and non-interactive anonymous
credentials [BCKL08, ILV11] have been proposed. These provide per definition a
non-interactive showing protocol, i.e., the show and verify algorithms do not in-
teract when demonstrating the possession of a credential (also the recent model
for conventional ABCs in [CKL+14] only support non-interactive showings).
In [Fuc11], Fuchsbauer presented the first delegatable anonymous credential sys-
tem that also provides a non-interactive delegation protocol based on so-called
commuting signatures and verifiable encryption. We note that although such cre-
dential systems with non-interactive protocols extend the scope of applications
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of anonymous credentials, the most common use-case (i.e., authentication and
authorization), essentially relies on interaction (to provide freshness/liveness).
We emphasize that our goal is not to construct non-interactive anonymous cre-
dentials.

1.3.7 Verifiably Encrypted Signatures

VESs and a first instantiation in the ROM were proposed by Boneh, Gentry,
Lynn and Shacham [BGLS03]. After their invention, several instantiations were
suggested in the ROM [ZSS03, Rüc09] and in the standard model [LOS+06,
RS09, Fuc11]. The security model is treated in [BGLS03] and has been fur-
ther discussed and extended in [Hes04, RS09, CMSW14]. In [RS09], Rückert
and Schröder amend the VES security model by new properties and [CMSW14]
points out flaws in the security model. To this end, Calderon et al. show
in [CMSW14] that secure VESs can be constructed solely from standard dig-
ital signatures (DSs). This means, in particular, that the notion of a VES (as
previously defined) is not necessarily related to encryption. To exclude such
counterintuitive constructions, Calderon et al. introduced as a first step the
notion of resolution independence, which prevents discrimination between signa-
tures arising from signers and arbiters by requiring plain and resolved signatures
to be identically distributed. Interestingly, all known constructions seem to ful-
fill this property. They further extend this notion to resolution duplication.
All VESs satisfying this property can then be related to public-key encryption
(PKE), that is, PKE can be black-box constructed from such VESs. This re-
sult separates resolution-duplicate VESs from one-way function (OWF), which
is especially interesting from a theoretical point of view, since DSs can usually
be built from OWFs.

1.4 Contribution

As one core contribution, we introduce SPS-EQs. These are a new type of
structure-preserving signatures (SPSs) that allow for signing projective equiva-
lence classes set up on the message space G` (for some prime-order group G).
In particular, a signature on one representative can efficiently and publicly be
adapted to any other representative of the same class—allowing the consistent
and efficient public randomization of message-signature pairs. The main benefit
of this primitive is that we can achieve the unlinkability of different message-
signature pairs falling into the same class, by: (1) requiring the DDH assumption
to hold on G (making representatives of the same class—loosely speaking—
unlinkable for outsiders and for signers not in control of choosing the discrete
logarithms of the initially signed representative); (2) fresh and updated signa-
tures to be identically distributed. Thus, SPS-EQs are especially well-suited to
design more complex cryptographic protocols, where a signer is required to issue
a signature on values out of his (full) control. We show how to use SPS-EQs as an
efficient and versatile building block for verifiably-encrypted signatures (VESs)
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and privacy-enhancing technologies including but not restricted to (partially)
blind signatures, one-show attribute-based credentials (ABCs) and multi-show
ABCs.

This thesis relies on three publications at major cryptography and computer-
security conferences, one preprint and one paper still in review. More precisely,
the general results about SPS-EQ stem from [HS14, FHS15a, FHS14] and a full-
version paper [FHS16] to [HS14] that is joint work with Georg Fuchsbauer and
Daniel Slamanig and has been submitted to Journal of Cryptology. The results
on blind signatures and one-show ABCs come from [FHS15a, FHS15b], those on
multi-show ABCs from [HS14] and improvements of these results, which have
been incorporated into this thesis, from the respective follow-up paper [FHS16].
Last but not least, the results on VESs are based on [HRS15].

1.4.1 SPS-EQ

We define SPS-EQs by giving their abstract model and an appropriate secu-
rity model. To this end, we introduce several properties on the distribution of
signatures. The weakest property is called class-hiding ; it demands that random-
ized message-signature pairs are indistinguishable from fresh message-signature
pairs for outsiders. A stronger property is called perfect adaptation of signa-
tures; it requires that adapted and fresh signatures have the same distribution.
The strongest property is perfect adaptation of signatures under malicious keys;
roughly speaking it demands adapted signatures to be uniformly distributed in
the space of corresponding valid signatures. Both latter properties together with
the DDH on the underlying group imply the former property.

Then, we present a malicious-key perfectly adapting SPS-EQ construction
secure in the GGM. We further give the first construction whose security relies
on a non-interactive assumption. (The scheme does, however, support only the
weaker class-hiding notion.) We then show how any SPS-EQ can be turned into
an SPS scheme and under which conditions it is rerandomizable. Moreover, we
give a black-box separation of malicious-key perfectly adapting SPS-EQs from
non-interactive assumptions by means of a meta-reduction. This result plays off
the EUF-CMA security and the indistinguishability on the message space and
motivates the definition of a weaker unforgeability notion. Finally, we will take
this result into account, present a more suitable notion and discuss for which
scenarios the original notion is still relevant.

1.4.2 Blind and Partially Blind Signatures

We propose a new paradigm to constructing blind signatures that we call commit-
randomize-derandomize-open approach. It follows black-box from malicious-key
perfectly adapting SPS-EQs and is the first of its kind that is practically efficient,
round-optimal (i.e., two-move) and does not rely on a CRS or on ROs. It yields
conceptually simple and compact constructions and does not rely on techniques
such as complexity leveraging. The main caveat is, however, that blindness is
based on a plausible yet interactive assumption. The resulting blind signatures
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are entirely practical in terms of key sizes, signature sizes, exchanged group
elements and computational effort (when implemented with known instantiations
of SPS-EQ a blind signature consists of only 5 bilinear-group elements).

In our blind-signature scheme, the obtainer assembles a representative of an
equivalence class as a commitment to the message and a normalization element
(commit). She then blinds this message by changing it to another representative
(randomize). The signer, given the blinded message, produces a signature on
the respective class. Given this signature, the obtainer adapts it to the original
representative (containing the original commitment) without requiring the sign-
ing key (derandomize). Due to the normalization element, it is guaranteed that
the obtainer can only switch back to exactly the original representative. Finally,
the blind signature is the rerandomized (unlinkable) signature for the original
representative plus an opening for the commitment (open).

We also provide the first construction of round-optimal partially blind sig-
natures in the standard model, which follow straightforwardly from our blind
signatures and are almost equally efficient.

1.4.3 One-Show ABCs

We generalize our round-optimal blind-signature scheme to message vectors.
Combined with ZKPoKs this almost directly yields one-show anonymous cre-
dentials à la “Anonymous Credentials Light” [BL13a]. In this way, we obtain
one-show ABCs secure in the standard model (whereas all previous ones come
without security proofs or with proofs in the ROM).

1.4.4 Set Commitments

We propose a novel commitment-scheme type that allows for committing to sets
and to open arbitrary subsets such that commitments and openings are of size
O(1). We propose an abstract model with corresponding security properties.
Furthermore, we give a new and efficient set-commitment construction which we
prove secure in this model. It is perfectly hiding, allows to commit to subsets of
Zp and is represented by a single element of a bilinear group. In particular, it al-
lows to open subsets of committed sets. The way the scheme is built also enables
commitment rerandomization, which we, however, do not present as an explicit
property of set-commitment schemes. The rerandomization is compatible with
the rerandomization of the proposed SPS-EQ scheme (i.e., multiplication with
a scalar), does not change the set committed to, but requires only a consistent
randomization of the witnesses involved in the subset openings. This is a prop-
erty that cannot be achieved by existing constructions, when one wants to avoid
costly ZKPs of randomization.

1.4.5 Multi-Show ABCs

We describe a new way of building multi-show attribute-based anonymous cre-
dentials as an application of SPS-EQ and set commitments. In this way, we
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are able to construct the first standard-model multi-show ABC with anonymity
holding against malicious organization keys. From another perspective, an SPS-
EQ scheme allows to consistently randomize a vector of group elements and
its signature. So, it seems natural to use this property to achieve unlinkability
during the showings in an ABC system. Moreover, it is natural to use the set
commitment to commit to the attributes of the user. Loosely speaking, to issue
a credential the issuer signs a message (vector) containing the set commitment
(and two additional group elements for technical reasons) and the credential is
essentially the message and its corresponding signature. During a showing, a
subset of the issued attributes can then be opened. The unlinkability of show-
ings is achieved through the rerandomization properties of both the SPS-EQ
signature scheme and the set-commitment scheme, whose rerandomizations are
compatible with each other. Furthermore, for technical reasons and to thwart
replays of showings, we require a small, constant-size ZKPoK. We emphasize
that our approach to construct ABCs is very different from existing approaches,
as we do not use ZKPs for selectively disclosing attributes during showings.
Consequently, we can achieve for our construction that the size of credentials
as well as bandwidth required for showing of a credential is independent of the
number of attributes in the credential as well as the ABC system, i.e., a small,
constant number of group elements. This is the first ABC system with this fea-
ture (Camenisch et al. [CDHK15] recently proposed an approach with identical
asymptotic complexity; cf. Section 7.2.7 for details).

We introduce a game-based security model for ABCs in which we prove our
ABC system secure. In particular, our security model is a game-based model in
the vein of group signatures [BSZ05]. We note that there are no other compre-
hensive models available for ABC systems (apart from independently developed
very strong simulation-based notions in [CKL+14, CDHK15]). Moreover, we
consider replays and a strong form of anonymity against organizations that may
generate malicious keys (without any CRS)—both are things that many earlier
works and models do not consider. Especially replays have often been considered
as an issue that is delegated to the implementation of an ABC system. But we
want to prevent such attacks already in the formal analysis of an ABC system
to avoid problems that appear later within an implementation that may simply
not consider or ignore this issue due to a lack of better knowledge. We note that
the recent independent formal model by Camenisch et al. in [CKL+14] and the
recent ABC construction by Camenisch et al. in [CDHK15]—using a different
model—do consider replays and malicious keys too, although the former in a
seemingly weaker sense and the latter only in context of a CRS. As another con-
tribution, we discuss a scheme variant with smaller organization key sizes that
is concurrently secure in the CRS model.

Finally, for the sake of completeness, we compare our ABC system to other
existing multi- and one-show ABC approaches.
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1.4.6 Verifiably Encrypted Signatures

We propose the first black-box construction of a VES from any SPS-EQ satis-
fying a simple property that we term perfect composition and which resembles
the resolution duplication property of VESs. This construction does not com-
bine an encryption scheme with an SPS-EQ, but allows us to show a connection
between perfectly composing SPS-EQs and PKE. Furthermore, all our security
proofs hold in the standard model, under the Diffie-Hellman inversion (DHI)
assumption.

We also revisit the security definitions of VES. The original definition of
VES [BGLS03] requires that the underlying (ordinary) signature scheme be cor-
rect and secure in addition to other security properties. The latter properties
have been extended in subsequent literature [Hes04, RS09] but the requirements
on the underlying scheme are sometimes neglected. We show that with this
omission, resolution independence is absolutely essential not only to the un-
forgeability, but even to the correctness, of the underlying signature scheme.
From the alternative viewpoint, we show that security including resolution inde-
pendence is sufficient for the correctness and security of the underlying signature
scheme.

Public-Key Encryption

We propose the first black-box construction of a CPA-secure PKE scheme from
any SPS-EQ allowing perfect composition. The construction follows the idea of
Calderon et al. [CMSW14]; it is black-box and does not involve known non-black-
box techniques such as zero knowledge (ZK). Given the well-known impossibility
results, this shows that SPS-EQs allowing perfect composition cannot be con-
structed from OWFs in a black-box way.

1.5 Other Contributions

Other papers published during the PhD studies, but not incorporated into this
thesis, deal with revocable multi-show ABCs [DHS15a], cryptographic accumu-
lators [DHS15b], provable data possession [HS13b], proxy signatures [HS13c,
HS13a, DHS14b, DHPS15] and cryptographic software implementations includ-
ing but not limited to implementations of ECC [PWH+13, HW13, GH13b,
DHS14a]. Last but not least, during the time of his PhD studies, the author has
developed and maintained large parts of the versatile, commercial Java™ ECC
library ECCelerate™ [HR], which offers amongst others support for bilinear pair-
ings.

1.6 Structure of this Thesis

Chapter 2 discusses the preliminaries and general definitions required for this
thesis. In Chapter 3, we introduce structure-preserving signatures on equiva-
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lence classes (SPS-EQs), which we then use to build round-optimal (partially)
blind signatures in Chapter 4 and verifiably encrypted signatures in Chapter 5.
In Chapter 6, we introduce set commitments and in Chapter 7, we construct
multi-show ABCs from SPS-EQ and set commitments and one-show ABCs from
our blind-signature construction, respectively. Finally, Chapter 8 concludes this
thesis and discusses open issues.



2
Preliminaries

They split the cryptographic key.

— Stephen Levy, on Diffie and Hellman

A hard problem is one that nobody works on.

— James L. Massey

We start with some preliminary definitions which will recur throughout the
whole thesis. Next, we will discuss some complexity-theoretic background and
we will continue by considering bilinear groups and complexity assumptions in
this context. Finally, we will briefly introduce cryptographic primitives; among
others, we will discuss commitments, proofs of knowledge (PoKs), digital signa-
tures (DSs) and public-key encryption (PKE).

The following stems to some extent from [FHS15a, FHS15b, DHS15b, HRS15,
FHS16]; other parts are based on [Kat10, KL15, FS10, Dam10, Sch15]. We often
do not provide explicit references.

2.1 General Definitions and Notation

A function ε : N → R+ is called negligible if ∀ c > 0 ∃ k0 ∀ k > k0 : ε(k) < 1/kc.
By a←R S we denote that a is chosen uniformly at random from a set S.

We call an algorithm A(a1, . . . , an) algebraic with respect to an algebraic
structure S (e.g., a group, ring or field), if it gets input the encoding of elements
of S and outputs encodings of elements of S obtained by processing the input us-
ing only algebraic manipulations defined on S. An algorithm A(a1, . . . , an) is said

19
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to be probabilistic-polynomial time (PPT) if it internally uses randomness and its
running time is polynomially bounded in its input size. We write A(a1, . . . , an; r)
to make the randomness r used by a PPT algorithm A(a1, . . . , an) explicit.

Furthermore, we say that a function f : {0, 1}∗ → {0, 1}∗ is efficiently com-
putable or easy to compute, if it can be computed by a PPT algorithm, that is,
there exists a PPT algorithm Af such that Af (x) = f(x) for all x ∈ {0, 1}∗.

With the notation Pr[ Exp : E ], we denote the probability of a particular
event E occurring after the execution of a random experiment Exp. Experi-
ment Exp is a sequence of operations (and algorithm invocations), which are
sequentially executed from left to right; Event E is typically represented by a
predicate and occurs if the predicate evaluates to 1.

2.1.1 One-Way Functions

A one-way function (OWF) is a function that is efficiently computable, but
computationally hard to invert when given its evaluation on random values:

Definition 2.1 (One-way function). A function f : {0, 1}∗ → {0, 1}∗ is one-
way, if f is efficiently computable and for all PPT adversaries A there is a
negligible function ε(·) such that:

Pr [x←R {0, 1}κ, x′←R A(1κ, f, f(x)) : f(x) = f(x′) ] ≤ ε(κ).

A trapdoor function or trapdoor one-way function f : {0, 1}∗ → {0, 1}∗ is
a one-way function, which becomes easy to invert when given some additional
piece of information—the trapdoor.

OWFs are fundamental to cryptography, yet their existence is still unknown.
In their seminal work [IR89], Impagliazzo and Rudich showed that cryptographic
primitives can be classified as lying in one of two “worlds”. The “Minicrypt”
world contains those primitives which are equivalent to the weakest known
assumption—the existence of OWFs. This includes, for instance, digital sig-
nature (DS) schemes (cf., e.g., [DH76, RSA78, GMR88]), pseudo-random gen-
erators [Lam79, IL89, GL89, Rom90, HILL99] and, in further consequence also
pseudo-random functions [GGM84]. The second world, called “Cryptomania”,
includes primitives that require stronger assumptions such as PKE [RSA78] or
key agreement (KA) [DH76].

2.1.2 Hard-Core Predicates

Even though, OWFs are allegedly computationally hard to invert, partial infor-
mation about x can still leak when given f(x). In particular, only recovering x
in its entirety is assumed to be infeasible for all PPT algorithms. A hard-core
predicate of a one-way function is a function with range {0, 1}, which is easy
to compute when given x, but hard to compute with probability significantly
better than 1/2, when given f(x). In some sense, hard-core predicates allow to
capture the difficulty of inverting f .
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Definition 2.2 (Hard-core predicate). A hard-core predicate b : {0, 1}∗ → {0, 1}
of a one-way function f : {0, 1}∗ → {0, 1}∗ is a function such that for all PPT
adversaries A there is a negligible function ε(·) such that

Pr [x←R {0, 1}κ, b∗←R A(1κ, f, f(x), b) : b∗ = b(x) ]− 1

2
≤ ε(κ).

In [GL89], Goldreich and Levin showed how to construct a hard-core pred-
icate from any OWF f : Let b(x, r) := 〈x, r〉 with |r| = |x| and 〈·, ·〉 being the

inner product on the vector space Z |x|2 , then b is a hard-core predicate for f .

2.1.3 Hash Functions

An (unkeyed) hash function hκ : {0, 1}∗ → {0, 1}κ is a deterministic polynomial-
time algorithm mapping an arbitrary-length message to a bitstring of fixed size
κ, the hash value or message digest. Typically, we assume a hash function to be
collision resistant [Dam88], that is, it should be computationally hard to find two
values x, y ∈ {0, 1}∗ yielding the same hash value, i.e., hκ(x) = hκ(y). Thereby,
collision resistance for an unkeyed hash function can only hold asymptotically
in front of uniform adversaries [Rog06]:

Definition 2.3 (Collision-resistant hash function). Let hκ : {0, 1}∗ → {0, 1}κ,
then hκ is a collision-resistant hash function if hκ is efficiently computable and
for all PPT adversaries A there is a negligible function ε(·) such that:

Pr [ (x, x′)←R A(1κ, hκ) : hκ(x) = hκ(x′) ] ≤ ε(κ).

In particular, defining collision resistance for unkeyed hash functions is prob-
lematic in theory, since there is always a constant-time algorithm that outputs
a collision (x, x′): The algorithm that contains a collision in hard-coded form.
This is circumvented by the asymptotic definition, as it is impossible to hardwire
a collision (x, x′) for every possible security parameter κ > 0. Likewise, keyed
hash functions, that is h : K × {0, 1}∗ → {0, 1}κ (with K being the key space
of size exponential in κ; and keys k ∈ K to instantiate a concrete hash function
made public), allow to bypass this problem for a similar reason: It is impossible
to hardwire a collision (x, x′) for every key k ∈ K without using an unreasonable
portion of space.

Hash functions used in practice are usually unkeyed and have a fixed output
length. Thus, they do not satisfy any theoretical definition of collision resistance.
When we consider such a hash function as being collision-resistant, this does not
mean that there is no simple adversary against this property, but just that no
such adversary is known to us humans [Rog06].

Other notions of security are preimage resistance, which essentially requires
hκ to be one-way, and second-preimage resistance, which demands finding a
second preimage x′ 6= x being infeasible when given hκ and a uniform preimage
x. The latter property is implied by collision resistance.
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2.2 Some Background on Cryptographic Com-
plexity Theory

We briefly discuss the most important complexity-theoretic topics that are re-
quired throughout this thesis.

2.2.1 Hard Problems

In cryptography, we are particularly interested in proving the security of cryp-
tographic primitives. There are several ways to prove security: In some cases
it can be shown in a perfect (information-theoretic) way (e.g., for the one-time
pad or the hiding property of Pedersen commitments, cf., Section 2.5.1); in most
other cases we have to base the primitives’ security on problems which we believe
to be hard to solve. Breaking the primitive allows us to solve the underlying
problem contradicting the hardness assumption.

There are two major types of hard problems: non-interactive and interac-
tive problems. Non-interactive problems split up into parameterized (q-type)
and static (or unparameterized) problems, where the size of the problem in-
stance in the former case depends on a parameter q that itself depends on the
adversarial behavior. Interactive problems form the weakest class of problems;
here an adversary interacts with the instance generator during the generation
of the problem instance. Overall, static problems are the most desirable class of
problems.

Another important characterization is falsifiability [Nao03, GW11, GK16].
A problem P is falsifiable, if it can always be efficiently verified whether an
adversary A is successful in breaking it, i.e., whether a value x output by A,
when being run on instance y of problem P, is a valid solution to y or not.
In particular, there are two types of such problems: Problems that allow the
efficient public verification of a solution x to an instance y and problems that
only allow this for the instance generator (or, alternatively, if the randomness r
used during the generation of y is known to the verifier). In fact, non-interactive
problems are falsifiable [Nao03, GK16]. For interactive problems to be somewhat
plausible, we require them to be at least falsifiable.

We will now give a definition of a non-interactive problem and its hardness.

Definition 2.4 (Non-interactive problem). A non-interactive problem P con-
sists of the following PPT algorithms:

IGen(1κ; r): A probabilistic algorithm that takes input a security parameter 1κ

(and has access to a random tape r ∈ {0, 1}∗). It outputs an instance y of
P.

V(x, y, r): A deterministic algorithm that takes input a value x, an instance y
of P and randomness r ∈ {0, 1}∗ such that y was generated using r. It
outputs a decision bit indicating whether or not x is a solution of y.
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Definition 2.5 (Hard non-interactive problem). A non-interactive problem P
is hard, if for all PPT adversaries A there is a negligible function ε(·) such that:

Pr [ y←R IGen(1κ; r), x←R A(y) : V(x, y, r) = 1 ] ≤ ε(κ).

2.2.2 Black-Box Relations and Separations

We say that an algorithm R has black-box access or oracle access to another
algorithm A (denoted by RA), if R and A are given the same security parameter
and R is allowed to query A as an oracle an arbitrary number of times in an
interleaving fashion. If A is probabilistic, then all copies of A use the same
random tape, which R, however, cannot access.

Loosely speaking, a black-box separation is an indication for the hardness of
finding a reduction between two primitives C1 and C2. It allows to identify a
gap between them (i.e., separating C1 from C2), by ruling out the existence of a
reduction between them.

Oracle separations are one strategy to this end. They go back to a sem-
inal paper by Impagliazzo and Rudich [IR90]. Among other separation re-
sults [Rud92, Sim98, KST99, GKM+00, GT00, GMR01, Fis02, FS10], they also
allow to divide cryptographic primitives into different realms (as already dis-
cussed in Section 2.1.1).

Another methodology for black-box separations are meta-reductions [BV98,
Cor02, PV06, BMV08], which are reductions against reductions. They allow us
to show that the pure existence of a reduction R from a primitive C to a hard
problem already violates some hardness assumption P. The starting point here
is a (potentially inefficient) forger F to which a reduction R is given black-box
access. The goal is then to construct a meta-reduction M that when having
access to R can efficiently simulate the environment (including forger F) for R

and use the output of R to solve P.

2.2.3 Computational Models

There are different computational models, in which we are able to conduct se-
curity proofs; most prominently, the random-oracle model (ROM), the common-
reference string (CRS) model and the standard (or plain) model. We will also
discuss the generic-group model (GGM), as we will refer to it later on.

The Random-Oracle Model

In the ROM [BR93], hash functions are idealized and modeled via oracles, which
means that an adversary A is unable to evaluate a hash function h : {0, 1}∗ →
{0, 1}κ by itself. Each time A evaluates h, A must query to a hash oracle Oh: Oh

on inputm responds with a uniformly random string of length κ ifm has not been
queried before; and with the same answer as in the first query for m otherwise.
There are some (artificial) pathological cases of ROM-secure schemes, which turn
out being insecure when plugging in any real hash function [CGH98, GR04]. The
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bottom line is that the ROM only gives a heuristical indication for the security
of a scheme.

The Generic-Group Model

The GGM [Sho97, Mau05] is an idealized cryptographic model to abstract al-
gebraic computations performed in a group. Thereby, an adversary is forced
to access group-action oracles in order to perform computations in the group.
These oracles return an encoding of resulting group elements. As in the ROM,
the encodings are chosen uniformly at random and encodings for already queried
elements are being returned consistently to previous queries. Similar to the
ROM, a GGM analysis is only a necessary condition for security and only gives
a heuristical indication that no algebraic adversary is able to break a certain
primitive: It suffers from similar shortcomings as the ROM [CGH98, Den02].

The Common-Reference-String Model

The CRS model (also known as common-random-string or as auxiliary-string
model) and also other variations like the registered public-key model or the bare
public-key model assume that a trusted third party (TTP) correctly performs a
trusted setup and outputs a CRS (or equivalently public parameters), to which
all participating parties are given access. After the setup the TTP is no longer
available. However, since the TTP is overly powerful, a trusted setup is by itself
a strong assumption.

The Standard Model

In contrast to aforementioned models, the standard model does not provide any
additional aids. The security of schemes with proofs in the standard model relies
solely on the used complexity assumptions. Thus, it is the strongest and most
desirable model.

2.3 Bilinear Groups

A bilinear map (or pairing) maps elements stemming from two groups G1 and
G2 to a target group GT . The former two groups are related in the sense that
they are defined by the same elliptic curve equation (over a base field F). The
latter is a multiplicative subgroup of an extension field of F.

More precisely, a bilinear map is defined as follows:

Definition 2.6 (Bilinear map). Let (G1,+), (G2,+), generated by P and P̂ ,
respectively, and (GT , ·) be cyclic groups of prime order p. We call e : G1×G2 →
GT a bilinear map or pairing if it is efficiently computable and it holds that:

Bilinearity: e(aP, bP̂ ) = e(P, P̂ )ab = e(bP, aP̂ ) ∀ a, b ∈ Zp.

Non-degeneracy: e(P, P̂ ) 6= 1GT , i.e., e(P, P̂ ) generates GT .
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If G1 = G2, then e is said to be a symmetric (or Type-1) pairing and
asymmetric otherwise. In the latter case, we distinguish between Type-2 and
Type-3 pairings: For Type-2 pairings an efficiently computable isomorphism
Ψ: G2 → G1 is known, whereas for Type-3 pairings such a map is not known to
exist. Type-3 pairings are currently the most efficient choice with regard to a
security/efficiency trade-off [CM11].

For our purposes, we will mostly use Type-3 pairings and, moreover, only
consider groups G1, G2 and GT having the same prime order p.1 In particular,
if |G1| = |G2| = |GT | = p, we say that the bilinear group BG has order p. We
will consider bilinear maps in a rather abstract way and, therefore, summarize
such pairings and all related entities in a so-called bilinear-group description
BG3 = (p,G1,G2,GT , e, P, P̂ ), for whose generation, we introduce the following
algorithm:

Definition 2.7 (Type-3 bilinear-group generator). A bilinear-group generator
BGGen3 is a PPT algorithm that takes a security parameter 1κ and outputs a
bilinear group BG3 = (p,G1,G2,GT , e, P, P̂ ) consisting of three prime-order p
groups G1 = 〈P 〉, G2 = 〈P̂ 〉 and GT with log2 p = dκe and a pairing e : G1 ×
G2 → GT .

In contrast, a Type-1 bilinear group BG1 has the form BG1 = (p,G,GT , e, P );
whereas a Type-2 bilinear group additionally takes the efficiently computable iso-
morphism Ψ: G2 → G1 into account, that is, BG2 = (p,G1,G2,GT , e, P, P̂ ,Ψ).

Subsequently, we will focus on Type-3 bilinear groups. For the sake of sim-
plicity, we will write BG and BGGen for BG3 and BGGen3, respectively. Moreover,
for technical reasons we will sometimes assume BGGen to be deterministic. This
is, e.g., the case for Barreto-Naehrig curves—the most common choice for Type-3
pairings [BN06].

2.3.1 Complexity Assumptions

Now, we will discuss some common complexity assumptions in the Type-3 bilin-
ear group context, which we are going to use throughout this thesis.

Definition 2.8 (Discrete logarithm (DL) assumption). Let BGGen be a bilinear-
group generator that outputs BG = (p,G1,G2,GT , e, P1 = P, P2 = P̂ ). Then, the
DL assumption holds for BGGen in Gi if for every PPT adversary A there is a
negligible function ε(·) such that:

Pr [BG←R BGGen(1κ), a←R Zp, a′←R A(BG, aPi) : a′Pi = aPi ] ≤ ε(κ).

Note that the discrete logarithm (DL) assumption is the weakest assumption
(or the hardest problem) in (bilinear-)group-based cryptography: An efficient
solver for it enables us to solve any other problem in this setting.

Another important computational standard assumption is the following one:

1Note that composite-order bilinear groups exist as well [BGN05].
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Definition 2.9 (Computational Diffie-Hellman (CDH) assumption). Let BGGen
be a bilinear-group generator that outputs BG = (p,G1,G2,GT , e, P1 = P, P2 =
P̂ ). Then, the CDH assumption holds for BGGen in Gi if for every PPT adver-
sary A there is a negligible function ε(·) such that:

Pr [BG←R BGGen(1κ), r, s←R Zp, Ti←R A(BG, rPi, sPi) : Ti = rsPi ] ≤ ε(κ).

The Diffie-Hellman inversion (DHI) assumption [MSK02], which we consider
next turns out useful in bilinear groups and is equivalent to the computational
Diffie-Hellman (CDH) assumption [BDZ03].

Definition 2.10 (Diffie-Hellman inversion (DHI) assumption). Let BGGen be a
bilinear-group generator that outputs BG = (p,G1,G2,GT , e, P1 = P, P2 = P̂ ).
Then, the DHI assumption holds for BGGen in Gi if for all PPT adversaries A

there is a negligible function ε(·) such that:

Pr

[
BG←R BGGen(1κ), a←R Zp∗, Ti←R A(BG, aPi) : Ti =

1

a
Pi

]
≤ ε(κ).

The co-DHI assumption is similar, yet stronger, as it makes the instance
value available in both groups G1 and G2 [CM11, FHS15a] (and, thus, implies
the above assumption):

Definition 2.11 (co-Diffie-Hellman inversion (co-DHI) assumption). Let BGGen
be a bilinear-group generator that outputs BG = (p,G1,G2,GT , e, P, P̂ ). Then,
the co-DHI assumption holds for BGGen in G1 if for all PPT adversaries A there
is a negligible function ε(·) such that:

Pr

[
BG←R BGGen(1κ), a←R Zp∗,
T ←R A(BG, aP, aP̂ )

:
T ∈ G1

∧ e(T, aP̂ ) = e(P, P̂ )

]
≤ ε(κ).

The co-DHI assumption can be defined analogously for G2; with the dif-
ference that we require A to output T̂ ∈ G2. This assumption is implied by
a version of the decision linear (DLIN) assumption [BBS04] in Type-3 bilin-
ear groups, which demands that it is hard to distinguish T = (r + s)P1 from
R←R G1 when given (BG, (aPj , bPj)j∈[2], raP2, sbP2), where P1 = P , P2 = P̂
and a, b, r, s←R Zp∗.2

We introduce the following assumption, which is, e.g., implied by the Type-3
bilinear-group counterpart of the q-co-DHI assumption [BDZ03, CM11]—a gen-
eralization of the co-DHI assumption having problem instance (ajP, ajP̂ )j∈[q];
or, e.g., by the q-co-strong Diffie-Hellman (SDH) assumption [BB04, CM11]
in Gi, which has problem instance (ajP, ajP̂ )j∈[q] and requires A to output

(c, 1
a+cPi) with c ∈ Zp \ {−a}:

2To see this, observe that a solver for co-DHI instances can be used to compute 1
a
P and

1
b
P , which then allows to check whether e( 1

a
P, raP̂ ) · e( 1

b
P, sbP̂ ) = e(T, P̂ ). The same holds

for the co-DHI assumption in G2.
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Definition 2.12 (q-co-Discrete logarithm (q-co-DL) assumption). Let BGGen
be a bilinear-group generator that outputs BG = (p,G1,G2,GT , e, P, P̂ ). Then,
the q-co-DL assumption holds for BGGen, if for all PPT adversaries A there is
a negligible function ε(·) such that:

Pr

[
BG←R BGGen(1κ), a←R Zp,
a′←R A(BG, (ajP, ajP̂ )j∈[q])

: a′P = aP

]
≤ ε(κ).

Note that we will use the q-co-DL assumption statically throughout this the-
sis, that is, q is a fixed system parameter and does not depend on the adversary’s
behavior, as, e.g., in [BB04].

The decisional counterpart of the CDH assumption (straightforwardly im-
plying the latter) is defined as follows:

Definition 2.13 (Decisional Diffie-Hellman (DDH) assumption). Let BGGen be
a bilinear-group generator that outputs BG = (p,G1,G2,GT , e, P1 = P, P2 = P̂ ).
Then, the decisional Diffie-Hellman (DDH) assumption holds for BGGen in Gi
if for every PPT adversary A there is a negligible function ε(·) such that:

Pr

[
b←R {0, 1}, BG←R BGGen(1κ), r, s, t←R Zp,
b∗←R A(BG, rPi, sPi, (b · rs+ (1− b) · t)Pi)

: b∗ = b

]
− 1

2
≤ ε(κ).

The eXternal Diffie-Hellman (XDH) assumption implies the DDH to hold
in G1 and, in doing so, formalizes the alleged absence of efficiently computable
isomorphisms from G1 to G2 in Type-2 bilinear groups. Likewise, the Symmetric
eXternal Diffie-Hellman (SXDH) assumption implies the DDH to hold in both
G1 and G2 and, thus, formalizes the assumption that in Type-3 bilinear groups
there is no efficiently computable isomorphism from G2 to G1 either: 3

Definition 2.14 (Symmetric eXternal Diffie-Hellman (SXDH)). The SXDH
assumption holds for BGGen if the DDH problem holds in both G1 and G2,
respectively.

The Generalized co-SDH Assumption

The last assumption we use (Definition 2.16) falls into the uber-assumption
family [Boy08, Corollary 1] for the Type-3 bilinear-group setting, which we state
for completeness:

Definition 2.15 ((R,S,T, f)-Diffie-Hellman assumption). Let BGGen be a bi-
linear-group generator that outputs BG = (p,G1,G2,GT , e, P, P̂ ); further let g←
e(P, P̂ ) and R = (ri)i∈[r],S = (sj)j∈[s],T = (tk)k∈[t] be three tuples of multi-
variate polynomials in Zp[X1, . . . , Xn]. Define R(~x) := (ri(~x)P )i∈[r], S(~x) :=

(si(~x)P̂ )i∈[s] and T(~x) := (gti(~x))i∈[t]. Then, the (R,S,T, f)-DH assumption

3Note that for Type-1 bilinear groups, a pairing e : G × G → GT allows to efficiently
decide the DDH problem: Given a DDH instance (BG1, aP, bP, cP ), check whether e(aP, bP ) =
e(cP, P ). Likewise, for Type-2 bilinear groups the DDH is efficiently decidable in G2: Given

(BG2, aP̂ , bP̂ , cP̂ ), check whether e(Ψ(aP̂ ), bP̂ ) = e(P, cP̂ ).
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holds for BGGen, if for all PPT adversaries A there is a negligible function ε(·)
such that:

Pr

 BG←R BGGen(1κ), ~x←R Zpn,
gf(~x)←R A(BG,R(~x),S(~x),T(~x))

:

0 6= f ∈ Zp[X1, . . . , Xn]
∧ f 6=

∑
(i,j)∈[r]×[s]Aijrisj+

+
∑
k∈[t] bktk

∀A ∈ Z r×s
p ∀~b ∈ Z t

p

 ≤ ε(κ).

Essentially, this assumption says that it is hard to evaluate a polynomial f ∈
Zp[X1, ..., Xn] at vector ~x ∈ Zpn such that f is independent of the polynomials
in R, S and T, whose evaluations at ~x are given to A.

We introduce the following assumption, which is implied by the above as-
sumption and generalizes the q-co-SDH assumption from [BB04, CM11]. The
latter states that given (aiP, aiP̂ )i∈[q], it is hard to output (s, 1

a+sP ) for any
s. This can be interpreted as outputting the polynomial h(X) := X + s and
1

h(a)P . The next assumption states that it is not only hard to compute 1
h(a)P

for h of that specific form, but it is also hard to compute g(a)
h(a)P for any non-zero

polynomials g, h for which deg g < deg h.

Definition 2.16 (Generalized q-co-SDH assumption). Let BGGen be a bilinear-
group generator that outputs BG = (p,G1,G2,GT , e, P, P̂ ). Then, the generalized
q-co-SDH assumption holds for BGGen in G1, if for all PPT adversaries A there
is a negligible function ε(·) such that:

Pr

 BG←R BGGen(1κ), a←R Zp,(
g, h, T

)
←R
A(BG, (aiP, aiP̂ )i∈[q])

:

T ∈ G1 ∧ g, h ∈ Zp[X]
∧ 0 ≤ deg g < deg h ≤ q

∧ e(T, h(a)P̂ ) = e(g(a)P, P̂ )

 ≤ ε(κ).

Analogously, the above assumption can be defined to require T ∈ G2. As
with the q-co-DL assumption, we will use the generalized q-co-SDH assumption
statically.

It allows exponentially many solutions and involves rational polynomials.
Thus, to cover it with the uber-assumption framework4, we introduce the fol-

lowing family of rational target polynomials Fq = { g(X)
h(X) : g, h ∈ Zp[X], 0 ≤

deg g < deg h ≤ q}. Then, we require the adversary to additionally spec-
ify the target polynomial f ∈ Fq. It can easily be seen that for (R,S,T) =
((Xi)i∈[0,q], (X

i)i∈[0,q], 1) and any f ∈ Fq the generalized q-co-SDH assumption
is implied by the (R,S,T, f)-Diffie Hellman assumption: Observe that the gen-
eralized q-co-SDH assumption demands the solution to be in G1 and that any
f = g

h ∈ Fq is—due to being rational—independent from all polynomials in
R,S,T. The asymptotic simulation error in the GGM proof of the generalized
q-co-SDH assumption attains a cubic error bound.

4As generally discussed and, in particular, demonstrated for, e.g., the similar but weaker
SDH assumption in [Boy08, Sections 6.1 and 6.2]: There, the target polynomial f is allowed
to be rational and a family F = { 1

h(X)
: h ∈ Zp[X], deg h = 1} is used to describe all possible

target polynomials (as there are exponentially many). It must be particularly taken care of
that its denominator does not vanish.
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2.4 Public-Key Encryption

We now give the abstract model of a PKE scheme and basic security definitions.

Definition 2.17 (Public-key encryption (PKE) scheme). A PKE scheme PKE
consists of the following PPT algorithms.

KeyGen(1κ): A probabilistic algorithm that takes input a security parameter 1κ.
It returns a key pair (sk, pk) for plaintext space Mpk and ciphertext space
Cpk.

Enc(m, pk): A (probabilistic) algorithm that takes input a plaintext m ∈Mpk and
a public key pk. It returns the ciphertext c ∈ Cpk of m under pk.

Dec(c, sk): A deterministic algorithm that takes input a ciphertext c ∈ Cpk and
a private key sk. It returns the plaintext m ∈Mpk of c under sk.

A public-key-encryption scheme needs to be correct and to satisfy at least
indistinguishability against chosen-plaintext attacks (IND-CPA) in order to be
secure.

Definition 2.18 (Correctness). A PKE scheme PKE is correct if for all security
parameters κ, all choices of key pairs (sk, pk)←R KeyGen(1κ), all m ∈ Mpk it
holds that

Pr [Dec(Enc(m, pk), sk) = m ] = 1.

IND-CPA security considers only passive adversaries. It is equivalent to se-
mantic security, which demands that no PPT adversary—when given the cipher-
text and the length of the unknown plaintext—is able to derive any additional
information on the plaintext with non-negligible probability.

Definition 2.19 (IND-CPA). A PKE scheme PKE is called IND-CPA secure,
if for all PPT adversaries A there is a negligible function ε(·) such that:

Pr


(sk, pk)←R KeyGen(1κ), b←R {0, 1},
(st,m0,m1)←R A(pk),
c←R Enc(mb, pk),
b∗←R A(st, c)

: b∗ = b

− 1

2
≤ ε(κ).

Stronger models are indistinguishability against chosen-ciphertext attacks
(IND-CCA) [NY90] and the even stronger indistinguishability against adaptive
chosen-ciphertext attacks (IND-CCA2) [RS92]. The former allows access to a
decryption oracle before the adversary outputs the challenge ciphertext c∗, while
the latter additionally allows oracle access (for ciphertexts different from c∗) after
c∗ has been set.

2.5 Commitments

Commitments [Blu81] are the digital analogue to sealed envelopes: Their content
stays hidden and remains unchanged, but can be opened later if required.
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Definition 2.20 (Commitment scheme). A commitment scheme CS consists of
the following PPT algorithms:

Setup(1κ): A (probabilistic) algorithm that takes input a security parameter 1κ.
It outputs public parameters pp (for message space Mpp).

Commit(pp,m): A (probabilistic) algorithm that takes input the public parame-
ters pp and a value m ∈ Mpp. It outputs a tuple (C,O) representing the
commitment C to m and opening O.

Open(pp, C,O): A deterministic algorithm that takes input the public parameters
pp, a commitment C and an opening O. It outputs either m ∈ Mpp or ⊥
to indicate success or failure, respectively.

A commitment scheme is secure if it is correct, hiding and binding. Informally,
hiding means that the value m ∈ Mpp is hidden in C unless the opening O is
available, whereas binding means that it is impossible to find a second opening
O′ such that C opens to m′ 6= m. Moreover, a commitment scheme is a trapdoor-
commitment scheme, if (in a loose sense) there exists a trapdoor that allows us
to arbitrarily open a given commitment.

Definition 2.21 (Correctness). A commitment scheme CS is correct if for all
security parameters κ, all choices of public parameters pp←R Setup(1κ), all m ∈
Mpp it holds that:

Pr [Open(pp,Commit(pp,m)) = m ] = 1.

Definition 2.22 (Binding). A commitment scheme CS is binding, if for all
PPT adversaries A there is a negligible function ε(·) such that:

Pr


pp←R Setup(1κ),
(C,O,O′)←R A(pp),
m← Open(pp, C,O),
m′ ← Open(pp, C,O′)

: m 6= m′ ∧ m,m′ 6= ⊥

 ≤ ε(κ).

A commitment scheme is perfectly binding, if the above game holds for un-
bounded adversaries and ε ≡ 0.

Definition 2.23 (Hiding). A commitment scheme CS is hiding, if for all PPT
adversaries A there is a negligible function ε(·) such that:

Pr


pp←R Setup(1κ), b←R {0, 1},
(st,m0,m1)←R A(pp),
(C, ·)←R Commit(pp,mb),
b∗←R A(st, C)

: b = b∗

− 1

2
≤ ε(κ).

A commitment scheme is perfectly hiding, if the above game holds for un-
bounded adversaries and ε ≡ 0.

Well-known examples for commitments are DL commitments and Pedersen
commitments [Ped92]. While former are perfectly binding and hiding under
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the DL assumption only in a weaker model (i.e., with respect to random mes-
sages), latter are perfectly hiding and computationally binding (under the DL
assumption). Moreover, any IND-CPA-secure encryption scheme yields a per-
fectly binding and computationally hiding commitment scheme. In Section 2.6.1,
we will see how to build perfectly hiding commitments from Σ-protocols.

2.5.1 Generalized Pedersen Commitments

Now, we will discuss the generalized Pedersen commitment scheme [Ped92],
which allows to commit to a vector of messages ~m = (mi)i∈[n] ∈ Zpn and gives
the Pedersen commitment scheme when instantiated with n = 1. Generalized
Pedersen commitments are perfectly hiding, computationally binding under the
DL assumption and length-reducing, that is, the commitment is always a single
group element irrespective of n. For further use throughout this thesis, we

Scheme 1 The generalized Pedersen commitment scheme.

Setup(1κ, 1n): Given a security parameter 1κ and a vector length n in unary,
choose a group G of prime order p with log2 p = dκe and n + 1 dis-
tinct generators (Pi)i∈[n], Q ∈ G and output public parameters pp ←
(G, p, (Pi)i∈[n], Q).

Commit(pp, ~m; r): Given public parameters pp = (G, p, (Pi)i∈[n], Q), a vector
~m ∈ Zpn and randomness r ∈ Zp, output a commitment C ←

∑
i∈[n]miPi+

rQ and an opening O ← (~m, r).

Open(pp, C,O): Given public parameters pp = (G, p, (Pi)i∈[n], Q), a commit-
ment C ∈ G and opening O = (~m, r), if C =

∑
i∈[n]miPi + rQ then

output ~m = (mi)i∈[n] and ⊥ otherwise.

introduce the predicate Check(pp) to check for valid parameters: For a general-
ized Pedersen commitment in G, we have pp = ((Pi)i∈[n], Q). It returns 1 if all
elements in pp are in G and pairwise distinct; and 0 otherwise.

2.6 Zero-Knowledge Proofs of Knowledge

In the following, we need the definition of an interactive proof system:

Definition 2.24 (Interactive proof system (IPS)). An IPS (P,V) for a language
L is an interactive protocol between an unrestricted prover P and a PPT verifier
V such that the following conditions hold:

Completeness: ∀x ∈ L : Pr[ (P,V)(x) = 1 ] = 1.

Soundness: ∀x 6∈ L ∀P∗ : Pr[ (P∗,V)(x) = 1 ] ≤ 1
2 ,
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where P∗ can be any (malicious) prover and (P,V)(x) = 1 denotes that V accepts
the interaction with P on common input x.

Loosely speaking, an IPS is required to be complete, that is, an honest prover
can always convince the verifier, and sound, i.e., any dishonest prover can only
convince a verifier with a certain probability.

2.6.1 Zero-Knowledge Proofs

Zero-knowledge proofs (ZKPs) [GMR85] are IPSs, where a prover P interacts
with a verifier V on some common input x and is able to convince the verifier of x
being contained in some formal language L without V learning anything beyond
the validity of the proven statement, i.e., the language membership. This is
formalized as follows:

Definition 2.25 (Zero knowledge (ZK)). An IPS (P,V) for a language L is ZK
if for any (malicious) verifier V∗, there exists a PPT algorithm S (the simulator)
such that:

{S(x)}x∈L ≈ {〈(P,V∗)(x)〉}x∈L,

where 〈(P,V∗)(x)〉 denotes the transcript of the interaction between P and V∗ on
common input x.

In fact, statements from arbitrary NP-languages L ∈ NP can efficiently be
proven in ZK, as there are known ZKPs for NP-complete languages such as
3-coloring [GMW87].

2.6.2 Proofs of Knowledge

In cryptography, we are often interested in IPSs having a stronger soundness
definition denoted as proofs of knowledge (PoKs) [BG93]. For our discussion
let LR = {x : ∃w : (x,w) ∈ R} ⊆ {0, 1}∗ be a formal language, where R ⊆
{0, 1}∗ × {0, 1}∗ is a binary, polynomial-time (witness) relation. For such a
relation, the membership of x ∈ LR can be decided in polynomial time (in |x|),
when given a witness w certifying (x,w) ∈ R, which is of polynomial length
in |x|. Contrary, to proof systems as defined above, PoKs formalize the notion
of knowledge: Instead of just proving the validity of a statement, they prove
the knowledge of a witness w certifying the validity. In doing so, PoKs give a
strong and straightforward way to define soundness: If a machine M “knows
something” and proves this knowledge to someone else, then we can as well
extract this witness from M. This is formalized by another machine E, the
extractor, which when given access to M is able to extract a witness from M.

Definition 2.26 (Proof of knowledge (PoK)). Let k : {0, 1}∗ → [0, 1] be a func-
tion and R be a binary, polynomial-time witness relation. A PoK (P,V) for
relation R with knowledge error k is an IPS such that besides completeness the
following condition holds:
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Knowledge soundness: There exists a c > 0 and an expected PPT algorithm
E (the extractor) having oracle access to any (malicious) prover P∗ such
that for every x ∈ LR the following holds. Let δ(x) be the probability that
V accepts input x after interacting with P∗. If δ(x) > k(x), then on input
x and oracle access to P∗, the machine E outputs a string w such that
(x,w) ∈ R within an expected number of steps bounded by

|x|c

δ(x)− k(x)
.

Let us consider an example for a group-theoretic language, which often ap-
pears in cryptographic applications:

Example 2.27 (DL proof). A statement proven by a PoK could, for instance,
be the knowledge of a private key w ∈ Zp corresponding to some public key
Y = wP in a group G = 〈P 〉 of prime order p (here the relation would be
RDL = {(Y,w) : w ∈ Zp, Y = wP ∈ G}).

We use the common notation of [CS97] and give a short example to illustrate
it:

Example 2.28 (Notation). Let the setting be as in Example 2.27. We denote
a PoK of a discrete logarithm w = logP Y as PoK{α : Y = αP}, where Greek
letters stand for witnesses and all other involved values are public.

A formulation of the ZK property, which considers a simulator working for
any (malicious) verifier V∗ and which we are going to use subsequently, is the
following one:

Definition 2.29 (Universally simulatable ZK). A PoK (P,V) for a relation R is
(universally simulatable) ZK if there exists an (expected) PPT algorithm S (the
simulator) such that when having oracle access to any (malicious) PPT verifier
V∗ it holds that:

{SV
∗
(x)}x∈LR

≈ {〈(P(x,w),V∗(x))〉}(x,w)∈R.

We call a PoK (P,V) zero-knowledge proof of knowledge (ZKPoK), if it fulfills
Definition 2.29.

An important property that is weaker than ZK is witness indistinguishability
(WI). Informally, it says that one cannot tell which witness was used during the
conduction of a proof.

Definition 2.30 (Witness indistinguishability (WI)). A PoK (P,V) for a rela-
tion R is called witness indistinguishable (WI), if for all (x,w,w′) with (x,w) ∈
R and (x,w′) ∈ R and for any (malicious) PPT verifier V∗ it holds that:

〈(P(x,w),V∗(x))〉 ≈ 〈(P(x,w′),V∗(x))〉.

We call a PoK (P,V) witness-indistinguishable proof of knowledge (WIPoK),
if it fulfills Definition 2.30.
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2.6.3 Σ-Protocols and ZKPoKs from Σ-Protocols

Σ-protocols are efficient instantiations of PoKs [Sch90]. A Σ-protocol Π = (P =
(P1,P2),V = (V1,V2)) is a 3-move public-coin honest-verifier zero-knowledge
proof of knowledge (ZKPoK).

These three moves can be outlined as follows. The first message sent by
prover P is C←R P1(x,w), on which V1(x,C) responds with a random chal-
lenge c←R {0, 1}κ (with κ being a security parameter).5 P’s second message is
s←R P2(x,w,C, c). In the end, V2(x,C, c, s) outputs 1 or 0 indicating whether it
accepted the proof or not. Public coin means that the prover has access to the
verifier’s random coins (used for generating the challenge).

A Σ-protocol is secure if it is complete, special-sound and special-honest-
verifier ZK. Completeness is straightforward and we now give the intuition be-
hind the remaining properties. Special soundness states that there exists a PPT
extraction algorithm E, which when given transcripts of two accepting runs for
x ∈ LR having identical first messages—say, τ = (C, c, s) and τ ′ = (C, c′, s′) with
c 6= c′—can recover a witness w such that (x,w) ∈ R. Special-honest-verifier
ZK means that the ZK property only holds in front of an honest verifier, which
chooses its challenge uniformly random. It requires that there is a PPT sim-
ulation algorithm S that given x and c produces transcripts (C, c, s) satisfying
the same probability distribution as transcripts originating from protocol runs
between P and V when run on common input x.

More formally, a Σ-protocol is defined as follows:

Definition 2.31 (Σ-Protocol). An IPS Π = (P,V) is a Σ-protocol for a relation
R with challenge length κ > 0, if it is a 3-move public-coin protocol and the
following requirements hold:

Completeness: ∀ (x,w) ∈ R : Pr[ (P(x,w),V(x)) = 1 ] = 1.

Special soundness: There exists a PPT extractor E that on input x and any
pair τ = (C, c, s), τ ′ = (C, c′, s′) of accepting transcripts for protocol runs
on x with distinct c, c′ ∈ {0, 1}κ outputs w such that (x,w) ∈ R.

Special honest-verifier ZK: There exists a PPT simulator S such that the
following holds:

{S(x, c)}(x,c)∈LR×{0,1}κ ≈ {〈(P(x,w),V(x; c))〉}(x,w,c)∈R×{0,1}κ .

The following statements characterize Σ-protocols: Lemma 2.32 states that
Σ-protocols achieve a negligible soundness error and Lemma 2.33 says that every
Σ-protocol is a WIPoK.

Lemma 2.32. Let Π be a Σ-protocol for a relation R with challenge length κ.
Then, Π is a PoK with knowledge error 2−κ.

5In our definitions, we will assume all challenges to be bitstrings; whereas in our examples
(and in context of our schemes later on) challenges will, in fact, be values from Zp.
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Lemma 2.33. Every Σ-protocol is perfectly WI.

Let us now take a closer look at the Σ-protocol for PoK{α : Y = αP}:

Example 2.34 (Schnorr protocol [Sch90]). Again, let the setting be as in Ex-
ample 2.27. Here, P starts by choosing k←R Zp and sending a DL commitment
C ← kP to V. V responds with a challenge c←R Zp, on which P sends s← k+wc
mod p. In the end, V verifies whether sP = C + cY .

The transcript of this interaction is τ = (C, c, s). An extractor E is allowed
to rewind P to the step after sending C and can so derive a second transcript
τ ′ = (C, c′, s′) by sending a different challenge c′. From these two transcripts, E

can now extract witness w = s′−s
c′−c .

With regard to the honest-verifier zero-knowledge (HVZK) property, a sim-
ulator S on input (Y, c) ∈ G × Zp can always create simulated transcripts
τ = (C, c, s) having the same distribution as transcripts originating from a real
interaction by picking s←R Zp and computing C ← sP − cY .

Σ-protocols can be composed [CDS94], yielding the ability to conduct proofs
over more complex statements: e.g., conjunctions, disjunctions of proofs; range
proofs, equality proofs, etc. In fact, the composition of Σ-protocols is again a
Σ-protocol. Subsequently, we will sketch the AND- and the OR-composition of
Σ-protocols, which allow us to conduct proofs using conjunctive and disjunctive
relations, respectively. For further details, we refer the reader to [CDS94, Sch15].

When applying the Fiat-Shamir transform [FS87] to Σ-protocols, we can ob-
tain non-interactive zero-knowledge proofs (NIZKPs) in the ROM. Here, chal-
lenge c is essentially replaced by a hash value of the transcript so far.

AND-Composition. We will now briefly discuss the AND-composition of Σ-
protocols. Let R′ and R̂ be two relations having Σ-protocols with challenge
length κ > 0; say Π and Π̂, respectively. A Σ-protocol Π for a relation R =
{((x′, x̂), (w′, ŵ)) : (x′, w′) ∈ R′ ∧ (x̂, ŵ) ∈ R̂} (with challenge length κ) can
be built efficiently by running Π′ and Π̂ in parallel using a common challenge
c ∈ {0, 1}κ.

OR-Composition. We will now outline the OR-composition of Σ-protocols,
as it is of particular interest in the following.

Let R′ and R̂ be two relations having Σ-protocols with challenge length κ > 0;
say Π′ = (P′ = (P′1,P

′
2),V′ = (V′1,V

′
2)) and Π̂, respectively. A Σ-protocol

Π = (P,V) for a relation R = {((x′, x̂), (w′, ŵ)) : (x′, w′) ∈ R′ ∨ (x̂, ŵ) ∈ R̂} (of
challenge length κ) can be built efficiently by composing a simulated proof for
one clause in the disjunction with a regular proof for the other clause.

More precisely, suppose that P = (P1,P2) and V = (V1,V2) run on com-
mon input x = (x′, x̂) ∈ LR and P additionally on secret input w′ such that
(x′, w′) ∈ R′. Then, P1 on input (x,w′) runs C ′←R P′1(x′, w′) and simulator

(Ĉ, ĉ, ŝ)←R Ŝ(x̂, ĉ) of Π̂ to obtain a simulated transcript by picking ĉ←R {0, 1}κ.
P1 sends first message (C ′, Ĉ) to V1 and P2 gets in return challenge c ∈ {0, 1}κ.
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Next, P2 sets c′ ← c ⊕ ĉ, runs s′←R P′2(x′, w′, C ′, c′) and sends final message
(s′, c′, ŝ, ĉ) to V2. If c 6= c′ ⊕ ĉ, then V2 stops and returns 0. Else, V2 runs

V′2(x′, C ′, c′, s′) and V̂2(x̂, Ĉ, ĉ, ŝ) and outputs 1 or 0 indicating whether both V′2
and V̂2 accepted the proof or not.

WI ensures that one cannot distinguish whether a witness satisfying the first
or the second clause has been used.

Commitments from Σ-Protocols

We will now sketch the observation from [FS90, Dam90] that any Σ-protocol
Π = (P,V = (V1,V2)) for a relation R implies a commitment scheme. Let κ > 0
be the challenge length of Π. The setup algorithm picks (x,w)←R R and sets
the commitment parameters pp ← x (witness w is the trapdoor). In order to
commit to a value c ∈ {0, 1}κ, the Commit algorithm runs the special simulator
S of Π on input (x, c), which produces a transcript (C, c, s), and outputs C as
commitment to c and O = (c, s) as its opening. The Open algorithm returns
opening c if V2(x,C, c, s) = 1 and ⊥ otherwise.

The scheme is perfectly hiding and computationally binding (as long as w
remains secret).

Such a commitment itself defines a relation R′ = {((x,C), (c, s)) : x ∈
LR,V2(x,C, c, s) = 1}, which is comprised of tuples containing a commitment
and its opening. This is also known as the commitment relation.

ZKPoKs from Σ-Protocols in the Standard Model

Subsequently, we are going to sketch the ZKPoKs from [CDM00]. These are
very efficient 4-move perfect ZKPoKs for a relation R from Σ-protocols and
their commitments (satisfying Definition 2.29 with rewindable black-box access
to verifier V∗).

More precisely, they consider the case where both relation R and the related
commitment relation R′ have Σ-protocols with challenge length κ. By nesting
two Σ-protocols, they are then able to construct 4-move perfect ZKPoKs for
relation R with knowledge error 2−κ.

This allows, in particular, ZKPoKs over DLs (and other relations built from
q-one-way functions [CD98]).

Outline. For the sake of an easy presentation, we discuss the 6-move variant
(as also done in [CDM00]; the 4-move protocol can be obtained by collapsing
moves 2 and 3 of Part 1 and moves 1 and 2 of Part 2).

In the following, a prover P tries to prove knowledge of a witness w to some
x ∈ LR.

Part 1: On input x, verifier V creates a commitment C (for public param-
eters pp← x) to a value e ∈ {0, 1}κ and proves knowledge of C’s opening O to
prover P by using a Σ-protocol ΠV for the corresponding commitment relation
R′. If ΠV fails, then P aborts. (ΠV does not give any information about e, as ΠV
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is WI, when assuming that there is an overwhelming number of openings—the
opening to e is just one of them.)

Part 2: P considers the relation R∨ = {((x, x′), (w,w′)) : (x,w) ∈ R ∨
(x′, w′) ∈ R′}: On input (x,w), P proves either knowledge of witness w for
statement x or knowledge of an opening of commitment C. In other words, ΠP

is the OR-composition of a Σ-protocol Π for relation R and a Σ-protocol Π′

for the related commitment relation R′. (Since P does not know how to open
commitment C, P has to simulate Π′ and perform Π honestly.)

Properties. We will now give the intuition behind the knowledge soundness
and the ZK property of the described protocol.

The knowledge soundness of the described protocol is unconditional; this
follows from the following knowledge extractor E. E takes the role of an hon-
est verifier; initially generates a commitment C with opening O and runs the
protocol with prover P∗ by conducting ΠV. Then, by rewinding P∗ during the
conduction of ΠP, E extracts either a witness w for x and we are done; or an
opening O′ of commitment C. When assuming that there is an overwhelming
number of different openings of C, then by the WI of ΠV, O′ is different from
O with overwhelming probability. Using two different openings O,O′ of C, E is
now able to extract a witness for x and we are done as well.

The protocol satisfies the ZK property (Definition 2.29): Intuitively, simula-
tor S first rewinds the verifier V∗ in order to extract an opening O to commitment
C (and, thus, a witness w′ = O such that (x′, w′) = ((x,C), O) ∈ R′) and then
conducts ΠP for the second part of the disjunction, that is, S proves knowledge
of a witness to commitment relation R′. By the perfect WI of ΠP, V∗ cannot
distinguish whether S has conducted the proof with regard to relation R or with
regard to commitment relation R′. In total, this yields perfect ZK.

Concurrent ZKPoKs from Σ-Protocols in the CRS Model

Concurrent ZK guarantees, loosely speaking, that a protocol’s ZK property holds
even in front of arbitrarily interleaved parallel protocol runs.

We will now briefly mention the result from [Dam00], which proposes a
generic transform from Σ-protocols to concurrent ZKPoKs: Under the assump-
tion of OWFs and at the expense of a CRS, it shows how to convert any Σ-
protocol for an arbitrary NP-relation R into a 3-move concurrent ZKPoK for
relation R (without imposing any timing constraints). The protocol employs a
trapdoor commitment and, essentially, the simulation is based on the trapdoor
and hiding properties of used commitment scheme. Furthermore, the protocol
is concurrent ZK, as the simulator does not require rewinding the verifier V∗.
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2.7 Digital Signatures

Digital signatures (DSs) are cryptographic primitives providing non-repudiation,
integrity, authenticity of messages exchanged over an insecure channel. Thereby,
the sender (or signer) holds a secret key sk that she uses to sign messages and
a corresponding public key pk that uniquely identifies her (when assuming the
availability of a public-key infrastructure (PKI)). Then, integrity guarantees
that when receiving a signed message it can be detected whether the message
has not been altered in transit; authenticity gives the receiver (or verifier) reason
to believe that the message stems from the alleged sender and non-repudiation
guarantees that the sender cannot deny having signed a message.

The formal definition of a digital signature scheme is as follows:

Definition 2.35 (Digital signature (DS) scheme). A DS scheme DS is a tuple
of the following PPT algorithms:

KeyGen(1κ): A probabilistic algorithm that takes input a security parameter 1κ

and outputs a private key sk and a public key pk (we assume that pk in-
cludes a description of the message space Mpk).

Sign(m, sk): A (probabilistic) algorithm that takes input a message m ∈ Mpk, a
secret key sk and outputs a signature σ under sk on m.

Verify(m,σ, pk): A deterministic algorithm that takes input a message m ∈Mpk,
a signature σ, a public key pk and outputs 1 if σ is a valid signature for
m under pk and 0 otherwise.

A DS scheme is secure, if it is correct and existentially unforgeable under
adaptive chosen-message attacks (EUF-CMA) [GMR88]. Correctness ensures
that every honestly computed signature under honestly generated keys always
verifies and unforgeability implies the properties integrity, authenticity and non-
repudiation. We define these properties below.

Definition 2.36 (Correctness). A DS scheme DS is correct, if for all security
parameters κ, all choices of key pairs (sk, pk)←R KeyGen(1κ), all m ∈ Mpk we
have:

Pr [Verify(m, Sign(m, sk), pk) = 1 ] = 1.

Definition 2.37 (EUF-CMA). A DS scheme DS is EUF-CMA secure, if for
all PPT adversaries A having access to a signing oracle Sign(·, sk) there is a
negligible function ε(·) such that:

Pr

[
(sk, pk)←R KeyGen(1κ),
(m∗, σ∗)←R ASign(·,sk)(pk)

:
Verify(m∗, σ∗, pk) = 1

∧ m∗ /∈ Q

]
≤ ε(κ),

where Q is the set of queries which A has issued to the signing oracle.
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This definition is the standard notion of unforgeability. An even stronger
notion is called strongly existentially unforgeable under adaptive chosen-message
attacks (sEUF-CMA). It requires A to output a message-signature pair (m∗, σ∗)
that is different from all queried message-signature pairs. Other, weaker notions
consider random-message attacks (A can only query signatures on random mes-
sages that are not under the control of the adversary), known-message attacks
(A is only given signatures on a set of messages that it can define a priori) or
key-only attacks (A can only access the public key) [Kat10].

Remark 2.38. Note that Σ-protocols (cf. Section 2.6) and DS schemes are closely
related [CS97, CL06]. Applying the Fiat-Shamir transform [FS87] to a Σ-
protocol, gives a straightforward way to build DS schemes that are EUF-CMA
secure in the ROM. So, for instance, the Schnorr signature scheme [Sch90] can
be derived from the Schnorr Σ-protocol using the Fiat-Shamir transform.

2.7.1 Structure-Preserving Signatures

Structure-preserving signatures (SPSs) [AFG+10] have originally been intro-
duced in the context of Groth-Sahai (GS) proofs [GS08]; as new type of sig-
nature schemes compatible with this proof system defined on bilinear groups.
Later on, other applications of structure-preserving signature (SPS), which are
of independent interest, have been found as well [LPJY13, HS14, FHS15a].

An SPS is a signature scheme defined in the context of a bilinear group
BG = (p,G1,G2,GT , e, P, P̂ ). Such a scheme allows to sign group-element vec-
tors without requiring any a-priori encoding. The public keys and the signa-
tures σ themselves are group elements and verification is done solely by means
of group-membership tests and the conjunction of pairing-product equations
(PPEs). In case of fully structure-preserving signatures even secret keys are
group elements [AKOT15].

The abstract model of a Type-3 SPS scheme, i.e., an SPS defined for Type-3
bilinear groups, is as follows.

Definition 2.39 (Structure-preserving signature (SPS) scheme). An SPS scheme
SPS consists of the following PPT algorithms:

Setup(1κ): A (probabilistic) setup algorithm that takes input a security parameter
1κ. It outputs public parameters pp containing a bilinear group BG =
(p,G1,G2,GT , e, P, P̂ ) of prime order p with log2 p = dκe, elements of Zp
and group elements of G1 and G2.

KeyGen(pp): A probabilistic algorithm that takes input public parameters pp. It
outputs a key pair (sk, pk), where pk contains pp and group elements from
G1 and G2.

Sign(M, sk): A (probabilistic) algorithm that takes input a message M consisting
of elements from G1 and G2 and a secret key sk. It outputs a signature σ
for the message M , which is comprised of elements from G1 and G2.
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Verify(M,σ, pk): A deterministic algorithm that takes input a message-signature
pair (M,σ) and a public key pk. It checks the validity of (M,σ) using
a conjunction of group-membership tests and PPEs and outputs 1 if σ is
valid for M under pk and 0 otherwise.

Similarly, we can define Type-1 and Type-2 SPSs, i.e., SPSs over Type-1
and Type-2 bilinear groups, respectively. For a Type-2 SPS, the verification is
additionally allowed to evaluate the homomorphism Ψ: G2 → G1.

An SPS scheme SPS is secure, if it is correct and EUF-CMA secure. The
definitions are analogous to those in Section 2.7, where the correctness definition
additionally has to take account of the Setup algorithm and the different input
behavior of KeyGen.

In [AGHO11], Abe et al. showed that Type-3 SPSs having constant-size sig-
natures cannot exist, unless the signature has at least 3 elements, its elements
stem from both groups (bilateral) and the SPS scheme uses at least 2 PPEs for
verification; in [AGOT14a], they showed similar results for Type-2 SPSs. More-
over, in [AGO11], Abe et al. proved that the unforgeability of optimally short
Type-3 SPS schemes (i.e., with 3-element signatures) cannot be reduced to non-
interactive assumptions. This means that the unforgeability of such schemes can
only be proven in the GGM. In this context, Abe et al. [AGHO11] also intro-
duced the notion of generic signers, i.e., signing algorithms that create signatures
solely via a sequence of generic-group operations. This seems to be a natural
view on SPS signing algorithms and applies to all SPSs known so far [Fuc09,
AHO10, AFG+10, AGHO11, CDH12, AGOT14b, LPY15, KPW15, Gha16].



3
Structure-Preserving Signatures on

Equivalence Classes

The obvious mathematical breakthrough would be development of an easy way
to factor large prime numbers.

— Bill Gates

This chapter introduces structure-preserving signature on equivalence classes
(SPS-EQ) and their formal models alongside with two constructions; one GGM
and one standard-model construction. Furthermore, it details relations to SPS
and gives an impossibility result for SPS-EQ; separating certain SPS-EQ variants
from non-interactive assumptions.

This chapter relies on joint work with Georg Fuchsbauer and Daniel Sla-
manig. The following material stems (sometimes verbatim) from [HS14, FHS14,
FHS15a, FHS15b, FHS16]. Note that the black-box separation in Section 3.6 is
unpublished work.

3.1 Basic Idea

Structure-preserving signatures on equivalence classes (SPS-EQs) are a new type
of SPSs. Contrary to conventional SPSs, their message space is required to be
unilateral (to achieve indistinguishability on the message space), that is, the
direct sum G` of several copies of a group G. The clue is that if G is of prime
order p, then G` contains an underlying vector space Z `

p , which we can partition
into projective equivalence classes for ` > 1 by using a projective equivalence

41
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relation. Defined on G`, this equivalence relation ∼R is as follows: 1

M ∈ G` ∼R N ∈ G` ⇐⇒ ∃µ ∈ Zp∗ : M = µN

To give some intuition: Such an equivalence class contains all elements on a
certain line running through the origin except for the all-zero vector itself.

For SPS-EQs we want a controlled form of malleability: We want that a
signature on an arbitrary representative M of some class [M ]R can later be
publicly updated to another representative of the same class. The main bene-
fit of SPS-EQ is that we automatically obtain a form of indistinguishability on
the message space G` if the DDH assumption holds on G: We cannot efficiently
decide whether some message vector is random or an element of a certain equiva-
lence class. If we additionally guarantee that updated signatures are distributed
like fresh signatures (or even in a stronger sense that updated signatures are uni-
form in the space of signatures on the respective updated representative), then
message-signature pairs falling into the same equivalence class are unlinkable.

Nevertheless, observe that direct access to the DLs in a message vector allows
us to efficiently decide class membership. Thus, SPS-EQs are mainly of interest,
if we either want to achieve indistinguishability in front of signers; for privacy-
enhancing protocols, where the message vector is not (fully) determined by the
signer (as it is the case for, e.g., blind signatures and attribute-based credentials
(ABCs); cf. Chapters 4 and 7); or in protocols, where consistent and authentic
randomization of values is required but indistinguishability is not important (as
it is the case for, e.g., verifiably-encrypted signatures (VESs); cf. Chapter 5).

Remark 3.1. It seems possible to define other types of SPS-EQ for more general
equivalence relations. For instance, Zp` with ` > 2 can be as well factorized into
equivalence classes with planes through the origin. The DDH assumption could
then simply be replaced by the DLIN assumption in order to obtain indistin-
guishability on the message space.

3.2 Formal Definitions

We state the syntax and the security properties of an SPS-EQ. The following
definition is tailored to Type-3 schemes.

Definition 3.2 (Structure-preserving signature on equivalence classes (SPS-EQ)
scheme). An SPS-EQ scheme SPS-EQ over Gi consists of the following PPT
algorithms:

BGGenR(1κ): A (probabilistic) bilinear-group generation algorithm that takes in-
put a security parameter 1κ. It outputs a Type-3 bilinear group BG =
(p,G1,G2,GT , e, P, P̂ ).

1Actually, we restrict the message space to (G∗)`, since including the neutral element is
not meaningful for our purposes
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KeyGenR(BG, 1`): A probabilistic algorithm that takes input a bilinear group BG
and a vector length ` > 1 (in unary). It outputs a key pair (sk, pk), where
pk consists of elements of G1 and G2.

SignR(M, sk): A probabilistic algorithm that takes input a message M ∈ (G∗i )`
defining an equivalence class [M ]R and a secret key sk. It outputs a signa-
ture σ for the representative M of equivalence class [M ]R, which consists
of elements of G1 and G2.

ChgRepR(M,σ, µ, pk): A probabilistic algorithm that takes input a message M ∈
(G∗i )` defining an equivalence class [M ]R, a signature σ, a scalar µ and a
public key pk. If σ is valid on M under pk, it returns an updated message-
signature pair (M ′, σ′), where M ′ = µM ∈ (G∗i )` is the new representative
and σ′ its updated signature. Else, it returns ⊥.

VerifyR(M,σ, pk): A deterministic algorithm that takes input a message M ∈
(G∗i )`, a signature σ and a public key pk. It performs verification using
group membership tests and a conjunction of PPEs and outputs 1 or 0
indicating whether or not σ is valid for M under pk.

VKeyR(sk, pk): A deterministic algorithm that takes input a secret key sk and a
public key pk. It checks both keys for consistency and returns 1 on success
and 0 otherwise.

For security, we require the following properties:

Definition 3.3 (Correctness). An SPS-EQ scheme SPS-EQ over Gi is correct
if for all κ > 0, all ` > 1, all choices of bilinear groups BG←R BGGenR(1κ), all
choices of key pairs (sk, pk)←R KeyGenR(BG, 1`), all messages M ∈ (G∗i )` and
all µ ∈ Zp∗ we have:

VKeyR(sk, pk) = 1 and

Pr [VerifyR(M,SignR(M, sk), pk) = 1 ] = 1 and

Pr [VerifyR(ChgRepR(M, SignR(M, sk), µ, pk), pk) = 1 ] = 1.

Definition 3.4 (EUF-CMA). An SPS-EQ scheme SPS-EQ is EUF-CMA se-
cure, if for all ` > 1 and all PPT algorithms A having access to a signing oracle
SignR(·, sk), there is a negligible function ε(·) such that:

Pr

 BG←R BGGenR(1κ),
(sk, pk)←R KeyGenR(BG, 1`),
(M∗, σ∗)←R ASignR(·,sk)(pk)

:
[M∗]R 6= [M ]R ∀M ∈ Q
∧ VerifyR(M∗, σ∗, pk) = 1

 ≤ ε(κ),

where Q is the set of queries that A has issued to the signing oracle.

We consider the following property to be a minimum requirement for SPS-
EQ. Loosely speaking, it demands that after being given a random message-
signature pair (M,σ), one cannot tell apart an update of (M,σ) to another
arbitrary representative from a fresh random message-signature pair.
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Definition 3.5 (Class-hiding). An SPS-EQ scheme SPS-EQ over Gi is called
class-hiding if for all ` > 1 and all PPT adversaries A having oracle access to
O := {ORM ,ORoR(·, sk, pk, b)} there is a negligible function ε(·) such that:

Pr

 BG←R BGGenR(1κ), b←R {0, 1},
(st, sk, pk)←R A(BG, 1`),

b∗←R AO(st, sk, pk)

:
b∗ = b

∧ VKeyR(sk, pk) = 1

− 1

2
≤ ε(κ),

where the oracles are defined as follows:

ORM : Pick a message M ←R (G∗i )`, append it to Q and return M .

ORoR(M, sk, pk, b): Given message M , key pair (sk, pk) and bit b, return ⊥ if
M 6∈ Q. On the first valid call, record M and σ←R SignR(M, sk) and return
(M,σ). If later called on M ′ 6= M , return ⊥; else pick R←R (G∗i )` and
µ←R Zp∗, set (M0, σ0)←R ChgRepR(M,σ, µ, pk) and (M1, σ1)←R (R,SignR(
R, sk)) and return (Mb, σb).

In the following, we will mostly supersede this definition with two separate
properties, which together imply Definition 3.5 and turn out to be more handy;
a class-hiding property defined solely on the message space and requirements on
the output distributions of ChgRepR and SignR.

Definition 3.6 (Class-hiding message space). An SPS-EQ scheme SPS-EQ over
Gi has a class-hiding message space if for all ` > 1 and all PPT adversaries A

there is a negligible function ε(·) such that

Pr

 BG←R BGGenR(1κ), b←R {0, 1}, M ←R (G∗i )`,
M0←R [M ]R,M1←R (G∗i )`,
b∗←R A(BG,M,Mb)

: b∗ = b

− 1

2
≤ ε(κ).

For the signatures, we require that signatures originating from SignR are
identically distributed to signatures output by ChgRepR.

Definition 3.7 (Perfect adaptation of signatures). An SPS-EQ scheme SPS-EQ
on (G∗i )` perfectly adapts signatures if for all tuples (sk, pk,M, σ, µ) with

VKeyR(sk, pk) = 1 VerifyR(M,σ, pk) = 1 M ∈ (G∗i )` µ ∈ Zp∗

ChgRepR(M,σ, µ, pk) and (µM, SignR(µM, sk)) are identically distributed.

An even stronger property implying Definition 3.7 is the following one, which
considers malicious keys and in a loose sense demands that signatures adapted
by ChgRepR are uniform in the corresponding space of signatures:

Definition 3.8 (Perfect adaptation under malicious keys). An SPS-EQ scheme
SPS-EQ on (G∗i )` perfectly adapts signatures under malicious keys if for all
tuples (pk,M, σ, µ) with

VerifyR(M,σ, pk) = 1 M ∈ (G∗i )` µ ∈ Zp∗ (3.1)

we have that ChgRepR(M,σ, µ, pk) outputs (µM, σ′) such that σ′ is a random
element in the space of signatures, conditioned on VerifyR(µM, σ′, pk) = 1.
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Later, in Proposition 3.10, we show that Definitions 3.6 and 3.7 imply Defi-
nition 3.5.

3.3 General Properties

The following proposition supports the intuition and ties the class-hiding prop-
erty on the message space to the DDH assumption.

Proposition 3.9. Let ` > 1 and SPS-EQ be an SPS-EQ scheme on (G∗i )`, then
the message space (G∗i )` is class-hiding if and only if the DDH assumption holds
in Gi.

Proof. W.l.o.g. we consider message space (G∗1)`.

(1) We will show that class-hiding on (G∗1)` implies the DDH assumption in
G1. Let B be a challenger against the class-hiding property on the message-
space interacting with a DDH distinguisher A for G1. Initially, B is given a
class-hiding message space instance (BG,M,M ′). B then randomly selects two
distinct indexes i, j ∈ [`] starts A on (Mi,Mj ,M

′
i ,M

′
j). Eventually, A will output

b′ and then B will output b∗ ← b′.

Observe that if M ′ ∈ [M ]R, then there exists λ ∈ Zp∗ such that λM = M ′.
Therefore, (Mi,Mj ,M

′
i ,M

′
j) = (miP,mjP, λmiP, λmjP ) is a valid DDH tuple

in G1 in this case. Finally, we have to consider the case of false positives, i.e.,
the case that M ′ 6∈ [M ]R but the input given to A constitutes a valid DDH tuple
in G1. The probability of this event to occur is O( 1

(p−1)3 ) and thus negligible.

(2) We show that the DDH assumption on G1 implies a class-hiding message-
space (G∗1)`. Let us parametrize the game from Definition 3.6 with bit b and
define Gameb to be the according version of the game. More precisely, A is
given (BG,M,M0←R [M ]R) in Game0 and (BG,M,M1←R (G∗1)`) in Game1, re-
spectively.

Let M = (Mi)i∈[`]. We next define a game Game′j for all j ∈ [`], where
µ←R Zp∗ and Rj+1, . . . , R`←R G∗1 and A is run on BG,M and

M ′ := (µM1, . . . , µMj , Rj+1, . . . , R`).

Note that by definition Game′1 = Game0 and Game′` = Game1.

Thus, if there exists an adversary that distinguishes Game0 from Game1 with
probability ε(κ) then there must exist an index j ∈ [`] such that the adver-
sary distinguishes Game′j−1 from Game′j with probability 1

`−1ε(κ), which is non-
negligible if ε(κ) is non-negligible. We show how to construct a DDH distin-
guisher from a distinguisher between Game′j−1 and Game′j .

Given a DDH instance (BG, rP, sP, tP ), we simulate the following game for
the adversary. To do so, we pick (mi)i∈[`]←R Zp∗ and set

M ←
(
m1P, . . . ,mj−1P,mj(rP ),mj+1P, . . . ,m`P

)
. (3.2)
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Then, we sample Rj+1, . . . , R`←R G∗1, set

M ′ ←
(
m1(sP ), . . . ,mj−1(sP ),mj(tP ), Rj+1, . . . , R`

)
(3.3)

and run A on (BG,M,M ′). If (BG, rP, sP, tP ) is a real DDH instance (i.e.,
t = rs) then the first j elements in (3.3) are s-multiples of the first j elements
in (3.2), and we have thus simulated Game′j . If t is random then so is the jth

element in (3.3) and we have simulated Game′j−1. Moreover, the simulation is
perfect with overwhelming probability. The values r, s, t are drawn uniformly
from Zp, whereas M and M ′ are supposed to be elements of (G∗1)`. Therefore,
it can happen only with negligible probability that M ∈ G`1 \ (G∗1)` and/or
M ′ ∈ G`1 \ (G∗1)`. Hence, any adversary distinguishing Game′j−1 from Game′j
thus breaks the DDH assumption.

Proposition 3.10. Let ` > 1 and SPS-EQ be an SPS-EQ scheme on (G∗i )`.
If the message space of SPS-EQ is class-hiding and SPS-EQ perfectly adapts
signatures, then SPS-EQ is class-hiding.

Proof (Sketch). This proof is to some extent similar to the proof of the previous
proposition. We will now outline the differences.

Depending on length `, several game changes are again necessary (as in the
proof of Proposition 3.9). During the simulation of the oracles in each of these
games, we embed (by choosing additional random scalars) the values P, rP of
a DDH instance (BG, rP, sP, tP ) into every answer of the ORM oracle and the
values sP, tP at respective vector positions into every answer of the ORoR oracle.
When simulating the ORoR oracle, we recompute all signatures; by perfect adap-
tion fresh signatures are distributed like adapted signatures. In doing so, we can
simulate a change of representatives if the instance is valid and the presentation
of a random message-signature pair in the respective game otherwise.

Remark 3.11. Finally, let us investigate the possibility of SPS-EQ in the Type-1
and Type-2 pairing setting and implied lower bounds. For the message-space
to be class-hiding the DDH assumption has to hold on Gi. This excludes the
Type-1 setting, while in a Type-2 setting the message space can only be (G∗1)`.

3.4 Relations to SPS

We now show how any EUF-CMA-secure SPS-EQ scheme that signs equivalence
classes of (G∗i )`+1 with ` > 0 can be turned into an EUF-CMA secure SPS scheme
signing vectors of (G∗i )`. (We note, however, that SPS schemes typically allow
messages from G1 and/or G2, which is preferable when used in combination with
GS proofs [GS08].)

The transformation is simple and works by simply embedding messages M =
(Mi)i∈[`] ∈ (G∗i )` into (G∗i )`+1 as M ′ = (M,P ) and signing M ′. To verify a

signature σ on a message M ∈ (G∗i )` under key pk, one then checks whether
VerifyR((M,P ), σ, pk) = 1. This modification restricts each class to a single
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representative, namely the one with P as its last element; a procedure we call
normalization.

For security, see that EUF-CMA of the SPS-EQ states that no adversary
can produce a signature on a message from an unqueried class, which therefore
straight-forwardly implies EUF-CMA of the resulting SPS scheme.

Moreover, from any SPS-EQ with perfect adaptation of signatures the above
transformation yields a rerandomizable SPS scheme, since signatures can be
rerandomized by running ChgRepR for µ = 1 (Definition 3.7 guarantees that
this outputs a random signature).

This implication further means that the lower bounds for SPS over Type-
3 bilinear groups given by Abe et al. in [AGHO11] carry over to EUF-CMA-
secure SPS-EQs: Any EUF-CMA-secure SPS scheme must use at least 2 PPEs
for verification and must have at least 3 signature elements, which cannot be
from the same group (bilateral). Moreover, applying the result from [AGO11],
this means that the EUF-CMA security of optimally short SPS-EQ schemes
(i.e., schemes having 3-element signatures) cannot be reduced to non-interactive
assumptions.

In [AGOT14a], Abe et al. identified the following lower bounds for Type-2
SPS schemes with messages in G1: 2 PPEs for verification and 3 group elements
for signatures. The above transformation converts an EUF-CMA-secure Type-2
SPS-EQ into a Type-2 SPS, hence, these optimality criteria apply to EUF-CMA-
secure Type-2 SPS-EQ schemes as well.

3.5 Constructions

In this section, we start by discussing an SPS-EQ construction secure in the
GGM; then we show how to build a standard-model SPS-EQ from it.

3.5.1 A Generic-Group-Model Construction

In Scheme 2 we present our SPS-EQ construction from [FHS14] for message
space (G∗1)`. (One can construct a scheme for message space (G∗2)` by swapping
the group memberships of all involved elements and adapting all computations
accordingly.) Its signatures are constant-size (comprised of two G1 elements and
one G2 element) and public keys consist of ` G2-elements. Moreover, verification
requires only two PPEs. We first state the security of the signature scheme; the
proofs will be given subsequently.

Security of the Construction

Now, we state the security of the signature scheme.

Theorem 3.12. The SPS-EQ scheme in Scheme 2 is correct.

Proof. We have to show that for all κ ∈ N, all ` > 1, all choices of bilinear
groups BG←R BGGenR(1κ), all choices of key pairs (sk, pk)←R KeyGenR(BG, 1`),
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Scheme 2 An EUF-CMA secure SPS-EQ scheme.

BGGenR(1κ): Given a security parameter 1κ, output BG←R BGGen(1κ).

KeyGenR(BG, 1`): Given a bilinear-group description BG and vector length ` > 1
(in unary), choose (xi)i∈[`]←R (Zp∗)`, set the secret key as sk ← (xi)i∈[`],

compute the public key pk← (X̂i)i∈[`] = (xiP̂ )i∈[`] and output (sk, pk).

SignR(M, sk; y): Given a message M = (Mi)i∈[`] ∈ (G∗1)` defining equivalence

class [M ]R, a secret key sk = (xi)i∈[`] ∈ (Zp∗)` and randomness y ∈ Zp∗;
return σ = (Z, Y, Ŷ ):

Z ← y
∑
i∈[`]

xiMi Y ← 1
yP Ŷ ← 1

y P̂

VerifyR(M,σ, pk): Given a message M = (Mi)i∈[`] ∈ (G∗1)`, a signature σ =

(Z, Y, Ŷ ) ∈ G1 ×G∗1 ×G∗2 and public key pk = (X̂i)i∈[`] ∈ (G∗2)`, output 1
if the following holds and 0 otherwise.∏

i∈[`]

e(Mi, X̂i) = e(Z, Ŷ ) ∧ e(Y, P̂ ) = e(P, Ŷ )

ChgRepR(M,σ, µ, pk;ψ): Given a messageM = (Mi)i∈[`] ∈ (G∗1)` defining equiv-

alence class [M ]R, a signature σ = (Z, Y, Ŷ ) ∈ G1×G∗1×G2, µ ∈ Zp∗, public
key pk ∈ (G∗2)` and randomness ψ ∈ Zp∗, return ⊥ if VerifyR(M,σ, pk) = 0.

Otherwise, return (µ ·M,σ′) with σ′ ← (ψµZ, 1
ψY,

1
ψ Ŷ ).

VKeyR(sk, pk): Given sk = (xi)i∈[`] ∈ (Zp∗)` and pk = (X̂i)i∈[`] ∈ (G∗2)`, output

1 if xiP̂ = X̂i ∀i ∈ [`] and 0 otherwise.

all M ∈ (G∗1)` and all µ ∈ Zp∗ the following holds:

VKeyR(sk, pk) = 1 ∧
VerifyR

(
M,SignR(M, sk), pk; y

)
= 1 ∀ y ∈ Zp∗ ∧

VerifyR
(
ChgRepR(M, SignR(M, sk; y), µ, pk; ψ), pk

)
= 1 ∀ y, ψ ∈ Zp∗.

KeyGenR(BG, 1`) returns sk ← (xi)i∈[`]←R (Zp∗)` and pk ← (xiP̂ )i∈[`], which
shows the first equation.

SignR(M, sk; y) returns Z = y
∑
i∈[`] xiMi, Y = 1

yP and Ŷ = 1
y P̂ . Plugging
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this into the first relation in VerifyR, we get

e(Z, Ŷ ) = e
(
y
∑
i∈[`] xiMi,

1
y P̂
)

= e
(∑

i∈[`] xiMi, P̂
)y· 1y =∏

i∈[`]

e(xiMi, P̂ ) =
∏
i∈[`]

e(Mi, X̂i).

Since e(Y, P̂ ) = e( 1
yP, P̂ ) = e(P, 1y P̂ ) = e(P, Ŷ ), the second verification equation

is also satisfied.
Finally, ChgRepR

(
M, (Z = y

∑
i∈[`] xiMi, Y = 1

yP, Ŷ = 1
y P̂ ), µ, pk; ψ

)
out-

puts µM and

σ̂ =
(
ψµZ, 1

ψY,
1
ψ Ŷ
)

=
(
ψy
∑
i∈[`] xiµMi,

1
ψ

1
yP,

1
ψ

1
y P̂
)
,

which is the same as SignR(µM, sk; (ψy)), and thus verifies by correctness of
SignR.

As already pointed out in Section 3.4, there is no reduction from the EUF-
CMA security of any optimally short SPS-EQ scheme (that is, with 3-element
signatures) to non-interactive assumptions. Since Scheme 2 fulfills this criterion,
we are left to prove its security with a direct proof in the GGM (as also done by
Abe et al. in [AGHO11, Lemma 1]).

Theorem 3.13. Scheme 2 is EUF-CMA secure in the GGM for Type-3 bilinear
groups groups.

The proof is given in Appendix A.1.

Lemma 3.14. Scheme 2 perfectly adapts signatures under malicious keys.

Proof (Sketch). Let κ > 0, (p,G1,G2,GT , e, P, P̂ )←R BGGenR(1κ) and ` > 1.
For any M ∈ (G∗1)` and pk ∈ (G∗2)`, let (xi)i∈[`] be such that pk = (xiP̂ )i∈[`].

A signature σ = (Z, Y, Ŷ ) ∈ G1 × G∗1 × G∗2 satisfying VerifyR(M,σ, pk) = 1
must be of the form (Z = y

∑
xiMi, Y = 1

yP, Ŷ = 1
y P̂ ) for some y ∈ Zp∗.

ChgRepR outputs σ′ = (yψ
∑
xiµMi,

1
yψP,

1
yψ P̂ ), which is a random element in

G1 ×G∗1 ×G∗2 satisfying VerifyR(M,σ′, pk) = 1.

Using the above lemma (which, in particular, implies perfect adaptation as
given in Definition 3.7) and Proposition 3.10, we obtain the subsequent corollary:

Corollary 3.15. Scheme 2 is class-hiding.

3.5.2 A Standard-Model Construction

We will now present the standard-model SPS-EQ construction from [FHS15a].
Following the approach by Abe et al. [AGHO11], we construct from scheme SPS-
EQ, given as Scheme 2, an SPS-EQ scheme SPS-EQ′, given as Scheme 3, and
prove that it satisfies EUF-CMA and class-hiding, both under non-interactive
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assumptions. Note that for this kind of construction it is not possible to achieve
perfect adaptation of signatures (Definition 3.7).

The scheme for `-length messages is simply Scheme 2 with message space
(G∗1)`+2, where before each signing two random group elements are appended to
the message. Scheme 3 features constant-size signatures (4 G1+1 G2 elements),

Scheme 3 A standard-model SPS-EQ construction from Scheme 2.

BGGen′R(1κ): Given a security parameter 1κ, output BG←R BGGenR(1κ).

KeyGen′R(BG, 1`): Given a bilinear group BG and ` > 1 (in unary), output
(sk, pk)←R KeyGenR(BG, 1`+2).

Sign′R(M, sk): Given a message M = (Mi)i∈[`] ∈ (G∗1)` and a secret key sk,
choose (R1, R2)←R (G∗1)2, compute τ ←R SignR((M,R1, R2), sk) and output
σ ← (τ,R1, R2).

Verify′R(M,σ, pk): Given a message M = (Mi)i∈[`] ∈ (G∗1)`, a signature σ ←
(τ,R1, R2) and a public key pk, return VerifyR((M,R1, R2), τ, pk).

ChgRep′R(M,σ, µ, pk): Given a message M = (Mi)i∈[`] ∈ (G∗1)`, a signa-
ture σ ← (τ,R1, R2), a scalar µ ∈ Zp∗ and a public key pk, run

((M̃, R̃1, R̃2), τ̃)←R ChgRepR((M,R1, R2), τ, µ, pk) and output (M̃, σ̃) with
σ̃ ← (τ̃ , R̃1, R̃2) (or ⊥ if ChgRepR output ⊥).

VKey′R(sk, pk): Given a key pair (sk, pk), return VKeyR(sk, pk).

has public keys of size `+ 2 and still uses 2 PPEs for verification.

Security of Scheme 3

Unforgeability follows from a q-type assumption stating that Scheme 2 for ` = 2
is secure against random-message attacks. (That is, no PPT adversary, given
the public key and signatures on q random messages, can, with non-negligible
probability, output a message-signature pair for an equivalence class that was
not signed.) Class-hiding follows from class-hiding of Scheme 2.

In order to prove the EUF-CMA security of Scheme 3, we introduce the
following non-interactive q-type assumption. It is derived directly from Scheme 2
for ` = 2, essentially stating that Scheme 2 is secure against random-message
attacks.

Assumption 3.16. Given a bilinear group BG = (p,G1,G2,GT , e, P, P̂ ), two
group elements (Ŷ1, Ŷ2)←R (G∗2)2 and q instances (Aj1, Aj2, Bj , Cj , Ĉj) ∈ (G∗1)2×
G1 ×G∗1 ×G∗2 such that for all j ∈ [q]

e(Aj1, Ŷ1) · e(Aj2, Ŷ2) = e(Bj , Ĉj) ∧ e(Cj , P̂ ) = e(P, Ĉj),
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holds, then it is hard to output (A∗1, A
∗
2, B

∗, C∗, Ĉ∗) ∈ (G∗1)2×G1×G∗1×G∗2 such
that (A∗1, A

∗
2) 6= k · (Aj1, Aj2) for all k ∈ Zp∗, j ∈ [q], and

e(A∗1, Ŷ1) · e(A∗2, Ŷ2) = e(B∗, Ĉ∗) ∧ e(C∗, P̂ ) = e(P, Ĉ∗).

Proof. Theorem 3.13 implies that Assumption 3.16 holds in the GGM. When
reconsidering the simulation error analysis in the proof of Theorem 3.13 in Ap-
pendix A.1, we see that the degree of all involved polynomials is constant. There-
fore, a generic adversary making O(q) queries to the group oracles has probability
O(q

2
/p) of breaking the assumption and thus the assumption reaches the optimal

simulation error bound.

We are now going to prove the unforgeability and the class-hiding property
of Scheme 3. Correctness immediately follows from correctness of Scheme 2.

Theorem 3.17. If Assumption 3.16 holds, then Scheme 3 is an EUF-CMA-
secure SPS-EQ scheme.

Proof. We assume that there is an efficient adversary A against the unforgeabil-
ity of Scheme 3 that makes q′ signing queries and use A to build an efficient
adversary B against Assumption 3.16 for q = q′.

B is given BG = (p,G1,G2,GT , e, P, P̂ ), (V̂1, V̂2) ∈ (G∗2)2 and instances
(Nj1, Nj2, Zj , Yj , Ŷj) for j ∈ [q]. For all i ∈ [`], B chooses ai, bi←R Zp and com-

putes X̂i ← aiV̂1 + biV̂2. It sets X̂`+1 ← V̂1, X̂`+2 ← V̂2, pk ← (X̂i)i∈[`+2] and

runs ASign(·,sk)(pk). With overwhelming probability all elements X1, . . . , X`+2

are non-trivial, in which case pk is distributed as a key in Scheme 3.
Next, B simulates A’s queries to its signing oracle as follows. On the jth

signing query for message Mj = (Mji)i∈[`] ∈ (G∗1)`, B computes

Rj1 ← Nj1 −
∑
i∈[`] aiMji and Rj2 ← Nj2 −

∑
i∈[`] biMji (3.4)

and returns the signature σj ← ((Zj , Yj , Ŷj), Rj1, Rj2) to A. Note that the
elements Rj1 and Rj2 are random, since Nj1 and Nj2 from the instance are
random. (There is a small simulation error, as Nj1 is uniform in G∗1, whereas
Rj1 is uniformly random in G∗1 \ {−

∑
i∈[`] aiMji}, but this error is negligible.)

Moreover, they perfectly mask the scalars ai and bi.
Observe that the simulated signature satisfies the first verification equation:∏

i∈[`]

e(Mji, X̂i) e(Rj1, X̂`+1) e(Rj2, X̂`+2) =

∏
i∈[`]

e(Mji, aiV̂1 + biV̂2) e(Nj1 −
∑
i∈[`] aiMji, V̂1) e(Nj2 −

∑
i∈[`] biMji, V̂2) =

∏
i∈[`]

e(Mji, aiV̂1)
∏
i∈[`]

e(Mji, biV̂2) e(Nj1, V̂1) e(Nj2, V̂2)·

·
∏
i∈[`]

e(aiMji, V̂1)−1
∏
i∈[`]

e(biMji, V̂2)−1 =

e(Nj1, V̂1) e(Nj2, V̂2) = e(Zj , Ŷj).
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Since (Yj , Ŷj) from the instance are uniformly random in G∗1×G∗2 conditioned on

e(Yj , P̂ ) = e(P, Ŷj) and together with (Mji)i∈[`], (Rj1, Rj2) and (X̂i)i∈[`+2], they

uniquely determine Zj as per the above equation, this shows that (Zj , Yj , Ŷj)
is a correctly distributed Scheme-2 signature. Furthermore, with overwhelming
probability we have that Rj1 6= 0G1

and Rj2 6= 0G1
, in which case the signatures

σj = ((Zj , Yj , Ŷj), Rj1, Rj2) are perfectly simulated.

If A outputs a forgery (M∗, σ∗) = ((M∗i )i∈[`], (Z
∗, Y ∗, Ŷ ∗, R∗1, R

∗
2)) then B

computes

N∗1 ← R∗1 +
∑
i∈[`] aiM

∗
i and N∗2 ← R∗2 +

∑
i∈[`] biM

∗
i (3.5)

and returns (N∗1 , N
∗
2 , Z

∗, Y ∗, Ŷ ∗).
In order to show that B’s output breaks Assumption 3.16, we need to show

the following: (1) (N∗1 , N
∗
2 , Z

∗, Y ∗, Ŷ ∗) satisfies the last pair of equations in
Definition 3.16; (2) (N∗1 , N

∗
2 ) ∈ (G∗1)2 and (3) (N∗1 , N

∗
2 ) 6= µ · (Nj1, Nj2) for all

µ ∈ Zp∗, j ∈ [q].

(1) We have:

e(N∗1 , V̂1) e(N∗2 , V̂2)
(3.5)
= e(

∑
i∈[`]

aiM
∗
i , V̂1) e(

∑
i∈[`]

biM
∗
i , V̂2) e(R∗1, V̂1) e(R∗2, V̂2)

=
( ∏
i∈[`]

e(M∗i , aiV̂i)e(M
∗
i , biV̂2)

)
e(R∗1, V̂1) e(R∗2, V̂2)

=
∏
i∈[`]

e(M∗i , X̂i) e(R
∗
1, V̂1) e(R∗2, V̂2) = e(Z∗, Ŷ ∗),

where the last equation follows from A outputting a valid signature. Since for
the same reason, e(Y ∗, P̂ ) = e(P, Ŷ ∗), we have that B’s output satisfies the
required equations. (Note also that Y ∗ 6= 0 and Ŷ ∗ 6= 0 when A’s output is
valid.)

(2) The only information about (ai)i∈[`] and (bi)i∈[`] revealed to A is

xi = ai · v1 + bi · v2, (3.6)

where xi, v1 and v2 are s.t. X̂i = xiP̂ , V̂1 = v1P̂ and V̂2 = v2P̂ , for all i ∈ [`].
Since M∗i 6= 0 for all i ∈ [`], the probability that either N∗1 = R∗1 +∑
i∈[`] aiM

∗
i = 0 or N∗2 = R∗2 +

∑
i∈[`] biM

∗
i = 0 is therefore negligible.

3) Since M∗ is a valid forgery, we have that for all µ ∈ Zp∗ and j ∈ [q]: M∗ 6=
µ ·Mj . The reduction could however fail if for some µ ∈ Zp and j ∈ [q], we had
(N∗1 , N

∗
2 ) = µ · (Nj1, Nj2), that is

n∗1 · nj2 = n∗2 · nj1, (3.7)

where we let lower-case letters denote the logarithms of the corresponding upper-
case letters to the basis P . We now show that even for an unbounded adversary,
the probability that this happens is negligible.
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A has no information about (ai)i∈[`], however, by (3.6), each ai determines
bi as

bi = xiv
−1
2 − v1v

−1
2 ai.

Together with (3.4) and (3.5) this means that Equation (3.7) can be written as(
r∗1 +

∑
i∈[`] aim

∗
i

)
·
(
rj2 +

∑
i∈[`] xiv

−1
2 mji − v1v−12

∑
i∈[`] aimji

)
=
(
r∗2 +

∑
i∈[`] xiv

−1
2 m∗i − v1v

−1
2

∑
i∈[`] aim

∗
i

)
·
(
rj1 +

∑
i∈[`] aimji

)
.

This can be rewritten as (note that the terms containing products of ai’s cancel):∑
i∈[`]

(
− r∗1v1v−12 mji + rj2m

∗
i +

∑
k∈[`] xkv

−1
2 mjkm

∗
i

+ rj1v1v
−1
2 m∗i − r∗2mji −

∑
k∈[`] xkv

−1
2 mjim

∗
k

)
ai

=− r∗1
(
rj2 +

∑
i∈[`] xiv

−1
2 mji

)
+
(
r∗2 +

∑
i∈[`] xiv

−1
2 m∗i

)
rj1.

Since A has no knowledge of the ai’s, A can only make the equation be satisfied
with non-negligible probability by setting all coefficients of the ai’s to 0. That
is, for all i ∈ [`]:(

rj2 + rj1v1v
−1
2 +

∑
k xkv

−1
2 mjk − xiv−12 mji

)
m∗i −

∑
k 6=i xkv

−1
2 mjim

∗
k

=
(
r∗1v1v

−1
2 + r∗2

)
mji. (3.8)

We now argue that the above system of ` linear equations in the variables
(m∗1, . . . ,m

∗
` ) is regular with overwhelming probability. Indeed, A can choose

the mjk’s contained in the coefficients to its liking. However, it only learns rj2
afterwards, which is uniformly random (determined via the random Nj2 from the
instance). Thus, to the matrix determined by A’s choices a (the same) random
element is added to each entry in the diagonal; that is, a random multiple of the
unity matrix I is added. It follows from the following claim that this makes the
matrix regular with overwhelming probability.

Claim 3.18. Let A ∈ Z `×`
p . Then A+ηI for η←R Zp is regular with overwhelm-

ing probability.

Proof. Consider the Schur decomposition of A, that is, a regular matrix Q and
an upper triangular matrix U , such that A = QUQ−1. A is regular if and only
if all diagonal elements of U are non-zero. A+ ηI = Q(U + ηI)Q−1 is regular if
(U+ηI) has no zeros in the diagonal, which holds with overwhelming probability
since the probability that −η occurs in the diagonal of U is negligible.

Let r∗1 , r
∗
2 ,mj1, . . . ,mj` be arbitrary. We then argue that the only assignment

to m∗ = (m∗1, . . . ,m
∗
` ) that satisfies the equation system in (3.8) is a multiple

of mj . This however means that the adversary did not win the unforgeability
game.
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Let λ = (r∗1v1v
−1
2 + r∗2)(rj2 + rj1v1v

−1
2 )−1. Then m∗i ← λmji, for all i ∈ [`],

is a solution to the equation system in (3.8):(
rj2 + rj1v1v

−1
2 +

∑
k xkv

−1
2 mjk − xiv−12 mji

)
λmji −

∑
k 6=i xkv

−1
2 mjiλmjk

=
(
rj2 + rj1v1v

−1
2

)
λmji =

(
r∗1v1v

−1
2 + r∗2

)
mji.

Since the system is regular with overwhelming probability, this is the only
solution, meaning in this case the adversary did not win. With overwhelming
probability B thus returns a pair (N∗1 , N

∗
2 ), which is not the multiple of any pair

(Nj1, Nj2) from the given instance.

From an adversary A breaking unforgeability of Scheme 3, we have con-
structed an algorithm B which breaks Assumption 3.16 with almost the same
probability; this completes the proof.

Next, we prove Scheme 2 to be class-hiding.

Theorem 3.19. If Scheme 2 is class-hiding, then Scheme 3 is class-hiding.

Proof. We assume that there is an efficient adversary A against the class-hiding
property of Scheme 3 with message length ` and use A to build an efficient
adversary B against class-hiding of Scheme 2 with length `+ 2.

B interacts with a class-hiding challenger C, which creates the bilinear group
BG and runs B on (BG, 1`+2). B runs (stA, sk = (xi)i∈[`+2], pk = (X̂i)i∈[`+2])←
A(BG, 1`) and forwards this to C. When C then runs B on (stA, sk, pk), B runs
b∗ ← AO(stA, sk, pk) and simulates A’s oracles as follows.

On A’s jth call to ORM , B calls its ORM oracle to receive Mj = (Mji)i∈[`+2].
B returns (Mji)i∈[`] to A and records (Mji)i∈[`+2].

When A calls the ORoR oracle for message Mj , B looks for the first occurrence
of Mj in its record, retrieves (Mji)i∈[`+2] and submits it to its ORoR oracle. (If
no entry in B’s record starts with (Mj1, . . . ,Mj`) then B returns ⊥.) Upon
receiving (M ′ = (M ′i)i∈[`+2], σ

′), B returns ((M ′i)i∈[`], (σ
′,M ′`+1,M

′
`+2)) to A.

Finally, B forwards A’s output b∗ to C.

The simulation is perfect: On A’s first valid call Mj = (Mji)i∈[`] to ORoR, it
receives M = Mj and σ = (σ′,M`+1,M`+2), which is distributed the same way
as (M,Sign′R(M, sk)), since M`+1,M`+2 are uniformly random elements (picked
by ORM ) and σ is a signature on (Mi)i∈[`+2], computed by ORoR.

Moreover, if C’s bit b = 0 then at all further queries of M to ORoR, B

receives ((M ′i)i∈[`+2], σ
′)←R ChgRepR((Mi)i∈[`+2], σ, µ, pk) for µ←R Zp∗, and sends

((M ′i)i∈[`], (σ
′,M ′`+1,M

′
`+2)) to A, which has the same distribution as the output

of ChgRep′R((Mi)i∈[`], (σ,Mi+1,Mi+2), µ, pk).

Finally, if C’s bit b = 1 then at all further queries of M to ORoR, B re-
ceives ((Ri)i∈[`+2], σ

′) where Ri←R (G∗i )`+2 and σ′←R SignR(R, sk), and returns

((Ri)i∈[`], (σ
′, R`+1, R`+2)) to A, which is distributed the same way as R←R (G∗i )`

and Sign′R((Ri)i∈[`], sk), and thus what A expects to receive. B thus wins the
class-hiding game with the same probability as A does.
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Remark 3.20. Observe that Scheme 3 does not perfectly adapt signatures (Def-
inition 3.7). The reason for this are the signature values R1, R2 whose common
ratio is determined by the randomness initially used within SignR and which
remains the same after running ChgRepR.

Deriving an SPS Scheme

Applying the transformation from Section 3.4 to Scheme 2, we obtain a perfectly
rerandomizable SPS scheme in Type-3 groups with constant-size signatures of
unilateral length-` message vectors and public keys of size ` + 1. Scheme 2 is
optimal as it only uses 2 PPEs and its signatures consist of 3 bilateral group
elements.

Applying our transformation to Scheme 3 yields a new standard-model SPS
construction for unilateral length-` message vectors in Type-3 groups. It has
constant-size signatures (4 G1 + 1 G2 elements), a public key of size ` + 3 and
uses 2 PPEs for verification; it is therefore almost as efficient as the best known
direct SPS construction from non-interactive assumptions in [AGHO11], whose
signatures consist of 3 G1 + 1 G2 elements. Scheme 3 is partially rerandomiz-
able [AFG+10], while the scheme in [AGHO11] is not.

3.6 Black-Box Separation of SPS-EQ from Non-
Interactive Assumptions

In this section, we will show that it is impossible to base the EUF-CMA security
of malicious-key perfectly adapting SPS-EQ schemes (Definition 3.8) on non-
interactive assumptions, if the DDH assumption holds on the underlying group
Gi. In doing so, we use a meta-reduction technique that treats non-interactive
hard problems (in the bilinear-group setting) as black-box and plays them off
against the DDH assumption.

At this point, it must be made clear that this does not pose any serious
problem to the notion of SPS-EQ and neither to its applications. In fact, it
provides us with important evidence concerning the construction of standard-
model SPS-EQs. In order to bypass our impossibility result, we will, then,
propose a weaker unforgeability game in a one-more-forgery fashion: In order
to win the game, an adversary must output k+ 1 valid, distinct and normalized
message-signature pairs after having queried only k (unnormalized) messages to
the signing oracle. This allows the reduction to efficiently distinguish between
different classes. Most importantly, this notion is sufficient for all our use cases
(that is, for blind signatures, multi-show ABCs and VESs), while the stronger
notion is still useful if we do not require any indistinguishability on the message
space, to prove schemes in the GGM or to construct schemes that are perfectly
adapting (Definition 3.7; which is still sufficient for many use cases, e.g., for
multi-show ABCs as in Chapter 7), but not perfectly adapting under malicious
keys (Definition 3.8; which is required for blind signatures, cf. Chapter 4).
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3.6.1 Hard Non-Interactive Problems

For the black-box separation of (certain) SPS-EQs from non-interactive assump-
tions, we need a formalization of hard non-interactive problems in the bilinear
group setting. The main difference to Definitions 2.4 and 2.5 is that we explicitly
take a bilinear-group generation algorithm into account.

Falsifiability is vital for our separation result (cf. Section 2.2.1), as the de-
cision to the DDH output by the meta-reduction requires an efficient algorithm
verifying the solution output by the reduction. Typical examples for problems in
this setting that allow for public verification of solutions are extraction problems
(a subclass of search problems), such as the discrete-logarithm problem (DLP),
whereas examples for the other type are decision problems (e.g., DDH, DLIN)
or certain search problems such as the CDH problem.

Definition 3.21 (Non-interactive problem). A non-interactive problem (in the
bilinear-group setting) P consists of the following PPT algorithms:

BGGen(1κ): A probabilistic algorithm that takes input a security parameter 1κ.
It outputs a bilinear group BG.

IGen(BG; r): A probabilistic algorithm that takes input a bilinear group BG (and
has access to a random tape r ∈ {0, 1}∗). It outputs an instance y of P,
where y includes BG.

V(x, y, r): A deterministic algorithm that takes input a value x, an instance y
of P and randomness r ∈ {0, 1}∗ such that y was generated using r. It
outputs a decision bit indicating whether or not x is a solution of y.

Definition 3.22 (Hard non-interactive problem). A non-interactive problem
(in the bilinear-group setting) P is hard, if for all PPT adversaries A there is a
negligible function ε(·) such that:

Pr [BG←R BGGen(1κ), y←R IGen(BG; r), x←R A(y) : V(x, y, r) = 1 ] ≤ ε(κ).

3.6.2 The Separation Result

For our black-box separation, we use a meta-reduction technique, which plays
off the combination of the DDH assumption on Gi and the perfect-adaptation-
under-malicious-keys property against the EUF-CMA security. In our meta-
reduction M, the reduction R treats the adversary A as an oracle and the
meta-reduction will use the reduction as signing oracle by applying a rewind-
ing technique [Cor02]. Furthermore, we have to take into account that the
meta-reduction may be confronted with a potentially malicious public key (e.g.,
generated by a simulator), while the meta-reduction must still be capable of de-
riving a fresh signature on the so-obtained message. For this reason, we require
the perfect-adaptation-under-malicious-keys property (Definition 3.8).

We treat the underlying hard problem as black-box, that is, we do not make
any assumption on it—except that it is hard, non-interactive and defined in a
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bilinear-group setting (as given in Definition 2.4). Since we are considering an
SPS type and, thus, also generic signers [AGHO11], the latter restriction does
not seem to make any difference.

At first, we will state and prove the impossibility result for vanilla reductions,
i.e., reductions that do not rewind and only run one instance of the adversary.

Theorem 3.23. Let ` > 1, BG = (p,G1,G2,GT , e, P, P̂ ) be a bilinear group
and SPS-EQ be an SPS-EQ scheme over Gi. If the DDH assumption holds in
Gi and the scheme is perfectly adapting under malicious keys, then there is no
vanilla black-box reduction from its EUF-CMA security to a hard non-interactive
problem in the bilinear-group setting given by BG.

Proof. In the following, we will consider an (imaginary and not necessarily effi-
cient) forger F that breaks the EUF-CMA security of the SPS-EQ scheme with
probability 1/2 as long as the challenger outputs valid signatures. F works as fol-
lows: When F receives the public key pk from the challenger, it picks b←R {0, 1}
and queries a signature σ on one message M ←R (G∗i )`. If VerifyR(M,σ, pk) = 0,
F aborts. Else, if b = 1, F computes a signature σ∗ on some new message
M∗ ∈ (G∗i )` \ [M ]R and outputs (M∗, σ∗). For b = 0, F returns (M∗, σ∗)←R
ChgRepR(M,σ, µ, pk) by picking µ←R Zp∗.

We will now show how to efficiently simulate F as part of the meta-reduction
through a rewinding technique [Cor02], which can be applied in case of SPS-EQ
schemes that are perfectly adapting under malicious keys; w.l.o.g. let ` = 2.

We now describe our meta-reduction M and how it simulates the envi-
ronment and the forger F for R. M is given input a bilinear group BG =
(p,G1,G2,GT , e, P, P̂ ) with log2 p = dκe and a DDH instance (BG, rP, sP, tP )
and runs the instance generator y←R IGen(BG; ρ) of some hard non-interactive
problem P (with random tape ρ ∈ {0, 1}∗ made explicit). Then, M runs R

on y. At some point, R will run F on pk, which is the public key pk de-
termined by R. Then, M simulates F as follows. F picks m1,m2←R Zp∗ and
submits M ′ ← (m1P,m2rP ) to R’s signing oracle and gets in return a signa-
ture σ′ on M ′. If VerifyR(M ′, σ′, pk) = 0, F aborts. Otherwise, M rewinds
R to the point before it runs F(pk) and lets F submit a new signature query
for M ← (m1sP,m2tP ). When R responds with a signature σ on M , F out-
puts (M∗, σ∗)←R ChgRepR(M ′, σ′, µ, pk) with µ←R Zp∗ as a forgery to B unless
VerifyR(M,σ, pk) = 0 in which case F will abort. Eventually, R will then output
a solution x for y to M and M will output b∗ ← 1−V(x, y, ρ) as decision bit for
the DDH instance (BG, rP, sP, tP ).

We analyze M’s simulation of F for R:

1. Only with negligible probability it can happen that M ∈ G2
i \ (G∗i )2 or

that M ′ ∈ G2
i \ (G∗i )2.

2. For (M ′, σ′) it holds that VerifyR(M ′, σ′, pk) = 1 and with overwhelm-
ing probability that M ′ ∈ (G∗i )2. Then, the signature in (M∗, σ∗)←R
ChgRepR(M ′, σ′, µ, pk) for µ←R Zp∗ is uniformly distributed in the set of
all valid signatures on M∗ under pk by the perfect adaptation under ma-
licious keys property.
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Now, if (BG, rP, sP, tP ) is a valid DDH instance (i.e., t = rs), we sim-
ulate F for b = 0: (M∗, σ∗) ∈R ChgRepR(M ′, σ′, µ, pk) is not a forgery as
[(m1P,m2rP )]R = [M ′]R = [M∗]R = [M ]R = [(m1sP,m2rsP )]R. Else, if
(BG, rP, sP, tP ) is not a valid DDH instance and t is random (and, thus, indepen-
dent of r and s), we simulate F for b = 1: (M∗, σ∗) ∈R ChgRepR(M ′, σ′, µ, pk)
is a forgery as [(m1P,m2rP )]R = [M ′]R = [M∗]R 6= [M ]R = [(m1sP,m2tP )]R.
Therefore, after the rewind this simulates F perfectly unless M ∈ G2

i \ (G∗i )2 or
M ′ ∈ G2

i \ (G∗i )2, which happens only with negligible probability.
If we are not dealing with a forgery (in case the DDH instance was valid),

then R outputs x such that V(x, y, ρ) = 0 and M outputs b∗ ← 1−V(x, y, ρ) = 1
as decision bit to the DDH. Else, R outputs x such that V(x, y, ρ) = 1, in which
case M outputs b∗ ← 1− V(x, y, ρ) = 0 as decision bit to the DDH.

Now, we are going to extend this result to general reductions, that is, re-
ductions that rewind the forger and/or run it multiple times (potentially with
different public keys). Thereby, we follow a strategy similar to [Cor02].

Theorem 3.24. Let the setting be the same as in Theorem 3.23, then there
is no black-box reduction from its EUF-CMA security to a hard non-interactive
problem in the bilinear-group setting given by BG that rewinds or sequentially
runs a forger multiple times.

Proof. We will show how the result from Theorem 3.23 can be extended to
more general reductions, i.e., reductions that rewind or sequentially run multiple
copies of a forger F′, using the same techniques as before.

We start by assuming that the reduction R does not rewind the forger F′,
but sequentially runs F′ r times, where R enters a new round each time an
interaction with F′ has completed. During each round, F′ follows the same
strategy as forger F in the proof of Theorem 3.23.

Next, we consider a reduction, which is allowed to rewind F′ to some previous
state S; or equivalently, a reduction R that restarts F′ using the same random
tape and the same input until state S has been reached. Restarting the forger
means a transition of R from round i − 1 to round i. The strategy that F′

pursues during each round is basically the same as the strategy of forger F in
the proof of Theorem 3.23. F′ takes the rewinding into account as follows. If R
starts F′ on the same public key in round i as in round i− 1, then F′ will send
the same signature query as in round i − 1. If R then returns the exact same
signature as in round i−1, F′ will output in round i the exact same answer as in
round i− 1 or an arbitrary output of ChgRepR(M ′, σ′, µ, pk) if F′ was rewound
in round i − 1 before returning the result. Otherwise, if R returns a different
signature as in round i− 1, then F′ will return in round i an arbitrary output of
ChgRepR(M ′, σ′, µ, pk). Finally, if R has been restarted on a different public key,
then F′ will perform its queries and compute its result in round i independently
of round i− 1.

In order to simulate the forger F′, the meta-reduction uses the same technique
as in the proof of Theorem 3.23. In doing so, it performs the rewinding of R in
round i to the point before R runs F(pk) in round i.
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Remark 3.25. These results apply analogously to SPS-EQ schemes defined on
more general projective equivalence relations as already pointed out in Re-
mark 3.1. Again, considering equivalence classes, which are planes (and not
lines), the DDH assumption on Gi would be replaced by the DLIN assumption
to obtain indistinguishability on the message space. Likewise, the hardness of
the DLIN assumption and an (analogous version of) perfect adaptation under
malicious keys would give an analogous impossibility result.

3.6.3 Discussion and Alternative Unforgeability Notion

The results show that basing the EUF-CMA security (as in Definition 3.4) of
a malicious-key perfectly-adapting SPS-EQ scheme (cf. Definition 3.8) on non-
interactive assumptions is impossible. While Definition 3.8 is crucial to building
blind signatures from SPS-EQ in the malicious-key model, investigating weaker
unforgeability notions could lead us to SPS-EQ constructions whose unforge-
ability relies on non-interactive assumptions. In turn, this could allow obtaining
blind signatures that are both unforgeable and blind under non-interactive as-
sumptions.

This motivates the definition of a weaker unforgeability game, where the
reduction is efficiently able to decide the class membership of the forgery. To
this end, we introduce the following one-more-forgery unforgeability game, which
is similar to the unforgeability notion of blind signatures (cf. Definition 4.3). It
allows signing queries for arbitrary representatives of arbitrary classes, but, in
the end, requires the adversary to output distinct, normalized representatives
(i.e., representatives with generator P in one component; w.l.o.g. in the last)
and corresponding signatures. The adversary wins the game if it is able to
output k + 1 message-signature pairs after having queried only k messages to
the signing oracle.

Definition 3.26 (One-more unforgeability). An SPS-EQ scheme SPS-EQ on
Gi is one-more unforgeable if for all ` > 1 and all PPT adversaries A having
access to a signing oracle SignR(·, sk), there is a negligible function ε(·) such that:

Pr


BG←R BGGenR(1κ),
(sk, pk)←R KeyGenR(BG, 1`),
(Mi, σi)i∈[k+1]

←R ASignR(·,sk)(pk)

:
Mi 6= Mj ∀i, j ∈ [k + 1], i 6= j
∧ VerifyR((Mi, P ), σi, pk) = 1

∀i ∈ [k + 1]

 ≤ ε(κ),

where k is the number of queries that A has issued to the signing oracle.





4
Practically Efficient Round-Optimal

Blind Signatures in the Standard Model

As we play with these shiny new toys,
how much are we trading off convenience over privacy and security?

— James Lyne, at #TED2013

Blind signatures (BSs) schemes [Cha82] allow a user to obtain a signature
from a signer, in such a way that the signer cannot link the resulting message-
signature pair to the signing process. They are a central cryptographic building
block and have seen lots of attention since the 1980s. Not surprisingly, they also
have a variety of applications; e.g., in e-cash, e-voting and anonymous authenti-
cation (one-show credential systems).

Important quality criteria of blind-signature schemes are the number of inter-
actions required during the signing protocol and whether they assume random
oracles (ROs) and/or a CRS set up by a TTP, which every party must be given
access to; or if their proofs hold in the standard model. Schemes having only
two moves of interaction are said to be round-optimal [Fis06]. Round-optimality,
on the one hand, immediately implies concurrent security (which otherwise has
to be taken into account separately; cf. [KZ06, HKKL07]) and is, on the other
hand, a crucial criterion for a scheme’s efficiency.

Based on SPS-EQs, we will now present a new round-optimal blind-signature
scheme from [FHS15a], which we will later extend to a round-optimal partially
blind-signature scheme. We achieve this with a new and conceptually sim-
ple approach that yields compact constructions which are efficient in terms of
signature size, communication complexity, computational effort and key sizes.

61
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Our schemes are surprisingly efficient and are secure in the standard model
under interactive assumptions (which is the main caveat). Unlike previous
schemes [GRS+11, GG14], our security proofs hold in the standard model with-
out the need for complexity leveraging and non-uniformity. Our partially blind-
signature scheme is—to the best of our knowledge—the first such construction
secure in the standard-model. Finally, we will show how to build blind sig-
natures on message vectors, which we will use subsequently to build one-show
anonymous credentials in Section 7. This is the first such credential system in
the vein of Brands relying on a blind-signature scheme with security proofs in
the standard model.

Before giving the contribution, we state the background necessary on blind
and partially blind signatures. The remaining parts of this chapter are based on
joint work with Georg Fuchsbauer and Daniel Slamanig. The presented material
is taken (mostly verbatim) from [FHS15a, FHS15b].

4.1 Blind Signatures: Definitions

A BS scheme is a two-party protocol, run between a user (or obtainer) and a
signer (or issuer) satisfying the following definition:

Definition 4.1 (Blind signature (BS) scheme). A BS scheme BS consists of the
following PPT algorithms:

KeyGen(1κ): A probabilistic algorithm that takes input a security parameter 1κ.
It returns a key pair (sk, pk) (we assume that pk includes a description of
the message space Mpk).

(U(m, pk), S(sk)): These algorithms are run by a user and a signer, who interact
during execution. U is a probabilistic algorithm that takes input a message
m ∈ Mpk and a public key pk. S is a probabilistic algorithm that takes
input a secret key sk. At the end of this protocol, U outputs σ, a signature
on m, or ⊥ if the interaction was not successful.

Verify(m,σ, pk): A deterministic algorithm that takes input a message-signature
pair (m,σ) with m ∈Mpk and a public key pk. It returns 1 or 0 indicating
whether or not (m,σ) is a valid message-signature pair under pk.

A BS scheme BS must satisfy correctness, unforgeability and blindness.

Definition 4.2 (Correctness). A BS scheme BS is correct if for all security
parameters κ, all choices of (sk, pk)←R KeyGen(1κ), all messages m ∈ Mpk it
holds that

Pr [Verify(m, (U(m, pk), S(sk)), pk) = 1 ] = 1.

Due to blindness, unforgeability is defined as a one-more-forgery game, i.e.,
the user wins the unforgeability game if she is able to output k + 1 distinct
message-signature pairs after having queried only k times to the signer oracle.
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Definition 4.3 (Unforgeability). A BS scheme BS is unforgeable if for all PPT
adversaries A having access to a signer oracle, there is a negligible function ε(·)
such that:

Pr

 (sk, pk)←R KeyGen(1κ),

(m∗i , σ
∗
i )i∈[k+1]←R A(·,S(sk))(pk)

:

m∗i 6= m∗j ∀i, j ∈ [k+1], i 6= j

∧ Verify(m∗i , σ
∗
i , pk)=1

∀i ∈ [k+1]

 ≤ ε(κ),

where k is the number of completed oracle interactions.

There are several definitions of blindness; most prominently, the honest-
signer [JLO97, AO00, CKW05] and the malicious-signer (or dishonest-signer)
[ANN06, Oka06] model. In the former, the whole signer key pair (sk, pk) is
defined by the environment; whereas in the latter model the public key pk is
adversarially generated. Apparently, this is a stronger, more desirable model,
which, however, makes it more challenging (or under certain circumstances even
impossible) to find security reductions. Evidence underlining this is given by
Fischlin and Schröder in [FS10]. There they show that the unforgeability of
a blind-signature scheme with blindness in the malicious-key model cannot be
based on non-interactive hardness assumptions if (1) the scheme has 3 moves or
less, (2) its blindness holds statistically and (3) from a transcript one can effi-
ciently decide whether the interaction yielded a valid blind signature. They also
give some evidence that their result applies to computationally blind schemes as
well—under certain circumstances.

Besides these two notions, there is also a simulation-based blindness notion,
for which Lindell showed in [Lin03] that such concurrently secure constructions
are impossible in the standard model.

Definition 4.4 (Honest-signer blindness). A BS scheme BS is called honest-
signer blind if for all PPT adversaries A having one-time access to two user
oracles, there is a negligible function ε(·) such that:

Pr



b←R {0, 1}, (sk, pk)←R KeyGen(1κ),
(st,m0,m1)←R A(sk, pk),

st←R A(U(mb,pk),·)1,(U(m1−b,pk),·)1(st),
Let σb and σ1−b be the resp. outputs of U,
If σ0 = ⊥ or σ1 = ⊥ then (σ0, σ1)← (⊥,⊥),
b∗←R A(st, σ0, σ1)

: b∗= b

−
1

2
≤ ε(κ),

Definition 4.5 (Malicious-signer blindness [ANN06, Oka06]). A BS scheme BS
is called (malicious-signer) blind if for all PPT adversaries A having one-time
access to two user oracles, there is a negligible function ε(·) such that:

Pr


b←R {0, 1}, (st, pk,m0,m1)←R A(1κ),

st←R A(U(mb,pk),·)1,(U(m1−b,pk),·)1(st),
Let σb and σ1−b be the resp. outputs of U,
If σ0 = ⊥ or σ1 = ⊥ then (σ0, σ1)← (⊥,⊥),
b∗←R A(st, σ0, σ1)

: b∗= b

− 1

2
≤ ε(κ).
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4.1.1 Partially Blind Signatures

Partially blind signatures (PBSs) are a generalization of BSs, which restrict the
power of the user by including an additional piece of information (the common
information), which is agreed upon between the user and the signer, into the
signatures. We will now state the formal definitions:

Definition 4.6 (Partially blind signature (PBS) scheme). A PBS scheme PBS
consists of the following PPT algorithms:

KeyGen(1κ): A probabilistic algorithm that takes input a security parameter 1κ.
It returns a key pair (sk, pk) (we assume that pk includes a description of
the message space Mpk).

(U(m, γ, pk), S(γ, sk)): These algorithms are run by a user and a signer, who
interact during execution. U is a probabilistic algorithm that takes input a
message m ∈ Mpk, common information γ ∈ Mpk and a public key pk. S

is a probabilistic algorithm that takes input common information γ ∈Mpk

and a secret key sk. At the end of this protocol, U outputs σ, a signature
on (m, γ), or ⊥ if the interaction was not successful.

Verify(m, γ, σ, pk): A deterministic algorithm that takes input a message-sig-
nature tuple (m, γ, σ) with m, γ ∈ Mpk and a public key pk. It returns
1 or 0 indicating whether or not (m, γ, σ) is a valid message-signature pair
under pk.

A PBS scheme PBS is called secure, if it is correct, unforgeable and partially
blind.

Definition 4.7 (Correctness). A PBS scheme PBS is correct if for all security
parameters κ, all choices of (sk, pk)←R KeyGen(1κ), all messages m ∈ Mpk and
all γ ∈Mpk it holds that

Pr [Verify(m, γ, (U(m, γ, pk), S(γ, sk)), pk) = 1 ] = 1.

Definition 4.8 (Unforgeability). A PBS scheme PBS scheme is unforgeable, if
for all PPT adversaries A having access to a signer oracle, there is a negligible
function ε(·) such that:

Pr

 (sk, pk)←R KeyGen(1κ),

(γ∗, (m∗i , σ
∗
i )i∈[kγ∗+1])

←R A(·,S(·,sk))(pk)

:

m∗i 6= m∗j ∀i, j ∈ [kγ∗ + 1], i 6= j

∧ Verify(m∗i , γ
∗, σ∗i , pk) = 1

∀i ∈ [kγ∗ + 1]

 ≤ ε(κ),

where kγ∗ is the number of completed oracle interactions involving γ∗.

We omit the definition of partial blindness for the honest-signer case and
just state it for malicious signers [AO00]. (It is straightforward to derive the
honest-signer partial blindness definition.)
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Definition 4.9 (Malicious-signer partial blindness). A PBS scheme PBS is
(malicious-signer) partially blind, if for all PPT adversaries A having one-time
access to two user oracles, there is a negligible function ε(·) such that:

Pr


b←R {0, 1}, (st, pk,m0,m1, γ)←R A(1κ),

st←R A(U(mb,γ,pk),·)1,(U(m1−b,γ,pk),·)1(st),
Let σb and σ1−b be the resp. outputs of U,
If σ0 = ⊥ or σ1 = ⊥ then (σ0, σ1)← (⊥,⊥),
b∗←R A(st, σ0, σ1)

: b∗= b

− 1

2
≤ ε(κ).

4.2 Building Blind Signatures from SPS-EQ

Our construction uses commitments to the messages and SPS-EQ to sign these
commitments and to perform blinding and unblinding. Signing an equivalence
class with an SPS-EQ scheme lets one derive a signature for arbitrary repre-
sentatives of this class without knowing the private signing key. This concept
provides an elegant way to realize a blind signing process as follows.

The signer’s key contains an element Q under which the obtainer forms a
Pedersen commitment C = mP + rQ to the message m. (Since the commitment
is perfectly hiding, the signer can be aware of q with Q = qP .) The obtainer
then forms a vector (C,P ), which can be seen as the canonical representative
of equivalence class [(C,P )]R. Next, she picks s←R Zp∗ and moves (C,P ) to a
random representative (sC, sP ), which hides C. She sends (sC, sP ) to the signer
and receives an SPS-EQ signature π on it, from which she can derive a signature
σ to the original message (C,P ), which she can then publish together with an
opening of C. As verification will check validity of the SPS-EQ signature on a
message ending with P , the unblinding is unambiguous.

Let us now discuss how the user opens the Pedersen commitment C = mP +
rQ. Publishing (m, r) directly would break the blindness of the scheme (a signer
could link a pair M = (D,S), received during signing, to a signature by checking
whether D = mS+ rqS). We, therefore, define a tweaked opening, for which we
include Q̂ = qP̂ in addition to Q = qP into the signer’s public key. We define
the opening as (m, rP ), which can be checked via the pairing equation

e(C −mP, P̂ ) = e(rP, Q̂).

This opening is still computationally binding under the co-DHI assumption in
G1 (in contrast to standard Pedersen commitments, which are binding under the
DL assumption). Hiding of the commitment still holds unconditionally, and we
will prove the constructed blind-signature scheme secure in the malicious-signer
model without requiring a trusted setup.

Finally, we need to consider another technicality. In the malicious-key model
the public key is fully controlled by the adversary. For Scheme 4 this means
that also the bilinear group BG is under adversarial control. When reducing As-
sumption 4.11 to the blindness of Scheme 4, the bilinear group is, however, part
of the problem instance. To guarantee that both bilinear groups are equal, we
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require the bilinear-group generation algorithm BGGenR of the SPS-EQ scheme
to be deterministic1.

The scheme is presented as Scheme 4. (Note that for simplicity the blind
signature contains T = rQ instead of C.)

Scheme 4 A blind-signature scheme from SPS-EQ.

KeyGen(1κ): Given a security parameter 1κ, compute BG ← BGGenR(1κ),
(sk, pkR)←R KeyGenR(BG, 1`) for ` = 2, pick q←R Zp∗ and set Q ← qP ,

Q̂← qP̂ . Output (sk, pk = (pkR, Q, Q̂)).

U(1)(m, pk): Given a message m ∈ Zp and public key pk = (pkR, Q, Q̂), compute

BG← BGGenR(1κ). If Q = 0G1
or e(Q, P̂ ) 6= e(P, Q̂), return ⊥; else choose

s←R Zp∗ and r←R Zp such that mP + rQ 6= 0G1 and output

M ← (s(mP + rQ), sP ) st← (BG, pkR, Q,M, r, s).

S(M, sk): Given M ∈ (G∗1)2 and secret key sk, output π←R SignR(M, sk).

U(2)(st, π): Given state st and π, parse st as (BG, pkR, Q,M, r, s). If
VerifyR(M,π, pkR) = 0 then return ⊥. Else, run

((mP + rQ, P ), σ)←R ChgRepR(M,π,
1

s
, pkR),

and output τ ← (σ, rP, rQ).

Verify(m, τ, pk): Given message m ∈ Zp∗, blind signature τ = (σ,R, T ) and pk =

(pkR, Q, Q̂), with Q 6= 0G1
and e(Q, P̂ ) = e(P, Q̂), output 1 if the following

holds and 0 otherwise.

VerifyR((mP + T, P ), σ, pkR) = 1 e(T, P̂ ) = e(R, Q̂)

4.2.1 Security

We omit the proof of correctness, as it follows straightforwardly from inspection.

Theorem 4.10. If the underlying SPS-EQ scheme SPS-EQ is EUF-CMA secure
and the co-DHI assumption holds in G1 then Scheme 4 is unforgeable.

The proof follows the intuition that a forger must either forge an SPS-EQ
signature on a new commitment or open a commitment in two different ways.

1As already pointed out in Chapter 4, this is, e.g., the case for BN curves [BN06]; the most
common choice for Type-3 pairings.
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The reduction has—due to blindness—a security loss proportional to the number
of signing queries.

Proof. To prove unforgeability of Scheme 4, we assume that there is an efficient
adversary A winning the unforgeability game with non-negligible probability
ε(κ). We then construct an adversary B that uses A to either break the EUF-
CMA security of SPS-EQ or to break the binding property of the underlying
commitment scheme, that is, to break co-DHI in G1.

B first guesses A’s strategy, i.e., the type of forgery A will conduct. We
call a forgery Type-1 if for A’s output (mi, τi = (σi, Ri, Ti))i∈[k+1], we have
miP + Ti 6= mjP + Tj for all i 6= j; otherwise we call it Type-2.

Type 1: B uses A to break the EUF-CMA security of the SPS-EQ scheme
SPS-EQ with ` = 2. B obtains pkR from its challenger C, chooses q←R Zp∗,
computes (Q, Q̂) ← q(P, P̂ ), sets pk ← (pkR, Q, Q̂) and runs A(pk). Whenever
A queries to the (·, S(sk)) oracle and sends a blinded message M during the
interaction, B queries C’s SPS-EQ signing oracle SignR(·, sk) on M and forwards
the reply to A.

If A outputs ((m1, τ1), . . . , (mk+1, τk+1)) with τi = (σi, Ri, Ti) after k suc-
cessful queries to (·, S(sk)) such that mi 6= mj ∀i, j ∈ [k + 1], i 6= j and
Verify(mi, τi, pk) = 1 ∀ i ∈ [k + 1] then B aborts if for some i 6= j ∈ [k + 1]:
miP + Ti = mjP + Tj (we have a Type-2 forgery).

Otherwise, we have (miP +Ti, P ) 6= (mjP +Tj , P ) for all i, j ∈ [k+1], i 6= j.
A has made k signing queries, but ((miP + Ti, P ), σi)i∈[k+1] are k + 1 valid
SPS-EQ message-signature pairs for distinct classes. Consequently, there must
exist i∗ ∈ [k + 1] such that the message-signature pair ((mi∗P + Ti∗ , P ), σi∗)
represents a class that was not queried to C’s signing oracle. Hence, one of these
k+ 1 message-signature pairs enables B to break the EUF-CMA security of the
SPS-EQ scheme. Due to the blindness, however, B cannot link the pairs to the
messages Mi = (si(miP +riQ), siP ) which A has queried to the (·, S(sk)) oracle.
Therefore B guesses an index i∗ ∈ [k + 1] and outputs ((mi∗P + Ti∗ , P ), σi∗) as
a forgery to C. If A wins the unforgeability game then B breaks the EUF-CMA
security of SPS-EQ incurring a polynomial loss of 1/(k+1).

Type 2: B obtains an instance (BG, Q = qP, Q̂ = qP̂ ) of the co-DHI problem
in G1, and its goal is to compute q−1P . It computes (sk, pkR)←R KeyGenR(BG,
1`) for ` = 2, and runs A on pk← (pkR, Q, Q̂) simulating its (·, S(sk)) oracle as
in the real game using sk.

If A outputs (mi, τi = (σi, Ri, Ti))i∈[k+1] after k successful oracle queries
such that mi 6= mj for all 1 ≤ i < j ≤ k + 1 and Verify(mi, τi, pk) = 1 for all
i ∈ [k + 1], then B aborts if miP + Ti 6= mjP + Tj for all i, j ∈ [k + 1] (we have
a Type-1 forgery).

Otherwise, let i, j ∈ [k+ 1] be such that miP +Ti = mjP +Tj (∗). From the

second equation in Verify, since Q̂ = qP̂ , we get Ti = qRi and Tj = qRj . Together
with (∗) we have miP + qRi = mjP + qRj , that is (mi −mj)P = q(Rj − Ri),
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and since mi 6= mj : q
−1P = (mi −mj)

−1(Rj − Ri). The latter, which B can
efficiently compute, is, thus, a solution to the co-DHI problem in G1.

Blindness

For the honest-signer model, blindness follows from the DDH assumption and
perfect adaptation of signatures (cf. Definition 3.7) of the underlying SPS-EQ
scheme SPS-EQ. Let Q ← qP and let q be part of the signing key, and let
(P, rP, sP, tP ) be a DDH instance. In the blindness game, we compute M as
(m · sP + q · tP, sP ). When the adversary returns a signature on M , we must
adapt it to the unblinded message—which we are unable to do as we do not know
the blinding factor s. By perfect adaptation, however, an adapted signature is
distributed as a fresh signature on the unblinded message, so, knowing the secret
key, we can compute a signature σ on (m · P + q · rP, P ) and return the blind
signature (σ, rP, q · rP ). If the DDH instance was real, i.e., t = s · r, then we
perfectly simulated the game; if t was random then the adversary’s view during
issuing was independent of m.

For blindness in the malicious-signer model, we have to deal with two ob-
stacles. (1) We do not have access to the adversarially generated signing key,
meaning we cannot recompute the signature on the unblinded message. (2) The
adversarially generated public-key values Q, Q̂ do not allow us to embed a DDH
instance for blinding and unblinding.

We overcome (1) by using the adversary A itself as a signing oracle by rewind-
ing it. We first run A to obtain a signature on (s′(mP+rQ), s′P ), which, knowing
s′, we can transform into a signature on (mP + rQ, P ). We then rewind A to
the point after outputting its public key and run it again, this time embedding
our challenge. In the second run we cannot transform the received signature,
instead we use the signature from the first run, which is distributed identically,
due to perfect adaptation under malicious keys (Definition 3.8) of the SPS-EQ
scheme.

To deal with the second obstacle, we use an interactive variant of the DDH
assumption: Instead of being given BG, rP, sP and having to distinguish rsP
from random, the adversary, for some Q of its choice (after being given BG), is
given rP, rQ, sP and must distinguish rsQ from random.

Assumption 4.11. Let BGGen be a bilinear-group generator that outputs BG =
(p,G1,G2,GT , e, P, P̂ ). We assume that for all PPT adversaries A there is a
negligible function ε(·) such that:

Pr


BG← BGGenR(1κ), b←R {0, 1},
(st, Q, Q̂)←R A(BG), r, s, t←R Zp,
b∗←RA(st, rP, rQ, sP,

(b·rs+ (1−b)·t)Q)

:
e(Q, P̂ )= e(P, Q̂)

∧ b∗= b

− 1

2
≤ ε(κ).

Proposition 4.12. Assumption 4.11 holds in generic groups and reaches the
optimal, quadratic simulation-error bound.
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The proof can be found in Appendix A.2.

Theorem 4.13. If the underlying SPS-EQ scheme SPS-EQ perfectly adapts sig-
natures under malicious keys and Assumption 4.11 holds, then Scheme 4 is blind.

In the proof of blindness of our blind-signature scheme, we will use the fol-
lowing implication of Definition 3.8:

Corollary 4.14. Let SPS-EQ be an SPS-EQ scheme on (G∗i )` that satisfies
Definition 3.8. If for a tuple (pk,M, s0, s1, σ0, σ1) we have

VerifyR(s0M,σ0, pk) = 1 and VerifyR(s1M,σ1, pk) = 1

then ChgRepR(s0M,σ0,
1
s0
, pk) and ChgRepR(s1M,σ1,

1
s1
, pk) are identically dis-

tributed.

Proof. The statement follows, since for b = 0, 1 the tuple (pk, sbM,σb, 1/sb)
satisfies (3.1) (in Definition 3.8), and for (M,σb)←R ChgRepR(sbM,σb, 1/sb, pk),
by Definition 3.8 σb is random conditioned on VerifyR(M,σb, pk) = 1. Thus σ0
and σ1 are identically distributed.

Proof. Let Expblind be the blindness game (with adversarially/maliciously gen-
erated public keys) defined in Definition 4.5. Consider Expblind

A,BS with BS being
Scheme 4 and any PPT adversary A, which we assume w.l.o.g. makes both calls
to its (U(mb, pk), ·) oracle. Written out, we have:

Expblind
A,BS:

b←R {0, 1}
(stA, (pkR, Q, Q̂),m0,m1)←R A(1κ)
BG← BGGenR(1κ)

If Q = 0G1 or e(Q, P̂ ) 6= e(P, Q̂) then M0,M1 ← ⊥
Else

r0, s0←R Zp ; r1, s1←R Zp
M0 ← (s0(m0P + r0Q), s0P ) ; M1 ← (s1(m1P + r1Q), s1P )

(stA, πb)←R A(stA,Mb) ; (stA, π1−b)←R A(stA,M1−b)
If (M0,M1) = (⊥,⊥) or VerifyR(M0, π0, pk) = 0 or VerifyR(M1, π1, pk) = 0

then b∗←R A(stA,⊥,⊥)
Else

(N0, σ0)←R ChgRepR(M0, π0, 1/s0, pk)
(N1, σ1)←R ChgRepR(M1, π1, 1/s1, pk)
b∗←R A(stA, (σ0, r0P, r0Q), (σ1, r1P, r1Q))

Return (b∗ = b)

We have slightly modified the game, in that (for i = 0, 1) we allowed si to also
take the value 0 and ri to be such that miP + riQ = 0G1 . However, these events
only happen with negligible probability.

We first argue that if A outputs an inconsistent public key or if π0 or π1 do
not pass VerifyR then the bit b is information-theoretically hidden from A. This
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is because if one of the above is the case then in the second phase A receives
(⊥,⊥), and r0, r1 information-theoretically hide m0,m1, and thus the bit b is
also information-theoretically hidden, meaning Pr[Expblind

A,BS = 1] = 1/2.
We can now assume w.l.o.g. that A outputs a valid pk and π0 and π1 verify:

If A was not like this, we could construct a well-behaving adversary A′ from A:
A′ simulates A and whenever A misbehaves (which A′ can efficiently detect), it
aborts the simulation and outputs a random bit. By the above, A′ wins with
the same probability as A. With this assumption on A the experiment simplifies
thus to:

Expblind-non-⊥
A,BS :

(stA, (pkR, Q, Q̂),m0,m1)←R A(1κ)
BG← BGGenR(1κ)
r0, r1←R Zp (∗)
s0, s1←R Zp ; b←R {0, 1}
M0 ← (s0(m0P + r0Q), s0P )
M1 ← (s1(m1P + r1Q), s1P )
(stA, πb)←R A(stA,Mb)
(stA, π1−b)←R A(stA,M1−b)
(N0, σ0)←R ChgRepR(M0, π0,

1
s0
, pk)

(N1, σ1)←R ChgRepR(M1, π1,
1
s1
, pk)

b∗←R A(stA, (σ0, r0P, r0Q), (σ1, r1P, r1Q))
Return (b∗ = b)

Execution 1. Now we do the following: We run Expblind-non-⊥ with A, in

particular choosing r0, r1, s
(1)
0 , s

(1)
1 and b(1), constructing

M
(1)
0 ← s

(1)
0

(
(m0P + r0Q), P

)
, M

(1)
1 ← s

(1)
1

(
(m1P + r1Q), P

)
and running A on M

(1)

b(1)
and then on M

(1)

1−b(1) to obtain signatures π
(1)
0 , π

(1)
1 .

Then we rewind the experiment to the point (∗) and run it again. We choose

independent uniform random s
(2)
0 , s

(2)
1 ←R Zp, b(2)←R {0, 1} (but use the same

r0, r1 as in the first run), set

M
(2)
0 ← s

(2)
0

(
(m0P + r0Q), P

)
, M

(2)
1 ← s

(2)
1

(
(m1P + r1Q), P

)
,

run A on M
(2)

b(2)
and then on M

(2)

1−b(2) to obtain signatures π
(2)
0 , π

(2)
1 , and finish

the experiment: For i = 0, 1 we compute

(N
(2)
i , σ

(2)
i )←R ChgRepR

(
M

(2)
i , π

(2)
i , 1

s
(2)
i

, pk
)
,

run b∗←R A(stA, (σ
(2)
0 , r0P, r0Q), (σ

(2)
1 , r1P, r1Q)), (4.1)

and return (b∗ = b(2)). As the second run simply constitutes an independent run
of A we have that the probability of returning 1 is precisely Pr[Expblind-non-⊥

A,BS =

1] = Pr[Expblind
A,BS = 1] (by our assumption on A).
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Execution 2. We now introduce a modification. We proceed as in Execution
1, but instead of (4.1), we compute for i = 0, 1:

(N
(1)
i , σ

(1)
i )←R ChgRepR

(
M

(1)
i , π

(1)
i , 1

s
(1)
i

, pk
)
,

run b∗←R A(stA, (σ
(1)
0 , r0P, r0Q), (σ

(1)
1 , r1P, r1Q)), (4.2)

and return (b∗ = b(2)). That is, we use the signatures π
(1)
0 , π

(1)
1 from the first

run, adapt them to signatures on N
(1)
i = (miP + riQ,P ) = N

(2)
i and give them

to A as part of our blind signatures. We now argue that the winning probability
of the adversary does not change. For i = 0, 1 we have the following. Since by
assumption we have

VerifyR
(
s
(1)
i · (miP + riQ,P ), π

(1)
i , pk

)
= 1 and

VerifyR
(
s
(2)
i · (miP + riQ,P ), π

(2)
i , pk

)
= 1,

the tuple
(
pk, (miP + riQ,P ), s

(1)
i , s

(2)
i , π

(1)
i , π

(2)
i

)
satisfies the premise of Corol-

lary 4.14 and hence the outputs σ
(1)
i and σ

(2)
i of ChgRepR(M

(1)
i , π

(1)
i , 1/s(1)i , pk)

and ChgRepR(M
(2)
i , π

(2)
i , 1/s(2)i , pk), respectively, are identically distributed. So,

Executions 1 and 2 are identically distributed and the probability that after
Execution 2 we have (b∗ = b(2)) is Pr[Expblind

A,BS = 1].
Let us write down Execution 2:

(stA, (pkR, Q, Q̂),m0,m1)←R A(1κ)

BG← BGGenR(1κ)

r0, r1←R Zp (∗)

s
(1)
0 , s

(1)
1 ←R Zp ; b(1)←R {0, 1} s

(2)
0 , s

(2)
1 ←R Zp ; b(2)←R {0, 1}

M
(1)
0 ← s

(1)
0

(
(m0P + r0Q), P

)
M

(2)
0 ← s

(2)
0

(
(m0P + r0Q), P

)
M

(1)
1 ← s

(1)
1

(
(m1P + r1Q), P

)
M

(2)
1 ← s

(2)
1

(
(m1P + r1Q), P

)
(st′A, π

(1)

b(1)
)←R A(stA,M

(1)

b(1)
) (stA, π

(2)

b(2)
)←R A(stA,M

(2)

b(2)
)

(st′A, π
(1)

1−b(1))←
R A(stA,M

(1)

1−b(1)) (stA, π
(2)

1−b(2))←
R A(stA,M

(2)

1−b(2))

(N0, σ0)←RChgRepR(M
(1)
0 , π

(1)
0 , 1

s
(1)
0

, pk)

(N1, σ1)←RChgRepR(M
(1)
1 , π

(1)
1 , 1

s
(1)
1

, pk)

b∗←R A(stA, (σ0, r0P, r0Q), (σ1, r1P, r1Q))

Return (b∗ = b(2))

Execution 3. We define another variant, where in Execution 2 we replace the
two lines marked with ‖ by

t0←R Zp ; M
(2)
0 ←

(
s
(2)
0 m0P + t0Q, s

(2)
0 P

)
M

(2)
1 ←

(
s
(2)
1 m1P + s

(2)
1 r1Q, s

(2)
1 P

)
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that is, in the definition of M
(2)
0 we replaced the value s

(2)
0 r0 with a random

element t0.

Execution 4. Our final execution also replaces s
(2)
1 r1 in the definition of M

(2)
1

with a random element t1. That is, it is defined as Execution 2 above, except
with the lines marked with ‖ replaced by the following:

t0←R Zp ; M
(2)
0 ←

(
s
(2)
0 m0P + t0Q, s

(2)
0 P

)
t1←R Zp ; M

(2)
1 ←

(
s
(2)
1 m1P + t1Q, s

(2)
1 P

)
Claim 4.15. If Assumption 4.11 holds then Executions 2 and 3 are indistin-
guishable; likewise, Executions 3 and 4 are indistinguishable.

Proof. Assume that there exists an adversary A, for whom the probability that
(b∗ = b(2)) is noticeably different in Executions 2 and 3. Then we construct an
adversary B against the Assumption 4.11 as follows:

On input 1κ, B runs (stA, (pkR, Q, Q̂),m0,m1)←R A(1κ) and outputs

(stB ← (stA, pkR,m0,m1), Q, Q̂) ;

B then receives a challenge (rP, rQ, sP, tQ) and needs to decide whether t = rs.
B simulates Execution 2 with A, except that it implicitly sets r0 ← r and

s
(2)
0 ← s as well as s

(2)
0 r0 ← t from the assumption. B’s output is (b∗ = b(2)).

If t = rs then B simulated Execution 2, whereas if t is uniformly random, it
simulated Execution 3. In particular, after receiving the challenge, B runs as
follows (which shows that the simulation can be done using the challenge, which
we underline):

B
(
stB = (stA, pkR,m0,m1), rP, rQ, sP, tQ

)
:

r1←R Zp (∗)
s
(1)
0 , s

(1)
1 ←R Zp ; b(1)←R {0, 1}

M
(1)
0 ← s

(1)
0

(
(m0P + (rQ)), P

)
M

(1)
1 ← s

(1)
1

(
(m1P + r1Q), P

)
(st′A, π

(1)

b(1)
)←R A(stA,M

(1)

b(1)
)

(st′A, π
(1)

1−b(1))←
R A(stA,M

(1)

1−b(1))

REWIND to (∗)
s
(2)
1 ←R Zp ; b(2)←R {0, 1}
M

(2)
0 ←

(
m0(sP ) + (tQ), (sP )

)
M

(2)
1 ← s

(2)
1

(
m1P + r1Q, P

)
(stA, π

(2)

b(2)
)←R A(stA,M

(2)

b(2)
)

(stA, π
(2)

1−b(2))←
R A(stA,M

(2)

1−b(2))

(N0, σ0)←R ChgRepR(M
(1)
0 , π

(1)
0 , 1

s
(1)
0

, pk)
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(N1, σ1)←R ChgRepR(M
(1)
1 , π

(1)
1 , 1

s
(1)
1

, k)

b∗←R A(stA, (σ0, (rP ), (rQ)), (σ1, r1P, r1Q))

Return (b∗ = b(2))

We have thus that the probability that B outputs 1 when given a DDH instance
is the probability that Execution 2 outputs 1; and the probability that B outputs
1 when given a random instance is the probability that Execution 3 outputs 1.
Thus, if A behaved differently in Executions 2 and 3 then B would break the
assumption.

Analogously we can construct an adversary B which breaks the assumption
given an adversary A that distinguishes Executions 3 and 4.

Finally, let us consider Execution 4; that is:

(stA, (pkR, Q, Q̂),m0,m1)←R A(1κ)

BG← BGGenR(1κ)

r0, r1←R Zp

s
(1)
0 , s

(1)
1 ←R Zp s

(2)
0 , s

(2)
1 , t0, t1←R Zp

b(1)←R {0, 1} b(2)←R {0, 1}
M

(1)
0 ←

(
s
(1)
0 (m0P + r0Q), s

(1)
0 P

)
M

(2)
0 ←

(
s
(2)
0 m0P + t0Q, s

(2)
0 P

)
M

(1)
1 ←

(
s
(1)
1 (m1P + r1Q), s

(1)
1 P

)
M

(2)
1 ←

(
s
(2)
1 m1P + t1Q, s

(2)
1 P

)
(st′A, π

(1)

b(1)
)←R A(stA,M

(1)

b(1)
) (stA, π

(2)

b(2)
)←R A(stA,M

(2)

b(2)
)

(st′A, π
(1)

1−b(1))←
R A(stA,M

(1)

1−b(1)) (stA, π
(2)

1−b(2))←
R A(stA,M

(2)

1−b(2))

(N0, σ0)←RChgRepR(M
(1)
0 , π

(1)
0 , 1

s
(1)
0

, pk)

(N1, σ1)←RChgRepR(M
(1)
1 , π

(1)
1 , 1

s
(1)
1

, pk)

b∗←R A(stA, (σ0, r0P, r0Q), (σ1, r1P, r1Q))

Return (b∗ = b(2))

We now see that for i = 0, 1, since s
(2)
i and ti are uniformly random and used

nowhere other than in the definition of M
(2)
i , the latter is a uniform random

element from G1 × G1. Since b(2) is only used to determine the order in which

M
(2)
0 and M

(2)
1 (which are both random elements) are sent to A, the bit b(2)

is information-theoretically hidden. We thus have that the probability that
(b∗ = b(2)) in Execution 4 is exactly 1/2.

Overall, we have that Pr[Expblind
A,BS = 1] can only be negligibly different from

1/2, which proves blindness.
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4.2.2 Discussion

Basing Our Scheme on Non-Interactive Assumptions

Fischlin and Schröder [FS10] show that the unforgeability of a blind-signature
scheme cannot be based on non-interactive hardness assumptions if (1) the
scheme has 3 moves or less, (2) its blindness holds statistically and (3) from
a transcript one can efficiently decide whether the interaction yielded a valid
blind signature. Our scheme satisfies (1) and (3), whereas blindness only holds
computationally.

They extend their result in [FS10] to computationally blind schemes that
meet the following conditions: (4) One can efficiently check whether a public
key has a matching secret key; this is the case in our setting because of group-
membership tests and pairings. (5) Blindness needs to hold relative to a forgery
oracle. As written in [FS10], this does, e.g., not hold for Abe’s scheme [Abe01],
where unforgeability is based on the DL problem and blindness on the DDH
problem.

This is the case in our construction too (as one can forge signatures by
solving discrete logarithms), hence the impossibility result does not apply to
our scheme. Our blind-signature construction is black-box from any SPS-EQ
with perfect adaptation under malicious keys (Definition 3.8). However, the
only known such scheme is the one from [FHS14] (given in Scheme 2), which is
EUF-CMA secure in the GGM, that is, it is based on an interactive assump-
tion. Plugging this scheme into Scheme 4 yields a round-optimal blind-signature
scheme with unforgeability under this interactive assumption and co-DHI, and
blindness (under adversarially chosen keys) under Assumption 4.11, which is also
interactive.

To construct a scheme under non-interactive assumptions, we would thus
have to base blindness on a non-interactive assumption; and find an SPS-EQ
scheme satisfying Definition 3.8 whose unforgeability is proven under a non-
interactive assumption. We refer the reader to Section 3.6 for a detailed discus-
sion of SPS-EQ unforgeability and further directions.

Efficiency of the Construction

When instantiating our blind-signature construction with the SPS-EQ given in
Scheme 2, which we showed optimal, this yields a public-key size of 1 G1 +3 G2,
a communication complexity of 4 G1 + 1 G2 and a signature size of 4 G1 + 1 G2

elements. For an 80-bit security setting, a blind signature has thus 120 Bytes.

The most efficient scheme from standard assumptions is based on DLIN
[GG14]. Ignoring the increase of the security parameter due to complexity lever-
aging, their scheme has a public key size of 43 G1 elements, communication
complexity 18 log2 q + 41 G1 elements (where, e.g., we have log2 q = 155 when
assuming that the adversary runs in ≤ 280 steps) and a signature size of 183 G1

elements.
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4.3 Extension to Partially Blind Signatures

We now show how to construct a round-optimal PBS scheme PBS secure in the
standard model from an SPS-EQ scheme SPS-EQ by modifying Scheme 4 as
follows.

To include common information γ ∈ Zp∗, SPS-EQ is set up for ` = 3. On input
M ← (s(mP +rQ), sP ), S returns a signature for M ← (s(mP +rQ), γ ·sP, sP )
and U(2) additionally checks correctness of the included γ and returns ⊥ if this is
not the case. Otherwise, it runs ((mP + rQ, γP, P ), σ)←R ChgRepR(M,π, 1s , pk)
and outputs signature τ ← (σ, rP, rQ) for message m and common information
γ.

For this construction we obtain the following theorems, whose proofs are
analogous to those for Scheme 4 and thus omitted.

Theorem 4.16. If SPS-EQ is EUF-CMA secure and the co-DHI assumption
holds in G1, then the resulting PBS scheme is unforgeable.

Theorem 4.17. If SPS-EQ has perfect adaptation of signatures under malicious
keys and Assumption 4.11 holds, then the resulting PBS scheme is partially blind.

4.4 Blind Signatures on Message Vectors

In order to build one-show credentials later on (cf. Section 7.1), we introduce the
following generalization of our blind-signature scheme from Section 4.2. Instead
of signing single messages, it allows to sign message vectors in a way that enables
an efficient coupling with PoKs.

In particular, our construction BSV of round-optimal blind signatures on
message vectors ~m ∈ Zpn simply replaces the Pedersen commitment mP + rQ
in Scheme 4 with a generalized Pedersen commitment

∑
i∈[n]miPi + rQ. Thus,

KeyGen, on input (1κ, 1n), additionally outputs generators (Pi)i∈[n] ∈ Gn1 and
Verify(~m, (σ,R, T ), pk) checks

VerifyR((
∑
i∈[n]miPi + T, P ), σ, pkR) = 1 and e(T, P̂ ) = e(R, Q̂).

The construction is presented in Scheme 5.
The predicate Check(pp) checks for valid commitment parameters: For a

generalized Pedersen commitment in G1 of a Type-3 bilinear group BG with
tweaked opening, we have pp = ((Pi)i∈[n], Q, Q̂). It returns 1 if the following
holds

• pp ∈ (G∗1)n+1 ×G∗2,

• all G1-elements are pairwise distinct, and

• e(Q, P̂ ) = e(P, Q̂),

and 0 otherwise.
Again, let SPS-EQ be the underlying SPS-EQ scheme.
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Scheme 5 A blind-signature scheme on message vectors from SPS-EQ.

KeyGen(1κ, 1n): Given a security parameter 1κ and vector length n in unary,
compute BG← BGGenR(1κ), (sk, pkR)←R KeyGenR(BG, 1`) for ` = 2, pick
q←R Zp∗ and (pi)i∈[n]←R (Zp∗)n, set Q ← qP , Q̂ ← qP̂ and (Pi)i∈[n] ←
(piP )i∈[n] and output (sk, pk = (pkR, (Pi)i∈[n], Q, Q̂)).

U(1)(~m, pk): Given a message vector ~m ∈ Zpn and a public key pk = (pkR,

(Pi)i∈[n], Q, Q̂), compute BG← BGGenR(1κ). If Check((Pi)i∈[n], Q, Q̂) = 0
then return ⊥; else choose s←R Zp∗ and r←R Zp such that

∑
i∈[n]miPi +

rQ 6= 0G1
and output

M ←
(
s(
∑
i∈[n]miPi + rQ), sP

)
st← (BG, pkR, Q,M, r, s).

S(M, sk): Given M ∈ (G∗1)2 and a secret key sk, output π←R SignR(M, sk).

U(2)(st, π): Given state st and π, parse st as (BG, pkR, Q,M, r, s). If
VerifyR(M,π, pkR) = 0, return ⊥. Else, run ((

∑
i∈[n]miPi +

rQ, P ), σ)←R ChgRepR(M,π, 1s , pkR) and output τ ← (σ, rP, rQ).

Verify(~m, τ, pk): Given a message vector ~m ∈ Zn
p , a blind signature τ = (σ,R, T )

and a public key pk = (pkR, (Pi)i∈[n], Q, Q̂) with Check((Pi)i∈[n], Q, Q̂) =
1, output 1 if the following holds and 0 otherwise.

VerifyR
(
(
∑
i∈[n]miPi + T, P ), σ, pkR

)
= 1 e(T, P̂ ) = e(R, Q̂)

4.4.1 Security

It is straightforward to generalize blind-signature security models to blind sig-
natures on message vectors. In these models, we can prove the following, where
the correctness of the scheme, again, follows by inspection.

Theorem 4.18. If SPS-EQ is EUF-CMA secure and the co-DHI assumption
holds in G1, then Scheme 5 is unforgeable.

Proof (Sketch). The proof is analogous to the unforgeability proof of Scheme 4,
except that for Type-2 adversaries, the reduction obtains q−1P from the relation

(r∗j − r∗i )P =
(
∑
k∈[n]m

∗
i,kpk−

∑
k∈[n]m

∗
j,kpk)

q P,
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which is implied by the following:

M∗i −M∗j =
( ∑
k∈[n]

m∗i,kPk −
∑
k∈[n]

m∗j,kPk
)

+ (r∗i − r∗j )Q

=
( ∑
k∈[n]

m∗i,kpk −
∑
k∈[n]

m∗j,kpk
)
P + (r∗i − r∗j )Q.

Theorem 4.19. If SPS-EQ has perfect adaptation of signatures under malicious
keys and Assumption 4.11 holds, then Scheme 5 is blind.

The proof is identical to the blindness proof of Scheme 4 and thus omitted.





5
Verifiably Encrypted Signatures: Security
Revisited and a Construction via SPS-EQ

The protection provided by encryption is based on the fact that most people
would rather eat liver than do mathematics.

— Bill Neugent

Optimistic fair exchange gives two negotiating parties a guarantee that they
will finally receive what they agreed upon or that neither party will. A non-
interactive solution to this problem is provided by VESs, which have been intro-
duced by Boneh, Gentry, Lynn and Shacham in 2003 [BGLS03]. Less desirable,
interactive protocols to this end have already been given, e.g., in [ASW98] in
1998.

In order to achieve this goal, VESs feature two kinds of signatures: encrypted,
but still verifiable, and plain (i.e., standard) signatures. A common scenario is
the following one. Let Bob and Camilla be two parties agreeing on a deal. In
doing so, Bob sends an encrypted signature ω on a document (e.g., a transaction
receipt) to Camilla in order to prove to Camilla his willingness to fulfill his side of
the deal. Camilla can verify ω, but not use ω any further. Once Camilla has met
her obligations, Bob sends the plain signature σ corresponding to ω to Camilla.
In case of a dispute, there is a third party Alice, taking the role of an arbiter,
who is able to extract σ from ω, if Bob denies doing so. In sum, fairness ensures
that, at the end of the protocol, all participating parties will either obtain the
expected items or that none of them will receive anything. Optimistic means
that the third party Alice only gets involved if necessary.

In this chapter, we start by revisiting the security of VESs, point out some

79
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shortcomings in the security models and show how to repair them.

Then, we present a new black-box standard-model construction of verifiably
encrypted signatures from SPS-EQ. The construction follows the idea that each
message is associated with a projective equivalence class and that encrypted
and plain signatures are just signatures on different representatives of the same
class—whose relation depends on the arbiter key: The arbiter secret key is used
to scale between encrypted and plain signatures.

We further introduce a new property characterizing SPS-EQs, called per-
fect composition (Definition 5.15). We show that it is a necessary criterion for
the underlying SPS-EQ in order to apply the transformation from Calderon et
al. [CMSW14], which turns a VES into a PKE scheme. This means that perfectly
composing SPS-EQ schemes imply PKE. This is not only interesting because it
draws a connection between SPS-EQ and PKE, but, at the same time, also
because it separates such SPS-EQs from OWFs (i.e., shows that such schemes
cannot be built black-box from OWFs).

The results in this chapter are joint work with Max Rabkin and Dominique
Schröder. The material in this chapter is based on [HRS15]. Before stating the
main contribution, we recall the basic definitions in this context.

5.1 Verifiably Encrypted Signatures: Basic Def-
initions

We now give the formal models of verifiably encrypted signatures [BGLS03,
CMSW14].

Definition 5.1 (Verifiably-encrypted signature (VES) scheme). A VES scheme
VES consists of the following PPT algorithms:

AKeyGen(1κ): A probabilistic algorithm that takes input a security parameter 1κ.
It returns an arbiter key pair (ask, apk).

KeyGen(1κ): A probabilistic algorithm that takes input a security parameter 1κ.
It returns a signer key pair (sk, pk) (we assume that pk includes a descrip-
tion of the message space Mpk).

Sign(m, sk): A (probabilistic) algorithm that takes input a message m ∈Mpk and
a signing key sk. It returns a signature σ under sk on m.

Verify(m,σ, pk): A deterministic algorithm that takes input a message m ∈Mpk,
a signature σ and a signer public key pk. It returns 1 or 0 indicating
whether or not σ is a valid signature on m under pk.

VESign(m, sk, apk): A (probabilistic) algorithm that takes input a message m ∈
Mpk, a signing key sk and an arbiter public key apk. It returns an encrypted
signature ω under sk on message m.
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VEVerify(m,ω, pk, apk): A deterministic algorithm that takes input a message
m ∈Mpk, an encrypted signature ω, a signer public key pk and an arbiter
public key apk. It returns 1 or 0 indicating whether or not ω is a valid
encrypted signature on m under pk.

Resolve(m,ω, ask, pk): A (probabilistic) algorithm that takes input a message
m ∈Mpk, an encrypted signature ω, an arbiter secret key ask and a signer
public key pk. It returns a signature σ on m under pk, which is extracted
from ω.

We call a VES secure if it is complete, unforgeable, opaque, extractable, abuse
free and resolution independent. We define these properties below.

Completeness demands that honestly computed VESs always verify and that
the arbiter can always pull out a valid signature.

Definition 5.2 (Completeness). A VES scheme VES is complete if for all κ >
0, all choices of (ask, apk)←R AKeyGen(1κ), all choices of (sk, pk)←R KeyGen(1κ)
and all m ∈Mpk it holds that:

Pr

[
ω←R VESign(m, sk, apk),
σ←R Resolve(m,ω, ask, pk)

:
VEVerify(m,ω, pk, apk) = 1

∧ Verify(m,σ, pk) = 1

]
= 1.

Unforgeability says that it should be infeasible to produce a valid encrypted
signature for an unknown secret key.

Definition 5.3 (Unforgeability). A VES scheme VES is unforgeable if for all
PPT adversaries A having oracle access to O := {Sign(·, sk),VESign(·, sk, apk),
Resolve(·, ·, ask, pk)}, there is a negligible function ε(·) such that:

Pr

 (ask, apk)←R AKeyGen(1κ),
(sk, pk)←R KeyGen(1κ),
(m∗, ω∗)←R AO(pk, apk)

:
VEVerify(m∗, ω∗, pk, apk) = 1

∧ m∗ 6∈ Q

 ≤ ε(κ),

where Q is the set of messages which were queried to the oracles.

Opacity essentially requires that only the arbiter should be able to extract
the underlying signature.

Definition 5.4 (Opacity). A VES scheme VES is opaque if for all PPT adver-
saries A having oracle access to O := {VESign(·, sk, apk),Resolve(·, ·, ask, pk)},
there is a negligible function ε(·) such that:

Pr

 (ask, apk)←R AKeyGen(1κ),
(sk, pk)←R KeyGen(1κ),
(m∗, σ∗)←R AO(pk, apk)

:
Verify(m∗, σ∗, pk) = 1

∧ m∗ 6∈ Q

 ≤ ε(κ),

where Q is the set of messages queried to the Resolve oracle.

In addition to the above property, we need to ensure that it is indeed possible
for the arbiter to extract the underlying signature:
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Definition 5.5 (Extractability). A VES scheme VES is extractable if for all
PPT adversaries A having oracle access to O := {Resolve(·, ·, ask, ·)}, there is a
negligible function ε(·) such that:

Pr

 (ask, apk)←R AKeyGen(1κ),
(pk∗,m∗, ω∗)←R AO(apk),
σ←R Resolve(m∗, ω∗, ask, pk∗)

:
VEVerify(m∗, ω∗, pk∗, apk) = 1

∧ Verify(m∗, σ, pk∗) = 0

 ≤ ε(κ).

Abuse freeness guarantees that, even if the arbiter is colluding with the ad-
versary, the adversary is still not able to forge a valid encrypted signature.

Definition 5.6 (Abuse freeness). A VES scheme VES is abuse-free if for all
PPT adversaries A having oracle access to O := {VESign(·, sk, apk)}, there is a
negligible function ε(·) such that:

Pr

 (ask, apk)←R AKeyGen(1κ),
(sk, pk)←R KeyGen(1κ),
(m∗, ω∗)←R AO(pk, ask, apk)

:
VEVerify(m∗, ω∗, pk, apk) = 1

∧ m∗ 6∈ Q

 ≤ ε(κ),

where Q is the set of messages queried to the VESign oracle.

The two latter properties were introduced by Rückert and Schröder [RS09].
Calderon et al. [CMSW14] have identified an additional property called reso-

lution independence. It demands that plain signatures and extracted signatures
are identically distributed, which prevents discrimination between signatures
arising from signers and arbiters. In Section 5.2, we will see that this property
is crucial to the security of a VES.

Definition 5.7 (Resolution independence). A VES scheme VES is resolution
independent if for all κ > 0, all choices of (ask, apk)←R AKeyGen(1κ), all choices
of (sk, pk)←R KeyGen(1κ), and all messages m ∈Mpk, the outputs of Sign(m, sk)
and Resolve(m,VESign(m, sk, apk), ask, pk) are distributed identically.

In [CMSW14], the authors showed that VESs imply PKE, if they satisfy
an even stronger property called resolution duplication. Informally, a VES is
resolution duplicate if the signatures generated by the signer and the arbiter are
indeed identical.

Definition 5.8 (Resolution duplication). A VES scheme VES is resolution du-
plicate if it is resolution independent and fulfills the following properties:

Deterministic Resolution: The algorithm Resolve is deterministic.

Extraction: There exists an additional PPT algorithm Extract(·, ·, ·), such that
for all κ > 0, all choices of (ask, apk)←R AKeyGen(1κ), all choices of
(sk, pk)←R KeyGen(1κ), all m ∈ Mpk and random tapes r ∈ {0, 1}∗, it
is the case that

Extract(m, sk, r) = Resolve(m,VESign(m, sk, apk; r), ask, pk).

By now numerous standard-model VES constructions have been proposed.
However, not all of them are resolution-duplicate; especially not those having a
randomized Resolve algorithm [CMSW14].
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5.2 Revisiting Security: The Importance of Res-
olution Independence

In Boneh et al.’s original definition of a VES [BGLS03], the underlying signa-
ture scheme is required to be secure, in addition to the security properties of the
encrypted signatures: completeness, unforgeability and opacity. Rückert and
Schröder [RS09] added the properties of extractability and abuse freeness, and
Calderon et al. [CMSW14] added the properties of resolution independence, but
both omit (or are at least unclear about) the requirement that the underlying
signature scheme be secure. Indeed, the latter paper says that they “additionally
provide the adversary with access to the Sign oracle, as otherwise the underly-
ing signature scheme could be completely broken and the VES would still be
considered unforgeable.” In fact, it can be completely broken anyway.

We will show that, with this omission, resolution independence is absolutely
essential to not only the unforgeability, but even the correctness, of the underly-
ing scheme. Resolution independence supplies the necessary glue to connect the
security properties of the encrypted scheme to the underlying scheme. Contra-
positively, we show that security including resolution independence is sufficient
for the correctness and security of the underlying signature scheme, so that does
not need to be proven separately. To be clear, we formally define what is meant
by the underlying signature scheme.

Definition 5.9. Let VES = (AKeyGen,KeyGen,Sign,Verify,VESign,VEVerify,
Resolve) be a VES scheme. Then, we call Sig = (KeyGen,Sign,Verify) the under-
lying signature scheme of VES.

5.2.1 Counterexample

We now show that completeness, unforgeability, opacity, extractability and abuse
freeness together do not imply the correctness or security of the underlying
scheme.

Given a secure VES scheme VES = (AKeyGen,KeyGen,Sign,Verify,VESign,
VEVerify,Resolve) for messages of length n, we now show how to derive a VES
scheme VES′ = (AKeyGen,KeyGen,Sign′,Verify,VESign,VEVerify,Resolve) such
that Sign′(m, sk) computes and outputs Sign(0n, sk).

Theorem 5.10. If VES is complete, unforgeable, opaque, extractable and abuse
free, then so is VES′.

Proof. The adversary in the unforgeability game must output a valid encrypted
signature, but the set of valid encrypted signatures in VES and VES′ are the same,
and we have only weakened the oracles (by making Sign provide signatures only
on 0n), so unforgeability is preserved. The other properties do not mention the
Sign algorithm at all, so they are unaffected.

This scheme is intuitively both incorrect (as the signatures produced by Sign′

cannot be verified) and insecure (as it gives away a forgery as soon as it is called
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on a message other than 0n). Nevertheless, VES′ is secure as defined in [RS09],
since their definition does not include the security of the underlying signature
scheme. It is also much more catastrophically insecure than the separating
example in [CMSW14, Section 3], which motivated the definition of resolution
independence.

Theorem 5.11. The underlying signature scheme Sig of VES′ is neither correct
nor secure.

5.2.2 Filling the Gap

Lemma 5.12. If VES is a complete and resolution-independent VES, then its
underlying signature scheme Sig is correct.

Proof. By completeness, for all κ > 0, all (ask, apk)←R AKeyGen(1κ), all (sk,
pk)←R KeyGen(1κ) and all messages m ∈Mpk, for ω←R VESign(m, sk, apk), with
probability 1,

Verify(m,Resolve(m,ω, ask, pk), pk) = 1.

By resolution independence, Resolve(m,ω, ask, pk) is identically distributed to
Sign(m, sk), so with probability 1,

Verify(m,Sign(m, sk), pk) = 1.

Lemma 5.13. If VES is an opaque and resolution-independent VES, then its
underlying signature scheme Sig is EUF-CMA secure.

Proof. Let VES be a resolution-independent VES, and let Sig be the underlying
signature scheme. We assume that there is an efficient adversary A breaking
the EUF-CMA security of Sig with non-negligible probability, and construct an
adversary B that uses A to break the opacity of VES.

B takes as input an arbiter’s public key apk and a signer’s public key pk
(with unknown corresponding private keys ask and sk), and passes pk as input
to A. Whenever A tries to query the Sign oracle on message m, B forwards m
to its VESign oracle, obtaining ω = VESign(m, sk, apk); B then queries (m,ω) to
its Resolve oracle, obtaining σ = Resolve(m,VESign(m, sk, apk), ask, pk), which it
returns to A. When A outputs (m∗, σ∗), B outputs the same.

By resolution independence, Sign(m, sk) and Resolve(m,VESign(m, sk, apk),
ask, pk) are identically distributed, so we perfectly simulate A’s Sign oracle.

If A never queried m∗ to Sign, then B never queried m∗ to Resolve, and so
B has the same non-negligible success probability as A.

Theorem 5.14. If a VES is complete, opaque and resolution independent, then
its underlying signature scheme Sig is correct and secure.

Proof. By Lemmas 5.12 and 5.13.
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5.3 Verifiably Encrypted Signatures from SPS-
EQ

Before, we give our VES construction from SPS-EQs, we introduce a new prop-
erty characterizing SPS-EQs that come into question.

5.3.1 Perfectly Composing SPS-EQs

In the following, we require an SPS-EQ that satisfies the following property.

Definition 5.15 (Perfect composition). An SPS-EQ scheme SPS-EQ on (G∗i )`
allows perfect composition if there exists an additional deterministic polynomial-
time algorithm SwitchR such that for all random tapes r ∈ {0, 1}∗ and all tuples
(sk, pk,M, σ, µ) with

VKeyR(sk, pk) = 1 σ ← SignR(M, sk; r) M ∈ (G∗i )` µ ∈ Zp∗

it holds that (µM, SignR(µM, sk; r)) = SwitchR(M,σ, µ, pk).

Intuitively, algorithm SwitchR updates only those parts of σ that are affected
by updating the representative from M to µM , where the randomness inside σ
remains to be that of the initial signing process.

We are now going to see that Scheme 2 fulfills Definition 5.15.

Lemma 5.16. Scheme 2 allows perfect composition.

Proof (Sketch). Let SwitchR be the algorithm that arises from the ChgRepR
algorithm of Scheme 2 when fixing its internally drawn randomizer ψ to 1, i.e.,

SwitchR(M,σ, µ, pk) := ChgRepR(M,σ, µ, pk; (ψ = 1)).

Let κ > 0, BG = (p,G1,G2,GT , e, P, P̂ )←R BGGenR(1κ), ` > 1. Further, let
r ∈ {0, 1}∗, (sk, pk), M ∈ (G∗1)`, and σ be such that VKeyR(sk, pk) = 1 and
σ ← SignR(M, sk; r) (internally drawing y ∈ Zp∗ using r).

Then, σ = (Z, Y, Ŷ ) ∈ G1 ×G∗1 ×G∗2 is of the form (Z = y
∑
xiMi, Y = 1

yP,

Ŷ = 1
y P̂ ). Executing ChgRepR(M,σ, µ, pk; (ψ = 1)) for µ ∈ Zp∗ gives (µM, σ′)

such that σ′ = (Z ′, Y ′, Ŷ ′) = (µZ, Y, Ŷ ) = (Z = ψy
∑
xiµMi, Y = 1

ψyP, Ŷ =
1
ψy P̂ ) = (Z = y

∑
xiµMi, Y = 1

yP, Ŷ = 1
y P̂ ).

Next, observe that SignR(µM, sk; r) internally draws y←R Zp∗ using r (i.e., the

same y as above), returns σ′′ = (Z ′′, Y ′′, Ŷ ′′) with Z ′′ = y
∑
xiµMi, Y = 1

yP

and Ŷ = 1
y P̂ giving the same signature on µM as SwitchR(M,σ, µ, pk)[2].

Remark 5.17. Observe that Scheme 3 does not support perfect composition:
Let σ = (Z, Y, Ŷ , R1, R2) be a signature on M produced by Scheme 3. Then,
the reason for this are the random signature values R1, R2, which do not stay
the same but, instead, are being multiplied by µ when performing a change of
representative from M to µM for some µ ∈ Zp∗.
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5.3.2 The Construction

In Scheme 6, we show how a VES can be built black-box from any SPS-EQ
construction SPS-EQ that allows perfect composition and has a deterministic
bilinear-group generation algorithm BGGenR.1 The latter is necessary as both
key generation algorithms AKeyGen and KeyGen on input 1κ have to output key
pairs with respect to the same bilinear group BG.

Scheme 6 A VES construction from SPS-EQ.

AKeyGen(1κ): Given a security parameter 1κ, compute BG← BGGenR(1κ), pick
a←R Zp∗, compute A← aP and output (ask, apk)← (a, (BG, A)).

KeyGen(1κ): Given a security parameter 1κ, compute BG ← BGGenR(1κ) and
output (sk, pk)←R KeyGenR(BG, 1`) for ` = 3.

Sign(m, sk; (r1, r2)): Given a message m ∈ Zp∗, secret key sk and two ran-
dom tapes r1, r2 ∈ {0, 1}∗, pick s←R Zp∗ using r1 and compute σ′ ←
SignR((msP, sP, P ), sk; r2) using randomness r2. Finally, output σ ←
(σ′, sP ).

Verify(m,σ, pk): Given a message m ∈ Zp∗, a signature σ = (σ′, S) and a public
key pk, output whatever VerifyR((mS,S, P ), σ′, pk) outputs.

VESign(m, sk, apk; (r1, r2)): Given a message m ∈ Zp∗, secret key sk, the arbiter
public key apk = A and two random tapes r1, r2 ∈ {0, 1}∗, pick s←R Zp∗
using r1 and compute ω′ ← SignR((msA, sA,A), sk; r2) using randomness
r2. Finally, output ω ← (ω′, sA).

VEVerify(m,ω, pk, apk): Given a message m ∈ Zp∗, an encrypted signature
ω = (ω′,W ), a public key pk and an arbiter public key apk = A, out-
put whatever VerifyR((mW,W,A), ω′, pk) outputs.

Resolve(m,ω, ask, pk): Given a message m ∈ Zp∗, an encrypted signature ω =
(ω′, sA), a public key pk and an arbiter secret key ask ← a, check
whether VEVerify(m,ω, pk, apk) = 0 and return ⊥ if so. Otherwise,
compute ((msP, sP, P ), σ′)← SwitchR((msA, sA,A), ω, 1a , pk) and output
σ ← (σ′, sP ).

Remark 5.18. Observe that, independently of the instantiation of Scheme 6
with a concrete SPS-EQ, the efficiency of the Verify respectively VEVerify can
be improved by precomputing parts of the PPEs that solely depend on P and

1As already pointed out in Chapter 4, this is, e.g., the case for BN curves [BN06]; the most
common choice for Type-3 pairings.
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pk respectively A and pk, and including the resulting GT elements into (the
updated) user public key pk.

In the following, we are going to analyze the security of Scheme 6 and prove
unforgeability, opacity and abuse freeness as well as resolution duplication. Com-
pleteness follows straightforwardly from inspection.

Theorem 5.19. The VES in Scheme 6 is unforgeable given that SPS-EQ is
unforgeable.

Proof. We assume that there is an efficient adversary A winning the unforge-
ability game with non-negligible probability; then we are able to construct an
adversary B that uses A to break the EUF-CMA security of the underlying
SPS-EQ scheme with non-negligible probability.

B obtains pkR of the SPS-EQ scheme SPS-EQ with ` = 3 (and thereby
implicitly the bilinear group BG) from the challenger C of the EUF-CMA security
game, and sets (sk, pk) ← (⊥, pkR). Then B picks a←R Zp∗, computes A ← aP
and sets (ask, apk)← (a, (BG, A)). Next, B sets up a list L← ∅ to keep track of
representatives queried to C, runs A on (pk, apk) and answers A’s oracle queries
to the Resolve oracle as in the real game and simulates queries to all other oracles
as follows:

Sign(·, sk): If A submits a query for m ∈ Zp∗, B queries C’s signing oracle for the
message (msP, sP, P ) for s←R Zp∗, gets in return a corresponding signature
σ′, appends {(msA, sA,A)} to L[m] and outputs the plain signature σ ←
(σ′, sP ).

VESign(·, sk, apk): If A submits a query for m ∈ Zp∗, B queries C’s signing oracle
for the message (msA, sA,A) for s←R Zp∗, gets in return a corresponding
signature ω′, appends {(msA, sA,A)} to L[m] and outputs the encrypted
signature ω ← (ω′, sA).

If at some point A outputs a valid encrypted message-signature pair (m∗, ω∗ =
(ω′∗,W ∗)), such that it has not previously queried m∗ to any of the oracles, then
B will output ((m∗W ∗,W ∗, A), ω′∗) to C.

Note that the distribution of all values returned to A during the simulation
is identical to the distribution of these values during a real game.

By construction, ((m∗W ∗,W ∗, A), ω′∗) constitutes a valid message-signature
pair. It remains to be shown that for M∗ = (m∗W ∗,W ∗, A), the class [M∗]R
is different from all classes represented by elements in L, if m∗ is different from
all messages queried to the oracles. VEVerify demands that the third vector
component of M∗ be A, which uniquely determines the representative for each
class and allows for comparison. Now, if there is some Mi = (miWi,Wi, A) ∈
L queried to the VESign or the Sign oracle coinciding with M∗ in the second
component, then both vectors still differ in the first component for m∗ 6= mi.
Likewise, if they coincide in the first component for m∗ 6= mi, then they cannot
have equal second components. Hence, M∗ 6= Mi for any Mi in L.
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Theorem 5.20. The VES in Scheme 6 is opaque given that the DHI assumption
holds in G1 and that SPS-EQ is unforgeable and allows perfect composition.

Proof. We assume that there is an efficient adversary A winning the opacity game
with non-negligible probability. Then we are able to construct an adversary
B that uses A either to break with non-negligible probability the EUF-CMA
security of the underlying SPS-EQ scheme SPS-EQ (Type-1 adversary) if A has
neither queried to the VESign nor to the Resolve oracle for m∗; or to break the
DHI assumption (Type-2 adversary) if A has only queried to the VESign but not
to the Resolve oracle for m∗.

In the following, B guesses A’s strategy, i.e., the type of forgery A will
conduct. We are now going to describe the setup, the initialization of the envi-
ronment, the reduction and the abort conditions for each type.

Type 1: B obtains pkR of the SPS-EQ scheme SPS-EQ with ` = 3 (and thereby
implicitly the bilinear group BG) from the challenger C of the EUF-CMA secu-
rity game and sets (sk, pk)← (⊥, pkR). Furthermore, B picks a←R Zp∗, computes
A ← aP and sets (ask, apk) ← (a, (BG, A)). Next, B runs A on (pk, apk) and
answers A’s oracle queries to the Resolve oracle as in a real game and simulates
queries to the VESign oracle as follows:

VESign(·, sk, apk): If A submits a query for m ∈ Zp∗, B queries C’s signing oracle
for the message (msA, sA,A) for s←R Zp∗, then B gets in return a signature
ω′ and outputs (ω′, sA).

If at some point A outputs a valid message-signature pair (m∗, σ∗) with σ∗ =
(σ′∗, S∗) and has queried to the VESign oracle for m∗, B will abort (Type-2
forgery). Else, B will output ((m∗S∗, S∗, P ), σ′∗) to C.

Note that the distribution of all values returned to A during the simulation
is identical to the distribution of these values during a real game, which makes
the simulation perfect.

By construction, ((m∗S∗, S∗, P ), σ′∗) constitutes a valid SPS-EQ message-
signature pair. It remains to be shown that for M∗ = (m∗S∗, S∗, P ), the class
[M∗]R is different from all classes queried to C, if m∗ is different from all messages
queried to the VESign oracle. Verify demands that the third vector component of
M∗ be P , which uniquely determines the representative for each class and allows
for comparison. Now, if there is some Mi = (miSi, Si, P ) coinciding with M∗

in the second component, then both vectors still differ in the first component
for m∗ 6= mi. Likewise, if they coincide in the first component for m∗ 6= mi,
then they cannot have equal second components. Hence, M∗ 6= Mi for any Mi

queried to C.

Type 2: We assume qr to be the number of queries to the Resolve oracle and,
w.l.o.g., we assume that A does not query to the Resolve oracle for the same
message twice.

B obtains an instance (BG = (p,G1,G2,GT , e, P, P̂ ), aP ) of the DHI prob-
lem in G1 from the challenger C and fixes an index j←R [qr + 1]. B executes
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(sk, pk)←R KeyGenR(BG, 1`) for ` = 3, sets ask ← ⊥, runs A on (pk, apk ←
(BG, A = aP )), sets up a list L ← ∅ and simulates queries to the oracles as
follows:

VESign(·, sk, apk): On the j′th query, B sets a bit b← [j = j′], picks s←R Zp∗, sets
W ← s(A+bP ), runs ω′←R SignR((msW, sW,A), sk; r2), appends (m, s, r2)
to L and returns the encrypted signature ω ← (ω′,W ).

Resolve(·, ·, ask, pk): If A submits a query for m ∈ Zp∗ and ω, then B checks
whether VEVerify(m,ω, pk, apk) = 1 and returns ⊥ if this is not the case.

Otherwise, it determines the index j′ such that L[j′][1] = m. If j = j′, then
B aborts. Let L[j′] = (m, s, r2). B computes σ′ ← SignR((msP, sP, P ),
sk; r2) and returns the plain signature σ ← (σ′, sP ).

If at some point A outputs a valid message-signature pair (m∗, σ∗ = (σ′∗, S∗)),
then B determines the index j′ such that L[j′][1] = m∗. If there is no such index
j′, then B aborts (Type-1 forgery). Otherwise, if j′ 6= j, then B aborts as well.
Else, B retrieves s ← L[j][2] and outputs 1

sS
∗ − P = 1

aP as a solution to the
DHI problem.

If SPS-EQ allows perfect composition, the distribution of all values returned
to A during the simulation is identical to the distribution of these values dur-
ing a real game, which makes the simulation perfect (as it guarantees that
SignR((msW, sW,A), sk; r2) = ω′ = SwitchR((msP, sP, P ), σ′, a, pk) for σ′ ←
SignR((msP, sP, P ), sk; r2) during the simulation of both oracles).

Finally, we consider B’s success probability. We assume A to be a Type-2
adversary that is able to break the opacity of the scheme with probability ε(κ).
Then, B does not abort the simulation with probability at least (1− 1

qr+1 )qr ≥
1

exp(1) and A uses the jth query for the forgery with probability at least 1
qr+1 .

Hence, it holds that ε(κ) ≤ exp(1) · (qr + 1) · εDHI(κ), where εDHI(κ) is the
advantage of solving the DHI assumption.

Note that for any SPS-EQ over Gi we assume the DDH assumption to hold
in Gi, which implies the CDH assumption. Moreover, the CDH assumption is
equivalent to the DHI assumption [BDZ03] (as already pointed out in Chapter 2).
Therefore, opacity is black-box from any perfectly composing SPS-EQ over Gi.

Theorem 5.21. The VES in Scheme 6 is unconditionally extractable.

Proof (Sketch). This immediately follows from the SPS-EQ correctness prop-
erty: Observe that for an unresolved tuple (m,ω) with ω = (ω′, sA) it holds that
VerifyR((msA, sA,A), ω′, pk) = 1 if and only if VerifyR((msP, sP, P ), σ′, pk) = 1,
where ((msP, sP, P ), σ′)← SwitchR((msA, sA,A), ω′, 1a , pk), since

[(msA, sA,A)]R = [(msP, sP, P )]R.

Theorem 5.22. The VES in Scheme 6 is abuse free given that SPS-EQ is un-
forgeable.
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Proof. We assume that there is an efficient adversary A winning the abuse free-
ness game with non-negligible probability; then we are able to construct an
adversary B that uses A to break the EUF-CMA security of SPS-EQ with non-
negligible probability.

B obtains pkR of the SPS-EQ scheme SPS-EQ with ` = 3 (and thereby
implicitly the bilinear group BG) from the challenger C of the EUF-CMA security
game, sets (sk, pk) ← (⊥, pkR). Furthermore, B picks a←R Zp∗, computes A ←
aP and sets (ask, apk) = (a, (BG, A)). Next, B runs A on (pk, ask, apk) and
answers A’s oracle queries as follows:

VESign(·, sk, apk): If A submits a query for m ∈ Zp∗, B queries to C’s signing
oracle for the message (m · sA, sA,A) for s←R Zp∗, gets in return a corre-
sponding signature ω′ and outputs the encrypted signature ω ← (ω′, sA).

If at some point A outputs a valid encrypted message-signature pair (m∗, ω∗ =
(ω′∗,W ∗)), such that it has not previously queried m∗ to the VESign oracle, then
B will output ((m∗W ∗,W ∗, A), ω′∗) to C; otherwise, B will abort.

Note that the distribution of all values returned to A during the simulation
is identical to the distribution of these values during a real game.

By construction, ((m∗W ∗,W ∗, A), ω′∗) constitutes a valid message-signature
pair. It remains to be shown that for M∗ = (m∗W ∗,W ∗, A), the class [M∗]R is
different from all classes queried to C, if m∗ is different from all messages queried
to the VESign oracle. VEVerify demands that the third vector component of M∗

be A, which uniquely determines the representative for each class and allows for
comparison. Now, if there is some Mi = (mi ·Wi,Wi, A) coinciding with M∗ in
the second component, then both vectors still differ in the first component for
m∗ 6= mi. Likewise, if they coincide in the first component for m∗ 6= mi, then
they cannot have equal second components. Hence, assuming that m∗ 6= mi and
M∗ = Mi for some Mi queried to C, immediately gives a contradiction.

The following theorem states that Scheme 6 is resolution duplicate given that
the underlying SPS-EQ allows perfect composition (i.e., fulfills Definition 5.15).
In particular, it is resolution independent, the importance of which was estab-
lished in Section 5.2. It will allow also us to derive a PKE scheme (cf. Sec-
tion 5.4). Note that Scheme 2 fulfills Definition 5.15.

Theorem 5.23. The VES in Scheme 6 is resolution duplicate given that SPS-EQ
allows perfect composition.

Proof. Here, we have to show (1) that the outputs of Resolve(m,VESign(m,
sk, apk), ask, pk) and Sign(m, sk) are distributed identically, (2) that Resolve is
deterministic and (3) that there exists a PPT algorithm Extract(·, ·, ·), such that
for all (ask, apk)←R AKeyGen(1κ), (sk, pk)←R KeyGen(1κ),m ∈Mpk, and random
tapes r ∈ {0, 1}∗, it is the case that

Extract(m, sk, r) = Resolve(m,VESign(m, sk, apk; r), ask, pk).

Property (2) is easy to see, since Resolve internally runs algorithm SwitchR,
which is deterministic. All other parts of Resolve are deterministic as well.
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The extract algorithm for Property (3) can be specified as Extract(m, sk, r) :=
Sign(m, sk; r) = Sign(m, sk; (r1, r2)) = (SignR((msP, sP, P ), sk; r2), sP ) with s
drawn uniformly from Zp∗ using random coins r1. For the RHS, we have

Resolve(m,VESign(m, sk, apk; r2), ask, pk) =

Resolve(m, (SignR((msA, sA,A), sk; r2), sA), ask, pk) =

(SwitchR((msA, sA,A),SignR((msA, sA,A), sk; r2), a−1, pk)[2], sP ),

where s and t are as above. If SPS-EQ allows perfect composition, this gives the
same output as the specified Extract algorithm.

With regard to (1) observe that Property (3) and the fact that the Extract
algorithm can be expressed by Sign implies that the output distributions of
Sign(m, sk) and Resolve(m,VESign(m, sk, apk), ask, pk) are identical.

Discussion

In sum, Scheme 6 is a resolution-duplicate VES constructed black-box from any
perfectly composing SPS-EQ. Observe that for all our proofs, we only made use
of the DHI assumption and the SPS-EQ properties correctness, unforgeability
and perfect composition. Hence, we could in fact use a weaker notion of SPS-
EQs, which does not require the indistinguishability of classes (and, thus, the
DDH assumption to hold in G1). In particular, we could as well employ an
SPS-EQ scheme (e.g., a Type-1 SPS-EQ scheme) that provides the same kind of
malleablity, while only requiring the CDH assumption to hold in G1 (which we
always assume to hold in cryptographically strong groups). This could widen
the range of potential standard-model instantiations of Scheme 6.

Another measure to this end is the following relaxation. To just build a
resolution-independent VES, we can simply replace the quite strong perfect
composition property by perfect adaptation (Definition 3.7). In doing so, we
need to replace the execution of SwitchR((msA, sA,A), ω, 1a , pk) inside Resolve
by ChgRepR((msA, sA,A), ω, 1a , pk). Recall that perfect adaptation ensures that
signatures output by ChgRepR are distributed like fresh signatures. Therefore,
this immediately implies a resolution-independent VES construction: Resolu-
tion independence demands that resolved encrypted signatures are distributed
like plain signatures and resolution essentially relies on changing the representa-
tive using ChgRepR (as outlined above). Even so, our focus here was to build a
resolution-duplicate VES from SPS-EQ, since it shows the following non-trivial
relation between SPS-EQ and PKE.

5.4 Public-Key Encryption from SPS-EQ

In this section, we show how to convert any SPS-EQ satisfying perfect com-
position (Definition 5.15) into a PKE scheme. This connection is somewhat
surprising, as it is well known that regular signature schemes do not imply PKE
(in a black-box way). However, there is no contradiction as SPS-EQs have more
structure than regular signature schemes.
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The basic idea is to instantiate the transformation given by Calderon et
al. [CMSW14]. This transformation turns any secure, resolution-duplicate VES
scheme into a PKE scheme, in a black-box way. We have already shown how to
construct a secure VES scheme and that it is resolution duplicate, in Section 5.3.
The basic idea of the transformation is an application of the Goldreich-Levin
trick [GL89] to the setting of VES. That is, we view 〈σ, r〉 as the hard-core
predicate for VESign, i.e., given ω and r it should be hard to predict the value
of 〈σ, r〉 (cf. Section 2.1.2). This intuition is formally shown in the following
lemma.

Lemma 5.24. Let VES be a VES and b(x, r) := 〈x, r〉 for any x ∈ {0, 1}∗
and r ∈ {0, 1}∗ such that |x| = |r|. Then, if VES is opaque for all choices of
(ask, apk)←R AKeyGen(1κ), all choices of (sk, pk)←R KeyGen(1κ) and all messages
m ∈ Mpk, it is hard to compute the value b(σ, r) with probability significantly
greater than 1/2 when given m, apk, pk, ω←R VESign(m, sk, apk) and r←R {0, 1}|σ|,
where σ ← Resolve(ω, ask, pk).

The proof is given in [CMSW14] and closely follows that of Goldreich [Gol01].
It leads to the construction of a CPA-secure PKE scheme in Scheme 7.

Scheme 7 A PKE scheme from resolution-duplicate VESs.

KeyGen(1κ): Given a security parameter 1κ, output (ask, apk)←R AKeyGen(1κ).

Enc(m, apk): Given plaintext m ∈ {0, 1} and public key apk, generate a key pair
(sk, pk)←R KeyGen(1κ), pick a random tape r, compute a VES ω ← VESign(
0, sk, apk; r), σ ← Extract(m, sk, r), pick rσ←R {0, 1}|σ| and set c0 ← m ⊕
〈σ, rσ〉. Finally, output ciphertext c← (pk, ω, rσ, c0).

Dec(c, ask): Given ciphertext c and secret key ask, parse c as (pk, ω, rσ, c0) and
return ⊥ if VEVerify(0, ω, pk, apk) = 0. Otherwise, output m← c0⊕〈σ, rσ〉
with σ ← Resolve(0, pk, ω, ask, pk).

Regarding security, it was shown in [CMSW14] that the above construction
is correct and, most of all, CPA-secure:

Theorem 5.25. If VES is a resolution-duplicate and opaque VES, then Scheme 7
is IND-CPA secure.

The following corollary points out the relation of perfectly composing SPS-
EQs to PKE.

Corollary 5.26. Let SPS-EQ be an EUF-CMA secure and perfectly composing
SPS-EQ and VES be the VES in Scheme 6 instantiated with SPS-EQ. Then,
Scheme 7 instantiated with VES is IND-CPA secure.



6
Set Commitments

The user’s going to pick dancing pigs over security every time.

— Bruce Schneier

In this chapter, we introduce a new commitment type which allows for com-
mitting to sets and, besides ordinary openings, also supports openings of subsets.
After formalizing the primitive, we give an efficient construction with succinct
commitments and openings.

In [KZG10], Kate et al. introduced the notion of constant-size polynomial
commitments. They present two schemes where one is computationally hiding
and the other one is perfectly hiding.

Following a similar approach, we construct perfectly hiding set commitments,
which allow us to commit to a set S ⊂ Zp, by committing to a monic polynomial
whose roots are the elements of S. A feature we are aiming at is the possibility to
open arbitrary subsets of the committed set, which is implicitly done by opening
non-trivial factors of the committed polynomial.

The results in this paper are related to the polynomial-commitment scheme
given in [HS14] but further try to abstract them by only considering sets. These
results are part of [FHS16] which is currently in review.

6.1 Definitions

We start with discussing the abstract model and the security properties of our
set-commitment scheme.

Definition 6.1 (Set commitment (SC) scheme). An SC scheme SC consists of
the following PPT algorithms.
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Setup(1κ, 1t): This probabilistic algorithm takes input a security parameter κ
and an upper bound for the set cardinality t ∈ N, both in unary form.
It outputs public parameters pp (including a description of an efficiently
samplable message space Spp containing sets of maximum cardinality t).

Commit(pp, S): This probabilistic algorithm takes input the public parameters
pp defining message space Spp and a non-empty set S ∈ Spp. It outputs a
commitment C to set S and opening O.

Open(pp, C,O): This deterministic algorithm takes input the public parameters
pp, a commitment C and opening O. It outputs S if O is a valid opening
of C for S ∈ Spp and ⊥ otherwise.

OpenSubset(pp, C,O, T ): This (deterministic) algorithm takes input the public
parameters pp, a commitment C, opening O for set S ∈ Spp and a non-
empty set T . It returns ⊥ if T * S; else it returns a witness W for T
being a subset of S.

VerifySubset(pp, C, T,W ): This deterministic algorithm takes input the public
parameters pp, a commitment C, a non-empty set T and a witness W .
It verifies whether W is a witness for T being a subset of the set commit-
ted to in C, in which case it outputs 1, and 0 otherwise.

We call a set-commitment scheme secure, if it is correct, binding, subset-sound
and hiding. The properties are as follows, where the definitions of correctness,
binding and hiding are mostly straightforward.

Definition 6.2 (Correctness). An SC scheme SC is correct if for all t > 0, all
κ > 0, all choices of pp←R Setup(1κ, 1t), all S ∈ Spp and all non-empty T ⊆ S
the following holds:

1. Pr [Open(pp,Commit(pp, S)) = S ] = 1.

2. Pr

[
(C,O)←R Commit(pp, S),
W ←R OpenSubset(pp, C,O, T )

: VerifySubset(pp, C, T,W ) = 1

]
= 1.

Definition 6.3 (Binding). An SC scheme SC is binding if for all t > 0 and all
PPT adversaries A there is a negligible function ε(·) such that:

Pr


pp←R Setup(1κ, 1t),
(C,O,O′)←R A(pp),
S ← Open(pp, C,O),
S′ ← Open(pp, C,O′)

: S 6= S′ ∧ S, S′ 6= ⊥

 ≤ ε(κ).

Subset soundness requires it to be infeasible to perform subset openings using
non-subsets.

Definition 6.4 (Subset soundness). An SC scheme SC is subset-sound if for
all t > 0 and all PPT adversaries A there is a negligible function ε(·) such that:

Pr

 pp←R Setup(1κ, 1t),
(C,O, T,W )←R A(pp),
S ← Open(pp, C,O)

:
S 6= ⊥ ∧ T * S

∧ VerifySubset(pp, C, T,W ) = 1

 ≤ ε(κ).
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Hiding resembles the conventional hiding definition for commitments (cf.
Definition 2.23), but, in addition, the adversary is given access to an OpenSubset
oracle for subsets of the intersection of the two challenge sets.

Definition 6.5 (Hiding). An SC scheme SC is hiding if for all t > 0 and all PPT
adversaries A with oracle access to OpenSubset for subsets of the intersection of
the challenge sets there is a negligible function ε(·) such that:

Pr


b←R {0, 1}, pp←R Setup(1κ, 1t),
(S0, S1, st)←R A(pp),
(C,O)←R Commit(pp, Sb),
b∗←R AOpenSubset(pp,C,O, · ∩(S0∩S1))(st, C)

: b∗ = b

− 1

2
≤ ε(κ).

In the perfectly hiding case, unbounded adversaries are being considered and
ε ≡ 0.

6.2 The Construction

In Scheme 8, we now give a construction of a set-commitment scheme. For the
sake of compact representation, for a set S ⊂ Zp we let fS(X) :=

∏
s∈S(X−s) =∑|S|

i=0 fi ·Xi. For a group generator P , since fS(a)P =
∑|S|
i=0(fi · ai)P , one can

efficiently compute fS(a)P when given (aiP )
|S|
i=0 but not a itself.

We have augmented the scheme from [HS14] by a special opening (of the
form (1, a, S)) for the case that a set S contains the trapdoor a. (Under the
t-co-DL assumption from Definition 2.12, such sets are infeasible to find.) This
makes the scheme perfectly correct and perfectly hiding while still maintaining
computational binding and subset-soundness.

Remark 6.6. We have defined the scheme in a way that reduces the computa-
tional complexity of the prover in the ABC system in Section 7.2.4. To improve
the performance of VerifySubset, one could define a scheme with C ∈ G1 and
W ∈ G2 (for which VerifySubset would have to compute fT (a)P ).

6.2.1 Security

We prove Scheme 8 secure under the q-co-DL assumption and the generalized
q-co-SDH assumption. We use both assumptions in a static way, as q ← t is a
system parameter and fixed a priori (i.e., it does not depend on the behavior of
the adversary).

Theorem 6.7. Scheme 8 is correct.

Proof. Let t, κ > 0 and (BG, (aiP, aiP̂ )i∈[t])←R Setup(1κ, 1t) with BG = (p,G1,

G2,GT , e, P, P̂ ), let S ⊂ Zp with 0 < |S| ≤ t and let ∅ 6= T ⊆ S. We consider
two cases.

(1) a ∈ S: Commit(pp,S) returns (C,O) with C ∈ G∗1 and O = (1, a, S). Open
on input (C, (1, a, S)) returns S, which shows the first property. OpenSubset on
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Scheme 8 A set-commitment scheme.

Setup(1κ, 1t): On input a security parameter 1κ and a maximum set cardinality
1t run BG = (p,G1,G2,GT , e, P, P̂ )←R BGGen(1κ), pick a←R Zp and out-

put pp ← (BG, (aiP, aiP̂ )i∈[t]), which defines message space Spp = {S ⊆
Zp : 0 < |S| ≤ t}.

Commit(pp, S): On input pp = (BG, (aiP, aiP̂ )i∈[t]) and a non-empty set S ⊂ Zp
with |S| ≤ t:

• If for some a′ ∈ S: a′P = aP , output C←R G∗1 and opening O ←
(1, a′, S).

• Else pick ρ←R Zp∗, compute C ← ρ · fS(a)P ∈ G∗1 and output (C,O)
with O ← (0, ρ, S).

Open(pp, C,O): On input pp = (BG, (aiP, aiP̂ )i∈[t]), a commitment C and open-
ing O = (b, ρ, S): if C /∈ G∗1 or ρ /∈ Zp∗ or S 6⊆ Zp or S = ∅ or |S| > t then
return ⊥.

• If O = (1, a′, S) and a′P = aP then return S. Else return ⊥.

• If O = (0, ρ, S) and C = ρ · fS(a)P , return S. Else return ⊥.

OpenSubset(pp, C,O, T ): On input pp = (BG, (aiP, aiP̂ )i∈[t]), a commitment C,
opening O and a set T , let S ← Open(pp, C,O). If S = ⊥, T * S or T = ∅
then output ⊥.

• If O = (1, a′, S): If a′ ∈ T , return W ← ⊥; else return W ← fT (a′)−1 ·
C.

• If O = (0, ρ, S), output W ← ρ · fS\T (a)P .

VerifySubset(pp, C, T,W ): On input pp = (BG, (aiP, aiP̂ )i∈[t]), a commitment
C, a set T and a witness W : if C /∈ G∗1 or T 6⊂ Zp or T = ∅ or |T | > t,
return 0.

• If for some a′ ∈ T : a′P = aP then: If W = ⊥, return 1; else return
0.

• Else: If W ∈ G∗1 and e(W, fT (a)P̂ ) = e(C, P̂ ), return 1; else return 0.
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input (pp, C,O, T ) returns W ← ⊥ if a ∈ T and W ← fT (a)−1 · C if a 6∈ T . If
a ∈ T then VerifySubset(pp, C, T,W ) returns 1 if W = ⊥. If a /∈ T , it returns 1
if C,W ∈ G∗1 and e(W, fT (a)P̂ ) = e(C, P̂ ); this is satisfied, since W ∈ G∗1 and
e(W, fT (a)P̂ ) = e(fT (a)−1 · C, fT (a)P̂ ) = e(C, P̂ ).

(2) a 6∈ S: Commit(pp,S) returns (C,O) with C = ρ · fS(a)P and O = (0, ρ, S)
with ρ ∈ Zp∗. For O of this form, Open returns S, since the four clauses in its
definition are satisfied. OpenSubset(pp, C,O, T ) returns W ← ρ · fS\T (a)P . On

input (pp, C, T,W ), VerifySubset returns 1 if C,W ∈ G∗1 and e(W, fT (a)P̂ ) =
e(C, P̂ ). Since ρ ∈ Zp∗, a 6∈ S we have W = ρ · fS\T (a)P ∈ G∗1; moreover,

e(W, fT (a)P̂ ) = e(ρ · fS(a) · fT (a)−1 · P, fT (a)P̂ ) = e(ρ · fS(a)P, P̂ ) = e(C, P̂ );
so VerifySubset returns 1.

Theorem 6.8. If the t-co-DL assumption holds, then Scheme 8 is binding.

Proof. We show that if A is able to output a commitment C and two valid
openings to distinct sets S, S′ then we can construct an adversary B that breaks
t-co-DL: B obtains an instance I = (BG, (aiP, aiP̂ )i∈[t]), sets pp ← I and runs
A(pp). If A outputs a collision (C,O,O′), then by ⊥ 6= S ← Open(pp, C,O) and
⊥ 6= S′ ← Open(pp, C,O′) with S 6= S′, it holds that C ∈ G∗1. If O = (1, a′, S)
or O′ = (1, a′, S′) then B outputs a′ as solution to the t-co-DL problem. Else,
we have O = (0, ρ, S), O′ = (0, ρ′, S′) with ∅ 6= S, S′ ⊂ Zp, ρ, ρ′ ∈ Zp∗ and:

ρ · fS(a)P = C = ρ′ · fS′(a)P,

from which we have ρ ·fS(a)−ρ′ ·fS′(a) = 0. Since S and S′ are both non-empty
and distinct, we have deg fS > 0 and deg fS′ > 0 and fS 6= fS′ . Furthermore,
fS and fS′ are monic and ρ, ρ′ 6= 0, thus t(X) ← ρ · fS(X) − ρ′ · fS′(X) 6= 0
while t(a) = 0. Therefore, a is a root of the non-zero polynomial t(X) ∈ Zp[X]
and factoring t(X) yields a. Using pp, B can efficiently obtain and output a as
solution to the t-co-DL problem.

Theorem 6.9. If the generalized t-co-SDH assumption holds, then Scheme 8 is
subset-sound.

Proof. We show that if A is able to output (C,O, T,W ), such that O is a valid
opening of C to set S, T * S and VerifySubset(pp, C, T,W ) = 1, then we can
construct an adversary B against the generalized t-co-SDH as follows. On input
an instance I = (BG, (aiP, aiP̂ )i∈[t]), B sets pp ← I and runs A(pp); assume A

breaks subset-soundness by outputting (C,O, T,W ).

We first deal with the case fT (a) = 0. Since T 6= ∅, and thus fT (X) is
a non-constant polynomial with root a, B can efficiently obtain a by factoring
fT (X). It then chooses c ∈ Zp \ {−a}, and outputs a solution (1, X + c, 1

a+cP )
to generalized t-co-SDH.

For the rest of the proof, assume fT (a) 6= 0. If A is successful, by ⊥ 6= S ←
Open(pp, C,O) and O = (1, a′, S) then B chooses c ∈ Zp \ {−a′}, and outputs a
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solution (1, X + c, 1
a′+cP ) to generalized t-co-SDH. Else, we have O = (0, ρ, S)

with ∅ 6= S ⊂ Zp, ρ ∈ Zp∗ and

C = ρ · fS(a)P ∈ G∗1. (6.1)

Moreover, from VerifySubset(pp, C, T,W ) = 1 we have ∅ 6= T ⊂ Zp, |T | ≤ t,

W ∈ G∗1 and e(W, fT (a)P̂ ) = e(C, P̂ ), which by (6.1) equals e(ρ · fS(a)P, P̂ ).
Since ρ 6= 0, we have

e(ρ−1W, fT (a)P̂ ) = e(fS(a)P, P̂ ). (6.2)

We further distinguish two cases:

(1) 0 < |S| < |T |. Then 0 < deg fS < deg fT ≤ t, which together with (6.2)
means that (fS , fT , ρ

−1W ) is a solution to the generalized t-co-SDH assumption.

(2) 0 < |T | ≤ |S|. Then 0 < deg fT ≤ deg fS . Since T * S, by polynomial
division we obtain h, r with fS(X) = h(X)fT (X)+r(X) and 0 ≤ deg r < deg fT .
Plugging this into (6.2), we get:

e(ρ−1W, fT (a)P̂ ) = e(h(a)fT (a)P + r(a)P, P̂ ) = e
(
h(a)P + r(a)

fT (a)
P, fT (a)P̂

)
,

since fT (a) 6= 0. This can be rewritten as

e(ρ−1W − h(a)P, fT (a)P̂ ) = e
( r(a)
fT (a)

P, fT (a)P̂
)

= e(r(a)P, P̂ ).

Together with 0 ≤ deg r < deg fT ≤ t, this means that (r, fT , ρ
−1W − h(a)P )

is a solution to the generalized t-co-SDH assumption, which B can efficiently
compute.

Theorem 6.10. Scheme 8 is perfectly hiding.

Proof. We consider the view of an unbounded adversary A in the hiding exper-
iment and assume w.l.o.g. that every query T to the OpenSubset oracle satisfies
T ⊂ Zp and ∅ 6= T ⊆ (S0 ∩ S1). We distinguish several cases.

(1) A chooses S0, S1 with a ∈ S0 ∩ S1. Then for both b = 0, 1, Cb is uniformly
random in G∗1 (Cb ∈R G∗1) and the jth query Tj to OpenSubset is answered
with ⊥ if a ∈ Tj , and with Wj,b = fT (a)−1 · Cb if a 6∈ Tj . The bit b is thus
information-theoretically hidden from A.

(2) a is contained in one of the sets S0, S1; say a ∈ S0. Note that for all queries
Tj , we have a /∈ Tj . If b = 0 then A receives a uniformly random C0 and when it
queries Tj to the OpenSubset oracle, it receives Wj,0 = fTj (a)−1·C0. If b = 1 then
A receives C1 = ρ · fS(a)P for ρ ∈R Zp∗, and query Tj to the OpenSubset oracle
returns witness Wj,1 = ρ · fS\Tj (a) · P = ρ · fS(a) · fTj (a)−1 · P = fTj (a)−1 ·C1.
Hence, for both b = 0, 1 we have Cb ∈R G∗1 and Wj,b = fTj (a)−1 · Cb for all j;
the bit b is thus information-theoretically hidden from A.

(3) A chooses S0, S1 with a 6∈ S0 ∪ S1. Then for b = 0, 1: Cb = ρ · fSb(a)P for
ρ ∈R Zp∗ and a query for Tj is answered by Wj,b = ρ ·fSb\Tj (a)P = fTj (a)−1 ·Cb.
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Again for both b = 0 and b = 1, A receives a uniform random element Cb and
query replies that do not depend on b; the bit b is thus information-theoretically
hidden from A.





7
Attribute-Based Credentials

The question isn’t ‘What do we want to know about people?’
It’s ‘What do people want to tell about themselves?’

— Mark Zuckerberg

Anonymous credentials provide means for anonymous authentication. In
particular, a credential system is a multi-party protocol involving a user, an
organization (or issuer) and a verifying party. Thereby, the user can obtain a
credential (on multiple attributes; in case of attribute-based credentials (ABCs))
from an organization and present the credential to some verifying party later on.
While not learning any information about the user performing (a predetermined
or arbitrary number of) credential showings (anonymity), the verifier can still
be sure that presented information (e.g., the shown attributes; in case of ABCs)
is authentic (unforgeability).

We distinguish two major lines of credential systems: one-show and multi-
show credential systems.

The former type is typically built from blind signatures. In this case, a user
obtains a blind signature from an issuer on (commitments to) attributes and,
later, shows the signature, provides the shown attributes (or proves relations
about them) and proves knowledge of all unrevealed attributes [Bra00, BL13a,
FHS15a]. The drawback of such a blind-signature approach is that such creden-
tials can only be shown once in an unlinkable fashion (one-show). This does
not necessarily mean that the verifier is able to identify a user behind a showing
but that she is at least able to trace users across multiple showings—a feature
that can, depending on the scenario, be both desirable and undesirable. While
it can be helpful to detect, e.g., unauthorized double-usage of resources, it can
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be that for some applications (like annual tickets in public transport), however,
it guarantees too little privacy.

This leads us to multi-show credentials which are anonymous credential sys-
tems supporting an arbitrary number of unlinkable showings. More precisely, in
a multi-show credential system, a user obtains a credential from an organization
typically in a non-anonymous way but can later perform an arbitrary number of
unlinkable showings. In this sense, multi-show credentials are dual to one-show
credentials. They can be built in a similar vein using different types of signatures:
A user obtains a signature on (commitments to) attributes, then randomizes the
signature (such that the resulting signature is unlinkable to the issued one) and
proves in ZK the correspondence of this signature with the shown attributes as
well as the undisclosed attributes [CL03, CL04].

In this chapter we will give new ways to build efficient one-show and multi-
show ABCs in the standard model. In Section 7.1, we will show how to build
one-show ABCs in the vein of Brands from our blind-signature scheme on mes-
sage vectors (cf. Scheme 5). It is the first such scheme that is based on a blind-
signature scheme having security proofs in the standard model (and, moreover,
being blind against malicious issuer keys). In Section 7.2, we will present a new
and surprisingly efficient construction paradigm for multi-show ABC systems. It
is based on SPS-EQ and set commitments and the first multi-show ABC scheme
having constant-size credentials and constant communication effort during show-
ings (i.e., independently of the number of shown attributes). Moreover, it is the
first scheme that is anonymous against malicious organizations in the standard
model. Last but not least, we introduce a comprehensive game-based security
model for multi-show ABCs, in which we prove our construction secure.

The results in this chapter are joint work with Daniel Slamanig and Georg
Fuchsbauer. This chapter details several different ABC-system constructions:
The one-show credential system from [FHS15a] and the multi-show credential
system from [HS14, FHS16].

7.1 Attribute-Based One-Show Credentials (aka
Anonymous Credentials Light)

One-show credential systems are typically built from blind signatures following
the approach from Brands [Bra00], which has been implemented in Microsoft’s
U-Prove [BP10]. Thereby, blind signatures ensure that no party is able to link
the credential issuance to any of its showings, while different showings of the
same credential are linkable. In 2013, Baldimtsi et al. [BL13b] showed that
with currently known proof techniques the underlying blind-signature scheme
by Brands [Bra00] cannot be proven secure. To get around this problem, they
propose a generic construction of one-show credentials (in the fashion of Brands;
called “Anonymous Credentials Light”) secure in the ROM [BL13a]. Their cre-
dential system is based on a blind-signature scheme that they term blind sig-
natures with attributes, for which they also give a construction based on a
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non-round-optimal blind-signature scheme by Abe [Abe01].
In the following, we adapt the approach from [BL13a] and show how to

build a one-show credential system from our round-optimal blind signature with
attributes construction in Scheme 5, whose security proofs hold in the standard-
model (in contrast to [BL13a]).

The intuition behind our construction is comparable to [BL13a], which works
in the following fashion. In the registration phase, a user registers (once) a gener-
alized Pedersen commitment C to her attributes and gives a ZKP of the opening
(some attributes may be opened and some may remain concealed). In the prepa-
ration and validation phase, the user engages in a blind-signature-with-attributes
protocol for some message m (which is considered the credential serial number)
and another commitment C ′. C ′ is a so-called combined commitment obtained
from C and a second credential-specific commitment provided by the user. Fi-
nally, the credential is the user output of a blind-signature-with-attributes pro-
tocol resulting in a signature on message m and a so-called blinded Pedersen
commitment C ′′. The latter contains the same attributes as C, but is unlinkable
to C and C ′. Showing a credential amounts to presenting C ′′ along with the
blind signature and proving in ZK a desired relation about the attributes within
C ′′.

Our construction combines Scheme 5 with efficient ZKPoKs and is concep-
tually simpler than the one in [BL13a]. For issuing, the user sends the issuer
a blinded version M ← (sC, sP ) of a commitment C to the user’s attributes
(M corresponds to the blinded generalized Pedersen commitment in [BL13a]).
In addition, the user engages in a ZKPoK (denoted PoK) proving knowledge of
an opening of C (potentially revealing some of the committed attributes). The
user obtains a BSV-signature (cf. Scheme 5) π on M and turns it into a blind
signature σ for commitment C by running ((C,P ), σ)←R ChgRepR(M,π, 1s , pk).
The credential consists of C, σ and the randomness r used to produce the com-
mitment. It is showed by sending C and σ and proving in ZK a desired relation
about attributes within C.

For ease of presentation, we only consider selective attribute disclosure below.
We note that proofs for a rich class of relations [CDS94, CM99, BS02b] with
respect to generalized Pedersen commitments, as used by our scheme, could be
used instead. Henceforth, we denote by S the index set of attributes to be shown
and by U those to be withheld. During a showing, a ZKPoK for a commitment
C =

∑
i∈[n]miPi + rQ to attributes ~m = (mi)i∈[n] ∈ Zpn amounts to proving

PoKP

{(
(αj)j∈U , β

)
: C =

∑
i∈SmiPi +

∑
j∈U αjPj + βQ

}
. (7.1)

The proof for a blinded commitment (A,B) = (sC, sP ) during the obtain phase
is done as follows.

PoKBP

{(
(αj)j∈U , β, γ

)
:
A =

∑
i∈SmiHi +

∑
j∈U αjHj + βHQ ∧∧

i∈[n](Hi = γPi) ∧HQ = γQ ∧B = γP

}
. (7.2)

Here the representation is with respect to bases Hi = sPi, HQ = sQ, which are
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published and guaranteed to be correctly formed by PoKBP.1

7.1.1 Construction

As we combine Scheme 5 with ZKPoKs, we need the following conceptual mod-
ifications. The signature τ = (σ,R, T ) reduces to τ = σ, since the user provides
a ZKPoK proving knowledge of the randomness r in C. Moreover, verification
takes C instead of ~m as verifiers have only access to the commitment. Conse-
quently, algorithm Verify of Scheme 5 only runs VerifyR.

Setup. The issuer runs (sk, pk)←R KeyGen(1κ, 1n), where n is the number of
attributes in the system, and publishes pk as her public key.

Issuing. A user with attributes ~m ∈ Zpn runs (st,M)←R U(1)(~m, pk; (s, r))
(where (s, r) is the chosen randomness), sends the blinded commitment M =
(sC, sP ) to the issuer and gives a proof PoKBP from (7.2) that M commits to ~m
(where the sets U and S depend on the application). On success, the issuer then
returns π←R S(M, sk) and after running σ←R U(2)(st, π) (the outputs rP and rQ
are not needed), the user holds a credential (C, σ, r).

Showing. Assume a user with credential (C, σ, r) to a vector of attributes ~m ∈
Zpn wants to conduct a selective showing of attributes with a verifier who holds
the issuer’s public key pk. They engage in a proof PoKP from (7.1) and the verifier
additionally checks the signature for the credential by running Verify(C, σ, pk).
If both verifications succeed, the verifier accepts the showing.

Security

Let us finally note that there is no formal security model for one-show creden-
tials. Theorem 2 in [BL13a] informally states that a secure commitment scheme
together with a blind-signature scheme with attributes implies a one-show cre-
dential system. Using the same argumentation as [BL13a], our construction
yields a one-show credential system in the standard model.

7.2 Multi-Show Credentials from SPS-EQ and
Set Commitments

In this section, we present an application of SPS-EQ and our set-commitment
scheme from Chapter 6 by using them as basic building blocks for an ABC
system.

1In the blindness game, given B = sP from a DDH instance, these bases are simulated
as Hj ← pjB and HQ ← qB. We can even prove security in the malicious-signer model by
extending Assumption 4.11: In addition to Q the adversary outputs (Pi)i∈[n] and receives
(sPi)i∈[n] and sQ.
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Multi-show ABCs can be constructed in the following way: A user obtains a
signature on (commitments to) attributes, then randomizes the signature (such
that the resulting signature is unlinkable to the issued one) and proves in ZK
the correspondence of this signature with the shown attributes as well as the
undisclosed attributes [CL03, CL04]. Our approach also achieves multi-show
ABCs, but differs from the latter significantly: We randomize both the signa-
ture and the message (which is a set commitment to attributes). Moreover, we
use subset-opening of set commitments to enable selective constant-size show-
ings of attributes. Thus, we do not require costly ZKPoKs over the attributes
at all (which are, otherwise, at least linear in the number of shown/encoded at-
tributes). Moreover, our ABC is the first to achieve anonymity in the malicious
key model without a CRS.

We start with a discussion of the functionality and security of ABCs in Sec-
tions 7.2.1 and 7.2.2. After providing some intuition for our construction (Sec-
tion 7.2.3), we present the scheme (Section 7.2.4) and discuss its security in
Section 7.2.5. In Section 7.2.6, we will sketch a scheme variant that is concur-
rently secure in the CRS model. Finally, we give a performance and functionality
comparison with other existing approaches in Section 7.2.7.

7.2.1 Model of Multi-Show ABCs

In an ABC system there are different organizations issuing credentials to different
users. Users can then anonymously demonstrate possession of these credentials
to verifiers. Such a system is called multi-show ABC system when transactions
(issuing and showings) carried out by the same user cannot be linked. A cre-
dential cred for user i is issued by an organization for a set of attributes A.

Definition 7.1 (Multi-show anonymous attribute-based credential (ABC) sys-
tem). A multi-show anonymous ABC system ABC consists of the following PPT
algorithms:

OrgKeyGen(1κ, 1t): A probabilistic algorithm that gets (unary representations of)
a security parameter κ and an upper bound t for the size of attribute sets.
It outputs a key pair (osk, opk) for an organization.

UserKeyGen(1κ): A probabilistic algorithm that gets (the unary representation
of) a security parameter κ and outputs a key pair (usk, upk) for a user.

(Obtain(usk, opk, A), Issue(upk, osk, A)): These algorithms are run by a user and
an organization, who interact during execution. Obtain is a probabilistic
algorithm that takes input the user’s secret key usk, an organization’s pub-
lic key opk and a non-empty attribute set A of size |A| ≤ t. Issue is a
probabilistic algorithm that takes input a user’s public key upk, the organi-
zation’s secret key osk and a non-empty attribute set A of size |A| ≤ t. At
the end of this protocol, Obtain outputs a credential cred for the user for
attributes A or ⊥ if the interaction was not successful.
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(Show(opk, A, A′, cred),Verify(opk, A′)): These algorithms are run by a user and
a verifier, who interact during execution. Show is a probabilistic algorithm
that takes input the organization’s public key opk, an attribute set A of size
|A| ≤ t, a non-empty set A′ ⊆ A (representing the attributes to be shown)
and a credential cred. Verify is a deterministic algorithm that takes input
the organization’s public key opk and a set A′. At the end of the protocol,
Verify outputs 1 or 0 indicating whether or not it accepts the credential
showing.

7.2.2 Security of ABCs

We now present an appropriate security model for multi-show ABCs, which
is a game-based model in the vein of group signatures [BSZ05] and considers
malicious organization keys. We note that there are no other comprehensive
models available for ABC systems—apart from independently developed very
strong simulation-based notions in [CKL+14, CDHK15].

Overview

We start with a high-level overview of the required security properties and note
that we consider only a single organization in our model of unforgeability and
anonymity (since all organizations have independent signing keys, the extension
to multiple organizations is straightforward):

Correctness: A showing of a credential with respect to a non-empty set A′

of attributes and values must always verify if the credential was issued
honestly with respect to some A with A′ ⊆ A.

Unforgeability: A user cannot perform a valid showing of attributes for which
she does not possess a credential. Moreover, no coalition of malicious users
can combine their credentials and prove possession of a set of attributes
which no single member has. This holds even after seeing showings of
arbitrary credentials by honest users.

Anonymity: During a showing, no verifier and no (malicious) organization
(even if they collude) should be able to identify the user or find out any-
thing about the user, except for the fact that she owns a valid credential
for the shown attributes. Furthermore, different showings of a user using
the same credential are unlinkable.

Definitions

In the following, we provide formal definitions of these properties, for which we
introduce several global variables and oracles.
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Global variables. At the beginning of each experiment, either the experiment
computes an organization key pair (osk, opk) or the adversary outputs opk. In
the anonymity game there is a bit b, which the adversary must guess.

In order to keep track of all the users, in particular all honest and corrupt
users and those whose secret keys and credentials have leaked, we introduce the
sets U, HU, CU and KU, respectively. We use the lists UPK, USK, CRED, ATTR and
I2U to track issued user public and secret keys, credentials and corresponding
attributes and to which user they were issued. Furthermore, we use the sets
JLoR and ILoR to store the issuance indices and corresponding users that have
been set during the first call to the left-or-right oracle in the anonymity game.

Oracles. The oracles are as follows:

OHU+(i): It takes input a user identity i. If i ∈ U, it returns ⊥. Otherwise, it
creates a new honest user i by running (USK[i], UPK[i])←R UserKeyGen(1κ),
adding i to U and to HU and returning UPK[i].

OCU+(i, upk): It takes input a user identity i and a user public key upk. If i ∈ U,
it returns ⊥. Otherwise, it adds user i to the sets U and CU, and sets
UPK[i]← upk.

OKU+(i): It takes input a user identity i. If i 6∈ HU or i ∈ ILoR, it returns ⊥.
Otherwise, it reveals the secret key and all credentials of user i by returning
USK[i] and CRED[j] for all j with I2U[j] = i. It removes i from HU and adds
it to KU.

OObtIss(i, A): It takes input a user identity i and a set of attributes A. If i 6∈ HU,
it returns ⊥. Otherwise, it runs

(cred,>)←R (Obtain(USK[i], opk, A), Issue(UPK[i], osk, A)).

If cred = ⊥, it returns ⊥. Else, it appends (i, cred, A) to (I2U, CRED, ATTR)
and returns >.

OObtain(i, A): It takes input a user identity i and a set of attributes A. If i 6∈ HU,
it returns ⊥. Otherwise, it runs

(cred, ·)←R (Obtain(USK[i], opk, A), · ),

where the Issue part is executed by the caller (the dishonest organization).
If cred = ⊥, it returns ⊥. Else, it appends (i, cred, A) to (I2U, CRED, ATTR)
and returns >.

OIssue(i, A): It takes input a user identity i and a set of attributes A. If i 6∈ CU, it
returns ⊥. Otherwise, it runs

(·, I)←R ( · , Issue(UPK[i], osk, A)),

where the Obtain part is executed by the caller (the dishonest user). If
I = ⊥, it returns ⊥. Else, it appends (i,⊥, A) to (I2U, CRED, ATTR) and
returns >.
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OShow(j, A′): It takes input an index of an issuance j and a set of attributes A′.
Let i← I2U[j]. If i 6∈ HU, it returns ⊥. Otherwise, it runs

(S, ·)←R (Show(opk, ATTR[j], A′, CRED[j]), · ),

where the Verify part is executed by the caller (the dishonest verifier).

OLoR(j0, j1, A
′): It takes two issuance indexes j0 and j1 and a set of attributes

A′. If JLoR 6= ∅ and JLoR 6= {j0, j1}, it returns ⊥. Let i0 ← I2U[j0] and
i1 ← I2U[j1]. If JLoR = ∅, then it sets JLoR ← {j0, j1} and ILoR ← {i0, i1}.
If i0, i1 6∈ HU or A′ 6⊆ ATTR[j0] ∩ ATTR[j1], it returns ⊥. Else, it runs

(S, ·)←R (Show(opk, ATTR[jb], A
′, CRED[jb]), · ),

(with b set by the experiment) where the Verify part is executed by the
caller.

Using the global variables and oracles just defined, we now define security of an
ABC system:

Definition 7.2 (Correctness). A multi-show anonymous ABC system ABC is
correct if for all κ > 0, all t > 0, all attribute sets A with 0 < |A| ≤ t, all
∅ 6= A′ ⊆ A, all choices of organization key pairs (osk, opk)←R OrgKeyGen(1κ, 1t),
all choices of user key pairs (usk, upk)←R UserKeyGen(1κ) and all choices of
(cred,>)←R (Obtain(usk, opk, A), Issue(upk, osk, A)) it holds that:

Pr [ (>, 1)←R (Show(opk, A, A′, cred),Verify(opk, A′)) ] = 1.

Definition 7.3 (Unforgeability). A multi-show anonymous ABC system ABC
is unforgeable if for all t > 0 and all PPT adversaries A having oracle access
to O := {OHU+ ,OCU+ ,OKU+ ,OObtIss,OIssue,OShow} there is a negligible function ε(·)
such that:

Pr

 (osk, opk)←R OrgKeyGen(1κ, 1t),
(A′, st)←R AO(opk),
(·, b∗)←R (A(st),Verify(opk, A′))

:
b∗ = 1

∧ ∀j : I2U[j] ∈ KU ∪ CU
⇒ A′ 6⊆ ATTR[j]

 ≤ ε(κ).

Definition 7.4 (Anonymity). A multi-show anonymous ABC system ABC is
anonymous if for all t > 0 and all PPT adversaries A having oracle access to
O := {OHU+ ,OCU+ ,OKU+ ,OObtain,OShow,OLoR} there is a negligible function ε(·)
such that:

Pr

[
b←R {0, 1}, (opk, st)←R A(1κ, 1t),
b∗←R AO(st)

: b∗ = b

]
− 1

2
≤ ε(κ).

7.2.3 Intuition of Our Construction

Our construction of ABCs is based on SPS-EQ, on set commitments with sub-
set openings and on a single constant-size PoK for guaranteeing freshness. In
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contrast to this, the complexity of PoKs in existing ABC systems [Bra00, CL01,
CL03, CL04, CL11, CL13] is linear in the number of shown (or even issued)
attributes. However, aside from selective disclosure of attributes, they usually
allow to prove statements about non-revealed attribute values, such as AND,
OR and NOT, interval proofs, as well as conjunctions and disjunctions of the
aforementioned. We achieve less expressiveness; our construction supports selec-
tive disclosure as well as AND statements about attributes (as the constructions
in [CL11, CL13, CDHK15], of which only the latter also achieves constant-size
showings). A user can thus either open some attributes and their corresponding
values or solely prove that some attributes are encoded in the respective creden-
tial without revealing their concrete values. Note that one can always associate
sets of values to attributes, so that one is not required to reveal the full at-
tribute value, but only predefined “statements” about the attribute value, e.g.,
“01.01.1980”,“> 16”, or “> 18” for an attribute label birthdate. This allows
emulation of proving properties about attribute values and, thus, enhances the
expressiveness of the system.

Outline

We assume attributes to be values from Zp and note that we can define attributes
of arbitrary format by using a collision-resistant hash function h : {0, 1}∗ → Zp.
In our construction a credential cred of user i consists of a group element C, a
scalar r ∈ Zp∗, a modified opening O of C (not containing the attributes) and
an SPS-EQ signature σ on (C, r · C,P ). The element C is a set commitment
to a set of attributes A ⊂ Zp, whose randomness is the user secret usk (thus,
its opening O contains usk or the commitment trapdoor a, if a ∈ A). Using
usk in that way allows us to efficiently demonstrate knowledge of the secret
during issuing and is, moreover, important to achieve anonymity (omitting usk
in our construction would immediately break anonymity). The values C and r
define an equivalence class [(C, r · C,P )]R that is unique for each credential with
overwhelming probability. The scalar r and the third credential component are
merely artifacts of the unforgeability proof, i.e., to make the reduction work.
During a showing, a random representative of this class, (C1, C2, C3)←R [(C, r ·
C,P )]R, together with a consistently updated signature σ′ is presented. The
randomized commitment C1 is then subset-opened to the shown attributes A′ ⊆
A (representing selective disclosure). Hence, showings additionally include a
witness W and a verifier checks whether the encodings of the disclosed attributes
and W give a valid subset opening of C1. In order to guarantee freshness, the
prover also performs a constant-size ZKPoK of the DL of C2 to base C1 (which
is the randomness r) and the discrete logarithm of C3 to base P (the randomizer
used for obtaining (C1, C2, C3) from (C, r · C,P )).

We now give more details on attribute representation and freshness.

Example 7.5. To give an idea of the expressiveness of our construction, we
include an example of an attribute set A. We are given a user with the following
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set of attribute and value strings (which are hashed into Zp via h):

A = {h(“gender, male”), h(“birthdate, 01.01.1980”),

h(“drivinglicense,#”), h(“drivinglicense, car”)}.

Note that # indicates an attribute value that allows to prove the possession
of the attribute without revealing any concrete value. A showing could, for
instance, involve the following attributes A′ and its hidden complement A \ A′:

A′ = {h(“gender, male”), h(“drivinglicense,#”)},
A \ A′ = {h(“birthdate, 01.01.1980”), h(“drivinglicense, car”)}.

Freshness. We have to guarantee that no valid showing transcript can be
replayed by someone not in possession of the credential. To do so, we require the
user to conduct a ZKPoK PoK{β : C3 = βP} of the DL of the third component
C3 = µP of a shown credential cred′ = ((C1, C2, C3), σ′), i.e., the randomizer µ
used in the showing protocol. This guarantees that we have a fresh challenge for
every showing. For the unforgeability proof to work out, the user additionally
proves knowledge of r = logC1

C2 by conducting a ZKPoK PoK{α : C2 = αC1}.
We use the compact notation ΠRF(C1, C2, C3) for the AND-composition of both
proofs, i.e., ΠRF(C1, C2, C3) := PoK{(α, β) : C2 = αC1 ∧ C3 = βP}.

Malicious Organization Keys. In contrast to anonymity notions usually
considered for ABCs, we aim for anonymity of constructions to hold even against
adversaries that generate the organization keys maliciously. Moreover, we target
the standard model. To this end, organization public keys consist of an SPS-
EQ public key pk and the set-commitment parameters ppSC. Furthermore, we
augment the issuing protocol sketched above and let the (malicious) organization
prove knowledge of a secret key that is consistent with its public key (which
allows us to extract the signing key in the anonymity proof).

For an SPS-EQ scheme SPS-EQ we define an NP-relation RVK, whose state-
ments and witnesses are public and private keys, i.e.: (pk, sk) ∈ R′VK ⇐⇒
VKeyR(sk, pk) = 1. In our proof of anonymity we additionally need to extract
the set-commitment trapdoor a ∈ Zp, so we augment the above relation to:

((aP, pk), (w1, w2)) ∈ RVK ⇐⇒ (aP = w1P ∧ VKeyR(w2, pk) = 1),

where aP stems from the set-commitment parameters ppSC contained in opk.
For the sake of compactness, we use the notation ΠRVK(opk) and require the
proof to be a perfect ZKPoK.

ZKPoKs and Concurrent Security. We will consider both ZKPoKs in
a black-box way. They can be efficiently instantiated using, e.g., the 4-move
ZKPoK proof systems from [CDM00], which is based on Σ-protocols and fea-
tures rewindable black-box access to the verifier (Definition 2.29). We refer the
reader to Section 2.6 for more details on that. Note, however, that the ZKPoKs
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from [CDM00] are not concurrently secure. Hence, any instantiation of Scheme 9
with them, yields a non-concurrently secure ABC. In other words, each organiza-
tion, each user and each verifier must not run more than one protocol execution
at once. In Section 7.2.6, we will discuss a concurrently secure scheme variant
in the CRS model.

7.2.4 The Construction of the ABC System

Our ABC system is based on any perfectly-adapting SPS-EQ SPS-EQ and the
set-commitment scheme SC in Scheme 8 (cf. Section 6.2) and is described in
Scheme 9.

In particular, since the organization public key is fully determined by the ad-
versary (for malicious-key anonymity), we assume the bilinear-group generation
algorithm of SPS-EQ and the one inside the set-commitment setup algorithm to
be deterministic2,3 and produce the same bilinear group for each security pa-
rameter. We will base our proofs on assumptions that are modified accordingly,
i.e., that are with respect to a deterministic BGGen producing the same bilinear
group for each security parameter.

Modified Set-Commitment Algorithms

For the sake of readability, we use custom variants of the set-commitment algo-
rithms Commit and OpenSubset of scheme SC: Commit′ and OpenSubset′.

Commit′ gives partial control over the randomness ρ used during the compu-
tation of the commitment and returns a modified opening not containing the set
(as we include the opening into our credentials, this would lead to an artificial
blow-up of the credential size). In particular, it returns a commitment with
randomness ρ if a 6∈ S and a uniformly random commitment otherwise.

Commit′(pp, S, ρ): On input pp = (BG, (aiP, aiP̂ )i∈[t]), a non-empty set S ⊂ Zp
with |S| ≤ t and a scalar ρ ∈ Zp∗:

• If for some a′ ∈ S: a′P = aP , output C←R G∗1 and opening O ←
(1, a′). (as in Commit except for not including S into O)

• Else compute C ← ρ · fS(a)P ∈ G∗1 and output (C,O) with O ←
(0, ρ). (ρ was given input and is not drawn internally as in Commit;
moreover, S is not included into O)

We adapt OpenSubset′ to deal with rerandomized commitments.

OpenSubset′(pp, C,O, µ, T ): On input pp = (BG, (aiP, aiP̂ )i∈[t]), a commitment
C, opening O, a scalar µ ∈ Zp∗ and a set T , let S ← Open(pp, µ−1 · C,O).

2As already pointed out in Chapter 4, this is, e.g., the case for BN curves [BN06]; the most
common choice for Type-3 pairings.

3Hence, the only randomness used by the set-commitment setup algorithm is the one used
for picking the commitment trapdoor. Inside OrgKeyGen, we will make this randomness ex-
plicit.
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If S = ⊥, T * S or T = ∅ then output ⊥. (contrary to OpenSubset,
Open is being run on µ−1 · C instead of C)

• If O = (1, a′, S): If a′ ∈ T , return W ← ⊥; else return W ← fT (a′)−1 ·
C. (as in OpenSubset)

• If O = (0, ρ, S), output W ← µ · ρ · fS\T (a)P . (contrary to
OpenSubset, W gets additionally multiplied by µ)

Optimizations

Note that the first move in the showing protocol can be combined with the
first move of ΠRF , meaning the showing protocol consists of a total of four
moves, when using 4-move ZKPoKs. Also, the moves in the issue protocol can
be collapsed. Furthermore, note that the issuance can be made more efficient
with regard to both communication complexity and computational effort, as
osk contains set-commitment trapdoor a (for the sake of presentation based on
the introduced set-commitment algorithms, we, however, do not augment the
scheme in that particular way).

7.2.5 Security

The correctness of Scheme 9 follows by inspection. Subsequently, we will prove
the following:

Theorem 7.6. Let ΠRF and ΠRVK be ZKPoKs. If the t-co-DL assumption holds,
SC is subset-sound and SPS-EQ is EUF-CMA-secure, then Scheme 9 is unforge-
able.

Theorem 7.7. Let ΠRF be a ZKPoK. If the SPS-EQ has a class-hiding message
space and perfectly adapts signatures, then Scheme 9 is anonymous.

Proof of Theorem 7.6

In the proof of unforgeability we distinguish whether the adversary won the game
by forging a signature, breaking subset-opening soundness of the commitment
scheme or computing a discrete logarithm. We can efficiently determine which
was the case since the knowledge extractor of the ZKPoK ΠRF lets us extract
the used credential.

Proof. We first introduce the following syntactic changes to the scheme and the
experiment, which let us distinguish different types of forgeries: (1) We include
value R = r ·C into credentials cred output by Obtain (they are now of the form
cred = ((C,R), σ, r, O)). (2) When the adversary makes a valid call to OIssue,
the experiment receives the values C,R and produces a signature σ; instead of
appending ⊥ to the list CRED, the oracle now appends ((C,R), σ,⊥,⊥) to the
list. (Altogether, this lets us check whether the adversary forged a signature
when winning the unforgeability game.)
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Scheme 9 A multi-show ABC system.

OrgKeyGen(1κ, 1t): Given κ, t > 0 in unary, pick a←R Zp, run ppSC =

(BG, (aiP, aiP̂ )i∈[t]) ← Setup(1κ, 1t; a), run (sk, pk)←R KeyGenR(BG, 1`)
for ` = 3 and return (osk, opk)← ((a, sk), (ppSC, pk)).

UserKeyGen(1κ): Given security parameter κ in unary, run BG← BGGenR(1κ),
pick usk←R Zp∗, set upk← usk · P and return (usk, upk).

(Obtain, Issue): Using ΠRVK(opk) := PoK{(α, ~β) : αP = aP∧ VKeyR(~β, pk) = 1},
Obtain and Issue interact as follows:

Obtain(usk, opk, A) Issue(upk, osk, A)

If A = ∅ ∨ A 6⊂ Zp ∨ |A| > t If A = ∅ ∨ A 6⊂ Zp ∨ |A| > t

return ⊥ return ⊥
BG← BGGenR(1κ)

If ΠRVK fails, return ⊥ ΠRVK (opk)←−−−−→
(C,O)←R Commit′(ppSC, A, usk)

r←R Zp∗, R← r · C C,R−−→ If e(C, P̂ ) 6= e(upk, fA(a)P̂ ) and

∀a′ ∈ A : a′P 6= aP , return ⊥
If VerifyR((C,R, P ), σ, pk) = 0

σ←− Else σ←R SignR((C,R, P ), sk)

return ⊥

Return cred← (C, σ, r,O)

(Show,Verify): Using ΠRF(C1, C2, C3) := PoK{(α, β) : C2 = αC1 ∧ C3 = βP},
Show and Verify interact as follows:

Show(opk, A, A′, cred) Verify(opk, A′)

Let cred = (C, σ, r,O); µ←R Zp∗

cred′←R ChgRepR((C, r ·C,P ), σ, µ, pk)

If cred′ = ⊥, return ⊥
Let cred′ = ((C1, C2, C3), σ′)
~C ← (C1, C2, C3), O′ ← (O, A)

W ← OpenSubset′(ppSC, C1, O
′, µ, A′) cred′,W−−−−→

ΠRF ( ~C)←−−−→ If ΠRF fails, return 0

Return
(
VerifyR(cred′, pk) ∧

VerifySubset(ppSC, C1, A
′,W )

)
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Assume now an efficient adversary A wins the unforgeability game (Def-
inition 7.3) with non-negligible probability and let ((C∗1 , C

∗
2 , C

∗
3 ), σ∗) be the

message-signature pair it uses and W ∗ be the witness for an attribute set A′∗ 6⊆
ATTR[j], for all j with I2U[j] ∈ KU ∪ CU; moreover, the ZKPoK ΠRF(C∗1 , C

∗
2 , C

∗
3 )

verifies. We distinguish the following cases:

Type 1: [(C∗1 , C
∗
2 , C

∗
3 )]R 6= [(C,R, P )]R for ((C,R), σ, ∗, ∗) = CRED[j] for all

issuance indexes j (i.e., I2U[j] ∈ KU ∪ CU ∪ HU).

Since ((C∗1 , C
∗
2 , C

∗
3 ), σ∗) is a valid pair, we are dealing with a signature

forgery. Using A we construct an adversary B that breaks the EUF-CMA
security of the SPS-EQ scheme.

Type 2: [(C∗1 , C
∗
2 , C

∗
3 )]R = [(C,R, P )]R where ((C,R), σ, ∗, ∗) = CRED[j] for

some j with I2U[j] ∈ KU ∪ CU.

Since A only wins if A′ 6⊆ ATTR[j], it must have broken the subset-soundness
property of set commitments. We use A to construct an adversary B that
breaks subset soundness of the set-commitment scheme SC.

Type 3: [(C∗1 , C
∗
2 , C

∗
3 )]R = [(C,R, P )]R where ((C,R), σ, r, O) = CRED[j] for

some j with I2U[j] ∈ HU.

Then, we use A to break q-co-DLP.

Type 1. B interacts with the challenger C in the EUF-CMA game of the SPS-
EQ scheme and B simulates the ABC-unforgeability game for A.

C sets up (sk, pk) for the SPS-EQ scheme with ` = 3 and gives pk to B,
which contains a bilinear-group description BG = (p,G1,G2,GT , e, P, P̂ ) =
BGGenR(1κ). Then, B picks a←R Zp and defines ppsc ← (BG, (aiP, aiP̂ )i∈[t]);
it moreover sets (osk, opk) ← ((a,⊥), (ppsc, pk)). Next B runs A(opk) and sim-
ulates the environment and the oracles. All oracles are as in the real game,
except for the following oracles, whose simulations deviate from the real game
as follows:

OObtIss(i, A): Instead of creating a credential by running (Obtain, Issue), B ap-
pends (i,⊥, A) to (I2U, CRED, ATTR).

OKU+(i): For all j such that I2U[j] = i, B computes (C,O)←R Commit′(ppsc,
ATTR[j], USK[i]), chooses r←R Zp∗ and queries C’s signing oracle SignR(·, sk)
on message (C, r · C,P ) to obtain σ; B sets CRED[j] ← ((C, r · C), σ, r, O)
and runs this oracle as in the real game.

OIssue(i, A): B runs this oracle by running the simulator S of ZKPoK ΠRVK(opk)
(as it does not know sk = osk[2]), moreover instead of signing (C,R, P ), B
obtains the signature σ from C’s signing oracle.

OShow(j, A′): B computes (C,O)←R Commit′(ppsc, ATTR[j], USK[I2U[j]]), chooses
r←R Zp∗ and queries a signature σ on message (C, r · C,P ) to C’s sign-
ing oracle. B sets CRED[j] ← ((C, r · C), σ, r, O) and runs the oracle as in
the real game.
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When A outputs (A′∗, st), B runs A(st) and interacts with A as verifier in
a showing protocol. If A delivers a valid showing using ((C∗1 , C

∗
2 , C

∗
3 ), σ∗) and

conducting the ZKPoK ΠRF(C∗1 , C
∗
2 , C

∗
3 ), then B runs the knowledge extractor

E of ΠRF(C∗1 , C
∗
2 , C

∗
3 ) to obtain a witness w = (r′′, µ) such that C∗3 = µP .

If there is a credential ⊥ 6= ((C ′, R′), σ′, ∗, ∗) ∈ CRED such that (C ′, R′, P ) =
µ−1 · (C∗1 , C

∗
2 , C

∗
3 ) then B aborts. (In this case, the forgery is not of Type

1.) Otherwise, B outputs (M∗, σ∗)←R ChgRepR((C∗1 , C
∗
2 , C

∗
3 ), σ∗, µ−1, pk) as a

forgery to C and B wins the EUF-CMA game.
Note that by the perfect ZK property of ΠRVK(opk) the simulation of the

OIssue oracle is perfect. Moreover, the simulation of the OKU+ , the OObtIss and the
OShow oracles is perfect: In contrast to its definition, the simulated OObtIss oracle
does not create a credential, which goes unnoticed by A as the oracle returns only
> or ⊥ depending on whether the run was successful or not. Furthermore, the
simulated OKU+ and OShow oracles adapt their behaviors accordingly by creating
missing credentials on the fly when needed.

Type 2. B interacts with the challenger C in the subset-soundness game of the
scheme SC for some t > 0. We describe how B simulates the environment for
A and interacts with C. First, C generates set-commitment parameters ppsc ←
(BG, (aiP, aiP̂ )i∈[t]) with BG = (p,G1,G2,GT , e, P, P̂ ) = BGGenR(1κ) and sends

ppsc to B. B generates a key pair (sk, pk)←R KeyGenR(BG, 1`) for ` = 3, sets
(osk, opk) ← ((⊥, sk), (ppsc, pk)) and runs A(opk), simulating the oracles. All
oracles are as in the real game, except for OIssue, which is simulated as follows
(note that B does not know a):

OIssue(i, A): The oracle is simulated as prescribed except for running the simula-
tor S for ΠRVK(opk) (as it does not know a = osk[1]).

By the perfect ZK property of ΠRVK(opk) the simulation of the OIssue oracle
is perfect.

When A outputs (A′∗, st), B runs A(st) and interacts with A as verifier in a
showing protocol. Assume A delivers a valid showing using ((C∗1 , C

∗
2 , C

∗
3 ), σ∗)

and a witness W ∗ for the attribute set A′∗ such that A′∗ 6⊆ ATTR[j] for all j with
I2U[j] ∈ KU∪CU and by conducting ΠRF(C∗1 , C

∗
2 , C

∗
3 ). Then B runs the knowledge

extractor of ΠRF to obtain a witness w = (r′′, µ) such that C∗3 = µP . Let
(C ′, R′, P ) = µ−1 · (C∗1 , C∗2 , C∗3 ); if there is no credential ⊥ 6= ((C ′, R′), σ′, ∗, ∗) ∈
CRED, then B aborts (the forgery was of Type 1). Otherwise, let j∗ be such that
((C ′, R′), σ′, r′, O′) = CRED[j∗]. If I2U[j∗] ∈ HU, then B aborts (the forgery was
of Type 3). Else, we have I2U[j∗] ∈ KU ∪ CU and A′∗ * ATTR[j∗]. If for some
a′ ∈ ATTR[j∗] it holds that a′P = aP , then B sets O∗ ← (1, a′, ATTR[j∗]). Else,
B sets O∗ ← (0, µ · USK[I2U[j∗]], ATTR[j∗]). B outputs (C∗1 , O

∗, A′∗,W ∗), which
satisfies A′∗ 6⊆ ATTR[j∗] 6= ⊥ and VerifySubset(ppsc, C

∗
1 , A
′∗,W ∗) = 1. B’s output

breaks thus subset soundness of SC.

Type 3. We assume the forgery to be of Type 3 and use a sequence of games
which are indistinguishable under q-co-DL. Henceforth, we denote the event that
an adversary wins Game i by Si.
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Game 0: The original game, which only outputs 1 if the forgery is of Type 3.

Game 1: As Game 0, except for the following oracles:

OObtIss(i, A): As in Game 0, except that the experiment aborts if set-commitment
trapdoor a ∈ A.

OIssue(i, A): Analogous to the OObtIss oracle.

Game 0 → Game 1: If A queries a set A with a ∈ A to one of the two oracles,
then this breaks the q-co-DL assumption for q = t and BG = BGGenR(1κ). We
have that |Pr[S0]−Pr[S1]| ≤ εqDL(κ), where εqDL(κ) is the advantage of solving
the q-co-DL assumption.

Game 2: As Game 1, with the difference that the OShow oracle is being run as
follows:

OShow(j, A′): As in Game 0, but the ZKPoK ΠRF(C1, C2, C3) is simulated via
simulator S.

Game 1 → Game 2: By the perfect ZK property of ΠRF , we have that Pr[S1] =
Pr[S2].

Game 3: As Game 2, except that oracle OHU+ is run as follows:

OHU+(i): As in Game 0, but when executing UserKeyGen(1κ), the experiment
draws usk←R Zp instead of usk←R Zp∗ and it aborts if usk = 0.

Game 2 → Game 3: We have that |Pr[S2] − Pr[S3]| ≤ qu
p , where qu is the

number of queries to the OHU+ oracle.

Game 4: As Game 3, except for the following changes. When A eventually
delivers a valid showing by conducting the ZKPoK ΠRF(C∗1 , C

∗
2 , C

∗
3 ), then the

experiment runs the knowledge extractor E of ΠRF(C∗1 , C
∗
2 , C

∗
3 ) and extracts a

witness w.

Game 3→ Game 4: This change is only conceptual and we have Pr[S3] = Pr[S4].

Game 5: As Game 4, except that we pick an index k←R [qo], where qo is
the number of queries to the OObtIss oracle. The extracted witness w is such
that w = (r, µ) ∈ (Zp∗)2 and C∗2 = rC∗1 and C∗3 = µP and if credential
((C ′, R′), σ′, r′, O′)← CRED[k] is such that (C ′, R′, P ) 6= µ−1 · (C∗1 , C∗2 , C∗3 ), then
the experiment aborts. Furthermore, we change the executions of the following
oracle:

OKU+(i): As in Game 0, except that the experiment aborts when i = I2U[k].

Game 4 → Game 5: Note that when the forgery is of Type 3 then there ex-
ists some j s.t. for CRED[j] = ((C ′, R′), σ′, r′, O′) we have (C ′, R′, P ) = µ−1 ·
(C∗1 , C

∗
2 , C

∗
3 ); moreover, I2U[j] ∈ HU. With probability 1

qo
we have k = j, in

which case the experiment does not abort, i.e., we have Pr[S5] ≥ 1
qo

Pr[S4].
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We will now show that Pr[S5] ≤ εDL(κ), where εDL(κ) is the advantage of
solving the DLP. B plays the role of the challenger for A in Game 5 and ob-
tains an instance (BG, xP ) with BG = (p,G1,G2,GT , e, P, P̂ ) = BGGenR(1κ) for
DLP in G1, generates ppsc ← (BG, (aiP, aiP̂ )i∈[t]) by picking a←R Zp, generates

(sk, pk)←R KeyGenR(BG, 1`) for ` = 3 and sets (osk, opk) ← ((a, sk), (ppsc, pk)).
Then, B runs A(opk) and simulates the oracles as in Game 5, except for the
OObtIss oracle, whose simulation deviates from Game 5 as follows:

OObtIss(i, A): Let this be the jth query. B first computes C ← USK[i] · fA(a) · P .
If j = k then it sets R ← USK[i] · fA(a) · xP (= x · C), O = (0, USK[i])
and appends cred = ((C,R), σ,⊥, O) to CRED. Otherwise B proceeds as in
Game 5.

Note that since Game 2, the third component of the credential is not required to
simulate OShow queries. When A outputs (A′∗, st), then B runs A(st) and interacts
with A as verifier in a showing protocol. If A wins Game 5 using (C∗1 , C

∗
2 , C

∗
3 ) and

conducting the ZKPoK ΠRF(C∗1 , C
∗
2 , C

∗
3 ), then B runs the knowledge extractor

E of ΠRF(C∗1 , C
∗
2 , C

∗
3 ) and extracts a witness w = (r′, µ) ∈ (Zp∗)2 such that

C∗2 = r′C∗1 and C∗3 = µP . Further, we have that ((C ′, R′), σ′,⊥, O′) = CRED[k].
In the end, B outputs r′ as a solution to the DLP in G1.

In total, we have Pr[S5] ≤ εDL(κ), and with Pr[S4] ≤ qo · Pr[S5] as well as
Pr[S3] = Pr[S4] we obtain:

Pr[S3] = Pr[S4] ≤ qo · Pr[S5] ≤ qo · εDL(κ).

With |Pr[S2]− Pr[S3]| ≤ qu
p and Pr[S1] = Pr[S2], we obtain:

Pr[S1] = Pr[S2] ≤ Pr[S3] +
qu
p
≤ qo · εDL(κ) +

qu
p
.

Using |Pr[S0]− Pr[S1]| ≤ εqDL(κ), we finally have:

Pr[S0] ≤ Pr[S1] + εqDL(κ) ≤ qo · εDL(κ) +
qu
p

+ εqDL(κ),

where q = t; qo and qu are the number of queries to the OObtIss and the OHU+

oracle, respectively.

Proof of Theorem 7.7

The proof idea is to define a sequence of games in the last of which the answers of
oracle OLoR are independent of the bit b. In particular, such an answer contains
(C1, C2, C3), σ′ and the proof ΠRF(C1, C2, C3). We first replace the signature σ′

by a fresh signature (Game 2) and simulate the proof ΠRF (Game 3). In Games
5 and 6 we replace C1 and C2 by random elements. Since C3 = µ ·P for µ←R Zp∗,
in the final game the adversary receives a fresh signature σ′ on a random tuple
(C1, C2, C3) and a simulated proof, resulting in a game that is independent of b.



118 Chapter 7. Attribute-Based Credentials

Proof. We now prove the anonymity of Scheme 9 using a sequence of games.
We assume that adversary A at some point calls OLoR for some (j0, j1, A

′) with
I2U[j0], I2U[j1] ∈ HU. This is w.l.o.g., as otherwise the bit b is perfectly hidden
from A.

Henceforth, we denote the event that an adversary wins Game i by Si.

Game 0: The original game as given in Definition 7.4.

Game 1: As Game 0, except for the OObtain oracle. On the first successful
completion of the ZKPoK ΠRVK(opk) (of which there must be at least one by
the above assumption), the experiment runs its knowledge extractor E, which
extracts a witness (w1, w2).

Game 0→ Game 1: This change is only conceptual and we have Pr[S0] = Pr[S1].

Game 2: As Game 1, except that the experiment sets a ← w1 and sk ← w2

and runs the OLoR oracle as follows:

OLoR(j0, j1, A
′): As in Game 0, except that all executions of ChgRepR((C, r ·

C,P ), σ, µ, pk) for credential (C, σ, r,O) ← CRED[jb] and µ←R Zp∗ are re-
placed by (µ · (C, r · C,P ),SignR(µ · (C, r · C,P ), sk)).

Game 1 → Game 2: By soundness of ΠRVK , we have VKeyR(sk, pk) = 1, and by
SPS-EQ’s perfect adaptation of signatures (Definition 3.7), ChgRepR(M,σ, µ, pk)
and (µM, SignR(µM, sk)) are identically distributed for all M ∈ (G∗1)3. We thus
have Pr[S1] = Pr[S2].

Game 3: As Game 2, except that the experiment runs the OLoR oracle as
follows:

OLoR(j0, j1, A
′): As in Game 2, but the ZKPoK ΠRF(C∗1 , C

∗
2 , C

∗
3 ) is simulated

using its simulator S.

Game 2 → Game 3: By perfect ZK of ΠRF , we have that Pr[S2] = Pr[S3].

Game 4: As Game 3, except for the following changes. Let qu be the number
of queries made to the OHU+ oracle. At the beginning Game 4 picks k←R [qu] and
runs the OKU+ and OLoR oracles as follows.

OKU+(i): If i 6∈ HU or i ∈ ILoR, it returns ⊥ (as in the previous games). If i = k
then the experiment stops and outputs a random bit b′←R {0, 1}; otherwise
it returns user i’s usk and credentials and moves i from HU to KU.

OLoR(j0, j1, A
′): As in Game 3, except that if k 6= I2U[jb] then the experiment

stops and outputs b′←R {0, 1}.

Game 3→ Game 4: By assumption, OLoR is called at least once with some input
(j0, j1, A

′) with I2U[j0], I2U[j1] ∈ HU. If k = I2U[jb] then OLoR does not abort
and neither does OKU+ (it cannot have been called on I2U[jb] before that call to
OLoR (otherwise I2U[jb] /∈ HU), if called afterwards, it returns ⊥, since k ∈ ILoR).
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Since k = I2U[jb] with probability 1
qu

, the probability that the experiment does

not abort is at least 1
qu

, i.e., Pr[S4] ≥ 1
2 + 1

qu
· (Pr[S3]− 1

2 ).

Game 5: As Game 4, except for the OLoR oracle:

OLoR(j0, j1, A
′): As in Game 4, except that in addition to µ←R Zp∗, it randomly

picks C1←R G∗1 and performs the showing using cred′←R ((C1, r ·C1, µ ·P ),
SignR((C1, r · C1, µ · P ), sk)), with r ← CRED[jb][3], and W ← ⊥ (if a ∈ A′)
or W ← fA′(a)−1 · C1 (if a /∈ A′).

Note that the only difference is the choice of C1; W is distributed as in Game 4, in
particular, if a /∈ A′, it is the unique element satisfying VerifySubset(pp, C, A′,W ).

Game 4 → Game 5: Let (BG, xP, yP, zP ) be a DDH instance with BG =
BGGenR(1κ). After initializing the environment, the simulation initializes a list
L← ∅. The oracles are being simulated as in Game 4, except for the subsequent
oracles, which are simulated as follows:

OHU+(i): As in Game 4, but if i = k it sets USK[i] ← ⊥ and UPK[i] ← xP . (We
have thus implicitly set usk← x.)

OObtain(i, A): As in Game 4, except for the computation of the following values
if i = k. Let this be the jth call to this oracle. If a /∈ A, it computes C as
C ← fA(a) · xP and sets L[j] ← ⊥. If a ∈ A it picks ρ←R Zp∗, computes C
as C ← ρ · xP and sets L[j] ← ρ. (In both cases C is thus distributed as
in the original game.)

OShow(j, A′): As in Game 4, with the difference that if I2U[j] = k and a 6∈ A′ it
computes the witness W ← µfA\A′(a) · xP . (W is thus distributed as in
the original game.)

OLoR(j0, j1, A
′): As in Game 4, with the difference that it picks s, t←R Zp and

computes Y ′ ← t·yP+sP = y′P with y′ ← ty+s, and Z ′ ← t·zP+s·xP =
(t(z−xy)+xy′)P . (If z 6= xy then Y ′ and Z ′ are independently random.) It
performs the showing using the following values (implicitly setting µ← y′):

• If a 6∈ ATTR[jb]: C1 ← fA(a) · Z ′ and W ← fA′(a)−1 · C1;

• If a ∈ ATTR[jb]\A′: C1 ← ρ ·Z ′ with ρ← L[jb] and W ← fA′(a)−1 ·C1;

• If a ∈ A′: C1 ← ρ · Z ′ with ρ← L[jb] and W ← ⊥;

C2 ← r · C1, C3 ← Y ′ and r ← CRED[jb][3].

Apart from an error event happening with negligible probability, we have simu-
lated Game 4 if the DDH instance was valid and Game 5 otherwise. If xP = 0G1

,
or if during the simulation of the OLoR oracle Y ′ = 0G1

or Z ′ = 0G1
then the

distribution of values is not as in one of the two games. Otherwise, we have
implicitly set usk ← x and µ ← y′ (for a fresh value y′ at every call of OLoR).
In case of a DDH instance, we have (depending on the case) C1 ← uskµfA(a) ·P
(or C1 = ρ · xµ · P = µ · C); otherwise C1 is independently random.
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Hence, |Pr[S4] − Pr[S5]| ≤ εDDH(κ) + 1
p + ql · 2

p , where εDDH(κ) is the
advantage of solving the DDH problem and ql the number of queries to the
OLoR oracle.

Game 6: As Game 5, except for the OLoR oracle:

OLoR(j0, j1, A
′): As in Game 5, except that in addition to µ and C1 it also

picks C2←R G∗1 and performs the showing using cred′←R ((C1, C2, µ · P ),
SignR((C1, C2, µ · P ), sk)) and W as in Game 5.

Game 5 → Game 6: Let (BG, xP, yP, zP ) be a DDH instance with BG =
BGGenR(1κ). After initializing the environment, the simulation initializes a list
L← ∅. The oracles are being simulated as in Game 5, except for the subsequent
oracles, which are simulated as follows:

OObtain(i, A): As in Game 5, except for the computation of the following values if
i = k. Let this be the jth call to this oracle. It first picks u←R Zp and sets
X ′ ← xP +u ·P and L[j]← u. If a /∈ A, it computes C ← fA(a) · USK[i] ·P
and R ← fA(a) · USK[i] · X ′. If a ∈ A, it picks ρ←R Zp∗ and computes
C ← ρ · P and R ← ρ · X ′. In both cases it sets r ← ⊥ (r is implicitly
set to r ← x′ := x + u and C and R = r · C are distributed as in the
original game; unless X ′ = 0G1). Note that, since the ZKPoK in OShow is
simulated, r is not used anywhere in the game.

OLoR(j0, j1, A
′): As in Game 5, with the difference that it fetches u ← L[jb],

picks s, t←R Zp and computes Y ′ ← t · yP + s · P = y′P with y′ ← ty + s,
and Z ′ ← t · zP + s · xP + ut · yP + us · P = (t(z − xy) + x′y′)P . It picks
µ←R Zp∗ and performs the showing using C1 ← Y ′, C2 ← Z ′ and C3 ← µ·P .
Witness W is computed from C1 as in the previous simulation.

Apart from an error event happening with negligible probability, we have simu-
lated Game 5 if the DDH instance was valid and Game 6 otherwise. If X ′ = 0G1

during the simulation of the OObtain oracle, or if during the simulation of the
OLoR oracle Y ′ = 0G1

or Z ′ = 0G1
then the distribution of values is not as in one

of the two games. Otherwise, we have implicitly set r ← x′ (for a fresh value
x′ at every call of OObtain) and C1 ← Y ′ (for a fresh value Y ′ at every call of
OLoR). In case of a DDH instance, we have C2 = r ·C1 (as prescribed by Game
5); otherwise C2 is independently random (as prescribed by Game 6).

Hence, |Pr[S5] − Pr[S6]| ≤ εDDH(κ) + qo · 1p + ql · 2p , where εDDH(κ) is the
advantage of solving the DDH problem; qo and ql the number of queries to the
OObtain and OLoR oracle, respectively.

In Game 6 the OLoR oracle returns a fresh signature σ on a random triple
(C1, C2, C3)←R (G∗1)3 and a simulated proof; bit b is thus information-theoretic-
ally hidden from A. In total, we have

Pr[S5] ≤ Pr[S6] + εDDH(κ) + (qo + 2ql)
1

p
=

1

2
+ εDDH(κ) + (qo + 2ql)

1

p
,

Pr[S4] ≤ Pr[S5] + εDDH(κ) + (1 + 2ql)
1

p
≤ 1

2
+ 2 · εDDH(κ) + (1 + qo + 4ql)

1

p
.
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Then, we have that Pr[S4]− 1
2 ≥

1
qu
·(Pr[S3]− 1

2 ) and Pr[S0] = Pr[S1] = Pr[S2] =

Pr[S3], giving us:

Pr[S0] = Pr[S3] ≤ 1

2
+ qu ·

(
2 · εDDH(κ) + (1 + qo + 4ql)

1

p

)
.

where qu, qo and ql are the number of queries to the OHU+ , OObtain and the OLoR

oracle, respectively.

7.2.6 A Concurrently Secure Scheme Variant

We now sketch a more efficient and concurrently secure variant of our scheme,
which uses public parameters.

As briefly discussed in Section 2.6, [Dam00] proposes a generic transform
which—under the assumption of OWFs and at the expense of a CRS—converts
any Σ-protocol for an arbitrary NP-relation R into a 3-move concurrent ZKPoK
(without any timing constraints). By introducing a setup algorithm and replac-
ing the used ZKPoKs with those from [Dam00] (the statements proven stay the
same), we obtain an ABC that is concurrently secure in the CRS model (and,
in particular, anonymous under malicious organization keys in the CRS model)
and uses only three moves during both issuing and showing (when interleaving
the ZKPoK moves and the other protocol moves).

The introduction of system parameters pp further allows us to move the set-
commitment parameters from the organization keys to pp, which reduces the
organization public key sizes.

7.2.7 Efficiency Analysis and Comparison

We provide a brief comparison with other ABC approaches. As other candidates
for multi-show ABCs, we take the Camenisch-Lysyanskaya schemes [CL01, CL03,
CL04] as well as schemes from BBS+ signatures [BBS04, ASM06] which cover
a broad class of ABC schemes from randomizable signature schemes with effi-
cient PoKs. Furthermore, we take two alternative multi-show ABC constructions
[CL11, CL13] as well as Brands’ approach [Bra00] (also covering the provable
secure version [BL13a]) for the sake of completeness, although the latter only
provides one-show ABCs. We omit other approaches such as [AMO08] that only
allow a single attribute per credential. We also omit approaches that achieve
more efficient showings for existing ABC systems only in very special cases such
as for attribute values that come from a very small set (and are, thus, hard to
compare).4 Finally, we also include the recent approach in [CDHK15] that has
the same asymptotic parameter sizes as our approach. They achieve security in

4For instance, the approach in [CG12] for CL credentials in the strong RSA setting (en-
coding attributes as prime numbers) or in a pairing-based setting using BBS+ credentials
[SNF11] (encoding attributes using accumulators) where the latter additionally requires very
large public parameters (one F -secure BB signature [BCKL08] for every possible attribute
value).
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the UC framework [Can01], but consequently far less efficient constructions in a
concrete setting. Their approach is equally expressive as ours (selective disclo-
sure), but additionally supports pseudonyms and context-specific pseudonyms
for showings. For our comparison in Table 7.1 we take their most efficient instan-
tiation (which does not provide secret key extractability) and note that our show-
ings require less than 10 group elements (when instantiated with Scheme 2 and
the ZKPoK protocol from [CDM00]), whereas the cheapest variant in [CDHK15]
requires around 100 group elements.

Table 7.1 gives an overview of these systems, where Type-1 and Type-2 refer
to bilinear-group settings with Type-1 and Type-2 pairings, respectively. In a
stronger sense, XDH as well as SXDH requires the respective assumption to
hold. Furthermore, Gq denotes a group of prime order q (e.g., a subgroup of
large order q of Zp∗ or an elliptic curve group of order q). By |G|, we mean the
bitlength of the representation of an element from group G, by MK we indicate
whether anonymity (privacy) holds with respect to maliciously generated issuer
keys and with P we indicate whether the schemes support selective disclosure (s)
or also proving relations about attributes (r). We note that ◦ indicates that the
most efficient construction from [CDHK15] used in Table 7.1 does not consider
malicious keys, while the other less efficient ones in [CDHK15] do.

We emphasize that, in contrast to other approaches, such as [CL04, CL13],
our construction when instantiated with the SPS-EQ in Scheme 2 only requires
a small and constant number of pairing evaluations in all protocol steps.

We stress that the model introduced in [CKL+14] allows to instantiate con-
structions, for instance based on [CL03], that can deal with malicious organiza-
tion keys (although at the cost of efficiency).
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8
Conclusions

For everyone out there listening, thank you and Merry Christmas.

— Edward Snowden

In this thesis, we have introduced structure-preserving signatures on equiva-
lence classes (SPS-EQs) and, based on this, we have demonstrated their poten-
tial by pointing out new ways to construct several practically efficient privacy-
enhancing protocols and even a scheme for secure electronic-business processes.
In particular, we have constructed practically efficient round-optimal blind sig-
natures in the standard-model, an efficient standard-model one-show attribute-
based credentials (ABCs), an efficient multi-show ABC protocol and a new
verifiably-encrypted signature (VES) construction. Except for the VES scheme,
all these schemes can be instantiated with any SPS-EQ that is perfectly adapting
(under malicious keys)—a property on the distribution of signatures. In order
to commit to the sets of attributes and present subsets during the showings,
our multi-show ABC construction employs a set-commitment scheme. We have
introduced the notion of set commitments along with a security model and pre-
sented a perfectly hiding set-commitment scheme. Note that these contributions
are of independent interest.

With regard to SPS-EQ, we have introduced a security model and given
two SPS-EQ constructions. Besides one scheme that fulfills all requirements for
use in the presented applications while having only security guarantees in the
generic-group model (GGM), we have also given a first standard-model scheme
that is, however, not perfectly adapting. Nevertheless, it still fulfills a weaker
property. Furthermore, we have seen an impossibility result, which provides
evidence that the construction of a malicious-key perfectly adapting SPS-EQ in
the standard-model is not trivial at all. This has motivated the definition of a
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126 Chapter 8. Conclusions

weaker unforgeability model, which is still sufficient for most applications and
especially for the ones we have seen in this thesis.

Our blind-signature scheme is the first practically efficient round-optimal
construction having proofs in the standard model. Round optimality is a dis-
tinguishing measure for efficiency and, moreover, guarantees concurrent security
which, otherwise, has to be dealt with separately. Its main caveat is, however,
that its blindness relies on an interactive (yet very plausible) assumption. Our
scheme can be easily augmented to build partially blind signatures—the first of
its kind in the standard model—and allows us to build efficient one-show ABCs
with security guarantees in the standard model—the first such construction.

Our multi-show ABC, which is built from SPS-EQ and the introduced set
commitment scheme, is the first ABC to achieve constant-size credentials and
constant-time communication effort—both are important measures for (practi-
cal) efficiency. Another highlight is that it is the first scheme that is anonymous
against malicious organization keys in the standard model. However, we achieve
the former goals at the expense of reduced expressiveness, that is, we lose the
ability to prove arbitrary relations about the attributes. Yet, we do not expect
this to be a big drawback in many practical scenarios, as AND-relations can be
proven and common relations (such as an age range) can still be encoded into
the attributes. Furthermore, to prove our ABC secure, we have introduced a
security model, which is the first comprehensive game-based security model and
as a such also of independent interest.

Finally, we have also seen a new standard-model VES construction from SPS-
EQ. It gives us important theoretical insights: As it is black-box, it allows us
to relate SPS-EQs to public-key encryption and, in doing so, to separate certain
types of SPS-EQ from one-way functions (OWFs). This relation is somewhat
surprising, since digital signatures (DSs) can usually be built from OWFs. Last
but not least, we have pointed out flaws in the VES security model and showed
how to resolve them. To this end, we have given a secure VES having an under-
lying DS scheme that is neither correct nor unforgeable.

8.1 Open Issues and Future Work

An important issue left open is the construction of a (malicious-key) perfectly
adapting SPS-EQ in the standard model. We recall that the standard-model con-
struction in Scheme 3 requires a q-type assumption and only provides a weaker
form of privacy. This would allow us to instantiate all discussed schemes and
protocols in the standard model. Nevertheless, the impossibility result given in
Section 3.6 gives us the necessary direction. Furthermore, it is an interesting
question whether such signatures when built for other more general equivalence
relations yield further interesting, alternative applications. Another open is-
sue is to get rid of the interactive blindness assumption in our blind-signature
scheme from Chapter 4. Future work regarding the application of SPS-EQs
to anonymous credentials includes the investigation of their suitability to build
delegatable anonymous credentials [CL06]. Eventually, there seem to be further
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applications of SPS-EQs—especially to privacy-enhancing cryptography. Thus,
for instance, it seems possible to build group signatures from SPS-EQ and it re-
mains an open issue to develop further constructions of schemes and protocols.

Last but not least, an open issue is to develop software and hardware imple-
mentations of our schemes and to contrast them with existing implementations
of alternative approaches. In particular, it would be interesting to compare
implementations of our one-show and multi-show ABCs with Microsoft’s U-
Prove [Bra00] and IBM’s Idemix [CV02].





A
Omitted Proofs

A.1 Proof of Theorem 3.13

The following proof is taken in large parts verbatim from [FHS14].

We first consider the messages submitted to the signing oracle and the forgery
output by the adversary as formal multivariate Laurent polynomials whose vari-
ables correspond to the secret values chosen by the challenger, and show that an
adversary is unable to symbolically produce an existential forgery (even when
message elements are adaptively chosen).

Then, in the second part we show that the probability for an adversary to
produce an existential forgery by incident is negligible.

When proving the existentially unforgeable under adaptive chosen-message
attacks (EUF-CMA) security of a structure-preserving signature (SPS) scheme,
we have to take into account that an adversary is allowed to incorporate already
queried signatures into new signature queries. Therefore, the degree of involved
polynomials grows linearly in the number signature queries.

The values chosen by the challenger in the unforgeability game, which are
unknown to the adversary, are x1, . . . , x` used in the public keys (X̂i)i∈[`] ∈ (G∗2)`

and the values yj , j ∈ [q], picked for the jth signature, that is, when the jth
signing query for a message (Mj,i)i∈[`] is answered as

(Zj , Yj , Ŷj) = (yj
∑
i∈[`] xiMj,i,

1
yj
P, 1

yj
P̂ ).

When outputting a forgery (Z∗, Y ∗, Ŷ ∗) for a message (M∗i )i∈[`], the elements

the adversary has seen are (Zj , Yj)j∈[q] in G1, and (Ŷj)j∈[q] as well as (X̂i)i∈[`]

129
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in G2. The forgery must thus have been computed by choosing

πz, πy, πŷ, πm∗,i, ρz,j , ρy,j , ρm∗,i,j , ψy,j , ψŷ,j , ψm∗,i,j , χŷ,i ∈ Zp for j ∈ [q], i ∈ [`]

and setting

Z∗ = πzP +
∑
j∈[q]

ρz,jZj +
∑
j∈[q]

ψz,jYj

Y ∗ = πyP +
∑
j∈[q]

ρy,jZj +
∑
j∈[q]

ψy,jYj

Ŷ ∗ = πŷP̂ +
∑
i∈[`]

χŷ,iX̂i +
∑
j∈[q]

ψŷ,j Ŷj

M∗i = πm∗,iP +
∑
j∈[q]

ρm∗,i,jZj +
∑
j∈[q]

ψm∗,i,jYj

Similarly, for all j ∈ [q] the message (Mj,i)i∈[`] submitted in the jth query is
computed as a linear combination of all the G1 elements the adversary has seen
so far, that is,

P,Z1, Y1, . . . , Zj−1, Yj−1.

By considering all these group elements and taking their discrete logarithms to
the bases P and P̂ , respectively, we obtain the following linear combinations:

z∗ = πz +
∑
j∈[q]

ρz,jzj +
∑
j∈[q]

ψz,j
1

yj

y∗ = πy +
∑
j∈[q]

ρy,jzj +
∑
j∈[q]

ψy,j
1

yj

ŷ∗ = πŷ +
∑
i∈[`]

χŷ,ixi +
∑
j∈[q]

ψŷ,j
1

yj

m∗i = πm∗,i +
∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

mj,i = πm,j,i +
∑

k∈[j−1]

ρm,j,i,kzk +
∑

k∈[j−1]

ψm,j,i,k
1

yk

Observe that all message elements as well as the elements Y ∗, Ŷ ∗ of the forgery
must be different from 0G1

and 0G2
, respectively, by definition. Plugging the

forgery into the verification relations yields:∏
i∈[`]

e(M∗i , X̂i) = e(Z∗, Ŷ ∗) ∧ e(Y ∗, P̂ ) = e(P, Ŷ ∗)

and taking discrete logarithms to the basis e(P, P̂ ) in GT , we obtain the following
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equations: ∑
i∈[`]

m∗i xi = z∗ŷ∗ (A.1)

y∗ = ŷ∗ (A.2)

The values m∗i , z
∗, ŷ∗, y∗ are multivariate Laurent polynomials of total degree

O(q) in x1, . . . , x`, y1, . . . , yq. Our further analysis will be simplified by the
following fact.

Claim A.1. For all n ≥ 1, the monomials that constitute zn have the form

1

ybs

∏
k∈[t]

yjk
∏
k∈[t]

xik (A.3)

with 1 ≤ t ≤ n; for all k1 6= k2: jk1 6= jk2 ; for all k: jk ≤ n ∧ s < jk; jt = n;
and b ∈ {0, 1}.

Proof. We prove the claim by induction.

n = 1: As before the first signing query, the only element from G1 available to
the adversary is P , we have m1,i = πm,1,i and therefore

z1 =
∑
i∈[`]

πm,1,iy1xi,

which proves the base case.

n→ n+ 1: Assume for all k ∈ [n] the monomials of all zk are of the form in
(A.3). Since

mn+1,i = πm,n+1,i +
∑
k∈[n] ρm,n+1,i,kzk +

∑
k∈[n] ψm,n+1,i,k

1
yk
,

by the definition of SignR we have

zn+1 =
∑
i∈[`]

πm,n+1,i yn+1xi+

∑
i∈[`]

∑
k∈[n]

ρm,n+1,i,k yn+1zkxi+

∑
i∈[`]

∑
k∈[n]

ψm,n+1,i,k yn+1
1

yk
xi.

The monomials in the first and the last sum are as claimed in the statement.
By the induction hypothesis any monomial contained in any zk is of the
form 1

ybs

∏
p∈[t] yjp

∏
p∈[t] xip , with t ≤ n, jt = k and s < jp for all jp

as well as jp < k, for all jp with p < t (which are all different). Each
such monomial leads thus to a monomial in the 2nd sum in (A.1) of the
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form 1
ybs

(
yn+1

∏
p∈[t] yjp

)(
xi
∏
p∈[t] xip

)
= 1

ybs

∏
p∈[t′] yjp

∏
p∈[t′] xip , with

t′ := t + 1 ≤ n + 1, jt′ := n + 1, it+1 := i. Moreover t′ ≤ n + 1, all jp are
still different and ≤ n and s < jp for all jp, which proves the induction
step.

Together this proves the claim.

We will in particular use that by Claim A.1 in any monomial in zk there are
always exactly as many y’s as x’s in the numerator and there are at least one y
and one x; moreover there is at most one y in the denominator (and which does
not cancel down). Moreover, we have:

Corollary A.2. Any monomial can only occur in one unique zn.

Proof. This is implied by Claim A.1 as follows: For any monomial, let i∗ be
maximal such that the monomial contains yi∗ . Then the monomial does not
occur in zn with n > i∗, since zn contains yn contradicting maximality. It does
not occur in zn with n < i∗ either, since all yj contained in zn have j ≤ n,
meaning yi∗ does not occur in zn; a contradiction.

We start by investigating Equation (A.2):

y∗ = ŷ∗

πy +
∑
j∈[q]

ρy,jzj +
∑
j∈[q]

ψy,j
1

yj
= πŷ +

∑
i∈[`]

χŷ,ixi +
∑
j∈[q]

ψŷ,j
1

yj

By equating coefficients, and taking into account that by Claim A.1 no zj con-
tains monomials of the form 1, xi, or 1

yj
, we obtain ρy,j = 0 for all j ∈ [q]

and

(i) πŷ = πy

(ii) χŷ,i = 0 ∀i ∈ [`]

(iii) ψŷ,j = ψy,j ∀j ∈ [q]

Let us now investigate Equation (A.1) (where in ŷ∗ we replace πŷ, χŷ,i and ψŷ,j
as per (i), (ii) and (iii), respectively):∑

i∈[`]

m∗i xi = z∗ŷ∗

Filling in m∗i , z
∗ and y∗, we obtain:∑
i∈[`]

(
πm∗,i +

∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

)
xi =

(
πz +

∑
j∈[q]

ρz,jzj +
∑
j∈[q]

ψz,j
1

yj

)(
πy +

∑
k∈[q]

ψy,k
1

yk

)
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The RHS then expands to:

πzπy +
∑
j∈[q]

ρz,jπy zj +
∑
j∈[q]

(
ψz,jπy + πzψy,j

) 1

yj
+

∑
(j,k)∈[q]2

(ρz,jψy,k
1

yk
zj+

ψz,jψy,k
1

yjyk
).

Equating coefficients for 1, we get:

(iv) πzπy = 0

Since by Claim A.1, no terms in zjxi, zj and 1
yk
zj are of the form 1

yj
or 1

yjyk
,

equating coefficients for 1
yj

and 1
yjyk

yields:

(v) ψz,jπy + πzψy,j = 0 ∀j ∈ [q]

(vi) ψz,jψy,k = 0 ∀j, k ∈ [q]

By (iv)–(vi), we have simplified Equation (A.1) to the following:∑
i∈[`]

(
πm∗,i +

∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

)
xi = (A.4)

∑
j∈[q]

ρz,jπy zj +
∑

(j,k)∈[q]2
ρz,jψy,k

1

yk
zj . (A.5)

Let us analyze the monomials contained in the zj ’s. By (A.3) in Claim A.1, there
is an equal number of y’s and x’s in numerators of such monomials. Therefore,
on the LHS the number of x’s in all monomials is always greater than that of
y’s, meaning monomials of type (A.3) only occur on the RHS of (A.4).

We now show that ρz,nπy zn = 0 for all n ∈ [q]. Assume that for some n ∈ [q]
this is not the case. Since none of the monomials in zn can appear on the LHS
and by Corollary A.2, they do not appear in any other zi, i 6= n, zn must be
subtracted by a term contained in 1

yk
zj for some j, k ∈ [q]. The term in this zj

must not have yk in the numerator, as otherwise it would cancel down and the
number of y’s and x’s would be different, meaning it would not correspond to
any monomial in zn (which are of the form (A.3)). This also means that any
monomial contained in zn (in the first sum on the RHS) must have yk in the
denominator if it is to be equal to a term in 1

yk
zj .

Next, we observe that for j = n monomials in zn can only be equal to terms in
1
yk
zj . This is because the maximal i∗ with yi∗ appearing in zn would be different

for any other zj , j 6= n (cf. the proof of Corollary A.2). But this means that
any monomial in zn, which by the above must have yk in the denominator, also
occurs in the zn in the double sum, yielding a term with y 2

k in the denominator.
Since this cannot occur anywhere else in the equation by Corollary A.2, we
arrived at a contradiction. We have thus:

(vii) ρz,jπy zn = 0 ∀j ∈ [q]



134 Appendix A. Omitted Proofs

Equation (A.1) has now the following, simplified representation:∑
i∈[`]

(
πm∗,i +

∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

)
xi =

∑
(j,k)∈[q]2

ρz,jψy,k
1

yk
zj (A.6)

From Claim A.1 we have that every monomial of zj has an equal number of y’s
and x’s in the numerator; for all monomials of the LHS we thus have: (number
of y’s) = (number of x’s) − 1. For such a term to occur on the RHS, this has
to be a monomial N in zj that has yk in the numerator, so it cancels down and
leads to a term with more x’s than y’s. We show that this must be zk, that is,
we show that ρz,jψy,k = 0 for all j 6= k.

First this holds for k > j, since the “largest” y contained in zj is yj and
thus yk does not cancel. Second for k < j, let us assume that there is at least
one pair of coefficients ρz,jψy,k 6= 0 with k < j. Observe that 1

yk
zj on the RHS

still contains yj as “largest” y-value (by Claim A.1). The monomials composing
1
yk
zj do thus only occur in zj on the LHS, thus ρm∗,i,j 6= 0 for some i ∈ [`].

Thus the monomial N from zj on the RHS which contains yk also occurs on the
LHS. However, as by Claim A.1 every y occurs only once in every monomial,
after canceling out yk from zj no yk remains in N on the RHS. As however,
yk is present in the corresponding monomial in zj on the LHS, there is no
corresponding term on the RHS. A contradiction. We thus obtain:

(viii) ρz,jψy,k = 0 ∀j, k ∈ [q], j 6= k

Since the RHS of (A.6) cannot be 0 (otherwise all m∗i on the LHS would be 0,
which is not a valid forgery), we have:

(ix) ∃ k ∈ [q] : ρz,kψy,k 6= 0

We now argue that there exists exactly one such k, which follows from the
following basic fact:

Claim A.3. Let a, b ∈ Z q
p be two non-zero vectors. If C = a · b> is a diagonal

matrix then at most one element in C is non-zero.

Proof. Since C is diagonal, we have

rank(C) = #(non-zero rows in C) = #(non-zero elements in C).

From basic linear algebra we have rank(a) = rank(b>) = 1 and rank(C) ≤
min{rank(a), rank(b>)} = 1.

Applying this to C := (ρz,j)j∈[q] · (ψy,k)>k∈[q], which by (viii) and (ix) is
a non-zero diagonal matrix, we get that all but one element of the diagonal
(ρz,kψy,k)k∈[q] are zero, that is:

(x) ∃!n ∈ [q] : ρz,nψy,n 6= 0
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By (viii) and (x), Equation (A.1) simplifies to∑
i∈[`]

(
πm∗,i +

∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

)
xi =

ρz,nψy,n
1

yn
zn =

ρz,nψy,n
∑
i∈[`]

mn,ixi =

ρz,nψy,n
∑
i∈[`]

(
πm,n,i +

∑
j∈[n−1]

ρm,n,i,jzj +
∑

j∈[n−1]

ψm,n,i,j
1

yj

)
xi,

where in the 2nd line we substituted zn by its definition, i.e., yn
∑
k∈[`]mn,kxk,

and in the 3rd line we replaced mn,i by its definition. Since by Claim A.1, xi,
zjxi and 1

yj
xi, for all i ∈ [`], j ∈ [q], do not have common monomials, equating

coefficients yields (with α := ρz,nψy,n):

πm∗,i = απm,n,i ρm∗,i,j = αρm,n,i,j ψm∗,i,j = αψm,n,i,j

This finally means that the message for the forgery is just a multiple of the
previously queried message Mn, which completes the first part of the proof.

It remains to be shown that the probability for an adversary to produce
an existential forgery by “incident”, i.e., that two formally different polynomi-
als collide by evaluating to the same value (or, equivalently, that the difference
polynomial evaluates to zero), is negligible. Suppose that the adversary makes
q queries to the signing oracle and O(q) queries to the group oracles. Then,
all involved formal polynomials resulting from querying the group oracles are of
degree O(q) and overall there are O(

(
q
2

)
) = O(q2) polynomials that could collide

(i.e., whose difference polynomial evaluates to zero). Then, by the Schwartz-
Zippel lemma [Zip79, Sch80] and the collision argument, the probability of such
an error in the simulation of the generic group is O(q

3
/p) and is, therefore negli-

gible in the security parameter.

A.2 Proof of Proposition 4.12

This proof is taken from [FHS15a].
Let A be a generic PPT adversary and let σ : G1 → {0, 1}m1 , σ̂ : G2 →

{0, 1}m2 and τ : GT → {0, 1}mT be random, homomorphic encoding functions
where w.l.o.g. m1 < m2 < mT . A cannot work directly with group elements,
but is forced to work with their image under σ, σ̂ and τ . Furthermore, A is given
oracle access to perform generic bilinear-group operations (operations in G1, G2

and GT and pairings). Since A is given access to the group-element encodings, it
can perform equality checks on its own through string equality tests. At last, we
require that A can only submit already queried encodings to the group oracles.
(Note that we can enforce this by choosing m1,m2 and mT large enough making
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the probability of guessing bitstrings in the image of σ, σ̂ and τ , respectively,
negligible.)

Now, let B be an algorithm interacting with A as follows. B picks a ran-
dom bit b←R {0, 1}, picks σP ←R {0, 1}m1 and σ̂P̂ ←

R {0, 1}m2 as encoding of the
generators of G1 and G2, respectively. B stores (1, σP ) in a list L1 and (1, σ̂P̂ )
in a list L2 and gives the respective encodings to A. Furthermore, it initializes
a list LT to manage elements of GT . At first, B simulates the group oracles as
follows.

Group action in G1: Given two bitstrings σ0, σ1 representing elements in G1,
B looks them up in L1 and recovers the first components f0, f1 ∈ Zp of
the corresponding entries (fi, σi). It computes f0 + f1 and if L1 already
contains an entry starting with f0 + f1, B returns its associated bitstring
σ; otherwise, B chooses σ←R {0, 1}m1 , returns σ and stores (f0 + f1, σ) in
L1.

Inversion in G1: Given a bitstring σ representing an element in G1, B recovers
the corresponding values f ∈ Zp and computes −f . In case L1 already
contains −f , B returns its associated bitstring σ′. Otherwise, B chooses
σ′←R {0, 1}m1 , returns σ′ and stores (−f, σ′) in L1.

Group action in G2: Given two bitstrings σ̂0, σ̂1 representing elements in G2,
B recovers the corresponding values f̂0, f̂1 ∈ Zp and computes f̂0 + f̂1.

In case L2 already contains f̂0 + f̂1, B returns its associated bitstring σ̂.
Otherwise, B chooses σ̂←R {0, 1}m2 , returns σ̂ and stores (f̂0 + f̂1, σ̂) in
L2.

Inversion in G2: Given a bitstring σ̂ representing an element in G2, B recovers
the corresponding values f̂ ∈ Zp and computes −f̂ . In case L2 already

contains −f̂ , B returns its associated bitstring σ̂′. Otherwise, B chooses
σ̂′←R {0, 1}m2 , returns σ̂′ and stores (−f̂ , σ̂′) in L2.

Pairing: Given two bitstrings σ, σ̂ representing elements in G1 and G2, B re-
covers the corresponding values f from L1 and f̂ from L2. In case LT
already contains f · f̂ , B returns its associated bitstring τ . Otherwise, B
chooses τ ←R {0, 1}mT , returns τ and stores (f · f̂ , τ) in LT .

The group action and inversion oracle for GT are simulated analogously to those
for G1 and G2.

When A publishes σQ and σ̂Q̂ such that (fQ, σQ) ∈ L1 and (f̂Q̂, σ̂Q̂) ∈ L2 and

fQ = f̂Q̂, B chooses four bitstrings σ0, σ1, σ2, σ3←R {0, 1}m1 and assigns polyno-

mials R, fQ ·R,S, fQ · ((1− b) ·T + b ·U) ∈ Zp[R,S, T, U ] to these values (in that
order) in order to keep track of them. B stores (R, σ0), (fQ ·R, σ1), (S, σ2), (fQ ·
((1− b) · T + b · U), σ3) in L1 and provides A with σ0, σ1, σ2, σ3.

After this, B simulates the G1 group oracles as follows.
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Group action in G1: Given two bitstrings σ0, σ1 representing elements in G1,
B recovers the corresponding polynomials f0, f1 ∈ Zp[R,S, T, U ] and com-
putes f0 + f1. In case L1 already contains f0 + f1, B returns its associ-
ated bitstring. Otherwise, B chooses σ←R {0, 1}m1 , returns σ and stores
(f0 + f1, σ) in L1.

Inversion in G1: Given a bitstring σ representing an element in G1, B recovers
the corresponding values f ∈ Zp[R,S, T, U ] and computes −f . In case L1

already contains −f , B returns its associated bitstring. Otherwise, B

chooses σ′←R {0, 1}m1 , returns σ′ and stores (−f, σ′) in L1.

The group oracles for GT are modified analogously to handle polynomials in
Zp[R,S, T, U ].

When A has finished querying the group oracles, A outputs a bit b∗. Then,
B chooses r, s, t←R Zp and sets R← r, S ← s, T ← t, U ← rs.

Now, if the simulation was consistent, no information about b got revealed
and hence A can only guess b with probability 1/2. Nevertheless, the simulation
can be inconsistent, if two distinct polynomials in L1 or in LT evaluate to the
same value after choosing concrete values for R,S, T, U . Note that such collisions
cannot occur in L2, since L2 contains only polynomials of degree 0.

We need to prove that such a collision in L1 (and likewise in LT ) cannot be
caused by A itself. All substitutions in the formal variables R,S, T are inde-
pendent, whereas only U depends on R and S. Therefore, A can only produce
collisions using RS. In the beginning, the list L1 only contains polynomials of
degree 0, whereas later polynomials of total degree 1 are being added to L1.
Moreover, the group oracles do not increase the degree of the polynomials in L1

as they only cover addition and inversion. Thus, A is not able to generate such
collisions on purpose.

The same argumentation holds for LT . Observe that the polynomials con-
tained in LT have at most total degree 1, since they arise from the multiplication
of degree-0 polynomials in L2 and polynomials of total degree at most 1 in L1.

What remains to be shown is that the probability of a collision is negligible,
i.e., that two distinct polynomials in L1 and LT evaluate to the same value after
the substitution (or alternatively that their difference polynomial evaluates to
0). Suppose that A has issued q queries to the group oracles. Let |L1| = O(q)
and |LT | = O(q), then there are O(

(
q
2

)
) possibilities of colliding polynomials.

By the Schwartz-Zippel lemma [Zip79, Sch80] and the collision argument, the
probability of such an error in the simulation of the generic group is O(q

2
/p) and

is therefore negligible in the security parameter. The same kind of argument
also holds for GT .
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manig. Towards authenticity and privacy preserving accountable
workflows. In Privacy and Identity Management for the Future In-
ternet in the Age of Globalisation, 2015. in press. 17

[DHS14a] David Derler, Christian Hanser, and Daniel Slamanig. Blank digital
signatures: Optimization and practical experiences. In Privacy and
Identity Management for the Future Internet in the Age of Globali-
sation - 9th IFIP WG 9.2, 9.5, 9.6/11.7, 11.4, 11.6/SIG 9.2.2 In-
ternational Summer School, Patras, Greece, September 7-12, 2014,
Revised Selected Papers, pages 201–215, 2014. 17

[DHS14b] David Derler, Christian Hanser, and Daniel Slamanig. Privacy-
enhancing proxy signatures from non-interactive anonymous cre-
dentials. In Data and Applications Security and Privacy XXVIII
- 28th Annual IFIP WG 11.3 Working Conference, DBSec 2014,
Vienna, Austria, July 14-16, 2014. Proceedings, pages 49–65, 2014.
17

[DHS15a] David Derler, Christian Hanser, and Daniel Slamanig. A new ap-
proach to efficient revocable attribute-based anonymous credentials.
In Jens Groth, editor, 15th IMA International Conference on Cryp-
tography and Coding, volume 9496 of Lecture Notes in Computer
Science, pages 57–74, Oxford, UK, December 15–17, 2015. Springer,
Heidelberg, Germany. 17

[DHS15b] David Derler, Christian Hanser, and Daniel Slamanig. Revisiting
cryptographic accumulators, additional properties and relations to
other primitives. In Kaisa Nyberg, editor, Topics in Cryptology
– CT-RSA 2015, volume 9048 of Lecture Notes in Computer Sci-
ence, pages 127–144, San Francisco, CA, USA, April 20–24, 2015.
Springer, Heidelberg, Germany. 12, 17, 19



152 Bibliography

[DR08] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.2. RFC 5246 (Proposed Standard), August 2008.
2

[FHS14] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. EUF-
CMA-secure structure-preserving signatures on equivalence classes.
Cryptology ePrint Archive, Report 2014/944, 2014. http://eprint.
iacr.org/2014/944. 7, 14, 41, 47, 74, 129

[FHS15a] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Prac-
tical round-optimal blind signatures in the standard model. In
Rosario Gennaro and Matthew J. B. Robshaw, editors, Advances
in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture
Notes in Computer Science, pages 233–253, Santa Barbara, CA,
USA, August 16–20, 2015. Springer, Heidelberg, Germany. 7, 8, 14,
19, 26, 39, 41, 49, 61, 62, 101, 102, 135

[FHS15b] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practi-
cal round-optimal blind signatures in the standard model. Cryptol-
ogy ePrint Archive, Report 2015/626, 2015. http://eprint.iacr.

org/2015/626. 14, 19, 41, 62

[FHS16] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig.
Structure-preserving signatures on equivalence classes and their ap-
plication to anonymous credentials. Journal of Cryptology, 2016.
submitted. 7, 14, 19, 41, 93, 102

[Fis02] Marc Fischlin. On the impossibility of constructing non-interactive
statistically-secret protocols from any trapdoor one-way function.
In Bart Preneel, editor, Topics in Cryptology – CT-RSA 2002, vol-
ume 2271 of Lecture Notes in Computer Science, pages 79–95, San
Jose, CA, USA, February 18–22, 2002. Springer, Heidelberg, Ger-
many. 23

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the
common reference string model. In Cynthia Dwork, editor, Ad-
vances in Cryptology – CRYPTO 2006, volume 4117 of Lecture
Notes in Computer Science, pages 60–77, Santa Barbara, CA, USA,
August 20–24, 2006. Springer, Heidelberg, Germany. 10, 61

[FO98] Eiichiro Fujisaki and Tatsuaki Okamoto. A practical and provably
secure scheme for publicly verifiable secret sharing and its applica-
tions. In Kaisa Nyberg, editor, Advances in Cryptology – EURO-
CRYPT’98, volume 1403 of Lecture Notes in Computer Science,
pages 32–46, Espoo, Finland, May 31 – June 4, 1998. Springer,
Heidelberg, Germany. 12

[Fre12] David Mandell Freeman. Improved security for linearly homomor-
phic signatures: A generic framework. In Marc Fischlin, Johannes

http://eprint.iacr.org/2014/944
http://eprint.iacr.org/2014/944
http://eprint.iacr.org/2015/626
http://eprint.iacr.org/2015/626


Bibliography 153

Buchmann, and Mark Manulis, editors, PKC 2012: 15th Interna-
tional Conference on Theory and Practice of Public Key Cryptog-
raphy, volume 7293 of Lecture Notes in Computer Science, pages
697–714, Darmstadt, Germany, May 21–23, 2012. Springer, Heidel-
berg, Germany. 9

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical so-
lutions to identification and signature problems. In Andrew M.
Odlyzko, editor, Advances in Cryptology – CRYPTO’86, volume
263 of Lecture Notes in Computer Science, pages 186–194, Santa
Barbara, CA, USA, August 1987. Springer, Heidelberg, Germany.
35, 39

[FS90] Uriel Feige and Adi Shamir. Zero knowledge proofs of knowledge
in two rounds. In Gilles Brassard, editor, Advances in Cryptol-
ogy – CRYPTO’89, volume 435 of Lecture Notes in Computer Sci-
ence, pages 526–544, Santa Barbara, CA, USA, August 20–24, 1990.
Springer, Heidelberg, Germany. 36

[FS10] Marc Fischlin and Dominique Schröder. On the impossibility of
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